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Equality Constrained Minimization

We shall now be interested in the development of efficient algorithms for

min
x∈ΩE

f(x), (4.1)

where f(x) = 1
2x

T Ax − xT b, b is a given column n-vector, A is an n × n
symmetric positive definite matrix, ΩE = {x ∈ R

n : Bx = c}, B ∈ R
m×n, and

c ∈ ImB. We assume that B �= O is not a full column rank matrix, so that
KerB �= {o}, but we allow dependent rows of B. Using a simple observation
of Sect. 4.6.7, we can extend our results to the solution of problems with A
positive definite on KerB.

There are several reasons why we consider the constraint matrix B with
dependent rows. First, for large problems, it may be expensive to identify
the dependent rows, as this can often be done only by an expensive rank
revealing decomposition. Second, the removal of the dependent constraints
may complicate the precision control of the removed equations when we accept
approximate solutions. For example, if we carry out the minimization subject
to x1 = x2 = x3, but control only that |x1 − x2| ≤ ε and |x2 − x3| ≤ ε,
then it can easily happen that |x1 − x3| > ε. Finally, the whole concept
of the dependence assumes that all computations are carried out in exact
arithmetics, so that it is better to avoid such assumption whenever we assume
our algorithms to be implemented in computer arithmetics.

Here we are interested in large sparse problems with a well-conditioned A,
and in algorithms that can be used also for the solution of equality and in-
equality constrained problems. Our choice is the class of inexact augmented
Lagrangian algorithms which enforce the feasibility condition by the Lagrange
multipliers generated in the outer loop, while unconstrained minimization is
carried out by the conjugate gradient algorithm in the inner loop. A new
feature of our approach is that the algorithm is viewed as a repeated imple-
mentation of the penalty method. We combine this approach with an adaptive
precision control of the inner loop to get the convergence results which are
independent of the representation of ΩE .
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Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 4,
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Overview of Algorithms

If we add the penalization function, which is zero on the feasible domain and
which achieves large values outside the feasible region, to the original cost
function, we can approximate a solution of the original equality constrained
problem by the solution of the unconstrained minimization problem with the
modified (penalized) cost function. The resulting penalty method presented in
Sect. 4.2 is probably the most simple way to reduce the equality constrained
problem to the unconstrained one. If the penalized problem is solved by an
iterative method, the Hessian of the penalized problem can be preconditioned
by a special preconditioner of Sect. 4.2.6 which preserves the gap in the spec-
trum.

A prototype of the method studied in this chapter is the exact augmented
Lagrangian method and its specialization called the Uzawa algorithm. See
Algorithm 4.2 for their formal description. These methods reduce the original
bound constrained problem to a sequence of the unconstrained, optionally
moderately penalized problems that are solved exactly, typically by the direct
methods of Sect. 1.5.

The auxiliary problems of the augmented Lagrangian method need not
be solved exactly. An extreme case is Algorithm 4.1, known as the Arrows–
Hurwitz algorithm, which carries out only one gradient iteration with the fixed
steplength to approximate the solution of the auxiliary problem.

The asymptotically exact augmented Lagrangian method, which is de-
scribed in Sect. 4.4 as Algorithm 4.3, controls the precision of the solution
of the auxiliary unconstrained problems by a forcing sequence decreasing to
zero. The forcing sequence should be defined by the user.

The precision of the solution of the auxiliary unconstrained problems can
also be controlled by the current feasibility error. To achieve convergence, the
adaptive augmented Lagrangian method modifies also the regularization pa-
rameter by means of the forcing sequence generated in the process of solution.
The method is described in Sect. 4.5 as Algorithm 4.4.

The most sophisticated method presented in this chapter is the semimono-
tonic augmented Lagrangian method for equality constraints referred to as
SMALE. The algorithm is described in Sect. 4.6 as Algorithm 4.5. Similarly
to the adaptive augmented Lagrangian method, SMALE controls the preci-
sion of the solution of the auxiliary unconstrained problems by the feasibility
error, but the penalty parameter is adapted in order to guarantee a suffi-
cient increase of the augmented Lagrangians. The unique theoretical results
concerning SMALE include a small explicit bound on the penalty parameter
which guarantees that the number of iterations that are necessary to find an
approximate solution can be bounded by a number independent of the con-
straints. The preconditioning preserving the bound on the rate of convergence
of Sect. 4.2.6 can be applied also to SMALE.
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4.1 Review of Alternative Methods

Before we embark on the study of inexact augmented Lagrangians, let us
briefly review alternative methods for the solution of the equality constrained
problem (4.1).

Using Proposition 2.8, it follows that (4.1) is equivalent to the solution of
the saddle point system of linear equations

[
A BT

B O

] [
x
λ

]
=
[
b
c

]
. (4.2)

If B is a full row rank matrix, we can solve (4.2) effectively by the Gauss
elimination with a suitable pivoting strategy, or by a symmetric factorization
which takes into account that (4.2) is indefinite. Alternatively, we can also
use MINRES, a Krylov space method which generates the iterates minimizing
the Euclidean norm of the residual in the Krylov space. The performance of
MINRES depends on the distribution of the spectrum of the KKT system
(4.2) similarly as the performance of the CG method. A recent comprehensive
review of the methods for the solution of saddle point systems with many
references is in Benzi, Golub, and Liesen [10]; see also Elman, Sylvester, and
Wathen [81].

We can also reduce (4.2) to a symmetric positive definite case. If B is a full
row rank matrix, and if we are able to evaluate the action of A−1 effectively,
we can multiply the first block row in (4.2) by BA−1, subtract the second row
from the result, and change the signs to obtain the symmetric positive definite
Schur complement system

BA−1BT λ = BA−1b− c, (4.3)

which can be solved by the methods described in Chap. 3. The method is also
known as the range-space method. Let us point out that if we solve (4.3) by
the CG method, then it is not necessary to evaluate BA−1BT explicitly. Using
the CG method and the left generalized inverse of Sect. 1.4, the method can
be extended to A positive semidefinite and B with dependent rows. We shall
see that the range-space method is closely related to the Uzawa-type methods
that we shall study later in this chapter.

Alternatively, we can use the null-space method, provided we have a basis
Z of KerB and a feasible x0,

Bx0 = c.

