
Chapter 1
Algorithmic Probability: Theory
and Applications

Ray J. Solomonoff

Abstract We first define Algorithmic Probability, an extremely powerful method
of inductive inference. We discuss its completeness, incomputability, diversity and
subjectivity and show that its incomputability in no way inhibits its use for practical
prediction. Applications to Bernoulli sequence prediction and grammar discovery
are described. We conclude with a note on its employment in a very strong AI system
for very general problem solving.

1.1 Introduction

Ever since probability was invented, there has been much controversy as to just what
it meant, how it should be defined and above all, what is the best way to predict the
future from the known past. Algorithmic Probability is a relatively recent definition
of probability that attempts to solve these problems.

We begin with a simple discussion of prediction and its relationship to probabil-
ity. This soon leads to a definition of Algorithmic Probability (ALP) and its proper-
ties. The best-known properties of ALP are its incomputibility and its completeness
(in that order). Completeness means that if there is any regularity (i.e. property use-
ful for prediction) in a batch of data, ALP will eventually find it, using a surprisingly
small amount of data. The incomputability means that in the search for regularities,
at no point can we make a useful estimate of how close we are to finding the most
important ones. We will show, however, that this incomputability is of a very benign
kind, so that in no way does it inhibit the use of ALP for good prediction. One of
the important properties of ALP is subjectivity, the amount of personal experiential
information that the statistician must put into the system. We will show that this
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is a desirable feature of ALP, rather than a “Bug”. Another property of ALP is its
diversity – it affords many explanations of data giving very good understanding of
that data.

There have been a few derivatives of Algorithmic Probability – Minimum
Message Length (MML), Minimum Description Length (MDL) and Stochastic
Complexity – which merit comparison with ALP.

We will discuss the application of ALP to two kinds of problems: Prediction of
the Bernoulli Sequence and Discovery of the Grammars of Context Free Languages.
We also show how a variation of Levin’s search procedure can be used to search over
a function space very efficiently to find good predictive models.

The final section is on the future of ALP – some open problems in its application
to AI and what we can expect from these applications.

1.2 Prediction, Probability and Induction

What is Prediction?

“An estimate of what is to occur in the future” – But also necessary is a measure
of confidence in the prediction: As a negative example consider an early AI pro-
gram called “Prospector”. It was given the characteristics of a plot of land and was
expected to suggest places to drill for oil. While it did indeed do that, it soon be-
came clear that without having any estimate of confidence, it is impossible to know
whether it is economically feasible to spend $100,000 for an exploratory drill rig.
Probability is one way to express this confidence.

Say the program estimated probabilities of 0.1 for 1,000-gallon yield, 0.1 for
10,000-gallon yield and 0.1 for 100,000-gallon yield. The expected yield would
be 0.1×1,000 + 0.1×10,000 + 0.1×100,000 = 11,100 gallons. At $100 per gallon
this would give $1,110,000. Subtracting out the $100,000 for the drill rig gives an
expected profit of $1,010,000, so it would be worth drilling at that point. The moral
is that predictions by themselves are usually of little value – it is necessary to have
confidence levels associated with the predictions.

A strong motivation for revising classical concepts of probability has come from
the analysis of human problem solving. When working on a difficult problem, a
person is in a maze in which he must make choices of possible courses of action. If
the problem is a familiar one, the choices will all be easy. If it is not familiar, there
can be much uncertainty in each choice, but choices must somehow be made. One
basis for choices might be the probability of each choice leading to a quick solution –
this probability being based on experience in this problem and in problems like
it. A good reason for using probability is that it enables us to use Levin’s Search
Technique (Sect. 1.11) to find the solution in near minimal time.

The usual method of calculating probability is by taking the ratio of the number
of favorable choices to the total number of choices in the past. If the decision to use
integration by parts in an integration problem has been successful in the past 43%
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of the time, then its present probability of success is about 0.43. This method has
very poor accuracy if we only have one or two cases in the past, and is undefined
if the case has never occurred before. Unfortunately it is just these situations that
occur most often in problem solving.

On a very practical level: If we cross a particular street 10 times and we get hit
by a car twice, we might estimate that the probability of getting hit in crossing that
street is about 0.2 = 2/10. However, if instead, we only crossed that street twice and
we didn’t get hit either time, it would be unreasonable to conclude that our probabil-
ity of getting hit was zero! By seriously revising our definition of probability, we are
able to resolve this difficulty and clear up many others that have plagued classical
concepts of probability.

What is Induction?

Prediction is usually done by finding inductive models. These are deterministic or
probabilistic rules for prediction. We are given a batch of data – typically a series of
zeros and ones, and we are asked to predict any one of the data points as a function
of the data points that precede it.

In the simplest case, let us suppose that the data has a very simple structure:

0101010101010 . . . .

In this case, a good inductive rule is “zero is always followed by one; one is
always followed by zero”. This is an example of deterministic induction, and deter-
ministic prediction. In this case it is 100% correct every time!

There is, however, a common kind of induction problem in which our predictions
will not be that reliable. Suppose we are given a sequence of zeros and ones with
very little apparent structure. The only apparent regularity is that zero occurs 70% of
the time and one appears 30% of the time. Inductive algorithms give a probability
for each symbol in a sequence that is a function of any or none of the previous
symbols. In the present case, the algorithm is very simple and the probability of the
next symbol is independent of the past – the probability of zero seems to be 0.7;
the probability of one seems to be 0.3. This kind of simple probabilistic sequence
is called a “Bernoulli sequence”. The sequence can contain many different kinds of
symbols, but the probability of each is independent of the past. In Sect. 1.9 we will
discuss the Bernoulli sequence in some detail.

