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Preface

This book presents theoretical and practical results of information theoretic methods
used in the context of statistical learning. Its major goal is to advocate and promote
the importance and usefulness of information theoretic concepts for understanding
and developing the sophisticated machine learning methods necessary not only to
cope with the challenges of modern data analysis but also to gain further insights
into their theoretical foundations. Here Statistical Learning is loosely defined as a
synonym, for, e.g., Applied Statistics, Artificial Intelligence or Machine Learning.
Over the last decades, many approaches and algorithms have been suggested in the
fields mentioned above, for which information theoretic concepts constitute core
ingredients. For this reason we present a selected collection of some of the finest
concepts and applications thereof from the perspective of information theory as the
underlying guiding principles. We consider such a perspective as very insightful and
expect an even greater appreciation for this perspective over the next years.

The book is intended for interdisciplinary use, ranging from Applied Statistics,
Artificial Intelligence, Applied Discrete Mathematics, Computer Science, Infor-
mation Theory, Machine Learning to Physics. In addition, people working in the
hybrid fields of Bioinformatics, Biostatistics, Computational Biology, Computa-
tional Linguistics, Medical Bioinformatics, Neuroinformatics or Web Mining might
profit tremendously from the presented results because these data-driven areas are
in permanent need of new approaches to cope with the increasing flood of high-
dimensional, noisy data that possess seemingly never ending challenges for their
analysis.

Many colleagues, whether consciously or unconsciously, have provided us with
input, help and support before and during the writing of this book. In particular we
would like to thank Shun-ichi Amari, Hamid Arabnia, Gökhan Bakır, Alexandru T.
Balaban, Teodor Silviu Balaban, Frank J. Balbach, João Barros, Igor Bass, Matthias
Beck, Danail Bonchev, Stefan Borgert, Mieczyslaw Borowiecki, Rudi L. Cilibrasi,
Mike Coleman, Malcolm Cook, Pham Dinh-Tuan, Michael Drmota, Shinto Eguchi,
B. Roy Frieden, Bernhard Gittenberger, Galina Glazko, Martin Grabner, Earl
Glynn, Peter Grassberger, Peter Hamilton, Kateřina Hlaváčková-Schindler, Lucas
R. Hope, Jinjie Huang, Robert Jenssen, Attila Kertész-Farkas, András Kocsor,
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vi Preface

Elena Konstantinova, Kevin B. Korb, Alexander Kraskov, Tyll Krüger, Ming Li, J.F.
McCann, Alexander Mehler, Marco Möller, Abbe Mowshowitz, Max Mühlhäuser,
Markus Müller, Noboru Murata, Arcady Mushegian, Erik P. Nyberg, Paulo Eduardo
Oliveira, Hyeyoung Park, Judea Pearl, Daniel Polani, Sándor Pongor, William
Reeves, Jorma Rissanen, Panxiang Rong, Reuven Rubinstein, Rainer Siegmund
Schulze, Heinz Georg Schuster, Helmut Schwegler, Chris Seidel, Fred Sobik, Ray
J. Solomonoff, Doru Stefanescu, Thomas Stoll, John Storey, Milan Studeny, Ulrich
Tamm, Naftali Tishby, Paul M.B. Vitányi, José Miguel Urbano, Kazuho Watanabe,
Dongxiao Zhu, Vadim Zverovich and apologize to all those who have been missed
inadvertently. We would like also to thank our editor Amy Brais from Springer who
has always been available and helpful. Last but not least we would like to thank our
families for support and encouragement during all the time of preparing the book
for publication.

We hope this book will help to spread the enthusiasm we have for this field and
inspire people to tackle their own practical or theoretical research problems.

Belfast and Coimbra Frank Emmert-Streib
June 2008 Matthias Dehmer
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Paul M. B. Vitányi, Frank J. Balbach, Rudi L. Cilibrasi, and Ming Li

4 The Application of Data Compression-Based Distances
to Biological Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Attila Kertész-Farkas, András Kocsor, and Sándor Pongor

5 MIC: Mutual Information Based Hierarchical Clustering . . . . . . . . . . 101
Alexander Kraskov and Peter Grassberger

6 A Hybrid Genetic Algorithm for Feature Selection
Based on Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Jinjie Huang and Panxiang Rong

7 Information Approach to Blind Source Separation
and Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Pham Dinh-Tuan

8 Causality in Time Series: Its Detection and Quantification by Means
of Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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Kateřina Hlaváčková-Schindler, Commission for Scientific Visualization,
Austrian Academy of Sciences and Donau-City Str. 1, 1220 Vienna, Austria and
Institute of Information Theory and Automation of the Academy of Sciences of the
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Chapter 1
Algorithmic Probability: Theory
and Applications

Ray J. Solomonoff

Abstract We first define Algorithmic Probability, an extremely powerful method
of inductive inference. We discuss its completeness, incomputability, diversity and
subjectivity and show that its incomputability in no way inhibits its use for practical
prediction. Applications to Bernoulli sequence prediction and grammar discovery
are described. We conclude with a note on its employment in a very strong AI system
for very general problem solving.

1.1 Introduction

Ever since probability was invented, there has been much controversy as to just what
it meant, how it should be defined and above all, what is the best way to predict the
future from the known past. Algorithmic Probability is a relatively recent definition
of probability that attempts to solve these problems.

We begin with a simple discussion of prediction and its relationship to probabil-
ity. This soon leads to a definition of Algorithmic Probability (ALP) and its proper-
ties. The best-known properties of ALP are its incomputibility and its completeness
(in that order). Completeness means that if there is any regularity (i.e. property use-
ful for prediction) in a batch of data, ALP will eventually find it, using a surprisingly
small amount of data. The incomputability means that in the search for regularities,
at no point can we make a useful estimate of how close we are to finding the most
important ones. We will show, however, that this incomputability is of a very benign
kind, so that in no way does it inhibit the use of ALP for good prediction. One of
the important properties of ALP is subjectivity, the amount of personal experiential
information that the statistician must put into the system. We will show that this

R.J. Solomonoff
Visiting Professor, Computer Learning Research Centre, Royal Holloway, University of London,
London, UK
http://world.std.com/ rjs, e-mail: rjsolo@ieee.org

F. Emmert-Streib, M. Dehmer (eds.), Information Theory and Statistical Learning, 1
DOI: 10.1007/978-0-387-84816-7 1,
c© Springer Science+Business Media LLC 2009



2 R.J. Solomonoff

is a desirable feature of ALP, rather than a “Bug”. Another property of ALP is its
diversity – it affords many explanations of data giving very good understanding of
that data.

There have been a few derivatives of Algorithmic Probability – Minimum
Message Length (MML), Minimum Description Length (MDL) and Stochastic
Complexity – which merit comparison with ALP.

We will discuss the application of ALP to two kinds of problems: Prediction of
the Bernoulli Sequence and Discovery of the Grammars of Context Free Languages.
We also show how a variation of Levin’s search procedure can be used to search over
a function space very efficiently to find good predictive models.

The final section is on the future of ALP – some open problems in its application
to AI and what we can expect from these applications.

1.2 Prediction, Probability and Induction

What is Prediction?

“An estimate of what is to occur in the future” – But also necessary is a measure
of confidence in the prediction: As a negative example consider an early AI pro-
gram called “Prospector”. It was given the characteristics of a plot of land and was
expected to suggest places to drill for oil. While it did indeed do that, it soon be-
came clear that without having any estimate of confidence, it is impossible to know
whether it is economically feasible to spend $100,000 for an exploratory drill rig.
Probability is one way to express this confidence.

Say the program estimated probabilities of 0.1 for 1,000-gallon yield, 0.1 for
10,000-gallon yield and 0.1 for 100,000-gallon yield. The expected yield would
be 0.1×1,000 + 0.1×10,000 + 0.1×100,000 = 11,100 gallons. At $100 per gallon
this would give $1,110,000. Subtracting out the $100,000 for the drill rig gives an
expected profit of $1,010,000, so it would be worth drilling at that point. The moral
is that predictions by themselves are usually of little value – it is necessary to have
confidence levels associated with the predictions.

A strong motivation for revising classical concepts of probability has come from
the analysis of human problem solving. When working on a difficult problem, a
person is in a maze in which he must make choices of possible courses of action. If
the problem is a familiar one, the choices will all be easy. If it is not familiar, there
can be much uncertainty in each choice, but choices must somehow be made. One
basis for choices might be the probability of each choice leading to a quick solution –
this probability being based on experience in this problem and in problems like
it. A good reason for using probability is that it enables us to use Levin’s Search
Technique (Sect. 1.11) to find the solution in near minimal time.

The usual method of calculating probability is by taking the ratio of the number
of favorable choices to the total number of choices in the past. If the decision to use
integration by parts in an integration problem has been successful in the past 43%
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of the time, then its present probability of success is about 0.43. This method has
very poor accuracy if we only have one or two cases in the past, and is undefined
if the case has never occurred before. Unfortunately it is just these situations that
occur most often in problem solving.

On a very practical level: If we cross a particular street 10 times and we get hit
by a car twice, we might estimate that the probability of getting hit in crossing that
street is about 0.2 = 2/10. However, if instead, we only crossed that street twice and
we didn’t get hit either time, it would be unreasonable to conclude that our probabil-
ity of getting hit was zero! By seriously revising our definition of probability, we are
able to resolve this difficulty and clear up many others that have plagued classical
concepts of probability.

What is Induction?

Prediction is usually done by finding inductive models. These are deterministic or
probabilistic rules for prediction. We are given a batch of data – typically a series of
zeros and ones, and we are asked to predict any one of the data points as a function
of the data points that precede it.

In the simplest case, let us suppose that the data has a very simple structure:

0101010101010 . . . .

In this case, a good inductive rule is “zero is always followed by one; one is
always followed by zero”. This is an example of deterministic induction, and deter-
ministic prediction. In this case it is 100% correct every time!

There is, however, a common kind of induction problem in which our predictions
will not be that reliable. Suppose we are given a sequence of zeros and ones with
very little apparent structure. The only apparent regularity is that zero occurs 70% of
the time and one appears 30% of the time. Inductive algorithms give a probability
for each symbol in a sequence that is a function of any or none of the previous
symbols. In the present case, the algorithm is very simple and the probability of the
next symbol is independent of the past – the probability of zero seems to be 0.7;
the probability of one seems to be 0.3. This kind of simple probabilistic sequence
is called a “Bernoulli sequence”. The sequence can contain many different kinds of
symbols, but the probability of each is independent of the past. In Sect. 1.9 we will
discuss the Bernoulli sequence in some detail.

In general we will not always be predicting Bernoulli sequences and there are
many possible algorithms (which we will call “models”) that tell how to assign
a probability to each symbol, based on the past. Which of these should we use?
Which will give good predictions in the future?

One desirable feature of an inductive model is that if it is applied to the known
sequence, it produces good predictions. Suppose Ri is an inductive algorithm. Ri
predicts the probability of an symbol a j in a sequence a1,a2 · · ·an by looking at the
previous symbols: More exactly,
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p j = Ri(a j|a1.a2 · · ·a j−1)

a j is the symbol for which we want the probability. a1,a2 · · ·a j−1 are the previous
symbols in the sequence. Then Ri is able to give the probability of a particular value
of a j as a function of the past. Here, the values of a j can range over the entire
“alphabet” of symbols that occur in the sequence. If the sequence is a binary, a j will
range over the set 0 and 1 only. If the sequence is English text, a j will range over
all alphabetic and punctuation symbols. If Ri is a good predictor, for most of the a j,
the probability it assigns to them will be large – near one.

Consider S, the product of the probabilities that Ri assigns to the individual sym-
bols of the sequence, a1,a2 · · ·an. S will give the probability that Ri assigns to the
sequence as a whole

S =
n

∏
j=1

Ri(a j|a1,a2 · · ·an) =
n

∏
j=1

p j . (1.1)

For good prediction we want S as large as possible. The maximum value it can have
is one, which implies perfect prediction. The smallest value it can have is zero –
which can occur if one or more of the p j are zero – meaning that the algorithm
predicted an event to be impossible, yet that event occurred!

The “Maximum Likelihood” method of model selection uses S only to decide
upon a model. First, a set of models is chosen by the statistician, based on his ex-
perience with the kind of prediction being done. The model within that set having
maximum S value is selected.

Maximum Likelihood is very good when there is a lot of data – which is the area
in which classical statistics operates. When there is only a small amount of data, it
is necessary to consider not only S, but the effect of the likelihood of the model itself
on model selection. The next section will show how this may be done.

1.3 Compression and ALP

An important application of symbol prediction is text compression. If an induction
algorithm assigns a probability S to a text, there is a coding method – Arithmetic
Coding – that can re-create the entire text without error using just − log2 S bits.

More exactly: Suppose x is a string of English text, in which each character is
represented by an 8-bit ASCII code, and there are n characters in x. x would be
directly represented by a code of just 8n bits. If we had a prediction model, R , that
assigned a probability of S to the text, then it is possible to write a sequence of
just − log2 S bits, so that the original text, x, can be recovered from that bit sequence
without error.

If R is a string of symbols (usually a computer program) that describes the predic-
tion model, we will use |R| to represent the length of the shortest binary sequence
that describes R. If S>0, then the probability assigned to the text will be in two
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parts: the first part is the code for R, which is |R| bits long, and the second part is
the code for the probability of the data, as given by R – it will be just − log2 S bits
in length. The sum of these will be |R|− log2 S bits. The compression ratio achieved
by R would be

8N
|R|− log2 S

PPM, a commonly used prediction algorithm, achieves a compression of about three
for English text. For very large strings of data, compressions of as much as six have
been achieved by highly refined prediction algorithms. We can use |R|− log2 S bits,
the length of the compressed code, as a “figure of merit” of a particular induction
algorithm with respect to a particular text.

We want an algorithm that will give good prediction, i.e. large S, and small |R|,
so |R|− log2 S, the figure of merit, will be as small as possible and the probability it
assigns to the text will be as large as possible. Models with |R| larger than optimum
are considered to be overfitted. Models in which |R| are smaller than optimum are
considered to be underfitted. By choosing a model that minimizes |R|− log2 S, we
avoid both underfitting and overfitting, and obtain very good predictions. We will
return to this topic later, when we tell how to compute |R| and S for particular models
and data sets.

Usually there are many inductive models available. In 1960, I described Algo-
rithmic Probability – ALP [5–7], which uses all possible models in parallel for
prediction, with weights dependent upon the figure of merit of each model.

PM(an+1|a1,a2 · · ·an) =∑2−|Ri| Si Ri(an+1|a1,a2 · · ·an) (1.2)

PM(an+1|a1,a2 · · ·an) is the probability assigned by ALP to the (n+1)th symbol of
the sequence, in view of the previous part of the sequence.

Ri(an+1|a1,a2 · · ·an) is the probability assigned by the ith model to the (n+1)th
symbol of the sequence, in view of the previous part of the sequence.

Si is the probability assigned by Ri, (the ith model) to the known sequence,
a1,a2 · · ·an via (1.1).

2−|Ri|Si is 1/2 with an exponent equal to the figure of merit that Ri has with
respect to the data string a1,a2 . . .an. It is the weight assigned to Ri( ). This weight
is large when the figure of merit is good – i.e. small.

Suppose that |Ri| is the shortest program describing the ith model using a particu-
lar “reference computer” or programming language – which we will call M. Clearly
the value of |Ri| will depend on the nature of M. We will be using machines (or
languages) that are “Universal” – machines that can readily program any conceiv-
able function – almost all computers and programming languages are of this kind.
The subscript M in PM expresses the dependence of ALP on choice of the reference
computer or language.

The universality of M assures us that the value of ALP will not depend very much
on just which M we use – but the dependence upon M is nonetheless important. It
will be discussed at greater length in Sect. 1.5 on “Subjectivity”.
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Normally in prediction problems we will have some time limit, T , in which we
have to make our prediction. In ALP what we want is a set of models of maximum
total weight. A set of this sort will give us an approximation that is as close as
possible to ALP and gives best predictions. To obtain such a set, we devise a search
technique that tries to find, in the available time, T , a set of Models, Ri, such that
the total weight,

∑
i

2−|Ri|Si (1.3)

is as large as possible.
On the whole, ALP would seem to be a complex, time consuming way to com-

pute probabilities – though in fact, if suitable approximations are used, these objec-
tions are not at all serious.

Does ALP have any advantages over other probability evaluation methods? For
one, it’s the only method known to be complete. The completeness property of ALP
means that if there is any regularity in a body of data, our system is guaranteed to
discover it using a relatively small sample of that data. More exactly, say we had
some data that were generated by an unknown probabilistic source, P. Not knowing
P, we use instead, PM to obtain the Algorithmic Probabilities of the symbols in
the data. How much do the symbol probabilities computed by PM differ from their
true probabilities, P? The Expected value with respect to P of the total square error
between P and PM is bounded by −1/2 lnP0.

EP

[
n

∑
m=1

(PM(am+1 = 1|a1,a2 · · ·am)−P(am+1 = 1|a1,a2 · · ·am))2

]
≤ −1

2
lnP0

lnP0 ≈ kln2 (1.4)

P0 is the a priori probability of P. It is the probability we would assign to P if we
knew P.

k is the Kolmogorov complexity of the data generator, P. It’s the shortest binary
program that can describe P, the generator of the data.

This is an extremely small error rate. The error in probability approaches zero
more rapidly than 1/n. Rapid convergence to correct probabilities is a most im-
portant feature of ALP. The convergence holds for any P that is describable by a
computer program and includes many functions that are formally incomputable.
Various kinds of functions are described in the next section. The convergence proof
is in Solomonoff [8].

1.4 Incomputability

It should be noted that in general, it is impossible to find the truly best models
with any certainty – there is an infinity of models to be tested and some take an
unacceptably long time to evaluate. At any particular time in the search, we will
know the best ones so far, but we can’t ever be sure that spending a little more
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time will not give much better models! While it is clear that we can always make
approximations to ALP by using a limited number of models, we can never know
how close these approximations are to the “True ALP”. ALP is indeed, formally
incomputable.

In this section, we will investigate how our models are generated and how the
incomputability comes about – why it is a necessary, desirable feature of any high
performance prediction technique, and how this incomputability in no way inhibits
its use for practical prediction.

How Incomputability Arises and How We Deal with It

Recall that for ALP. we added up the predictions of all models, using suitable
weights:

PM =
∞

∑
i=1

2−|Ri| SiRi . (1.5)

Here Ri gives the probability distribution for the next symbol as computed by the ith
model. Just what do we mean by these models, Ri?

There are just four kinds of functions that Ri can be:

1. Finite compositions of a finite set of functions
2. Primitive recursive functions
3. Partial recursive functions
4. Total recursive functions

Compositions are combinations of a small set of functions. The finite power series

3.2+5.98∗X −12.54∗X2 +7.44∗X3

is a composition using the functions plus and times on the real numbers. Finite
series of this sort can approximate any continuous functions to arbitrary precision.

Primitive Recursive Functions are defined by one or more DO loops. For example
to define Factorial(X) we can write

Factorial(0) ← 1
DO I = 1,X
Factorial(I) ← I ∗Factorial(I−1)
EndDO

Partial Recursive Functions are definable using one or more WHILE loops. For
example, to define the factorial in this way:

Factorial(0) ← 1
I ← 0
WHILE I �= X
I ← I +1 Factorial(I) ← I ∗Factorial(I−1)
EndWHILE
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The loop will terminate if X is a non negative integer. For all other values of X ,
the loop will run forever. In the present case it is easy to tell for which values of X
the loop will terminate.

A simple WHILE loop in which it is not so easy to tell:
WHILE X > 4
IF X/2 is an integer T HEN X ← X/2
ELSE X ← 3∗X +1
EndWHILE

This program has been tested with X starting at all positive integers up to more
than sixty million. The loop has always terminated, but no one yet is certain as to
whether it terminates for all positive integers!

For any Total Recursive Function we know all values of arguments for which
the function has values. Compositions and primitive recursive functions are all total
recursive. Many partial recursive functions are total recursive, but some are not. As
a consequence of the insolvability of Turing’s “Halting Problem”, it will sometimes
be impossible to tell if a certain WHILE loop will terminate or not.

Suppose we use (1.2) to approximate ALP by sequentially testing functions in a
list of all possible functions – these will be the partial recursive functions because
this is the only recursively enumerable function class that includes all possible pre-
dictive functions. As we test to find functions with good figures of merit (small
(|Ri| − log2 Si)) we find that certain of them don’t converge after say, a time T , of
10 s. We know that if we increase T enough, eventually, all converging trials will
converge and all divergent trials will still diverge – so eventually we will get close
to true ALP – but we cannot recognize when this occurs. Furthermore for any fi-
nite T , we cannot ever know a useful upper bound on how large the error in the
ALP approximation is. That is why this particular method of approximating ALP
is called “incomputable”. Could there be another computable approximation tech-
nique that would converge? It is easy to show that any computable technique cannot
be “complete” – i.e. having very small errors in probability estimates.

Consider an arbitrary computable probability method, R0. We will show how to
generate a sequence for which R0’s errors in probability would always be 0.5 or
more. We start our sequence with a single bit, say zero. We then ask R0 for the most
probable next bit. If it says “one is more probable”, we make the continuation zero, if
it says “zero is more probable”, we make the next bit one. If it says “both are equally
likely” we make the next bit zero. We generate the third bit in the sequence in the
same way, and we can use this method to generate an arbitrarily long continuation
of the initial zero.

For this sequence, R0 will always have an error in probability of at least one
half. Since completeness implies that prediction errors approach zero for all finitely
describable sequences, it is clear that R0 or any other computable probability method
cannot be complete. Conversely, any complete probability method, such as ALP,
cannot be computable.

If we cannot compute ALP, what good is it? It would seem to be of little value
for prediction! To answer this objection, we note that from a practical viewpoint, we
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never have to calculate ALP exactly – we can always use approximations. While
it is impossible to know how close our approximations are to the true ALP, that
information is rarely needed for practical induction.

What we actually need for practical prediction:

1. Estimates of how good a particular approximation will be in future problems
(called “Out of Sample Error”)

2. Methods to search for good models
3. Quick and simple methods to compare models

For 1., we can use Cross Validation or Leave One Out – well-known methods that
work with most kinds of problems. In addition, because ALP does not overfit or
underfit there is usually a better method to make such estimates.

For 2. In Sect. 1.11 we will describe a variant of Levin’s Search Procedure, for
an efficient search of a very large function space.

For 3., we will always find it easy to compare models via their associated
“Figures of Merit”, |Ri|− log2(Si).

In summary, it is clear that all computable prediction methods have a serious
flaw – they cannot ever approach completeness. On the other hand, while approxi-
mations to ALP can approach completeness, we can never know how close we are
to the final, incomputable result. We can, however, get good estimates of the fu-
ture error in our approximations, and this is all that we really need in a practical
prediction system.

That our approximations approach ALP assures us that if we spend enough time
searching we will eventually get as little error in prediction as is possible. No com-
putable probability evaluation method can ever give us this assurance. It is in this
sense that the incomputability of ALP is a desirable feature.

1.5 Subjectivity

The subjectivity of probability resides in a priori information – the information
available to the statistician before he sees the data to be extrapolated. This is in-
dependent of what kind of statistical techniques we use. In ALP this a priori in-
formation is embodied in M, our “Reference Computer”. Recall our assignment of
a |R| value to an induction model – it was the length of the program necessary to
describe R. In general, this will depend on the machine we use – its instruction set.
Since the machines we use are Universal – they can imitate one another – the length
of description of programs will not vary widely between most reference machines
we might consider. But nevertheless, using small samples of data (as we often do in
AI), these differences between machines can modify results considerably.

For quite some time I felt that the dependence of ALP on the reference machine
was a serious flaw in the concept, and I tried to find some “objective” universal
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device, free from the arbitrariness of choosing a particular universal machine. When
I thought I finally found a device of this sort, I realized that I really didn’t want it –
that I had no use for it at all! Let me explain:

In doing inductive inference, one begins with two kinds of information: First, the
data itself, and second, the a priori data – the information one had before seeing
the data. It is possible to do prediction without data, but one cannot do prediction
without a priori information. In choosing a reference machine we are given the op-
portunity to insert into the a priori probability distribution any information about the
data that we know before we see it.

If the reference machine were somehow “objectively” chosen for all induction
problems, we would have no way to make use of our prior information. This lack
of an objective prior distribution makes ALP very subjective – as are all Bayesian
systems.

This certainly makes the results “subjective”. If we value objectivity, we can
routinely reduce the choice of a machine and representation to certain universal
“default” values – but there is a tradeoff between objectivity and accuracy. To obtain
the best extrapolation, we must use whatever information is available, and much of
this information may be subjective.

Consider two physicians, A and B: A is a conventional physician: He diagnoses
ailments on the basis of what he has learned in school, what he has read about
and his own experience in treating patients. B is not a conventional physician. He is
“objective”. His diagnosis is entirely “by the book” – things he has learned in school
that are universally accepted. He tries as hard as he can to make his judgements free
of any bias that might be brought about by his own experience in treating patients.
As a lawyer, I might prefer defending B’s decisions in court, but as a patient, I would
prefer A’s intelligently biased diagnosis and treatment.

To the extent that a statistician uses objective techniques, his recommendations
may be easily defended, but for accuracy in prediction, the additional information
afforded by subjective information can be a critical advantage.

Consider the evolution of a priori in a scientist during the course of his life. He
starts at birth with minimal a priori information – but enough to be able to learn to
walk, to learn to communicate and his immune system is able to adapt to certain
hostilities in the environment. Soon after birth, he begins to solve problems and
incorporate the problem solving routines into his a priori tools for future problem
solving. This continues throughout the life of the scientist – as he matures, his a
priori information matures with him.

In making predictions, there are several commonly used techniques for inserting
a priori information. First, by restricting or expanding the set of induction models to
be considered. This is certainly the commonest way. Second, by selecting prediction
functions with adjustable parameters and assuming a density distribution over those
parameters based on past experience with such parameters. Third, we note that much
of the information in our sciences is expressed as definitions – additions to our
language. ALP, or approximations of it, avails itself of this information by using
these definitions to help assign code lengths, and hence a priori probabilities to
models. Computer languages are usually used to describe models, and it is relatively
easy to make arbitrary definitions part of the language.
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More generally, modifications of computer languages are known to be able to
express any conceivable a priori probability distributions. This gives us the ability
to incorporate whatever a priori information we like into our computer language.
It is certainly more general than any of the other methods of inserting a priori
information.

1.6 Diversity and Understanding

Apart from accuracy of probability estimate, ALP has for AI another important
value: Its multiplicity of models gives us many different ways to understand our
data.

A very conventional scientist understands his science using a single “current
paradigm” – the way of understanding that is most in vogue at the present time.
A more creative scientist understands his science in very many ways, and can more
easily create new theories, new ways of understanding, when the “current paradigm”
no longer fits the current data.

In the area of AI in which I’m most interested – Incremental Learning – this
diversity of explanations is of major importance. At each point in the life of the
System, it is able to solve with acceptable merit, all of the problems it’s been given
thus far. We give it a new problem – usually its present Algorithm is adequate.
Occasionally, it will have to be modified a bit. But every once in a while it gets a
problem of real difficulty and the present Algorithm has to be seriously revised. At
such times, we try using or modifying once sub-optimal algorithms. If that doesn’t
work we can use parts of the sub-optimal algorithms and put them together in new
ways to make new trial algorithms. It is in giving us a broader basis to learn from
the past, that this value of ALP lies.

1.6.1 ALP and “The Wisdom of Crowds”

It is a characteristic of ALP that it averages over all possible models of the data:
There is evidence that this kind of averaging may be a good idea in a more general
setting. “The Wisdom of Crowds” is a recent book by James Serowiecki that in-
vestigates this question. The idea is that if you take a bunch of very different kinds
of people and ask them (independently) for a solution to a difficult problem, then a
suitable average of their solutions will very often be better than the best in the set.
He gives examples of people guessing the number of beans in a large glass bottle, or
guessing the weight of a large ox, or several more complex, very difficult problems.

He is concerned with the question of what kinds of problems can be solved this
way as well as the question of when crowds are wise and when they are stupid.
They become very stupid in mobs or in committees in which a single person is able
to strongly influence the opinions in the crowd. In a wise crowd, the opinions are
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individualized, the needed information is shared by the problem solvers, and the
individuals have great diversity in their problem solving techniques. The methods
of combining the solutions must enable each of the opinions to be voiced. These
conditions are very much the sort of thing we do in ALP. Also, when we approximate
ALP we try to preserve this diversity in the subset of models we use.

1.7 Derivatives of ALP

After my first description of ALP in 1960 [5], there were several related induc-
tion models described, minimum message length (MML) Wallace and Boulton
[13], Minimum Description Length (MDL) Rissanen [3], and Stochastic Complex-
ity, Rissanen [4]. These models were conceived independently of ALP – (though
Rissanen had read Kolmogorov’s 1965 paper on minimum coding [1], which is
closely related to ALP). MML and MDL select induction models by minimizing
the figure of merit, |Ri| − log2(Si) just as ALP does. However, instead of using a
weighted sum of models, they use only the single best model.

MDL chooses a space of computable models then selects the best model from
that space. This avoids any incomputability, but greatly limits the kinds of models
that it can use. MML recognizes the incomputability of finding the best model so
it is in principle much stronger than MDL. Stochastic complexity, like MDL, first
selects a space of computable models – then, like ALP it uses a weighted sum of
all models in the that space. Like MDL, it differs from ALP in the limited types of
models that are accessible to it. MML is about the same as ALP when the best model
is much better than any other found. When several models are of comparable figure
of merit, MML and ALP will differ. One advantage of ALP over MML and MDL is
in its diversity of models. This is useful if the induction is part of an ongoing process
of learning – but if the induction is used on one problem only, diversity is of much
less value. Stochastic Complexity, of course, does obtain diversity in its limited set
of models.

1.8 Extensions of ALP

The probability distribution for ALP that I’ve shown is called “The Universal Dis-
tribution for sequential prediction”. There are two other universal distributions I’d
like to describe:

1.8.1 A Universal Distribution for an Unordered Set of Strings

Suppose we have a corpus of n unordered discrete objects, each described by a
finite string a j: Given a new string, an+1, what is the probability that it is in the
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previous set? In MML and MDL, we consider various algorithms, Ri, that assign
probabilities to strings. (We might regard them as Probabilistic Grammars). We use
for prediction, the grammar, Ri, for which

|Ri|− log2 Si (1.6)

is minimum. Here |Ri| is the number of bits in the description of the grammar, Ri.
Si =∏

j
Ri(a j) is the probability assigned to the entire corpus by Ri. If Rk is the best

stochastic grammar that we’ve found, then we use Rk(an+1) as the probability of
an+1. To obtain the ALP version, we simply sum over all models as before, using
weights 2−|Ri|Si.

This kind of ALP has an associated convergence theorem giving very small errors
in probability. This approach can be used in linguistics. The a j can be examples of
sentences that are grammatically correct. We can use |Ri| − log2 Si as a likelihood
that the data was created by grammar, Ri. Section 1.10 continues the discussion of
Grammatical Induction.

1.8.2 A Universal Distribution for an Unordered Set
of Ordered Pairs of Strings

This type of induction includes almost all kinds of prediction problems as “special
cases”. Suppose you have a set of question answer pairs, Q1,A1;Q2,A2; . . .Qn,An:
Given a new question, Qn+1, what is the probability distribution over possible an-
swers, An+1? Equivalently, we have an unknown analog and/or digital transducer,
and we are given a set of input/output pairs Q1,A1; . . . – For a new input Qi, what
is probability distribution on outputs? Or, say the Qi are descriptions of mushrooms
and the Ai are whether they are poisonous or not.

As before, we hypothesize operators R j(A|Q) that are able to assign a probability
to any A given any Q: The ALP solution is

P(An+1|Qn+1) =∑
j

2−|R j |
n+1

∏
i=1

R j(Ai|Qi)

=∑
j

a j
nR j(An+1|Qn+1),

a j
n = 2−|R j |

n

∏
i=1

R j(Ai|Qi). (1.7)

2−|R j | are the a priori probabilities associated with the R j.
a j

n is the weight given to R j’s predictions in view of it’s success in predicting the
data set Q1,A1 . . .Qn,An.



14 R.J. Solomonoff

This ALP system has a corresponding theorem for small errors in probability.
As before, we try to find a set of models of maximum weight in the available time.
Proofs of convergence theorems for these extensions of ALP are in Solomonoff [10].
There are corresponding MDL, MML versions in which we pick the single model
of maximum weight.

1.9 Coding the Bernoulli Sequence

First, consider a binary Bernoulli sequence of length n. It’s only visible regularity
is that zeroes have occurred n0 times and ones have occurred n1 times. One kind of
model for this data is that the probability of 0 is p and the probability of 1 is 1− p.
Call this model Rp. Sp is the probability assigned to the data by Rp

Sp = pn0(1− p)n1 . (1.8)

Recall that ALP tells us to sum the predictions of each model, with weight given by
the product of the a priori probability of the model (2−|Ri|) and Si, the probability
assigned to the data by the model . . . , i.e.:

∑
i

2−|Ri| Si Ri( ) . (1.9)

In summing we consider all models with 0 ≤ p ≤ 1.
We assume for each model, Rp, precision Δ in describing p. So p is specified

with accuracy, Δ . We have 1
Δ models to sum so total weight is 1

2−|Ri| = Δ ,

Si = Sp = pn0(1− p)n1 ,

Ri( ) = Rp = p.

Summing the models for small Δ gives the integral

∫ 1

0
pn0(1− p)n1 p d p =

∫ 1

0
pn0+1(1− p)n1d p. (1.10)

This integral can be evaluated using the Beta function, B( , )

∫ 1

0
px(1− p)ydy = B(x+1,y+1) =

x! y!
(x+ y+1)!

. (1.11)

So our integral of (1.10) equals (n0+1)! n1!
(n0+n1+2)! .

We can get about the same result another way: The function pn0(1− p)n1 is (if
n0 and n1 are large), narrowly peaked at p0 = n0

n0+n1
. If we used MDL we would use

the model with p = p0. The a priori probability of the model itself will depend on
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how accurately we have to specify p0. If the “width” of the peaked distribution is Δ ,
then the a priori probability of model Mp0 will be just Δ · pn0

0 (1− p0)n1 .

It is known that the width of the distribution is just 2
√

p0(1−p0)
n0+n1+1 .1 As a result

the probability assigned to this model is
√

p0(1−p0)
n0+n1+1 · pn0

0 (1− p0)n1 · 2. If we use

Sterling’s approximation for n! (n! ≈ e−nnn
√

2πn), it is not difficult to show that

n0!n1!
(n0 +n1 +1)!

≈ pn0
0 (1− p0)n1

√
p0(1− p0)
n0 +n1 +1

·
√

2π, (1.12)

√
2π = 2.5066 which is roughly equal to 2.
To obtain the probability of a zero following a sequence of n0 zeros and n1 ones:

We divide the probability of the sequence having the extra zero, by the probability
of the sequence without the extra zero, i.e.:

(n0 +1)!n1!
(n0 +n1 +2)!

/ n0!n1!
(n0 +n1 +1)!

=
n0 +1

(n0 +n1 +2)
. (1.13)

This method of extrapolating binary Bernoulli sequences is called “Laplace’s Rule”.
The formula for the probability of a binary sequence, n0!n1!

(n0+n1+1)! can be generalized
for an alphabet of k symbols.

A sequence of k different kinds of symbols has a probability of

(k−1)!
k
∏
i=1

ni!

(k−1+
k
∑

i=1
ni)!

. (1.14)

ni is the number of times the ith symbol occurs.
This formula can be obtained by integration in a k−1 dimensional space of the

function pn1
1 pn2

2 · · · pnk−1
k−1 (1− p1 − p2 · · ·− pk−1)nk .

Through an argument similar to that used for the binary sequence, the probability
of the next symbol being of the jth type is

n j +1
k +∑k

i=1 ni
. (1.15)

A way to visualize this result: the body of data (the “corpus”) consists of the ∑ni
symbols. Think of a “pre-corpus” containing one of each of the k symbols. If we
think of a “macro corpus” as “corpus plus pre-corpus” we can obtain the probability
of the next symbol being the jth one by dividing the number of occurrences of that
symbol in the macro corpus, by the total number of symbols of all types in the macro
corpus.

1 This can be obtained by getting the first and second moments of the distribution, using the fact

that
1∫
0

px(1− p)yd p = x!y!
(x+y+1)! .
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It is also possible to have different numbers of each symbol type in the pre-
corpus, enabling us to get a great variety of “a priori probability distributions” for
our predictions.

1.10 Context Free Grammar Discovery

This is a method of extrapolating an unordered set of finite strings: Given the set of
strings, a1,a2, · · ·an, what is the probability that a new string, an+1, is a member of
the set? We assume that the original set was generated by some sort of probabilistic
device. We want to find a device of this sort that has a high a priori likelihood (i.e.
short description length) and assigns high probability to the data set. A good model
Ri, is one with maximum value of

P(Ri)
n

∏
j=1

Ri(a j). (1.16)

Here P(Ri) is the a priori probability of the model Ri. Ri(a j) is the probability as-
signed by Ri to data string, a j.

To understand probabilistic models, we first define non-probabilistic grammars.
In the case of context free grammars, this consists of a set of terminal symbols and
a set of symbols called nonterminals, one of which is the initial starting symbol, S.

A grammar could then be:

S → Aac

S → BaAd

A → BAaS

A → AB

A → a

B → aBa

B → b

The capital letters (including S) are all nonterminal symbols. The lower case letters
are all terminal symbols. To generate a legal string, we start with the symbol, S, and
we perform either of the two possible substitutions. If we choose BaAd, we would
then have to choose substitutions for the nonterminals B and A. For B, if we chose
aBa we would again have to make a choice for B. If we chose a terminal symbol,
like b for B, then no more substitutions can be made.

An example of a string generation sequence:
S, BaAd, aBaaAd, abaaAd, abaaABd, abaaaBd, abaaabd.
The string abaaabd is then a legally derived string from this grammar. The set of

all strings legally derivable from a grammar is called the language of the grammar.
The language of a grammar can contain a finite or infinite number of strings. If
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we replace the deterministic substitution rules with probabilistic rules, we have a
probabilistic grammar. A grammar of this sort assigns a probability to every string
it can generate. In the deterministic grammar above, S had two rewrite choices, A
had three, and B had two. If we assign a probability to each choice, we have a
probabilistic grammar.

Suppose S had substitution probability 0.1 for Aac and 0.9 for BaAd. Similarly,
assigning probabilities 0.3, 0.2 and 0.5 for A’s substitutions and 0.4, 0.6 for B’s
substitutions.

S 0.1 Aac

0.9 BaAd

A 0.3 BAaS

0.2 AB

0.5 a

B 0.4 aBa

0.6 b

In the derivation of abaaab of the previous example, the substitutions would have
probabilities 0.9 to get BaAd, 0.4 to get aBaaAd, 0.6 to get abaaAd, 0.2 to get
abaaABd, 0.5 to get abaaaBd, and 0.6 to get abaaabd. The probability of the string
abaabd being derived this way is 0.9×0.4×0.6×0.2×0.5×0.6 = 0.01296. Often
there are other ways to derive the same string with a grammar, so we have to add
up the probabilities of all of its possible derivations to get the total probability of a
string.

Suppose we are given a set of strings, ab, aabb, aaabbb that were generated by
an unknown grammar. How do we find the grammar?

I wouldn’t answer that question directly, but instead I will tell how to find a
sequence of grammars that fits the data progressively better. The best one we find
may not be the true generator, but will give probabilities to strings close to those
given by the generator.

The example here is that of A. Stolcke’s, PhD thesis [12]. We start with an ad
hoc grammar that can generate the data, but it over f its . . . it is too complex:

S → ab

→ aabb

→ aaabbb

We then try a series of modifications of the grammar (Chunking and Merging) that
increase the total probability of description and thereby decrease total description
length. Merging consists of replacing two nonterminals by a single nonterminal.
Chunking is the process of defining new nonterminals. We try it when a string or
substring has occurred two or more times in the data. ab has occurred three times so
we define X = ab and rewrite the grammar as
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S → X

→ aXb

→ aaXbb

X → ab

aXb occurs twice so we define Y = aXb giving

S → X

→ Y

→ aY b

X → ab

Y → aXb

At this point there are no repeated strings or substrings, so we try the operation
Merge which coalesces two nonterminals. In the present case merging S and Y
would decrease complexity of the grammar, so we try:

S → X

→ aSb

→ aXb

X → ab

Next, merging S and X gives

S → aSb

→ ab

which is an adequate grammar. At each step there are usually several possible chunk
or merge candidates. We chose the candidates that give minimum description length
to the resultant grammar.

How do we calculate the length of description of a grammar and its description
of the data set?

Consider the grammar

S → X

→ Y

→ aY b

X → ab

Y → aXb

There are two kinds of terminal symbols and three kinds of nonterminals. If we
know the number of terminals and nonterminals, we need describe only the right
hand side of the substitutions to define the grammar. The names of the nonterminals
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(other than the first one, S) are not relevant. We can describe the right hand side
by the string Xs1Y s1aY bs1s2abs1s2aXbs1s2. s1 and s2 are punctuation symbols. s1
marks the end of a string. s2 marks the end of a sequence of strings that belong to
the same nonterminal. The string to be encoded has seven kinds of symbols. The
number of times each occurs: X , 2; Y , 2; S, 0; a, 3; b, 3; s1, 5; s2, 3. We can then use
the formula

(k−1)!
k
∏
i=1

ni!

(k−1+
k
∑

i=1
ni)!

(1.17)

to compute the probability of the grammar: k = 7, since there are seven symbols and
n1 = 2, n2 = 2, n3 = 0, n4 = 3, etc. We also have to include the probability of 2, the
number of kinds of terminals, and of 3, the number of kinds of nonterminals.

There is some disagreement in the machine learning community about how best
to assign probability to integers, n. A common form is

P(n) = A2− log∗2 n , (1.18)

where log∗2 n = log2 n + log2 log2 n + log2 log2 log2 n · · · taking as many positive
terms as there are, and A is a normalization constant. There seems to be no good
reason to choose 2 as the base for logs, and using different bases gives much differ-
ent results. If we use natural logs, the sum diverges.

This particular form of P(n) was devised by Rissanen. It is an attempt to approx-
imate the shortest description of the integer n, e.g. the Kolmogorov complexity of n.
Its first moment is infinite, which means it is very biased toward large numbers. If
we have reason to believe, from previous experience, that n will not be very large,
but will be about λ , then a reasonable form of P(n) might be P(n) = Ae−n/λ , A
being a normalization constant.

The forgoing enables us to evaluate P(Ri) of (1.16). The∏n
j=1 Ri(a j) part is eval-

uated by considering the choices made when the grammar produces the data corpus.
For each nonterminal, we will have a sequence of decisions whose probabilities can
be evaluated by an expression like (1.14), or perhaps the simpler technique of (1.15)
that uses the “pre-corpus”. Since there are three nonterminals, we need the product
of three such expressions.

The process used by Stolcke in his thesis was to make various trials of chunk-
ing or merging in attempts to successively get a shorter description length – or to
increase (1.16). Essentially a very greedy method. He has been actively working
on Context Free Grammar discovery since then, and has probably discovered many
improvements. There are many more recent papers at his website.

Most, if not all CFG discovery has been oriented toward finding a single best
grammar. For applications in AI and genetic programming it is useful to have large
sets of not necessarily best grammars – giving much needed diversity. One way to
implement this: At each stage of modification of a grammar, there are usually sev-
eral different operations that can reduce description length. We could pursue such
paths in parallel . . . perhaps retaining the best 10 or best 100 grammars thus far.
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Branches taken early in the search could lead to very divergent paths and much
needed diversity. This approach helps avoid local optima in grammars and prema-
ture convergence when applied to Genetic Programming.

1.11 Levin’s Search Technique

In the section on incomputability we mentioned the importance of good search
techniques for finding effective induction models. The procedure we will describe
was inspired by Levin’s search technique [2], but is applied to a different kind of
problem.

Here, we have a corpus of data to extrapolate, and we want to search over a
function space, to find functions (“models”) Ri( ) such that 2−|Ri|Si is as large as
possible. In this search, for some Ri, the time needed to evaluate Si, (the probability
assigned to the corpus by Ri), may be unacceptably large – possibly infinite.

Suppose we have a (deterministic) context free grammar, G, that can generate
strings that are programs in some computer language. (Most computer languages
have associated grammars of this kind.) In generating programs, the grammar will
have various choices of substitutions to make. If we give each substitution in a k-way
choice, a probability of 1/k, then we have a probabilistic grammar that assigns a
priori probabilities to the programs that it generates. If we use a functional language
(such as LISP), this will give a probability distribution over all functions it can gen-
erate. The probability assigned to the function Ri will be denoted by PM(Ri). Here
M is the name of the functional computer language. PM(Ri) corresponds to what we
called 2−|Ri| in our earlier discussions. |Ri| corresponds to − log2 PM(Ri). As before,
Si is the probability assigned to the corpus by Ri. We want to find functions Ri( )
such that PM(Ri)Si is as large as possible.

Next we choose a small initial time T – which might be the time needed to
execute 10 instructions in our Functional Language. The initial T is not critical. We
then compute PM(Ri)Si for all Ri for which ti/PM(Ri) < T . Here ti is the time needed
to construct Ri and evaluate its Si.

There are only a finite number of Ri that satisfy this criterion and if T is very
small, there will be very few, if any. We remember which Ri’s have large PM(Ri)Si.

ti < T ·PM(Ri), so ∑i ti, the total time for this part of the search takes time <T ·
∑i PM(Ri). Since the PM(Ri) are a priori probabilities, ∑i PM(Ri) must be less than
or equal to 1, and so the total time for this part of the search must be less than T .

If we are not satisfied with the Ri we’ve obtained, we double T and do the search
again. We continue doubling T and searching until we find satisfactory Ri’s or until
we run out of time. If T ′ is the value of T when we finish the search, then the total
time for the search will be T ′ +T ′/2+T ′/4 · · · ≈ 2T ′.

If it took time t j to generate and test one of our “good” models, R j, then when R j
was discovered, T ′ would be no more than 2t j/PM(R j) – so we would take no more
time than twice this, or 4t j/PM(R j) to find R j. Note that this time limit depends on
R j only, and is independent of the fact that we may have aborted the Si evaluations
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of many Ri for which ti was infinite or unacceptably large. This feature of Levin
Search is a mandatory requirement for search over a space of partial recursive func-
tions. Any weaker search technique would seriously limit the power of the inductive
models available to us.

When ALP is being used in AI, we are solving a sequence of problems of increas-
ing difficulty. The machine (or language) M is periodically “updated” by inserting
subroutines and definitions, etc., into M so that the solutions, Ri to problems in the
past result in larger PM(R j). As a result the t j/PM(R j) are smaller – giving quicker
solutions to problems of the past – and usually for problems of the future as well.

1.12 The Future of ALP: Some Open Problems

We have described ALP and some of its properties:
First, its completeness: Its remarkable ability to find any irregularities in an ap-

parently small amount of data.
Second: That any complete induction system like ALP must be formally

incomputable.
Third: That this incomputability imposes no limit on its use for practical induc-

tion. This fact is based on our ability to estimate the future accuracy of any particular
induction model. While this seems to be easy to do in ALP without using Cross Val-
idation, more work needs to be done in this area.

ALP was designed to work on difficult problems in AI. The particular kind of AI
considered was a version of “Incremental Learning”: We give the machine a simple
problem. Using Levin Search, it finds one or more solutions to the problem. The
system then updates itself by modifying the reference machine so that the solutions
found will have higher a priori probabilities. We then give it new problems some-
what similar to the previous problem. Again we use Levin Search to find solutions –
We continue with a sequence of problems of increasing difficulty, updating after
each solution is found. As the training sequence continues we expect that we will
need less and less care in selecting new problems and that the system will eventu-
ally be able to solve a large space of very difficult problems. For a more detailed
description of the system, see Solomonoff [11].

The principal things that need to be done to implement such a system:

* We have to find a good reference language: Some good candidates are APL, LISP,
FORTH, or a subset of Assembly Language. These languages must be augmented
with definitions and subroutines that we expect to be useful in problem solving.

* The design of good training sequences for the system is critical for getting much
problem-solving ability into it. I have written some general principles on how to
do this [9], but more work needs to be done in this area. For early training, it
might be useful to learn definitions of instructions from Maple or Mathematica.
For more advanced training we might use the book that Ramanujan used to teach
himself mathematics – “A Synopsis of Elementary Results in Pure and Applied
Mathematics” by George S. Carr.
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* We need a good update algorithm. It is possible to use PPM, a relatively fast, ef-
fective method of prediction, for preliminary updating, but to find more complex
regularities, a more general algorithm is needed. The universality of the reference
language assures us that any conceivable update algorithm can be considered.
APL’s diversity of solutions to problems maximizes the information that we are
able to insert into the a priori probability distribution. After a suitable training
sequence the system should know enough to usefully work on the problem of
updating itself.

Because of ALP’s completeness (among other desirable properties), we expect
that the complete AI system described above should become an extremely powerful
general problem solving device – going well beyond the limited functional capabil-
ities of current incomplete AI systems.
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Chapter 2
Model Selection and Testing by the MDL
Principle

Jorma Rissanen

Abstract This chapter is an outline of the latest developments in the MDL theory
as applied to the selection and testing of statistical models. Finding the number of
parameters is done by a criterion defined by an MDL based universal model, while
the corresponding optimally quantized real valued parameters are determined by the
so-called structure function following Kolmogorov’s idea in the algorithmic theory
of complexity. Such models are optimally distinguishable, and they can be tested
also in an optimal manner, which differs drastically from the Neyman–Pearson test-
ing theory.

2.1 Modeling Problem

A data generating physical machinery imposes restrictions or properties on data.
In statistics we are interested in statistical properties, describable by distribu-
tions as models that can be fitted to a set of data xn = x1, . . . ,xn or (yn,xn) =
(y1,x1), . . . ,(yn,xn), in the latter case conditional models to data yn given other data
xn. This case adds little to the discussion, and to simplify the notations we consider
only the first type of data with one exception on regression.

Parametric models

Mk = { f (xn;θ ,k) : θ = θ1, . . . ,θk ∈Ω k} (2.1)
M = {Mk : k ≥ 0} (2.2)

capture almost every type of statistical property that can be described in a construc-
tive manner. These include also the usual so-called nonparametric models when they
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can be fitted to data. Typically, we have a set of n parameters θ1,θ2, . . . ,θn, but we
wish to fit sub collections of these – not necessarily the k first. Each sub collection
would define a structure. To simplify the notations we consider the structure de-
fined by the first k parameters in some sorting of all the parameters. We also write
θ = θ k when the number of the parameters needs to be emphasized, in which case
f (xn;θ ,k) is written as f (xn;θ k). Finally, the class M can be made nested if we
identify two models f (xn;θ k) and f (xn;θ k+1) if θ k+1 = θ k,0. This can be some-
times useful.

There is no unique way to express the statistical properties of a physical machin-
ery as a distribution, hence, no unique “true” model. As an example, a coin has a
lot of properties such as its shape and size. By throwing it we generate data that
reflect statistical properties of the coin together with the throwing mechanism. Even
in this simple case it seems clear that these are not unique for they depend on many
other things that we have no control over. All we can hope for is to fit a model, such
as a Bernoulli model, which gives us some information about the coin’s statistical
behavior. At any rate, to paraphrase Laplace’ statement that he needed no axiom of
God in his celestial mechanics, we want a theory where the “true” model assumption
is not needed.

In fitting models to data a yardstick is needed to measure the fitting error. In tra-
ditional statistics, where a “true” model is hypothesized, the fitting error can be de-
fined as the mean difference of the observed result from the true one, which however
must be estimated from the data, because the “true” model is not known. A justifi-
cation of the traditional view, however vague, stems from the confusion of statistics
with probability theory. If we construct problems in probability theory that resem-
ble statistical problems, the relevance of the results clearly depends on how well our
hypothesized “true” model captures the properties in the data. In simple cases like
the coin tossing the resemblance can be good, and useful results can be obtained.
However, in realistic more complex statistical problems we can be seriously misled
by the results found that way, for they are based on a methodology which is close
to circular reasoning. Nowhere is the failure of the logic more blatant than in the
important problem of hypothesis testing. Its basic assumption is that one of the hy-
potheses is true even when none exists, which leads to a dangerous distorted theory.
We discuss below model testing without such an assumption.

In absence of the “true” model a yardstick can be taken as the value f (xn;θ k);
a large probability or density value represents a good fit and a small one a bad fit.
Equivalently, we can take the number log1/ f (xn;θ k), which by the Kraft inequality
can be taken as an ideal code length, ideal because a real code length must be integer
valued. But there is a well-known difficulty, for frequently log1/ f (xn;θ k) → 0 as
k → n. We do get a good fit, but the properties learned include too much, “noise”
if we fit too complex models. To overcome this without resorting to ad hoc means
to penalize the undefined complexity we must face the problem of defining and
measuring “complexity”.

“Complexity” and its close relative “information” are widely used words with
ambiguous meaning. We know of only two formally defined and related no-
tions of complexity which have had significant implications, namely, algorithmic
complexity and stochastic complexity. Both are related to Shannon’s entropy and
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hence fundamentally to Hartley’s information: the logarithm of the number of ele-
ments in a finite set; that is, the shortest code length as the number of binary digits
in the coded string, with which any element in the set can be encoded. Hence, the
amount of “complexity” is measured by the unit, bit, which will also be used to
measure “information”, to be defined later. In reality, the set that includes the object
of interest is not always finite, and the optimal code length is taken either literally,
whenever possible, or the shortest in a probability sense, or the shortest in the worst
case. In practice, however, the sense of optimality is often as good as literally the
shortest code length.

The formal definition of complexity means that it is always relative to a frame-
work within which the description or coding of the object is done. A conceptually
supreme way, due to Solomonoff [23], is to define it as the length of the shortest
program of a universal computer that delivers it as the output. Hence, the frame-
work is the programming language of the computer. Such a programming language
can describe the set of partial recursive functions for integers and tuples of them,
and if we identify a finite or constructive description with a computer program
we can consider program defined sets and their elements as the objects of interest.
With a modified version of Solomonoff’s definition due to Kolmogorov and Chaitin,
Kolmogorov defined a data string’s model as a finite set that includes the string, and
the best such model gets defined in a manner which amounts to the MDL princi-
ple. The best model we take to give the algorithmic information in the string, given
by the complexity of the best model. The trouble with all this is the fact that such
an “algorithmic complexity” itself is noncomputable and hence cannot be imple-
mented. However, Kolmogorov’s plan is so beautiful and easy to describe without
any involved mathematics just because it is noncomputable, and we discuss it below.

We wish to imitate Kolmogorov’s plan in statistical context in such a way that the
needed parts are computable, and hence that they can at least be approximated with
an estimate of the approximation error. The role of the set of programs will be played
by a set of parametric models, (2.1), (2.2). Such a set is simply selected, perhaps in a
tentative way, but we can compare the behavior of several such suggestions. Nothing
can be said of how to find the very best set, which again is a noncomputable problem,
and consequently we are trying to do only what can be done, rather than something
that cannot be done – ever.

In this chapter we discuss the main steps in the program to implement the afore
outlined ideas for a theory of modeling. We begin with a section on the MDL princi-
ple and the Bayesian philosophy, and discuss their fundamental differences. These
two are often confused. Next, we describe three universal models, the first of which,
the Normalized Maximum Likelihood model, makes the definition of stochastic
complexity possible and gives a criterion for fitting the number of parameters. This
is followed by an outline of Kolmogorov’s structure function in the algorithmic
theory of complexity, and its implementation within probability models. The result-
ing optimally quantized parameters lead into the idea of optimally distinguishable
models, which are also defined in an independent manner thereby providing confi-
dence in the constructs. These, in turn, lead naturally to model testing, in which the
inherent lopsidedness in testing a null-hypothesis against a composite hypothesis in
the Neyman–Pearson theory is removed.
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2.2 The MDL Principle and Bayesian Philosophy

The outstanding feature of Bayesian philosophy is the use of distributions not only
for data but also for the parameters, even when their values are non repeating. This
widens enormously the use of probability models in applications over the orthodox
statistics. To be specific, consider a class of parametric models M = { f (xn;μ)},
where μ represents any type of parameters, together with a “prior” distribution Q(μ)
for them. By Bayes’ formula, then, the prior distribution is converted in light of
observed data into the posterior

P(μ |xn) =
f (xn;μ)Q(μ)∫

f (xn;μ)Q(μ)dμ
,

where the integral is a sum in case of discrete parameter values. The posterior may
then be maximized over the parameters for estimation. More generally, the posterior
is taken to play the role of a “true” distribution in further developments of Bayesian
analysis including decision and risk theory, hypothesis testing and other statistical
problems.

For the Bayesians the distribution Q for the parameters represents prior knowl-
edge, and its meaning is the probability of the event that the value μ is the “true”
value. This causes some difficulty if no value is “true”, which is often the case. An
elaborate scheme has been invented to avoid this by calling Q(μ) the “degree of
belief” in the value μ . The trouble comes from the fact that any rational demand of
the behavior of “degrees of belief” makes them to satisfy the axioms for probability,
which apparently leaves the original difficulty intact.

A much more serious difficulty is the selection of the prior, which obviously plays
a fundamental role in the posterior and all the further developments. One attempt is
to try to fit it to the data, but that clearly not only contradicts the very foundation of
Bayesian philosophy but without restrictions on the priors disastrous outcomes can
be prevented only by ad hoc means. A different and much more worthwhile line of
endeavor is to construct “noninformative” priors, even though there is the difficulty
in defining the “information” to be avoided. Clearly, a uniform distribution appeals
to intuition whenever it can be defined, but as we see below there is a lot of useful
knowledge to be gained even with such “noninformative” distributions!

The MDL principle, too, permits the use of distributions for the parameters. How-
ever, the probabilities used are defined in terms of code lengths, which not only
gives them a physical interpretation but also permits their optimization thereby re-
moving the anomalies and other difficulties in the Bayesian philosophy. Because of
the difference in the aims and the means to achieve them the development of the
MDL principle and the questions it raises differ drastically from Bayesian analysis.
It calls for information and coding theory, which are of no particular interest nor
even utility for the Bayesians.

The MDL principle was originally aimed at obtaining a criterion for estimating
the number of parameters in a class of ARMA models [13], while a related method
was described earlier in [29] for an even narrower problem. The criterion was arrived
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at by optimization of the quantification of the real-valued parameters. Unfortunately
the criterion for the ARMA models turned out to be asymptotically equivalent with
BIC [21], which has given the widely accepted wrong impression that the MDL
principle is BIC. The acronym “BIC” stands for Bayesian Information Criterion,
although the “information” in it has nothing to do with Shannon information nor
information theory.

The usual form of the MDL principle calls for minimization of the ideal code
length

log1/ f (xn;μ)+L(μ),

where L(μ) is a prefix code length for the parameters in order to be able to separate
their code from the rest. Because a prefix code length defines a distribution by
Kraft inequality we can write L(μ) = log1/Q(μ). We call them “priors” to respect
the Bayesian tradition even though they have nothing to do with anybody’s prior
knowledge. The fact that the meaning of the distribution is the (ideal) code length
log1/Q(μ) with which the parameter value can be encoded imposes restrictions on
these distributions, and unlike in the Bayesian philosophy we can try to optimize them.

The intent with the MDL principle is to obtain the shortest code length of the data
in a self containing manner; i.e., by including in the code length all the parts needed.
But technically this amounts to a prefix code length for the data to be calculated,
ideally, using only the means provided by the model class, although in some cases
this may have to be slightly augmented. Otherwise, regardless of the model class
given we could get a shorter coding by Kolmogorov complexity, which we want
to exclude. Hence, not only are the minimizing parameters and the prior itself to
be included when the code length is calculated but also the probability model for
the priors, and so on. This process stops when the last model for a model for a
model . . . is found which either assigns equal code length to its arguments or is
common knowledge and need not be encoded. Since each model teaches a property
of the data, we may stop when no more properties of interest can be learned. Usually,
two or three steps in this process suffice. For more on the MDL principle we refer
to [7].

Before applying the MDL principle to the model classes (2.1) and (2.2) we illus-
trate the process with an example. Take an integer n as the object of interest without
any family of distributions. As the first “model” we take the set {1,2, . . . ,2m}, where
m is the smallest integer such that n belongs to the set or that log2 n≤m. We need to
encode the model, or the number m. We repeat the argument and get a model for the
first model, or the smallest integer k such that log2 m≤ k. This process ends when the
last model has only one element 1 = 20. Such an actual coding system was described
in [6], and the total code length is about L(n) = log∗2(n) = log2 n+ log2 log2 n+ · · · ,
the sum ending with the last positive iterated logarithm value. It was shown in [14]
that P∗(n) = C−12−L(n) for C = 2.865 . . . defines a universal prior for the integers.
We can now define log2 1/P∗(n) as the complexity of n and log2 1/P∗(n)− log2 n,
or, closely enough, the sum log∗2(log2) = log2 log2 n + · · · , as the “information” in
the number n that we learn with the models given. In other words, the amount of in-
formation is the code length for encoding the models needed to encode the object n.
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2.3 Complexity and Universal Models

A universal model is a fundamental construct borrowed from coding theory and
little known in ordinary statistics. Its roots, too, are in the algorithmic theory of
complexity. In fact, it was the very reason for Solomonoff’s query for the shortest
program length, because he wanted to have a universal prior for the integers as
binary strings; see the section on Kolmogorov complexity below.

Given a class of models (2.1) we define a model f̂ (yn;k) to be universal for the
class if

1
n

log
f (yn;θ ,k)

f̂ (yn;k)
→ 0 (2.3)

for all parameters θ ∈ Ω k, and optimal universal if the convergence is the fastest
possible for almost all θ ; the convergence is in a probabilistic sense, either in the
mean, taken with respect to f (yn;θ ,k), in probability, or almost surely. The mean
sense is of particular interest, because we then have the convergence in Kullback–
Leibler distance between the two density functions and hence consistency. The qual-
ification “almost all θ” may be slightly modified; see [15, 16]. If we extend these
definitions to the model class (2.2), we can talk about consistency in the number of
parameters, and ask again for fastest convergence. In the literature studies have been
made of the weakest criteria under which consistency takes place [8]. Such criteria
cannot measure consistency in terms of the Kullback–Leibler distance and do not
seem to permit query for optimality.

2.3.1 The NML Universal Model

Let yn �→ θ̂(yn) be the Maximum Likelihood (ML) estimate which minimizes the
ideal code length log1/ f (yn;θ ,k) for a fixed k. Consider the maximized joint den-
sity or probability of the data in the minimized negative logarithm form

L(yn, θ̂) = − log f (yn; θ̂ ,k)/h(θ̂ , θ̂))− logw(θ̂) , (2.4)

h(θ̂ ;θ) =
∫

yn:θ̂(yn)=θ̂
f (yn;θ ,k)dyn ,

w(θ̂) = h(θ̂ ; θ̂)/Cn,k , (2.5)

Cn,k =
∫
θ̂∈Ω k

h(θ̂ ; θ̂)dθ̂ ,

where Ω k is such that the integral is finite. We have rederived the Normalized ML
or NML model

f̂ (yn;k) =
f (yn; θ̂(yn),k)

Cn,k
(2.6)

by an application of the MDL principle. It was originally obtained as the solution to
Shtarkov’s minmax problem
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min
q

max
yn

log
f (yn; θ̂(yn),k)

q(yn)
(2.7)

[2, 17, 22]. Indeed, the NML model gives the unique prefix code which is closest to
the shortest possible code length log1/ f (yn; θ̂(yn);k), itself not a prefix code length.
It is also the unique solution to the related maxmin problem [19]

max
g

min
q

Eg log
f (Y n; θ̂(Y n),k)

q(Y n)
= max

g
min

q
D(g‖q)−D(g‖ f̂ (Y n;k))+ logCn,k,

where g ranges over any set that includes f̂ (yn;k), as well as the associated minmax
problem – although the maximizing distribution is then nonunique.

For the special prior w(θ̂) the joint density function equals the marginal p(yn) =∫
θ̂∈Ω k f (yn; θ̂ ,k)w(θ̂)dθ̂ , and the maximized posterior is given by the δ (θ̂ ,θ)-

functional, whose integral over any subset of Ω k of volume Δ is unity. This means
that the posterior probability of the ML parameters, quantized to any precision, is
unity. We might call it the canonical prior.

We have defined [17]

log1/ f̂ (yn;k) = log1/ f (yn; θ̂(yn),k)+ logCn,k (2.8)

as the stochastic complexity of the data yn, given the class of models (2.1). If the
model class satisfies the central limit theorem and other smoothness conditions the
stochastic complexity is given by the decomposition [17]

log
f (yn; θ̂(yn),k)

f̂ (yn;k)
=

k
2

log
n

2π
+ log

∫
Ω k

|J(θ)|1/2dθ +o(1), (2.9)

where J(θ) is the Fisher information matrix

J(θ) = limn−1E{∂
2 log1/ f (yn;θ ,k)

∂θi∂θ j
}.

There is a further asymptotic justification for stochastic complexity by the theorems
in [15] and [16], which imply, among other things, that f̂ (yn;k) is optimal universal
in the mean sense. This means that there is no density function which converges
to the data generating density function f (yn;θ ,k) faster than f̂ (yn;k). In particular,
no other estimator yn �→ θ̄(yn) can give a smaller mean length for the normalized
density function f (yn; θ̄(yn),k) than the ML estimator.

We mention in conclusion that for discrete data the integral in the normalizing
coefficient becomes a sum, for which efficient algorithms for reasonable size of n
have been developed in a number of special cases [9, 10, 24–27]. For such cases
the structure of the models can be learned much better than by minimization of the
asymptotic criterion (2.9).
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2.3.1.1 NML Model for Class M

The minimization of the stochastic complexity (2.8) with respect to k is meaningful
both asymptotically and non-asymptotically. For instance, for discrete data
log1/ f̂ (yn;n) can equal logCn,n, which is larger than the minimized stochastic
complexity log1/ f̂ (yn; k̂). This is a bit baffling, because log1/ f̂ (yn; k̂) is not a
prefix code length; i.e., f̂ (yn; k̂) is not a model. To get a logical explanation as well
as to be able at least to define an optimal universal model for the class (2.2) let
yn �→ k̂(yn) = k̂ denote the estimator that maximizes f̂ (yn;k), and hence minimizes
the joint code length

L(yn, k̂) = − log f̂ (yn; k̂)/g(k̂; k̂))− logv(k̂), (2.10)

g(k̂;k) =
∫

yn :̂k(yn)=k̂
f̂ (yn;k)dyn ,

v(k̂) = g(k̂; k̂)/Cn , (2.11)

Cn =
n

∑
1

g(k̂; k̂).

The model

f̂ (yn) =
f̂ (yn; k̂)

Cn
(2.12)

is optimal universal for the class M , and it solves Shtarkov’s type of minmax
problem

min
q

max
yn

log
f̂ (yn; k̂(yn))

q(yn)

and the associated maxmin problem

max
g

min
q

Eg log
f̂ (Y n; k̂(Y n))

q(Y n)
.

The difficulty is to calculate the probabilities g(k̂; k̂), but for our purpose here we
do not need that, for we see that k̂, which minimizes the non-prefix code length
log1/ f̂ (yn; k̂(yn)), also minimizes the prefix code length log1/ f̂ (yn).

Although f̂ (yn;k) provides an excellent criterion for the structure and the number
of parameters in the usual cases where k̂ is not too large in comparison with n, it is
not good enough for denoising, where k̂ is of the order of n. Then we cannot calcu-
late h(θ̂ , θ̂), Cn,k, nor the joint density, accurately enough. One way in the regression
problems, which include denoising problems, is to approximate the maximum joint
density by two-part coding thus

log1/ f (yn|Xn; θ̂ k,k)+L(k), (2.13)
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where Xn is an n× n regressor matrix and L(k) is a prefix code length of k. For in-
stance, when Xn is defined by wavelets we need to specify which k rows correspond
to the same number of the largest wavelet coefficients [19], which can be done with
L(k) = log

(n
k

)
bits.

2.3.2 Mixture Model

The second universal model for the class (2.1) is the mixture model together with a
prior μ(θ)

fμ(yn;k) =
∫
Ω

f (yn;θ ,k)μ(θ)dθ . (2.14)

Such a mixture model q̂ = fμ(yn;k) satisfies the problem

min
q

∫
μ(θ)D( f (Y n;θ ,k)‖q(Y n))dθ , (2.15)

where D( f (Y n;θ ,k)‖q(Y n)) is the Kullback–Leibler distance between the two den-
sity functions shown. There is a special prior μ̄ maximizing the minimized result

max
μ

∫
μ(θ)D( f (Y n;θ ,k)‖ fμ(Y n;k))dθ = Kn,k,

which is often called the capacity of the channelΘ → Y n, even though the analogy
with Shannon’s capacity of a noisy channel for sending a finite number of messages
is somewhat obscure. With this prior the mixture lies at the center of a hyperball
with the model class Mk as the surface and the radius given by the constant distance
D( f (Y n;θ ,k)‖ fμ̄(Y n;k)). Such a prior is not easy to calculate.

However, asymptotically one can show, [4], that with Jeffreys’ prior

w(θ) =
|J(θ)|1/2∫

Ω |J(η)|1/2dη
,

we get

Eθ log
f (Y n; θ̂(Y n),k)

fw(Y n,k)
=

k
2

log
n

2π
+ log

∫
Ω
|J(η)|1/2dη+o(1). (2.16)

Since the right-hand side does not depend on θ the channel capacity achieving prior
coincides in the limit with Jeffreys’ prior. We see that with Jeffreys’ prior the mix-
ture universal model, too, is optimal.

The negative logarithm of the mixture universal model provides also a criterion
for the selection of the number of parameters, at least asymptotically. For small
and moderate amounts of data the prior must be taken so that the mixture can be
computed. Hence, the result will depend on the prior.
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2.3.3 Sequentially Normalized Universal Model

The NML model, while providing often more information about the data than any
other model, has two drawbacks: the difficulty in calculating the normalizing coeffi-
cient, and it does not define a random process, which prevents its use for prediction.
When the normalization integral does not exist, as in the important linear-quadratic
regression problem, we need to restrict the range by hyper parameters, which how-
ever means that the resulting universal model depends on their selection. A way
to solve this for cases where the ML estimate k̂ is small is discussed in [18]. We
can create a random process defining universal model by sequential normalization,
which, moreover, simplifies the normalization. In the important linear-quadratic re-
gression problem the normalization difficulty disappears completely without hyper
parameters.

Let θ̂t = θ̂(yt) denote the maximum likelihood estimate with maximum number
of components, not exceeding a selected k, which can be uniquely solved from the
data yt . Consider the sequentially maximized likelihood

f (yn; θ̂ n) =
n−1

∏
t=0

f (yt+1 | yt ; θ̂t+1), (2.17)

where θ̂ n = (θ̂1, θ̂2, . . . , θ̂m+1, . . . , θ̂n), with repetitions allowed. We take f (y1|y0, θ̂1)
= f (y1) as a suitable density function with θ̂1 empty. Also, for t ≤ m, the index
after which k parameters can be solved, we may have θ̂t = θ̂t−1. One can show that
in general f (yn; θ̂ n) > f (yn; θ̂n) so that it is bigger than the ordinary maximized
likelihood!

We wish to normalize the conditionals (2.17) to generate recursively a density
function f̂ (yt) = f̂ (yt−1) f̂ (yt | yt−1):

f̂ (yt | yt−1) =
f (yt | yt−1; θ̂(yt))

K(yt−1)
, (2.18)

K(yt−1) =
∫

f (yt | yt−1; θ̂(yt))dyt , (2.19)

where the range of the integral may have to be restricted to be finite. This gives the
universal sequentially normalized maximum likelihood, SNML, model as a random
process

f̂S(yn;k) =
n

∏
t=1

f̂ (yt | yt−1). (2.20)

In the linear quadratic regression case, [20], consider the representation

yt =
k

∑
i=1

ât,ixt,i + et ,
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where the coefficients ât,i are the least squares estimates from the data yt |Xt , and
Xt = [x̄1, . . . , x̄t ] is the regressor matrix defined by the columns x̄i = {xi, j}. Notice
that these depend on the current data point yt , which means that the sum is not its
prediction even in the AR case, where xt,i = yt−i. These estimates minimize the sum
of the updated squared errors ŝn = ∑n

t=1 e2
t . If we normalize the ratio

ŝ −t/2
t

ŝ −(t−1)/2
t−1

= ŝ −1/2
t−1

(
1+

(yt − ŷt)2

ŝt−1

)−t/2

we obtain conditional density functions with their product defining a universal se-
quentially normalized least squares, SNLS, model in terms of its negative logarithm

f̂ (yn | Xn) =
n

∏
t=1

f̂ (yt | yt−1,Xt)

ln1/ f̂ (yn | Xn) =
n
2

ln(ŝn)− lnΓ (n/2)+ ln∏
t

√
π

1−dt
,

where dt = x̄′t [XtX ′
t ]
−1x̄t , the prime denoting the transposition. Put f̂ (y1|y0,x1) = 1.

We mention to this end that if the estimate ât,i is replaced by ât−1,i we get Dawid’s
prequential model, [5]. Such a model is also universal. It would be worse than the
SNML model except for data where yt adds little new information and is easy to
predict.

2.4 Kolmogorov’s Structure Function

Kolmogorov never published his work on the structure function, but it is discussed
extensively in [28] along with elaborations. We begin with the current definition
of the Kolmogorov complexity, as it is now called. It was given originally by
Solomonoff [23], in a defective form, which was later fixed by Kolmogorov, see
[11], and Chaitin [3]. Consider the set of programs as binary strings for any univer-
sal computer U such that when a program p is executed the output is a binary string,
which we write as U(p) = x. Any finite binary string x has actually a countable
number of programs that can deliver it. The programs then are codewords for bi-
nary strings, and with a preamble we can make them to occupy a leaf in a countable
prefix free tree. Write d p as the so adjusted self-delimiting program.

Kolmogorov complexity relative to the programming language of U is defined as
the shortest prefix free program that generates the string x,

K(x) = min{|d p| : U(d p) = x},

where |y| denotes the length of the binary string y. The reason for the requirement
that the programs are leaves is that they satisfy the Kraft inequality,
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∑
x

2−K(x) < 1,

and by normalization we get a superb universal model for the set of finite binary
strings

P(x) = 2−K(x)/∑
y

2−K(y).

This can, in fact, imitate any computable distribution Q(x) by assigning almost as
large a probability to strings as this distribution; i.e., for a constant CQ, which does
not depend on the strings x,

P(x) ≥CQQ(x).

We follow here [19]. Consider next any finite set S that includes x defining a
model of data x; i.e., it describes some properties of x, perhaps not all of them. This
corresponds to intuition as follows:

• All strings in S share the defining property of the set S.
• Size |S| is an inverse measure of the amount of properties extracted from string

with S.
• Large |S| ⇔ few properties (restrictions) of x extracted.
• S = {x}, (|S|= 1), captures all conceivable properties of x.

It is clearly pointless to claim that one model (set S � x) is “true” and others “false”!
However, we can define an optimal model by the structure function:

hx(α) = min
S∈S

{log |S| : K(S) ≤ α}, (2.21)

where α is a parameter and S a set restricting the properties we are after.
Kolmogorov himself did not have such a restriction, but without it one can get
into trouble, which we do not go into. When we implement this procedure in statis-
tics we automatically restrict the properties desired. Clearly any finite set has its
computable membership function and hence its complexity. The idea is to have the
shortest code length of whatever remains when properties of maximum amount α
are extracted from x. The structure function then may be interpreted to measure the
amount of “noise”.

It is clear that α>α ′⇒hx(α)<hx(α ′). The structure line K(x)−α represents
the least possible amount of unexplained “noise” on level α . We also have the two-
part code length for the string x and the best model on the level α

L(x,α) = L(x|Sα)+L(Sα) = hx(α)+α.

The optimum level ᾱ and model Sᾱ was defined by Kolmogorov as follows

min{α : hx(α)+α=̇K(x)},

where the notation =̇ means equality to within a constant not dependent on the
length of the string x. But since K(x) is a lower bound for the two-part code length
we get the same by an application of the MDL principle with the twist that the
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conditional code length L(x|Sα) is not the shortest length but the shortest for the
worst case x ∈ Sα . The reason for this is to regard the code length for all “noise”
sequences as the same, namely, the worst case code length, so that we could not take
advantage of a special string in Sα that happens to be easy to encode. For the same
reason we do not take K(x|Sα) as the conditional code length, because it might take
advantage of other properties than those in the set Sα .

The optimal set Sᾱ represents all learnable properties of x that can be captured
by finite sets of the desired kind. However, the structure function cannot be applied
as such for the Kolmogorov complexity is noncomputable.

2.5 Structure Function and Information

The stochastic complexity provides an excellent criterion for finding the structure
of the data by the models fitted to the data, and as the first try we may take the code
length of k̂ to be the amount of structure information in the number of parameters
gained from the data. Indeed, intuitively we regard the properties of the optimal
model to represent the “information” we are after, but when the data include some-
thing that we do not capture with our models and what we call “noise” the issue gets
more complex. We would like to define “information” as the properties we learn in
the presence of “noise”; i.e., when the effect of noise is removed to the extent it can
be removed. For instance, in case of the structure parameter k̂, consisting of the first
k̂ components, there may be so much noise that specifying k̂ only to the precision
k̂ + 1 or k̂−1 would better represent the learnable information. This is particularly
striking when we ask for the “information” in the real-valued parameters θ̂ , which
without quantization would be infinite. And clearly, we cannot expect to gain more
information from the data than the finite code length needed to encode all them.

We next follow the plan in Kolmogorov’s structure function to find the optimal
quantization of the real-valued parameters; for details we refer to [19]. As a result
we can describe a finite subset of the compact parameter space which consists of
models that can be optimally distinguished from a finite amount of data. The other
models in a neighborhood of each of them add no useful learnable information.

For the model class Mk = { f (yn;θ)}, where we drop the index k in the mod-
els, consider a finite partition Λn = {Bi : i = 1,2, . . . ,Nn} of a compact parameter
space Ω k and the representatives θ i ∈ Bi such that the Kullback–Leibler dis-
tance D( fi‖ fi+1) between the adjacent models f (yn;θi) = fi is constant. This can
be achieved to an increasing accuracy as n grows by the following construct,
[19]: Take Bi = Bd/n(θ i) as the maximal rectangle within the hyper ellipsoid
(θ −θ i)′J(θ i)(θ −θ i) = d/n, centered at θ i, where J(θ) is the Fisher information
matrix satisfying

0 < J(θ) = limn−1Eθ

{
∂ 2 log1/ f (Y n;θ)

∂θi∂θ j

}
< ∞;



38 J. Rissanen

the expectation is with respect to the distribution f (yn;θ). The volume of Bd/n(θ i)
is given by

V =
(

4d
kn

)k/2

|J(θ i)|−1/2.

We do not need to actually construct such a partition for we only need an approxi-
mation of a rectangle that includes the ML estimate θ̂ . In fact, we’ll take the center
θi of it as a quantized version of θ̂ , defined by the size parameter d. Let Nd,n be the
number of the rectangles.

We need the following analogies of the algorithmic notions:

• A set of programs is to be replaced by the model class Mk.
• A set S is to be replaced by a quantized model f (xn;θ i).
• Kolmogorov complexity is to be replaced by stochastic complexity.
• K(S) is to be replaced by the shortest code length L(θ i).
• log |S|, which is the maximum code length of y ∈ S, is to be replaced by the

maximum or the mean code length of typical strings of f (xn;θ i), which we take
to be the strings for which θ̂ ∈ Bd/n(θ i).

The reason to measure the code length of the typical strings by the maximum or the
mean is the same as in Kolmogorov’s structure function. We consider the typical
strings as noise, and we should take their code lengths as equal, either as the maxi-
mum or the mean. It is true that if we order the strings in some fashion and encode
them by their ordinal, then a small fraction of the strings could be encoded with a
short code length. But this does not correspond to intuition about noise strings, of
which none should be treated differently from the others.

The density function for the ML estimates in (2.4) induces the probability distri-
bution for the equivalence classes

Qd/n(θ i) =
∫
θ̂∈Bd/n(θ i)

h(θ̂ ; θ̂)dθ̂ →
(

2d
πk

)k/2

. (2.22)

This gives asymptotically the uniform distribution for the centers W (θ i) given by
Qd/n(θ i)/Cn,k and the code length L(θ i) = log1/W (θ i). Under the conditions for
which the formula (2.9) holds, we get

Ld(θ i) = ln1/W (θ i)∼= k
2

ln
πk
2d

+ lnCn,k.

We can now define two structure functions. The first is obtained by measuring
the amount of noise by the maximum code length of strings ln1/ f (xn;θ i) in the
rectangle Bd/n(θ i), which is given by

ln1/ f (xn; θ̂(xn))+d/2.

Indeed, the lengths ln1/ f (xn; θ̂(xn)) are nearly constant for all strings in Bd/n(θ i),
which is small for large n, and hence if we fix the center θ i, then by Taylor’s series
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the maximum code length ln1/ f (xn;θ i) of strings in Bd/n(θ i) is when the ML esti-
mate falls in a corner of the rectangle. Hence, ln[ f (xn; θ̂(xn))/ f (xn;θ i)] = d/2. We
then get the first structure function

h1
xn(α) = min

d
{ln1/ f (xn; θ̂(xn))+d/2 : Ld(θ i)≤ α}, (2.23)

where θ̂(xn) ∈ Bd/n(θ i). The minimizing d is the one that minimizes the two-part
code length ln1/ f (xn; θ̂(xn))+d/2+Ld(θ i), or asymptotically d̂ = k.

The other structure function, which we need later, results from taking the average
code length of the typical strings. We get

h2
xn(α) = ln1/ f (xn; θ̂(xn))

+min
d
{ 1
|Bd/n(θ i)|

∫
θ̂(yn)∈Bd/n(θ i)

ln
f (xn; θ̂(xn))

f (xn;θ i)
dyn : Ld(θ i)≤α}. (2.24)

The average of the integral gives asymptotically d/6, and the optimum size param-
eter is d̂ = 3k. With the second structure function we get the universal sufficient
statistics decomposition

h2
xn(ᾱ)+ ᾱ = ln1/ f (xn; θ̂(xn))+ k/2+ lnCn,k +(k/2) ln(π/6), (2.25)

where

• The amount of learnable information in data is given by

ᾱ = lnCn,k +(k/2) ln(π/6).

• Leaving the amount of unexplained noise as

h2
xn(ᾱ) =− ln f (xn; θ̂(xn))+ k/2.

Figure 2.1 illustrates these.

2.6 Optimal Distinguishability

There is another property in the set of the models quantized by the size parameter
d̂ = 3k, which changes the way one can do hypothesis testing. First, we need an
index measuring the separation between the set of the quantized models. Let Pi| j
denote the probability of Bd/n(θ i) under the model f (xn;θ j). Then take

1
Nd,n
∑
i, j

Pi| j = 1− 1
Nd,n
∑

i
Pi|i, (2.26)
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for α ≥ ᾱ
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some noise modeled

Fig. 2.1 The universal sufficient statistics decomposition

as the measure of separation between the models in the family. It is seen to general-
ize the index of separation between two models. We see that the smaller this index
is the better the models in the family are separated. One can show that a similarly
defined index of separation for any partition of size Nd,n cannot be smaller than that
of the partition Λd,n = {Bd/n(θ i)}.

The persistent problem with the Neyman–Pearson hypothesis theory is that one
cannot optimize the level of the test of a null-hypothesis against a composite hypoth-
esis, simply because the power of an opposite hypothesis grows with an increasing
separation between it and the null-hypothesis. Hence, all one can do is set arbitrar-
ily the level to, say 0.05, and reject the null hypothesis only for data where the test
statistic, such as the ML estimate, falls in the so-selected tail. The trouble with such
a lopsided test is that it rejects almost all reasonable opposing hypotheses, because
if we bother to test at all we certainly expect the data to be such that the test statistic
of the opposing hypotheses does not fall very far in the tail of the null-hypothesis.
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It is clear that we cannot minimize the index of separation, which shrinks to zero
as the distance between two hypotheses grows; i.e., d in our family grows. How
then can we optimize it? The answer requires us to examine hypothesis testing more
closely. First, the hypotheses should be tested as models rather than testing when
one of them is “true”, which never is the case. There are two desired properties of a
well separated family of models: The first is that the density functions f (yn;θ) for
θ ∈ Bd/n(θ i) in each equivalence class should be close to its representative f (yn;θ i)
so that they could be collapsed to it, and the properties they capture about the data
differ only due to noise. The second is that each representative should assign a large
probability mass to its equivalence class to make the adjacent models defined by the
representatives different.

If the CLT holds, these are conflicting properties for the family constructed
above, but ideally satisfied by the family

f̂ (yn|θ i) =
{

f (yn; θ̂(yn))/Qd/n(θ i), if θ̂(yn) ∈ Bd/n(θ i),
0, otherwise.

This suggests that we get an optimal separation by asking for the size index d for
which the models are as close as they can be to the corresponding perfectly separated
models in the Kullback–Leibler distance

min
d

D( f̂ (Y n|θ i)‖ f (Y n;θ i)). (2.27)

We see that for very small values of d the values of the density function f (yn;θ i)
within its equivalence class vary little so that the ideal flatness is nearly reached, but
the peak value of f̂ (yn|θ i) is much greater than that of f (yn;θ i), and the KL distance
is considerable. In the other extreme for large values of d the peaks differ less but
f (yn;θ i) varies a lot and again the KL distance is large. Hence, for the minimizing
d the two desired requirements are balanced and an optimal separation reached.

Perhaps not too surprisingly the optimal separation asymptotically is reached
for d̂ = 3k, which agrees with the previous value that removes the average noise
in (2.24). The same value is close to that found by Balasubramanian [1], by very
different means without partitions, who was the first to study distinguishability.

The test of the null hypothesis, say f0(yn), one of the optimally distinguishable
models, against the others, is simply to accept the null hypothesis if and only if
θ̂(xn)∈ B3k/n(θ 0). The confidence in the result as measured by the error probability
in case of acceptance, is 1−P0|0, and P0|i in case of rejection when θ̂(xn) falls in
B3k/n(θ i) for i �= 0. We mention that this differs from the clumsy way the confidence
was calculated in [19].

Normally distributed data in an frequently studied signal processing application
were studied in [12], where d̂ = 3k even non asymptotically.

We mention to this end that there is a different way to define the optimally dis-
tinguishable models, which has the powerful property that if and only if the growth
rate of the number of the models is below nk/2 each can be estimated without error
in the limit. This is close to Shannon’s channel capacity.
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2.7 Conclusions

This chapter describes an approach to statistics, above all model selection and test-
ing, without the customary assumption that the data have been generated by a “true”
distribution, parametric or nonparametric. Instead of measuring a model’s perfor-
mance by the nearness to the imagined “true” distribution the yardstick is the num-
ber of bits with which the data and the model can be encoded when advantage is
taken of the constraints the model prescribes to the data. The objective then is to
find a minimizing code for a class of distributions as models, which is the minimum
description length principle, or, equivalently, a global maximum likelihood princi-
ple, global because it permits finding an optimal model, including its structure and
the number of parameters.
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Chapter 3
Normalized Information Distance

Paul M. B. Vitányi, Frank J. Balbach, Rudi L. Cilibrasi, and Ming Li

Abstract The normalized information distance is a universal distance measure for
objects of all kinds. It is based on Kolmogorov complexity and thus uncomputable,
but there are ways to utilize it. First, compression algorithms can be used to approxi-
mate the Kolmogorov complexity if the objects have a string representation. Second,
for names and abstract concepts, page count statistics from the World Wide Web can
be used. These practical realizations of the normalized information distance can then
be applied to machine learning tasks, especially clustering, to perform feature-free
and parameter-free data mining. This chapter discusses the theoretical foundations
of the normalized information distance and both practical realizations. It presents
numerous examples of successful real-world applications based on these distance
measures, ranging from bioinformatics to music clustering to machine translation.

3.1 Introduction

The typical data mining algorithm uses explicitly given features of the data to as-
sess their similarity and discover patterns among them. It also comes with many
parameters for the user to tune to specific needs according to the domain at hand.
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In this chapter, by contrast, we are discussing algorithms that neither use features
of the data nor provide any parameters to be tuned, but that nevertheless often out-
perform algorithms of the aforementioned kind. In addition, the methods presented
here are not just heuristics that happen to work, but they are founded in the mathe-
matical theory of Kolmogorov complexity. The problems discussed in this chapter
will mostly, yet not exclusively, be clustering tasks, in which naturally the notion of
distance between objects plays a dominant role.

There are good reasons to avoid parameter laden methods. Setting the parameters
requires an intimate understanding of the underlying algorithm. Setting them incor-
rectly can result in missing the right patterns or, perhaps worse, in detecting false
ones. Moreover, comparing two parametrized algorithms is difficult because differ-
ent parameter settings can give a wrong impression that one algorithm is better than
another, when in fact one is simply adjusted poorly. Comparisons using the optimal
parameter settings for each algorithm are of little help because these settings are
hardly ever known in real situations. Lastly, tweaking parameters might tempt users
to impose their assumptions and expectations on the algorithm.

There are also good reasons to avoid feature based methods. Determining the
relevant features requires domain knowledge, and determining how relevant they
are often requires guessing. Implementing the feature extraction in an algorithm can
be difficult, error-prone, and is often time consuming. It also limits the applicability
of an algorithm to a specific field.

How can an algorithm perform well if it does not extract the important features
of the data and does not allow us to tweak its parameters to help it do the right thing?
Of course, parameter and feature free algorithms cannot mind read, so if we a priori
know the features, how to extract them, and how to combine them into exactly the
distance measure we want, we should do just that. For example, if we have a list of
cars with their color, motor rating, etc. and want to cluster them by color, we can
easily do that in a straightforward way.

Parameter and feature free algorithms are made with a different scenario in mind.
In this exploratory data mining scenario we are confronted with data whose impor-
tant features and how to extract them are unknown to us (perhaps there are not even
features). We are then striving not for a certain similarity measure, but for the sim-
ilarity measure between the objects. Does such an absolute measure of similarity
exist at all? Yes, it does, in theory. It is called the information distance, and the idea
behind it is that two objects are similar if there is a simple description of how to
transform each one of them into the other one. If, however, all such descriptions are
complex, the objects are deemed dissimilar. For example, an image and its nega-
tive are very similar because the transformation can be described as “invert every
pixel.” By contrast, a description of how to transform a blank canvas into da Vinci’s
Mona Lisa would involve the complete, and comparably large, description of that
painting.

The latter example already points to some issues one has to take care of, like
asymmetry and normalization. Asymmetry refers to the fact that, after all, the
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inverse transformation of the Mona Lisa into a blank canvas can be described rather
simply. Normalization refers to the fact that the transformation description size must
be seen in relation to the size of the participating objects. Section 3.2 details how
these and other issues are dealt with and explains in which sense the resulting in-
formation distance measure is universal. The formulation of this distance measure
will involve the mathematical theory of Kolmogorov complexity, which is generally
concerned with shortest effective descriptions.

While the definition of the information distance is rather theoretical and cannot
be realized in practice, one can still use its theoretical idea and approximate it with
practical methods. Two such approaches are discussed in subsequent sections. They
differ in which property of the Kolmogorov complexity they use and to what kind
of objects they apply. The first approach, presented in Sect. 3.3, exploits the rela-
tion between Kolmogorov complexity and data compression and consequently em-
ploys common compression algorithms to measure distances between objects. This
method is applicable whenever the data to be clustered are given in a compressible
form, for instance, as a text or other literal description.

The second approach, presented in Sect. 3.4, exploits the relation between Kol-
mogorov complexity and probability. It uses statistics generated by common Web
search engines to measure distances between objects. This method is applicable
to non-literal objects, names and concepts, whose properties and interrelations are
given by common sense and human knowledge.

3.2 Normalized Information Distance

Kolmogorov complexity measures the absolute information content of individual
objects. For the purpose of data mining, especially clustering, we would also like
to be able to measure the absolute information distance between individual objects.
Such a notion should be universal in the sense that it contains all other alternative
or intuitive notions of computable distances as special cases. Such a notion should
also serve as an absolute measure of the informational, or cognitive, distance be-
tween discrete objects x and y. Such a notion of universal informational distance
between two strings is the minimal quantity of information sufficient to translate
between x and y, generating either string effectively from the other. As a result of
the universality requirement, this information distance is uncomputable. However,
the study of the abstract properties of such an absolute information distance leads
to formulas and approaches applicable in practice, as we will demonstrate in subse-
quent sections.

In this section, we first give a brief introduction to the theory of Kolmogorov
complexity, providing definitions and fundamental results. We then derive the un-
normalized information distance and show its universality with respect to unnormal-
ized distance measures. Finally we discuss the normalized information distance.
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3.2.1 Kolmogorov Complexity

To provide some formal framework, we have to give a brief introduction to the the-
ory of Kolmogorov complexity (a comprehensive treatment of this theory is [19]).
In order to give a mathematically rigorous definition of Kolmogorov complexity
and related terms, we need a few notations and definitions beforehand. By N , Q,
R, and R+ we denote the set of all natural, rational, real, and non-negative real
numbers, respectively. For the cardinality of a set S we write |S|. In the following
we will only consider binary strings x ∈ {0,1}∗. All other objects that we might
consider can be encoded in a natural way as such strings. We write ε for the empty
string, and �(x) for the length of string x. All binary strings can be totally ordered
according to their length and within the same length lexicographically. We implic-
itly identify every string with its number in this ordering. Using this identity, we
have �(x) = �log(x+1)�.

For any string x we denote by x̄ the string x̄ = 1�(x)0x, called the self-delimiting
encoding of x. The set {x̄ : x ∈ {0,1}∗} then is a prefix set, that is, no element of
it is prefix of another element. Prefix sets have an important property, namely they
satisfy the Kraft inequality:

Lemma 3.1. Let S ⊂ {0,1}∗ be a prefix set. Then

∑
x∈S

2−�(x) ≤ 1 .

Partial functions whose domain is a prefix set are called prefix functions. They play
a major role in the theory of Kolmogorov complexity.

Using x̄ one can define a pairing function 〈x,y〉 = x̄y, which can be extended to
k strings: 〈x1, . . . ,xk〉 = 〈x1,〈x2,〈. . .〈xk−1,xk〉 . . .〉〉〉 = x̄1 . . . x̄k−1xk. Functions with
more than one argument can be realized in the usual way via the pairing function
as ϕ(x1, . . . ,xk) = ϕ(〈x1, . . . ,xk〉). We use an effective enumeration ϕ1,ϕ2, . . . of all
partial recursive functions with one argument, and also an effective enumeration
ψ1,ψ2, . . . of all partial recursive prefix functions.

Now everything is in place to formulate the fundamental definition of Kol-
mogorov theory. Consider a function ϕ and two strings p and x such that ϕ(p) = x.
The string p can be interpreted as a description of x by means of the description
language ϕ . Of course, the string x can have many such descriptions, among which
the shortest ones are special. The length of a shortest description p is called the
complexity of the string x with respect to ϕ . A slightly more general version of
complexity takes into account an additional input y. In this generalization the de-
scription of x is conditional to y:

Definition 3.1. Let ϕ be a partial recursive function. The conditional complexity
(with respect to ϕ) of x given y is defined by

Cϕ(x|y) = min{�(p) : ϕ(y, p) = x} ,

the unconditional complexity of x by Cϕ(x) = Cϕ(x|ε).
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Clearly the complexity of a string depends on the choice of ϕ . There is, however,
a distinguished function ϕ0, which essentially assigns the lowest possible values,
over all partial recursive functions ϕ .

Theorem 3.1. There is a partial recursive function ϕ0 such that for all partial re-
cursive functions ϕ there is a constant c with

Cϕ0(x|y)≤Cϕ(x|y)+ c

for all x and y.

It is sufficient for ϕ0 to satisfy ϕ0(y,n, p) = ϕn(y, p). Intuitively the behavior of
ϕ0 is to take one of its arguments, n, and simulate the n-th partial recursive function
on the input comprised of ϕ0’s other two arguments. In other words, ϕ0 is a univer-
sal function for our enumeration (ϕi)i≥1. The function ϕ0 is not unique, but every
such function defines essentially the same complexity Cϕ0 , that is, up to an addi-
tive constant (this follows from Theorem 3.1). Instead of Cϕ0 one typically simply
writes C.

A helpful intuition for understanding C is to regard C(x|y) as the length of a
shortest computer program, in any popular language, that outputs x on input y.

While simple and elegant, the notion of C(·) has some oddities. For instance,
C(xy) is in general not upper-bounded by the sum of C(x) and C(y). This is one of
the reasons that in many cases it is beneficial not to consider all partial recursive
functions, but only the prefix functions. A result very similar to Theorem 3.1 holds
for these functions.

Theorem 3.2. There is a partial recursive prefix function ψ0 such that for all partial
recursive prefix functions ψ there is a constant c with

Cψ0(x|y)≤Cψ(x|y)+ c

for all x and y.

Instead of Cψ0(x|y) and Cψ0(x|ε) it is customary to write K(x|y) and K(x), re-
spectively. Also the expression K(〈x,y〉) is usually written simply as K(x,y). We
refer to K as the Kolmogorov complexity. Our intuition about values of K(x|y) is
essentially the same as for C(x|y), the length of the shortest program that outputs x
on input y. But in contrast to C, all shortest programs that “occur” in K constitute
a prefix set. This implies, among other important things, that two such programs
can be concatenated and still recognized as two distinct programs. This in turn al-
lows the construction of a program that simulates two other programs and combines
their output, at the same time being only a constant number of bits larger than the
concatenation of the original two programs. A consequence of this is that for K the
subadditivity holds, that is, K(xy)≤K(x)+K(y)+O(1). The next theorem summa-
rizes some more properties of K.



50 P.M.B. Vitányi et al.

Theorem 3.3. 1. K is not partial recursive.
2. K(x) ≤ �(x)+2log�(x)+O(1) for all x.
3. K(x,y)≤ K(x)+K(y|x)+O(1) for all x, y.
4. Up to an additional term of O(1):

K(x,y) = K(x)+K(y|〈x,K(x)〉) = K(y)+K(x|〈y,K(y)〉)

for all x, y.
5. Up to an additional term of O(logK(xy)):

K(x,y) = K(x)+K(y|x) = K(y)+K(x|y)

for all x, y.

Item 1 does not come as a surprise since, intuitively, in order to find K(x) one has
to verify that no program under a certain length outputs x, a task that conflicts with
the undecidability of the halting problem.

Item 2 gives an upper bound of K(x) in terms of the length of x. In order to
describe x prefix free, one can use an advanced self-delimiting encoding of x namely
x = �(x)x, which has the length �(x)+2�(�(x))+1.

Items 3, 4, and 5 elaborate on the subadditivity property. While Item 3 only pro-
vides a better upper bound, which can be easily understood via the intuition of pro-
gram lengths, the other two items state equalities and require sophisticated proofs.
These results go by the name Symmetry of Information and will prove useful later
in Sect. 3.3.1.

All programs that can be identified as shortest ones by K form a prefix set. It
follows by the Kraft inequality that ∑x 2−K(x) ≤ 1. This means that the values 2−K(x)

can be regarded as quantities very similar to probabilities, because they sum up to
at most 1. In this assignment of values, less complex objects receive a higher prob-
ability than more complex objects. This can be seen as a “smooth” compromise be-
tween the contrary views of Occam’s Razor, which advises to consider the simplest
explanation only, and Epicurus’s Principle of Multiple Explanations, which advises
to consider all explanations. Indeed, this algorithmic probability R(x) = 2−K(x) is
universal in a sense made clear in the remainder of this section.

Since in the realm of probabilities we are dealing with real valued functions, we
first need to introduce some notions of computability for them.

Definition 3.2. A real valued function f : N → R is called lower semicomputable
if there is a recursive function g : N ×N → Q such that for all x the series
(g(x,k))k∈N is nondecreasing and f (x) = limk→∞ g(x,k). The function f is called
upper semicomputable if − f is lower semicomputable.

A semimeasure assigns a non-negative real number to every string (or,
equivalently, natural number). It differs from a probability measure in that the
sum of all these values can be less than 1. In the same way as there are conditional
probabilities, we can also consider conditional semimeasures.
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Definition 3.3. A discrete conditional semimeasure is a function P : N ×N →
R+ such that for all y:

∑
x

P(x|y) ≤ 1 .

The large class of lower semicomputable semimeasures has a universal element
m that dominates every other lower semicomputable semimeasure up to a multi-
plicative constant.

Theorem 3.4. There is a lower semicomputable discrete semimeasure m such that
for all lower semicomputable discrete semimeasures P:

P(x|y) = O(m(x|y)) .

This universal semimeasure is intimately related to the Kolmogorov complexity
via the Conditional Coding Theorem [19]:

Theorem 3.5. − logm(x|y) = K(x|y)+O(1).

3.2.2 Information Distance

Intuitively, the minimal information distance between x and y is the length of the
shortest program for a universal computer to transform x into y and y into x. This
program then functions in a “catalytic” manner, being retained in the computer be-
fore, during, and after the computation. This measure will be shown to be, up to
a logarithmic additive term, equal to the maximum of the conditional Kolmogorov
complexities. The conditional complexity K(y|x) itself is unsuitable as optimal in-
formation distance because it is asymmetric: K(ε|x) is small for all x, yet intuitively
a long random string x is not close to the empty string. The asymmetry of the condi-
tional complexity K(x|y) can be remedied by defining the algorithmic informational
distance between x and y to be the sum of the relative complexities, K(y|x)+K(x|y).
The resulting metric will overestimate the information required to translate between
x and y in case there is some redundancy between the information required to get
from x to y and the information required to get from y to x.

For a partial recursive function ϕ , let

Eϕ(x,y) = min{�(p) : ϕ(p,x) = y and ϕ(p,y) = x} .

Lemma 3.2. There is a universal partial recursive prefix function ψ0 such that for
each partial recursive prefix function ψ and all x,y,

Eψ0(x,y)≤ Eψ(x,y)+ cψ ,

where cψ is a constant that depends on ψ but not on x and y.
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By Lemma 3.2, for every two universal prefix functions ϕ0 and ψ0, we have for
all x,y that |Eϕ0(x,y)−Eψ0(x,y)| ≤ c, with c a constant depending on ϕ0 and ψ0 but
not on x and y. Thus the following definition is machine-independent.

Definition 3.4. Fixing a particular universal prefix function ψ0, we define informa-
tion distance as

E0(x,y) = min{�(p) : ψ0(p,x) = y and ψ0(p,y) = x} . (3.1)

Definition 3.5. The max distance between x and y is E(x,y) = max{K(x|y),K(y|x)}.

It has been proved that up to an additive logarithmic term, the information distance
E0 is equal to the max distance.

3.2.2.1 Maximal Overlap

To what extent can the information required to compute x from y be made to overlap
with that required to compute y from x? In some simple cases, complete overlap can
be achieved, so that the same minimal program suffices to compute x from y as to
compute y from x.

Example 3.1. If x and y are independent random binary strings of the same length n
(up to additive constants K(x|y) = K(y|x) = n), then their bitwise exclusive-or x⊕y
serves as a minimal program for both computations. Similarly, if x = uv and y = vw
where u, v, and w are independent random strings of the same length, then u⊕w is
a minimal program to compute either string from the other.

Now suppose that more information is required for one of these computations
than for the other, say, K(y|x) > K(x|y). Then the minimal programs cannot be made
identical because they must be of different sizes. Nevertheless, in simple cases, the
overlap can still be made complete, in the sense that the larger program (for y given
x) can be made to contain all the information in the smaller program, as well as some
additional information. This is so when x and y are independent random strings of
unequal length, for example u and vw above. Then u⊕v serves as a minimal program
for u from vw, and (u⊕ v)w serves as one for vw from u.

The following Conversion Theorem asserts the existence of a difference string
p of length �(p) = max{K(x|y),K(y|x)}, up to an additive logarithmic term, that
converts both ways between x and y and at least one of these conversions is optimal.
If K(x|y) = K(y|x), then the conversion is optimal in both directions.

Theorem 3.6. Let x and y be strings such that K(y|x) ≥ K(x|y). There is a string r
of length K(y|x)−K(x|y) such that

E0(rx,y) = K(x|y)+K(K(x|y),K(y|x))+O(1) .

Corollary 3.1. E0(x,y) = max{K(x|y),K(y|x)}+O(logmax{K(x|y),K(y|x)}).
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3.2.2.2 Universality

Let us assume we want to quantify how much some given objects differ with respect
to a specific feature, for instance, the length of files in bits, the number of beats per
second in music pieces, or the number of occurrences of some base in genomes.
Every specific feature induces a specific distance measure, and conversely every
distance measure can be viewed as a quantification of a feature difference.

Every distance measure should be an effectively approximable positive function
of the two objects that satisfies a reasonable density condition and obeys the trian-
gle inequality. It turns out that E is minimal up to an additive constant among all
such distances. Hence, it is a universal information distance that accounts for any
effective resemblance between two objects.

Let us consider an example of measuring distance between two pictures. Identify
digitized black-and-white pictures with binary strings. There are many distances
defined for binary strings, for example, the Hamming distance and the Euclidean
distance. Such distances are sometimes appropriate. For instance, if we take a bi-
nary picture and change a few bits on that picture, then the changed and unchanged
pictures have small Hamming or Euclidean distance, and they do look similar.

However, these measures are not always appropriate. The positive and negative
prints of a photo have the largest possible Hamming and Euclidean distance, yet
they look similar. Also, if we shift a picture one bit to the right, again the Hamming
distance may increase by a lot, but the two pictures remain similar.

Many approaches to pattern recognition define distance measures with respect
to pictures, language sentences, vocal utterances, and many more. We have already
seen evidence that E(x,y) = max{K(x|y),K(y|x)} is a natural way to formalize a
notion of algorithmic informational distance between x and y. Let us now show that
the distance E is, in a sense, minimal among all reasonable distance measures.

In general we differentiate between distance functions and metrics. The latter are
distance measures that satisfy additional conditions as formalized in the following.

Definition 3.6. A distance function is a function D : {0,1}∗ ×{0,1}∗ →R+. It is a
metric if it satisfies the metric (in)equalities:

• D(x,y) = 0 if and only if x = y, (identity)
• D(x,y) = D(y,x), (symmetry)
• D(x,y)≤ D(x,z)+D(z,y). (triangle inequality)

The value D(x,y) is called the distance between x and y. As a familiar example of
a distance function that is also a metric, consider the Euclidean metric, the everyday
distance DE(a,b) between two geographical objects a,b expressed in, say, meters.
Clearly, this distance satisfies the properties DE(a,a) = 0, DE(a,b) = DE(b,a), and
DE(a,b)≤ DE(a,c)+DE(c,b) (for instance, a = Amsterdam, b = Beijing, and c =
Chicago). Our goal is to generalize this concept of distance from our physical space
to the cyberspace and characterize the set of all reasonable distance functions that
would measure informational distances between objects.

For a distance function or metric to be reasonable, it has to satisfy a certain
additional condition, referred to as density condition. Intuitively this means that for
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every object x and value d ∈ R+ there is at most a certain, finite number of objects
y at distance d from x. This requirement excludes degenerate distance measures like
D(x,y) = 1 for all x �= y. Exactly how fast we want the distances of the strings y from
x to go to infinity is not important, it is only a matter of scaling. For convenience,
we will require the following density conditions:

∑
y:y�=x

2−D(x,y) ≤ 1 and ∑
x:x �=y

2−D(x,y) ≤ 1 . (3.2)

Finally we allow only distance measures that are computable in some broad
sense, which will not be seen as unduly restrictive. More precisely, only upper semi-
computability of D will be required. This is reasonable: as we have more and more
time to process x and y we may discover newer and newer similarities among them,
and thus may revise our upper bound on their distance. The next definition summa-
rizes the class of distance measures we are concerned with.

Definition 3.7. An admissible information distance is a total, possibly asymmetric,
nonnegative function on the pairs x,y of binary strings that is 0 if and only if x = y,
is upper semicomputable, and satisfies the density requirement (3.2).

Example 3.2. The Hamming distance between two strings x = x1 . . .xn and
y = y1 . . .yn is defined as d(x,y) = |{i : xi �= yi}|. This distance does not di-
rectly satisfy the density requirements (3.2). With minor modification, we
can scale it to satisfy these requirements. In representing the Hamming dis-
tance m between x and y, strings of equal length n differing in positions
i1, . . . , im, we can use a simple prefix-free encoding of (n,m, i1, . . . , im) in
Hn(x,y) = 2logn + 4loglogn + 2 + m logn bits. We encode n and m prefix-free
in logn + 2loglogn + 1 bits each and then the literal indexes of the actual flipped-
bit positions. Thus, Hn(x,y) is the length of a prefix code word specifying the
positions where x and y differ. This modified Hamming distance is symmetric, and
it is an admissible distance by the Kraft inequality ∑y:y�=x 2−Hn(x,y) ≤ 1. It is easy to
verify that Hn is a metric in the sense that it satisfies the metric (in)equalities up to
O(logn) additive precision.