Observing that ΩE = {x0 + Zy : y ∈ R
d}, we can substitute into (4.1) to get

min
x∈ΩE

f(x) = min
y∈Rd

f(x0 + Zy) =
1
2
yT ZT AZy − (b − Ax0)T Zy +

1
2
xT

0 Ax0,

so that we can evaluate y by solving the gradient equation

ZT AZy = ZT (b− Ax0).
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If the resulting system is solved by the CG method, then the method can
be directly applied to the problems with A positive semidefinite and B with
dependent rows.

Results concerning application of domain decomposition methods can be
found in the monograph by Toselli and Widlund [175].

A class of algorithms which is important for our exposition is based on the
mixed formulation

L0(x̂, λ̂) = max
λ∈Rm

min
x∈Rn

L0(x, λ)

for the problems with full row rank B. As an example let us recall the Arrow–
Hurwitz algorithm 4.1, which exploits the first-order approximation of L0

given by

L0(x + αd, λ + rδ) ≈ L0(x, λ) + α∇xL0(x, λ)d + r∇λL0(x, λ)δ

to improve the approximations of the solution x̂ by taking small steps in the
direction opposite to the gradient

∇xL0(x, λ) = Ax − b + BT λ,

and to improve the approximations of the Lagrange multipliers λ̂ by taking
small steps in the direction

∇λL0(x, λ) = Bx − c.

Algorithm 4.1. Arrow–Hurwitz algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, a matrix B ∈ R

m×n with
the nonempty kernel, b ∈ R

n, and c ∈ ImB.

Step 0. {Initialization.}
Choose λ0 ∈ R

m, x−1 ∈ R
n, α > 0, r > 0

for k=0,1,2,. . .
Step 1. {Reducing the value of L0 in x direction.}

xk = xk−1 − α∇xL0(x
k−1, λk) = xk−1 − α(Ax − b + BT λ)

Step 2. {Increasing the value of L0 in λ direction.}
λk+1 = λk + r∇λL0(x

k, λk) = λk + r(Bxk − c)
end for

The Arrow–Hurwitz algorithm is known to converge for sufficiently small
steplengths α and r. Even though its convergence is known to be slow, the
algorithm has found its applications due to the low cost of the iterations and
minimal memory requirements. It can be considered as an extreme case of the
inexact Uzawa-type algorithms, the main topic of this chapter.
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4.2 Penalty Method

Probably the most simple way to reduce the equality constrained quadratic
programming problem (4.1) to the unconstrained one is to enhance the con-
straints into the objective function by adding a suitable term which penal-
izes the violation of the constraints. In this section we consider the quadratic
penalty method which approximates the solution x̂ of (4.1) by the solution x̂�

of
min
x∈Rn

f�(x), f�(x) = f(x) +
�

2
‖Bx− c‖2, (4.4)

where � ≥ 0 is the penalty parameter and ‖Bx − c‖2 is the penalty function.
Intuitively, if the penalty parameter � is large, then the solution x̂� of

(4.4) can hardly be far from the solution of (4.1). Indeed, if � were infinite,
then the minimizer of f� would solve the equality constrained problem (4.1).
Thus it is natural to expect that if � is sufficiently large, then the penalty
approximation x̂� is a suitable approximation to the solution x̂ of (4.1). The
effect of the penalty term is illustrated in Fig. 4.1. Notice that the penalty
approximation is typically near the feasible set, but does not belong to it.
That is why our penalty method is also called the exterior penalty method.

ΩE

∇f

f�(x) = c

f(x) = c

x̂�

x̂0
x̂

Fig. 4.1. The effect of the quadratic penalty

In the following sections, we shall often use the more general augmented
Lagrangian penalty function L : R

n+m+1 → R which is defined by

L(x, λ, �) = f(x)+(Bx−c)T λ+
�

2
‖Bx−c‖2 = L0(x, λ)+

�

2
‖Bx−c‖2, (4.5)

where λ ∈ R
m is arbitrary and L0(x, λ) = L(x, λ, 0) is the Lagrangian func-

tion (2.20). Notice that f�(x) = L(x,o, �). Since �‖Bx− c‖2 and (Bx− c)T λ
vanish when Bx = c, it follows that

f(x) = f�(x) = L(x, λ, �)

for any x ∈ ΩE , λ ∈ R
m, and � ≥ 0.
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4.2.1 Minimization of Augmented Lagrangian

Let us start with the modified problem

min
x∈ΩE

L(x, λ, �). (4.6)

Since the gradient of the augmented Lagrangian is given by

∇xL(x, λ, �) = Ax − b + BT
(
λ + �(Bx − c)

)
, (4.7)

it follows that the KKT system for (4.6) reads
[

A� BT

B O

] [
x
λ

]
=
[
b + �BT c

c

]
, (4.8)

where A� = A + �BT B. Eliminating x, we get that any multiplier λ satisfies

BA−1
� BT λ = BA−1

� (b + �BT c) − c. (4.9)

Moreover, if we substitute Bx = c into the first block equation, we get that
(4.8) is equivalent to the KKT system (2.31), so the saddle points of L0 are
exactly the saddle points of L. This result is not surprising as

L(x, λ, �) = f�(x) + (Bx − c)T λ

is the Lagrangian for the penalized equality constrained problem

min
x∈ΩE

f�(x).

To see how the penalty method enforces the feasibility, let us assume that
λ ∈ R

m is fixed, and let us denote by x̂0 and x̂� the minimizers of L0(x, λ)
and L(x, λ, �), respectively. Then the solution x̂ satisfies

L0(x̂�, λ) +
�

2
‖Bx̂� − c‖2 = L(x̂�, λ, �) ≤ L(x̂, λ, �) = f(x̂),

so that, using L0(x̂0, λ) ≤ L0(x̂�, λ), we get

‖Bx̂� − c‖2 ≤ 2
�

(
f(x̂) − L0(x̂�, λ)

)
≤ 2

�

(
f(x̂) − L0(x̂0, λ)

)
.

It follows that the feasibility error ‖Bx̂�−c‖, which corresponds to the second
block equation of the KKT system (2.31), can be made arbitrarily small. We
shall give stronger or easier computable bounds later in this section.