In general we will not always be predicting Bernoulli sequences and there are
many possible algorithms (which we will call “models”) that tell how to assign
a probability to each symbol, based on the past. Which of these should we use?
Which will give good predictions in the future?

One desirable feature of an inductive model is that if it is applied to the known
sequence, it produces good predictions. Suppose Ri is an inductive algorithm. Ri
predicts the probability of an symbol a j in a sequence a1,a2 · · ·an by looking at the
previous symbols: More exactly,
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p j = Ri(a j|a1.a2 · · ·a j−1)

a j is the symbol for which we want the probability. a1,a2 · · ·a j−1 are the previous
symbols in the sequence. Then Ri is able to give the probability of a particular value
of a j as a function of the past. Here, the values of a j can range over the entire
“alphabet” of symbols that occur in the sequence. If the sequence is a binary, a j will
range over the set 0 and 1 only. If the sequence is English text, a j will range over
all alphabetic and punctuation symbols. If Ri is a good predictor, for most of the a j,
the probability it assigns to them will be large – near one.

Consider S, the product of the probabilities that Ri assigns to the individual sym-
bols of the sequence, a1,a2 · · ·an. S will give the probability that Ri assigns to the
sequence as a whole

S =
n

∏
j=1

Ri(a j|a1,a2 · · ·an) =
n

∏
j=1

p j . (1.1)

For good prediction we want S as large as possible. The maximum value it can have
is one, which implies perfect prediction. The smallest value it can have is zero –
which can occur if one or more of the p j are zero – meaning that the algorithm
predicted an event to be impossible, yet that event occurred!

The “Maximum Likelihood” method of model selection uses S only to decide
upon a model. First, a set of models is chosen by the statistician, based on his ex-
perience with the kind of prediction being done. The model within that set having
maximum S value is selected.

Maximum Likelihood is very good when there is a lot of data – which is the area
in which classical statistics operates. When there is only a small amount of data, it
is necessary to consider not only S, but the effect of the likelihood of the model itself
on model selection. The next section will show how this may be done.

1.3 Compression and ALP

An important application of symbol prediction is text compression. If an induction
algorithm assigns a probability S to a text, there is a coding method – Arithmetic
Coding – that can re-create the entire text without error using just − log2 S bits.

More exactly: Suppose x is a string of English text, in which each character is
represented by an 8-bit ASCII code, and there are n characters in x. x would be
directly represented by a code of just 8n bits. If we had a prediction model, R , that
assigned a probability of S to the text, then it is possible to write a sequence of
just − log2 S bits, so that the original text, x, can be recovered from that bit sequence
without error.

If R is a string of symbols (usually a computer program) that describes the predic-
tion model, we will use |R| to represent the length of the shortest binary sequence
that describes R. If S>0, then the probability assigned to the text will be in two
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parts: the first part is the code for R, which is |R| bits long, and the second part is
the code for the probability of the data, as given by R – it will be just − log2 S bits
in length. The sum of these will be |R|− log2 S bits. The compression ratio achieved
by R would be

8N
|R|− log2 S

PPM, a commonly used prediction algorithm, achieves a compression of about three
for English text. For very large strings of data, compressions of as much as six have
been achieved by highly refined prediction algorithms. We can use |R|− log2 S bits,
the length of the compressed code, as a “figure of merit” of a particular induction
algorithm with respect to a particular text.

We want an algorithm that will give good prediction, i.e. large S, and small |R|,
so |R|− log2 S, the figure of merit, will be as small as possible and the probability it
assigns to the text will be as large as possible. Models with |R| larger than optimum
are considered to be overfitted. Models in which |R| are smaller than optimum are
considered to be underfitted. By choosing a model that minimizes |R|− log2 S, we
avoid both underfitting and overfitting, and obtain very good predictions. We will
return to this topic later, when we tell how to compute |R| and S for particular models
and data sets.

Usually there are many inductive models available. In 1960, I described Algo-
rithmic Probability – ALP [5–7], which uses all possible models in parallel for
prediction, with weights dependent upon the figure of merit of each model.

PM(an+1|a1,a2 · · ·an) =∑2−|Ri| Si Ri(an+1|a1,a2 · · ·an) (1.2)

PM(an+1|a1,a2 · · ·an) is the probability assigned by ALP to the (n+1)th symbol of
the sequence, in view of the previous part of the sequence.

Ri(an+1|a1,a2 · · ·an) is the probability assigned by the ith model to the (n+1)th
symbol of the sequence, in view of the previous part of the sequence.

Si is the probability assigned by Ri, (the ith model) to the known sequence,
a1,a2 · · ·an via (1.1).

2−|Ri|Si is 1/2 with an exponent equal to the figure of merit that Ri has with
respect to the data string a1,a2 . . .an. It is the weight assigned to Ri( ). This weight
is large when the figure of merit is good – i.e. small.

Suppose that |Ri| is the shortest program describing the ith model using a particu-
lar “reference computer” or programming language – which we will call M. Clearly
the value of |Ri| will depend on the nature of M. We will be using machines (or
languages) that are “Universal” – machines that can readily program any conceiv-
able function – almost all computers and programming languages are of this kind.
The subscript M in PM expresses the dependence of ALP on choice of the reference
computer or language.

The universality of M assures us that the value of ALP will not depend very much
on just which M we use – but the dependence upon M is nonetheless important. It
will be discussed at greater length in Sect. 1.5 on “Subjectivity”.
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Normally in prediction problems we will have some time limit, T , in which we
have to make our prediction. In ALP what we want is a set of models of maximum
total weight. A set of this sort will give us an approximation that is as close as
possible to ALP and gives best predictions. To obtain such a set, we devise a search
technique that tries to find, in the available time, T , a set of Models, Ri, such that
the total weight,

∑
i

2−|Ri|Si (1.3)

is as large as possible.
On the whole, ALP would seem to be a complex, time consuming way to com-

pute probabilities – though in fact, if suitable approximations are used, these objec-
tions are not at all serious.

