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Bound Constrained Minimization

We shall now be concerned with the bound constrained problem to find

min
x∈ΩB

f(x) (5.1)

with ΩB = {x ∈ R
n : x ≥ �}, f(x) = 1

2x
T Ax − xT b, � and b given column

n-vectors, and A an n × n symmetric positive definite matrix. To include
the possibility that not all the components of x are constrained, we admit
�i = −∞. Here we are again interested in large, sparse problems with a well-
conditioned A, and in algorithms that can be used also for the solution of
equality and inequality constrained problems. Such algorithms should be able
to return an approximate solution at a cost proportional to the precision and
to recognize an acceptable solution when it is found.

Our choice is the active set strategy with auxiliary problems solved ap-
proximately by the conjugate gradient method introduced in Sect. 3.5. It turns
out that this type of algorithm can exploit effectively the specific structure
of ΩB, including the possibility to evaluate the projections in the Euclidean
norm. We shall show that the resulting algorithm has an R-linear rate of con-
vergence. If its parameters are chosen properly, the algorithm enjoys the finite
termination property, even in the dual degenerate case with some active con-
straints corresponding to zero multipliers. We consider the finite termination
property important, as it indicates that the algorithm does not suffer from
undesirable oscillations and can exploit the superconvergence properties of
the conjugate gradient method for linear problems.

As in the previous chapter, we first briefly review alternative algorithms for
the solution of bound constrained problems. Then we introduce a basic active
set algorithm and its modifications that are motivated by our effort to get the
results on the rate of convergence in terms of bounds on the spectrum of the
Hessian matrix A and on the finite termination. We restricted our attention
to bound constrained problems because of their special structure which we
exploit in the development of our algorithms. Let us recall that the problems
with more general inequality constraints can be reduced to (5.1) by duality.
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Overview of algorithms

The exact working (active) set method of Sect. 5.3 reduces the solution of
(5.1) to a sequence of unconstrained problems that are defined by the bounds
which are assumed to be active at the solution. See also Algorithm 5.1. The
performance of the algorithm is explained by the combinatorial arguments.

The Polyak algorithm is a variant of the working set method which solves
the auxiliary linear problems by the conjugate gradient method. The active
set is expanded whenever the unfeasible iterate is generated, typically by
one index, but it is reduced only after the exact solution of an auxiliary
unconstrained problem is found. The algorithm is described in Sect. 5.4. See
Algorithm 5.2 for the formal description.

The looking ahead Polyak algorithm is based on observation that it is pos-
sible to recognize the incorrect active set before reaching the solution of the
auxiliary unconstrained problem. The algorithm accepts inexact solutions of
auxiliary unconstrained problems and preserves the finite termination prop-
erty of the original Polyak algorithm. The algorithm is described in Sect. 5.5.2.
See also Algorithm 5.3.

Even more relaxed solutions of the auxiliary unconstrained problems are
accepted by the easy re-release Polyak algorithm of Sect 5.5.3. The algorithm
preserves the finite termination property of the Polyak-type algorithms.

Unlike the Polyak-type algorithms, the gradient projection with a fixed
steplength can typically add several indices to the active set in each step and
it has established linear convergence in the bounds on the spectrum of the
Hessian matrix. The algorithm is described in Sect. 5.6.3.

The MPGP (modified proportioning with gradient projections) algorithm
of Sect. 5.7 uses the conjugate gradients to solve the auxiliary unconstrained
problems with the precision controlled by the norm of violation of the Karush–
Kuhn–Tucker conditions. The fixed steplength gradient projections are used
to expand the active set. The basic scheme of MPGP is presented as Algo-
rithm 5.6. The algorithm is proved to have an R-linear rate of convergence
bounded in terms of the extreme eigenvalues of the Hessian matrix.

The MPRGP (modified proportioning with reduced gradient projections)
algorithm of Sect. 5.8 is closely related to the MPGP algorithm, only the
gradient projection step is replaced by the projection of the free gradient.
The basic MPRGP scheme is presented as Algorithm 5.7. The R-linear rate
of convergence is proved not only for the decrease of the cost function, but
also for the norm of the projected gradient. The finite termination property
is proved even for the problems with a dual degenerate solution.

The performance of MPGP and MPRGP can be improved by the precon-
ditioning described in Sect. 5.10. The preconditioning in face improves the
solution of the auxiliary unconstrained problems, while the preconditioning
by the conjugate projector improves the convergence of the whole staff, includ-
ing the nonlinear steps. The monotonic MPRGP and semimonotonic MPRGP
algorithms which accept unfeasible iterations are described in Sect. 5.9.3.
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5.1 Review of Alternative Methods

Before describing in detail the active set-based methods, let us briefly review
alternative methods for the solution of the bound constrained problem (5.1).

Closely related to the active set strategy, various finite algorithms try
to find x ∈ R

n which solves the symmetric positive definite LCP (Linear
Complementarity Problems)

g = Ax − b, x ≥ o, g ≥ o, xTg = 0.

The LCP is equivalent to the minimization problem (5.1) with � = o. The
algorithms are called finite as they find the solution in a finite number of steps;
their analysis is based on the arguments of combinatorial nature. The most
popular LCP solvers are probably Lemke’s algorithm and principal pivoting
algorithm, which reduce the LCP to the solution of a sequence of systems of
linear equations in a way which is similar to the simplex method in linear
programming. The solution of the auxiliary systems is typically implemented
by LU-decompositions that are usually implemented by a rank one update.
The result of the trial solve is used to improve a current approximation in
order to reduce some characteristics of violation of the LCP conditions. These
algorithms typically do not refer to the background minimization problems.
The algorithms can be useful especially for more general LCP problems not
considered here; see Cottle, Pang, and Stone [29].

Apart from the feasible active set methods presented in this chapter, it
is possible to consider their unfeasible variants. For example, Kunisch and
Rendl [139] proposed an iterative primal–dual algorithm which maintains the
first-order optimality and complementarity conditions associated with (5.1)
only; the feasibility is enforced by the update of the active set. The unfeasible
methods are closely related to the semismooth Newton method applied to

Φ(x) = o, Φ(x) = α−1
(
x − PΩB

(
x− α∇f(x)

))
, α > 0.

Hintermüller, Ito, and Kunisch [118] and Hintermüller, Kovtumenko, and Ku-
nisch [119] describe the primal–dual semismooth Newton methods.

The bound constraints can be treated efficiently by the interior point
method , which approximately minimizes the cost function modified by the
parameterized barrier functions using Newton’s method. The strong feature
of the interior point methods is their capability to take into account all con-
straints, not only the active ones, at the cost of dealing with ill-conditioned
problems. The performance of the interior point methods can exploit the spar-
sity pattern of the Hessian matrix A in the solution of auxiliary problems.
There is a vast literature on this subject, see, e.g., the book by Wright [182]
or the review paper by Forsgren, Gill, and Wright [90].

It is also possible to use the trust region-type methods that were developed
to stabilize convergence of the Newton-type methods. We refer to Coleman
and Lin [24, 25] for more details.



158 5 Bound Constrained Minimization

5.2 KKT Conditions and Related Inequalities

Since ΩB is closed and convex and f is assumed to be strictly convex, the solu-
tion x̂ of problem (5.1) exists and is necessarily unique by Proposition 2.5(i).
Here we introduce some definitions and notations that enable us to exploit
the special form of the KKT conditions in development of our algorithms. The
KKT conditions fully determine the unique solution of (5.1).

By Proposition 2.18, the KKT conditions read

Ax̂ − b ≥ o and (Ax̂ − b)T (x̂ − �) = 0,

or componentwise

x̂i = �i ⇒ ĝi ≥ 0 and x̂i > �i ⇒ ĝi = 0, i = 1, . . . , n, (5.2)

where ĝi = [Ax̂ − b]i. It may be observed that ĝi are the components of the
vector of Lagrange multipliers for the bound constraints.

The KKT conditions (5.2) determine three important subsets of the set
N = {1, 2, . . . , n} of all indices. The set of all indices for which xi = �i is
called an active set of x. We denote it by A(x), so

A(x) = {i ∈ N : xi = �i}.

Its complement
F(x) = {i ∈ N : xi �= �i}

and subsets

B(x) = {i ∈ N : xi = �i and gi > 0}, B0(x) = {i ∈ N : xi = �i and gi ≥ 0}

are called a free set, a binding set , and a weakly binding set , respectively. Thus
we can rewrite the KKT conditions in the form

gA(x̂) ≥ oA and gF (x̂) = oF .

Using the subsets of N , we can decompose the part of the gradient
g(x) = Ax − b which violates the KKT conditions into the free gradient ϕ
and the chopped gradient β that are defined by

ϕi(x) = gi(x) for i ∈ F(x), ϕi(x) = 0 for i ∈ A(x),
βi(x) = 0 for i ∈ F(x), βi(x) = g−i (x) for i ∈ A(x),

where we have used the notation g−i = min{gi, 0}. Introducing the projected
gradient

gP (x) = ϕ(x) + β(x),

we can write the Karush–Kuhn–Tucker conditions (5.2) conveniently as

gP (x) = o. (5.3)
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ΩB g = gP = ϕ

gP = ϕ

g = gP

g g = gP = ϕg

β

ϕ

Fig. 5.1. Gradient splitting

Obviously β(x) and ϕ(x) are orthogonal and −β(x) and −ϕ(x) are feasible
decrease directions of f at x. See also Fig. 5.1.

If the dimension n of the bound constrained minimization problem (5.1) is
large, it can be too ambitious to look for a solution which satisfies the gradient
condition (5.3) exactly. A natural idea is to consider the weaker condition

‖gP (x)‖ ≤ ε, (5.4)

but to require that the feasibility condition x ∈ ΩB is satisfied exactly. Notice
that we are not able to check directly that we are near the solution as we
do not know it, but we can easily evaluate (5.4). Thus the typical “solution”
returned by iterative solvers is just x that satisfies the condition (5.4) with
a small ε. The following lemma guarantees that any feasible vector x which
satisfies (5.4) is near the solution.

Lemma 5.1. Let x̂ be the solution of (5.1) with a positive definite A and let
gP = gP (x) denote the projected gradient at x ∈ ΩB . Then

‖x− x̂‖2
A ≤ 2

(
f(x) − f(x̂)

)
≤ ‖gP ‖A−1 ≤ λ−1

min‖gP ‖, (5.5)

where λmin denotes the smallest eigenvalue of A.

Proof. Let Â, F̂ , and ĝ denote the active set, free set, and the gradient in
the solution, respectively. Since [x − x̂]Â ≥ oÂ, ĝF̂ = oF̂ , and ĝ ≥ o, we get

f(x) − f(x̂) = ĝT (x − x̂) +
1
2
(x − x̂)T A(x − x̂)

= ĝT
Â[x − x̂]Â +

1
2
‖x− x̂‖2

A ≥ 1
2
‖x− x̂‖2

A.

This proves the left inequality of (5.5).
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To prove the middle inequality, let A = A(x) and F = F(x) denote the
active set and the free set of x ∈ ΩB , respectively. Since

gP
F = gF , [x̂ − x]A ≥ oA, g = (g − gP ) + gP , and g − gP ≥ o,

we get

0 ≥ 2
(
f(x̂) − f(x)

)
= ‖x̂ − x‖2

A + 2gT (x̂ − x)

= ‖x̂ − x‖2
A + 2

(
g − gP

)T
(x̂ − x) + 2

(
gP

)T
(x̂ − x)

= ‖x̂ − x‖2
A + 2

[
g − gP

]T
A [x̂ − x]A + 2

(
gP

)T
(x̂ − x)

≥ ‖x̂ − x‖2
A + 2

(
gP

)T
(x̂ − x)

≥ 2
(

min
y∈Rn

1
2
yT Ay +

(
gP

)T
y
)

= −(gP )T A−1gP .

We used (2.11) in the last step. The middle inequality and the right inequality
of (5.5) now follow by simple manipulations and (1.24), respectively. �

5.3 The Working Set Method with Exact Solutions

The basic idea of the working set method, or, as it is often called less correctly,
the active set method, is to reduce the solution of an inequality constrained
problem to the solution of a sequence of auxiliary equality constrained prob-
lems which are defined by a subset of the set N = {1, . . . , n} of all indices of
the constraints. This task would be very simple if we knew in advance which
inequality constraints are active in the solution, as we could just replace the
relevant inequalities by equalities, ignore the other inequalities, and solve the
resulting equality constrained problem. As this is usually not the case, the
working set method starts by making a guess which inequality constraints
will be active in the solution, and if this guess turns out to be incorrect, it
exploits the gradient and Lagrange multiplier information obtained by the
trial minimization to define the next prediction.

5.3.1 Auxiliary Problems

If the working set method is applied to (5.1), it exploits the auxiliary equality
constrained problems

min
y∈WI

f(y), (5.6)

where I ⊆ N denotes the set of indices of bounds �i that are predicted to be
active in the solution, and

WI = {y : yi = �i, i ∈ I}.
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The predicted set I of active bounds and WI are known as the working set
and the working face, respectively. Since f is assumed to be strictly convex
and WI is closed and convex, it follows by Proposition 2.5 that the auxiliary
problem (5.6) has a unique solution ŷ.

Now observe that the equality constrained problem (5.6) can be reduced
to an unconstrained problem in yj , j /∈ I. To see its explicit form in the
nontrivial cases WI �= {�} and WI �= R

n, assume that ∅ � J � N , and
denote J = N \ I, so that, after possibly rearranging the indices, we can
write

y =
[

yI
yJ

]
, b =

[
bI
bJ

]
, and A =

[
AII AIJ
AJI AJJ

]
. (5.7)

Thus for any y ∈ R
n

f(y) =
1
2
yT
J AJJ yJ + yT

J AJIyI +
1
2
yT
I AIIyI − yT

J bJ − yT
I bI .

Since y ∈ WI if and only if yI = �I , we have for any y ∈ WI

f(y) = fJ (yJ ) =
1
2
yT
J AJJ yJ − yT

J (bJ − AJI�I) +
1
2
�T
I AII�I − bT

I �I .

Thus the solution ŷ of (5.6) has the components ŷI = �I and

ŷJ = arg min
yJ∈Rm

fJ (yJ ). (5.8)

Since
∇fJ (yJ ) = AJJyJ − (bJ − AJI�I)

and ∇fJ (ŷJ ) = o, we get that ŷJ satisfies

AJJ ŷJ = bJ − AJI�I . (5.9)

We can check easily that (5.9) has a unique solution. Indeed, since AJJ
is a submatrix of a positive definite matrix A, we get by Cauchy’s interlacing
inequalities (1.21) that AJJ is also positive definite. Alternatively, we can
verify directly that AJJ is positive definite by observing that if y has the
components yI = o and yJ �= o, then y �= o and

yT
J AJJyJ = yT Ay > 0.

5.3.2 Algorithm

The working set method with exact solutions of auxiliary problems starts from
an arbitrary x0 ∈ ΩB and I0 = B0(x0). Assuming that xk is known, we first
check if xk is the solution of (5.1) by evaluating the KKT conditions

gP (xk) = β(xk) + ϕ(xk) = o.
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If this is not the case, we find the solution ŷ of the auxiliary problem (5.6) by
solving (5.9). There are two possibilities.

If ŷ ∈ ΩB, then we define the next iteration by the feasible step

xk+1 = ŷ

and set Ik+1 = B0(xk+1). Notice that f(xk+1) < f(xk) as −gP (xk) is a
feasible decrease direction of f at xk with respect to WI .

In the other case, we define xk+1 by an expansion step so that

f(xk+1) ≤ f(xk) and A(xk+1) � Ik, (5.10)

and then set Ik+1 = A(xk+1). The basic working set algorithm in the form
that is convenient for analysis reads as follows.

