A Synchronous Tiered Based Clustering
Algorithm for large-scale Ad hoc Networks

Imen Jemili'2, Abdelfatteh Belghith!, and Mohamed Mosbah?

HANA Lab.
N. School of Computer Sciences, Tunisia, e-mail: imen.jemili @cristal.rnu.tn,abdelfattah.
belghith@ensi.rnu.tn

LaBRI
University of Bordeaux I, Talence, France e-mail: {jemili,mosbah} @labri.fr

Abstract Relaying on a virtual backbone formed by the induced hierarchy of a con-
nected dominating set is a widespread solution in ad hoc networks. However, the
majority of existing approaches require gathering neighborhood information with-
out considering the loss of information due to collision and the effect of wireless
interference and its impact on the accuracy of information used during clustering
process. In this paper, we present an improved version of our clustering algorithm,
TBCA, operating in layered manner and exploiting the eventual collision to ac-
celerate the clustering process. We prove through simulations that our mechanism
outperforms other ones, in terms of effectiveness throughput and per-packet sojourn
delay. Conducted simulations show also that it copes better with mobility.

1 Introduction

Clustering is considered as a promising approach to face one of the most critical
problems confronting the ad hoc networks: the scalability. Indeed, the dynamic
topology, limited mobile node capability and limited link bandwidth pose a chal-
lenge for the scalability of these networks.

The clustering process aims to build a hierarchy among the nodes, by organizing
nodes into smaller groups called clusters simpler to manage. A virtual backbone can
be formed by clusterheads and sometimes gateway nodes in a connected dominating
set. A node set is a dominating set (DS) if every node in the network is either in the
set or a neighbor of a node in the set. The DS is called a connected dominating set
(CDS) if any two nodes in a DS can be connected through intermediate nodes from
the DS. The virtual backbone formed by the induced hierarchy of a CDS plays a
very important role in routing, broadcasting and connectivity management in wire-
less ad hoc networks [1, 2]. Many CDS formation algorithms exist in the literature.
However, constructing a virtual backbone comes at a cost in terms of the time it
takes for CDS building and also the overheads incurred in the additional network
traffic generated. In fact, most of the proposed approaches require the knowledge of

Please use the following format when citing this chapter:

Jemili, L., Belghith, A. and Mosbah, M., 2008, in IFIP International Federation for Information Processing, Volume 284; Wireless and
Mobile Networking; Zoubir Mammeri; (Boston: Springer), pp. 41-55.

42 Wireless and Mobile Networking

the h-hop neighborhood information only with a small h. However, the lack of struc-
ture is a characteristic of wireless multi-hop radio networks when being deployed.
Every node is unable to know its neighbors or the number of its neighbors with-
out exchanging control messages with its neighborhood. Thus, a discovery phase
is required preceding the execution of the algorithm aiming to construct a set of
connected dominating nodes. Besides, over time, the dominating set must be up-
dated to reflect the changes occurring in the network topology due to node mobility.
The maintenance phase should also require as little communication between mobile
nodes as possible. The majority of the proposed approaches gather neighborhood in-
formation periodically to maintain the CDS; collecting information takes time and
there is a high likelihood of changes in network connectivity before the termination
of this gathering phase required for maintenance. The use of explicit message ex-
change among neighbors in periodic basis can greatly affect the performance of the
upper-layers protocols in large scale networks. Further, these algorithms do not take
into account the presence of message losses due to eventual collision and the effect
of wireless interference.

In this paper, we present an improved version of DCAWNK [3, 4], entitled
TBCA (Tiered Based Clustering Algorithm). The main contribution of DCAWNK
is that our mechanism does not necessitate any type of neighborhood knowledge,
trying to alleviate the network from some control messages exchanged during the
clustering and maintenance process. Consequently more bandwidth is left for trans-
porting data traffic. The new version guarantees the construction of a dominating
node set. So, we detail the three overlapping phases followed to construct a con-
nected dominating set. The two first phases allow us to select the clusterheads and
then gateways. While the third one allows us to verify that all clusterheads are con-
nected through gateway neighbors. Improvements concerning rules for selecting the
appropriate candidate for clusterhead and gateway roles are also presented. The rest
of the paper is organized as follows. Section 2 reviews the related works; we focus
specifically on clustering algorithms based on graph domination. Then, we give an
exhaustive description of our clustering algorithm in section 3. We confirm the ef-
fectiveness of our algorithm through exhaustive simulations in section 4. In section
5, we conclude.