Does ALP have any advantages over other probability evaluation methods? For
one, it’s the only method known to be complete. The completeness property of ALP
means that if there is any regularity in a body of data, our system is guaranteed to
discover it using a relatively small sample of that data. More exactly, say we had
some data that were generated by an unknown probabilistic source, P. Not knowing
P, we use instead, PM to obtain the Algorithmic Probabilities of the symbols in
the data. How much do the symbol probabilities computed by PM differ from their
true probabilities, P? The Expected value with respect to P of the total square error
between P and PM is bounded by −1/2 lnP0.

EP

[
n

∑
m=1

(PM(am+1 = 1|a1,a2 · · ·am)−P(am+1 = 1|a1,a2 · · ·am))2

]
≤ −1

2
lnP0

lnP0 ≈ kln2 (1.4)

P0 is the a priori probability of P. It is the probability we would assign to P if we
knew P.

k is the Kolmogorov complexity of the data generator, P. It’s the shortest binary
program that can describe P, the generator of the data.

This is an extremely small error rate. The error in probability approaches zero
more rapidly than 1/n. Rapid convergence to correct probabilities is a most im-
portant feature of ALP. The convergence holds for any P that is describable by a
computer program and includes many functions that are formally incomputable.
Various kinds of functions are described in the next section. The convergence proof
is in Solomonoff [8].

1.4 Incomputability

It should be noted that in general, it is impossible to find the truly best models
with any certainty – there is an infinity of models to be tested and some take an
unacceptably long time to evaluate. At any particular time in the search, we will
know the best ones so far, but we can’t ever be sure that spending a little more
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time will not give much better models! While it is clear that we can always make
approximations to ALP by using a limited number of models, we can never know
how close these approximations are to the “True ALP”. ALP is indeed, formally
incomputable.

In this section, we will investigate how our models are generated and how the
incomputability comes about – why it is a necessary, desirable feature of any high
performance prediction technique, and how this incomputability in no way inhibits
its use for practical prediction.

How Incomputability Arises and How We Deal with It

Recall that for ALP. we added up the predictions of all models, using suitable
weights:

PM =
∞

∑
i=1

2−|Ri| SiRi . (1.5)

Here Ri gives the probability distribution for the next symbol as computed by the ith
model. Just what do we mean by these models, Ri?

There are just four kinds of functions that Ri can be:

1. Finite compositions of a finite set of functions
2. Primitive recursive functions
3. Partial recursive functions
4. Total recursive functions

Compositions are combinations of a small set of functions. The finite power series

3.2+5.98∗X −12.54∗X2 +7.44∗X3

is a composition using the functions plus and times on the real numbers. Finite
series of this sort can approximate any continuous functions to arbitrary precision.

Primitive Recursive Functions are defined by one or more DO loops. For example
to define Factorial(X) we can write

Factorial(0) ← 1
DO I = 1,X
Factorial(I) ← I ∗Factorial(I−1)
EndDO

Partial Recursive Functions are definable using one or more WHILE loops. For
example, to define the factorial in this way:

Factorial(0) ← 1
I ← 0
WHILE I �= X
I ← I +1 Factorial(I) ← I ∗Factorial(I−1)
EndWHILE
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The loop will terminate if X is a non negative integer. For all other values of X ,
the loop will run forever. In the present case it is easy to tell for which values of X
the loop will terminate.

A simple WHILE loop in which it is not so easy to tell:
WHILE X > 4
IF X/2 is an integer T HEN X ← X/2
ELSE X ← 3∗X +1
EndWHILE

This program has been tested with X starting at all positive integers up to more
than sixty million. The loop has always terminated, but no one yet is certain as to
whether it terminates for all positive integers!

For any Total Recursive Function we know all values of arguments for which
the function has values. Compositions and primitive recursive functions are all total
recursive. Many partial recursive functions are total recursive, but some are not. As
a consequence of the insolvability of Turing’s “Halting Problem”, it will sometimes
be impossible to tell if a certain WHILE loop will terminate or not.

Suppose we use (1.2) to approximate ALP by sequentially testing functions in a
list of all possible functions – these will be the partial recursive functions because
this is the only recursively enumerable function class that includes all possible pre-
dictive functions. As we test to find functions with good figures of merit (small
(|Ri| − log2 Si)) we find that certain of them don’t converge after say, a time T , of
10 s. We know that if we increase T enough, eventually, all converging trials will
converge and all divergent trials will still diverge – so eventually we will get close
to true ALP – but we cannot recognize when this occurs. Furthermore for any fi-
nite T , we cannot ever know a useful upper bound on how large the error in the
ALP approximation is. That is why this particular method of approximating ALP
is called “incomputable”. Could there be another computable approximation tech-
nique that would converge? It is easy to show that any computable technique cannot
be “complete” – i.e. having very small errors in probability estimates.

Consider an arbitrary computable probability method, R0. We will show how to
generate a sequence for which R0’s errors in probability would always be 0.5 or
more. We start our sequence with a single bit, say zero. We then ask R0 for the most
probable next bit. If it says “one is more probable”, we make the continuation zero, if
it says “zero is more probable”, we make the next bit one. If it says “both are equally
likely” we make the next bit zero. We generate the third bit in the sequence in the
same way, and we can use this method to generate an arbitrarily long continuation
of the initial zero.

For this sequence, R0 will always have an error in probability of at least one
half. Since completeness implies that prediction errors approach zero for all finitely
describable sequences, it is clear that R0 or any other computable probability method
cannot be complete. Conversely, any complete probability method, such as ALP,
cannot be computable.