To see how x̂� satisfies the first block equation of the KKT conditions
(4.2), let us recall that the gradient of the augmented Lagrangian is given by
(4.7) and denote

λ̃ = λ + �(Bx̂� − c). (4.10)
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Then
Ax̂� − b + BT λ̃ = ∇xL0(x̂�, λ̃) = ∇xL(x̂�, λ, �) = o,

so that (x̂�, λ̃) satisfies the first block equation of the KKT conditions exactly.
Moreover, if λ is considered as an approximation of a vector of Lagrange
multipliers of the solution of (4.1), then our observations indicate that λ̃ is a
better approximation. Using Proposition 2.12, we conclude that (x̂�, λ̃) can
approximate the KKT pair of (4.1) with arbitrarily small error.

4.2.2 An Optimal Feasibility Error Estimate for Homogeneous
Constraints

Let us first examine the feasibility error of an approximate solution x of the
problem

min
x∈Rn

f�(x), f�(x) = f(x) +
�

2
‖Bx‖2, (4.11)

where f and B are from the definition of problem (4.1) and � > 0. We assume
that x satisfies

‖∇f�(x)‖ ≤ ε‖b‖, (4.12)

where ε > 0 is a small number.
Notice that our x can be considered as an approximation to the solution x̂

of the equality constrained problem (4.1) in case that the equality constraints
are homogeneous, i.e., c = o. To check that x satisfies approximately the first
part of the KKT conditions (4.2), observe that

∇f�(x) = (A + �BT B)x − b.

After denoting λ = �Bx and g = ∇f�(x), we get

Ax − b + BT λ = g, (4.13)

which can be considered as an approximation of the first block equation of
the KKT conditions (4.2).

The feasibility error is considered in the next theorem.

Theorem 4.1. Let A, B, and b be those of the definition of problem (4.1)
with B not necessarily a full rank matrix, let λmin = λmin(A) > 0 denote the
smallest eigenvalue of A, and let ε ≥ 0 and � > 0.

If x is an approximate solution of (4.11) such that

‖∇f�(x)‖ ≤ ε‖b‖,

then
‖Bx‖ ≤ 1 + ε√

λmin�
‖b‖. (4.14)
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Proof. Let us denote
A� = A + �BT B

and notice that for any x,d ∈ R
n

f�(x + d) = f�(x) + gT d +
1
2
dT A�d ≥ f�(x) − ‖g‖‖d‖ +

1
2
λmin‖d‖2

≥ min
ξ∈R

(
f�(x) − ‖g‖ξ +

1
2
λminξ

2

)
≥ f�(x) − 1

2λmin
‖g‖2,

where g = ∇f�(x). Recalling that by (2.11)

min
d∈Rn

f�(x + d) = min
y∈Rn

f�(y) = −1
2
bT A−1

� b,

we get

0 ≥ −1
2
bT A−1

� b ≥ f(x) +
�

2
‖Bx‖2 − 1

2λmin
‖g‖2.

Let us now assume that x satisfies ‖g‖ ≤ ε‖b‖. After substituting into the
last inequality and using (2.11), (1.24), and the properties of the Euclidean
norm, we get

0 ≥ f(x) +
�

2
‖Bx‖2 − 1

2λmin
‖g‖2 ≥ min

y∈Rn
f(y) +

�

2
‖Bx‖2 − ε2

2λmin
‖b‖2

= −1
2
bT A−1b +

�

2
‖Bx‖2 − ε2

2λmin
‖b‖2

≥ − 1
2λmin

‖b‖2 +
�

2
‖Bx‖2 − ε2

2λmin
‖b‖2 ≥ �

2
‖Bx‖2 − 1 + ε2

2λmin
‖b‖2.

Equation (4.14) can be obtained by simple manipulations with application of
1 + ε2 ≤ (1 + ε)2. �

An interesting feature of Theorem 4.1 is that the estimate is independent
of the constraint matrix B. In particular, the estimate (4.14) is valid even if
B has dependent rows. The assumption that the constraints are homogeneous
was used to get that the unconstrained minimum of f� is not positive.

Theorem 4.1 implies a simple optimality result concerning the approxima-
tion by the penalty method. To formulate it, let T denote any set of indices
and assume that for any t ∈ T , there is defined a problem

min
x∈Ωt

E

ft(x), (4.15)

where ft(x) = 1
2x

T Atx − bT
t x, At ∈ R

nt×nt is SPD with the eigenvalues in
the interval [amin, amax], 0 < amin < amax , bt,x ∈ R

nt , Bt ∈ R
mt×nt , and

Ωt
E = {x ∈ R

nt : Btx = o}.
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Corollary 4.2. For each ε > 0, there is � > 0 such that if approximate
solutions xt,� of (4.15) satisfy

∇ft,�(xt,�) ≤ ε‖bt‖, t ∈ T ,

then
‖Btxt,�‖ ≤ ε‖bt‖, t ∈ T .

Proof. Notice that by Theorem 4.1

‖Btx̂t,�‖ ≤ 1
√

amin�
‖bt‖

for any � > 0. It is enough to set � = 1/(aminε
2). �

We conclude that the prescribed bound on the relative feasibility error for
all problems (4.15) can be achieved with one value of the penalty parameter
�t = �. Numerical experiments which illustrate the optimal feasibility esti-
mates in the framework of FETI methods can be found in Dostál and Horák
[65, 66].

4.2.3 Approximation Error and Convergence

Using the feasibility estimate (4.14) of the previous subsection and an error
bound on the violation of the first block equation of the KKT conditions
(2.46), we can bound the approximation error of the penalty method for ho-
mogeneous constraints.

Theorem 4.3. Let problem (4.1) be defined by A, B,b, and c = o, with B �= O
not necessarily a full rank matrix, let (x̂, λLS) denote the least square KKT
pair for (4.1) with c = o, let λmin denote the least eigenvalue of A, let σmin

denote the least nonzero singular value of B, let ε > 0, � > 0, and let

λ = �Bx. (4.16)

If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then

‖x − x̂‖ ≤ ε
κ(A) + 1

λmin
‖b‖ +

1 + ε
√

�

κ(A)
σmin

√
λmin

‖b‖ (4.17)

and

‖λ − λLS‖ ≤ 1
σmin

(
εκ(A)‖b‖ +

1 + ε
√

�

‖A‖
σmin

√
λmin

‖b‖
)
. (4.18)
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Proof. Let us denote g = ∇f�(x) and e = Bx, so that

Ax + BT λ = b + g and Bx = e, (4.19)

and notice that by the assumptions λ ∈ ImB. Assuming that

‖g‖ = ‖∇f�(x)‖ ≤ ε‖b‖,

it follows by Theorem 4.1 that

‖Bx‖ ≤ 1 + ε√
λmin�

‖b‖.