2 Related works

Many approaches have been proposed to construct a connected dominating set. Wu
[5] proposed a distributed algorithm to find a CDS in order to design efficient rout-
ing schemes. The first phase allows nodes with at least two unconnected neighbors
to be marked as dominator. Then some extension rules are implemented to reduce
the size of a CDS generated from the marking process. Wu and Li algorithm was im-
proved in term of message overhead in [6]. An extension of Wu and Li’s distributed
algorithm has been presented in [7], where the connected dominating set selection
is based on the node degree and the energy level of each host. In [2], the authors

MWCN"2008 43

proceed in the same way. A periodic exchange of hello permits nodes to gather two
hop information allowing nodes to verify their eligibility for coordinator role. In
[8], a dominating set is firstly constructed, then, the second step permits to connect
the dominating set to form a CDS. The authors adopt in [9] the same way, a leader
node triggers the construction of a Maximal Independent Set (MIS) by sending its
hello message. Selection of others dominators of the MIS is based on the maximum
weight in a given neighborhood. In [10], the authors propose a fast interference-
aware distributed algorithm for wireless networks which constructs only a domi-
nating set in an asynchronous environment. They assume that the network nodes
have no information about their local neighborhood and do not possess a reliable
collision detection mechanism. In [11], the authors present local control algorith-
mic techniques for CDS construction in wireless ad hoc networks which take into
account message losses due to collisions from interfering transmissions. One of the
described distributed algorithms requires each node to know their three-hop topol-
ogy, while the second requires the knowledge of the maximum degree and the size
of the network. This latest necessitates gathering two hops neighbor information.

Most of previous works have focused on selecting a small virtual backbone for
high efficiency. A CDS with small size reduces the number of nodes involved in
routing activities which contribute to deplete their energy quickly. It is also impor-
tant to maintain a certain degree of redundancy in the virtual backbone for fault
tolerance and routing flexibility. Besides, all these propositions rely on gathering
h-hop neighborhood information, only with a small h. In many mechanisms, no
mechanism was specified how to proceed when information loss occurs due to col-
lision between data packets and the control packets or due to effect of interference.
Moreover, over time, the CDS must change to reflect the changes in the network
topology as nodes move. Many CDS schemes employ explicit message exchange
among neighbors in periodic basis for maintaining the backbone structure. They
apply local repairs, with the target of enhancing as much as possible the quality
and stability of the hierarchy organization, by avoiding any unnecessary structure
changes. However, in highly dynamic ad hoc net-works, local repairs are insuffi-
cient, since they are based on gathering information, which can be not up-to-date
when being used by nodes. Algorithms requiring two hops or more neighborhood
knowledge face this drawback, since the propagation of this information necessitate
time.

3 Connected Dominating Set construction

Our clustering algorithm DCAWNK is based on the presence of a specific node
called the Designated Node (DN). Electing the DN node is out of the scope of this
paper. The basic idea is to organize the clustering process into layered stages in order
to limit the number of participating nodes at the clustering process at a given instant.
In this way, we reduce the eventual collisions between the control messages dedi-
cated to the clustering phase. Through the improved version, TBCA, we guarantee

44 Wireless and Mobile Networking

the construction of a connected dominating set formed by elected clusterheads and
gateways. Thus, we add a checking phase assuring that all clusterheads can commu-
nicate through gateways. Besides, we define new rules for clusterhead selection and
gateway declaration in order to allow the most appropriate nodes to gain clusterhead
or gateway role. We aim also to minimize the total number of nodes elected as clus-
terhead or as gateway. At the start of the clustering process, all nodes are unaffected,
marked to N. We assume that all the nodes are synchronized thanks to an external
agent.

3.1 Clusterhead and member declaration

The DN node triggers the clustering process by sending a cbeacon message exactly
at TBTT!. The latter is the first declared clusterhead and remains a clusterhead for-
ever. Its immediate neighbors will join its cluster as member nodes (M) and reply
after a SIFS % by an ACK BT. To avoid signal attenuation especially in large-scale
ad hoc networks, we impose to nodes with odd identity to send their ACK_BT after
a SIFS sensing period, while, nodes with even identity will transmit their ACK_BT
after 2 SIFS periods. Simultaneous sending of ACK_BT generates hence a colli-
sion, considered like a "Busy Tone’ (BT). The busy tone will be intercepted by the
two hop neighbors of the DN informing them that they are able to compete to be-
come clusterheads. A node which has heard a cbeacon message is not allowed to
participate into the clusterhead election. A node, marked to N, which intercepts a
BT collision or an ACK_BT is an eligible candidate for the clusterhead role (can-
dCH). The eligible nodes can concur to gain the clusterhead status in a randomized
manner. To compute the backoff time, we prefer to use local information in order
to avoid the required collecting information phase which is prone to collisions. So,
each candCH node i computes a new boundary D/ for the backoff computing delay
taking into account the energy factor, as follows:

D} = (P =Dy) 4] (M
max

Where:

Dimax, Dimin : The maximal and minimal boundaries imposed for the backoff
calculation by eligible candCH nodes

E,ux, Ei : The maximal and remaining energies at node i

The personalized boundary D/ favors the declaration of nodes having sufficient
energy, since clusterheads will have to assume additional tasks like routing. Every
eligible node will calculate a random delay d; uniformly distributed in the range
between zero and the new calculated boundary Di1 . Our aim is to reduce the collision

probability between multiple candCHs accessing the medium for announcing their

U TBTT : Target Beacon Transmission Time
2 SIFS : Short InterFrame Space

MWCN"2008 45

cbeacon. Thus, we fix a minimal boundary different from zero. The random delay
d; timer is decremented according to the defined CSMA/CA backoff algorithm. A
candCH cancels the remaining random delay and the pending cbeacon transmission,
if a cbeacon packet arrives before the random delay d; timer has expired. So, such a
node will be assigned member status while joining the cluster of the cbeacon sender.
Otherwise, it declares itself a clusterhead after transmitting its own cbeacon packet.
Each node, which receives a cbeacon, sends an ACK_BT in order to inform two hops
clusterhead neighbors that are able to candidate to clusterhead role. In this way, the
clustering process progress in a layered manner.

To be able to differentiate between collisions which happened between cbeacon
messages from collisions which happened between a cbeacon and ACK_BT mes-
sages, we force the layering to be centered at the DN. We impose the termination
of the clustering process in a specific layer before allowing nodes in the subsequent
layer to start the clustering process. Furthermore, nodes in the current layer that
have heard cbeacon(s) transmit their ACK_BT at the same time upon the termina-
tion of the clusterhead election process at this layer. So, we divided the time in a
succession of periods of time, denoted by T7;, i=1..N, where N represents the number
of layers needed to cover the entire network. Depending on the context, we consider
that 7; denotes also the instant at which period 7; ends. Period 7; defines the time
duration required by the execution of the clustering process for layer i. It includes
a sub period for the announcements of cbeacon messages followed by a second sub
period for the simultaneous transmission of ACK_BT. We denote by T;zr the instant
at which this second sub period starts; as shown in Figure 1. Collisions occurring
among cbeacons messages (only possible during the first sub period) are called CH
collision, and the collisions between ACK_BT messages (happening during the sec-
ond sub period) are called BT collision.

Let us now express explicitly the 7;, 1 = 1..N. We define the following quantities:

Txcbeacon : The transmission time of a cbeacon

TxBT : The transmission time of a ACK_BT

SlotTime : The slot time

CWsize : the contention window which is slot count

We get the following expressions for T;, for i=1...N:

TBTT Ty T; T; Ty
1/ 4 L/ 4 L/ A LA N
V | v | V | L | hd
Tier Typr Ter Typr
e e et e e et
CH CH

Declaration y o pr Declaation ACK_BT

Fig. 1 Time division for clustering process

46 Wireless and Mobile Networking

Ty = SIFS + Txcbeacon + (2« SIFS) + TxBT (2)

Ty =T1 + (N —1)* (SIFS + CWsize + Txcbeacon+ (2« SIFS) +TxBT) (3)

And the following expressions for Tjpr, i=1.. N:
Tipr = SIFS + Txcheacon “4)

Tnpr = Tv—1 + (SIFS +CWsize + Txcbeacon) 5)

Since the beginning of the clustering process, all nodes will be passive, except the
DN node. Each node will estimate continuously the instants 7; and T;pr while wait-
ing for clustering process to reach its level. We note that upon the first reception of
a cbeacon or an ACK_BT or the detection of a CH collision or BT collision, a node
realizes that the current clustering process concerns its layer.