Algorithm 5.1. The working set method with exact solutions.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, set I0 = B0(x

0), k = 0

while ‖gP (xk)‖ > 0
Step 1. {Minimization in face WIk . }

ŷ = arg miny∈WIk f(y)

if ŷ ∈ ΩB

Step 2. {Feasible step.}
xk+1 = ŷ
Ik+1 = B0(x

k+1)
else

Step 3. {Expansion step.}
Set xk+1 so that f(xk+1) ≤ f(xk) and A(xk+1) � Ik

Ik+1 = A(xk+1)
end if
k = k + 1

end while
Step 4. {Return solution.}

x̂ = xk

To implement the algorithm, we should specify the expansion step in more
detail. For example, if xk ∈ ΩB and

d = xk − ŷ,

we can observe that −d is a feasible decrease direction and that f(xk − αd)
is a decreasing function of α for α ∈ [0, 1]. Thus we can look for xk+1 in the
form xk+1 = xk − αd, α ∈ (0, 1]. A possible choice of α is given by

αf = arg min
α∈(0,1]

{f(xk − αd) : xk − αd ∈ ΩB}, (5.11)
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which can be evaluated by using

αf = min{αm, 1}, αm = min{(xk
i − �i)/di : di > 0, i ∈ N}. (5.12)

See also Fig. 5.2. Notice that if ŷ /∈ ΩB, then the steplength αf necessarily
results in the expansion of the working set, typically by one index.

xk

xk − αfd

ŷ

ΩB

Fig. 5.2. Feasible steplength

This limitation may be overcome if we set y = xk − αfd and define

xk+1 = PΩB (y − αpg), αp = argmin
α≥0

f (PΩB (y − αg)) , g = ∇f(y),

where PΩB is the Euclidean projection of Sect. 2.3.4. We prefer to use the
gradient path, as the gradient defines a better local model of f than d, though
−d is the best global direction for minimization in the current working set.
Figure 5.3 shows that αf may be the best steplength for d!

xk

PΩB (xk − αd)

xk − αd

ŷ

ΩB

Fig. 5.3. Projected best unconstrained decrease path
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To approximate αp effectively, it is useful to notice that f (PΩB (y − αg))
is a piecewise quadratic function because PΩB (y − αg) is a linear mapping
on any interval on which the active set of PΩB (y − αg) is unchanged. We
refer interested readers to Moré and Toraldo [153], Nocedal and Wright [155,
Sect. 16.4], or to the discussion of the projected-gradient path in Conn, Gould,
and Toint [28, Sect. 12.1.3]. We can also apply the fixed steplength reduced
gradient projection which is described in Sect. 5.6.

The algorithm assumes by default that Step 1 is carried out by a direct
method such as a matrix factorization, in which economies are possible by
updating rather than recomputing the factorizations to account for gradual
changes in the working set.

5.3.3 Finite Termination

The analysis of the working set method can be based on the following finite
termination property.

Theorem 5.2. Let Algorithm 5.1 be applied to find the solution x̂ of (5.1)
starting from x0 ∈ ΩB. Then there is k such that xk = x̂.

Proof. Since each expansion step adds at least one index into the working set,
and the number of indices in the working set cannot exceed n, it follows that
there are at most n consecutive expansion steps. Thus after each consecutive
series of expansion steps, the algorithm either finds the solution of (5.1) and we
are finished, or generates the next iterate, a feasible minimizer on the current
face, by a feasible step. However, since f(xk) is a nonincreasing sequence such
that

f(xk+1) < f(xk)

whenever xk+1 is generated by a feasible step, it follows that no working set
corresponding to an iterate generated by the feasible step can reappear. The
number of different working sets being finite, we conclude that the working set
method exploiting the exact solutions of auxiliary problems finds the solution
of (5.1) in a finite number of steps. �

Since the number of different working sets is 2n and there can be at most
n expanding steps for each feasible step, the proof of Theorem 5.2 gives that
the number N of iterations of the working set method with exact solution is
bounded by

N = n2n. (5.13)

This bound is very pessimistic and gives a poor theoretical support for prac-
tical computations, especially if we take into account the high cost of the
iterations. The bound can be essentially improved for special problems. For
example, if x0 = � = o and the Hessian A of f is an M -matrix, then it is
possible to show that Algorithm 5.1 generates only feasible steps and finds
the solution in a number of iterations that does not exceed n − p, where p is
the number of positive entries in b. For more details see Diamond [32].
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5.4 Polyak’s Algorithm

If the auxiliary problems (5.6) are solved by the conjugate gradient method,
it seems reasonable not to wait with the test of feasibility until their solution
is found, but to modify the working set whenever unfeasible CG iteration is
generated. This observation was enhanced in the Polyak algorithm [159], the
starting point of our development of in a sense optimal algorithms.

5.4.1 Basic Algorithm

The new ingredient of the Polyak algorithm is that the minimization in face
is replaced by a sequence of the conjugate gradient steps defined by

xk = xk−1 − αcgpk, (5.14)

where pk denotes the recurrently constructed conjugate direction introduced
in Sect. 3.2, and αcg is the minimizer of f(xk−1 − ξpk). The recurrence starts
(or restarts) from ps+1 = ϕ(xs) whenever xs is generated by the expansion
step or s = 0. If pk is known, then pk+1 is given by the formulae

pk+1 = ϕ(xk) − βpk and β = ϕ(xk)T Apk/(pk)T Apk, (5.15)

obtained by specialization of those introduced in Sect. 3.2. Let us recall that
the conjugate directions ps+1, . . . ,pk that are generated by the recurrence
(5.15) from the restart xs are A-orthogonal, i.e., (pi)T Apj = 0 for any
i, j ∈ {s + 1, . . . , k}, i �= j. Using the arguments of Sect. 3.1, it follows that

f(xk) = min
{
f(xs + y) : y ∈ Span{ps+1, . . . ,pk}

}
. (5.16)

The Polyak algorithm starts from an arbitrary feasible x0 by assigning
I0 = B0(x0) and initializing of the conjugate gradient loop (for details see
Algorithm 5.2 or Sect. 3.2) for the minimization in WI0 . Assuming that xk is
known, we first check if xk solves either (5.1) or the auxiliary problem (5.6)
by testing gP (xk) = o and ϕ(xk) = o, respectively. If gP (xk) = o, we are
finished; if ϕ(xk) = o, we reduce the working set to Ik = B0(xk) and initialize
the conjugate gradient loop.

If the tests fail, we use the conjugate gradient step to define the trial
iteration y = xk − αcgpk+1. There are two possibilities. If y is feasible, then
we set xk+1 = y. Otherwise we evaluate the feasible steplength by

αf = arg min
α∈(0,αcg ]

{f(xk − αpk+1) : xk − αpk+1 ∈ ΩB}, (5.17)

set xk+1 = xk − αfpk+1, expand the working set by Ik+1 = A(xk+1), and
finally initialize the new conjugate gradient loop.

The basic Polyak algorithm for the solution of strictly convex bound con-
strained quadratic programming problems takes the form shown by the fol-
lowing algorithm, where we omitted the indices of the vectors that are not
referred to in what follows.
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Algorithm 5.2. Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, set g = Ax0 − b, p = gP (x0), k = 0

while ‖gP (xk)‖ > 0

if ‖ϕ(xk)‖ > 0
Step 1. {Trial conjugate gradient step.}

αcg = gT p/pT Ap, y = xk − αcgp
αf = max{α : xk − αp ∈ ΩB} = min{(xk

i − �i)/pi : pi > 0}
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1)
end if

else
Step 4. {Leaving the face after finding the minimizer.}

d = β(xk), αcg = gT d/dT Ad,

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk

Our description of Algorithm 5.2 does not use explicitly the working sets;
the information about the current working set is enhanced in the iterates
xk and the conjugate directions pk. Let us recall that the properties of the
unconstrained conjugate gradient method are summarized in Theorem 3.1.

5.4.2 Finite Termination

Theorem 5.3. Let Polyak’s Algorithm 5.2 be applied to find the solution x̂ of
(5.1) starting from x0 ∈ ΩB. Then there is k such that xk = x̂.

Proof. First notice that by Theorem 3.1, there can be at most n consecutive
conjugate gradient iterations before the minimizer in a face is found. If we
remove all the iterates that are generated by Step 2 except the minimizers in
the faces examined by the algorithm, which are used in Step 4 to generate the
next iteration in the expanded face, we are left with the iterates that can be
generated also by an implementation of Algorithm 5.1. The statement then
follows by Theorem 5.2. �
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The arguments of Sect. 5.3.3 can be used to show that the number of
iterations of Polyak’s algorithm is bounded by

N = n22n. (5.18)

Let us emphasize here that this bound is very pessimistic and can be improved,
at least for special problems.

5.4.3 Characteristics of Polyak’s Algorithm

The Polyak algorithm suffers from several drawbacks. The first one is related
to an unpleasant consequence of application of the reduced conjugate gradi-
ent step with the steplength αf defined by (5.17). Since the working set is
typically expanded by one index only, there is a little chance that the number
of iterations will be small when many indices of the binding set of the solu-
tion do not belong to B(x0). Another drawback concerns the basic approach
combining the conjugate gradient method, which is now understood as an effi-
cient iterative method for approximate solution of linear systems [4, 106, 163],
and the finite termination strategy, which is based on combinatorial reason-
ing that requires exact solution of the auxiliary problems. Finally, as we have
seen above, the combinatorial arguments give extremely poor bound on the
number of iterations that are necessary to find the solution of (5.1). Though
the bound (5.18) does not depend on the conditioning of A, it is rather poor
and does not indicate why the algorithm should be efficient for the solution
of well-conditioned problems.

5.5 Inexact Polyak’s Algorithm

In this section we consider the variants of Polyak’s algorithm which accept
inexact solutions of auxiliary problems, but preserve the finite termination
property.

5.5.1 Looking Ahead and Estimate

Let us first show that it is not necessary to solve the auxiliary problems (5.6)
exactly in order to preserve the finite termination property of the Polyak
algorithm. The key observation is that if xk+1 ∈ ΩB satisfies

f(xk+1) < min{f(x) : x ∈ WI}, (5.19)

then the working set I cannot appear again as long as {f(xk)} is nonincreas-
ing. We shall use this simple observation to define both the precision control
test and reduction of the active set.
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xk

ŷ

ΩB

βg

Fig. 5.4. Release directions at xk

Given xk ∈ WI , we can try to find xk+1 which satisfies (5.19) in the form
xk+1 = xk − αd with a given d; if we are successful, we call d the release di-
rection of WI at xk. The following lemma gives the conditions for d, typically
obtained from ∇f(xk) by reducing its components, to be a release direction.
Such situation is depicted in Fig. 5.4 with d = g(xk) and d = β(xk).

1ϕ

ΩB

Γ

d = β

xk

g

Fig. 5.5. The gradient and d = β(x) that satisfy the release condition (5.20)

Lemma 5.4. Let I = A(x) and Γ ≥ κ(A)1/2, where κ(A)1/2 denotes the spec-
tral condition number of A. Denote g = ∇f(x) and suppose that d satisfies

gTd ≥ ‖d‖2 and ‖d‖ > Γ‖ϕ(x)‖. (5.20)

Then the vector y = x − ‖A‖−1d satisfies

f(y) < min{f(x) : x ∈ WI}. (5.21)



5.5 Inexact Polyak’s Algorithm 169

Proof. Let x, Γ , and d satisfy the assumptions of Lemma 5.4 and notice that
gTd ≥ ‖d‖2 implies

f(y) − f(x) =
1
2
‖A‖−2dT Ad − ‖A‖−1dT g ≤ −1

2
‖A‖−1‖d‖2. (5.22)

Denoting J = F(x), we have that ‖gJ ‖ = ‖ϕ(x)‖ and by the assumptions

‖d‖2 > κ(A)‖gJ ‖2. (5.23)

Substituting (5.23) into (5.22) then yields

f(y) − f(x) < −1
2
‖A−1‖‖gJ ‖2. (5.24)

Now denote by x̄ and ḡ the minimizer of f(x) on WI and the corresponding
gradient vector, respectively. Direct computations yield

f(x) − f(x̄) =
1
2
(x − x̄)T A(x − x̄) + ḡT (x − x̄). (5.25)

If we now rearrange the indices and take into account that

ḡJ = o and xI = x̄I ,

we can further simplify the right-hand side of (5.25) to get

f(x) − f(x̄) =
1
2
(xJ − x̄J )T AJJ (xJ − x̄J ). (5.26)

To express xJ − x̄J in terms of gJ , we can use the rearrangement (5.7)
to get [

gI − ḡI
gJ

]
=
[

AII AIJ
AJI AJJ

] [
o

xJ − x̄J

]
. (5.27)

In particular, since AJJ is also positive definite, it follows that

xJ − x̄J = A−1
JJ gJ

and by (5.26)

f(x) − f(x̄) =
1
2
gT
J A−1

JJ gJ . (5.28)

Taking into account the interlacing properties of the spectra of principal sub-
matrices of symmetric matrices (1.21), we get

1
2
gT
J A−1

JJ gJ ≤ 1
2
‖A−1

JJ ‖‖gJ ‖2 ≤ 1
2
‖A−1‖‖gJ ‖2, (5.29)

so that by (5.24) and (5.29)

f(y) − f(x̄) =
(
f(y) − f(x)

)
+
(
f(x) − f(x̄)

)

< −1
2
‖A−1‖‖gJ ‖2 +

1
2
‖A−1‖‖gJ ‖2 = 0. (5.30)

�
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5.5.2 Looking Ahead Polyak’s Algorithm

Using Lemma 5.4, we can now modify Polyak’s algorithm so that it accepts
approximate solution of the auxiliary problems and preserves its finite ter-
mination property. We only need to change the precision control of auxiliary
problems. The looking ahead Polyak algorithm reads as follows.

Algorithm 5.3. Looking ahead Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, Γ ≥ κ(A)1/2, set g = Ax0 − b, p = gP (x0), k = 0

while ‖gP (xk)‖ > 0

if Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖
Step 1. {Trial conjugate gradient step.}

αcg = gT p/pT Ap, y = xk − αcgp
αf = max{α : xk − αp ∈ ΩB} = min{(xk

i − �i)/pi : pi > 0}
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1)
end if

else
Step 4. {Leaving the face in the release direction.}

d = β(xk), αcg = gT d/dT Ad,

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk

To see that Algorithm 5.3 deserves its name, denote d = β(xk) and assume
that

xk ∈ ΩB, ‖β(xk)‖ > Γ‖ϕ(xk)‖, and Γ ≥ κ(A)1/2, (5.31)

so that d and Γ satisfy the assumptions of Lemma 5.4. Observing that αcg

minimizes f(xk − αd) with respect to α, we get for xk+1 = xk − αcgd that

f(xk+1) ≤ f(xk − ‖A‖−1d) < min{f(x) : x ∈ WA(xk)}.

Moreover, since xk − αd ∈ ΩB for any α ≥ 0, we have xk+1 ∈ ΩB. Thus
the algorithm is able to recognize the face without the global solution before
having a solution of the auxiliary problem, i.e., it “looks ahead”.
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The same reasoning as above can be carried out with d = g−(xk) or with
some other nonzero vector d which satisfies the assumptions of Lemma 5.4.
However, we found no significant evidence that there is a better choice than
d = β(xk).

5.5.3 Easy Re-release Polyak’s Algorithm

We can consider the relations like

Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖

for any Γ > 0. A reasonable choice is Γ = 1, as it seems natural to leave
the current face when the norm of the chopped gradient starts to dominate
the violation of the KKT conditions. The following easy re-release Polyak’s
algorithm enhances this observation by means of Lemma 5.4.

Algorithm 5.4. Easy re-release Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, ΓM ≥ κ(A)1/2, 0 ≤ Γm ≤ ΓM , set Γ = ΓM , k = 0
g = Ax0 − b, p = gP (x0)

while ‖gP (xk)‖ > 0

if Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖
Step 1. {Trial conjugate gradient step.}

αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1), Γ = ΓM

end if
else

Step 4. {Leaving the face in the release direction.}
d = β(xk), αcg = gT d/dT Ad,

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1), Γ = Γm

end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk
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Algorithm 5.4 uses the observations that we need not release the indices
from the index set in one step and that the release coefficient Γ can change
from iteration to iteration. The easy re-release Polyak algorithm starts with
Γ = ΓM , switches to Γ = Γm when any index is released from the active set,
and restores Γ = ΓM when the working set is expanded. Our experience [41]
shows that Algorithm 5.4 is not very sensitive to the choice of Γm and works
well with Γm ≈ 1.

In what follows, we often use Step 4 of Algorithm 5.4 to release indices
from the current active set. For any given Γ > 0, the iterates which satisfy
‖β(xk)‖ ≤ Γ‖ϕ(xk)‖ are called proportional. The proportioning step sets
xk+1 = xk − αcgβ(xk) in hope that the new iterate xk+1 is proportional.