The following theorem is the fundamental result about the max distance E. It
states that E is an optimal admissible information distance.

Theorem 3.7. The function E with E(x,y) = max{K(x|y),K(y|x)} is an admissible
information distance and a metric. It is minimal in the sense that for every admissi-
ble information distance D, we have E(x,y)≤ D(x,y)+O(1).

The quantitative difference in a certain feature between two objects can be con-
sidered as an admissible distance. Theorem 3.7 shows that the information dis-
tance E is universal in that among all admissible distances it is always least. That is,
it accounts for the dominant feature in which two objects are alike. For that reason
E is also called the universal information distance.

Many admissible distances are absolute, but if we want to express similarity, then
we are more interested in relative ones. For example, if two strings of 1,000,000 bit
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differ by 1,000 bit, then we are inclined to think that those strings are relatively
similar. But if two strings of 1,000 bit differ by 1,000 bit, then we find them very
different.

Example 3.3. Consider the problem of comparing genomes. The E. coli genome
is about 4.8 megabase long, whereas H. influenza, a sister species of E. coli, has
genome length only 1.8 megabase. The information distance E between the two
genomes is dominated by their length difference rather than the amount of informa-
tion they share. Such a measure will trivially classify H. influenza as being closer to
a more remote species of similar genome length such as A. fulgidus (2.18 megabase),
rather than with E. coli. In order to deal with such problems, we need to normalize.

Our objective now is to normalize the universal information distance E(x,y) =
max{K(x|y),K(y|x)} to obtain a universal similarity distance. It should give a simi-
larity with distance 0 when objects are maximally similar and distance 1 when they
are maximally dissimilar.

3.2.3 Normalized Information Distance

It is paramount that the normalized version of the universal information distance
metric is also a metric. Were it not, then the relative relations between the objects in
the space would be disrupted and this could lead to anomalies, if, for instance, the
triangle inequality would be violated for the normalized version.

In order to obtain a normalized universal information distance function, both
versions of information distance discussed so far, E0 and E, can be normalized. We
will only discuss how to normalize the max distance E and call it the normalized
information distance.

Definition 3.8. The normalized information distance (NID) between two strings x
and y is defined as

e(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} . (3.3)

Dividing by max{K(x),K(y)} is not the most obvious idea for normalizing E,
but the more obvious ideas do not work:

• Divide by the length. Then no matter whether we divide by the sum or maximum
of the length, the triangle inequality is not satisfied.

• Divide by K(x,y). Then the distances will be 1/2 whenever x and y satisfy
K(x) ≈ K(y) ≈ K(x|y) ≈ K(y|x). In this situation, however, x and y are com-
pletely dissimilar, and we would expect distance values of about 1.

That the NID is indeed a normalized metric is a remarkable fact [18].

Theorem 3.8. The normalized information distance e(x,y) takes values in the range
[0,1] and is a metric, up to ignorable discrepancies.
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This concludes our discussion of the theoretical foundations of the NID. We
continue with demonstrations of how these insights can be put to use in practical
settings.

3.3 Normalized Compression Distance

The normalized information distance is theoretically appealing, but impractical
since it cannot be computed. In this section we discuss the normalized compres-
sion distance, an efficiently computable, and thus practically applicable, form of the
normalized information distance.

3.3.1 Introduction

The normalized information distance e(x,y), is called universal because it ac-
counts for the dominant difference between two objects. It depends on the uncom-
putable function K, and is therefore also uncomputable. First we observe that using
K(x,y) = K(xy)+O(logmin{K(x),K(y)} and Item 5 of Theorem 3.3 we obtain

E(x,y) = max{K(x|y),K(y|x)} = K(xy)−min{K(x),K(y)} , (3.4)

up to an additive logarithmic term O(logK(xy)) which we ignore in the sequel.
By rewriting E as in (3.4) we manage to remove all conditional complexity terms

and obtain a formula with only the non-conditional terms K(x),K(y),K(xy). This
comes in handy if we interpret K(x) as the length of the string x after being max-
imally compressed. With this in mind, it is an obvious idea to approximate K(x)
with the length of the string x under an efficient real-world compressor. Any correct
and lossless data compression program can provide an upper-bound approximation
to K(x), and most good compressors detect a large number of statistical regularities.

Substituting the numerator of (3.3) with (3.4) and subsequently using a real-
world compressor Z (such as gzip, bzip2, PPMZ) to heuristically replace the
Kolmogorov complexity, we obtain the distance eZ , often called the normalized
compression distance (NCD), defined by

eZ(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)} , (3.5)

where Z(x) denotes the binary length of the compressed version of the string x
compressed with compressor Z. The distance eZ is actually a family of distances
parametrized with the compressor Z. The better Z is, the closer eZ approaches the
normalized information distance, the better the results are expected to be.
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Under mild conditions on compressor Z, the distance eZ is computable, takes
values in [0,1], and is a metric [9]. More formally, a compressor Z is normal if it
satisfies the axioms

• Z(xx) = Z(x) and Z(ε) = 0, (identity)
• Z(xy) ≥ Z(x), (monotonicity)
• Z(xy) = Z(yx), (symmetry)
• Z(xy)+Z(z)≤ Z(xz)+Z(yz), (distributivity)

up to an additive O(logn) term, with n the maximal binary length of a string involved
in the (in)equality concerned.

Then the unnormalized distance EZ(x,y) = Z(xy)−min{Z(x),Z(y)}, with Z a
normal compressor, is computable, satisfies the density requirement in (3.2), and
satisfies the metric (in)equalities up to additive O(logn) terms, with n the maximal
binary length of a string involved in the (in)equality concerned.

Moreover, the normalized distance eZ of (3.5), with Z a normal compressor, has
values in [0,1] and satisfies the metric (in)equalities up to additive O((logn)/n)
terms, with n the maximal binary length of a string involved in the (in)equality
concerned.

Informal experiments [9] have shown that these axioms are in various degrees
satisfied by good real-world compressors like bzip2, and PPMZ, with PPMZ be-
ing best among the ones tested. The compressor gzip performed not so well, and
in all cases some compressor-specific window or block size determines the maxi-
mum useable length of the arguments x and y (32 KB for gzip, 450 KB for bzip2,
unlimited for PPMZ). Cebrián et al. [4] systematically investigated how far the per-
formance of real-world compressors gzip, bzip2, and PPMZ satisfy the identity
axiom Z(xx) = Z(x) of a normal compressor.

The normalized information distance e is intended to be universally applicable.
In practice, various computable distances, including eZ , can be viewed as approxi-
mations to e. Moreover, many of the measures used in the data mining community
(see Tan et al. [24]) may, after normalization, be viewed as various degrees of ap-
proximations to e.

The NCD has been put to numerous tests. Keogh et al. [14, 15] have tested a
closely related metric as a parameter-free and feature-free data mining tool on a
large variety of sequence benchmarks. Comparing the NCD method with 51 ma-
jor parameter-loaded methods found in the eight major data-mining conferences
(SIGKDD, SIGMOD, ICDM, ICDE, SSDB, VLDB, PKDD, and PAKDD) in the
last decade, on all data bases of time sequences used, ranging from heart beat sig-
nals to stock market curves, they established clear superiority of the NCD method
for clustering heterogeneous data, and for anomaly detection, and competitiveness
in clustering domain data.

Apart from providing a theoretical justification for these practical distances, the
normalized information distance does more in that it embodies all approximations.
The broad range of successful applications of eZ will be demonstrated in the remain-
der of this section, where we will discuss applications in bioinformatics, linguistics,
music, and plagiarism detection.
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3.3.2 Phylogenies

DNA sequences seem ideally suited for the compression distance approach. A DNA
sequence is a finite string over a four-letter alphabet {A,C,G,T}. We used the whole
mitochondrial genomes of 20 mammals, each of about 18,000 base pairs, to test a
hypothesis of Eutherian orders. It has been hotly debated in biology which two of
the three main placental mammalian groups, Primates, Ferungulates, and Rodents,
are more closely related. One cause of the debate is that the standard maximum like-
lihood method, which depends on the multiple alignment of sequences correspond-
ing to an individual protein, gives (Rodents, [Ferungulates, Primates]) for half of
the proteins in the mitochondrial genome, and (Ferungulates, [Primates, Rodents])
for the other half.

In recent years, when people use more sophisticated methods, together with bi-
ological evidences, it is believed that (Rodents, [Ferungulates, Primates]) reflects
the true evolutionary history. We confirm this from the whole genome perspec-
tive using the distance eZ . We use the complete mitochondrial genome sequences
from following 20 species: rat (Rattus norvegicus), house mouse (Mus musculus),
gray seal (Halichoerus grypus), harbor seal (Phoca vitulina), cat (Felis catus), white
rhino (Ceratotherium simum), horse (Equus caballus), finback whale (Balaenoptera
physalus), blue whale (Balaenoptera musculus), cow (Bos taurus), gibbon (Hy-
lobates lar), gorilla (Gorilla gorilla), human (Homo sapiens), chimpanzee (Pan
troglodytes), pygmy chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus),
Sumatran orangutan (Pongo pygmaeus abelii), with opossum (Didelphis virgini-
ana), wallaroo (Macropus robustus) and platypus (Ornithorhynchus anatinus) as
the outgroup.

For every pair of mitochondrial genome sequences x and y, evaluate the formula
in (3.5) using a special-purpose DNA sequence compressor DNACompress [7],
or a good general-purpose compressor like PPMZ. The resulting distances are the
entries in a 20×20 distance matrix. Constructing a phylogeny tree from the distance
matrix, using common tree reconstruction software, gives the tree in Fig. 3.1. This
tree confirms the accepted hypothesis of (Rodents, [Primates, Ferungulates]), and
every single branch of the tree agrees with the current biological classification.

Similarity of sequences in biology is currently primarily handled using align-
ments. However, the alignment methods seem inadequate for post-genomic studies
since they do not scale well with data set size and they seem to be confined only to
genomic and proteomic sequences. Therefore, alignment-free similarity measures
are actively pursued. Ferragina et al. [13] experimentally tested the normalized
information distance using 25 compressors to obtain the NCD, and six data sets
of relevance to molecular biology. They compared the methodology with methods
based on alignments and not. They assessed the intrinsic ability of the methodology
to discriminate and classify biological sequences and structures. The compression
program PPMd, based on PPM (Prediction by Partial Matching), for generic data
and GenCompress [17] for DNA, are the best performers among the compression
algorithms they used. The quantitative analysis supports the conclusion that the nor-
malized information/compression method is worth using because of its robustness,
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Fig. 3.1 The evolutionary tree built from complete mitochondrial DNA sequences of several
mammals

flexibility, scalability, and competitiveness with existing techniques. In particular,
the methodology applies to all biological data in textual format.

3.3.3 Language Trees

The similarity between languages can, to some extent, be determined by the simi-
larity of their vocabulary. This means that given two translations of the same text in
different languages, one can estimate the similarity of the languages by the similar-
ity of the words occurring in the translations. This has been exploited by Benedetto
et al. [2], who use a compression method related to NCD to construct a language
tree of 52 Euroasian languages from translations of the Universal Declaration of
Human Rights [1].

In this section we present an experiment [9] that uses the NCD method with trans-
lations of the Universal Declaration of Human Rights into 16 languages. Among
these languages are four European (German, English, Spanish, Dutch), eight African
(Pemba, Dendi, Ndebele, Kicongo, Somali, Rundi, Ditammari, Dagaare), and four
American (Chikasaw, Purhepecha, Mazahua, Zapoteco).
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Fig. 3.2 Language tree based on the Universal Declaration of Human Rights constructed using the
NCD, based on the gzip compressor

The files have been left in their original UTF-8 encoding, and all pairwise dis-
tances between them have been determined using eZ , where Z has been chosen to be
the standard text compressor gzip. From the resulting matrix of distances, the tree
in Fig. 3.2 has been generated. It shows the three main language groups, only Dendi
and Somali are somewhat too close to the American languages. Also, the classifi-
cation of English as a Romance language is erroneous from a historic perspective
and is due to the English vocabulary being heavily influenced by French and Latin.
Therefore the vocabulary, on which the approach discussed here is based, is indeed
to a large part Romance.

Similar experiments have been conducted with other clustering methods or other
languages [9, 18], but with equally plausible results.

3.3.4 Plagiarism Detection

It is a common observation in university courses with programming assignments
that some programs are plagiarized from others. That means that large portions are
copied from other programs. What makes this hard to detect is that it is relatively
easy to change a program syntactically without changing its semantics, for example,
by renaming variables and functions, inserting dummy statements or comments, or
reordering obviously independent statements. Nevertheless a plagiarized program is
somehow close to its source and therefore the idea of using a distance measure on
programs in order to uncover plagiarism is obvious.

We briefly describe the SID system [6] that uses a variant of the NID to measure
the distance between two source code files. This variant is called the sum distance,
and its Kolmogorov theoretic formulation is

esum(x,y) =
K(x|y)+K(y|x)

K(x,y)
.
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This function takes values in the interval [0,1] and is a metric according to
Definition 3.6 [17].

To compute the similarity between two Java source code files, SID first tokenizes
the programs and then uses a customized compressor to approximate the sum dis-
tance. This compressor is a variant of the Lempel–Ziv compression scheme [26]
that has an unbounded buffer size and can thus detect repetitions over the entire file.
Moreover it also takes advantage of approximate repetitions to increase the com-
pression rate.

Evaluating plagiarism detection systems is difficult, but field experiments indi-
cate that SID performs competitively and is more robust against certain attempts to
circumvent detection, such as insertion of irrelevant code.

3.3.5 Clustering Music

The previous examples of NCD applications were based on text, be it source code
or the Declaration of Human Rights. But The NCD method can also be applied to
multimedia data like music, if it is present in the right format.

Music files in the MIDI format can be transformed into files that can be success-
fully clustered with the NCD. This transformation involves stripping the files of all
instrument indicators, MIDI control signals and meta information such as title and
composer. What essentially remains of a file is a list of musical notes of the piece.
These preprocessed files can than be treated as text files.

A number of experiments has been performed [9, 11] with such files. We
present a single, representative one, in which the set of musical pieces comprises
four preludes from Chopin’s Opus 28, two preludes and two fugues from Bach’s
“Das wohltemperierte Klavier,” and the four movements from Debussy’s “Suite
Bergamesque.” After preprocessing the MIDI files as described above, the pairwise
eZ values, with bzip2 as compressor, are computed. To generate the final hierar-
chical clustering as shown in Fig. 3.3, a special quartet method [9, 11] is used.

Perhaps with the exception of Chopin’s Prélude no. 5, which seems somewhat
closer to the Bach pieces, the results agree with one’s expectations.

3.3.6 Clustering Heterogeneous Data

We test gross classification of files based on heterogeneous data of markedly differ-
ent file types:

1. Four mitochondrial gene sequences, from a black bear, polar bear, fox, and rat
obtained from the GenBank Database [3] on the World Wide Web

2. Four excerpts from the novel The Zeppelin’s Passenger by E. Phillips
Oppenheim, obtained from the Project Gutenberg Edition on the World Wide
Web
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Fig. 3.3 Hierarchical clustering of MIDI files of four pieces by Bach, Chopin, and Debussy using
the bzip2 based NCD and a quartet method

3. Four MIDI files without further processing: two from Jimi Hendrix and two
movements from Debussy’s “Suite Bergamasque,” downloaded from various
repositories on the World Wide Web

4. Two Linux x86 ELF executables (the cp and rm commands), copied directly
from the RedHat 9.0 Linux distribution

5. Two compiled Java class files, generated by ourselves

The program correctly classifies each of the different types of files together with
like near like. The result is reported in Fig. 3.4. This experiment shows the power
and universality of the method: no features of any specific domain of application are
used. We believe that there is no other method known that can cluster data that are
so heterogeneous this reliably.
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Fig. 3.4 Clustering of heterogeneous file types using the NCD, based on the bzip2 compressor,
and a quartet clustering method. The set of file contains four MIDI files, four genomes, four English
texts, and two Java class files and Linux executables

3.3.7 Conclusion

The NCD is universal, in a mathematical sense as approximation of the universal
NID, but also in a practical sense, as witnessed by the wide range of successful ap-
plications. Nevertheless the practical universality is of a different flavor because the
NCD is a family of distance measures parametrized by a compressor. This means
that one has to pick a suitable compressor for the application domain at hand. It
does, however, not mean that one has to know the relevant features of the objects
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in that domain beforehand. Rather, using a good compressor for objects in a certain
domain, makes it more likely that the compressor does indeed capture the (combina-
tions of) features relevant for the objects in that domain. The criterion for choosing a
compressor is clearer and simpler than the criterion for picking the “right” features,
namely encoding length.

In other words, the NCD is sensitive to many features and discovers the ones that
are important for the objects under consideration. Not being tuned to specific fea-
tures beforehand contributes to the robustness of the NCD method, as well as to the
ease of use. It is thus a valuable tool in the process of exploratory data mining [14].

3.4 Normalized Web Distance

The normalized compression distance can only be applied to objects that are strings
or that at least can be naturally represented as such. Abstract concepts or ideas, on
the other hand, are not amenable to the NCD method. In this section, we present
a realization of NID overcoming that limitation by taking advantage of the World
Wide Web.

3.4.1 Introduction

There are literal objects and non-literal objects. Examples of the former include the
four-letter human genome, the text of War and Peace by Tolstoy, and the source
code of a program. Non-literal objects are essentially names, either for literal ob-
jects, like “the four-letter human genome,” “the text of War and Peace by Tolstoy,”
and “main.c,” or for concepts and ideas that are not associated with a literal ob-
ject in any way, like the concept of “home” or “red.” The latter objects acquire their
meaning from their contexts in background common knowledge in humankind. Put
differently, a sequence contains information within itself, whereas names and con-
cepts contain their information not within themselves. The name “human genome”
implies 3 gigabases of information. The phrase “War and Peace by Tolstoy” perhaps
carries information even beyond the book.

Let W be the set of pages of the World Wide Web, and let x ⊆ W be the set of
pages containing the search term x. By the Conditional Coding Theorem we have
log1/m(x|x ⊆ W) = K(x|x ⊆ W) + O(1), where m is the universal lower semi-
computable discrete semimeasure. This equality relates the incompressibility of the
set of pages on the Web, containing a given search term, to its universal probability.
While we do not know how to compute m, a natural heuristic now is to use the distri-
bution of x in the Web to approximate m(x|x⊆W). (We give a simplified approach.)
Let us define the probability mass function g(x) to be the probability that the search
term x appears in a page indexed by a given internet search engine G, that is, the
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number of pages returned divided by the overall number of pages indexed. Then the
Shannon–Fano code [23] associated with g can be set at

G(x) = log
1

g(x)
.

Replacing Z(x) by G(x) in the formula in (3.5), we obtain the distance eG, often
called the normalized Web distance (NWD):

eG(x,y) =
G(xy)−min{G(x),G(y)}

max{G(x),G(y)} (3.6)

=
max{log f (x), log f (y)}− log f (x,y)

logN−min{log f (x), log f (y)} .

where f (x) is the number of pages containing x, the frequency f (x,y) is the number
of pages containing both x and y, and N is the total number of indexed pages. We
can view the search engine G as a compressor using the Web, and G(x) as the binary
length of the compressed version of the set of all pages containing the search term
x, given the indexed pages on the Web. The distance eG is actually a family of
distances parametrized with the search engine G. It was originally called normalized
Google distance (NGD) and thus featured a particular search engine [10]. The name
normalized Web distance is more generic and more in line with the name NCD,
which also does not mention a concrete compressor.

Example 3.4. We describe an experiment, using a popular search engine, performed
in the year 2004, at which time it indexed N = 8,058,044,651 pages. A search for
“horse” returns a page count of 46,700,000. A search for “rider” returns a page
count of 12,200,000. A search for both “horse” and “rider” returns a page count of
2,630,000. Thus eG(horse, rider) = 0.443. It is interesting to note that this number
stayed relatively fixed as the number of pages indexed by the used search engine
increased.

The distance eG is actually a family of distances parametrized with the search
engine G. The better G is, the closer the eG approaches the normalized informa-
tion distance, and the better the results are expected to be. The distance eG is com-
putable, takes values primarily (but not exclusively) in [0,1], and is symmetric,
that is, eG(x,y) = eG(y,x). It only satisfies “half” of the identity property, namely
eG(x,x) = 0 for all x, but eG(x,y) = 0 can hold even if x �= y, for example, if the
terms x and y always occur together.

The NWD also does not satisfy the triangle inequality eG(x,y) ≤ eG(x,z) +
eG(z,y) for all x,y,z. To see that, choose x, y, and z such that x and y never occur
together, z occurs exactly on those pages on which x or y occurs, and f (x) = f (y) =√

N. Then f (x) = f (y) = f (x,z) = f (y,z) =
√

N, f (z) = 2
√

N, and f (x,y) = 0. This
yields eG(x,y) =∞ and eG(x,z) = eG(z,y) = 2/ logN, which violates the triangle in-
equality for all N. It follows that the NWD is not a metric. Indeed, we should view
the distance eG between two concepts as a relative similarity measure between those
concepts. Then, while concept x is semantically close to concept y and concept y is
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semantically close to concept z, concept x can be semantically very different from
concept z.

Another important property of the NWD is its scale-invariance. This means that,
if the number N of pages indexed by the search engine grows sufficiently large, the
number of pages containing a given search term goes to a fixed fraction of N, and so
does the number of pages containing conjunctions of search terms. This means that
if N doubles, then so do the f -frequencies. For the NWD to give us an objective
semantic relation between search terms, it needs to become stable when the number
N of indexed pages grows. Some evidence that this actually happens was given in
Example 3.4.

The NWD can be used as a tool to investigate the meaning of terms and the rela-
tions between them as given by common sense. This approach can be compared with
the Cyc project [16], which tries to create artificial common sense. Cyc’s knowledge
base consists of hundreds of microtheories and hundreds of thousands of terms, as
well as over a million hand-crafted assertions written in a formal language called
CycL [21]. CycL is an enhanced variety of first order predicate logic. This knowl-
edge base was created over the course of decades by paid human experts. It is there-
fore of extremely high quality. The Web, on the other hand, is almost completely
unstructured, and offers only a primitive query capability that is not nearly flexible
enough to represent formal deduction. But what it lacks in expressiveness the Web
makes up for in size; Web search engines have already indexed more than ten billion
pages and show no signs of slowing down. Therefore search engine databases rep-
resent the largest publicly-available single corpus of aggregate statistical and index-
ing information so far created, and it seems that even rudimentary analysis thereof
yields a variety of intriguing possibilities. It is unlikely, however, that this approach
can ever achieve 100% accuracy like in principle deductive logic can, because the
Web mirrors humankind’s own imperfect and varied nature. But, as we will see be-
low, in practical terms the NWD can offer an easy way to provide results that are
good enough for many applications, and which would be far too much work if not
impossible to program in a deductive way.

In the following sections we present a number of applications of the NWD: hier-
archical clustering and classification of concepts and names in a variety of domains,
finding corresponding words in different languages, and a system that answers nat-
ural language questions.

3.4.2 Hierarchical Clustering

To perform the experiments in this section, we used the CompLearn software
tool [8], the same tool that has been used in Sect. 3.3 to construct trees representing
hierarchical clusters of objects in an unsupervised way. However, now we use the
normalized Web distance (NWD) instead of the normalized compression distance
(NCD). Recapitulating, the method works by first calculating a distance matrix
using NWD among all pairs of terms in the input list. Then it calculates a best-
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matching unrooted ternary tree using a novel quartet-method style heuristic based
on randomized hill-climbing using a new fitness objective function optimizing the
summed costs of all quartet topologies embedded in candidate trees [9].

3.4.2.1 Colors and Numbers

In the first example [10], the objects to be clustered are search terms consisting of
the names of colors, numbers, and some tricky words. The program automatically
organized the colors towards one side of the tree and the numbers towards the other,
Fig. 3.5. It arranges the terms which have as only meaning a color or a number, and
nothing else, on the farthest reach of the color side and the number side, respectively.
It puts the more general terms black and white, and zero, one, and two, towards the
center, thus indicating their more ambiguous interpretation. Also, things which were
not exactly colors or numbers are also put towards the center, like the word “small.”
We may consider this an example of automatic ontology creation.

3.4.2.2 Dutch Seventeenth Century Painters

In the example of Fig. 3.6, the names of 15 paintings by Steen, Rembrandt, and Bol
were entered [10]. The names of the associated painters were not included in the
input, however they were added to the tree display afterwards to demonstrate the
separation according to painters. This type of problem has attracted a great deal of
attention [22]. A more classical solution would use a domain-specific database for
similar ends. The present automatic oblivious method obtains results that compare
favorably with the latter feature-driven method.

3.4.2.3 Chinese Names

In the example of Fig. 3.7, several Chinese names were entered. The tree shows
the separation according to concepts like regions, political parties, people, etc. See
Fig. 3.8 for English translations of these names. The dotted lines with numbers in-
between each adjacent node along the perimeter of the tree represent the NWD
values between adjacent nodes in the final ordered tree. The tree is presented in
such a way that the sum of these values in the entire ring is minimized. This gen-
erally results in trees that makes the most sense upon initial visual inspection, con-
verting an unordered binary tree to an ordered one. This feature allows for a quick
visual inspection around the edges to determine the major groupings and divisions
among coarse structured problems. It grew out of an idea originally suggested by
Rutledge [22].
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Fig. 3.5 Colors, numbers, and other terms arranged into a tree based on the normalized Web dis-
tances between the terms

3.4.3 Support Vector Machine Learning

We augment the NWD method by adding a trainable component of the learning
system. This allows us to consider classification rather than clustering problems.
Here we use the Support Vector Machine (SVM) as a trainable component. For all
SVM experiments, the LIBSVM software [5] has been used.

The setting is a binary classification problem on examples represented by search
terms. We require a human expert to provide a list of at least 40 training words,
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Steen  Prince’s Day

Steen  The Merry Family

Steen  Leiden Baker Arend Oostwaert

Steen  Keyzerswaert

Steen  Woman at her Toilet

Steen  Two Men Playing Backgammon

Rembrandt  Hendrickje slapend

Rembrandt  Portrait of Maria Trip

Rembrandt  Portrait of Johannes Wtenbogaert

Rembrandt  The Stone Bridge

Bol  Maria Rey

Rembrandt  The Prophetess Anna

Bol  Consul Titus Manlius Torquatus

Bol  Swartenhont

Bol  Venus and Adonis

Fig. 3.6 Fifteen paintings by three painters arranged into a tree by hierarchical clustering. To
determine the normalized Web distances between the paintings, only the title names were used; the
painter prefixes shown in the diagram were added afterwards to assist in interpretation

consisting of at least 20 positive examples and 20 negative examples, to illustrate
the contemplated concept class. The expert also provides, say, six anchor words
a1, . . . ,a6, of which half are in some way related to the concept under consideration.
Then, we use the anchor words to convert each of the 40 training words w1, . . . ,w40
to 6-dimensional training vectors v1, . . . ,v40. The entry v j,i of v j = (v j,1, . . . ,v j,6)
is defined as v j,i = eG(wi,a j) (1 ≤ i ≤ 40, 1 ≤ j ≤ 6). The training vectors are then
used to train an SVM to learn the concept, and then test words may be classified
using the same anchors and trained SVM model. We present all positive examples
as x-data (input data), paired with y = 1. We present all negative examples as x-data,
paired with y = −1.

The above method for transforming concepts into real valued vectors is not lim-
ited to be used with SVMs, but can be combined with any machine learning algo-
rithm that can handle numeric inputs.

3.4.3.1 Learning Prime Numbers

In Fig. 3.9 the method learns to distinguish prime numbers from non-prime num-
bers by example [10]. This example illustrates several common features the NWD
method that distinguish it from the strictly deductive techniques. It is common for
the classifications to be good but imperfect, and this is due to the unpredictability
and uncontrolled nature of the Web distribution.
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Fig. 3.7 Names of several Chinese people, political parties, regions, and others. The nodes and
solid lines constitute a tree constructed by a hierarchical clustering method based on the normalized
Web distances between all names. The numbers at the perimeter of the tree represent NWD values
between the nodes pointed to by the dotted lines. For an explanation of the names, refer to Fig. 3.8

3.4.3.2 WordNet Semantics: Learning Religious Terms

The next example (see the preliminary version of [10]) has been created using
WordNet [12], which is a semantic concordance of English. It also attempts to focus
on the meaning of words instead of the word itself. The category we want to learn
here is termed “religious” and represents anything that may pertain to religion. The
negative examples are constituted by simply everything else (see Fig. 3.10). Neg-
ative examples were chosen randomly and uniformly from a dictionary of English
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Fig. 3.8 Explanations of the Chinese names used in the experiment that produced Fig. 3.7

words. This category represents a typical expansion of a node in the WordNet hier-
archy. The accuracy on the test set is 88.89%.

3.4.3.3 WordNet Semantics: 100 Experiments

The previous example shows only one hand-crafted special case. To investigate the
more general statistics, a method was devised to estimate how well the NWD-SVM
approach agrees with WordNet in a large number of automatically selected semantic
categories [10].

Before we explain how each category was automatically generated, we first re-
view the structure of WordNet; the following is paraphrased from the official Word-
Net documentation available online. WordNet is called a semantic concordance of
the English language. It seeks to classify words into many categories and interrelate
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Training Data

Positive examples (21 cases)
11 13 17 19 2
23 29 3 31 37
41 43 47 5 53
59 61 67 7 71
73

Negative examples (22 cases)
10 12 14 15 16
18 20 21 22 24
25 26 27 28 30
32 33 34 4 6

8 9

Anchors (5 dimensions)
composite, number, orange, prime, record

Testing Results

Positive tests Negative tests
Positive 101, 103, 110
Predictions 107, 109,

79, 83,
89, 91,
97

Negative 36, 38,
Predictions 40, 42,

44, 45,
46, 48,
49

Accuracy: 18/19 = 94.74%

Fig. 3.9 NWD-SVM learning of prime numbers. All examples, i.e., numbers, were converted into
vectors containing the NWD values between that number and a fixed set of anchor concepts. The
classification was then carried out on these vectors using a support vector machine. The only error
made is classifying 110 as a prime

the meanings of those words. WordNet contains synsets. A synset is a synonym
set; a set of words that are interchangeable in some context, because they share a
commonly-agreed upon meaning with little or no variation. Each word in English
may have many different senses in which it may be interpreted; each of these dis-
tinct senses points to a different synset. Every word in WordNet has a pointer to
at least one synset. Each synset, in turn, must point to at least one word. Thus, we
have a many-to-many mapping between English words and synsets at the lowest
level of WordNet. It is useful to think of synsets as nodes in a graph. At the next
level we have lexical and semantic pointers. Lexical pointers are not investigated in
this section; only the following semantic pointer types are used in our comparison:
A semantic pointer is simply a directed edge in the graph whose nodes are synsets.
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Training Data

Positive examples (22 cases)
Allah Catholic Christian Dalai Lama God
Jerry Falwell Jesus John the Baptist Mother Theresa Muhammad
Saint Jude The Pope Zeus bible church
crucifix devout holy prayer rabbi
religion sacred

Negative examples (23 cases)
Abraham Lincoln Ben Franklin Bill Clinton Einstein George Washington
Jimmy Carter John Kennedy Michael Moore atheist dictionary
encyclopedia evolution helmet internet materialistic
minus money mouse science secular
seven telephone walking

Anchors (6 dimensions)
evil follower history rational scripture spirit

Testing Results

Positive tests Negative tests
Positive altar, blessing, earth, shepherd
Predictions communion, heaven,

sacrament, testament,
vatican

Negative angel Aristotle, Bertrand Russell, Greenspan, John,
Predictions Newton,Nietzsche, Plato, Socrates, air, bicycle,

car, fire, five, man, monitor, water, whistle

Accuracy: 24/27 = 88.89%

Fig. 3.10 NWD-SVM learning of religious terms. All training and test examples were converted
into vectors containing the NWD values between that example concept and a fixed set of anchor
concepts. The classification was then carried out on these vectors using a support vector machine

The pointer has one end we call a source and the other end we call a destination.
The following relations are used:

1. Hyponym: X is a hyponym of Y if X is a (kind of) Y .
2. Part meronym: X is a part meronym of Y if X is a part of Y .
3. Member meronym: X is a member meronym of Y if X is a member of Y .
4. Attribute: A noun synset for which adjectives express values. The noun weight is

an attribute, for which the adjectives light and heavy express values.
5. Similar to: A synset is similar to another one if the two synsets have meanings

that are substantially similar to each other.

Using these semantic pointers we may extract simple categories for testing. First,
a random semantic pointer (or edge) of one of the types above is chosen from the
WordNet database. Next, the source synset node of this pointer is used as a root.
Finally, we traverse outward in a breadth first order starting at this root and follow-
ing only edges that have an identical semantic pointer type; that is, if the original
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semantic pointer was a hyponym, then we would only follow hyponym pointers in
constructing the category. Thus, if we were to pick a hyponym link initially that says
a tiger is a cat, we may then continue to follow further hyponym relationships in or-
der to continue to get more specific types of cats. See the WordNet homepage [20]
documentation for specific definitions of these technical terms.

Once a category is determined, it is expanded in a breadth first way until at least
38 synsets are within the category. 38 was chosen to allow a reasonable amount
of training data to be presented with several anchor dimensions, yet also avoiding
too many. Here, a rule of thumb is helpful: it states that the number of dimensions
in the input data must not exceed one tenth the number of training samples. If the
category cannot be expanded this far, then a new one is chosen. Once a suitable
category is found, and a set of at least 38 members has been formed, a training
set is created using 25 of these cases, randomly chosen. Next, three are chosen
randomly as anchors. And finally the remaining ten are saved as positive test cases.
To fill in the negative training cases, random words are chosen from the WordNet
database. Next, three random words are chosen as unrelated anchors. Finally, 10
random words are chosen as negative test cases.

For each case, the SVM is trained on the training samples, converted to
6-dimensional vectors using NWD. The SVM is trained on a total of 50 sam-
ples. The kernel-width and error-cost parameters are automatically determined
using five-fold cross validation. Finally testing is performed using 20 examples in a
balanced ensemble to yield a final accuracy.

There are several caveats with this analysis. It is necessarily rough, because
the problem domain is difficult to define. There is no protection against certain
randomly chosen negative words being accidentally members of the category in
question, either explicitly in the greater depth transitive closure of the category, or
perhaps implicitly in common usage but not indicated in WordNet. Another detail
to notice is that WordNet is available through some Web pages, and so undoubt-
edly contributes something to Web page counts. Further experiments comparing the
results when filtering out WordNet images on the Web suggest that this problem
does not usually affect the results obtained, except when one of the anchor terms
happens to be very rare and thus receives a non-negligible contribution towards its
page count from WordNet views. In general, the previous NCD based methods, as
in [9], exhibit large-granularity artifacts at the low end of the scale; for small strings
we see coarse jumps in the distribution of NCD for different inputs which makes
differentiation difficult. With the Web based NWD we see similar problems when
page counts are less than a hundred.

We ran 100 experiments. The histogram of agreement accuracies is shown in
Fig. 3.11. On average, the NWD method turns out to agree well with the WordNet
semantic concordance made by human experts. The mean of the accuracies of agree-
ments is 0.8725. The variance is approximately 0.01367, which gives a standard
deviation of approximately 0.1169. Thus, it is rare to find agreement less than 75%.

We conclude this section with a more abstract view of the NWD-SVM method.
As we have seen, this method does not use an individual word in isolation, but in-
stead uses an ordered list of its NWD relationships with fixed anchors. Therefore
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Fig. 3.11 Histogram of accuracies over 100 trials of WordNet experiment. The average accuracy
achieved in the experiments is 0.8725

nothing can be attached to the isolated interpretation of a literal term, but only to the
ordered list by which it is represented. That is to say, the inputs to our SVM are not
directly search terms, but instead an image of the search term through the lens of the
Web distribution, and relative to other fixed terms which serve as a grounding for the
term. In most schools of ontological thought, and indeed in the WordNet database,
there is imagined a two-level structure that characterizes language: a many-to-many
relationship between word-forms or utterances and their many possible meanings.
Each link in this association will be represented in the Web distribution with strength
proportional to how common that usage is found on the Web. The NWD then am-
plifies and separates the many contributions towards the aggregate page count sum,
thereby revealing some components of the latent semantic Web. In almost every in-
formal theory of cognition we have the idea of connectedness of different concepts
in a network, and this is precisely the structure that the NWD experiments attempt
to explore.

3.4.4 Matching the Meaning

Yet another potential application of the NWD method is in natural language trans-
lation. In the experiment below [10] we do not use SVMs to obtain the result, but
determine correlations instead. Suppose we are given a system that tries to infer
a translation-vocabulary among English and Spanish. Assume that the system has
already determined that there are five words that appear in two different matched
sentences, but the permutation associating the English and Spanish words is, as yet,
undetermined. This setting can arise in real situations, because English and Spanish
have different rules for word-ordering. Thus, at the outset we assume a pre-existing
vocabulary of eight English words with their matched Spanish translation. Can we
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Given starting vocabulary
English Spanish

tooth diente
joy alegria
tree arbol

electricity electricidad
table tabla

money dinero
sound sonido
music musica

Unknown permutation
English Spanish

plant bailar
car hablar

dance amigo
speak coche
friend planta

Predicted permutation
English Spanish

plant planta
car coche

dance bailar
speak hablar
friend amigo

Fig. 3.12 English–Spanish translation problem. The left table is given to the system as background
knowledge, the middle table contains words whose mapping is not known. The right table shows
the mapping determined by the system

infer the correct permutation mapping the unknown English words using the pre-
existing vocabulary as a basis?

We start by forming an NWD matrix using additional English words of which
the translation is known, Fig. 3.12. We label the columns by the translation-known
English words, the rows by the translation-unknown words. The entries of the matrix
are the NWDs of the English words labeling the columns and rows. This constitutes
the English basis matrix. Next, consider the known Spanish words corresponding to
the known English words. Form a new matrix with the known Spanish words label-
ing the columns in the same order as the known English words. Label the rows of
the new matrix by choosing one of the many possible permutations of the unknown
Spanish words. For each permutation, form the NWD matrix for the Spanish words,
and compute the pairwise correlation of this sequence of values to each of the val-
ues in the given English word basis matrix. Choose the permutation with the highest
positive correlation. If there is no positive correlation, report a failure to extend the
vocabulary. In this example, the computer inferred the correct permutation for the
testing words, see the right table in Fig. 3.12.

3.4.5 Question–Answer System

A typical procedure for finding an answer on the World Wide Web consists in en-
tering some terms regarding the question into a Web search engine and then brows-
ing the search results in search for the answer. This is particularly inconvenient
when one uses a mobile device with a slow internet connection and small display.
Question–answer (QA) systems attempt to solve this problem. They allow the user
to enter a question in natural language and generate an answer by searching the Web
autonomously.

In this section we describe some parts of the QA system QUANTA [25] that
uses a variant of the NID to identify the correct answer to a question out of several
candidates for answers. QUANTA is remarkable in that it uses neither NCD nor
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NWD introduced so far, but a variation that is nevertheless based on the same theo-
retical principles. This variation is tuned to the particular needs of a QA system. We
begin with some motivation for this particular variant and then describe it formally
within the Kolmogorov framework. We shall focus on the new distance measure,
not on other, interesting, details of the system, such as parsing and chunking the
question, interfacing Web search engines, or generating candidate answers. We thus
assume that for a given question a set of possible answers is already available, and
the system only has to pick the (or a) right one.

As an example we consider the question “Which city is Lake Washington by?,”
which allows for many answers, among them Seattle, Bellevue, or Dallas. The first
two cities are correct answers, but the preferred answer would be Seattle as the
more well-known city. In a straightforward attempt to finding the right answer using
the normalized Web distance we could compute eG(Lake Washington,Bellevue),
eG(Lake Washington,Seattle) and eG(Lake Washington, Dallas) and pick the city
with the least distance. An experiment performed in February 2008 with a popular
Web search engine yielded

• eG(Lake Washington, Bellevue) = 0.4658,
• eG(Lake Washington, Seattle) = 0.5716,
• eG(Lake Washington, Dallas) = 0.8302,

so that Bellevue would have been chosen. Without normalization the respective dis-
tance values are 6.33, 7.54 and 10.95. Intuitively, the reason for Seattle being rel-
atively far away from Lake Washington (in terms of eG) is that, due to Seattle’s
size and popularity, it has many concepts in its neighborhood not all of which can
be close. For the less known city of Bellevue, however, Lake Washington is rela-
tively more important. Put differently, the concept “Seattle” contains a lot of infor-
mation that is irrelevant for its being situated at Lake Washington. Symmetrically,
Lake Washington encompasses much information unrelated to Seattle. A variation
of (3.1) that accounts for possible irrelevant information is then

Emin,0(x,y) = min{�(p) : U(x, p,r) = y and U(y, p,q) = x (3.7)
and �(p)+ �(q)+ �(r)≤ E0(x,y)} .

Here, r represents the irrelevant information in y and q the irrelevant information
in x. The additional restriction �(p)+�(q)+�(r)≤ E0(x,y) ensures that the amount
of irrelevant information is limited. Without it, one could set r = y and q = x and
always use a program p of constant size that merely outputs one of its arguments.

Similarly as E0 in (3.1), Emin,0 cannot be used practically right away, it must be
converted into a formula based on K [25]:

Theorem 3.9. Emin,0(x,y) = min{K(x|y),K(y|x)}+O(log�(xy)).

The term min{K(x|y),K(y|x)} is also called the min distance and denoted by Emin.
The min distance is not a metric since it does not satisfy the triangle inequality.
But in question–answer systems on the internet, distances are measured with partial
information anyway, hence it is unreasonable to require the triangle inequality to
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hold. Furthermore, Emin satisfies the density conditions in (3.2) only for strings x
with K(x) ≥ �(x)+O(1). It does not hold for objects with a low Kolmogorov com-
plexity, which correspond to concepts with high frequency, such as Seattle. That
Emin violates (3.2) for such objects intuitively means that popular concepts are al-
lowed to have a denser neighborhood. This property is therefore rather a feature of
Emin than a bug.

In another step paralleling the development of the NID, the min distance can be
normalized. Analogously to e, we define the normalized version emin of Emin as

emin(x,y) =
Emin(x,y)

min{K(x),K(y)} =
min{K(x|y),K(y|x)}

min{K(x),K(y)} .

It follows, though not obviously, that emin(x,y)≤ e(x,y) for all x and y.
The normalized min distance emin can be approximated by Web statistics in the

same way as the NWD approximates the NID (cf. (3.6)), namely using the formula

eG,min(x,y) =
min{log f (x), log f (y)}− log f (x,y)

logN−max{log f (x), log f (y)} .

Applying this normalized min Web distance to our above example question and
answers, we obtain:

• eG,min(Lake Washington, Bellevue) = 0.4496,
• eG,min(Lake Washington, Seattle) = 0.4281,
• eG,min(Lake Washington, Dallas) = 0.7746,

that is, the answer “Seattle” would now be preferred over “Bellevue,” and Dallas is
still out of the question.

Regardless of whether we used eG or eG,min, statistics would be obtained for the
(co-)occurrence of the following single words and pairs:

• “Lake Washington”
• “Seattle”
• “Bellevue”
• “Lake Washington” and “Seattle”
• “Lake Washington” and “Bellevue”

But there is nothing hinting to the fact that we are looking for the co-location of a
city and a lake. Of course, in this example it is reasonably clear. If, however, the
question was represented by “Alan Turing,” and candidate answers were “London,”
“Wilmslow,” and “Paris,” it would be unclear whether we are looking for Turing’s
place of birth, place of death, or any other place related to him. Clearly, the veracity
of any of these answers depends on the particular question. It is therefore necessary
to add some clues as to what the question is to the queries given to the Web search
engine. For example adding the phrase “is born in” to all queries would (hopefully)
limit the obtained statistics to Web pages that are concerned with Turing’s birth and
therefore result in “London” being chosen as answer.
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The idea of such side information can easily be incorporated into the underlying
theory by adding a condition to all terms in emin (or e for that matter), yielding

emin(x,y|c) =
min{K(x|y,c),K(y|x,c)}

min{K(x|c),K(y|c)} ,

where c denotes the conditional information, such as “is born in” in the above ex-
ample. The extraction of a suitable c requires some sophistication and is beyond the
scope of our discussion here.

The conditional version of emin is at the core of the QUANTA system, whose
question answering capabilities compare favorably with other QA systems [25]. The
beneficial properties of emin can perhaps best seen in comparison to other measures
such as the normalized max distance e or the unnormalized distances E and Emin.
Replacing emin with e results in answers that are still technically correct but often
less popular and therefore less “good.” We already mentioned Bellevue being pre-
ferred over Seattle as a city located at Lake Washington. Another example is the
question “When was CERN founded?,” which would be answered by e with “52
years ago,” correct in 2006, whereas emin responds more accurately with “1954.”

Using the unnormalized E gives overly much weight to popular concepts. For
instance, “Who is the greatest scientist of all?” would be answered with “God,”
whereas emin would give “Newton,” the reason for this discrepancy being that, in
terms of Web pages, God is much more popular than Newton. More generally, ex-
periments have shown [25] that Emin and E perform about 8% worse than emin.

The development of emin to pick the most plausible answer in a QA system
demonstrates how distance measures customized to special applications can be de-
rived from first principles of Kolmogorov complexity theory, which in turn shows
the power and flexibility of this theoretical approach.

3.5 Conclusions

The approach described in this chapter rests upon the simple idea that an information
distance between two objects can be measured by the size of the shortest description
that transforms each object into the other one. This idea is most naturally expressed
mathematically using Kolmogorov complexity. Kolmogorov complexity, moreover,
provides mathematical tools to show that such a measure is, in a proper sense, uni-
versal among all (upper semi)computable distance measures satisfying a natural
density condition. These comprise most, if not all, distances one may be interested
in. This information distance happens to be a metric. Since two large, very similar,
objects may have the same information distance as two small, very dissimilar, ob-
jects, in terms of similarity it is the relative distance we are interested in. Hence we
normalize the information metric to a relative similarity (also metric) in between 0
and 1. However, the normalized information metric is uncomputable. We approx-
imate its Kolmogorov complexity parts by off-the-shelf compression programs (in
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the case of the normalized compression distance) or readily available statistics from
the internet (in case of the normalized Web distance). The outcome are two practical
distance measures, for literal as well as for non-literal data, that have been proved
useful in numerous applications, some of which have been presented in the previous
sections.

Just as important as the successes of these practical measures, however, is the un-
derlying process used to derive them. The derivations of NCD and NWD are special
instances of this process, which can roughly be broken into three steps: (1) devis-
ing an abstract distance notion, (2) transforming it inside the abstract mathematical
realm into an equivalent, yet more easily realizable, formula, and (3) using real-
world algorithms or data to practically realize the theoretically conceived measure.
That this approach does not work by chance just for the information distance, is
demonstrated by the derivation of the minimum distance, which employs the same
three step process, just with different starting requirements for the distance measure.

Central design principles behind these Kolmogorov-based distance measures are
the requirement of universality and the use of absolute measures of information
content to achieve this universality. From these principles it follows naturally that
the resulting distance measures are independent of fixed feature sets and do not
require parameters for tuning. They can thus be used to build feature- and parameter-
free methods that are suited for many tasks in exploratory data mining, alignment-
free genomics, and elsewhere.

Appendix

List of Symbols

• x̄: self-delimiting encoding of string x
• �(·): length of a string
• ε: empty string
• | . . . |: cardinality
• R+: set of all non-negative rational numbers
• R: set of all rational numbers
• N : set of all natural numbers
• Q: set of all rational numbers
• �. . .�: floor function
• 〈. . .〉: pairing function
• C(·|·): conditional Kolmogorov complexity
• C(·): unconditional Kolmogorov complexity
• K(·|·): conditional Kolmogorov prefix complexity
• K(·): unconditional Kolmogorov prefix complexity
• m: universal upper semicomputable discrete semimeasure
• ⊕: bitwise xor
• E: max distance
• E0: information distance
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• e: normalized information distance
• eZ : normalized compression distance
• eG: normalized Web distance
• W: set of all Web pages
• x: set of all Web pages containing term x
• f (x): number of Web pages containing term x
• g(x): probability that a Web page contains term x
• Emin: min distance
• emin: normalized min distance
• eG,min: normalized min Web distance
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Chapter 4
The Application of Data Compression-Based
Distances to Biological Sequences

Attila Kertész-Farkas, András Kocsor, and Sándor Pongor

Abstract Text compressor algorithms can be used to construct metric distance mea-
sures (CBDs) suitable for character sequences. Here we review the principle of var-
ious types of compressor algorithms and describe their general behaviour with re-
spect to the comparison of protein and DNA sequences. We employ reduced and
enlarged alphabets, and model biological rearrangements like domain shuffling. In
the classification experiments evaluated with ROC analysis, CBDs perform less well
than substring-based methods such as the BLAST and the Smith–Waterman algo-
rithms, but perform better than distances based on word composition. CBDs out-
performed substring methods with respect to domain shuffling, and in some cases
showed an increased performance when the alphabet was reduced.

4.1 Introduction

The term biological sequence denotes the most characteristic data type used in bi-
ology today. Data on the structure of genes and proteins is collected and stored in
the form of long character sequences, written in a four-letter alphabet for DNA and
in a 20-letter alphabet for proteins. The collection, organisation and computational
analysis of sequence databanks is one of the main tasks of bioinformatics. The clas-
sification of sequence data is at the heart of this work, since the annotation of raw
sequence data is primarily based on similarity searches against existing databanks,
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whereby a new sequence is assigned to one of the known classes (similarity groups).
In order to accomplish this task, one needs sequence similarity measures that reflect
the similarity of two sequences a realistic way.

Sequence similarity measures which are currently used fall into two main cate-
gories [2]. One of them is based on shared common substrings that are determined
by approximate string matching heuristics, such as the well-known BLAST program
[3], and dynamic programming methods like the Smith–Waterman algorithm [31].
The other class includes variants of n-gram distances whereby a sequence is first
represented as a vector of n-gram word counts (e.g. character doublets, triplets and
so on), and then compared in terms of an Euclidean distance or some other vector
similarity measure [35]. Even though it is less efficient than a substring similarity
search, n-gram methods are frequently included as fast screening tools into genome
annotation pipelines.

The interest in compression-based methods was fostered by Vitnyi et al.’s sem-
inal paper in which they proved that a simple index of sequence compressibility
is actually better than n-gram techniques. Compression-based methods were soon
employed in protein sequences as well [22], and it was also shown that different
compressors perform differently on various sequence data [16].

The aim of the present work is to characterise compression algorithms with re-
spect to two salient problems: invariance to biological changes and the resolution
of sequence representations (alphabet size). In general, a similarity measure is ex-
pected to be invariant with respect to certain changes. For instance, the similarity of
3D shapes should be invariant with respect to the position of the objects; the sim-
ilarity of melodies should be invariant to the pitch, the similarity of uttered words
should be independent of the speaker, and so on. By the same token, we should
expect that a similarity measure of biological sequences remain invariant with re-
spect to a certain set of evolutionary events. Two of these are noteworthy: (1) Point
mutations – sequences differing in only a few mutations should remain similar in
the mathematical sense. This can be characterised by classification experiments fol-
lowed by a ROC analysis [22]; (2) Major rearrangements can occur in the evolution
of protein families. For instance, large segments of proteins can be displaced through
a process called “domain shuffling”. It is a moot question whether or not, or to what
extent, rearranged sequences maintain similarity. This question can be studied by
producing artificially rearranged sequences and comparing them with the various
similarity measures [22].

The question of alphabet size is not merely one of technical interest. Re-
duced/enlarged alphabets are often used by bioinformaticians to represent protein
and DNA sequences, but there is no systematic data telling us whether these really
influence our ability to distinguish or classify biological sequences. Since the speed
and memory requirements of compression algorithms depend on the algorithm’s
size, it would be interesting to see whether or not the classification efficiency of
compression algorithms depends on this variable. And of course, all of these effects
may depend on how closely the sequences are related.

In the next section we will provide a short introduction to the notion of the Kol-
mogorov Complexity-induced Information Metric as well as a description of the
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various compressor types used in our experiments. In Sect. 4.3 we will describe the
experiments with our conclusions drawn for them. Finally, in Sect. 4.4 we will sum-
marise our findings and draw some conclusions.

4.2 Definitions and Methods

The notion of an information distance between two discrete objects is the quantity
of information in an object in terms of the number of bits needed to reconstruct the
other. This notion arises from the theory of the thermodynamics of computation,
which was first mentioned in [27, 39] and in [30] in the context of image similarity.
Later, an introduction with related definitions and theory was published in [5] in
1998. More formal definitions, theory and related details can be found in [26].

4.2.1 Information Distance

A distance function D is a positive real-valued function defined on the Cartesian
product of an arbitrary set X . It is also called a metric on X if it satisfies the following
so-called metric properties:

• Non-negativity and identity: D(x,y)≥ 0 and D(x,y) = 0 iff x = y
• Symmetry: D(x,y) = D(y,x)
• Triangle inequality: D(x,z)≤ D(x,y)+D(y,y)

for every x,y,z ∈ X . These metric properties not only provide a useful characterisa-
tion of distance functions that satisfy them, but a metric function is also good as a
reliable distance function.

Strings: Any finite object can be represented by binary strings without loss of gen-
erality (w.l.o.g). For example any genome sequence, arbitrary number, program rep-
resented by its Gödel number, image, structure, and term can be encoded by binary
strings. Here, the string x is a finite binary string and its length is defined in the usual
way and will be denoted by l(x). An empty string will be denoted by ε and its length
l(ε) = 0. The concatenation of x and y will be simply denoted by xy. A set of strings
S ⊆ {0,1}∗ is called a prefix-free set if any string member is not a prefix of another
member. A prefix-free set has a useful characterisation, namely it satisfies the Kraft
inequality. Formally, for a prefix-free set S, we have

∑
x∈S

2−l(x) ≤ 1. (4.1)

An important consequence of this property is that in a sequence s1s2 . . .sn (si ∈ S)
the end of string si is immediately recognizable; that is, the concatenation of
strings can be separated by commas into codewords without looking at subsequent
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symbols. This sort of code is also called self-punctuating, self-delimiting or instan-
taneous code.

Kolmogorov Complexity: A partial recursive function F(p,x) is called a prefix com-
puter if for each x, the set {p | F(p,x) < ∞} is a prefix-free set. The argument p is
called a prefix program because no punctuation is required to tell F where p ends
and the input to the machine can be simply the concatenation px. The conditional
Kolmogorov Complexity of the string x with respect to (w.r.t.) y, with prefix com-
puter F , is defined by

KF(x | y) = min{l(p) | F(p,x) = y}. (4.2)

When such a p does not exist, its value is infinite. The invariance theorem states that
there is a universal or optimal prefix computer U for every other prefix computer F
and for any x,y such that

KU (x | y)≤ KF(x | y)+ cF , (4.3)

where cF depends on F but not on x,y. This universal computer U is fixed as the
standard reference, and we call K(x | y) = KU (x | y) the conditional Kolmogorov
Complexity of x w.r.t. y; moreover, the unconditional Kolmogorov Complexity of
a string x is defined by K(x | ε). The Kolmogorov Complexity of x w.r.t. y is the
shortest binary prefix program that computes x with additional information obtained
from y. However, it is non-computable in the Turing sense; that is, no program exists
that can compute it in practice since it can be reduced to the halting problem [26].

Information Distance: With the information content, the information distance be-
tween strings x and y is defined as the length of the shortest binary program on the
reference universal prefix computer with input y, which computes x and vice versa,
formally:

ID(x,y) = min{l(p) |U(p,x) = y, U(p,y) = x}. (4.4)

This is clearly symmetric, and it has been proven that it satisfies the triangle in-
equality up to an additive constant. ID can be computed by reversible computations
up to an additive constant, but there is an easier but weaker approximation of ID. It
has been shown that ID, up to an additive logarithmic term, can be computed by the
so-called max distance E:

E(x,y) = max{K(x | y),K(y | x)}. (4.5)

In general, the “up to an additive logarithmic term” means that the information re-
quired to reconstruct x from y is always maximally correlated with the information
required to reconstruct y from x that is dependent on the former amount of informa-
tion. Thus E is also a suitable approximation for the information distance.

Density, Universality and Metric Properties: In a discrete space with a distance
function D, the rate of growth of the number of elements in balls of size d, centred at
x, denoted by #BD(x,d), can be considered as a certain characterisation of the space.
For example, the distance function D(x,y) = 1 for all x �= y is not a realistic distance
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function, but it satisfies the triangle inequality. As for the Hamming distance, H,
#BH(x,d) = 2d , hence it is finite. For a function D to be a realistic distance function
it needs to be satisfy the so-called normalization property:

∑
y:y�=x

2−D(x,y) ≤ 1. (4.6)

This holds for the information distance E(x,y) and also for ID because they both
satisfy the Kraft inequality. Moreover,

log(#BE(x,d)) = d−K(d | x) (4.7)

up to an additive constant. This means that the number of elements in the ball
BE(x,d) grows exponentially w.r.t. d up to an additive constant. In addition, a
more complex string has fewer neighbours and this has been shown by the theo-
rem “tough guys have few neighbours thermodynamically” [27]. E is universal (up
to an additive error term) in the sense that it is smaller than every other upper-semi-
computable function f which satisfies the normalization property. That is, we have

E(x,y)≤ f (x,y)+O(log(k)/k), (4.8)

where k = max{K(x),K(y)}. This seems quite reasonable, as we have greater time
to process x and y, and we may discover additional similarities between them; then
we can revise our upper bound on their distance. As regards semi-computability,
E(x,y) is the limit of a computable sequence of upper bounds.

The non-negativity and symmetry properties of the information distance E(x,y)
are a consequence of the definition, but E(x,y) satisfies the triangle inequality only
up to an additive error term [5].

Compression-Based Distances: The non-normalized information distance is not a
proper evolutionary distance measure because of the length factor of strings. For a
given pair of strings x and y the normalized information distance is defined by

D(x,y) =
max{K(x | y),K(y | x)}

max{K(x),K(y)} . (4.9)

In [25] it was shown this satisfies the triangle inequality and vanishes when x = y
with a negligible error term. The proof of its universality was given in [24], and
the proof that it obeys the normalization property is more technical (for details, see
[12, 25]).

The numerator can be rewritten in the form max{K(xy)−K(x),K(yx)−K(y)}
within logarithmic additive precision due to the additive property of prefix Kol-
mogorov complexity [12]. Thus we get

D(x,y) =
K(xy)−min{K(x),K(y)}

max{K(x),K(y)} . (4.10)
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Since the Kolmogorov complexity cannot be computed, it has to be approxi-
mated, and for this purpose, real file compressors are employed. Let C(x) be the
length of the compressed string compressed by a particular compressor like gzip or
arj. Then the approximation for the information distance E can be obtained by using
the following formula:

CBD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} . (4.11)

A CBM is a metric up to an additive constant and satisfies the normalization property
if C satisfies the following properties up to an additive term:

• Idempotency: C(xx) = C(x)
• Symmetry: C(xy) = C(yx)
• Monotonicity: C(xy) ≥C(x)
• Distributivity: C(xy)+C(z)≤C(xy)+C(xy)

The proof can be found in Theorem 6.2 of [12]. A compressor satisfying these
properties is called a normal compressor.

There is no bound for the difference between the information distance and its ap-
proximation; that is, |E −CBD| is unbounded. For example, the Kolmogorov com-
plexity of the first few million digits of the number π , denoted by pi, is a constant
because its digits can be generated by a simple program but C(pi) is proportional to
l(pi) for every known text compressor C.

4.2.2 Data Compression Algorithms

In computer science, the purpose of data compression is to store the data more eco-
nomically without redundancy, and it can be compressed whenever some events are
more likely than others. In general, this can be done by assigning a short descrip-
tion code to the more frequent patterns and a longer description code to the less
frequent patterns. If the original data can be fully reconstructed, it is called loss-
less compression. If the original data cannot be exactly reconstructed from those
descriptions, it is known as lossy compression. This form is widely used in the area
of image and audio compression because the fine details can be removed without
being noticed by the listeners. If a set of codes S satisfies the Kraft inequality, it is
a lossless compression and it is a prefix-free set; conversely, if it does not satisfy
the Kraft inequality, it is a lossy compression and it is not a prefix-free set. None
of data or text string can be losslessly compressed to an arbitrary small size by any
compression method. The limit of the compression process that is needed to fully
describe the original data is related to Shannon entropy or to the information content
[13]. A good collection of compressors and their related descriptions are available
at http://datacompression.info/. Now, we will briefly describe the compressors used
in our experiments.
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Adaptive Huffman (Dynamic Huffman Coding): Here, the assumption is that the
sequence is generated by a source over a d-ary alphabet D over a probability dis-
tribution P; that is, for each x ∈ D, the p(x) is the probability of the letter x and
∑x∈D p(x) = 1. Let C(.) be a source code and C(x) be the codeword associated with
x, and for ease of notation, l(x) let stand for l(C(x)), the length of the codeword. It
should be demanded that C is non-singular; that is, x �= y→C(x) �=C(y) and it gives
a prefix-free set. The expected length L(C) of a source code is defined by

L(C) = ∑
x∈D

p(x)l(x). (4.12)

The Huffman coding is the optimal source coding; that is

L∗ = min
C
{L(C)}, (4.13)

subject to C satisfying the Kraft inequality. Solving this constrained optimization
problem using Lagrange multipliers yields optimal code lengths l∗ = − logd p(x).
The non-integer choice of codeword length gives L∗ = H(P), that is, the length of
the optimal compression of data is equal to the Shannon entropy of the distribution
P of the codewords. Moreover, for integer codeword length, we have H(P) ≤ L∗ ≤
H(P)+1 and the codes can be built by a method like Shannon–Fano coding [13].

In practice, the key part of the Huffman coding method is to assess the probability of
letter occurrence. The adaptive Huffman coding constructs a code when the symbols
are being transmitted, having no initial knowledge of the source distribution, which
allows one-pass encoding and adaptation to changing conditions in the data. For
our experiments we used http://www.xcf.berkeley.edu/∼ali/K0D/Algorithms/huff/

Lempel–Ziv–Welch (LZW): It is a one-pass stream parsing algorithm that is widely
used because of its simplicity and fast execution speed. It divides a sequence into
distinct phrases such that each block is the shortest string which is not a previously
parsed phrase. For example, let x = 01111000110 be a string of length 11, then
the LZW compressor C(x) produces six codes: 0,1,11,10,00,110, thus l(C(x)) = 6.
Here, the assumption is that sequences are generated by a higher but finite order sta-
tionary Markov process P over a finite alphabet. The entropy of P can be estimated
by the formula n−1C(x) log2 C(x) and the convergence is almost guaranteed as the
length of the sequence x tends to infinity. In practice, a better compression ratio can
sometimes be achieved by LZW than Huffman coding because of this more realistic
assumption. Here we used our own implementation of the original LZW algorithm.

GenCompress (GC): This was developed for the compression of large genomes
by exploiting hidden regularities and properties in them, such as repetitions and
mutations. The main idea will now be described. First, let us consider a genome
sequence x = uv and suppose that its first portion u has already been compressed.
Find the largest prefix v′ of v with an edit distance method such that it is max-
imally partial matched by a substring u′ in u that has minimal edit operations
needed to obtain v′ from u′. After, only the position of u′ and the edit opera-
tions list is encoded by Fibonacci coding. GenCompress is a one-pass algorithm
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and it is the state-of-the-art compression method for genomic sequences. How-
ever, it is not fast in practice because its performance is more important so it is
recommended for offline computations [11]. We downloaded this program from
http://www.cs.cityu.edu.hk/∼cssamk/gencomp/GenCompress1.htm

Prediction by Partial Matching (PPM): PPM is an adaptive statistical data com-
pression technique that uses context tree to record the frequency of characters within
their contexts. Then it predicts the next symbol in the stream using arithmetic cod-
ing (AC) to encode an event with an interval that is assigned to the event w.r.t.
their distribution, and the codeword is the shortest binary number from this interval.
A more likely event has a correspondingly longer interval, and thus a shorter code-
word can be selected [36]. In our experiments we used the implementation from
http://compression.ru/ds/.

Burrows–Wheeler Transform (BWT): While BWT is not a compressor method, it
is closely related to data compression and is used as a pre-processing method to
achieve a better compression ratio. It is a reversible block-sorting method that pro-
duces all n-cyclic shifts of the original sequence then orders them lexicographically
and outputs the last column of the sorted table as well as the position of the original
sequence in the sorted table [8]. This procedure brings groups of symbols with a
similar context closer together and these segments can be used to better estimate the
entropy of a Markov process [9]. The implementation that we used was downloaded
from http://www.geocities.com/imran akthar/files/bwt matlab code.zip.

Advanced Block-Sorting Compressor (ABC): This compressor contains several ad-
vanced compression techniques like BWT, run length encoding, AC, weighted fre-
quency count and sorted inversion frequencies. For details, see [1]. The compression
speed is approximately half that of GZIP and BZIP2. This program was downloaded
from http://www.data-compression.info/ABC/

4.3 Experiments and Discussion

In this section we will describe several experiments that were carried out to deter-
mine how CBDs can exploit the similarity among sequences, from different points
of view. Where possible, the Smith–Waterman (SW) and the BLAST alignment-
based sequence comparison methods as well as the naive distance were evaluated
for comparison. The BLAST version 2.2.4 was used with a cutoff score of 25 and
the SW algorithm used was implemented in MATLAB with the BLOSUM 62 ma-
trix [19]. In both cases the gap opening and extension parameters were set to their
default values. The naive distance between protein sequences was simply the Eu-
clidean distance of a vector bi-gram counts of sequences.
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4.3.1 Experiments on Compressor Properties

In our first experiments, we examined how well each compressor satisfies the
properties of a normal compressor. To do this, we chose the SCOP40 (40% identity)
database. The sequences were taken from the SCOP database 1.69 [4] and were
downloaded from the ASTRAL site (http://astral.berkeley.edu/). Fifty-three non-
contiguous domains were discarded and from the remaining 7,237 entries protein
families that had at least five members, and at least 10 members outside the fam-
ily but within the same superfamily were selected. Altogether, we collected 1,357
sequences. This database is available at http://net.icgeb.org/benchmark/ [32]. The
average length of the sequences was 194 characters with a relatively high standard
deviation of 116. Table 4.1 illustrates how each compressor satisfies the normality
properties. In practice, the monotonicity is obeyed for stream-based compressors
and only slightly less evident for block-coding types. The distributivity property
appears to be satisfied in each case. Symmetry is not precisely obeyed for stream-
based compressors and CBDs become slightly asymmetric; however, in practice, the
difference |CBD(x,y)−CBD(y,x) | is quite small. A compressor should search ex-
act repetitions and obey idempotency, but in practice this seems to the most difficult
condition for compressors and thus CBDs do not vanish when x = y.

4.3.2 Invariance Experiments on Rearranged Sequences

Protein evolution often includes rearrangements such as the gain or loss of domains
and circular permutations. Therefore the question arises of whether or not CBDs
can detect the differences between the products. To answer this, we used the C1S
precursor (Swiss-Prot ID: C1S HUMAN, AC:P09871), a multi-domain protein of

Table 4.1 Results of compressors’ properties on SCOP40

Compressor Length C(x)a Idempontecy |C(xx)−C(x) | Symmetryb |C(xy)−C(yx) |

avg. std. #violc avg.d std.e #violc avg.d std.e

ABC 142 66.26 1,357 15.98 5.95 845,808 1.07 0.27
AH 121 63.01 1,357 100.84 61.55 1,240,000 1.38 0.62
LZW 154 78.99 1,357 92.31 52.52 1,570,000 2.63 1.70
GC 143 73.79 1,357 4.93 0.80 7,968 1.61 0.76
PPM 160 70.25 1,357 5.46 1.24 1,260,000 1.49 0.79

aThe average length of the original sequences was 194 characters with a standard devi-
ation of 116
bThe total number of test cases was 1,841,450
cThe number of cases when the compressor violated the condition
dThe average bias
eThe standard deviation of the bias
With these compressors acting on this dataset, the distributivity and monotonicity prop-
erties were not violated.
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Table 4.2 The effect of sequence rearrangements on the various similarity/distance measures
on C1S

ABC AHc GC LZW PPM SW

score %b score % score % score % score % score %

Itself 0.088 0 0.939 0 0.013 0 0.646 0 0.020 0 1,895 0
(ABCB′DD′E)a

Duplication of C 0.179 11 0.945 −284 0.051 4 0.661 13 0.059 5 1,804 5
(ABCCB′DD′E)
Deletion of C 0.226 17 0.941 −107 0.115 11 0.663 14 0.121 12 1,673 12
(ABB′DD′E)
Deletion of CB′ 0.435 43 0.939 0 0.272 28 0.701 47 0.261 28 1,305 31
(ABDD′E)
Circular permut. 0.157 9 0.941 −107 0.062 5 0.665 16 0.072 6 966 50
(D′EABCB′D)
Reverse order 0.222 17 0.945 −249 0.082 7 0.665 16 0.075 6 679 65
(ED′DB′CBA)
Duplication 0.142 7 0.970 −1,294 0.013 0 0.743 82 0.024 0 1,895 0
(2×ABCB′DD′E)
Random shuffled 0.891 100 0.963 100 0.954 100 0.763 100 0.868 100 19 100

aSwiss-Prot AC = P09871, A = Signal peptide (res. 1–15), B, B′ = CUB domains (res. 16–130, 175–
290, respectively), C = EGF domain (res. 131–172), D,D′ = Sushi domains (res. 292–356, 357–423,
respectively), E = Peptidase S1 (res. 438–688)
bScore of C1S with itself = 0%, score of C1S with randomly shuffled C1S = 100%
cAH gives abnormal percent values because the distance to itself and to its randomly shuffled
sequence are similar.

688 residues consisting of a signal peptide (A), two CUB domains (B,B′), a EGF
domain (C), two SUSHI domains (D,D′) and a trypsin-like catalytic domain (E) that
is post-translationally cleaved from the precursor. The domain architecture of the
native protein can be written as ABCB′DD′E and a hypothetical circular permutant
can be written as DD′EABCB′. The results in Table 4.2 show that a reshuffling of
the domains does not substantially affect the CBDs. Comparing the C1S precursor
with its reshuffled counterparts in which the domain order is reversed, gives a PPM
distance of 0.075, while the C1S compared to itself gives a value of 0.020 (The
respective SW score values are 679 and 1,895; there is a substantial difference). In
addition, the circular permutation of a long sequence has a smaller effect on the
compression distance than on the SW score. This property of a CBM may be useful
when looking for similarities between rearranged sequences.

4.3.3 The Effect of Alphabet Size

Here we examined the sensitivity of CBDs to sequence manipulation, such as
alphabet reduction and expansion. To do this, we chose a set of 131 sequences rep-
resenting the essentially ubiquitous glycolytic enzyme, 3-phosphoglycerate kinase
(3PGK). The sequences are available both as amino acid residues (358–505 residues
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in length) and nucleotide residues (1,074–1,515) obtained from 15 archaean (con-
sisting of 2 phyla), 83 bacterial (consisting of 3 phyla) and 33 eukaryotic species
(consisting of 5 phyla). The dataset is freely available [32].

Experiment: An alphabet reduction was evaluated just on amino acids in such way
that they were grouped into different groups and each amino acid residue was re-
placed by its group identifier. The Dayhoff classes (“AGPST, DENQ, HKR, ILMV,
FWY, C”) were obtained from [14] and here are referred to as Dayhoff6. Other
classes were taken from Table 1 of [33] and were denoted by SB4, SB6, SB8, SB12,
and SB16, respectively. The number in the class name denotes the number of amino
acid clusters. The alphabet expansion was the residue composition; that is, each
bi-gram and tri-gram was considered as a single letter yielding an alphabet with
number of elements n2 and n3, respectively, where n is the number of a certain al-
phabet. In DNA sequences it provided an alphabet of 16 or 64 letters, respectively.
In amino acid sequences, with a reduced alphabet, we applied this on alphabets SB4,
SB6, SB8 and Dayhoff6 classes. The BWT transformation was also evaluated on the
original amino acid and nucleotide sequences to see how well it supports compres-
sion performance. However, the GenCompress (GC) algorithm was not evaluated
on sequences obtained by alphabet expansion because it was originally developed
for genome sequences and not for strings of arbitrary characters and alphabets.

Evaluation: To evaluate how well a distance matrix reflects the groups, the ROC
analysis [17] was used in the following way. The similarity of two proteins was
used as the score of a binary classifier, putting them into the same group such as
kingdom and phylum, denoted by AUC-kingdom and AUC-phylum, respectively.
Next, the ROC analysis was performed by plotting sensitivity versus 1-specificity
at various threshold values, and the resulting curve was integrated to give an “area
under the curve” (AUC) value. For a perfect ranking AUC = 1.0, while for a random
ranking AUC = 0.5. The calculated AUC value can be interpreted as the probability
of a similarity score for a pair from the same group being greater than the score
for a sequence pair from a different group [18]. Here, the ROC analysis was evalu-
ated on each distance matrix calculated by a CBD on each dataset constructed from
the 3PGK by alphabet reduction, expansion and BWT, respectively. Figure 4.1a
shows high correlation between the AUC-kingdom and AUC-phylum, hence in the
following just the AUC-phylum is shown. In Fig. 4.1b the correlation between the
compression ratio and the AUC-phylum is plotted, where the compression ratio cr
is defined by

cr =
avg.uncompr.size

avg.compr.size
· �log2(al phabetsize)�

log2(256)
. (4.14)

Here �.� stands for the larger integer. The second constant term is a scaling factor
intended to provide a fair comparison for compressors on different size of alphabet
of 3PGK. After computing it, we found no apparent connection between the com-
pression performance and the quality of CBDs (measured by AUC), but a non-linear
relationship was found between the compression ratio and the size of the alphabet
(see Fig. 4.1c). This suggests that there is no connection between the alphabet size
and AUC, but in some cases an improvement can be attained. For example, the
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Fig. 4.1 The correlation between methods on nucleotide ( plus) and amino acid (diamond)
sequences from 3PGK. (a) The relationship between the AUC-phylum and AUC-kingdom; (b) the
correlation between compression ratio and AUC; (c) the connection ratio is related to the alphabet
size non-linearly

Table 4.3 AUC results for amino acid sequences with an alphabet reduction and BWT acting on
3PGK

Original SB16 SB12 SB8 SB6 SB4 Dayhoff6 BWT

ABC 0.738 0.766 0.771 0.783 0.801 0.764 0.745 0.655
AH 0.658 0.628 0.636 0.625 0.567 0.541 0.583 0.652
GC 0.763 0.759 0.746 0.773 0.762 0.779 0.767 0.689
LZW 0.666 0.620 0.623 0.626 0.589 0.582 0.581 0.599
PPM 0.764 0.762 0.766 0.783 0.779 0.790 0.782 0.706

The pairwise distance/similarity matrix also was calculated on the original amino acids sequences
via naive distance and SW, and the AUC values we got were 0.685 and 0.797, respectively. The
largest score is underlined.

alphabet reduced to 4–8 can improve the AUC values with some compressors, as
Table 4.3 shows. Tables 4.4 and 4.5 list results of expanded alphabets on reduced
amino acids and of the original nucleotide sequences, with varying results. At this
point it should be mentioned that the compressor of a reduced alphabet can be con-
sidered as a lossy compressor. The BWT method was also evaluated both on amino
acids and nucleotide sequences, but it did not improve the AUC values perhaps be-
cause the sequence lengths were short.

4.3.4 Experiments on Protein Classification

To evaluate these CBDs for protein classification, we chose the SCOP40 database.
For the train and test set division, the supervised cross-validation technique was
applied, which is a selection of test and train sets that are based on known sub-
types within a database [21]. A family with over five members was selected as the
positive test and the rest of the superfamily was the positive train set. The negative
sets were selected in a similar way. This approach provides a reliable estimation of
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Table 4.4 AUC results for an alphabet expansion on 3PGK of a reduced alphabet

SB8 SB6 SB4 Dayhoff

Aa AAb Aa AAb AAAc Aa AAb AAAc Aa AAb AAAc

ABC 0.783 0.746 0.801 0.668 0.794 0.764 0.672 0.699 0.745 0.738 0.774
AH 0.625 0.639 0.567 0.664 0.746 0.541 0.646 0.675 0.583 0.624 0.750
LZW 0.626 0.696 0.589 0.693 0.763 0.582 0.637 0.720 0.581 0.691 0.732
PPM 0.783 0.771 0.779 0.775 0.777 0.790 0.780 0.773 0.782 0.782 0.780

aThe values were taken from Table 4.3
bBi-gram residue compositions were used
cTri-gram residue compositions were used
Here, GC compressor was not used. The largest score is underlined.

Table 4.5 AUC results for an nucleotide sequences with an alphabet expansion on 3PGK

Original AAa AAAb BWT

ABC 0.676 0.633 0.668 0.639
AH 0.589 0.660 0.669 0.593
GC 0.702 n.a. n.a. 0.634
LZW 0.652 0.668 0.660 0.628
PPM 0.722 0.729 0.658 0.657

aBi-gram residue compositions were used
bTri-gram residue compositions were used
The pairwise distance/similarity matrix was also calculated on the orig-
inal amino acids sequences via naive distance and SW, and the AUC
values we got were 0.662 and 0.807, respectively. The largest score is
underlined.

how an algorithm will generalise to a novel, distantly-related subtype of the known
protein classes. Altogether, we obtained 55 classification tasks in this manner. The
sequences were represented by the so-called Empirical Feature Map method, where
a sequence X is represented by a feature vector FX = fx1 , fx2 , . . . , fxn . Here n is the
total number of proteins in the training set and fxi is a similarity/distance score
between sequence X and the ith sequence in the training set. For the underlying
similarity measure, CBDs along with the BLAST and Smith–Waterman algorithms
were applied.

Classification Methods: Nearest Neighbour (1NN) classification [15] is a technique
whereby a query sequences is assigned to the priori known class of the database en-
try that was found most similar to it in terms of a log-likelihood ratio of the nearest
positive and negative score via a distance/similarity measure [20]. Artificial Neu-
ral Networks (ANNs) were then employed, whose structure consisted of one hidden
layer with 40 neurons and the output layer consisted of one neuron. For each neuron,
the log-sigmoid function was used as the transfer function and the Scaled Conjugate
Gradient (SCG) algorithm was used for training [6]. The package we applied was
the Neural Network toolbox version 5.0 of Matlab. The Support Vector Machines
(SVMs) [34] method employed was LibSVM [10]. In our experiments, the Radial
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Table 4.6 The AUC results on protein classification with several classifiers and featuring method
applied on SCOP40

Method namea (AUCb) 1NN SVM RF LogReg ANN Avg

ABC (0.699) 0.726 0.843 0.779 0.806 0.834 0.798
AH (0.690) 0.711 0.877 0.824 0.751 0.800 0.793
GC (0.674) 0.644 0.775 0.691 0.753 0.769 0.726
LZW (0.769) 0.751 0.856 0.821 0.718 0.794 0.788
PPM (0.700) 0.798 0.851 0.800 0.813 0.583 0.823
naive (0.597) 0.653 0.882 0.848 0.786 0.837 0.801
BLAST (0.684) 0.775 0.905 0.697 0.836 0.902 0.823
SW (0.823) 0.956 0.946 0.823 0.913 0.897 0.907

aMethod used in the vectorization step
bThe AUC values in parentheses were obtained via distance matrices in the
way described in Sect. 4.3.3.

Basis Function kernel was used, where the width parameter σ was the median Eu-
clidean distance from any positive training example to the nearest negative example.
The Logistic Regression (LogReg) [29] method was part of Weka versions 3–4 [37].
Finally, the Random Forest (RF) technique is a combination of decision trees such
that each tree is grown on a bootstrap sample of the training set. For each node, the
split is chosen from m�M variables (M being the number of dimensions) on which
to base the decision [7]. In our experiments, 50 trees were used and the number of
features m was set to log(l +1), where l is the number of training patterns. The RF
was part of Weka versions 3–4. For an evaluation of the classifier, ROC analysis was
performed by ranking the test object using their score obtained by a learned model.
The results are shown in Table 4.6.

4.3.5 Sequence Length and Sequence Complexity

It is known that short sequence similarities are more difficult to locate than long
ones. This tendency also appears to be valid for CBDs analysed here. For exam-
ple, when we plot the classification performance measure AUC for the 55 SCOP40
families as a function of the average sequence length, the low values are predom-
inantly found in the shorter superfamilies (Fig. 4.2). This trend is quite similar for
the BLAST and Smith–Waterman algorithms as well (http://www.inf.u-szeged.hu/
∼kocsor/CBM05).

A dataset of high and low complexity sequences was produced by taking hu-
man proteins from the KOG database [23], processing them with the SEG program
written by J. Wootton [38], and applying the parameter values of window length =
45, trigger complexity = 3.25, and extension complexity = 3.55, as recommended
by the author. Segments with length in the range of 20–1,000 amino acids were
chosen for further analysis. From a total of 163,473 high-complexity and 53,849
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to 1.00

low-complexity regions, we randomly selected 8,859 and 3,772 sequences, respec-
tively, for an analysis, for which the results are shown in Fig. 4.3. Low-complexity
segments correspond to non-globular regions in proteins, characterised by a biased
amino acid composition and/or a repetitive amino acid sequence. Such regions are
well known for obscuring the detection of biologically important similarities [38].
We had two particular reasons for testing CBDs on low-complexity regions: (1)
repetitive character-sequences can be better compressed than average sequences; (2)
our datasets of natural sequences are composed of proteins that are predominantly
globular, so they are expected to contain few low complexity regions. We found that
the distributions of CBDs values for low- and high-complexity proteins were not
markedly different (see Fig. 4.3); however, this seems to be analogous to our earlier
finding that the compression ratio is independent of the AUC measure (Fig. 4.1b).
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4.4 Conclusions

One of the main problems of computational sequence analysis is the fact that se-
quence similarity groups are highly variable in terms of most parameters, including
the number of members, the degree of within-group similarity and separation from
other groups. Consequently, a method that performs well on one group may perform
worse on another and vice versa, and very often there are no clear tendencies in the
results. This was also true for our study, but we were able to identify a few clear
tendencies.

CBDs perform less well than substructure-based comparisons such as the Smith
Waterman algorithm in protein similarity. This is in fact expected, since Smith–
Waterman calculations include a substantial amount of biological knowledge en-
coded in the amino acid substitution matrix. Moreover, CBDs are less sensitive to
domain rearrangement than the alignment-based BLAST or Smith–Waterman. Cu-
riously, some combinations of CBDs approach with BLAST comparison exceed the
performance of Smith–Waterman in protein classification [22]. Unfortunately CBDs
and alignment-based measures depend on the length of the sequences.

In our experiments, we were unable to find any statistical connection between
the compression ratio of the sequences and the modularity expression (which was
measured by AUC). Perhaps this was because the sequence lengths we examined
were short. Moreover, the well-tested BWT method of data compression could not
be used here. Similar findings were also described in [28].

In general, in the results there is no monotone tendency as a function of the re-
duced size of the alphabet. The performance of the statistics-based AH compressor
decreased when the alphabet was reduced, while the partial matching-based algo-
rithms like PPM and GC improved their performance. This could mean that muta-
tions of amino acids found in the same cluster do not really change their structure
and function(s). Furthermore, a compressor applied to reduced alphabet sequences
can be viewed as a lossy compressor. An alphabet expansion with bi-gram and tri-
gram composition usually increases the performance of the statistical AH compres-
sor, as in the expanded letter distribution the neighbours of the original letters are
taken into account.

Overall, partial matching-based compressors (PPM, GC) seem to outperform
the various types of compressors available, both in ROC analysis and protein
classification.
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Chapter 5
MIC: Mutual Information Based Hierarchical
Clustering

Alexander Kraskov and Peter Grassberger

Abstract Clustering is a concept used in a huge variety of applications. We review a
conceptually very simple algorithm for hierarchical clustering called in the follow-
ing the mutual information clustering (MIC) algorithm. It uses mutual information
(MI) as a similarity measure and exploits its grouping property: The MI between
three objects X ,Y, and Z is equal to the sum of the MI between X and Y , plus the
MI between Z and the combined object (XY ). We use MIC both in the Shannon
(probabilistic) version of information theory, where the “objects” are probability
distributions represented by random samples, and in the Kolmogorov (algorithmic)
version, where the “objects” are symbol sequences. We apply our method to the
construction of phylogenetic trees from mitochondrial DNA sequences and we re-
construct the fetal ECG from the output of independent components analysis (ICA)
applied to the ECG of a pregnant woman.

5.1 Introduction

Classification or organizing of data is a crucial task in all scientific disciplines. It
is one of the most fundamental mechanism of understanding and learning [19]. De-
pending on the problem, classification can be exclusive or overlapping, supervised
or unsupervised. In the following we will be interested only in exclusive unsuper-
vised classification. This type of classification is usually called clustering or cluster
analysis.
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An instance of a clustering problem consists of a set of objects and a set of prop-
erties (called characteristic vector) for each object. The goal of clustering is the
separation of objects into groups using only the characteristic vectors. Indeed, in
general only certain aspects of the characteristic vectors will be relevant, and ex-
tracting these relevant features is one field where mutual information (MI) plays
a major role [36], but we shall not deal with this here. Cluster analysis organizes
data either as a single grouping of individuals into non-overlapping clusters or as a
hierarchy of nested partitions. The former approach is called partitional clustering
(PC), the latter one is hierarchical clustering (HC). One of the main features of HC
methods is the visual impact of the tree or dendrogram which enables one to see
how objects are being merged into clusters. From any HC one can obtain a PC by
restricting oneself to a “horizontal” cut through the dendrogram, while one cannot
go in the other direction and obtain a full hierarchy from a single PC. Because of
their wide spread of applications, there are a large variety of different clustering
methods in use [19]. In the following we shall only deal with agglomerative hierar-
chical clustering, where clusters are built by joining first the most obvious objects
into pairs, and then continues to join build up larger and larger objects. Thus the
tree is built by starting at the leaves, and is finished when the main branches are
finally joined at the root. This is opposed to algorithms where one starts at the root
and splits clusters up recursively. In either case, the tree obtained in this way can be
refined later by restructuring it, e.g. using so-called quartet methods [7, 34].

The crucial point of all clustering algorithms is the choice of a proximity mea-
sure. This is obtained from the characteristic vectors and can be either an indicator
for similarity (i.e. large for similar and small for dissimilar objects), or dissimilar-
ity. In the latter case it is convenient (but not obligatory) if it satisfies the standard
axioms of a metric (positivity, symmetry, and triangle inequality). A matrix of all
pairwise proximities is called proximity matrix. Among agglomerative HC meth-
ods one should distinguish between those where one uses the characteristic vectors
only at the first level of the hierarchy and derives the proximities between clusters
from the proximities of their constituents, and methods where the proximities are
calculated each time from their characteristic vectors. The latter strategy (which is
used also in the present paper) allows of course for more flexibility but might also
be computationally more costly. There exist a large number of different strategies
[19, 30], and the choice of the optimal strategy depends on the characteristics of the
similarities: for ultrametric distances, e.g. the “natural” method is UPGMA [30],
while neighbor joining is the natural choice when the distance matrix is a metric
satisfying the four-point condition di j +dkl ≤ max(dik +d jl ,dil +d jk) [30].

In the present chapter we shall use proximities resp. distances derived from mu-
tual information [9]. In that case the distances neither form an ultrametric, nor do
they satisfy the above four-point condition. Thus neither of the two most popular
agglomerative clustering methods are favored. But we shall see that the distances
have another special feature which suggests a different clustering strategy discussed
first in [21, 23].

Quite generally, the “objects” to be clustered can be either single (finite) patterns
(e.g. DNA sequences) or random variables, i.e. probability distributions. In the latter
case the data are usually supplied in form of a statistical sample, and one of the
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simplest and most widely used similarity measures is the linear (Pearson) correlation
coefficient. But this is not sensitive to nonlinear dependencies which do not manifest
themselves in the covariance and can thus miss important features. This is in contrast
to mutual information (MI) which is also singled out by its information theoretic
background [9]. Indeed, MI is zero only if the two random variables are strictly
independent.

Another important feature of MI is that it has also an “algorithmic” cousin,
defined within algorithmic (Kolmogorov) information theory [26] which measures
the similarity between individual objects. For a comparison between probabilistic
and algorithmic information theories, see [17]. For a thorough discussion of dis-
tance measures based on algorithmic MI and for their application to clustering, see
[6, 24, 25].

Another feature of MI which is essential for the present application is its grouping
property: The MI between three objects (distributions) X ,Y, and Z is equal to the
sum of the MI between X and Y , plus the MI between Z and the combined object
(joint distribution) (XY ),

I(X ,Y,Z) = I(X ,Y )+ I((X ,Y ),Z). (5.1)

Within Shannon information theory this is an exact theorem (see below), while it
is true in the algorithmic version up to the usual logarithmic correction terms [26].
Since X ,Y, and Z can be themselves composite, (5.1) can be used recursively for a
cluster decomposition of MI. This motivates the main idea of our clustering method:
instead of using, e.g. centers of masses in order to treat clusters like individual ob-
jects in an approximative way, we treat them exactly like individual objects when
using MI as proximity measure.

More precisely, we propose the following scheme for clustering n objects with
MIC:

(1) Compute a proximity matrix based on pairwise mutual informations; assign n
clusters such that each cluster contains exactly one object.

(2) Find the two closest clusters i and j.
(3) Create a new cluster (i j) by combining i and j.
(4) Delete the lines/columns with indices i and j from the proximity matrix, and

add one line/column containing the proximities between cluster (i j) and all
other clusters. These new proximities are calculated by either treating (Xi,Xj)
as a single random variable Shannon version), or by concatenating Xi and Xj
(algorithmic version).

(5) If the number of clusters is still >2, go to (2); else join the two clusters and
stop.

In the next section we shall review the pertinent properties of MI, both in the
Shannon and in the algorithmic version. This is applied in Sect. 5.3 to construct
a phylogenetic tree using mitochondrial DNA and in Sect. 5.4 to cluster the out-
put channels of an independent component analysis (ICA) of an electrocardiogram
(ECG) of a pregnant woman, and to reconstruct from this the maternal and fetal
ECGs. We finish with our conclusions in Sect. 5.5.
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5.2 Mutual Information

5.2.1 Shannon Theory

Assume that one has two random variables X and Y . If they are discrete, we write
pi(X) = prob(X = xi), pi(Y ) = prob(Y = xi), and pi j = prob(X = xi,Y = yi) for
the marginal and joint distribution. Otherwise (and if they have finite densities) we
denote the densities by μX (x),μY (y), and μ(x,y). Entropies are defined for the dis-
crete case as usual by H(X) = −∑i pi(X) log pi(X), H(Y ) = −∑i pi(Y ) log pi(Y ),
and H(X ,Y ) = −∑i, j pi j log pi j. Conditional entropies are defined as H(X |Y ) =
H(X ,Y )−H(Y ) =−∑i, j pi j log pi| j. The base of the logarithm determines the units
in which information is measured. In particular, taking base two leads to informa-
tion measured in bits. In the following, we always will use natural logarithms. The
MI between X and Y is finally defined as

I(X ,Y ) = H(X)+H(Y )−H(X ,Y )

=∑
i, j

pi j log
pi j

pi(X)p j(Y )
. (5.2)

It can be shown to be non-negative, and is zero only when X and Y are strictly
independent. For n random variables X1,X2 . . .Xn, the MI is defined as

I(X1, . . . ,Xn) =
n

∑
k=1

H(Xk)−H(X1, . . . ,Xn). (5.3)

This quantity is often referred to as (generalized) redundancy, in order to distin-
guish it from different “mutual informations” which are constructed analogously to
higher order cumulants [9], but we shall not follow this usage. Equation (5.1) can
be checked easily,

I(X ,Y,Z) = H(X)+H(Y )+H(Z)−H(X ,Y,Z)

= ∑
i, j,k

pi jk log
pi jk

pi(X)p j(Y )pk(Z)

= ∑
i, j,k

pi jk

[
log

pi j(XY )
pi(X)p j(Y )

+ log
pi jk

pi j(XY )pk(Z)

]

= I(X ,Y )+ I((X ,Y ),Z), (5.4)

together with its generalization to arbitrary groupings. It means that MI can be de-
composed into hierarchical levels. By iterating it, one can decompose I(X1 . . .Xn)
for any n>2 and for any partitioning of the set (X1 . . .Xn) into the MIs between
elements within one cluster and MIs between clusters.

For continuous variables one first introduces some binning (“coarse-graining”),
and applies the above to the binned variables. If x is a vector with dimension m and
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each bin has Lebesgue measure Δ , then pi(X)≈ μX (x)Δm with x chosen suitably in
bin i, and1

Hbin(X)≈ H̃(X)−m logΔ , (5.5)

where the differential entropy is given by

H̃(X) =−
∫

dx μX (x) logμX (x). (5.6)

Notice that Hbin(X) is a true (average) information and is thus non-negative, but
H̃(X) is not an information and can be negative. Also, H̃(X) is not invariant under
homeomorphisms x → ϕ(x).

Joint entropies, conditional entropies, and MI are defined as above, with sums
replaced by integrals. Like H̃(X), joint and conditional entropies are neither positive
(semi-)definite nor invariant. But MI, defined as

I(X ,Y ) =
∫ ∫

dxdy μXY (x,y) log
μXY (x,y)
μX (x)μY (y)

, (5.7)

is non-negative and invariant under x→ ϕ(x) and y→ψ(y). It is (the limit of) a true
information,

I(X ,Y ) = lim
Δ→0

[Hbin(X)+Hbin(Y )−Hbin(X ,Y )]. (5.8)

5.2.2 Estimating Mutual Shannon Information

In applications, one usually has the data available in form of a statistical sample.
To estimate I(X ,Y ) one starts from N bivariate measurements (xi,yi), i = 1, . . .N
which are assumed to be iid (independent identically distributed) realizations. For
discrete variables, estimating the probabilities pi, pi j, etc., is straightforward: pi is
just approximated by the ratio ni/N, where ni is the number of outcomes X = xi. This
approximation gives rise both to a bias in the estimate of entropies, and to statistical
fluctuations. The bias can be largely avoided by more sophisticated methods (see,
e.g. [16]), but we shall not go into details.

For continuous variables, the situation is worse. There exist numerous strate-
gies to estimate I(X ,Y ). The most popular include discretization by partitioning
the ranges of X and Y into finite intervals [10], “soft”or “fuzzy” partitioning using
B-splines [11], and kernel density estimators [28]. We shall use in the following the
MI estimators based on k-nearest neighbors statistics proposed in [22], and we refer
to this paper for a comparison with alternative methods.

1 Notice that we have here assumed that densities really exists. If not, e.g. if X lives on a fractal
set), then m is to be replaced by the Hausdorff dimension of the measure μ .
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5.2.3 k-Nearest Neighbors Estimators

There exists an extensive literature on nearest neighbors based estimators for the
simple Shannon entropy

H(X) =−
∫

dxμ(x) logμ(x), (5.9)

dating back at least to [12, 38]. But it seems that these methods have never been used
for estimating MI. In [8, 13–15, 37–39] it is assumed that x is one-dimensional, so
that the xi can be ordered by magnitude and xi+1−xi → 0 for N →∞. In the simplest
case, the estimator based only on these distances is

H(X) ≈− 1
N−1

N−1

∑
i=1

log(xi+1 − xi)−ψ(1)+ψ(N) . (5.10)

Here, ψ(x) is the digamma function, ψ(x) =Γ (x)−1dΓ (x)/dx. It satisfies the recur-
sion ψ(x+1) = ψ(x)+1/x and ψ(1) =−C where C = 0.5772156 . . . is the Euler–
Mascheroni constant. For large x, ψ(x)≈ logx−1/2x. Similar formulas exist which
use xi+k − xi instead of xi+1 − xi, for any integer k < N.

Although (5.10) and its generalizations to k > 1 seem to give the best estimators
of H(X), they cannot be used for MI because it is not obvious how to generalize
them to higher dimensions. Here we have to use a slightly different approach, due
to [20].

Assume some metrics to be given on the spaces spanned by X ,Y and Z = (X ,Y ).
In the following we shall use always the maximum norm in the joint space, i.e.

||z− z′||= max{||x− x′||, ||y− y′||}, (5.11)

independently of the norms used for ||x− x′|| and ||y− y′|| (they need not be the
same, as these spaces could be completely different). We can then rank, for each
point zi = (xi,yi), its neighbors by distance di, j = ||zi−z j||: di, j1 ≤ di, j2 ≤ di, j3 ≤ . . ..
Similar rankings can be done in the subspaces X and Y . The basic idea of [20] is to
estimate H(X) from the average distance to the k-nearest neighbor, averaged over
all xi. Mutual information could be obtained by estimating in this way H(X), H(Y )
and H(X ,Y ) separately and using

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) . (5.12)

But using the same k in both the marginal and joint spaces would mean that the typi-
cal distances to the k−th neighbors are much larger in the joint (Z) space than in the
marginal spaces. This would mean that any errors made in the individual estimates
would presumably not cancel, since they depend primarily on these distances.

Therefore we proceed differently in [22]. We first choose a value of k, which
gives the number of neighbors in the joint space. From this we obtain for each point
zi = (xi,yi) a length scale εi, and then we count the number of neighbors within this
distance for each of the marginal points xi and yi.
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Indeed, for each k two different versions of this algorithm were given in [22]. In
the first, neighborhoods in the joint space are chosen as (hyper-)squares, so that
the length scales εi are the same in x and in y. In the second version, the size
of the neighborhood is further optimized by taking them to be (hyper-)rectangles,
so that εi,x �= εi,y. Also, the analogous estimators for the generalized redundancies
I(X1,X2, . . .Xm) were given there. Both variants give very similar results. For details
see [22].

Compared to other estimators, these estimators are of similar speed (they are
faster than methods based on kernel density estimators, slower than the B-spline es-
timator of [11]) and of comparable speed to the sophisticated adaptive partitioning
method of [10]. They are rather robust (i.e. they are insensitive to outliers). Their
superiority becomes most evident in higher dimensions, where any method based on
partitioning fails. Any estimator has statistical errors (due to sample-to-sample fluc-
tuations) and some bias. Statistical errors decrease with k, while the bias increases
in general with k. Thus it is advised to take large k (up to k/N ≈ 0.1) when the bias
is not expected be a problem, and to use small k (k = 1, in the extreme), if a small
bias is more important than small statistical sample-to-sample fluctuations.

A systematic study of the performance of these estimators and comparison with
previous algorithms is given in [22]. Here we will discuss just one further feature of
the estimators proposed in [22]: They seem to be strictly unbiased whenever the true
mutual information is zero. This makes them particularly useful for a test for inde-
pendence. We have no analytic proof for this, but very good numerical evidence. As
an example, we show in Fig. 5.1 results for Gaussian distributions. More precisely,
we drew a large number (typically 106 and more) of N-tuples of vectors (x,y) from
a bivariate Gaussian with fixed covariance r, and estimated I(X ,Y ) with k = 1 by
means of the second variant Î(2)(X ,Y ) of our estimator. The averages over all tuples
of Î(2)(X ,Y )− IGauss(X ,Y ) is plotted in Fig. 5.1 against 1/N. Here,
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Fig. 5.1 Averages of the estimates of Î(2)(X ,Y )− Iexact(X ,Y ) for Gaussians with unit variance and
covariances r = 0.9,0.6,0.3, and 0.0 (from top to bottom), plotted against 1/N. In all cases k = 1.
The number of realizations over which this is averaged is >2×106 for N ≤ 1,000, and decreases
to ≈ 105 for N = 40,000. Error bars are smaller than the sizes of the symbols
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IGauss(X ,Y ) =−1
2

log(1− r2) . (5.13)

is the exact MI for Gaussians with covariance r [10].
The most conspicuous feature seen in Fig. 5.1, apart from the fact that indeed

I(2)(X ,Y )− IGauss(X ,Y ) → 0 for N → ∞, is that the systematic error is compatible
with zero for r = 0, i.e. when the two Gaussians are uncorrelated. We checked this
with high statistics runs for many different values of k and N (a priori one should
expect that systematic errors become large for very small N), and for many more
distributions (exponential, uniform, . . . ). In all cases we found that both variants
Î(1)(X ,Y ) and Î(2)(X ,Y ) become exact for independent variables.

5.2.4 Algorithmic Information Theory

In contrast to Shannon theory where the basic objects are random variables and
entropies are average informations, algorithmic information theory deals with in-
dividual symbol strings and with the actual information needed to specify them.
To “specify” a sequence X means here to give the necessary input to a universal
computer U , such that U prints X on its output and stops. The analogon to entropy,
called here usually the complexity K(X) of X , is the minimal length of any input
which leads to the output X , for fixed U . It depends on U , but it can be shown that
this dependence is weak and can be neglected in the limit when K(X) is large [9, 26].

Let us denote the concatenation of two strings X and Y as XY . Its complexity is
K(XY ). It is intuitively clear that K(XY ) should be larger than K(X) but cannot be
larger than the sum K(X)+K(Y ). Even if X and Y are completely unrelated, so that
one cannot learn anything about Y by knowing X , K(XY ) is slightly smaller that
K(X)+ K(Y ). The reason is simply that the information needed to reconstruct XY
(which is measured by K(XY )) does not include the information about where X ends
and Y starts (which is included of course in K(X)+ K(Y )). The latter information
increases logarithmically with the total length N of the sequence XY . It is one of
the sources for ubiquitous terms of order log(N) which become irrelevant in the
limit N → ∞, but make rigorous theorems in algorithmic information theory look
unpleasant.

Up to such terms, K(X) satisfies the following seemingly obvious but non-trivial
properties [6]:

1. Idempotency: K(XX) = K(X)
2. Monotonicity: K(XY )≥ K(X)
3. Symmetry: K(XY ) = K(Y X)
4. Distributivity: K(XY )+K(Z)≤ K(XZ)+K(Y Z)

Finally, one expects that K(X |Y ), defined as the minimal length of a program
printing X when Y is furnished as auxiliary input, is related to K(XY )−K(Y ). In-
deed, one can show [26] (again within correction terms which become irrelevant
asymptotically) that
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0 ≤ K(X |Y )� K(XY )−K(Y )≤ K(X). (5.14)

Notice the close similarity with Shannon entropy.
The algorithmic information in Y about X is finally defined as

Ialg(X ,Y ) = K(X)−K(X |Y )� K(X)+K(Y )−K(XY ). (5.15)

Within the same additive correction terms, one shows that it is symmetric,
Ialg(X ,Y ) = Ialg(Y,X), and can thus serve as an analogon to mutual information.

From Turing’s halting theorem it follows that K(X) is in general not computable.
But one can easily give upper bounds. Indeed, the length of any input which pro-
duces X (e.g. by spelling it out verbatim) is an upper bound. Improved upper bounds
are provided by any file compression algorithm such as gnuzip or UNIX “com-
press”. Good compression algorithms will give good approximations to K(X), and
algorithms whose performance does not depend on the input file length (in partic-
ular since they do not segment the file during compression) will be crucial for the
following. As argued in [6], it is not necessary that the compression algorithm gives
estimates of K(X) which are close to the true values, as long as it satisfies points 1–4
above. Such a compression algorithm is called normal in [6]. While the old UNIX
“compress” algorithm is not normal (idempotency is badly violated), most modern
compression algorithms (see [1] for an exhaustive overview) are close to normal.

Before leaving this subsection, we should mention that K(X |Y ) can also be es-
timated in a completely different way, by aligning X and Y [29]. If X and Y are
sufficiently close so that a global alignment makes sense, one can form from such
an alignment a translation string TY→X which is such that Y and TY→X together
determine X uniquely. Then K(TY→X ) is an upper bound to K(X |Y ), and can be es-
timated by compressing TY→X . In [29] this was applied among others to complete
mitochondrial genomes of vertebrates. The estimates obtained with state of the art
global alignment and text compression algorithms (MAVID [27] and lpaq1 [1]) were
surprisingly close to those obtained by the compression-and-concatenation method
with the gene compression algorithm XM [40]. The latter seems at present by far
the best algorithm for compressing DNA sequences. Estimates for K(X |Y ) obtained
with other algorithms such as gencompress [2] were typically smaller by nearly an
order of magnitude.

5.2.5 MI-Based Distance Measures

Mutual information itself is a similarity measure in the sense that small values imply
large “distances” in a loose sense. But it would be useful to modify it such that the
resulting quantity is a metric in the strict sense, i.e. satisfies the triangle inequality.
Indeed, the first such metric is well known within Shannon theory [9]: The quantity

d(X ,Y ) = H(X |Y )+H(Y |X) = H(X ,Y )− I(X ,Y ) (5.16)
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satisfies the triangle inequality, in addition to being non-negative and symmetric
and to satisfying d(X ,X) = 0. The analogous statement in algorithmic information
theory, with H(X ,Y ) and I(X ,Y ) replaced by K(XY ) and Ialg(X ,Y ), was proven in
[24, 25].

But d(X ,Y ) is not appropriate for our purposes. Since we want to compare the
proximity between two single objects and that between two clusters containing
maybe many objects, we would like the distance measure to be unbiased by the
sizes of the clusters. As argued forcefully in [24, 25], this is not true for Ialg(X ,Y ),
and for the same reasons it is not true for I(X ,Y ) or d(X ,Y ) either: A mutual in-
formation of 1,000 bit should be considered as large, if X and Y themselves are just
1,000 bit long, but it should be considered as very small, if X and Y would each be
huge, say one billion bits.

As shown in [24, 25] within the algorithmic framework, one can form two dif-
ferent distance measures from MI which define metrics and which are normalized.
As shown in [21] (see also [41]), the proofs of [24, 25] can be transposed almost
verbatim to the Shannon case. In the following we quote only the latter.

Theorem 5.1. The quantity

D(X ,Y ) = 1− I(X ,Y )
H(X ,Y )

=
d(X ,Y )
H(X ,Y )

(5.17)

is a metric, with D(X ,X) = 0 and D(X ,Y )≤ 1 for all pairs (X ,Y ).

Theorem 5.2. The quantity

D′(X ,Y ) = 1− I(X ,Y )
max{H(X),H(Y )}

=
max{H(X |Y ),H(Y |X)}

max{H(X),H(Y )} (5.18)

is also a metric, also with D′(X ,X) = 0 and D′(X ,Y ) ≤ 1 for all pairs (X ,Y ). It is
sharper than D, i.e. D′(X ,Y )≤ D(X ,Y ).

Apart from scaling correctly with the total information, in contrast to d(X ,Y ), the
algorithmic analogs to D(X ,Y ) and D′(X ,Y ) are also universal [25]. Essentially this
means that if X ≈ Y according to any non-trivial distance measure, then X ≈ Y also
according to D, and even more so (by a factor up to 2) according to D′. In contrast
to the other properties of D and D′, this is not easy to carry over from algorithmic
to Shannon theory. The proof in [25] depends on X and Y being discrete, which is
obviously not true for probability distributions. Based on the universality argument,
it was argued in [25] that D′ should be superior to D, but the numerical studies
shown in that reference did not show a clear difference between them. In addition,
D is singled out by a further property:

Theorem 5.3. Let X and Y be two strings, and let W be the concatenation W = XY .
Then W is a weighted “mid point” in the sense that
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D(X ,W )+D(W,Y ) = D(X ,Y ), D(X ,W ) : D(Y,W ) = H(Y |X) : H(X |Y ).
(5.19)

Proof. We present the proof in its Shannon version. The algorithmic version is ba-
sically the same, if one neglects the standard logarithmic correction terms.

Since H(X |W ) = 0, one has I(X ,W ) = H(X). Similarly, H(X ,W ) = H(X ,Y ).
Thus

D(X ,W )+D(W,Y ) = 2− H(X)+H(Y )
H(X ,Y )

= 1− I(X ,Y )
H(X ,Y )

= D(X ,Y ), (5.20)

which proofs the first part. The second part is proven similarly by straightforward
calculation.

For D′ one has only the inequalities D′(X ,Y )≤ D′(X ,W )+D′(W,Y )≤ D(X ,Y ).
Theorem 3 provides a strong argument for using D in MIC, instead of D′. This

does not mean that D is always preferable to D′. Indeed, we will see in the next sec-
tion that MIC is not always the most natural clustering algorithm, but that depends
very much on the application one has in mind. Anyhow, we found numerically that
in all cases D gave at least comparable results as D′.