3.2 Gateway declaration

3.2.1 Normal candGW declaration

During the clustering process, a node within layer i, that hears a correct cbeacon
message, modifies its status to a Member node and adds the sender node identity to
its clusterhead list (CH list). A member node that receives two or more correct cbea-
con messages during 7; or 7;| becomes a candidate gateway (candGW), called a
normal candGW. This node is eligible to ensure lately the role of a gateway between
its clusterhead neighbors. Immediate declaration of a candGW will cause troubles
for next layer nodes busy with the clustering process in progress. Thus, a candGW
node within layer i must wait a period of time, denoted by 7'G;, in such a way to not
perturb the clustering process traffic of the layers i and i+1. To this end, computing
the period 7'G; by a normal candGW at level i is done as follows fori=1..N:

TG =Tr—t (6)

Where, t denote the instant of node declaration as candGW.

In figure 2, the node k is a candGW for the clusterheads i, j and m. Waiting for
a period 7'G; aims to eliminate all risk of collision with the cbeacon messages that
can be sent by candCH nodes within the next layer, such as node m. The period 7'G;
was also computed in such a way to minimize the risk of interference able to prevent
the good receipt of the cbeacons sent by the candCH at i+2 level, like the node o.
After waiting the T'G; period, all normal candGW, belonging the same level i, are
authorized to compete in order to acquire the gateway status. Each candGW selects
a random backoff delay d>. To favor candGW nodes closer to many clusterheads,
each candGW i computes a personalized boundary Dé as follows:

MWCN"2008 47

Dy = (D2)

7
CH _Neighbor _Number @)

Where D> is the maximal boundary used

So, each candGW chooses a random slot number in the range of zero to Dé.

We note that the personalized boundary D5 can’t exceed the threshold D,/2, since
a node must hear at least two correct cbeacons to obtain the candGW status. Upon
expiration of d, backoff delay, a candGW is authorized to transmit its declaration to
be an effective gateway for the clusterheads in its CH list, if it is steal eligible for
this role. An eligible node for gateway role is a candGW with at least one uncovered
CH neighbor. Otherwise, it becomes a member node. In fact, at the receipt of other
gateway declaration, a candGW is able to verify if its own clusterheads are covered
or not. Besides, every normal candGW or gateway renounces to the gateway role
if it hears another GW declaring itself for a set of clusterheads that covers its own,
the latest is called a dominating gateway. We note that during checking eligibility
operation, a candGW or a GW must take into account the declaration of other GWs
within the same layer. With this rule, we ensure that enough gateways will be elected
to assure communication between clusterheads within adjacent layers.

3.2.2 Declaration of candGW with anonymous CHs

During the step of candCH declarations within a layer i, we can’t eliminate com-
pletely the risk of collision occurrence. CandGWs with anonymous CHs gather
nodes which intercept a CH collision due to a simultaneous transmission of two
or more cbeacons from candCH nodes during 7; or 7;;. In this case, the node adds
an anonymous clusterhead to its CH list to represent the existence of two or more
unknown clusterheads. However, such a node will not be assigned candGW status
in all situations.

1) Detection of a CH collision by a node within level i during the first sub
period of T;

During the clusterhead election at level i, a node can be assigned one of these
states when intercepting a CH collision: candCH, N node, M node or a candGW
node. A candCH node or node, initially marked to N, acquires only member sta-

I \‘ 0 \ib \ i 'I
‘%’TJ: - :
| Yot 1,8)

Fig. 2 Waiting period 7 G;

48 Wireless and Mobile Networking

tus despite the fact that it is closer to many clusterheads. While a member node
conserves also its member status. In such a situation, a candGW node is already
an eligible candidate for assuming gateway role. Subsequently, this candGW must
indicate the existence of anonymous clusterheads in its list and specify the time of
collision occurrence.

We remind that our main objective is to minimize the whole gateways number
while guarantying the declaration of enough gateways in order to assure commu-
nication inter layers. Thus, communication between clusterheads within the same
layer can be done easily through gateways of the previous layer i-1. Moreover, in
case of dense ad hoc networks, the collision probability between multiple candCHs
accessing the medium is higher. Such collisions may be detected by many nodes
within the same layer, like nodes o, m and h (see figure 3). Authorizing all these
nodes to acquire candGW status will increase considerably the number of candGW.
Besides, no rule is able to differentiate efficiently between such candGWs, since
they do not know all their neighboring clusterheads.