5.5.4 Properties of Modified Polyak’s Algorithms

Theorem 5.5. Let the looking ahead Polyak Algorithm 5.3 or the easy re-
release Polyak Algorithm 5.4 be applied to find the solution x̂ of (5.1) starting
from x0 ∈ ΩB . Then there is k such that xk = x̂.

Proof. First notice that the looking ahead Polyak Algorithm 5.3 generates the
same iterates as the easy re-release Polyak Algorithm 5.4 provided Γm = ΓM ,
so that it is enough to prove the statement for the latter algorithm. Since by
Theorem 3.1 there can be at most n consecutive conjugate gradient iterations
before the unconstrained minimizer is found, it follows that there can be
at most n consecutive proportional conjugate gradient iterations. Moreover,
since each proportioning step releases at least one index from the working set,
which has at most n elements, we have that there can be at most n2 iterations
without an expansion step.

Now observe that the iterations start with Γ = ΓM , that this value is reset
by any expansion step, and that {f(xk)} is nonincreasing. Since the chain of
iterations with Γ = ΓM can be interrupted only after finding the iteration
xk which either solves (5.1), i.e., β(xk) = ϕ(xk) = o, or is not proportional,
i.e., satisfies ‖β(xk)‖ > Γ‖ϕ(xk)‖ with Γ ≥ κ(A)1/2, it follows by Lemma 5.4
that the associated active set A(xk) cannot be generated again in the following
iterations. Since the number of all subsets of N = {1, . . . , n} is bounded, and
by Lemma 5.4 every iteration in the face with the solution is proportional
when Γ ≥ κ(A)1/2, we conclude that the algorithm must generate xk = x̂ in
a finite number of steps. �

Our experience [41] indicates that our modifications of the Polyak algo-
rithm outperform the original Polyak algorithm, but a little analysis shows
that they suffer from many drawbacks described in Sect. 5.4.3. Moreover,
their implementation requires an estimate of the condition number of A. The
easy re-release Polyak algorithm with Γm ≈ 1 usually outperforms the looking
ahead Polyak algorithm as it can better avoid an “oversolve” of the auxiliary
problems defined by the faces which do not contain the solution.
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5.6 Gradient Projection Method

We shall now turn our attention to the iterative algorithms whose performance
is substantiated by the convergence arguments. Instead of trying to find the
exact solution of (5.1), these algorithms generate the iterates that steadily
approach the solution until the KKT conditions are approximately satisfied.
We start with a modification of the gradient method of Sect. 3.4 that uses the
Euclidean projection PΩB onto ΩB to generate feasible iterates. The action
of PΩB is easy to calculate. As illustrated by Fig. 5.6, the components of the
projection PΩB (x) of x onto ΩB are given by

[PΩB (x)]i = max{�i, xi}, i = 1, . . . , n.

x

PΩB (x)

ΩB

li

xi

Fig. 5.6. Euclidean projection onto ΩB

A typical step of the gradient projection method is in Fig. 5.7.

−g

ΩB

xk − αg

xk+1

xk

Fig. 5.7. Gradient projection step
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5.6.1 Conjugate Gradient Versus Gradient Projections

Since the conjugate gradient is by Theorem 3.1 the best decrease direction
which can be used to find the minimizer in the current Krylov space, probably
the first idea how to plug the projection into the Polyak-type algorithms is to
replace the reduced conjugate gradient step with the steplength αf of (5.11)
by the projected conjugate gradient step

xk+1 = PΩB (xk − αcgpk).

However, if we examine Fig. 5.8, which depicts the 2D situation after the first
conjugate gradient step, we can see that though the second conjugate gradient
step finds the unconstrained minimizer xk −αcgpk, it can easily happen that

f(xk) < f(PΩB (xk − αcgpk)).

Figure 5.8 even suggests that it can happen for any α > αf that

f(PΩB (xk − αpk)) > f
(
PΩB (xk − αfpk)

)
.

Though Fig. 5.8 need not capture the typical situation when a small num-
ber of components of xk − αfpk is affected by PΩB , we conclude that the
nice properties of the conjugate directions are guaranteed only in the feasible
region. These observations comply with our discussion at the end of Sect. 3.5.

ΩB

x1
PΩB (x1 − αcgp

1)

x1 − αcgp
1

Fig. 5.8. Poor performance of the projected conjugate gradient step

On the other hand, since the gradient defines the direction of the steepest
descent, it is natural to assume that for a small steplength the gradient per-
turbed by the projection PΩB defines a decrease direction as in Fig. 5.9. We
shall give a quantitative proof to this conjecture. In what follows, we restrict
our attention to the analysis of the fixed steplength gradient iteration

xk+1 = PΩB (xk − αgk), (5.32)

where gk = ∇f(xk).
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g
ΩB

x

x − αg

Fig. 5.9. Fixed steplength gradient step

5.6.2 Contraction in the Euclidean Norm

Which values of α guarantee that the iterates defined by the fixed gradient
projection step (5.32) approach the solution x̂ in the Euclidean norm?

Proposition 5.6. Let x ∈ ΩB and g = ∇f(x). Then for any α > 0

‖PΩB (x − αg) − x̂‖ ≤ ηE‖x − x̂‖, (5.33)

where λmin, λmax are the extreme eigenvalues of A and

ηE = max{|1 − αλmin|, |1 − αλmax|}. (5.34)

Proof. Since x̂ ∈ ΩB and the projected gradient at the solution satisfies
ĝP = o, it follows that

PΩB (x̂ − αĝ) = x̂.

Using that the projection PΩ is nonexpansive by Corollary 2.7, the formula
g(x) = Ax−b, the relations between the norm of a symmetric matrix and its
spectrum (1.23), and the observation that if λi are the eigenvalues of A, then
1 − αλi are the eigenvalues of I − αA (see also (1.26)), we get

‖PΩB (x − αg) − x̂‖ = ‖PΩB (x − αg) − PΩB (x̂ − αĝ)‖
≤ ‖(x− αg) − (x̂ − αĝ)‖
= ‖ (x − x̂) − α(g − ĝ)‖ = ‖ (x − x̂) − αA(x − x̂)‖
= ‖(I − αA)(x − x̂)‖
≤ max{|1 − αλmin|, |1 − αλmax|}‖x− x̂‖.

�

We call ηE the coefficient of Euclidean contraction. If α ∈ (0, 2‖A‖−1),
then ηE < 1.
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Using elementary arguments of Sect. 3.5.3, we get that the coefficient ηE

of Euclidean contraction (5.34) is minimized by

αopt
E =

2
λmin + λmax

(5.35)

and
ηopt

E =
λmax − λmin

λmax + λmin
=

κ − 1
κ + 1

, (5.36)

where
κ = λmax/λmin

denotes the spectral condition number of A.
If we compare our new estimate (5.36) of the contraction of the projected

gradient step with the optimal steplength α in the A-norm with the estimate
(3.26) of the unconstrained gradient step with the optimal steplength αcg in
the A-norm norm, we find, a bit surprisingly, that they are the same. This
might suggest to use the A-norm optimal steplength αcg also in the projected
gradient step.

Unfortunately, this strategy does not work. The counterexample of Fig. 5.10
shows that if g = g(x) is the eigenvector corresponding to the smallest eigen-
value λmin, then the gradient projection step with the optimal conjugate gra-
dient steplength

αcg = ‖g‖2/gT Ag = 1/λmin

generates the iterate which is worse than x.

ΩB

x1

g

PΩB (x1 − αcgg)

x1 − αcgg

Fig. 5.10. Optimal unconstrained steplength may not be useful

Notice that the estimate (5.33) does not guarantee any bound on the
decrease of the cost function. We study this topic in Sect. 5.6.5.
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5.6.3 The Fixed Steplength Gradient Projection Method

Proposition 5.6 suggests that we can use the gradient projection with the
fixed steplength to define an iterative algorithm with the rate of convergence
in terms of bounds on the spectrum. To guarantee the convergence, the algo-
rithm requires a computable upper bound on ‖A‖. Since A is assumed to be
symmetric, it follows that ‖A‖1 = ‖A‖∞ and, using (1.14), that ‖A‖ ≤ ‖A‖∞.
Thus we can use ‖A‖∞ as the upper bound. The latter inequality can be ob-
tained also from (1.24). More hints concerning effective evaluation of an upper
bound on ‖A‖ can be found in Sect. 5.9.4. The gradient projection algorithm
with the fixed steplength takes the following form.

Algorithm 5.5. Gradient projection method with the fixed steplength.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1), set k = 0
while ‖gP (xk)‖ is not small

Step 1. {The gradient projection step.}
xk+1 = PΩB

(
xk − αg(xk)

)

k = k + 1
end while

Step 2. {Return (possibly inexact) solution.}
x̃ = xk

We can use recurrently the estimate (5.33) of Proposition 5.6 to get for
k ≥ 1 that

‖xk − x̂‖ ≤ ηE‖xk−1 − x̂‖ ≤ · · · ≤ ηk
E‖x0 − x̂‖, (5.37)

where ηE < 1 is the coefficient of Euclidean contraction defined by (5.34).
It follows that Algorithm 5.5 generates the iterates xk that converge to the
solution x̂ of (5.1) in the Euclidean norm linearly with the coefficient of
contraction ηE . The iterates xk converge in the A-norm only R-linearly with

‖xk − x̂‖A ≤ ηk
E‖A‖‖x0 − x̂‖. (5.38)

Though the cost of a step of Algorithm 5.5 is comparable to that of the
Polyak-type algorithms, the performance of these algorithms essentially dif-
fers. A nice feature of the gradient projection algorithm is the rate of con-
vergence in terms of bounds on the spectrum. This can hardly be proved for
the Polyak algorithm; when a component of the current iterate is near the
bound and the corresponding component of the conjugate direction is large,
then the feasible steplength αf and the relative decrease of the cost function
can be arbitrarily small. On the other hand, unlike the Polyak algorithm, Al-
gorithm 5.5 is not able to exploit information from the previous steps in one
face.
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5.6.4 Quadratic Functions with Identity Hessian

Which values of α guarantee that the cost function f decreases in each iterate
defined by the fixed gradient projection step (5.32)? How much does f decrease
when the answer is positive? To answer these questions, it is useful to carry
out some analysis of a special quadratic function

F (x) =
1
2
xT x − cTx, x ∈ R

n, (5.39)

which is defined by a fixed c ∈ R
n, c = [ci]. We shall also use

F (x) =
n∑

i=1

Fi(xi), Fi(xi) =
1
2
x2

i − cixi, x = [xi]. (5.40)

ΩB g

x
PΩB (x− g)

x − g

Fig. 5.11. Minimizer of F in ΩB

The Hessian and the gradient of F are expressed, respectively, by

∇2F (x) = I and g = ∇F (x) = x − c, g = [gi]. (5.41)

Thus c = x− g and for any z ∈ R
n

‖z− c‖2 = ‖z‖2 − 2cT z + ‖c‖2 = 2F (z) + ‖c‖2.

Since by Proposition 2.6 for any z ∈ ΩB

‖z − c‖ ≥ ‖PΩB (c) − c‖,

we get that for any z ∈ ΩB

2F (z) = ‖z− c‖2 − ‖c‖2 ≥ ‖PΩB (c) − c‖2 − ‖c‖2

= 2F (PΩB (c)) = 2F (PΩB (x − g)) .
(5.42)

We have thus proved that if y ∈ ΩB , then, as illustrated in Fig. 5.11,

F
(
PΩB (x − g)

)
≤ F (y). (5.43)
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We are especially interested in the analysis of F along the projected-
gradient path

p(x, α) = PΩB

(
x− α∇F (x)

)
= max{x− αg, �},

where the maximum is assumed to be carried out componentwise, α ≥ 0, and
x ∈ ΩB is fixed. We shall often use that the projected-gradient path can be
described by

p(x, α) = PΩB (x − αg) = x− αg̃(α), (5.44)

where g̃(α) denotes the reduced gradient whose components are defined by

g̃i(0) = 0 and g̃i(α) = min{(xi − �i)/α, gi} for α > 0.

A geometric illustration of the projected-gradient path is in Fig. 5.12.

ΩB x

PΩB (x − αg)

x − αg

Fig. 5.12. Projected-gradient path

Due to the separability of F , the following analysis of a special case with
F defined on R is important also in the general case.

Lemma 5.7. Let x, �, c ∈ R, x ≥ �. Let F and g be defined by

F (x) =
1
2
x2 − cx and g = x − c.

Then for any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)g)

)
≤ F

(
PΩB (x − δg)

)
. (5.45)

Proof. First assume that x ≥ l is fixed and denote

g = F ′(x) = x − c, g̃(0) = 0, g̃(α) = min{(x − �)/α, g}, α �= 0.

For convenience, let us define

F
(
PΩB (x − αg)

)
= F (x) + Φ(α), Φ(α) = −αg̃(α)g +

α2

2
(g̃(α))2 , α ≥ 0.



180 5 Bound Constrained Minimization

Moreover, using these definitions, it can be checked directly that Φ is defined
explicitly by

Φ(α) =
{

ΦF (α) for α ∈ (−∞, ξ] ∩ [0,∞) or g ≤ 0,

ΦA(α) for α ∈ [ ξ ,∞) ∩ [0,∞) and g > 0,

where ξ = ∞ if g = 0, ξ = (x − �)/g if g �= 0,

ΦF (α) =
(
−α +

α2

2

)
g2, and ΦA(α) = −g(x − �) +

1
2
(x − �)2.

See also Fig. 5.13.

     

ΦF

Φ = ΦA

Φ = ΦF

ξ 10 2
     

ΦF

Φ = ΦA

Φ = ΦF

ξ10 2

Fig. 5.13. Graphs of Φ for ξ < 1 (left) and ξ > 1 (right) when g > 0

It follows that for any α

ΦF (2 − α) =
(
−(2 − α) +

(2 − α)2

2

)
g2 = ΦF (α), (5.46)

and if g ≤ 0, then

Φ(α) = ΦF (α) = ΦF (2 − α) = Φ(2 − α).

Let us now assume that g > 0 and denote ξ = (x − �)/g. Simple analysis
shows that if ξ ∈ [0, 1], then Φ is nonincreasing on [0, 2] and (5.45) is satisfied
for α ∈ [0, 1]. To finish the proof of (5.45), notice that if 1 < ξ, then

Φ(α) = ΦF (α), α ∈ [0, 1], Φ(α) ≤ ΦF (α), α ∈ [1, 2],

so that we can use (5.46) to get that for α ∈ [0, 1]

Φ(2 − α) ≤ ΦF (2 − α) = ΦF (α) = Φ(α).

�

The following property of F is essential in the analysis of the decrease of f
along the projected-gradient path in the next subsection.



5.6 Gradient Projection Method 181

Corollary 5.8. Let x, �, c ∈ R
n, x ≥ �. Let F be defined by (5.39). Then for

any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)g)

)
≤ F

(
PΩB (x − δg)

)
. (5.47)

Proof. If n = 1, then the statement reduces to Lemma 5.7.
To prove the statement for n > 1, first observe that for any y ∈ R

[PΩB (y)]i = max{yi, �i}, i = 1, . . . , n.

It follows that PΩB is separable and can be defined componentwise by the real
functions

Pi(y) = max{y, �i}, i = 1, . . . , n.

Using the separable representation of F given by (5.40) and Lemma 5.7, we
get

F
(
PΩB (x − (2 − δ)g)

)
=

n∑

i=1

Fi

(
[PΩB (x − (2 − δ)g)]i

)

=
n∑

i=1

Fi

(
Pi(xi − (2 − δ)gi)

)

≤
n∑

i=1

Fi

(
Pi(xi − δgi)

)

= F
(
PΩB (x − δg)

)
.

�

5.6.5 Dominating Function and Decrease of the Cost Function

Now we are ready to give an estimate of the decrease of the cost function f
in the iterates defined by the gradient projection step (5.32). The idea of the
proof is to replace f by a suitable quadratic function F which dominates f
and whose Hessian is the identity matrix.