If we cannot compute ALP, what good is it? It would seem to be of little value
for prediction! To answer this objection, we note that from a practical viewpoint, we



1 Algorithmic Probability: Theory and Applications 9

never have to calculate ALP exactly – we can always use approximations. While
it is impossible to know how close our approximations are to the true ALP, that
information is rarely needed for practical induction.

What we actually need for practical prediction:

1. Estimates of how good a particular approximation will be in future problems
(called “Out of Sample Error”)

2. Methods to search for good models
3. Quick and simple methods to compare models

For 1., we can use Cross Validation or Leave One Out – well-known methods that
work with most kinds of problems. In addition, because ALP does not overfit or
underfit there is usually a better method to make such estimates.

For 2. In Sect. 1.11 we will describe a variant of Levin’s Search Procedure, for
an efficient search of a very large function space.

For 3., we will always find it easy to compare models via their associated
“Figures of Merit”, |Ri|− log2(Si).

In summary, it is clear that all computable prediction methods have a serious
flaw – they cannot ever approach completeness. On the other hand, while approxi-
mations to ALP can approach completeness, we can never know how close we are
to the final, incomputable result. We can, however, get good estimates of the fu-
ture error in our approximations, and this is all that we really need in a practical
prediction system.

That our approximations approach ALP assures us that if we spend enough time
searching we will eventually get as little error in prediction as is possible. No com-
putable probability evaluation method can ever give us this assurance. It is in this
sense that the incomputability of ALP is a desirable feature.

1.5 Subjectivity

The subjectivity of probability resides in a priori information – the information
available to the statistician before he sees the data to be extrapolated. This is in-
dependent of what kind of statistical techniques we use. In ALP this a priori in-
formation is embodied in M, our “Reference Computer”. Recall our assignment of
a |R| value to an induction model – it was the length of the program necessary to
describe R. In general, this will depend on the machine we use – its instruction set.
Since the machines we use are Universal – they can imitate one another – the length
of description of programs will not vary widely between most reference machines
we might consider. But nevertheless, using small samples of data (as we often do in
AI), these differences between machines can modify results considerably.

For quite some time I felt that the dependence of ALP on the reference machine
was a serious flaw in the concept, and I tried to find some “objective” universal
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device, free from the arbitrariness of choosing a particular universal machine. When
I thought I finally found a device of this sort, I realized that I really didn’t want it –
that I had no use for it at all! Let me explain:

In doing inductive inference, one begins with two kinds of information: First, the
data itself, and second, the a priori data – the information one had before seeing
the data. It is possible to do prediction without data, but one cannot do prediction
without a priori information. In choosing a reference machine we are given the op-
portunity to insert into the a priori probability distribution any information about the
data that we know before we see it.

If the reference machine were somehow “objectively” chosen for all induction
problems, we would have no way to make use of our prior information. This lack
of an objective prior distribution makes ALP very subjective – as are all Bayesian
systems.

This certainly makes the results “subjective”. If we value objectivity, we can
routinely reduce the choice of a machine and representation to certain universal
“default” values – but there is a tradeoff between objectivity and accuracy. To obtain
the best extrapolation, we must use whatever information is available, and much of
this information may be subjective.

Consider two physicians, A and B: A is a conventional physician: He diagnoses
ailments on the basis of what he has learned in school, what he has read about
and his own experience in treating patients. B is not a conventional physician. He is
“objective”. His diagnosis is entirely “by the book” – things he has learned in school
that are universally accepted. He tries as hard as he can to make his judgements free
of any bias that might be brought about by his own experience in treating patients.
As a lawyer, I might prefer defending B’s decisions in court, but as a patient, I would
prefer A’s intelligently biased diagnosis and treatment.

To the extent that a statistician uses objective techniques, his recommendations
may be easily defended, but for accuracy in prediction, the additional information
afforded by subjective information can be a critical advantage.

Consider the evolution of a priori in a scientist during the course of his life. He
starts at birth with minimal a priori information – but enough to be able to learn to
walk, to learn to communicate and his immune system is able to adapt to certain
hostilities in the environment. Soon after birth, he begins to solve problems and
incorporate the problem solving routines into his a priori tools for future problem
solving. This continues throughout the life of the scientist – as he matures, his a
priori information matures with him.

In making predictions, there are several commonly used techniques for inserting
a priori information. First, by restricting or expanding the set of induction models to
be considered. This is certainly the commonest way. Second, by selecting prediction
functions with adjustable parameters and assuming a density distribution over those
parameters based on past experience with such parameters. Third, we note that much
of the information in our sciences is expressed as definitions – additions to our
language. ALP, or approximations of it, avails itself of this information by using
these definitions to help assign code lengths, and hence a priori probabilities to
models. Computer languages are usually used to describe models, and it is relatively
easy to make arbitrary definitions part of the language.
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More generally, modifications of computer languages are known to be able to
express any conceivable a priori probability distributions. This gives us the ability
to incorporate whatever a priori information we like into our computer language.
It is certainly more general than any of the other methods of inserting a priori
information.

1.6 Diversity and Understanding

Apart from accuracy of probability estimate, ALP has for AI another important
value: Its multiplicity of models gives us many different ways to understand our
data.

A very conventional scientist understands his science using a single “current
paradigm” – the way of understanding that is most in vogue at the present time.
A more creative scientist understands his science in very many ways, and can more
easily create new theories, new ways of understanding, when the “current paradigm”
no longer fits the current data.