2)Detection of a CH collision by a node within level i during the first sub
period of 7}, |

When the clusterhead election at layer i+1 starts, the clustering process at level i
is already stopped. So, only member or candGW nodes, within a layer i, are able to
detect a CH collision during 7;; . Such a candGW adds an anonymous clusterhead
to its CH list and memorizes to time of collision occurrence, like the node j (see
figure 3). Same actions are undertaken by a member node and it declares itself as
candGW. However, we must allow normal candGW to candidate for gateway role
before authorizing candGWs having an anonymous clusterhead in their CH list also
to compete. So, after the waiting period 7 G;, such candGWs select a random delay
d in the range D;/2 to the maximal boundary D,. Each candGW must indicate
the number of anonymous clusterheads and the times of collision detection. We
note that we associate an anonymous CH for each CH collision. Thanks to these
indications, other similar candGWs can verify their eligibility to assure gateway
role. A such candGW compares the instants of collision detection indicated in the
received declaration to their own in order to estimate if they are close to the same
clusterheads. Thus, a steal eligible candGW announces its declaration whenever the

ERE T
BT Bewdbd
Mo CH
Houd rand 7

Naud pandCH

Envm chescon

Fig. 3 Detection of a CH Tia
collision

MWCN'2008 49

backoff delay expires. Otherwise, it cancels the gateway declaration transmission
and modifies its status to member (M).

3.3 Checking phase

Thanks to clusterheads and gateways declaration, we aim to form a connected dom-
inating set. In fact, every node will either a member node attached to a clusterhead,
or a dominating node assuming a clusterhead or gateway role. In order to avoid
any negative impact on the other protocol exploiting the virtual backbone resulting
from the clustering process, we must insure that the set formed by gateways and
clusterheads is connected. However, the gateway declaration step following cluster-
head election one is insufficient in some cases due to information loss. Indeed, the
risk of packet loss due to possible cbeacon collision can prevent the member nodes
from being aware of clusterhead existence in their neighborhood. While the even-
tual collision during the gateway election step avoid the correct receipt of gateway
declaration by neighbor clusterheads. We note that an eventual mistake when veri-
fying the eligibility for gateway role by a candGW with anonymous clusterhead can
lead to a case of disconnected clusterheads within adjacent layers.

To avoid the case of disconnected clusterheads belonging to adjacent levels, we
require a checking phase. This step will be realized by all clusterhead nodes, each
one shall verify if it has at least one gateway allowing it to communicate with pre-
vious layer’s clusterheads. Each clusterhead within a layer i should wait the period
required for gateways declaration before being able to verify connectivity. Thus,
upon sending its cbeacon, each clusterhead estimates the waiting period P_attente.
This period P_attente must take into account the periods 7'G;_ and T G; required by
any candGW within layers i and i-1 before being able to candidate for gateway role.
Moreover, the period P_attente must include the necessary time for the declaration
of the maximum number of gateways able to be close to a clusterhead. These gate-
ways may belong the layers i or i-1. We aim to estimate the waiting period in terms
of period 7;. Thanks to this, every node will maintain a landmark to initiate a given
step during the clustering process. Thus, we force a clusterhead to do this checking
step in the beginning of a 7; period. Computing the number of period 7; to wait is
done as follows:

Nbr_TiGW = [(CWsize + (NumberMax_gw/CH x T candGW)/ T;) | (3)

T; = SIF S + CWsize + Txcbeacon + (2« SIFS) + TxBT 9)

where:

TcandGW : Time for transmitting a gateway declaration

NumbreMax_gw/CH : Maximum number of gateways able to be close the a given
clusterhead

Nbr_TiGW : Number of periods 7; necessary for election step of gateways close
to the given clusterhead

50 Wireless and Mobile Networking

Consequently, a clusterhead within layer i determines the waiting period P_attente
following the formula 10, if it belongs to an odd level. While, other ones within an
even level will adopt the formula (11). We try to avoid the problems of collision and
interference able to occur due simultaneous cbeacon sending by two disconnected
CH within adjacent layers.

P_attente = (Ti1p —t) + (Nbr_TiGW = T;) (10)

P_attente = (Ti1p —t) + (Nbr_-TiGW = T;) + (3« T;) (11)

Where t represents the instant of the given CH election

Upon the P_attente period expires, every CH verifies its connectivity with clus-
terheads within the previous layer. A a clusterhead, with no intermediate gateway
from the previous layer, has to retransmit its cbeacon after a random delay back-
off to oblige their neighbours from the previous layer to react. In the beginning of
the following period 7;, gateways from the previous layer, which receive the cbea-
con, must send again their declaration. They defer their transmission by choosing a
random delay selected in the range of 0 to D»>/2. Member nodes from the previous
layer gain the candGW status. But, they select their random delay in the range of
D»/2 to D». In this way, we allow the gateways to manifest first minimizing conse-
quently the number of additional gateway declaration. This gateway election step is
submitted to the same rules as the normal gateway declaration phase. The checking
period Tphase_verif includes a period 7; for the cbeacon retransmission by discon-
nected clusterheads and a period for gateways and additional candGW declarations.
Details are omitted here.