Let us assume that 0 < δ‖A‖ ≤ 1 and let x ∈ ΩB be arbitrary but fixed,
so that we can define a quadratic function

Fδ(y) = δf(y) +
1
2
(y − x)T (I − δA)(y − x), y ∈ R

n.

It is defined so that

Fδ(x) = δf(x), ∇Fδ(x) = δ∇f(x) = δg, and ∇2Fδ(y) = I. (5.48)

Moreover, for any y ∈ R
n
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δf(y) ≤ Fδ(y). (5.49)

It follows that

δf (PΩB (x − δg)) − δf(x̂) ≤ Fδ (PΩB (x − δg)) − δf(x̂) (5.50)

and
∇Fδ(y) = δ∇f(y) + (I − δA)(y − x) = y − (x − δg). (5.51)

Using (5.43) and (5.48), we get that for any z ∈ ΩB

Fδ (PΩB (x − δg)) ≤ Fδ(z). (5.52)

The following lemma is due to Schöberl [165, 74].

Lemma 5.9. Let x̂ denote the unique solution of (5.1), let λmin denote the
smallest eigenvalue of A, g = ∇f(x), x ∈ ΩB, and δ ∈ (0, ‖A‖−1]. Then

Fδ (PΩB (x − δg)) − δf(x̂) ≤ δ(1 − δλmin) (f(x) − f(x̂)) . (5.53)

Proof. Let us denote

[x̂,x] = Conv{x̂,x} and d = x̂ − x.

Using (5.52),
[x̂,x] = {x + td : t ∈ [0, 1]} ⊆ ΩB,

0 < λminδ ≤ ‖A‖δ ≤ 1, and λmin‖d‖2 ≤ dT Ad, we get

Fδ (PΩB (x − δg)) − δf(x̂) = min{Fδ(y) − δf(x̂) : y ∈ ΩB}

≤ min{Fδ(y) − δf(x̂) : y ∈ [x̂,x]}

= min{Fδ(x + td) − δf(x + d) : t ∈ [0, 1]}

= min{δtdT g +
t2

2
‖d‖2 − δdT g − δ

2
dT Ad : t ∈ [0, 1]}

≤ δ2λmindT g +
1
2
δ2λ2

min‖d‖2 − δdT g − δ

2
dT Ad

≤ δ2λmindT g +
1
2
δ2λmindT Ad − δdTg − δ

2
dT Ad

= δ(δλmin − 1)(dTg +
1
2
dT Ad)

= δ(δλmin − 1) (f(x + d) − f(x))

= δ(1 − δλmin) (f(x) − f(x̂)) .

This proves (5.53). �
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Proposition 5.10. Let x̂ denote the unique solution of (5.1), g = ∇f(x),
x ∈ ΩB, and let λmin denote the smallest eigenvalue of A.

If α ∈ (0, 2‖A‖−1], then

f (PΩB (x − αg)) − f(x̂) ≤ ηf (f(x) − f(x̂)) , (5.54)

where
ηf = 1 − α̂λmin (5.55)

is the cost function reduction coefficient and α̂ = min{α, 2‖A‖−1 − α}.

Proof. Let us first assume that 0 < α‖A‖ ≤ 1 and let x ∈ ΩB be arbitrary
but fixed, so that we can use Lemma 5.9 with δ = α to get

Fα (PΩB (x − αg)) − αf(x̂) ≤ α(1 − αλmin) (f(x) − f(x̂)) . (5.56)

In combination with (5.50), this proves (5.54) for 0 < α ≤ ‖A‖−1.
To prove the statement for α ∈ (‖A‖−1, 2‖A‖−1], let us first assume that

‖A‖ = 1 and let α = 2 − δ, δ ∈ (0, 1). Then F1 dominates f and

δF1(y) ≤ δF1(y) +
1 − δ

2
‖y − x‖2 = Fδ(y). (5.57)

Thus we can apply (5.49), Corollary 5.8, and the latter inequality to get

δf
(
PΩ (x − αg)

)
≤ δF1

(
PΩ (x − αg)

)
≤ δF1

(
PΩ (x − δg)

)

≤ Fδ

(
PΩ (x − δg)

)
.

Combining the latter inequalities with (5.56) for α = δ, we get

δf
(
PΩ (x− αg)

)
− δf(x̂) ≤ δ(1 − δλmin)

(
(f(x) − f(x̂)

)
.

This proves the statement for α ∈ (‖A‖−1, 2‖A‖−1) and ‖A‖ = 1. To finish
the proof, apply the last inequality divided by η to the function ‖A‖−1f and
recall that f and PΩ are continuous. �

The estimate (5.54) gives the best value

ηopt
f = 1 − κ(A)−1

for α = ‖A‖−1 with κ(A) = ‖A‖‖A−1‖. If α ∈ (0, 2‖A‖−1) and the iterates
{xi} are generated by Algorithm 5.5, we can use (5.54) to get for k ≥ 1

f(xk) − f(x̂) ≤ ηf

(
f(xk−1) − f(x̂)

)
≤ · · · ≤ ηk

f

(
f(x0) − f(x̂)

)
, (5.58)

where ηf < 1 is given by (5.55). It follows by Lemma 5.1 that

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

f

(
f(x0) − f(x̂)

)
≤ 2λ−1

minη
k
f‖gP ‖, (5.59)

where gP = gP (x0). The latter bound on the R-linear convergence in the
energy norm is asymptotically worse than (5.38), but its right-hand side does
not enhance the solution and can be effectively evaluated.
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5.7 Modified Proportioning with Gradient Projections

In the previous sections, we learned that the solution of auxiliary problems
in the active set algorithm for solving (5.1) can be implemented by the con-
jugate gradient method and we got the estimate (5.54) for the decrease of
the cost function f in the gradient projection step with the fixed steplength
α ∈

(
0, 2‖A‖−1

)
. Now we are ready to combine these observations in order

to develop an effective algorithm with the R-linear rate of convergence of f
that can be expressed in terms of bounds on the spectrum of the Hessian
of f . The only difficulty which we must overcome is to ensure that the free
gradient is always sufficiently large in the conjugate gradient iterations, since
the conjugate gradient method reduces efficiently only the free gradient and is
inefficient when the norm of the chopped gradient dominates the error of the
KKT conditions. Using the methods of the next section, it is possible to prove
for our new algorithm the finite termination for regular solution and the con-
vergence, but not the R-linear convergence, of the projected gradient to zero
in the general case. Here we restrict our attention to the R-linear convergence
of the iterates in the energy norm.

5.7.1 MPGP Schema

The algorithm that we propose here exploits a user-defined constant Γ > 0,
a test which is used to decide when to leave the face, and three types of steps.

The conjugate gradient step, defined as in Polyak’s algorithm on page 165
by

xk+1 = xk − αcgpk+1, (5.60)

is used to carry out efficiently the minimization in the face WI given by
I = A(xs). We shall use in our proofs that by Theorem 3.1

f(xk+1) = min{f(xs + y) : y ∈ Span{ϕ(xs), . . . , ϕ(xk)}}. (5.61)

The gradient projection step is defined by the gradient projection

xk+1 = PΩB

(
xk − αg(xk)

)
= max{�,xk − αg(xk)} (5.62)

with the fixed steplength. This step can both add and remove indices from
the current working set. To describe the gradient projection step in the form
suitable for our analysis, let us introduce, for any x ∈ ΩB and α > 0, the
reduced free gradient ϕ̃α(x) with the entries

ϕ̃i = ϕ̃i(x, α) = min{(xi − �i)/α, ϕi}, i ∈ N = {1, . . . , n}. (5.63)

Thus
PΩB

(
x − αg(x)

)
= x − α

(
ϕ̃α(x) + β(x)

)
. (5.64)
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If the steplength is equal to α and the inequality

||β(xk)||2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk) (5.65)

holds, then we call the iterate xk strictly proportional. The test (5.65) is used
to decide which components of the projected gradient gP (xk) should be re-
duced in the next step. Notice that the right-hand side of (5.65) blends the
information about the free gradient and its part that can be used in the gra-
dient projection step.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (5.66)

with the steplength αcg that minimizes f
(
xk − αβ(xk)

)
. It has been shown

in Sect. 3.1 that the CG steplength αcg that minimizes f(x−αd) for a given
d and x can be evaluated using the gradient g = g(x) = ∇f(x) at x by

αcg = αcg(d) =
dTg
dT Ad

. (5.67)

The purpose of the proportioning step is to remove the indices of the com-
ponents of the gradient g that violate the KKT conditions from the working
set. Note that if xk ∈ ΩB, then

xk+1 = xk − αcgβ(xk) ∈ ΩB.

Now we are ready to define the algorithm in the form that is convenient
for analysis. For its implementation, see Sect. 5.9.

Algorithm 5.6. Modified proportioning with gradient projections
(MPGP schema).

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1), and Γ > 0. Set k = 0. For k ≥ 0 and
xk known, choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk.

(ii) If xk is strictly proportional and gP (xk) �= o, try to generate xk+1 by the
conjugate gradient step. If xk+1 ∈ ΩB, then accept it, else generate xk+1 by
the gradient projection step.

(iii) If xk is not strictly proportional, define xk+1 by proportioning.

We call our algorithm modified proportioning to distinguish it from earlier
algorithms introduced independently by Friedlander and Mart́ınez with their
collaborators [94, 95, 96, 14, 33] and Dostál [41, 42]. These earlier algorithms
applied the proportioning step when

‖β(xk)‖ ≤ Γ 2‖ϕ
(
xk
)
‖.



186 5 Bound Constrained Minimization

5.7.2 Rate of Convergence

Now we are ready to prove the R-linear rate of convergence of MPGP in terms
of bounds on the spectrum of the Hessian A for α ∈ (0, 2‖A‖−1).

Theorem 5.11. Let {xk} be generated by Algorithm 5.6 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then

f(xk+1) − f(x̂) ≤ ηΓ

(
f(xk) − f(x̂)

)
, (5.68)

where x̂ denotes the unique solution of (5.1),

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.69)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.70)

and λmin denotes the smallest eigenvalue of A.
The error in the A-norm is bounded by

‖xk − x̂‖2
A ≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.71)

Proof. Since we have the estimate (5.54) for the gradient projection step with
ηf ≤ ηΓ , it is enough to estimate the decrease of the cost function for the
other two steps. Our main tools are (5.54) and the inequality

f
(
PΩB

(
xk − αg(xk)

))
≥ f(xk) − α

(
ϕ̃α(xk)T ϕ(xk) + ‖β(xk)‖2

)
, (5.72)

which is valid for any α ≥ 0 and can be obtained from the Taylor expansion

f(x + d) = f(x) + dTg(x) +
1
2
dT Ad ≥ f(x) + dT g(x) (5.73)

by substituting

x = xk, d = −α
(
ϕ̃α(xk) + β(xk)

)
, and g = ϕ(x) + β(x).

If xk+1 is generated by the conjugate gradient step (5.60), then by (5.61)
and (5.67)

f(xk+1) ≤ f
(
xk − αcgϕ(xk)

)
= f(xk) − 1

2
‖ϕ(xk)‖4

ϕ(xk)T Aϕ(xk)

≤ f(xk) − 1
2
‖A‖−1‖ϕ(xk)‖2.

Taking into account α̂ ≤ ‖A‖−1 and ϕ̃iϕi ≤ ϕ2
i , i = 1, . . . , n, we get

f(xk+1) ≤ f(xk) − 1
2
‖A‖−1‖ϕ(xk)‖2 ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.74)
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Now observe that the conjugate gradient step is used only when xk is
strictly proportional, i.e.,

‖β(xk)‖2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk).

Since α̂ ≤ α implies

ϕ̃α(xk)T ϕ(xk) ≤ ϕ̃α̂(xk)T ϕ(xk),

it follows that
‖β(xk)‖2 ≤ Γ 2ϕ̃α̂(xk)T ϕ(xk). (5.75)

After substituting (5.75) into (5.72) with α = α̂, we get

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk). (5.76)

Thus for xk+1 generated by the conjugate gradient step, we get by elementary
algebra and application of (5.76) that

f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk)

=
1

2 + 2Γ 2

(
f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk) + (1 + 2Γ 2)f(xk)

)

≤ 1
2 + 2Γ 2

(
f
(
PΩB

(
xk − α̂g(xk)

))
+ (1 + 2Γ 2)f(xk)

)
.

After inserting −f(x̂) + f(x̂) into the last term and using (5.54) with simple
manipulations, we get

f(xk+1) ≤ ηf + 1 + 2Γ 2

2 + 2Γ 2
f(xk) +

1 − ηf

2 + 2Γ 2
f(x̂)

=
ηf + 1 + 2Γ 2

2 + 2Γ 2

(
f(xk) − f(x̂)

)
+ f(x̂). (5.77)

Let us finally assume that xk+1 is generated by the proportioning step
(5.66), so that

‖β(xk)‖2 > Γ 2ϕ̃α(xk)T ϕ(xk) (5.78)

and

f(xk+1) = f
(
xk − αcgβ(xk)

)
= f(xk) − 1

2
‖β(xk)‖4

β(xk)T Aβ(xk)

≤ f(xk) − 1
2
‖A‖−1‖β(xk)‖2.

Taking into account the definition of α and ϑ, we get

α/ϑ ≤ ‖A‖−1/2
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and
f(xk+1) ≤ f(xk) − α

ϑ
‖β(xk)‖2, (5.79)

where the right-hand side may be rewritten in the form

f(xk) − α

ϑ
‖β(xk)‖2 =

1
ϑ(1 + Γ−2)

(
f(xk) − α(1 + Γ−2)‖β(xk)‖2

)

+
ϑ + ϑΓ−2 − 1
ϑ(1 + Γ−2)

f(xk). (5.80)

We can also substitute (5.78) into (5.72) to get

f
(
PΩB

(
xk − αg(xk)

))
> f(xk) − α(1 + Γ−2)‖β(xk)‖2. (5.81)

After substituting (5.81) into (5.80), using (5.79), (5.54) with x = xk, and
simple manipulations, we get

f(xk+1) <
1

ϑ + ϑΓ−2
f
(
PΩB

(
xk − αg(xk)

))
+

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

=
1

ϑ + ϑΓ−2

(
f
(
PΩB

(
xk − αg(xk)

))
− f(x̂)

)

+
1

ϑ + ϑΓ−2
f(x̂) +

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

≤ ηf

ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)
+

1
ϑ + ϑΓ−2

f(x̂) +
ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
f(xk)

=
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)
+ f(x̂).

Comparing the last inequality with (5.77) and taking into account that by
the definition Γ ≤ Γ̂ , Γ−1 ≤ Γ̂ , and ϑ ≥ 2, we obtain that the estimate

f(xk+1) − f(x̂) ≤ ηf + ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)

is valid for both the CG step and the proportioning step. The proof of (5.68)
is completed by

ηΓ =
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
= 1 − 1 − ηf

ϑ + ϑΓ−2
= 1 − α̂λmin

ϑ + ϑΓ̂ 2
.

To get the error bound (5.71), notice that by Lemma 5.1

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. � (5.82)

Theorem 5.11 gives the best bound on the rate of convergence for Γ = Γ̂ = 1
in agreement with the heuristics that we should leave the face when the
chopped gradient dominates the violation of the Karush–Kuhn–Tucker condi-
tions. The formula for the best bound ηopt

Γ which corresponds to Γ = 1 and
α = ‖A‖−1 reads

ηopt
Γ = 1 − κ(A)−1/4, (5.83)

where κ(A) denotes the spectral condition number of A.
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5.8 Modified Proportioning with Reduced Gradient
Projections

Even though the MPGP algorithm of the previous section combines the conju-
gate gradient method with the gradient projections in a way which enables to
prove its linear rate of convergence that can be expressed in terms of bounds
on the spectrum of the Hessian of f , there is still room for improvements.
The reason is that the gradient projection at the same time adds and removes
the indices from the active set, so the algorithm releases the indices from
the active set rather randomly. The result is that MPGP may not exploit
fully the self-preconditioning effect of the conjugate gradient method [168]
and can suffer from the oscillations often attributed to the iterative active
set methods. In this section we show that these drawbacks can be relieved if
we replace the gradient projection step by the free gradient projection with a
fixed steplength α. We show that the modified algorithm not only preserves
the linear rate of convergence of the cost function, but it has the finite ter-
mination property even for dual degenerate QP problems with zero Lagrange
multipliers corresponding to the active constraints and the R-linear rate of
convergence in the norm of projected gradient.