Substituting into the estimates (2.48) and (2.49) of Proposition 2.12, we get
(4.17) and (4.18). �

Notice that the error bounds (4.17) and (4.18) depend on the representa-
tion of ΩE , namely, on the constraint matrix B.

The performance of the penalty method can also be described in terms
of convergence. Let εk > 0 denote a sequence converging to zero, let �k > 0
denote an increasing unbounded sequence, let gk = ∇f�k

(xk), and let xk

satisfy
‖gk‖ = ‖∇f�k

(xk)‖ ≤ εk‖b‖.
Let us denote

λk = �kBxk.

Then by (4.17) there is a constant C1 dependent on A and C2 dependent on
A, B such that

‖xk − x̂‖ ≤ εkC1‖b‖ +
1 + εk√

�k
C2‖b‖,

and by (4.18) there are constants C3 and C4 dependent on A, B such that

‖λk − λLS‖ ≤ εkC3‖b‖ +
1 + εk√

�k
C4‖b‖. (4.20)

It follows that λk converges to λLS and xk converges to x̂.

4.2.4 Improved Feasibility Error Estimate

We shall now give a feasibility error estimate for the penalty approximation
of (4.1) which is valid for nonhomogeneous constraints with c �= o. Our new
bound on the error is proportional to �−1, but dependent on B and c.

Theorem 4.4. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix, let βmin > 0 denote the smallest
nonzero eigenvalue of BT A−1B, let ε denote a given positive number, and let
� > 0.
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If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then the feasibility error satisfies

‖Bx − c‖ ≤
(
1 + βmin�

)−1 (
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)
. (4.21)

Proof. Let us recall that for any vector x

∇f�(x) = (A + �BT B)x − b − �BT c,

so that, after denoting g = ∇f�(x) and A� = A + �BT B,

x = A−1
� (g + b + �BT c).

It follows that
Bx = BA−1

� (g + b) + �BA−1
� BT c.

Using equation (1.41) of Lemma 1.4 and simple manipulations, we get

Bx − c = BA−1
� (g + b) + �(I + �BA−1BT )−1BA−1BT c − c

= BA−1
� (g + b) + (I + �BA−1BT )−1

(
(I + �BA−1BT ) − I

)
c − c

= BA−1
� (g + b) − (I + �BA−1BT )−1c.

To finish the proof, use the assumptions that c ∈ ImB and ‖g‖ ≤ ε‖b‖,
Lemma 1.6, and the properties of norms. �

Numerical experiments which illustrate (4.21) can be found in Dostál and
Horák [65, 66].

4.2.5 Improved Approximation Error Estimate

Using the improved feasibility estimate (4.21) of the previous section, we can
improve the bounds on the approximation error of the penalty method given
in Sect. 4.2.3.

Theorem 4.5. Let A, B,b, and c be those of the definition of problem (4.1)
with B not necessarily a full rank matrix, let λmin denote the least eigenvalue
of A, let σmin denote the least nonzero singular value of B, let (x̂, λLS) denote
the least square KKT pair for (4.1), let βmin > 0 denote the least nonzero
eigenvalue of the matrix BA−1BT , let ε > 0, � > 0, and

λ = �(Bx − c). (4.22)

If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then
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‖λ − λLS‖ ≤ ε
κ(A)‖b‖

σmin
+

‖A‖
(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σ2
min(1 + �βmin)

(4.23)

and

‖x− x̂‖ ≤ ε
κ(A) + 1

λmin
‖b‖ +

κ(A)
(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σmin(1 + �βmin)
. (4.24)

Proof. Let us denote g = ∇f�(x) and e = Bx − c, so that

Ax + BT λ = b + g and Bx = c + e.

If
‖g‖ = ‖∇f�(x)‖ ≤ ε‖b‖,

then by Theorem 4.4

‖Bx − c‖ ≤ 1
1 + �βmin

(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)
.

Substituting into the estimates (2.47) and (2.48) of Proposition 2.12, we get

‖BT (λ − λLS)‖ ≤ εκ(A)‖b‖ +
‖A‖

(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σmin(1 + �βmin)
(4.25)

and (4.24). To finish the proof, notice that λ − λLS ∈ ImB, so that by (1.34)

σmin‖λ − λLS‖ ≤ ‖BT (λ − λLS)‖,

apply the latter estimate to the left-hand side of (4.25), and divide the result-
ing chain of inequalities by σmin. �

We can also get the improved rates of convergence compared with those of
Sect. 4.2.3. Let εk ≥ 0 denote again a sequence converging to zero, let �k > 0
denote an increasing unbounded sequence, let xk satisfy

‖gk‖ = ‖∇f�k
(xk)‖ ≤ εk‖b‖,

and let us denote
λk = �k(Bxk − c).

Then by (4.23) there are constants C1, C2, and C3 dependent on A, B such
that

‖λk − λLS‖ ≤ εkC1‖b‖ +
1 + εk

�k
C2‖b‖ +

C3

�k
‖c‖,

and by (4.24) there is a constant C4 dependent on A and constants C5, C6

dependent on A, B such that

‖xk − x̂‖ ≤ εkC4‖b‖ +
1 + εk

�k
C5‖b‖ +

C6

�k
‖c‖.

Thus λk converges to λLS and xk converges to x̂.
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4.2.6 Preconditioning Preserving Gap in the Spectrum

We have seen that the penalty method reduces the solution of the equality
constrained minimization problem (4.1) to the unconstrained penalized prob-
lem (4.4). The resulting problem may be solved either by a suitable direct
method such as the Cholesky decomposition, or by an iterative method such
as the conjugate gradient method. If the penalty parameter � is large, then
the Hessian matrix

A� = A + �BT B

of the cost function f� of the penalized problem (4.4) is obviously ill-
conditioned. Thus the estimates based on the condition number do not guar-
antee fast convergence of the conjugate gradient method, and a natural idea
is to reduce the condition number of A� by a suitable preconditioning. This
is indeed possible as has been shown, e.g., by Hager [111, 113].