3.4 Maintenance

Providing rapidly a connected dominating set able to be deployed by others upper-
protocols is one of the main characteristics of TBCA. This advantage allows us
to suspend sending data traffic before starting the clustering process. This tempo-
rary data traffic pause allows us to quickly finalize the clustering process. In this
way, we avoid also eventual collisions between data packets and control packets ex-
changed during the clustering process. These eventual collisions can cause loss of
information and useless retransmissions and prevent the good progress of the clus-
tering process. We note that any node which has already participate in the clustering
process is able to determine the number of 7; period to wait before processing the
suspending data packets. Details are omitted here for length limitation.

In order to take onto account up-to-date information, we relinquish the cluster-
ing algorithm periodically in order to reconstruct a new CDS. To avoid the construct
the overall CDS from scratch and to enhance stability of the clustering infrastruc-
ture, we add another stability mechanism. This latest aims to permit re-election of
older clusterheads, when they have yet enough resources to assure additional tasks.
Besides, we limit the maximal number of consecutive clustering periods for cluster-

MWCN"2008 51

head re-election in order to rotate the clusterhead role equitably between all nodes.
In this context, we define two other boundaries D1, and D1, ppin. During the first
execution of the clustering process, all candCH nodes have the same opportunity
to become clusterhead, since they use the rule (1). During subsequent clustering
phases, a candCH node computes its personalized boundary D’i following the rule
below, if it was a clusterhead during the previous clustering period and it does not
exceed the maximal number of clustering period as clusterhead :

Dl] _ ’—(((Dlpmm Dlmax)) *Ei) +Dlmax—| (12)
Emax
Other candCH nodes use the rule (1) and they must ensure that d; is greater or equal
to the new boundary D1 ;. In this way, we give the advantage to older clusterheads
able to assure coordinator responsibilities. We guarantee also a certain degree of
stability in the CDS structure. To rotate the responsibility among all nodes fairly,
we limit the number of successive clustering periods for a node as clusterhead. In
this context, we impose to an older clusterhead which has lost this privilege to use
the following rule to compute D', the value of d; must be greater or equal to the

boundary D1,ip.

(Dlnpmin - Dlmax)
Epnax

Dy = [(() * E;) + Dimax] (13)

4 Performance evaluation

Constructing a CDS with low communication and computation costs is the main
advantage of our new algorithm TBCA. Besides, it provides rapidly a virtual infras-
tructure able to support other communication algorithms. To show the effectiveness
of our algorithm, we conduct exhaustive simulations over several static and mobile
topologies. We compare performances of our algorithm against SPAN performances
[2]. Similar to our algorithm, SPAN operates at MAC level in a synchronous envi-
ronment. But, it relies on a periodic exchange of hello message for maintaining
the connected dominating set. The two mechanisms were implemented under the
J-SIM simulator. During the evaluation phase, we focus on three essential factors
which have a direct impact on the performance of the clustering algorithm and con-
sequently on the network performance. The first criterion is the size of the generated
connected dominating. Then, we tried to show the impact of periodic control packet
exchange on network performance. Finally, we evaluate the impact of mobility on
the performances of the two algorithms. All simulations are allowed to run for 300
seconds and the results are averaged over several simulation runs. During all con-
ducted simulations, we assume that every node has a maximum transmission range,
which is the same for all nodes in the network. The transmission range is fixed
to 250 meters. Any two nodes are considered as neighbors if there are within the
maximum transmission range of each other.

52 Wireless and Mobile Networking

a) The size of the connected dominating set

During this first phase, we compare the size of the connected dominating set
produced by SPAN and TBCA while varying the node density and the size of the
simulation area. The exchange of hello messages is done every 10 seconds in SPAN
mechanism. The same interlude is adopted by TBCA for relinquishing periodically
the clustering algorithm. In the first step, simulations are done with different topolo-
gies chosen randomly in an area of 500 x 500m. Figure (4.a) shows that the size of
the dominating set generated by TBCA is smaller when of the maximal boundaries
D and D, are equal to 31. We recall that these boundaries are used during the clus-
terhead election phase and the gateway declaration phase. When these boundaries
are large, the probability of collision occurrence between cbeacon messages and
gateway declarations decreases, since the probability of choosing the same backoff
by candidate nodes decreases consequently. We notice also a little difference in the
size of generated CDS by the two mechanisms. Our mechanism TBCA produced
small CDS, despite the lack of neighborhood knowledge.