A major difficulty appears in the Shannon framework, if we deal with continuous
random variables. As we mentioned above, Shannon informations are only finite for
coarse-grained variables, while they diverge if the resolution tends to zero. This
means that dividing MI by the entropy as in the definitions of D and D′ becomes
problematic. One has essentially two alternative possibilities. The first is to actually
introduce some coarse-graining, although it would not have been necessary for the
definition of I(X ,Y ), and divide by the coarse-grained entropies. This introduces an
arbitrariness, since the scale Δ is completely ad hoc, unless it can be fixed by some
independent arguments. We have found no such arguments, and thus we propose
the second alternative. There we take Δ → 0. In this case H(X) ∼ mx logΔ , with
mx being the dimension of X . In this limit D and D′ would tend to 1. But using
similarity measures

S(X ,Y ) = (1−D(X ,Y )) log(1/Δ), (5.21)
S′(X ,Y ) = (1−D′(X ,Y )) log(1/Δ) (5.22)

instead of D and D′ gives exactly the same results in MIC, and

S(X ,Y ) =
I(X ,Y )
mx +my

, S′(X ,Y ) =
I(X ,Y )

max{mx,my}
. (5.23)

Thus, when dealing with continuous variables, we divide the MI either by the sum or
by the maximum of the dimensions. When starting with scalar variables and when X
is a cluster variable obtained by joining m elementary variables, then its dimension
is just mx = m.
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5.2.6 Properties and Presentation of MIC Trees

MIC gives rooted trees: The leaves are original sequences/variables X , . . . ,Z, inter-
nal nodes correspond to subsets of the set of all leaves, and the root represents the
total set of all leaves, i.e. the joint variable (X . . .Z). A bad choice of the metric
and/or of the clustering algorithm will in general manifest itself in long “caterpillar-
like” branches, while good choices will tend towards more balanced branchings.

When presenting the tree, it is useful to put all leaves on the x-axis, and to use
information about the distances/similarities to control the height. We have essen-
tially two natural choices, illustrated in Figs. 5.2 and 5.5, respectively. In Fig. 5.5,
the height of a node is given by the mutual information between all leaves in the
subtree below it. If the node is a leave, its height is zero. If it is an internal node
(including the root) corresponding to a subset S of leaves, then its height is given
by the mutual information between all members of S ,

height(S ) = I(S ) method 1. (5.24)
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Fig. 5.2 Phylogenetic tree for 34 mammals (31 eutherians plus 3 non-placenta mammals), with
mutual informations estimated by means of GenCompress. In contrast to Fig. 5.6, the heights of
nodes are here and in the following tree equal to the distances between the joining daughter clusters
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Let us assume that S has the two daughters X and Y , i.e. S = (XY ). X and Y
themselves might be either leaves or also internal nodes. Then the grouping property
implies that height(S )−height(X) = I(S )− I(X) is the MI between X and all the
other sequences/variables in S which are not contained in X . This is non-negative
by the positivity of MI, and the same is true when X is exchanged with Y . Thus
the trees drawn in this way are always well formed in the sense that a mother node
is located above its daughters. Any violation of this rule must be due to imprecise
estimation of MIs.

A drawback of this method of representing the tree is that very close pairs have
long branches, while relatively distant pairs are joined by short branches. This is
the opposite of what is usually done in phylogenetic trees, where the branch lengths
are representative of the distance between a mother and its daughter. This can be
achieved by using the alternative representation employed in Fig. 5.2. There, the
height of a mother node W which has two daughters X and Y is given by

height(W ) = D(X ,Y ) method 2. (5.25)

Although it gives rise to more intuitive trees, it also has one disadvantage: It is no
longer guaranteed that the tree is well formed, but it may happen that height(W ) <
height(X). To see this, consider a tree formed by three variables X ,Y , and Z which
are pairwise independent but globally dependent: I(X ,Y ) = I(X ,Z) = I(Y,Z) = 0
but I(X ,Y,Z) > 0.2 In this case, all pairwise distances are maximal, thus also the
first pair to be joined has distance 1. But the height of the root is less than 1. In our
numerical applications we indeed found occasionally such “glitches”, but they were
rare and were usually related to imprecise estimates of MI or to improper choices of
the metric.

5.3 Mitochondrial DNA and a Phylogenetic Tree for Mammals

As a first application, we study the mitochondrial DNA of a group of 34 mammals
(see Fig. 5.2). Exactly the same species [3] had previously been analyzed in [21, 24,
31]. This group includes non-eutherians,3 rodents and lagomorphs,4 ferungulates,5

2 An example is provided by three binary random variables with p000 = p011 = p101 = p110 =
1/2+ ε and p001 = p010 = p100 = p111 = 1/2− ε .
3 Opossum (Didelphis virginiana), wallaroo (Macropus robustus), and platypus (Ornithorhyncus
anatinus).
4 Rabbit (Oryctolagus cuniculus), guinea pig (Cavia porcellus), fat dormouse (Myoxus glis), rat
(Rattus norvegicus), squirrel (Sciurus vulgaris), and mouse (Mus musculus).
5 Horse (Equus caballus), donkey (Equus asinus), Indian rhinoceros (Rhinoceros unicornis), white
rhinoceros (Ceratotherium simum), harbor seal (Phoca vitulina), grey seal (Halichoerus grypus),
cat (Felis catus), dog (Canis lupus familiaris), fin whale (Balaenoptera physalus), blue whale
(Balenoptera musculus), cow (Bos taurus), sheep (Ovis aries), pig (Sus scrofa) and hippopotamus
(Hippopotamus amphibius).
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primates,6 members of the African clade,7 and others.8 It had been chosen in [24]
because of doubts about the relative closeness among these three groups [5, 31].

Obviously, we are here dealing with the algorithmic version of information the-
ory, and informations are estimated by lossless data compression. For constructing
the proximity matrix between individual taxa, we proceed essentially a in [24]. But
in addition to using the special compression program GenCompress [2], we also
tested several general purpose compression programs such as BWTzip, the UNIX
tool bzip2, and lpaq1 [1], and durilca [1]. Finally, we also tested XM [40] (the ab-
breviation stands for “expert model”), which is according to its authors the most
efficient compressor for biological (DNA, proteins) sequences. Indeed, we found
that XM was even better than expected. While the advantage over GenCompress
and other compressors was a few per cent when applied to single sequences [4], the
estimates for MI between not too closely related species were higher by up to an
order of magnitude. This is possible mainly because the MIs estimated by means
of GenCompress and similar methods are reliably positive (unless the species are
from different phyla) but extremely small. Thus even a small improvement on the
compression rate can make a big change in MI.

In [24], the proximity matrix derived from MI estimates was then used as the
input to a standard HC algorithm (neighbor-joining and hypercleaning) to produce
an evolutionary tree. It is here where our treatment deviates crucially. We used the
MIC algorithm described in Sect. 5.1, with distance D(X ,Y ). The joining of two
clusters (the third step in the MIC algorithm) is obtained by simply concatenating
the DNA sequences. There is of course an arbitrariness in the order of concatenation
sequences: XY and Y X give in general compressed sequences of different lengths.
But we found this to have negligible effect on the evolutionary tree. The resulting
evolutionary tree obtained with Gencompress is shown in Fig. 5.2, while the tree
obtained with XM is shown in Fig. 5.3.

Both trees are quite similar, and they are also similar to the most widely ac-
cepted phylogeny found, e.g. in [3]. All primates are, e.g. correctly clustered and
the ferungulates are joined together. There are however a number connections (in
both trees) which obviously do not reflect the true evolutionary tree. As shown in
Fig. 5.2 the overall structure of this tree closely resembles the one shown in [31].
All primates are correctly clustered and also the relative order of the ferungulates
is in accordance with [31]. On the other hand, there are a number of connections
which obviously do not reflect the true evolutionary tree, see for example the guinea
pig with bat and elephant with platypus in Fig. 5.2, and the mixing of rodents with
African clade and armadillo in Fig. 5.3. But all these wrong associations are be-
tween species which have a very large distance from each other and from any other
species within this sample. All in all, the results in Figs. 5.2 and 5.3 are in surpris-
ingly good agreement (showing that neither compression scheme has obvious faults)

6 Human (Homo sapiens), common chimpanzee (Pan troglodytes), pigmy chimpanzee (Pan panis-
cus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), gibbon (Hylobates lar), and baboon
(Papio hamadryas).
7 African elephant (Loxodonta africana), aardvark (Orycteropus afer).
8 Jamaican fruit bat (Artibeus jamaicensis), armadillo (Dasypus novemcintus).
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Fig. 5.3 Same as in Fig. 5.2, but with mutual informations estimated by means of XM. Notice that
the x-axis covers here, in contrast to Fig. 5.2, the entire interval from 0 to 1

and capture surprisingly well the known relationships between mammals. Dividing
MI by the total information is essential for this success. If we had used the non-
normalized Ialg(X ,Y ) itself, results obtained in [24] would not change much, since
all 34 DNA sequences have roughly the same length. But our MIC algorithm would
be completely screwed up: After the first cluster formation, we have DNA sequences
of very different lengths, and longer sequences tend also to have larger MI, even if
they are not closely related.

One recurrent theme in the discussion of mammalian phylogenetic trees is the
placement of the rodents [31, 32]. Are they closer to ferungulates, or closer to pri-
mates? Our results are inconclusive. On the one hand, the average distances between
all 14 rodents and all 104 ferungulates in the Genebank data (Feb. 2008), estimated
with XM, is 0.860 – which is clearly smaller than the average distance 0.881 to all
28 primates. On the other hand, the distances within the group of rodents are very
large, suggesting that this group is either not monophylic, or that its mtDNA has
evolved much faster than, say, that of ferungulates. Either possibility makes a state-
ment about the classification of rodents with respect to ferungulates and primates
based on these data very uncertain.

A heuristic reasoning for the use of MIC for the reconstruction of an evolutionary
tree might be given as follows: Suppose that a proximity matrix has been calculated
for a set of DNA sequences and the smallest distance is found for the pair (X ,Y ).
Ideally, one would remove the sequences X and Y , replace them by the sequence of
the common ancestor (say Z) of the two species, update the proximity matrix to find
the smallest entry in the reduced set of species, and so on. But the DNA sequence
of the common ancestor is not available. One solution might be that one tries to
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reconstruct it by making some compromise between the sequences X and Y . Instead,
we essentially propose to concatenate the sequences X and Y . This will of course not
lead to a plausible sequence of the common ancestor, but it will optimally represent
the information about the common ancestor. During the evolution since the time of
the ancestor Z, some parts of its genome might have changed both in X and in Y .
These parts are of little use in constructing any phylogenetic tree. Other parts might
not have changed in either. They are recognized anyhow by any sensible algorithm.
Finally, some parts of its genome will have mutated significantly in X but not in Y ,
and vice versa. This information is essential to find the correct way through higher
hierarchy levels of the evolutionary tree, and it is preserved in concatenating.

In any case, this discussion shows that our clustering algorithm produces trees
which is closer in spirit to phenetic trees than to phylogenetic trees proper. As we
said, in the latter the internal nodes should represent actual extinct species, namely
the last common ancestors. In our method, in contrast, an internal node does not
represent a particular species but a higher order clade which is defined solely on
the basis of information about presently living species. In the phylogenetic context,
purely phenetic trees are at present much less popular than trees using evolution-
ary information. This is not so in the following application, where no evolutionary
aspect exists and the above discussion is irrelevant.

5.4 Clustering of Minimally Dependent Components
in an Electrocardiogram

As our second application we choose a case where Shannon theory is the proper
setting. We show in Fig. 5.4 an ECG recorded from the abdomen and thorax of a
pregnant woman (8 channels, sampling rate 500 Hz, 5 s total). It is already seen
from this graph that there are at least two important components in this ECG: the
heartbeat of the mother, with a frequency of ≈3 beat s−1, and the heartbeat of the
fetus with roughly twice this frequency. Both are not synchronized. In addition there
is noise from various sources (muscle activity, measurement noise, etc.). While it is
easy to detect anomalies in the mother’s ECG from such a recording, it would be
difficult to detect them in the fetal ECG.

As a first approximation we can assume that the total ECG is a linear super-
position of several independent sources (mother, child, noise1, noise2,. . . ). A stan-
dard method to disentangle such superpositions is independent component analysis
(ICA) [18]. In the simplest case one has n independent sources si(t), i = 1 . . .n
and n measured channels xi(t) obtained by instantaneous superpositions with a time
independent non-singular matrix A,

xi(t) =
n

∑
j=1

Ai js j(t) . (5.26)

In this case the sources can be reconstructed by applying the inverse transformation
W = A−1 which is obtained by minimizing the (estimated) mutual informations
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Fig. 5.4 ECG of a pregnant woman

between the transformed components yi(t) = ∑n
j=1 Wi jx j(t). If some of the sources

are Gaussian, this leads to ambiguities [18], but it gives a unique solution if the
sources have more structure.

In reality things are not so simple. For instance, the sources might not be inde-
pendent, the number of sources (including noise sources!) might be different from
the number of channels, and the mixing might involve delays. For the present case
this implies that the heartbeat of the mother is seen in several reconstructed compo-
nents yi, and that the supposedly “independent” components are not independent at
all. In particular, all components yi which have large contributions from the mother
form a cluster with large intra-cluster MIs and small inter-cluster MIs. The same is
true for the fetal ECG, albeit less pronounced. It is thus our aim to:

1) Optimally decompose the signals into least dependent components
2) Cluster these components hierarchically such that the most dependent ones are

grouped together
3) Decide on an optimal level of the hierarchy, such that the clusters make most

sense physiologically
4) Project onto these clusters and apply the inverse transformations to obtain

cleaned signals for the sources of interest

Technically we proceeded as follows [33]: Since we expect different delays in
the different channels, we first used Takens delay embedding [35] with time delay
0.002 s and embedding dimension 3, resulting in 24 channels. We then formed 24
linear combinations yi(t) and determined the de-mixing coefficients Wi j by minimiz-
ing the overall mutual information between them, using the MI estimator proposed



118 A. Kraskov and P. Grassberger

in [22]. There, two classes of estimators were introduced, one with square and the
other with rectangular neighborhoods. Within each class, one can use the number of
neighbors, called k in the following, on which the estimate is based. Small values
of k lead to a small bias but to large statistical errors, while the opposite is true for
large k. But even for very large k the bias is zero when the true MI is zero, and it
is systematically such that absolute values of the MI are underestimated. Therefore
this bias does not affect the determination of the optimal de-mixing matrix. But it
depends on the dimension of the random variables, therefore large values of k are
not suitable for the clustering. We thus proceeded as follows: We first used k = 100
and square neighborhoods to obtain the least dependent components yi(t), and then
used k = 3 with rectangular neighborhoods for the clustering. The resulting least
dependent components are shown in Fig. 5.5. They are sorted such that the first
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Fig. 5.5 Least dependent components of the ECG shown in Fig. 5.4, after increasing the number
of channels by delay embedding
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Fig. 5.6 Dendrogram for least dependent components. The height where the two branches of a
cluster join corresponds to the MI of the cluster

components (1–5) are dominated by the maternal ECG, while the next three contain
large contributions from the fetus. The rest contains mostly noise, although some
seem to be still mixed.

These results obtained by visual inspection are fully supported by the cluster
analysis. The dendrogram is shown in Fig. 5.6. In constructing it we used S(X ,Y )
(5.23) as similarity measure to find the correct topology. Again we would have ob-
tained much worse results if we had not normalized it by dividing MI by mX +mY .
In plotting the actual dendrogram, however, we used the MI of the cluster to deter-
mine the height at which the two daughters join. The MI of the first five channels,
e.g. is ≈1.43, while that of channels 6–8 is ≈0.34. For any two clusters (tuples)
X = X1 . . .Xn and Y = Y1 . . .Ym one has I(X ,Y ) ≥ I(X)+ I(Y ). This guarantees, if
the MI is estimated correctly, that the tree is drawn properly. The two slight glitches
(when clusters (1–14) and (15–18) join, and when (21–22) is joined with 23) result
from small errors in estimating MI. They do in no way effect our conclusions.

In Fig. 5.6 one can clearly see two big clusters corresponding to the mother and
to the child. There are also some small clusters which should be considered as noise.
For reconstructing the mother and child contributions to Fig. 5.4, we have to decide
on one specific clustering from the entire hierarchy. We decided to make the cut such
that mother and child are separated. The resulting clusters are indicated in Fig. 5.6
and were already anticipated in sorting the channels. Reconstructing the original
ECG from the child components only, we obtain Fig. 5.7.
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Fig. 5.7 Original ECG where all contributions except those of the child cluster have been removed

5.5 Conclusions

We have shown that MI can not only be used as a proximity measure in cluster-
ing, but that it also suggests a conceptually very simple and natural hierarchical
clustering algorithm. We do not claim that this algorithm, called mutual information
clustering (MIC), is always superior to other algorithms. Indeed, MI is in general not
easy to estimate. Obviously, when only crude estimates are possible, also MIC will
not give optimal results. But as MI estimates are becoming better, also the results
of MIC should improve. The present paper was partly triggered by the development
of a new class of MI estimators for continuous random variables which have very
small bias and also rather small variances [22].

We have illustrated our method with two applications, one from genetics and one
from cardiology. For neither application MIC might give the very best clustering,
but it seems promising and indicative of the inherit simplicity of our method that
one common method gives decent results in two very different applications.

If better data become available, e.g. in the form of longer time sequences in the
application to ECG or of more complete genomes (so that mutual information can
be estimated more reliably), then the results of MIC should improve. It is not obvi-
ous what to expect when one wants to include more data in order to estimate larger
trees. On the one hand, more species within one taxonomic clade would describe
this clade more precisely, so results should improve. On the other hand, as clus-
ters become bigger and bigger, also the disparities of the sequences lengths which
describe these clusters increase. It is not clear whether in this case a strict normaliza-
tion of the distances as in (5.17, 5.18) is still appropriate, and whether the available
compression algorithms will still be able to catch the very long resulting correlations
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within the concatenated sequences. Experiments with phylogenetic trees of animals
with up to 360 species (unpublished results) had mixed success.

As we said in the introduction, after a construction of a first tree one can try
to improve on it. One possibility is to change the topology of the tree, using, e.g.
quartet moves and accepting them based on some heuristic cost function. One such
cost function could be the sum of all distances between linked nodes in the tree.
Alternatively, one could try to keep the topology fixed and change the sequences
representing the internal nodes, i.e. deviate from simple concatenation. We have not
tried either.

There are two versions of information theory, algorithmic and probabilistic, and
therefore there are also two variants of MI and of MIC. We discussed in detail one
application of each, and showed that indeed common concepts were involved in
both. In particular it was crucial to normalize MI properly, so that it is essentially
the relative MI which is used as proximity measure. For conventional clustering al-
gorithms using algorithmic MI as proximity measure this had already been stressed
in [24, 25], but it is even more important in MIC, both in the algorithmic and in the
probabilistic versions.

In the probabilistic version, one studies the clustering of probability distribu-
tions. But usually distributions are not provided as such, but are given implicitly
by finite random samples drawn (more or less) independently from them. On the
other hand, the full power of algorithmic information theory is only reached for
infinitely long sequences, and in this limit any individual sequence defines a se-
quence of probability measures on finite subsequences. Thus the strict distinction
between the two theories is somewhat blurred in practice. Nevertheless, one should
not confuse the similarity between two sequences (two English books, say) and that
between their subsequence statistics. Two sequences are maximally different if they
are completely random, but their statistics for short subsequences is then identical
(all subsequences appear in both with equal probabilities). Thus one should always
be aware of what similarities or independencies one is looking for. The fact that MI
can be used in similar ways for all these problems is not trivial.
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Chapter 6
A Hybrid Genetic Algorithm for Feature
Selection Based on Mutual Information

Jinjie Huang and Panxiang Rong

Abstract Feature selection aims to reduce the dimensionality of patterns for clas-
sificatory analysis by selecting the most informative rather than irrelevant and/or
redundant features. In this study, a hybrid genetic algorithm for feature selection
is presented to combine the advantages of both wrappers and filters. Two stages of
optimization are involved. The outer optimization stage completes the global search
for the best subset of features in a wrapper way, in which the mutual information
between the predictive labels of a trained classifier and the true classes serves as the
fitness function for the genetic algorithm. The inner optimization performs the local
search in a filter manner, in which an improved estimation of the conditional mutual
information acts as an independent measure of feature ranking. This measure takes
into account not only the relevance of the candidate feature to the output classes but
also the redundancy to the features already selected. The inner and outer optimiza-
tions cooperate with each other and achieve the high global predictive accuracy as
well as the high local search efficiency. Experimental results demonstrate both par-
simonious feature selection and excellent classification accuracy of the method on a
range of benchmark data sets.

6.1 Introduction

Coming with the rapid growth of high dimensional data collected in many areas
such as text categorization and gene selection there is an increasing demand for the
feature selection in classificatory analysis [1, 18]. To describe the domain of appli-
cations as good as possible, real-world data sets are often characterized by many ir-
relevant and/or redundant features due to the lack of prior knowledge about specific
problems [10]. If these features are not properly excluded, they may significantly
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hamper the model accuracy and the learning speed. Because the primary task of
classificatory analysis is to extract knowledge (e.g., in the form of classification
rules) from the training data the presence of a large number of irrelevant or re-
dundant features can make it difficult to extract the core regularities of the data.
Conversely, if the learned rules are based on a small number of relevant features,
they are more concise and hence easier to understand and use [18, 30]. Therefore,
it is very important to reduce the dimensionality of the raw input feature space in
classificatory analysis to ensure the practical feasibility of the classifier.

Feature selection is to select a subset of original features that is good enough
regarding its ability to describe the training data set and to predict for future cases.
Broadly, methods for feature selection fall into three categories: the filter approach,
the wrapper approach and the embedded method. In the first category, the filter
approach is first utilized to select the subsets of features before the actual model
learning algorithm is applied. The best subset of features is selected in one pass by
evaluating some predefined criteria independent of the actual generalization perfor-
mance of the learning machine. So a faster speed can usually be obtained. The filter
approach is argued to be computational less expensive and more general. However,
it might fail to select the right subset of features if the used criterion deviates from
the one used for training the learning machine. Another drawback involved in the
filter approach is that it may also fail to find a feature subset that would jointly maxi-
mize the criterion, since most filters estimate the significance of each feature just by
means of evaluating one feature a time [25]. Thus, the performance of the learning
models is degraded.

Methods from the second category, on the other hand, utilize the learning ma-
chine as a fitness function and search for the best subset of features in the space of
all feature subsets. This formulation of the problem allows the use of standard op-
timization techniques with the learning machine of interest as a black box to score
subsets of features according to their predictive power. Therefore, the wrapper ap-
proach generally outperforms the filter approach in the aspect of the final predictive
accuracy of a learning machine. The wrapper methodology is greatly popularized
by Kohavi and John [24], and offers a simple but powerful way to address the prob-
lem of feature selection, despite the fact that it involves some more computational
complexity and requires more execution time than that of the filter methodology.

Besides wrappers and filters, the embedded methods are another category of fea-
ture selection algorithms, which perform feature selection in the process of training
and are usually specific to given learning machines [18]. Some examples of the em-
bedded methods are decision tree learners, such as ID3 [33] and C4.5 [34], or the
recursive feature elimination (RFE) approach, which is a recently proposed feature
selection algorithm derived based on support vector machine (SVM) theory and has
been shown good performance on the problems of gene selection for microarray
data [19, 35, 43]. The embedded methods are argued to be more efficient because
they avoid retraining a predictor from the scratch for every subset of features inves-
tigated. However, they are much intricate and limited to a specific learning machine.

Recently, research on feature selection is mainly focused on two aspects: criteria
and search strategies. As we known, an optimal subset is always optimal relative to
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a certain criterion. In general, different criteria may not lead to the same optimal
feature subset. Typically, a criterion tries to measure the discriminating ability of a
feature or a subset to distinguish the different class labels. M. Dash called these cri-
teria the evaluation functions and grouped them into five categories [10]: distance,
information (or uncertainty), dependence, consistency and classifier error. The dis-
tance measure, e.g., the Euclidean distance measure, is a very traditional discrimi-
nation or divergence measure. The dependence measure, also called the correlation
measure, is mainly utilized to find the correlation between two features or a fea-
ture and a class. The consistency measure relies heavily on the training data set and
is discussed for feature selection in [11]. These three measures are all sensitive to
the concrete values of the training data; hence they are easily affected by noise or
outlier data. In contrast, the information measures, such as the entropy or mutual in-
formation, investigate the amount of information or the uncertainty of a feature for
the classification. The data classification process is aimed at reducing the amount
of uncertainty or gaining information about the classification. In Shannon’s infor-
mation theory [9, 38], information is defined as something that removes or reduces
uncertainty. For a classification task, the more information we get, the higher the
accuracy of a classification model becomes, because the predicted classes of new
instances are more likely to correspond to their true classes. A model that does not
increase the amount of information is useless and its prediction accuracy is not ex-
pected to be better than just a random guess [28]. Thus, the Information measure is
different from the above three measures by its metric-free nature: it depends only on
the probability distribution of a random variable rather than on its concrete values.
The Information measures have been widely used in feature selection [4, 17, 22, 29],
including many famous learning algorithms such as ID3 [33] and C4.5 [34].

Searching for the best m features out of the n available for the classification task
is known to be a NP-hard problem and the number of local minima can be quite
large [3]. Exhaustive evaluation of possible feature subsets is usually unfeasible in
practice due to the large amount of computational effort required. A wide range
of heuristic search strategies have been used including forward selection [4], back-
ward elimination [6], hill-climbing [7], branch and bound algorithms [40], and the
stochastic algorithms like simulated annealing [12] and genetic algorithms (GAs)
[5, 36, 44, 45]. Kudo and Sklansky [26] made a comparison among many of the fea-
ture selection algorithms and explicitly recommended that GAs should be used for
large-scale problems with more than 50 candidate variables. They also described
a practical implementation of GAs for feature selection. The advantages of GAs
for feature selection are often summarized as follows: First, compared with those
deterministic algorithms, they are more capable of avoiding getting stuck in local
optima often encountered in feature selection problems. Second, they may be clas-
sified into a kind of anytime algorithms [46], which can generate currently best
subsets constantly and keep improving the quality of selected features as time goes
on. However, the limitations of a simple GA algorithm have been uncovered in
many applications, such as premature convergence, poor ability of fine-tuning near
local optimum points. A practical and effective way to overcome these limitations
is to incorporate domain-specific knowledge into the GA. In fact, some hybrid GAs
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have been developed in diverse applications and successful performance has been
obtained [23, 37].

In this chapter we present a hybrid GA designed to solve the feature selection
problem. This approach combines the global search ability of GA with some effi-
cient local search heuristic strategies on the basis of mutual information, achieving
both the high accuracy of wrappers and the efficiency of filters to some extent. More-
over, an improved formula is derived to estimate the conditional mutual information
between the candidate feature and the output classes given a subset of selected fea-
tures. The formula is utilized to rank features in the local search process, taking
account both the relevance of the candidate feature to the classes and the redun-
dancy between the candidate feature and the features already selected. Hence, a
good subset of features can be obtained for machine learning.

The rest of the chapter is organized as follows. In Sect. 6.2, the basics of infor-
mation theory, such as entropy and mutual information, are briefly introduced. In
Sect. 6.3, an improved formula to compute the conditional mutual information be-
tween the candidate feature and the classes given a subset of features selected is
derived based on the results in [27], which is utilized to rank all the candidate fea-
tures in the local search process. In Sect. 6.4, the framework of the hybrid genetic
algorithm for feature selection is proposed, and the local search schemes are dis-
cussed in detail. The results of various experiments performed on a range of data
sets are reported in Sect. 6.5. Finally, Sect. 6.6 closes the chapter with some con-
cluding remarks.

6.2 Evaluation of Mutual Information

In feature selection problems, the relevant features contain important information
about output, whereas the irrelevant features contain little information regarding
output. The task for solving the problems is to find those input features that con-
tain as much information about the output as possible. For this purpose, Shannon’s
information theory provides us with a way to measure the information of random
variables by entropy and mutual information [9, 38].

Evaluating the mutual information between two discrete random variables is fea-
sible and convenient through histograms. Given a data set of two discrete variables
X and Y, and let |X |= m, |Y |= n be the number of the discrete values of X and Y re-
spectively. Denote G as the joint histogram matrix, where gi j is the number of times
over the data set, an input pattern with X equal to the ith discrete value and Y equal
to its jth discrete value, (for simplicity, just denote as X=i,Y=j, 1≤ i≤m, ;1≤ j ≤ n.
Notice that in what follows a summation over i is a sum over values of X, i.e., over
various rows of a given column of the joint histogram matrix. Similarly, a summa-
tion over j is a sum over values of Y, i.e., across various columns of a given row
of the joint histogram matrix. Both variables are summed from 1 to m and from 1
to n respectively. The sum N = ∑m

i=1∑
n
j=1 gi j is the total number of input samples.

Using this matrix Gm×n, it is possible to estimate all the relevant probabilities and
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the mutual information I(X ;Y ) as follows:

P(X = i) =
1
N

n

∑
j=1

gi j , (6.1)

P(Y = j) =
1
N

m

∑
i=1

gi j , (6.2)

P(X = i |Y = j ) =
gi j

m
∑

i=1
gi j

, (6.3)

where P(X = i) is the empirical prior probability of X = i; P(Y = j) is the frequency
with Y = j, and P(X = i |Y = j ) (more conveniently written as Pi j) is the empirical
probability of X = i given Y = j. The relevant empirical entropies are now given by

H(X) =−
m

∑
i=1

P(X = i) log(P(X = i)) , (6.4)

H(X |Y = j) =−
m

∑
i=1

Pi j logPi j , (6.5)

H(X |Y ) =
n

∑
j=1

P(Y = j)H(X |Y = j). (6.6)

Then the estimated value of the mutual information between X and Y is given in
terms of the above entropies, simply by

I(X ;Y ) = H(X)−H(X |Y ). (6.7)

Note that the computation of mutual information involves only discrete variables
that typically assume a small number of values. For continuous random variables,
we usually divide them into several discrete partitions and calculate the entropy
and mutual information using the definitions for discrete cases. There are mainly
two approaches for this purpose: equal distance partitioning [4] and equiprobable
partitioning [16]. In our study, we use the equal distance partitioning method as
follows. If the distribution of the values in a variable f is not known a priori, we
compute its mean μ and standard deviation σ , and then cut the interval [μ−2σ ,μ+
2σ ] into p equally spaced segments. Here, the value of p corresponds to the number
of discrete values of f . The points falling outside are assigned to the extreme left
(right) segments. Each segment corresponds to a discrete value.

The mutual information may serve as a statistics that summarizes the degree
of dependence of X on Y. When random variables X and Y are independent, i.e.,
p(x,y) = p(x)p(y), (the usual definition of independence), the mutual information
of X and Y goes to zero (I(X ;Y ) = 0). This also means that Y can tell us nothing
about X.
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6.3 Information-Theoretic Criteria for Feature Selection

6.3.1 The Feature Selection Problem and Related Studies

In classificatory analysis, the input to a classifier is a training data set of instances.
The instances are labeled by a class variable C. An unlabeled instance is an element
of the n dimensional feature space f1× f2×·· ·× fn. The feature selection problem is
to find the subset with k < n features that is “maximally informative” about the class
by excluding irrelevant and/or redundant features among the ones extracted from
the raw data. In the framework of Shannon’s Information Theory [9, 38], a natural
measure of “informative” is the mutual information. So the problem of selecting
input features can be solved by computing the mutual information between input
features and output classes. This was formulated by Battiti as a “feature reduction”
problem as [FRn-k].

[FRn-k] Given an initial set F with n features and C set of all output classes, find
the subset S ⊂ F with k features that minimizes H(C|S), i.e., that maximizes the
mutual information I(C;S) [4].

However, there are some difficulties in computing I(C; fi,S) directly. First, since
the probability distribution functions of input features are actually hard to know ex-
actly, the best way to estimate the mutual information may be using a histogram
of the data. But though the histogram-based mutual information estimation works
with two or even three variables, it fails in higher dimensions due to the sparsity
of data in high-dimensional spaces. Second, computing I(C; fi,S) requires a large
amount of storage. For example, assuming to select m features, if the output classes
are composed of Kc categories, and the jth input feature is partitioned into Pj (usu-
ally Pj ≤ 10) intervals to get the histogram, then there must be Kc ×∏m

j=1 Pj cells
for storage to compute I(C; fi,S) [27]. In this case, even to select only 10 input fea-
tures (m = 10), Kc ×1010 memories would be needed. Obviously, this is difficult in
practice. To overcome the above difficulties, some alternative methods to compute
the mutual information I(C;S) have been devised [4, 27].

Assume S is the subset of features already selected, F is the subset of unse-
lected features, S∩F = /0, C is the output classes. For a feature fi ∈ F to be se-
lected, the mutual information I(C;{S, fi}) should be the largest one among those
I(C;{S, fi})’s, fi ∈ F .

Notice that, the mutual information I(C;{S, fi}) can be represented as

I(C;{S, fi}) = I(C;S)+ I(C; fi|S). (6.8)

For a given feature subset S, since I(C;S) is a constant, to maximize I(C;{S, fi}),
the conditional mutual information I(C; fi|S) should be maximized. Furthermore,
the conditional mutual information I(C; fi|S) can be represented as

I(C; fi|S) = I(C; fi)− I(C; fi;S). (6.9)
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Here, the mutual information I(C; fi;S) is the common information found among
the output classes C, the candidate feature fi and the features already selected in the
current subset S. It is also the redundant information between the candidate feature
fi and the already-selected features in S with respect to classes C. Denote I(C; fi;S)
by Ir, Battiti used only the mutual information between the candidate feature fi
and each of the already-selected features in S to estimate Ir with a parameter β
predefined by the user according to the degree of redundancy,

Ir = β ∑
fs∈S

I( fi; fs), β ∈ [0,1]. (6.10)

Thus, the conditional mutual information can be estimated as

I(C; fi|S) = I(C; fi)−β ∑
fs∈S

I( fi; fs). (6.11)

Based on (6.11), Battiti formulated his greedy selection algorithm, MIFS [4]. As
one can see, parameter β has a great effect on the right feature selection in MIFS.
Unfortunately, we are actually unable to know what an appropriate value the pa-
rameter β should take in (6.11). As a result, the performance of MIFS is greatly
degraded. To decrease the influence of parameter β on Battiti’s MIFS, we consider
a more accurate estimation of the redundant information Ir.

Proposition 1. For any fs ∈ S, fi ∈ F , suppose that the information is distributed
uniformly throughout the regions of H( fs), H( fi) and H(C), and that the classes
C do not change the ratio of entropy of fs for the mutual information between fs
and fi, if all the selected features in S are completely independent to each other, the
total redundant information of the candidate feature fi to all the selected features in
subset S with respect to output classes C, denoted by Ir, can be calculated by the
simple summation as defined in (6.12).

Ir = ∑
fs∈S

I( fi; fs)
H( fs)

I(C; fs). (6.12)

Proof. Consider any features fs ∈ S, fi ∈ F , the relations between the entropies of
fs, fi and C are illustrated in Fig. 6.1. The common information among features fs, fi
and output classes C is represented by the area 4 in Fig. 6.1, and can be computed as

I(C; fi; fs) = I( fs; fi)− I( fs; fi |C), (6.13)

where the conditional mutual information I( fs; fi |C) corresponds to the area 1 in
Fig. 6.1. Under the assumption that the information is distributed uniformly through-
out the regions of H( fs), H( fi) and H(C) in Fig. 6.1, and that the classes C does not
change the ratio of entropy of fs to the mutual information between fs and fi, then
the following relation holds

I( fi; fs |C )
H( fs |C )

=
I( fi; fs)
H( fs)

. (6.14)
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Fig. 6.1 The relations be-
tween input features and
output classes

Consequently, I( fi; fs|C) can be represented as

I( fi; fs |C ) =
I( fi; fs)
H( fs)

H( fs |C ). (6.15)

Substituting for (6.13), we get

I(C; fi; fs) = (1− H( fs |C )
H( fs)

)I( fi; fs) =
I(C; fs)
H( fs)

I( fi; fs). (6.16)

When all the selected features in S are completely independent to each other, the
mutual information of any couple of features in subset S is zero. Hence, the total
redundant information of the candidate feature fi to all the selected features in subset
S with respect to output classes C, denoted by Ir for convenience, can be calculated
by the simple summation as follows

Ir = ∑
fs∈S

I(C; fi; fs) = ∑
fs∈S

I( fi; fs)
H( fs)

I(C; fs) . (6.17)

��

From (6.12) we can further deduce that the coefficient of I(C; fs) is the ratio of
the mutual information between the candidate feature fi and the selected feature fs
for the entropy of fs. Obviously, 0≤ I( fi; fs)

/
H( fs)≤ 1. This ratio also provides the

proportion for the redundant information between feature fi and feature fs taking up
in the mutual information between the selected feature fs and output classes C.

Based on (6.12), Kwak and Choi gave the following estimation of the conditional
mutual information I(C; fi|S) in their MIFS-U algorithm [27],

I(C; fi |S ) = I(C; fi)−β ∑
fs∈S

I(C; fs)
H( fs)

I( fi; fs) . (6.18)
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The second term of the right hand in (6.18) is used to estimate the redundant infor-
mation between the candidate feature fi and the already-selected features in S with
respect to classes C. Here again, the parameter β is used as a factor for control-
ling the redundancy penalization. As β grows, it penalizes the redundancy strongly.
Therefore, different values of β can still lead to different orders of feature selec-
tion, though the influence of β has been reduced to a certain extent by the weights
I(C; fs)

/
H( fs). However, how to choose an appropriate value for β remains an open

issue.

6.3.2 An Improved Formula to Estimate the Conditional Mutual
Information

Let’s consider the estimation of the conditional mutual information I(C; fi|S) with-
out any predefined parameter β under the assumption that the information of all
features is distributed uniformly. From (6.9) and Proposition 1, when all the se-
lected features in S are completely independent to each other, I(C; fi|S) can be rep-
resented as

I(C; fi |S ) = I(C; fi)− Ir = I(C; fi)− ∑
fs∈S

I( fi; fs)
H( fs)

I(C; fs). (6.19)

While there is some redundancy among the selected features in S, the estimation of
I(C; fi|S) ought to take into account not only the redundancy of feature fi to each
feature in S, but also the redundancy among features in S. The latter redundancy
will affect the calculation of the whole redundancy of feature fi to the features in S.
Taking any two redundant selected features fs1 and fs2 from S as an illustration,
we now derive a formula for directly computing the redundant information of fs1
and fs2 to the candidate feature fi with respect to output classes C, which has been
denoted by Ir.

Firstly, as viewed from fs1, under the assumption that the information is dis-
tributed uniformly, we get the common information of fi and fs2 given fs1 as

I( fi; fs2| fs1) = I( fi; fs2)−
I( fi; fs1)
H( fs1)

I( fs2; fs1). (6.20)

Since the entropies H( fs1) and H( fs2| fs1) are completely independent, based on
Proposition 1, the redundant information Ir can be computed as

Ir =
I( fi; fs1)
H( fs1)

I(C; fs1)+
I( fi; fs2| fs1)

H( fs2)
I(C; fs2)

=
I( fi; fs1)
H( fs1)

I(C; fs1)+
I( fi; fs2)
H( fs2)

I(C; fs2)−
I( fi; fs1)
H( fs1)

I( fs2; fs1)
H( fs2)

I(C; fs2).

(6.21)
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Let’s further interpret (6.21). Since the information of fs1, fs2 and fi is distributed
uniformly, the following relation holds

I( fi; fs1)
H( fs1)

=
I( fi; fs1; fs2)

I( fs1; fs2)
. (6.22)

By substituting (6.22) for (6.21), we have

Ir =
I( fi; fs1)
H( fs1)

I(C; fs1)+
I( fi; fs2)
H( fs2)

I(C; fs2)−
I( fi; fs1; fs2)

H( fs2)
I(C; fs2). (6.23)

Now, return to (6.21). Since the common information of feature fs1, fs2 and fi has
been consisted in the right first term, it should not be considered repeatedly when
computing the redundant information of fi and fs2 with respect to C in the right sec-
ond term. Therefore, this common information is ruled out in terms of its proportion
to the entropy of fs2 as done in the right third term.

Similarly, as viewed from fs2, Ir can be written as

Ir =
I( fi; fs2)
H( fs2)

I(C; fs2)+
I( fi; fs1)
H( fs1)

I(C; fs1)

− I( fi; fs2)
H( fs2)

I( fs2; fs1)
H( fs1)

I(C; fs1).

(6.24)

Add up both sides of (6.21) and (6.24) respectively. After arranging, we can derive

Ir =
[

I( fi; fs1)
H( fs1)

− 1
2

I( fi; fs2)
H( fs2)

I( fs2; fs1)
H( fs1)

]
I(C; fs1)

+
[

I( fi; fs2)
H( fs2)

− 1
2

I( fi; fs1)
H( fs1)

I( fs1; fs2)
H( fs2)

]
I(C; fs2).

(6.25)

Hence, for all features in S, if we neglect the mutual information among three or
more selected features (usually these values are small enough to be neglected), the
conditional mutual information for feature ranking, I(C; fi|S), can be computed as
follows,

I(C; fi|S) = I(C; fi)

− ∑
fk∈S

⎡
⎢⎢⎣ I( fi; fk)

H( fk)
− 1

2 ∑f j∈S
f j �= fk

I( fi; f j)
H( f j)

I( f j; fk)
H( fk)

⎤
⎥⎥⎦I(C; fk).

(6.26)

Thus, we have the following proposition.

Proposition 2. For any fs ∈ S, fi ∈ F , suppose that the information is distributed
uniformly throughout the regions of H( fs), H( fi) and H(C) that the classes C does



6 A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information 135

not change the ratio of the entropy of fs for the mutual information between fs and
fi, the conditional mutual information I(C; fi|S), can be computed as (6.26).

For simplicity, we just denote f j ∈ S, f j �= fk as j ∈ S, j �= k, and denote

ϕik =
I( fi; fk)
H( fk)

(6.27)

then (6.26) can be written as

I(C; fi|S) = I(C; fi)−∑
k∈S

(ϕik −
1
2 ∑j∈S

j �=k

ϕi jϕ jk)I(C; fk). (6.28)

Thus, with formula (6.26) or (6.28), it avoids successfully the guess for the value of
parameter β in MIFS and MIFS-U methods.

6.4 Hybrid Algorithm for Feature Selection Based
on Mutual Information

6.4.1 Framework of the Hybrid GA for Feature Selection

Let’s consider designing a hybrid genetic algorithm to solve the feature selec-
tion problem in the context of pattern classification based on mutual information.
In general, a pattern classification problem can be described as follows: assume
that an input feature space X is constructed from m features Xi, i = 1, . . . ,m, i.e.,
X = span{X1,X2, . . . ,Xm}, and that patterns drawn from X are associated with c
categories, whose labels constitute the set Y = {1,2, . . . ,c}. Given a training data
set (xi,yi) , i = 1, . . . ,N, xi ∈ X , y ∈ Y , find a classifier f : X → Y that exhibits
good generalization ability on unseen patterns.

As known, there are two main factors that affect the generalization ability of a
classifier. One is to choose an optimal feature subset; the other is to find the proper
model that is learnt from the selected feature subset. These two problems can be
solved within a wrapper framework through cooperations of the inner and outer
optimization based on maximum information.

Let S be a subset of features on X, i.e., S ⊆ A = {X1,X2, . . . ,Xm}, and ϕS be the
class of functions that map S to Y. Let Y and Yf (= f (x),x∈X ) be the discrete ran-
dom variables over Y describing the unknown true labels and the labels predicted
by the classifier respectively. The optimization problem we would ideally like to
solve is the following:

J = max
S⊆A

max
f⊆ϕS

I(Y ;Yf ), (6.29)
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where I(Y ;Yf ) is the mutual information between Y and Yf . Since this is the average
rate of information delivered by the classifier via its output, the quantity is referred
to as the classifier output information [39].

The main task of inner optimization includes two aspects: pruning the feature
subset and training a classifier on the pruned feature subset. Feature subset pruning
is based on mutual information and considered as a local search, which will be
detailed in the next section. Training a classifier on a given set of input features
can employ most popular learning machines such as SVM, MLP and Naı̈ve Bayes
methods, whose training objective functions are usually related to the error rate of
classifiers. In our study, SVM is used as the training procedure, which is a state-of-
the-art classification algorithm that is shown to be particularly successful in pattern
recognition [42]. For SVM, a quadratic optimization problem is solved in order to
maximize the margin of separation between examples of two classes either in the
original input space or in an implicitly mapped higher dimensional space by the use
of kernel functions. To construct the multiclass SVMs, the one-against-rest strategy
is adopted, where a binary SVM is trained to separate each class from the other
classes. The performance of the multiclass SVMs is the prediction accuracy of the
induction algorithm, and estimated by the k-fold cross-validation method.

The outer maximization procedure deals with the problem of choosing the op-
timal feature subset based on the output information of classifiers trained on those
candidate feature subsets. This is performed through a genetic algorithm framework,
within which the fitness function is evaluated with the mutual information between
the true label and the label predicted by the trained classifier, i.e., I(Y ;Yf ). The
overall scheme of this hybrid GA for feature selection, HGFS for short or called the
HGA wrapper, is outlined in Fig. 6.2. It can be observed from Fig. 6.2 that both the
global and the local search of feature selection are guided by maximizing the mutual
information criterion, while the training objective function of the classifier calls for
the classification error rate minimization principle. In fact, there exists a relationship
between the probability of the error and the output information of a classifier.

In classification, an optimal criterion should reflect the Bayes risk in the selected
variable space. The Bayes risk is usually defined in terms of a problem specific loss
function. For the simplest case of 0/1-loss, the Bayes error can be represented as a
mathematic expectation as

pe(X) = Ex[Pr(Y �= Yf )] =
∫

x
p(x)(1−max

i
(p(yi|x)))dx, (6.30)

where Yf denotes the estimated class variable and Y the true class variable value,
x is the input variable vector in the selected feature space X and yi the class label.
Note that the direct use of this formula would require the full knowledge of pos-
terior probability density functions of classes p(yi|x). To estimate the Bayes error,
estimating the posterior probability density functions of classes and calculating the
numerical integration of a nonlinear function would thus be inevitable, and they are
difficult in practice when only a training data set is given. On the other hand, in
our approach, feature selection is achieved by maximizing the mutual information
between the true label and the label predicted by the trained classifier, i.e., I(Y ;Yf ).
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Fig. 6.2 The overall scheme of the hybrid GA for feature selection

Then, what’s the relationship between I(Y ;Yf ) and classification accuracy in theory?
Or how is the classification performance influenced by the amount of information
transferred through the classifier? In fact, many researchers have done good works
with insights in this question. An upper bound for the probability of error in classi-
fication

pe ≤
1
2
(H(Y )− I(Y ;Yf )) (6.31)

was obtained by Hellman and Raviv [21] for the binary case and Feder and Merhav
[15] for the general case. A lower bound on the error involving mutual information
is also given by Fano’s inequality [14]

pe ≥
H(Y )− I(Y ;Yf )−h(pe)

log(|Y |−1)
, (6.32)
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where h(pe) is the binary Shannon entropy, h(x) =−x logx−(1−x) log(1−x), and
|Y | refers to the cardinality of category variable Y. Notice that this original lower
bound has the probability of error appearing on both sides of the inequality. Also
the denominator prevents the application of this bound to two-class situations. To
account for these problems, the binary entropy of pe is replaced by its maximum
possible value, log2, and the denominator is replaced with the larger log |Y |. After
all these modifications, Fano’s bound can be represented as

pe ≥
H(Y )− I(Y ;Yf )− log2

log |Y | . (6.33)

Extensions of this bound have been given by Han and Verdu [20]. Thus, the infor-
mation transferred by a classifier, I(Y ;Yf ), brackets the classification error rate from
above and bellow as seen from (6.31) and (6.33). Both bounds are minimized when
the mutual information I(Y ;Yf ) is maximized.

Erdogmus and Principe [13] further developed a family of tight upper and lower
bounds on the misclassification probability pe of a classifier based on Renyi’s defini-
tions of entropy and mutual information reaching the same conclusions. These con-
clusions theoretically demonstrate that a classifier, which is optimal in the sense of
a minimum classification error, maximizes the mutual information I(Y ;Yf ). There
is a definite and quantitative relationship between the classification error rate (or the
classification accuracy) and the mutual information I(Y ;Yf ). So it is justified to use
the minimization of a type of the error rate training objective functions of a classifier
to maximize I(Y ;Yf ) in the inner optimization of our wrapper framework, and it is
naturally justifiable to use I(Y ;Yf ) as a proxy to the classification error rate in the
outer optimization of the proposed wrapper framework.

There is another advantage when taking I(Y ;Yf ) as the measure for model per-
formance. In many real world applications, it is quite likely that there are fewer
data points for certain classes. For such uneven class distribution problems, classi-
fiers tend to improve their overall classification accuracy by learning to ignore the
smaller classes. So the overall accuracy criterion is not a good choice to compare
feature-driven classifiers in this sense. But I(Y ;Yf ), as an evaluation criterion for
model performance, can take into account the distribution of errors across various
classes, and it is immune to biased input samples.

The kappa statistic is another common measure to model performance that can
allow for input sampling bias. It was first introduced by Cohen [8] and has been used
in ensemble feature selection methods [32, 41]. The kappa statistic is commonly
used to measure the agreement of two classifiers. Let Ni j be the number of instances
in a data set, which is recognized as class i by the first classifier and as class j by
the second one, Ni∗ be the number of instances recognized as class i by the first
classifier, and N∗i be the number of instances recognized as class i by the second
classifier. Then define P(A) and P(E) as

P(A) =

c
∑

i=1
Nii

N
, P(E) =

c

∑
i=1

(
Ni∗
N

· N∗i

N

)
, (6.34)
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where c is the number of classes and N is the total number of instances. P(A) es-
timates the probability that the two classifiers agree, and P(E) is a correction term
for P(A), which estimates the probability that the two classifiers agree simply by
chance (in the case where each classifier chooses to assign a class label randomly).
The kappa statistic of agreement is then defined as

k =
P(A)−P(E)

1−P(E)
. (6.35)

Kappa values can also be used to assess the agreement of the predictive output of a
classifier to the true classes of inputs. k = 0 means that the agreement is not different
from chance, and k = 1 means perfect agreement on every example.

Consider the confusion matrices of a three-class problem for case (a), (b) and
(c) given in Table 6.1. There are 20, 5 and 35 true instances in class 1, 2 and 3, re-
spectively, for the three cases. The classification accuracy, kappa statistic and output
information of the classifiers are also shown in Table 6.1. Obviously, the classifica-
tion accuracy for all cases is 83.33%. The observer can demonstrate good accuracy
with the classifier in (c) by labeling all instances in class 2 as class 3. However,
the kappa value in case (c) is less than that in both case (b) and case (a). The same
phenomenon occurs for the output information measure, I(Y ;Yf ) in the three cases.
This means that, as a measure of model performance, both kappa statistic and output
information I(Y ;Yf ) can avoid choosing the classifier in (c). For the kappa statistic,
it is much addressed to the balance agreement among classes, so the classifier in (b)
with the largest kappa value is chosen. While for the output information, I(Y ;Yf ),
it tends to put a high premium on certainty. Consequently, the classifier in (a) with
the largest output information is preferred. To some extent, this classifier performs
better on (a) because with the information that the classifier has output class 1 or
2, the observer can be confident about the true class of the input. In (b), when the
classifier outputs class 1 or class 2, it maintains slightly greater uncertainty than
(a) by sometimes also claiming for patterns of other classes. But one should notice
that even in (b), the classifier output class 3 is more reliable than that in (a). In our
approach, the scheme of case (a) is adopted.

Table 6.1 Confusion matrices of a three-class problem and the output information, kappa statistic
and classification accuracy measures of classifiers for case (a), (b) and (c)

Yf (a) (b) (c)

Y 1 2 3 1 2 3 1 2 3

1 12 0 8 14 2 4 16 0 4
2 0 3 2 1 3 1 0 0 5
3 0 0 35 1 1 33 1 0 34

I(Y ;Yf ) 0.5872 0.5405 0.5101
Kappa 0.661 0.6875 0.6581
Acc 0.8333 0.8333 0.8333
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6.4.2 Local Search for Feature Selection

It has been proved in theory that genetic algorithms can find the optimal solution to
a problem in the sense of probability in a random manner. However, simple genetic
algorithms have some weaknesses like premature convergence, poor ability of fine-
tuning near local optimum points in applications.

On the other hand, some other optimization methods, such as steepest descent
method, hill-climbing and simulated annealing, usually have powerful local search
ability. In addition, some heuristic algorithms with the problem-specific knowledge
are also of high efficiency. Therefore, to improve the fine-tuning capability and effi-
ciency of simple GAs, some hybrid GAs for feature selection have been developed
by incorporating the above optimization methods or heuristic algorithms [23, 37].
Here, a novel hybrid GA for the feature selection problem is proposed, in which the
feature’s conditional mutual information is used as a measure to rank the candidate
features, and local search operations are performed in a filter manner.

As discussed in Sect. 6.3, the conditional mutual information I(C; fi |S) measures
the new information to the output class C contributed by feature fi given the subset S
of features selected. The bigger the value of I(C; fi |S) is, the more new information
is provided by the candidate feature fi. In order to apply this conditional mutual
information measure for the feature selection task, a numerical threshold value dam
is set to I(C; fi |S) . This can help the algorithm to be immunized against noise in the
data and also to overcome the over-fitting problem to a certain extent. Let A be the
set of all input features, and F = A− S be the subset of unselected features. When
applying I(C; fi |S) to feature selection, depending on feature fi is an element of
the selected feature subset S or not, the local search algorithm handles two different
cases:

(a) In the case of fi ∈ S

• If I(C; fi |S−{ fi}) ≤ dam, then remove fi from S to F
• If I(C; fi |S−{ fi}) > dam, then let fi remain in S

(b) In the case of fi ∈ F = A−S

• If I(C; fi |S ) > dam, then add fi to S from F
• If I(C; fi |S )≤ dam, then let fi remain in F

In a generation of the hybrid GA, each chromosome of the population corre-
sponds to a scheme of feature selection. The first operation (a) aims to find features
in the selected subset S that are less informative to classification and remove them
from S; whereas the second operation (b) tries to find features in the unselected sub-
set F that are most informative to classification and add them to the subset S. These
two operations constitute the local search of feature selection. However, it should be
pointed out that, to execute both the operations for every chromosome in each gen-
eration, the hybrid GA would require considerable processing time, and seems to
be more likely to lead to local optima. In addition, the search function of operation
(b) may be repeated by the GA operations and result in a waste of computational
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resources. Therefore, the final implementation of our algorithm executes only the
first operation (a), whereas the second operation (b) is not executed, whose search
function is just delivered to the GA to be accomplished. These strategies can help
to search the global optimal subset of features and improve the efficiency of the
algorithm.

The above local search operations are carried out in a filter manner. The local
search measure I(C; fi |S) is independent of the learning machine, but it is consistent
with the training objective function of the learning machine. These local search
operations inherit all the merits of filters such as high efficiency, fast computation
and simplicity. They first remove the “bad genes” from every chromosome of a
population, corresponding to removing the insignificant features out of every subset
generated by GA in each generation. Then the learning machines are trained on the
preprocessed feature subsets, and finally the optimal subset of features is found by
the outer GA optimization through generations according to the output information
of the series of learning machines trained. Thus, a perfect cooperation of the inner
and out optimization is achieved.

Another advantage of this algorithm is that the threshold dam can be use to adap-
tively control the number of selected features. This manipulation seems to be more
reasonable than predefining a fixed number of the selected features. If the number
of feature selected is expected to be no more than k, we may just lower the threshold
value and modify the local search operations as follows:

(c) Let Sq = { fi |I(C; fi |S−{ fi}) > dam}
• If

∣∣Sq
∣∣ > k, then remove the last

∣∣Sq
∣∣− k features with the least values of

I(C; fi |S−{ fi}) out of S
• If

∣∣Sq
∣∣< k, then add the first k−

∣∣Sq
∣∣ features with values of I(C; fi |S) > dam

in the unselected feature subset F to S

6.4.3 Implementation of the Hybrid GA for Feature Selection

The implementation of the hybrid genetic algorithm for feature selection mainly
includes the encoding schemes of chromosomes, evaluating fitness function, local
searching operations, designing for the selection, crossover and mutation genetic
operations, and stopping criterion. In the proposed algorithm, each individual in the
population of chromosomes represents a candidate solution to the feature subset
selection problem. A chromosome is encoded by a binary digit series where “1”
means “selected” and “0” means “unselected”. Each digit (or gene) corresponds to
a feature, so the gene length of a chromosome is equal to the total number of input
features available. As discussed in Sect. 6.4.1, the output information I(Y ;Yf ) of the
trained SVM classifier is used as the fitness function of the hybrid genetic algorithm.
It is evaluated by the k-fold cross-validation method and k takes the value from 2 to
10 depending on the data set scale. The local search operations have been described
in Sect. 6.4.2.
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As for genetic operations, the strategies are detailed as follows. First, our de-
sign adopts the rank-based roulette wheel selection scheme. To guarantee the fast
convergence ability, an elitism strategy is also used so that the best 10% of chromo-
somes in current population can enter the next generation directly without under-
going the crossover and mutation operations. Next, an adaptive crossover strategy
is employed. When the total number of features is less than 20, the single-point
crossover operator is used; while the total number of features is more than 20, the
double-point crossover operator is used. The crossover probability pc is assigned as
0.7. Last, a simple mutation operator with the probability 0.1 is used.

The hybrid GA stops when the number of generations reaches the preset max-
imum generation T. The overall procedure of the hybrid GA for feature selection
(HGFS) is outlined below.

Algorithm 6.4.1 (Procedure of HGFS)

M is the size of population P(t)
Begin

Initialize P(0);
t = 0;
While (t ≤ T ) do

Local improvement of each chromosome of P(t) by I(C; fi |S) ;
for i = 1 to M do

Evaluate fitness I(Y ;Yf ) of individuals of P(t);
end for
if stopping conditions are satisfied, break;
Selection operation to P(t);
Crossover operation to P(t);
Mutation operation to P(t);
for i = 1 to M do

P(t +1) = P(t);
End for
t = t +1;

End while
End

6.5 Experiments and Discussions

Some aspects of the proposed HGFS approach are studied and discussed via vari-
ous experiments in this section. First, we investigate the performance of HGFS on
a specific data set, the wine dataset and two synthetic data sets. The wine dataset
is chosen from the UCI Machine Learning Repository [31]. Some characteristics
of the HGFS are well studied by experiments including time analysis, efficiency of
the local search operations, and affects of different number of samples, dimensions
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as well as bins used in the histogram computation. Then, more real-world bench-
mark datasets with a diverse mixture of attribute types (continuous, nominal), a
large number of instances and a wide range of input feature dimensions are chosen
for experiments to verify the effectiveness and applicability of the HGFS approach.
All the results are compared with other feature selection methods such as Battiti’s
MIFS, Il-seok Oh’s HGA and the recursive feature selection method (RFE).

6.5.1 Performance of the HGFS Approach

Time Analysis and Comparisons with Some Methods

In this subsection, the proposed HGFS method will be briefly compared with Bat-
titi’s MIFS, recursive feature elimination (RFE) and Il-seok Oh’s HGA methods. A
simple time analysis and comparison is performed through both designing of algo-
rithms and experimental results.

In fact, the above four approaches are very typical feature selection methods.
First, as viewed from the evaluation measures for feature selection, Battiti’s MIFS
is a classical filter method. It evaluates each candidate feature with the mutual in-
formation between the selected features and output classes without involving any
learning algorithms. Whereas Il-seok Oh’s HGA and the proposed HGFS algorithms
are typical wrapper methods in which a specific learning machine is utilized to as-
sess the goodness of candidate feature subsets. RFE may be categorized into one
type of embedded feature selection methods, for it chooses features according to
the weights given by the classifier itself. Second, as seen from the search strategies,
MIFS is a forward selection approach that starts with an empty subset and iteratively
adds features according to a mutual information measure until a stopping criterion is
met. Whereas RFE is a backward elimination method that starts with all features and
iteratively removes one feature or bunches of features according to the weight vec-
tor. Unlike MIFS and RFE, Il-seok Oh’s HGA and the proposed HGFS algorithms
are stochastic search methods that generate the next feature subset in a heuristic but
non-deterministic fashion by means of amounts of calculations. These distinctions
among the four algorithms result in different computational complexity.

In MIFS, the feature selection procedure doesn’t need to train any learning ma-
chines such as SVMs. If n0 out of n features are required to be selected, it needs only
to compute the mutual information criterion (6.11) n0 times. When histogram with
bins for each feature no more than ten is employed (this number of bins is usually
enough for feature selection), the time to compute the mutual information criterion
(6.11) is a tiny fraction of that to train an SVM. Consequently, MIFS is a very fast
feature selection method.

In RFE, it operates by trying to choose the n0 features which lead to the largest
margin of class separation, using an SVM classifier. This combinatorial problem is
solved in a greedy fashion with iterations of training by removing the feature that
decreases the margin the least until only n0 features remain. Hence, n− n0 SVMs
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have to be trained in the procedure. The algorithm can be accelerated by removing
more than one feature at a time, for example, half of the features remain.

Whereas in HGFS, each chromosome represents a candidate subset of features.
The local search operations mainly involve computation of the conditional mutual
information criterion (6.26) to evaluate each feature in the chromosome. If an initial
chromosome has n′ features, the times of computing the criterion for this chromo-
some, denoted by tp, will be

tP =
{

n′ −n0, n′ ≥ n0,
n0 −n′, n′ < n0.

(6.36)

Meantime, an SVM classifier needs to be trained to assess the improved chromo-
some. If the population of GA has Nind chromosomes, the sum of computational
cost in one generation includes training Nind SVM classifiers and calculating the
criterion (6.26) Nind · tp times.

Finally, in Il-seok Oh’s HGA (denoted by HGA-o), a local search operation rip-
ple(r) was presented. The basic idea of ripple(r) procedure can be stated as follows:
first remove the least significant feature from the subset of already-selected features
r times, and then add the most significant unselected feature r−1 times again, thus
one feature is added; contrariwise, one feature is removed. If the number of features
in current subset is equal to the required number, then just do both removing and
adding operations r times respectively. The parameter r is called the ripple factor
taking value of integers like 1, 2. Each evaluation of significance of features needs
to train and test a classifier. If an initial chromosome has n′ features, the number of
classifiers to be trained for a chromosome in the rippling local operations, denoted
by toh, will be

toh =

⎧⎨
⎩

(n′ −n0) · (2r−1), n′ > n0,
2 · (2r−1), n′ = n0,
(n0 −n′) · (2r−1), n′ < n0.

(6.37)

If a population of GA has Nind chromosomes and SVM is assumed the type of
classifiers to be trained, the sum of computational cost in one generation of Il-seok
Oh’s HGA includes training Nind ·toh SVM classifiers. Obviously, this is a very time-
consuming methodology.

The Wine dataset has 13 numerical input features and one label attribute with
three classes. It consists of 178 instances in which 57, 59 and 61 instances belong
to the three classes respectively. Perform the above four feature selection methods
on Wine dataset with 2-fold cross-validation and find the best subset of 3, 5, 8 and
10 features required in turn. All the computer hardware conditions are the same.
In MIFS, the parameter A takes the recommended value 0.7. In both Il-seok Oh’s
HGA and the HGFS, the size of population is set to 10, and other parameters are set
as described in Sect. 6.4.3. The time to find the best subset of required numbers of
features on Wine dataset with the four methods is recorded in Table 6.2, in which
for Il-seok Oh’s HGA and HGFS, the time is accumulated by the iterative genera-
tion time till the two methods converge to the optimal subsets of required number
features.
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Table 6.2 Time to find the best subset of required numbers of features with MIFS, RFE, Oh’s
HGA and HGFS methods for the Wine dataset

Methods Time (s)
3 features 5 features 8 features 10 features

MIFS 0.06 0.10 0.16 0.21
RFE 5.81 4.94 3.33 2.39
HGFS 29.01 16.42 21.49 17.17
HGA-o 217.73 275.22 332.56 274.94

From Table 6.2 one can see that the time of MIFS is the least, while the time
of the Il-seok Oh’s HGA is the most. As an improved approach, time of the HGFS
method is much less than that of the Il-seok Oh’s HGA, but still more than that of
RFE approach. In addition, one can find that the time of MIFS increases with the
number of required features increasing as it is a forward selection method, while the
time of RFE decreases with the number of required features increasing due to being
a backward elimination approach. However, this property doesn’t appear in Il-seok
Oh’s HGA and HGFS methods since they are the stochastic search algorithms.

Study on Local Search Operations in HGFS

Rippling Operation and Stepwise Eliminating Operation

Different from the rippling local search operations employed in Il-seok Oh’s HGA,
in the HGFS approach, the local search involves no classifiers training; only the
feature whose measure I(C; fs,S) is the least and less than the threshold dam is
eliminated stepwise as described in Sect. 6.4.2. The search process of HGFS with
rippling or stepwise-eliminating local operation is illustrated in Fig. 6.3. After 100
generations of evaluation, the HGFS with stepwise-eliminating local operation finds
the best feature subset {1,3,5,7,11,13} with the maximal output information of the
trained classifier I(Y ;Yf ) = 1.46 and the predictive accuracy 98.31%, while the
HGFS with ripple(r) (r = 2) local search operation finds the “best” feature subset
{1,2,6,7,10,11,12,13} with the maximal output information of the trained classifier
I(Y ;Yf ) = 0.84 and the predictive accuracy 84.83%. Obviously, the latter is trapped
into the local optimum. Moreover, the HGFS with the ripple local operations con-
sumes much more runtime in each generation than the stepwise-eliminating local
operation. This shows that the ripple local search operations may weaken the global
search ability of the hybrid GA for feature selection and do little improvement on
predictive accuracy in our approach.

Fitness Evaluation on Redundant Chromosomes

When running the HGFS procedures, the most time-consuming computation is to
evaluate the fitness of chromosomes in a population. To compute the fitness, a series
of classifiers are trained and tested for each chromosome of the population in a
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Fig. 6.3 The searching process of the HGFS approach with rippling or stepwise-eliminating local
operations

generation. However, as the generations of the hybrid GA wrapper are evaluated,
the chromosomes represented by a string of binary digits of zeros and ones would
converge to the optimal subset of features gradually, and more and more identical
chromosomes would appear in the same population. Since the main objective of
HGFS is to find the best subset of features, not to search the best value of fitness on
the best subset of feature, and the predictive accuracy of a classifier is most likely
determined by the subset of features selected rather than by the randomness of the
training data, so it is no need to compute the fitness values repeatedly for those
identical chromosomes in the same population, and only the evaluation of fitness
of different chromosomes in a population is necessary. In the hybrid GA wrapper
approach, the strategy of fitness evaluation for unique chromosomes is adopted. The
running time of every generation with 20 chromosomes in a population by 10-fold
cross-validation is shown in Fig. 6.4. As one can see from Fig. 6.4, when this strat-
egy is employed, the running time of one generation is decreased with the number of
generations increasing, and the average running time of one generation is 103.5 s.
Whereas this strategy is not used, the average running time of one generation is
135.1 s.

Effectiveness of the Local Search Operations

Finally, we inspect the effectiveness of the local search operations for the HGFS
approach. Figure 6.5 shows the searching processes of HGFS with and without the
local search operations. Corresponding to the two cases, the best subsets of features
{1,3,5,7,11,13} and {1,4,9,10,11,13} are found after 50 generations, the maximal
output information of the classifiers trained are 1.46 and 1.37, and the predictive
accuracy is 98.31% and 96.63%, respectively.

From the experimental results one can see obviously that the stepwise-
eliminating local search operations can greatly enforce the local searching ability
and make the algorithm fast reaching its optimum. As a result, the performance of
the HGFS approach is improved.
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6.5.2 Experimental Results on Benchmark Datasets

To study the applicability of the hybrid GA wrapper for feature selection (HGFS),
13 benchmark datasets are chosen here for experiments (see Tables 6.3 and 6.4).
The first 12 datasets are posted at the UCI Machine Learning Repository [31], and
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Table 6.3 Comparative performances of MIFS, RFE and HGFS methods on benchmark datasets
(part 1)

Datasets Input Selected features Dim. Reduction (%) Output information (bit)

features MIFS RFE HGFS MIFS RFE HGFS MIFS RFE HGFS

Iris 4 1 4 1 75.00 0.00 75.00 1.3656 1.3046 1.3656
Glass 9 8 6 5 11.11 33.33 44.44 0.8127 0.6736 0.8208
Vowel 10 10 10 10 0.00 0.00 0.00 3.1904 3.1905 3.1904
Wine 13 11 11 6 15.38 15.38 53.85 1.4301 1.486 1.4628
Vehicle 18 16 17 11 11.11 5.56 38.89 1.3725 1.2132 1.23
WDBC 30 12 3 3 60.00 90.00 90.00 0.561 0.5765 0.6353
Ionosphere 34 13 24 6 61.76 29.41 82.35 0.5975 0.5309 0.5693
Satellite 36 32 30 21 11.11 16.67 41.67 1.9817 1.9388 1.9755
Sonar 60 59 22 15 1.67 63.33 75.00 0.3163 0.3125 0.4461
Heart 13 6 5 3 53.85 61.54 76.92 0.3223 0.2421 0.3266
Credit 14 3 11 1 78.57 21.43 92.86 0.4583 0.3928 0.4527
Chess 36 34 22 5 5.56 38.89 86.11 0.8109 0.8449 0.6811
Colon 2,000 5 25 6 99.75 98.75 99.70 0.3256 0.2105 0.3835

Average – – – – 37.30 36.48 65.91 1.04 0.986 1.04

Table 6.4 Comparative performances of MIFS, RFE and HGFS methods on benchmark datasets
(part 2)

Datasets Kappa statistic Predictive accuracy (%)

MIFS RFE HGFS MIFS RFE HGFS

Iris 0.938 0.919 0.938 95.87±0.28 94.00±3.33 95.87±0.50
Glass 0.5227 0.4714 0.5213 65.98±2.93 62.62±4.67 65.51±2.44
Vowel 0.9544 0.9544 0.9544 95.86±0.20 95.86±0.20 95.86±0.20
Wine 0.9677 0.983 0.9711 97.87±1.22 98.88±0.00 98.31±0.57
Vehicle 0.7722 0.713 0.6847 82.92±1.59 78.49±0.71 76.36±1.95
WDBC 0.832 0.8421 0.8755 92.18±2.11 92.62±0.72 94.24±0.39
Ionosphere 0.8468 0.8183 0.8393 93.19±0.97 91.74±2.02 92.76±1.09
Satellite 0.8391 0.8826 0.831 91.88±2.15 90.49±0.46 91.47±1.89
Sonar 0.6303 0.6306 0.7373 81.63±3.87 81.73±1.92 87.02±0.00
Heart 0.6437 0.5576 0.6449 82.44±1.13 78.52±0.31 82.59±2.11
Credit 0.7331 0.6121 0.7301 86.58±0.36 86.40±1.48 86.43±0.00
Chess 0.942 0.9555 0.8815 97.11±0.11 97.78±0.03 94.10±0.02
Colon 0.66 0.5262 0.705 84.68±1.14 77.42±6.45 86.77±2.58

Average 0.79 0.76 0.79 88.32±1.39 86.66±1.72 88.25±1.06

the last one, the prostate cancer data set, is available from [2]. All these datasets are
widely used by the data mining community for evaluating learning algorithms. The
datasets selected here comprise a diverse mixture of feature types, ranging from
purely continuous to purely nominal attribute domains. The size of the datasets
varies from 150 to 6,435 cases, and the original feature dimension of the datasets is
up to 2,000.
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The performance of the HGFS approach is compared with that of other two fea-
ture selection algorithms: Battiti’s MIFS and the recursive feature selection method
(RFE) algorithm. The results are mainly compared in terms of dimensionality re-
duction, output information ( I(Y ;Yf )), kappa statistic and the predictive accuracy.

The parameters are set as follows: all the three feature selection methods take
SVM learning algorithm as the classifier with parameter C = 100 and the rbf kernel
function is used with parameter σ = 2. For multiclass problems, the one-against-
rest strategy is employed. In MIFS, parameter takes the recommended value 0.7. In
RFE, the strategy that half of the features left are removed at a time is adopted. In
MIFS and HGFS, by the equiprobable partitioning approach described in Sect. 6.2,
the continuous features are discretised into four bins for data sets that the number of
samples is less than 200, six bins for data sets that the number of samples is within
200 and 600, and 10 bins for data sets that the number of samples is above 600. In
addition, for the HGFS approach, the size of chromosome population is set to 10,
and other GA parameters are set as Sect. 4.3 described. Finally, all the results are
evaluated by 2-fold cross-validation method for each experiment and presented in
Tables 6.3 and 6.4.

Tables 6.3 and 6.4 show the initial number of candidate input features in each
data set, the number of input features selected by the evaluated algorithms, and
the reduction in data dimensionality (the portion of candidate input features that
were excluded from the model). The way to determine the number of features in
the optimal subset is as follows. Let r be the required number of features to be
selected, m be the total number of features of a data set or the most number of
features expected to select when the initial features of a dataset is too many. Repeat
the following operations from r = 1 to m : carrying out the feature selection method
to find the best feature subset of size r, training and testing an SVM classifier with
the best feature subset, and computing the output information I(Y ;Yf ) with k-fold
cross validation approach. The r corresponding to the maximal I(Y ;Yf ) is regarded
as the number of features in the optimal subset. When m is very large, the r, after
which a successive number of I(Y ;Yf )’s are not improved saliently, e.g., from r +1
to r +5, is then considered as the number of features in optimal subset. Usually, the
kappa value and classification accuracy have the same trend as I(Y ;Yf ).

The results in Tables 6.3 and 6.4 show that the models produced by the HGAFS
method are significantly smaller than that built by the MIFS and RFE methods in
almost all the data sets. The average difference between them in dimensionality
reduction is about 28% of the number of available features. This means that the
HGFS approach is a much “aggressive” dimensionality reducer than RFE and Bat-
titi’s MIFS methods.

Tables 6.3 and 6.4 also show, for each data set, the estimated model perfor-
mance such as output information, kappa statistic and predictive accuracy of the
HGFS approach versus the other two methods. As one can see from Tables 6.3 and
6.4, these three performance indices of HGFS are very similar to that of both RFE
and Battiti’s MIFS in overall cases. This means that the HGFS approach is able to
achieve the highest average model performance using the least number of features,
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which is less than 40% of the number of available features on average. To sum up,
the HGFS method is prominent compared to both Battiti’s MIFS and RFE methods.

6.6 Conclusions

A hybrid genetic algorithm for feature selection (HGFS) has been presented based
on mutual information. Both the performance and the applicability of the method
have been well studied by experiments on various types of datasets. The results
demonstrate clearly the effectiveness of the HGFS approach. The results can be
summarized as follows:

(a) The mutual information between the predictive labels of a trained classifier
and the true classes I(Y ;Yf ), called the output information of the classifier,
can be used as the fitness function of the hybrid GA for feature selection.
It has a close relation to the predictive accuracy of the trained classifier.
When a classifier is trained by the objective function of minimal classifi-
cation error rate, its output information achieves its maximum.

(b) The improved formula to calculate the conditional mutual information be-
tween the candidate feature and the classes given a subset of already-
selected features, I(C; fi|S), works well in feature ranking in the local
search operations of the HGFS approach. It takes carefully into account
both the relevance of the candidate feature to the output classes and the re-
dundancy between the candidate feature and the features already selected.

(c) The wrapper and filter approaches are well incorporated within the two-
layer optimization framework of the hybrid GA for feature selection. The
outer optimization completes the global search for the best subset of fea-
tures in a wrapper way, which uses the output mutual information as the
fitness function of the genetic algorithm. The inner optimization performs
the local search in a filter manner, which uses the conditional mutual in-
formation I(C; fi|S) as an independent measure to rank every feature in a
subset and removes those features with inferior values of I(C; fi|S). The
inner and outer optimization cooperate with each other and achieve good
performances of both the high global predictive accuracy and the high local
search efficiency.

The overall framework of HGFS adopts the wrapper formulation, so it inevitably
inherits the weakness like a long run time needed. The value of the HGFS approach
lies in the fact that once the optimal subset of features is found with this method, the
subsequent learning machines or data representations may be trained or processed
directly with the selected features with much less time.
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Chapter 7
Information Approach to Blind Source
Separation and Deconvolution

Pham Dinh-Tuan

7.1 Introduction

Blind separation of sources aims to recover the sources from a their mixtures with-
out relying on any specific knowledge of the sources and/or on the mixing mecha-
nism [1]. (That is why the separation is called blind). Instead, it relies on the basic
assumption that the sources are mutually independent.1 A popular measure of de-
pendence is the mutual information. This chapter attempts to provide a systematic
approach to blind source separation based on the mutual information.

We shall focus on noiseless mixtures. There are few methods which deal explic-
itly with noises. Often a preprocessing step is done to reduce noises, or a method
designed for a noiseless model is found to be rather insensitive to noise and can thus
be applied when some noises are present. A general noiseless mixture model can
be written as x(·) = A{s(·)}, where s(n) et x(n) represent the observation and the
source vector at time n et A is some transformation, which can be instantaneous, i.e.
operating on each s(n) to produce x(n), or global (i.e. operating on the whole se-
quence s(·) of the source vectors. The transformation A is not completely arbitrary,
one often assumes it belongs to a certain class A , the most popular ones are the
class of linear (or affine) instantaneous transformation and the class of linear con-
volutions. More complex non linear transformations have been considered, but for
simplicity we shall limit ourselves to the above two linear classes. Separation may
be realized by applying an inverse transformation A−1 to x(·). However, A is un-
known, so is its inverse. The natural idea is to apply a transformation B ∈A −1, the
set of all transformations which are inverses of a transformation in A , and is chosen
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Laboratory Jean Kuntzmann, CNRS-INPG-UJF BP 53, 38041 Grenoble Cedex, France
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1 In telecommunication however, the discrete nature of the sources provides a powerful means for
their separation even without the independence assumption. Also, for non stationary and/or non
white source, a weak form of independence – second order independence – can be enough.
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to minimize some criterion. We consider here the independence criterion based on
the mutual information measure.

This chapter contains to parts: the first one concerns instantaneous (linear) mix-
tures and the second one convolutive (linear) mixtures. In the last case, if the ob-
served and source vectors are both scalar, the problem reduces to that of blind decon-
volution, since the observation sequence is the convolution of the source sequence
with some filter and the aim is to deconvolve the observation sequence to recover
the source. Here, temporal independence of the source is essential for blind decon-
volution. In general, for convolutive mixture, the sources can be recovered only up
to a filtering (as it will be seen later) so the temporal independence assumption of
the source may be introduced to eliminate this ambiguity. Then the problem may
be called multichannel blind deconvolution or more appropriately blind separation
deconvolution as one tries to both separate the source and deconvolve them.

7.2 Blind Separation of Linear Instantaneous Mixtures

We begin with the definition and some properties of the mutual information

7.2.1 Mutual Information Between Random Vectors

Let y1, . . . ,yK be K random vectors with joint density py1,...,yK and marginal densi-
ties py1 , . . . , pyK , the mutual information between them is defined as the Kullback–
Leibler divergence between the product density of the marginal densities ∏K

k=1 pyk
and the joint density py1,...,yK :

I(y1 . . . ,yK) =−E
[

log
py1(y1) · · · pyK (yK)
py1,...,yK (y1, . . . ,yK)

]
. (7.1)

This is a dependence measure as it is non negative (but can be infinity) and can
vanish if and only if the random vectors are independent [4]. One can also write the
mutual information in term of the (differential) entropy as [4]

I(y1 . . . ,yK) =
K

∑
i=1

H(yk)−H(y1 . . . ,yK), (7.2)

where H(y1 . . . ,yK) et H(y1), . . . ,H(yK) are joint and marginal entropies of y1, . . . ,
yK :

H(yk) =−
∫

log[pyk(yk)]pyk(yk)dyk =−E{log[pyk(yk)]} (7.3)

and H(y1 . . . ,yK) is the same as H([yT
1 · · · yT

K ]T), T denoting la transposition, and
is defined similarly as H(yk) with pyk replaced by py1,...,yK .
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The entropy possesses the following interesting property with respect to invert-
ible transformation:

Lemma 7.1. Let x be a random vector and y = g(x) where g is an invertible differ-
entiable transformation with Jacobian (matrix of derivatives) g′. Then

H(y) = H(x)+E log |det g′(x)|.

The proof of this result follows easily from the definition (7.3) of the entropy and
the equality px(x) = py[g(x)]|det g′(x)|.

The above result shows that the mutual information between a set of random
vectors is unchanged when each vector is undergone an invertible transformation:
I(y1, . . . ,yK) = I[g1(y1), . . . ,gK(yK)] where g1, . . . ,gK are invertible differentiable
maps. This is compatible with the fact that independent random vectors remain in-
dependent under such transformation.

A particular and most interesting application of Lemma 7.1 is where g is linear.
It shows that the entropy is translation invariant and scale equi-variant: H(ax+b) =
H(x)+ log |a| for any real random variable x and real number a,b. More generally
H(Ax+b) = H(x)+ log |detA| for any random vector x, matrix A and vector b.

7.2.2 The Mutual Information Criterion

Consider the linear instantaneous mixture model x(n) = As(n) where x(n) and s(n)
are the vectors of observed mixtures and of sources (at time n) and A is a matrix. We
assume that there are a same number K of mixtures as the number of sources and the
K ×K matrix A is invertible. The sources may be recovered as the components of
y(n) = Bx(n), B being a matrix chosen such that these components are as indepen-
dent as is possible. Adopting the mutual information as a measure of dependence,
one is led to the following criterion

C(B) = I(y1, . . . ,yk) =
K

∑
k=1

H(yk)− log |detB|−H(x), (7.4)

where yk is the kth component of y. Here the time index n is dropped as the entropies
does not depend on time, because of the (assumed) stationarity of the sequence
{s(n)}. Note that the term H(x) does not depend on B, hence will be dropped. Thus
the above criterion only involves marginal entropies and not joint entropy.

Scale and Permutation Ambiguities

From the scale equi-variance of the entropy, it is easily seen that the criterion is un-
changed when B is left multiplied by a diagonal matrix. It is also clearly unchanged
when the rows of B are permuted. Thus the sources can be recovered only up to
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a scaling and a permutation. These well known ambiguities actually are a conse-
quence of the fact that separation is based only on the independence assumption of
the sources.

7.2.3 Estimation of the Criterion

The criterion (7.4) is only theoretical since it involves the unknown entropies H(yk).
In practice, it has to be replaced by an estimator, obtained by replacing these un-
known entropies by their estimates. Thus the main problem is to estimate the en-
tropy.

There exist several entropy estimators in the literature. As we will need many
entropy estimations in the course of minimizing the estimated criterion, it is of in-
terest to use an estimator which can be computed quickly. With this consideration
in mind, we introduce an estimator based on the kernel density estimator and the
discretization of the formula (7.3) for the entropy. Indeed, by the binning technique
and the use of cardinal spline kernel (described below), the kernel density estimate
over a regular grid can be computed rather quickly.

The kernel density estimator of a random variable y based on a sample y(1), . . . ,
y(N) is given by [16]

p̂y(u) =
1

Nhσ̂y

N

∑
n=1
κ
[u− y(n)

hσ̂y

]
, (7.5)

where κ is a density function called kernel, h is a bandwidth parameter and σ̂2
y =

N−1∑N
n=1[y(n)− ȳ]2 is the sample variance of y, ȳ = N−1∑N

n=1 y(n) being the sample
mean. A natural estimate of H(y) could be −∑∞m=−∞ p̂y(mδ )δ log p̂y(mδ ) where δ
is the discretization step. This estimator however has the defect that it is neither
translation invariant nor scale equi-variant, while the entropy is. For this reason, we
will apply this estimator to the normalized variable y′ = (y− ȳ)/σ̂y instead and add
the term log σ̂y, which yields the entropy estimator of y:

Ĥ(y) =−
∞

∑
m=−∞

p̂y′(mδ )δ log[p̂y′(mδ )]+ log σ̂y ,

where p̂y′ is the kernel density estimate of y′ = (y− ȳ)/σ̂y. From (7.5), one gets

p̂y′(mδ ) =
1

Nh

N

∑
n=1
κ
[mδ σ̂y + ȳ− y(n)

hσ̂y

]
= py(mδ σ̂y + ȳ)σ̂y . (7.6)

Therefore

Ĥ(y) =−
∞

∑
m=−∞

p̂y(mδ σ̂y + ȳ)δ σ̂y log[p̂y(mδ σ̂y + ȳ)]+ log σ̂y

[
1−

∞

∑
m=−∞

p̂y′(mδ )δ
]
.
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Thus Ĥ(y) is almost the discretization of −
∫

p̂y(u) log[p̂y(u)]du with a grid spacing
δ σ̂y and origin ȳ. The last term in the above formula is small as ∑∞m=−∞ p̂y′(mδ )δ ≈∫

py′(y)du = 1. In fact, we shall limit ourselves to kernel κ having the partition of
unity property relative to δ/h, in the sense that ∑∞m=−∞κ(u + mδ/h)δ/h = 1, ∀u,
then Ĥ(y) is exactly the discretization of −

∫
p̂y(u) log[p̂y(u)]du since by (7.6)

∞

∑
m=−∞

py′(mδ )δ =
1
N

N

∑
n=1

∞

∑
m=−∞

κ
[ ȳ− y(n)

hσ̂y
+m

δ
h

]δ
h

= 1.

Put π̂y(m) = p̂y(mδ σ̂y + ȳ)δ σ̂y, the π̂y(m) sum to 1 and can be interpreted as prob-
abilities. Then

Ĥ(y) =−
∞

∑
m=−∞

π̂y(m) log[π̂y(m)]+ log(δ σ̂y), (7.7)

which is the sum of a discrete entropy plus the term log(δ σ̂y) to take into account
of the discretization.

7.2.3.1 The Cardinal Spline Kernel

We shall use the cardinal splines as kernel. The cardinal spline of order r is defined
as the indicator function of the interval [0,1) convolved with itself r times and de-
noted by 1l�r

[0,1). This function is symmetric around r/2, so we shift it by r/2, that
is we take as kernel the function 1l�r

[0,1)(·+ r/2) = 1l�r
[−1/2,1/2), the indicator function

of the interval [1/2,1/2) convolved with itself r times. This family of kernels is
not unusual. For r = 1, one gets the rectangular kernel which yields the histogram.
For r = 2, one gets triangular kernel which is also common. For r → ∞, the kernel
tends to a Gaussian kernel (since sum of independent uniform [0,1] variables tends
to be Gaussian). Even with r as low as 3, the function 1l�r

[−1/2,1/2) already has a very
similar shape to the Gaussian density. Further, such kernel has many advantages:

1. It is very easy to compute (for small r) and has compact support, therefore the
density estimate has finite support and the summation in (7.7) is a finite.

2. It possesses the partition of unity relative to 1, hence to 1/p for all integers p:

1
p

∞

∑
m=−∞

1l�r
[0,1)

(
u+

m
p

)
=

1
p

p−1

∑
k=0

∞

∑
m=−∞

1l�r
[0,1)

(
u+

k
p

+m
)

= 1.

3. The scaled kernel with an integer scale p, can be expressed as a convex combi-
nation of the same but integer shifted kernel:

1
p

1l�r
[0,1)

( u
p

)
=

pr−r

∑
l=0

cp,r
l 1l�r

[0,1)(u− l),



158 P. Dinh-Tuan

where cp,r
l , l = 0, . . . , pr− r are the coefficients of the polynomial (p−1∑p−1

l=0 zl)r.
This result can be obtained by noting that 1l(0,1](·/p) = (∑p−1

l=0 Bl)1l(0,1] where B
is the backward shift operator: B f = f (· − 1) and that this operator commutes
with the convolution.

The last property is very interesting as it permits the use of binning technique.

7.2.3.2 Binning Technique

The binning technique [7, 14] has been introduced to speed up the computation of
the kernel density estimate over a regular grid. It has been viewed as an approxima-
tion to such estimate. However, we have shown in [10] that there is no approximation
if the kernel can be expressed as combination of easy to compute shifted kernels and
the grid size is right. Although the idea is very general, it is best applied to the case
of the kernel κ = 1l�r

[1/2,1/2), which from the property 3 above can be expressed as

κ(u) = p
pr−r

∑
l=0

cp,r
l 1l�r

(0,1]

(
pu+

pr
2
− l

)
.

Taking δ = h/p, a sub multiple of h, then the formula (7.5) for p̂y becomes

p̂y(u) =
1
δ σ̂y

L

∑
l=0

cp,r
l

1
N

N

∑
n=1

1l�r
[0,1)

[u− y(n)
δ σ̂y

+
pr
2
− l

]
.

We are actually interested in computing not the density estimate but the probabili-
ties:

π̂y

(
m− pr

2

)
= p̂y

[(
m− pr

2

)
δ σ̂y + ȳ

]
δ σ̂y =

pr−r

∑
l=0

cp,r
l

1
N

N

∑
n=1

1l�r
[0,1)

[
m− y(n)− ȳ

δ σ̂y
− l

]
.

This computation can be done in two steps:

(1) Compute π̃y(m− r/2) = (1/N)∑N
n=1 1l�r

[0,1){m− [y(n)− ȳ]/δ σ̂y}, ∀m

(2) Compute π̂y(m− pr/2) = ∑pr−r
l=0 cp,r

l π̃y(m− r/2− l)

Step (2) can be implemented as the output of a (smoothing) filter with impulse
response {cp,r

l } and input {π̃Y (m−r/2)}. It is fast for small pr−r. Note that larger p
correspond to smaller discretization step, but there is no significant gain in accuracy
by taking a large p. In fact our experience shows that one can even take p = 1 (i.e.
δ = h) thus eliminate step (2) altogether.

Step (1) is fast for small r. For r = 1 it consists simply in counting the fraction
of time ỹ(n) = [y(n)− ȳ]/δ σ̂y falls into the interval (m− 1,m]. For general r > 1,
this step can be implemented as follows. We note that 1l�r

[0,1) vanishes outside (0,r),
hence the term 1l�r

[0,1)[m− ỹ(n)] is nonzero only for m = �ỹ(n)�+ 1, . . . ,�ỹ(n)�+ r
where �x� denotes the largest signed integer not exceeding x. Thus the computation
of π̃Y (m− r/2), m . . . ,−1,0,1, . . . , can be done as follows:
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(a) Initialize π̃y(m− r/2) = 0, ∀m
(b) For n = 1, . . . ,N add 1l�r

(0,1][�ỹ(n)�+ j− ỹ(n)]/N to π̃Y (�ỹ(n)�+ j− r/2), j =
1, . . . ,r

We recommend taking r = 3. For r = 2, the density estimate has jumps in its
derivative so that Ĥ(bx), where b is a row vector, is not differentiable with respect
to b. Since the computation cost increases with r with no proven gain in perfor-
mance, r = 3 is a good choice. The function 1l�3

[0,1) is given explicitly below:

1l�3
(0,1](x) =

⎧⎪⎪⎨
⎪⎪⎩

x2/2, 0 ≤ x ≤ 1,
1/2+(x−1)(2− x), 1 ≤ x ≤ 2,
(3− x)2/2, 2 ≤ x ≤ 3,
0, otherwise.

Note that for r odd, the probabilities π̃y are computed only at the center-grid points
m + 1/2, m = . . . ,−1,0,1, . . . and the same is true for π̂y if p is odd. In this case,
the definition (7.7) of the entropy estimator should be slightly changed by changing
m to m+1/2.

7.2.4 Minimization of the Criterion

To minimize the criterion Ĉ defined as in (7.4) but with Ĥ in place of H, a gradient
descent, or better a quasi Newton, iteration may be used. In both cases, one will need
the gradient of the criterion. Instead of the gradient, we will work with the relative
gradient Ĉ′ of Ĉ, defined via the first order Taylor expansion: Ĉ(B+E B) = Ĉ(B)+
tr[Ĉ′(B)E T]+ higher order terms in E , where tr denotes the trace. The concept of
relative gradient has been introduced in [2].

7.2.4.1 Relative Gradient of the Criterion

Introducing the estimated score function ψ̂y of y defined by

ψ̂y[y(n)] = N
∂ Ĥ(y)
∂y(n)

. (7.8)

Strictly speaking, this defines ψ̂y only at the data points but the definition can be
naturally extended to any point and in any case only the values of ψ̂y at the data
points will be needed. Then, denoting by Ek· the kth row of E :

Ĥ(yk +Ek·y) = Ĥ(yk)+Ek·
{ 1

N

N

∑
n=1
ψ̂yk [yk(n)]y(n)

}
+ · · · .

Therefore, from (7.4) and noting that logdet(I+E ) = tr(E )+ · · · , one gets
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Ĉ′(B) =
1
N

N

∑
n=1
ψ̂y[y(n)]yT − I, (7.9)

where
ψ̂y[y(n)] = [ψ̂y1 [y1(n)] · · · ψ̂yK [yK(n)]]T. (7.10)

The above estimated score function ψ̂y has been introduced in [10]. We will see
that this is indeed an estimator of the score function of y, defined as the derivative
ψy of − log py. We first derive explicitly an expression for ψ̂y. By (7.7), we have

ψ̂y[y(n)] =−N
∞

∑
m=−∞

log[π̂y(m)]
∂ π̂y(m)
∂y(n)

+
N
σ̂y

∂ σ̂y

∂y(n)

since ∑∞m=−∞ π̂y(m) = 1 and hence its partial derivatives vanish. Since σ̂2
y can be

written as (1/N)∑N
n=1 y2(n)− ȳ2 and ∂ ȳ/∂y(n) = 1/N:

N
σ̂y

∂ σ̂y

∂y(n)
=

N
2σ̂2

y

∂ σ̂2
y

∂y(n)
=

y(n)− ȳ
σ̂2

y
.

Further, from (7.6) and the above formula and putting y′ = (y− ȳ)/σ̂y for short,

N
∂ π̂y(m)
∂y(n)

=− δ
h2σy

{
κ ′
[mδ − y′(n)

h

]
− 1

N

N

∑
l=1
κ ′
[mδ − y′(l)

h

][
1+y′(l)

y(n)− ȳ
σy

]}
,

where κ ′ is the derivative of κ . Therefore

ψ̂y(u) = ψ̃y(u)− 1
N

N

∑
l=1
ψ̃y[y(l)]+

{
1− 1

N

N

∑
l=1
ψ̃y[y(l)][y(l)− ȳ]

}u− ȳ
σ̂2

y
, (7.11)

where

ψ̃y(u) =
δ

h2σ̂y

∞

∑
m=−∞

log[π̂(m)]κ ′
(mδ σ̂y + ȳ−u

hσy

)
.

Interpretation: One may write ψ̃y as

ψ̃y(u) =− d
du

∞

∑
m=−∞

log[p̂y(mδ σ̂y + ȳ)]
δ
h
κ
(mδ σ̂y + ȳ−u

hσy

)

assuming that κ possesses the partition of unity property relative to δ/h so that
∑∞m=−∞κ ′(mδ/h + u) = 0, ∀u. Thus ψ̃y appears as the derivative of a doubly
smoothed estimator of − log py, hence it is an estimate of the score function ψy of y.
Our estimated score function ψ̂y is a corrected form of ψ̃y, obtained by a centering
and adding a linear function, so that it satisfies

1
N

N

∑
n=1
ψ̂y[y(n)] = 0,

1
N

N

∑
n=1
ψ̂y[y(n)]y(n) = 1. (7.12)
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These equalities mimic that of the score function: E[ψy(y)] = 0 and E[ψy(y)y] = 1
(which can be obtained by integration by parts). Further, the second equality entails
that Ĉ′ given in (7.9) has zero diagonal.

In the particular case where κ = 1l�3
[−1/2,1/2) and δ = h, a direct calculation yields

ψ̃y[ȳ+(m+u)δ σ̂y] = {(1−u) log[π̃y(m− 1
2 )]

+ (2u−1) log[π̃y(m+ 1
2 )]−u log[π̃y(m+ 3

2 )]}/(δ σ̂y),

for integer m and real u∈ [0,1). One can see that ψ̃y is the linear interpolation of the
function taking the value {log[π̂y(m− 1

2 )]− log[π̂y(m+ 1
2 )]}/(δ σ̂y) at ȳ+mδ σ̂y.

7.2.4.2 Approximate Relative Hessian of the Criterion

The concept of relative Hessian is similar to that of relative gradient. Specifically,
the relative Hessian of the criterion Ĉ(B) is composed of the second derivatives
of Ĉ(B +E B) with respect to the elements of E at E = 0. From the definition of
relative gradient, the ordinary derivarive of Ĉ(B+E B) with respect to E is Ĉ′(B+
E B)(I+E )−1T. Thus one has to compute its derivative with respect to E , at E = 0.

To proceed, we introduce three kinds of approximation: (1) sample average is the
same as expectation, (2) the estimated score function ψ̂yi is the same score function
ψyi (or a weaker assumption that it is a non random function) and (3) the variables
y1, . . . ,yK are independent. The point (3) is justified if B is close to a matrix which
separate the sources. Under (1)–(3), Ĉ′(B) would be negligible hence the derivative
of Ĉ′(B +E B)(I +E )−1T at E = 0 reduces to that of Ĉ′(B +E B) at E = 0. Since
the diagonal elements of Ĉ′(B+E B) vanish for all E , we conclude that the second
derivative of Ĉ(B+E B) with respect to a diagonal element of E and any other ele-
ment of E at E = 0 also vanishes (approximately). Thus, we need only to compute
the second derivatives of Ĉ(B+E B) with respect to the off diagonal elements of E
at E = 0, which are (approximately) the derivatives of the off diagonal elements of
Ĉ′(B+E B) with respect to those of E at E = 0.

The i j element of Ĉ′(B+E B) for i �= j, is

1
N

N

∑
n=1
ψ̂yi+Ei·y[yi(n)+Ei·y(n)][y j(n)+E j·y(n)].

This expression does not depend on Ek· for k /∈ {i, j}, its derivative with respect to
E jk, k �= j at E = 0 is N−1∑N

n=1 ψ̂yi [yi(n)]yk(n), and with respect to Eik, k �= i at
E = 0 is

1
N

N

∑
n=1
ψ̂ ′

yi
[yi(n)]yk(n)y j(n)+

1
N

N

∑
n=1

∂ψ̂yi+Eikyk

∂Eik
[yi(n)]

∣∣∣
Eik=0

y j(n),

where ψ̂ ′
yi

is the derivative of ψ̂yi .
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Under (1)–(3) above, the second term in the above expression can be neglected
since yi is independent with y j. Likewise, the first term can be neglected un-
less k = j in which case it is approximately {N−1∑N

n=1 ψ̂ ′
yi
[yi(n)]}σ̂2

y j
. The term

N−1∑N
n=1 ψ̂yi [yi(n)]yk(n) is also negligible unless k = i in which case it equals 1

(by (7.12)). With these approximations, the Hessian matrix is block diagonal with
2×2 diagonal blocks[

{N−1∑N
n=1 ψ̂ ′

yi
[yi(n)]}σ̂2

y j
1

1 {N−1∑N
n=1 ψ̂ ′

y j
[y j(n)]σ̂2

yi
}

]

corresponding to the derivatives with respect to the pair Ei j,E ji.
The above matrix however may not be positive. A positive definite approxima-

tion to the Hessian is desirable. For this purpose, note that N−1∑N
n=1 ψ̂ ′

yi
[yi(n)] is an

estimator of E[ψ ′
yi
(yi)] but we know (by integration by parts) that this expectation

equals E[ψ2
yi
(yi)] = J(yi) the Fisher information of yi. Therefore, we may approxi-

mate the Hessian by a block diagonal matrix with diagonal blocks[
Ĵ(yi)σ̂2

y j
1

1 Ĵ(y j)σ̂2
yi

]
, where Ĵ(y) =

1
N

N

∑
n=1
ψ̂2

y [y(n)].

By the Schwartz inequality and the equalities (7.12), Ĵ(y)σ̂2
y > 1 (unless ψ̂y is a

linear function). Hence the above approximate Hessian is positive definite.

7.2.4.3 The Quasi Newton Algorithm

The Newton algorithm consists in replacing the function to be minimized by its
second order expansion around the current point, then minimizing this expansion to
obtain the new point. In the quasi Newton algorithm , the second order terms are
replaced by some approximations. In our case, as we work with relative gradient
and Hessian, we consider the (approximate) expansion

C(B+E B)≈C(B)+∑
i�= j

{
Ei j

1
N

N

∑
n=1
ψ̂yi [yi(n)]y j(n)+

1
2
[E 2

i j Ĵ(yi)σ̂2
y j

+Ei jE ji]

}
.

The minimization of the above right-hand side yields Ei j, j �= i. Then B is changed
to B +E B for the next step of the algorithm (the diagonal of E may be put to zero
since it essentially affects the scale of the extracted sources). Explicitly

[
Ei j
E ji

]
=−

[
Ĵ(yi)σ̂2

y j
1

1 Ĵ(y j)σ̂2
yi

]−1 [
N−1∑N

n=1 ψ̂yi [yi(n)]y j(n)
N−1∑N

n=1 ψ̂y j [y j(n)]yi(n)

]

There is no guarantee that the criterion is decreased at each step. In practice, if
this is not the case, one reduces the step size sufficiently to obtain a decrease of
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the criterion. This is always possible as long as the approximate Hessian matrix is
positive definite. A method for reducing the step size is described in [13, p. 384].

7.2.5 Statistical Performance

A first question concerning the performance of the above method is that whether it
correctly extracts the sources up to a permutation and a scaling under ideal con-
ditions where an infinite (very large) number of observations obeying exactly the
mixture model (7.13) is available.2 In this ideal situation the estimated criterion
Ĉ(B) may be regarded as identical to the theoretical criterion C(B) defined in (7.4).
Therefore the question is whether −C(·) is a contrast in the sense of Comon [3],
that is it attains it global maximum if and only if BA is a product of a nonsingular
diagonal and a permutation matrices. The answer is yes if there is no more than
one Gaussian sources, since by the Darmois Theorem [3], no two set of linear com-
binations of independent variables can be independent unless at least two of these
variables are Gaussian.

The above discussion requires implicitly that h → 0 tends to 0 as N → ∞ (hence
the same holds for δ as the ratio δ/h is kept fixed) so that Ĉ(B) → C(B). In fact
we shall show below that h can be kept fixed (or tends to a non zero limit) provided
that it (or its limit) is small enough. In practice, as only a finite but large sample is
available, this means that one can choose h moderately small. Then Ĉ(B) may be
considered as the same as Ch,δ (B), its limit as N → ∞ and h,δ fixed. We now show
that −Ch,δ (·) is still a contrast provided that h,δ are small enough. By the scale and
permutation invariance of Ch,δ (·), it suffices to shows that Ch,δ (A−1) <Ch,δ (GA−1)
for any matrix G with rows of unit norm which is not a permutation matrix.

The crucial point is that A−1 is a stationary point of −Ch,δ (·). It may be expected
and indeed may shown that the relative gradient of Ch,δ (B) is the limit (as N →
∞) of the relative gradient Ĉ′(B) of C(B), which from the result of Sect. 7.2.4.1 is
E[ψh,δ ,y(y)yT]− I where ψh,δ ,y(y) is the limit of ψ̂y(y). The important point is that
ψ̂h,δ ,yk

(yk), the kth component ofψh,δ ,y(y), is a non random function of yk satisfying
E[ψh,δ ,yk

(yk)] = 0, this equality being obtained from the first equality of (7.12). For
B = A−1, y = s, hence the off diagonal elements of E[ψh,δ ,y(y)yT] vanish. The
diagonal elements of E[ψh,δ ,y(y)yT]− I also vanish since those of Ĉ′(B) vanish for
all N.

Consider now the Taylor expansion of Ch,δ (GA−1) with respect to G ≈ I:

Ch,δ (GA−1) = Ch,δ (A−1)+
1
2 ∑

i�= j,k �=l
C′′

h,δ ,i j,klGi jGkl + · · · ,

where C′′
h,δ ,i j,kl are the elements of the relative Hessian of Ch,δ (·) at A−1 and Gi j

the elements of G. It may be shown that as (h,δ ) → (0,0), C′′
h,δ ,i j,kl → C′′

i j,kl ,

2 We already know that these ambiguities cannot be avoided in a blind context.
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the elements of the relative Hessian of C(·) at A−1. Since −C(·) is a con-
trast, ∑i�= j,k �=l C′′

i j,klGi jGkl > 0 for any non diagonal matrix G, hence so is
∑i�= j,k �=l C′′

h,δ ,i j,klGi jGkl if h,δ are small enough. Thus for such h,δ , Ch,δ (A−1) <

Ch,δ (GA−1) for G close enough to I but distinct from I. Since the criterion is per-
mutation invariant, this inequality also holds for G is an open neighborhood P of
all permutation matrices but is not a permutation matrix. Further, since −C(·) is a
contrast C(A−1) < C(GA−1) for all G ∈ G , the set of matrices not in P with rows
of unit norm. Since this set is compact, the infimum of C(GA−1) over it is attained,
implying that there is a ε > 0 such that C(GA−1) > C(A−1)− ε for all G ∈ G .
Finally it may be shown that Ch,δ (·) converge to C(·) uniformly on any compact
set as (h,δ ) → (0,0), so that for h,δ small enough Ch,δ (A) < Ch,δ (GA−1) for all
G ∈ G . ��

It is of interest to point out the similarity of the present approach with the quasi
maximum likelihood approach [12]. The last approach estimates the separation ma-
trix by maximum likelihood using hypothetical (a priori) densities for the sources,
which leads to the estimating equation

1
N

N

∑
n=1
ψi[y j(n)]y j(n) = 0, 1 ≤ i �= j ≤ K,

where ψi is the score function of the hypothetical density of the ith source. From
the result of Sect. 7.2.4.1, the mutual information approach also leads to a simi-
lar estimating equation, only that ψi is replaced with ψ̂yi , an estimator of the true
score function ψyi . Assuming without loss of generality that the sources si(n) have
unit variance and the separation matrix has been permuted and rescaled so that
yi(n) has unit variance and estimates si(n), the paper [12] provides formula for the
asymptotic distribution of the off diagonal elements Gi j, i �= j of the global ma-
trix G = BA. (These elements may be viewed as the contamination coefficients, as
yi(n) = (1−∑ j �=i G2

i j)
1/2si(n) +∑ j �=i Gi js j(n) and (1−∑ j �=i G2

i j)
1/2 ≈ 1.) Specifi-

cally, the asymptotic covariance matrix of the Gi j, i �= j is block diagonal with 2×2
diagonal block

1
N

[
λi 1
1 λ j

]−1 [ρ−2
i 1
1 ρ−2

j

][
λi 1
1 λ j

]−1

,

where λi = E[ψ ′
i (si)]σ2

si
/E[ψi(si)si] and ρi = E[ψi(si)si]/{E[ψ2

i (si)]σ2
si
}1/2, σ2

si
be-

ing three variance of yi (which is 1 but is included here to show that the above
parameters are dimensionless). It was also shown in [12] that this covariance ma-
trix is smallest when the ψi are chosen (miraculously) equal to the (unknown) true
score functions of the sources. In the mutual information approach, the above result
should still holds with ψi replaced by ψh,δ ,si if h,δ are kept fixed as N → ∞ or ψsi

if (h,δ ) → 0 as N → ∞ with a slow enough rate. Thus the mutual information ap-
proach is (assymtotically) optimal. This is not an coincidence as there is a strong
link between this approach and the maximum likelihood method [1].

The fact that h,δ can be fixed show that the algorithm is quite robust with respect
to their choice: a bad choice simply result in a small loss of performance. To chose
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h one may follow the simple approach in [16], which minimizes the (asymptotic)
integrated mean square errors of the density estimate under Gaussian assumption.
This assumption is of course false, but it provides a convenient and easy way to
choose h. As the true density is often less smooth than the Gaussian density, it tends
to over smooth the estimated density by providing a larger h than it should be. But
this is fine with us, as we have seen that h can even be fixed. For the third cardi-
nal kernel, this approach yields h = 2.107683N−1/5. (The formula h = 1.06N−1/5

in [16] corresponds to the Gaussian kernel.)
For ψi = ψsi , λi = ρ−2

i hence the asymptotic covariance matrix of Gi j, i �= j is
1/N times the inverse of the block diagonal matrix with 2×2 diagonal blocks having
ρ−2

i and ρ−2
j on the diagonal and 1 elsewhere. This matrix is also approximately the

inverse of the Hessian matrix of the criterion (see Sect. 7.2.4.2). Note that ρi is the
correlation between ψi(si) and si and hence always less than 1, unless ψi is linear.
For ψi =ψsi , the parameter λi = ρ−2

i measures the nonlinearity of the score function
of si as it takes the smallest value 1 if and only if this function is linear. The non
linearity of the score function translates into the non Gaussianity of the variable
since only Gaussian variables have linear score function. The more non Gaussian
the variables si(n) and s j(n), the higher ρ−2

i and ρ−2
j and from the above results,

the smaller the optimal asymptotic covariance matrix of Gi j,G ji.