Here we consider an alternative approach which exploits the fast conver-
gence of the conjugate gradient method for the problems with a gap in the
spectrum. The method is based on two results: the bounds on the rate of
convergence independent of � given by (3.23) and (3.24) and Lemma 1.7 on
the distribution of the spectrum of A�. The method presented here is applica-
ble for large � provided we have an effective preconditioner M for A that can
be used by the preconditioned conjugate gradient algorithm of Sect. 3.6. To
simplify our exposition, we assume that M = LLT , where L is a sparse lower
triangular matrix.

To express briefly the effects of the preconditioning strategies presented in
this section, let k(W, ε) denote the number of the conjugate gradient iterations
that are necessary to reduce the residual of any system with the symmetric
positive definite matrix W by ε, and let

k(W, ε) = int(
1
2

√
κ(W)ln(2/ε) + 1) (4.26)

denote the upper bound on k(W, ε) which may be easily obtained from (3.23).
Let us first assume that the rank m of the constraint matrix B ∈ R

p×n in
the original problem (4.1) is small. Then it is possible to use L to redistribute
the spectrum of the penalized matrix A� directly. In this case (1.51) and the
estimate (3.23) of the rate of the conjugate gradient method for the case that
the Hessian of the cost function has m isolated eigenvalues give the bound

k(L−1A�L
−T , ε) ≤ k(L−1AL−T , ε) + m. (4.27)

Such preconditioning can be implemented even without the factorization of the
preconditioner M = LLT as in Algorithm 3.3, provided we can solve efficiently
the linear systems with the matrix M.

If m dominates in the expression on the right-hand side of (4.27), then
the bound (4.27) can be improved at the cost of increased computational
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complexity. In particular, this may be useful when we have several problems
(4.4) with the same matrix B. Noticing that for any nonsingular matrix Q

ΩE = {x ∈ R
n : QBx = Qc},

choosing the matrix Q in such a way that the rows of QBL−T are orthonormal,
and denoting B = QB, we can observe that minimizer of the penalized function
with the Hessian

A� = A + �B
T
B

also approximates the solution of (4.1), but the spectrum σ(L−1A�L
−T ) of the

preconditioned Hessian L−1A�L
−T satisfies by (1.50) and (1.51)

σ(L−1A�L
−T ) ⊆ [amin, amax] ∪ [amin + �, amax + �],

where amin = λ1(L−1AL−T ) and amax = λn(L−1AL−T ). Since the spectrum is
located in two intervals of the same length, we can use (3.24) to get the bound

k(L−1A�L
−T , ε) ≤ min{k(L−1AL−T , ε) + m, 2k(L−1AL−T , ε)}, (4.28)

which is optimal with respect to both � and m. Results of some numerical
experiments with this strategy can be found in [44].

Observe that QT Q represents a scalar product on R
m. The method

can be efficient also in the case that the rows of QBL−T are orthonormal
only approximately [144]. If A = LLT and QBL−T are orthonormal, then
σ(L−1A�L

−T ) = {1, �} and the CG algorithm finds the solution in just two
steps.

4.3 Exact Augmented Lagrangian Method

Because of its simplicity and intuitive appeal, the penalty method is often
used in computations. However, a good approximation of the solution may
require a very large penalty parameter, which can cause serious problems in
computer implementation. The remedy can be based on the observation that
having a solution x� of the penalized problem (4.4), we can modify the linear
term of f in such a way that the unconstrained minimum of the modified cost
function f without the penalization term is achieved again at x�. Then we
can hopefully find a better approximation by adding the penalization term
to the modified cost function f , possibly with the same value of the penalty
parameter, and look for the minimizer of f� as in Fig. 4.2. The result is the
well-known classical augmented Lagrangian algorithm, also named the method
of multipliers, which was proposed by Hestenes [116] and Powell [160].

In this section, we present as the augmented Lagrangian algorithm a little
more general algorithm; its special cases are the classical Uzawa algorithm [1]
and the original algorithm by Hestenes and Powell. We review and slightly
extend the well-known arguments presented, e.g., in the classical monographs
by Bertsekas [11] and Glowinski and Le Tallec [100].
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ΩE

L(x, λk+1, �) = L(xk+1, λk+1, �) + c

L(x, λk, �) = L(xk, λk, �) + c

xk+1

xk

Fig. 4.2. Augmented Lagrangian iteration

4.3.1 Algorithm

The augmented Lagrangian algorithm is based, similarly as the Arrow–
Hurwitz algorithm 4.1, on the mixed formulation (2.38) of the equality con-
strained problem (4.1). However, the augmented Lagrangian algorithm differs
from the Arrow–Hurwitz algorithm applied to the penalized problem (4.4) in
Step 1, where the former algorithm assigns xk the minimizer of L(x, λk, �k)
with respect to x ∈ R

n. Both algorithms use the same update rule for the
Lagrange multipliers in Step 2. Here we present a variant of the augmented
Lagrangian algorithm whose special cases are the original Uzawa algorithm
[1], which corresponds to �k = 0, k = 0, 1, . . . , and the original method of
multipliers, which corresponds to rk = �k. Our augmented Lagrangian algo-
rithm reads as follows.

Algorithm 4.2. Exact augmented Lagrangian algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose λ0 ∈ R

m, r > 0, rk ≥ r, �k ≥ 0

for k=0,1,2,. . .
Step 1. {Minimization with respect to x.}

xk = arg min{L(x, λk, �k) : x ∈ R
n}

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + rk(Bxk − c)

end for

Since xk is the unconstrained minimizer of the Lagrangian L with respect
to its first variable, it follows that
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∇xL(xk, λk, �k) = (A + �kBT B)xk − b− �kBT c + BT λk = o,

so that Step 1 of Algorithm 4.2 can be implemented by solving the system

(A + �kBT B)xk = b + �kBT c − BT λk. (4.29)

To understand better the algorithm, we shall examine its alternative for-
mulation which we obtain after eliminating xk or λk from Algorithm 4.2. Thus
denoting for any � ∈ R

A� = A + �BT B,

we can use (4.29) to get

xk = A−1
�k

(b + �kBT c − BT λk).