5.8.1 MPRGP Schema

The algorithm that we propose here exploits a constant Γ > 0 defined by a
user, a test to decide when to leave the face, and three types of steps. The test
and two of the three steps, the conjugate gradient step and the proportioning
step, are exactly those introduced in Sect. 5.7.1.

The gradient projection step is replaced by the expansion step defined by
the free gradient projection

xk+1 = PΩB

(
xk − αϕ(xk)

)
= max{�,xk − αϕ(xk)} (5.84)

with the fixed steplength. This step expands the current working set. To de-
scribe it in the form suitable for analysis, let us recall, for any x ∈ ΩB and
α > 0, that the reduced free gradient ϕ̃α(x) is defined by the entries

ϕ̃i = ϕ̃i(x, α) = min{(xi − �i)/α, ϕi}, i ∈ N = {1, . . . , n}, (5.85)

so that
PΩB

(
x − αϕ(x)

)
= x − αϕ̃α(x). (5.86)

Using the new notation, we can write also

PΩB

(
x − αg(x)

)
= x − α

(
ϕ̃α(x) + β(x)

)
. (5.87)

Now we are ready to define the algorithm in the form that is convenient for
analysis, postponing the discussion about implementation to the next section.
Notice that we admit the fixed steplength α = 2‖A‖−1 which guarantees
neither the contraction of the distance from the solution nor the decrease of
the cost function in the expansion steps.
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Algorithm 5.7. Modified proportioning with reduced gradient projections
(MPRGP schema).

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1], and Γ > 0. Set k = 0. For k ≥ 0 and
xk known, choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk.

(ii) If xk is strictly proportional and gP (xk) �= o, try to generate xk+1 by the
conjugate gradient step. If xk+1 ∈ ΩB, then accept it, else generate xk+1 by
the expansion step.

(iii) If xk is not strictly proportional, define xk+1 by proportioning.

Proposition 5.12. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then {xk} converges to the solution {x̂} and
{gP (xk)} converges to zero.

Proof. MPRGP is a variant of the proportioning algorithm studied in [42]; it
converges when each iterate xk+1 generated by the expansion step satisfies

f(xk+1) − f(xk) ≤ 0.

This condition is satisfied by Proposition 5.10 for α ∈ (0, 2‖A‖−1]; the conver-
gence is driven by the proportioning step, which is a spacer iteration (see, e.g.,
Bertsekas [12]). The second statement is an easy corollary of the identification
lemma 5.17 and of the continuity of g(x). �

5.8.2 Rate of Convergence

The main tool of our analysis is the quadratic function

F (x) =
1
2
xTx − cT x + d, x, c ∈ R

n, c = [ci], d ∈ R, (5.88)

and its properties similar to those developed in Sect. 5.6.5. In particular,

F (x) =
n∑

i=1

Fi(xi) + d, Fi(xi) =
1
2
x2

i − cixi, x = [xi]. (5.89)

If x ∈ R
n is arbitrary but fixed, we associate with f and δ ∈ (0, ‖A‖−1] the

quadratic function of the form (5.88)

Fδ(y) = δf(y) +
1
2
(y − x)T (I − δA)(y − x) ≥ δf(y). (5.90)

It is defined so that

Fδ(x) = δf(x), ∇Fδ(x) = δ∇f(x) = δg, and ∇2Fδ(y) = I. (5.91)

We need the following lemma which is analogous to Corollary 5.8.



5.8 Modified Proportioning with Reduced Gradient Projections 191

Lemma 5.13. Let x, �, c ∈ R
n, x ≥ �. Let F be defined by (5.88). Then for

any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)ϕ(x))

)
≤ F

(
PΩB (x − δϕ(x))

)
. (5.92)

Proof. First recall that PΩB is separable and can be defined componentwise
by Pi(y) = max{y, �i}, i = 1, . . . , n, y ∈ R. Denoting F , A, and gi the free set
of x, the active set of x, and the components of the gradient g(x), respectively,
we can use the representation of F given by (5.89) and Lemma 5.7 to get

F
(
PΩB (x − (2 − δ)ϕ(x))

)
=

n∑

i=1

Fi

(
[PΩB (x − (2 − δ)ϕ(x))]i

)
+ d

=
∑

i∈F
Fi

(
Pi(xi − (2 − δ)gi)

)
+
∑

i∈A
Fi

(
Pi(xi)

)
+ d

≤
∑

i∈F
Fi

(
Pi(xi − δgi)

)
+
∑

i∈A
Fi

(
Pi(xi)

)
+ d

= F
(
PΩB (x − δϕ(x))

)
. �

Now we are ready to prove the R-linear rate of convergence of MPRGP.

Theorem 5.14. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then

f(xk+1) − f(x̂) ≤ ηΓ

(
f(xk) − f(x̂)

)
, (5.93)

where x̂ denotes a unique solution of (5.1),

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.94)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.95)

and λmin denotes the smallest eigenvalue of A. The error in the A-norm is
bounded by

‖xk − x̂‖2
A ≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.96)

Proof. First observe that the only new type of iteration, as compared with
MPGP of Sect. 5.7, is the expansion step. Moreover, the estimate (5.68) with
ηΓ defined by (5.69) of Theorem 5.11 is the same as our estimate (5.93) with
ηΓ defined by (5.94). Thus we can reduce our analysis to the expansion step.
Our main tools are again (5.54) and the inequality

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂

(
ϕ̃α̂(xk)T ϕ(xk) + ‖β(xk)‖2

)
, (5.97)

which can be obtained by the Taylor expansion and (5.87).
Let us first assume that ‖A‖ = 1 and let xk+1 be generated by the

expansion step (5.84). Using in sequence the definition of the dominat-
ing function (5.90) associated with x = xk, Lemma 5.13, the assumption,
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‖A‖ = 1 and α̂ ≤ 1 with (5.57), the Taylor expansion with (5.86), (5.91),
‖ϕ̃α̂(xk)‖2 ≤ ϕ̃α̂(xk)T ϕ(xk), and simple manipulations, we get

α̂f(xk+1) ≤ α̂F1(xk+1) = α̂F1

(
PΩB

(
xk − αϕ(xk)

))

≤ α̂F1

(
PΩB

(
xk − α̂ϕ(xk)

))
≤ Fα̂

(
PΩB

(
xk − α̂ϕ(xk)

))

= Fα̂

(
xk
)
− α̂2ϕ̃α̂(xk)T ϕ(xk) +

α̂2

2
‖ϕ̃α̂(xk)‖2

≤ Fα̂

(
xk
)
− α̂2

2
ϕ̃α̂(xk)T ϕ(xk) = α̂f(xk) − α̂2

2
ϕ̃α̂(xk)T ϕ(xk).

Thus
f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.98)

The expansion step is used only when xk is strictly proportional, i.e.,

‖β(xk)‖2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk).

Since α̂ ≤ α by the definition, it follows that

ϕ̃α(xk)T ϕ(xk) ≤ ϕ̃α̂(xk)T ϕ(xk)

and
‖β(xk)‖2 ≤ Γ 2ϕ̃α̂(xk)T ϕ(xk). (5.99)

After substituting (5.99) into (5.97), we get

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk). (5.100)

Thus for xk+1 generated by the expansion step, we get by elementary algebra
and application of (5.100) that

f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk)

=
1

2 + 2Γ 2

(
f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk) + (1 + 2Γ 2)f(xk)

)

≤ 1
2 + 2Γ 2

(
f
(
PΩB

(
xk − α̂g(xk)

))
+ (1 + 2Γ 2)f(xk)

)
.

Inserting −f(x̂)+f(x̂) into the last term and substituting (5.54) with x = xk

and α = α̂ into the last expression, we get

f(xk+1) ≤ ηf + 1 + 2Γ 2

2 + 2Γ 2
f(xk) +

1 − ηf

2 + 2Γ 2
f(x̂)

=
ηf + 1 + 2Γ 2

2 + 2Γ 2

(
f(xk) − f(x̂)

)
+ f(x̂). (5.101)

The proof of (5.93) for ‖A‖ = 1 is completed by



5.8 Modified Proportioning with Reduced Gradient Projections 193

ηf + 1 + 2Γ 2

2 + 2Γ 2
=

ηf − 1 + 2 + 2Γ 2

2 + 2Γ 2
= 1 − 1 − ηf

2 + 2Γ 2
= 1 − α̂λmin

2 + 2Γ 2
≤ ηΓ .

To prove the general case, it is enough to apply the theorem to h = ‖A‖−1f .
To get the error bound (5.96), notice that by Lemma 5.1

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.102)

�

The formula for the best bound ηopt
Γ is given by (5.83). Notice that the

coefficient of the Euclidean contraction ηE defined by (5.34) is smaller than ηΓ

and by (5.38) guarantees faster convergence in the energy norm. Does it follow
that the gradient projection method is faster than MPRGP? The answer is
no. We have got both estimates by the worst case analysis of just one step
of each method. Such analysis at least partly enhances the improvement due
to the long sequence of the same type of iterations of the projected gradient
method, while this is not true in the case of MPRGP; the worst case assumes
that the algorithm switches the types of iterations. The error in energy norm
need not even decrease in one step of the gradient projection method.

5.8.3 Rate of Convergence of Projected Gradient

To use the MPRGP algorithm in the inner loops of other algorithms, we must
be able to recognize when we are near the solution. There is a catch – though
by Lemma 5.1 the latter can be tested by a norm of the projected gradient,
Theorem 5.14 does not guarantee that such test is positive near the solution.
The projected gradient is not a continuous function of the iterates! A large
projected gradient near the solution is in Fig. 5.14. The R-linear convergence
of the projected gradient is treated by the following theorem.

ΩB

x̂

xk

gP (xk)ĝ

Fig. 5.14. Large projected gradient near the solution
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Theorem 5.15. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Let x̂ denote the unique solution of (5.1) and let
Γ̂ , ηΓ , α̂, and ϑ be those of Theorem 5.14.

Then for any k ≥ 1

‖gP (xk+1)‖2 ≤ a1η
k
Γ

(
f(x0) − f(x̂)

)
(5.103)

with

a1 =
38

α̂(1 − ηΓ )
=

38ϑ(1 + Γ̂ 2)
α̂2λmin

. (5.104)

Proof. First notice that it is enough to estimate separately β(xk) and ϕ(xk)
as

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2.

In particular, since α̂ ≤ ‖A−1‖, we have for any vector d which satisfies
dTg(x) ≥ ‖d‖2

f(x) − f(x − α̂d) = α̂dTg(x) − 1
2
α̂2dT Ad ≥ α̂

2
‖d‖2. (5.105)

It follows that we can combine (5.105) with

xk − α̂β(xk) ≥ �

to estimate ‖β(xk)‖ by

f(xk) − f(x̂) =
(
f(xk) − f

(
xk − α̂β(xk)

))
+
(
f
(
xk − α̂β(xk)

)
− f(x̂)

)

≥ f(xk) − f
(
xk − α̂β(xk)

)
≥ α̂

2
‖β(xk)‖2. (5.106)

Applying (5.93), we get

‖β(xk)‖2 ≤ 2
α̂

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

α̂

(
f(x0) − f(x̂)

)
. (5.107)

To estimate ‖ϕ(xk)‖, notice that the algorithm “does not know” about
the components of the constraint vector � when it generates xk+1 unless their
indices belong to A(xk) or A(xk+1). It follows that xk+1 may be considered
also as an iterate generated by Algorithm 5.7 from xk for the problem

minimize f(x) subject to xi ≥ �i for i ∈ A(xk) ∪ A(xk+1). (5.108)

If we denote

f
k

= min{f(x) : xi ≥ �i for i ∈ A(xk) ∪ A(xk+1)} ≤ f(x̂)

and δk = f(x̂) − f
k ≥ 0, we can use (5.93) to get
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δk = f(x̂) − f
k ≤ f(xk+1) − f

k ≤ ηΓ

(
f(xk) − f

k
)

= ηΓ

(
f(xk) − f(x̂)

)
+ ηΓ δk,

so that

δk ≤ ηΓ

1 − ηΓ

(
f(xk) − f(x̂)

)
≤ ηk+1

Γ

1 − ηΓ

(
f(x0) − f(x̂)

)
. (5.109)

Now observe that the indices of the unconstrained components of the min-
imization problem (5.108) are those belonging to Ik = F(xk) ∩ F(xk+1) as

Ik = F(xk) ∩ F(xk+1) =
(
N \ A(xk)

)
∩
(
N \ A(xk+1)

)

= N \
(
A(xk) ∪ A(xk+1)

)
.

It follows that if Ik is nonempty, then by the definition of δk and (5.105)

δk ≥ f(x̂) − f
(
x̂ − α̂gIk(x̂)

)
≥ α̂

2
‖gIk(x̂)‖2. (5.110)

For convenience, let us define gI(x) = o for any x ∈ R
n and empty set I = ∅.

Then (5.110) remains valid for Ik = ∅, so that we can combine it with (5.109)
to get

‖gIk(x̂)‖2 ≤ 2
α̂

δk ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(
f(x0) − f(x̂)

)
. (5.111)

Since our algorithm is defined so that either Ik = F(xk) ⊆ F(xk+1) or
Ik = F(xk+1) ⊆ F(xk), it follows that either

‖gF(xk)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂))

≤ 2ηk
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂)) (5.112)

or

‖gF(xk+1)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂)).

Using the same reasoning for xk−1 and xk, we conclude that the estimate
(5.112) is valid for any xk such that

F(xk−1) ⊇ F(xk) or F(xk) ⊆ F(xk+1). (5.113)

Let us now recall that by Lemma 5.1 and (5.96)

‖g(xk) − g(x̂)‖2 = ‖A(xk − x̂)‖2 ≤ ‖A‖‖xk − x̂‖2
A ≤ 2‖A‖

(
f(xk) − f(x̂)

)

≤ 2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
, (5.114)
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so that for any k satisfying the relations (5.113), we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k) − gF(xk)(x̂)‖ + ‖gF(xk)(x̂)‖

≤
√

2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
+

√
2

α̂(1 − ηΓ )
ηk

Γ

(
f(x0) − f(x̂)

)

≤ 2

√
2

α̂(1 − ηΓ )
ηk

Γ

(
f(x0) − f(x̂)

)
.

Combining the last inequality with (5.107), we get for any k satisfying the
relations (5.113) that

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2 ≤ 10
α̂(1 − ηΓ )

ηk
Γ

(
f(x0) − f(x̂)

)
. (5.115)

Now notice that the estimate (5.115) is valid for any iterate xk which sat-
isfies F(xk−1) ⊇ F(xk), i.e., when xk is generated by the conjugate gradient
step or the expansion step. Thus it remains to estimate the projected gradient
of the iterate xk generated by the proportioning step. In this case

F(xk−1) ⊆ F(xk),

so that we can use the estimate (5.115) to get

‖gP (xk−1)‖ ≤
√

10
α̂(1 − ηΓ )

ηk−1
Γ

(
f(x0) − f(x̂)

)
. (5.116)

Since the proportioning step is defined by xk = xk−1 −αcgβ(xk−1), it follows
that

‖gF(xk)(x
k−1)‖ = ‖gP (xk−1)‖.

Moreover, using the basic properties of the norm, we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k) − gF(xk)(x
k−1)‖ + ‖gF(xk)(x

k−1)‖
≤ ‖g(xk) − g(x̂)‖ + ‖g(x̂) − g(xk−1)‖ + ‖gP (xk−1)‖,

and by (5.114) and (5.116)

‖ϕ(xk)‖ ≤
√

2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
+

√
2
α̂

ηk−1
Γ

(
f(x0) − f(x̂)

)

+

√
10

α̂(1 − ηΓ )
ηk−1

Γ

(
f(x0) − f(x̂)

)

≤ (
√

5 + 2)

√
2

α̂(1 − ηΓ )
ηk−1

Γ

(
f(x0) − f(x̂)

)
.
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Combining the last inequality with (5.107), we get by simple computation
that

‖gP (xk)‖2 = ‖ϕ(xk)‖2 + ‖β(xk)‖2 ≤ 38
α̂(1 − ηΓ )

ηk−1
Γ

(
f(x0) − f(x̂)

)
.