7.2.6 An Example of Simulation

As an example, we have generate three sources of length 512. the first is a sum of
two sine waves of different frequencies and phase, the second is a triangular signal
and the third is a Gaussian autoregressive moving average (ARMA) process of AR
coefficients 1.4,−0.9 and MA coefficient 0.2. The two sine waves have amplitude 1
and the triangular signal has amplitude

√
3, so that the first two sources have average

power 1. The innovation variance of the ARMA source is also determined so that
this source has unit variance. The three sources are plotted in the upper left part of
Fig. 7.1. They are mixed by the mixing matrix

A =

⎡
⎣ 1 1 1

1 −1 1
0.5 1 1

⎤
⎦ ,

yielding three mixtures which are plotted in the upper right part of Fig. 7.1.
We apply the algorithm to these mixtures starting with the identity matrix as

the initial separating matrix B. The result is displayed in the lower right part of
Fig. 7.1, in which the nine elements of the global matrix BA is plotted against the
iteration number. It can be seen that the algorithm converges well, to a product of a
permutation and a diagonal matrix. All except three elements of the global matrix
converge to nearly zero. Those which don’t are the (1,2), (2,1) and (3,3) elements, as
indicated in the graph. This shows that the first two extracted sources are permuted.
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Fig. 7.1 Results of application of the algorithm: the three sources (upper left), the three mixtures
(upper right), the three separated sources (lower left) and the nine elements of the global matrix as
function of the iteration number (lower right)

This is also clearly visible in the lower part of Fig. 7.1 where the three separated
sources are plotted. One can see that the graph of them are very similar to that of
the original sources.

For entropy estimation, we choose a discretization step δ equal to the smoothing
parameter h and estimate the density with the third cardinal spline as kernel and the
parameter h chosen as described in Sect. 7.2.5. Even with such simple choice of h
and a rather coarse discretization step the algorithm works quite well. Note that the
ARMA source is Gaussian, but the algorithm still works since one Gaussian source
is allowed.

7.3 Multichannel Blind Deconvolution

In the case of convolutive mixture the independence assumption of the sources
alone can only permit to separate them up to a convolution, since the outputs of the
separation remain independent if each of them is filtered. Thus further assumption
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may be introduced to eliminate this ambiguity. A common assumption is the tempo-
ral independence of the source signals. In this case the problem may be called blind
separation-deconvolution or multichannel blind deconvolution, since it reduces to
the well known blind deconvolution problem when there are only one source and
one sensor. Specifically, we consider the model

x(n) =
∞

∑
j=−∞

A( j)s(n− j) = (A� s)(n), (7.13)

where again the observed vector x(n) and source vector s(n) have the same dimen-
sion K and {A( j)} is a sequence of K ×K matrices and � denotes the convolution.
The goal is to recover the sources from the observations, using only the indepen-
dence of the source sequences (blind separation) and their temporal independence
(blind deconvolution).

Naturally, the recovered source sequences {yk(n)},k = 1, . . . ,K are obtained
through a deconvolution matrix filter

y(n) =
∞

∑
j=−∞

B( j)x(n− j) = (B�y)(n), (7.14)

where y(n) = [y1(n) · · · yK(n)]T and {B( j)} is a sequence of matrices to be deter-
mined.

Note 7.1. In order that the sources can be recovered at all, the matrix sequence
{A( j)} is assumed to be invertible in the convolutive sense, that is there exists an in-
verse sequence {A†( j)} such that∑∞k=−∞A†( j−k)A(k) = I if k = 0, = 0 otherwise.
Naturally, the sequence {B( j)} will also be restricted to be invertible.

7.3.1 The Mutual Information Criterion

Our objective is to make the recovered sources as independent as it is possible,
both temporally and among themselves. Therefore, we adopt as criterion the average
mutual information between the variables yk(n), n = 1,2, . . . ,k = 1, . . . ,K:

lim
L→∞

1
L

I[y1(1), . . . ,y1(L), . . . ,yK(1), . . . ,yK(L)],

From the relation between the mutual information and entropy and noting that
H[yk(n)] does not depend on n by stationarity and hence will be denoted simply
by H(yk), the above criterion can be written as ∑K

k=1 H(yk)−H[y(·)] where

H[y(·)] = lim
L→∞

1
L

H[y(1), . . . ,yk(L)]
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is (by definition) the entropy rate of the {y(n)} sequence [4]. The limit in this defi-
nition is known to exists for stationary the sequences [4], hence the criterion is well
defined.

It has been proved in [9] that if the sequence {y(n)} is related to {x(n)} via a
filter as in (7.14), then

H[y(·)] = H[x(·)]+
∫ 2π

0
logdet |B(ω)|dω

2π
,

where B(ω) = ∑∞j=−∞B( j)e−i jω is the Fourier transform (or Fourier series) of the
sequence {B( j)}. For simplicity of notation, a same symbol will be used for a se-
quence in the time domain and its Fourier transform in the frequency domain, the
ambiguity is lifted by using a Greek letter (such as ω) or a non integer for the fre-
quency variable and a Roman letter (such as j) for the time index. Therefore, one is
led to the mutual information criterion

C[B(·)] =
K

∑
k=1

H(yk)−
∫ 2π

0
logdet |B(ω)|dω

2π
. (7.15)

Note that in this formula, |B(ω)| may be replaced by B(ω) since it equals the com-
plex conjugate of B(2π−ω) and hence the imaginary part of logdet B(ω) integrates
to zero.

7.3.2 The Practical Criterion

As before, the theoretical criterion (7.15) should in practice be replaced an esti-
mated criterion, obtained by replacing the unknown entropies by their estimators.

The resulting criterion is denoted by Ĉ(B).
We have already discussed entropy estimation in Sect. 7.2.3. There is however an

issue here with such estimation: the sequence {y(n)} as defined in (7.14) may re-
quire the knowledge of the whole sequence {x(n)} but actually only a finite section,
x(0), . . . ,x(N−1) say, of it is observed. To solve this problem, we adopt the simple
approach which consists in extending the observed sequence periodically, and thus
redefine

y(n) =
∞

∑
j=−∞

B( j)x(n− j mod N). (7.16)

Other approaches are possible but the above is most convenient as it is well adapted
to the use of the discrete Fourier transform (DFT). Indeed, recall that the DFT
of the sequence x(0), . . . ,x(N − 1) is defined as dx(2πk/N) = ∑N−1

n=0 x(n)e−i2πkn/N

and similarly for other sequences, it can be checked that the DFT of the rede-
fined y(0), . . . ,y(N − 1) is related to that of x(0), . . . ,x(N − 1) by dy(2πk/N) =
B(2πk/N)dx(2πk/N). Thus, one may compute the y(n) by computing the DFT of
x(0), . . . ,x(N−1), multiplying it by B(2πk/N) then doing an inverse DFT.
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In the case where the sequence {B( j]} is of finite support, [−m1,m2] say, a
better approach would be to limit oneself to those y which can be computed
from the observations. We assume in this case, referred to as the FIR case, that
x(−m2), . . . ,x(N + m1 − 1) are observed so that y(n) can be computed according
to (7.14) for n = 0, . . . ,N−1. Thus in all cases, Ĥ(yk) will be based on the observa-
tions yk(0), . . . ,yk(N−1).

7.3.3 Minimization of the Criterion

Since the sequence {B( j)} is potentially of infinite support, in a parametric setup
we need to assume that it can be parameterized by some vector parameter θ . In the
FIR case, this vector could be composed of all elements of the matrices B( j) for j
in the support of sequence {B( j)}.

We begin by deriving the gradient and approximate Hessian of the criterion Ĉ(B).
For simplicity, we assume that sources have zero means. Otherwise one would sub-
tract the data its sample mean, which does not change the criterion since it is trans-
lation invariant.

7.3.3.1 Gradient of the Criterion

From the definition (7.8) of the estimated score function:

∂
∂θμ

K

∑
k=1

Ĥ(yk) = tr

{
1
N

N−1

∑
n=0
ψ̂T

y [y(n)]
∂y(n)
∂θμ

}
, (7.17)

where ψ̂y[y(n)] is defined in (7.10). From (7.16)

∂y(n)
∂θμ

=
∞

∑
j=−∞

∂B( j)
∂θμ

x(n− j mod N) (7.18)

and noting that ∂ logdetB(ω)/∂θμ = tr{[∂B(ω)/∂θμ ]B(ω)−1}, one gets

∂Ĉ[B(·)]
∂θμ

= tr

{
∑

j

∂B( j)
∂θμ

1
N

N−1

∑
n=0

x(n− j mod N)ψ̂T
y [y(n)]

−
∫ 2π

0

∂B(ω)
∂θμ

B(ω)−1 dω
2π

}
. (7.19)

The last term in this formula involves an integral, which for numerical calculation
may be replaced by a Riemann sum, based on the points 0,2π/N, . . . ,2π(N−1)/N,
for example.
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The above formula is most useful in the FIR case where y is computed by (7.14)
and hence the modulo N disappears and the summation over j is finite. In the case
where y is computed by (7.16), it is not convenient since it involves infinite sum-
mation. In this case, a more useful alternative formula in the Fourier domain may
be used. We note that the right-hand side of (7.17) involves scalar products of se-
quences and by the (discrete) Parseval equality, the scalar product of two sequences
equals that of their DFT divided by their length. By a similar calculation as that
near the end of Sect. 7.3.2, the DFT of the sequence ∂y(0)/∂θμ , . . . ,∂y(N−1)/∂θμ
can be obtained as [∂B(2πk/N)/∂θμ ]dx(2πk/N) where dx(2πk/N) is the DFT of
x(0), . . . ,x(N−1). Therefore

∂
∂θμ

K

∑
k=1

Ĥ(yk) = tr

{
1
N

N−1

∑
k=0

∂B(2πk/N)
∂θμ

Sxψ̂y

(2πk
N

)}
,

where
Sxψ̂y

(2πk
N

)
=

1
N

dx

(2πk
N

)
dT
ψ̂y

(
2π

N− k
N

)
is the cross periodogram between the sequences x(0), . . . ,x(N − 1) and ψ̂y(0), . . . ,
ψ̂y(N − 1). Since one also has dy(2πk/N) = B(2πk/N)dx(2πk/N), one can write
Sxψ̂y(2πk/N) = B(2πk/N)−1Syψ̂y(2πk/N), Syψ̂y being defined similarly as Sxψ̂y .
Finally, replacing the integral in the formula (7.19) by the Riemann sum based on
0,2π/N, . . . ,2π−2π/N, one gets

∂Ĉ[B(·)]
∂θμ

= tr

{
1
N

N−1

∑
k=0

∂B(2πk/N)
∂θμ

B
(2πk

N

)−1[
Syψ̂y

(2πk
N

)
− I

]}
. (7.20)

7.3.3.2 Approximate Hessian of the Criterion

For simplicity, we limit ourselves to the FIR case. The case where the sequence
{B(n)} has infinite support may be handled by truncating this sequence to have
support length a small fraction of the sample length N (we are interested in ap-
proximating the Hessian for large N). Thus we have to compute the derivative of
∂Ĉ[B(·)]/∂θμ given in (7.19), with respect to θν .

The derivative of the first sum in (7.19) can be split into S1 +S2 +S3 where

S1 =∑
j

∂ 2B( j)
∂θμ∂θν

1
N

N

∑
n=1

x(n− j)ψ̂y[y(n)], S2 =
1
N

N

∑
n=1

∂y(n)
∂θμ

∂yT(n)
∂θν

diagψ̂ ′
y[y(n)],

′ denoting the derivative and diag the operator which builds a diagonal matrix from
its vector argument, and S3 = N−1∑N

n=1[∂y(n)/∂θμ ](∂ψ̂T
y /∂θν)[y(n)].

The derivation of an approximation to the Hessian is done in several steps.

Step 1: Replacing sample average by expectation and ψ̂y by the theoretical score
ψy. This leads to
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S1 ≈∑
j

∂ 2B( j)
∂θμ∂θν

E{x(− j)ψy[y(0)]}, S2 ≈ E
{
∂y(0)
∂θμ

∂yT(0)
∂θν

diagψ ′
y[y(0)]

}

and S3 ≈ E{[∂y(0)/∂θμ ](∂ψ̂T
y /∂θν)[y(0)]}.

Step 2: Simplifying the expectations by treating the variables {yk(n), n = . . . ,−1,
0,1, . . . ,k = 1, . . . ,K} as independent. For this purpose, we first express other ran-
dom variables in terms of the y(n). Let {B†( j)} be the inverse sequence of {B( j)}
in the convolutive sense, that is ∑k B†(k)B( j− k) = I if j = 0, = I otherwise. Then

x(− j) =∑
k

B†(k)y(− j− k).

Further, from (7.18), ∂y(0)/∂θμ = ∑ j[∂B( j)/∂θμ ]B†(k)y(− j − k), therefore,
putting

Cμ(l) =∑
j
[∂B( j)/∂θμ ]B†(l− j)

gives
∂y(0)/∂θμ =∑

l
C(l)y(−l).

From the above expression for x(− j):

S1 ≈∑
j
∑
k

∂ 2B( j)
∂θμ∂θν

B†(k)E{y(− j− k)ψy[y(0)]}=∑
j

∂ 2B( j)
∂θμ∂θν

B†(− j),

the last equality follows from the independence of the {yk(n)} and the property
E[ykψyk(yk)] = 1 of the score function.

From the above expression for ∂y(0)/∂θμ :

S2 ≈∑
l
∑
m

E{Cμ(l)y(−l)yT(−m)CT
μ(m)diagψ ′

y[y(0)]}.

By the temporal independence of the sequence {y(n)}, the above sum reduces to

∑
l �=0

Cμ(l)E(yyT)CT
μ(l)E[diagψ ′

y(y)]+E[Cμ(0)yyTCT
μ(0)diagψ ′

y(y)],

the time index of the variable y being omitted because it is the same everywhere and
the expectation does not depend on it. The components of y being independent, the
trace of the above sum, after a somewhat tedious algebra, reduces to

K

∑
j,k=1
∑

l
E(y2

j)E[ψ ′
Yk

(yk)]Cμ,k j(l)Cν ,k j(l)+
K

∑
k=1

cov[y2
k ,ψ

′
yk

(yk)]Cμ,kk(0)Cν ,kk(0),

where Cμ,k j denotes the k, j element of the matrix Cμ and cov[y2
k ,ψ

′
yk

(yk)] =
E[y2

kψ
′
yk

(yk)]−E(y2
k)E[ψ ′

yk
(yk)].
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Again from the above expression for ∂y(0)/∂θμ :

S3 ≈∑
l

Cμ(l)E{y(−l)(∂ψT
y /∂θν)[y(0)]}.

The expectation term the above sum, by the independence of the yk(n), vanishes
if l �= 0 and is a diagonal matrix if l = 0. Thus the trace of the above sum re-
duces to ∑K

k=1 Cμ,kk(0)E[yk(∂ψyk/∂θν)(yk)]. But the score function ψyk satisfies
E[ykψyk(yk)] = 1, hence by taking derivative:

E[yk(∂ψyk/∂θν)(yk)] =−E{[ψyk(yk)+ ykψ ′
yk

(yk)]∂yk/∂θν}.

Using again the expression for ∂yk/∂θν and the independence of the variables
{yk(n)}, the above right hand reduces to −Cν ,kk(0)E[ykψyk(yk)+ y2

kψ
′
yk

(yk)]. Thus

tr(S3)≈−
K

∑
k=1

Cμ,kk(0)Cν ,kk(0){1+E[y2
kψ

′
yk

(yk)]}.

Step 3: Derivative of the second sum in (7.19): It is

∫ 2π

0

∂ 2B(ω)
∂θμ∂θν

B(ω)−1 dω
2π

−
∫ 2π

0

∂B(ω)
∂θμ

B(ω)−1 ∂B(ω)
∂θν

B(ω)−1 dω
2π

,

The first integral, by the Parseval equality is precisely ∑ j[∂ 2B( j)/∂θμ∂θν ]B†(− j),
which is no other than the approximation to S1 obtained before.

Step 4: Approximation to the Hessian. From the above results,

∂ 2Ĉ[B(·)]
∂θμ∂θν

≈
K

∑
j,k=1

{∫ 2π

0

[
∂B(ω)
∂θμ

B(ω)−1
]

k j

[
∂B(ω)
∂θν

B(ω)−1
]

jk

dω
2π

∑
l
σ2

y j
E[ψ ′

Yk
(yk)]Cμ,k j(l)Cν ,k j(l)

}
−

K

∑
k=1

{σ2
yk

E[ψ ′
yk

(yk)]+1}Cμ,kk(0)Cν ,kk(0),

[M]k j denoting the k, j element of the matrix M.
The above formula involves the sequence {Cμ(l)}which is no other than the con-

volution of the sequence {∂B/∂∂μ} with the sequence {B†( j)}, hence its Fourier
transforms equal [∂B(ω)/∂θμ ]B†(ω). But B†(ω) = B(ω)−1, therefore,

Cμ(0) =
∫ 2π

0

∂B(ω)
∂θμ

B(ω)−1 dω
2π

def=
∂B
∂θμ

B−1

(the over bar means average). Further, by the Parseval equality

∑
l

Cμ,k j(l)Cν ,k j(l) =
∫ 2π

0

[
∂B(ω)
∂θμ

B(ω)−1
]

k j

[
∂B(−ω)
∂θμ

B(−ω)−1
]

k j

dω
2π

.
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Therefore one may rewrite the approximate Hessian as

∂ 2Ĉ[B(·)]
∂θμ∂θν

≈
K

∑
j,k=1

∫ 2π

0

{
σ2

yk
E[ψ ′

yk
(yk)]

[
∂B(ω)
∂θμ

B(ω)−1
]

k j

[
∂B(−ω)
∂θν

B(−ω)−1
]

jk

+
[
∂B(ω)
∂θμ

B(ω)−1
]

k j

[
∂B(ω)
∂θν

B(ω)−1
]

jk

}
dω
2π

−
K

∑
k=1

{σ2
yk

E[ψ ′
yk

(yk)]+1}
[
∂B
∂θμ

B−1

]
kk

[
∂B
∂θμ

B−1

]
kk

. (7.21)

7.3.3.3 The Quasi Newton Algorithm (in the Pure Deconvolution Case)

One can construct a quasi Newton algorithm from the formulas (7.19) or (7.20) for
the gradient and (7.21) for the approximate Hessian. However, in the multichan-
nel case formula (7.21) is too complex to yield an useful algorithm. It is in fact
much simpler and no more expensive to compute numerically an approximate Hes-
sian from the computed gradients at previous and current iterations. This is actually
done in the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm [5, 13], which
behaves like a quasi Newton algorithm and yet requires only a formula for the gra-
dient.

In the unichannel case however, through a clever parameterization, for-
mula (7.21) yields an approximate Hessian matrix of block diagonal or diagonal
form. This results in a particularly simple and fast quasi Newton algorithm. In this
case the matrix B is a scalar, now denoted by B, and thus [∂B(ω)/∂θμ ]B(ω)−1 is no
other than ∂ logB(ω)/∂θμ . Therefore, formula (7.21) for the approximate Hessian
becomes:

∂2Ĉ(B)
∂θμ∂θν

≈
∫ 2π

0

[
λ
∂ logB(ω)
∂θμ

∂ logB(−ω)
∂θν

+
∂ logB(ω)
∂θμ

∂ logB(ω)
∂θν

]
dω
2π

− (λ +1)
∂ logB
∂θμ

∂ logB
∂θμ

where λ = σ2
y E[ψ ′

y(y)] (since y is now a scalar, it is written as y).
Further, by separating the real and imaginary parts of logB(ω) and noting that

∂ logB/∂θμ is real hence equal its real part:

∂ 2Ĉ(B)
∂θμ∂θν

≈
∫ 2π

0

{
(λ +1)

[
ℜ
∂ logB(ω)
∂θμ

− ∂ logB
∂θμ

][
ℜ
∂ logB(ω)
∂θν

− ∂ logB
∂θν

]

+(λ −1)
[
ℑ
∂ logB(ω)
∂θμ

ℑ
∂ logB(ω)
∂θν

]
dω
2π

,

where ℜ and ℑ denote the real and imaginary parts. This formula shows that it is
of interest to parameterize the real and imaginary parts of logB(ω) (or equivalently



174 P. Dinh-Tuan

the modulus and phase B(ω)) by two different sets of parameters, since then there
is a decoupling between these sets in the quasi Newton algorithm. Recall that the
imaginary part of the logarithm of a complex number z is its phase (or its argument)
which we shall denote by arg(z). Let |B(ω)] and arg[B(ω)] be parameterized by two
independent vector parameter θR and θI , then the Hessian of Ĉ(B) is approximately
block diagonal with diagonal blocks (λ +1)HR and (λ −1)HI where

HR =
∫ 2π

0

[
∂ log |B(ω)|

∂θR
− ∂ | logB|

∂θR

][
∂ | logB(ω)|

∂θR
− ∂ | logB|

∂θR

]T
dω
2π

, (7.22)

HI =
∫ 2π

0

∂ arg[B(ω)]
∂θI

{
∂ arg[B(ω)]

∂θI

}T dω
2π

, (7.23)

∂/∂θR and ∂/∂θR denoting the vectors of partial derivatives with respect to the
components of θR and to the components of θI , respectively.

A simple interesting parameterization for logB(ω) is

logB(ω) = θ0 +
m

∑
μ=1

[θμ cos(μω)+ iθm+μ sin(μω)]. (7.24)

The parameters θ0, . . . ,θm and θm+1, . . . ,θ2m specify the real and imaginary parts of
logB(ω) respectively. These parts are even and odd functions respectively, hence
the use of the cosine and sine functions to represent them. The parameter θ0 cor-
responds to the scale of the source and cannot be estimated. We may and will
put it to 0. The mutual information criterion then reduces to Ĉ(B) = Ĥ(By) since∫

logB(ω)dω/(2π) = 0.
For the above parameterization, the formula (7.20) for the gradient becomes

∂Ĉ(B)
∂θμ

=
{

(rμ + r−μ)/2, μ = 1, . . . ,m ,
rμ−m − rm−μ)/2, μ = m+1, . . . ,2m ,

where

rμ =
1
N

N−1

∑
k=1

e2πμk/NSyψ̂y

(2πk
N

)
=

1
N

N−1

∑
n=0

y(n+μ)ψ̂y(n). (7.25)

The last equality follows from the fact that the DFT transforms (circular) con-
volution into products. (Note that y(n) here is computed by (7.16) and hence is
periodic of period N.) The above formula shows that rμ are the circular cross co-
variances between y(0), . . . ,y(n−1) and ψ̂y|y(0)], . . . , ψ̂y[y(N −1)]. Of more inter-
est is the fact that the matrices HR and HI corresponding to the vector parameters
θR = [θ1 · · ·θm]T and θI = [θm+1 · · ·θ2m]T and given by (7.22) and (7.23), reduce to
one half the identity matrix. Thus, the quasi Newton algorithm reduces to the fixed
point iteration

θμ ← θμ −
{

(rμ + r−μ)/(λ̂ +1), μ = 1, . . . ,m ,

(rμ−m − rm−μ)/(λ̂ −1), μ = m+1, . . . ,2m ,
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where λ̂ is the current estimate of λ . One may take λ̂ = σ̂2
y N−1∑N−1

n=0 ψ
′
y[y(n)] but

there is no guarantee that this estimator is always greater than 1. Therefore, as in
Sect. 7.2.4.2, we take λ̂ = σ̂2

y Ĵ(y) which is always greater than 1.
One can also work with the parameters ϑμ = (θμ −θμ+m)/2 and ϑ−μ = (θμ +

θμ+m)/2, μ = 1, . . . ,m, so that one has logB(ω) = θ0 +∑0<|μ|≤mϑμe−iμω . The
quasi Newton algorithm for these parameters is then

ϑμ �→ ϑμ −
λ̂ r−μ − rμ
λ̂ 2 −1

, 0 < |μ | ≤ m. (7.26)

Note that since dY (2πk/N) = B(2πk/N)dX (2πk/N), one can update it directly as

dY

(2πk
N

)
�→ dY

(2πk
N

)exp
[
− ∑

0<|μ|≤m

λ̂ r−μ − rμ
λ̂ 2 −1

e−i2πμk/N
]
. (7.27)

The criterion Ĥ(y) may be computed after each quasi Newton step to check if
it decreases. If it does not, the step size should be reduced so that it is so (by the
method described in [13, p. 384], for example). The estimation algorithm is summa-
rized in Table 7.1.

It is of interest to note that the parameter θ1, . . . ,θm specifying the real part of
logB(ω) may be estimated directly. Indeed, since the source is white the spectral
density of the observed process {x(n)} is proportional to |A(ω)|2 where A(ω) is the
Fourier transform of the convolution filter. Thus its logarithms equals 2 log |A(ω)|
plus a constant, which equals −2log |B(ω)| plus another constant since B(ω) should
be inversely proportional to A(ω). As the periodogram Sxx(2πk/N) = |dx(2πk/N)|2
is an (asymptotically) unbiased estimator of this density at ω = 2πk/N, one can
write 1

2 logSxx(2πk/N) = − log |B(2πk/N)|+ a constant + an error term. Thus by
adopting the parameterization (7.24), one gets the linear model

Table 7.1 Summary of the Algorithm for the parameterization B(ω) = exp[∑0<|μ|≤mϑμeiμω ]

Initialization: Compute the DFT of the data x(0, . . . ,x(N−1), then the DFT of the initial source
estimates using the initial deconvolution filter in the frequency domain. Next compute the initial
source estimates y(0), . . . ,y(N−1) by inverse DFT and the corresponding criterion Ĥ(y).
Iteration:

1. Compute the score estimates ψ̂y[y(n)], n = 0, . . . ,N−1, then the circular cross covariance rμ ,
0 < μ ≤ m, between y(0), . . .y(N−1) and ψ̂y[y(0)], . . . , ψ̂y[y(N−1)] according to either one
of the right-hand sides of (7.25). Next compute λ̂ = σ̂2

y Ĵ(y).
2. Update ϑμ ,0 < |μ| ≤m and dY (2πk/N), k = 0, . . . ,N−1, by (7.26) and (7.27), then compute

y(0), . . . ,y(N−1) by inverse DFT.
3. Compute the new criterion Ĥ(y). If it does not decrease then repeat (2), with decreased step

size in (7.26) and (7.27) and recompute the criterion.

Repeat the iteration until convergence.
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log
∣∣∣dx

(2πk
N

)∣∣∣=−θ̃0 −
m

∑
μ=1

θμ cos
(2πμk

N

)
+ an error term,

where we have absorbed the constant into θ0 to yield θ̃0. This suggests estimating
θ̃0,θ1, . . . ,θm by least squares (we can estimate θ̃0 but not θ0 since we don’t know
the constant). Specifically, we minimize
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m
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,

The resulting estimators
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)∣∣∣cos
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N

)
=− 1

N

N−1

∑
k=0

log
∣∣∣dX

(2πk
N

)∣∣∣e2πμk/N ,

μ = 1, . . . ,m, are sub optimal but can be used to initialize the algorithm. In our
limited experience, they can vastly improve the convergence. There is however no
simple method to initialize θm+1, . . . ,θ2m. One may simply initialize them by zero,
which amounts to forcing the initial deconvolution filter to have zero phase.

7.3.4 Discussion

The above approach has been described in more details in [11]. This paper also
considers an generalization of the criterion (7.15), obtained by replacing the entropy
functional H(yk) by log[Q(yk)] where Q(·) is some class II functional in the sense
of Huber [6]: A functional Q(y) (of the distribution of the random variable y) is
said to be of class II is it is translation invariant3 and scale equi-variant, that is
Q(ay+b) = |a|Q(y) for any real numbers a,b. A simple example of such functional
is Q(y) = E(|y|α)1/α , α > 0. The main motivation for considering log[Q(·)] instead
of H(·) is that the functional Q(·) may be much easier to estimate than the entropy
functional.

The negative of the generalized criterion is called a contrast if it attains its max-
imum at and only at the sequences {B( j)} for which the component sequences
{yk(n)} of the sequence {y(n)} defined in (7.14) coincide with the source se-
quences up to a permutation, a scaling and a delay. It was shown in [8] that if
the functional Q(·) is super-additive in the sense of Huber [6], that is Q2(y1 +y2)≥
Q2(y1)+ Q2(y2) for any pair of independent random variables y1,y2, with equality
if and only if they are Gaussian, then the negative of the corresponding generalized
criterion is a contrast, unless there is more than one Gaussian source. This result con-
tains as a special case the mutual information criterion (7.15), since the functional
Q(·) = eH(·), by the entropy power inequality [4], verify the defining inequality of a

3 As we deal with zero mean variables, the translation invariance requirement may be dropped.
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class II functional. If in the estimated mutual information criterion Ĉ[B(·)], the pa-
rameters h,δ are kept fixed as N → ∞, then by the same argument as in Sect. 7.2.5
the negative of the limiting criterion is still a contrast if h,δ is small enough.

The paper [11] also provides results for the performance of the algorithm. Specif-
ically in the case where (h,δ ) → (0,0) as N → ∞, the estimator of θ admits
the asymptotic covariance matrix 1/N times the inverse of the approximate Hes-
sian matrix (7.21). (Note that ψ̂yk converges here to the true score function ψyk
and E[ψ ′

yk
(yk)] = E|ψ2

yk
(yk)].) In the unichannel case, if one parameterizes |B(ω)|

and arg[B(ω)] independently by two vectors parameters θR and θ I , the above re-
sult together with that of previous section show that the estimators of θR and θI
are asymptotically independent with covariance matrices N−1(λ + 1)−1H−1

R and
N−1(λ −1)−1H−1

I . Note that λ is also the inverse of the squared correlation ρ2 be-
tween ψy(y) and y. In particular, for the parameterization (7.24), the matrices HR
and HI both reduce to one half of the identity matrix.

The above result shows that it is often much harder to estimated the phase of the
deconvolution filter than its amplitude. Indeed, the covariance matrix of θI contains
the factor 1/(λ − 1) which is greater than the factor 1/(λ + 1) found in the for-
mula for covariance matrix of θR. The factor 1/(λ −1) can be very large for nearly
Gaussian source and it becomes infinity for Gaussian source (λ = 1). In the last
case, one cannot estimate the phase of the deconvolution filter, as is well known.
But its amplitude can still be estimated, since its square is inversely proportional to
the spectral density of the observation sequence.

If the source is strongly non Gaussian however, λ is large and there is little differ-
ence between 1/(λ −1) and 1/(λ +1) and both amplitude and phase of the decon-
volution filter can be well estimated. In this case, one can deconvolve the sources
based only on its non Gaussianity. Many earlier blind deconvolution method are
based only on a non Gaussianinty criterion such as the kurtosis or higher order cu-
mulants (see [15, 17], . . . for example).

7.3.5 Simulation

We first consider the unichannel (pure deconvolution) case. We generate 1,000
observation records of length N = 1,024 according to the convolution model:
x(n) = ∑2

j=−2 A( j)s(n− j) where {s(n)} is a sequence of independent bilateral ex-
ponential (or Laplace) variables.4 The function log[A(ω)] has infinite Fourier series
expansion, but as it can be seen from Fig. 7.2, this series may be truncated into a
sum of 21 terms of index from −10 to 10. We have computed the relative error due
to this truncation which is 0.0112; the relative error is defined as the square root
of the ratio of the sum of the squared Fourier coefficients which are dropped to the
sum of square of all Fourier coefficients except the one of index 0 (which is irrele-
vant since it concerns the scale of the filter). Since the true B(ω) must be inversely

4 Such variable has density exp(−[x|)/2.
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Fig. 7.2 The logarithm of A(ω)

Table 7.2 Values of θ , the mean of the initial estimator θ̃ and the mutual information estimator θ̂
and their standard deviation (std.) computed from 1,000 simulations

j θ j θ̃ j std. θ̃ j θ̂ j std. θ̂ j θ10+ j θ̂10+ j std. θ̂10+ j

1 −0.4749 −0.4698 0.0413 −0.4695 0.0301 −0.0082 −0.0089 0.0703
2 0.8265 0.8216 0.0430 0.8235 0.0295 −0.0436 −0.0412 0.0693
3 −0.1916 −0.1855 0.0400 −0.1856 0.0299 0.0072 0.0072 0.0670
4 0.1937 0.1915 0.0413 0.1926 0.0288 −0.0185 −0.0193 0.0688
5 −0.0811 −0.0772 0.0405 −0.0770 0.0291 0.0072 0.0078 0.0668
6 0.0660 0.0655 0.0395 0.0651 0.0295 −0.0088 −0.0096 0.0684
7 −0.0358 −0.0327 0.0407 −0.0330 0.0302 0.0049 0.0084 0.0692
7 0.0266 0.0245 0.0403 0.0244 0.0303 −0.0046 −0.0084 0.0714
8 −0.0164 −0.0143 0.0404 −0.0134 0.0308 0.0030 0.0089 0.0713
9 0.0118 0.0121 0.0394 0.0124 0.0293 −0.0025 −0.0046 0.0692

proportional to A(ω), we will consider as it is parameterized by (7.24) with m = 10
and parameters θμ = ϑμ +ϑ−μ , μ = 1, . . . ,10, = ϑμ−10 −ϑ10−μ , μ = 11, . . . ,20,
ϑμ being minus the Fourier coefficients of logA(ω). The values of θ1, . . . ,θ20 are
displayed in Table 7.2.

The algorithm in Sect. 7.3.3.3 is then applied to obtained the estimates θ̂ j, j =
1, . . . ,20 of the parameters θ of the deconvolution filter. These estimator are referred
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to as the mutual information estimator. The first 10 parameters are initialized by the
method described at the end of Sect. 7.3.3.3 and the corresponding initial estimators
are denoted by θ̃1, . . . , θ̃10.

The simulation results are reported in Table 7.2. One can see from Table 3 that
the mean values of the estimators are very close to the true values. Concerning the
standard deviation, the value λ corresponding to the bilateral exponential variable
is 2 hence, the asymptotic standard deviation of the θ̂ j is

√
2/(3 ·1,024) = 0.0255

for j = 1, . . . ,10 and
√

2/1,024 = 0.0442 for j = 11, . . . ,20. The empirical stan-
dard deviations obtained from the simulation are significantly higher (although they
are nearly the same for θ̂1, . . . , θ̂10 and for θ̂11, . . . , θ̂20 as predicted by the theory).
A fist reason may be that there are so many parameters to be estimated so that the
asymptotic results are not yet attained. Another reason may be that the deconvolu-
tion filter is not exactly parameterized by (7.24) with m = 10 (to be exact m should
be infinite) hence such filter cannot recover exactly the sources. This not only in-
duces some bias but also increases the variance, since the extracted source contain
some contamination and hence is more Gaussian than the true sources, resulting in
a parameter λ < 2 instead of 2. Actually, the mean value of the λ estimated by the
algorithm is 1.9292. In this regard, it is of interest to choose the parameter h smaller
than the standard choice described near the end of Sect. 7.2.5. This standard choice
tend to over-smooth the density, thus reducing the parameter λ . In the first stage of
the algorithm where the extract sources is still very much a mixture, this may result
in a value of λ too close to one, which may render the algorithm unstable, since
λ − 1 appears in the denominator of the updating equation. It appears to us that
using a smoothing parameter h much smaller than what would be used in density
estimation can be quite beneficial here, as it reduces the smoothing effect (at the
expense of an increase in variance). In this simulation, we choose h to be half the
standard choice.

We next consider the multichannel case. As discussed in Sect. 7.3.3.3, in this
case there is no simple quasi Newton algorithm based on the formula (7.21) for the
approximated Hessian and therefore we shall use the BFGS algorithm to minimize
the criterion.

We consider the observation model∑2
j=−2 B( j)x(n− j) = s(n) where B(−2), . . . ,

B(2) are 2× 2 matrices whose entries are listed in Table 7.3, and s(n) are inde-
pendent random variables with a uniform distribution in [−

√
3,
√

3]. The process
{x(n)} is by definition given by x(n) = ∑∞j=−∞A( j)s(n− j) where the (infinite) se-
quence {A( j)} is the inverse in the convolutive sense of the sequence {B( j)} (by
convention B( j) = 0 for | j|> 2). However, for computational purpose, we shall use
a sequence of support length 32 instead, which is adjusted so that the convolution
of {B( j)} with it best approaches in Frobinus norm5 the identity sequence (with the
identity matrix at index 0 and zero elsewhere). It turns out that the best adjustment
is reached for a sequence of support [−20,11], again denoted by {A( j)}, whose en-

5 The Frobinus norm of a matrix is the square root of the sum of squares of its elements. As we
deal with matrix sequence, we also sum over all matrices as well.
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Table 7.3 True and estimate deconvolution filter (std. = standard deviation)

True value Mean of estimate Std. of estimate

B(−2)T −0.1647 0.1575 −0.1646 0.1593 0.0168 0.0163
0.1555 0.2657 0.1561 0.2623 0.0201 0.0233

B(−2)T 0.0601 −0.4636 0.0598 −0.4615 0.0180 0.0153
−0.3628 −0.3376 −0.3613 −0.3394 0.0195 0.0242

B(−2)T −0.1838 1.3913 −0.1803 1.3909 0.0189 0.0047
1.4801 −0.5285 1.4806 −0.5298 0.0082 0.0228

B(−2)T 0.1864 −0.4404 0.1844 −0.4429 0.0163 0.0165
−0.4553 −0.4320 −0.4547 −0.4283 0.0198 0.0242

B(−2)T −0.0251 0.1321 −0.0230 0.1356 0.0126 0.0154
0.1762 0.2364 0.1740 0.2317 0.0210 0.0226
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Fig. 7.3 Elements of the matrix A( j) as function of j

tries are plotted in Fig. 7.3. The difference between the convolution of {B( j)} with
this sequence and the identity sequence is very small: 1.0925× 10−5 in Frobinus
norm.

One hundred observation sequences of length 1,028 are generated and for each
sequence the BFGS algorithm is applied to minimize the estimated mutual informa-
tion criterion. Since the separation deconvolution filter is FIR, the data is not period-
ically extended but instead the output of the deconvolution is made shorter (length
1,024 exactly). Accordingly, the gradient is computed by formula (7.19) (without
the “mod N”). Mean and standard deviation of the estimated separation deconvo-
lution filter are listed in Table 7.3. As in the pure deconvolution case, we find that
better results are obtained by using a lower value of the smoothing parameter h than
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the standard choice: it is taken to be half of the standard choice in this simulation.
One can see from Table 7.3 that the separation deconvolution filter is well estimated.
Note that the above results do not come directly from the output of the BFGS al-
gorithm, since there is a permutation and scale ambiguity. In order to eliminate the
permutation ambiguity, we have permuted the rows of B̂ = [B̂(−1) · · · B̂(2)] (B̂( j)
being the estimate of B( j)) whenever the product of the diagonal elements of B̂BT,
where B = [B(−1) · · · B(2)], is less in absolute value than that of the off diago-
nal elements. To eliminate the scale ambiguity, we have normalized the rows of B̂
(eventually permuted) so that they have the same Frobinus norm as that of B.

7.4 Conclusion

We have provided a unified approach to blind sources separation and deconvolution
based on the mutual information criterion. Practical algorithms have been derived
in some details and their theoretical performance discussed.
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Chapter 8
Causality in Time Series: Its Detection
and Quantification by Means of Information
Theory

Kateřina Hlaváčková-Schindler

Abstract While studying complex systems, one of the fundamental questions is to
identify causal relationships (i.e., which system drives which) between relevant sub-
systems. In this paper, we focus on information-theoretic approaches for causality
detection by means of directionality index based on mutual information estimation.
We briefly review the current methods for mutual information estimation from the
point of view of their consistency. We also present some arguments from recent
literature, supporting the usefulness of the information-theoretic tools for causality
detection.

8.1 Introduction

During the history of most natural and social sciences, detection and clarification
of cause–effect relationships among variables, events or objects have been the fun-
damental questions. Despite some philosophers of mathematics like B. Russel [76]
(1872–1970) tried to deny the existence of the phenomenon “causality” in mathe-
matics and physics, saying that causal relationships and physical equations are in-
compatible, calling causality to be “a word relic” (see, i.e., [67]), the language of
all sciences, including mathematics and physics, has been using this term actively
until now. To advocate the Russell’s view, any exact and sufficiently comprehensive
formulation of what is causality is difficult. Causality can be understood in terms of
a “flow” among processes and expressed in mathematical language and mathemati-
cally analysed.
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The general philosophical definition of causality from the Wikipedia Encyclope-
dia [92] states: “The philosophical concept of causality or causation refers to the set
of all particular ‘causal’ or ‘cause-and-effect’ relations. Most generally, causation
is a relationship that holds between events, objects, variables, or states of affairs.
It is usually presumed that the cause chronologically precedes the effect.” Causal-
ity expresses a kind of a “law” necessity, while probabilities express uncertainty,
a lack of regularity. Probability theory seems to be the most used “mathematical
language” of most scientific disciplines using causal modeling, but it seems not
to be able to grasp all related questions. In most disciplines, adopting the above
definition, the aim is not only to detect a causal relationship but also to measure
or quantify the relative strengths of these relationships. This can be done by in-
formation theory tools. In [43] we provided a detailed overview of the information-
theoretic approaches for measuring of a causal influence in multi-variate time series.
Here we mainly focus on the methods using mutual information for the computa-
tion of the causal directional index and entropy estimation methods. The methods
are discussed from the point of view of their consistency properties and for their
detailed description we refer the reader to [43]. The outline of the paper is the
following. Section 8.1.1 presents measures for causality detection. In Sect. 8.2 we
define the basic information-theoretic functionals and from them derived causality
measurements. Sections 8.3 and 8.4 briefly present the non-parametric and paramet-
ric methods including their consistency properties. Granger causality is discussed in
Sect. 8.5 and conclusion is in Sect. 8.6.

8.1.1 Causality and Causal Measures

Most of the earlier research literature attempts to discuss unique causes in determin-
istic situations, and two conditions are important for deterministic causation [34]:
(1) necessity: if X occurs, then Y must occur, and (2) sufficiency: if Y occurs, then X
must have occurred. However, deterministic formulation, albeit appealing and ana-
lytically tractable, is not in accordance with reality, as no real-life system is strictly
deterministic (i.e., its outcomes cannot be predicted with complete certainty). So, it
is more realistic if one modifies the earlier formulation in terms of likelihood (i.e.,
if X occurs, then the likelihood of Y occurring increases). This can be illustrated by
a simple statement such as if the oil price increases, the carbon emission does not
necessarily decrease, but there is a good likelihood that it will decrease. The prob-
abilistic notion of causality is nicely described by Suppes (1970) [86] as follows:
An event X is a cause to the event Y if (1) X occurs before Y, (2) likelihood of X is
non zero, and (3) likelihood of occurring Y given X is more than the likelihood of
Y occurring alone. Although this formulation is logically appealing, there are some
arbitrariness in practice in categorizing an event [34]. Till 1970, the causal modeling
was mostly used in social sciences. This was primarily due to a pioneering work by
Selltiz et al. [82] who specified three conditions for the existence of causality:

1. There must be a concomitant covariation between X and Y.
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2. There should be a temporal asymmetry or time ordering between the two ob-
served sequences.

3. The covariance between X and Y should not disappear when the effects of any
confounding variables (i.e., those variables which are causally prior to both X
and Y) are removed.

The first condition implies a correlation between a cause and its effect, though one
should explicitly remember that a perfect correlation between two observed vari-
ables in no way implies a causal relationship. The second condition is intuitively
based on the arrow of time. The third condition is problematic since it requires that
one should rule out all other possible causal factors. Theoretically, there are poten-
tially an infinite number of unobserved confounding variables available, yet the set
of measured variables is finite, thus leading to indeterminacy in the causal modeling
approach. In order to avoid this, some structure is imposed on the adopted modeling
scheme which should help to define the considered model. The way in which the
structure is imposed is crucial in defining as well as in quantifying causality.

The first definition of causality which could be quantified and measured com-
putationally, yet very general, was given in 1956 by N. Wiener [91]: “ . . . For two
simultaneously measured signals, if we can predict the first signal better by using
the past information from the second one than by using the information without it,
then we call the second signal causal to the first one.”

The introduction of the concept of causality into the experimental practice,
namely into analyses of data observed in consecutive time instants, time series, is
due to Clive W. J. Granger, the 2003 Nobel prize winner in economy. In his No-
bel lecture [35] he recalled the inspiration by the Wiener’s work and identified two
components of the statement about causality: (1) The cause occurs before the effect;
(2) The cause contains information about the effect that is unique, and is in no other
variable.

As Granger put it, a consequence of these statements is that the causal variable
can help to forecast the effect variable after other data has been first used [35].
This restricted sense of causality, referred to as Granger causality, GC thereafter,
characterizes the extent to which a process Xt is leading another process Yt , and
builds upon the notion of incremental predictability. It is said that the process Xt
Granger causes another process Yt if future values of Yt can be better predicted
using the past values of Xt and Yt rather then only past values of Yt . The standard
test of GC developed by Granger [32] is based on a linear regression model

Yt = ao +
L

∑
k=1

b1kYt−k +
L

∑
k=1

b2kXt−k +ξt , (8.1)

ξt are uncorrelated random variables with zero mean and variance σ2, L is the spec-
ified number of time lags, and t = L+1, . . . ,N. The null hypothesis that Xt does not
Granger cause Yt is supported when b2k = 0 for k = 1, . . . ,L, reducing (8.1) to

Yt = ao +
L

∑
k=1

b1kYt−k + ξ̃t . (8.2)
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This model leads to two well-known alternative test statistics, the Granger–Sargent
and the Granger–Wald test. The Granger–Sargent test is defined as

GS =
(R2 −R1)/L
R1/(N−2L)

, (8.3)

where R1 is the residual sum of squares in (8.1) and R2 is the residual sum of squares
in (8.2). The GS test statistic has an F-distribution with L and N − 2L degrees of
freedom. On the other hand, the Granger–Wald test is defined as

GW = N
σ̂2
ξ̃t
− σ̂2

ξt

σ̂2
ξt

, (8.4)

where σ̂2
ξ̃t

is the estimate of the variance of ξ̃t from model (8.2) and σ̂2
ξt

is the

estimate of the variance of ξt from model (8.1). The GW statistic follows the χ2
L

distribution under the null hypothesis of no causality.
This linear framework for measuring and testing causality has been widely ap-

plied not only in economy and finance (see Geweke [31] for a comprehensive survey
of the literature), but also in diverse fields of natural sciences such, where specific
problems of multichannel electroencephalogram recordings were solved by gener-
alizing the Granger causality concept to multivariate case [14]. Nevertheless, the
limitation of the present concept to linear relations required further generalizations.

Recent development in nonlinear dynamics [1] evoked lively interactions be-
tween statistics and econometrics on one side, and physics and other natural sciences
on the other side. In the field of economy, Baek and Brock [9] and Hiemstra and
Jones [40] proposed a nonlinear extension of the Granger causality concept. Their
non-parametric dependence estimator is based on so-called correlation integral, a
probability distribution and entropy estimator, developed by physicists Grassberger
and Procaccia in the field of nonlinear dynamics and deterministic chaos as a char-
acterization tool of chaotic attractors [36]. A non-parametric approach to non-linear
causality testing, based on non-parametric regression, was proposed by Bell et al.
[12]. Following Hiemstra and Jones [40], Aparicio and Escribano [6] succinctly
suggested an information-theoretic definition of causality which include both linear
and nonlinear dependence.

In physics and nonlinear dynamics, a considerable interest recently emerged in
studying cooperative behavior of coupled complex systems [15, 69]. Synchroniza-
tion and related phenomena were observed not only in physical, but also in many
biological systems. Examples include the cardio-respiratory interaction [63, 77] and
the synchronization of neural signals [58, 73]. In such physiological systems it is
not only important to detect synchronized states, but also to identify drive–response
relationships and thus the causality in evolution of the interacting (sub)systems.
Schiff et al. [78] and Quyen et al. [73] used ideas similar to those of Granger, how-
ever, their cross-prediction models utilize zero-order nonlinear predictors based on
mutual nearest neighbors. A careful comparison of these two papers [73, 78] reveals
how complex is the problem of inferring causality in nonlinear systems. The authors
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of the two papers use contradictory assumptions for interpreting the differences in
prediction errors of mutual predictions, however, both teams were able to present
numerical examples in which their approaches apparently worked.

While the latter two papers use the method of mutual nearest neighbors for mu-
tual prediction, Arnhold et al. [8] proposed asymmetric dependence measures based
on averaged relative distances of the (mutual) nearest neighbors. As pointed out by
Quian Quiroga et al. [74] and by Schmitz [79], these measures, however, might be
influenced by different dynamics of individual signals and different dimensionality
of the underlying processes, rather than by asymmetry in coupling.

Another nonlinear extension of the Granger causality approach was proposed
by Chen et al. [19] using local linear predictors. An important class of nonlin-
ear predictors are based on so-called radial basis functions [17] which were used
for nonlinear parametric extension of the Granger causality concept [4]. A non-
parametric method for measuring causal information transfer between systems was
proposed by Schreiber [81]. His transfer entropy is designed as a Kullback–Leibler
distance ((8.14) in Sect. 8.2.1) of transition probabilities. This measure is in fact an
information-theoretic functional of probability distribution functions.

Paluš et al. [58] proposed to study synchronization phenomena in experimen-
tal time series by using the tools of information theory. Mutual information, an
information-theoretic functional of probability distribution functions, is a measure
of general statistical dependence. For inferring causal relation, conditional mu-
tual information can be used. It was shown that, with proper conditioning, the
Schreiber’s transfer entropy [81] is equivalent to the conditional mutual informa-
tion [58]. The latter, however, is a standard measure of information theory.

Turning our attention back to econometrics, we can follow further development
due to Diks and DeGoede [23]. They again applied a nonparametric approach to
nonlinear Granger causality using the concept of correlation integrals [36] and
pointed out the connection between the correlation integrals and information the-
ory. Diks and Panchenko [24] critically discussed the previous tests of Hiemstra
and Jones [40]. As the most recent development in economics, Baghli [10] proposes
information-theoretic statistics for a model-free characterization of causality, based
on an evaluation of conditional entropy. The nonlinear extension of the Granger
causality based the information-theoretic formulation has found numerous applica-
tions in various fields of natural and social sciences. Let us mention just a few ex-
amples. Schreiber’s transfer entropy was used in physiology and neurophysiology
[46]. Paluš et al. [58] applied their conditional mutual information based measures
in analyses of electroencephalograms of patients suffering from epilepsy. Other ap-
plications of the conditional mutual information in neurophysiology are due to Hin-
richs et al. [41]. Causality or coupling directions in multimode laser dynamics is
another field where the conditional mutual information was applied [57]. Having re-
viewed the relevant literature, we can state that the information-theoretic approach
to the Granger causality plays an important, if not a dominant role in analyses of
causal relationships in nonlinear systems.
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8.2 Information Theory as a Tool for Causality Detection

8.2.1 Definitions of Basic Information Theoretic Functionals

We begin with the definition of differential entropy for a continuous random variable
as it was introduced in 1948 by Shannon [83]. Let X be a random vector taking
values in Rd with probability density function (pdf) p(x), then its differential entropy
is defined by

H(x) =−
∫

p(x) log p(x)dx, (8.5)

where log is natural logarithm. We assume that H(x) is well-defined and finite. Let
S be a discrete random variable having possible values s1, . . . ,sm, each with corre-
sponding probability pi = p(si), i = 1, . . . ,m. The average amount of information
gained from a measurement that specifies one particular value si is given by entropy
H(S):

H(S) =−
m

∑
i=1

pi log pi. (8.6)

More general term of entropy for which is Shannon differential entropy a special
case, is Rényi entropy, defined for a continuous case as [75]

Hα(x) =
1

1−α

∫
logα p(x)dx (8.7)

and for the discrete case

Hα(S) =
1

1−α log
n

∑
i=1

pαi , (8.8)

where α > 0, α �= 1. As α → 1, Hα(x) converges to H(x) (or Hα(S) converges to
H(S)), which is Shannon entropy. The joint entropy H(X ,Y ) of two discrete random
variables X and Y is

H(X ,Y ) =−
mX

∑
i=1

mY

∑
j=1

p(xi,y j) log p(xi,y j), (8.9)

where p(xi,y j) denotes the joint probability that X is in state xi and Y in state y j. In
general, the joint entropy may be expressed in terms of conditional entropy H(X |Y )
as follows

H(X ,Y ) = H(X |Y )+H(Y ), where (8.10)

H(X |Y ) =−
mX

∑
i=1

mY

∑
j=1

p(xi,y j) log p(xi|y j) (8.11)

and p(xi|y j) denotes the conditional probability. The mutual information I(X ,Y )
between two random variables X and Y is then defined as [83]
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I(X ;Y ) = H(X)+H(Y )−H(X ,Y ). (8.12)

It reflects the mutual reduction in uncertainty of one by knowing the other variable.
This measure is nonnegative since H(X ,Y ) ≤ H(X)+ H(Y ). The equality holds if
and only if X and Y are statistically independent. The conditional mutual informa-
tion [83] between random variables X and Y given Z is defined as

I(X ,Y |Z) = H(X |Z)+H(Y |Z)−H(X ,Y |Z). (8.13)

For Z independent of X and Y we have I(X ,Y |Z) = I(X ,Y ). The Kullback–Leibler
divergence (KLD, also called relative entropy or cross-entropy), introduced by Kull-
back and Leibler [51], is an alternative approach to mutual information. K(p, p0)
between two probability distributions {p} and p0 is

K(p, p0) =
m

∑
i=1

pi log
(

pi

p0
i

)
. (8.14)

It can be interpreted as the information gain when an initial probability distribution
p0 is replaced by a final distribution p. This entropy is however not symmetric and
therefore not a distance in the mathematical sense. The KLD is always nonnegative
and is zero iff the distributions p and p0 are identical. Mutual information is the
Kullback–Leibler divergence of the product P(X)P(Y ) of two marginal probability
distributions from the joint probability distribution P(X ,Y ), see, i.e., [30]. So we
can look at the results about Kullback–Leibler entropy as if they were applied to
mutual information.

8.2.2 Coarse-Grained Entropy and Information Rates

A considerable amount of approaches to inferring causality from experimental
time series have their roots in studies of synchronization of chaotic systems.
A.N. Kolmogorov, who introduced the theoretical concept of classification of dy-
namical system by information rates [47], was inspired by information theory and
together with Y.G. Sinai generalized the notion of entropy of an information source
[47, 85]. Paluš [60] concentrated on attributes of dynamical systems studied in
the ergodic theory, such as mixing and generating partitions, and demonstrated
how they were reflected in the behaviour of information-theoretic functionals es-
timated from chaotic data. In order to obtain an asymptotic entropy estimate of
an m-dimensional dynamical system, large amounts of data are necessary [60]. To
avoid this, Paluš [60] proposed to compute “coarse-grained entropy rates” (CER’s)
as relative measures of “information creation” and of regularity and predictability
of studied processes.

Let {x(t)} be a time series considered as a realization of a stationary and ergodic
stochastic process {X(t)}, t = 1,2,3, . . . . We denote x(t) as x and x(t + τ) as xτ for
simplicity. To define the simplest form of CER, we compute the mutual information
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I(x;xτ) for all analyzed datasets and find such τmax that for τ ′ ≥ τmax: I(x;xτ ′) ≈ 0
for all the data sets. Then we define a norm of the mutual information

||I(x;xτ)||=
Δτ

τmax − τmin +Δτ

τmax

∑
τ=τmin

I(x;xτ) (8.15)

with τmin = Δτ = 1 sample as a usual choice. The CER h1 is then defined as h1 =
I(x,xτ0)− ||I(x;xτ)||. Since usually τ0 = 0 and I(x;x) = H(X) which is given by
the marginal probability distribution p(x), the sole quantitative descriptor of the
underlying dynamics is the mutual information norm (8.15). Paluš et al. [58] called
this descriptor the coarse-grained information rate (CIR) of the process {X(t)} and
denoted by i(X).

Now, consider two time series {x(t)} and {y(t)} regarded as realizations of two
processes {X(t)} and {Y (t)} which represent two possibly linked (sub) systems.
These two systems can be characterized by their respective CIR’s i(X) and i(Y ).
In order to characterize an interaction of the two systems, in analogy with the
above CIR, Paluš et al. [58] defined their mutual coarse-grained information rate
(MCIR) by

i(X ,Y ) =
1

2τmax

τmax;τ �=0

∑
τ=−τmax

I(x;yτ). (8.16)

Due to the symmetry properties of I(x;yτ) is the mutual CIR i(X ,Y ) symmetric, i.e.,
i(X ,Y ) = i(Y,X). Assessing the direction of coupling between the two systems, i.e.,
causality in their evolution, we ask how is the dynamics of one of the processes,
say {X}, influenced by the other process {Y}. For the quantitative answer to this
question, Paluš et al. [58] proposed to evaluate the conditional coarse-grained in-
formation rate CCIR i0(X |Y ) of {X} given {Y}:

i0(X |Y ) =
1
τmax

τmax

∑
τ=1

I(x;xτ |y), (8.17)

considering the usual choice τmin = Δτ = 1 sample. For independent variables we
have i0(X |Y ) = i(X) for {X} independent of {Y}, i.e., when the two systems are
uncoupled. In order to have a measure which vanishes for an uncoupled system
(although then it can acquire both positive and negative values), Paluš et al. [58]
define

i(X |Y ) = i0(X |Y )− i(X). (8.18)

For another approach to a directional information rate, let us consider the mutual
information I(y;xτ) measuring the average amount of information contained in the
process {Y} about the process {X} in its future τ time units ahead (τ-future there-
after). This measure, however, could also contain an information about the τ-future
of the process {X} contained in this process itself if the processes {X} and {Y} are
not independent, i.e., if I(x;y) > 0. In order to obtain the “net” information about the
τ-future of the process {X} contained in the process {Y}, we need the conditional
mutual information I(y;xτ |x). Next, we sum I(y;xτ |x) over τ as above
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i1(X ,Y |X) =
1
τmax

τmax

∑
τ=1

I(y;xτ |x); (8.19)

In order to obtain the “net asymmetric” information measure, we subtract the sym-
metric MCIR (8.16):

i2(X ,Y |X) = i1(X ,Y |X)− i(X ,Y ). (8.20)

Using a simple manipulation, we find that i2(X ,Y |X) is equal to i(X |Y ) defined in
(8.18). By using two different ways for definition of a directional information rate,
Paluš et al. [58] arrived to the same measure which they denoted by i(X |Y ) and
called the coarse-grained transinformation rate (CTIR) of {X} given {Y}. It is the
average rate of the net amount of information “transferred” from the process {Y} to
the process {X} or, in other words, the average rate of the net information flow by
which the process {Y} influences the process {X}.

Using several numerical examples of coupled chaotic systems, Paluš et al. [58]
demonstrated that the CTIR is able to identify the coupling directionality from time
series measured in coupled, but not yet fully synchronized systems. As a practical
application, CTIR was used in analyses of electroencephalograms of patients suf-
fering from epilepsy. Causal relations between EEG signals measured in different
parts of the brain were identified. Paluš et al. demonstrated suitability of the con-
ditional mutual information approach for analyzing causality in cardio-respiratory
interaction [58].

8.2.3 Conditional Mutual Information and Transfer Entropy

The principal measure, used by Paluš et al. [58] for inferring causality relations,
i.e., the directionality of coupling between the processes {X(t)} and {Y (t)}, is the
conditional mutual information I(y;xτ |x) and I(x;yτ |y). If the processes {X(t)} and
{Y (t)} are substituted by dynamical systems evolving in measurable spaces of di-
mensions m and n, respectively, the variables x and y in I(y;xτ |x) and I(x;yτ |y)
should be considered as n- and m-dimensional vectors. In experimental practice,
however, usually only one observable is recorded for each system. Then, instead of
the original components of the vectors X(t) and Y(t), the time delay embedding
vectors according to Takens [87] are used. Then, back in time-series representation,
we have

I
(
Y(t);X(t + τ)|X(t)

)
=I
((

y(t),y(t −ρ), . . . ,y(t − (m−1)ρ)
)
;x(t + τ)|

(
x(t),x(t −η), . . . ,x(t − (n−1)η)

))
,

(8.21)

where η and ρ are time lags used for the embedding of systems X(t) and Y(t),
respectively. For simplicity, only the information about one component x(t + τ) in
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the τ-future of the system X(t) is used. The opposite CMI I
(
X(t);Y(t + τ)|Y(t)

)
is

defined in the full analogy. Exactly the same formulation can be used for Markov
processes of finite orders m and n. Using the idea of finite-order Markov processes,
Schreiber [81] introduced a measure quantifying causal information transfer be-
tween systems evolving in time, based on appropriately conditioned transition prob-
abilities. Assuming that the system under study can be approximated by a stationary
Markov process of order k, the transition probabilities describing the evolution of
the system are p(in+1|in, ..., in−k+1). If two processes I and J are independent, then
the generalized Markov property

p(in+1|in, ..., in−k+1) = p
(

in+1 | i(k)n , j(l)n

)
, (8.22)

holds, where i(k)n = (in, ..., in−k+1) and j(l)n = ( jn, ..., jn−l+1) and l is the number
of conditioning state from process J. Schreiber proposed using the KLD (8.14) to
measure the deviation of the transition probabilities from the generalized Markov
property (8.22) and got the definition

TJ→I =∑ p(in+1, i
(k)
n , j(l)n ) log

p(in+1|i(k)n , j(l)n )

p(in+1|i(k)n )
, (8.23)

denoted as transfer entropy. It can be understood as the excess amount of bits that
must be used to encode the information of the state of the process by erroneously
assuming that the actual transition probability distribution function is p(in+1|i(k)n ),
instead of p(in+1|i(k), j(l)n ). It was shown (for example in [43]) that the transfer en-
tropy is in fact an equivalent expression for the conditional mutual information.

8.2.4 Comparison of Coarse Grained Measures and Two
Deterministic Measures for Causality Detection
in Bivariate Time Series

A good causality detector in time series should have a low rate of false detections.
Paluš and Vejmelka [64] experimentally analyzed causality detection for bivariate
time series by coarse grained measures (CTIR, defined by (8.20)) and compared it
to two common deterministic approaches. Numerous examples demonstrated what
problems can appear in inference of causal relationship. This to the date unique com-
parative work on information-theoretic causality detectors to the deterministic ones
definitely deserves our attention. Three approaches were compared. In all cases, the
driving, autonomous system is denoted by X , and the driven, response system by
Y . As Paluš et al. in [58] explain, the direction of coupling can be inferred from
experimental data only when the underlying systems are coupled, but not yet syn-
chronized. The CTIR defined by formula (8.20) was compared to the method from
Le Van Quyen [73] and the method from Arnhold et al. [8] and Quian Quiroga [74]
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(belonging to the methods discussed in Sect. 8.3.4). The second method is based on
cross-prediction using the idea of mutual neighbors. A neigborhood size δ is given.
Considering a map from X to Y, a prediction is made for the value of yn+1 one step
ahead using the formula

ŷn+1 =
1

|Vδ (Xn)| ∑
j:Xj∈Vδ (Xn)

y j+1. (8.24)

The volume Vδ (Xn) = {Xn′ : |Xn′ −Xn| < δ} is δ neighborhood of Xn and |Vδ (Xn)|
denotes the number of points in the neighborhood. Using data rescaled to the zero
mean and the unit variance, the authors define a crosspredictability index by sub-
tracting the root-mean-square prediction error from one

P(X → Y ) = 1−
√

1
N

N

∑
n=1

(ŷn+1 − yn+1)2, (8.25)

measuring how system X influences the future of system Y .
The third method from Arnhold et al. [8] and Quian Quiroga [74] uses mean

square distances instead of the cross-predictions in order to quantify the closeness
of points in both spaces. The time-delay embedding is first constructed in order to
obtain state space vectors X and Y for both time series {xi} and {yi}, respectively
and then the mean squared distance to k nearest neighbors is defined for each X as

R(k)
n (X) =

1
k

k

∑
j=1

|Xn −Xrn, j |2, (8.26)

where rn, j the index of the j-th nearest neighbor of Xn. The Y -conditioned squared
mean distance is defined by replacing the nearest neighbors of Xn by the equal time
partners of the nearest neighbors of Yn as

R(k)
n (X |Y ) =

1
k

k

∑
j=1

|Xn −Xsn, j |2, (8.27)

where sn, j denotes the index of the j-th nearest neighbor of Yn. Then the asymmetric
measure

S(k)(X |Y ) =
1
N

N

∑
j=1

R(k)
n (X)

R(k)
n (X |Y )

(8.28)

should reflect the interdependence in the sense that closeness of the points in Y
implies closeness of their equal time partners in X and the values of S(k)(X |Y ) ap-
proach to one, while, in the case of X independent of Y , S(k)(X |Y )� 1. The quantity
S(k)(Y |X) measuring the influence of X on Y is defined in full analogy.

These three measures were tested on the examples of the Rössler system driving
the Lorenz system and for the unidirectionally coupled Henon system and then on
unidirectionally coupled Rössler systems. Neither the cross-predictability, nor the
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mutual nearest neighbours statistics gave consistent results when using three differ-
ent examples of unidirectionally coupled systems. Only the coarse-grained transin-
formation rate correctly identified the direction of the causal influence in the above
three examples as well as in many other systems of different origins (tested in other
works from the authors). In the above mentioned examples of unidirectionally cou-
pled systems, the used measures were generally non-zero in both directions even
before the systems became synchronized and comparison of the values of such mea-
sures did not always reflect the true causality given by the unidirectional coupling
of the systems. The intuitively understandable implication that the lower prediction
error (better predictability) implies the stronger dependence cannot be in general
applied to nonlinear systems. When the coupling of the systems is weaker than
what is necessary for the emergence of synchronization, as used in the above ex-
amples, any smooth deterministic function between the states of the systems does
not have to exist yet. However, there is already some statistical relation valid on the
coarse-grained description level. Although the deterministic quantities are based on
the existence of a smooth functional relation, when estimated with finite precision
they usually give nonzero values influenced not only by the existing statistical de-
pendence but also by the properties of the systems other then the coupling. There-
fore it is necessary to use quantities proposed for measuring statistical dependence
such as information-theoretic measures which have solid mathematical background.
Conditional mutual information vanishes in the uncoupled direction in the case of
unidirectional coupling so that the causal direction can be identified by its statisti-
cally significant digression from zero, while in the uncoupled direction it does not
cross the borders of a statistical zero. From this respect has the CTIR based causal-
ity detector a special position in the comparison to the deterministic ones. Factors
and influences, which can lead to either decreased test sensitivity or to false causal-
ity detections, were identified and concrete remedies proposed in [64] in order to
perform tests with high sensitivity and low rate of false positive results.

8.2.5 Classification and Criteria for Methods for Entropy
Estimation

The key problem for causality detection by means of conditional mutual information
is to have a “good” estimator of mutual information. Most entropy estimators in
the literature, which are designed for multi-dimensional spaces, can be applied to
mutual information estimation. In the following, we adopt mathematical criteria for
evaluation of the entropy estimators from Beirlant et al. [11].

8.2.6 Conditions and Criteria

If for the identically independent distributed (i.i.d.) sample X1, . . . ,Xn, Hn is an esti-
mate of H( f ), then the following types of consistencies can be considered:
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Weak consistency: limn→∞Hn = H( f ) in probability; Mean square consistency:
limn→∞E(Hn −H( f ))2 = 0; Strong (universal) consistency: limn→∞Hn = H( f ) a.s.
(almost sure); Slow-rate convergence: limsupn→∞

E|Hn−H|
an

= ∞ for any sequence of
positive numbers {an} converging to zero; Root-n consistency results are either of
form of asymptotic normality, i.e., limn→∞ n1/2(Hn−H( f )) = N(0,σ2) convergence
in distribution, of L2 rate of convergence: limn→∞ nE(Hn −H( f ))2 = σ2 or for the
consistency in L2, limn→∞E(Hn −H( f ))2 = 0.

The conditions on the underlying density f are: Smoothness conditions:(S1) f
is continuous. (S2) f is k times differentiable. Tail conditions: (T 1) H([X ]) < ∞,
where [X ] is the integer part of X . (T 2) inf f (x)>0 f (x) > 0. Peak conditions: (P1)∫

f (log f )2 < ∞. (This is also a mild tail condition.) (P2) f is bounded.
Many probability distributions in statistics can be characterized as having max-

imum entropy and can be generally characterized by Kagan–Linnik–Rao theo-
rem [45]. When dealing with the convergence properties of estimates, one needs
the following definitions. Asymptotically consistent estimator means that the series
of the approximants converge in infinity to the function to be approximated (see,
i.e., [11]). Asymptotically unbiased estimator is that one which is unbiased in the
limit.

In [43] we reviewed current methods for entropy estimation. Most of the methods
were originally motivated by other questions than detection of causality: by learning
theory questions, or by nonlinear dynamics applications. Many of them, although
accurate in one or two dimension, become inapplicable in higher dimensional spaces
(because of their computational complexity). Here we discuss these methods from
their consistency point of view.

8.3 Non-Parametric Entropy Estimators

8.3.1 Plug-in Estimates

Plug-inestimatesarebasedonaconsistentdensityestimate fn of f such that fn depends
on X1, . . . ,Xn. Their name “plug-in” was introduced by Silverman [84]. A consistent
probability density function estimator is substituted into the place of the pdf of a
functional. The most used plug-in estimators are integral estimators, resubstitution
estimates, splitting date estimates and cross-validation estimates. Strong consistency
of integral estimators was proven by Dmitriev and Tarasenko [25] and by Prasaka
Rao [71]. The resubstitution estimates have the mean square consistency which was
proven by Ahmad and Lin [2]. Splitting data estimate have under some mild tail
and smoothness condition on f strong consistency for general dimension d [38].
Ivanov and Rozhkova showed strong consistency of cross-validation estimates [44].
Convergence properties of discrete plug-in estimators were studied by Antos and
Kontoyiannis [5] in a more general scope. They proved that for additive functionals,
including the cases of the mean, entropy, Rényi entropy and mutual information,
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satisfying some mild conditions, the plug-in estimates are universally consistent and
consistent in L2 and he L2-error of the plug-in estimate is of order O( 1

n ). For discrete
estimators, the convergence results obtained by Antos and Kontoyiannis [5] are in
agreement with the convergence results of the all above mentioned plug-in methods.
On the other hand, for a wide class of other functionals, including entropy, it was
shown that the universal convergence rates cannot be obtained for any sequence of
estimators. Therefore, for positive rate-of-convergence results, additional conditions
need to be placed on the class of considered distributions.

8.3.2 Entropy Estimates Based on the Observation Space
Partitioning

8.3.2.1 Fixed Partitioning

These estimators divide the observation space into a set of partitions. The partition is
generated either directly or recursively (iteratively). The algorithms employ a fixed
scheme independent of the data distribution or an adaptive scheme which takes the
actual distribution of the data into account. The most widely used methods with
fixed partitioning are classical histogram methods, where the approximation of the
probability distributions p(xi,y j), p(xi) and p(y j) is by a histogram estimation [18].
These methods work well only up to three scalars. An insufficient amount of data,
occurring especially in higher dimensions, leads to a limited occupancy of many his-
togram bins giving incorrect estimations of the probability distributions and conse-
quently leads to heavily biased, usually overestimated values of mutual information.
Consistency of histogram methods was analysed by Lugosi and Nobel in [53], who
presented general sufficient conditions for the almost sure L1-consistency of multi-
variate histogram density estimates based on data-dependent partitions. Analogous
conditions guarantee the almost-sure risk consistency of histogram classification
schemes based on data-dependent partitions.

8.3.2.2 Adaptive Partitioning

Marginal equiquantization
Any method for computation of mutual information based on partitioning of data
space is always connected with the problem of quantization, i.e., a definition of
finite-size boxes covering the state (data) space. The probability distribution is then
estimated as relative frequencies of the occurrence of data samples in particular
boxes (the histogram approach). A naive approach to estimate the mutual informa-
tion of continuous variables would be to use the finest possible quantization, e.g.,
given by a computer memory or measurement precision. One must however keep in
mind that a finite number N of data samples is available. Hence, using a quantization
that is too fine, the estimation of entropies and mutual information can be heavily
biased – we say that the data are overquantized.
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As a simple data adaptive partitioning method, Paluš [59, 61] used a simple box-
counting method with marginal equiquantization. The marginal boxes are not de-
fined equidistantly but so that there is approximately the same number of data points
in each marginal bin. The choice of the number of bins is, however, crucial. In [59]
Paluš proposed that computing the mutual information In of n variables, the number
of marginal bins should not exceed the n+1-st root of the number of the data sam-
ples, i.e., q ≤ n+1

√
N. The equiquantization method effectively transforms each vari-

able (in one dimension) into a uniform distribution, i.e., the individual (marginal)
entropies are maximized and the MI is fully determined by the value of the joint
entropy of the studied variable. This type of MI estimate, even in its coarse-grained
version, is invariant against any monotonous (and nonlinear) transformation of the
data [62]. Due to this property, MI, estimated using the marginal equiquantization
method, is useful for quantifying dependence structures in data as well as for statis-
tical tests for nonlinearity which are robust against static nonlinear transformations
of the data [59].

Darbellay and Vajda [21] demonstrated that MI can be approximated arbitrar-
ily closely in probability and proved the weak consistency. Their method was
experimentally compared to maximum-likelihood estimators (Sect. 8.3.6). The par-
titioning scheme used by Darbellay and Vajda [21] was originally proposed by
Fraser and Swinney [29] and in physics literature is referred to as the Fraser–
Swinney algorithm, while in the information-theoretic literature as the Darbellay–
Vajda algorithm.

8.3.3 Ranking

Pompe [70] proposed an estimator of dependencies of a time series based on second
order Rényi entropy. Pompe noticed that if the time series is uniformly distributed,
some of the desirable properties of Shannon entropy can be preserved for the second
order Rényi entropy. Moreover, the second order Rényi entropy can be effectively
estimated using the Grassberger–Procaccia–Takens Algorithm (GPTA) [36]. The
idea of Pompe’s entropy is in finding a transformation of an arbitrarily distributed
time series to a uniform distribution and is accomplished by sorting the samples
using some common fast sorting algorithm. There are no consistency results (even
in their weakest form) known.

8.3.4 Estimates of Entropy and Mutual Information
Based on Nearest Neighbor Search

Estimators of Shannon entropy based on k-nearest neighbor search in one-
dimensional spaces were studied in statistics already almost 50 years ago by
Dobrushin [26] but they cannot be directly generalized to higher dimensional
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spaces. For general multivariate densities, the nearest neighbor entropy estimate is
defined as the sample average of the algorithms of the normalized nearest neighbor
distances plus the Euler constant. Under the condition (P1) introduced in Sect. 8.2.6,
Kozachenko and Leonenko [48] proved the mean square consistency for general
d ≥ 1. Tsybakov and van der Meulen [88] showed root-n rate of convergence for a
truncated version of Hn in one dimension for a class of densities with unbounded
support and exponential decreasing tails, such as the Gaussian density.

Leonenko et al. [52] studied a class of k-nearest-neighbor-based Rényi estima-
tors for multidimensional densities. It was shown that Rényi entropy of any order
can be estimated consistently with minimal assumptions on the probability density.
For Shannon entropy, and for any k > 0 integer, the expected value of the k-nearest
neighbor estimator (including the KSG algorithm described below) converges with
the increasing size of data set N to infinity to the entropy of f if f is a bounded
function (asymptotical unbiasedness). For any k > 0 integer, the k-nearest neighbor
estimator converges for the Euclidean metric (L2 rate of convergence), with the in-
creasing size of data set N to infinity, to the entropy of f if f is a bounded function
(consistency).

An improvement of KL algorithm for using in higher dimensions was proposed
by Kraskov, Stögbauer and Grassberger (KSG) [49]. The estimator differs from the
KL that it uses different distance scales in the joint and marginal spaces. Any con-
sistency results are not known. A nearest neighbor approach to estimate Kullback–
Leibler divergence was studied in [52] and by Wang et al. in [90] and its asymptoti-
cal consistency was proven.

8.3.5 Estimates Based on Learning Theory Methods

8.3.5.1 Motivated by Signal Processing Problems

Entropy and mutual information are often used as a criterion in learning theory. En-
tropy as a measure of dispersion is applied in many other areas, in control, search, or
in the area of neural networks and supervised learning, i.e., [28, 68, 80]. Many of the
developed methods belong as well to non-parametric plug-in estimators. Learning
theory is interested in computationally simpler entropy estimators which are con-
tinuous and differentiable in terms of the samples, since the main objective is not
to estimate the entropy itself but to use this estimate in optimizing the parameters
of an adaptive (learning) system. The consistency properties of an estimator are not
questioned strictly in this field since for relatively small data sets it is not critical
to have a consistent or an inconsistent estimate of the entropy as long as the global
optimum lies at the desired solution. These methods work in general also in higher
dimensional spaces and therefore can be applicable to mutual information. From the
variety of learning theory applications, we mention here the nonparametric estima-
tor of Rényi entropy from Erdogmus [28], based on Parzen (window) estimate [66]
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and some neural network-based approaches. The former estimator is consistent if
the Parzen windowing and the sample mean are consistent for the actual pdf of the
iid samples.

8.3.5.2 Estimates by Neural Network Approaches

In the probabilistic networks, the nodes and connections are interpreted as the defin-
ing parameters of a stochastic process. The net input to a node determines its prob-
ability of being active rather than its level of activation. The distribution of states in
a stochastic network of these nodes can be calculated with models from statistical
mechanics by treating the net inputs as energy levels. A well-known example of this
type of network is Boltzmann Machine (i.e., [42]). The entropy of the stochastic
process can then be calculated from its parameters, and hence optimized. The non-
parametric technique by Parzen or kernel density estimation leads to an entropy opti-
mization algorithm in which the network adapts in response to the distance between
pairs of data samples. Such entropy estimate is differentiable and can therefore be
optimized in a neural network, allowing to avoid the limitations encountered with
parametric methods and probabilistic networks. The consistency of such method
depends on the optimization algorithm.

8.3.6 Entropy Estimates Based on Maximum Likelihood

When maximizing the likelihood, we may equivalently maximize the log of the
likelihood and the number of calculations may be reduced. The log-likelihood is
closely related to entropy and Fisher information. Popular methods for maximum
likelihood are the Expectation-Maximization (EM) (i.e., Demster et al. [22]) and
Improved Iterative Scaling (IIS) algorithms (Berger [13]). These methods are often
used in classification tasks, especially in speech recognition. Paninski [65] used an
exact local expansion of the entropy function and proved almost sure consistency
(strong consistency) for three of the most commonly used discretized information
estimators, namely the maximum likelihood (MLE) estimator the MLE with the so-
called Miller–Madow bias correction [54], and for the jackknifed version of MLE
from Efron and Stein [27].

8.3.7 Correction Methods and Bias Analysis in Undersampled
Regime

These entropy estimates are mostly analytical and their bias can be computed.
Most of them use Bayesian analysis and are asymptotically consistent (Miller [54],
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Paninski [65], Nemenman et al. [56]) but there is also another approach from Grass-
berger [37] applying Poisson distribution.

8.3.8 Kernel Methods

Kernel density estimation methods (KDE)

Mutual information was first estimated by this approach by Moon et al. [55]. The
KDE methods have more advantages than the classical histogram methods: they
have a better mean square error rate of convergence of the estimate to the underlying
density, are insensitive to the choice of origin and the window shapes are not limited
to the rectangular window. Kernel density estimator introduced by Silverman [84]
in one-dimensional space is defined

f (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
, (8.29)

where h is the kernel width parameter and K(x) the kernel function. It was shown
by Kulkarni et al. in [50] that these estimators are consistent for any dimension.

Prichard and Theiler [72] introduced a method to compute information theoretic
functionals based on mutual information using correlation integrals. Correlation in-
tegrals were introduced by Grassberger and Procaccia in [36]. Consistency of this
method was proven by Borovkova et al. in [16]. Schreiber [81] proposed to compute
the transfer entropy also using the correlation integrals [36].

8.4 Parametric Estimators

Some assumption about either the functional form of the density or about its smooth-
ness can be appropriate in some cases. The most common is to assume that the den-
sity has a parametric form. This approach is preferred when there is confidence that
the pdf underlying the samples belongs to a known parametric family of pdf’s. It is
effective when the assumed parametric family is accurate but it is not appropriate
in adaptation scenarios where the constantly changing pdf of the data under con-
sideration may not lie in a simple parametric family. Parametric entropy estimation
is a two step process. First, the most probable density function is selected from the
space of possible density functions. This often requires a search through parameter
space (for example maximum likelihood methods). Second, the entropy of the most
likely density is evaluated.

Verdugo Lazo and Rathie [89] computed a table of explicit Shannon entropy ex-
pressions for many commonly used univariate continuous pdfs. Ahmed and Gokhale
[3] extended this table and results to the entropy of several families of multivariate
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distributions, including multivariate normal, normal, log-normal, logistic and Pareto
distributions. Consistent estimators for the parametric entropy of all the above listed
multivariate distributions can be formed by replacing the parameters with their con-
sistent estimators (computed by Arnold [7]).

8.4.1 Entropy Estimators by Higher-Order Asymptotic Expansions

This class includes Fourier Expansion, Edgeworth Expansion and Gram–Charlier
Expansion and other expansions [39]. These methods are recommended espe-
cially for distributions which are “close to the Gaussian one” [43]. The Edgeworth
expansion, similarly as the Charlier–Gram expansion approximates a probability
distribution in terms of its cumulants. All the three expansion types are consistent,
i.e., in infinity converge to the function which they expand, Cramer [20].

8.5 Generalized Granger Causality

The classical approach of Granger causality as mentioned in Sect. 1.2 is intuitively
based on the temporal properties, i.e., the past and present may cause the future
but the future cannot cause the past [32]. Accordingly, the causality is expressed in
terms of predictability: if the time series Y causally influences the time series X ,
then the knowledge of the past values of X and Y would improve a prediction of
the present value of X compared to the knowledge of the past values of X alone.
The causal influence in the opposite direction can likewise be checked by reversing
the role of the two time series. Although this principle was originally formulated
for wide classes of systems, both linear and nonlinear systems, the autoregressive
modeling framework [Eq. (8.1)] proposed by Granger was basically a linear model,
and such a choice was made primarily due to practical reasons [33]. Therefore, its
direct application to nonlinear systems may or may not be appropriate.

8.5.1 Nonlinear Granger Causality

Ancona et al. [4] extended Granger’s causality definition to nonlinear bivariate time
series. To define linear Granger causality [32], the vector autoregressive model was
modeled by radial basis neural networks [17]. A directionality index was introduced
measuring the unidirectional, bidirectional influence or uncorrelation which was
computed again by means of conditional mutual information applying generalized
correlation integral [36].
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8.5.2 Nonparametric Granger Causality

Despite the computational benefit of model-based (linear and/or nonlinear) Granger
causality approaches, it should be noted that the selected model must be appro-
priately matched to the underlying dynamics, otherwise model mis-specification
would arise, leading to spurious causality values. A suitable alternative would be
to adopt nonparametric approaches which are free from model mismatch problems.
We discuss here those nonparametric approaches which can be expressed in the in-
formation theoretic terms. Let us first reformulate the Granger causality in informa-
tion theoretic terms [23, 24]: For a pair of stationary, weakly dependent, bivariate
time series {Xt ,Yt}, Y is a Granger cause of X if the distribution of Xt given past
observations of X and Y differs from the distribution of Xt given past observations
of X only. Thus {Yt} is a Granger cause of {Xt} if

FXt+1(x|FX (t),FY (t)) �= FXt+1(x|FX (t)), (8.30)

where FXt+1 represents the cumulative distribution function of Xt+1 given F, and
FX (t) and FY (t) represents the information contained in past observations of X and
Y up to and including time t. The idea of the Granger causality is to quantify the ad-
ditional amount of information on Xt+1 contained in Yt , given Xt . Now, the average
amount of information which a random variable X contains about another random
variable Y can be expressed in terms of generalized correlation integrals [see the
equivalent Eq. (8.9)] as Iq(X ,Y ) = logCq(X ,Y )− logCq(X)− logCq(Y ) where the
generalized correlation integral [36], Cq can be estimated by

Cq(X,ε) =
1

N(N−1)q−1

N

∑
j=1

[
∑
i�= j
Θ(||Xj −Xi||− ε)

]q−1
; (8.31)

Θ is the Heaviside function, ‖.‖ a norm and the last term is related to kernel density
estimation. The extra amount of information that Yt contains about Xt+1 in addi-
tion to the information already contained in Xt will be measured by the informa-
tion theoretic measure of Granger causality: IGC

Y→X = I(Xt ,Yt ;Xt+1)− I(Xt ;Xt+1) =
logC(Xt ,Yt ,Xt+1)− logC(Xt ,Xt+1)− logC(Xt ,Yt)+ logC(Xt).

In order to obtain statistical significance, bootstrapping procedure is recom-
mended to check if the statistic is significantly larger than zero [23].

Here the causality measure is based on conditional entropy, and unlike mutual or
time-lagged information measures, can distinguish actually transported information
from that produced as a response to a common driver or past history [81]. Interest-
ingly, these entropies can be expressed in terms of generalized correlation integrals
whose nonparametric estimation is well known. Correlation integral based nonpara-
metric Granger causality test was originally proposed by Baek and Brock [9] and
then later modified by Hiemstra and Jones [40] in the field of econometrics. More
details to this method can be found in [43].
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8.6 Conclusion

The main objective of this paper was to show that information theory and informa-
tion theoretical measures, in particular conditional mutual information, can detect
and measure causal link and information flow between observed variables. How-
ever, it opens a more difficult question: How to reliably estimate these measures
from a finite data set? Research literature abounds with various estimators with a
diverse range of assumptions and statistical properties. Theoretically, for a good
entropy estimator, the condition of consistency seems to be important. However, it
should be noted that the conditions for desired consistency might be too restrictive
for an experimental environment. Accordingly, we also critically reviewed those
methods which have surprisingly good overall performance (i.e., small systematic
and statistical error for a wide class of pdfs) though their consistency properties
are not yet known. Last but not least, let us mention some informal comments on
the detection of causality which are relevant to any causality measure applied. One
needs to be extra careful before claiming a causal relationship between observed
variables. From the viewpoint of establishing new models, inferences and control
strategies, establishing a causal relationship is always tempting. However, one has
to first carefully scrutinize the statistical properties of the observed data sequences
and the completeness of the model or the assumptions necessary for the estimation
of the information theoretic measures. Otherwise, spurious results could often be
obtained (i.e., as discussed in Sect. 8.2.4). Despite these precautionary remarks, we
would like to stress again that there are enough good reasons, contrary to B. Russel’s
arguments [76], to investigate causality, offering numerous applications in natural
and physical sciences.
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90. Wang, Q., Kulkarni, S.R., Verdú, S.: A nearest-neighbor approach to estimating divergence

between continuous random vectors. ISIT 2006, Seattle, USA, July 9–14 (2006)
91. Wiener, N.: The theory of prediction. In: Beckenbach, E.F. (ed.), Modern Mathematics for

Engineers. McGraw-Hill, New York (1956)
92. http://en.wikipedia.org/wiki/Causality



Chapter 9
Information Theoretic Learning and Kernel
Methods

Robert Jenssen

Abstract In this chapter, we discuss important connections between two different
approaches to machine learning, namely Renyi entropy-based information theoretic
learning and the Mercer kernel methods. We show that Parzen windowing for esti-
mation of probability density functions reveals the connections, enabling the infor-
mation theoretic criteria to be expressed in terms of mean vectors in a Mercer kernel
feature space, or equivalently, in terms of kernel matrices. From this we learn not
only that two until now separate paradigms in machine learning are related, it also
enables us to interpret and understand methods developed in one paradigm in terms
of the other, and to develop new sophisticated machine learning algorithms based
on both approaches.

9.1 Introduction

In machine learning, the goal is to learn the parameters of a machine, or system,
such that an optimal output is produced based on some input data samples. Opti-
mality is measured by a learning criterion, which basically determines the type of
problems which may be solved. For instance, traditional mean squared error (MSE)
criteria may only capture the second order statistics of the data, thus rendering them-
selves unsuitable for solving problems where higher order statistical properties are
needed. Examples of such problems are abundant, including non-linear clustering
and classification, blind source separation, dimensionality reduction, etc. Figure 9.1
illustrates the machine learning process.

Recently, a new approach to machine learning has been developed, coined in-
formation theoretic learning (ITL) [25]. As the name suggests, in ITL, the learning
criteria are defined in terms of certain information theoretic properties of the prob-
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Fig. 9.1 The machine, or system, receives some input data samples and produces an output. The
output depends on the current setting of the parameters of the system. The goal is to adjust, or learn,
the parameters such that the problem at hand is solved, thus producing the optimal output. The
adjustment of the parameters is typically performed in an iterative process. A learning criterion is
invoked, which measures the goodness of the parameters at each iteration step, in terms of solving
the problem. Based on the learning criterion, a correction term is fed back to the system, to guide
the parameter adjustment

ability density function (pdf) of either the input data or the output data. Such prop-
erties are defined as functions over pdfs, and capture therefore all the statistical
properties of the data.

The most fundamental information theoretic quantity is the entropy of a pdf. The
entropy H(p) of a pdf p(x) is related to the shape of the pdf. A broad pdf, like
the Gaussian, typically corresponds to large entropy, and vice versa. A versatile
family of entropy functions, characterized by the parameter α , is given by Renyi’s
entropy [26]

Hα(p) =
1

1−α log
∫

pα(x)dx. (9.1)

This definition of entropy contains Shannon’s entropy [29] as a special case for
α → 1. ITL is however based on Renyi’s entropy of order α = 2. The reason for
this choice is that the resulting entropy function H2(p), called Renyi’s quadratic en-
tropy, may be elegantly estimated based on samples from the set D = {x1, . . . ,xN},
assumed generated from the pdf p(x). This is achieved by replacing the pdf by an
estimate p̂(x), obtained using the so-called Parzen window density estimator, as
explained in Sect. 9.2. Thus, an estimate H2(p̂) of the entropy is obtained.

For example, Renyis’s quadratic entropy has been used a cost function in super-
vised neural networks training [7]. In this case, the training input data comes in pairs
{xt ,dt} , t = 1, . . . ,N, where dt is the label of xt . The network produces the output
yt for each xt , and an error term et = dt − yt . Instead of minimizing the mean of
the squared errors, the Renyi quadratic entropy of the error pdf p(e) is minimized
with respect to the system weights. The minimization is implemented using gradient
descent by estimating p(e) by a Parzen window estimator. On real time series data,
such a minimum error entropy neural network was able to predict future test data
more accurately than networks trained with MSE.
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The other fundamental information theoretic quantity is the divergence between
two or more pdfs. A divergence measure between the pdfs p1(x), . . . , pC(x) may be
denoted D(p1, . . . , pC). It measures the “distance” between the pdfs, in the sense
that it is zero only if p1(x) = · · ·= pC(x), and takes larger values the further “apart”
the pdfs are. The Kullback–Leibler divergence [19] is the most well-known such
measure. It is based on the Shannon entropy. In ITL, divergence measures based on
Renyi’s quadratic entropy have been proposed, in order to be able to derive sample-
based estimators using the Parzen window method. One such measure is based on
the Cauchy–Schwarz (CS) inequality and another is based on the integrated squared
error (ISE). These will be reviewed in Sect. 9.2.

For example, the CS divergence has been used as a cost function for non-linear
clustering [15]. Clustering refers to the process of partitioning a data set D into
“natural” groups, or clusters D1, . . . ,DC (assuming C clusters). The CS approach
to clustering consists of partitioning the input data set such that the CS divergence
between the resulting cluster pdfs p1(x), . . . , pC(x) is maximized, where the pdf
pi(x) is associated with Di. Hence, the partition represents the system weights,
the cluster pdfs are the output and the divergence is the learning criterion, as il-
lustrated in Fig. 9.2. Note that the output pdfs are estimated by the Parzen window
method p̂1(x), . . . , p̂C(x), such that the CS divergence measure can be evaluated as
DCS(p̂1, . . . , p̂C). In this approach therefore, we maximize the dissimilarity between
the clusters by maximizing the dissimilarity between the cluster pdfs. In mathemat-
ical terms, this is obtained by argmaxD1,...,DC DCS(p̂1, . . . , p̂C).

Many other pattern recognition problems may be formulated as the optimization
of an information theoretic quantity. ITL has therefore been pursued rigorously, and
its importance and usefulness have been demonstrated with great success on prob-
lems ranging from clustering [15] and classification [18] to blind source separation
[11], minimum error entropy neural networks prediction [7], feature extraction [12]
and matched filtering [6]. See also the recent review paper [8].

Independently of ITL, another seemingly radically different approach to machine
learning has been developed, namely the celebrated Mercer kernel methods. The
kernel methods [27, 30] are based on the idea of non-linearly mapping the input
data points xt ∈ D into a potentially infinite dimensional data space, obtaining the

Fig. 9.2 An information theoretic approach to clustering consists of partitioning the data such that
the divergence between the resulting Parzen window estimated cluster pdfs is maximized. The
partition D1, . . . ,DC is adjustable (system weights) and the divergence is the learning criterion
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new data points Φ(xt), t = 1, . . . ,N. The actual learning algorithm is now executed
on this new data set. One reason often stated for justifying this mapping in the
context of classification, is that by Cover’s theorem [4], the data set is more likely
to be linearly separable in the new representation.

A special feature of the learning algorithms used by these methods, is that they
are linear in nature in terms of the Φ-transformed data and expressed solely in
terms of inner-products. This is very convenient, since inner-products in the high-
dimensional space may be easily computed using a Mercer kernel function k(·, ·),
by [20]

k(xt ,xt ′) = 〈Φ(xt),Φ(xt ′)〉 . (9.2)

This is the so-called “kernel-trick,” which is at the core of the kernel methods. The
Mercer kernel is by definition positive semi-definite. The most commonly used Mer-
cer kernel is the radial basis function

k(xt ,xt ′) = exp
{
− 1

2σ2 ‖xt −xt ′‖2
}

, (9.3)

where σ is a scale parameter. Many other choices also exist [30]. One reason why
the kernel-trick is so important, is that the learning algorithm doesn’t have to oper-
ate directly on the Φ-transformed data, it only needs to be able to compute inner-
products, which is enabled by the kernel function. Hence, the learning algorithm
operates implicitly in the kernel feature space, in general not even knowing the ac-
tual mapping Φ . Since the kernel feature space is non-linearly related to the input
space, the kernel methods are non-linear in terms of the input space. Figure 9.3
illustrates the mapping to kernel feature space.

The perhaps most well-known kernel method is the support vector machine [3].
Subsequently, methods like kernel C-means [10], kernel principal component anal-
ysis [28], kernel independent component analysis [2], kernel canonical correlation
analysis [9] and kernel Fisher discriminant analysis [22] have been proposed. See
also the review paper [24].

Perhaps surprisingly, it has recently been shown that there are important connec-
tions between these two different approaches to machine learning [16, 17]. In this
chapter, we review these relationships in detail. We show that Parzen windowing for

Fig. 9.3 Mapping the input data to a kernel feature space by the mapping Φ increases the likeli-
hood of linear separability by Cover’s theorem. Kernel feature space inner-products are computed
using a Mercer kernel k(·, ·)
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estimation of probability density functions reveals the connections, enabling the in-
formation theoretic criteria to be expressed in terms of mean vectors in a Mercer ker-
nel feature space, or equivalently, in terms of kernel matrices. From this we learn not
only that two until now separate paradigms in machine learning are related, it also
enables us to interpret and understand methods developed in one paradigm in terms
of the other, and to develop new sophisticated machine learning algorithms based on
both approaches. Specifically, we provide an interpretation of CS divergence-based
clustering in terms of kernel methods and of kernel C-means clustering in terms of
ITL. Finally, we discuss a new data transformation and dimensionality reduction
technique called kernel entropy component analysis, which has flavors from both
machine learning approaches.

This chapter is organized as follows. In Sect. 9.2, we review the basic compo-
nents of information theoretic learning. Thereafter, in Sect. 9.3, the connections
between information theoretic learning and the kernel methods are discussed in de-
tail. Section 9.4 is devoted to new interpretations of methods in information theo-
retic learning in terms of kernel methods, and vice versa. Section 9.5 concludes the
chapter.

9.2 Information Theoretic Learning Using Parzen Windowing

In this section, the basic components of information theoretic learning is briefly re-
viewed. The review follows to a large degree [25], where this theory was introduced.

9.2.1 Renyi Entropy

The key quantity in information theoretic learning is Renyi’s entropy of order α = 2.
This is called the Renyi quadratic entropy

H2(p) =− log
∫

p2(x)dx. (9.4)

Note that since the logarithm is a monotonic function, we may concentrate on the
quantity V (p) =

∫
p2(x)dx. For convenience, in the following we refer to the Renyi

quadratic entropy simply as Renyi entropy. In order for the Renyi entropy, equiv-
alently V (p), to be useful as a machine learning criterion, we need to be able to
estimate it based on the samples alone.

Assume that the data samples D = {x1, . . . ,xN} generated from p(x) is avail-
able. One strategy for estimating V (p) is to replace p(x) by a sample-based density
estimator p̂(x). This estimator should preferably be smooth, in order to be able to
differentiate V (p) with respect to system weights. One readily available density esti-
mator is provided by the Parzen window method [23], also known as kernel density
estimation. The Parzen window estimator is given by
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p̂(x) =
1
N ∑xt∈D

Wσ (x,xt), (9.5)

where Wσ (·, ·) is the Parzen window, whose width is governed by the parameter σ .
In order for the estimator to be smooth, the window function should be smooth.
Also, in order for p̂(x) to be non-negative and integrate to one, Wσ (·, ·) should be
non-negative and integrate to one.

There are many valid Parzen windows. The Gaussian function is perhaps the
most well-known and widely used window function. In that case,

Wσ (x,xt) =
1

(2πσ2)
d
2

exp
{
− 1

2σ2 ‖x−xt‖2
}

, (9.6)

where d is the dimension of the data. For a fixed kernel size, it is well known
that [23]

E { p̂(x)} = lim
N→∞

p̂(x) = p(x)�Wσ (x), (9.7)

where � denotes convolution. The Parzen estimator is however asymptotically un-
biased and consistent given a suitable annealing rate for the kernel size as N → ∞.
In practice though, the number of samples are limited, and the kernel size must
be chosen in a trade-off between estimation bias and variance. A small kernel size
generally favors low bias, at the expense of increased variance. There are many
proposed criteria for kernel size selection available in the statistics literature [31],
especially suitable for low-dimensional data. Figure 9.4 illustrates the process of
Parzen window density estimation in the one-dimensional case.

If we assume a Gaussian Parzen window, the sample-based estimator V (p̂) is
given by

−18 −10 −1 4 14
0

0.05

0.1

0.15

0.2

pdf estimate

x

Fig. 9.4 Illustration of Parzen windowing in the one-dimensional case: The data samples
{−18,−10,−1,4,14} are available. A Parzen window is centered at every sample. The pdf es-
timate at any x is given by the sum of the Parzen windows at that location x (divided by the number
of samples)
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V (p̂) =
∫ 1

N ∑xt∈D

Wσ (x,xt)
1
N ∑xt′ ∈D

Wσ (x,xt ′)dx

=
1

N2 ∑
xt∈D

∑
xt′ ∈D

∫
Wσ (x,xt)Wσ (x,xt ′)dx

=
1

N2 ∑
xt∈D

∑
xt′ ∈D

W√
2σ (xt ,xt ′), (9.8)

where in the last line we have used the property that the convolution of two Gaus-
sian functions is itself a Gaussian function, but with increased width σ̃ =

√
2σ .

Of course, an estimator for the Renyi entropy is obtained by taking the negative
logarithm of this expression. This shows that we may formulate a sample-based es-
timator for the Renyi entropy involving no approximations or assumptions besides
the density estimation itself. This is not possible using the Shannon entropy, and
was therefore one of the key arguments for using the Renyi entropy as a machine
learning cost function.

A Gaussian Parzen window is however a special case. Other Parzen windows
may be used by approximating the expectation operator by the sample mean. Note
that V (p) = Ep {p(x)}, i.e., the expectation of p(x) with respect to p(x). Using
Ep {p(x)} ≈ 1

N ∑
N
t=1 p(xt), and replacing p(xt) by p̂(xt), we obtain

V (p̂) =
1

N2 ∑
xt∈D

∑
xt′ ∈D

Wσ (xt ,xt ′). (9.9)

In the following, we leave the choice of Parzen window open.

9.2.2 Renyi Entropy-Based Divergence Measures

Assume that the data set D consists of subgroups D1, . . . ,DC. Furthermore, assume
that the Ni data points which comprise Di are generated from a pdf pi(x). In the
following, we review two Renyi entropy-based divergence measures between pdfs.
These are the Cauchy–Schwarz divergence and the integrated squared error diver-
gence.

9.2.2.1 Cauchy–Schwarz Divergence

One Renyi entropy-based divergence measure is derived from the Cauchy–Schwarz
inequality, accordingly called the Cauchy–Schwarz divergence. It is given by

DCS(pi, p j) =− log
∫

pi(x)p j(x)dx√∫
p2

i (x)dx
∫

p2
j(x)dx

. (9.10)
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This measure if zero only if pi(x) = p j(x), and increases towards infinity as the two
pdfs are further and further “apart,” that is DCS(pi, p j)∈ [0,∞). It is also symmetric.
The CS divergence is based on the Renyi entropy, since

DCS(pi, p j) =− log
∫

pi(x)p j(x)dx− 1
2

H2(pi)−
1
2

H2(p j), (9.11)

where − log
∫

pi(x)p j(x)dx can be considered a Renyi “cross entropy.”
Since the logarithm is a monotonic function, we may focus on the argument of

the log in (9.10), which we may denote VCS(pi, p j). Now, Parzen window estimators
p̂i(x) and p̂ j(x) may be inserted into the expression for VCS(pi, p j), where

p̂i(x) =
1
Ni
∑

xn∈Di

Wσ (x,xn), p̂ j(x) =
1

Nj
∑

xm∈D j

Wσ (x,xm), (9.12)

obtaining the estimator

VCS(p̂i, p̂ j) =

1
NiNj

∑
xn∈Di

∑
xm∈D j

Wσ (xn,xm)

√
1

N2
i
∑

xn∈Di

∑
xn′ ∈Di

Wσ (xn,xn′) 1
N2

j
∑

xm∈D j

∑
xm′ ∈D j

Wσ (xm,xm′)
. (9.13)

The estimator of the CS divergence is correspondingly DCS(p̂i, p̂ j)=− logV(p̂i, p̂ j).
The CS divergence may be extended, so that instead of measuring the divergence

between pairs of pdfs, it measures the divergence between C pdfs simultaneously, as

DCS(p1, . . . , pC) =− log
1
κ

C−1

∑
i=1
∑
j>i

∫
pi(x)p j(x)dx√∫

p2
i (x)dx

∫
p2

j(x)dx
, (9.14)

where κ =∑C−1
c=1 c. A sample-based estimator of this quantity is readily obtained, by

replacing the actual pdfs by their Parzen window estimators.

9.2.2.2 Integrated Squared Error Divergence

Another Renyi entropy-based divergence measure is obtained as the integrated
squared error between the pdfs. The ISE divergence is given by

DISE(pi, p j) =
∫

[pi(x)− p j(x)]2 dx. (9.15)

This measure also vanishes if pi(x) = p j(x), DISE(p1, p2) ∈ [0,∞), and it is sym-
metric. It is based on V (p), since

DISE(pi, p j) = V (pi)−2
∫

pi(x)p j(x)dx+V (p j). (9.16)
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By replacing pi(x) and p j(x) by p̂i(x) and p̂ j(x), the ISE divergence estimator
is given by

DISE(p̂i, p̂ j) =
1

N2
i
∑

xn∈Di

∑
xn′ ∈Di

Wσ (xn,xn′)−
2

NiNj
∑

xn∈Di

∑
xm∈D j

Wσ (xn,xm)

+
1

N2
j
∑

xm∈D j

∑
xm′ ∈D j

Wσ (xm,xm′). (9.17)

The ISE divergence may also be extended, as follows

DISE(p1, . . . , pC) =
C−1

∑
i=1
∑
j>i

∫
[pi(x)− p j(x)]2dx. (9.18)

9.3 Information Theoretic Learning and the Connection
to Kernel Methods

In this section, we outline the fundamental connections between information the-
oretic learning and the kernel methods. We first relate the Parzen window to the
kernel trick, for then to show that the information theoretic learning criteria may be
expressed in terms of mean vectors in a Mercer kernel feature space.

9.3.1 Parzen Window as a Kernel Trick

All the Renyi entropy-based quantities used in information theoretic learning are
expressed in terms of sums of Parzen windows, Wσ (·, ·), as a result of the Parzen
window estimation. In the following, we assume that the Parzen window, Wσ (·, ·),
is a positive semi-definite function. This is true for instance for the Gaussian Parzen
window. The implication of this assumption, is that the Parzen window obeys Mer-
cer’s conditions, and hence computes an inner product in some kernel induced fea-
ture space

Wσ (·, ·) = k(·, ·) = 〈Φ(·),Φ(·)〉 . (9.19)

It is now possible to interpret the Renyi-entropy based information theoretic
quantities in terms of Mercer kernel feature space quantities.

9.3.2 Renyi Entropy as Length of Mean Vector

The Parzen window-based estimator of the quantity V (p), and hence the Renyi en-
tropy, is given by (9.9). By replacing Wσ (·, ·) by the inner-product 〈Φ(·),Φ(·)〉, the
following alternative expression is obtained
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V (p̂) =
1

N2 ∑
xt∈D

∑
xt′ ∈D

〈Φ(xt),Φ(xt ′)〉

=

〈
1
N ∑xt∈D

Φ(xt),
1
N ∑xt′ ∈D

Φ(xt ′)

〉

= mT m = ||m||2, (9.20)

where m is the mean vector of the Φ-transformed data

m =
1
N ∑xt∈D

Φ(xt). (9.21)

It thus turns out that the quantity V (p̂) may be related to the squared Euclidean
length of the Mercer kernel feature space mean vector of the transformed data points
Φ(xt), t = 1, . . . ,N. The Renyi entropy estimator is thus H2(p̂) = − logV (p̂) =
− log ||m||2.

9.3.3 CS Divergence as Angle Between Mean Vectors

Based on (9.13), the Parzen window based estimator of the CS divergence may be
re-written as

VCS(p̂i, p̂ j) =

1
NiNj

∑
xn∈Di

∑
xm∈D j

〈Φ(xn),Φ(xm)〉
√

1
N2

i
∑

xn∈Di

∑
xn′ ∈Di

〈Φ(xn),Φ(xn′)〉 1
N2

j
∑

xm∈D j

∑
xm′ ∈D j

〈Φ(xm),Φ(xm′)〉

=

〈
1
Ni

∑
xn∈Di

Φ(xn), 1
Nj

∑
xm∈D j

Φ(xm)

〉
√√√√〈

1
Ni

∑
xn∈Di

Φ(xn), 1
Ni

∑
xn′ ∈Di

Φ(xn′)

〉〈
1

Nj
∑

xm∈D j

Φ(xm), 1
Nj

∑
xm′∈D j

Φ(xm′)

〉

=

〈
mi,m j

〉
√
〈mi,mi〉

〈
m j,m j

〉 = cos∠(mi,m j), (9.22)

where mi = 1
Ni
∑xn∈DiΦ(xn) and m j = 1

Nj
∑xm∈D jΦ(xm) can be considered mean

vectors of feature space data clusters corresponding to the data points associated
with pi(x) and p j(x), respectively. The CS divergence estimator is expressed as
DCS(p̂i, p̂ j) =− logVCS(p̂i, p̂2) =− logcos∠(mi,m j).

The above relationship shows that the CS divergence estimator is directly as-
sociated with the angle between the Mercer kernel feature space mean vectors mi
and m j.
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When measuring the divergence between C pdfs simultaneously, the correspond-
ing CS estimator may be expressed in terms of sums of cosines between pairs of
kernel feature space mean vectors, as

VCS(p̂1, . . . , p̂C) =
1
κ

C−1

∑
i=1
∑
j>i

cos∠(mi,m j). (9.23)

9.3.4 ISE Divergence as Length Between Mean Vectors

Following the derivation outlined in the previous subsection, then, based on (9.17),
the ISE divergence estimator may be re-written as

DISE(p̂i, p̂ j) = ||mi −m j||2. (9.24)

Hence, the ISE divergence estimator corresponds to measuring the squared Eu-
clidean length between the mean vectors mi and m j.

When measuring the divergence between C pdfs simultaneously, the correspond-
ing ISE estimator may be expressed as

DISE(p̂1, . . . , p̂C) =
C−1

∑
i=1
∑
j>i

||mi −m j||2. (9.25)

The geometrical interpretations explained above are illustrated in Fig. 9.5.

Fig. 9.5 Illustration of the connection between Parzen window-based estimators of Renyi entropy,
CS divergence, ISE divergence and mean vectors in Mercer kernel feature space. Only two mean
vectors m1 and m2 are considered. The Renyi entropy corresponds to the squared Euclidean length
of a mean vector, the CS divergence corresponds to the angle between the mean vectors and the
ISE divergence corresponds to the squared Euclidean length between the mean vectors
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9.3.5 Projections onto Mean Vectors in Kernel Feature Space

We now study projections in the kernel feature space onto the mean vector mi =
1
Ni
∑xn∈DiΦ(xn) based on xn ∈ Di generated from pi(x), i = 1, . . . ,C. When a data

pointΦ(xt), xt ∈D , is projected onto such a mean vector, the following relationship
is obtained.