After substituting for xk into Step 2 of Algorithm 4.2 and simple manipula-
tions, we can rewrite our augmented Lagrangian algorithm as

Choose λ0 ∈ R
m, (4.30)

λk+1 = λk − rk

(
BA−1

�k
BT λk − BA−1

�k
(b + �kBT c) + c

)
. (4.31)

To understand the formula (4.31), notice that

f�(x) =
1
2
xT A�x − (b + �BT c)Tx +

�

2
‖c‖2.

Using the formula (2.36) for the dual function Θ for problem (4.1), we can
check that the explicit expression for the dual function Θ� for the minimum
of f�(x) subject to x ∈ ΩE reads

Θ�(λ) = −1
2
λT BA−1

� BT λ +
(
BA−1

� (b + �BT c) − c
)
λ

−1
2
(b + �BT c)T A−1(b + �BT ) +

�

2
‖c‖2.

It follows that

∇Θ�k
(λk) = −BA−1

�k
BT λk + BA−1

�k
(b + �kBT c) − c. (4.32)

Comparing the latter formula with (4.31), we conclude that

λk+1 = λk + rk∇Θ�k
(λk).

Thus the augmented Lagrangian algorithm may be interpreted as the gra-
dient method for maximization of the dual function Θ� for the penalized
problem (4.4) with the steplength rk.

Alternatively, we can eliminate λk from Algorithm 4.2 to get

x0 = A−1
�0

(b + �kBT c − BT λ0), (4.33)

xk+1 = xk − rkA−1
�k

BT (Bxk − c). (4.34)
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4.3.2 Convergence of Lagrange Multipliers

Let us first recall that, by Proposition 2.10(iii) and the discussion at the end
of Sect. 2.4.2, any Lagrange multiplier λ of the equality constrained problem
(4.1) can be expressed as

λ = λLS + δ, λLS ∈ ImB, δ ∈ KerBT ,

where λLS is the Lagrange multiplier with the minimal Euclidean norm. If
we denote by P and Q = I− P the orthogonal projectors on ImB and KerBT ,
respectively, then the components of λ are given by

λLS = Pλ, ν = Qλ.

To simplify the notations, we shall assume that �k = � and rk = r.
To study the convergence of λk generated by Algorithm 4.2, let λ0 ∈ R

m,
let us denote

λ = λLS + Qλ0,

and observe that

λ0 − λ = Pλ0 + Qλ0 − λLS − Qλ0 = P(λ0 − λLS) ∈ ImB,

λk+1 − λ = (λk − λ) − r(BA−1
� BT λk − BA−1

� (b + �BT c) + c)

= (λk − λ) − rBA−1
� BT (λk − λ),

where we used PλLS = λLS and (4.9). It follows that

λk+1 − λ = (I − rBA−1
� BT )(λk − λ) (4.35)

and
λk+1 − λ ∈ ImB, k = 0, 1, . . . .

Therefore the analysis of convergence of λk reduces to the analysis of the
spectrum of the restriction of the iteration matrix I−rBA−1

� BT to its invariant
subspace ImB.

Using (1.26) and Lemma 1.5, we get that the eigenvalues μi of the iteration
matrix are related to the eigenvalues βi of BA−1BT |ImB by

μi = 1 − rβi

1 + �βi

=
1 + (� − r)βi

1 + �βi

,

so that

‖(I − rBA−1
� BT )|ImB‖ = max

i∈{1,...,m}
βi>0

|1 + (� − r)βi|
1 + �βi

.

Denoting

R(�, r) = max
i∈{1,...,m}

βi>0

|1 + (� − r)βi|
1 + �βi

(4.36)
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and using that the norm is submultiplicative, we get for R(�, r) < 1 the linear
rate of convergence

‖λk+1 − λ‖ ≤ R(�, r)‖λk − λ‖. (4.37)

We have thus reduced the study of convergence of Algorithm 4.2 to the
analysis of R(�, r). We shall formulate the result on the convergence of the
Lagrange multipliers in the following theorem.

Theorem 4.6. Let λk, k = 0, 1, . . . , denote the sequence of vectors generated
by Algorithm 4.2 for problem (4.1) with a given �k and rk starting from a given
vector λ0 ∈ R

m. Let λLS denote the least square Lagrange multiplier, let P
denote the orthogonal projector on ImB, let βmax denote the largest eigenvalue
of BA−1BT , and denote

λ = λLS + (I − P)λ0.

If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.38)

then λk converge to λ and the rate of convergence is at least linear, i.e., there
is R < 1 such that

‖λk+1 − λ‖ ≤ R‖λk − λ‖.

Proof. Elementary, but a bit laborious analysis of R(�k, rk), where R is defined
by (4.36), reveals that if �k, rk satisfy (4.38), then

sup
k=0,1,...

R(�k, rk) = R < 1.

To finish the proof, it is enough to substitute this result into (4.37). �

Using different arguments, it is possible to prove convergence of Algo-
rithm 4.2 under more relaxed conditions. For example, Glowinski and Le Tal-
lec [100] give the condition

0 < ε ≤ rk ≤ 2�k.

4.3.3 Effect of the Steplength

Let us now examine possible options of the steplength r = r(�) as a function
of �, including their effect on R(�, r). We shall denote by βmin the smallest
nonzero eigenvalues of BA−1BT , i.e., the smallest eigenvalue of BA−1BT |ImB.
Our examples are from Glowinski and Le Tallec [100].
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Optimal choice of r with � = 0.

In this case, which corresponds to the original Uzawa algorithm,

R(�, r) = R(0, r) = max
i∈{1,...,m}

βi>0

|1 − rβi|, (4.39)

so that the best choice of r is given by

R(0, ropt) = min
r

max
i∈{1,...,m}

βi>0

|1 − rβi| = min
r

max
i∈{1,...,m}

βi>0

{1 − rβi, rβi − 1}

= min
r

max{1 − rβmin, rβmax − 1}.

A simple analysis reveals that ropt satisfies

1 − rβmin = rβmax − 1.

Solving the last equation with respect to r, we get

ropt =
2

βmin + βmax

and

R(0, ropt) = 1 − roptβmin =
βmax − βmin

βmax + βmin

=
βmax/βmin − 1
βmax/βmin + 1

.

This is of course the optimal rate of convergence of the gradient method
of Sect. 3.4 applied to the dual function. Inspection of (4.39) reveals that
R(0, r) < 1 requires that 1 − rβmax > −1, i.e.,

r < 2/βmax,

so that ropt is typically near the bound which guarantees the convergence.