In the area of AI in which I’m most interested – Incremental Learning – this
diversity of explanations is of major importance. At each point in the life of the
System, it is able to solve with acceptable merit, all of the problems it’s been given
thus far. We give it a new problem – usually its present Algorithm is adequate.
Occasionally, it will have to be modified a bit. But every once in a while it gets a
problem of real difficulty and the present Algorithm has to be seriously revised. At
such times, we try using or modifying once sub-optimal algorithms. If that doesn’t
work we can use parts of the sub-optimal algorithms and put them together in new
ways to make new trial algorithms. It is in giving us a broader basis to learn from
the past, that this value of ALP lies.

1.6.1 ALP and “The Wisdom of Crowds”

It is a characteristic of ALP that it averages over all possible models of the data:
There is evidence that this kind of averaging may be a good idea in a more general
setting. “The Wisdom of Crowds” is a recent book by James Serowiecki that in-
vestigates this question. The idea is that if you take a bunch of very different kinds
of people and ask them (independently) for a solution to a difficult problem, then a
suitable average of their solutions will very often be better than the best in the set.
He gives examples of people guessing the number of beans in a large glass bottle, or
guessing the weight of a large ox, or several more complex, very difficult problems.

He is concerned with the question of what kinds of problems can be solved this
way as well as the question of when crowds are wise and when they are stupid.
They become very stupid in mobs or in committees in which a single person is able
to strongly influence the opinions in the crowd. In a wise crowd, the opinions are
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individualized, the needed information is shared by the problem solvers, and the
individuals have great diversity in their problem solving techniques. The methods
of combining the solutions must enable each of the opinions to be voiced. These
conditions are very much the sort of thing we do in ALP. Also, when we approximate
ALP we try to preserve this diversity in the subset of models we use.

1.7 Derivatives of ALP

After my first description of ALP in 1960 [5], there were several related induc-
tion models described, minimum message length (MML) Wallace and Boulton
[13], Minimum Description Length (MDL) Rissanen [3], and Stochastic Complex-
ity, Rissanen [4]. These models were conceived independently of ALP – (though
Rissanen had read Kolmogorov’s 1965 paper on minimum coding [1], which is
closely related to ALP). MML and MDL select induction models by minimizing
the figure of merit, |Ri| − log2(Si) just as ALP does. However, instead of using a
weighted sum of models, they use only the single best model.

MDL chooses a space of computable models then selects the best model from
that space. This avoids any incomputability, but greatly limits the kinds of models
that it can use. MML recognizes the incomputability of finding the best model so
it is in principle much stronger than MDL. Stochastic complexity, like MDL, first
selects a space of computable models – then, like ALP it uses a weighted sum of
all models in the that space. Like MDL, it differs from ALP in the limited types of
models that are accessible to it. MML is about the same as ALP when the best model
is much better than any other found. When several models are of comparable figure
of merit, MML and ALP will differ. One advantage of ALP over MML and MDL is
in its diversity of models. This is useful if the induction is part of an ongoing process
of learning – but if the induction is used on one problem only, diversity is of much
less value. Stochastic Complexity, of course, does obtain diversity in its limited set
of models.

1.8 Extensions of ALP

The probability distribution for ALP that I’ve shown is called “The Universal Dis-
tribution for sequential prediction”. There are two other universal distributions I’d
like to describe:

1.8.1 A Universal Distribution for an Unordered Set of Strings

Suppose we have a corpus of n unordered discrete objects, each described by a
finite string a j: Given a new string, an+1, what is the probability that it is in the
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previous set? In MML and MDL, we consider various algorithms, Ri, that assign
probabilities to strings. (We might regard them as Probabilistic Grammars). We use
for prediction, the grammar, Ri, for which

|Ri|− log2 Si (1.6)

is minimum. Here |Ri| is the number of bits in the description of the grammar, Ri.
Si =∏

j
Ri(a j) is the probability assigned to the entire corpus by Ri. If Rk is the best

stochastic grammar that we’ve found, then we use Rk(an+1) as the probability of
an+1. To obtain the ALP version, we simply sum over all models as before, using
weights 2−|Ri|Si.

This kind of ALP has an associated convergence theorem giving very small errors
in probability. This approach can be used in linguistics. The a j can be examples of
sentences that are grammatically correct. We can use |Ri| − log2 Si as a likelihood
that the data was created by grammar, Ri. Section 1.10 continues the discussion of
Grammatical Induction.

1.8.2 A Universal Distribution for an Unordered Set
of Ordered Pairs of Strings

This type of induction includes almost all kinds of prediction problems as “special
cases”. Suppose you have a set of question answer pairs, Q1,A1;Q2,A2; . . .Qn,An:
Given a new question, Qn+1, what is the probability distribution over possible an-
swers, An+1? Equivalently, we have an unknown analog and/or digital transducer,
and we are given a set of input/output pairs Q1,A1; . . . – For a new input Qi, what
is probability distribution on outputs? Or, say the Qi are descriptions of mushrooms
and the Ai are whether they are poisonous or not.

As before, we hypothesize operators R j(A|Q) that are able to assign a probability
to any A given any Q: The ALP solution is

P(An+1|Qn+1) =∑
j

2−|R j |
n+1

∏
i=1

R j(Ai|Qi)

=∑
j

a j
nR j(An+1|Qn+1),

a j
n = 2−|R j |

n

∏
i=1

R j(Ai|Qi). (1.7)

2−|R j | are the a priori probabilities associated with the R j.
a j

n is the weight given to R j’s predictions in view of it’s success in predicting the
data set Q1,A1 . . .Qn,An.
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This ALP system has a corresponding theorem for small errors in probability.
As before, we try to find a set of models of maximum weight in the available time.
Proofs of convergence theorems for these extensions of ALP are in Solomonoff [10].
There are corresponding MDL, MML versions in which we pick the single model
of maximum weight.