〈Φ(xt),mi〉 =

〈
Φ(xt),

1
Ni
∑

xn∈Di

Φ(xn)

〉

=
1
Ni
∑

xn∈Di

〈Φ(xt),Φ(xn)〉

=
1
Ni
∑

xn∈Di

Wσ (xt ,xn)

= p̂i(xt). (9.26)

This shows that the length of the projection of Φ(xt) onto mi is the Parzen window
estimate p̂i(x) evaluated at xt , i.e., p̂i(xt).

Hence, any kernel method which is expressed in terms of inner-products between
individual samples and mean vectors in kernel feature space, may be interpreted in
terms of the Parzen window estimate of input space pdfs at that individual sample,
and vice versa. This is illustrated in Fig. 9.6.

9.4 New Insights and Algorithms

The theory outlined in the previous sections, connecting information theoretic ma-
chine learning with kernel-based machine learning, is interesting in its own right. It
also enables us to interpret algorithms developed in one machine learning paradigm

Fig. 9.6 Illustration of the projection of a data point Φ(xt) onto the mean vectors m1 and m2. The
length of the projection corresponds to the Parzen window estimate at xt of the pdf associated with
each of the mean vectors
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in terms of the other, thus in a sense enhancing our understanding of the algorithm
in question. In the following, we provide two such examples.

We also review a recent data transformation and dimensionality reduction
method which has flavors from both paradigms. This method is called kernel
entropy component analysis, and is closely related to kernel principal component
analysis.

9.4.1 Clustering by Maximizing Divergence

In the Introduction, we mentioned as an example the CS divergence used as a cost
function for clustering. In [15], this cost function, estimated using Parzen window-
ing, was implemented, and positive results were obtained also on non-linear cluster-
ing problems.

The optimization in [15] is carried out with respect to the partition of the data
set, i.e., the clusters, and the goal is to maximize the CS divergence

max
D1,...,DC

DCS (p̂1, . . . , p̂C) . (9.27)

Using the technique of Lagrange multipliers and gradient descent, the optimal par-
tition may be found.

The connections between ITL and kernel methods provided here, enables us
to look at this clustering algorithm from a totally different perspective. Since the
Parzen window estimated CS divergence corresponds to a measure of angles in
kernel feature space, the CS divergence criterion function may alternatively be ex-
pressed as

max
D1,...,DC

− log
1
κ

C−1

∑
i=1
∑
j>i

cos∠(mi,m j). (9.28)

That is, the clustering is performed in such a way that the angles between the re-
sulting kernel feature space cluster mean vectors is maximized. This makes perfect
sense.

9.4.2 Kernel C-Means

Recently, it has been proposed to execute the popular C-means algorithm [5] in
the kernel feature space instead of in the input space [10]. The resulting algorithm is
referred to as kernel C-means. Positive results have been obtained, also on non-linear
clustering problems. The relationships between information theoretic learning and
kernel methods enable us to provide a better understanding of the kernel C-means
algorithm. For a more detailed exposition, see [13].

The algorithm is given by:
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1. Initialize the kernel feature space cluster mean vectors, mi, i = 1, . . . ,C
2. For all xt ∈D :

xt →Di : ‖Φ(xt)−mi‖2 ≤
∥∥Φ(xt)−m j

∥∥2

⇔
〈
wi j,Φ(xt)

〉
+bi j ≥ 0, (9.29)

where wi j = mi −m j and bi j = 1
2

[∥∥m j
∥∥2 −‖mi‖2

]
, ∀ j �= i

3. Update mi, i = 1, . . . ,C
4. Repeat steps 2 and 3 until convergence

This is a hyperplane assignment rule based on squared Euclidean distance.
The kernel C-means algorithm minimizes a sum-of-squared-error criterion func-

tion in terms of the kernel feature space. This criterion equivalently corresponds to
the maximization of the following quantity [13]

J =
C

∑
i=1

Ni‖mi −m‖2, (9.30)

where as before mi = 1
Ni
∑xn∈DiΦ(xn) and m = 1

N ∑xt∈D Φ(xt).
We now analyze both the kernel C-means assignment rule and the cost function

J in terms of ITL.
Firstly, note that the hyperplane assignment rule involves the projection ofΦ(xt)

onto wi j. Since wi j = mi −m j, we have〈
wi j,Φ(xt)

〉
= 〈mi,Φ(xt)〉−

〈
m j,Φ(xt)

〉
= p̂i(xt)− p̂ j(xt), (9.31)

based on the discussion in Sect. 9.3.5. Hence, the projection of Φ(xt) onto wi j cor-
responds to calculating the difference between the Parzen window estimated den-
sities evaluated at the point of interest, i.e., xt . Furthermore, the threshold which
p̂i(xt)− p̂ j(xt) is compared against in order to assign xt to a cluster, is based on the
Renyi entropies of the clusters, since

bi j =
1
2

[∥∥m j
∥∥2 −‖mi‖2

]
=

1
2

[V ( p̂2)−V (p̂1)] , (9.32)

based on the discussion in Sect. 9.3.2. Hence, the kernel C-means assignment rule
may be expressed in terms of input space quantities as

xt →Di : p̂i(xt)− p̂ j(xt)+bi j ≥ 0, ∀ j �= i. (9.33)

This discussion also reveals that kernel C-means tends to favor the large entropy
cluster. To see this, note that if V ( p̂i) < V (p̂ j) such that in terms of Renyi entropies
HR2 (p̂i) > HR2 ( p̂ j), then xt → Di potentially even if p̂i(xt) < p̂ j(xt). This favors
the large entropy cluster Di.

Secondly, note that the cost function J is expressed in terms of the squared Eu-
clidean distance between kernel feature space mean vectors. In fact, it is easily
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shown that the integrated squared error between pi(x) and p(x), using Parzen win-
dowing to estimate pi(x) based on xn ∈Di and p(x) based on xt ∈D , is expressed as

DISE(p̂i, p̂) = ‖mi −m‖2. (9.34)

Hence, we have

J =
C

∑
i=1

NiDISE(p̂i, p̂). (9.35)

This shows that the kernel C-means criterion function has an alternative representa-
tion in terms of ISE divergence between the cluster pdfs and the overall pdf of the
data.

9.4.3 Kernel Entropy Component Analysis

The Parzen window Renyi entropy-based information theoretic quantities may also
be expressed in terms of kernel matrices. In this section, we focus on the Renyi
entropy. With the Renyi entropy as a starting point, we review a recent data trans-
formation and dimensionality reduction technique [14], referred here to as kernel
entropy component analysis (kernel ECA).

The kernel matrix, K, is constructed such that element (t, t ′) of K equals
Wσ (xt ,xt ′) = k(xt ,xt ′), t, t ′ = 1, . . . ,N. For example, we have V (p̂) = ‖m‖2 by
(9.9), but also

V (p̂) =
1

N2 1T K1, (9.36)

where 1 is a (N × 1) vector where each element equals one. Note that element
(t, t ′) of K corresponds to an inner-product in the kernel feature space, that is
〈Φ(xt),Φ(xt ′)〉. The matrix K is therefore an inner-product matrix in terms of the
kernel feature space.

It is possible to obtain a data setΦx in terms of the kernel feature space, represent-
ing these inner-products, in the sense that ΦT

x Φx = K. Let K be eigendecomposed
as K = EDET , where we assume that the eigenvalues are stored in the diagonal ma-
trix D = diag(λ1, . . . ,λN) such that λ1 ≥ ·· · ≥ λN . The corresponding eigenvectors
are stored in the (N×N) matrix E = [e1, . . . ,eN ]. Observe now that the data set

Φx = D
1
2 ET (9.37)

is such that ΦT
x Φx = (D

1
2 ET )T D

1
2 ET = EDET = K.

In terms of Renyi entropy, the kernel feature space data setΦx may be considered
an equivalent representation of the input space data set D = {x1, . . . ,xN}, since

V (p̂) =
1

N2 1TΦT
x Φx1 =

1
N2 1T K1. (9.38)
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In fact, the t-th column of Φx = D
1
2 ET corresponds to the projection of the ker-

nel feature space data point Φ(xt), t = 1, . . . ,N, onto the space spanned by all the
principal axes in that space. This result follows from the kernel principal component
analysis (kernel PCA) developed in [28]. The k-th principal axis vk in kernel feature
space is given by

λkvk = Cvk, (9.39)

where the correlation matrix is defined as

C =
1
N

N

∑
t=1
Φ(xt)Φ(xt)T . (9.40)

The projection of all the data points Φ(xt), t = 1, . . . ,N, onto vk is now given by
the (1×N) vector

√
λkeT

k , where λk and ek are the k-th eigenvalue and eigenvector
of K. The projection onto the space spanned by all the kernel feature space principal
axes is therefore given by Φx.

Let Φpca be a matrix where each column corresponds to the PCA projection of
the data points Φ(xt), t = 1, . . . ,N, onto the subspace spanned by the kernel space
principal axes corresponding to the l largest eigenvalues. Then,

Φpca = D
1
2
l ET

l , (9.41)

where the (l× l) matrix Dl stores the l largest eigenvalues, and the (N× l) matrix El
stores the corresponding eigenvectors. This is the kernel PCA transformed data set.
Since ordinary PCA preserves variance in terms of the input data set, kernel PCA
thus preserves variance in terms of the kernel induced feature space. In kernel PCA,
one often assume that the data is centered in the kernel feature space. This can be
achieved by a centering operation on the kernel matrix [28].

If the set D consists of subgroups D1, . . . ,DC, one often choose l =C. The reason
is that for the “ideal” kernel there will be only C non-zero eigenvalues of the kernel
matrix K [14]. The “ideal” kernel is such that k(xn,xn′) = 1 (or some other constant)
for xn,xn′ in the same subgroup, and k(xn,xm) = 0 for xn,xm in different subgroups.
Moreover, in this “ideal” case, it has been shown that the kernel PCA transformed
data set will consist of C clusters which are mutually orthogonal in the sense that
the cluster mean vectors are orthogonal [14]. In practice however, there is no such
ideal kernel.

Let us consider a different mapping of the data points Φ(xt), t = 1, . . . ,N, onto a
subspace spanned by k kernel space principal axes not necessarily corresponding to
the k largest eigenvalues. The resulting data set may be denoted

Φeca = D
1
2
k ET

k . (9.42)

The inner-product matrix corresponding to this data set is thus Keca = ΦT
ecaΦeca =

EkDkET
k .
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Note that Keca corresponds to an input space kernel matrix, such that 1
N2 1T Keca1

corresponds to the Renyi entropy of some input space data set which we may denote
D ′ = {x′1, . . . ,x

′
N}. Let the goal be to obtain Φeca such that the entropy related to D ′

is as similar as possible to the entropy related to D according to

min
λ1,e1,...,λN ,eN

[
1

N2 1T K1− 1
N2 1T Keca1

]
= min
λ1,e1,...,λN ,eN

1
N2 1T (K−Keca)1. (9.43)

Which k eigenvalues and eigenvectors of K should be used inΦeca = D
1
2
k ET

k in order
to achieve this?

Note that

V (p̂) =
1

N2

N

∑
t=1
λt(1T et)2 =

1
N2

N

∑
t=1
λtγ2

t , (9.44)

where 1T ei = γi. We assume in (9.44) that the products λiγ2
i have been sorted in

decreasing order, such that λ1γ2
1 ≥ ·· · ≥ λNγ2

N . Now, we see that

min
λ1,e1,...,λN ,eN

1
N2 1T (K−Keca)1 =

1
N2

N

∑
t=k+1

λtγ2
t , (9.45)

if we selectΦeca = D
1
2
k ET

k using the k eigenvalues and eigenvectors of K correspond-
ing to the k largest products λiγ2

i . This is called kernel entropy component analysis,
or kernel ECA for short. Note that this is in general not the same as kernel PCA,
although the two methods are closely related. Also note that centering of the kernel
matrix does not make sense in kernel ECA, since it would correspond to zero mean
kernel feature space data, i.e., m = 0. This again corresponds to infinite Renyi en-
tropy, since H2(p̂) = − log‖m‖2. Therefore, the kernel matrix used in kernel ECA
is not centered.

Figure 9.7 illustrates the difference between kernel PCA and kernel ECA. To the
left, an illustration of a kernel PCA mapping is shown. Kernel PCA projects in this

λ1

λ3 λ3

λ2 λ2

λ1

Fig. 9.7 Illustration of the difference between the kernel PCA projection (left) and the kernel
ECA projection (right). Kernel PCA projects the data onto a subspace spanned by the principal
axes corresponding to the largest eigenvalues, where λ1 ≥ ·· · ≥ λ3. Kernel ECA may project the
kernel feature space data onto a different subspace, not necessarily corresponding to the largest
eigenvalues



226 R. Jenssen

case the data onto a subspace spanned by the principal axes corresponding to the
two largest eigenvalues, where in this case λ1 ≥ ·· · ≥ λ3. As shown to the right,
kernel ECA may project the kernel feature space data onto a subspace spanned by
principal axes, not necessarily corresponding to the largest eigenvalues. Rather, it is
the value of the components λtγ2

t which determines the mapping. In this example, it
means that λ1γ2

1 is less than λ2γ2
2 and λ3γ2

3 .
As an example, we consider the Landsat multi-spectral satellite image studied in

[21], obtained from the UCI repository [1]. Each pixel is represented by 36 spectral
values. The labels of the pixels are available, since the image scene has been man-
ually labeled into classes such as red soil, cotton, vegetation stubble, etc. We use a
sample of this data set consisting of 2,000 data points.

Firstly, we extract the classes cotton and vegetation stubble in order to generate a
two-class data set. We create the kernel matrix using a Gaussian kernel with σ = 35.
Thereafter, the kernel matrix is eigendecomposed. The vertical lines in Fig. 9.8a
show the ten largest (normalized) eigenvalues of the kernel matrix. The bars show
the corresponding “entropy” values λ1γ2

1 , . . . ,λ10γ2
10 (also normalized). Projecting

the two-class data set onto the principal axes in the kernel feature space corre-
sponding to the two largest eigenvalues produces the kernel PCA data set shown
in Fig. 9.8b (using a centered kernel matrix). The classes are marked by different
symbols for clarity. In kernel ECA, we also project onto a subspace defined by two
principal axes. However, instead of using the two largest eigenvalues as in kernel
PCA, kernel ECA projects the kernel feature space data onto the principal axes cor-
responding to eigenvalue λ1 and λ3, since the terms λ1γ2

1 and λ3γ2
3 are the two largest

“entropy” terms as shown by the bars in Fig. 9.8a. The resulting kernel ECA trans-
formed data set is shown in Fig. 9.8c. Notice that the structure of the kernel ECA
data is radically different than the structure of the kernel PCA data. In kernel ECA,
the two classes are distributed along two different angular directions. Moreover,
these directions are orthogonal. In fact, the angle between the class mean vectors is
basically 90 degrees. Kernel ECA thus seems to create a data set which resembles
the “ideal” situation discussed above. The results shown here are not unique to the
kernel size σ = 35. Similar results are obtained over a wide range of kernel sizes.

As an example of the usefulness of kernel ECA, we mention that in [14] a cluster-
ing algorithm based on angles between kernel feature space data points and kernel
feature space cluster mean vectors was derived. Using kernel ECA to represent the
data set, this algorithm produced very positive clustering results. Using kernel PCA
to represent the data, the results were far less positive. Based on the data set shown
in Fig. 9.8b, we observe that the kernel PCA transformed data is clearly not suitable
for clustering using an angular measure.

Secondly, we extract the classes red soil, cotton and vegetation stubble, obtaining
a three-class data set. Using σ = 40, the normalized eigenvalues and “entropy” terms
are shown in Fig. 9.8d. Since there are three classes, we project onto three principal
axes. Using kernel PCA, the three largest eigenvalues are used, and we obtain the
data set shown in Fig. 9.8e. Kernel ECA, in contrast, is based on eigenvalues λ1, λ2
and λ5, since these correspond to the three largest “entropy” terms. The resulting
data set is shown in Fig. 9.8f. Again, notice how the three classes in kernel ECA
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Fig. 9.8 Kernel ECA and kernel PCA representation of Landsat image. Two classes (a)–(c). Three
classes (d)–(f)

are distributed along different mutually orthogonal angular directions, in contrast to
kernel PCA.

Finally, we demonstrate kernel ECA on the 256-dimensional USPS handwrit-
ten digits data set [1], using the digits six and nine. The kernel size used here is
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Fig. 9.9 Kernel ECA (left) and kernel PCA (right) representation of the USPS data set using the
digits six and nine

σ = 2.5. The left panel of Fig. 9.9 shows a few examples of the kernel ECA data
set. It is based on eigenvalues λ1 and λ9. Notice that also in this case, the classes
are distributed angularly in kernel feature space. The kernel PCA data set, shown
in the right panel of Fig. 9.9, is clearly different. In this case, all the data points
corresponding to the digit 6 is collapsed into one point near the origin (0,0). The
other class is spread out in a seemingly random fashion.

9.5 Conclusions

Information theoretic learning is defined in terms of Renyi entropy-based informa-
tion theory, and has been used for developing sophisticated machine learning algo-
rithms.

In this chapter, we have reviewed the cost functions used in ITL, and we have
shown that sample-based estimators of these quantities are obtained via Parzen
windowing for density estimation. Moreover, given a positive semi-definite Parzen
window, like the Gaussian, we have discussed recently discovered important con-
nections between ITL and the popular Mercer kernel methods. We have shown that
the estimator for the Renyi entropy corresponds to the squared Euclidean length of
the mean vector of the data in a Mercer kernel induced feature space. The CS diver-
gence estimator has an equivalent expression as a measure of the cosine of the angle
between kernel feature space cluster mean vectors, while the ISE divergence esti-
mator measures the squared Euclidean difference between the mean vectors. The
projection of a kernel feature space data point onto a kernel feature space cluster
mean vector has also been shown to correspond to the Parzen window estimated
cluster density, evaluated at the data point in question.

From these new insights, we not only learn that these two seemingly radically
different machine learning paradigms are related, they also enable us to understand
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and interpret ITL in terms of kernel methods and kernel methods in terms of ITL.
We have for example interpreted a recent clustering method which maximizes the
CS divergence between the cluster pdfs as a procedure which labels the data in such
a way that the angle between the resulting kernel feature space cluster mean vectors
is maximized. Kernel C-means have been interpreted in terms of Parzen window
estimated cluster densities, Renyi entropy and the ISE divergence. These analysis
clearly enhances our understanding of the methods in question.

Finally, we have discussed a recent data transformation and dimensionality re-
duction method, namely kernel ECA. This method brings together elements from
both information theoretic learning and kernel methods into a new and sophisti-
cated machine learning algorithm. Kernel ECA is closely related to kernel PCA, but
may produce strikingly different data sets. Kernel ECA produces a data set with an
angular structure, which is especially suitable for further processing using angular
cost functions, for example for clustering.
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Chapter 10
Information-Theoretic Causal Power

Kevin B. Korb, Lucas R. Hope, and Erik P. Nyberg

Abstract The causal power of C over E is (roughly) the degree to which changes in
C cause changes in E. A formal measure of causal power would be very useful, as an
aid to understanding and modeling complex stochastic systems. Previous attempts
to measure causal power, such as those of Good [16], Cheng [3], and Glymour [15],
while useful, suffer from one fundamental flaw: they only give sensible results when
applied to very restricted types of causal system, all of which exhibit causal transi-
tivity. Causal Bayesian networks, however, are not in general transitive. We develop
an information-theoretic alternative, causal information, which applies to any kind
of causal Bayesian network. Causal information is based upon three ideas. First,
we assume that the system can be represented causally as a Bayesian network. Sec-
ond, we use hypothetical interventions to select the causal from the non-causal paths
connecting C to E. Third, we use a variation on the information-theoretic measure
mutual information to summarize the total causal influence of C on E. Our mea-
sure gives sensible results for a much wider variety of complex stochastic systems
than previous attempts and promises to simplify the interpretation and application
of Bayesian networks.

10.1 Introduction

In some systems, the relationship between a cause C and an effect E is like True
Love: deterministic and simple, and not affected by other mediating and modifying
variables. In such happy relationships the only question is precisely what causal law
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binds C to E, for better or for worse. But in many systems that are worthy of scien-
tific study, the relationship between C and E may be like Real Life: stochastic and
complex, encompassing multiple indirect paths and various peripheral influences.
Such systems can be found in diverse scientific disciplines, including Medicine,
Psychology, Meteorology, Ecology, and Economics.

In such cases, conventional Statistics offers ways to summarize the relationship
numerically. If C and E are continuous scalar variables, then the correlation coef-
ficient provides some indication of how much increasing C results in increasing E.
With multiple variables, an Analysis of Variance (ANOVA) does a similar job. But
such crude summaries are deficient in several ways: they fail to indicate any causal
direction; they fail to map any complicated causal structure linking many variables;
they fail to capture any complicated non-linear relationships; and they are not appli-
cable to some kinds of variable (these two measures are inapplicable to non-scalar
variables).

There is a new paradigm for modeling complex stochastic systems that is rapidly
increasing in popularity, both in practical scientific applications and in the theoret-
ical developments of AI and the Philosophy of Science. Causal Bayesian networks
offer a simple and general way to capture all the nuances of variable relationships,
without any of the defects listed above. They consist of directed graphs, in which
variables (such as C and E) are represented by nodes, and any direct probabilistic
dependency (such as the dependency of E on C) is represented by an arc (such as
C → E). Thus, they provide a nice visual summary of the causal paths in the system,
particularly if the graph is sparse. The arcs themselves do not indicate the precise
nature of each connection, but this is encoded numerically in conditional probability
tables, which can be inspected as required. We present a more detailed account in
Sect. 10.3.

Bayesian networks were not originally intended to be interpreted causally: they
were simply maps of probabilistic dependence, in which the arcs might be oriented
in an anti-causal direction (e.g., C ← E). But in a causal Bayesian network the arcs
are also supposed to reflect the direction of causation, and this interpretation has
become increasingly important. In AI, many causal discovery algorithms have been
developed to learn causal Bayesian networks from data, and they have been quite
successful [30, 44, 47]. In addition, networks have been “knowledge engineered”
from a combination of expert opinion and data, whose performance is better than
that of the experts alone (e.g., [22]).

In Philosophy, there is a 2,000 year history of debate over the epistemology,
metaphysics and semantics of causation, most of which assumed that causation in-
volves physical necessitation. In the twentieth century this assumption eventually
yielded to a serious discussion of probabilistic causation, in which a cause need
not completely determine an effect, but may instead only influence its probability
(e.g., [40]). There has also been controversy over the nature of good causal attri-
butions and scientific explanations. In the last few years there has been a flurry of
activity, both to apply useful philosophical ideas to Bayesian networks, and con-
versely, to use Bayesian networks to clarify the philosophy (e.g., [17, 18, 46]). We
outline some relevant philosophical issues in Sect. 10.2.
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Paradoxically, the strength of causal Bayesian networks – accurately modeling
complex stochastic relationships – poses a problem for human users. It can be im-
portant to understand the causal influence of C on E, particularly when considering
a possible intervention on C to try to influence E. But complexity makes this under-
standing difficult: both in the subtleties of the individual links, and in the presence of
multiple paths between C and E (some of which may not transmit causal influence
all the way from C to E). Thus, we need a good summary statistic – like a correla-
tion coefficient, but both causally directed and more widely applicable – to measure
the “causal power” of C over E: roughly, the degree to which changes in C cause
changes in E. In scientific applications, a good measure of causal power would pro-
vide a guide to understanding and intervening upon real systems. In AI, it would
provide a guide to developing and explaining Bayesian networks. In Philosophy, it
would provide a guide to good causal attributions and scientific explanations.

There have been several previous attempts to provide a measure of causal power,
such as the work of Wright [49], Good [16], Cheng [3], and Glymour [15]. Unfortu-
nately, all these attempts suffer from one fundamental flaw: they only give sensible
results when applied to very restricted classes of Bayesian network. They either
cannot be applied to other classes of network, or else applying them does not gen-
erate sensible results. For example, all the attempts just mentioned work only for
networks in which causation is transitive: if C influences D, and D influences E,
then C must influence E. But causation is not always transitive, as Hitchcock [18]
and others have shown.

We present a new measure of causal power, which applies to all causal Bayesian
networks and generates appetizing results. The first ingredient is the causal Bayesian
networks themselves, since they encode the true causal structure connecting C
and E. The second ingredient is accurately representing possible interventions on C,
since this is a convenient way to sift the causal from the non-causal paths to E. The
third ingredient is the information-theoretic measure “mutual information”, since
this provides a useful summary of the net effect of C on E.

10.2 Probabilistic Causality

Philosophers like to contrast “types” (classes of thing that share some general prop-
erty) with “tokens” (things that are members of the class, and hence are particular
instances of the general property). Thus, “smoking” is a type of event, whereas “Su-
san smoking” is a token event of this type. Similarly, “smoking causes cancer” is an
example of “type causation”, whereas “Susan’s smoking caused her cancer” is an
example of“token causation”.1

1 Here “Susan smoking” refers to one event (e.g., one cigarette), while “Susan’s smoking” refers
to a fusion of such events. But in either case, what Susan does is a token instantiation of a general
type of behavior – whether it is simple or complex.
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There is more than one way to interpret Bayesian networks in terms of types and
tokens. We shall assume the following “type” interpretation. Suppose, for example,
that we have data from a longitudinal medical study concerning the causes of lung
problems. One variable, say C, represents smoking behavior. For each individual in
the study, it takes one of three mutually exclusive values: c0 if they do not smoke,
c1 if they smoke a little, or c2 if they smoke heavily. Another variable, say E, repre-
sents their lung health outcomes in ten years time. The data consists of observations
of many individuals, with the unfortunate Susan being just one participant. Once the
study is complete, we can use such data to construct an appropriate causal Bayesian
network to model the system. For example, we can calculate the probability that an
individual will contract lung cancer given only that they smoke heavily, P(e1|c2),
and compare it to the probability that an individual will contract lung cancer given
only that they do not smoke, P(e1|c0). This is a typical way to apply Bayesian net-
works to real data analysis. Note that in this model, each variable value represents an
event type (e.g., heavy smoking). The tokens of this type are the observed behaviors
of individuals (e.g., Susan’s heavy smoking). The variables represent sets of mutu-
ally exclusive event types (e.g., various types of smoking behavior). Our approach
will measure the causal power of both variables and variable values. But in models
like this, both these things concern type causation.

Our “type” interpretation should not be confused with the alternative “token” se-
mantics used in [17]. They are primarily concerned with token causation, so in their
scheme, each variable value represents an event token: c2 for “Susan smokes heav-
ily”, and c0 for “Susan does not smoke”.2 Each variable value is instantiated either
once (for actual values) or not at all (for counterfactual values). Therefore, there is
no data set of multiple observations for inferring probabilistic connections, and any
such connections in the network must be postulated based on theoretical knowledge
(such as our longitudinal results!). Each variable in this scheme represents a class of
event tokens.3 Both the “type” and “token” interpretations are viable, and therefore
it is a mistake to equate the type-token distinction with the variable-value distinc-
tion. Variables need not be types (and vice versa), and values need not be tokens
(and vice versa).

Despite our choice of the “type” interpretation, there is an obvious connection
between studies of type causation and their tokens. Suppose that our medical study
concludes that heavy smoking greatly increases the probability of contracting lung
cancer, and furthermore, all we know about Susan is that she is a heavy smoker
(who participated in the study). In that case, our best estimate of the probability that

2 A similar result would be obtained under our interpretation if the event types were specified so
restrictively that there was only one token of each type.
3 Perhaps such variables also represent a corresponding event type. But “Susan’s smoking behav-
ior” is a rather unnatural event type, since it includes such diverse token events as heavy smoking
and not smoking at all. Moreover, the variable values are not supposed to be only tokens of this
type (instances of Susan’s smoking behavior); they are supposed to have distinct, causally impor-
tant properties. So even in the “token” interpretation, the variable-value relationship is not just a
type-token relationship.
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Susan contracted lung cancer is simply P(e1|c2). Indeed, we expect our measure of
causal power to be applicable to analyses of token causation, but we will not argue
that point here.4

“Smoking causes cancer” implies a probabilistic connection, in which smoking
raises the probability of contracting cancer, rather than leading inevitably to it. Many
philosophical accounts of causation (especially token causation) have been deter-
ministic (e.g., [26]). But logically, such deterministic causal connections can be
viewed as extreme cases of probabilistic causal connections (in which the probabil-
ities are 0 or 1). The possibility of less extreme probabilistic connections has been
recognized and discussed by philosophers since Reichenbach [35]. Representing
such connections in causal Bayesian networks can be seen as a technical advance
in the discussions: it builds on their prior work, while also rendering some of the
non-technical philosophical debate obsolete.

The primary evidence for probabilistic causation is an observed change in prob-
ability, e.g., the increase in the probability of lung cancer when someone is a
smoker.5 Such changes are often summarized by measures of “statistical relevance”.
These various competing measures are all plausible candidates for measuring causal
power, so it is worth explaining the issues involved in choosing an appropriate mea-
sure, and why we prefer mutual information instead.

SR(c0,e1) = P(e1|c0)−P(e1), (10.1a)
ΔP = P(e1|c0)−P(e1|¬c0), (10.1b)

BR(c0,e1) =
P(e1|c0)

P(e1)
, (10.1c)

IR(c0,e1) =− [logP(e1|c0)− logP(e1)] . (10.1d)

Equation (10.1a) is the standard formulation for Statistical Relevance (SR) in
Philosophy (e.g., [38]), whereas (10.1b) is more common in Psychology (e.g., [3]).
Equations (10.1c) and (10.1d) are not standard measures of statistical relevance,
but they are plausible alternatives. Equation (10.1c) uses the same probabilities as
(10.1a), but measures the proportional change in probability rather than the ab-
solute difference. It can be used in Bayesian fashion as a multiplicative factor to
update the probability P(e1) upon learning that c0, so we dub it Bayesian Rele-
vance (BR). Equation (10.1d) is simply the negative log of (10.1c), which makes

4 Strangely, the study of token causation has often been regarded as quite separate from the study
of type causation (e.g., [8]). This has been encouraged by the fact that probabilistic type judg-
ments are often made prospectively about propensities (e.g., the chance that a patient will contract
cancer). In contrast, token judgments are usually made retrospectively about counterfactual possi-
bilities (e.g., while Susan is suing the cigarette company, she maintains that she would not have
contracted cancer without smoking). Thus, philosophical discussions of token causation have been
dominated by deterministic analyses of counterfactual problem cases, and these raise issues we
cannot properly address here. However, there have been recent encouraging moves to incorporate
type relationships into the attribution of causal blame (e.g., [27]).
5 Technically, we observe differences in sample frequencies and use these to estimate population
probabilities.
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the expression more similar to information-theoretic measures like mutual informa-
tion (see Sect. 10.5), so we dub it Information-theoretic Relevance (IR).

All these measures share some basic features that are intuitively attractive. There
is a natural point of division (0, or 1 for (10.1c)) between causes that promote an
effect (and have positive relevance, or factors greater than 1), and causes that pre-
vent it (and have negative relevance, or factors less than 1). They also agree that
c0 promotes e1 more strongly when P(e1|c0) is greater (provided the other terms
remain constant).6 Moreover, they are all easy to calculate for one pair of variables.
But each measure differs in the exact number it assigns, and these shared virtues do
not provide any reason to prefer one number to another.

One critical issue is the choice of comparative probability. All the measures
use P(e1|c0), but there are two different probabilities for e1 that can plausibly be
used to measure an increase or decrease. Equations (10.1a), (10.1c), and (10.1d)
use P(e1), i.e., some overall probability for e1 – which implies that there is also
some overall probability for both c0 and ¬c0. In some situations this will be ap-
propriate: e.g., if we observe that someone is a non-smoker (or intervene to make
them a non-smoker!), then we might wish to know how much difference this makes
to the probability that they will contract lung cancer. On this measure, the statis-
tical relevance of not smoking increases if more people are smokers. In contrast,
(10.1b) compares P(e1|c0) to the alternative condition P(e1|¬c0), without assuming
any probability distribution over these two conditions upon C (although there must
still be a probability distribution over c1 and c2). This measure is appropriate for
answering a slightly different question: what is the difference in lung cancer prob-
ability between smokers and non-smokers? Thus, the right choice of comparison
probability depends somewhat on the situation: the information we have available
and the question we wish to ask.

Another critical issue is the choice of weighting function. All these measures
merely relate a single variable value of C to a single variable value of E. But to
provide a more general measure of causal power, we want also to relate single val-
ues to variables, and variables to variables. For example, it is reasonable to ask how
much heavy smoking (c2) affects all lung cancer outcomes (E), or how much smok-
ing behavior (C) affects all lung cancer outcomes (E). Again, the right choice of
weighting function depends somewhat on the situation. But none of the measures
listed give any indication of the appropriate weighting function. Mutual information
offers a coherent way to compare and weight changes in probability, which can be
adjusted appropriately for the type of situation, and exhibits attractive mathematical
properties in more complicated examples.

One remaining problem is that all these measures, including mutual information,
are symmetric: if C is relevant to E, then E is relevant to C. Yet we know that causal
direction is crucial to measuring causal power. So how can we tell, for example, if
smoking causes lung cancer or if lung cancer causes smoking?

6 Hence, they support a kind of egalitarianism for causes: it doesn’t matter what the variable repre-
sents, or how indirect its path of influence, since only the resulting increase in probability matters.
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The most obvious reply in this case is to appeal to temporal order. It is gener-
ally accepted that causes precede their effects.7 The data should show that smoking
earlier in life increases the risk of lung cancer later in life (whereas the converse
does not hold). So this time difference rules out lung cancer as a cause of smoking.
However, such temporal information is not always available.

In Science and statistical analysis, it has long been recognized that the gold stan-
dard for the discovery of causal power (and hence causal direction) is intervention.
If an experimenter can manipulate one variable and produce a change in another
variable, then the first variable causally influences the second. Thus, intervention is
central to the concept of causation and its utility, as Woodward [48] has recently
argued. We use hypothetical interventions as a way of measuring the causal power
implied by a model, as detailed in Sects. 10.3 and 10.5. Of course, actual interven-
tion data is not always obtainable.

A more indirect way to determine causal direction or causal structure is to ap-
peal to background knowledge. Statistical relevance shows that there is some causal
process linking smoking and cancer, however indirect, and whatever the causal di-
rection.8 But is there a plausible causal process leading from smoking to cancer?
Providing biochemical evidence of the causal mechanism was crucial to killing off
the tobacco lobby’s defense. Causal process accounts (e.g., [8, 40]) emphasize this
aspect of causation.

Automated methods for discovering causal structure from data rely less upon
background knowledge and more upon a presumption of Simplicity, or her kissing
cousin, Probability. This raises philosophical issues that are too great to address
here, but we refer the reader to Korb and Nyberg [25] for a better indication of how
this union works. The success of causal discovery algorithms in using these criteria
illustrates that causal structure can be discovered by using more than just a local,
bottom-up approach in which individual connections are assembled into a network.9

Rather, there are global aspects that can be used for top-down causal discovery, in
which the best total network for describing a system can dictate our beliefs about
local causal structure.10

We have listed some interesting features of causation and its discovery – pre-
cedence, intervention, process, and simplicity – but all these features apply primarily
to developing a causal Bayesian network. Our measure of causal power assumes that
the network is given and simply summarizes its causal implications.

7 Some philosophers (e.g., [34, 35]) have argued that precedence should not be a necessary criterion
for causation. Their motivation is either to avoid using time as a fundamental property, or else to
allow for some logical exceptions (e.g., physical or fictional time travel). But nobody disputes that
precedence is a good practical guide!
8 To suppose that there is persistent correlation without underlying causation seems, at first glance,
to be tantamount to believing in magic (or an incredible run of luck). Bayesian networks are usually
constructed to satisfy the opposite assumption, satisfying the “Markov property”. Nonetheless,
there are some troubling putative counterexamples, such as the rising water levels in Venice and
the rising price of fish in China. But we shall plumb those depths another time.
9 Although this is the explicit approach of conditional dependence learners, e.g., IC [47].
10 An approach that is emphasized in our own metric learner, CaMML [24, chap. 8].
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When a network is given, it makes some previously troubling philosophical ques-
tions easy to answer. Sometimes C may be statistically relevant to E, but neither
is a cause of the other: e.g., because some other variable B influences them both.
Philosophers have grappled with the problem of how to identify such “spurious cor-
relations” between C and E, and “fix the background” so that it disappears (e.g.,
[2, 13, 39, 45]). But given a network, it is easy to identify “common causes” like
B, and spurious relevance can be removed by controlling for the value of B (either
by observing the value or by manipulating it). Conversely, it is impossible to iden-
tify causally relevant variables without also having some idea of the correct causal
network. Therefore, the problem of spurious correlations has now been subsumed
by the study of causal discovery algorithms and knowledge engineering, in order to
correctly model the domain of interest [46].

Similarly, philosophers have worried that to correctly measure statistical rele-
vance, we need to use the right reference class. Smoking may promote lung cancer
more in females than in males, so to assess Susan’s risk most accurately we need
to condition upon her sex. But we should not condition upon every variable, since
some do not really affect the connection between smoking and cancer! Given a net-
work, it is easy to identify all the other variables that impact upon lung cancer, and
condition upon these to create a suitable “homogenous reference class”.

Some philosophers have argued that genuine causes, like smoking, should be
context independent: they should promote their effects across almost all homoge-
nous reference classes.11 Others have argued that fickle, context-sensitive causes
are logically possible.12 The structure of causal Bayesian networks certainly allows
for highly context-sensitive causal influences. We will not engage in the debate over
their plausibility or admissibility here, but simply point out that, whichever kind of
causal network is given to it, our measure of causal power will happily report its
causal implications.

10.3 Causal Bayesian Networks

We now present a more detailed description of Bayesian networks, their causal in-
terpretation, and how to model interventions upon them.

10.3.1 Bayesian Networks

Bayesian networks, popularized by Pearl [32], Neapolitan [28] and Jensen [21], are
graphical representations of the probabilistic relationships between random vari-
ables. A Bayesian network is a directed acyclic graph, e.g., A → B →C. Each node,

11 This is the Contextual Unanimity Thesis (CUT), supported by Cartwright [2], Skyrms [42], Eells
and Sober [13] and Humphreys [20].
12 This is the Objective Homogeneity Thesis (OHT), supported by Salmon [37], Eells [12] and
Twardy and Korb [46].
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Fig. 10.1 Two Bayesian networks representing different factorizations of P(A,B,C). Left: Com-
mon effect. Right: Common case

say B, represents a domain variable. Each arc between nodes, say A → B, encodes
an elementary conditional dependence relation between the parent variable and its
child, e.g., the probability distribution over the values of B depends upon the value
of A. So there is an elementary conditional probability function P(B|πB) associated
with each node, which specifies a probability for its variable, B, that depends only
upon its parents, πB (here only A), and not upon other variables (such as C).

The network entails a joint probability distribution P(A,B,C) which is simply the
product of these elementary probability functions: P(A,B,C) = P(A)P(B|A)P(C|B).
The Markov assumption (which we make throughout) is that this scheme is suffi-
cient to capture all the true probabilistic dependencies between the variables. Note
that the joint distribution does imply various specific probability distributions, such
as P(B|A,C), in which the probability distribution over a variable, here B, can
depend upon its children, here C. Figure 10.1 shows two other networks factor-
ing P(A,B,C). Figure 10.1a represents the factorization P(A)P(B)P(C|A,B), while
Fig. 10.1b represents P(C)P(A|C)P(B|C).

While in the worst case Bayesian networks are intractable for probabilistic rea-
soning [5], with a sparse network the computational savings over dealing with a
full joint probability table can be considerable. For example: assuming binary vari-
ables, the full joint distribution for the networks in Fig. 10.1 would take (23 = 8)
eight parameters to specify. The V-structure of Fig. 10.1a saves two parameters
(1+1+4 = 6), and Fig. 10.1b saves three (1+2+2 = 5). The computational advan-
tages of Bayesian networks are one significant reason for their current popularity;
another is their perspicuous display of dependence relations for human eyes; and
another is their potential causal interpretation.

10.3.2 Causal Interpretation

Bayesian networks are causal when each arc also represents some causal process,
through which the parent variable makes the corresponding probabilistic difference
to its child. However, there are always some Bayesian networks that can mirror the
true joint probability distribution without orienting all their arcs in the true causal
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direction. Chickering [4] showed that any arc in a Bayesian network can be reversed,
with the proviso that additional arcs might need to be added to keep the factorization
consistent. Consequently, many have informally made the point that Chickering’s
rule can be applied to any true causal Bayesian network to reorder it arbitrarily,
while still representing the very same probability distribution. Since this creates
many incorrect causal networks for every one that is correct, it appears to provide a
reason against making causal interpretations.

In fact, there are several good replies to this coffee house argument. Ontolog-
ically, probabilistic dependencies must arise from underlying causal connections
(a view expressed in the Common Cause Principle of [35]), even if the epistemic
challenge is to infer causality from probability. Therefore, there is always a cor-
rect causal model to be discovered, and causal interpretations are certainly not
illegitimate.

Furthermore, there are good reasons for thinking that such discovery is fea-
sible. If a causal network’s arcs are necessary and sufficient for representing its
dependencies, then applying Chickering’s rule can only make the network more
complex. Indeed, repeated application of this rule will generally lead to a fully con-
nected network! So Ockham’s razor suggests that we should reject many of the
spurious networks that can be created through Chickering transformations. Math-
ematically, each of these more complex networks generally requires some of its
parameters to exactly match, which makes them individually much less probable
than the simple truth. Finally, practice trumps theory: causal discovery algorithms,
such as CaMML [31], are based on a preference for minimal networks – and they
have been demonstrably successful in recovering the true causal model from data
sets. For all of these reasons the common, and sensible, practice of knowledge en-
gineers is to ask domain experts for the causal relations between variables, rather
than just the probabilistic dependencies.

10.3.3 Observation vs. Intervention

While the causal interpretation of Bayesian networks is becoming more widely ac-
cepted, the difference between modeling observation and intervention is still often
confused. This is particularly true in areas where regression models, rather than
Bayesian networks, are the norm – since ordinary regression models simply cannot
model interventions.

We illustrate the difference between intervention and observation with a simple
example. Figure 10.2 presents a three-variable causal model of heart attack risk.
A patient’s exercise routine at 40 affects her or his heart attack risk in two ways:
directly and indirectly. More exercise tends to reduce blood pressure at 50 (which
signifies that the heart does not need to work as hard), which in turn reduces the risk
of heart attack by 60. Thus, exercise indirectly reduces heart attack risk. But exercise
also reduces heart attack risk in other ways (such as by improving the blood supply
to the heart muscle), and this additional effect is indicated by its direct connection
to the heart attack node.
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Fig. 10.2 A simple causal Bayesian network linking exercise at age 40 and blood pressure at 50
with the risk of heart attack by 60
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Fig. 10.3 The blood pressure causal network where blood pressure is a observed to be low b set
low by intervention

Suppose we observe that a group of patients have low blood pressure at 50. Then
the new probabilities for Exercise and Heart Attack are shown in Fig. 10.3a. Their
probability of avoiding a heart attack has increased, as you’d expect. But it is also
more likely that they were doing high levels of exercise at 40, since that would
explain the low blood pressure we are now observing.

In contrast, suppose that we intervene at 50 by giving some random patients med-
ication to lower their blood pressures. The new probabilities are shown in Fig. 10.3b.
This time the probabilities for Exercise have not changed, since we cannot retro-
spectively affect their exercise routines ten years ago! Their probability of avoiding
a heart attack has still increased, but this time by a lesser amount. Why? By in-
tervening on blood pressure at 50, we have only changed the direct effect of this
variable. Since it is not more likely that they were doing high levels of exercise at
40, we can no longer count on this factor to also directly reduce heart attack risk.
In short, it is better to have achieved low blood pressure naturally than to suddenly
achieve it by artificial means! This is revealed in the causal model by the difference
between observation and intervention.

A real example of people confusing observation with intervention stems from
the widespread use of regression models in public health. Regression models of the
famous Framingham data on heart disease have been used to assess, for example,
the expected value of intervening on blood pressure [1, 7]. The models incorporate
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many additional variables, including parents of high blood pressure, such as a pa-
tient’s history of smoking, cholesterol levels, exercise, etc. The problem is that low
blood pressure levels were simply observed in existing patients, and the outcomes
for these patients were assumed to represent the expected outcomes for any patient
whose blood pressure was set low by intervention. Our simple example shows why
this is a mistake, and one which is likely to overestimate the benefit of administer-
ing blood pressure medication. Why was intervention not modeled correctly? First,
regression models cannot properly represent intervention, because they do not en-
code causal structure.13 Second, this defect is not widely appreciated, so regression
models are widely used and causal structure is systematically ignored. Tragically,
despite important high-quality data, poor data analysis may well be causing bad
public policy decisions and bad medical advice.

10.3.4 Representing Imperfect Interventions

Not all interventions are as simple as our example, in which a single target variable
is successfully set to an exact value by a completely independent agent. We call
these perfect interventions, but alas, such perfection is seldom found in the real
world. Imperfection, on the other hand, is ubiquitous – and imperfect interventions
can also be very useful. In particular, we will use them to assess causal power, and
therefore we will explain how they can be modeled.14

Given a causal model M, we can represent a wide variety of interventions within
the following scheme:

1. We construct a larger augmented graph, M∗, which includes:

a. M as a subgraph
b. A new intervention arc, that impacts upon a variable in M, say →C
c. A new intervention node, from which this arc originates, say IC

2. The intervention node IC includes:

a. At least one state, say “No”, which represents the fact that no intervention was
attempted

b. At least one state, say “Yes”, which represents the fact that an intervention
was attempted

13 In order to be capable of representing interventions we require a graphical model in which the
parental effects upon an intervened-upon variable can be altered. Minimally, this requires moving
from ordinary regression models to path models or structural equation models, if not to Bayesian
networks.
14 Many authors, including Spirtes et al. [43], Pearl [33], Eberhardt et al. [9] and Eberhardt et al.
[10], concentrate mainly upon perfect or near-perfect interventions. But there has also been some
work on less perfect interventions, including Spirtes et al. [43] (under “rigid indistinguishability”),
Pearl [33] (under “instrumental variables” and “imperfect experiments”), Eberhardt and Scheines
[11], Fell [14], and Korb and Nyberg [25]. The many varieties of imperfect intervention were the
main topic of discussion in Korb et al. [23].
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3. We define a new probability distribution over M∗, namely P∗(·), which includes
the features:

a. P∗(·|IC = No) = P(·) over the variables in M
b. P∗(C|πC, IC = Yes) �= P(C|πC)

Figure 10.4 depicts the relevant fragment of M∗.
We motivate this scheme as follows. The augmented graph is intended to rep-

resent the original system M prior to intervention. Therefore, it includes M as a
subgraph, with its original probability distribution intact when intervention is not
attempted. The augmented graph is also intended to represent M after intervention.
In ordinary usage, an intervention represents an intentional influence on a causal sys-
tem which is extraneous to that system. For example, if Susan’s everyday lifestyle is
viewed as a system, then a medical intervention (such as advice to curtail cigarette
smoking) is regarded as coming from outside that system. To represent changes in
external circumstances, we can add any number of new nodes. But minimally, we
can assume that there is an intervention node IC to represent the decision to inter-
vene. To represent the effects of intervention, we can add any number of new arcs
between nodes. But minimally, we can assume that the decision to intervene has
some impact upon at least one variable in M. The fact that IC is directly connected
to C does not really constrain the nature of the intervention, since this single arc can
represent any tortuously complex causal process. Our concern is not to accurately
represent the wider system for its own sake, only to include enough of it to repre-
sent M both before and after intervention. The result of the intervention is a new
probability distribution over C’s states.

Our scheme therefore specifies some very basic, minimal requirements for any
intervention. It leaves open all sorts of possibilities to represent complex, imperfect
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interventions. For example, it does not restrict IC’s interaction with C’s other par-
ents, or the nature of its effect on C. It allows variables other than C to be directly
influenced by IC; hence, side-effects can exist. IC may coexist with other interven-
tion nodes, and be causally related to them. IC may even be affected by variables in
M; and C may not even be the variable that the agent intended to effect in M! We
elaborate briefly on these various imperfections below.

However, our scheme can still represent perfect interventions. We simply specify:

1. There are no further arcs or nodes in M∗.
2. There are no further states in IC.
3. P∗(C = ci|πC, IC = Yes) = 1.
4. ci is the state that the agent intended to set.

10.3.5 Dimensions of Intervention

We now clarify the concept of an imperfect intervention, by listing five distinct ways
to be imperfect. In each case we define a clear dichotomy between perfection and
imperfection. But since each imperfection can come in degrees, and is independent
of the others, they form orthogonal axes in a five-dimensional space.

Dimension 1. Overwhelming vs. underwhelming:

1. An overwhelming intervention results in a distribution over C that makes it com-
pletely independent of its original parents. Thus:

P∗(C|πC, IC) = P∗(C|IC). (10.2)

2. An underwhelming intervention results in a distribution over C that still leaves it
dependent upon its original parents.

An overwhelming intervention on C “cuts it off” from its parents, and the effect
of this intervention is sometimes represented by removing the other parental arcs
altogether. Underwhelming interventions can interact with the other parents to pro-
duce any kind of elementary function: linear, noisy-OR, or a complex, non-linear
interaction. These are precisely the kinds of dependency that Bayesian networks
model already, so it is no extension to the semantics of Bayesian networks to incor-
porate them. A real-world intervention will often interact with the existing complex
of causal processes in somewhat unpredictable ways. Medical interventions, for
example, often fail – Susan refused to stop smoking because her peers also smoked;
yet with different friends, she might have heeded her doctor’s warning.

Dimension 2. Deterministic vs. stochastic:

1. A deterministic intervention leaves the target variable in one particular state.
2. A stochastic intervention leaves the target variable with a positive probability

over two or more states.
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The perfectly deterministic intervention has only one possible result (after taking
into account any interaction). Ideally, Susan’s doctor would have liked to make
certain that she stopped smoking. But there are some very useful interventions
that are deliberately stochastic: in scientific experiments, subjects are often divided
randomly into treatment and control groups, in the hope that this assignment will be
independent of all other factors, and reveal the causal influence of the randomized
variable.

Dimension 3. Targeted vs. indiscriminate:

1. A targeted intervention affects only one node.
2. An indiscriminate intervention affects more than one node.

Ideally, many medical interventions would be targeted with surgical precision
(e.g., to affect only one organ). Unfortunately, side-effects are very common, and
may or may not be anticipated. Experimental protocols are often designed with
painstaking care, so that randomization only affects the target variable.

Dimension 4. Independent vs. interactive:

1. An independent intervention node IC is not affected by any other variables.
2. An interactive intervention node IC is affected by at least one other variable (ei-

ther new or original).

Idealistically, we tend to think of our own interventions as completely indepen-
dent decisions. But sometimes our actions may be coordinated with the decisions of
others; and sometimes actually influenced by the state of M. For example, surgeons
would not intervene to remove Susan’s lung unless they were influenced by the fact
that it was already cancerous.15

Dimension 5. Intended vs. unintended:

1. An intended intervention has precisely the effect upon M that the agent intended
(in any of the preceding respects).

2. An unintended intervention has some effect upon M that the agent did not intend.

Of course, we are not offering a definition of either intention or agency, just
applying this concept to interventions. We note that other external variables can
frequently play a similar role to IC in perturbing M, and hence facilitating causal
discovery, as Spirtes et al. [44] make clear. Following ordinary language, we do not
count such cases as interventions, since they lack intention.16

15 In fact, most practical interventions incorporate some prior feedback about the state of the target
variable, or more precisely, its immediate antecedent – but this is a subtlety we can usually afford
to ignore.
16 We should point out that perfect intervention nodes can be used to model all the varieties of
imperfection discussed here, by encoding those imperfections in new nodes mediating between
the intervention node and the original network. But this hardly makes the intervention perfect!
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10.4 Alternative Measures of Causal Power

Intuitively, causal power is the strength of the connection from a cause to an ef-
fect. Over the last century, several influential analyses of causal power have been
proposed, in which this basic idea is translated into a formal measure.

In fact, a measure of causal power was already implicit in the earliest graphical
models of causal networks: the linear path models of Wright [49]. Wright’s models
relate scalar variables in a linear way through path coefficients, which are closely
related to correlation coefficients. Thus, the size of a path coefficient can be used as
a measure of causal power. Moreover, the coefficients for sub-paths can easily be
combined to calculate the coefficient for a longer directed path.

The earliest explicit proposal for a causal power measure was that of Good [16].
Good did not restrict its application to any particular class of models. He offered an
additional statistic, besides whatever calculations were required to implement the
model itself, and also a method for combining the statistics of sub-paths to calcu-
late the causal power of a longer directed path. His measure seems to be inspired
by calculations of conductivity and impedance in electrical circuits (although it also
has some similarity to information-theoretic measures). While interesting, Good’s
measure can lead to some very strange results when applied to longer causal paths.
As pointed out in [39], two different paths can result in two different end-to-end de-
pendencies, and yet applying Good’s combinatorial method will assess their causal
power as the same.

We shall confine ourselves to briefly describing the measure more recently pro-
posed by Patricia Cheng [3]. Cheng offered her measure as an improvement over
Rescorla and Wagner [36], and it was further developed by Glymour [15]. It serves
to illustrate the problems associated with all these rival measures.

10.4.1 Cheng’s Measure

Cheng begins with the ΔP measure of statistical relevance, mentioned in Sect. 10.2.
As she puts it, a “positive probabilistic contrast”

ΔPc = P(e|c)−P(e|¬c) > 0

indicates “candidate generative causation”. In this respect, Cheng echoes the work
of Suppes [45], who called this difference prima facie causation. c is only a prima
facie cause because the probabilistic contrast may actually be caused by a common
ancestor that raises the probability of c and e occurring together. Suppes’ theory goes
on to lay down conditions ruling such cases out. The continuing research program
on probabilistic causality is largely concerned with the further refinement of such

Probabilistically, the net effect of the intervention on the system remains the same; while graphi-
cally, the net result of intervention is to add all these nodes, not just the perfect intervention node.
So this maneuver retains only a fig-leaf of perfection, at the high cost of distracting complexity.
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conditions, which in the end have been subsumed by technical developments using
Bayesian networks to represent conditional independence (cf. [46]).

Like Suppes, Cheng needs to exercise such troublesome ancestors in order to
make her theory work. But she does so by laying down some very stringent require-
ments for the causal relationships permitted in her models. First, c itself must be
independent of these other parents. This implies either a limited causal structure
in which there are no causal paths between c and these parents, or that the effect
of these paths can be removed by fixing some background variables (which is not
possible in some graphs). Second, the co-variation between c and e must be indepen-
dent of the co-variation between e and any other parent. In other words, the effect
of c on e cannot be altered by the state of any other parent; there must be no causal
interaction between any parents of E.17

Given these restrictions, it is clear that the probabilistic contrast must be caused
by c. In other words, the occurrences of c must be “generating” the additional oc-
currences of e. Cheng now defines the causal power of c over e as the probability
that any given occurrence of c will generate e. This causal power of c is labelled pc,
leaving e implicit. Her basic insight is that ΔP is not a fair measure of pc. There is
a specific background rate at which e occurs even without c, namely P(e|¬c). This
means that we can only detect the effect of c on the remaining instances of E: by
how many background occurrences of ¬e are converted to e. Now, ¬e occurs with a
background frequency of 1−P(e|¬c); it is converted with a frequency of ΔP; and
therefore, the success rate of c must be the ratio of these two quantities. Formally,
she derives:

pc =
ΔPc

1−P(e|¬c)
. (10.3)

In contrast, a negative ΔP indicates “candidate preventative causation”, in which
c appears to prevent e from occurring. To analyse this, Cheng places the same strin-
gent restrictions on the parental relationships. She then defines the causal power of
c to prevent e in an analogous way, as the probability that any given occurrence
of c will prevent e. To distinguish prevention from generation, we write preventive
powers as pc. By similar reasoning, we can only detect the success rate of c against
the background rate of e, namely P(e|¬c). Thus:

pc =
−ΔPc

P(e|¬c)
. (10.4)

Cheng claims that these formulae are a significant improvement on previous the-
ories, such as that of Rescorla and Wagner [36], because (among other reasons) the
formula for pc provides the correct answer when e always occurs. If e always oc-
curs, then the value for pc is undefined, rather than a power of zero, as Rescorla and
Wagner had suggested. Cheng deems leaving pc unspecified to be correct because
we should be unable to statistically assess the candidate causes of a universal event.

17 She also insists that the causal power of c cannot be affected by the frequency of c, which for
Bayesian networks is an unnecessary stipulation, and that whenever c occurs it must be preceded
by some promoting cause, which is an unnecessary concession to determinism.
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Similarly, the value of pc is undefined when e never occurs. However, we do not see
this feature of her theory as a significant advantage or disadvantage. Rescorla and
Wagner might reply that no candidate cause could demonstrate any statistical power
over a universal event, and therefore in such cases zero is a reasonable statistical
assessment of causal power. In the absence of strong intuitions on this issue, there
are far more serious problems with both their measures!

10.4.2 Problems with Cheng’s Measure

The main problem with Cheng’s measure is that it has an extremely limited range of
application. It is only applicable to questions about causal relations between values,
as opposed to the variables themselves. Structurally, the restrictions upon parental
connections are very strong, and will not be met by many Bayesian networks. But
perhaps the most severe restriction is to the probability distributions: her blanket ban
on any causal interactions between parent variables. These restrictions are necessary
to make her derivations of (10.3) and (10.4) work, but as Glymour [15] has shown,
it limits Cheng’s theory to linear and noisy-OR Bayesian networks.

One notable consequence is that Cheng’s causal power necessarily exhibits a
form of transitivity: if c causes d causes e, then c must cause e. This follows from
her model restrictions and power measure. But the same is true of all the other
rival measures. For Wright, it follows from the use of linear models and path co-
efficients. For Good, it follows not from any model restrictions, but simply from
the additivity of electrical – or causal – resistance. Yet any account of causal power
that entails transitivity is misleading, since causation in general is not transitive –
a fact which is reflected in other types of Bayesian network. Take, for example,
Richard Neapolitan’s case of finesteride [29]. Finesteride reduces testosterone lev-
els; lowered testosterone levels can lead to erectile dysfunction. However, finesteride
fails to reduce testosterone levels sufficiently to cause erectile dysfunction.18 Such
threshold effects do not occur in linear or noisy-OR networks, but they are common
elsewhere.

10.4.3 Desiderata for Causal Power

Examining these rival measures suggests a number of principles that an ideal causal
power measure would uphold:

1. The measure should be applicable to all kinds of Bayesian network.

18 This result was reported in at least one scientific study. Whether or not it is true generally,
the point is that it could be true, and provides a neat illustration. Incidentally, this case does not
appear in Neapolitan [30] because the publisher thought the example too challenging for its delicate
readership!
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2. The theory should generalize over linear path models. Thus, they should report
causal powers that are directly comparable to the correlations in Wright’s models
generated by causal paths.

3. The measure should not entail transitivity – simply because causation is not, in
general, transitive. Of course, the measure needs to reflect transitivity when it
appears.

4. The measure should be compatible with intervention. It should support the fun-
damental idea that interventions test causal power, and it should be able to assess
the power of setting a variable to a particular value.

5. The measure should have an information-theoretic interpretation. Causality gives
rise to probabilistic relationships, which should lead to a reasonable interpreta-
tion under Shannon’s theory of information.

Prior measures, such as Cheng’s, fulfill some of these requirements, but none of
them successfully fulfill them all.

10.5 Causal Information

Now we present our solution to the problem of measuring causal power, which
satisfies our requirements above.19 We assume that we are given a causal Bayesian
network; the problem is to state the causal power of one variable, C, over another
variable, E, which is implied by that network.

10.5.1 Background Conditions and Active Paths

10.5.1.1 Background Conditions: ϕh

We may wish to ask causal questions in the context of specific background con-
ditions. We suppose that such conditions can be specified by identifying a set of
network variables, Φ , whose values are given, Φ = ϕh. Thus, all the probabilities
discussed in the following sections will implicitly be conditional probabilities of
the form P(·|ϕh), but for brevity we will omit the condition ϕh in our formulae for
causal power.

If we simply wanted information about E, then the usual procedure would be to
condition upon all our available knowledge, say Ψ = ψg, and the network would
provide the most informative probability distribution over E. We could then ask
what additional information would be provided in these circumstances by also con-
ditioning upon C. However, when asking causal questions, it is not always appropri-
ate to condition upon ψg. There are two general reasons for this. First, we may be
interested in understanding causal processes by examining possible scenarios other

19 Note that causal information was first introduced by Hope and Korb [19].



250 K.B. Korb et al.

than our current situation. These scenarios may be counterfactual, such as the causal
process that would have existed between C and E if some known antecedent condi-
tion had been different. They may be past scenarios, such as the causal process that
did exist between C and E before some known condition resulted from this process
(such as E = ek). Or they may be future scenarios, such as the causal process that
will exist if some condition comes to pass. The second general reason is more sub-
tle: we are only asking about the causal influence of C on E, not the information
that C provides about E. Hence, we may need to select our background conditions
carefully, so that only causal paths are “active”, as we shall now explain.

10.5.1.2 Causal Paths

Consider the graph shown in Fig. 10.5. This shows the same relationships we dis-
cussed earlier between exercise at 40, blood pressure at 50, and heart attack by 60.
But another variable has been added: whether or not a patient is referred by their
doctor for an echocardiogram (a scan of their heart) by the time they are 60 years
old. We suppose that two of the original variables causally influence the probability
of such a referral. A patient is quite likely to be referred if they exhibit high blood
pressure at 50, certain to be referred after they have a heart attack and survive, and
will never be referred without either of those factors (in our simplified example).

Now, any causal path from C to E is mono-directional, with all the arcs along the
path pointing from C to E. Here there are two causal paths from Exercise to Heart
Attack: the direct path Exercise → Heart Attack, and the indirect path Exercise →
Blood Pressure → Heart Attack. Causal paths are inactive if we condition upon any
of their variables. For example, how much do variations in exercise routine affect
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High 20.0
60.0
20.0

Medium
Low

Blood_Pressure_at_50
High 22.0

35.8
64.2

46.0
32.0

Medium
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Yes
No

Heart_Attack_by_60
Fatal 13.9

27.8
58.2

Nonfatal
None

Fig. 10.5 A four variable Bayesian network linking exercise, blood pressure, heart attacks, and
echocardiograms
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heart attack outcomes? In posing this question, it would obviously be a mistake
to stipulate that only patients with the same exercise routine should be considered
(conditioning upon one particular value for this variable). If no variation in exercise
routine is permitted, then heart attacks obviously cannot be affected by any such
variation! Similarly, we cannot condition upon a particular heart attack outcome.
A less obvious mistake would be to stipulate that only patients with the same blood
pressure should be considered (perhaps with the idea of removing the influence of
a confusing background variable). The problem is that some of the causal influence
of Exercise is exerted precisely by changing Blood Pressure (a possibility which is
made clear by presenting the system as a causal Bayesian network). So fixing Blood
Pressure makes it impossible to detect such indirect causal influence. In general,
if we want to include the causal power of C on E via any particular path, then we
had better ensure that this path is active, by not conditioning upon C, E, or any
intermediate variable on this path.

10.5.1.3 Common Effect Paths

Now we turn to non-causal but informative paths from C to E: they include at
least one arc that does not point from C to E. Consider in particular those paths
that begin with an arc “forwards” out of C. Since they reverse direction at some
point, such paths must include at least one “common effect” structure, such as
Blood Pressure→Echocardiogram←Heart Attack. Common effect paths have this
peculiarity: they are active only if we know something about the common effect,
here Echocardiogram. For example, suppose we learn that a patient has received
an echocardiogram. This increases the probability that they had high blood pres-
sure at 50, since high blood pressure would explain why they were referred for this
scan. But it also increases the probability that they had a non-fatal heart attack, since
this would also explain the referral. If we now learn that the patient had low blood
pressure at 50, then we can infer that they certainly had a non-fatal heart attack, as
illustrated in Fig. 10.6. This indirect connection between blood pressure and heart
attack is not causal (since their low blood pressure didn’t cause their heart attack),
but it is nonetheless very informative. In contrast, if we do not know whether the
patient has received an echocardiogram, then this indirect inference is not possible.

Suppose we now ask a causal question: “How much did this patient’s blood pres-
sure causally influence their chances of a heart attack?” There is a direct causal link
between Blood Pressure and Heart Attack, and in particular, low blood pressure
tends to prevent heart attacks. The graph will show this reduced probability – pro-
vided that we do not mistakenly include the fact that the patient received an echocar-
diogram! If we include this fact, then we activate the common cause path, and low
blood pressure increases the probability of a heart attack (which does not accurately
reflect the causal story). In general, if we want to know only about the causal influ-
ence of C on E, then we had better make sure that all non-causal paths are inactive.
So to measure causal power, we make this stipulation: for each non-causal path be-
tween C and E that begins with an arc forwards out of C, the background conditions,



252 K.B. Korb et al.

Echocardiogram

Exercise_at_40
9.84
73.8
16.4

100
0

High
Medium
Low

Yes
No

0
100

0

0
0

100

High
Medium
Low

Heart_Attack_by_60
Fatal
Nonfatal
None

Blood_Pressure_at_50

Fig. 10.6 Given an echocardiogram, discovering low blood pressure proves that the patient had a
non-fatal heart attack

ϕh, must deactivate this path. If necessary, this should be achieved by excluding a
common effect variable on that path, and any descendants of this variable. Any such
alteration to ϕh will ensure that the path is inactive (without deactivating any causal
path).

This means that under our measure, causal power is not defined under back-
ground conditions that include such common effects or their descendants. Since our
knowledge of the system, ψg, may include such variables, this appears to be a sig-
nificant restriction. However, such variables are always causal consequences of the
variables in the causal process. Therefore, there are good independent reasons for
excluding such variables from ϕh. If we include them, then we are asking about re-
stricted aspects of the causal process (given the restriction that it led to these specific
results, even though these results played no role in the causal process). If we exclude
them, then we are asking about the entire causal process (given only causally sig-
nificant antecedents, and not pre-supposing any specific results). For example, the
preceding question was a retrospective one, concerning the causal process that pre-
viously existed between the patient’s blood pressure and their chances of a heart
attack. Therefore, it was a mistake to include information about their echocardio-
gram, simply because this was a later result of the causal process.

10.5.1.4 Common Cause Paths

Now consider those non-causal paths that begin with an arc “backwards” out of C.
To reverse direction at some point, such paths must include at least one “com-
mon cause” structure, such as Blood Pressure ← Exercise → Heart Attack. Com-
mon cause paths are active only if we do not know the value of the common cause
variable, here Exercise. For example, suppose that a patient has low blood pressure.
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This lowers the probability that they will have a heart attack, for two distinct reasons,
as explained in Sect. 10.3.3. First, low blood pressure has a direct causal influence
on heart attack. Second, we can infer that if a patient has low blood pressure, then
they are more likely to do a lot of exercise. Since exercise also directly prevents
heart attack, there will be an additional correlation between low blood pressure and
low risk of heart attack. This indirect connection is not causal (since their low blood
pressure didn’t cause them to exercise), but it is nonetheless informative. In con-
trast, if we already know the patient’s exercise regime, then this indirect inference is
not possible. The only remaining source of probabilistic dependence between blood
pressure and heart attack will be the direct causal connection.

One way to ensure that such common cause paths are inactive is to make another
stipulation about ϕh: for each path between C and E that begins with an arc back-
wards out of C, the background conditions must deactivate this path. If necessary,
this should be achieved by including the first common effect variable on that path,
say B. (Alternatively, we could include the first parent of C on the path.) Any such
alteration to ϕh will ensure that the path is inactive (without deactivating any causal
path).

But there are two serious problems with this suggestion. First, any alteration to
ϕh adds a variable B whose value is not known. So rather than one conditioning
value B = bi and one corresponding dependency between C and E, there is a set of
possible values and a set of corresponding dependencies. For example, conditioning
upon each type of exercise routine may produce a different dependency between
Blood Pressure and Heart Attack. The results of conditioning upon high exercise
are depicted in Fig. 10.7. It is not obvious how such a set should be combined to
form some reasonable overall measure of how much C affects E, c affects e, etc.

Second, each of these conditions B = bi only captures the extent to which C
can affect E when B is fixed. Thus, a straightforward average of these individual
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Fig. 10.7 Trying to isolate the effect of blood pressure on heart attack by conditioning upon
exercise
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dependencies (weighted according to P(bi)) is clearly incorrect as an overall mea-
sure of how much C affects E. It fails to capture the dependency between C and
E that results from variation in B. For example, conditioning upon each type of
exercise routine may greatly reduce the variation in Blood Pressure: high levels
of exercise are strongly associated with low blood pressure, etc. Therefore, within
each exercise category, the apparent effect of Blood Pressure on Heart Attack may
be low. Yet overall, Exercise may vary greatly and strongly affect Blood Pressure,
which varies greatly and strongly affects Heart Attack. So just measuring the ef-
fect of blood pressure on heart attacks within each exercise category (and taking a
weighted average) can grossly underestimate the effect of blood pressure in general.

Given these difficulties, rather than inactivating common cause paths by adding
background conditions, we have chosen an alternative solution: hypothetical inter-
ventions on C.

10.5.2 Hypothetical Interventions: P*(C)

10.5.2.1 Why Use P*(C)?

Intervention upon C provides a straightforward way to distinguish between paths to
E that begin backwards (which must be non-causal) and paths to E that begin for-
wards (which may be causal). For simplicity, we shall suppose that the intervention
is intended, independent, targeted, overwhelming and stochastic (four out of five
perfections!). So we augment the model M to M∗, with just one new intervention
node and arc IC →C, and just one new elementary conditional probability function
P∗(C|πC, IC) over C, instead of the original function P(C|πC). Since the intervention
is overwhelming, when IC = Yes then C is no longer directly dependent upon its old
parents, and so discovering that C = ci no longer allows any direct inference about
the distribution of these parents. Thus, all inferential paths that begin backwards
from C have been cut. Since the intervention is stochastic, C still varies, and there-
fore dependency can still be transmitted by any path that begins forwards from C.
For brevity, we will assume that IC = Yes has been added to ϕh whenever we refer
to P∗(·).

These interventions on C play the role of a simulated randomized experiment,
in which the experimenter randomly assigns values to C that are independent of
other variables, in order to detect and measure the causal influence of C. This causal
discovery strategy is common in Science, and as noted earlier, is the gold standard
for determining causal influence. But it often cannot be employed in this ideal-
ized form, due to practical and moral constraints. We stress, then, that our interven-
tions are strictly hypothetical; we are not proposing a practical test of the causal
power of C (or the truth of the causal model M). We are only proposing a mea-
sure of the causal power implied by M. Assuming M is true, it implies that such an
intervention would have the effect modeled by M∗. We can carry out such idealized
thought experiments or computer simulations unfettered by the usual practical and
moral constraints. For example, to measure the causal power of Blood Pressure over
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Heart Attack, imagine that an experimenter assigns some blood pressure at random
to each patient, and then administers drugs to achieve this particular blood pressure.
Also, they exclude any information about echocardiograms. Any resulting depen-
dency between Blood Pressure and Heart Attack must be due to their direct causal
connection.

Given a hypothetical intervention upon C, it is natural to ask how much this inter-
vention has affected E. To answer this question, we could compare the old distribu-
tion P(E) to the new distribution P∗(E). We could also apply information-theoretic
measures to provide a summary of the effect of intervening, such as computing the
Kullback–Leibler distance between the two distributions. However, this is not the
question we are addressing! The aim of experimentally randomizing Blood Pres-
sure is not simply to see how much the marginal distribution of Heart Attack has
changed (e.g., to see how many additional heart attacks have been created by the ex-
perimenter!). The aim is to see how much the contrasting values of Blood Pressure
affect Heart Attack in this experimental situation. In short, the aim is not to measure
the power of the experimental intervention, but to measure the power of C given the
intervention. Nevertheless, the results of such exploratory interventions can subse-
quently be used to guide utilitarian ones. For example, the randomization of Blood
Pressure will include some patients whose blood pressure is low. Their distribution
of heart attacks shows what setting low blood pressure can do; so we may later seek
the same distribution in a perfect and utilitarian fashion, by setting a nice low blood
pressure for every patient.

But what intervention distribution should be imposed upon C? There are three
alternative choices that strike us as reasonable, each serving a slightly different
purpose.

10.5.2.2 Original P*(C)

Experimental interventions are open to a generic objection: if the experimental sys-
tem, modeled by M∗, differs from the real system, modeled by M, then we are not
measuring reality – we are measuring an artificial, counterfactual construct. So why
should we be interested in the causal power of C over E in M∗?

The correct reply is that in some important respects the differences between M
and M∗ are kept to a minimum. M∗ is not merely a counterfactual model that differs
extensively and arbitrarily from reality. The experimenter tries to preserve in M∗ the
key features of M that are under investigation. In our simulated experiment, this is
particularly easy. M∗ is identical to M in most ways, regardless of the intervention
distribution chosen. In particular, all the causal paths between C and E are preserved,
and the elementary conditional probability functions for every variable except C
are preserved. Thus, in important respects, the quantitative power of C over E is
preserved. The similarity between M and M∗ means that the causal power of C over
E in M∗ genuinely reflects the original situation in M.

In accordance with this principle, one plausible choice for the intervention dis-
tribution on C is to copy the original distribution over C. For example, if high blood
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pressure is rare in the general population, then it can be equally rare in the inter-
vention distribution. To be precise, we can copy the original conditional probability
function P(C|πC). If the background conditions, ϕh, include some of the parents of
C, then these parental conditions entail the distribution P(C|πC ∩ϕh). Now, for each
value ci, the same probability can be assigned in the intervention probability func-
tion P∗(C). Once we include the rest of the background conditions, the distribution
P∗(C|ϕh) will also be identical to the original distribution P(C|ϕh). Note, however,
that P∗(C) does not incorporate the same intricate dependence upon πC, so any fur-
ther information about the value of C will not tell us anything further about the
values of its parents.

The main attraction of using the original distribution over C is that it seems to
minimize the difference between M and M∗. Thus, it promises a measure of causal
power that is closest to the effect of C on E in the original model. For example, we
can ask, “Given the variation in blood pressure among the general population, how
much is this variable affecting heart attack outcomes?” We could answer this ques-
tion by using the original distribution over Blood Pressure, and measuring the causal
power of this variable over the Heart Attack variable, according to the formula given
below.

There are two notable features of this answer. First, we are able to give a single
variable-to-variable answer, rather than a large table of all possible blood pressures
and the corresponding probabilities for all possible heart attack outcomes. Second,
we are able to measure the overall power the variable is actually exerting within the
given population. For example, suppose we are considering some subpopulation of
Sweden, where most people do nothing but eat pickled herring and go cross-country
skiing, and consequently most people have admirably low blood pressure (we shall
refer to them as “Swedish” for short). Nevertheless, heart attack outcomes still vary,
for genetic and other reasons. There is a valid sense in which the blood pressure
variable will not be exerting much influence over heart attack outcomes within this
population, simply because there is not much variation in the former. Thus, dis-
covering a Swedish person’s blood pressure seldom yields any useful information
about their heart attack risk. We can only measure the lack of impact of Swedish
blood pressure if we model the Swedish population distribution.

We should note, however, that even if we impose the original distribution upon
C, the resulting distribution upon E may still be considerably different in M∗ than it
was in M. This is because (as intended) C is no longer dependent on its parents. Also,
there are other valid senses in which Swedish blood pressure may still be exerting
a strong influence. This is evident if we switch from variables to their values: if a
Swedish person has high blood pressure, then this will still make a big difference
to their chances of having a heart attack. Alternatively, we could contemplate a
counterfactual distribution on Swedish blood pressure.

10.5.2.3 Uniform P*(C)

We may not always wish to measure causal power relative to the original distribution
over C. The connection between Swedish blood pressure and heart attack outcomes
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is concealed by their universally healthy lifestyle. So one way to bring out this latent
feature of M is to consider a different intervention distribution over C, even though
it is not the naturally occurring distribution in M. For example, an experimental
investigation into the power of Swedish blood pressure would not randomize its
subjects so that they all fell into the low blood pressure group.

One plausible choice is a uniform distribution on C, so that there are equal num-
bers of subjects in every blood pressure group. In comparing the effects of different
blood pressures, this provides a “level playing field” in which the results are not
biased by different frequencies for these blood pressures. Similarly, in comparing
the influence of variables, it provides a standard distribution for comparison.

To be precise, we would impose some intervention distribution P∗(C) such that
after we take into account the background conditions, the resulting distribution
P∗(C|ϕh) is uniform. That is, P∗(ci|ϕh) = 1

|C| for each ci. We note that to achieve
this, P∗(C) itself will not always be uniform.

10.5.2.4 Maximizing P*(C)

It is also reasonable to ask about the maximum impact that C could potentially have
on E, according to M. To be precise, we can search the space of possible intervention
distributions P∗(C), to find those that maximize our causal power measure given the
background conditions. This will not always be the uniform distribution on C. For
example, suppose that there are only three blood pressure categories, and while both
low and medium blood pressures result in a similar risk of heart attack, high blood
pressure results in a much higher risk. Then the maximum probabilistic dependence
between Blood Pressure and Heart Attack will result from a distribution in which
nearly 50% of subjects have high blood pressure, rather than 33%.

These three possible intervention distributions seem to be complementary, in that
they attempt to measure three slightly different forms of causal power of C over E:
the original causal power, the standardized causal power, and the maximum causal
power. In the formulae that follow we leave open the choice of intervention distri-
bution, which is simply denoted P∗(C). But to illustrate their application, we can
imagine that a uniform distribution has been imposed upon Blood Pressure to mea-
sure its causal power over Heart Attack, as illustrated in Fig. 10.8.

10.5.3 Formulae: CI

10.5.3.1 Two Values: c and e

We begin with the simplest formula, and work our way towards the most compli-
cated. What is the causal power of one value, c, to affect another value, e?
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Exercise_at_40
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High 20.0
60.0
20.0
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Low

Blood_Pressure_at_50
High 33.3

42.1
57.9

33.3
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Medium
Low

Yes
No

Heart_Attack_by_60
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29.5
55.8

Nonfatal
None

Intervention

0
0

Yes
No

Fig. 10.8 A uniform intervention on blood pressure, to measure its causal power

CI(c,e) = P∗(e|c) log
P∗(e|c)
P∗(e)

. (10.5)

In information theory, this formula gives the information about e that is provided
by the discovery that C = c (compared to knowing the distribution P∗(C)). Given
that only causal paths are active, we suggest that this formula can also serve as
a good measure of the causal power of C = c to affect the probability of E = e
(compared to the distribution P∗(C)). For example, suppose we observe that a pa-
tient has high blood pressure, c. This increases their probability of having a fatal
heart attack, e, from the average probability P∗(e) = 0.147 to P∗(e|c) = 0.230. So
P∗(e|c)/P∗(e) = 1.565. This is converted to a natural logarithm, which takes the
positive value 0.448. It is multiplied by the probability of having a heart attack given
high blood pressure, 0.230. So the causal power of high blood pressure to promote
heart attack is 0.103.

Value-to-value questions such as “If I have high blood pressure, then how much
does this affect my risk of having a heart attack?” are frequently asked, and may ap-
pear straightforward. But this is deceptive, since (as we noted in Sect. 10.2) there
are many plausible ways to measure the increased probability of e that results
from conditioning upon c. It is worth comparing our causal information measure to
the measures of statistical relevance canvassed there. As a comparison probability,
causal information uses the marginal probability P∗(e) rather than the comple-
mentary probability P∗(e|¬c). This is similar to the standard formula for statisti-
cal relevance used in Philosophy (SR), rather than the standard formula used in
Psychology (ΔP). Causal information initially compares these two probabilities as
a ratio rather than a difference, thus measuring the proportional change (like the
Bayesian updating factor, BR) rather than the absolute change (like SR). This pro-
portion is converted to a logarithm, which may seem an odd way of re-scaling the
change, but it is the usual format in information measures, since it facilitates ap-
propriate averaging. This logarithm is then weighted by the absolute probability
P∗(e|c), and therefore the final number is actually more similar to the absolute



10 Information-Theoretic Causal Power 259

change in probability (SR = 0.083) than to the proportional change in probability
(BR = 1.565). The CI(c,e) measure is positive for promoting causes and negative
for preventative causes, just like SR and ΔP.

Note that in this formula the probability of high blood pressure, P∗(c), does not
feature as a weighting factor. C = c is treated as a given, as in the example question
“If I have high blood pressure, . . . ”, so we set P∗(c) = 1.

10.5.3.2 Various Causes: C and e

What is the causal power of one variable, C, to affect a particular value, e?

CI(C,e) = ∑
c∈C

P∗(c)P∗(e|c) log
P∗(e|c)
P∗(e)

. (10.6)

In information theory, this formula gives the expected information about e that
will be provided by discovering the value of C, whatever that turns out to be (com-
pared to knowing the distribution P∗(C)). The difference between this and (10.5) is
that the value of C is no longer treated as a given. Instead, we take the information
(or power) from each individual value ci, and weight this by the probability P∗(ci)
to calculate the expected value. We suggest that this formula can also serve as a
good measure of the causal power of C to affect the probability of E = e. For ex-
ample, “How much does variation in blood pressure affect the risk of having a heart
attack?” appears to be a variable-to-value question.

Note that some of the individual figures for causal power will be positive, and
other figures will be negative. If we took a weighted average of the absolute magni-
tudes, then this would be the expected magnitude of the causal power exerted when
C takes a specific value. However, the information-theoretic formula given above
does not use absolute magnitudes, and the negative individual powers will partially
offset the positive ones. Therefore, the magnitude of CI(C,e) should not be directly
compared to the magnitude of CI(c,e). The CI(C,e) measure will always be positive,
provided that C has some effect, i.e., ∃i, j : P∗(e|ci) �= P∗(e|c j), and otherwise it
will be zero.

10.5.3.3 Various Effects: c and E

What is the causal power of one particular value, c, to affect a variable, E?

CI(c,E) = ∑
e∈E

P∗(e|c) log
P∗(e|c)
P∗(e)

. (10.7)

In information theory, this formula gives the total information about E that is
provided by the discovery that C = c (compared to knowing the distribution P∗(C)).
The difference between this and (10.5) is that we are interested in all the values of
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E, not just one e. So we take the information from c for each individual value ei, and
add them to calculate the total value. We suggest that this formula can also serve as
a good measure of the total causal power of c to affect the probability of E. For ex-
ample, “How much does having high blood pressure affect heart attack outcomes?”
is a value-to-variable question. Again, note that our information-theoretic formula
does not use absolute magnitudes, and the negative individual powers will partially
offset the positive ones. The CI(c,E) measure is equivalent to the Kullback–Leibler
divergence between P∗(E|c) and P∗(E).

10.5.3.4 Two Variables: C and E

What is the causal power of one variable, C, to affect another variable, E?

CI(C,E) = ∑
c∈C,e∈E

P∗(c)P∗(e|c) log
P∗(e|c)
P∗(e)

. (10.8)

In information theory, this formula gives the expected information about E that
will be provided by discovering the value of C, whatever that turns out to be. It uses
both the weighted average over the values of C and the sum over the values of E.
We suggest that this formula can also serve as a good measure of the total causal
power of C to affect the probability of E. For example, “How much does variation
in blood pressure affect heart attack outcomes?” is a variable-to-variable question.
Again, the negative individual powers will partially offset the positive ones, but the
CI(C,E) measure will always be positive, provided that C has some effect on E.

The number of alternative formulae illustrate that there are several related ques-
tions about the power of C over E. So it is important to disambiguate informal
queries such as “How much does blood pressure affect heart attacks?”

10.5.4 Mutual Information

This last equation can be transformed as follows:

CI(C,E) = ∑
c∈C,e∈E

P∗(c)P∗(e|c) log
P∗(e|c)
P∗(e)

(10.9a)

= ∑
c∈C,e∈E

P∗(c,e) log
P∗(e|c)
P∗(e)

(10.9b)

= ∑
c∈C,e∈E

P∗(c,e) log
P∗(c,e)

P∗(c)P∗(e)
(10.9c)

= MI(C,E). (10.9d)
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This shows that causal information is identical to the information-theoretic quan-
tity mutual information (MI), when applied to the two variables C and E, and
given the intervention upon C. The mutual information formula looks a little dif-
ferent. It compares the probability that c and e will occur together, P∗(c,e), to the
probability that they would occur together if the two variables were independent,
P∗(c)P∗(e). Thus, it measures the amount of dependency that exists between each
pair of variable values. The accumulated dependency for the two variables is ob-
tained by weighting these ratios according to the probability that this pair of values
will actually arise, P∗(c,e). In fact, the causal information formula does the same
job, but it has been expressed in an asymmetrical fashion to suit the asymmetry
between cause and effect.

By definition, mutual information is the expected amount of information that
one variable provides about another (or the loss of information that arises by falsely
assuming that they are independent).20 But, as above, it can also be interpreted as
the amount of dependency between them. Therefore, it would be a good measure of
causal power – except that some of this dependency can arise from non-causal links.
Causal information corrects this defect.

10.5.5 Entropy

Mutual information is also closely related to the entropy measure of randomness.
The information entropy on the variable X is defined as follows [6]:21

H(E) =−∑
e∈E

P(e) logP(e). (10.10)

Entropy is zero when P(xi) = 1 for some value xi, when there is no uncertainty
about the value of X . It is maximized when P(X) is uniform across all the possible
values of X , when uncertainty is highest.

Similarly, conditional entropy measures the randomness of one variable given
knowledge of another:

H(E|C) =−∑
c∈C
∑
e∈E

P(c,e) logP(c|e). (10.11)

Thus:

MI(C,E) = H(E)−H(E|C). (10.12)

20 From Shannon [41], the negative log of the probability of an event is the optimal code length
to describe that event. Hence, mutual information can also be interpreted as the expected excess
code length involved in recording the values of X and Y while wrongly assuming that they are
independent.
21 Entropy is defined subject to the common assumption that 0 log0 = 0, which is justified by
continuity arguments.
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This supports the interpretation of mutual information as the reduction in the
uncertainty of E due to the knowledge of C.

10.5.6 Relative Advantages

Causal information has some clear advantages over rival measures of causal power.

• Causal information is well-defined for all causal Bayesian networks. This in-
cludes all the restricted classes of network for which other measures were de-
signed: linear models, Cheng models and their extensions, and whatever models
Good had in mind. But it also includes classes of network for which these rival
measures are not well-defined: e.g., ones with interactive causes, intransitivity,
or multinomial (discrete) variables.

• Causal information is well-defined for a wider variety of questions. It relates any
causal variable or value (either observed or observable) to any effect variable or
value. It does so with a uniform approach, unlike Cheng’s measure (for example),
which uses a different formula for promoting and preventative causes.

• Causal information yields appropriate results in all the restricted classes of net-
work, where it mirrors the local properties. For example, in any network that
exhibits causal transitivity, C → D → E implies that E is dependent upon C. But
it follows immediately that CI(C,D) �= 0, CI(D,E) �= 0, and CI(C,E) �= 0. So
causal information itself exhibits causal transitivity, simply by accurately sum-
marizing the true amount of dependency. Similarly, in linear path models, causal
information is an increasing function of the magnitude of correlation. There-
fore, the fact that other measures are necessarily transitive (or have other local
properties built-in) offers no advantage, even when they are applied to their own
preferred class of network.

• Causal information yields appropriate results in the other classes of network,
where it does not impose inappropriate properties. For example, in any network
that exhibits causal intransitivity or interaction, causal information itself exhibits
intransitivity or interaction, for the reason specified above. It follows that causal
information can be applied uniformly, without making assumptions about the
local properties of the network. In contrast, even if the rival measures are well-
defined for these networks, they will exhibit inappropriate properties that do not
match the system. For example, Good’s measure always exhibits a certain form of
transitivity, but he does not restrict its application to models where this property
is present.

10.6 Conclusions

Causal information, our new measure of causal power, is theoretically well-founded.
Causal Bayesian networks provide a very general and powerful way to represent
complex stochastic systems. Hypothetical interventions, when properly modeled
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in causal Bayesian networks, provide a clear separation of causal from non-causal
paths. In mutual information, information theory provides an appropriate summary
measure for cumulative causal influence, which applies to all sorts of networks and
interventions, and can be tailored to specific purposes. The combination of the two,
interventions and mutual information, yields causal information.

The result is a measure of causal power that has much wider application than
previous accounts. Causal information can be applied to a wider variety of systems,
including those with non-linear probabilistic influences and intricate structural re-
lationships between variables. In such cases it still yields sensible results, unlike
the alternative measures put forward by Cheng [3], Glymour [15], and Good [16].
These alternative measures were designed for simpler cases, such as noisy-OR net-
works that exhibit causal transitivity. But in these cases, too, our measure still yields
appropriate results. And causal information is the only measure that is well-defined
for relating any combination of values and variables.

We look forward to applying causal information to theoretical problems in Phi-
losophy and AI. Causal information is also a promising measure for summarizing
explanatory information encoded in a Bayesian network and so offers new means
for simplifying the interpretation of complex Bayesian networks.
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Chapter 11
Information Flows in Complex Networks

João Barros

Abstract We give an overview on some of the main results in network informa-
tion theory, that is the branch of Shannon theory that deals with the fundamental
limits of information flow in complex networks. Particular emphasis is given to
the fact that classical information-theoretic arguments, which yield the capacity of
point-to-point channels, and standard network flow techniques, which are suitable
for transport networks, do not necessarily apply when it comes to describing the
behavior of information flows over complex networks that feature phenomena such
as interference, cooperation or feedback. Notwithstanding this observation, we pro-
vide examples of information flow problems where max-flow min-cut type of argu-
ments do prove useful for establishing performance bounds for complex networks
and illustrate how mixing different flows through network coding may hold the key
towards achieving those bounds.

11.1 Introduction

Since Shannon’s A Mathematical Theory of Communication [43] a lot has been ac-
complished in terms of characterizing and achieving the maximum achievable rate
(i.e., the capacity) at which two partners can communicate over a noisy channel
with arbitrarily small probability of error. Not only do we know how to compute
the capacity for many channel models that are relevant in practice, such as the ad-
ditive white Gaussian channel (solved already in [43]) and wireless fading channel
models [6], but feasible code constructions with performance close to the channel
capacity are readily available, for example Turbo Codes [5] and Low-Density Parity
Check (LDPC) codes [20, 32].
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Given the success of information theory in mastering point-to-point communi-
cations, one would be tempted to believe that a complete treatment of information
flows over networks with multiple communicating partners should not take more
than a small step. As it turns out, establishing the fundamental limits of communi-
cation over complex networks remains a formidable task, requiring a giant leap in
terms of conceptual tools and mathematical sophistication.

The goal of this chapter is to illuminate this state of affairs by providing an intro-
ductory overview of some of the main tools, results and challenges that character-
ize the general area of network information theory. Focusing on discrete memory-
less sources and channels, Sect. 11.2 establishes the notation and revisits Shannon’s
theorems for the point-to-point to problem. Section 11.3 then describes some of
the most well-known problems in network information theory, which include dis-
tributed source coding, multiple access communications, broadcast channels and re-
lay transmissions. The relationship between these problems and classical max-flow
min-cut analysis is addressed in Sect. 11.4, both when the information sources are
statistically independent and when they are correlated. Section 11.5 offers a simpli-
fied treatment of network coding as a technique that achieves the max-flow min-cut
bound in multicast networks. The impact of topology on network information flow
is highlighted in Sect. 11.6, which considers the max-flow min-cut capacity of var-
ious classes of random graphs. The chapter concludes in Sect. 11.6 with some final
remarks.

Because this chapter is intended for the general scientific public, it is self-
contained and aims mostly at providing intuition. The mathematically inclined
reader will find all the proofs and technical details in the many references provided
along the way.

11.2 Information-Theoretic Concepts

We start with a brief overview of some of the fundamental concepts of information
theory. This will allow us to establish some notation and set the stage for the main
results presented in subsequent sections. For a comprehensive introduction to the
fundamental concepts and methods of information theory we refer to the treatises
by Gallager [21], Cover and Thomas [13], and Yeung [48]. In [14] Csiszár and
Körner offer a panoply of mathematical tools for discrete memoryless sources and
channels.

11.2.1 The Point-to-Point Communications Problem

The foundations of information theory were laid by Claude E. Shannon in his 1948
paper entitled “A Mathematical Theory of Communication” [43]. In his own words:
the fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. If the message – for
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Fig. 11.2 Mathematical model of a communications system

example a letter from the alphabet, the gray level of a pixel or some physical quan-
tity measured by a sensor – is to be reproduced at a remote location with a certain
fidelity, some amount of information must be transmitted over a physical channel.
This observation is the crux of Shannon’s general model for point-to-point commu-
nication reproduced in Fig. 11.1. It consists of the following parts:

• The information source generates messages at a given rate according to some
random process.

• The transmitter observes this messages and forms a signal to be sent over the
channel.

• The channel is governed by a noise source which corrupts the original input
signal. This models the physical constraints of a communications system, e.g.,
thermal noise in electronic circuits or multipath fading in a wireless medium.

• The receiver takes the received signal, forms a reconstructed version of the orig-
inal message, and delivers the result to the destination.

Given the statistical properties of the information source and the noisy channel, the
goal of the communications engineer is to design the transmitter and the receiver
in a way that allows the sent information to reach its destination in a reliable way.
Information theory can help us achieve this goal by characterizing the fundamental
mechanisms behind communications systems and providing us with precise mathe-
matical conditions under which reliable communication is possible.

To give a more precise formulation of the point-to-point communications prob-
lem, we require rigorous definitions for each of its constituent parts.1 We assume
that the source and the channel are described by discrete-time random processes,
and we determine that the receiver and the transmitter agree on a common code,
specified by an encoder and decoder pair. The basic relationship between these en-
tities is illustrated in Fig. 11.2 and described rigorously in the following lines.

1 We point out that although in this chapter we are mostly concerned with discrete memory-
less sources and channels, many of the results presented here can be extended to account for
continuous-valued alphabets, as well as sources and channels with memory.
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Definition 11.1 (Source). A discrete memoryless source denoted U generates a se-
quence of independent and identically distributed (i.i.d.) messages, also referred to
as letters or symbols, from the alphabet U . The messages correspond to indepen-
dent drawings from the probability distribution2 pU (u). p(u).

Definition 11.2 (Channel). A discrete memoryless channel (X , p(y|x),Y ) is de-
scribed by an input alphabet X , an output alphabet Y and a conditional probability
distribution p(y|x), such that X and Y denote the channel input and the channel
output, respectively.

Definition 11.3 (Code). A code consists of:

1. An encoding function f : U → X N which maps a message u to a codeword xN

with N symbols.
2. A decoding function g : Y N → Û , which maps a block of N channel outputs yN

to a message û from yN the reconstruction alphabet Û . For simplicity, we assume
that Û = U , i.e., source and reconstruction alphabets are identical.

The rate of the code is given by R = (1/N) log2 |U | in bits per channel use, where
|U | denotes the size of the alphabet U .

To give a precise statement of the problem, we require one more definition:

Definition 11.4 (Reliable Communication). Given the rate R, reliable communi-
cation of the source U ∼ p(u) over the channel (X , p(y|x),Y ) is possible if there
exists a code xN(u) with rate R and with decoding function g(yN) such that, as
N → ∞,

PN = p{g(Y N) �= U}→ 0,

i.e., the source messages are reconstructed with arbitrarily small probability of er-
ror. If reliable communication is possible at rate R then R is an achievable rate.

The main goal of the problem is to give precise conditions for reliable commu-
nication based on single-letter information-theoretic quantities that depend only on
the given probability distributions and not on the block length N.

Remark 11.1. Notice that the classical information-theoretic formulation of the
point-to-point communications problem does not put any constraints neither on the
computational complexity nor on the delay of the encoding and decoding proce-
dures. In other words, the goal is to describe the fundamental limits of communica-
tions systems irrespective of their technological limitations.

2 In the sequel we follow the convention that subscripts of a probability distribution are dropped if
the subscript is the capitalized version of the argument, i.e., we simply write p(u) for the probability
distribution pU (u).
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11.2.2 Information-Theoretic Proof Techniques

The typical proofs in information theory are concerned with the existence of codes
with certain asymptotic properties. A theorem that confirms the existence of codes
for a class of achievable rates is often referred to as a direct result and the arguments
that lead to this result constitute the achievability proof. On the other hand, when
a theorem asserts that codes with certain properties do not exist, we speak of a
converse result and a converse proof. To prove a complete coding theorem [14] we
are required to provide both the achievability part and the converse proof.

One of the most important mathematical tools in information theory is the asymp-
totic equipartition property (AEP), which essentiality states that if we build suffi-
ciently large sequences of random symbols X drawn independently and identically
distributed according to some probability distribution p(x), then with high probably
the resulting sequences will belong to the so called typical set. Under the assump-
tion of arbitrarily large sequence length N, these typical sequences share several
fundamental properties: (a) the total probability of the typical set is arbitrarily close
to 1, (b) the probability of a typical sequence is about 2−NH(X) and (c) the num-
ber of strongly typical sequences is approximately 2NH(X). Here, H(X) denotes the
Shannon entropy of the random variable X given by

H(X) = −∑
x

p(x) log p(x),

where the summation is taken over the support of p(x) and the logarithm is taken to
base two.3 The generalization of the AEP for two random variables X and Y can be
obtained in a straightforward manner using the joint entropy

H(XY ) =−∑
x
∑
y

p(xy) log p(xy),

where the summation is once again carried out over the support of p(xy). For large
N, it follows that there exist around 2NH(XY ) jointly typical sequences xN and yN .

Conceptually, the entropy H(X) can be viewed as a measure of the average
amount of information contained in X or, equivalently, the amount of uncertainty
that subsists until the outcome of X is revealed. Other useful information-theoretic
measures include the conditional entropy of X given Y defined as

H(X |Y ) = H(XY )−H(Y ),

describing the amount of uncertainty that remains about X when Y is revealed, and
the mutual information

I(X ;Y ) = H(X)−H(X |Y ),

3 Unless otherwise specified, all logarithms in this thesis are taken to base two.
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which can be interpreted as the reduction in uncertainty about X when Y is given.
The relationship between the aforementioned information-theoretic quantities is
well explained in [48, Sect. 2.2].

Consider once again the formal statement of the point-to-point communications
problem in Sect. 11.2.1. In Shannon’s mathematical model a block of messages is
mapped to a sequence of channel input symbols, also called codeword. The set of
codewords builds the core of the code used by the transmitter and the receiver to
communicate reliably over the channel.

Since information theory is primarily concerned with the fundamental limits of
reliable communication, it is often useful to prove the existence of codes with cer-
tain properties without having to search for explicit code constructions. A simple
way to accomplish this task is to perform a random selection of codewords. Ran-
dom selection is often used in mathematics to prove the existence of mathematical
objects without actually constructing them. For example, if we want to prove that
a real-valued function h(n) takes a value less than c for some n in a given set S ,
then it suffices to introduce a uniform probability distribution on S and show that
the mean value of h(n) is less than c. When this technique is applied to prove the
existence of codes with certain properties, we speak of random coding. Based on
this simple idea, we can construct a random code for the system model shown in
Fig. 11.2 by drawing codewords XN at random XN according to the probability dis-
tribution ∏N

i=1 p(xi). Then, if we want to prove that there exists a code such that the
error probability goes to zero for N sufficiently large, it suffices to show that the
average of the probability of error taken over all possible random codebooks goes
to zero for N sufficiently large – in that case there exists at least one code whose
probability of error is below the average.

A different coding technique, which is particularly useful in information-
theoretic problems with multiple sources, consists of throwing sequences uN ∈U N

into a finite set of bins, such that the sequences that land in the same bin share a
common bin index. If each sequence is assigned a bin at random according to a
uniform distribution, then we refer to this procedure as random binning. By par-
titioning the set of sequences into equiprobable bins, we can rest assure that, as
long as the number of bins is much larger than the number of typical sequences, the
probability that there is more than one typical sequence in the same bin is very, very
small [13, pp. 410–411]. This in turn means that each typical sequence is uniquely
determined by its corresponding bin index. If side information is available and we
can distinguish between different typical sequences in the same bin – e.g., when
we are given a sequence wN that is jointly typical with uN – then we can decrease
the number of bins, or equivalently the number of bin indices, and increase the
efficiency of our coding scheme (see, e.g., [9] and [47]).

The large majority of converse proofs in network information theory uses Fano’s
inequality, which can be explained in very simple terms. Suppose that X is a ran-
dom variable and that X̂ is an estimate of X taking values in the same alphabet X .
Fano’s lemma gives a precise description of the relationship between the conditional
entropy H(X |X̂) and the probability of error Pe = p{X �= X̂}.
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Lemma 11.1 (Fano’s Inequality). Let X and X̂ be two random variables with the
same alphabet X . Then

H(X |X̂)≤ Hb(Pe)+Pe log(|X |−1),

where Hb(Pe) is the binary entropy function computed according to

Hb(Pe) =−Pe logPe − (1−Pe) log(1−Pe)

Unfortunately, this lemma, which is key towards proving Shannon’s channel cod-
ing theorem and computing the capacity region of the multiple access channel, has
proven to be insufficient for obtaining tight converse results for other seemingly
simple networks, such as the broadcast channel and the relay channel. The failure to
find powerful alternatives to Fano’s inequality is at the heart of why these problems,
discussed in the next section, have been open for more than two decades.

11.2.3 Shannon’s Coding Theorems

Having discussed some of the basic proof techniques in information theory, we
will turn to Shannon’s fundamental coding theorems. These results form the ba-
sis of classical information theory and are of great use in several information flow
problems.

The channel coding theorem gives a complete solution (achievability and con-
verse) for the point-to-point communications problem stated in Sect. 11.2.1. Ac-
cording to the problem statement, we use a code of rate R to transmit the messages
produced by source U over a discrete memoryless channel (X , p(y|x),Y ). If reli-
able communication is possible at rate R, i.e., the average error probability PN goes
to zero as the block length N goes to infinity, then we say the rate R is achievable.
As it turns out, one simple condition is sufficient to fully characterize the set of
achievable rates:

Theorem 11.1 (Channel Coding Theorem [48, Sect. 8.2]). A rate R is achievable
for a discrete memoryless channel p(y|x) if and only if R≤C, where C is the channel
capacity given by

C = max
p(x)

I(X ;Y ).

This remarkable result guarantees the existence of a code with arbitrarily small prob-
ability of error for all rates below the capacity of the channel. The latter equals the
maximum mutual information between channel input X and channel output Y , where
the maximization is carried out over all possible input probability distributions p(x).

There are several ways to prove the channel coding theorem and details can be
found, e.g., [13, Chap. 8] and [48, Chap. 8].
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When the channel is noiseless, i.e., Y = X , it may still be useful to encode the
messages produced by the source. In this case, the purpose of the code is not to com-
pensate for the impairments caused by the channel, but to achieve a more efficient
representation of the source information in terms of bits per message or equivalently
bits per source symbol – this procedure is called source coding or data compression.
The main idea is to consider only a subset B of all possible source sequences U N ,
and assign a different index i ∈ {1,2, . . . , |B|} to each of the sequences uN in B.
If the sequence produces a source sequence uN ∈ B, then the encoder outputs the
corresponding index i, otherwise i is set to some predefined constant. The decoder
receives the index i and outputs the corresponding sequence in B. The rate of the
resulting source code can be computed according to R = (1/N) log |B|. The fol-
lowing result gives the minimum rate R at which we can encode the data and still
guarantee that the messages can be perfectly reconstructed.

Theorem 11.2 (Source Coding Theorem [48, Sect. 4.2]). Let U be an information
source drawn i.i.d. ∼ p(u). For N sufficiently large, there exists a code with arbi-
trarily small probability of error, whose coding rate R is arbitrarily close to the
entropy H(U). Conversely, if R < H(U) the error probability goes to one, as N goes
to infinity.

A full proof can be found, e.g., in [48, Sect. 4.2]. The main idea behind the source
coding theorem can be stated in very simple terms: since for large N it can be shown
that any sequence produced by the source U belongs with high probability to the typ-
ical set A N

ε (U), we only need to index the approximately 2NH(U) typical sequences
to achieve arbitrarily small probability of error. Thus, setting B = A N

ε (U), we get
R ≈ H(U).

Alternatively, the theorem can be proved using a simple random binning argu-
ment: if we randomly assign each source sequence to one of a finite number of bins,
then as long as the number of bins is larger than 2NH(U) we know that the proba-
bility of finding more than one typical sequence in the same bin is very small [13,
pp. 410–411]. Since each typical sequence is mapped to a different bin index, arbi-
trarily small probability of error can be easily achieved by letting the decoder output
the typical sequence that corresponds to the received index.

11.3 Network Information Theory

The previous results help us characterize the fundamental limits of communication
between two users, i.e., one sender and one receiver. However, in many communica-
tions scenarios – for example, satellite broadcasting, cellular telephony, the internet
or wireless sensor networks – the information is sent by one or more transmitting
nodes to one or more receiving nodes over more or less intricate communication
networks. The interactions between the users of said networks introduce a whole
new range of fundamental communications aspects that are not present in the clas-
sical point-to-point problem, such as interference, user cooperation and feedback.
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Fig. 11.3 Joint encoding of correlated sources

The central goal of network information theory is to provide a thorough understand-
ing of these basic mechanisms, by characterizing the fundamental limits of complex
networks with multiple users.

11.3.1 Distributed Source Coding

Assume that two sources U1 and U2 drawn i.i.d. ∼ p(u1u2) are to be processed by a
joint encoder and transmitted to a common destination over two noiseless channels,
as shown in Fig. 11.3. In general, p(u1u2) �= p(u1)p(u2), such that the messages
produced by U1 and U2 at any given point in time are statistically dependent – we
refer to U1 and U2 as correlated sources. Since the channels do not introduce any
errors, we may ask the following question: at what rates R1 and R2 can we transmit
information generated by U1 and U2 with arbitrarily small probability of error? Not
surprisingly, since we have a common encoder and a common decoder, this problem
reduces to the classical point-to-point problem and the solution follows naturally
from Shannon’s source coding theorem: the messages can be perfectly reconstructed
at the receiver if and only if

R1 +R2 > H(U1U2),

i.e., the sum rate must be greater than the joint entropy of U1 and U2.
The problem becomes considerably more challenging if instead of a joint encoder

we have two separate encoders, as shown in Fig. 11.4. Here, each encoder observes
only the realizations of the one source it is assigned to and does not know the output
symbols of the other source. In this case, it is not immediately clear which encoding
rates guarantee perfect reconstruction at the receiver. If we encode U1 at rate R1 >
H(U1) and U2 at rate R2 > H(U2), then the source coding theorem guarantees once
again that arbitrarily small probability of error is possible. But, in this case, the sum
rate amounts to R1 +R2 > H(U1)+H(U2), which in general is greater than the joint
entropy H(U1U2).

In their landmark paper [44], Slepian and Wolf come to a surprising conclusion:
the sum rate required by two separate encoders is the same as that required by a
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Fig. 11.4 Separate encoding of correlated sources (Slepian–Wolf problem) The noiseless channels
between the encoders and the decoder are omitted
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Fig. 11.5 The Slepian–Wolf region of achievable rates for separate encoding of correlated sources

joint encoder, i.e., R1 + R2 > H(U1U2) is sufficient for perfect reconstruction to
be possible. In other words, there is no loss in overall compression efficiency due
to the fact that the encoders can only observe the realizations of the one source
they have been assigned to. However, it is important to point out that the decoder
does require a minimum amount of rate from each encoder, specifically the average
remaining uncertainty about the messages of one source given the messages of the
other source, i.e., H(U1|U2) and H(U2|U1). The region of achievable compression
rate pairs (R1,R2), shown in Fig. 11.5, is thus fully characterized by the following
theorem.

Theorem 11.3 (Slepian–Wolf Theorem, [44]). Let (U1U2) be two correlated
sources drawn i.i.d. ∼ p(u1u2). The compression rates (R1,R2) are achievable
if and only if

R1 ≥ H(U1|U2),
R2 ≥ H(U2|U1),

R1 +R2 ≥ H(U1U2).

The Slepian–Wolf theorem can be easily generalized to more than two sources
yielding the following result.
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Theorem 11.4 (Slepian–Wolf with many sources [13, p. 409]). Let U1U2 . . .UM
denote a set of correlated sources drawn i.i.d. ∼ p(u1u2 . . .uM). M p(u1u2 . . .uM)
The set of achievable rates is given by

R(S) > H(U(S)|U(Sc))

for all S⊆{1,2, . . . ,M}, where R(S) =∑i∈S Ri, Sc denotes the complement of S, and
U(S) = {Uj : j ∈ S}.

Proof. The proof goes along the lines of the case with two sources. Details can be
found in [13, Sect. 14.4].

11.3.2 Multiple Access Communications

In the previous problem, we assumed that the information generated by multiple
sources is transmitted over noiseless channels. If this data is to be communicated
over a common noisy channel to a single destination, we call this type of channel
a multiple access channel. The resulting information-theoretic problem, illustrated
in Fig. 11.6, takes into account not only the noise at the receiver, but also the in-
terference caused by different users communicating over a common channel – the
mathematical subtlety lies in allowing the channel output Y to depend on the channel
inputs X1 and X2 according to the conditional probability distribution p(y|x1x2).