Since the last estimate is obviously weaker than (5.115), it follows that (5.103)
is valid for all indices k. �

The bound on the rate of convergence as given by (5.103) is rather poor.
The reason is that it has been obtained by the worst case analysis of a general
couple of consecutive iterations and does not reflect the structure of a longer
chain of the same type of iterations. Recall that Fig. 5.14 shows that no bound
can be obtained by the analysis of a single iteration!

5.8.4 Optimality

Theorems 5.14 and 5.15 give the bounds on the rates of convergence of the it-
erates and corresponding projected gradients that depend only on the bounds
on the spectrum, but do not depend on the constraint vector �. It simply fol-
lows that if we have a class of bound constrained problems with the spectrum
of the Hessian of the cost function in an a priori fixed interval, then the rate
of convergence of the MPRGP algorithm can be bounded uniformly for the
whole class. To present explicitly this feature of Algorithm 5.7, let T denote
any set of indices and assume that for any t ∈ T there is defined a problem

minimize ft(x) s.t. x ∈ ΩBt (5.117)

with ΩBt = {x ∈ R
nt : x ≥ �t}, ft(x) = 1

2x
T Atx − bT

t x, At ∈ R
nt×nt

symmetric positive definite, and �t ∈ R
nt . Our optimality result then reads

as follows.

Theorem 5.16. Let amax > amin > 0 denote given constants and let {xk
t } be

generated by Algorithm 5.7 for the solution of the bound constrained problem
(5.117) with 0 < α ≤ 2a−1

max and Γ > 0 starting from x0
t = max{o, �t}. Let

the class of problems (5.117) satisfy

amin ≤ λmin(At) ≤ λmax(At) ≤ amax,

where λmin(At) and λmax(At) denote respectively the smallest and the largest
eigenvalues of At.

Then there are integers k and � such that for any t ∈ T and ε > 0

‖gP
t (xk

t )‖ ≤ ε‖gP
t (x0

t )‖

and
ft(x


t) − ft(x̂t) ≤ ε
(
ft(x0

t ) − f(x̂t)
)
.
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Proof. First denote

ηt
Γ = 1 − α̂λt

min

ϑ + ϑΓ̂ 2
, ηΓ = 1 − α̂amin

ϑ + ϑΓ̂ 2
,

at
1 =

38ϑ(1 + Γ̂ 2)
α̂2λt

min

, a1 =
38ϑ(1 + Γ̂ 2)

α̂2amin
,

where Γ̂ = max{Γ, Γ−1}, so that

ηt
Γ ≤ ηΓ < 1 and at

1 ≤ a1.

Combining these estimates with Theorem 5.15 and inequality (5.5), we get for
any k ≥ 1

‖gP
t (xk+1)‖2 ≤ a1η

k
Γ

(
ft(x0

t ) − ft(x̂t)
)
≤ a1

amin
ηk

Γ ‖gP
t (x0

t )‖2.

Similarly, using Theorem 5.14, we get

ft(xk
t ) − ft(x̂t) ≤ ηk

Γ

(
ft(x0

t ) − f(x̂t)
)
.

To finish the proof, it is enough to take k and � so that

a1

amin
ηk−1

Γ ≤ ε and η

Γ ≤ ε. �

5.8.5 Identification Lemma and Finite Termination

Let us consider the conditions which guarantee that the MPRGP algorithm
finds the solution x̂ of (5.1) in a finite number of steps. There are at least
two reasons to consider such results important. First the algorithm with the
finite termination property is less likely to suffer from the oscillations that
are often attributed to the working set-based algorithms as it is less likely
to reexamine the working sets; if any working set reappears, it can happen
“only” finitely many times. The second reason is that such algorithm is more
likely to generate longer sequences of the conjugate gradient iterations. Thus
the reduction of the cost function value is bounded by the “global” estimate
(3.21), and finally switches to the conjugate gradient method, so that it can
exploit its nice self-acceleration property [168]. It is difficult to enhance these
characteristics of the algorithm into the rate of convergence as they cannot
be obtained by the analysis of just one step of the method.

We first examine the finite termination of Algorithm 5.7 in a simpler case
when the solution x̂ of (5.1) is regular, i.e., the vector of Lagrange multipliers
λ̂ of the solution satisfies the strict complementarity condition λ̂i > 0 for
i ∈ A(x̂). The proof is based on simple geometrical observations. For example,
examining Fig. 5.15, it is easy to see that the free sets of the iterates xk soon
contain the free set of the solution x̂. The formal analysis of such observations
is a subject of the following identification lemma.
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}

}

ΩB

xk
i

x̂i

li

ε

ε

Fig. 5.15. Identification of the free set of the solution

Lemma 5.17. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB, Γ > 0,
and α ∈ (0, 2‖A‖−1]. Then there is k0 such that for k ≥ k0

F(x̂) ⊆ F(xk), F(x̂) ⊆ F(xk − αϕ̃(xk)), and B(x̂) ⊆ B(xk), (5.118)

where ϕ̃(xk) = ϕ̃α(xk) is defined by (5.85).

Proof. Since (5.118) is trivially satisfied when there is k = k0 such that
xk = x̂, we shall assume in what follows that xk �= x̂ for any k ≥ 0. Let
us denote xk

i = [xk]i and x̂i = [x̂]i, i = 1, . . . , n.
Let us first assume that F(x̂) �= ∅ and B(x̂) �= ∅, so that we can define

ε = min{x̂i − �i : i ∈ F(x̂)} > 0 and δ = min{gi(x̂) : i ∈ B(x̂)} > 0.

Since by Proposition 5.12 {xk} converges to x̂, there is k0 such that for any
k ≥ k0

gi(xk) ≤ ε

4α
for i ∈ F(x̂) (5.119)

xk
i ≥ �i +

ε

2
for i ∈ F(x̂) (5.120)

xk
i ≤ �i +

αδ

8
for i ∈ B(x̂) (5.121)

gi(xk) ≥ δ

2
for i ∈ B(x̂). (5.122)

In particular, for k ≥ k0, the first inclusion of (5.118) follows from (5.120),
while the second inclusion follows from (5.119) and (5.120), as for i ∈ F(x̂)

xk
i − αϕi(xk) = xk

i − αgi(xk) ≥ �i +
ε

2
− αε

4α
> �i.

Let k ≥ k0 and observe that, by (5.121) and (5.122), for any i ∈ B(x̂)
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xk
i − αgi(xk) ≤ �i +

αδ

8
− αδ

2
< �i,

so that if some xk+1 is generated by the expansion step (5.84), k ≥ k0, and
i ∈ B(x̂), then

xk+1
i = max{�i, x

k
i − αgi(xk)} = �i.

It follows that if k ≥ k0 and xk+1 is generated by the expansion step, then
B(xk+1) ⊇ B(x̂). Moreover, using (5.122) and definition of Algorithm 5.7, we
can directly verify that if B(xk) ⊇ B(x̂) and k ≥ k0, then also B(xk+1) ⊇ B(x̂).
Thus it remains to prove that there is s ≥ k0 such that xs is generated by the
expansion step.

Let us examine what can happen for k ≥ k0. First observe that we can
never take the full CG step in the direction pk = ϕ(xk). The reason is that

αcg(pk) =
ϕ(xk)Tg(xk)

ϕ(xk)T Aϕ(xk)
=

‖ϕ(xk)‖2

ϕ(xk)T Aϕ(xk)
≥ ‖A‖−1 ≥ α

2
,

so that for i ∈ F(xk) ∩ B(x̂), by (5.121) and (5.122),

xk
i − αcgp

k
i = xk

i − αcggi(xk) ≤ xk
i − α

2
gi(xk) ≤ �i +

αδ

8
− αδ

4
< �i. (5.123)

It follows by definition of Algorithm 5.7 that if xk, k ≥ k0, is generated by
the proportioning step, then the following trial conjugate gradient step is not
feasible, and xk+1 is necessarily generated by the expansion step.

To complete the proof, observe that Algorithm 5.7 can generate only a
finite sequence of consecutive conjugate gradient iterates. Indeed, if there is
neither proportioning step nor the expansion step for k ≥ k0, then it follows
by the finite termination property of the conjugate gradient method that there
is l ≤ n such that ϕ(xk0+l) = o. Thus either xk0+l = x̂ and B(xk) = B(x̂) for
k ≥ k0+l by rule (i), or xk0+l is not strictly proportional, xk0+l+1 is generated
by the proportioning step, and xk0+l+2 is generated by the expansion step.
This completes the proof, as the cases F(x̂) = ∅ and B(x̂) = ∅ can be proved
by a direct analysis of the above arguments. �

Proposition 5.18. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Let the solution x̂ satisfy the condition of strict
complementarity, i.e., x̂i = �i implies gi(x̂) > 0. Then there is k ≥ 0 such
that xk = x̂.

Proof. If x̂ satisfies the condition of strict complementarity, then A(x̂) = B(x̂),
and, by Lemma 5.17, there is k0 ≥ 0 such that for k ≥ k0 we have
F(xk) = F(x̂) and B(xk) = B(x̂). Thus, for k ≥ k0, all xk that satisfy
x̂ �= xk−1 are generated by the conjugate gradient steps and, by the finite
termination property of the CG, there is k ≤ k0 + n such that xk = x̂. �
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5.8.6 Finite Termination for Dual Degenerate Solution

Our final goal is to prove the finite termination of Algorithm 5.7 when the
solution of (5.1) does not satisfy the strict complementarity condition as in
Fig. 5.16, where the iterations with different active sets are near the solution.

Fig. 5.16. Projected gradients near dual degenerate solution

Lemma 5.19. Let α ∈ (0, 2‖A‖−1], x ∈ ΩB, and y = x − αϕ̃(x). Then

‖ϕ(y)‖2 ≤ 9ϕ̃(x)T ϕ(x) and ‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖, (5.124)

where the reduced free gradient ϕ̃(x) = ϕ̃α(x) is defined by (5.85).

Proof. First notice that F(y) ⊆ F(x). Since

g(y) = g(x) − αAϕ̃(x) and ϕ̃F(y)(x) = ϕF(y)(x) = gF(y)(x), (5.125)

we get

‖ϕ(y)‖ = ‖gF(y)(y)‖ = ‖gF(y)(x) − α [Aϕ̃(x)]F(y) ‖
≤ ‖ϕ̃F(y)(x)‖ + α ‖ [Aϕ̃(x)]F(y) ‖ ≤ 3‖ϕ̃(x)‖.

Using the latter inequalities and the definition of ϕ̃(x), we get

‖ϕ(y)‖2 ≤ 9‖ϕ̃(x)‖2 ≤ 9ϕ̃(x)T ϕ(x).

To prove the second inequality of (5.124), denote

C = {i ∈ A(x) : gi(x) ≤ 0}

and notice that
A(y) ⊇ A(x) ⊇ C.
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Thus

‖β(y)‖ = ‖gA(y)(y)−‖ ≥ ‖gC(y)−‖ = ‖
(
gC(x) − α [Aϕ̃(x)]C

)−‖

= ‖
(
βC(x) − α [Aϕ̃(x)]C

)−‖. (5.126)

Using in sequence

‖βC(x)‖ = ‖β(x)‖, ‖α [Aϕ̃(x)]C ‖ ≤ 2‖ϕ̃(x)‖,

inequality (5.126), properties of the norm, β(x)− = β(x), and

‖z − z−‖ ≤ ‖z − t‖

for any t with nonpositive entries, we get

‖β(x)‖ − ‖ϕ̃(x)‖ − ‖β(y)‖

≤ ‖βC(x)‖ − 1
2
‖α [Aϕ̃(x)]C ‖ − ‖

(
βC(x) − α [Aϕ̃(x)]C

)−‖

≤ ‖βC(x) − α

2
[Aϕ̃(x)]C ‖ − ‖

(
βC(x) − α [Aϕ̃(x)]C

)−‖

≤ ‖ (βC(x) − α [Aϕ̃(x)]C) −
(
βC(x) − α [Aϕ̃(x)]C

)−‖ +
α

2
‖ [Aϕ̃(x)]C ‖

≤ ‖
(
βC(x) − α [Aϕ̃(x)]C

)
− βC(x)‖ + ‖ϕ̃(x)‖ ≤ 3‖ϕ̃(x)‖.

This proves the second inequality of (5.124). �

Corollary 5.20. Let Γ ≥ 4, α ∈ (0, 2‖A‖−1], x ∈ ΩB, and

Γ 2ϕ̃(x)T ϕ(x) < ‖β(x)‖2, (5.127)

where the reduced free gradient ϕ̃(x) = ϕ̃α(x) is defined by (5.85).
Then the vector y = x − αϕ̃(x) satisfies

Γ − 4
3

‖ϕ(y)‖ < ‖β(y)‖. (5.128)

Proof. Inequality (5.128) holds trivially for Γ = 4. For Γ > 4, using in se-
quence (5.124), ‖ϕ̃(x)‖2 ≤ ϕ̃(x)T ϕ(x), twice (5.127), and (5.124), we get

‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖ ≥ ‖β(x)‖ − 4
√

ϕ̃T (x)ϕ(x) > (1 − 4Γ−1)‖β(x)‖

> (Γ − 4)
√

ϕ̃T (x)ϕ(x) ≥ Γ − 4
3

‖ϕ(y)‖. (5.129)

�
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Theorem 5.21. Let {xk} denote the sequence generated by Algorithm 5.7
with

x0 ∈ ΩB, Γ ≥ 3
(√

κ(A) + 4
)

, and α ∈ (0, 2‖A‖−1]. (5.130)

Then there is k ≥ 0 such that xk = x̂.

Proof. Let xk be generated by Algorithm 5.7 and let Γ satisfy (5.130). Let
k0 be that of Lemma 5.17 and let k ≥ k0 be such that xk is not strictly
proportional, i.e., Γ 2ϕ̃α(xk)T ϕ(xk) < ‖β(xk)‖2. Then by Corollary 5.20 the
vector y = xk − αϕ̃(xk) satisfies

Γ1‖ϕ(y)‖ < ‖β(y)‖ (5.131)

with
Γ1 = (Γ − 4)/3 ≥

√
κ(A).

Moreover, y ∈ ΩB, and by Lemma 5.17 and definition of y

A(x̂) ⊇ A(y) ⊇ A(xk) ⊇ B(xk) ⊇ B(x̂). (5.132)

It follows by Lemma 5.4 that the vector z = y − ‖A‖−1β(y) satisfies

f(z) < min{f(x) : x ∈ WI} (5.133)

with I = A(y). Since I satisfies by (5.132) A(x̂) ⊇ I ⊇ B(x̂), we have also

f(x̂) = min{f(x) : x ∈ ΩB} = min{f(x) : x ∈ WI}. (5.134)

However, z ∈ ΩB, so that (5.134) contradicts (5.133). Thus all xk are strictly
proportional for k ≥ k0, so that

A(xk0) ⊆ A(xk0+1) ⊆ . . . .

Using the finite termination property of the conjugate gradient method, we
conclude that there is k ≥ k0 such that x̂ = xk. �

Let us recall that the finite termination property of the MPRGP algorithm
with a dual degenerate solution and

α ∈ (0, ‖A‖−1]

has been proved for
Γ ≥ 2

(√
κ(A) + 1

)
.

For the details see Dostál [74].
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5.9 Implementation of MPRGP with Optional
Modifications

In this section, we describe Algorithm 5.7 in the form that is convenient for
implementation. We include also some modifications that may be used to
improve its performance. Implementation of Algorithm 5.6 is similar.

5.9.1 Expansion Step with Feasible Half-Step

To improve the efficiency of the expansion step, we can use the trial conjugate
gradient direction pk which is generated before the expansion step is invoked.
We propose to generate first

xk+ 1
2 = xk − αfpk and gk+ 1

2 = gk − αfApk,

where the feasible steplength αf for pk is defined by

αf = max{α : xk − αpk ∈ ΩB} = min
i=1,...,n

{(xk
i − �i)/pk

i , pk
i > 0},

and then define
xk+1 = PΩB

(
xk+ 1

2 − αϕ(xk+ 1
2 )
)

.