1.9 Coding the Bernoulli Sequence

First, consider a binary Bernoulli sequence of length n. It’s only visible regularity
is that zeroes have occurred n0 times and ones have occurred n1 times. One kind of
model for this data is that the probability of 0 is p and the probability of 1 is 1− p.
Call this model Rp. Sp is the probability assigned to the data by Rp

Sp = pn0(1− p)n1 . (1.8)

Recall that ALP tells us to sum the predictions of each model, with weight given by
the product of the a priori probability of the model (2−|Ri|) and Si, the probability
assigned to the data by the model . . . , i.e.:

∑
i

2−|Ri| Si Ri( ) . (1.9)

In summing we consider all models with 0 ≤ p ≤ 1.
We assume for each model, Rp, precision Δ in describing p. So p is specified

with accuracy, Δ . We have 1
Δ models to sum so total weight is 1

2−|Ri| = Δ ,

Si = Sp = pn0(1− p)n1 ,

Ri( ) = Rp = p.

Summing the models for small Δ gives the integral

∫ 1

0
pn0(1− p)n1 p d p =

∫ 1

0
pn0+1(1− p)n1d p. (1.10)

This integral can be evaluated using the Beta function, B( , )

∫ 1

0
px(1− p)ydy = B(x+1,y+1) =

x! y!
(x+ y+1)!

. (1.11)

So our integral of (1.10) equals (n0+1)! n1!
(n0+n1+2)! .

We can get about the same result another way: The function pn0(1− p)n1 is (if
n0 and n1 are large), narrowly peaked at p0 = n0

n0+n1
. If we used MDL we would use

the model with p = p0. The a priori probability of the model itself will depend on
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how accurately we have to specify p0. If the “width” of the peaked distribution is Δ ,
then the a priori probability of model Mp0 will be just Δ · pn0

0 (1− p0)n1 .

It is known that the width of the distribution is just 2
√

p0(1−p0)
n0+n1+1 .1 As a result

the probability assigned to this model is
√

p0(1−p0)
n0+n1+1 · pn0

0 (1− p0)n1 · 2. If we use

Sterling’s approximation for n! (n! ≈ e−nnn
√

2πn), it is not difficult to show that

n0!n1!
(n0 +n1 +1)!

≈ pn0
0 (1− p0)n1

√
p0(1− p0)
n0 +n1 +1

·
√

2π, (1.12)

√
2π = 2.5066 which is roughly equal to 2.
To obtain the probability of a zero following a sequence of n0 zeros and n1 ones:

We divide the probability of the sequence having the extra zero, by the probability
of the sequence without the extra zero, i.e.:

(n0 +1)!n1!
(n0 +n1 +2)!

/ n0!n1!
(n0 +n1 +1)!

=
n0 +1

(n0 +n1 +2)
. (1.13)

This method of extrapolating binary Bernoulli sequences is called “Laplace’s Rule”.
The formula for the probability of a binary sequence, n0!n1!

(n0+n1+1)! can be generalized
for an alphabet of k symbols.

A sequence of k different kinds of symbols has a probability of

(k−1)!
k
∏
i=1

ni!

(k−1+
k
∑

i=1
ni)!

. (1.14)

ni is the number of times the ith symbol occurs.
This formula can be obtained by integration in a k−1 dimensional space of the

function pn1
1 pn2

2 · · · pnk−1
k−1 (1− p1 − p2 · · ·− pk−1)nk .

Through an argument similar to that used for the binary sequence, the probability
of the next symbol being of the jth type is

n j +1
k +∑k

i=1 ni
. (1.15)

A way to visualize this result: the body of data (the “corpus”) consists of the ∑ni
symbols. Think of a “pre-corpus” containing one of each of the k symbols. If we
think of a “macro corpus” as “corpus plus pre-corpus” we can obtain the probability
of the next symbol being the jth one by dividing the number of occurrences of that
symbol in the macro corpus, by the total number of symbols of all types in the macro
corpus.

1 This can be obtained by getting the first and second moments of the distribution, using the fact

that
1∫
0

px(1− p)yd p = x!y!
(x+y+1)! .
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It is also possible to have different numbers of each symbol type in the pre-
corpus, enabling us to get a great variety of “a priori probability distributions” for
our predictions.

1.10 Context Free Grammar Discovery

This is a method of extrapolating an unordered set of finite strings: Given the set of
strings, a1,a2, · · ·an, what is the probability that a new string, an+1, is a member of
the set? We assume that the original set was generated by some sort of probabilistic
device. We want to find a device of this sort that has a high a priori likelihood (i.e.
short description length) and assigns high probability to the data set. A good model
Ri, is one with maximum value of

P(Ri)
n

∏
j=1

Ri(a j). (1.16)

Here P(Ri) is the a priori probability of the model Ri. Ri(a j) is the probability as-
signed by Ri to data string, a j.

To understand probabilistic models, we first define non-probabilistic grammars.
In the case of context free grammars, this consists of a set of terminal symbols and
a set of symbols called nonterminals, one of which is the initial starting symbol, S.

A grammar could then be:

S → Aac

S → BaAd

A → BAaS

A → AB

A → a

B → aBa

B → b

The capital letters (including S) are all nonterminal symbols. The lower case letters
are all terminal symbols. To generate a legal string, we start with the symbol, S, and
we perform either of the two possible substitutions. If we choose BaAd, we would
then have to choose substitutions for the nonterminals B and A. For B, if we chose
aBa we would again have to make a choice for B. If we chose a terminal symbol,
like b for B, then no more substitutions can be made.

An example of a string generation sequence:
S, BaAd, aBaaAd, abaaAd, abaaABd, abaaaBd, abaaabd.
The string abaaabd is then a legally derived string from this grammar. The set of

all strings legally derivable from a grammar is called the language of the grammar.
The language of a grammar can contain a finite or infinite number of strings. If
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we replace the deterministic substitution rules with probabilistic rules, we have a
probabilistic grammar. A grammar of this sort assigns a probability to every string
it can generate. In the deterministic grammar above, S had two rewrite choices, A
had three, and B had two. If we assign a probability to each choice, we have a
probabilistic grammar.