The set of achievable rates at which the different encoders can transmit their data
reliably is called the capacity region of the multiple access channel.

Assuming independent messages, i.e., p(u1u2) = p(u1)p(u2), and independent
encoders, Ahlswede [2] and Liao [30] were independently able to prove the follow-
ing result which fully characterizes the set of achievable rates.

Theorem 11.5 (Multiple Access Channel [2, 30]). The capacity region of the dis-
crete multiple access channel is given by the convex hull of the set of points (R1,R2)
satisfying

R1 ≤ I(X1;Y |X2), (11.1)
R2 ≤ I(X2;Y |X1), (11.2)

R1 +R2 ≤ I(X1X2;Y ), (11.3)

for some joint distribution p(x1)p(x2).

Fig. 11.6 The multiple access channel
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Fig. 11.7 The capacity region of the multiple access channel

The boundaries of the capacity region, shown in Fig. 11.7, can be explained in a
very intuitive way. When encoder 1 views the signals sent by encoder 2 as noise,
its maximum achievable rate is given by R1 ≈ I(X1;Y ) – a direct consequence of
the channel coding theorem. Then, the decoder can estimate the sent codeword xN

1
and subtract it from the channel output sequence yN

1 , thus allowing encoder 2 to
achieve a maximum rate of R2 ≈ I(X2;Y |X1). This procedure, sometimes referred
to as successive cancellation [34], leads to the upper corner point of the capacity
region. The lower corner point corresponds to the symmetric case and a time-sharing
argument yields the remaining points in the segment between them.

It is also worth noting that conditions (11.1)–(11.3) can be easily generalized for
more than two sources. In this case, the capacity region is given by

R(S) ≤ I(X(S);Y |X(Sc))

for all S ⊆ {1,2, . . . ,M}, where R(S) = ∑i∈S Ri, Sc denotes the complement of S,
and X(S) = {Xj : j ∈ S} [13, Chap. 14.3].

11.3.3 Broadcast Channels

While in the multiple access scenario we have multiple sources and one destination,
in the broadcast case the information of one source is transmitted to multiple users.
Thus, the classical model for the broadcast channel (proposed by Cover in [11]),
has one input X and multiple outputs Yi, i = 1,2, . . . ,M, which are governed by the
conditional probability distribution p(y1y2 . . .yM|x). Applications that fall under this
system model include the downlink channel of a satellite or of a base station in a
mobile communications network. In the context of wireless sensor networks, it is
conceivable that a remote control center broadcasts messages to the sensor nodes on
the field in order to coordinate their transmissions or change their configurations.
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As in many other fundamental problems of network information theory, deter-
mining the capacity of the broadcast channel turns out to be a very difficult task.
Consequently, a complete characterization of the achievable rates is only known
for a few special cases, e.g., the physically degraded broadcast channel in which
p(y1y2|x) factors to p(y1|x)p(y2|y1) [13, Sect. 14.6] or, most recently, the multiple-
input multiple-output Gaussian broadcast channel [46]. For a survey on other inter-
esting results, we refer the reader to Cover’s survey [11].

11.3.4 Relay Channels

In wireless communications, fading of the signals transmitted due to multipath prop-
agation is one of the major impairments that a communications system has to deal
with. A natural way to deal with these impairments is by the use of diversity: re-
dundant signals are transmitted over essentially independent channels and can then
be combined at the receiver to average out distortion/noise effects induced by the
independent channels [38]. If two or more transmitters are allowed to exchange in-
formation and coordinate their transmissions, they can exploit the resulting spatial
diversity to improve the reliability and the efficiency of their communications. An
information-theoretic abstraction of this user cooperation problem is the so called
relay channel. At time i a relay node observes a noisy version YR(i) of the sym-
bol X(i) transmitted by the sender and forms a symbol XR(i), which depends on
all previously observed channel outputs YR(1), . . . ,YR(i−1). The receiver observes
the channel output Y (i), whose relationship with X(i), XR(i) and YR(i) is character-
ized by the conditional p(yyR|xxR). Once again, the capacity region is only known
in special cases (see, e.g., [13, Sect. 14.7] and [26]). Recently, several contributions
appeared, which connect the insights gained from the classical relay problem with
practical wireless communications, most notably the papers of Narula et al. [36],
Laneman et al. [27], Sendonaris et al. [41], and Dawy et al. [15].

11.3.5 The Two-Way Channel

The previous problems are instances of the general two-way channel proposed by
Shannon in [42]. In its original formulation, two users both with transmitting and re-
ceiving capability, send information to each other over a common channel, as shown
in Fig. 11.8. The channel outputs Y1 and Y2, depend on the channel input symbols X1
and X2 according to p(y1y2|x1x2) (see Fig. 11.8). Since encoder 1 can decide on the
next symbol X1 to send based on the received channel symbol Y2, the two-way chan-
nel introduces a new important aspect in the study of communications networks:
transmission feedback. Unfortunately, the capacity of the two-way channel is only
known in the Gaussian case, which decomposes into two independent channels [13,
p. 383].
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Fig. 11.8 The two-way channel

11.4 Max-Flow Min-Cut Bounds for Information Flows

Having described the basic building blocks of network information theory, it is only
natural to ask how we can characterize the information flows in a general network
with M users communicating over a channel, in which the dependencies between
channel outputs y1, . . . ,yM and channel inputs x1, . . . ,xM is governed by the con-
ditional probability distribution p(y1, . . . ,yM|x1, . . . ,xM). With that goal in mind, it
seems reasonable to exploit the rich body of network flow theory that successfully
describes the behavior of fluids in networks of pipes.

In the case where the network has one or more independent sources of infor-
mation but only one sink, it is known that routing offers an optimal solution for
transporting messages [28] – in this case the transmitted information does behave
like water in pipes and the capacity can be obtained by classical network flow meth-
ods. Specifically, the capacity of this network will then follow from the well-known
Ford–Fulkerson max-flow min-cut theorem [18], which asserts that the maximal
amount of a flow (provided by the network) is equal to the capacity of a minimal cut,
i.e., a nontrivial partition of the graph node set V into two parts such that the sum of
the capacities of the edges connecting the two parts (the cut capacity) is minimum.

Another problem in which network flow techniques have been found useful is
that of finding the maximum stable throughput in certain networks. In this prob-
lem, posed by Gupta and Kumar in [22], the goal is to determine the maximum
rate at which nodes can inject bits into a network, while keeping the system sta-
ble. The problem was reformulated by Peraki and Servetto as a multicommodity
flow problem, for which tight bounds were obtained using elementary counting
techniques [37].

For the general network information flow problem with multiple independent
sources, it is shown in [13] that max-flow min-cut arguments yield a set of necessary
conditions for reliable communication over a general network. More specifically, the
rates Ri j at which two arbitrary nodes i and j communicate across the network must
satisfy

∑
i∈S, j∈Sc

Ri j ≤ I(XS;YS|XSc), (11.4)

for all subsets S ⊆ {1,2, . . . ,M}, where S �= /0, XS = {x : x ∈ S}, YS = {y : y ∈ S} and
Sc denotes the complement of S. From an intuitive point of view, (11.4) basically
states that, for every possible cut in the network, the total rate at which information
flows across the cut cannot exceed the mutual information between the channel
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inputs on one side of the cut and the channel outputs on the other side. As intuitive
and satisfying this interpretation may seem, this upper bound is not tight except
for a few special cases of multiple-access, broadcast and relay channels. We are
thus forced to conclude that proving general coding theorems for information flow
in communication networks with interference, cooperation and feedback requires
more powerful mathematical tools.

Suppose now that the sources of information are not independent, in other
words their messages U1, . . . ,UM are drawn i.i.d. from a probability distribution
p(u1, . . . ,uM) that does not factorize into the product of its marginals. This assump-
tion is perfectly reasonable in certain scenarios for example when we consider the
correlated measurements collected by a large number of nodes sensing a physical
process within a confined area. Since this correlation may be exploited for efficient
encoding and decoding, determining necessary and sufficient conditions for reliable
communication with correlated sources requires a substantially different treatment.
For instance, the max-flow min-cut argument of (11.4) is only valid for independent
sources and cannot be applied here.

Motivated by a sensor networking application, in [4] Barros and Servetto
formulated and solved a general network information flow problem with corre-
lated sources. The network is modeled as the complete graph on M + 1 nodes.
For each (vi,v j) ∈ E (0 ≤ i, j ≤ M), there is a discrete memoryless channel
(Xi j, pi j(y|x),Yi j), with capacity Ci j = maxpi j(x) I(Xi j;Yi j).4 At each node vi ∈ V ,
a random variable Ui is observed (i = 0 . . .M), drawn iid from a known joint distri-
bution p(U0U1 . . .UM). Node v0 is the decoder – the question in this problem is to
find conditions under which U1 . . .UM can be reproduced reliably at v0. The answer
is provided by the following theorem.

Theorem 11.6. Let S denote a non-empty subset of node indices that does not con-
tain node 0: S ⊆ {0 . . .M}, S �= /0, 0 ∈ Sc. Then, it is possible to communicate
U1 . . .UM reliably to v0 if and only if, for all S as above,

H(US|USc) < ∑
i∈S, j∈Sc

Ci j. (11.5)

Notwithstanding the inadequacy of network flow methods for general networks with
interference, this result shows that in networks of independent channels the proper-
ties of Shannon information are exactly identical to those of water in pipes – here
information is a flow. It follows also that, as in the point-to-point problem, separating
source coding from channel coding (and, in this case, routing) is an optimal coding
strategy, and thus there is nothing to lose from a layered architecture, provided that
there is only one sink and interference is mitigated by partitioning the channel into
independent sub-channels. The assumption of independence among sub-channels is
crucial, because well-known counterexamples hold without it [12].

4 Note that Ci j could potentially be zero, thus assuming a complete graph does not mean necessarily
that any node can send messages to any other node in one hop.
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11.5 Mixing Information Flows with Network Coding

The previous results show that when the network problem under consideration
features only one sink, routing the messages along adequate paths is sufficient to
achieve the max-flow min-cut bound for information flows, irrespective of whether
the sources are independent or correlated. In general multicast networks, in which
a single source broadcasts a number of messages to a set of sinks, this is no longer
true. In [3] it is shown that mixing different information flows through coding opera-
tions carried out by intermediate nodes (i.e., network coding) is key towards achiev-
ing the max-flow/min-cut bound of the network. It turns out that if k messages are
to be sent then the minimum cut between the source and each sink must be of size
at least k.

The intuition behind this result is well illustrated by the butterfly network shown
in Fig. 11.9, where each edge is assumed to have unitary capacity. If node 1 wishes
to send a multicast flow to sinks 6 and 7 at the max-flow min-cut bound, which in
this case is 2, the only way to overcome the bottleneck between nodes 4 and 5 is for
node 4 to combine the incoming symbols through an XOR operation. Sinks 6 and 7
can then use the symbols they receive directly from nodes 2 and 3, respectively, to
revert this XOR operation and thus reconstruct the desired multicast flow.

A converse proof for this problem, known as the network information flow
problem, was provided by [7], whereas linear network codes were proposed and
discussed in [29] and [25]. Since then, a rich body of work has emerged on the

Fig. 11.9 Canonical network
coding example
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benefits of network coding for various scenarios. In particular, Random Linear Net-
work Coding provides a fully distributed methodology for performing network cod-
ing [24], whereby each node in the network selects independently and randomly a
set of coefficients and uses them to form linear combinations of the data symbols (or
packets) it receives. These linear combinations are then sent over the outgoing links
until the receivers are able to decode the original data using Gaussian elimination. It
was shown that if the coefficients are chosen at random from a large enough field, it
is very likely that the transfer matrix for the network can be inverted, thus allowing
the receivers to revert the linear operations performed throughout the network and
recover the original information. In [31], RLNC is studied from the point of view
of asynchronous packet networks and it is shown that RLNC is capacity-achieving
even on lossy packet networks. The benefits of RLNC in wireless environments
with rare and limited connectivity, either due to mobility or battery scarcity are
highlighted in [19].

11.6 Capacity of Complex Networks

When it comes to capacity not all networks are equal. Intuitively, different topolo-
gies have different cut sets and it is therefore reasonable to assume that the behavior
of information flows in complex networks is deeply influenced by the actual net-
work configuration. A natural approach to gain some understanding on the impact
of topology on information flow is to focus on random graph models that are rele-
vant in practice.

Among the most common instances used in communications research, we find
Erdös–Rényi graphs, in which edges are drawn randomly with probability p for a
fixed set of vertices, and random geometric graphs, in which the nodes in the net-
work are positioned randomly in a prescribed area and any two nodes are connected
if and only if they are within a certain distance of each other. Max-flow min-cut
capacity bounds for these two classes of graphs can be found in [39].

The combination of strong local connectivity and long-range shortcut links ren-
ders small-world [45] topologies increasingly popular in various contexts, most no-
tably in sociology, biology, statistical physics and man-made networks. Well-known
examples include such disparate instances as Milgram’s “six degrees of separation”
between common people [35], the U.S. electric power grid, the nervous system of a
nematode worm [1] and the World Wide Web [8].

The term small-world graph itself was coined by Watts and Strogatz, who in their
seminal paper [45] defined a class of models which interpolate between regular lat-
tices and random Erdös–Rényi graphs by adding shortcuts or rewiring edges with a
given probability p (see Figs. 11.10 and 11.11). The most striking feature of these
models is that for increasing values of p the average shortest-path length diminishes
sharply, whereas the clustering coefficient, defined as the expected value of the num-
ber of links between the neighbors of a node divided by the total number of links
that could exist between them, remains practically constant during this transition.



284 J. Barros

p=0 p=0.1 p=0.9

Fig. 11.10 Small-world model with shortcuts for different values of the adding probability p

p=0 p=0.1 p=0.9

Fig. 11.11 Small-world model with rewiring for different values of the rewiring probability p

Small-world networks are also of interest in the context of communication net-
works, either to increase their capacity or simplify certain tasks. Recent examples
include resource discovery in wireless networks [23], design of heterogeneous net-
works [16, 40], and peer-to-peer communications [33]. Since the seminal work
of [45], key properties of small-world networks, such as clustering coefficient, char-
acteristic path length, and node degree distribution, have been studied by several
authors (see, e.g., [17] and references therein), however their max-flow min-cut ca-
pacity has only recently received some attention. Costa and Barros [10] combine
classical network flow arguments and concentration results from random sampling
in graphs in order to provide a set of upper and lower bounds for the max-flow
min-cut capacity of several classes of small-world networks. The following theorem
gives a flavor of the type of bounds that can be computed using these techniques.

Theorem 11.7. The capacity of a Small-World Network with Shortcuts, denoted cs,
satisfies the following inequalities:

cs > (1− ε)[k +(n−1− k)p] with probability 1−O
(

1
n2d

)
,

cs < (1+ ε)[k +(n−1− k)p] with probability 1−O
(

1
n4nd

)
,
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for ε =
√

2(n−2)d ln(n−2)
p2 and d > 0, with n, k and p denoting the total number of

nodes, the number of neighbors for each node in the base lattice, and the probability
of adding a shortcut edge, respectively.

Other results include navigable topologies, for which highly efficient distributed
routing algorithms are known to exist and distributed network coding strategies are
likely to be found.

11.7 Conclusions

We reviewed some of the most relevant contributions towards a thorough under-
standing of information flows in complex networks. The previous examples show
that network information theory offers a myriad of very challenging problems, some
of which have been open for more than two decades. Nevertheless, in the past few
years we have witnessed considerable progress in this field, partly motivated by the
remarkable advancements of mobile communications systems and, more recently,
wireless sensor networks.

Although still at an infant stage and certainly not an easy task, the development
of a comprehensive theory of information networks is likely to have a very strong
impact on the design of contemporary communications systems and may find appli-
cation in other areas where complex networks abound, such as statistical learning,
computational biology, neuroscience, sociology and statistical physics.
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Chapter 12
Models of Information Processing
in the Sensorimotor Loop

Daniel Polani and Marco Möller

Abstract We present a framework to study agent-environment systems from an
information-theoretical perspective. For this, we use the formalism of Causal
Bayesian Networks to model the probabilistic and causal dependencies of various
system variables. This allows one to formulate a consistent informational view
of how an agent extracts information from the environment, including the role of
its actions as a natural part of the model. The model is motivated by increasing
evidence of the importance of Shannon information for the behaviour of living
organisms. We relate the model to existing views on information maximization and
parsimony principles and apply it to a simple scenario demonstrating the discovery
of implicit structured environment models by an agent with only a strongly lim-
ited and purely local sensorimotor embodiment. Further variations of the model
are briefly introduced and discussed. The chapter concludes with an indication of
relevant contributions for further research.

12.1 Introduction

The success of biological organisms in managing the complexity of the tasks of
survival poses a significant challenge to science. One is faced with a rich set of
abilities, of adaptivity and of self-organization that organisms make use of to survive
in a difficult environment. What makes this a question of particular scientific interest
is that the richness of the occurring phenomena makes it difficult to formulate a
systematic characterization of the phenomena at hand: is there anything in common
in the phenomena observed in living beings or does biology always have to reinvent
the wheel?
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First, obviously, all biological organisms have to adhere to the laws of physics
and consequently chemistry, so that principles of energy and mass conservation,
and, more narrowly, the numerical relations pertaining to chemical reactions need
to be respected; these principles can be modeled, e.g., with artificial chemistries
[16].

Still, the complexity emerging even with these limitations is enormous, and there
is the question how evolutionary, developmental and finally adaptive processes man-
age to cope with the daunting task of identifying the “right” or, at least, most promis-
ing paths of success. One important argument is that the evolutionary process has
an enormous potential for parallel evaluation. This, while undoubtedly correct, does
not account for the even more enormous space of potentially unsuccessful solutions.
It has therefore been argued that the process of biological evolution makes signif-
icant use of principles of self-organization that allow the organisms to stay in the
region of viability with a high probability.

Self-organization processes are well known in the physical world, for instance in
the form of Turing patterns or Bnard cells [5, 20, 23] and it has been argued that
they play an important role in the formation of patterns for living organisms or for
guiding morphogenesis [35, 50].

There is no doubt that such principles are helpful to massively restrict the space
of possible realizations and may indeed form building blocks from which the higher
levels of complexity of living beings are constructed. How, however, are these build-
ing blocks combined? Is there the possibility for local gradients that guide particu-
larly favourable constructs?

On first sight, the proposal that there are any concepts that could act as guiding
principles is difficult to reconciliate with the biological principle that evolution is
essentially historical, that, in particular, the genome is historical, too, and that ex-
tensive knowledge is encoded not only in the genome but in the whole machinery
that creates and “runs” an organism: in other words, the machinery is today highly
specialized and optimized.

Nevertheless, even if one ignores the difficult question of the first steps from
anorganic matter to living beings [30], one cannot fail to wonder at how successful
living beings are at evolving to formerly unexperienced situations. An instructive
example is the evolution of sensors from one type of use to another [29], the acqui-
sition of novel sensoric modalities [19], and their seamless integration in existing
neural substrates [36]. It has been argued that there are indications for significant
evolutionary developments having been triggered by the discovery of novel sensoric
modalities [37]. Whether or not this turns out to be indeed the case, the emergence
of new sensoric capabilities can create a coevolutionary pressure on the actuators
(and morphology) of the organism, the most obvious examples being the actuators
that allow bats to emit ultrasound or electric fish to create electrical fields around
them [22].

In fact, the richness of the sensory equipment of living beings, of which we have
mentioned a few examples above, indicates that sensors seem to provide a strong
selector for successful organisms. While, as we have seen, there is a great diversity
of sensoric modalities and channels to which a sensor may respond to, the central
commodity that sensors deal with is information.
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No matter what modality a sensor taps into, and how it is physically and bi-
ologically realized, the sensor provides its carrier with information and to make
this a more precise statement, it would be useful to treat the concept of information
quantitatively. A well-known quantification of information is provided by Shannon’s
notion [44], defined in Sect. 12.3. But before this can be done, several conceptual
issues need to be resolved.

12.2 Shannon Information in Biology

In the following, when we talk about information, we will always imply Shannon’s
notion. Information considers the transmission of symbols from a sender to a re-
ceiver. Using the emission probability of a symbol-emitting source, it quantifies the
most compact way these symbols can be transported (or, the other way around, it
provides limits on the transport rate of such symbols). Information is universal in the
sense that it applies to any system that can be formulated using probability theory.
This is a very general assumption and any system, artificial or biological, for which
this holds, obeys these limitations.

One problem in using this concept is that Shannon’s notion is inherently devoid
of semantics. There is no provision in Shannon’s theory to endow the stream of
symbols with any meaning whatsoever. Information theory will just quantify the
bandwidth expense to transmit these symbols, whether useful to the receiver or not.
Since the inception of information theory, this has been perceived as a conceptual
challenge that for a long time hampered the application of information theory to
biological organisms1 (which obviously need to distinguish between important and
unimportant signals). It even prompted the suspicion that information theory may
not be suited at all to model biological scenarios, since (to paraphrase Gibson) “the
environment is not a sender that aims to send a message to a receiver organism”
[18].

The second problem is that Shannon’s theory deals with limits. It quantifies how
much a sender can transmit to a receiver, not how much it actually does. If a channel
is given, its actual use can not exceed Shannon’s limits, but it may well be entirely
underused. Interestingly, it turns out that exactly this seems not to be the case in bi-
ology. In fact, biological systems seem to operate close to this limit. There are many
examples that biological systems utilize available information channels to the limit:
the human ear can operate close to the thermal noise level [15]. After adaptation, the
human eye has been shown to react to small numbers of photons [21]; toad receptors
can identify individual photons [7]. Information processing often operates at a tight
trade-off with the available metabolic energy [31]. There are many indications that
this may be a universal property of biological information processing [10].

Why should this be the case? One interpretation that prompted the pioneering
work introducing Linsker’s Infomax principle is that the early layers of the sensorics

1 Except for the relatively simple typical application as a correlation measure.
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do not have enough knowledge of which external information to process. Therefore
these layers’ most unbiased “guess” would be to maximize the total information they
transmit for further processing [33]. Related to that, but with a slightly different
slant, there is another view: information processing is expensive in terms of life
energy. The eye consumes roughly 10% of a fly’s energy [32] and the human brain
can consume 20% of the resting energy [24]. In view of this, it makes sense to
propose a principle of parsimony [41]: over evolution or adaptation, a biological
information channel that is not used optimally will tend to degenerate to a level
matching its actual use. There is also a converse implication: if a channel operates
close to the optimum, then, e.g., mutations or other fluctuations might be able to
probe whether a suitable increase in channel capacity may confer additional fitness
advantages. This process then could provide a driver towards the “discovery” of
novel modes of operation, or, in the case of sensors, novel sensoric modalities.

Thus, assuming its validity can be empirically sustained, the principle of parsi-
mony implies that, in the case of a well-balanced adaptation (i.e., in the case when
the organism is well adapted to the current contingencies of the environment), bi-
ologically relevant information channels will be operating close to the maximal
information capacity allowed by the Shannon limit. This gives us a handle for a
quantitative treatment of biological information. More than that, as will be seen in
Sect. 12.5, the parsimony principle in conjunction with the information processing
requirements of an organism also provides a path towards endowing Shannon’s “in-
different” measure of data volume with semantic flavour.

12.3 Notation

We will repeatedly refer to a number of quantities and symbols as follows: Con-
sider random variables, denoted by capital letters X ,Y,Z, . . . which take on values,
denoted by lowercase letters x,y,z, . . . in corresponding sets X ,Y ,Z , . . . . For the
probability that a random variable, say X , assumes a value x ∈ X , we will write
Pr(X = x), or equivalently, if there is no ambiguity, simply p(x). For the proba-
bility distribution of the joint variable (X ,Y ), we will write simply Pr(X = x,Y =
y) ≡ p(x,y), and similarly for more than two variables. For the probability of Y
given X , we write Pr(Y = y|X = x) ≡ p(y|x). The entropy of a random variable
is defined as H(X) = −∑x∈X p(x) log p(x) where we will sometimes omit the set
X summed over if clear from the context and we will always implicitly assume
the logarithm to the basis of 2, measuring entropy and related quantities in bits. The
conditional entropy of two random variables is given by H(Y |X) =∑x p(x)H(Y |X =
x) = ∑x p(x)∑y p(y|x) log p(y|x). Shannon’s mutual information is defined as

I(X ;Y ) = H(Y )−H(Y |X). (12.1)

It is symmetric with respect to exchange of X and Y . The conditional mutual infor-
mation is defined as I(X ;Y |Z) = H(Y |Z)−H(Y |X ,Z).
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12.4 Historical Remarks

Notwithstanding the aforementioned difficulties in applying information theory to
characterize the information processing of an organism or agent, already early post-
Shannon work identified its potential. Among them, we find the Law of Requisite
Variety [1] which quantifies the amount of information a system has to take in if
it is to reduce a certain amount of entropy in the environment. In addition, it has
been suggested that Shannon information and related optimization principles could
be useful to characterize information transmission in biological systems [2, 6].

Ashby’s classical result has been rediscovered in slightly different form in recent
work [48, 49], highlighting the renewed interest in the field. A shift in the view of
the field is has also been initiated by the novel information bottleneck concept [47]
that has spawned a significant number of ramifications [13, 17, 43]. For the matter
at hand, the important aspect of the information bottleneck concept is its ability to
capture the concept of relevance in information.

The information bottleneck principle operates as follows: in Fig. 12.1, let X be
some accessible random state variable which is jointly distributed with the relevance
indicator variable Y . While the latter is the actual quantity of interest, it cannot be
accessed directly, but only via X . With the joint distribution between X and Y , we
can quantify the amount of information that X provides about Y by the mutual in-
formation I(X ;Y ). Note that Y defines all that is relevant in the current scenario,
thus identifying the relevant information that X captures. In the information bot-
tleneck formalism one now proceeds to extract from X into a variable X̃ as much
information about Y as possible, “squeezing out” irrelevant information in X .

The information bottleneck formalism shows how relevance can be seamlessly
integrated into the information-theoretic framework. Additionally, it does not treat
information as a bulk quantity, but as a notion from which different components
can be extracted, not unlike the perspective provided by Independent Component
Analysis (ICA) [14] which, however, does not address the issue of relevance.

12.5 Structure and Information

Not only does the information bottleneck principle demonstrate that it is possible
to imbue information with relevance, but it also indicates that information may
have an intrinsic structure which then one can attempt to unravel. The information

X �� ��

��

Y

X̃

Fig. 12.1 The information
bottleneck principle. See text
for details
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bottleneck methods and its factorized variants [17] demonstrate, in addition to ICA,
how do that. However, a no less interesting question is where such structure arises
from in the first place. Related to this question is how information can give rise to
structure.

In Linsker’s work, the Infomax principle was applied to a feed-forward neural
network whose inputs was a two-dimensional set of random images. As a result of
the Infomax process, different unit types emerged. Among them were center sur-
round cells (cells which react to dark ring around a white center or vice versa) and
other unit types which can be found in early stages of biological visual processing.

Note that these structures do not emerge from the Infomax principle alone, but
require additional structure which was imposed in the architecture of the system:
First of all, the neural network was structured into layers. The neurons in a given
layer (except for the input layer) received their inputs from neurons in the previous
layer. In addition, their receptive fields, i.e., the area of neurons in the previous layer
from which they received their input (i.e., the receptive field) is localized. Localiza-
tion requires the assumption that neurons in a given layer are spatially organized,
i.e., that there is a concept of which neurons are close to each other and which ones
are not. In other words, Infomax requires the additional structure of layeredness as
well as localized receptive fields to evoke the aforementioned structured character-
istics. This constitutes a certain amount of structure on the information processing
architecture and we will see that it is possible to get away with even less. Further-
more, we will see that, in a structured scenario Infomax-type principles can indeed
promote structuring also of the information itself. What exactly is meant by that will
be the topic of the coming sections.

12.6 Utility-Induced Information Structure

We begin by giving a brief section indicating how structure can be induced by the
presence of a utility function that governing the action selection of an agent. The
information bottleneck method mentioned in Sect. 12.5 teaches us how to “tag” in-
formation according to the given relevance indicator variable. It provides a way
of distinguishing relevant from irrelevant information. In the original bottleneck
model, the relevance indicator variable is external, corresponding to a supervised
labeling.

However, if we consider an agent, then there is a more natural way of construct-
ing the relevance indicator variable. Consider for simplicity that the agent observes
the world through a sensor variable S (a random variable) and assume for simplicity
of exposition that S indeed encompasses the complete world state. What is then the
relevant information in this sensoric variable? If we have no concept of relevance
then, in principle, the agent would have to suitably process whole extent of sensoric
entropy H(S). In general, this will be far too much.

However, there is a natural selector for the information relevant to an agent: as
the name agent indicates (Lat. agere: acting), an agent is an entity that acts. Any in-
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formation that an agent attains from its environment only plays a role with respect to
what actions it can decide upon, given this information. This suggests that the action
A should be used as a relevance indicator variable. For this, however, it is necessary
to specify how the actuation should be distributed with the state of the sensor S.
While the distribution of the sensor S is given a priori,2 there is no canonical dis-
tribution of actions; rather, the actions should be obtained from the policy adopted
by the agent, i.e., via an action-selection mechanism p(a|s). If such a mechanism
is not present a priori, then the natural way to specify it is via the existence of a
utility function U : S ×A → R that assigns a real value to any concrete (world or
sensor) state s and action a, and which the agent aims to maximize. Once such a
policy p(a|s) has been formulated, the bottleneck formalism suggests that the rele-
vant information is simply given by I(S;A), where the joint distribution of S and A
is given by p(s)p(a|s), where p(s) is the assumed a priori distribution of the world
(sensor) states and p(a|s) is the policy.

This approach was suggested in [39] and later refined in [40]. The latter model
considers the utility arising in a Markovian Decision Process through rewards ad-
ditively cumulated over time on selecting certain actions in given states. It is well
known from the theory of Dynamical Programming and Reinforcement Learning
how to identify an optimal policy for a given reward [45]. The optimal policies
are not necessarily unique. In that case, it makes sense to select an optimal policy
p(a|s) for which I(S;A) becomes minimal. The reason is that I(S;A) can be con-
sidered a measure for the processing effort required to implement a given policy. In
line with the principle of parsimony discussed in Sect. 12.2, if we restrict ourselves
to consider only optimal policies, among all of these, according to the principle of
parsimony, a biologically plausible model will adapt to the informationally cheapest
one. This can be elegantly formulated and solved as a rate-distortion problem [11].
In fact even more can be done: instead of asking for an informationally optimal
solution, if one is ready to sacrifice some utility, one can get away with even less
relevant information to be processed.3 In other words, one can reduce the amount
of (relevant) information that has to be processed by the agent if one is ready to
forgo some of the utility. In some scenarios, it is possible to reduce the (relevant)
sensoric information to 0 while sustaining only moderate utility losses [40], by use
of a judiciously randomized action strategy.

The bottom line of these observations is: once a utility (or a reward structure)
is specified, it is possible to imbue an agent with a natural characterization of rele-
vance. This takes place by instantiating the actions as relevance indicator variables.
The joint distribution between state S and the relevance indicator variable A is gov-
erned by the policies induced on A through the utilities. Thus, we see how a single
step in the perception–action loop, together with a reward structure, can endow the
information processed by an agent with relevance structure.

A problem remains: utilities have to be somehow specified and it is not clear that
there is a simple natural choice for them. This is particularly conspicuous in the

2 This assumption is not entirely correct, as the actuation will affect the distribution of S, but for
the transparency of the argument, we will make this simplifying assumption.
3 How to achieve this is an interesting, but subtle and slightly technical point. See [40] for details.
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biological case where one does not necessarily have access to a reward model, and
where a consistent quantitative concept of fitness is still difficult to formulate. Part
of the difficulty is due to rewards typically being significantly delayed in biological
settings. Some recent work manages to do this and relates fitness to informational
considerations [8, 46].

Rewards, however, are not the only driver of information structuring in an agent.
Another powerful driver is embodiment [34]. This becomes most apparent if one
considers the information flow through the perception–action loop of an agent
through time. In the following, we will do that, and consider the processing of infor-
mation in an unrolled perception–action loop, as opposed to the single timestep
models employed in the present section or in Ashby’s or Touchette and Lloyds
model. To achieve a consistent treatment of information processing in such a set-
ting, however, requires a suitable formalism which is provided by the concept of
Causal Bayesian Networks which we will briefly introduce next.

12.7 Causal Bayesian Networks

We first introduce some notions. Because of limited space, exposition will be kept
to a minimum. A directed graph (V ,E ) consists of a finite set V of vertices or
nodes and of a set E ⊆ V ×V of edges. We assume only proper edges, i.e., v �= w
for (v,w) ∈ E . A path is an ordered sequence v1,v2, . . . ,vn of vertices such that
(vk,vk+1) ∈ E for k = 1 . . .n− 1. A loop is a closed path, i.e., a path where vn =
v1. In the following, we consider only directed acyclic graphs (DAG), i.e., graphs
without loops. For a vertex v ∈ V , its parent set is the set Pa(v) = {u | (u,v) ∈ E }
of predecessors in the graph.

A Bayesian Network is a graph (V ,E ) associated with an additional struc-
ture that associates with each vertex v a random variable Xv with values in Xv
whose probability distribution is determined as follows: for each random variable
Xv,v ∈ V , a kernel pv is defined which is interpreted as specifying the probability
of observing a particular value of Xv if certain values have been observed on the set
of its parents: pv(xv | xPa(v)). Per convention, we identify pv(xv) ≡ pv(xv | xPa(v)) if
the parent set Pa(v) for v is empty. The kernels then induce a joint probability on
the whole set of random variables via

p(x1, . . . ,x|V |) = ∏
v∈V

pv
(
xv | xPa(v)

)
. (12.2)

While a Bayesian Network provides a compact notation for possibly composite
probability distributions, it does not, in general, provide a unique representation for
modelling a given probability distribution on a set of random variables Xv. Although
the notation of a node as successor of its parent nodes is seductive, this is a purely
observational description and does in no way imply any causal relation. For this,
additional structure, so-called intervention is required [38].
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A Causal Bayesian Network (CBN) (V ,E ) with kernels pv is a Bayesian Net-
work imbued with an additional structure, namely a semantics of intervention.4 An
intervention at a node v defines a family of new Bayesian Networks as follows:

1. In the resulting networks the graph is modified to (V ,Ev) where in Ev all the
edges from the parents of v to v have been removed.

2. For an arbitrarily defined kernel p̂v(xv) on v, a new probability is computed ac-
cording to (12.2), using the modified parents and kernel of v.

The formalism generalizes naturally to interventions at sets of nodes. Using inter-
vention, one can impose a particular value xv on the node v and observe how it affects
another node xw. In Pearl’s interventional notation the probability of observing xw if
xv is imposed is written as p(xw | x̂v).

The interventional concept is significantly different from the non-causal interpre-
tation of Bayesian Networks: the latter are purely observational. In CBNs, however,
one has a precise semantics of intervention which allows one to describe how active
modification of the state of a node (as opposed to observational selection of particu-
lar states) will affect the rest of the system. The edges in this network are not merely
indicators of correlations, but they are to be interpreted as causal mechanisms. The
concept of CBNs turns out to be a powerful tool for the modelling of the informa-
tional dynamics of agents once one turns to cases that are more involved than the
ones discussed in Sects. 12.5 and 12.6.

12.8 Modelling the Information Dynamics in Agents

Using CBNs, a generic model of an agent acting in an environment can be formu-
lated as in Fig. 12.2, with the arrows representing the directed edges of the graph
[25, 26]. The figure shows the perception–action loop of an agent unrolled in time.
Note that, consistent with the semantics of a CBN, the arrows denote actual causal
mechanisms. To understand the diagram, consider first the arrows St → At . These

R0 ��

�����
�

R1 ��

����
��

. . .

S0 ��

����������� A0

������
S1 ��

		���������� A1





. . .

����
��

M0 ��

������������
M1 ��

��									 . . . �� Mt ′

Fig. 12.2 The perception–action loop of an agent modeled using a CBN. The St denote the random
variables representing the sensors, the At the actuators, the Mt the agent “memory” state and Rt the
state of the “rest of the world” at different time steps t. The arrows indicate the causal edges
(mechanisms) of the Bayesian Network

4 We give a slightly different, but conceptually equivalent presentation from the definitions used in
[3, 38].
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denote the mechanisms of the agent policy, namely the probability p(at |st) of se-
lecting an action at if a sensor state st is observed at a time t. The arrows Rt → St
indicate what the sensors capture about the state of the “rest of the world”. Simi-
larly, the arrows At → Rt+1 denote the influence of the agent’s actions on the world.
Finally, the agent is equipped with a brain which is realized as a Mealy machine
with memory Mt . It modulates how an action is selected depending on the sensor
input and, at the same time defines the subsequent memory state depending on the
current sensor input and memory state.5

The result is a highly generic model for a single agent. To see this, one should
note that, while St denotes a single sensor, it actually refers to a “sensor complex”, so
that any composition of subsensors is encompassed in this description. It is easy to
modify the CBN in Fig. 12.2 to denote two separate sensors S(1)

t ⊗S(2)
t feeding into

the actuators and the memory. In fact, the case of separate sensors can be construed
as a special case of a single sensor, as long as the size of the state space for the single
sensor is large enough to contain the total size of the space for the composite sensor,
i.e., as long as |St | ≥ |S (1)

t ||S (2)
t |. The composite sensor assumes more structure

and is therefore more specific than the single sensor model. Analogous statements
hold for the other variables.

In particular this implies that very little is assumed about the control architecture
(i.e., Mt and the associated arrows) of the agent. In particular, as long as the architec-
ture is fully deterministic, Fig. 12.2 shows the most general case. This observation
should be kept in mind for the discussions on the formation of structured controllers
in Sect. 12.10.

Finally, it should be noted that the formalism also allows to model the interaction
of several agents through the environment [27] or hierarchical memory structures
(not further discussed here). Similar models have been used to characterize auton-
omy [9] or to provide quantitative models for universal utilities [28]. In the fol-
lowing, we will restrict ourselves to demonstrate how the formalism, together with
Infomax principles (equivalent to parsimony-type arguments), gives rise to struc-
tured processing architectures, only by virtue of the agent’s embodiment; in the
CBN model this is the dynamics by which the agent is linked into its environment,
i.e., the arrows Rt → St and At → Rt+1.

12.9 A Model of a Simple World

12.9.1 Scenario

We will study how the earlier mentioned principles combine with an agent embodied
in a simple grid world. The world under consideration consists of an infinite grid. At
certain positions, there are “chemical” sources that generate a “chemical” gradient

5 The map used here is not the most general possible, but will be sufficient for the subsequent
discussion.
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Fig. 12.3 Returned sensor
direction at different positions
in the world grid

over the grid world that can be sensed by the agent’s sensors. The agent, located at a
given grid position in the world, has a sensor which detects the strength of the signal
at the position adjacent to the north, east, south and west (n/e/s/w) of the agent.
The sensor variable St will return the direction n/e/s/w with the strongest signal
experienced at a certain time t. Thus, the maximal possible information conveyed to
the agent by its sensor at a given time t is 2 bit.

The start position of the agent is equally distributed at positions {−10, . . . ,10}×
{−10, . . . ,10} in the world, and the sources are placed at positions {−5,5} ×
{−5,5}. Figure 12.3 shows the gradient direction returned by the sensor at different
positions in the world. The center of the image is the position (0,0). Note that the
gridworld continues infinitely outside of the image.

12.9.2 Information Maximization in the Perception–Action Loop

We now plug the sensor and actuator model from Sect. 12.9.1 into the generic agent
model from in Fig. 12.2 and apply an Infomax principle. Among the selection of
possible principles one could opt for with some justification, here we use the ob-
jective function from [25], namely the maximization of the information I(Mt ;R0)
that the agent memory Mt has managed to collect about the initial state R0 of the
world at a given time t (note that the state R of the world essentially consists of the
position of the agent – in other words, we ask the final memory state to reconstruct
the original starting position of the agent as well as possible).

For this purpose, we consider the agent controller which would be in general
represented by the probabilistic map p(at ,mt+1|st ,mt). Since we are maximizing
I(Mt ;R0), and any probabilistic mapping would introduce new noise into the sys-
tem, we limit ourselves to deterministic controller maps f : St ×Mt →At ×Mt+1.
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These maps are kept constant over time t, i.e., we use the same controller map for
all t. A given controller map f is evaluated by calculating the probability distribu-
tion induced by plugging the map f into the CBN from Fig. 12.2 and evaluating
I(Mt ;R0) for R0 the equidistribution over the initial square, M0 fixed and Mt the
resulting memory state. This value gives the objective that we wish to optimize for.

The optimization procedure is fairly generic and could be implemented using
any plausible general optimization algorithm. We use a standard simulated anneal-
ing algorithm to optimize the map. To a given map f , a mutation is applied which
modifies in f either an action or a memory state f is mapping to. The new map f ′ is
accepted if its objective value is either better than the old one or, if it is lower, then
with a probability given by a Boltzmann factor. A temperature parameter is reduced
with the inverse annealing time. Several further heuristics to determine optimal run
time and other adaptive parameters were used which are not essential to the success
of the operation and which will be described elsewhere.

12.9.3 Results

We show results maximizing I(Mt ;R0) for agent runs of length t = 15 using a mem-
ory size of |Mt | = 12 (kept constant for all time steps). corresponding to approxi-
mately 3.6bit The resulting memory representation captures approximately 3.31bit
about the original position information. This is significantly less than the more than
8.7bit that the initial position contains, but it comes close to the theoretical maxi-
mum that the available memory size can achieve.

A direct investigation of the controllers reveals that their detailed operation is
quite difficult to interpret, even for relatively small controllers and the simple sce-
nario from Sect. 12.9.1. Therefore, to understand what the Infomax principle man-
ages to achieve, better insights are obtained by investigating what original world
states R0 the memory state Mt in the final state of the agent run actually represents.
More precisely, we are interested in the probability distribution p(r0|mt).

The distributions are shown in Fig. 12.4. The figure is to be read as follows. Each
of the squares in Fig. 12.4 represents one concrete memory state mt at the final time
step; more precisely, it represents the complete distribution p(r0|mt) of initial posi-
tions r0 of the agent if one is in the memory state mt (the square covers the whole
area which R0 is uniformly distributed over at the beginning of each agent run).
White-colored areas stand for zero probability of having started in the correspond-
ing position, black stands for a high probability of having started in that position.
Note that, because of massive variations in the different images, the squares are in-
dividually normalized, so the color black only indicates the maximum conditional
probability p(r0|mt) for the given memory state, which is in general not the same
for different memory states.

As an example, consider mt to be found to be the third state (third square from
the left, in the upper row in Fig. 12.4). This indicates that the agent must have started
in one of the triangular regions south of any of the four sources. Similarly, finding
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Fig. 12.4 Memory representation of the world p(r0|mt) for the agent optimized in the four-sources
world. See text for details

the fifth memory state indicates that the agent must have started in the triangular
areas west of the sources. The detailed insights from the results will be discussed in
Sect. 12.10.

12.9.4 Factorized Representations

One tool that is occasionally useful for the analysis of the resulting representations
is the factorization of representations found according to the method described in
Sects. 12.9.2 and 12.9.3. The idea of the factorization is to impose an information-
ally “orthogonal” coordinate system on the memory representation. The factoriza-
tion method is closely related to the principle of Independent Component Analysis
[14] and multivariate information bottleneck [17]. Our situation of a CBN-modeled
agent requires a modified treatment and we follow here the ideas from [25].

Basically, one is interested in decomposing the final memory Mt into two “in-
dependent” components M(1) and M(2), formulating this decomposition in the
information-theoretic language which we have focused upon throughout the paper.6

We wish the decomposition to respect a number of principles:

1. M-decomposition: the components should be directly causally derived from M.
That is, the CBN describing the components together with the rest of the network
should have the form

M(1)

R0 �� Mt

��






����

M(2),

(12.3)

where the dotted arrow encapsulates the full agent-environment CBN lying be-
tween the initial R0 and the final memory Mt ; the solid arrows denote direct
causal mechanisms.

6 The present discussion generalizes immediately to decomposition into multiple components.
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2. Completeness: ideally, the decomposition should capture all of the information
in R0. This can be generalized to imperfect decompositions (e.g., decomposi-
tions under additional constraints) by asking for the decomposition to maximize
I(R0;M(1),M(2)). Since the M(i) derive directly from Mt , this implies that, if the
memory is smaller than the initial world state space, these components are likely
to capture most, if not all of Mt .

3. Independence: one would like one component to capture independent qualities
from the other. This can be quantified by asking for I(M(1);M(2)) to be as small
as possible.

4. Disentangled representation of R0: it would be desirable to ensure that both “co-
ordinate” components M(i) would contribute as independently as possible to the
reconstruction of R0. A counterexample would be an XOR-like combination of
the components where only the knowledge of both components would allow one
to reconstruct anything about R0. The earlier criteria, including independence,
cannot prevent this from happening, so we require a third objective, namely that
I(M(1);M(2)|R0) be as small as possible. Conversely, any XOR-like “entangle-
ment” or “synergetic” coding schemes [42] of the two components would instead
produce a large value of this conditional information.

Searching (again with a Simulated Annealing algorithm and deterministic map-
pings) for a factorization mapping that maximizes the criterium in (2) and minimizes
those in (3) and (4) (all objectives weighted equally in a linear combination), we can
construct a corresponding factorization for a given memory map p(mt |r0). If we do
this for the map given in Fig. 12.4, for components of size 4 and 5, respectively, we
obtain a result as in Fig. 12.5. Again, the diagrams show the conditionals p(r0|m(i))
for i = 1,2. The factorization is almost perfect with respect to the criteria above, in
that it is informationally almost complete, independent, and disentangled.

Note that as the 12 states of Mt are factorized into the two variables, the four-
sized component is fully exploited, however from the five-sized component, only
three states are used. This is consistent with the numerical result that the components
split the available states of Mt fully and perfectly.

In the following section, we will now discuss in more detail the implications of
the experiments.

Fig. 12.5 Factorized memory structure for the agent optimized in the four-sources world
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12.10 Discussion

The results of implementing the Infomax principle in the agent model introduced in
Fig. 12.2 and specialized in Sect. 12.9.1 reveal some striking properties. While the
agent only possesses a limited 2-bit sensor denoting the local gradient, the agent
memory manages to extract around 3.3bit of information into the memory of size
of around 3.6bit, thus exploiting the available memory to a relatively high level.
This is consistent with the perspective that Mt is able to increasingly collect the in-
formation about R0 through the sequence of sensoric inputs (St ′)t ′=0,1,2,...,t ≡ S[0,t].
This sequence determines all that the agent can learn about R0, so any informa-
tion the agent learns about R0 is bounded above by I(R0;S[0,t]) which, in turn, is
upper bounded by the entropy H(R0) of R0. In some scenarios, I(R0;S[0,t]) indeed
converges towards this upper limit for t → ∞.

In addition to the reconstruction of R0 from the series of sensors, the present
model has several important aspects. The limited size of the memory limits how
much information processing (and storage) capacity is available at each time step.
It is not possible to “squeeze” sequences of arbitrary complexity through the sen-
sors to reconstruct the original state R0 of the agent, rather each time step provides
only limited processing bandwidth to “digest” past information for the future. The
information-theoretic characterization of this bandwidth is attractive because it pro-
vides a universal currency which allows, e.g., the treatment of trade-offs of band-
width capacities allocated between various tasks in an agent.

In addition, the agent does not just passively collect the sensoric information
about R0 as it “drips in” through St ′ , but is able to select actions that will extract a
larger amount of information. For instance, if the actions are not optimized for, but
instead a fixed “gradient following” actuator is used which just takes a step along
the current gradient (sensors and memory mappings are optimized as usual), the
resulting agent is able to extract only 2.2bit of information. Thus the CBN-based
agent model provides a natural approach to study active sensing.

The spatial representations in Fig. 12.4 capture coherent features about the state
space. Typical structures involve the “triangular” regions of memory states 3,5,7 and
11 (read Fig. 12.4 left to right, top to bottom) capturing whether the agent started
inside the areas south, west, north and east of the sources. Other features denote
essentially diagonals which separate different triangular regions (states 2, 6, 8, 10,
and 12), and a few other, less explicit features, such as in 1, 4, 9 which mix different
aspects). Common to all, though, is that, even while the agent and its memory rep-
resentation have no prior concept of space, the application of the Infomax principle
in the context of this embodied agent is sufficient to identify and bring out the most
salient aspects of the geometrical structure of the environment. Note, however, that
the spatial structures are not an explicit concept for the optimized agent. The repre-
sentational mapping p(r0|mt) is an interpretation of an external observer as to the
implicit “meaning” of a memory state.

If we compare the results to Linsker’s Infomax studies, the CBN-based model-
ing approach requires significantly weaker architectural assumptions to achieve a
structured representation of the environment. Linsker still had to assume a layered
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network architecture and the presence of localized receptive fields. The model from
Fig. 12.2 does not make any assumptions about the processing architecture; from
the standpoint of the formalism, the memory forms an unstructured “blob”. Any
structure is then introduced into the architecture by the interaction of the Infomax
principle with the embodiment of the agent. It is purely the embodiment that im-
prints structure on the memory Mt of the agent. However, any agent operating in
some kind of structured environment will have an embodiment, and thus this con-
dition constitutes a much weaker set of assumptions than those used in Linsker’s
original Infomax principle.

There is another view of the results from Sect. 12.9.3. The mappings p(r0|mt)
can be interpreted as highly impoverished Bayesian models for the agent’s initial
position r0: instead of full Bayesian models with their rich and expensive represen-
tations of continuous valued probability distribution, our agent possesses a model
of very restricted representation and processing bandwidth. On the other hand, in
the context of the original motivation for the present work, it would not be plausible
that organisms would employ fully developed Bayesian models for their orientation
in their environment, even if the resulting behaviours may end up to be qualitatively
similar [51]. Rather, we can expect realistic models of biologically relevant infor-
mation processing to be likely to involve informationally limited, and thus suitably
impoverished models of the environment, closer to the spirit of the present work.

The present work shows how actions can be treated, equivalently to sensors, as
information transmitting components (in our case, they “inject” information from
the agent into the environment) and establish a picture of information processing
that treats all components of the system, sensors, memory, actuators and the envi-
ronment in a conceptually coherent way. In this model, there is no clear-cut separa-
tion into passive sensing and active acting; rather sensing and acting are intimately
intertwined and, in particular, active sensing becomes the regular mode of operation.

While the information gathered in Mt is achieved purely by means internal to the
agent, the Infomax principle still requires the optimization according to the external
criterium I(R0;Mt). Is this plausible? There are two ways of looking at that: first, the
external criterium could stem from some adaptation on a meta-level, say evolution,
which would favour better informed individuals [40, 46]. The informedness about
the objective function I(R0;Mt) could arise, for instance, from an actual search on
the levels of populations rather than individuals. Second, it is indeed possible to
reconstruct aspects of the structure of the external world by purely intrinsic infor-
mation [12]. Note that, while we implemented Infomax as a strong principle, at this
point no founded hypothesis can be made whether biological systems would indeed
implement a strong or a weak Infomax principle, i.e., whether they actively strive
to maximize certain information transmission rates, or whether Infomax principles
just emerge as a side effect of other adaptation processes.

Finally, some remarks on the factorization: the factorized memory representa-
tions are interesting from a number of points. The components of the factorization
capture different aspects of the system. These are not always easy to interpret, but
sometimes they provide immediately interpretable higher-level concepts [25]. While
this is not always the case (cf. Fig. 12.5), the principle of obtaining a factorization
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through other variables (such as obtaining M(i), i = 1,2 about R0 through Mt ) is a
powerful generalization of ICA and multivariate bottleneck methods. There are in-
dications that a systematic use of the factorization method through the perception–
action loop in various combinations may provide a path towards principles for the
discovery of generalizing concepts with respect to the agent’s embodiment.

This concept-formation perspective is appealing from a (human) observer view;
however, to properly fit into the framework developed above, it also should have a
justification in informational terms. Indeed, it does: space does not permit us to go
into details here, but one important aspect is the complexity cost of actually find-
ing or constructing the mappings (i.e., arrows) in Fig. 12.2. For large memories, the
complexity of the mappings (and thus the cost of finding or adapting them) can be
quite considerable and, even if we limit ourselves just to deterministic mappings,
they grow exponentially with the size of the involved states. A memory that is pre-
structured, e.g., via factorization, would allow one to limit adaptation of mappings
to significantly smaller spaces and thus would open the chance for a much more
efficient map construction. The price to be paid is that any mapping respecting the
components will be significantly more specific than one found over the whole mem-
ory structure. However, we have grounds for hope that an adequate pre-factorization
will allow us to find compositions that are sufficiently preadapted to the scenario
such as to reduce possible performance losses due to the limitation to component-
preserving mappings.

12.11 Conclusions and Outlook

We have presented a formalism based on Causal Bayesian Networks to create a
model of the informational interactions between agents and their environment. The
formalism is general in the sense that it allows the selection of the specific level
of detail; it is easy to specify, e.g., structural constraints or multiple agents in
the model. The model allows the specification of generalized forms of Linsker’s
Infomax principles. In a simple scenario, we have demonstrated the emergence of
implicitly structured state representations in an unstructured memory using Info-
max. The structures emerged through the particular embodiment of the agent, i.e.,
the particular form of the coupling of the agent with its environment. It was shown
how the emerged structures can be factorized into smaller, independent components,
opening the way for selective processing of partial aspects of the acquired informa-
tion.

The formalism discussed in the present paper is flexible and provides a use-
ful framework for the informational modeling of information processing in agents
aimed for. The long-term quality of a formalism, however, is determined from the
directions it spawns which were not obvious at its inception. Several such lines
emerged recently from this work: from the desire to track Shannon information
through the perception–action loop and several studies on composite Markovian net-
works [4, 52] emerged the idea of developing a causal concept of information flow



306 D. Polani and M. Möller

for general CBNs [3]. Another promising line of research pursues the formulation of
a class of universal utilities based on the external channel capacity of a perception–
action loop [28], a notion which requires the CBN formalism for its precise defini-
tion in the general case. Further fundamental questions on the information process-
ing in agents which could be addressed using the formalism are already appearing
at the horizon. These indicate that the framework provides a versatile tool for the
study of the informational dynamics of the perception–action loop, contributing to
the increasingly powerful and rich set of tools in the field.
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Chapter 13
Information Divergence Geometry and the
Application to Statistical Machine Learning

Shinto Eguchi

Abstract This chapter presents intuitive understandings for statistical learning from
an information geometric point of view. We discuss a wide class of information
divergence indices that express quantitatively a departure between any two proba-
bility density functions. In general, the information divergence leads to a statistical
method by minimization which is based on the empirical data available. We dis-
cuss the association between the information divergence and a Riemannian metric
and a pair of conjugate linear connections for a family of probability density func-
tions. The most familiar example is the Kullback–Leibler divergence, which leads
to the maximum likelihood method associated with the information metric and the
pair of the exponential and mixture connections. For the class of statistical methods
obtained by minimizing the divergence we discuss statistical properties focusing
on its robustness. As applications to statistical learning we discuss the minimum
divergence method for the principal component analysis, independent component
analysis and for statistical pattern recognition.

13.1 Introduction

Statistical machine learning approach are very successful in providing powerful and
efficient methods for inductive reasoning in information spaces with uncertainty
[22, 43]. In the following we assume a geometric view for learning algorithms and
the statistical discussion about statistical learning methods. In this context, a chal-
lenging problem was solved to answer the question to what extent geometry and
the maximum likelihood method are associated with each other, see [1, 2]. It is
known that the linear Gaussian regression associates with a Euclidean geometry in
which the least squares method is characterized by projection of the observed data
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point onto the linear hull of explanatory data vectors. This is only a special example
of the geometry associated with maximum likelihood. In general, the geometry is
elucidated by a dualistic Riemannian geometry such that the information metric is
introduced as Riemannian metric and two linear connections, called e-connection
and m-connection. In this framework two connections are conjugate with respect
to the information metric. The optimality of the maximum likelihood is character-
ized by m-projection onto the e-geodesic model. We will discuss this structure in
addition to the extension to a class of minimum divergence methods.

We review a close relation between the maximum likelihood method and the
Kullback–Leibler divergence. Let p and q be probability density functions on a data
space X . The Kullback–Leibler divergence is defined by

DKL(p,q) =
∫

X
p(x){log p(x)− logq(x)}Λ(dx),

where Λ is a carrier measure. Consider a statistical situation in which p is an under-
lying density function for data and q is a model density function. In this context we
define a statistical model by a parametric family of probability density functions

M = {qθ (x),θ ∈Θ}.

Then the log-likelihood function for the model based on a given dataset is approxi-
mated by DKL(p,qθ ) neglecting a constant in θ , where p is the underlying density
function of the dataset. Hence we observe that the minimization of DKL(p,q) in q
of M is almost surely equivalent to the maximum likelihood method. Since the prin-
ciple of maximum likelihood was proposed by Fisher [14], it has been applied to a
vast of datasets with various forms from almost all scientific fields. In general the
maximum likelihood estimator is supported by several points such as the invariance
under one-to-one data transformations, the covariance by a parameter transforma-
tion, the asymptotically consistency and the asymptotical efficiency. Furthermore,
several advantageous properties in theoretical aspects are proven on the assumption
of an exponential family, see [3] for a detailed discussion.

13.2 Class of Information Divergence

The principle of maximum likelihood is established on the basis of a specific prop-
erty for a pair of elementary functions. One is an exponential function that defines an
exponential model; the other is a logarithmic function that defines a log-likelihood
function. It is well known that they are connected by conjugate convexity,

log(s) = argmax
t∈R

{ts− exp(t)}. (13.1)

We will see that this convexity leads to the Kullback–Leibler divergence and the
Boltzmann–Shannon entropy, which lead us to deeper understanding about the
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relation between the exponential family and the log-likelihood function. In a sub-
sequent discussion the pair of the exponential and logarithmic functions will be
extended to a pair of a convex positive function u(t) and the inverse function ξ (t).

Let F be a space of all integrable functions with respect to a carrier measure Λ
on a data space Z and let M be the space of nonnegative functions in F . We also
discuss the space of probability density functions,

P = {p ∈ M :
∫

Z
p(z)Λ(dz) = 1}.

In subsequent sections the data variable z in Z will be expressed by x in X in
unsupervised learning, and will be expressed by (x,y) in X ×Y in supervised
learning. Let us overview the geometry that expresses a natural structure in an in-
formation space. We call D an information divergence on M if D satisfies the first
axiom of distance: D(μ ,ν) ≥ 0 for any μ and ν in M with equality if and only if
μ = ν a.e. Λ .

Let U be a convex function on a real line. Then the conjugate convex function Ξ
is given by

Ξ(s) = max
t∈R

{st −U(t)} (13.2)

which is written by Ξ(s) = sξ (s)−U(ξ (s)), where ξ (s) is the inverse of the deriva-
tive of U . Thus Ξ(s) is a primitive function of ξ . We construct an information diver-
gence over a function space M employing the conjugate convexity associated with
U . For an arbitrarily fixed f and g in F we define an index expressing the difference
between f and g by

dU ( f ,g) =
〈

U( f )−U(g)−U ′(g)( f −g)
〉
,

where 〈 〉 denotes the integration over the data space. It follows from the convexity
of U that dU ( f ,g) satisfies the first axiom of distance. Take a mapping ϕ : M →F ,
and then we define Dϕ(μ ,ν) = dU (ϕ(μ),ϕ(ν)) for μ and ν in M . By definition,
Dϕ(μ ,ν) becomes an information divergence on M . Assume that the convex func-
tion U has a positive derivative u = U ′. Then the inverse function ξ of u can be
viewed as a mapping from M to F . Hence, taking as ϕ = ξ we get a specific
divergence

DU (μ ,ν) = dU (ξ (ν),ξ (μ)) (13.3)

=
〈

U(ξ (ν))−U(ξ (μ))
〉
−
〈
μ ,ξ (ν)−ξ (μ)

〉
,

which is called U-divergence, where 〈A,B〉 = 〈AB〉. By definition u(ϕ(μ)) = μ ,
which is essential to produce a variety of empirical loss functions.

We next introduce an idea of entropy associated with the information divergence.
Define U-cross entropy by
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CU (μ ,ν) =
〈
U(ξ (ν))

〉
−
〈
μ ,ξ (ν)

〉
(13.4)

and U-entropy by

HU (μ) = CU (μ ,μ) =
〈
U(ξ (μ))

〉
−
〈
μ ,ξ (μ)

〉
. (13.5)

Then we observe that DU (μ ,ν) = CU (μ ,ν)−HU(μ), which leads to

CU (μ ,ν)≥ HU (μ) (13.6)

since HU (μ) = 〈−Ξ(μ)〉.
One of the most typical example is U(t) = exp(t) with the derivative u(t) =

exp(t) and the inverse derivative ξ (u) = log(u). Thus the U-divergence correspond-
ing to this choice is

DU (μ ,ν) =
〈
ν−μ

〉
−
〈
μ , log(ν)− log(μ)

〉
, (13.7)

which is nothing but the Kullback–Leibler divergence. We note that the first term in
(13.7) vanishes if we restrict DU as a functional on P×P .

The second typical example is

Uβ (t) =
1

β +1
(1+β t)

β+1
β

and thus the derivative and the inverse derivative are

uβ (t) = (1+β t)
1
β , ξβ (u) =

uβ −1
β

.

Noting Uβ (ξβ (u)) = uβ+1/(β +1) we get the resulting divergence

Dβ (μ ,ν) =

〈
νβ+1 −μβ+1

〉
β +1

−
〈
μ ,νβ −μβ

〉
β

,

which is called β -divergence [4, 33]. We notice that limβ↓0 Uβ = exp, which implies
the limit of β -divergence reduces to the Kullback–Leibler divergence as β goes to 0.
Alternatively, when β = 1, Dβ (μ ,ν) = 1

2‖μ−ν‖2, where ‖ ‖ denotes the L2-norm
in M . See [40] for the statistical argument.

These properties have a good analogy with the Box-Cox data transformation such
that a non-negative variable t is transformed by (tβ −1)/β with log t as the limit of
β into 0, cf. [7]. Thus the transformation is the same as ξβ , from which we can say
that the β -divergence is derived by the Box-Cox transformation to density functions.

On the other hand, α-divergence is defined by

Dα(μ ,ν) =
4

α2 −1
〈
μ−ν α−1

2 μ
1+α

2
〉
+

2
α+1

〈
ν−μ

〉
,
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see [1] for the relation of α-connection. There is no exact relation of α-divergence
with β -divergence except for the case of (α,β ) = (1,0), which leads to the
Kullback–Leibler divergence. Thus α-divergence cannot directly apply a statis-
tical analysis because the empirical form is not feasible without density estimation,
See [5] for estimation method by α-divergence with α = 0, or equivalently the
squared Hellinger distance. In this aspect we will see that any U-divergence is
directly applicable for a statistical analysis because U-cross entropy CU (μ ,ν) is a
linear in μ as a functional.

In fact, α-divergence belongs to a class of f -divergence

D f (μ ,ν) =
〈
μ f (ν/μ)− f ′(1)(ν−μ)

〉
, (13.8)

where f is a convex function. See [8] for more extensive discussion. Note that the
integrand in the right-hand side of (13.8) is nonnegative, which shows that D f (μ ,ν)
is an information divergence.

In a subsequent discussion we will introduce a statistical method using U-
divergence for statistical learning including the principal component analysis, in-
dependent component analysis, statistical pattern recognition.

13.2.1 Information Geometry of U-Divergence

We discuss a geometry associated with minimum divergence. Let us consider a para-
metric model

N = {μ(z,θ) : θ ∈Θ}

embedded in the space M of all nonnegative functions on the data space. We re-
gard a model N as a differentiable manifold of dimension d with the coordinate θ
in the coordinate space Θ , see [36] for the pioneering work to this approach. For
guarantee of smoothness we assume some regularity conditions for μ(z,θ) such as
the differentiability under the integral sign.

Let D be an information divergence and assume that if the function D is restricted
to N ×N, then D is differentiable on N ×N. Then we see that D associate with a
Riemannian metric g(D), two linear connection ∇(D) and ∗∇(D) as follows [10, 11].
First,

g(D)(X ,Y )(μ) =−D(X |Y )(μ) (∀μ ∈ N).

Here and hereafter we write D(X |Y ), or in general for vector fields X ,Y, . . . ,Z,W, . . .
on N, by

D(X ,Y, · · · |Z,W, · · ·)(μ) = XμYμ · · ·ZνWν · · ·D(μ ,ν)
∣∣∣
ν=μ

.
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Secondly, we define vector field ∇(D)
X Y and ∗∇(D)

X Y to satisfy

g(D)(∇(D)
X Y,Z) =−D(XY |Z), g(D)(∗∇(D)

X Y,Z) =−D(Z|XY )

for all vector fields Z. Note that this formulation leads ∇(D)
X Y and ∗∇(D)

X Y to linear
connections because of the non-degeneracy of the metric g(D). In general ∇(D)

X Y and
∗∇(D)

X Y are both not metric in the sense of g(D), however we observe that

∇̄(D) =
1
2
(∇(D) + ∗∇(D))

is the Riemannian connection with respect to g(D). Thus ∇(D) and ∗∇(D) are said to
be conjugate.

The direct application of this formula to U-divergence defined in (13.3) yields
g(U),∇(U),∗∇(U) as follows:

g(U)(X ,Y )(μ) =
〈
Xμ ,Yξ (μ)

〉
,

g(U)(∇(U)
X Y,Z)(μ) =

〈
XYμ ,Zξ (μ)

〉
,

g(U)(∗∇(U)
X Y,Z)(μ) =

〈
Zμ ,XYξ (μ)

〉
,

for μ ∈N. Thus geometric quantities associated with U-divergence is derived, which
depend only on N and ξ , where ξ is the inverse derivative of U .

As a special case, the KL divergence is led to U = exp, which implies, noting
ξ = log, the information metric g, m-connection ∇, e-connection ∇∗ are written by

(g(exp),∇(exp),∗∇(exp)) = (g,∇,∇∗).

See [1, 2] for the original definition of g,∇,∇∗. As the most characteristic of the
triple (g(U), ,∗∇(U)) we state that

∇(U) = ∇

for any function U . This surprising property will suggest that if we employ U-
divergence, then the minimum divergence method directly associates with a simple
form of the empirical loss function.

13.2.2 Minimum U-Divergence Estimator

Consider a statistical model M = {p(z;θ) : θ ∈Θ} in the space P of all the proba-
bility density functions. We define U-loss function by

�U (θ , p) = CU (p, p(·,θ)) = bU (θ)−Ep{ξ (p(z;θ))}, (13.9)
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where CU is U-cross entropy defined in (13.4) and Ep denotes the expectation with
respect to p. Then for a given data set z1, . . . ,zn the empirical U-loss function is
given by

�
(emp)
U (θ) = bU (θ)− 1

n

n

∑
i=1
ξ (p(zi;θ)), (13.10)

where bU (θ) = 〈U(ξ (p(z;θ)))〉, and we call

θ̂U = argmin
θ∈Θ

�
(emp)
U (θ)

the minimum U-divergence estimator. Thus, θ̂U is asymptotically consistent since
the inequality CU (p,q) ≥ HU (p) holds with equality only when q = p (Λ -a.e.).
Because θU minimizing CU (p, p(·;θ ′)) in θ ′ equals θ if p = p(·,θ) The estimating
function is

sU (z;θ) =
∂
∂θ
ξ (p(z;θ))− ∂

∂θ
bU (θ). (13.11)

Hence we observe the unbiasedness of the estimating function, that is Ep{sU (z;θ)}
= 0 for p = p(·;θ) since

Ep{sU (z;θ)}= 〈p− p(·;θ),
∂
∂θ
ξ (p(·;θ))〉.

Thus all the minimum U-divergence estimators is the same asymptotics as the max-
imum likelihood estimator in the sense of consistency.

We next investigate the asymptotic normality. By definition the U-estimator θ̂U
satisfies the estimation equation n−1∑n

i=1 sU (zi;θ) = 0. Hence the Taylor approxi-
mation gives

√
n(θ̂U −θ) = J−1

θ
1√
n

n

∑
i=1

sU (zi;θ)+oP(1).

By a direct application of the central limit theorem we obtain that the limiting dis-
tribution of

√
n(θ̂U −θ) becomes a normal distribution with the mean vector 0 and

the variance matrix J−1
θ Vθ J−1

θ , where

Jθ = Ep(·;θ){(∂/∂θ)sT
U (z,θ)} Vθ = var(sU (z;θ)). (13.12)

13.2.3 Γ -Minimax

In this subsection we introduce an idea on Γ -minimaxity in which the log-loss
is extended to the U-loss function (13.9). See [19] for Bayesian discussion on
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Γ -minimax solution, and also [20] for a more general discussion from a game the-
oretic point of view. We will see that U-entropy maximization is equivalent to the
minimax game between Nature and a decision maker. For simplicity we consider
a situation in which Nature supposes a probability distribution with a mean-value
restriction, that is,

Γτ = {p ∈P : Ep{t(z)}= τ}.

Here let us assume that τ is an interior point of the convex hull of the range t(Z ) of
the k-variate statistic t(z). Then if Nature restricts p to be in Γτ , the maximization of
U-entropy HU (p) defined in (13.5) is given as follows. When we take a variation to
the Lagrangian

L (p,θ ,κ) = HU (p)−
〈
θT{t − τ}, p

〉
−κ{

〈
p
〉
−1}

the equilibrium state satisfies that ξ (p∗) = θTt −κ , that is,

p∗(z) = u
(
θTt(z)−κ

)
, (13.13)

where θ and κ are uniquely determined by constraints〈
u
(
θTt −κ

)〉
= 1,

〈
t,u

(
θTt −κ

)〉
= τ.

In fact, for any p ∈ Γτ the difference between U-entropy of p∗ and that of p is

HU (p∗)−HU (p) = DU (p, p∗).

Consequently we conclude the maximum U-entropy distribution p∗ because of the
inequality (13.3). We note that the identity

CU (p, p∗) = HU (p∗) (∀p ∈ Γτ)

plays an essential role on this discussion.
We next consider a minimax game. The inequality (13.6) leads us to

HU (p∗) ≤CU (p∗,q)≤ max
p∈Γτ

CU (p,q),

which implies

HU (p∗)≤ min
q∈P

CU (p∗,q)≤ min
q∈P

max
p∈Γτ

CU (p,q).

Similarly we get maxp∈Γτ CU (p, p∗) = HU (p∗). Hence, we obtain

max
p∈Γτ

min
q∈P

CU (p,q) = HU (p∗) = min
q∈P

max
p∈Γτ

CU (p,q).

This is the Γ -minimax theorem for the game with U-loss function. In this way we
observe that any function U associates with Γ -minimaxity. In essence it is a natural
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consequence with the linearity of U-loss function in p. We get the fundamental
property ofΓ -minimax, which is closely related with the property that U-divergence
satisfies ∇(U) = ∇.

13.2.4 U-Model

It is well known that an exponential model satisfies the maximization of the
Boltzmann–Shannon entropy. The maximum likelihood works elegant performance
on the exponential model with minimal sufficiency, efficiency and unbias. In this we
define a U-model including the exponential model, in which we investigate a basic
property of the minimum U-divergence estimation.

Consider a foliation ⋃
τ∈Con(t(Z ))

Γτ , (13.14)

where Con(A) denote the convex closure of A. Thus the parameter τ is a ray com-
bining a leaf Γτ , and simultaneously models a maximum U-entropy distribution
(13.13) as

MU = {pU (z;θ) = u
(
θTt(z)−κθ

)
: θ ∈Θ}, (13.15)

which we call a U-model, where κθ is normalizing constant to satisfy
〈
u
(
θTt −

κθ
)〉

= 1
For example β -entropy

Hβ (p) =

〈
pβ+1

〉
−β −1

β (1+β )

is maximized by

pβ (z;θ) =
[
1+β{θTt(z)−κβ θ}

] 1
β .

We assume that the canonical parameter θ and the mean-value parameter τ =
EpU (·;θ){t(z)} are connected by a one-to-one transformation. This suffices to require
that

∂τ
∂θ

=
〈(

t − ∂κθ
∂θ

)(
t − ∂κθ

∂θ

)T
u′
(
θTt −κθ

)〉
is non-singular. Then two parameters θ and τ become affine parameters with re-
spect to ∇ and ∗∇(U), respectively. For a given data set z1, . . . ,zn the minimum
U-divergence estimator for the parameter τ is τ̂U = n−1∑n

i=1 t(zi) since it has a
estimating function defined by
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sU (z;θ) = t − ∂κθ
∂θ

−EpU (·;θ)

(
t − ∂κθ

∂θ

)
= t(z)− τ.

This leads to the unbias of τ̂U and sufficiency of statistic t(z). When we view τ̂U as
a statistical functional defined on P , then we can write τ̂U (p) = Ep{t(z)}, which is
equivalent to the foliation (13.14) such that any leafΓτ has a singleton τ as the image
τ̂U (Γτ). However, the estimator τ̂U is neither efficient nor asymptotically efficient,
while the maximum likelihood is asymptotically efficient.

We discuss the projection onto a U-model in the sense of U-divergence. Let p be
in P and let

q∗ = argmin
q∈MU

DU (p,q).

Then we observe the Pythagorean theorem

DU (p,q)−{DU (p,q∗)+DU (q∗,q)} = 0. (13.16)

In fact, the left-hand side of (13.16) is
〈

p−q∗,ξ (q∗)−ξ (q)
〉
, which implies that

(θ ∗ −θ)T[Ep{t(z)}−Eq∗{t(z)}
]

becomes to vanish on account of Ep{t(z)} = Eq∗{t(z)} = τ , where τ = Ep{t(z)}
and θ ∗ is a parameter to express q∗ according to the definition (13.15).

We focus on the minimum U-divergence estimator for the model N embedded
in M as discussed in Sect. 13.2.1. In fact the U-loss function is defined by U-cross
entropy C(p,ν) defined in (13.4) by substitution of ν into μ(·;θ) of the model N.
Consider U-model with a shift in M as

Mshift
U = {u

(
θT{t(z)− τ}

)
: θ ∈Θ}, (13.17)

where τ = Ep{t(z)}. We note that the model is not a standard model in the sense
that the model itself depends on the data distribution p. Then, noting that U-loss
function (13.9) is written as 〈p,θT{t − τ}

〉
= 0, we get

�U (θ , p) =
〈
U
(
θT{t(z)− τ}

)〉
. (13.18)

Hence the U-estimator for the parameter

τshift =

〈
t,u

(
θT{t(z)− τ}

)〉〈
u
(
θT{t(z)− τ}

)〉
is obtained by n−1∑n

i=1 t(zi). In a subsequent discussion AdaBoost algorithm se-
quentially learns U-model, in which it implements the sequential minimization of
the exponential loss (13.17) with U = exp. Thus we got a variety of estimation meth-
ods and models in which we discuss an effective method with high robustness in a
subsequent section.
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13.2.5 Robustness

We introduce a specific procedure with robustness in the class of minimum U-
divergence methods. See [25] for general discussion. It is known that the maximum
likelihood method is rather sensitive to even a small portion of outliners contami-
nated in a hull of observations, which will occur by a small degree of perturbations
for the assumed model.

Let us consider a statistical model M = {p(z;θ) : θ ∈Θ} with the parameter θ
of interests in which the data distribution p is not in general in M. We write the
score function on M by sθ (z;θ) = (∂/∂θ) log p(z;θ). Then the estimating function
(13.11) for the minimum U-divergence estimator is written by

sU (z;θ) = w(z;θ)s(z;θ)−Ep(·;θ){w(z;θ)s(z;θ)}, (13.19)

where w(z;θ) is a nonnegative function defined by p(z;θ)ξ ′(p(z;θ)). This ex-
pression suggests that sU (z;θ) is a weighted score function with the weight func-
tion w(z;θ). For example, β -divergence leads to the weight function wβ (z;θ) =
p(z;θ)β . Consider a situation in which the maximum likelihood estimator arises
a large bias in the presence of one outlier zout. Then we observe that the weight
function wβ (z;θ) becomes much smaller at z = zout because the likelihood func-
tion p(z;θ) has much smaller contribution at z = zout. Thus the estimating function
for the minimum β -divergence estimator automatically eliminates the effect of zout.
Obviously, the maximum likelihood function is sensitive to zout because the weight
function is constant for all the observations. This is an intuitive explanation for ro-
bustness of the minimum β -divergence estimator. We need to choose the value of
β since the weight function wβ (z;θ) becomes a constant function 1 as β goes to 0.
See [17, 18] for further discussion and extension of β -divergence.

In robust statistics the influence function is established to quantitatively assesses
robustness for a statistic, cf. [21]. In almost all the cases an estimator θ can be
viewed as a functional of the empirical distribution function Pn, say θ̂(Pn) because
Pn is sufficient in a nonparametric manner. We assume Fisher-consistency for θ̂(Pn),
that is θ̂(Pθ ) = θ , where Pθ denotes the distribution induced by p(z;θ). Then the
influence function for θ̂(Pn) is defined by

IF(θ̂ ,z) =
∂
∂ε
θ̂
(
(1− ε)Pθ + εδz

)∣∣∣
ε=0

,

where δz denotes a point-mass distribution at z. This measure expresses the behavior
of θ̂(P) when the underlying distribution P is deviate from the model distribution
Pθ and hence P is written by (1− ε)Pθ + εδz with a small ε that is a contamination
proportion of the outlier z into the hull of data population. For example, consider
the estimation of a mean parameter μ of a normal distribution. Then the influence
function of the sample mean is z−μ , while that of the sample median is sgn(z−θ).
Thus we see that the influence function of the sample mean is unbounded; that of
the sample median is bounded.



320 S. Eguchi

For the minimum U-divergence estimator θ̂U the influence function is

IF(θ̂U ,z) = J−1
θ sU (z;θ), (13.20)

where Jθ is a constant matrix defined in (13.12), sU (z;θ) is the estimating function
(13.19). Let us return the case of the minimum β -divergence estimator. For simplic-
ity we discuss a situation such that the model distribution is an exponential model.
Then the influence function of the minimum β -divergence estimator is bounded be-
cause the influence function is expressed essentially by f (t) = exp(−β |t|)|t| and f
is a bounded function.

13.3 Applications to Unsupervised Learning

Principal component analysis (PCA) and independent component analysis (ICA) are
both widely used for unsupervised learning in a number of research fields ranging
from social sciences and natural sciences. The goal is feature extraction and data
dimension reduction from an observation vector of high dimension. Both analyses
play a role to be complemented each other.

Let x = (x1, . . . ,xp)T be an observation vector of dimension p. Then PCA aims to
search a matrix W of k× p that components of y = Wx are uncorrelated while ICA
aims to search a matrix W of k× p that those of y =Wx are independent. It is known
that independence implies uncorrelation, but the reverse does not hold. Hence there
is an essential difference between aims of PCA and ICA. In fact, ICA is frequently
applied after sphering, which avoids any information with PCA. However in many
situations one does not know which procedure is effective for the feature extraction
and dimension reduction or not, and thus both application results are important to
strengthen the understanding through the comparison.

We will make a direct application of minimum U-divergence method to PCA and
ICA with the learning algorithm. In particular we introduce a special U-divergence
that leads to a robust method according to the general discussion of Sect. 13.2.5.

13.3.1 PCA

We consider an aspect of data dimension reduction in PCA for unified discussion on
PCA and ICA. For this we review the conventional PCA procedure. PCA is charac-
terized by minimization problem to find a projection matrix W from p-dimensional
Euclidean space to k-dimensional Euclidean space to minimize

min
{

E{‖x−μ‖2 −‖W (x−μ)‖2}
}

(13.21)

in W such that WW T = Ik (k-identity matrix). See [6] for the associations with neural
network models. Actually we observe that
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E{‖x−μ‖2 −‖W (x−μ)‖2} = trace{V (x)}−
k

∑
i=1

wkV (x)wT
k , (13.22)

where V (x) denotes the variance matrix of x and w1, . . . ,wk is the set of law vectors
of W . Hence a unique solution W of the optimization problem (13.21) is given by
the matrix formed by eigenvectors of V (x) corresponding to k largest eigenvalues.
Thus, the constraint of orthonormality follows from the property of eigenvectors of
a symmetric matrix.

On the other hand we can formulate another variant of PCA using a minimum
U-divergence method. This is proposed by minimization of

�U (W,μ) =−E{ψ
(
‖x−μ‖2 −‖W (x−μ)‖2)}

with constraints WW T = Ik, whereψ(t) = ξ (exp(t)) with ξ being the inverse deriva-
tive of U . We note that if a general U-loss function (13.9) is applied this context, the
second term becomes a constant of W . The choice of ξ = log reduces �U (W,μ) to
the classical case given by (13.22) In general this minimization problem is numeri-
cally solved by the learning algorithm from updating (μ ,W ) to (μ∗,W ∗) as

μ∗ =
n

∑
i=1

w(xi;μ ,W )xi,W ∗ = Eigenk(S(μ ,W )),

where Eigenk(A) is the matrix of k dominant eigenvectors of a matrix A. Here
S(μ ,W ) is a weighted matrix

S(μ ,W ) =
n

∑
i=1

p(xi;μ ,W )(xi −μ)(xi −μ)T

with a weight function p(xi;μ ,W ) being

ψ ′(‖xi −μ‖2 −‖W (xi −μ)‖2
)

∑n
j ψ ′(‖x j −μ‖2 −‖W (x j −μ)‖2

) .

This algorithm has an advantageous aspect such that the objective function is uni-
formly decreasing in any iteration as

�U (W ∗,μ∗) < �U (W,μ),

which is of EM algorithm with a stable convergence. The influence function is given
by a special case of the general formula (13.20), see [23, 27] for detailed form of
the influence function and also [24] for a method of adaptive tuning parameter.
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13.3.2 ICA

We next discuss ICA in the point of robustness focusing on an instant mixture
model, which is one of the most basic models for blind source separation. Let x
an input vector of dimension p and let A a nonsingular matrix of p× p. See [26] for
extensive discussion. We assume a simple model by

x = As, (13.23)

where s is a random vector of p dimension with independent components. Thus the
model (13.23) implies a linear combination of unobservable components of s by the
matrix A. For model identifiability we add to an assumption of non-Gaussianity of
the components.

A goal of ICA is to learn a matrix W of size p× p such that Wx has independent
components for a given empirical examples x1, . . . ,xn. For example, if we know A,
then it suffices to take the inverse of A, but it is not necessary. In fact it is sufficient
that WA is a diagonal matrix.

By the assumption of independence the recovered source vector Wx has a distri-
bution with the density function decomposed into as

q(y) = q1(y1) · · ·qm(ym),

which implies that the density function of x is

p(x;W,μ) = |det(W )|q1(w1x−μ1) · · ·qm(wmx−μm),

where w1, . . . ,wm denote law vectors of W . A standard method appropriately
chooses q1, . . . ,qm and derives the quasi-likelihood function, based on the data set
x1, . . . ,xn,

L(W,μ) =
1
n

n

∑
i=1

log p(xi;W,μ). (13.24)

In this way we get the maximum quasi-likelihood estimator W , μ by maximization
of (13.24).

On the other hand, we apply the minimum U-divergence method by the use
of U-divergence (13.3). From a general formula the empirical U-loss function is
given by

�
emp
U (W,μ) =−1

n

n

∑
i=1
ξ
(

p(xi;W,μ)
)
+
∫

U
(
ξ (p(z;W,μ))

)
dz. (13.25)

In general, the second term of (13.25) is a function of only det(W ) as given
cβ det(W )β for the case of β -divergence with a constant cβ . See [33] for more
detailed equations. The estimating function to find a maximizer of the function
(13.24) is
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s(x;W,μ) =

[
{Im −h(Wx−μ)(Wx)T}W−T

h(Wx−μ)

]
,

where h(y) =
(
(∂/∂yi) logqi(yi)

)m
i=1. Alternatively, the minimum β -divergence

method gives an estimating function

sβ (x;W,μ) = pβ (x;W,μ)s(x;W,μ)+

[
βcβ |det(W )|βW−T

0

]
.

Therefore, we observe that if β = 0, then sβ (x;W,μ) is nothing but s(x;W,μ).
For any β > 0 the estimating equation ∑n

i=1 sβ (xi;W,μ) = 0 can be viewed as the
weighted quasi-likelihood equation with the i-th weight pβ (xi;W,μ). If xi is an out-
lier with a smaller density value p(xi;W,μ), then it has only a smaller contribution to
the equation. Consequently this supports robustness for the minimum β -divergence
method with β > 0 against outlying. Furthermore, we assume

sup
z∈R

qi(z)exp(|z|) < ∞

for any i = 1, . . . , p, which implies the boundedness of all components of the es-
timating function sβ (x;W,μ) for any β > 0. In contrast, taking a limit of β to 0
arises the unboundedness. This redescending property of the influence function is
discussed to make an effective learning for a mixture of ICA, see [34].

13.4 Applications to Statistical Pattern Recognition

Pattern recognition aims to identify an attribution of a subject from a feature in-
formation with the subject, or more mathematically to predict a class label y based
on the feature vector x. Here we assume that x is in a p dimensional feature space
X and that y is in a class-label set Y . See [32] for general discussion in statistical
pattern recognition. Thus the methodology of pattern recognition is spontaneously
connected with cognitive science in which a classification rule is associated with a
process that a biological brain system gives rise to a rational judgment rule through
“learning”. For example, in a biological population a female individual determines
a male individual with optimal gamete based on empirical observations of feature
vector x related with the male candidates. In this sense the pattern recognition is a
fundamental function of biological brain system. Boosting learning algorithm incor-
porates artificially the function into combining several different classifiers by linear
combination to get a stronger classifier. Recently there is large literature on research
for boosting methods discussed from various points of view. For example, see [38]
for the motivation of boosting and [15] for AdaBoost. Also see [12, 39] for statistical
discussion and [13] for information-geometric discussion.
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Consider a mapping h from a feature space X to a class-label set Y . Then we get
a classification rule by y = h(x) in which h is called a classifier. We often consider
a function F(x,y) defined on the product space X ×Y in which the corresponding
classifier is defined by

hF(x) = argmax{F(x,y) : y ∈ Y }. (13.26)

In this context we call F(x,y) a score function.
In statistical work the objective is to propose an optimal score function F by

learning an empirical training data set En = {(x1,y1), . . . ,(xn,yn)} such that the
classifier hF in (13.26) makes good performance in pattern recognition. The per-
formance of the proposed rule based on the classifier is usually assessed by a test
data set E∗

m = {(x∗1,y∗1), . . . ,(x∗m,y∗m)}, which is organized separately from En. Thus,
for example the rule is assessed by

testerr(h) =
1
m

m

∑
i=1

I(h(x∗i ) �= y∗i ). (13.27)

A lower training error does not always imply a lower test error, which is an essential
point in prediction performance in statistical discussion. We say this to overlearning
if the gap is excessive.

Consider a space F of all the score functions and a space H of all classifiers.
Then we point a redundancy when we express a classifier h by a score function F .
In fact we consider an equivalent class by

Fh = {F ∈F : hF = h}

in which, if F1 and F2 are in Fh, then c1F1 + c2F2 is in Fh for any positive con-
stants c1,c2. In this equivalent class Fh we define a representative element by
F(x,y) = I(hF(x) = y), which has the most economical expression in the sense that
F takes only binary values 0 and 1, where I denotes a definition function. In a sub-
sequent discussion we will see that boost learning incorporates this redundancy into
effective reinforcement. In this way the redundancy is not a nuisance aspect but
helps producing a variety of data learning.

We introduce boosting ideas in the framework established in the preceding sec-
tion writing a joint data space by Z = X ×Y with the data vector z = (x,y) Con-
sider a subfamily H1 of H in which a boosting method is aimed to construct an
effective classifier by linearly combining classifiers. The key idea is to embed clas-
sifiers h1, . . . ,hd of H1 into the score function space F by

F = {F(x,y,α) =
d

∑
j=1
α jI(h j(x) = y) : α = (α1, . . . ,αd) ∈ A}. (13.28)

We expect a stronger classifier hF than any h js if F constructed by (13.28) has an
optimal linear coefficients α js. In fact, we will optimize this in a sequential man-
ner as
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F(x,y,α1, . . . ,αt+1) = F(x,y,α1, . . . ,αt)+αt+1I(ht+1(x) = y).

The boosting method iteratively selects the best update to be added the present score
function at every step.

13.4.1 U-Loss Function for Score Function

Let us employ the general discussion with a problem of pattern recognition. See
[35] for a detailed discussion. Let p(x,y) be a probability density function on the
product space of a feature space X and a class-label set Y decomposed into as

p(x,y) = P(y|x)q(x), (13.29)

where P(y|x) is the conditional density function of x given y and q(x) is the marginal
density function of x. Then we write a linearly combined classifier given by (13.28)

F(x,y) = αT f (x,y)

where f (x,y) = (I(h1(x) = y), . . . , I(hd(x) = y)). For this we model

μ̃α(y|x) = u(αT f (x,y)−b(x,α))

as a shifted U-model, where b(x,α) = ∑y′∈Y αT f (x,y′)p(y′|x). This is a special
example of the model discussed in (13.17) of Sect. 13.2.4 in the present context.
Hence U-loss function is given by

�U (α) =
∫

X
∑

y∈Y

U(αT f (x,y)−b(x,α))q(x)dx

according to the general formula (13.9). An argument similar to that of Sect. 13.2.4
leads to

�U (α)− �U (α∗) = DU (μ̃α∗ , μ̃α),

where α∗ = argminα∈A DU (p, μ̃α). The empirical U-loss function is

�
emp
U (α) =

1
n

n

∑
i=1
∑

y∈Y

U(αT{ f (xi,y)− f (xi,yi)}), (13.30)

where b(xi,α) = αT f (xi,yi).
Alternatively, the probability constraint leads to a U-probabilistic model

μ̄α(y|x) = u(αT f (x,y)−κ(x,α)), (13.31)

where κ(α) is a normalizing constant to have mass 1 by
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∑
y∈Y

u(αT f (x,y)−κ(x,α)) = 1.

Under this constraint U-loss function is

�̄U (α) =
∫

X
∑

y∈Y

[
U(αT f (x,y)−κ(x,α))−P(y|x){αT f (x,y)−κ(x,α)}

]
q(x)dx.

We observe an interesting relation with an equation

�̄U (α)− �̄U (α∗) = DU (μ̄α∗ , μ̄ᾱ), (13.32)

which is closely related with a Pythagorean relation. The empirical U-loss func-
tion is

�̄
emp
U (α) =

1
n

n

∑
i=1
∑

y∈Y

U(αT f (xi,y)−κ(xi,α))+κ(xiα)−αT f (xi,yi). (13.33)

Let us look at two variants of U-loss function for the typical case of U = exp as
follows.

� emp
exp (α) =

1
n

n

∑
i=1
∑

y∈Y

exp{αT{ f (xi,y)− f (xi,yi)},

�̄ emp
exp (α) =−1

n

n

∑
i=1

log
exp{αT f (xi,yi)}

∑y∈Y exp{αT f (xi,y)}
(13.34)

which are called the exponential loss and the log loss functions, respectively. These
loss functions lead to AdaBoost and LogitBoost algorithms, see [30] for the in-
teresting understanding for the relation. In particular, the log-loss function is the
minimum of the conditional log-likelihood function for a logistic regression model.
The exponential loss function was not discussed until [15] did consider in machine
learning paradigm. Many other loss functions similar to the log-loss function in-
cluding the area under the ROC curve was discussed in [12]. See [16] for a close
relation with a generalized additive model.

13.4.2 U-Boost

We introduce a form of boost learning algorithms to search a minimizer of a loss
function discussed in Sect. 13.4.1. The basic idea is to make a repeated use of m-
projection discussed in Sect. 13.1. Thus the present score function F(x,y) updates
the next step by embedding a new classifier h(x) by

F(x,y) �→ F∗(x,y) = F(x,y)+αI(h(x) = y),
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where we get a solution of (α,h) by

(α∗,h∗) = argmin
(α,h)∈R×H

�
emp
U (F(x,y)+αI(h(x) = y)).

This update is implemented by m-projection to the one parameter model
parametrized by α , which gives rise to a right triangle satisfying the Pythagorean-
like relation. Thus such a procedure is sequentially iterated by association with such
a right triangle with respect to U-loss function.

Let us introduce the learning algorithm of U-boost with the shifted model in
which the class H1 of classifiers to be trained for the given example set En.

A. fix w1(i,y) =
1

n(g−1)
I(y �= yi) as the initial distribution on En, where g =

card(Y ).

B. For step t = 1, . . . ,T the weighted error rate is set by

εt(h) =
1
2

n

∑
i=1
∑

y∈Y

wt(i,y)I(y �= yi){ f (xi,y)− f (xi,yi)+1} (13.35)

Next we proceed the following substeps by
(B-1) h(t)

∗ = argmin
h∈H1

εt(h).

(B-2) α∗
t = argmin

α
�U

emp(Ft−1 +α f (t)
∗ ). where �

emp
U is defined in (13.30).

(B-3) Let Ft(x,y) =
t

∑
j=1
α∗

j I(h( j)
∗ (x) = y). Then, the weight function

wt+1(i,y) ∝ u{Ft(xi,y)−Ft(xi,yi)}
leads to update (13.35).

C. Finally we make a decision by hfinal(x) = argmax
y∈Y

FT (x,y), where FT (x,y) =

∑T
t=1α∗

t I(h(t)
∗ (x) = y).

We note that U-boost algorithm with probability constraint is similarly imple-
mented just by replacing �

emp
U in substep (B-2) into �̄

emp
U defined in (13.4.1). In this

way U-boost algorithm successfully integrates the knowledge with classifiers in H1,
of which computational cost is rather less than other learning methods such as sup-
port vector machines. The most characteristic point is to use a dynamical change of
weight functions. We observe that for any t

εt+1(h
(t)
∗ ) =

1
2
.
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The proof is immediate because the coefficient vectors α∗
t makes the gradient of

�U
emp(Ft−1 +α f (t)

∗ ) vanish, see Theorem 3 and the proof in [35] for detailed dis-
cussion. In accordance, all U-boost learning algorithms shows the property of least
favorable weighting in the sense that The best learning machine h(t)

∗ with the mini-
mum weighted error rate in the t-step is reduced to the worst machine with respect
to the weight wt+1(i,y) updated.

Return the typical case of U(t) = exp(t). Then the equation in substep (B-2) has
a closed solution such that

α∗
t =

1
2

log
1− εt(h(t)

∗ )

εt(h
(t)
∗ )

,

which is called AdaBoost M2.
We discuss statistical properties of U-boost methods. It is well known that the

Bayes rule is given by

hB(x) = argmax{P(y|x) : y ∈ Y }, (13.36)

which attains a minimum of the expected error rate among all the classification
rules. Almost of classification methods place undue reliance on this fact, in which
they reduce to estimating the posterior distribution P(y|x) under a specific model
based on example data, cf. [12]. We now explore which relation with the Bayes
rule do U-boost methods have. Consider a class of score functions equivalent to the
Bayes rule by

FB = {F(x,y) : hF = hB}.

The U-model of the score function is given by

MU = {μF(y|x) = u(F(x,y)−bF(x)) : F ∈F}

in a nonparametric sense, where the constant bF(x) is defined by

bF(x) = ∑
y′∈Y

F(x,y′)p(y′|x). (13.37)

Then there exists a F∗ of F such that

u(F∗(x,y)−bF∗(x)) = c(x)P(y|x), (13.38)

where c(x) is a positive function. This means that F∗ is in FB. In this discussion we
claim that

F∗ = argmin{�U (F) : F ∈F}, (13.39)

where
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�U (F) =
∫

X
∑

y∈Y

U(F(x,y)−bF(x))q(x)dx.

This is because we observe that

�U (F)− �U(F∗) = DU (μF∗ ,μF)

which must be nonnegative by definition of U-divergence as defined in (13.3). In
accordance with this, the minimizer F∗ belongs to FB. See [13] for more detailed
proof.

We overview that the optimization of the expected U-loss �U (F) is associated
with a search of the score function concluding the Bayes rule. Actually, in the prac-
tice of the pattern recognition a finite-dimensional vector α of coefficients (13.30)
is output by learning finite set of empirical examples in the U-boost learning algo-
rithm. If the distributional assumption for n examples holds asymptotically, then we
can conclude the empirical version of the proposition (13.39). However, we here do
not proceed a further discussion on asymptotics, which would need more restrictive
assumption with several technicalities. See [31] for a rigorous discussion with strict
assumptions and also [37] for regularization of AdaBoost.

13.4.3 EtaBoost

We focus on a problem of mislabels in pattern recognition. Let

Uη(t) = (1−η)exp(t)+ηt,

where η is a constant with 0 ≤ η < 1. Then we know that

uη(t) = (1−η)exp(t)+η , ξη(u) = log
u−η
1−η ,

which leads to defining U-divergence by

Dη(μ ,ν) =
∫

X
∑

y∈Y

[
ν(x,y)−μ(x,y)−{μ(x,y)−η} log

ν(x,y)−η)
μ(x,y)−η)

]
q(x)dx,

which we call Eta-divergence. Hence Uη probabilistic model for a score function
F(x,y) = αT f (x,y) is given by

μ̄η(y|x,α) = (1−η)exp{αT f (x,y)−κ(x,α)}+η

in accordance with the general formula (13.31), where the normalizing constant is

κ(x,α) = log
1−η
1−gη

+ log
[
∑

y′∈Y

exp{αT f (x,y′)}
]
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with g being card(Y ). It is written that

μ̄η(y|x,α) = {1−η(g−1)}PL(y|x,α)+η ∑
y′ �=y

PL(y|x,α), (13.40)

where

PL(y|x,α) =
exp{αT f (x,y)}

∑y′∈Y exp{αT f (x,y′)} .

Interestingly, this model (13.40) associates with the following insight. As an ideal-
istic situation we assume that the conditional probability P(y|x) of a class-label y
given a feature vector follows from a logistic model PL(y|x,α). However we con-
sider a situation in which a certain cause breaks down this assumption, so that there
occurs a mislabel event with probability η . Then the resulting conditional probabil-
ity is led to μ̄η(y|x,α). In this way we can view that Eta-divergence Dη associates
with mislabels.

We define EtaBoost by Eta-divergence Dη as a special example of U-boost. On
account of e probabilistic interpretation of mislabeling as discussed above EtaBoost
is generatively a robust learning algorithm. Actually, EtaBoost with probability con-
straint is closely related with the method in [9] applied to a binary regression with
high noise in response variables. See [41] for the robustification of AdaBoost and
[42] for a multi-class situation. For a general discussion on outlying including in a
feature space, see [28, 29].

13.5 Conclusions

We consider the geometry associated with the U-divergence class which leads to U-
loss functions and U-models. These are shown to be connected by Γ -minimaxity.
In particular a special choice of the function U yields a robust procedure. The in-
formation divergence geometry gives not only a unified look at various applications
in statistical machine learning, but also an intuitive understanding for unsupervised
and supervised learning algorithms. For the geometric approach, many problems are
still unsolved waiting to be challenged in future work.
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Chapter 14
Model Selection and Information Criterion

Noboru Murata and Hyeyoung Park

Abstract In this chapter, a problem of estimating model parameters from observed
data is considered such as regression and function approximation, and a method of
evaluating the goodness of model is introduced. Starting from so-called leave-one-
out cross-validation, and investigating asymptotic statistical properties of estimated
parameters, a generalized Akaike’s information criterion (AIC) is derived for select-
ing an appropriate model from several candidates. In addition to model selection, the
concept of information criteria provides an assessment of the goodness of model in
various situations. Finally, an optimization method using regularization is presented
as an example.

14.1 Introduction

Let us consider a problem of predicting outputs for given inputs based on examples
of input–output pairs. This is called a regression or fitting problem, and it appears in
many areas of engineering field, for example, statistics, signal processing, machine
learning and so on [4, 11, 13, 17].

Suppose we have a data set

D = {(xi,yi); i = 1,2, . . . ,n}

composed of n samples from an unknown probability distribution P(X ,Y ). Our aim
is to construct a model of input–output relation by using data D and to predict

N. Murata (�)
Waseda University, Tokyo 169-8555, Japan
e-mail: noboru.murata@eb.waseda.ac.jp

H. Park
Kyungpook National University, Daegu 702-701, Korea
e-mail: hypark@knu.ac.kr

F. Emmert-Streib, M. Dehmer (eds.), Information Theory and Statistical Learning, 333
DOI: 10.1007/978-0-387-84816-7 14,
c© Springer Science+Business Media LLC 2009



334 N. Murata and H. Park

Fig. 14.1 A typical example
of the regression problem.
The points are given data
D , and the vertical solid
line indicates the border
above which we are trying
to estimate the output for a
given input. The dashed curve
is the conditional expectation
E[Y |X ] for given X

data set

x

y

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

-1.0

the corresponding output for a newly given input x. A typical example is depicted in
Fig. 14.1, where both, input and output, are one-dimensional. The points are samples
of given data, and the vertical solid line indicates the border above which we are
trying to estimate the output for a given input. The dashed curve is the conditional
expectation of Y for a given X , denoted by E[Y |X ] which could give a safe estimate
of output Y in most of the cases. Intuitively speaking, we would like to infer the
dashed curve based on given data D .

To describe the input–output relation, we may adopt various parametric models,
such as a linear combination of monomials

f (x;θ) = a0 +a1x+a2x2 + · · ·+adxd ,

where the model parameters are summarized in a vector form as θ = (a0,a1,a2, . . . ,
ad)T . Another example is a so-called neural network [17], and one of the simplest
forms is a three-layered perceptron defined as

f (x;θ) = c1ϕ(a1x+b1)+ · · ·+ chϕ(ahx+bh),

where ϕ is a nonlinear function (typically sigmoid function), h is the number of
hidden units, and the model parameter is θ = (a1,b1,c1, . . . ,ah,bh,ch)T .

To determine an appropriate parameter θ , we have to establish a measure of the
goodness of fit for given data. For example, we could employ a sum of squared
errors as a criterion

∑
(x,y)∈D

(y− f (x;θ))2 ,

and choose a parameter θ which minimizes this measure. We denote the optimal
parameter chosen so as to minimize such a measure by θ̂ , i.e.
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θ̂ = argmin
θ ∑

(x,y)∈D

(y− f (x;θ))2 .

Then, we can predict the corresponding output for a given input x by plugging the
estimated parameter θ̂ into the model as

ŷ = f (x; θ̂).

In many practical situations, several different candidates are available for mod-
eling the data. In such cases, we would like to select a good model from those
candidates, therefore the next problem we have to consider is how to measure the
goodness of model. Our main aim in the regression problem is to predict the out-
put for a given input as precise as possible. Hence, a natural measure to assess the
goodness of model can be the accuracy of prediction.

We can use, for example, the maximum absolute prediction error over all the
possible input–output pairs (X ,Y )

max
X ,Y

∣∣∣Y − f (X ; θ̂)
∣∣∣ ,

or the average squared prediction error over input–output distribution P(X ,Y )

E
[
(Y − f (X ; θ̂))2

]
.

In this chapter we use the latter measure because it suits the goodness-of-fit criterion,
that is, the sum of squared errors.

According to the law of large numbers, it seems that the average prediction error
can be well approximated by a sum of squared errors if the data set is sufficiently
large,

E
[
(Y − f (X ; θ̂))2

]
� 1

n

n

∑
i=1

(
yi − f (xi; θ̂)

)2
.

But this is NOT true. As shown in Fig. 14.2, the more flexible model, which has a
higher degree of freedom, has less prediction error for data D which are used for
estimating the optimal parameter, but has more prediction error for unexperienced
data. This is intuitively explained as follows. Since θ̂ is a function of D , it can be
thought that θ̂ memorizes information of D . Also the more degrees of freedom a
model has, the larger its capacity to memorize becomes. Consequently, the above
measure directly based on data set D always overestimates more flexible models.

What we really want to evaluate is the performance of the model for unseen
input–output relations (data points), so we could consider the following procedure.
Let D−i be a data set from which an example (xi,yi) is excluded

D−i = D − (xi,yi),

and θ̂−i be an estimated parameter based on D−i
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Fig. 14.2 Regression by different models. Fitting results shown in solid curves are produced by
neural networks with different numbers of hidden units (top rows: h = 2,3,4, middle rows: h =
5,6,7, bottom rows: h = 8,9,10). The dashed curve is the conditional expectation of Y for given
X . Flexible models, which have a larger number of hidden units, can fit given sample points quite
well, but tend to loose generalization ability for predicting unknown input–output relation

θ̂−i = argmin
θ ∑

(x,y)∈D−i

(y− f (x;θ))2 .

Hereafter, we call θ̂−i a leave-one-out estimator. We note that if the number of exam-
ples is sufficiently large, θ̂−i is close to θ̂ enough. Also prediction error defined by

(
yi − f (xi; θ̂−i)

)2

can be a measure of prediction accuracy for an unknown input because (xi,yi) is not
memorized in θ̂−i, but the quality strongly depends on (xi,yi). Thus, by averaging
prediction error of leave-one-out estimates over all data D , we expect to have a good
evaluation of the prediction error of θ̂ ,

E
[(

Y − f (X ; θ̂)
)2
]
� 1

n

n

∑
i=1

(
yi − f (xi; θ̂−i)

)2
.
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This procedure is called leave-one-out cross-validation. For a reasonably small data
set, this procedure can be exactly carried out, and it is known that the evaluation
works well. For a large data set, however, this is sometimes difficult to realize in
practice because of the computational complexity of the problem.

To avoid such a difficulty, modified procedures of leave-one-out cross-validation,
such as k-fold cross-validation [4, 11], are proposed. As yet another measure of the
goodness of model, we hereinafter introduce a method of Akaike’s information cri-
terion (known as AIC) [1]. There are various points of view to characterize AIC, and
we here derive it from leave-one-out cross-validation [23], and analyze its properties
by means of statistical tools.

14.2 Mathematical Framework

We start by formulating our problem mathematically. Suppose we have a data set of
n samples from a probability distribution P(X ,Y ), which is denoted by

D = {(xi,yi); i = 1,2, . . . ,n} . (14.1)

We assume {(xi,yi)} are i.i.d. samples, that means samples are independently gener-
ated from an identical distribution P(X ,Y ). Here we consider a regression problem
that means given data are fitted by a parametric model as

y = f (x;θ), θ ∈Θ ⊂ Rp (14.2)

where θ is a p-dimensional parameter vector included in an open subsetΘ in Rp. To
measure the goodness of fit, we introduce a loss of the parameter θ at (x,y), which
is denoted by

l(x,y;θ). (14.3)

As discussed in Sect. 14.1, a simple example of a loss is the squared difference
between true output y and modeled output f (x;θ)

l(x,y;θ) = (y− f (x;θ))2 . (14.4)

This squared error can be generalized to an arbitrary power of s as

l(x,y;θ) = |y− f (x;θ)|s . (14.5)

Another example is a negative log loss. Suppose that output is generated through an
additive noise model given by

y = f (x;θ)+ ε, (14.6)

and the distribution of noise is given by a density function q(ε). Then the conditional
probability density of output y for given input x is written as
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p(y|x,θ) = q(y− f (x;θ)) . (14.7)

In this way, f can be naturally connected with a probability distribution, and then a
loss is given by

l(x,y;θ) =− log p(y|x,θ). (14.8)

A special case is given when the noise has the normal distribution with the density

q(ε) =
1√

2πσ2
e−

1
2σ2 ε

2
, (14.9)

where σ2 is the variance of noise. Then the negative log loss can be written as

l(x,y;θ) =
1

2σ2 (y− f (x;θ))2 +
1
2

log(2πσ2), (14.10)

which is equivalent to the squared error except for constant factors.
The loss l(x,y;θ) is a point-wise measure for the goodness of fit. In order to

evaluate total performance of the model f (x;θ), we consider an averaged version of
loss defined by

L(θ) = E [l(X ,Y ;θ)] , (14.11)

where the expectation is taken over P(X ,Y ) from which the data are generated. Then
we can define the optimal parameter as the minimizer of the average loss L(θ) as

θ ∗ = argmin
θ

L(θ). (14.12)

Note that the model established with θ ∗ is considered as optimal in terms of the
mean performance over all possible inputs x. In other words, there can be other
special, so to say, pathological parameters θ ′ which gives a more accurate prediction
of the output for a specific input than θ ∗.

In most of the practical cases, we do not know the distribution P(X ,Y ) nor L(θ),
and only data points D are available. Instead of taking an average over the true
distribution, we may consider an average over an empirical distribution based on D ,
that is written as

L̄(θ) =
1
n ∑

(x,y)∈D

l(x,y;θ), (14.13)

where n is the number of samples in D . When the number of samples is sufficiently
large, we can expect that the empirical average loss L̄(θ) is close enough to the true
average loss L(θ), hence we define the best parameter based on D by

θ̂ = argmin
θ

L̄(θ), (14.14)

as a pseudo-optimal estimate of θ ∗.
In the next section, we see the validity of θ̂ by investigating its asymptotic prop-

erties in detail.
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14.3 Asymptotic Properties

Before describing detailed asymptotic properties of the estimator θ̂ , we summarize
two basic theorems concerning sums of independent random variables [5, 12]. First,
we define modes of convergence for a sequence of random variables {Xn} to a lim-
iting random variable X as follows.