The half-step is illustrated in Fig. 5.17. Such modification does not require
any additional matrix–vector multiplication and the estimate (5.93) remains
valid as f(xk+ 1

2 ) − f(xk) ≤ 0 and

f(xk+1) − f(x̂) ≤ ηΓ

(
(f(xk+ 1

2 ) − f(xk)) + f(xk) − f(x̂)
)

≤ ηΓ

(
f(xk) − f(x̂)

)
.

ΩB

xk+1xk+1/2

xk

x̂

−αg(xk)

pk

Fig. 5.17. Feasible half-step
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5.9.2 MPRGP Algorithm

Now we are ready to give the details of the implementation of the MPRGP
algorithm which was briefly described in the form suitable for analysis as
Algorithm 5.7. To preserve readability, we do not distinguish generations of
variables by indices unless it is convenient for further reference.

Algorithm 5.8. Modified proportioning with reduced gradient projections
(MPRGP).

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x : x ≥ �}, x0 ∈ ΩB.
Step 0. {Initialization.}

Choose Γ > 0, α ∈ (0, 2‖A‖−1], set k = 0, g = Ax0 − b, p = ϕ(x0)

while ‖gP (xk)‖ is not small

if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)T ϕ(xk)
Step 1. {Proportional xk. Trial conjugate gradient step.}

αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+ 1
2 = xk − αfp, g = g − αfAp

xk+1 = PΩB (xk+ 1
2 − αϕ(xk+ 1

2 ))

g = Axk+1 − b, p = ϕ(xk+1)
end if

else
Step 4. {Proportioning step.}

d = β(xk), αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk

In our description, we denote by ϕ̃(x) = ϕ̃α(x) the reduced free gradi-
ent defined by (5.85). Let us recall that by Proposition 5.12 the algorithm
converges for any α ∈ (0, 2‖A‖−1] and by Theorem 5.14 its R-linear rate of
convergence is guaranteed for α ∈ (0, 2‖A‖−1).
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5.9.3 Unfeasible MPRGP

The “global” bound on the rate of convergence of the CG method guaranteed
by Theorem 3.2 indicates that MPRGP converges fast when it generates long
chains of CG iterations. Thus it may be advantageous to continue the CG
iterations when the trial CG step is unfeasible. The modification of MPRGP
proposed here is based on the observation that the convergence of MPRGP is
preserved when we insert between the last feasible iteration and the expansion
step a finite number of unfeasible iterates as long as {f

(
PΩB (xk

))
} decreases.

Thus if f(PΩB (y)
)
≤ f(PΩB (xk)), we can define xk+1 = y and continue the

CG iterations; otherwise we generate xk+1 by the modified expansion step.
The resulting monotonic MPRGP algorithm reads as follows.

Algorithm 5.9. Monotonic MPRGP.

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x : x ≥ �}, x0 ∈ ΩB.
Step 0. {Initialization.}

Choose Γ > 0, α ∈ (0, 2‖A‖−1], set k = 0, g = Ax0 − b, p = ϕ(x0)

while ‖gP
(
xk
)
‖ is not small

if ‖β
(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

αcg = gT p/pT Ap, y = xk − αcgp

while f (PΩB (y)) ≤ f(PΩB

(
xk
))

and

‖β
(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

and ‖gP
(
xk
)
‖ not small

Step 1. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp, k = k + 1

Step 2. {Trial CG step for the next iteration of the CG loop.}
αcg = gT p/pT Ap, y = xk − αcgp

end while for CG loop
end if

if y /∈ ΩB and ‖gP
(
xk
)
‖ not small

Step 3. {Expansion step.}
y = PΩB

(
xk
)
, xk+1 = PΩB (y − αϕ(y))

g = Axk+1 − b, p = ϕ(xk+1), k = k + 1
else

if ‖β
(
xk
)
‖2 > Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

and ‖gP
(
xk
)
‖ not small

Step 4. {Proportioning step.}
d = β

(
xk
)
, g = Axk − b, αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
k = k + 1

end if
end if

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = PΩB

(
xk
)
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To see that the algorithm is well defined, namely, that p �= o in Step 1, it
is enough to notice that this step is carried out when

‖gP
(
xk
)
‖ > 0 and ‖β

(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)
,

where ϕ̃(x) = ϕ̃α(x) denotes the reduced free gradient defined by (5.85).
Thus

‖β
(
xk
)
‖ + ‖ϕ

(
xk
)
‖ > 0 and ‖β

(
xk
)
‖ ≤ Γ‖ϕ

(
xk
)
‖.

It follows easily that ϕ
(
xk
)
�= o. Since

‖p‖ ≥ ‖ϕ
(
xk
)
‖,

we have p �= o. If xk is feasible, we can optionally implement the expansion
step with the feasible half-step of Sect. 5.9.1. Notice that xk is always feasible
at the beginning of the outer loop.

Each unfeasible CG step of our implementation of the monotonic MPRGP
algorithm requires two matrix–vector multiplications; the additional multipli-
cation is necessary for evaluation of the test associated with the inner CG loop.
To carry out the unfeasible CG step in one matrix–vector multiplication, we
can use that for any x,d ∈ R

n

f(x + d) = f(x) + gT d +
1
2
dT Ad ≤ f(x) + gT d +

1
2
‖A‖‖d‖2

and
f(x + d) = f(x) + gT d +

1
2
dT Ad ≥ f(x) + gTd.

For example, if xi, i = k, k + 1, . . . , are generated in the inner CG loop of
the monotonic MPRGP algorithm, xk is feasible, and

di = PΩB (yi) − xi, gi = g(yi), i = k, k + 1, . . . ,

where yi is the trial CG iteration entering into the ith step, then we can use
(3.9) to evaluate f(yi) without additional matrix–vector multiplication,

f(yi) + (gi)Tdi + ‖A‖‖di‖2 ≤ f(xk) (5.135)

implies
f
(
PΩB (yi)

)
≤ f

(
xk
)
,

and the unfeasible iterates xi+1 = yi which satisfy (5.135) can be accepted.
Thus we can use (5.135) to modify the test at the beginning of the CG loop
of Algorithm 5.9 so that the resulting semimonotonic MPRGP algorithm
generates a converging sequence of iterates that are evaluated at one matrix–
vector multiplication.

Using the lower bound on f(xi), it is possible to develop a test applicable
to unfeasible xk. The modifications presented in this section are closely related
to the semismooth Newton methods.
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5.9.4 Choice of Parameters

Our experience indicates that MPRGP is not sensitive to Γ as long as Γ ≈ 1.
Since Γ = 1 minimizes the upper bound on the rate of convergence and
guarantees that the CG steps reduce directly the larger of the two components
of the projected gradient, we can expect good efficiency with this value.

The choice of α requires an estimate of ‖A‖. If the entries of A are available,
we can use ‖A‖ ≤ ‖A‖∞ to define α = 2‖A‖−1

∞ which guarantees convergence.
If this is not the case, or if ‖A‖∞ gives a poor upper bound on ‖A‖, then we
can carry out a few, e.g., five, iterations of the following power method.

Algorithm 5.10. Power method for the estimate of ‖A‖.

Given a symmetric positive definite matrix A ∈ R
n×n, returns A ≈ ‖A‖.

Choose x ∈ R
n such that x �= o, nit ≥ 1

for i = 1, 2, . . . , nit

y = Ax, x = ‖y‖−1y
end for
A = ‖Ax‖

Alternatively, we can use the Lanczos method (see, e.g., Golub and van
Loan [103]). We can conveniently enhance the Lanczos method into the con-
jugate gradient loop of the MPRGP algorithm by defining

qi = ‖ϕ(xs+i)‖−1ϕ(xs+i), i = 0, . . . , p,

where ϕ(xs) and ϕ(xs+i) are the free gradients at respectively the initial and
the ith iterate in one CG loop. Then we can estimate ‖A‖ by evaluation of
the �∞-norm of the tridiagonal matrix

T = QT AQ, Q = [q0, . . . ,qp].

Though these methods typically give only a lower bound A on the norm
of ‖A‖, the choice like α = 1.8A−1 is often sufficient in practice. The decrease
of f can be achieved more reliably by initializing α = 2(bT Ab)−1‖b‖2 and by
inserting the following piece of code into the expansion step:

Algorithm 5.11. Modification of the steplength of the expansion step.

A piece of code to be inserted at the end of the expansion step of Algorithm 5.8.

if f
(
PΩB (xk+1)

)
> f(xk)

α = α/2 and repeat the expansion step
end if
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The modified algorithm can outperform that with α = ‖A‖−1; the longer
steps in an early stage of computations can be effective for identification of
the solution. We observed a good performance with α close to, but not greater
than 2‖A‖−1, near αopt

E which minimizes the coefficient ηE of the Euclidean
contraction (5.36). Notice that Theorem 5.14 guarantees that the inserted
loop of Algorithm 5.11 reduces the steplength in a small number of steps.

5.9.5 Dynamic Release Coefficient

The estimates given by Lemma 5.4 and Theorem 5.21 indicate that the value
of Γ = 1, which gives the best upper bound on the rate of convergence of
the MPRGP algorithm, may be too small to exclude repeated exploitation of
any face. On the other hand, while discussing the original Polyak algorithm
in Sect. 5.4, we have already expressed doubts that it is efficient to carry out
the minimization in face to a high precision, especially in the early stage of
computations, when we are far from the solution.

To accommodate these contradicting requirements, let us return to the
description of the MPRGP algorithm in Sect. 5.8 and replace in its kth step
the release coefficient Γ by Γk, so that it can change from iteration to iteration.
For example, we shall now say that the iterate xk is strictly proportional if

||β(xk)||2 ≤ Γ 2
k ϕ̃(xk)T ϕ(xk). (5.136)

Repeating the arguments of the proof of Theorem 5.14, we can prove its
following modification:

Theorem 5.22. Let Γmax ≥ Γmin denote given positive numbers, let {Γi}
denote a given sequence such that Γmax ≥ Γk ≥ Γmin, let λmin denote the
smallest eigenvalue of A, and let {xk} denote the sequence generated by Algo-
rithm 5.7 with α ∈ (0, 2‖A‖−1] and Γ replaced in the kth step by Γk.

Then the error in the A-norm is bounded by

‖xk − x̂‖2
A ≤ 2ηΓ1 . . . ηΓk

(
f(x0) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
, (5.137)

where x̂ denotes the unique solution of (5.1),

ηΓ = 1 − αλmin

ϑ + ϑΓ̂ 2
, ηΓk

= 1 − αλmin

ϑ + ϑΓ̂ 2
k

, (5.138)

ϑ = 2 max{α/2, 1}, Γ̂ = max{Γmax, Γ
−1
min}, Γ̂k = max{Γk, Γ−1

k }.
This definition opens room for implementation of heuristics that can be

useful in some specific cases. Typically, the series of release coefficients {Γk}
is defined by a suitable function of ‖gP (xk)‖. For example, specification

α = ‖A‖−1 and Γk =
{

1 for ‖gP (xk)‖ ≥ 10ε,

2(
√

κ(A) + 1) for ‖gP (xk)‖ < 10ε

guarantees both favorable bound on the rate of convergence in the early stage
of computation and the finite termination property.
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5.10 Preconditioning

A natural way to improve the performance of the conjugate gradient-based
methods is to apply the preconditioning described in Sect. 3.6. However, the
application of preconditioning requires some care, as the preconditioning trans-
forms the variables, turning the bound constraints into more general inequality
constraints. In this section we present two strategies which preserve the bound
constraints.

5.10.1 Preconditioning in Face

Probably the most straightforward preconditioning strategy which preserves
the bound constraints is the preconditioning applied to the diagonal block
AFF of the Hessian matrix A in the conjugate gradient loop which minimizes
the cost function f in the face defined by a free set F . Such preconditioning
requires that we are able to define for each diagonal block AFF a regular ma-
trix M(F) which satisfies the following two conditions. First, we require that
M(F) approximates AFF so that the convergence of the conjugate gradients
method is significantly accelerated. The second condition requires that the
solution of the system

M(F)x = y

can be obtained easily. The preconditioners M(F) can be generated, e.g., by
any of the methods described in Sect. 3.6.

Though the performance of the algorithm can be considerably improved
by the preconditioning, preconditioning in face does not result in the improved
bound on rate of convergence. The reason is that such preconditioning affects
only the feasible conjugate gradient step, leaving the expansion and the pro-
portioning steps without any preconditioning.

In probably the first application of preconditioning to the solution of bound
constrained problems [157], O’Leary considered two simple methods which can
be used to obtain the preconditioner for AFF from the preconditioner M which
approximates A, namely,

M(F) = MFF and M(F) = LFFLT
FF ,

where L denotes the factor of the Cholesky factorization M = LLT . It can be
proved that whichever method of the preconditioning is used, the convergence
bound for the conjugate gradient algorithm applied to the subproblems is at
least as good as that of the conjugate gradient method applied to the original
matrix [157].

To describe the MPRGP algorithm with the preconditioning in face, let us
assume that we are given the preconditioner M(F) for each set of indices F ,
and let us denote Fk = F(xk) and Ak = A(xk) for each vector xk ∈ ΩB .
To simplify the description of the algorithm, let Mk denote the preconditioner
corresponding to the face defined by Fk padded with zeros so that
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[Mk]FF = M(Fk), [Mk]AA = O, [Mk]AF = [Mk]TFA = O,

and recall that M†
k denotes the Moore–Penrose generalized inverse of Mk which

is defined by

[M†
k]FF = M(Fk)−1, [M†

k]AA = O, [M†
k]AF = [M†

k]TFA = O.

In particular, it follows that

M†
kg(xk) = M†

kϕ(xk).

The MPRGP algorithm with preconditioning in face reads as follows.

Algorithm 5.12. MPRGP with preconditioning in face.

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x ∈ R

n : x ≥ �}; choose x0 ∈ ΩB, Γ > 0, α ∈ (0, 2‖A‖−1], and the rule
which assigns to each xk ∈ ΩB the preconditioner Mk which is SPD in the face
defined by F(xk).
Step 0. {Initialization.}

Set k = 0, g = Ax0 − b, z = M†
0 g, p = z

while ‖gP (xk)‖ is not small

if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)T ϕ(xk)
Step 1. {Proportional xk. Trial conjugate gradient step.}

αcg = zT g/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp, z = M†

k g
β = zT Ap/pT Ap, p = z − βp

else
Step 3. {Expansion step.}

xk+ 1
2 = xk − αfp, g = g − αfAp

xk+1 = PΩB

(
xk+ 1

2 − αϕ(xk+ 1
2 )
)

g = Axk+1 − b, z = M†
k+1 g, p = z

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, z = M†
k+1g, p = z

end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk
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5.10.2 Preconditioning by Conjugate Projector

Let 1 ≤ m < n and let the vector of bounds satisfy

�m+1 = −∞, . . . , �n = −∞,

so that problem (5.1) is only partially constrained and the feasible set can be
described by

ΩB = {x ∈ R
n : xI ≥ �I}, I = {1, . . . , m}. (5.139)

Here we show that such partially constrained problems can be preconditioned
by the conjugate projector of Sect. 3.7 and that it is possible to give an im-
proved bound on the rate of convergence of the preconditioned problem.

Let us assume that U is the subspace spanned by the full column rank
matrix U ∈ R

n×p of the form

U =
[

O
V

]
, V ∈ R

(n−m)×p.

As in Sect. 3.7.2, we decompose our partially constrained problem by means
of the conjugate projectors

P = U(UT AU)−1UT A (5.140)

and Q = I − P onto U and V = ImQ, respectively. Due to our special choice
of U, we get that for any x ∈ R

n

[Qx]I = xI ,

and that for any y ∈ U and z ∈ V , y + z ∈ ΩB if and only if z ∈ ΩB . Using
(3.32), (3.33), and the observations of Sect. 3.7.3, we thus get

min
x∈ΩB

f(x) = min
y∈U, z∈V
y+z∈ΩB

f(y + z) = min
y∈U

f(y) + min
z∈V∩ΩB

f(z)

= f(x0) + min
z∈V∩ΩB

f(z) = f(x0) + min
z∈AV
zI≥�I

1
2
zT QT AQz − bT Qz

= f(x0) + min
z∈AV
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z,

where x0 = PA−1b and g0 = −QTb. We have thus reduced our bound con-
strained problem (5.1) with the feasible set (5.139) to the problem

min
z∈AV
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z. (5.141)

The following lemma shows that the above problem can be solved by the
MPRGP algorithm.
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Lemma 5.23. Let z1, z2, . . . be generated by the MPRGP algorithm for the
problem

min
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z (5.142)

starting from z0 = PΩB

(
g0
)
. Then zk ∈ AV , k = 0, 1, 2, . . . .