Suppose S had substitution probability 0.1 for Aac and 0.9 for BaAd. Similarly,
assigning probabilities 0.3, 0.2 and 0.5 for A’s substitutions and 0.4, 0.6 for B’s
substitutions.

S 0.1 Aac

0.9 BaAd

A 0.3 BAaS

0.2 AB

0.5 a

B 0.4 aBa

0.6 b

In the derivation of abaaab of the previous example, the substitutions would have
probabilities 0.9 to get BaAd, 0.4 to get aBaaAd, 0.6 to get abaaAd, 0.2 to get
abaaABd, 0.5 to get abaaaBd, and 0.6 to get abaaabd. The probability of the string
abaabd being derived this way is 0.9×0.4×0.6×0.2×0.5×0.6 = 0.01296. Often
there are other ways to derive the same string with a grammar, so we have to add
up the probabilities of all of its possible derivations to get the total probability of a
string.

Suppose we are given a set of strings, ab, aabb, aaabbb that were generated by
an unknown grammar. How do we find the grammar?

I wouldn’t answer that question directly, but instead I will tell how to find a
sequence of grammars that fits the data progressively better. The best one we find
may not be the true generator, but will give probabilities to strings close to those
given by the generator.

The example here is that of A. Stolcke’s, PhD thesis [12]. We start with an ad
hoc grammar that can generate the data, but it over f its . . . it is too complex:

S → ab

→ aabb

→ aaabbb

We then try a series of modifications of the grammar (Chunking and Merging) that
increase the total probability of description and thereby decrease total description
length. Merging consists of replacing two nonterminals by a single nonterminal.
Chunking is the process of defining new nonterminals. We try it when a string or
substring has occurred two or more times in the data. ab has occurred three times so
we define X = ab and rewrite the grammar as
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S → X

→ aXb

→ aaXbb

X → ab

aXb occurs twice so we define Y = aXb giving

S → X

→ Y

→ aY b

X → ab

Y → aXb

At this point there are no repeated strings or substrings, so we try the operation
Merge which coalesces two nonterminals. In the present case merging S and Y
would decrease complexity of the grammar, so we try:

S → X

→ aSb

→ aXb

X → ab

Next, merging S and X gives

S → aSb

→ ab

which is an adequate grammar. At each step there are usually several possible chunk
or merge candidates. We chose the candidates that give minimum description length
to the resultant grammar.

How do we calculate the length of description of a grammar and its description
of the data set?

Consider the grammar

S → X

→ Y

→ aY b

X → ab

Y → aXb

There are two kinds of terminal symbols and three kinds of nonterminals. If we
know the number of terminals and nonterminals, we need describe only the right
hand side of the substitutions to define the grammar. The names of the nonterminals
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(other than the first one, S) are not relevant. We can describe the right hand side
by the string Xs1Y s1aY bs1s2abs1s2aXbs1s2. s1 and s2 are punctuation symbols. s1
marks the end of a string. s2 marks the end of a sequence of strings that belong to
the same nonterminal. The string to be encoded has seven kinds of symbols. The
number of times each occurs: X , 2; Y , 2; S, 0; a, 3; b, 3; s1, 5; s2, 3. We can then use
the formula

(k−1)!
k
∏
i=1

ni!

(k−1+
k
∑

i=1
ni)!

(1.17)

to compute the probability of the grammar: k = 7, since there are seven symbols and
n1 = 2, n2 = 2, n3 = 0, n4 = 3, etc. We also have to include the probability of 2, the
number of kinds of terminals, and of 3, the number of kinds of nonterminals.

There is some disagreement in the machine learning community about how best
to assign probability to integers, n. A common form is

P(n) = A2− log∗2 n , (1.18)

where log∗2 n = log2 n + log2 log2 n + log2 log2 log2 n · · · taking as many positive
terms as there are, and A is a normalization constant. There seems to be no good
reason to choose 2 as the base for logs, and using different bases gives much differ-
ent results. If we use natural logs, the sum diverges.

This particular form of P(n) was devised by Rissanen. It is an attempt to approx-
imate the shortest description of the integer n, e.g. the Kolmogorov complexity of n.
Its first moment is infinite, which means it is very biased toward large numbers. If
we have reason to believe, from previous experience, that n will not be very large,
but will be about λ , then a reasonable form of P(n) might be P(n) = Ae−n/λ , A
being a normalization constant.

The forgoing enables us to evaluate P(Ri) of (1.16). The∏n
j=1 Ri(a j) part is eval-

uated by considering the choices made when the grammar produces the data corpus.
For each nonterminal, we will have a sequence of decisions whose probabilities can
be evaluated by an expression like (1.14), or perhaps the simpler technique of (1.15)
that uses the “pre-corpus”. Since there are three nonterminals, we need the product
of three such expressions.

The process used by Stolcke in his thesis was to make various trials of chunk-
ing or merging in attempts to successively get a shorter description length – or to
increase (1.16). Essentially a very greedy method. He has been actively working
on Context Free Grammar discovery since then, and has probably discovered many
improvements. There are many more recent papers at his website.

Most, if not all CFG discovery has been oriented toward finding a single best
grammar. For applications in AI and genetic programming it is useful to have large
sets of not necessarily best grammars – giving much needed diversity. One way to
implement this: At each stage of modification of a grammar, there are usually sev-
eral different operations that can reduce description length. We could pursue such
paths in parallel . . . perhaps retaining the best 10 or best 100 grammars thus far.