Definition 14.1 (Convergence of random variables).

1. Xn converges to X almost surely (a.s.) if

P(ω| limXn(ω) = X(ω)) = 1. (14.15)

This is denoted by Xn
a.s.−→X .

2. Xn converges in probability to X if for every ε > 0,

P(|Xn −X |> ε)→ 0 as n → ∞. (14.16)

This is denoted by Xn
P−→X .

3. Xn converges in law to X if the cumulative distribution function of Xn converges
to that of X

Fn(x) = P(Xn < x) → F(x) = P(X < x) (14.17)

at all points at which F is continuous. This is denoted by Xn
L−→X , or Xn

L−→F .

Note that all the definitions are given in one-dimensional form, but it can be nat-
urally extended to multi-dimensional cases. Using these notations, two important
theorems, the law of large numbers and the central limit theorem, are stated as fol-
lows.

Theorem 14.1 (Law of large numbers). Let X1,X2, . . . be independent and identi-
cally distributed random variables. If E[|X1|] < ∞, then

X1 + · · ·+Xn

n
a.s.−→E[X1]. (14.18)

If E[|X1|] = ∞, then the above averages diverge almost everywhere.

Since convergence with probability 1 implies convergence in probability, we imme-
diately have a weaken form as follows

Corollary 14.1. Under the same assumption with Theorem 14.1, if E[|X1|] <∞, then

X1 + · · ·+Xn

n
P−→E[X1]. (14.19)

This is the weak law of large numbers, and in the following calculation, we mainly
use this version.
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Theorem 14.2 (Central limit theorem). Let X1,X2, . . . be independent and identi-
cally distributed random variables with zero mean and finite covariance Σ . Then

X1 + · · ·+Xn√
n

L−→N (0,Σ). (14.20)

Hereafter N (μ ,Σ) denotes the multivariate normal distribution with mean μ and
covariance Σ .

From the law of large numbers, L̄(θ) converges in probability to L(θ)

L̄(θ) P−→L(θ), (14.21)

that means, for any parameter θ �= θ ∗

P(L̄(θ ∗) < L̄(θ))→ 1 as n → ∞

from the definition of the optimal parameter θ ∗. Hence, for sufficiently large number
of n, we can expect that for any θ �= θ ∗,

L̄(θ ∗) < L̄(θ)

holds with high probability, and θ �= θ ∗ is hardly chosen as a good parameter. This
is formally stated as follows.

Theorem 14.3. Under mild conditions for loss l(x,y;θ), estimator θ̂ converges in
probability to the optimal parameter θ ∗,

θ̂ P−→θ ∗. (14.22)

For a proof of this result, see, for example, [12] in which convergence of the maxi-
mum likelihood estimator (MLE) are explained in detail. The MLE is equivalent to
an estimator derived from the negative log loss in our case, and its proof can be ex-
tended to general loss cases. Also, the conditions assumed to loss functions are dis-
cussed in [12]. Roughly speaking, loss l(x,y;θ) is required to be twice-differentiable
and bounded with respect to parameter θ .

To describe the convergence of estimator θ̂ in detail, we prepare some new no-
tations. Let ∂i be a partial differential operator with respect to the i-th element of
parameter θ , that is,

∂i =
∂
∂θi

,

and ∇ be a vector of ∂i’s,
∇= (∂1, . . . ,∂p)

T .

For a function f of θ , ∇ f is a p-dimensional vector defined as

∇ f (θ) = (∂1 f (θ), . . . ,∂p f (θ))T .

In the same way, ∇∇ f is a p× p matrix defined as
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∇∇ f (θ) =

⎛
⎜⎝
∂1∂1 f (θ) · · · ∂1∂p f (θ)

...
. . .

...
∂p∂1 f (θ) · · · ∂p∂p f (θ)

⎞
⎟⎠ .

The next theorem states the convergence of estimator θ̂ more precisely than
Theorem 14.3.

Theorem 14.4. Define

G = E
[
∇l(X ,Y ;θ ∗)∇l(X ,Y ;θ ∗)T ] , (14.23)

Q = E [∇∇l(X ,Y ;θ ∗)] , (14.24)

and assume that G and Q are finite and Q is invertible. Then, estimator θ̂ satisfies

√
n
(
θ̂ −θ ∗

)
L−→N

(
0,Q−1GQ−1) . (14.25)

Proof. According to Taylor’s theorem, we can expand a differentiable function f of
θ +δ at θ as

f (θ +δ ) = f (θ)+δT∇ f (θ +αδ ) (0 < α < 1).

Knowing that
∇L̄(θ̂) = 0

holds because θ̂ is the minimizer of L̄(θ), and expanding ∇L̄(θ̂) at θ ∗ by Taylor’s
theorem, we have

∇L̄(θ̂) = ∇L̄(θ ∗)+∇∇L̄(θ ∗ +α(θ̂ −θ ∗))
(
θ̂ −θ ∗

)
= 0.

Then, assuming that ∇∇L̄(θ ∗ +α(θ̂ −θ ∗)) is invertible, the difference between θ̂
and θ ∗ can be expressed as

θ̂ −θ ∗ =−∇∇L̄(θ ∗ +α(θ̂ −θ ∗))−1∇L̄(θ ∗). (14.26)

From the convergence property of estimator θ̂

θ̂ P−→θ ∗,

and from the law of large numbers

L̄(θ) P−→L(θ),

we have
∇∇L̄(θ ∗ +α(θ̂ −θ ∗)) P−→∇∇L(θ ∗) = Q. (14.27)

On the other hand, since θ ∗ is the minimizer of L(θ),
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∇L(θ ∗) = E [∇l(X ,Y ;θ ∗)] = 0

holds, and by definition

E
[
∇l(X ,Y ;θ ∗)∇l(X ,Y ;θ ∗)T ]= G.

With the assumption that data D are i.i.d. samples, ∇l(xi,yi;θ ∗) are zero-mean i.i.d.
random variables with finite covariance G, and then by the central limit theorem

√
n∇L̄(θ ∗) =

1√
n

N

∑
i=1
∇l(xi,yi;θ ∗)

converges in law to the normal distribution with covariance G,

√
n∇L̄(θ ∗) L−→N (0,G). (14.28)

From the above relations (14.26), (14.27) and (14.28), we obtain

√
n
(
θ̂ −θ ∗

)
= −∇∇L̄(θ ∗ +α(θ̂ −θ ∗))−1√n∇L̄(θ ∗)

L−→N
(
0,Q−1GQ−1) . (14.29)

��

Intuitively speaking, estimator θ̂ differs depending on given data D , and for suf-
ficiently large data set D , θ̂ has the normal distribution,

θ̂ ∼N
(
θ ∗,Q−1GQ−1/n

)
.

Namely:

1. Estimator θ̂ distributes around the optimal parameter θ ∗.
2. The difference between θ̂ and θ ∗ is of order 1/

√
n and

θ̂ → θ ∗ as n → ∞.

The former property is called (asymptotic) unbiasedness and the latter is consis-
tency, both of which are in general thought as desirable properties of estimators.

The average loss L(θ) and empirical average loss L̄(θ) can be thought of as dis-
tances between the true distribution P(X ,Y ) and the model f (θ), and between given
data D and the model, respectively. Strictly speaking, they do not always fulfill all
conditions of a distances, especially symmetry, but this point of view allows us to
understand the relationship among P(X ,Y ), D , θ ∗ and θ̂ geometrically. Such a ge-
ometrical image is illustrated in Fig. 14.3.

From the above results of Theorem 14.4 on asymptotic behaviors of estimates, we
also have an asymptotic property of average loss L(θ) evaluated at pseudo-optimal
parameter θ̂ as follows.
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Fig. 14.3 Geometrical image
of parameter estimation. Con-
sidering an empirical average
over given data D such as
(14.13), D can be regarded as
a distribution, therefore data
D and the true distribution
P(X ,Y ) are drawn in the same
space. Different data sets give
different estimates and esti-
mator θ̂ distributes around the
optimal parameter θ ∗ depend-
ing on given data D

Theorem 14.5. The expectation of average loss L(θ̂) with respect to data D is
asymptotically

ED

[
L(θ̂)

]
= L(θ ∗)+

1
2n

trace GQ−1. (14.30)

Proof. By expanding L(θ̂) at θ ∗ up to the second derivative, we have

L(θ̂)−L(θ ∗) =
1
2
(θ̂ −θ ∗)T∇∇L(θ ∗ +α(θ̂ −θ ∗))(θ̂ −θ ∗),

where 0 < α < 1 and we use
∇L(θ ∗) = 0.

Using a well-known property of the trace operator

trace ABC = trace BCA = trace CAB,

and previous results

∇∇L(θ ∗ +α(θ̂ −θ ∗)) P−→∇∇L(θ ∗) = Q,

ED

[
n(θ̂ −θ ∗)(θ̂ −θ ∗)T

]
−→Q−1GQ−1 as n → ∞,

we have

ED

[
2n
(

L(θ̂)−L(θ)
)]

= nED

[(
θ̂ −θ ∗

)T
∇∇L(θ ∗ +α(θ̂ −θ ∗))

(
θ̂ −θ ∗

)]

= ED

[
trace

(
∇∇L(θ ∗ +α(θ̂ −θ ∗))×n

(
θ̂ −θ ∗

)(
θ̂ −θ ∗

)T
)]

−→ trace
(
Q×Q−1GQ−1)

= trace GQ−1. (14.31)
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This proves the statement. ��
Similarly, we can evaluate the variance of L(θ̂) as follows.

Theorem 14.6. The variance of L(θ̂) is asymptotically

VD

[
L(θ̂)

]
=

1
2n2 trace GQ−1GQ−1. (14.32)

For a proof of this result, we need a bit detailed and complicated calculations, see,
for example, [14, 15].

14.4 Information Criterion

As discussed in Sect. 14.1, empirical average loss at estimator θ̂

L̄(θ̂) =
1
n

n

∑
i=1

l(xi,yi; θ̂)

is not a good measure for evaluating the goodness of model, because estimator θ̂ is
a function of data D = {(xi,yi); i = 1, . . . ,n} and the above measure is apt to over-
estimate more flexible models. From a geometrical point of view, empirical average
loss L̄(θ̂) is the distance between given data D and the estimated model parameter
θ̂ as shown in Fig. 14.4. What we need to measure is, however, the distance be-
tween the true distribution P(X ,Y ) and the estimated model parameter θ̂ , which is
not accessible because the true distribution P(X ,Y ) is usually unknown.

To assess the goodness of model, we introduce the following procedure. Let us
define leave-one-out data by

D−i = D − (xi,yi), (14.33)

Fig. 14.4 Geometrical image
of the goodness of model.
To access the goodness of
model, the distance between
the true distribution P(X ,Y )
and estimator θ̂ , that is, L(θ̂)
should be measured. It is
different from average loss of
θ ∗, L(θ ∗), and empirical loss
of θ̂ , L̄(θ̂)
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where the sample (xi,yi) is excluded from the original data D . Then, leave-one-out
estimator is given by

θ̂−i = argmin
θ ∑

(x,y)∈D−i

l(x,y;θ). (14.34)

Since θ̂−i does not convey any information of sample (xi,yi), l(xi,yi; θ̂−i) is expected
to be an unbiased evaluation of prediction loss at (xi,yi). To evaluate total prediction
loss of the model represented by θ , we take an average of point-wise prediction loss
over all the data

LCV =
1
n

n

∑
i=1

l(xi,yi; θ̂−i), (14.35)

in anticipation of
LCV � E

[
l(X ,Y ; θ̂)

]
.

This procedure is called leave-one-out cross-validation. A geometrical interpreta-
tion of cross-validation is depicted in Fig. 14.5.

For a small data set, i.e., reasonably small n, LCV can be easily calculated. On
the other hand, for a large data set, obtaining all the leave-one-out estimates is time-
consuming, and sometimes the procedure is not practical. Therefore, the following
asymptotically equivalent quantity is important [24].

Theorem 14.7. Estimated average loss by leave-one-out cross-validation LCV is
asymptotically equivalent to

LIC = L̄(θ̂)+
1
n

trace GQ−1. (14.36)

Proof. By expanding each term of LCV at θ̂ , we have

l(xi,yi; θ̂−i) = l(xi,yi; θ̂)+
(
θ̂−i − θ̂

)T
∇l(xi,yi; θ̂ +αi(θ̂−i − θ̂)),

Fig. 14.5 Geometrical image
of cross-validation. Data
D is divided into D−i and
(xi,yi), and estimator θ̂−i
based on D−i is evaluated
with (xi,yi). This evaluation
is repeated over all the data D
and averaged
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then LCV is decomposed as

LCV = L̄(θ̂)+
1
n

n

∑
i=1

(
θ̂−i − θ̂

)T
∇l(xi,yi; θ̂ +αi(θ̂−i − θ̂)). (14.37)

Knowing that θ̂ is a solution of ∇L̄(θ) = 0 because it is the minimizer of L̄(θ),
∇L̄(θ̂−i) is expanded at θ̂ as

∇L̄(θ̂−i) = ∇L̄(θ̂)+∇∇L̄(θ̂ +βi(θ̂−i − θ̂))
(
θ̂−i − θ̂

)
= ∇∇L̄(θ̂ +βi(θ̂−i − θ̂))

(
θ̂−i − θ̂

)
. (14.38)

Since θ̂−i is the minimizer of

∑
(x,y)∈D−i

l(x,y;θ) = ∑
(x,y)∈D

l(x,y;θ)− l(xi,yi;θ),

θ̂−i is a solution of ∇L̄(θ)−∇l(xi,yi;θ)/n = 0, that means,

∇L̄(θ̂−i) =
1
n
∇l(xi,yi; θ̂−i). (14.39)

Incorporating both relations (14.38) and (14.39), and assuming ∇∇L̄ is invertible,
the difference between θ̂−i and θ̂ is written as

θ̂−i − θ̂ = ∇∇L̄(θ̂ +βi(θ̂−i − θ̂))−1∇L̄(θ̂−i)

=
1
n
∇∇L̄(θ̂ +βi(θ̂−i − θ̂))−1∇l(xi,yi; θ̂−i). (14.40)

Then LCV is expressed as

LCV = L̄(θ̂)

+
1
n2

n

∑
i=1
∇l(xi,yi; θ̂−i)T∇∇L̄(θ̂ +βi(θ̂−i − θ̂))−1∇l(xi,yi; θ̂ +αi(θ̂−i − θ̂)).

For sufficiently large n, we can expect

θ̂ P−→θ∗,

θ̂−i
P−→θ∗ (i = 1,2, . . . ,n),

∇∇L̄(θ̂ +βi(θ̂−i − θ̂)) P−→∇∇L(θ∗) = Q (i = 1,2, . . . ,n),

1
n

n

∑
i=1
∇l(xi,yi; θ̂ +αi(θ̂−i − θ̂))∇l(xi,yi; θ̂−i)T P−→E[∇l(X ,Y ;θ∗)∇l(X ,Y ;θ∗)T ] = G,

therefore, asymptotically
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LCV −→ L̄(θ̂)+
1
n

trace GQ−1 = LIC. (14.41)

��

In practice, matrices G and Q are replaced by empirical estimates

Ĝ =
1
n

n

∑
i=1
∇l(xi,yi; θ̂)∇l(xi,yi; θ̂)T , (14.42)

Q̂ =
1
n

n

∑
i=1
∇∇l(xi,yi; θ̂). (14.43)

This kind of measures for model assessment LIC is called information criterion, and
many kinds of information criteria are proposed so far from various points of view
[11, 17]. The most famous one is Akaike’s information criterion (AIC) [1], and the
above quantity LIC is equivalent to AIC when the negative log loss

l(x,y;θ) =− log p(y|x,θ)

is employed and the conditional distribution of y given x in P(X ,Y ) has the density
p(y|x,θ ∗) for some unique θ ∗. In other words, the probability model constructed
from f (x;θ) is faithful and it includes the true distribution P(X ,Y ). In this case, the
well-known identity

G = E[∇ log p(y|x,θ ∗)∇ log p(y|x,θ ∗)T ] = E[−∇∇ log p(y|x,θ ∗)] = Q (14.44)

holds, which can be easily checked from the identity

E[∇ log p(y|x,θ ∗)|x] =
∫

p(y|x,θ ∗)∇ log p(y|x,θ ∗) dy = 0.

Note that conditional expectation E[·|x] is taken over true distribution p(y|x,θ ∗), for
example,

E[ f (Y )|x] =
∫

f (y)p(y|x,θ ∗) dy.

Therefore, the second term of LIC is reduced to

1
n

trace GQ−1 =
1
n

trace Ip =
p
n
, (14.45)

where Ip is the p× p identity matrix.
To assess confidence of information criterion LIC, the next theorem is useful.

Theorem 14.8. The variance of LIC is asymptotically

VD [LIC] =
1
n

V [l(X ,Y ;θ ∗)] . (14.46)

Detailed proof is a bit complicated, so we give a brief one.
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Proof. By Taylor’s theorem up to the second derivative, we have

l(x,y; θ̂) = l(x,y;θ ∗)+
(
θ̂ −θ ∗

)T
∇l(x,y;θ ∗)

+
1
2

(
θ̂ −θ ∗

)T
∇∇l(x,y;θ ∗ +α(θ̂ −θ ∗))

(
θ̂ −θ ∗

)
.

Knowing that θ̂ −θ ∗, a function of D , and ∇l(xi,yi;θ ∗) are correlated, and asymp-
totically

VD

[(
θ̂ −θ ∗

)]
=

1
n

Q−1GQ−1,

VD

[
1
n ∑

(x,y)∈D

∇l(x,y;θ ∗)

]
=

1
n

G,

we have

ED

[
L̄(θ̂)− L̄(θ ∗)

]
= O

(
1
n

)
. (14.47)

Similarly, we can evaluate the mean square of L̄(θ̂)− L̄(θ ∗) as

ED

[(
L̄(θ̂)− L̄(θ ∗)

)2
]

= o
(

1
n

)
. (14.48)

From the above observations (14.47) and (14.48), a dominant order of variance is
asymptotically evaluated as

VD

[
L̄(θ̂)

]
= VD

[
L̄(θ ∗)

]

= VD

[
1
n ∑

(X ,Y )∈D

l(X ,Y ;θ ∗)

]

=
1
n

V [l(X ,Y ;θ ∗)] . (14.49)

��

Actually, more detailed calculation considering higher order terms tells us an inter-
esting fact that the expectation of empirical loss L̄(θ̂) is asymptotically

ED

[
L̄(θ̂)

]
= L(θ ∗)− 1

2n
trace GQ−1. (14.50)

This result shows the expectation of LIC is consistent with the expectation of L(θ̂),
that is,

ED [LIC] = L(θ ∗)− 1
2n

trace GQ−1 +
1
n

trace GQ−1 = ED

[
L(θ̂)

]
,
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Fig. 14.6 Model selection based on information criterion. Left: Average loss L(θ̂) and empirical
average loss L̄(θ̂) are plotted versus h, the number of hidden units. Right: The information criteria
LIC are plotted including error bars. It can be seen that the behavior of L(θ̂) depending on h is well
captured by LIC . The horizontal solid line indicates one standard error of the minimum of LIC

and this equivalence supports the validity of LIC. However, we have to be careful
with the variance of LIC, which is empirically calculated by

1
n

V [l(X ,Y ;θ ∗)]� 1
n

⎡
⎣1

n ∑
(x,y)∈D

l(x,y; θ̂)2 −
(

1
n ∑

(x,y)∈D

l(x,y; θ̂)

)2
⎤
⎦

and which sometimes has a great influence on the result of model selection. For
more detailed proof and discussion, see, for example, [14, 15].

In Fig. 14.6, we show an example of model selection by using the information
criterion. Here we consider the regression problem shown in Fig. 14.1, the number
of data is 40, and regression curves are modeled by neural networks (three-layered
perceptron) with the squared error loss. Due to the non-linearity of neural networks,
empirical average loss L̄(θ) has a lot of local minima, and it is hard to obtain the
fully optimal parameter in practice. Therefore, we use the sub-optimal parameter
which achieves the lowest loss L̄(θ̂) among several estimates, each of which is
trained from a randomly initialized parameter. In the left plot, average loss L(θ̂) and
empirical average loss L̄(θ̂) are plotted versus h, the number of hidden units. As h
becomes larger, L̄(θ̂) almost monotonically decreases, while L(θ̂) once decreases
and then increases. This indicates that the over-fit phenomena occur for large h. In
the right plot, information criterion LIC for each h is plotted with an error bar (one
standard deviation, i.e.,

√
VD [LIC]). We can pick the model which minimizes LIC as

the best, or based on one-standard-error rule [11], we can select the simplest model
within one standard error of the minimum, which is indicated by a horizontal solid
line in the plot. In this case, h = 3 is the best choice for both strategies.
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14.5 Optimization of Regularization

As discussed in Sect. 14.4, information criterion LIC is originally introduced to se-
lect a good model from many candidates by estimating expected prediction errors. It
gives a generic way of assessing the goodness of model, and can be applied to other
situations in addition to model selection. In this section, we consider a problem
of optimizing regularization of loss. Following results can be derived from simi-
lar consideration, however, we need a careful treatment of higher order terms and
calculation becomes a bit complicated. We here present only main results, and the
readers can refer [16] for complete proofs.

Due to the limited number of samples, estimator θ̂ often has some divergence
from the optimal parameter θ ∗, which results in small prediction errors for known
inputs, i.e., small L̄(θ̂), but large prediction errors for unknown inputs, i.e., large
L(θ̂). This phenomenon is called over-fitting. In order to reduce average loss L(θ̂),
the regularization method [4, 11, 17] is widely used.

In the regularization method, we adopt a loss including a regularization term,
which is defined by

L̄R(θ) =
1
n

(
n

∑
i=1

l(xi,yi;θ)+λ r(θ)

)
, (14.51)

where λ determines the strength of regularization. Typical examples of regulariza-
tion terms are squared l2-norm

r(θ) = ‖θ‖2
2 =

p

∑
j=1
θ 2

j ,

and l1-norm

r(θ) = ‖θ‖1 =
p

∑
j=1

|θ j|.

A regularized estimator is defined as the minimizer of regularized loss L̄R(θ),

θ̃ = argmin
θ

L̄R(θ). (14.52)

By this additional regularization term, estimator θ̂ is asymptotically modified as

θ̃ − θ̂ = −λ
n

Q−1∇r(θ̃). (14.53)

As shown in Sect. 14.3, estimator θ̂ is asymptotically unbiased, but if we look at
higher order terms closely, we can evaluate its asymptotic bias as follows.

Theorem 14.9. The bias of estimator θ̂ is asymptotically

ED

[
θ̂
]

= θ ∗ +
1
n

b+o
(

1
n

)
, (14.54)
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where b = (b1, . . . ,bp)T is given by

b j =
p

∑
k,l,m=1

q jkqlm

(
sklm −

1
2

p

∑
l′,m′=1

ql′m′
tkll′gmm′

)
, (14.55)

q jk and g jk are the jk-element of Q−1 and G, respectively, and elements of s and t
are given by

sklm = E [∂k∂l l(X ,Y ;θ ∗)∂ml(X ,Y ;θ ∗)] , (14.56)

tklm = E [∂k∂l∂ml(X ,Y ;θ ∗)] . (14.57)

The bias is thought as one of the sources of over-fits, and the regularization is ex-
pected to reduce the bias by modifying estimators as (14.53). Hence, considering
average loss of θ̃ , L(θ̃), the optimal strength of the regularization term is given as
follows.

Theorem 14.10. The optimal regularization strength λ ∗, which asymptotically min-
imizes average loss L(θ̃), is given by

λ ∗ =
bT∇r(θ ∗)+ trace Q−1GQ−1∇∇r(θ ∗)

∇r(θ ∗)T Q−1∇r(θ ∗)
. (14.58)

In practice, it is not realistic to calculate b when the dimension of parameter p is
large. To access the optimal strength with computationally feasible way, we propose
the following procedure.

First, we define a new information criterion with a slight modification of infor-
mation criterion LIC.

LRIC = L̄(θ̃)+
1
2n

trace G̃Q̃−1, (14.59)

where G̃ and Q̃ are defined by

G̃ =
1
n ∑

(x,y)∈D

(
∇l(x,y; θ̃)+

λ
n
∇r(θ̃)

)(
∇l(x,y; θ̃)+

λ
n
∇r(θ̃)

)T

, (14.60)

Q̃ =
1
n ∑

(x,y)∈D

∇∇l(x,y; θ̃)+
2λ
n
∇∇r(θ̃). (14.61)

Then, the following theorem justifies the above information criterion.

Theorem 14.11. The minimizer of LRIC with respect to λ is asymptotically

λ̃ =
b̂T∇r(θ̂)+ trace Q̂−1ĜQ̂−1∇∇r(θ̂)

∇r(θ̂)T Q̂−1∇r(θ̂)
, (14.62)
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where Ĝ and Q̂ are the empirical version of G and Q, and b̂ is defined in the same
manner with b by using θ̂ instead of θ ∗.

Roughly speaking, only the half strength of correction term, trace GQ−1, is used
determining the regularization.

With this result, a computationally efficient algorithm is given as follows.

Corollary 14.2. By simultaneously minimizing the following two losses

θ̃ = argmin
θ ∑

(x,y)∈D

l(x,y;θ)+ λ̃ r(θ), (14.63)

λ̃ = argmin
λ
∑

(x,y)∈D

l(x,y; θ̃)+
1
2

trace G̃Q̃−1, (14.64)

we obtain estimator θ̃ with optimally scaled λ̃ .

In Fig. 14.7, we show an example of optimizing regularization strength by us-
ing the modified information criterion. A neural network with h = 20 hidden units,
which is a too flexible model and shows over-fit without regularization, is exam-
ined for the same regression problem in Fig. 14.6. Here the l2-norm regularization
is used.

In the left plot, the average loss L(θ̂) and the empirical average loss L̄(θ̂) are
plotted versus λ , the strength of the regularization term. As λ increases, L̄(θ̂) in-
creases, while L(θ̂) takes the minimum at appropriately chosen λ . In the right plot,
the modified information criterion LRIC is plotted versus λ . We see that LRIC be-
comes somewhat large value, but estimates a qualitative property of L, and LRIC
takes the minimum in the neighborhood of the optimal value of λ .
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Fig. 14.7 Regularization optimization based on information criterion. In the left plot, average loss
L(θ̂) and empirical average loss L̄(θ̂) are plotted, and in the right, the modified information criteria
LRIC are plotted versus λ , the strength of the regularization term. A characteristic of L is appro-
priately estimated by LRIC . The horizontal solid line indicates one standard error of the minimum
of LRIC
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14.6 Conclusions

In this chapter, we have considered a problem of estimating model parameters from
data, and by investigating statistical properties of estimated parameters, we have
derived the information criteria for assessing the goodness of model and selecting a
proper model from many candidates. In general, information criteria are applicable
when a reasonably large number of data are available for estimating parameters
because their derivation relies on the asymptotic theory. However, even when a small
number of data are available, they give an important information of the relationship
between the model complexity and the size of data. Here we made an argument
in a quite general framework, but there are many variations of information criteria
for dealing with specific cases. The reader can refer those works and other types of
model selection methods in the literature [2, 3, 6–10, 18–22].
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Chapter 15
Extreme Physical Information as a Principle
of Universal Stability

B. Roy Frieden

Abstract The EPI principle for finding a scientific law arises as follows. A coherent
universe requires stable scientific laws. Each such law is a dual system AB consist-
ing of a theoretical system A, in a state a, that interacts with a system B that may
be an observer. Both A and B are assumed to be real systems. The interaction is
via a probe particle, which carries information about a to B, and in doing so per-
turbs the total system AB in two ways – (1) It perturbs the information flow from A
such that a is observed by B as y = a + x, where x is an unknown number obeying
a frequency law p(x). And (2) the law is likewise perturbed, as δ p(x). The law, a
characteristic of the total system effect AB, is to be found. The above requirement
of a stable law requires that the change I − J in information about a from A to B
remain invariant to the perturbations, i.e., δ (I − J)/δ p(x) = 0. This is mathemat-
ically equivalent to I − J = extremum, and is the EPI principle that may be used
to find p(x). Interestingly, the extremum is usually a minimum, meaning that, de-
spite the unknown perturbations x and δ p(x), the output information I � J. That is,
observation tends to agree with reality, as demanded of a coherent universe. More-
over, the entire observation-interaction procedure has physical reality, meaning that
the output physical law is created ‘on the spot.’ In applications of EPI, information
functional I is always of one known form (Fisher’s). Also, the epistemic nature of
EPI allows a degree of prior knowledge about a to be used to form J(a). In descend-
ing order of accuracy in the resulting outputs p(x), these forms of prior knowledge
are called (a) abduction (highest quality, with perfect outputs), (b) deduction (next
highest) and (c) induction (lowest, giving merely smooth outputs). Numerous appli-
cations of EPI are given.
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15.1 Introduction

Our universe is coherent, in the sense that its systems obey well-defined laws. These
do not change randomly during their interactions, even under conditions of max-
imally complex system structure (Sect. 15.4.7.2). The needed stability (Sect. 15.2)
is provided by an abundant available level (15.35) of Fisher information. This fixes
the probability laws governing all well-defined, i.e. statistically repeatable, systems,
through a principle of Extreme physical information (EPI) [1–14]. These probabil-
ity laws include those of science and engineering. Depending upon the level of prior
knowledge at hand, the exact laws may be found, not merely smooth approxima-
tions.

EPI has been used, for example, to find the Lorentz transformation [6], Newton’s
second law F = ma (Sect. 15.9 or [6]), the wave equations of quantum mechanics
(Sect. 15.7 or [1, 6]), quantum gravity [6], classical electrodynamics [6] and clas-
sical gravitation [6] as well as the Higgs mass effect [6, 10]. Also found are non-
quantum effects such as the laws of thermodynamics [1, 2, 6, 7], economic financial
investment [7], and the laws governing system transport and population growth in
both living and nonliving systems [3, 6]. This includes cancer growth both without
[4] and with [8] programs of therapy. Table 15.1 summarizes many such applica-
tions. See also the detailed examples in Sects. 15.7–15.10.

EPI itself may be derived, in special scenarios of unitarity. This is where a unitary
transform of any type (Fourier, Laplace, etc.) connects the probability amplitude law
of data space with that of an observable transform space. The derivation of EPI for
a general unitary transform is in [14], and for a particular unitary transform, the
Fourier transform, is in [1, 6, 7].

The unitarity condition applies widely. Unitary spaces occur in quantum prob-
lems [1, 6, 7], as well as in non-physical scenarios such as investment economics
[7]. Indeed, on the basis of such unitarity, EPI derives the wave equations mentioned
above as well as the Wheeler–DeWitt equation of quantum gravity [6] and the Tobin
financial investment equation ([7] or Sect. 15.8 of economics).

However, the EPI applications listed in paragraph two includes many scenarios
(of mainly classical physics or biology) where unitarity does not hold. Hence, for
these an entirely different derivation is needed. Such a derivation is given here. It
holds for all science, and therefore must be based on a framework that supercedes
any one. Hence we ask:

What do all laws of science have in common?

Also, can this unifying property be quantified?

15.2 Worldview: Stable Universe

We show next how EPI, a framework for estimating laws of science, arises naturally
out of the defining circumstances for a law of science. Regard a system generically
as either a theoretical or a material body that operates out of a consistent set of rules.
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Table 15.1 Past applications of EPI

Source effect Derived in Ref. Unitary Trnsf. J(a) Type solution

Maxwell–Boltzmann law [6] Chap. 7 Not used

∫
dx x2∑

n
Anq2

n, An = const.

(x ≡ c ·momenta)

EPI type (b)
κ = 1

Quasi-incompressible
turbulence

[6] Chap. 11 Not used

∫ ∫
dw dρ q2[λ1w2/(2ρ)

+H(ρ−ρ1)(λ2 +λ3ε (ρ))]
(w=ρv, H = step funct.,
ε(ρ) = internal energy)

EPI type (b)

EPR-spin entanglement
(EPR-Bohm effect)

[6] Chap. 12 Not used
∑
ab

∫
dx q2

ab with x = angle

betw 2 analyzer orientns a,b
EPI type (b)

Optimum investment
schedule (Tobin q-theory
of investment)

[7] Chap. 2 Fourier
F(K(t)) = prodctn fcn of cap. K,
J =

∫
dt F(K(t))exp(−ρt)

≡ 〈F(K(t))〉t , t = time
EPI type (a)

(1) Price fluctuations in
stocks, via “technical
approach”

[5, 6] Chap. 13,
[7] Chap. 2

Not used

∑
m
λm

∫
dx fm(x)q2(x) EPI type (c)

(2) Fluctuations in
extrinsic thermodyn.
parameters

[7] Chaps. 2, 4

Population growth [3, 6] Chap. 14 Not used
∑
n

pn(gn +dn)2

(gn,dn = growth, death
comps. of fitness coeffs.)

EPI type (b)
κ = 1/2

Molecular replication,
RNA molecules

[6] Chap. 14 Not used ∑
n

pn

(
bnA

An+A −dn

)2 EPI type (b)
κ = 1/2

Cancer growth, untreated
in situ

[6] Chap. 15 Not used
∫

dt
(
q2/t2

) EPI type (b)
κ = 4.27

Quarter-pwr laws biology [9, 7] Chap. 8 Not used ∑
n

An j cos(4πna), j = 0,1,2, .. EPI type (b)

Consider, first, a real system A that obeys an unknown theory. It is specified by a
parameter a. (Example: The system is a real particle moving under the influence
of a spring fastened at a point a. The particle moves according to an unknown law
whose form is sought.) The parameter a identifies a particular property or state of A.

15.2.1 System Unobserved

Temporarily suppose that the system A remains unobserved. In Kantian terms, the
theory behind A is then an unknown and in fact does not yet have definite reality.
This observer- (or interaction-) dependent view of physics runs counter to the classi-
cal view, whereby the observer merely views passively, as when watching a goldfish
in a bowl. This classical view of a passive observer was also that of Einstein – rela-
tivity notwithstanding – and essentially why he could never accept the participatory
nature [15] of modern quantum theory; also see below.
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15.2.2 System Observed

A real system interacts with some other system. The interaction can, in particular,
be via an observing system. This is equivalently Popper’s famous criterion [16] for
a mathematical statement to be regarded as a scientific law. Here the mathematical
statement is that of the unknown law. Hence, the law must be capable of verification
or negation under observation. For generality we use the word “observation” to
include all possible types of real interaction. For a law to be real it must at some
point interact with some other system law. For brevity, from this point on by system
A we mean the unknown law of A that we seek.

Hence, let some aspect of system A be observed by a system B. That aspect
must be a, since A is characterized by a. Denote the combined system as AB. This
describes both the intrinsic scientific effect A and its observation by, or interaction
with, B. We assume, a la Popper, that the observation validates the existence of the
system AB (particle, spring, observing instrument), i.e. the data are consistent with
its theory.

Now, in order to observe A, a probe particle, such as a photon in a microscope
or telescope view, must illuminate A and then travel to the observer (system B).
(It is immaterial whether the probe particle was initiated by the observer, as in the
microscope case, or by some other particle source, as in a telescope view.) The
probe affects both systems A and B, in fact perturbing both (possibly through recoil
collision with the source). The result is that the ideal parameter value a of A is
observed by B as an imperfect datum y, where y = a+x and x obeys some frequency
of occurrence law p(x). This law is likewise perturbed. The observer is ignorant of
both the particular value of x and the law p(x). Consider x in particular.

15.2.2.1 Nature of x

By its preceding definition, x ≡ y− a represents an error from groundtruth a. In
general, x is regarded as any, usually real, number that is unknown to the observer.
It is merely an expression of ignorance on the part of the observer as to the effect
of the perturbation on the net observation. This ignorance can be fundamental –
that is, x is (1) intrinsically random, as presumably in quantum mechanics, or (2)
merely practical – e.g., random only because the observer is using nonideal detection
equipment. Or, x is actually deterministic, changing from one reading to the next via
a definite trajectory x(t), t = time (for example), but the observer does not know this
microlevel truth, and so is content to know merely a ‘binned’ curve p(x) of the x(t)
values over time. (Example: If x(t) = cos(t), then p(x) = 1�

(
π
√

1− x2
)

). Einstein
famously regarded quantum mechanics as being an effect of the latter type.

Thus, in general, x obeys some definite, but unknown, frequency of occurrence
law p(x). In cases where x is later found to be random, p(x) is as well a probability
density law. However, since x is effectively random, in all the following we treat
p(x) as if it were a probability law. This simplifies the language.
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Note that by this approach no prior physical cause of randomness – such as the
second law of thermodynamics or quantum uncertainty – need be invoked. Also, in
agreement with the orientations of Einstein and Bohm, in the quantum mechanics
that EPI derives the quantum particle can therefore still obey a classical trajectory
on the microlevel! That is, the ‘noise’ x can obey some unknown deterministic rela-
tion x = x(t). Indeed, EPI can often find such relations (e.g., the quarter-power laws
of biology, in Sect. 15.5.5.4 or [7, 9]). This is further discussed below (point (5) in
Sect. 15.11).

15.2.2.2 Creative Effect of the Perturbation

As we noted, along with perturbation x, the unknown law p(x) – a property of system
AB – is likewise perturbed by the probe particle as it travels from A to B. Like
x, this second perturbation may be of any size. Also, like x, it does not have to
be intrinsically random (see preceding). This second perturbation is a helpful or
creative one, since it leads directly to the EPI variational principle, which allows
p(x) to be found. Note that since p(x) defines the total system effect AB, in Kantian
terms it defines the phenomenon and not the pure noumenon A (see above). This is
the law that the scientist has access to and is, therefore, meaningful.

15.2.2.3 Does Science Exist Independent of the Observer?

Note that in representing AB, p(x) also defines a natural law as having a combined
theoretical-observational nature. If the scenario is physical, this is an example of the
famous participatory nature of physics [15]. Here it generalizes to a participatory
nature of science.

We found above that the participation by the observer results in perturbing p(x).
We will find below that perturbing p(x) leads to the EPI principle, and that EPI
implies the laws of science. Thus, the participatory nature of science is not merely
a property of the laws of science, as presumed in [15] – it also implies them.

15.2.3 Information Channel and Variational Principle

The datum y from A provides information I, in some sense, about the size of a. As
we saw, this information I(a) is carried to observer B by the probe particle. Likewise,
let J(a) represent the intrinsic or source level of information about a. It is therefore
intrinsic to A. The law of science, then, obeys a general information channel

J →
x

I (15.1)

describing the total system AB. Since p(x) represents the system AB, the informa-
tions J and I both depend upon p(x).
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The channel (15.1) indicates that I(a)−J(a)≡ K(a) represents the change in in-
formation about a after the observation. Therefore, K(a) measures the net observed
effect (both intrinsic and observed) on the basis of information transfer from A to
B. Also, ignorance can only reduce information: Since the mean-square error e2

min
over observations y goes inversely with information level I (15.10), it is generally
nonzero, so that B tends to receive less information I about a than exists in the
source. Thus, I(a) ≤ J(a), so that K(a) will always be negative or zero (see also
15.11). Since systems A and B, and the law p(x), are all perturbed (by the probe)
during the observing process, so must therefore be the informations I and J associ-
ated with A and B, and consequently their difference K(a). Call these perturbations
δ p(x), δ I, δJ and δK. As at the outset, we require the net observed effect K(a) to
be stable during its perturbation δK(a) with respect to a perturbation δ p(x),

δK(a)
δ p(x)

= 0. (15.2)

Note that δ is here assumed to be infinitesimal since, for instead a perturbation of
general size, the solution would depend upon the size of the perturbation and, there-
fore, be nonunique. As was mentioned at the outset, condition (15.2) should hold
even for a system AB with maximum complexity due to being in a state of maximum
Fisher information. This will lead to an information (15.21) ideally characterizing a
highly structured system.

Notice that this approach treats the system AB as a knowledge channel, whose
parameter a and law p(x) are sought. Accordingly, the law of science p(x) that so
emerges is regarded as epistemic in nature, i.e. something to be learned out of prior
knowledge and observation. This later allows us to estimate information J below
from a limited class of prior knowledge types.

15.2.4 Elementary Example: What Measurement Spaces
are Allowed by EPI?

Consider finding the law governing classical particle motion. The system A is the
particle, as specified by its ideal position a. To know a, an observation y = a + x is
made. Thus, the data space is position space. (Note that it could not instead be mo-
mentum μ – energy E space, which is conjugate to position space, because EPI only
permits data spaces of a priori independent degrees of freedom dof s. But momentum
and energy are not independent dof s, instead obeying the relation E2 = c2μ2 +m2c4.
See Table 1.) Thus the data information I(a) for this problem characterizes position
space. In this scenario principle (15.2) gives Newton’s second law (15.48) as the
scientific law obeyed by AB.

Equations (15.1) and (15.2) state unequivocally that the universe is information-
oriented, irrespective of the details of its physics. Specifically what kind of infor-
mation is it? A clue is that the space B is the space of the datum, and a datum, by
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definition, describes a local measurement. We can therefore expect the information
to be local, that is, sensitive to the local x−behavior of p(x).

15.3 Fisher Information

Consider an observation of an unknown a. (As mentioned above, the observation can
alternatively be mere interaction between nonliving systems.) The information we
seek describes the estimation of a. The system A is observed as N data y≡y1, ...,yN ,
a generalization of the single-datum situation in Sect. 15.2. The data y depend on
both a and error components x ≡ x1, ...xN . As in the preceding section, these do not
have to be random, but may be regarded so as an expression of ignorance. They
could, for example, be actually changing sinusoidally with the time, although the
observer does not know this.

Fisher information will result from this derivation even in this general scenario
of ignorance of x. (Note that a problem of estimating a still exists, because how the
x vary with data set is still regarded as unknown.)

Therefore the data y unpredictably vary from one set of observations to another,
according to some relation y≡y(a,x) such as y= a+x (linear, added case). Then
for any fixed a there are many possible sets of data y. Again, these do not have to be
randomly changing with each new set of data. However, this unknown y behavior in
the presence of a definite a defines a system likelihood probability law p(y|a). This
describes the behavior of the combined system AB, and is therefore by definition the
scientific law that is sought. (This is a generalization of Sect. 15.2, where the simpler
problem of finding p(x), x scalar, was considered.) However, it will be useful to first
consider how to estimate a.

The estimate will be fashioned from the known data y. If the observer knew
as well the prior probability law p(a) for a, that would also help. However, most
often this law is lacking. Denote the estimate of a as â. Hence, the observer forms
a function â(y) purely out of the data, called the “estimator function”, which he
hopes is a good approximation to a. Suppose he can form estimator functions that
are correct on average, i.e., that obey < â(y) > a or, equivalently,

< (â(y)−a) >≡
∫

dy(â(y)−a) p(y|a) = 0. (15.3)

The average is over all possible sets of data y in the presence of a. Note that the inte-
gral exists even if the data sets y change deterministically. Estimators â(y) obeying
(15.3) are called “unbiased,” in analogy with “unbiased experiments” of physics.
Note that this unbiasedness condition is actually quite weak, since it does not re-
strict the individual errors in the estimates â(y): they can be quite large. Amaz-
ingly, condition (15.3) will uniquely lead directly to the information that is needed,
Fisher’s. (Note that the information even limits the output variability of â in the more
general scenario of biased estimators [17]). It also will derive the mean-squared er-
ror as the particular error measure that is meaningful to the problem.
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The first step is to differentiate the integral (15.3) ∂/∂a, directly giving
∫

dy(â(y)−a)∂ p/∂a−
∫

dyp = 0, p ≡ p(y|a). (15.4)

Using the identity ∂ p/∂a = p ∂ ln p/∂a and the normalization property
∫

dyp = 1
in (15.4) gives ∫

dy(â(y)−a)(∂ ln p/∂a) p = 1.

Reversing the equality and factoring the integrand appropriately gives

1 =
∫

dy [(â(y)−a)
√

p] [(∂ ln p/∂a)
√

p] . (15.5)

The
√

p item in each factor is key, as it turns out. Next, we square (15.5) and use the
Schwarz inequality. This gives

12 = 1 ≤
∫

dy [(â(y)−a)
√

p]2
∫

dy
[
∂ ln p
∂a

√
p
]2

.

Squaring out the integrands,

1 ≤
∫

dy
[
(â(y)−a)2 p

]∫
dy

[(
∂ ln p
∂a

)2

p

]
. (15.6)

Each of these integrals is now an expectation. The first is

∫
dy
[
(â(y)−a)2 p

]
≡
〈
(â(y)−a)2

〉
≡ e2, (15.7)

the mean-squared error in the estimate. The second is

∫
dy

[(
∂ ln p
∂a

)2

p

]
≡
〈(

∂ ln p
∂a

)2
〉
≡ I ≡ I(a), where p ≡ p(y|a). (15.8)

Quantity I is called the Fisher information. Mathematically, it is a functional, that
is, an integral whose integrand involves a function p(y|a). Equation (15.8) provides
a vital connection between the scientific law p(y|a) and I that will allow the law to
be estimated via principle (15.2).

By the ∂/∂a operation in (15.8), I effectively measures the gradient content of
p(y|a). Thus, the slower p changes with the value of a the lower is the net informa-
tion value I(a). This holds to the limit, so that if p(y|a) = p(y), which is independent
of a, then I(a) = 0. This makes intuitive sense: If the data are independent of the
unknown parameter they certainly carry no information about it.

The use of (15.7) and (15.8) in inequality (15.6) gives the famous “Cramer–Rao
inequality,”
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e2I ≥ 1. (15.9)

This shows that the mean-squared error and the Fisher information obey a comple-
mentary relation – if one is small the other tends to be large. More precisely, the
minimum possible mean-squared error obeys

e2
min = 1/I. (15.10)

This indicates that when the information level is high the error is low, and vice-
versa. Or, I is a measure of the quality of the estimate. The higher I is the greater is
the quality.

The C–R inequality (15.9) has many applications to scientific laws in and of it-
self. In the special case of intrinsically random (now) errors x it has been used to
derive the Heisenberg uncertainty principle [1, 6], uncertainty principles of popula-
tion biology [3, 7], cancer growth [4, 7, 8], and economics [7], and a decision rule on
predicting population cataclysms [7]. It is straightforward to show [17, 18] that the
minimum error (15.10) can be attained by an estimator â(y) that is the “maximum-
likelihood” estimator. By definition, this satisfies a condition ∂ p(y|a)/∂a = 0 with
a ≡ â.

We now turn to the main problem, to estimate p(y|a). As noted above, the guid-
ing principle is that p(y|a) should obey stability (15.2).

15.4 Extreme Physical Information

As we saw at (15.1), the observation process defines an information channel J → I.
The amount that pre-exists at, or is ‘bound to,’ the source effect is denoted as the
amount J ≡ J(a). And the amount that is received by the observer is denoted as the
amount I ≡ I(a). This is also called the “data information.” In effect, J acts as a
source, or reservoir, of information for the sink of information I in the data. Does
this limit the size of I in some way?

15.4.1 EPI Zero-Principle

The information channel (15.1) is a closed system, and hence precludes any fur-
ther inputs of information into I. Also, the fluctuations x, as effectively random in-
puts to I, can only subtract information from the source level J. This is a purely
mathematical property of Fisher information I; for example for a normal law
I = 1/σ2 [6, 14] showing that the more random the system is, the lower is I.

Thus, the observer of I cannot obtain more information than pre-exists at the
source, I ≤ J. Another way of saying this is

I−κJ = 0, 0 ≤ κ ≤ 1 (15.11)
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for some constant κ of information efficiency. Equation (15.11) is called the EPI
zero principle. It can be used by itself to find certain probability laws (e.g. in cases
of (a) abduction defined below). Examples [6] are the Dirac wave equation and the
classical virial theorem. It is also used to form self-consistent EPI solutions ([6]
or below) whereby both κ and functional J are solved for by the use of principles
(15.11) and (15.12) below.

The value of κ varies with level of prior knowledge of the source effect. For
example, observing an electromagnetic effect on the classical level ignores a priori
its quantum aspect and, as it turns out (see Table 1), half the existing information, so
that I = J/2 [6]. In other words, exactly half the source information is wasted when
viewing an electromagnetic effect macroscopically.

15.4.2 EPI Variational Principle

Equation (15.2), with K ≡ I− J, is directly δ (I− J) = 0. But, if the perturbation of
a quantity is zero, that quantity must be at an extreme value,

I− J = extremum. (15.12)

This is the EPI variational principle. It states that the transferred amount of infor-
mation about a should be stable to perturbation. Note that (15.12) holds whether
the scenario is unitary or not (it has not been assumed in the development (15.1)–
(15.12)). The extremum can be a minimum or a point of inflection, although never
a maximum (see Sect.15.4.3). The extremum is to hold even when the system has
maximum complexity (Sect. 15.1, 15.2.3, and end of 15.4.7), thereby obeying strong
stability.

EPI is an evolving approach to science. Previous derivation [1, 6] of the vari-
ational principle (15.12) in the absence of unitarity used the axiom that δ I = δJ,
which implies that δ (I−J) = 0 and hence gives (15.12) again. Our approach avoids
the need for this axiom and, hence, is a stronger one.

15.4.3 Nature of Extremum

A particular case of interest is where the extremum in (15.12) is a minimum,

I− J = minimum. (15.13)

This is in cases where the effect is described by a real coordinate, such as position
x in the preceding. By contrast, an imaginary coordinate, such as the famous time
coordinate ict in relativity theory, can give rise to a maximum. Assertion (15.13) is
confirmed next.
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First assume that the coordinates x,y, a of the problem are all real (usual case).
For simplicity, we evaluate functional I in a usual case of interest, that of a one
dimensional, shift invariant system y= y, x= x with p(y|a) ≡ p(y|a) ≡ p(y−a) =
p(x), where x = y−a. Using this in the defining form (15.8) of I directly gives

I =
∫

dx
1
p

(
d p
dx

)2

, p ≡ p(x). (15.14)

We next examine the nature of the resulting extremum. Putting (15.14) into (15.12)
and assuming a general form for J

J =
∫

dx j(p,x) (15.15)

where the information density j has no explicit dependence upon d p/dx = p′, prin-
ciple (15.12) becomes∫

dxL [p, p′,x] = extremum, L ≡ 1
p

p′ 2 − j(p,x). (15.16)

The calculus of variations immediately gives the solution, as

d
dx

(
∂L

∂ p′

)
− ∂L

∂ p
= 0. (15.17)

This is the famous Euler–Lagrange equation. Also, Legendre’s condition of neces-
sity for the extremum being a minimum is that

∂ 2L

∂ p′ 2 > 0 (15.18)

(or, conversely, is a maximum if negative). In fact by the second equation (15.16),
∂L /∂ p′ = 2p′/p, so that

∂ 2L

∂ p′ 2 =
2
p

> 0 (15.19)

by positivity of any probability p. Note that j not depending upon p′ was crucial
here. In summary, the extremum is often a minimum for real system coordinates and
never a maximum.

Thus, (15.12) usually describes a scenario of minimum loss of information, that
is I → J in numerical value. Recall that this follows from perturbation of the object
and the observing system by the probe particle. Therefore, remarkably, this double
perturbation does not simply degrade. True, it caused the existence of the frequency
law p(x) that degrades the observation of parameter a. But it evidently also allows,
in the face of this degradation, output information approaching the ideal level of
the source effect. Thus the perturbing effect has both good and bad aspects on the
acquired information. In fact it represents both players in a ‘knowledge game’ de-
scribed below.
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We call (15.12) a principle of Extreme physical information (EPI), where the
physical information K is the difference I − J. Principle (15.12) is always supple-
mented by the zero principle (15.11). In the opposite case of a purely imaginary
coordinate, the same analysis [6] shows that I is now negative, as is J by (15.11), so
that I−J now tends toward the negative of a minimum, i.e. a maximum. The nature
of the coordinate as to being real or imaginary is a further form of prior knowledge
[6].

15.4.4 q-Form of I

The division by p in (15.14) gives an apparent pole at points x where p → 0. How-
ever, the pole is only an illusion, which is clarified by working with a probability
‘amplitude’ q instead, defined as p(x) = q2(x). Plugging this into (15.14) directly
gives the q-form of I,

I = 4
∫

dxq′2, q′ ≡ dq/dx. (15.20)

The pole in question now no longer exists. However, certain functions q(x) have in-
finite slopes at isolated points x. To keep I well defined, a principal value integral is
taken around these points, unless they are physically allowed by the system obeying
q(x) [6].

Finally, the elegant form (15.20) is merely a sum of squares, often called an L2

norm. The analogous L2 result holds in multidimensional, multicomponent cases
qn(x), n = 1, ...,N as well. The L2 nature of (15.20) is very significant, as taken up
below.

15.4.5 Local Information Property

Recall our search for a “local” information measure. In fact (15.14) shows that I
depends upon local slope values of the law p(x). Thus, any one large slope value
can dominate the answer I regardless of the rest of the curve. This makes I a lo-
cal information measure (The Shannon entropy measure −

∫
dxp(x) ln p(x) is, by

comparison, well known to be global [1, 6, 7].)

15.4.6 Multidimensional Systems

Many systems have multiple dof s: they are multidimensional in coordinates x≡
x1, ...xM, and have many complex components ψn(x), n = 1, ...,N/2. The ampli-
tudes ψn are constructed out of N purely real amplitudes qn via (15.25) below.
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As discussed below (15.12), these component amplitudes are regarded as indepen-
dent, in the sense of maximally adding to information I, so that the principle (15.12)
attains a ‘strong’ extremum and consequently the system obeys strong stability.

15.4.7 Fisher Information Capacity

Consider a system whose component amplitudes qn(x), n = 1, ...,N do not have
overlapping support regions (for example, N spatially separated triangle functions).
The individual contributions (15.20) from each component then maximally adds
[1, 6] giving a net information

I = 4N
∫

dx
N/2

∑
n=1
∇ψ∗

n (x) ·∇ψn(x), x ≡ x1, ...,xM, (15.21)

dx ≡ dx1 · · ·dxM, ∇≡
(
∂
∂x1

, ...,
∂
∂xM

)
, N ≥ 2.

(these generally complex amplitudes ψn(x) defined at (15.25)). The del ∇ is a gen-
eralized gradient operator. Equation (15.21) defines an I that is again an L2 measure.
Also, as a maximized version of the actual Fisher information, I is a Fisher channel
capacity (borrowing terminology from Shannon information theory). This is for the
channel (15.1).

15.4.7.1 Mathematical Trace Form

The form (15.21) of the information is also, from its form, the trace of a matrix –
the Fisher information matrix [6, 14, 17]. It derives as well from the decoherence
matrix of quantum physics [6]. In a much earlier work [22], it was shown to derive
as a sum of Weizsäcker kinetic energy terms. Most recently, it has been shown [23]
that the temperature of a classical statistical system in a generally non-equilibrium
state can be represented as the trace of its Fisher information matrix, although not
in x space as here, but in momentum space.

15.4.7.2 Swiss Watch Paradigm

There are two important ramifications of such nonoverlapping support regions. First,
since their individual information maximally add, they describe not only maximum
information but also, by inference, a maximally structured system. An example is
a classic Swiss watch mechanism with N parts. Here, the non-overlap requirement
means that the N individual parts are specified to lie within specific regions within
certain tolerances. The tighter the tolerances are the higher the total I becomes (as
well as the structural quality of the watch).
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Furthermore, such a non-overlapping system of amplitudes qn(x) can actually be
physically realized by the EPI output wave equation (e.g. the SWE). These second-
order differential equations define amplitudes ψn(x,t) in space and time, and re-
quire the user to fix initial-condition wavefunctions ψn(x,0). This permits us to set
ψn(x,0) ≡ qn(x), our required separated amplitudes! The proviso is that the phase
part of ψn(x,0) vary smoothly with x, and this can always be accomplished by the
use of generalized functions. For example, if the ideal ψn(x,0) are to be separated
triangle functions, we choose to convolve these with a Gaussian of variance σ2. For
any small, but finite, value of σ2 the phase varies smoothly over the complete range
of x, as required. In summary, the entire EPI measurement-perturbation description
is not merely a convenient ‘thought experiment’ for purposes of computing physics:
it physically ‘happens’ for a properly prepared initial solution state ψn(x,0).

Note that in the special case M = 1, N = 1, ψ ≡ q (real), (15.21) devolves into
the direct (non-channel capacity) form (15.20) of Fisher.

15.4.8 Scope of Solutions

Principles (15.11) and (15.12) result from the worldview taken. They comprise the
two facets of a learning based (epistemic) approach to physics called EPI. This ap-
proach has been used to derive most of the laws of physics [1, 6, 7], including a
key law of quantum gravitation – the Wheeler–DeWitt equation. It has also derived
many laws of biology [3, 6, 7, 9] including a new uncertainty principle describing
population growth, and laws of economics [5–7], medicine [4, 6–8] and other sci-
ences [6, 7]. These include already-known laws and new laws. The premise of an
information-oriented universe is thereby verified as well empirically.

What generally are the two information I,J in principles (15.11), (15.12)? Infor-
mation I is, regardless of application, of the one basic form (15.8) or its generaliza-
tion (15.21). That is, it exists as a measure of the quality of data, independent of
their particular physical nature. This makes sense since the observation by B is only
of output data from A. By comparison, the source information J characterizes A and
hence the particular effect. So far, all we know about J is that it has the general
form (15.15). Thus, for any given problem, it is easy to find I, but how is J found?

15.5 Finding Source Information J

J represents the information provided by the unknown law. But, a longstanding
problem of information theory is:

How much information does a scientific law contain?

Our epistemic viewpoint suggests a route to the answer(s). The route is provided
by the nature of the prior knowledge (called physical insight or biological insight or
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etc.) that is at hand. As conceived by the philosopher-physicist Peirce (1839–1914),
there are three basic types, giving rise, respectively, to three levels of accuracy in
the EPI solutions. In descending order of accuracy, these are (a) abduction, (b) de-
duction, and (c) induction, discussed next. (Examples of J for various scenarios are
in the fourth column of Table 15.1).

15.5.1 Exact, Unitary Scenarios: Type (a) Abduction

Cases where there is an observable space that is unitary (say, via Fourier transform)
to data space allow for complete recovery of the source information, i.e. I = J, and
consequently a fully accurate estimate of the unknown law. In analogy with Peirce’s
corresponding term, this is called ‘abduction’ in the sense of a first, or primary,
principle of truth. It is discussed next.

L2 measures of the form (15.21) are fundamental to all physics. These occur
in observable spaces, are length-preserving, and hence are invariant under unitary
transformation U . Two such spaces are space–time and momentum–energy, respec-
tively. As required, these are connected by a unitary Fourier transform and are ob-
servable (why the latter, is discussed below (15.30). This case is well-known to hold
in quantum mechanics (15.27) but, interestingly, also holds in financial investment
(15.36).

In these unitary scenarios, by the length-preserving property, J = I so that the
zero-property (15.11) of EPI identically holds, with κ = 1. Also, the EPI variational
principle (15.12) may be shown to hold [6, 7, 14]. Indeed, both (15.11) and (15.12)
hold independently, so that they give generally different (but consistent) solutions
q(x). Examples [1, 6] of such solution pairs (15.11), (15.12) are, respectively the
Klein–Gordon and Dirac equations of quantum mechanics; and [6] Newton’s second
law f = ma and the Virial theorem of classical mechanics.

An exciting prospect is that new physical effects can be mathematically defined,
and therefore anticipated, by seeking out new unitary transformations and apply-
ing them to EPI. Again, for this approach to be useful both data space and trans-
form space must be independently observable. Finding such transform spaces of
course takes insight. Interestingly, one for optimum economic investment was re-
cently found ([7], or Sect. 15.8).

15.5.2 Inexact, Classical Scenarios: Type (b) Deduction

Obviously, exact (type b) solutions are preferred. However, these require the exis-
tence of an observable space that is unitary to measurement space. What can be done
if such a space is not known? Without it, the full amount J = I of information is no
longer received. Hence, now κ < 1, with κ unknown, and an inexact solution can
only be obtained.
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Such solutions, in fact, turn out to describe classical levels of physics, for ex-
ample gravitation and electromagnetics [6]. Here, J and κ must be solved for, by
simultaneous solution of (15.11) and (15.12). The lower level of prior knowledge
now disallows finding two distinct solutions (15.11) and (15.12). They are effec-
tively “blurred together” into one composite law that obeys both. Therefore, this is
called a self-consistent EPI solution.

In order to obtain a self-consistent solution q(x) a special form of prior knowl-
edge must be present. This is a deduction in Peirce’s terminology, since the prior
knowledge is generally deduced from other properties of the effect. The deduction
is expressed as an invariance principle, such as continuity of flow. (In principle an
equivalent symmetry given by Noether’s theorem could also be used.) Past exam-
ples are continuity of flow and gauge invariance [6], used in derivation of the laws
of classical gravitation and classical electromagnetics. The efficiency variable κ is
found to be exactly 1/2 in these cases, rather small considering how accurate the
solutions are. Table 1 shows a number of examples of these type (b) solutions.

15.5.3 Empirical Scenarios: Type (c) Induction

As one might expect, the lowest level of accuracy follows in scenarios where there
is no knowledge of the physics of the source. There is no model for J, and neither κ
nor J can be solved for. The only knowledge there is of the source is of an indirect
nature: data values Fm, m = 1, ...,M from the unknown law. This occurs, e.g., in
econophysics ([5–7] or Sect. 15.10) where the “technical viewpoint” of investment
assumes that price data alone suffice as prior knowledge (effective invariants). Or,
in thermodynamics [2, 7], where the invariants are extrinsic measurements of mean
values.

But even with no model for J it can be replaced with what is known, namely, a
sum of data constraint terms. (See one example (c) in Table 15.1.) Principle (15.12)
then becomes,

I− J = extremum, where J =∑
m
λm

[∫
dx fm(x)p(x)−Fm

]
. (15.22)

The constants λm are called ‘undetermined multipliers.’ These are found by demand-
ing consistency of the integrals in (15.22) with their corresponding data Fm. This is a
generally nonlinear problem, but easy enough to numerically solve, for example by
Newton–Raphson methods. However there is an essential departure in the meaning
of these solutions from those preceding:

Since, as before, J does not depend upon p′(x), for a real coordinate x the ex-
tremum in I− J is still a minimum. However, the bracketed quantities in (15.22) are
now all zero at solution. Therefore, Jis fixed at value zero. Then only quantity I is
minimized in (15.22), and it is of course no longer true that I � J at solution. To
the contrary, I�J. This minimized value of I must cause a poor estimate of a, and



15 EPI as a Principle of Universal Stability 371

this is mirrored in poor accuracy for the estimated law p(x) as well. In fact since
I measures the gradient content in p(x), its output shape will merely be as smooth
as is possible. With I so minimized, EPI becomes a principle of minimum Fisher
information (MFI) [6, 19]. However, surprisingly, MFI solutions often agree well
with ground truth (see [5, 7] or Figs. 15.1 and 15.2). This agreement probably traces
from the fact that groundtruth frequency laws are often themselves quite smooth, at
least approximating a state of minimum Fisher information.

15.5.4 Second Law of Statistical Mechanics

Recall that, at the outset, system variable x could be regarded as generally either
random or deterministic. Temporarily consider here a case where x is random.

What if a purely statistical, classical system, as described above by (15.22), is
perturbed? In what direction will p(x) go – toward maximum disorder or toward
minimum disorder? It is shown [2, 6, 7] that I monotonically decreases

dI ≤ 0 (15.23)

with the time. That is, the Fisher information goes down, describing ever increas-
ing disorder. This holds under the same statistical conditions for which entropy
increases and the second law holds. These conditions are where p(x|t) obeys a
Fokker–Planck (general diffusion) equation.

15.5.5 Resulting Information Game

We found in the preceding that EPI-MFI solutions tend to give maximally spread-
out or blurred q(x) or p(x) curves. This blurring effect also implies that an act of
observing is effectively a move in a mathematical game [20] with nature [1, 6, 7].
The game is a mnemonic device for capturing the significance of an EPI solution.
It is played between the observer and a “demon,” both of which try to maximize
their information levels, respectively I and J. The conflict of the game arises out of
the fact that it is a zero-sum game (15.11), whereby any information gain I of the
observer is at the expense J of the demon (nature). Hence, the demon minimizes his
information payout. This is by maximally blurring the output law. The final move
of the game (irrespective of who moves first) is at the EPI solution “point” of the
playing board.
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15.5.5.1 Game Corollary, Finding Unknown Constants

In many EPI derivations the output amplitudes contain unknown constants, usually
arising out of integration of given Euler–Lagrange equations. We have found [6]
that such a constant – call it b – can, in fact, usually be inferred, and by a simple
approach that directly traces from the knowledge game. It amounts to a second use
of EPI. See also [21].

Assume that the game has been ‘played’, an EPI-MFI solution p(x) formed.
However, the solution contains an unknown constant b. What value should be as-
signed to it? The answer is obtained by consistently continuing the previous ap-
proach that found p(x).

That is, K is evaluated at the EPI solution p(x), the latter containing an unknown
constant b. This results in a function K(b). Once again assume that K is stable to
variation, now in b. The stability condition becomes δK(b)≡δ (I(b)−J(b))≡0. This
is a new EPI problem. The source information J(b) here represents prior information
about b. However, in most scenarios nothing a priori is known about b. That is,
identically J(b) = 0, and a type (c) induction solution is the only hope. Then the
stability condition simplifies to merely δ I(b) = 0 or, since the only thing left to vary
is b,

∂ I(b)/∂b = 0. (15.24)

Experience [6, 21] with solutions b to (15.24) is that they minimize I. It is as if the
demon gets a final move in the knowledge game and, being a “demon,” adjusts b
such that the output law p(x) is maximally blurred, bequeathing minimal informa-
tion to the observer.

In summary of the demon’s actions to this point, he first optimizes I to be max-
imally close to the source information J. This can find p(x) to within an arbitrary
constant b. Then, to find b he minimizes I(b) through choice of the constant, in a
second knowledge game. In this way a kind of minimax solution is found.

15.5.5.2 Predicting Cancer Growth

Another application of (15.24) is to in situ cancer growth [4, 6, 7]. Here a type
(b) EPI solution is sought, giving a growth law p(t) = Ctb, C = (b + 1)T−(b+1),
b an unknown constant. The corresponding information is computed via (15.14) as
I(b) = T−2b2(b+1)/(b−1). Differentiating as in (15.24) directly gives the solution
b = 1

2 (1 +
√

5) = 1.618... ≡ Φ , the Fibonacci golden mean. This growth law is
confirmed by clinical data [4, 6].

15.5.5.3 Finding Unknown Constants and Functions

This approach may be generalized to any other EPI solution type (a), (b) or (c). Also
the output p(x) may contain any number of unknown constants and functions f(x).
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To find these unknowns, as in the preceding the output p(x) is substituted into the
functionals I and J, and the constants and functions are now serially or simultane-
ously found. This is by varying them so as to again satisfy δ (I( f (x))−J( f (x)) = 0.
Used generally in this way, the Game corollary defines a generalized EPI process
for learning nature. The corollary has been widely applied [6, 7, 21]. An example
follows.

15.5.5.4 Predicting the Quarter-Power Laws of Biology

Consider the problem of determining the size of a given biological attribute, such
as metabolism rate, for an organism of mass x. The initial EPI solution is found
to be f (x)b,b = const., f (x) unknown (Chap. 8 of [7]). Using EPI a second time
by solving δ (I( f (x))− J( f (x)) = 0 through variation of f (x) gives the (correct)
answer that f (x) = x, the mass. Finally, b is found by the Game corollary (15.24)
as essentially a third variational problem. The solution is b = n/4, n = 0,±1,±2, ...
The net result xn/4 = pn(x) defines the famous quarter-power laws of biology.

15.6 Some Other Past EPI Applications

Table 1 summarizes many past applications of EPI. For each, it lists the source
effect to be derived (col. 1), the reference for the derivation (col. 2), the type of
unitary transformation that is used (col. 3), the source information functional J (col.
4) and the type of prior knowledge (col. 5).

15.7 Schrodinger Wave Equation: A Type (a) Abduction Solution

We use the EPI approach to derive the nonrelativistic wave equation ([6], Ap-
pendix D1). This arises from the simplest possible measurement scenario, a one-
dimensional observation y = a+ x of the ideal position a of a particle of finite mass
m. The particle is moving in a known field of potential V (x) and total energy W ,
and is in a pure state. The state is unknown, described by N unknown amplitudes
qn(x),n = 1, ...,N. For convenience, these are packed as complex amplitudes

ψ1 ≡ N−1/2 (q1 + iq2) ,ψ2 ≡ N−1/2 (q3 + iq4) , ...,ψN/2 ≡ N−1/2 (q2N−1 + iq2N) ,
(15.25)

where i ≡
√
−1. The ψn and N are the new unknowns of the problem. Using these

in (15.21) gives

I ≡ 4N
∫

dx
N

∑
m=1

q′ 2
m = 4N

∫
dx

N/2

∑
n=1
ψ∗′

n ψ ′
n. (15.26)
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Primes denote derivatives d/dx. Note that each degree of freedom ψn represents two
consecutive dof s qm, so that N must be even.

A unitary space μ exists that is conjugate to measurement space x. It is momen-
tum space μ , and the unitary transform is

ψn(x) ≡
1√
2π h̄

∫
dμϕn(μ)exp(iμx/h̄), (15.27)

the Fourier one. Function ϕn(μ) is a corresponding amplitude function in μ space.
The constant h̄ is Planck’s constant divided by 2π. Here we take (15.27) as a given,
but mention in passing that it itself has been recently derived, again using EPI [24].

Cautionary note. A casual look at (15.27) suggests that it, by itself, implies the
SWE. This is by merely (1) differentiating (15.27) twice by d/dx, thereby bringing
down a factor μ2 inside the right-side integral; (2) using that the kinetic energy KE
≡ μ2/2m = W −V (x); (3) taking this outside the integral sign since W −V (x) is not
a function of μ ; and (4) using (15.27) as an identity. But in fact W −V (x) equals the
KE classically, but not quantum mechanically. This is by the following: Coordinates
x and μ are not so-called superselection variables [25], i.e. do not commute with
one another. Therefore, they obey the Heisenberg uncertainty principle. Then, with
μ a given value in the integrand of (15.27), and with W and function V (x) assumed
known, if μ2/2m =W −V (x) held then the value of x would be precisely known. But
this violates the Heisenberg uncertainty principle. Therefore the casual approach
does not work.

Given (15.27), this an EPI approach (a) of abduction. Then all the pre-existing
information J is obtained as I. Hence, J equals form (15.26) as well. However, if J
is so expressed identically, then identically I − J = 0 for all choices of ψn(x). No
extremum condition exists. Obviously, J must somehow be re-expressed as a func-
tional that does not just identically equal I. To accomplish this we use the unitary
condition (15.27). Substituting it into (15.26) gives (via Parseval’s theorem)

J =
4N
h̄2

∫
dμμ2

N/2

∑
n=1

|ϕn(μ)|2 . (15.28)

But by (15.25),

N/2

∑
n=1

|ψn(x)|2 =
1
N

N

∑
n=1

q2
n = p(x). (15.29)

Also, by Fourier condition (15.27), the area under the sum ∑n |ϕn(μ)|2 obeys Parse-
val’s theorem and, hence, equals the area under ∑n |ψn(x)|2. By (15.29), this is the
area under p(x), which, by normalization, is unity.

Therefore ∑n |ϕn(μ)|2 likewise obeys normalization and is a probability law,
p(μ). Using this in (15.28) gives J as essentially a mean-squared momentum value,

J =
4N
h̄2

〈
μ2〉 . (15.30)
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Note that this quantity physically exists since μ space is observable. This is essen-
tially why all such unitary spaces must be observable in EPI applications.

Now, in distinction from the erroneous step in the Cautionary note above, aver-
ages of quantum coordinates do obey classical physics (Ehrenfest theorem), so that〈
μ2
〉

= 2m〈W −V (x)〉 . Using this in (15.30) gives

J =
8Nm

h̄2 〈W −V (x)〉 ≡ 8Nm
h̄2

∫
dxp(x)(W −V (x)) (15.31)

=
8Nm

h̄2

∫
dx

N/2

∑
n=1

|ψn(x)|2 (W −V (x))

by use of (15.29). Then by (15.26) the EPI principle (15.12) becomes

I− J = 4N
∫

dx
N/2

∑
n=1

[
ψ∗′

n ψ ′
n −

2m
h̄2 |ψn(x)|2 (W −V (x))

]
= extremum. (15.32)

This is a problem (15.16) in the calculus of variations. The net Lagrangian (inte-
grand) is

L =
N/2

∑
n=1

[
ψ∗′

n ψ ′
n −

2m
h̄2 ψ

∗
nψn (W −V (x))

]
. (15.33)

The Euler–Lagrange solution ψn is formed as in (15.17), as

ψ ′′
n +

2m
h̄2 (W −V (x))ψn = 0, n = 1, ...,N/2. (15.34)

This is the SWE without the time, also called the “Schrodinger energy eigenvalue
equation.” It represents the payoff point of this particular information game.

A remaining problem is to determine N. For this we use the Game corollary
(Sect. 15.5.5.1) with b = N, according to which N is found through minimizing I.
Since I = J here, (15.28) represents I as well as J. Every term in the sum (15.28)
additively contributes to the total I. Also, we noted before that N must be even. Thus
it must be the smallest even number, N = 2. Thus, the subscript n may be suppressed,
and the measurement scenario obeys one complex degree of freedom ψ(x). This is
the usual result.

A fully relativistic analysis [1, 6] of this measurement problem, now with space–
time coordinates, yields the Dirac– and Klein–Gordon equations, and

I = J = 4N
(mc

h̄

)2
(15.35)

where c is the speed of light. Thus, where there is high mass there is high informa-
tion about space–time. Since our universe has very high mass, it therefore contains
a massive level of information I (even ignoring other information sources such as
charge, current, etc., which further add).
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15.8 Optimum Investment of Capital: Type (a) Abduction
Solution

Can EPI apply to economics? Economics is certainly an example of a participatory
universe, i.e. where the observer is an investor who affects its laws. A major prob-
lem of finance is to find an optimal program K(t) for the investment over time t of
capital K in the stock of a firm. This may, in fact, be found as a type (a) abduction
solution. The solution is verified by the main result below, the known law of op-
timum investment (15.40). Since the development is virtually the same as for the
SWE, we can be brief here. (Full details are in [7]).

Let program K(t) have a time rate of change K̇, and obey an amplitude law
ψ(K(t))≡ ψ(K) that has a Fourier conjugate amplitude θ(μ(t))≡ θ(μ), obeying

ψ(K) = (2πb)−1/2 eiρK/b
∫

dμθ(μ)eiμK/b, b = const., p(μ) = |θ(μ)|2 (15.36)

(cf. (15.27) ). The space μ is that of investment momentum μ ≡mK̇. As with particle
momentum (15.41), m is an inertial mass, here of of investment. Also, ρ represents
a constant rate of return in the absence of investment, the default rate. As with
the quantum problem, a pure state of the system is sought. Let this have a single
complex component ψ(K).

Regarding the changes K̇, there is cost to changing capital stock, described by
a function ϕ(K̇) called the adjustment cost function. By comparison, the economic
source allowing for investment is the production function F(K). This represents the
known net income as a function of capital stock K. Hence source information J must
be constructed from F(K). As I is always an expection we construct J as one,

J ≡ 4 < F(K(t)) >= 4
∫

dtF(K(t))P(t), P(t) = ρ exp(−ρt) (15.37)

(cf. (15.30)). The probability P(t) of investing amount K at time t is taken as expo-
nential, P(t) = ρ exp(−ρt). The information I is now

I = 4
∫

dK|ψ ′(K)|2 = 4b−2
∫

dμ |θ(μ)|2(μ+ρ)2 = 4ρb−2
∫

dt (μ+ρ)2 exp(−ρt).

(15.38)

The first equality is by (15.26) with N = 2, the second is by (15.36), and the third
is by the far-right (15.37) and assuming ergodicity to hold. Combining (15.37) and
(15.38) in the EPI principle (15.12) defines a variational problem

I− J = ρ
∫

dt
[
F(K(t))−b−2(μ+ρ)2]exp(−ρt) = extrem. (15.39)

Using μ = mK̇ and varying function K(t) gives the general solution

..
K−ρK̇ +2−1(b/m)2F ′(K)−m−1ρ2 = 0 (15.40)
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(cf. 15.34). Most often the adjustment cost function is quadratic, ϕ(K̇) = (m/b)K̇2,
since this represents a constant cost/time. Then (15.40) becomes the famous Tobin
q-theory of optimum investment gain [26]. Thus, optimum knowledge in the face of
uncertainty equates to optimum gain of capital.

15.9 Newton’s Second Law: Type (b) Deduction Solution

Suppose we now want to ascertain the classical equation of motion for a particle
of mass m ([6], Appendix D2). Let it be moving at nonrelativistic speed in a con-
servative field with potential V (x). Since the particle is classical, it has a definite
trajectory x(t) defining position x at time t over a total time interval (−T,T ). Its
linear momentum obeys

μ = μ(t) = mẋ(t), (15.41)

the dot denoting a time derivative d/dt.
We find the answer as a deduction from the preceding SWE derivation. That

obeyed I = J and (15.30) with N = 2,

I = J =
8
h̄2 < μ2 > . (15.42)

The deduction arises out of taking the classical limit of (15.42). The average in
(15.42) is explicitly over all momentum values. Let the particle’s momentum values
obey ergodicity. Then the average is equivalently over all time as well,

I =
8
h̄2 < m2ẋ2(t) >=

8m2

h̄2 lim
T→∞

T∫
−T

dt p(t) ẋ2(t). (15.43)

Here p(t) is the density function ruling time values. Regard time in the usual classi-
cal sense, i.e., each time interval (t, t +dt) occurs once and only once, so that these
are uni f ormly dense over the total time interval, i.e., p(t) = (2T )−1 for −T ≤ t ≤ T,
or 0 for other t. Using this in (15.43) gives

I =
8m2

h̄2 lim
T→∞

1
2T

T∫
−T

dt ẋ2(t). (15.44)

A well-known classical limit of quantum mechanics is obtained by letting h̄ → 0.
Parameter T is already approaching infinity in (15.44). Therefore, a definite limit
for h̄2T in (15.44) can result, by letting h̄ → 0 and T → ∞ such that h̄2T = A2, a
finite constant. Then (15.44) becomes
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I =
4m2

A2

T∫
−T

dt ẋ2(t). (15.45)

T is regarded as large in this and all further integrals. With I known, we now seek
the functional J. Generally represent the bound information as

J ≡ 8m
A2

T∫
−T

dt j(x), x ≡ x(t) (15.46)

with j(x) some unknown information density. As the information source, j(x) de-
fines this particular (Newtonian) problem. Then by (15.45) and (15.46) the EPI ex-
tremum condition (15.12) is

I− J =
4m2

A2

T∫
−T

dt
[

ẋ2 −2
j(x)
m

]
= extremum. (15.47)

The extremum is through variation of the trajectory x(t). The effective Lagrangian
L for the problem is the integrand of (15.47). The Euler–Lagrange solution (15.17)
is directly m

..
x =−∂ j(x)/∂x. This is Newton′s second law

m
..
x =−dV (x)

dx
≡ F(x), (15.48)

for an information density defined as j(x)≡V (x), x ≡ x(t).

15.10 Financial Laws: Type (c) Induction Solutions

Two extreme strategies for estimating the financial value (commonly called valu-
ation) of a security such as a stock or bond are the fundamental approach and the
technical approach. The fundamental approach takes into account all details of the
underlying business on the microlevel – its yearly sales, debts, profits, etc. This is
valuation taking into account all sources of valuation. From the perspective of EPI,
this implies the existence of a well-defined source J of information on valuation.
Indeed, a type (a) abduction analysis of optimal investment (but not valuation) was
made in Sect. 15.8 above out of knowledge of a source function J.

By comparison, a source function J for determining valuation does not seem to
exist. Hence a purely technical approach to valuation must be taken. This is based
entirely on its past numerical performance, e.g. its price fluctuation curve. This cor-
responds to an EPI problem (15.22), rewritten here in terms of amplitude function
q(x) as
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I− J = minimum, where I = 4
∫

dxq′ 2(x), J =∑
m
λm

[∫
dx fm(x)q2(x)−Fm

]
.

(15.49)

The latter has a Lagrangian and Euler-Lagrange solution

L = 4q′ 2(x)−∑
m
λm fm(x)q2(x),

d
dx

(
∂L

∂q′

)
− ∂L

∂q
= 0. (15.50)

Using the first equation in the second gives a solution

q′′(x)− q(x)
4 ∑m

λm fm(x) = 0. (15.51)

Let us consider the particular problem of estimating p(t), the density function for
a perpetual annuity (one that pays interest forever). Here general coordinate x ≡ t.
Suppose that the knowledge at hand is its “value”, defined as its longterm mean
interest τ ≡

∫
dtt p(t) (integration limits of 0,∞). Then the problem (15.51) becomes

q′′(t)− q(t)
4
λ t = 0. (15.52)

This differential equation has as its solution an Airy function of the second kind
Ai(c1t), so that the probability is p(t) = c1Ai2(c2t). The two constants c1,c2 are
determined by normalization and the value of τ . The curve is plotted in Fig. 15.1
(labelled as Fisher curve). It is compared with the simple exponential-answer to the
same problem using MaxEnt (the principle of maximum entropy) in place of MFI.

Fig. 15.1 Outputs by EPI (solid) and by MaxEnt (dotted)
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Fig. 15.2 Comparison of MFI, MaxEnt outputs, with Lognormal groundtruth

Both curves are very smooth, and therefore unbiased, although the MFI answer is
somewhat smoother. Here the groundtruth curve is not known.

A case where the groundtruth curve is known is in options pricing. Here the
theoretical answer obeys the Black-Scholes answer of a log-normal curve. Consider
the case of a so-called “European call option.” This obeys a constraint

c(k) = e−r(t)t
∫ ∞

k
dxp(x), (15.53)

where k is the “strike price”, t is the time to expiration of the option, and r(t) is
the “risk-free spot rate.” We assume c(k),k,r(t) and t to be known, and want to find
p(x) [details are in [6], pp. 348–351]. The corresponding Euler–Lagrange solution
(15.51) is

q′′(x) =
q(x)

4

[
λ0 + e−r(t)t

M

∑
m=1
λm max(x− km,0)

]
. (15.54)

A representative case is where there are three strike prices k = 0.95,1.00 and
1.05 (all in dollars). The corresponding prices by the Black–Scholes model are
0.105,0.080 and 0.059, respectively. Results are shown in Fig. 15.2. Groundtruth
(dash-dot) is the Lognormal curve for this case. The MFI curve (solid, labelled as
Fisher curve) is overall close to the groundtruth, including required skewness to the
right. The MaxEnt curve (dotted) is, by comparison, a poor approximation, with
spurious jagged peaks.
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15.11 Summary

The following are the main points of the approach:

1. By Popper’s criterion [16], a scientific effect is a body of theory describing a
hypothetical system A that is verified under observation (by a system B). The
observation is of a required system parameter a (Sect. 15.2). Observation results
in perturbation of the total system AB.

2. The perturbation causes a change in information about a. In order for the effect
to persist, the information change I − J must be stable (Sects. 15.1 and 15.2.3)
in the presence of maximum system structure (Sect. 15.4.7.2). This is equivalent
to the EPI principle (15.12), with I obeying (15.21).

3. Nature and the observer thereby play complementary roles in the joint sys-
tem AB. This establishes a participatory nature to science (Sects. 15.2.1 and
15.2.2.3). This participatory aspect is quantified as the EPI principle.

4. EPI alternatively arises in a scenario of unitarity (Sect. 15.1), where a space that
is unitary to observation space is likewise an observable. In such scenarios the
system AB is still assumed to be perturbed, but no assumption 2 (preceding) of
stability need be made.

5. The law p(x) is not necessarily a probability law, since x is not necessarily ran-
dom (Sect. 15.2.2.1). It may, e.g., follow a definite - but unknown – “trajectory”
x(t) in time. In particular, the quantum wave equations that EPI derives need
not describe a random effect x. A. Einstein spent the last 20 years of his life
seeking a basis for quantum theory that does not assume intrinsic randomness
in x. The EPI viewpoint effectively accomplishes this on the level of finding
p(x), although not x(t). Interestingly, EPI has the further capability of finding
deterministic effects such as x(t) (e.g., Chap. 8 of [7]) provided an appropriate
J(a) can be formed. Thus, it can in principle furnish a complete description of
quantum mechanics, as both a statistical and (possibly) deterministic theory.

6. The informations I and J are uniquely derived to be Fisher information
(Sect. 15.3).

7. In that J must be computed for each new observed effect, it represents the
amount of Fisher information that exists in a law of science (Sect. 15.5), some-
thing that has not been defined before.

8. EPI is fundamentally epistemic, and therefore requires some prior knowledge
of the state a. According to its level of quality, J(a) and the output solution
are computed at three levels of accuracy. In descending order of quality, these
knowledge types are called: Type (a) abduction (Sect. 15.5.1), where a uni-
tary transformation space is known, giving a perfect answer for p(x). Type
(b) deduction (Sect. 15.5.2), where an invariance principle is known, giving a
slightly imperfect answer, e.g. the classical laws of physics: of classical me-
chanics, electromagnetism and gravitation. Type (c) induction (Sect. 15.5.3),
where merely empirical data, i.e. samples from the unknown law, are known,
so that the EPI solution is merely optimally smooth. As examples, Figs. 15.1
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and 15.2 show typical type (c) solutions [6, 7] governing the prices x of eco-
nomic issues such as stocks (Fig. 15.2), options, etc.

9. I obeys the second law of statistical mechanics (or thermodynamics) if p(x|t)
obeys the Fokker–Planck equation (Sect. 15.5.4). Both information I and Shan-
non entropy thereby predict disorder to rise under the same F–P conditions.
Therefore, entropy is not the sole measure of physical disorder.

10. The EPI variational principle I−J = extremum has superficially the same form
as the famous Lagrangian action approach to physics. However, the two ap-
proaches differ: first, of course in basic meaning, but more importantly, in how
to effect a solution. For example, in type (b) scenarios functional J is actually
solved for (Sect. 15.5.2). By comparison, the action approach has no zero prin-
ciple to utilize and, hence, does not have a means of solving for the effective
J-term (usually, the second) in its Lagrangian.

11. EPI as a process is equivalent to a game of information maximization
(Sect. 15.5.5) played by both an observer and a “demon.” The observer gains
information I−J only at the expense of the demon. Therefore the observer tries
to observe data independently, so that their individual informations I maximally
add, while the demon tries to blur the data, minimizing the total. The resulting
game is zero- and fixed-point, and its solution point is the EPI solution.

12. The Game corollary (Sect. 15.5.5.1) describes a 2nd, or further, play of the game
for the purpose of evaluating an unknown constant b or function f (x) in the EPI
solution p(x) from the preceding play. This followup game proceeds as in the
first, except that now the output is b or f (x). In most cases nothing is a priori
known about b or f (x) so that for this game J = 0. It results that p(x) is now
maximally blurred through choice of b or f (x). This is a powerful approach
for evaluating these unknowns [6, 7, 21]. The game may be played serially any
number of times as needed to evaluate unknown quantities from the previous
solution. This provides a sequential framework for learning natural law.

13. EPI is itself a net law AB consisting of a body of theory A that has long-
confirmed effects [1–14] observed by physicists B. Thus EPI obeys Popper’s
criterion for a scientific law. In fact, the breadth of phenomena derived by EPI
indicates that it is the universal abduction, inclusive of all others.

15.12 Some Speculations

The universal physical constants c, h̄,e, etc., have long been regarded as a priori
unknown, only capable of empirical evaluation. The Game corollary is a procedure
for, in principle, finding these constants. Can they, by the use of suitable models for
corresponding levels of prior knowledge J(c), J(h̄), J(e), etc.?

We found that the received information I = J ≡ Imax for quantum systems. That
is, nature allows an observer to obtain the full amount of information that exists in
a system with non-overlapping wave functions (where the information maximally
adds). This implies maximally reliable data on the quantum (finest) level and, hence,
a universe that is maximally condusive to be understood through observation – a
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playground of information. These surely are conditions that favor the survival and
propagation of intelligent life forms. To what extent is this true, how does it fit into
natural selection, and can it be enhanced to promote further human progress?

The Cramer–Rao inequality (15.9) gives rise to the Heisenberg uncertainty prin-
ciple [1, 6]. It also gives rise to other uncertainty principles – of population biology
[3, 7], cancer growth [4, 7] and financial investment [7]. It should be capable of
application in like manner to other fields of science as well.

So far, type (a) unitary-transformation cases have been limited to cases of angular
rotation and Fourier transformation. But according to the theory, every other observ-
able unitary transformation should likewise result in a correct answer for system dy-
namics. There are in principle an infinity of these. Any of those whose observability
is confirmed ought to describe new science in its EPI output.

Going one step further, perhaps what we call ‘the laws’ of science are but actually
default laws. In fact, EPI potentially allows one to operate in a ‘design mode.’ Here
the observer works backward from a desired answer for system dynamics to the
unitary transformation that gives rise to it. This would amount to a kind of nature on
demand, a fascinating prospect.
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B. Mohr [Paul Siebeck], Tübingen, 1984). Engl. transl: The Logic of Scientific Discovery
(Hutchinson, London, 1959)

17. Van Trees, H.L.: Detection, Estimation and Modulation Theory, Part I (Wiley, New York
1968)

18. Frieden, B.R.: Probability, Statistical Optics and Data Testing, 3rd ed. (Springer, Berlin, 2001)
pp. 345, 389–395

19. Huber, P.J.: Robust Statistics (Wiley, New York, 1981) pp. 77–86
20. Morgenstern, O., von Neumann, J.: Theory of Games and Economic Behavior (Princeton Uni-

versity Press, NJ, 1947). See also an introduction, in H. Lass, Elements of Pure and Applied
Mathematics (McGraw-Hill, New York, 1957), 368–372

21. Venkatesan, R.C.: “Statistical cryptography using a Fisher-Schrodinger model,” in Founda-
tions of Computational Intelligence, IEEE Symposium FOCI 2007, Honolulu (IEEE, Hon-
olulu, HI, April 2007) 487–494; also, “Fisher–Schrodinger models for statistical encryption
of covert information,” in Quantum Information and Computation V, eds. E.J. Donkor, A.R.
Pirich and H.E. Brandt, in Proceedings of the SPIE 6573 (2007) 65730O

22. Sears, S.B., Parr, R.G., Dinur, U.: On the quantum-mechanical kinetic energy as a measure of
the information in a distribution. Israel J. Chem. 19, 165–173 (1980)

23. Narayanan, K.R., Srinivasa, A.R.: On the Thermodynamic Temperature of a General Distri-
bution. arXiv:0711.1460v2 [cond-mat.stat-mech] 10 Nov 2007

24. Frieden, B.R., Soffer, B.H.: De Broglie’s wave hypothesis from a Fisher-based approach to
random particle deflection (paper in preparation)

25. Cisneros, C., Martinez, R., Nunez, H., Salas, A.: Limitations on the superposition principle:
superselection rules in non-relativistic quantum mechanics. Eur. J. Phys. 19, 237–243 (1998)

26. Tobin, J.: A General Equilibrium Approach to Monetary Theory. J. Money, Credit, Bank. 1,
15–29 (1969)



Chapter 16
Entropy and Cloning Methods
for Combinatorial Optimization, Sampling
and Counting Using the Gibbs Sampler

Reuven Rubinstein

Abstract We survey the latest developments in the indicator-based minimum cross-
entropy and the MCMC methods for combinatorial optimization (COP’s), counting,
sampling and rare-event probability estimation as well as we present some new ma-
terial. The main idea of the indicator-based minimum cross-entropy method, called
the indicator MinxEnt, or simply IME, is to associate with each counting or op-
timization problem an auxiliary single-constrained convex MinxEnt program of a
special type, which has a closed-form solution. The main idea of the MCMC ap-
proach is to design a sequential sampling plan, where the “difficult” problem of
estimating rare-event probability and counting the cardinality of a set is decom-
posed into “easy” problems of counting the cardinality of a sequence of related sets.
Here we also propose a new algorithm, called the cloning algorithm. The main dif-
ferences between the existing and the proposed algorithm is that the latter one has a
special device, called the “cloning” device, which makes the algorithm very fast and
accurate. We present efficient numerical results, while solving quite general integer
and combinatorial optimization problems as well as counting ones, like SAT and
Hamiltonian cycles.

16.1 Introduction

In this paper we survey the latest developments in the cross-entropy combined with
importance sampling (IS) and the MCMC methods for combinatorial optimization
(COP’s), counting and rare-event probability estimation, as well as present some
new material. In particular, we propose a new algorithm, called the cloning algo-
rithm. The main differences between the existing and the proposed algorithm is that
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the latter has a special device, called the “cloning” device, which makes it very fast
and accurate for COP’s, counting, sampling uniformly on different complex regions,
and rare-event probability estimation. In particular, our algorithm is well suited for
counting the satisfiability assignments in a SAT problem and solving problems asso-
ciated with the Boltzmann distribution, like estimating the partition functions in an
Ising model and for sampling random variables uniformly distributed on different
convex bodies.

16.1.1 The IME Method

The main idea of the indicator-based minimum cross-entropy method, called the
indicator MinxEnt, or simply IME, is to associate with each counting or optimiza-
tion problem an auxiliary single-constrained convex MinxEnt program of a special
type, which has a closed-form solution. We prove that the optimal pdf obtained from
the solution of such a specially designed MinxEnt program is a zero variance pdf,
provided the “temperature” parameter is set to minus infinity. In addition we prove
that the parametric pdf based on the product of marginals obtained from the optimal
zero variance pdf coincides with the parametric pdf of the standard cross-entropy
(CE) method. Thus, we show that originally designed at the end of the 1990s as a
heuristic for estimation of rare-events and COP’s, CE has a strong connection with
the classic MinxEnt, and thus, has a strong mathematical foundation.

The crucial difference between the proposed IME method and its CE counterparts
lies in their simulation-based versions: in the latter we always require to generate
(via Monte Carlo) a sequence of tuples including the temperature parameter and
the parameter vector in the optimal marginal pdf’s, while in the former we can fix
in advance the temperature parameter (to be set to a large negative number) and
then generate (via Monte Carlo) a sequence of parameter vectors of the optimal
marginal pdf’s alone. In addition, in contrast to CE, neither the elite sample nor the
rarity parameter is needed in IME. As result, the proposed IME Algorithm becomes
simpler, faster and at least as accurate as the standard CE.

16.1.2 Randomized Algorithms for Counting

The main idea of randomized algorithms is to design a sequential sampling plan,
where the “difficult” problem of counting |X ∗| is decomposed into “easy” ones
of counting the number of elements in a sequence of related sets X1, . . . ,Xm.
Typically, randomized algorithms explore the connection between counting and
sampling problems and in particular the reduction from approximately counting the
cardinality of a discrete set to approximately sampling elements of the set, where
the sampling is performed by employing the classic MCMC method [15]. A typical
randomized algorithm contains the following steps:
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1. Formulate the counting problem as the problem of estimating the cardinality of
some set X ∗.

2. Find sets X0,X1, . . . ,Xm such that |Xm|= |X ∗|, and |X0| is known.
3. Write |X ∗| = |Xm| as

|X ∗|= |X0|
m

∏
j=1

|X j|
|X j−1|

, (16.1)

4. Develop an efficient estimator ζ̂ j for each ζ j = |X j|/|X j−1|, resulting in an
efficient estimator

|̂X ∗|= |X0|
m

∏
j=1
ζ̂ j, (16.2)

for |X ∗|
and similar for rare event estimation. Algorithms based on the sequential sampling
estimator (16.2) are called in the computer literature [5], randomized algorithms.

It is shown in [5, 6, 15] that many interesting counting problems like estimating
the volume of a convex body, the permanent of a non-negative matrix, counting the
number of independence sets in a graph can be put into the setting (16.1), (16.2).

Example 16.1 (Independent Sets). Consider a graph G = (V,E) with m edges and n
vertices. Our goal is to count the number of independent node (vertex) sets of the
graph G = (V,E). A node set is called independent if no two nodes are connected
by an edge, that is, if no two nodes are adjacent.

Consider an arbitrary ordering of the edges. Let E j be the set of the first j edges
and let G j = (V,E j) be the associated sub-graph. Note that Gm = G, and that G j is
obtained from G j+1 by removing an edge. Denoting X j the set of independent sets
of Gi we can write |X ∗| = |Xm| in the form (16.1). Here |X0| = 2n, since G0 has
no edges and thus every subset of V is an independent set, including the empty set.
Note that here X0 ⊃X1 ⊃ ·· · ⊃Xm = X ∗.

Example 16.2 (Knapsack Problem). Given items of sizes a1, . . . ,am > 0 and a posi-
tive integer b ≥ mini ai, find the numbers of vectors x = (x1, . . . ,xn) ∈ {0,1}n, such
that

n

∑
i=1

ai xi ≤ b.

The integer b presents the size of the knapsack, and xi indicates whether or not item
i is put into the knapsack. Let X ∗ denote the set of all feasible solutions, that is,
all different combinations of items that can be placed into the knapsack without
exceeding its size. The goal is to determine |X ∗|.

To put the knapsack problem into the frame work (16.1), assume without loss of
generality that a1 ≤ a2 ≤ ·· · ≤ an and define b j = ∑ j

i=1 ai, with b0 = 0. Denote X j
the set of vectors x that satisfy ∑n

i=1 ai xi ≤ b j, and let m be the largest integer such
that bm ≤ b. Clearly, Xm = X ∗. Thus, (16.1) is established again.
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Quite often randomized algorithms deal with estimation of a partition function
Z(λ ) of the system at some designed temperature via generation samples from the
Boltzmann distribution. This can be achieved by computing the ratios of the par-
tition functions similar to (16.1) for a carefully desired sequence of temperatures
0 = λ0 < λ1 < ... < λT = λ , also called cooling schedule, where Z(0) is trivial to
compute and the ratios Z(λi+1)/Z(λi) are easy to estimate by sampling from the
distribution corresponding to Z(λi) [15]. The challenging problem is to define a
“smart” cooling schedule. The best known is an adaptive one due to [15], which
has length T = O∗(

√
lnZ(0)). In particular for some well-studied problems such as

estimating the partition function of the Ising model, or approximating the number of
colorings or matchings of a graph, their [15] cooling schedule is of length O∗(

√
n),

where n is the size of the problem.
Here we propose a new algorithms, called the cloning algorithm. The main dif-

ferences between the existing and the proposed algorithm is that the latter has a
special device, called the “cloning” device, which makes it very fast and accurate.
In particular, our algorithm is well suited for counting the satisfiability assignments
in a SAT problem and solving problems associated with the Boltzmann distribution,
like estimating the partition functions in an Ising model and for sampling random
variables uniformly distributed on different convex bodies.

The rest of our paper is organized as follows. In Sect. 16.2 we show how rare-
event probability estimation and counting can be treated using the MinxEnt the clas-
sic MinxEnt program. In particular, we establish the connections between counting,
rare-events and MinxEnt, and we present our new MinxEnt method, which involves
indicator functions in the MinxEnt programs and is called indicator-based Minx-
Ent or simply the IME program. We also establish the relationship of the proposed
IME program to the earlier CE and MinxEnt ones treated in [9, 10]. In particular we
show that the optimal pdf obtained from the IME program coincides with zero vari-
ance importance sampling (IS) pdf, provided the temperature parameter λ =−∞. In
Sect. 16.2.2 we present our main IME algorithms for counting. Here we also show
how to count the cardinality of the set of feasible solutions of LIP’s (linear integer
programs) using the IME algorithm. Section 16.2.3 deals with IME for combinato-
rial optimization. Section 16.3 deals with the cloning method, for rare events, count-
ing, combinatorial optimization and uniform sampling on complex convex bodies,
involving sampling from the optimal zero variance IS pdf, rather than sampling
from the parametric distributions as CE and IME do. Our inspiration and moti-
vation comes from Botev and Kroese paper [1], to which we devote Sect. 16.3.3.
Here we also have a Sect. 16.3.1 on the work of Diaconis and Holmes [3] and Ross
[7], from which we adopted some basic ideas. Section 16.4 presents numerical re-
sults. In particular, Sect. 16.4.1 gives numerical results with the IME method, while
Sect. 16.4.4 gives numerical results with the cloning method. It follows from our
numerical results that for COP’s both methods work well, while for counting prob-
lems the cloning method often outperforms IME. Finally, in Sect. 16.5 conclusions
and some final remarks are given.
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16.2 The MinxEnt Method for Rare Events, Counting,
and Optimization

Here we establish the connection between rare-event probabilities, MinxEnt and
counting. In particular we discuss how to employ MinxEnt for estimating the fol-
lowing rare-event probability

� = Eu
[
I{S(X)≥b}

]
, (16.3)

were S(X) is quite an arbitrary sample function, X ∼ f (x;u), where f (x;u) is a fixed
distribution parameterized by a vector u, and b is large number, so � is a very small
probability.

To estimate � we can use the following non-parametric IS estimator

�̂ =
1
N

N

∑
k=1

[
I{S(Xk)≥b}

f (Xk;u)
g(Xk)

]
, (16.4)

or using a parametric one

�̂ =
1
N

N

∑
k=1

[
I{S(Xk)≥b}

f (Xk;u)
f (Xk; p)

]
, (16.5)

respectively. Here X1, . . . ,XN in (16.4) and (16.5) is a random sample from g(x)
and from f (x; p), respectively. Note that p is a parameter vector, that is, typically
different from u. At this point, it is crucial to note that in order to obtain a low-
variance estimator �̂ we shall use below g(x) and p obtained from the MinxEnt
program.

If not stated otherwise, we assume below that f (x;u) is a uniform distribution.
Since any counting quantity can be derived using the probability (16.3) (see [10]),
we shall use the same IS pdfs g(x) and f (x; p) given in (16.4) and (16.5) to estimate
the counting quantity, denoted by |X ∗|. It is readily seen [10] that using g(x) and
f (x; p), the estimator of |X ∗| can be written as

|̂X ∗| = 1
N

N

∑
k=1

I{S(Xk)≥b}
1

g(Xk)
, (16.6)

and as

|̂X ∗| = 1
N

N

∑
k=1

I{S(Xk)≥b}
1

f (Xk; p)
, (16.7)

respectively, provided again f (x;u) is a uniform distribution and X1, . . . ,XN is a
random sample either from f (x; p) or from g.
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16.2.1 The MinxEnt Method for Rare Events

To establish the connection between MinxEnt and rare-events (see [9]), note that
while estimating rare events probabilities using in (16.5) g(x) as IS pdfs, it is com-
mon to take the ones obtained from the solution of the following single constrained
MinxEnt program

min
g

D(g,h) = min
g

∫
ln

g(x)
f (x)

g(x)dx = min
g

Eg

[
ln

g(X)
f (x)

]
s.t. Eg[S(X)] ≥ b , (16.8)∫

g(x)dx = 1 .

In other words, one typically takes the optimal MinxEnt pdf g(x) derived from
(16.8), that is [13]

g(x) =
f (x)exp{−λS(x)}
E f [exp{−λS(X)}] , (16.9)

where λ is obtained from the solution of the following system of equations

E f [S(X)exp{−λS(X)}]
E f

[
exp

{
−λ jS(X)

}] = b (16.10)

as the importance sampling pdf in (16.4). Alternatively, if g(x) is a complex pdf
(which is typically the case), one can approximate g(x) by the product of its
marginal pdf’s gi(xi) = fi(xi, pi), i = 1, . . . ,n [9], that is, use (16.5) instead of (16.4),
where f (x, p) is a parametric pdf, that differs from the prior pdf f (x) = f (x,u) only
in p.

We shall explain now how to derive the optimal parameter vector p while
considering for simplicity the single constrained case (16.8) and assuming that
X = (X1, . . . ,Xn) is a binary random vector with probabilities with independent com-
ponents that is X ∼ Ber(u), u = (u1, . . . ,un).

Indeed, applying the CE method to

Z(λ ) = Eu [exp{λS(X)}] , (16.11)

which is called the partition function we immediately obtain

p j =
Eu[Xj exp{−S(X)λ}]
Eu[exp{−S(X)λ}] , j = 1, . . . ,n (16.12)

with λ satisfying (16.10) (for m = 1).
The diagram connecting rare-events, MinxEnt and counting can be represented as

{x ∈ R
n : S(x)≥ b}−→EuI[{S(X) ≥ b}]−→MinxEnt (16.12) −→Count as (16.7).

(16.13)
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Note that the p j’s in (16.12) were extensively used in [9] for rare-event estimation
and COP’s while updating the parameter vector p using simulation. In this paper we
shall use a different approach for deriving g(x) and the associated parameter vector
p.

16.2.1.1 Multiple Events with the Indicator-Based MinxEnt Method

Consider counting on the set

X ∗ = {x ∈ R
n : Si(x)≥ bi, i = 1, . . . ,m} , (16.14)

where Si(x), i = 1, . . . ,m are arbitrary functions. In this case we can associate with
(16.14) the following multiple-event probability

� = Pu

{
m⋂

i=1

[Si(X) ≥ bi]

}
= Eu

[
m

∏
i=1

I{Si(X)≥bi}

]
. (16.15)

Note that (16.15) extends (16.3) in the sense that it involves simultaneously an in-
tersection of m events {Si(X) ≥ bi}, that is, multiple events rather than a single one
{S(X) ≥ b}. Note also that some of the constraints may be equality ones, that is
{Si(X) = bi}, that is the entire set X ∗ can be defined as

Si(x) = bi, i = 1, . . . ,m1 ,

S j(x) ≤ b j, j = m1 +1, . . . ,m . (16.16)

We assume that each individual event in (16.16) is not rare, that is each prob-
ability of the type Pu{Si(X) ≥ bi} is not a rare-event probability, say Pu{Si(X) ≥
bi} ≥ 10−4, but their intersection forms a rare-event probability �. Similar to the
single-event case in (16.3) we are interested in efficient estimation of � defined in
(16.15). As before, we shall use the IS estimators (16.5) and (16.7). The crucial issue
is how to approximate efficiently g(x) and in particular how to estimate efficiently
the parameter vector p in f (x, p).

The main idea here is to design an IS pdf g(x) such that under g(x) all constraints
{Si(x) ≥ bi, i = 1, . . . ,m} are fulfilled. This is equivalent of saying that the rare-
event probability � in (16.15) becomes certain under g(x), that is,

Eg

[
m

∏
i=1

I{Si(X)≥bi}

]
= 1 . (16.17)

In other words, (16.17) states that under such an ideal IS pdf g(x) all m indicators
must be equal to unity with probability 1. This can also be written as

Pg

{(
m

∑
i=1

Ci(X)

)
= m

}
= Eg

[
I{C (X)=m}

]
= 1 , (16.18)
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where

C (X) =
m

∑
i=1

Ci(X) =
m

∑
i=1

I{Si(X)≥bi} , (16.19)

and Ci(X) = I{Si(X)≥bi}. Similar to (16.17), formula (16.18) states that under g(x)
the probability of the sum of m indicator random variables Ci(X) to be equal m (m
is the number of indicators Ci(X)) must be equal 1.

We shall call the indicators Ci(X) = I{Si(X)≥bi}, i = 1, . . . ,m, the local ones to
distinguish them from C (X) = ∑m

i=1 Ci(X) =, which is called the global indicator.
It follows from the above that in order to satisfy all the multiple events {Si(X)≥

bi, i = 1, . . . ,m}we can consider the following single constrained MinxEnt program

Eg

(
m

∑
i=1

Ci(X)

)
= m. (16.20)

That is, similar to (16.8) we define the following single-constrained MinxEnt
program

mingD(g,h) = min
g

∫
ln

g(x)
f (x)

g(x)dx = min
g

Eg

[
ln

g(X)
f (x)

]

s.t. Eg

[
m

∑
i=1

Ci(X)

]
= m (16.21)

∫
g(x)dx = 1 .

In other words, in order to estimate the rare-event probability � given in (16.15)
and to count the cardinality of the set (16.14) we can use the single-constrained
MinxEnt program (16.21). The solution of (16.21) is

g(x) = Z−1(λ ) f (x,u)exp

{
−λ

m

∑
i=1

Ci(x)

}
(16.22)

where Z(λ ) = Eu [exp{−∑m
i=1λCi(X)}] is the partition functions and, as usual λ is

the “temperature” obtained from the solution of the following equation

Z−1(λ )Eu

[
m

∑
i=1

Ci(X)exp

{
−λ

m

∑
j=1

Cj(X)

}]
= m . (16.23)

It is important to note that if (16.23) has no solution then the set {Si(x)≥bi, i=1, . . . ,
m} is empty.

It is crucial to note that the classic multi-constrained MinxEnt program involves
expectations of Si(X), while the proposed single-constrained one (16.21) is based on
the expectations of the indicators of Si(X), so the name indicator MinxEnt program
or simply IME program.