During the second step, we choose different topologies with variable size in an
area of 1000 x 1000m. In this stage, we fix the boundaries D1 and D, to 31, since we
deal with large-scale topologies and the probability of collision occurrence increases
with density. The results exposed in figure (4.b) confirm that TBCA outperforms by
far SPAN.

In this phase, we proved by simulations that density has no impact on the per-
formance of our mechanism, since it keeps the size of the dominating set as low
as possible without requiring any periodic control message exchange for gathering
neighborhood information. Involving more nodes in routing contribute to deplete
their energy, this can cause network partitioning.

b) Impact of the additional overhead dedicated to clustering

To illustrate the impact of the additional overhead introduced for clustering main-
tenance purpose on the network performance, we opt for geographic forwarding. We
assume that nodes can obtain the geographic position of others neighbors through
a low-power Global Position System (GPS) receiver or through some other ways.
The source verifies if the destination is in its neighborhood. In such case, the source
sends directly the data packet to the destination. Otherwise, it determines the closest

e -7 A 300
10 P aPLEEEE i —_ o
-- — 250 —
L — o
= — _—

s - -

L--27 - — 200 /
o -

150 _—

5
g
\

Py

—— —— —

Average number of coordinators
-
Average number of coordinator
Y
\

2
2
3
2
%
£
&
]
g
2
H
G
2
g
H
2
s
H
g
IS
2
@
H
g

Fig. 4 Average number of coordinator

MWCN"2008 53

neighbor coordinator to the destination and sends to it the packet. The coordinator
also operates in the same manner. We note here, that forwarding is done through co-
ordinator nodes only. We choose ten sources which send packets to ten destinations.
Sources and destinations are chosen at the boundary of the simulation area in order
to allow multi hop communication. Each CBR flow includes 512 bytes packets.

During the first step, we choose different random topologies of 100 nodes con-
fined in a square area of 500 x 500m. The periodicity for clustering update is fixed
to 5 beacon intervals. We vary the traffic load in order to evaluate the impact of
the periodic exchange of control messages on data traffic. Figure (5. a) illustrates
that the number of delivered packets using our clustering mechanism is higher than
the number measured when using SPAN, since we do not require periodic control
messages which throttle the actual data traffic. The figure (5. b) exposes the average
sojourn delay measured during all simulations, we notice that the sojourn delay in-
creases with the data traffic load for both mechanisms. However, the sojourn delay
measured for SPAN is always greater than our algorithm delay, since the periodic
hello messages contend with data traffic.

The figure (6.a) consolidates this result, since it exposes the number of deliv-
ered packets while varying the updating interval used for periodic exchange of hello

40000
SPAN ——
SPAN < 140 TBCA ===
TBCA ===
35000
120 P
J——
30000 7 ——_——— — 100 P
~ e —
- _— —
£ 25000 — — g -~ _ —
H 2 60 -
= 20000 > ~
2 E) /
5 15000 g /
E Z »’
£ g S
10000 £
s

10 15 20 25
eraffic load (pkt/sec) 10 15 20 25 30 35 40 as 50
@ traffic load (pkt/sec))

Fig. 5 (a) Average number of delivered packets regarding variable traffic load, (b) Average sojourn
delay regarding variable traffic load

22000 30000

21500 —_— =

A 25000
21000 ~

20500 /
oo / /
19500 /

19000
0

20000

15000

Number of delivered packets

Number of delivered packets
\

10000
100

120 140 160 180 200 220 240 260
Number of nodes.

10 15
Updating interval (se¢) ®

Fig. 6 (a) Average number of delivered packets regarding variable updating interval, (b) Average
number of delivered packets regarding variable updating interval and variable number of nodes

54 Wireless and Mobile Networking

message. In these simulations, every source injects 20 packets per second during
the 200 seconds. We remark that performance of SPAN improves as the updating
interval becomes longer. However, our algorithm still outperforms it.

During the second step, we simulate different topologies with variable size in a
fixed square region of 500 x 500m to evaluate the impact of density on performance
of the network. Every CBR flow sends 50 packets per second. In these simulations,
we vary also the updating interval for exchanging hello messages for SPAN and
relinquishing clustering process for TBCA. We notice through results illustrated in
figure (6. b) that TBCA is unaffected by the variation of density or updating interval.
While the performances of SPAN degrade when the number of nodes increases,
since the control overhead of hello messages increases also.