20 R.J. Solomonoff

Branches taken early in the search could lead to very divergent paths and much
needed diversity. This approach helps avoid local optima in grammars and prema-
ture convergence when applied to Genetic Programming.

1.11 Levin’s Search Technique

In the section on incomputability we mentioned the importance of good search
techniques for finding effective induction models. The procedure we will describe
was inspired by Levin’s search technique [2], but is applied to a different kind of
problem.

Here, we have a corpus of data to extrapolate, and we want to search over a
function space, to find functions (“models”) Ri( ) such that 2−|Ri|Si is as large as
possible. In this search, for some Ri, the time needed to evaluate Si, (the probability
assigned to the corpus by Ri), may be unacceptably large – possibly infinite.

Suppose we have a (deterministic) context free grammar, G, that can generate
strings that are programs in some computer language. (Most computer languages
have associated grammars of this kind.) In generating programs, the grammar will
have various choices of substitutions to make. If we give each substitution in a k-way
choice, a probability of 1/k, then we have a probabilistic grammar that assigns a
priori probabilities to the programs that it generates. If we use a functional language
(such as LISP), this will give a probability distribution over all functions it can gen-
erate. The probability assigned to the function Ri will be denoted by PM(Ri). Here
M is the name of the functional computer language. PM(Ri) corresponds to what we
called 2−|Ri| in our earlier discussions. |Ri| corresponds to − log2 PM(Ri). As before,
Si is the probability assigned to the corpus by Ri. We want to find functions Ri( )
such that PM(Ri)Si is as large as possible.

Next we choose a small initial time T – which might be the time needed to
execute 10 instructions in our Functional Language. The initial T is not critical. We
then compute PM(Ri)Si for all Ri for which ti/PM(Ri) < T . Here ti is the time needed
to construct Ri and evaluate its Si.

There are only a finite number of Ri that satisfy this criterion and if T is very
small, there will be very few, if any. We remember which Ri’s have large PM(Ri)Si.

ti < T ·PM(Ri), so ∑i ti, the total time for this part of the search takes time <T ·
∑i PM(Ri). Since the PM(Ri) are a priori probabilities, ∑i PM(Ri) must be less than
or equal to 1, and so the total time for this part of the search must be less than T .

If we are not satisfied with the Ri we’ve obtained, we double T and do the search
again. We continue doubling T and searching until we find satisfactory Ri’s or until
we run out of time. If T ′ is the value of T when we finish the search, then the total
time for the search will be T ′ +T ′/2+T ′/4 · · · ≈ 2T ′.

If it took time t j to generate and test one of our “good” models, R j, then when R j
was discovered, T ′ would be no more than 2t j/PM(R j) – so we would take no more
time than twice this, or 4t j/PM(R j) to find R j. Note that this time limit depends on
R j only, and is independent of the fact that we may have aborted the Si evaluations
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of many Ri for which ti was infinite or unacceptably large. This feature of Levin
Search is a mandatory requirement for search over a space of partial recursive func-
tions. Any weaker search technique would seriously limit the power of the inductive
models available to us.

When ALP is being used in AI, we are solving a sequence of problems of increas-
ing difficulty. The machine (or language) M is periodically “updated” by inserting
subroutines and definitions, etc., into M so that the solutions, Ri to problems in the
past result in larger PM(R j). As a result the t j/PM(R j) are smaller – giving quicker
solutions to problems of the past – and usually for problems of the future as well.

1.12 The Future of ALP: Some Open Problems

We have described ALP and some of its properties:
First, its completeness: Its remarkable ability to find any irregularities in an ap-

parently small amount of data.
Second: That any complete induction system like ALP must be formally

incomputable.
Third: That this incomputability imposes no limit on its use for practical induc-

tion. This fact is based on our ability to estimate the future accuracy of any particular
induction model. While this seems to be easy to do in ALP without using Cross Val-
idation, more work needs to be done in this area.

ALP was designed to work on difficult problems in AI. The particular kind of AI
considered was a version of “Incremental Learning”: We give the machine a simple
problem. Using Levin Search, it finds one or more solutions to the problem. The
system then updates itself by modifying the reference machine so that the solutions
found will have higher a priori probabilities. We then give it new problems some-
what similar to the previous problem. Again we use Levin Search to find solutions –
We continue with a sequence of problems of increasing difficulty, updating after
each solution is found. As the training sequence continues we expect that we will
need less and less care in selecting new problems and that the system will eventu-
ally be able to solve a large space of very difficult problems. For a more detailed
description of the system, see Solomonoff [11].

The principal things that need to be done to implement such a system:

* We have to find a good reference language: Some good candidates are APL, LISP,
FORTH, or a subset of Assembly Language. These languages must be augmented
with definitions and subroutines that we expect to be useful in problem solving.

* The design of good training sequences for the system is critical for getting much
problem-solving ability into it. I have written some general principles on how to
do this [9], but more work needs to be done in this area. For early training, it
might be useful to learn definitions of instructions from Maple or Mathematica.
For more advanced training we might use the book that Ramanujan used to teach
himself mathematics – “A Synopsis of Elementary Results in Pure and Applied
Mathematics” by George S. Carr.
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* We need a good update algorithm. It is possible to use PPM, a relatively fast, ef-
fective method of prediction, for preliminary updating, but to find more complex
regularities, a more general algorithm is needed. The universality of the reference
language assures us that any conceivable update algorithm can be considered.
APL’s diversity of solutions to problems maximizes the information that we are
able to insert into the a priori probability distribution. After a suitable training
sequence the system should know enough to usefully work on the problem of
updating itself.

Because of ALP’s completeness (among other desirable properties), we expect
that the complete AI system described above should become an extremely powerful
general problem solving device – going well beyond the limited functional capabil-
ities of current incomplete AI systems.
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