For m = 1 the IME program (16.21) reduces to
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min
g

D(g,h) = min
g

Eg

[
ln

g(X)
f (x)

]
s.t. Eg[C(X)] = 1 (16.24)∫

g(x)dx = 1 ,

where C(X) = I{S(X)≥b}.
Observe also that in this case the single-constrained programs (16.24) and (16.8)

do not coincide: in the former case we use an expectation of the indicator of S(X),
that is E{I{S(X)≥b}}, while in the later case we use an expectation of S(X), that is,
E{S(X)}. We shall treat the program (16.24) in more details in Sect. 16.2.3.1.

The following Lemmas 16.1–16.3 are taken from [11].

Lemma 16.1. The optimal λ of the IME program (16.21) satisfying (16.23) is λ =
−∞. This means that in practice there is no need to solve (16.23) since one can set
in (16.22) λ to a big negative number, like λ =−100

Lemma 16.2. The optimal pdf g(x) in (16.22) corresponds to a uniform pdf over
the set {x ∈ R

n : Si(x)≥ bi, i = 1, . . . ,m}.

Lemma 16.2 automatically implies that the optimal g(x) is a zero-variance IS.
Thus, solving the MinxEnt program (16.21) we obtained a zero variance IS sampling
pdf g(x,λ ) with λ =−∞.

Lemma 16.3. For λ = −∞ the optimal IME pdf g(x) in (16.22) coincides with the
zero-variance IS pdf (see [12])

g∗(x) =
f (x,u)I{C (x)=m}
Eu

[
I{C (x)=m}

] . (16.25)

Remark 16.1. Efficient sampling from the Boltzmann distribution of the form (16.9)
(and that of (16.22)) with λ =−∞ is essential in many applications and in particular
in computer science. As mentioned in Sect. 16.1 the common approach [15] is to use
a sequence of temperature parameters λt , t = 1, . . . ,T in the MCMC-based methods
with adjustable (adaptive) choice of λt and such that eventually λT = −∞. Since
both the Boltzmann distribution (16.9) with λ = −∞ and the optimal zero variance
IS pdf

g∗(x) = �−1 f (x,u)I{S(x)≥b}, (16.26)

where � = Eu
[
I{S(x)≥b}

]
, coincide, it would be interesting to investigate situations

for which the IS pdf g∗(x) (16.26) is more beneficial than the MinxEnt pdf g(x,λ )
(16.9) and vice versa. Note that while using (16.26) one deals directly with the rare
event probability � = Eu

[
I{S(x)≥b}

]
, rather than with the partition function Z(λ ) =

Eu [exp{λS(X)}]. In particular, as far as the MCMC-based methods are concerned,
one could use (in the former case) the sequence bt , t = 1, . . . ,T with bT = b rather
than the sequence λt , t = 1, . . . ,T with λT =−∞.

It is also interesting to note that the zero variance IS pdf g∗(x) is derived from
the following variance minimization program [13]
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min
g

Varg

[
I{S(X)≥b}

h(X ,u)
g(X)

]
,

while the zero variance Boltzmann pdf g(x) is obtained from the Kullback–Leibler
program (16.8).

It is important to note that g(x) (derived from the solution of the IME program
(16.21) and based on the indicators of the sample functions Si(X)) is an optimal zero
variance pdf, while the optimal pdf g(x) in the classic MinxEnt program, like (16.8)
(based on the sample functions Si(X) by themselves), is not a zero-variance pdf, (it
leads only to variance reduction).

Observe again that generating samples from a multidimensional Boltzmann pdf,
like g(x) in (16.22) is a difficult task. The existing MCMC (Markov Chain Monte
Carlo) algorithms [13] are typically quite slow, in particular when the “temperature”
parameter λ is high. Recently several efficient speed up MCMC procedures to sam-
ple efficiently from the Boltzmann pdfs have been proposed. Among these is the
dynamic programming approach in [4] and adaptive cooling schedule in [15].

Returning back to g(x) in (16.22) and taking into account that generating samples
from g(x) is difficult we shall approximate by the product of its marginal pdf’s
gi(xi) = fi(xi, pi), i = 1, . . . ,n, that is, we shall write the components pi, i = 1, . . . ,n
of the optimal vector p as

pi =
Eu [Xi exp{−λ ∑m

i=1 Ci(X)}]
Eu [exp{−∑m

i=1λCi(X)}] , i = 1, . . . ,n , (16.27)

which coincides with (16.12) up to the notations. Note that when each component
of X is an arbitrary r-point discrete random variable then (16.27) extends to

pi j =
Eu [IXi= j exp{−λ ∑m

i=1 Ci(X)}]
Eu [exp{−∑m

i=1λCi(X)}] , i = 1, . . . ,n; j = 1, . . . ,r . (16.28)

It is important to note that formula (16.28) is similar to the corresponding CE
one [12]

p∗j =
Eu[XjI{∑m

i=1 Ci(X)=m}]

Eu[I{∑m
i=1 Ci(X)=m}]

(16.29)

with one main difference: the indicator function I{∑m
i=1 Ci(X)=m} in the CE formula

has been replaced by exp{−λ ∑m
i=1 Ci(X)}.

In summary, to estimate efficiently � and the associated counting quantity |X ∗|,
we shall use again the IS estimator (16.5), where p in f (x; p) is given in (16.27) and
it is obtained from the solution of the IME program (16.21).

The diagram explaining the connection between the rare-events, IME and count-
ing is similar to (16.13) and it can be presented as

{Si(x)≥ bi, i = 1, . . . ,m} −→ Eu

[
m

∏
i=1

I{Si(X)≥bi}

]
−→ IME (16.21), (16.27)

−→ Count via (16.7). (16.30)
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Table 16.1 The vector p for several values of the vector (b(1),b(2))

b(1) b(2) p11 p12 p13 p21 p22 p23 p31 p32 p33 S (p) |̂X ∗|

(0,0,0) (0,0,0) 0 0 0 0 0 0 0 0 0 0 1
(0,0,1) (1,0,0) 0 0 1 0 0 0 0 0 0 0 1
(0,2,2) (2,2,0) 0 1 1 0 1 1 0 0 0 0 1
(1,1,2) (2,1,1) 0.6 0.6 0.8 0.2 0.2 0.6 0.2 0.2 0.6 5.19 5.07
(1,1,3) (2,2,1) 0.5 0.5 1 0.5 0.5 1 0 0 1 2.77 1.97
(2,2,2) (3,1,2) 1 1 1 0.33 0.33 0.33 0.66 0. 66 0.66 3.82 3.015
(3,3,3) (3,3,3) 1 1 1 1 1 1 1 1 1 0 1

Example 16.3 (Counting 0–1 Tables with Fixed Margins). The set Ax = b is given
as

n

∑
i=1

xi j = b(1)
j , j = 1, . . . ,m

m

∑
j=1

xi j = b(2)
i , i = 1, . . . ,n (16.31)

Xi j ∈ {0,1} , ∀ i, j .

Table 16.1 presents such a summary of the results.
Note that for the extreme values of the vectors b(1) and b(2), namely for b(1) =

b(2) = (0,0,0) and b(1) = b(2) = (3,3,3), we obtain degenerated solutions (all com-
ponents of p are either zeros or all ones, respectively). In this case, we also have
S (p) = 0 and |̂X ∗| = 1, as expected. Similar, for b(1) = (1,1,3) and b(2) =
(2,2,1) we obtain two feasible solutions with the corresponding values of X :
X1 = (1,0,0,0,1,0,1,1,1) and X2 = (0,1,0,1,0,0,1,1,1), respectively. In this case
the estimate of |X ∗| (based on a sample N = 1,000) is |̂X ∗|= 1.9712 and similarly
for the other values of (b(1),b(2)).

Consider finally the extreme case where m and n are even, b(1)
j = n

2 , j = 1, . . . ,m,

and b(2)
i = m

2 , i = 1, . . . ,n. In this case it is readily seen that the optimal IME vector
p = (1/2, . . . ,1/2), that is, it coincides with the original one u and, thus the IME
based on f (x, p) is useless.

16.2.1.2 The Connection Between CE and IME

To establish the connection between CE and IME we need the following

Theorem 16.1. For λ = −∞ the optimal parameter vector p in (16.27), associated
with the marginal pdfs of the optimal IME pdf g(x,λ ) in (16.22), coincides with the
optimal parameter vector p in (16.29), which is associated with the CE method. The
latter is obtained from the solutions of the following cross-entropy program [13]
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min
p

Eg∗

[
ln

g∗(X)
f (X , p)

]
, (16.32)

where g∗(x) is the zero variance IS pdf defined in (16.25).

Proof. The proof is given in [11]. ��

Theorem 16.1 is crucial for the foundations of the CE method. Indeed, designed
originally in [8] as a heuristics for rare-event estimation and COP’s, Theorem 16.1
states that CE has strong connections with the IME program (16.21) and, thus, has
strong mathematical foundation since the latter is so. The important connection be-
tween CE and IME is that the optimal IME parametric pdf f (x, p) = f (x, p,λ ) (with
p in (16.27) and λ = −∞) and the CE pdf (with p as in (16.29)) obtained heuristi-
cally from the solution of the cross-entropy program (16.32) are the same.

It follows from above that as an alternative to the original CE program (16.32)
one can consider the following one

min
p

Eg

[
ln

g(X ,λ )
f (X , p)

]
, (16.33)

where g(x,λ ) (with λ =−∞) is the zero variance IME pdf (16.22).
Clearly, solving, say for the Bernoulli random variables the original CE program

(16.32) and the one in (16.33) we immediately obtain the optimal parameter vectors
p in (16.29) and (16.27), respectively.

16.2.2 The IME Counting Algorithm

Here we present the indicator-based Minx-Ent (IME) counting algorithm for rare-
events and counting the number of feasible solutions on the set X ∗ defined (16.16).

We call our method, the indicator-based MinxEnt (IME), to distinguish it from
the cross-entropy (CE) for the following reasons. As we shall see below

1. CE

• Generates iteratively a sequence of tuples { p̂t , m̂t}, where p̂t and m̂t , denote
the estimates of the optimal parameter vector in the parametric pdf f (x, p) and
the approximation of m at the t-th iteration, respectively.

• Involves a rarity parameter ρ and elite sampling, while generating the
sequence { p̂t , m̂t}.

2. IME

• Generates only a sequence of vectors {pt}, since, as mentioned earlier, the
temperature parameter λ can be fixed in advance (as a large negative number).

• Neither the rarity parameter ρ , nor the elite samples are involved in IME.
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For this reason, the indicator-based IME is much simpler than CE and the classic
MinxEnt and, as it follows from our numerical results, it is faster and at least as
accurate as its counterparts CE and MinxEnt.

It is also important to keep in mind that the IME method is based on the MinxEnt
program (16.21), which integrates the set (multiple events) defined in (16.16) into a
single (stochastic) one given as Eg[∑m

i=1 Ci(X)] = m.
As mentioned, since we cannot sample from g(x) we approximate it by the

product of its marginal pdf’s gi(xi) = fi(xi, pi), i = 1, . . . ,n, where the components
pi, i = 1, . . . ,n of the optimal vector p are given in (16.27). As soon as an estimate
of p is derived we estimate � and |X ∗| using the IS estimator (16.5) and (16.7),
respectively.

We proceed below with the standard CE and the IME algorithms.

16.2.2.1 The Standard CE Algorithm

In the standard CE, one uses a multi-level approach, that is, one generates simultane-
ously a sequence of the parameter vector pt of the parametric pdf’s f (x, pt) and lev-
els {mt}. Starting with f (x, p0) = f (x,u), that is, taking the prior f (x,u) = f (x, p0),
one

1. Updates mt as
mt = Egt−1 [C (X) |C (X) ≥ qt ] ,

where qt is the (1 − ρ)-quantile of C (X) under gt and as before C (X) =
∑m

i=1 Ci(X).
2. Updates gt as the solution to the above MinxEnt program for level mt , rather than

m.

Specifically, mt can be estimated from a random sample X1, . . . ,XN of gt−1 as the
average of the Ne = �ρN� elite sample performances:

m̂t =
∑N

i=N−Ne+1 C(i)

Ne
, (16.34)

where C(i) denotes the i-th order-statistics of the sequence C (X1), . . . ,C (XN).
The updating of p in CE is performed according to

p̂∗t, j =

N

∑
k=1

Xk j I{C (Xk)≥m̂t} W (Xk;u, p̂t−1)

N

∑
k=1

I{C (Xk)≥m̂t} W (Xk;u, p̂t−1)

. (16.35)

Note that since the prior pdf f (x,u) is uniform (in our case f (x,u) = Ber (u), u =
(1/2, . . . ,1/2) we can write for convenience W (Xk;u, p̂t−1) as 1

f (Xk; p̂t−1) .
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16.2.2.2 The IME Counting Algorithm

Since in IME λ is fixed (λ is a large negative number), the components of p can be
updated according to the following formula

p̂t, j =

N

∑
k=1

Xk j exp{−λ C (Xk)}W (Xk;u, p̂t−1)

N

∑
k=1

exp{−λ C (Xk)}W (Xk;u, p̂t−1)

. (16.36)

For application purposes we not only set λ to a large negative number, like λ =
−100, but we also use in (16.36) instead of C (Xk), its so-called normalized value

C (n)(Xk) =
C (Xk)

maxk=1,...,N C (Xk)
. (16.37)

Using (16.37) the resulting updating of p̂t can be written as

p̂t, j =

N

∑
k=1

Xk j exp{−λ C (n)(Xk)}W (Xk;u, p̂t−1)

N

∑
k=1

exp{−λ C (n)(Xk)}W (Xk;u, p̂t−1)

, (16.38)

The main reason for using C (n)(X) instead of C (X) is for convenience only; to
make sure that λ C (n)(Xk) is a large negative number, say λ C (n)(Xk) =−100, when
C (n)(Xk) = 1.

Algorithm 16.2.1 (IME Algorithm for Counting)

1. Define p̂0 = u. Set λ = M, say M =−100. Set t = 0 (iteration = level counter).
2. t ← t +1. Generate a sample X1, . . . ,XN from the density f (x; p̂t−1) and com-

pute p̂t according to (16.38).
3. Smooth out the vector p̂t according to

pt = α p̂t +(1−α)p̂t−1 , (16.39)

where α , (0 < α < 1) is called the smoothing parameter.
4. If C (X) < m, reiterate from step 2. Else proceed with step 5.
5. Reiterate steps 2–3. for 2–4 more iterations. Estimate the counting quantity

|X ∗| as

|̂X ∗|= 1
N

N

∑
k=1

I{C (Xk)=m}
1

f (Xk; p̂t)
. (16.40)

Our numerical results of Sect. 16.4.1 clearly show that the IME Algorithm 16.2.1
is quite robust with respect to λ , provided λ is a large negative number, say
−50 ≥ λ ≥ −1,000. To see this, let λ = −100 and assume for simplicity that
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C (n)(Xk)} obtains values from the set {1, 0.9, . . . ,0.1}. In this case, the updating
of the parameter vector p according to (16.38) will be based on the following expo-
nential sequence {exp(100), exp(90), . . . ,exp(10)}. Clearly, the dominating term
is exp(100), while the remaining ones are negligible. Similar conclusions hold for
some other large negative values of λ , like −50 ≥ λ ≥−1,000.

Remark 16.2 (Convergence of Algorithm 16.2.1). Since for fixed λ Algorithm 16.2.1
updates only the single parameter vector p̂, the convergence and the speed of the
convergence of p̂ to the true optimal parameter vector p∗ with the components

p j =
EuXj exp{−λ C (n)(X)}
Eu exp{−λ C (n)(X)}

(16.41)

follows from Theorems A1 and A2 of [14].

16.2.2.3 IME for Counting the Number of Feasible Solutions in Integer
Programs

Here we show how to apply Algorithm 16.2.1 to count the set of feasible solutions

n

∑
k=1

aikxk = bi , i = 1, . . . ,m1 ,

n

∑
k=1

a jkxk ≥ b j , j = m1 +1, . . . ,m1 +m2 , (16.42)

x ≥ 0 , xk integer ∀k = 1, . . . ,n

of the following integer program containing both equality and inequality constraints

minc′x,

s.t.
n

∑
k=1

aikxk = bi , i = 1, . . . ,m1 ,

n

∑
k=1

a jkxk ≥ b j , j = m1 +1, . . . ,m1 +m2 , (16.43)

x ≥ 0 , xk integer ∀k = 1, . . . ,n .

Here c and x are n-dimensional vectors.
It is readily seen that in this case Algorithm 16.2.1 is directly applicable, provided

the first m1 terms Ci(X) in (16.20) (out of the total of m = m1 +m2 ones) are defined
as

Ci(X) = I{∑n
k=1 aikXk=bi} , i = 1, . . . ,m1, (16.44)

while the remaining m2 ones are defined as

Ci(X) = I{∑n
k=1 aikXk≥bi} , i = m1+1, . . . ,m1+m2. (16.45)
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In short, in order to count the number |X ∗| of feasible solutions of the set (16.42)
we associate with it the following rare-event probability

� = Pu{X ∈X ∗} = Eu

[
m1

∏
i=1

I(∑n
k=1 aikXk=bi)

m1+m2

∏
j=m1+1

I(∑n
k=1 a jkXk≥b j)

]
(16.46)

and then apply to it Algorithm 16.2.1.

Example 16.4 (SAT Example). As a simple example consider the following SAT
assignment

(x1 + x̄2)(x̄1 + x̄2 + x3)(x2 + x3) .

In this case we have the following system of linear constraints

x1 +(1− x2) ≥ 1
(1− x1)+(1− x2)+ x3 ≥ 1 ,

x2 + x3 ≥ 1 ,

where each x1,x2,x3 ∈ {0,1}, where x̄i = 1− xi.
Proceeding with our example, we can write � as � = Pu(C1 +C2 +C3 = 3), where

C1 = I{X1−X2≥0}, C2 = I{X1+X2−X3≤1} and C3 = I{X2+X3≥1}.

16.2.3 IME for Combinatorial Optimization

We consider here both unconstrained and constrained optimization.

16.2.3.1 Unconstrained Combinatorial Optimization

Consider the following non-smooth (continuous or discrete) unconstrained opti-
mization program.

max
x∈Rn

S(x) .

Denote by b∗, the optimal function value.
In this case the MinxEnt program becomes

min
g

D(g,h) = min
g

Eg

[
ln

g(X)
f (x)

]
s.t. Eg{I{S(X)≤b}} = 1 (16.47)∫

g(x)dx = 1 .

The corresponding updating of the component of the vector p̂t can be written as
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p̂t, j =

N

∑
k=1

Xk j exp{−λ I{S(Xk)≤b̂t}}

N

∑
k=1

exp{−λ I{S(Xk)≤b̂t}}
, (16.48)

where λ is a big negative number.

Algorithm 16.2.2 (IME Unconstrained Optimization Algorithm)

1. Define p̂0 = u, say choose, f (x,u) uniformly distributed over X . Set λ to a
big negative number, say λ =−100. Set t = 1 (iteration = level counter).

2. Generate a sample X1, . . . ,XN from the density f (x; p̂t−1) and compute the
elite sampling value b̂t of S(X1), . . . ,S(XN).

3. Use the same sample X1, . . . ,XN and compute p̂t , according to (16.48).
4. Smooth out the vector p̂t according to ((16.39)).
5. If the stopping criterion is met, stop; otherwise, set t = t +1 and return to Step

2.

As a stopping criterion one can use for example: if for some t ≥ d, say d = 5,

b̂t−1,(N) = b̂t,(N) = · · ·= b̂t−d,(N) (16.49)

then stop.

16.2.3.2 Constrained Combinatorial Optimization: The Penalty Function
Approach

Consider the particular case of the problem (16.43) with inequality constraints only,
that is

max
x

n

∑
k=1

ckxk

s.t.
n

∑
k=1

aikxk ≥ bi , i = 1, . . . ,m , (16.50)

x ≥ 0 , xk integer ∀ k = 1, . . . ,n .

Assume in addition that the vector x is binary and all components bi and aik are
positive numbers. Using the penalty method approach we can reduce the original
constraint problem (16.50) to the following unconstrained one

min
x
{S(x) =

n

∑
k=1

ckxk +M(x)} , (16.51)

where the penalty function is defined as
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M(x,β ) = β
m

∑
i=1

min

{
n

∑
k=1

aikxk −bi,0

}
. (16.52)

Here

β =
a+∑n

k=1 ck

minik(aik −bi)
, (16.53)

where a is a positive number. If not stated otherwise, we assume that a = 1. Note that
the penalty parameter β is chosen such that if x satisfies all constraints in (16.50),
then M(x) = 0 and S(x) ≥ 0. Alternatively, if x does not satisfy all constraints in
(16.50), then M(x) ≤ −(a +∑n

k=1 ckxk) and S(x) ≤ −a. Clearly the optimization
program (16.50) can again be associated with the rare-event probability estimation
problem, where m ∈ (0,∑n

k=1 ck) and X is a vector of iid Ber(1/2) components.

16.3 The Cloning Method for Rare Events, Counting, Sampling
and Optimization

Consider estimation of the following rare event probability

�(m) = E f
[
I{S(X)≥m}

]
. (16.54)

Here S(X) is the sample performance, X ∼ f (x), m is fixed.
To estimate �(m) we shall use the well known chain rule (nested events) accord-

ing to which the desired probability �(m) can be written either as

�(m) = E f [I{S(X)≥m0}]
T

∏
t=1

E f [I{S(X)≥mt}|I{S(X)≥mt−1}] = c0

T

∏
t=1

ct , (16.55)

or as

�(m) = E f [I{S(X)≥m0}]
T

∏
t=1

Eg∗t−1
[I{S(X)≥mt}] = c0

T

∏
t=1

ct , (16.56)

where
ct = E f [I{S(X)≥mt}|I{S(X)≥mt−1}] = Eg∗t−1

[I{S(X)≥mt}] (16.57)

and c0 = E f [I{S(X)≥m0}]. Here {mt , t = 0,1, . . . ,T} is a fixed grid satisfying −∞ <
m0 < m1 < · · · < mT = m; f denotes the proposal pdf f (x); and g∗t−1 = g∗(x,mt)
denotes the zero variance importance sampling (IS) pdf at iteration t that is

g∗(x,mt) = �−1
t f (x)I{S(x)≥mt}, (16.58)

where �t = E f
[
I{S(X)≥mt}

]
is the normalization constant. Thus, an estimator of �(m)

can be obtained by taking the product of conditional expectations (probabilities)

E f [I{S(X)≥mt}|I{S(X)≥mt−1}], t = 0,1, . . . ,T
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under f , or as the product of the unconditional ones

ct = Eg∗t−1
[I{S(X)≥mt}]

under g∗t−1, that is it can be written as

�̂(m) =
T

∏
t=0

ĉt =
1

NT

T

∏
t=0

Nt , (16.59)

where

ĉt =
1
N

N

∑
i=1

I{S(Xi)≥mt} =
Nt

N
. (16.60)

Note also that g∗t−1 in ct = Eg∗t−1
[I{S(X)≥mt}] means that we use the zero variance

IS pdf g∗t−1 of level mt−1 to calculate ct at level mt . So, the estimator ĉt of ct =
Eg∗t−1

[I{S(X)≥mt}] is not a zero variance IS estimator, since mt−1 �= mt . In fact, we
will see that in most interesting counting models g∗t−1 is uniformly distributed on
the set {x : S(x)≥ mt}. Note finally that the sequence {ct} will be required only for
rare events and counting, but not for optimization problems.

For such an estimator to be useful, the levels mt should be chosen such that each
quantity E f [I{S(X)≥mt}| I{S(X)≥mt−1}] is not too small, say approximately equal to
10−2. Note only we assume that the levels mt are chosen such that each ct is not to
small, but we shall also require existence of at least one sequence {m0,m1, . . . ,mT =
m} to insure that all ct , t = 0,1, . . . ,T values are not to small, that is they all are
bounded, say by what we call the rarity parameter ρ , ρ = 10−2.

In both counting and optimization problems we shall generate an adaptive se-
quence of tuples

{(m0,g∗(x,m−1)), (m1,g∗(x,m0)), (m2,g∗(x,m1)), . . . ,(mT ,g∗(x,mT−1))},
(16.61)

where as before g∗(x,m−1) = f (x). This is in contrast to CE where we generate a
sequence of tuples

{(m0,v0), (m1,v1), . . . ,(mT ,vT )}, (16.62)

where {vt , t = 1, . . . ,T} is a sequence of parameters in the parametric family of
fixed distributions f (x,vt). The crucial difference is, of course, that in our approach,
{g∗(x,mt−1) = g∗t−1, t = 0,1, . . . ,T} is a sequence of zero variance pdfs or their
approximation, rather than is a sequence {vt , t = 1, . . . ,T} of parameter vectors.
Otherwise the CE and the cloning methods are similar. In particular we shall see
that the cloning algorithm for optimization coincides with the CE one, provided the
updating of v and sampling from f (x,v) is replaced by updating of g∗(x,mt−1) =
g∗t−1 and sampling from g∗t−1. It is also important to note that regardless of the fact
that {g∗(x,mt−1), t = 1, . . . ,T} will be not explicitly available, we still use the tuple
representation (16.61) since, as we shall see below in order to update the parameters
ct and mt at iteration t we will be still able to sample (using the MCMC machinery)
from the optimal IS pdf g∗(x,mt−1) = g∗t−1 corresponding to iteration t−1. Finally,
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we will see that the cloning method typically works better than its CE counterpart,
especially for rare-events and counting. The main reason is that, while sampling
from an optimal sequence of pdfs g∗t−1 (or even from their approximations) is more
beneficial than sampling from sequence of a parametric family, like f (x,vt). In other
words the sequence 16.61 is more informative than the one in 16.62.

As mentioned, the chain rule approach (16.1), (16.55) has been extensively used
in randomized algorithms [5, 6] for estimating counting quantities associated with
some graphs. Their sampling mechanism is, however, completely different from our.

16.3.1 The Method of Diaconis–Holmes–Ross

In the method of Diaconis–Holmes [3] and Ross [7], called the Diaconis–Holmes–
Ross (DHR) method, each quantity E f [I{S(X)≥mt}|I{S(X)≥mt−1}] is estimated sepa-
rately and independently by using the combination of the MCMC, in particular, the
Gibbs sampler, provided the set of levels {mt , t = 0, . . . ,T} is fixed in advance.
Ross [7] presents several interesting applications using the Gibbs sampler. In the
Appendix we recapitulate the original Ross Algorithm for calculating ĉt .

The main idea of the DHR [3] algorithm, while estimating each conditional prob-
ability

E f [I{S(X)≥mt}|I{S(X)≥mt−1}]

is to run Markov Chain Monte Carlo (MCMC) and count the proportion of values
satisfying S(x)≥ mt .

More formally, their algorithm can be written as

Algorithm 16.3.1 (DHR Algorithm) Given a sequence of levels m0 < m1 < · · · <
mT = m and the sample size N, execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Initialize by generating a sam-
ple X1, . . . ,XN from the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be
the largest subset of the population {X1, . . . ,XN} (elite samples) for which
S(Xi) ≥ m0. Note that X̃1, . . . , X̃N0 ∼ g∗(x,m0) and that

�̂(m0) = ĉ0 =
1
N

N

∑
i=1

I{S(Xi)≥m0} =
N0

N
(16.63)

is an unbiased estimator of �(m0).
2. MCMC step. Find a feasible point X such that S(X) ≥ mt−1. Starting from

X, run the MCMC sampler, such that after some burn-in period, each vec-
tor X = (X1, . . . ,Xn), of the new population denoted as X = {X1, . . . ,XN} is
approximately distributed as g∗(x,mt−1).

3. Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population {X1, . . . ,XN} for which
S(Xi) ≥ mt. Take ĉt in (16.60) as an estimator of ct in (16.57). Note that
X̃1, . . . , X̃Nt is distributed only approximately g∗(x,mt). Note also that as a
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feasible point X satisfying S(X) ≥ mt one can take, for example, any point
from the subset {X̃1, . . . , X̃Nt}.

4. If t = T go to step 5, otherwise, set t = t +1 and repeat from step 2.
5. Deliver �̂(m) in (16.59) as an estimator of �(m).

As we shall see below our cloning algorithm adopts the basic steps of DNR
Algorithm 16.3.1, except its main MCMC one, which is totaly different in our
method.

For convenience we also present below the

16.3.2 The Gibbs Sampler

There are two basic versions of the Gibbs sampler [13]: systematic and random.
In the former one, the components of the vector X = (X1, . . . ,Xn) are updated in
a fixed, say increasing order: 1,2, . . . ,n,1,2, . . . while in the latter, they are chosen
randomly, that is according to a discrete uniform n-point pdf. Below we present
the systematic Gibbs sampler algorithm. In a systematic Gibbs sampler, for a given
vector X = (X1, . . . ,Xn) ∼ g(x), one generates a new vector X̃ = (X̃1, . . . , X̃n) with
the same distribution ∼ g(x) as follows.

Algorithm 16.3.2 (Gibbs Sampler)

1. Draw X̃1 from the conditional pdf g(x1|X2, . . . ,Xn).
2. Draw X̃i from the conditional pdf g(xi|X̃1, . . . , X̃i−1,Xi+1, . . . ,Xn), i =

2, . . . ,n−1.
3. Draw X̃n from the conditional pdf g(xn|X̃1, . . . , X̃n−1).

Note that in Gibbs sampler it is assumed that generating samples from the condi-
tional pdfs

g(xi|X1, . . . ,Xi−1,Xi+1, . . . ,Xn), i = 1, . . . ,n

is simple.

Example 16.5 (Sum of Independent Random Variables).
Consider estimation of � with S(x) = ∑n

i=1 Xi, that is

� = E f

[
I{∑n

i=1 Xi≥m}
]

. (16.64)

In this case, generating random variables Xi, i = 1, . . . ,N for a fixed value m can be
easily performed by using the Gibbs sampler based on the following conditional pdf

g∗(xi,m|x−i) = ci(m) fi(xi)I{xi≥m−∑ j �=i x j} , (16.65)

where |x−i denotes conditioning on all random variables but excluding the i-th com-
ponent and ci(m) denotes the normalization constant.

Note also that each of the n conditional pdfs g∗(xi,m|x−i) presents a truncated
version of the proposal marginal pdf fi(xi) with the truncating point at m−∑ j �=i x j.
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In short, the random variable X̃ from g∗(xi,m|x−i) presents a shifted original ran-
dom variable X ∼ fi(xi). Generation from such truncated single dimensional pdf
g∗(xi,m|x−i) is easy and can be typically performed by using the inverse-transform
method, provided the inverse-transform method can be applied to fi(xi).

To proceed with the inverse-transform method denote by bi = m−∑ j �=i x j. It is
readily seen that following the way of the construction of the elite sampling, we will
always have that b ≥ 0 and the range of bi will be always the same as the range of
the proposal random variable Xi.

Note that the inverse-transform algorithm for generating shifted random variables
Y = X +b from X ∼ f (x) with a fixed shifting (location) parameter b = m−∑ j �=i x j
is based on the following relationship

P(Y ≤ x) = P(X +b ≤ x) = P(X ≤ x−b) = F(x−b).

It is important to note that sampling a Bernoulli random variable X̃i from (16.65)
using the Gibbs sampler can be performed as follows. Generate Y ∼ Ber (1/2). If

I{Y≥m−∑ j �=i X j},

then set X̃i = Y , otherwise set X̃i = 1−Y .

16.3.3 The Method of Botev and Kroese

The main drawback of DHR [3] Algorithm 16.3.1 is that for each fixed level mt
it starts basically from scratch. That is, at each iteration, starting at some feasible
point X , it runs a single Markov chain before the entire sample X1, . . . ,XN becomes
distributed approximately stationarity, that is approximately g∗t (x,mt−1). The time
of reaching the stationarity (the burn-in period) might be quite long.

To overcome this difficulty, Botev and Kroese [1] introduced several important
enhancements into the DHR Algorithm 16.3.1.

The main enhancement of Botev and Kroese [1] is that their algorithm has an
additional step, called the bootstrap resampling step. It reuses iteratively all the
elite samples X̃1, . . . , X̃Nt ∼ g∗(x,mt) from the previous Markov chain runs and, thus
to run in parallel many Markov chains. By doing so, the elite samples at different
levels become dependent, but the stationarity in terms of sampling from the optimal
importance sampling g∗t (x,mt) is preserved. To define the level sets {m̂t}T

t=0, Botev
and Kroese make an additional (pilot) run. Note that in Botev and Kroese the level
sets {m̂t}T

t=0 are defined adaptively, while in the DHR Algorithm 16.3.1 they are
assumed to be fixed in advance. Clearly, in the former and the latter cases, T is a
deterministic and a random variable, respectively. Note that the level sets {m̂t}T

t=0 in
the latter case are chosen similarly to the CE method, in the sense that they involve
a rarity parameter ρ . The adaptive choice of m̂t seems to be more natural and
more flexible than the fixed one. Note, finally that since DHR Algorithm 16.3.1
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always starts with a single (elite) sample and the samples between different levels
are independent, it requires quite a long burn-in period for the samples X1, . . . ,XN
to become at least approximately stationary. As a result, ĉt is typically a biased
estimator of the true parameter ct .

It is crucial to note that in contrast to the CE and the MinxEnt algorithms [13],
both algorithms, Botev–Kroese [2] and DHR [3]

1. Sample from the optimal or approximately optimal zero variance IS nonparamet-
ric distribution g∗(x, m̂t) rather than from the parametric one f (x, p̂t). The latter
is associated with the original (proposal) pdf f (x,u).

2. Do not involve any optimization procedure, like the MinxEnt program, which
minimizes the Kulback–Leibler divergence, subject to some constraints, They
are based solely on the samples from g∗(x, m̂t), t = 0,1, . . . ,T , or their approxi-
mations.

Before presenting the Botev–Kroese algorithm we summarize its main features.

• It requires a pilot run to define a sequence {m̂t} such that m̂0 < m̂< . . . < m̂T = m
• It samples recursively from the sequence of zero variance IS pdfs: {g∗t } =

{g∗(x, m̂t)}, where each pdf g∗(x, m̂t) is associated with a sequence m̂0 <
m̂< . . . < m̂T = m.

• The exact sampling from g∗0 = g∗(x, m̂0) is obtained from the original distribution
f (x) by using the acceptance-rejection method (with the acceptance probability
ρ). The goal of the sample from g∗0 (or from an associated kernel density approx-
imation based on that sample) is to help generate exact samples from g∗1.

• The recursive process of sampling from g∗(x,mt) is continued until eventually
the level m is reached and, thus one can generate from the desired optimal IS pdf
g∗(x) = g∗(x,m).

• The estimators of ct are dependent and thus the entire estimator of �(m) given
in (16.59), which is based on the product of dependent random variables ĉt is
biased.

The resulting Botev–Kroese [1] algorithm for rare events estimation can be writ-
ten as

Algorithm 16.3.3 (Botev–Kroese Algorithm for Rare Events) Given a sequence
of levels m̂0 < m̂1 < · · · < m̂T = m and the sample size N, execute the following
steps

1. Acceptance-Rejection. Set a counter t = 1. Initialize by generating a sample
X1, . . . ,XN from the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the
largest subset of the population {X1, . . . ,XN} (elite samples) for which S(Xi)≥
m̂0. Note that X̃1, . . . , X̃N0 ∼ g∗(x, m̂0) and that �̂(m̂0) in (16.63) is an unbiased
estimator of �(m0).

2. Bootstrap step. Sample uniformly with replacement N times from the pop-
ulation X̃t−1 = {X̃1, . . . , X̃Nt−1} to obtain a new (bootstrap) population
{X∗

1 , . . . ,X∗
N}. Note that X∗

1 , . . . ,X∗
N ∼ g∗(x, m̂t−1).
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3. MCMC step. For each vector X∗ = (X∗
1 , . . . ,X∗

n ) of the population {X∗
1 , . . . ,X∗

N}
generate, say by using the Gibbs sampler, a new vector X̃∗ = (X̃∗

1 , . . . , X̃∗
n ).

Note that the new population {X̃∗
1 , . . . , X̃∗

N} of X̃∗’s is distributed again
∼ g∗(x, m̂t−1). Denote the new population thus obtained by {X1, . . . ,XN}.

4. Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population {X1, . . . ,XN} for which
S(Xi)≥ m̂t . Take ĉt in (16.60) as an estimator of ct given in (16.57). Note again
that X̃1, . . . , X̃Nt is distributed g∗(x, m̂t).

5. If t = T go to step 6, otherwise set t = t +1 and repeat from step 2.
6. Deliver �̂(m) given in (16.59) as an estimator of �(m).

The pilot run algorithm of Botev–Kroese for selection of the levels mt , t =
1, . . . ,T is as follows

Algorithm 16.3.4 (Pilot Run Algorithm for Levels Selection) Given the rarity
parameter ρ ∈ (0,1) and the sample size Np execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XNp

from the proposal density f (x). Let m̂0 be the (1− ρ) sample quantile of
S(X1), . . . ,S(XNp). Let X̃0 = {X̃1, . . . , X̃N0} be the largest subset of the popu-
lation {X1, . . . ,XNp} (elite samples) for which S(Xi) ≥ m̂0.

2. Bootstrap step. Sample uniformly with replacement N times from the pop-
ulation X̃t−1 = {X̃1, . . . , X̃Nt−1} to obtain a new (bootstrap) population
{X∗

1 , . . . ,X∗
Np
}. Note that X∗

1 , . . . ,X∗
Np

∼ g∗(x, m̂t−1).
3. MCMC step. For each vector X∗=(X∗

1 , . . . ,X∗
n ) of the population {X∗

1 , . . . ,X∗
Np
}

generate, say by using the Gibbs sampler, a new vector X̃∗ = (X̃∗
1 , . . . , X̃∗

n ).
Note that the new population {X̃∗

1 , . . . , X̃∗
Np
} of X̃∗’s is distributed again

∼ g∗(x, m̂t−1). Denote the new population thus obtained by {X1, . . . ,XNp}.
4. Set

m̂t = min{m, â} , (16.66)

where â is the (1 − ρ) sample quantile of S(X1), . . . ,S(XNp). Let X̃t =
{X̃1, . . . , X̃Nt} be the subset of the population {X1, . . . ,XN} for which S(Xi) ≥
m̂t . Note again that X̃1, . . . , X̃Nt is distributed g∗(x, m̂t)

5. If m̂t = m, set t = T and go to step 6; otherwise, set t = t + 1 and reiterate
from step 2.

6. Deliver the sequence of estimated levels m̂0, m̂0, . . . , m̂T−1,m.

Remark 16.3 (Reducing Dependency). In order to reduce the dependence between
the vectors X1, . . . ,XN at different iterations t, it is suggested in [1] to use (similar
to the DHR) some burn-in periods. More specifically, given the bootstrap sample
X∗

1 , . . . ,X∗
N ,

1. Generates at the MCMC step instead of X̃∗
1 , . . . , X̃∗

N a larger new population,
namely {X̃∗

1 , . . . , X̃∗
rN}, r > 1.

2. Takes only the last N samples from {X̃∗
1r, . . . , X̃

∗
rN} (discarding the first (r−

1)N ones) and denotes these, as before, by X1, . . . ,XN .
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It is not difficult to see that if the size of the elite sample X̃1, . . . , X̃Nt equals 1 at
every iteration t, and if these single elites are independent for all t, (t = 1, . . . ,T ),
then we automatically obtain the DHR Algorithm 16.3.1.

In the following two sections we deal with the cloning algorithms and their appli-
cations to multiple events, in particular for counting the number of feasible solutions
in an integer program.

16.3.4 Cloning Algorithms

Here we present two alternative algorithms, called the cloning algorithms for rare-
events and counting assuming that X is a discrete space. Both cloning algo-
rithms are somewhat closer to DHR Algorithm 16.3.1 rather than to Botev–Kroese
Algorithm 16.3.3. In particular, the similarity to the former is that we do not use
bootstrapping, while the similarity to the latter is that we use elite samples. The
main differences between the proposed and the existing algorithms are that in both
our algorithms we

• Introduce a new mechanism, called the cloning mechanism.
• No pilot run is used in our algorithms.

The main difference between our two algorithms is that the first is based on the
classic zero variance IS pdf (16.58) and is called the cloning algorithm, while the
second one uses the Boltzmann zero variance distribution instead of the classic one
and is called the Boltzmann cloning algorithm.

Before proceeding further, we need the following

Remark 16.4. For the discrete random variables formula

P(S(X) ≥ mt)|S(X)≥ mt−1) = ρ

is not valid anymore because of the discretization. We can instead generate a se-
quence of {ρt} by arguing as follows. For fixed ρ , mt−1 and a given sequence of the
sample functions S(Xi), i = 1, . . . ,N we choose mt to be the closest (integer valued)
(1− ρ)-th empirical value of the elite sample of S(Xi), i = 1, . . . ,N. In short, we
include in the elite sample of the next population all points for which {S(Xi) ≥ mt}
holds.

For example, assume that ρ = 0.5, N = 6 and that the ordered values of the
S(Xi), i = 1, . . . ,N for iteration t are {1,1,2,2,2,3}. Then we have mt = 2 and the
modified ρ = 0.5 becomes ρt = Nt/N = 5/6.

16.3.4.1 The Main Cloning Algorithm

We start by introducing what we call (1) the simplified, (2) the basic and the (3)
enhanced versions of our algorithm.
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1. The simplified version. Let as before N, ρt and Nt be the fixed sample size,
the actual rarity parameter (see Remark 16.4) and the number of elites at iteration
t, respectively. At the simplified version we apply to each of the Nt elites a burn-in
period of length ρ−1

t . Bo doing so we generate ρ−1
t Nt = N samples at each level mt .

The rationale of this is based on the fact that if ρ is not small, say ρ = 0.1, then we
have enough stationary elite samples and the goal of the Gibbs sampler is merely
to continue with these stationary Nt elites and thus to generate N new stationary
samples for the next level.

Below we present a simplified version of our main algorithm for counting, which
provides a good insight to it.

Algorithm 16.3.5 (The Simplified Algorithm for Multiple Events) Given the rar-
ity parameter ρ ∈ (0,1) and the sample size N execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XN

from the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest sub-
set of the population {X1, . . . ,XN} (elite samples) for which S(Xi)≥ m̂0. Take
ĉ0 = �̂(m̂0) in (16.63) is an unbiased estimator of c0. Note that X̃1, . . . , X̃N0 ∼
g∗(x, m̂0).

2. MCMC. For each vector X̃k = (X̃1k, . . . , X̃nk), k = 1, . . . ,Nt−1 of the elite sam-
ple {X̃1, . . . , X̃Nt−1} ∼ g∗(x, m̂t−1) obtained at the t −1-th iteration apply ρ−1

t
burn-in periods, while using the MCMC (and in particular the Gibbs) sampler
and, thus generate ρ−1

t new vectors (Xk1, . . . ,Xkρ−1
t

). Note that the new entire
population {(Xs1, . . . ,Xsρ−1

t
), s = 1, . . . ,Nt−1} of length N, which is denoted

as {X1, . . . ,XN}, is distributed approximately g∗(x, m̂t−1).
3. Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population {X1, . . . ,XN} for which

S(Xi)≥ m̂t . Take ĉt in (16.60) as an estimator of ct given in (16.57). Note again
that X̃1, . . . , X̃Nt is distributed approximately g∗(x, m̂t).

4. If mt = m go to step 5, otherwise set, set t = t +1 and repeat from step 2.
5. Deliver �̂(m) given in (16.59) as an estimator of �(m) and |X̂ ∗| = �̂(m)|X |

as an estimator of |X ∗|.

Note that Algorithm 16.3.5 can be also viewed as a particular case of Algo-
rithm 16.3.3 with both the bootstrap step and the pilot run being omitted, and the
length of the burn-in period being equal to ρ−1.

Our numerical experience with all three algorithms: 16.3.1, 16.3.3, 16.3.5 clearly
indicate that neither perform satisfactorily for multiple events. In particular, they
often stop without reaching the final level m. To overcome this difficulty we turn
next to our

2. Basic version. As compared to Algorithm 16.3.5 this version contains an ad-
ditional step for an adaptive choice of ρ . As we shall see below this additional step
will prevent from stopping all three algorithms before reaching the target level m.

To proceed note first that the draw back of the approach for updating ρ based
on Remark 16.4 is that one can often run into a situation, where Nt = N and thus
ρt = 1. This is the main reason that all three algorithms often stop before reaching
the desired level m. The following example provides details. Assume that N = 9
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and let the proposal (n0n-adaptive) ρ = 1/3. Consider the following two sample
scenarios of the ordered values of S(Xi), i = 1, . . . ,9:

(1) S(Xi) = (1,1,1,2,2,2,2,3,3) and (2) S(Xi) = (1,1,1,1,1,1,1,2,3). Follow-
ing Remark 16.4 it is readily seen that in cases (i) and (ii) the actual values of
ρ are ρ1 = 6/9 and ρ2 = 1, respectively. They are based on the elite sequences
{2,2,2,2,3,3} and {1,1,1,1,1,1,1,2,3}, respectively. Note that both ρ1 > ρ and
ρ2 > ρ . Note, however, that we can not use ρ2 = 1 (corresponding to S(Xi) = 1),
since as soon as we obtain ρ = 1 our algorithm will stop and, thus the level m will be
never reached. To prevent this we modify ρ2 by moving from the level correspond-
ing to S(Xi) = 1 to the next level of S(Xi), that is to the level S(Xi) = 2. This cor-
responds to the elite sequence {2,3} with the new modified ρ2 = Nt/N = 2/9 < ρ .
Based in this we shall further require that ρ should be in some fixed interval (a1,a2),
say (a1,a2) = (0.01,0.25). This means that when the number of elites Nt > a2N we
automatically switch from a lower elite level to a higher one; if a1N ≤ Nt ≤ a2N
(ρ ∈ (a1,a2))ρ ∈ (a1,a2), and thus a1 ≤ ρt ≤ a2, we accept Nt as the size of the
elites sample; and if Nt < a1N, we proceed sampling until Nt = a1N, that is until we
obtain at least a1N elites.

We summarize this as

Remark 16.5. Adaptive choice of ρ For fixed N, ρ and for fixed interval a1 ≤ ρ ≤ a2,
say 0.01 ≤ ρ ≤ 0.25, let S�1−ρ� = Smin be the smallest elite value of the ordered
sample S(Xi), i = 1, . . . ,N. The adaptive choice of ρ is performed as follows:

– Include into the elite sample all additional values S�1−ρ� = Smin (see
Remark 16.4), provided that at the iteration t the number of elite samples
Nt ≤ a2N. Denote the adaptive ρ as ρ1. Clearly, ρ1 ≥ ρ .

– Remove from the elite all values S�1−ρ� = Smin, provided the number of elite
samples Nt > a2N. Note that by doing so we switch from a lower elite level
to a higher one. If Nt ≥ a1N, accept Nt as the elite sample and denote the
modified ρ as ρ2. If Nt < a1N, we proceed sampling until Nt ≥ a1N, that is
until we obtain at least a1N samples.
Note that the main reason that both Algorithms 16.3.3 and 16.3.5 fail to reach
the target value m is that we used ρ based on Remark 16.4, rather than the
adaptive ρ satisfying a1 < ρ ≤ a2.
Note finally, that if Nt = N and if there is only a single elite value left then
we automatically obtain DHR Algorithm 16.3.1. Since Algorithm 16.3.1 is
typically less efficient than the proposed one, it is desirable either to reject
such an elite sample and start a new one, or enlarge the current one until we
get several elites.

We call Algorithm 16.3.5 with the additional step, called adaptive choice of ρ ,
the Basic Algorithm. It is important to note that adding the above step to all three
Algorithms (16.3.1, 16.3.3 and 16.3.5), improves essentially their performance in
the sense that all three have reached the desired level m in most of our experiments.
In particular, while estimating rare-events for the sum of iid Bernoulli random vari-
ables we found that the Basic Algorithm outperforms Algorithm 16.3.3. It is our
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understanding that the bootsraping step Algorithm 16.3.3 is the one which causes
strong deviation of the resulting sample X1, . . . ,XN from the uniform, and thus it
should be removed.

To increase further the accuracy of the Basic Algorithm, we turn next to the (3)
Enhanced version, where we introduce two additional steps to the Basic Algorithm.

1. Screening step. Since the optimal zero variance pdf g∗(x,mt) must be uni-
formly distributed for each fixed mt , our algorithm checks at each iteration
whether or not all elite vectors X̃1, . . . , X̃Nt are different. If this is not the case,
we screen out (clean) all redundant elite samples. We denote the resulting elite
sample as X̂1, . . . , X̂Nt and call it, the truly uniform sample. Observe that this
procedure prevents the empirical pdf associated with X̂1, . . . , X̂Nt from devia-
tion from the uniform one.

2. Cloning. The goal of cloning is to find a good balance (in terms of bias-
variance) between the number of elite and the burn-in periods, denoted by
b, in the Gibbs sampling. Note that DHR Algorithm 16.3.1 and Botev–Kroese
Algorithm 16.3.3 correspond to b = N and b = 1, respectively.
For fixed N and b, the adaptive cloning parameter η at iteration t−1 is defined
as

ηt−1 =
⌈

N
bNt−1

⌉
−1 =

⌈
Ncl

Nt−1

⌉
−1 . (16.67)

Here Ncl = N/b is called the cloned sample size and, as before, Nt−1 denotes
the number of truly uniform elites (left after the screening) at iteration t −
1. Note that �·� denotes rounding to the largest integer. The goal of η is to
reproduce η times the Nt−1 truly uniform elites. Note also that because of its
adaptive nature (ρ2 ≤ ρ ≤ ρ1), the parameter ρ is not directly involved in the
calculation of η .
As an example, let N = 1,000, b = 10. Consider two cases: Nt−1 = 21 and
Nt−1 = 121. We obtain η = 4 and η = 0 (no cloning).
Our numerical studies show that it is quite reasonable to choose 3 ≤ b ≤ 10
to have manageable bias-variance balance. In this case, the Gibbs sampler is
applied b times to each vector X of the cloned samples of size Ncl = b−1N.

Remark 16.6 (An alternative for b and η). Denote πt−1 = N
Nt−1

. Then as an
alternative to (16.67) one can use the following strategy in defining b and η :
find b and η from bη ≈ πt−1 and take b ≈ η . In short

b ≈ η ≈
(

N
Nt−1

)1/2

. (16.68)

Consider again the two cases: Nt−1 = 21 and Nt−1 = 121 and let as before
N = 1,000. We have b ≈ η = 7 and b ≈ η = 3, respectively.

If not stated otherwise we shall use (16.67). Note, finally, that we always keep
all samples generated by the Gibbs sampler.
With this at hand we next present the
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Cloning step. Given the number of burn-in periods b and the size Nt−1 of
truly uniform elites at iteration t − 1, find the cloning parameter ηt−1 =⌈

N
bNt−1

⌉
− 1. Reproduce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of the

truly elite sample {X̂1, . . . , X̂Nt−1}, that is, take η identical copies of each
vector X̂k obtained at the t − 1-th iteration. Denote the entire new population
(ηNt−1 cloned vectors plus the original truly elite sample {X̂1, . . . , X̂Nt−1}) by
Xcl = {(X̂1, . . . , X̂1), . . . ,(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of
the population Xcl apply the MCMC (and in particular the Gibbs sampler) for
b burn-in periods. Denote the new entire population by {X1, . . . ,XN}. Observe
that each component of {X1, . . . ,XN} is distributed approximately g∗(x, m̂t−1).
We call such an MCMC procedure involving η cloning and b burn-in periods
– the cloning procedure.

Recall that because of low dependence between the elite samples neither boot-
strap step nor pilot run is used in our algorithms. Note that the pilot run in
Algorithm 16.3.3 typically takes nearly the same amount of time as the main al-
gorithm, provided one wants to estimate the levels mt reliably. Note, however, that
since the levels m̂t’s are random variables, our algorithm will generate only from ap-
proximately zero variance IS pdfs. For large samples we can neglect the randomness
of m̂t .

Figures 16.1 and 16.2 demonstrate how cloning works for �(m) = EI{X1+X2≥m}
with η = 0 (no cloning) and η1 = η2 = 2 (cloning), respectively. The sample size
was N = 10. We have 2 and 3 elite samples (mice) at levels m0 and m1 at Fig. 16.1.
The counting quantity at the final level m is |X ∗| =3. Similarly we have 2 and 3 elite
samples at levels m0 and m1, respectively at Fig. 16.2. Since in this case η1 = η2 = 2
after the cloning we obtain 6 and 8 samples (mice), respectively. At the final level
m we obtain again |X ∗| =3.

Below we present our main cloning algorithm, which presents an enhanced ver-
sion of Algorithm 16.3.5 for rare events and counting with discrete distributions.

Algorithm 16.3.6 (Main Cloning Algorithm for Multiple Events) Giventhepro-
posal rarity parameter ρ , say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and
a2 = 0.25, such that ρ ∈ (a1,a2), the sample size N, say N = m× n, the burn in
period b, say 3 ≤ b ≤ 10 execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XN from
the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest subset of
the population {X1, . . . ,XN} (elite samples) for which S(Xi) ≥ m̂0. Note that
X̃1, . . . , X̃N0 ∼ g∗(x, m̂0) and that �̂(m̂0) in (16.63) is an unbiased estimator of
�(m0).

2. Adaptive choice of ρ . For each iteration use the adaptive choice of a1 ≤ ρ ≤
a2, with a1 and a2 defined in Remark 16.5.

3. Screening. Denote the elite sample obtained at iteration t−1 by{X̃1, . . . , X̃Nt−1}.
Screen out the redundant elements of the subset {X̃1, . . . , X̃Nt−1} and denote the
resulting one as {X̂1, . . . , X̂Nt−1}.
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Fig. 16.1 Mice without cloning

4. Cloning. Given the number of burn-in periods b and the size Nt−1 of truly
uniform elites at iteration t −1, find the cloning parameter ηt−1 according to
ηt−1 =

⌈
N

bNt−1

⌉
−1. Reproduce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of

the truly elite sample {X̂1, . . . , X̂Nt−1}, that is, take η identical copies of each
vector X̂k obtained at the t − 1-th iteration. Denote the entire new population
(ηNt−1 cloned vectors plus the original truly elite sample {X̂1, . . . , X̂Nt−1}) by
Xcl = {(X̂1, . . . , X̂1), . . . ,(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of
the population Xcl apply the MCMC (and in particular, the Gibbs sampler) for
b burn-in periods. Denote the new entire population by {X1, . . . ,XN}. Observe
that each component of {X1, . . . ,XN} is distributed approximately g∗(x, m̂t−1).

5. Estimating ct . Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population
{X1, . . . ,XN} for which S(Xi) ≥ m̂t . Take ĉt in (16.60) as an estimator of
ct given in (16.57). Note again that X̃1, . . . , X̃Nt is distributed approximately
g∗(x, m̂t).

6. Stopping rule. If t = T , go to step 7, otherwise set t = t + 1 and repeat from
step 2.
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Fig. 16.2 Mice with cloning, η = 2

7. Final Estimator. Deliver �̂(m) given in (16.59) as an estimator of �(m) and
|X̂ ∗| = �̂(m)|X | as an estimator of |X ∗|.

Remark 16.7 ( The direct estimator). As an alternative to the estimator |X̂ ∗| ob-
tained by Algorithm 16.3.6 we can use the one based on direct counting of the
number of the truly uniform samples obtained just after crossing the level m. Such
counting estimator, denoted by |X̂ ∗

dir|, is associated with the empirical distribution
of the optimal zero variance uniform distribution g∗(x,m). We found numerically
that |X̂ ∗

dir| is extremely useful and very accurate. Note that it can be applied only
for counting problems with |X ∗| being not too large. In particular, |X ∗| should be
less than the sample size N, that is |X ∗| < N. Note also that counting problems
with values small relative to |X | are known as the must difficult ones and in many
problems one is indeed interested to count only if |X |∗ is no greater then some
fixed quantity, say N . Clearly, this is possibly only if N ≥N .

It is important to note that |X̂ ∗
dir| is typically much more accurate than its coun-

terpart, the standard estimator |X̂ ∗| = �̂|X |. The reason is that |X̂ ∗
dir| is obtained

directly by counting all distinct values S(Xi), i = 1, . . . ,N, satisfying S(Xi)≥m, that
is |X̂ ∗

dir| can be written as |X̂ ∗
dir| = �̂dir|X ∗|, where
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�̂dir =
1
N

Ndir

∑
i=1

I{S(Xi)≥m},

and where Ndir = |X̂ ∗
dir| is the number of different (distinguishable) uniform sam-

ples of S(Xi), i = 1, . . . ,N at level m.
To increase further the accuracy of |X̂ ∗

dir| one can take a larger sample at the last
step of Algorithm 16.3.6, that is while estimating cT = cm.

Table 16.2 presents comparison of performance of Algorithm 16.3.6 for differ-
ent parameter configurations of as well as with the DHR and Botev–Kroese (BK)
Algorithms while estimating

� = E f

[
I{∑n

i=1 Xi≥m}
]

,

where the Xi’s are iid Ber(1/2), n = 20 and m = 19. Table 16.3 presents similar data
for n = 100 and m = 99. In both experiments, we set N = 1,000 and ρ = 0.05 and
the results were averaged over 100 independent runs.

Here RE and REdir denote the relative error of the estimators |X̂ ∗| and |X̂ ∗
dir|,

respectively. Note that in the version N0 1 of Algorithm 16.3.6 we set a1 = 0.01 and
a2 = 0.5, while we did not restrict the remaining ones, that is, they were a1 = 0 and
a2 = 1. It follows from these tables that Algorithm 16.3.6 with the burn-in period
b = 10 is the best. Similar performance was obtained for 3 ≤ b ≤ 10. Note that the
version N0 2 and N0 3 are somewhat similar to the version N0 4 and N0 5 of DHR
and BK, respectively, in the sense that the burn-in periods are b = N and b = 1,
respectively. Note also that for the case n = 100 and m = 99, Algorithm 16.3.3 did

Table 16.2 Comparative performance of the algorithms for the sum of n = 20 iid Bernoulli random
variables for m = 19, N = 1,000 and ρ = 0.05

N0 Algorithm b η |X̂ ∗| RE |X̂ ∗
dir| REdir CPU

1 New 10 ηt = N
bNt

−1 21.20 0.047 21.0 0 0.3
2 New N/Nt 0 21.92 0.147 21.0 0 0.9
3 New 1 N/Nt 21.78 0.163 21.0 0 0.7
4 BK 1 N/Nt 27.32 0.305 21.0 0 0.3
5 DHR N 0 20.22 0.137 21.0 0 14.5

Table 16.3 Comparative performance of the algorithms for the sum of n = 100 iid Bernoulli ran-
dom variables for m = 99, N = 1,000 and ρ = 0.05

N0 Algorithm b η |X̂ ∗| RE |X̂ ∗
dir| REdir CPU

1 New 10 ηt = N
bNt

−1 101.7 0.041 101.0 0 33
2 New N/Nt 0 122.6 0.206 100.7 0.01 27
3 New 1 N/Nt 118.2 0.172 101.0 0 26
4 BK 1 N/Nt - - - - ∞
5 DHR N 0 207.3 0.354 101 0.0 288
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Table 16.4 Dynamics of Algorithm 16.3.6 for the sum of 100 Bernoulli random variables with
N = 1,000, ρ = 0.05 and b = 5

t |X ∗| |X ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 5.4e+027 0.0 66 66 65 57 0.07
3 3.7e+025 0.0 70 70 71 67 0.07
5 2.9e+023 0.0 96 96 77 73 0.06
7 2.1e+021 0.0 105 105 81 77 0.10
10 1.1e+018 0.0 212 212 87 83 0.05
12 3.8e+016 0.0 375 375 88 85 0.19
15 1.2e+014 0.0 515 515 90 88 0.15
17 1.7e+012 0.0 395 395 94 90 0.13
20 1.4e+009 0.0 159 159 95 93 0.09
22 4.1e+006 0.0 77 77 96 95 0.06
25 4,188.1 27.0 31 31 99 98 0.03
26 99.1 101.0 26 22 99 99 0.02
27 99.1 101.0 1,078 99 100 99 1.00

not converge to m = 99. It is interesting to note that while increasing the sample size
from N = 1,000 to N = 10,000 for the Bernoulli model with n = 100 and m = 99,
while all the rest of the data remained the same, we found that the performance of
all 5 versions substantially improved and this case Algorithm 16.3.3 also reaches
the level m = 99. In particular the relative error RE was decreased approximately
by a factor of 5. Note that if the data would be independent, one would obtain a
decrease in relative error by a factor of 101/2 ≈ 3 only. Still the relative efficiencies
of the 5 versions were similar to the case of N = 1,000. Finally, it follows from the
tables that, in spite of the high relative error RE and substantial bias of some of the
versions of |X̂ ∗|, the direct estimator |X̂ ∗

dir| is very accurate for all 5 cases. The
explanation for such nice behavior of |X̂ ∗

dir| is given in Remark 16.7.
Table 16.4 presents the dynamics for one of the runs of Algorithm 16.3.6 for the

sum of 100 Bernoulli random variables for m = 99 with N = 1,000, ρ = 0.05 and
b = 5. We used the following notations

1. Nt and N(s)
t denotes the actual number of elites and the one after screening,

respectively.
2. m∗

t and m∗t denotes the upper and the lower elite levels reached, respectively.
3. ρt = Nt/N denotes the adaptive rarity parameter.

We also run Algorithm 16.3.6 for the sum of Bernoulli random variables with
n = m and obtained similar results. Clearly, in this case |X ∗| = 1.

We finally define the most naive acceptance-rejection version of Algo-
rithm 16.3.6, called the (N = 1)-policy algorithm. According to (N = 1)-policy
algorithm at each fixed level mt−1 we use the acceptance-rejection single trial
method, until for the first time we reach a higher level mt > mt−1. Using the
(N = 1)-policy algorithm we always managed to reach any level m ≤ n, even for
large n, like n = 1,000. It is not difficult to understand that the (N = 1)-policy
algorithm performs as a randomized “bisection” method.
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Clearly, the total number of Bernoulli samples M to reach the level m = n in-
creases with n. For example, for n = m = 10,100, 1,000 we found that in average
M = 14, 250, 8,000, respectively.

For the continuous case Algorithm 16.3.6 simplifies substantially. In particular
its steps 2 and 3 can be omitted. Also, one has to take into account that, since there
is no screening Nt−1 in the cloning step (step 4) presents the number of elites rather
than what we call the number of truly uniform elites.

Below we present for completeness the continuous version of Algorithm 16.3.6.

Algorithm 16.3.7 (Cloning Algorithm for the Continuous Case) Given the rar-
ity parameter ρ , say ρ = 0.1, the sample size N, say N = m×n, the burn-in period
b, say 3 ≤ b ≤ 10, execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XN from
the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest subset of
the population {X1, . . . ,XN} (elite samples) for which S(Xi) ≥ m̂0. Note that
X̃1, . . . , X̃N0 ∼ g∗(x, m̂0) and that �̂(m̂0) in (16.63) is an unbiased estimator of
�(m0).

2. Cloning. Given the number of burn-in periods b and the elite size Nt−1 at it-
eration t −1, find the cloning parameter ηt−1 =

⌈
N

bNt−1

⌉
−1. Reproduce ηt−1

times each vector X̂k = (X̂1k, . . . , X̂nk) of the elite sample {X̂1, . . . , X̂Nt−1}, that
is, take η identical copies of each vector X̂k obtained at the t − 1-th itera-
tion. Denote the entire new population (ηNt−1 cloned vectors plus the original
elite sample {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . ,(X̂Nt−1 , . . . , X̂Nt−1)}.
To each of the cloned vectors of the population Xcl apply the MCMC (and
in particular, the Gibbs sampler) for b burn-in periods. Denote the new entire
population by {X1, . . . ,XN}. Observe that each component of {X1, . . . ,XN} is
distributed approximately g∗(x, m̂t−1).

3. Estimating ct . Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population
{X1, . . . ,XN} for which S(Xi) ≥ m̂t . Take ĉt in (16.60) as an estimator of
ct given in (16.57). Note again that X̃1, . . . , X̃Nt is distributed approximately
g∗(x, m̂t).

4. Stopping rule. If mt = m go to step 5, otherwise set t = t +1 and repeat from
step 2.

5. Final Estimator. Deliver �̂(m) given in (16.59) as an estimator of �(m) and
|X̂ ∗| = �̂(m)|X | as an estimator of |X ∗|.

16.3.4.2 The Boltzmann Cloning Algorithm

Many problems including the classic Ising model are based on the Boltzmann dis-
tribution

g(x) = Z−1(λ ) f (x)exp{−λS(x)} , (16.69)

where Z(λ ) = E f [exp{−λS(X)}] is called the partition function.
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Note that in analogy to (16.55)– (16.56) we can write Z = Z(m) as

Z(m) = E f
[
exp

{
−∑m0

i=1λCi(X)
}]

×∏T
t=1 E f

[
exp

{
−∑mt

i=1λCi(X)
}
|exp

{
−∑mt−1

i=1 λCi(X)
}]

= E f
[
exp

{
−∑m0

i=1λCi(X)
}]
∏T

t=1 Egt−1

[
exp

{
−∑mt

i=1λCi(X)
}]

= z0∏T
t=1 zt ,

(16.70)

were

zt = E f
[
exp

{
−∑mt

i=1λCi(X)
}
|exp

{
−∑mt−1

i=1 λCi(X)
}]

= Egt−1

[
exp

{
−∑mt

i=1λCi(X)
}]

,
(16.71)

z0 = E f
[
exp

{
−∑m0

i=1λCi(X)
}]

and as usual, the sequence {mt , t = 0,1, . . . ,T} sat-
isfies 0 < m0 < m1 < .. . < mT = m and it is chosen on-line (adaptively), f denotes
the original pdf f (x), and gt−1 = g(x,mt ,λ =−∞) denotes the zero variance (Boltz-
mann) pdf at iteration t.

The estimator of Z(m) can be written in analogy to (16.59) and (16.60) as

Ẑ(m) =
T

∏
t=0

ẑt , (16.72)

where

ẑt =
1
N

N

∑
j=1

exp

{
−

mt

∑
i=1
λCi(Xj)

}
(16.73)

and Xj ∼ g(x,λ ,mt−1).
Here we present a modified version of Algorithm 16.3.6 for rare events, counting

and estimation of the partition function Z(λ ).
To proceed, note [11] that (16.69) can be derived from the solution of the follow-

ing single-constrained MinxEnt program

ming D(g,h) = ming
∫

ln g(x)
f (x) g(x)dx = ming Eg

[
ln g(X)

f (X)

]

s.t. Eg[∑m
i=1 Ci(X)] = m

∫
g(x)dx = 1.

(16.74)

It is also important to note (see [11]) that for λ =−∞ the optimal pdf g(x) in (16.69)
coincides with the zero-variance IS pdf (16.58), that is with

g∗(x,m) = �−1 f (x)I{S(x)≥m}. (16.75)
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Because of this relation one can easily switch from the Boltzmann pdf (16.69) to the
IS zero-variance pdf (16.75) and thus to apply the original Algorithm 16.3.6 instead
of the Boltzmann type algorithm below and vise-versa, provided λ =−∞ in (16.69).
This, for example, means that when λ = −∞ the classic Ising model can be treated
by using the IS zero-variance pdf (16.75) rather than via the original Boltzmann pdf
(16.69).

To proceed note that similar to the parametric MinxEnt algorithm (see [11]) no
acceptance-rejection step is explicitly involved in the Boltzmann cloning algorithm
our algorithm below. As result neither the rarity parameter ρ nor elite sampling are
explicitly involved either. In fact, the elite sampling will be hidden some how in the
sense that it will be explicitly available only after the sequence {m̂t , t = 1, . . . ,T} is
generated. Observe that here m̂t corresponds to the maximum level reached so for at
iteration t.

To clarify, consider a rare events probability � associated with the sample per-
formance S(X) being the sum of iid Bernoulli random variables, that is S(X) =
∑m

i=1 Xi. Assume for concreteness that we took a sample N = 1,000 and while run-
ning the simulation we obtained (at some iteration t) that all 1,000 sample values
Sk ∈ (a,b), k = 1, . . . ,1,000, where, for concreteness, say a = 20 and b = 50. Since
m̂t corresponds to the maximum level reached at iteration t, we clearly have that
m̂t = b = 50 and since λ = −∞, all the terms of Sk which are less than b are negli-
gible in the exponent exp{−∑m

i=1λXik}. Assume, finally that the number of terms,
which we also call here, the number of elite samples, say Nt for which Sk = 50
equals 25. So, as before, we can define ρ̂t = Nt/N and call it adaptive inexplicit ρ ,
(for our case it is ρ̂t = 25

1,000 = 1/40).
Note that typically we expect ρ̂t > 10−2, since we take at each iteration a sample

size N > m/ρ , where say ρ = 10−1. If however, at some iteration t, we occasionally
obtain that ρ̂t < ρ , we can reject the largest value m̂t obtained so far and take instead
the value m̂t −1, provided N > (m̂t −1)/ρ and so far. In our example m̂t −1 = 49.

The Boltzmann cloning algorithm basically coincides with Algorithm 16.3.6.
Here we sample from the zero variance Boltzmann pdf g(x,mt ,λ = −∞) (see
(16.69)) rather then from the zero variance IS pdf g∗(x,mt) (see (16.58)) and the
step 2 of Algorithm 16.3.6 for chosing the adaptive ρ ∈ (a1,a2) is replaced by the
corresponding adaptive inexplicit one defined above. Also, as in Algorithm 16.3.6
we use the term truly uniform elites. This is regardless of the fact that the elite sam-
ples are obtained only in an inexplicit way.

Algorithm 16.3.8 (Cloning Algorithm with the Boltzmann Distribution) Given
the sample size N, execute the following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XN

from the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest sub-
set of the population {X1, . . . ,XN} (elite samples) for which S(Xi)≥ m̂0. Take
ẑ0 = ẑ(m̂0) in (16.73) is an unbiased estimator of z0. Note that X̃1, . . . , X̃N0 ∼
g(x,λ , m̂0).
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2. Screening. Denote the elite sample obtained at iteration t−1 by {X̃1, . . . , X̃Nt−1}.
Screen out the redundant elements of the subset {X̃1, . . . , X̃Nt−1} and denote the
resulting one as {X̂1, . . . , X̂Nt−1}.

3. Adaptive inexplicit choose of ρ . Estimate ρ according to the adaptive inex-
plicit rule ρ̂t = Nt/N, where Nt includes all elite samples S(Xi) corresponding
to the maximum level m̂t of the entire sample S(Xi), i = 1, . . . ,N.

4. Cloning. Given the size Nt−1 of truly uniform elites at iteration t − 1, find
the cloning and the burn-in parameters ηt−1 and bt−1 according to (16.68).
Reproduce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of the truly elite sam-
ple {X̂1, . . . , X̂Nt−1}, that is, take η identical copies of each vector X̂k ob-
tained at the t − 1-th iteration. Denote the entire new population (ηNt−1
cloned vectors plus the original truly elite sample {X̂1, . . . , X̂Nt−1}) by Xcl =
{(X̂1, . . . , X̂1), . . . ,(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of the
population Xcl apply the MCMC (and in particular the Gibbs sampler) for
bt−1 burn-in periods. Denote the new entire population by {X1, . . . ,XN}.
Observe that each component of {X1, . . . ,XN} is distributed approximately
g(x,λ , m̂t−1).

5. Estimating zt . Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population
{X1, . . . ,XN} for which S(Xi) ≥ m̂t . Take ẑt in (16.73) as an estimator of
zt given in (16.71). Note again that X̃1, . . . , X̃Nt is distributed approximately
g(x,λ , m̂t).

6. Stopping rule. If mt = m go to step 6, otherwise set, set t = t + 1 and repeat
from step 2.

7. Final Estimator. Deliver Ẑ(m) given in (16.72) as an estimator of Z(m) given
in (16.70).

16.3.5 Applications: Counting the Number of Feasible Solutions
in an Integer Program

Here we show how to use the Gibbs sampler for counting on the set (16.42), that is
on

n

∑
k=1

aikxk = bi, i = 1, . . . ,m1,

n

∑
k=1

a jkxk ≥ b j, j = m1+1, . . . ,m1 +m2,

x ≥ 0, xk integer ∀k = 1, . . . ,n .

While using Gibbs sampler, we take into account the additivity properties of the
functions Si(x) = ∑n

k=1 aikxk in (16.42) and also formula (16.46)
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Example 16.6 (SAT Example 16.4 Continued). We shall show how to apply Gibbs
sampler for counting the number of assignments in the SAT Example 16.4, that is,

(x1 + x̄2)(x̄1 + x̄2 + x3)(x2 + x3) .

Recall that

1. The set of the associated linear integer constraints in this case is as

x1 +(1− x2)≥ 1

(1− x1)+(1− x2)+ x3 ≥ 1,

x2 + x3 ≥ 1 ,

where each x1,x2,x3 ∈ {0,1}.
2. The associated probability � is � = Pu(C1 + C2 + C3 = 3), where C1 =

I{X1−X2≥0}, C2 = I{X1+X2−X3≤1} and C3 = I{X2+X3≥1}.

We have

g∗(x1, m̂t−1|x−1) = f1(x1)I{x1≥m̂t−1−I{−x2≥0}−I{x2−x3≤1}−C3},

g∗(x2, m̂t−1|x−2) = f2(x2)I{x2≥m̂t−1−I{x1≥0}−I{x1−x3≤1}−I{x3≥1}},

g∗(x3, m̂t−1|x−3) = f3(x3)I{x1≥m̂t−1−C1−I{x1+x2≤1}−I{x2≥1}},
(16.76)

where fi(xi), i = 1,2,3 are independent Ber(p = 1/2) distributions.
Note that I{X1≥0} = 1 in g∗(x2, m̂t−1|x−2).

It readily follows from the above example, that in order to count on a quite
general set of linear (integer or continuous) constraints (16.42) with given matrix
A = {ai j}, one only needs to apply the Gibbs method, while sampling from the
following simple one-dimensional conditional pdfs g∗(xi, m̂t−1|x−i)

g∗(xi, m̂t−1|x−i) = Ber(1/2)I{∑r∈Ri Cr(X)≥m̂t−1−∑r �∈Ri Cr(X)} , (16.77)

where Ri = { j : ai j �= 0}.
Recall that sampling a random variable X̃i from (16.77) using the Gibbs sampler

can be performed as follows. Generate Y ∼ Ber (1/2). If

∑
r∈Ri

Cr(x1, . . . ,xi−1,Y,xi+1, . . . ,xn)≥ m̂t−1 ,

then set X̃i = Y , otherwise set X̃i = 1−Y .
Note also that before performing the simulation, one has to store the correspond-

ing set of indexes Ri associated with each conditional marginal pdf g∗(xi, m̂t−1|x−i).
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It follows from the above that counting multiple events and in particular the cardi-
nality of the set (16.42) of the integer program (16.43) can be efficiently performed
using the cloning Algorithm 16.3.6, that is one can estimate |X ∗| via |X̂ ∗|= �̂|X |,
where �̂ by itself is an estimator of � given in (16.59). Similar arguments can be ap-
plied for estimating the volume of bodies given by the set

X ∗ = {x ∈ R
n : Si(x) = bi, i = 1, . . . ,m1;S j(x)≥ b j, j = 1, . . . ,m2} . (16.78)

In particular, for a polyhedron, X ∗ reduces to the set associated with the following
linear programming constraints

n

∑
k=1

aikxk = bi, i = 1, . . . ,m1,

n

∑
k=1

a jkxk ≥ b j, j = 1, . . . ,m2, (16.79)

xk ∈ (a,b), ∀k = 1, . . . ,n .

It also follows that, when possible, it is desirable to use the estimator |X̂ ∗
dir| defined

in Remark 16.7, since it is much more accurate than the standard one |X̂ ∗|.

16.3.6 Sampling Uniformly on Different Regions

Since the sequences produced by Algorithm 16.3.6 a truly uniform, so it should be
suitable for uniform sampling on X ∗. This means, for example, that while counting
the number of feasible solutions defined on the set of the linear integer program
with the constraints (16.42), one can sample according to a discrete uniform pdf
inside the corresponding region X ∗. As for another example, if we have linear
programming constraints (16.79) instead of (16.42), then the continuous version
of Algorithms 16.3.6 can be used to sample uniformly inside the corresponding
polyhedron.

Since to sample on X ∗ only the elites at level mT = m matter, we can run the
cloning Algorithms 16.3.6 at all intermediate levels m0,m− 1, . . . ,mT−1 with less
samples, while at the final level, mT = m, we can take a larger sample. The cor-
responding elites could be further employed to generate an approximate uniform
sampling on the entire region X ∗.

As a simple example, consider sampling on the region

X ∗ = {X :
n

∑
i=1

Xi ≥ m},

where the Xi’s are iid each distributed Ber (1/2). Let n = 100 and m = 98. We have
|X ∗| = 10,001. For this example we employed Algorithm 16.3.6 with N = 100,
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ρ = 0.1 and b = 5 for the first T − 1 iterations. By doing so we obtain at each
iteration, on average, 10 truly uniform elites. At the last iteration we increased the
sample to 1,000 using the same ρ = 0.1 and the same b = 5 and thus obtained on
average, 100 truly uniform elites. We finally run each of these 100 Markov chains
(in steady-state) for a long burn-in, say b = 500 and, thus generating a total of
N = 50,000 = 100× 500 Gibbs samples, for which statistics was collected. For
this simple example we found that

1. The direct estimator |X̂ ∗
dir|with the above sample N = 50,000 = 100×500 found

all 10,001 different Bernoulli points.
2. The resulting sample of the size 50,000 is distributed very close to the uniform

on the set X ∗ = {X : ∑100
i=1 Xi ≥ 98} , that is the histogram over these 10,001

points is close to the uniform.

More research on uniform sampling on different regions is under way.

16.3.7 Integer Programming: The Penalty Function Approach

The cloning Algorithm 16.3.6 can be readily modified for unconstrained optimiza-
tion as follows

Algorithm 16.3.9 (Cloning Algorithm for Integer Programming) Given the rar-
ity parameter ρ , say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and a2 = 0.25,
the sample size N, say N = m×n, the burn-in period b, say 3 ≤ b ≤ 10, execute the
following steps:

1. Acceptance-Rejection. Set a counter t = 1. Generate a sample X1, . . . ,XN from
the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest subset of the
population {X1, . . . ,XN} (elite samples) for which S(Xi) ≥ m̂0.

2. Adaptive choice of ρ . For each iteration use the adaptive choice of a1 ≤ ρ ≤
a2, with a1 and a2 defined in Remark 16.5.

3. Screening. Denote the elite sample obtained at iteration t−1 by{X̃1, . . . , X̃Nt−1}.
Screen out the redundant elements of the subset {X̃1, . . . , X̃Nt−1} and denote the
resulting one as {X̂1, . . . , X̂Nt−1}.

4. Cloning. Given the number of burn-in periods b and the size Nt−1 of truly
uniform elites at iteration t −1, find the cloning parameter ηt−1 according to
ηt−1 =

⌈
N

bNt−1

⌉
−1. Reproduce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of

the truly elite sample {X̂1, . . . , X̂Nt−1}, that is take η identical copies of each
vector X̂k obtained at the t − 1-th iteration. Denote the entire new population
(ηNt−1 cloned vectors plus the original truly elite sample {X̂1, . . . , X̂Nt−1}) by
Xcl = {(X̂1, . . . , X̂1), . . . ,(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of
the population Xcl apply the MCMC (and in particular the Gibbs sampler) for
b burn-in periods. Denote the new entire population by {X1, . . . ,XN}.
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5. Estimating mt . Let X̃t = {X̃1, . . . , X̃Nt} be the subset of the population
{X1, . . . ,XN} for which S(Xi)≥ m̂t . Deliver m̂t .

6. Stopping. If for some t ≥ d, say d = 5,

m̂t = · · ·= m̂t−d (16.80)

then stop and deliver m̂t,N as the estimator of the optimal solution; otherwise,
set t = t +1 and return to Step 2.

16.4 Numerical Results

16.4.1 Numerical Results with IME

We present here numerical results with the proposed algorithms for counting and op-
timization. For counting problems we found that the variance minimization (VM)
algorithms [13] are more robust than its IME and CE counterparts. In contrast, for
combinatorial optimization, like TSP, we found that all proposed algorithms perform
similarly. The main reason for that is, there is no need to use LR’s in optimization.
If not stated otherwise, we set the rarity parameter ρ = 0.001 and the smoothing
parameter α = 0.7. Note that ρ = 0.001 applies to the elite samples only for the
intermediate states of our algorithms, that is, when m̂t < m. For m̂t = m, we accu-
mulate all elite samples.

A huge collection of instances (including real-world) is available on OR-
LIB site: http://people.brunel.ac.uk/ mastjjb/jeb/orlib/scpinfo.html; for multiple-
knapsack http://hces.bus.olemiss.edu/tools.html or http://elib.zib.de/pub/Packages/
mp-testdata/ip/sac94-suite/index.html. Knapsack instances generator is given on:
http://www.diku.dk/ pisinger/codes.html. A huge collection of SAT problems is
given on SATLIB website www.satlib.org.

To study the variability in the solutions, we run each problem 10 times and report
our statistics based on these 10 runs of our algorithms. In the following tables, the
quantities are defined as follows (for each iteration t):

1. “Mean, max and min |̂X ∗|” denote the sample mean, maximum and minimum
and minimal values of the 10 estimates of |X ∗|.

2. “Mean, max and min Found” denote the sample mean, maximum and minimum
of values found in each of the 10 samples of size N. Note that the maximum
value can be viewed as the lower bound of the true unknown quantity |X ∗|.

3. PV denotes the proportion of generated values, averaged over 10 replications.
4. RE denotes the mean relative error for |̂X ∗|, averaged over the 10 runs.
5. λ denotes the mean λ , averaged over the 10 runs.
6. S denotes the mean entropy averaged over the 10 runs.
7. m denotes the mean number of satisfied constraints at t-th iteration and averaged

over the 10 runs.
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In all counting problems, we compared the performance of the standard CE and
the IME Algorithm 16.2.1 (with fixed λ =−100) with their VM counterparts. While
running the algorithms we found that for some particular instances, all CE-based
algorithms produce incorrect estimators, while their counterpart, the VM-based al-
gorithm, always delivers correct (unbiased) ones. This undesirable phenomenon of
CE-based algorithms has not yet been fully understood and it is under investigation.

In all our numerical studies, we generated the matrices A = (ai j) randomly and
made sure that they are sparse. The sparsity insures that the counting quantity |X ∗|
is small (is associated with rare-event probability, that is, the most difficult cases),
while random matrices generation insures the diversity of the cases. All cases have
been checked first on small randomly generated models, such that |X ∗| is relatively
small, say 0 ≤ |X ∗| ≤ 100, and such that their exact solution via full enumeration
is available. Only, after that have larger models been tested.

To speed up the convergence, we implemented the following.

• We set λ = −10 for its first 2–3 iterations and for the remaining ones we set
λ =−100 the IME Algorithm 16.2.1.

• In many counting problems involving rare-events, the elements of p̂t are ap-
proaching either 0’s or 1’s as t increases. We set them automatically either to
0’s or 1’s as soon as they reach, say 0.01 and 0.99, respectively. By doing so, at
iterations t +1, . . . ,T one needs to generate and update only a very small portion
of p’s, namely those which remain in the interval (0.01, 0.99).

Below we consider separately counting, and combinatorial optimization.

16.4.1.1 Counting

Recall that in all our experiments with the IME Algorithm 16.2.1, we set λ =
−100. We also present the performance of our algorithms to count the number of
optimal solutions in some constrained optimization problems, where the optimal
solution was either obtained via full enumeration (for small models) or (the best
known solution) was taken from the web site.

16.4.2 Counting Hamiltonian Cycles

Similar, to the random K-PERM we define the so-called random K-Hamiltonian
matrix, denotes as K-HAM matrix, where, as before, K, (K < n) denotes the number
of independent uniformly distributed Bernoulli random variables at each row of the
randomly generated matrix A. We found empirically that in order for |X |∗ to be
very small relative to |X |, the parameter K should be chosen as K ≤ 0.15n.

Table 16.5 presents the performance of the IME Algorithm 16.2.1 for a 4-HAM
randomly generated (30×30) matrix using N = 100,000 samples. The trajectories
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Table 16.5 Performance of the IME algorithm for the HC problem for a 4-HAM matrix A =
(30×30) and N = 100,000

t |X ∗| Found PV RE

Mean Max Min Mean Max Min

0 36.27 283 0 0.20 1 0 0.0000 2.3608
1 62.84 109 32 22.10 26 17 0.0005 0.3272
2 66.09 76 55 55.10 60 49 0.0065 0.0885
3 62.75 68 56 55.30 62 49 0.0344 0.0496

Table 16.6 Performance of the IME Algorithm 16.2.1 for the random 3-SAT for the instance
matrix A = (40×160) and N = 100,000

t |X ∗| Found PV RE S m

Mean Max Min Mean Max Min

0 0.0 0.0 0.0 0 0 0 0.00 NaN 13.86 151
1 0.0 0.0 0.0 0 0 0 0.00 NaN 13.25 153
2 96.0 960.3 0.0 0 1 0 0.00 3.000 12.28 155
3 88.9 328.6 0.0 2 9 0 0.00 1.164 11.13 157
4 93.9 120.1 0.0 42 106 0 0.00 0.387 8.46 159
5 111.0 134.6 45.9 98 113 12 0.05 0.207 6.52 160
6 113.0 123.1 105.9 109 113 98 0.22 0.038 4.49 160
7 109.5 113.3 104.5 109 111 105 0.38 0.025 3.55 160
8 109.7 113.5 105.1 109 111 105 0.49 0.021 3.16 160
9 109.9 114.6 104.5 109 111 105 0.53 0.025 3.04 160
10 111.7 116.9 104.8 109 111 105 0.54 0.027 3.00 160

(tours) were generated using the node transition algorithm (see Algorithm 4.7.1 of
[12]). The results are self-explanatory.

16.4.3 The SAT Problem

Table 16.6 presents the performance of the IME Algorithm 16.2.1 for a random
3-SAT problem with an instance matrix A = (40× 160) for N = 100,000. The re-
sults are self-explanatory. Note that running the same problem with the standard CE
method, the results were worse, in particular in terms of relative error.

Figure 16.3 presents a typical dynamics of the IME Algorithm 16.2.1 with the
instance matrices A = (40×160).
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Fig. 16.3 Typical dynamics of the IME Algorithm 16.2.1 for the random 3-SAT with an instance
matrix A = (40×160) and N = 100,000

16.4.3.1 Optimization

In this section we present performance of CE, VM, MinxEnt and IME for uncon-
strained optimization. Table 16.7 presents comparative studies of the following 4
methods: CE, VM, MinxEnt and IME for a couple of TSP models taken from
http://www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95/atsp/.

In all numerical results we use the same CE parameters as for the ft53 problem,
that is, ρ = 10−2, N = 10n2,α = 0.7 and d = 5 (see (16.49)). To study the variability
in the solutions, each problem was repeated 10 times. In Table 16.7, n denotes the
number of nodes of the graph, T̄ denotes the average total number of iterations
needed before stopping, b̂1 and b̂T denote the average initial and final estimates
of the optimal solution, b∗ denotes the best known solution, ε̄ denotes the average
relative experimental error based on 10 replications, ε∗ and ε∗ denote the smallest
and the largest relative error among the 10 generated shortest paths, and finally CPU
denotes the average CPU time in seconds.

It follows that all 4 methods work reasonable well and it is difficult to give prior-
ity to any of them.

We apply next the CE algorithm to solve the Knapsack problem using the penalty
function approach (see (16.51)–(16.53).

As a particular problem consider the Sento2.dat knapsack problem given in
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/mknap2.txt. The problem has 30
constraints and 60 variables. We ran the CE method for 10 independent runs with
ρ = 0.01, N = 50,000, α = 0.9 and a = 1. In all our experiments, CE always found
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Table 16.7 Comparative studies for TSP

File n b∗ Alg. b̂1 b̂T ε̄ ε∗ ε∗ T̄ CPU

ftv33 34 1,286 CE 3,248 1,333 0.0365 0.0000 0.0684 17.8 56
VM 3,366 1,286 0.0000 0.0000 0.0000 23.8 127
PME 3,296 1,308 0.0171 0.0000 0.0412 19.8 173
IME 1,305 0.0154 0.0000 0.0435 18.30 76

ry48p 48 14,422 CE 40,254 14,840 0.0289 0.0133 0.0579 31.2 424
VM 42,208 14,960 0.0373 0.0162 0.0597 61.7 935
PME 41,041 14,952 0.0367 0.0228 0.0537 34.0 992
IME 14,888 0.0323 0.0160 0.0461 30.60 731

Table 16.8 A typical dynamics of the CE algorithm with a = 1 for the problem Sento2

t m̂t m̂∗
t

1 5,742.0 7,685.0
2 7,461.0 8,392.0
3 8,052.0 8,395.0
4 8,297.0 8,522.0
5 8,427.0 8,606.0
6 8,509.0 8,668.0
7 8,562.0 8,704.0
8 8,604.0 8,713.0
9 8,624.4 8,722.0
10 8,640.0 8,722.0
11 8,649.0 8,722.0

the optimal solution S(x∗)= 8,722. Table 16.8 presents a typical dynamics of the CE
algorithm. Here m̂t and m̂∗

t denote the elite sample value at iteration t and the best
solution found during the first t iterations, respectively.

16.4.4 Numerical Results with the Cloning Method

We present here numerical results with the proposed algorithms for counting and
optimization. If not stated otherwise, we set the rarity parameter ρ = 0.1 for N =
1,000 and ρ = 0.01 for N = 1,000.

A huge collection of instances (including real-world) is available on OR-
LIB site: http://people.brunel.ac.uk/mastjjb/jeb/orlib/scpinfo. html; for multiple-
knapsack http://hces.bus.olemiss.edu/tools.html or http://elib.zib.de/pub/Packages/
mp-testdata/ip/sac94-suite/index.html. Knapsack instances generator is given on:
http://www.diku.dk/ pisinger/codes.html.

To study the variability in the solutions, we run each problem 10 times and report
our statistics based on these 10 runs of our algorithms. In the following tables, the
quantities are defined as follows (for each iteration t):
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1. “Mean, max and min |̂X ∗|” denote the sample mean, maximum and minimum
and minimal values of the 10 estimates of |X ∗|.

2. “Mean, max and min |X̂ ∗
dir| ” denote the sample mean, maximum and minimum

values of the empirical estimator (see Remark 16.7) found in each of the 10
samples of size N. Note that the maximum value of the “direct estimator” can be
viewed as the lower bound of the true unknown quantity |X ∗|.

3. RE denotes the mean relative error for |̂X ∗|, averaged over the 10 runs.
4. CPU denotes the mean relative error for |̂X ∗|, averaged over the 10 runs.

16.4.5 The SAT Problem

Table 16.9 presents the performance of Algorithm 16.3.6 for a random 3-SAT prob-
lem with an instance matrix A = (20×80) for N = 1,000 and ρ = 0.05. We found
that the average relative error is RE = 0.08 and the average CPU time is 67 s.

The results are self-explanatory. Table 16.10 presents the dynamics for one of the
runs of Algorithm 16.3.6 for the same model.

As before, we used the following notations

1. Nt and N(s)
t denote the actual number of elites and the one after screening,

respectively.
2. m∗

t and m∗t denote the upper and the lower elite levels reached, respectively.
3. ρt = Nt/N denotes the adaptive rarity parameter.

Table 16.9 Performance of Algorithm 16.3.6 for 3-SAT with the matrix A = (20×80)

t |X ∗| |X̂ ∗
dir| mt

Mean Max Min Mean Max Min

1 8,500.5 10,223.6 7,401.7 0.2 2.0 0.0 75
2 1,740.5 2,075.3 1,565.7 1.7 4.0 0.0 77
3 208.3 232.9 167.3 5.9 8.0 3.0 78
4 14.3 16.3 11.8 14.7 15.0 14.0 79
5 14.3 16.3 11.8 15.0 15.0 15.0 80

Table 16.10 Dynamics of Algorithm 16.3.6

t |X ∗| |X̂ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 8,500.5 0.2 71 71 77 75 0.06
2 1,740.5 1.7 110 109 79 77 0.12
3 208.3 5.9 206 191 80 78 0.21
4 14.3 14.7 109 87 80 79 0.10
5 14.3 15.0 70 15 80 80 0.07



16 Gibbs Cloner 431

Tables 16.11 and 16.12 present data similar to Tables 16.9 and 16.10, respec-
tively, for the random 3-SAT problem with the instance matrix A = (75× 325)
taken from www.satlib.org. We set N = 10,000 and ρ = 0.1 for all iterations
until Algorithm 16.3.6 reached the desired level 325. After that we switched to
N = 100,000 for the last iteration. The results are self-explanatory.

We found that the average relative error is RE = 0.08 and the average CPU time
is 25 min for each run. It is readily seen that at iteration 21 we obtained ρ = 1
for mt = 324; after that Algorithm 16.3.6 switches automatically from ρ = 0.05 to
ρ2 = 0.02. This in turn results in switching from mt = 324 to mt = m = 325. Note
again that without the adaptive mechanism Algorithm 16.3.6 would terminate at
mt = 324 without reaching the final destination m = 325.

Similar to the CE algorithms, we also applied the cloning Algorithm 16.3.9 to
solve the knapsack problem Sento2. We ran the algorithm for 10 independent runs
with ρ = 0.1, N = 1,000 and b = 5. We found that Algorithm 16.3.9 always con-
verged to the optimal solution = 8,772. We also ran different problems from the
same side and found that the results with Algorithm 16.3.9 were exact.

Table 16.11 Performance of Algorithm 16.3.6 for the random 3-SAT with the clause matrix A =
(75×325), N = 10,000 and ρ = 0.1

|X ∗| |X̂ ∗
dir|

t Mean Max Min Mean Max Min mt

1 5.4e + 020 5.8e + 020 5.2e + 020 0.0 0.0 0.0 292
2 5.6e + 019 6.0e + 019 5.3e + 019 0.0 0.0 0.0 297
3 6.4e + 018 7.0e + 018 6.0e + 018 0.0 0.0 0.0 301
4 1.2e + 018 1.3e + 018 1.1e + 018 0.0 0.0 0.0 304
5 1.7e + 017 1.9e + 017 1.6e + 017 0.0 0.0 0.0 306
6 1.9e + 016 2.0e + 016 1.8e + 016 0.0 0.0 0.0 308
7 5.9e + 015 6.3e + 015 5.5e + 015 0.0 0.0 0.0 310
8 1.7e + 015 1.8e + 015 1.6e + 015 0.0 0.0 0.0 311
9 4.5e + 014 4.7e + 014 4.2e + 014 0.0 0.0 0.0 312
10 1.1e + 014 1.1e + 014 1.0e + 014 0.0 0.0 0.0 313
11 2.4e + 013 2.6e + 013 2.1e + 013 0.0 0.0 0.0 314
12 4.9e + 012 5.5e + 012 4.2e + 012 0.0 0.0 0.0 315
13 9.2e + 011 1.0e + 012 7.8e + 011 0.0 0.0 0.0 316
14 1.5e + 011 1.7e + 011 1.3e + 011 0.0 0.0 0.0 317
15 2.4e + 010 2.7e + 010 2.0e + 010 0.0 0.0 0.0 318
16 3.2e + 009 3.6e + 009 2.6e + 009 0.0 0.0 0.0 319
17 3.7e + 008 4.3e + 008 3.2e + 008 0.0 0.0 0.0 320
18 3.4e + 008 4.3e + 008 3.7e + 007 0.5 2.0 0.0 321
19 3.6e + 007 4.2e + 007 3.0e + 007 7.5 12.0 4.0 322
20 2.7e + 006 3.2e + 006 2.2e + 006 76.9 89.0 59.0 323
21 1.3e + 005 1.6e + 005 1.0e + 005 1,167.3 1,214.0 1,113.0 324
22 2,226.4 2,728.8 1,780.7 2,255.4 2,258.0 2,250.0 325
23 2,226.4 2,728.8 1,780.7 2,255.4 2,258.0 2,250.0 325
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Table 16.12 Dynamics of Algorithm 16.3.6 for the random 3-SAT with the clause matrix A =
(75×325)

t |X ∗| |X̂ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 5.4e + 020 0.0 1,036 1,036 306 292 0.10
2 5.6e + 019 0.0 1,300 1,300 308 297 0.14
3 6.4e + 018 0.0 973 973 308 301 0.10
4 1.2e + 018 0.0 1,086 1,086 311 304 0.11
5 1.7e + 017 0.0 1,807 1,807 313 306 0.19
6 1.9e + 016 0.0 1,271 1,271 314 308 0.15
7 5.9e + 015 0.0 1,013 1,013 314 310 0.11
8 1.7e + 015 0.0 2,842 2,842 317 311 0.30
9 4.5e + 014 0.0 2,450 2,450 317 312 0.28
10 1.1e + 014 0.0 2,616 2,616 317 313 0.26
11 2.4e + 013 0.0 1,932 1,932 318 314 0.24
12 4.9e + 012 0.0 2,154 2,154 320 315 0.22
13 9.2e + 011 0.0 1,776 1,776 320 316 0.21
14 1.5e + 011 0.0 1,652 1,652 320 317 0.19
15 2.4e + 010 0.0 1,656 1,656 321 318 0.16
16 3.2e + 009 0.0 1,488 1,488 321 319 0.15
17 3.7e + 008 0.0 1,209 1,209 323 320 0.13
18 3.4e + 008 0.5 1,111 1,111 323 321 0.12
19 3.6e + 007 7.5 9,815 9,811 325 322 0.09
20 2.7e + 006 76.9 7,338 7,334 325 323 0.07
21 1.3e + 005 1,167.3 4,708 4,622 325 324 0.05
22 2,226.4 2,255.4 1,718 1,182 325 325 0.02
23 2,226.4 2,255.4 99,288 2,250 325 325 1.00

The advantage of the cloning Algorithm 16.3.6, as compared to CE, is that it can
count the number of all optimal solutions with quite high accuracy simultaneously
with optimization.

16.5 Conclusions and Further Research

In this paper we presented the latest developments in importance sampling (IS) com-
bined with MinxEnt and in the MCMC methods for counting, rare-event probability
estimation, sampling and combinatorial optimization problems (COP’s). In particu-
lar, we discuss how in the former the optimal parameter vector in the parametric IS
density can be efficiently obtained using the IME method and how in the latter one
can sample from the optimal zero-variance nonparametric IS density.

The main idea of the indicator-based minimum cross-entropy method, called the
indicator MinxEnt, or simply IME, is to associate with each counting or optimiza-
tion problem an auxiliary single-constrained convex MinxEnt program of a special
type, which has a closed-form solution. We proved that the optimal pdf obtained
from the solution of such a specially-designed MinxEnt program is a zero variance
pdf, provided the “temperature” parameter is set to minus infinity. In addition, we
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proved that the parametric pdf based on the product of marginals obtained from the
optimal zero variance pdf coincides with the parametric pdf of the standard cross-
entropy (CE) method. The crucial difference between the proposed IME method and
its standard CE counterparts is in their simulation-based versions: in the latter we
always require to generate (via Monte Carlo) a sequence of tuples including the tem-
perature parameter and the parameter vector in the optimal marginal pdf’s, while in
the former we can fix in advance the temperature parameter (to be set at large nega-
tive number) and then generate (via Monte Carlo) a sequence of parameter vectors
of the optimal marginal pdf’s only. In addition, in contrast to CE, neither the elite
sample nor the rarity parameter is needed in IME. As a result, the proposed IME
Algorithm becomes simpler, faster and at least as accurate as the standard CE.

The main idea of the MCMC approach is to design a sequential sampling plan,
where the “difficult” problem of estimating rare-event probability and counting the
cardinality of a set is decomposed into “easy” problems of counting the cardinal-
ity of a sequence of related sets. Such sequential sampling algorithms are called
randomized algorithms. Typically the randomized algorithms involve estimation of
a partition function at some desired temperature via generation samples from the
Boltzmann distribution. They are based on computing the ratios of the partition
functions for a carefully desired sequence of temperatures, also called a cooling
schedule.

Here we proposed a new algorithm, called the cloning algorithm. The main dif-
ferences between the existing and the proposed algorithm is that the latter has a
special device, called the “cloning” device, which makes it very fast and accurate.
In particular, our algorithm is well suited for counting the satisfiability assignments
in a SAT problem and solving problems associated with the Boltzmann distribution,
like estimating the partition functions in an Ising model and for sampling random
variables uniformly distributed on different convex bodies.

We presented numerical results with both the IME and the cloning algorithms
and we show that both methods work well for COP’s, while for counting problems,
like SAT and Hamiltonian cycles, the cloning one typically outperforms the IME.

Further Research

As for further research, we consider the following issues:

1. Use the large deviation theory to prove polynomial convergence and speed of
convergence of the IME Algorithm 16.2.1 for rare-event probability estimation
and thus, for estimation of the counting quantity |X ∗| according to (16.7).

2. Establish rigorous mathematical foundations for the cloning algorithms.
3. Apply the cloning algorithms to a broad variety of optimization and counting

problems, like Hamiltonian cycles, counting 0–1 Tables, self-avoiding walks,
counting problems associated with graph coloring, cliques and counting the num-
ber of multiple extreme in a multi-extremal function.

4. Use the cloning algorithms to generate samples uniformly distributed on different
regions X ∗.
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Appendix

Ross’ Algorithm for Estimating ct is given as follows.

Algorithm 16.5.1 (Ross’ Algorithm)
1. Set J=N=0.
2. Choose a vector x such that S(x)≥ mt−1.
3. Generate a random vector U ∼U(0,1) and set I=Int(nU)+1.
4. If I = k, generate X given the conditional distribution of Xk, given that Xj =

x j, j �= k.
5. If S(x1, . . . ,xk−1,X ,xk+1, . . . ,xn) < mt−1, return to 4.
6. N = N +1, xk = X .
7. If S(x)≥ mt , then J = J +1.
8. Go to 3.
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deterministic chaos, 186
deterministic induction, 3
deterministic intervention, 244
DFT, 168
Diaconis-Holmes-Ross method, 404
differential entropy, 188
directed acyclic graph, 238
directed graphs, 232
discrete Fourier transform, 168
discrete memoryless channel, 270
discrete memoryless source, 270
distance, 53

admissible information, 54
Hamming, 54
information, 51, 52
max, 52, 54
min, 77
normalized compression, 56
normalized information, 55

normalized max, 55
normalized min, 78
normalized Web, 64, 65
sum, 60
universal information, 54

distance matrix, 66
DNA, 83
DNA sequences, 84
dynamic programming, 394
Dynamical Programming, 295

e-connection, 310
EEG, 191
Einstein, 357
electrodynamics, 356
encoding

self-delimiting, 48
entropy, 104, 188, 261

conditional, 105, 188
differential, 154, 188
estimator, 156, 194
joint, 188
kernel density estimator, 156
Renyi, 188, 210, 213
Shannon, 26, 106, 210, 310
transfer, 192

entropy estimator, 156
entropy rate, 168
EPI, 356
epilepsy, 187
equiquantization, 197
ergodicity, 376
EtaBoost, 330
Euler–Mascheroni constant, 106
evolutionary tree, 115
Expectation-Maximization, 199
Extreme physical information, 356

F-distribution, 186
Fano’s Inequality, 273
feature, 67, 69
Fisher information, 199, 356, 361
Fourier series, 177
Framingham data, 241
function

distance, 53
pairing, 48
prefix, 48
universal partial recursive, 49

Gaussian kernel, 157, 226
GC, 185
Gibbs sampler, 405
goodness of fit, 334
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GPTA, 197
Granger, 185
Granger causality, 185

nonlinear, 187
Granger–Sargent test, 186
Granger–Wald test, 186
graph coloring, 433
Grassberger–Procaccia–Takens algorithm,

197

Hamiltonian cycles, 433
Henon system, 193
Hessian, 162
Hessian matrix, 163
Higgs mass, 356
homeomorphisms, 105
Huffman coding, 89
hypothetical interventions, 254

IIS, 199
IME, 395, 432
imperfect interventions, 242
importance sampling, 385, 402
Improved Iterative Scaling, 199
independent component analysis, 103,

116, 309, 320
independent intervention, 245
indicator MinxEnt, 386, 432
indiscriminate intervention, 245
Inequality

Kraft, 48, 54
Infomax, 294, 303, 305
information

causal, 258
Hartley, 27
Shannon, 291

information bottleneck, 293
information content, 86
information criterion, 347
information distance, 51, 85
information divergence, 311, 330
Information Geometry, 313
information source, 269
information theoretic learning, 213
information theory, 184
instantaneous mixtures, 154
Integer Programming, 424
intended intervention, 245
interactive intervention, 245
intervention, 240
invariance theorem, 86
IS, 385
Ising model, 388, 433

Kagan–Linnik–Rao theorem, 195
kernel

canonical correlation analysis, 212
ECA, 225
Fisher discriminant analysis, 212
PCA, 224
principal component analysis, 212

kernel density estimation, 202
kernel density estimator, 156
kernel methods, 217
KLD, 189
Knapsack problem, 387, 428
KOG database, 96
Kolmogorov, 27, 35
Kolmogorov complexity, 29, 48, 86
Kraft inequality, 85
Kullback–Leibler divergence, 154, 189,

211, 260, 309, 407

Lagrange multipliers, 221
language, 16
law of large numbers, 335, 339
learning, 68, 72, 73
learning theory, 195
Lempel–Ziv–Welch, 89
Levin’s Search Technique, 2
likelihood, 184
log-likelihood, 199
Lorentz transformation, 356
Lorenz system, 193
loss, 340

negative log, 340
lung cancer, 238

m-connection, 310
MA, 165
Markov chain, 406
Markov Chain Monte Carlo, 394
Markov process, 192
Markov property, 237
Markovian Decision Process, 295
maximum likelihood, 199

estimator, 340
maximum likelihood estimator, 199
MCIR, 190
MCMC, 394
MDL, 25
medical interventions, 245
Mercer kernel, 211
Mercer kernel methods, 228
metric, 53
metric properties, 85
Miller–Madow bias correction, 199
minimum description length (MDL), 25
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Minimum Message Length, 2
MLE, 199
MML, 2
model selection, 333, 349
model-free, 187
Monte Carlo, 386
multichannel blind deconvolution, 167
multimode laser, 187
multivariate densities, 198
multivariate normal distribution, 340
mutual coarse-grained information rate,

190
mutual information, 101, 102, 104, 153,

154, 167, 184, 188, 260, 261
norm of the, 190

neural network, 201, 294
neurophysiology, 187
Newton algorithm, 162
Neyman–Pearson, 27, 40
NML, 34
non-parametric entropy estimators, 195
nonlinear dynamics, 186
nonlinear Granger causality, 201
nonlinear systems, 187
nonparametric Granger causality, 202
null hypothesis, 186

ontology, 67

partial recursive functions, 7
partition of unity, 157
Parzen window, 199, 210, 213
Parzen window estimators, 216
path models, 249
perception–action loop, 295, 299, 306
perfect interventions, 242
phylogenetic tree, 101, 103
phylogeny, 58
plug-in estimators, 195
Popper, 358
prefix set, 48
primitive recursive functions, 7
principal component analysis, 309, 320
probabilistic grammars, 13
probabilistic networks, 199
protein classification, 94
Protein evolution, 91
protein families, 84
proximity matrix, 115

QUANTA, 76
quantum gravity, 356
quantum mechanics, 356, 358

quasi maximum likelihood, 164
quasi Newton, 159
quasi Newton algorithm, 162, 173, 174
question–answer system, 76

Rössler system, 193
radial basis function, 187, 212
random forest, 96
rate-distortion, 295
receptive field, 294
regression, 335
Regular optimization, 350
Reinforcement Learning, 295
relative entropy, 189
relative gradient, 159
relative Hessian, 161
Renyi-entropy, 217
Riemannian geometry, 310
ROC analysis, 84
Ross algorithm, 404

SAT problem, 388
SCOP database, 91
score function, 159, 160
self-avoiding walks, 433
self-organization, 290
semicomputable, 50
semimeasure

discrete, 51
universal, 51

sequence similarity, 84
signal processing, 198
similarity measure, 84
Simulated Annealing, 302
Slepian–Wolf Theorem, 276
small-world networks, 283
Smith–Waterman algorithm, 84
Solomonoff, 27
speech recognition, 199
stationary Markov process, 89, 192
statistical dependence, 187
Stochastic Complexity, 2, 31
stochastic intervention, 244
stochastic process, 199
structure function, 36
superfamily, 94
supervised learning, 198
support vector machine, 95, 212
symmetry of information, 50
synchronization, 186, 194
synset, 72, 73

targeted intervention, 245
text compression, 4
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Theorem
Conditional Coding, 51
Conversion, 52

thermodynamics, 356
time series, 184
total recursive function, 8
transfer entropy, 187, 192
transinformation rate, 194
transition probabilities, 192
Turing’s halting theorem, 109

unintended intervention, 245
unsupervised learning, 320

wave equations, 356
Wiener, 185
Wikipedia Encyclopedia, 184
Wisdom of Crowds, 11
WordNet, 70–75
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