Proof. First observe that since AV is orthogonal to U and dimAV = dimV , it
follows that AV is the orthogonal complement of U . Thus AV is not only an
invariant subspace of Q, but it is also an invariant subspace of PΩB . Moreover,
it also follows that AV contains the set V0 ⊆ R

n of all the vectors of R
m padded

with zeros,

V0 = {x ∈ R
n : xJ = o, J = {m + 1, . . . , n}} .

More formally,
PΩB (AV) ⊆ AV and V0 ⊆ AV . (5.143)

Let us now recall that by (3.33) g0 ∈ ImQT and by (3.35) ImQT = AV , so
that g0 ∈ AV . Using the definition of z0 and (5.143), we have z0 ∈ AV .

To finish the proof by induction, let us assume that zk ∈ AV . Since

gk = QT AQzk − QTb = AQzk + g0,

we have gk ∈ AV . We shall use this simple observation to examine separately
the three possible steps of the MPRGP algorithm of Sect. 5.8.1 that can be
used to generate zk+1.

Let us first assume that zk+1 is generated by the proportioning step. Then

zk+1 = zk − αcgβ(zk).

Using the definition of the chopped gradient, it is rather easy to check that
β(zk) ∈ V0. Since V0 ⊆ AV , AV is a subspace of R

n, and zk ∈ AV by the
assumptions, this proves that zk+1 ∈ AV when it is generated by the propor-
tioning step.

Before examining the other two steps, observe that ϕ(zk) − gk ∈ V0, so
that

ϕ(zk) =
(
ϕ(zk) − gk

)
+ gk ∈ AV .

Thus
zk − αϕ(zk) ∈ AV

for any α ∈ R. Using the first inclusion of (5.143), we get that

PΩB

(
zk − αϕ(zk)

)
∈ AV

for any α of Algorithm 5.8. This proves that zk+1 ∈ AV for zk+1 generated by
the expansion step. To finish the proof, observe that the conjugate direction
pk is either equal to ϕ(zk), or it is defined by the recurrence (see (5.15))
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pk+1 = ϕ(zk) − βpk starting from the restart ps+1 = ϕ(zs). In any case,
pk ∈ AV . Since we assume that zk ∈ AV and the iterate zk+1 generated
by the conjugate gradient step is a linear combination of zk and pk, this
completes the proof. �

It follows that we can obtain the correction ẑ which solves the auxiliary
problem by the standard MPRGP algorithm. Since the iterations are reduced
to the subspace, the projector preconditions all three types of steps and we
can give an improved bound on the rate of convergence. The solution x̂ of
the bound constrained problem (5.1) with the feasible set (5.139) can be
expressed by x̂ = x0 + ẑ. For convenience of the reader, we give here the
complete algorithm for the solution of the preconditioned problem (5.142).

Algorithm 5.13. MPRGP projection preconditioning correction.

Given a symmetric positive definite matrix A of the order n and b, � ∈ R
n; choose

a full column rank matrix U ∈ R
m×n, g0 = −QT b, x0 = PA−1b, z0 = PΩB (g0),

Γ > 0, and α ∈ (0, 2‖AQ‖−1], where P is defined by (5.140) and Q = I − P.
Step 0. {Initialization.}

Set k = 0, g = AQz0 + g0, p = ϕ(z0)
while ‖gP (zk)‖ is not small

if ‖β(zk)‖2 ≤ Γ 2ϕ̃(zk)T ϕ(zk)

Step 1. {Proportional zk. Trial conjugate gradient step.}
αcg = gT p/pT AQp, y = zk − αcgp
αf = max{α : zk − αp ∈ ΩB} = min{(zk

i − �i)/pi : pi > 0}
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
zk+1 = y, g = g − αcgAQp
β = ϕ(y)T AQp/pT AQp, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

zk+ 1
2 = zk − αfp, g = g − αfAQp

zk+1 = PΩB (zk+ 1
2 − αϕ(zk+ 1

2 ))

g = AQzk+1 + g0, p = ϕ(zk+1)
end if

else
Step 4. {Proportioning step.}

d = β(zk), αcg = gT d/dT AQd

zk+1 = zk − αcgd, g = g − αcgAQd, p = ϕ(zk+1)
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = zk + x0
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To describe the improved bound on the rate of convergence, let us denote,
as in Sect. 3.7.4, the gap

γ = ‖RAU − RE‖

between AU and the m-dimensional subspace E spanned by the eigenvectors
corresponding to the m smallest eigenvalues

λn−m+1 ≥ · · · ≥ λmin

of A, so that the smallest nonzero eigenvalue λmin of QT AQ satisfies by The-
orem 3.6

λmin ≥
√

(1 − γ2)λ2
n−m + γ2λ2

min ≥ λmin. (5.144)

Recall that by (3.36) and AQ = QT AQ

‖AQ‖ ≤ ‖A‖.

Theorem 5.24. Let {zk} denote the sequence generated by Algorithm 5.7
for problem (5.142) with α ∈ (0, 2‖AQ‖−1] and Γ > 0 starting from z0 =
PΩB (g0). Let us denote

f0,Q(z) =
1
2
zT QT AQz + (g0)T z.

Then
f0,Q(zk+1) − f0,Q(ẑ) ≤ ηΓ

(
f0,Q(zk) − f0,Q(ẑ)

)
, (5.145)

where

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.146)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.147)

and λmin denote the least nonzero eigenvalue of QT AQ which satisfies (5.144).

Proof. It is enough to combine Theorem 5.14 with the bounds given by The-
orem 3.6. �

The efficiency of preconditioning by conjugate projector depends on the
choice of the matrix U whose columns span the subspace which should approx-
imate an invariant subspace spanned by the eigenvectors which correspond to
small eigenvalues of A. For the minimization problems arising from the dis-
cretization of variational inequalities, U is typically obtained by aggregation
of variables using geometrical information or from the coarse discretization,
as in the multigrid methods. A numerical example is given in the next section.
For references on related topics see Sect. 5.12.
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5.11 Numerical Experiments

Here we illustrate the performance of some CG-based algorithms for the bound
constrained problem (5.1) on minimization of the cost functions fL,h and fLW,h

introduced in Sect. 3.10 subject to bound constraints. All the computations
are carried out with Γ = 1 and x0 = o.

5.11.1 Polyak, MPRGP, and Preconditioned MPRGP

Let us first compare the performance of the CG-based algorithms presented
in this chapter on minimization of the quadratic function fL,h defined by the
discretization parameter h (see page 98) subject to the boundary obstacle �
defined by the upper part of the circle with the radius R = 1 and the center
S = (1, 0.5,−1.3). The boundary obstacle is placed under Γc = 1× [0, 1]. Our
benchmark is described in more detail in Sect. 7.1; its solution is in Fig. 7.4.
Recall that the Hessian AL,h of fL,h is ill conditioned with κ(AL,h) ≈ h−2.
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Fig. 5.18. Convergence of Polyak, MPRGP, and MPRGP–CP algorithms

The graph of the norm of the projected gradient (vertical axis) against the
numbers of matrix–vector multiplications (horizontal axis) for Algorithm 5.2
(Polyak), Algorithm 5.8 (MPRGP), and MPRGP with preconditioning by the
conjugate projector (MPRGP–CP) is in Fig. 5.18. The results were obtained
with h = 1/32, which corresponds to n = 1056 unknowns. The conjugate
projector was defined by the aggregation of variables in the squares with 8×8
variables as in Sect. 3.10.1, so that the matrix U has 16 columns. We can see
not only that the MPRGP algorithm outperforms Polyak’s algorithm, but also
that the performance of MPRGP can be considerably improved by precondi-
tioning. The difference between the Polyak and basic MPRGP algorithms is
small due to the choice of � which makes identification of the active set easy;
most iterations of both algorithms were CG steps. The picture can completely
change for different � as documented in Dostál and Schöberl [74].
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5.11.2 Numerical Demonstration of Optimality

To illustrate the concept of optimality, let us consider the class of problems
to minimize the quadratic function fLW,h (see page 99) subject to the bound
constraints defined by the obstacle as above. The class of problems can be
given a mechanical interpretation associated to the expanding spring systems
on Winkler’s foundation. The spectrum of the Hessian ALW,h of fLW,h is lo-
cated in the interval [2, 10]. Moreover, � ≤ o, so that the assumptions of
Theorem 5.16 are satisfied.
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Fig. 5.19. Scalability of MPRGP algorithm

In Fig. 5.19, we can see the numbers of the CG iterations kn (vertical
axis) that were necessary to reduce the norm of the projected gradient by
10−6 for the problems with the dimension n ranging from 100 to 1000000.
The dimension n on the horizontal axis is in the logarithmic scale. We can
see that kn varies mildly with varying n, in agreement with Theorem 5.16.
Moreover, since the cost of the matrix–vector multiplications is in our case
proportional to the dimension n of the matrix ALW,h, it follows that the cost
of the solution is also proportional to n.

The purpose of the above numerical experiment was just to illustrate the
concept of optimality. Realistic classes of problems arise from application of
the discretization schemes, such as the finite element method, boundary el-
ement method, finite differences, etc., to the elliptic boundary variational
inequalities, such as those arising in contact problems of elasticity, in combi-
nation with a suitable preconditioning scheme, such as FETI–DP or BETI–
DP. An optimal algorithm for the solution of the class of problems arising
from the finite element discretization of a model variational inequality with
the FETI–DP preconditioning can be found in Chap. 7. More comprehensive
related discussion and references can be found in the next section.



218 5 Bound Constrained Minimization

5.12 Comments and References

Since the conjugate gradient method was introduced in the celebrated pa-
per by Hestenes and Stiefel [117] as a method for the solution of systems of
linear equations, it seems that Polyak [159] was the first researcher who pro-
posed to use the conjugate gradient method to minimize the quadratic cost
function subject to bound constraints. Though Polyak assumed the auxiliary
problems to be solved exactly, O’Leary [157] observed that this assumption
can be replaced by refining the accuracy in the process of solution. In this
way she managed to reduce the number of iterations to about a half as com-
pared with the algorithm using the exact solution. The effective theoretically
supported strategies for adaptive precision control were presented indepen-
dently by Friedlander and Mart́ınez with their collaborators [94, 95, 96, 14],
and Dostál [41, 42]. Our exposition of inexact Polyak algorithms is based on
Dostál [41, 43]. Comprehensive experiments and tests of heuristics can be
found in Diniz-Ehrhardt, Gomes-Ruggiero, and Santos [34]. The research was
not limited to the convex problems, see also Diniz-Ehrhardt et al. [33].

Many authors fought with an unpleasant consequence of the Polyak strat-
egy which yields a lower bound on the number of iterations in terms of the
difference between the numbers of the active constraints in the initial approx-
imation and the solution. Dembo and Tulowitzski [30] proposed the conjugate
gradient projection algorithm which could add and drop many constraints in
an iteration. Later Yang and Tolle [183] further developed this algorithm with
backtracking so that they were able to prove its finite termination property.

An important step forward was development of algorithms with a rigor-
ous convergence theory. On the basis of the results of Calamai and Moré [20],
Moré and Toraldo [153] proposed an algorithm that also exploits the conjugate
gradients and projections, but its convergence is driven by the gradient pro-
jections with the steplength satisfying the sufficient decrease condition. The
steplength is found, as in earlier algorithms, by possibly expensive backtrack-
ing. In spite of iterative basis of their algorithm, the authors proved that their
algorithm preserved the finite termination property of the original algorithm
provided the solution satisfies the strict complementarity condition. Fried-
lander, Mart́ınez, Dostál, and their collaborators combined this result with
inexact solution of auxiliary problems [94, 95, 96, 14, 33, 41, 42]. The concept
of proportioning algorithm as presented here was introduced by Dostál in [42].
The convergence of the proportioning algorithm was driven by the proportion-
ing step, leaving more room for the heuristic implementation of projections as
compared with Moré and Toraldo [153]. The heuristics for implementation of
the proportioning algorithm of Dostál [42] can be applied also to the MPRGP
algorithm of Sect. 5.8.

The common drawbacks of all the above-mentioned strategies were pos-
sible backtracking in search of the gradient projection step and the lack of
results on the rate of convergence. A key to further progress were the results
by Schöberl [165, 166], who found the bound on the rate of convergence of the
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cost function in the energy norm for the gradient projection method with the
fixed steplength α ∈ (0, ‖A‖−1] in terms of the spectral condition number of
the Hessian matrix. It was observed later by Dostál [45] that this nice result
can be plugged into the proportioning algorithm to get a similar result, but
with the algorithm which can carry out more efficiently the unconstrained
steps. The estimates were extended to α ∈ (0, 2‖A‖−1] by Dostál [51] (gra-
dient projection) and Dostál, Domorádová, and Sadowská [52] (MPRGP). In
our exposition of the MPRGP algorithm, we follow Dostál and Schöberl [74],
Dostál [51], and Dostál, Domorádová, and Sadowská [52]. Let us recall that
the linear rate of convergence of the cost function for the gradient projection
method was proved earlier even for more general problems by Luo and Tseng
[146], but they did not make any attempt to specify the constants. Notice
that the bound on the coefficient of contraction of the gradient projections in
the Euclidean norm is a standard result [12]. The gradient projections were
exploited also in the algorithms for more general bound constrained problems,
see, e.g., Hager and Zhang [115]. Kučera [138] later modified the algorithm
to the minimization of quadratic function subject to separated quadratic con-
straints.

The attempts to enhance unfeasible iterations into the active set-based
methods are usually motivated by an effort to expand effectively the active
set, especially in the early stage of computation. Of course, the problem is not
how to expand the active set, but how to expand it properly. Our monotonic
MPRGP algorithm introduced in Sect. 5.9.3 implements a natural heuristics
that any decrease direction is acceptable when we want to expand the active
set provided the decrease of the cost function in the unfeasible direction is
not surpassed by the increase due to the projection to the feasible set. The
algorithm can be considered as a special class of the semismooth Newton
method with a globalization strategy. For the semismooth Newton algorithms,
see, e.g., Hintermüller, Ito, and Kunisch [118] and Hintermüller, Kovtumenko,
and Kunisch [119]. Recent application of Newton-type methods to the contact
problem may be found in Hüeber, Stadler, and Wohlmuth [122].

The preconditioning in face was studied by O’Leary [157]. Kornhuber
[131, 132] presented nice experimental results and convergence theory for the
solution of quadratic programming problems arising from the discretization
of boundary variational inequalities with multigrid preconditioning. See also
Kornhuber and Krause [133] and Iontcheva and Vassilevski [124]. It turned
out that the coarse grid should avoid the constrained variables as in our de-
scription of the preconditioning by a conjugate projector, see Domorádová
and Dostál [36]. The first implementation of the latter idea can be found in
Domorádová [35]. Dostál, Horák, and Stefanica combined the MPRGP algo-
rithm with the FETI–DP domain decomposition method to develop a scalable
algorithm for the solution of a boundary variational inequality [70]. For ap-
plication to contact problems with friction see Dostál and Vondrák [75] and
Dostál, Haslinger, and Kučera [63]. A discussion related to application of
MPRGP in the cascade algorithm can be found in Braess [16].
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Let us finish with a few comments on the bounds on the rates of conver-
gence presented in Sect. 5.6 on the gradient projection method, in Sect. 5.7
on MPGP, and in Sect. 5.8 on MPRGP. Since the coefficient of the Euclidean
contraction ηE and the coefficient ηf of the reduction of the cost function for
the gradient projection step with the fixed steplength are smaller than the
coefficient of reduction of the cost function ηΓ for MPGP and MPRGP, one
can doubt superiority of the latter algorithms. However, such doubts are not
substantiated. The point is that our estimates are based on the analysis of the
worst case for isolated iterations and do not take into account the “global”
performance of the conjugate gradient method, which dominates whenever
a few consecutive conjugate gradient iterations are carried out; this feature
of the CG method is captured by Theorem 3.2. Such global performance is
partly captured by our finite termination results and, in the case of MPRGP,
also by the result on the rate of convergence of the projected gradient.
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