Choice r = �.

In this case, which is natural from the point of view of our analysis of the
penalty method,

R(�, �) = max
i∈{1,...,m}

βi>0

1
1 + �βi

=
1

1 + �βmin
. (4.40)

An interesting feature of this choice is that

lim
�→∞

R(�, �) = 0,

so that by increasing �, it is possible to achieve arbitrary preconditioning
effect.
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Choice r = (1 + δ)�.

Let us now consider the choice r = (1 + δ)� with δ > −1. In this case

R
(
�, (1 + δ)�

)
= max

i∈{1,...,m}
βi>0

|1 − δ�βi|
1 + �βi

,

so that r > 0 and R
(
�, (1 + δ)�

)
< 1 if and only if −1 < δ < 1 + 2/(�βmax).

Moreover
lim

�→∞
R(�, (1 + δ)�) = |δ|.

It follows that the preconditioning effect which can be achieved by increasing
the penalty parameter is limited when δ �= 0.

Optimal steplength for a given �.

If � is given, then the optimal steplength ropt(�) is given by

ropt = argmin
r≥0

(
max

i∈{1,...,m}
βi>0

|1 + (� − r)βi|
1 + �βi

)
.

To find it, let us denote

ϕi(r) =
1 + (� − r)βi

1 + �βi
=

(1 + �βi) − rβi

1 + �βi
,

and observe that if βi > 0, then ϕi(r) is decreasing. Since ϕi(0) = 1, it follows
that for r ≥ 0

max
i∈{1,...,m}

βi>0

ϕi(r) = max
i∈{1,...,m}

βi>0

1 + (� − r)βi

1 + �βi
=

1 + (� − r)βmin

1 + �βmin

.

Similarly −ϕi(0) = −1, and if βi > 0, then −ϕi(r) is increasing. Therefore

max
i∈{1,...,m}

βi>0

−ϕi(r) = max
i∈{1,...,m}

βi>0

−1 + (� − r)βi

1 + �βi
= −1 + (� − r)βmax

1 + �βmax

for nonnegative r. Since the both maxima are nonnegative on the positive
interval [� + 1/βmax, � + 1/βmin], it follows that the optimal choice ropt(�) is
a nonnegative solution of

1 + (� − r)βmin

1 + �βmin

= −1 + (� − r)βmax

1 + �βmax
.

Carrying out the computations, we get that

ropt(�) = � +
2 + �(βmin + βmax)

2�βminβmax + βmin + βmax

.
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We conclude that the optimal steplength ropt(�) based on the estimate
(4.37) is longer than the penalization parameter �, but ropt(�) approaches �
for large values of � as

lim
�→∞

ropt(�)/� = 1.

This is in agreement with the above discussion and our analysis of the penalty
method in Sect. 4.2.1, which suggests that a suitable steplength for large � is
given by r = �.

Given xk which minimizes L(x, λk, �) with respect to x ∈ R
n, then xk

satisfies
Axk + BT

(
λk + �(Bxk − c)

)
− b = o.

Thus the choice r = � results in

∇L0(xk, λk+1) = o,

so that it is optimal also in the sense that

� = argmin
r≥0

‖Axk + BT
(
λk + r(Bxk − c)

)
− b‖.

Maximizing the Gradient Ascent.

In Sect. 4.3.1, we have shown that Algorithm 4.2 may be interpreted as a
gradient algorithm applied to the maximization of the dual function Θ�. Thus
it seems natural to define rk by maximizing the quadratic function

φ(r) = Θ�k
(λk + rgk),

where gk = ∇Θ�k
(λk), with respect to r. Denoting A�k

= A + �kBT B,

F�k
= BA−1

�k
BT , and d = d�k

= BA−1
�k

(b + �kBT c) − c,

we can write

φ(r) = −1
2
(λk + rgk)T F�k

(λk + rgk) + (λk + rgk)T d,

so that the maximizer satisfies

d

dr
φ(r) = −r(gk)T F�k

gk−(gk)T (F�k
λk−d) = −r(gk)T F�k

gk +(gk)Tgk = 0.

Thus we can use the steepest ascent formula

rk =
‖gk‖2

(gk)T F�k
gk

, (4.41)

which may be applied to obtain the largest increase of Θ�k
in step k. For

large �k, we get by (1.47) and (1.48) that rk is close to �k in agreement with
the optimal choice of the steplength based on the estimate (4.37). Notice that
the steplength based on (4.41) depends on the current iteration.
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4.3.4 Convergence of the Feasibility Error

To estimate the feasibility error ‖Bxk − c‖, let us multiply equation (4.34) by
B and then subtract c from both sides of the result to get

Bxk+1 − c = Bxk − c − rkBA−1
�k

BT (Bxk − c),

where A�k
= A + �kBT B. It follows that

‖Bxk+1 − c‖ ≤ ‖(I − rkBA−1
�k

BT )|ImB‖‖Bxk − c‖, (4.42)

so that, under the assumptions of Theorem 4.6, we can use the same arguments
to prove the linear convergence of the feasibility error. We can thus state the
following theorem.

Theorem 4.7. Let xk, k = 0, 1, . . . , be generated by Algorithm 4.2 for prob-
lem (4.1) with given �k, rk, and λ0 ∈ R

m. Let βmax denote the largest eigen-
value of BA−1BT .

If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.43)

then the feasibility error ‖Bxk − c‖ converges to zero and the rate of conver-
gence is at least linear, i.e., there is R < 1 such that

‖Bxk+1 − c‖ ≤ R‖Bxk − c‖. (4.44)

We have thus obtained exactly the same rate of convergence of the feasibility
error as that for the Lagrange multipliers.

4.3.5 Convergence of Primal Variables

Having the proofs of convergence of the Lagrange multipliers and of the fea-
sibility error, we may use Proposition 2.12 to prove the convergence of the
primal variables.