¢) Impact of mobility

In the second phase, we consider random topologies of 100 mobiles nodes. Only
the sources and destinations are stationary. To evaluate the impact of mobility, we
measure the number of delivered packets under different speeds. The figure (7.a)
shows that the performances of SPAN degrade when the updating interval for clus-
tering maintenance increases. In fact, gathering 2 hop neighborhood information
takes time, so the collected information may be not up to date when be used by
nodes. We remark also that the performances of SPAN are badly in highly dynamic
environment, particularly when the updating interval is large, since routing infor-
mation used for routing is not up to date. In the figure (7. b), we expose the results
provided by our mechanism. Despite the decrease in the number of delivered pack-
ets, we still outperform the SPAN mechanism. In fact, at the beginning of the updat-
ing interval, we relinquish the clustering process in order to build a new connected
dominating set based on the actual state of the network (position, energy). Thanks to
this, other upper-layer protocols can be implemented efficiently on top of the virtual
backbone.

40000

40000

35000 35000

30000 30000

25000 25000

20000 [oo

20000

5
15000 15000

ivered packets

10000 ~ — — =
= 10000

Number of delivered packets

5000]
5 5000

i
;
f
J
:l
d
!
‘I
.’
|
|
|

0

0 s 10 is 20 25 30 0
Updating interval (sec) o

Fig.7 (a) Average number of delivered packets regarding variable updating interval for SPAN, (b)
Average number of delivered packets regarding variable updating interval for TBCA

MWCN"2008 55

5 Conclusion

In this paper, we detail the three phases of our clustering algorithm TBCA. Our
goal is to construct a connected dominating set while taking into consideration the
eventual occurrence of collision. Besides, we exploit this situation for doing the
clustering process in an organized layered manner. No neighborhood knowledge is
needed for node to be able to decide locally on the role to take. Conducted simu-
lations show first that our algorithm outperforms by far other clustering techniques
for CDS construction in terms of the average number of delivered packets and per-
packet sojourn delay, especially in case of heavy loaded networks. Moreover, we
notice that it copes better with mobility.

References

1. Das, B., Sivakumar, R., Bhargavan, V.: Routing in ad hoc networks using a spine. Proceedings
of ICCCN. pp. 1-20 (1997).

2. Chen, B., Jamieson, K. Balakrishnan, H., Morris, R.: Span: an energy efficient coordination
algorithm for topology maintenance in ad hoc wireless networks. ACM Wireless Networks J.
8 (5). pp. 481-494 (2002).

3. Belghith, A. Jemili, I., Mosbah, M. : A Distributed Clustering Algorithm without an Explicit
Neighborhood Knowledge. International Journal of Computing and Information Sciences,
Vol. 5, number 1, pp. 24-34 (2007).

4. Jemili, I., Belghith, A., Mosbah, M. : Algorithme Distribu de Clusterisation sans connaissance
du voisinage : principe et valuation. Proceeding NOTERE’2007, Marrakech, June (2007).

5. J. Wu, H..L. Li (1999) On calculating connected dominating set for efficient routing in ad hoc
wireless networks. Proceedings of the 3rd ACM International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communications. PP 7-14.

6. L. Stojmenovic, M. Seddigh and J. Zunic (2001) Dominating sets and neighbor elimination-
based broadcastings in wireless networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(1):14-25, January 2001.

7. J. Wu, M. Gao, I. Stojmenovic (2002) On calculating power-aware connected dominating sets
for efficient routing in ad hoc wireless networks. Journal of Communication and Networks,
March 2002.

8. Wan, P-J., Alzoubi, K., Frieder, O. : Distributed construction of connected dominating set in
wireless ad hoc networks. In IEEE INFOCOM (2002).

9. Theoleyre, F., Valois, F. : A self-organization structure for hybrid networks, Ad Hoc. Netw.
(2007). doi:10.1016/j.adhoc.2007.02.013

10. Kuhn, F., Moscibroda, T., Wattenhofer, R. : Initializing newly deployed ad hoc and sensor
networks, in: 10th Annual International Conference on Mobile Computing and Networking
(MOBICOM), (2004).

11. Gandhi, R., Parthasarathy, S. : Distributed algorithms for connected domination in wireless
networks. Journal of Parallel and Distributed Computing, Volume 67, Issue 7, pp. 848-862
July (2007).