Theorem 4.8. Let xk, k = 0, 1, . . . , be generated by Algorithm 4.2 for prob-
lem (4.1) with given �k, rk, and λ0 ∈ R

m, let x̂ denote the unique solution
of (4.1), let σmin denote the least nonzero singular value of B, and let βmax

denote the largest eigenvalue of BA−1BT .
If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.45)

then ‖xk−x̂‖ converges to zero and the rate of convergence is at least R-linear,
i.e., there is R < 1 such that

‖xk − x̂‖ ≤ Rk κ(A)‖B‖
σmin

‖x0 − x̂‖. (4.46)
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Proof. First recall that by the assumptions and (4.44),

‖Bxk − c‖ ≤ Rk‖Bx0 − c‖ = Rk‖B(x0 − x̂)‖ ≤ Rk‖B‖‖x0 − x̂‖,

where R < 1. Using (2.48), we get that

‖xk − x̂‖ ≤ κ(A)
σmin

‖Bxk − c‖ ≤ Rk κ(A)‖B‖
σmin

‖x0 − x̂‖.

We have used the fact that ∇xL(xk, λk, �) = o. �

4.3.6 Implementation

Since it is possible to approximate the solution of (4.1) with a single step of
the penalty method, the above discussion suggests to take rk = �k = � as
large as possible.

The auxiliary problems in Step 1 can be effectively solved by the Cholesky
factorization

LLT = A�,

which should be carried out after each update of �, and the multiplication of
a vector λ by BA−1

� BT should be carried out as

BA−1
� BT λ = B

(
L−T

(
L−1(BT λ)

))
.

The multiplication by the inverse factors should be implemented as the solu-
tion of the related triangular systems. Since the sensitivity to round-off errors
is greater when � is large, the algorithm should be implemented in double
precision.

Application of iterative solvers can hardly be efficient for implementation
of Step 1 of Algorithm 4.2, where an exact solution is required, but it can
be very efficient for the implementation of inexact augmented Lagrangian
algorithms discussed in the rest of this chapter.

On Application of the Conjugate Gradient Method

Since the augmented Lagrangian algorithm maximizes the dual function, we
can alternatively forget it and apply the CG algorithm of Sect. 3.3 to max-
imize the dual function Θ. This strategy may be very efficient as indicated
by the success of the FETI methods introduced by Farhat and Roux [86, 87].
The large penalty parameters result in efficient preconditioning of the Hessian
of Θ (1.48), so that, due to the optimal properties of the conjugate gradi-
ent method, the latter is a natural choice provided we can solve exactly the
auxiliary linear problems. The picture changes when inexact solutions of the
auxiliary problems are considered, as a perturbed conjugate gradient need not
be even a decrease direction as indicated in Fig. 3.2. Thus it is mainly the ca-
pability to accept the inexact solutions and treat separately the constraints and
minimization that makes the augmented Lagrangian algorithm an attractive
alternative for the solution of equality constrained QP problems.
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4.4 Asymptotically Exact Augmented Lagrangian
Method

The augmented Lagrangian method considered in the previous section as-
sumed that the minimization in Step 1 is carried out exactly. Since such
iterations are expensive, there is a good chance to reduce the cost of the outer
iterates without a large increase of the number of iterations due to the approx-
imate minimization, especially when we recall that the gradient is a robust
ascent direction.

In this section we carry out the analysis of convergence of the augmented
Lagrangian algorithm when the precisions of the solutions of the auxiliary
problems in Step 1 are determined by the bounds on the norm of the gradient.
We assume that the bounds are prescribed by the forcing sequence {εk},
where εk > 0 and limk→∞ εk = 0. The latter condition implies that the
stopping criterion becomes more stringent with the increasing index of the
outer iterations so that the minimization is asymptotically exact. Taking into
account the discussion of Sect. 4.3.3, we consider the steplength rk = �k.

4.4.1 Algorithm

The augmented Lagrangian algorithm with asymptotically exact solution of
auxiliary unconstrained problems differs from the exact algorithm only in
Step 1. We restrict our attention to the inexact version of the original aug-
mented Lagrangian method which reads as follows.

Algorithm 4.3. Asymptotically Exact Augmented Lagrangians.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose εi > 0 so that limi→∞ εi = 0, λ0 ∈ R

m, �i ≥ � > 0

for k=0,1,2,. . .
Step 1. {Minimization with respect to x.}

Choose xk ∈ R
n so that ‖∇xL(xk, λk, �k)‖ ≤ εk

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + �k(Bxk − c)

end for

We assume that the inexact solution of the auxiliary problems in Step 1
of Algorithm 4.3 is implemented by a suitable iterative method such as the
conjugate gradient method introduced in Chap. 3. Thus the algorithm solves
approximately the auxiliary unconstrained problems in the inner loop while it
generates the approximations of the Lagrange multipliers in the outer loop. Let
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us recall that effective application of the conjugate gradient method assumes
that the iterations are carried out with the matrix which has a favorable
distribution of the spectrum. This can be achieved by a problem-dependent
preconditioning discussed in Sect. 3.6 in combination with the gap-preserving
strategy of Sect. 4.7.

4.4.2 Auxiliary Estimates

Our analysis of the augmented Lagrangian algorithm is based on the following
lemma.

Lemma 4.9. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix. For any vectors x ∈ R

n and
λ ∈ R

m, let us denote

λ̃ = λ + �(Bx − c),
g = ∇xL(x, λ, �) = A�x − b + BT λ − �BT c.

Let λLS denote the vector of the least square Lagrange multipliers for prob-
lem (4.1), and let βmin denote the least nonzero eigenvalue of BA−1B.

Then for any λ ∈ ImB

‖λ̃ − λLS‖ ≤ ‖BA−1‖
βmin + �−1

‖g‖ +
�−1

βmin + �−1
‖λ − λLS‖. (4.47)

Proof. The definitions of λ̃ and g imply that

Ax + BT λ̃ = b + g,

Bx − �−1λ̃ = −�−1(λ − λLS) − �−1λLS + c,
(4.48)

and the solution x̂ and λLS satisfy by the assumptions

Ax̂ + BT λLS = b,
Bx̂ − �−1λLS = −�−1λLS + c. (4.49)

Subtracting (4.49) from (4.48) and switching to the matrix notation, we get
[

A BT

B −�−1I

] [
x− x̂
λ̃ − λLS

]
=
[

g
−�−1(λ − λLS)

]
. (4.50)

After multiplying the first block row of (4.50) by −BA−1, adding the result
to the second block row, and simple manipulations, we get

λ̃ − λLS = S−1
� BA−1g + �−1S−1

� (λ − λLS), (4.51)

where S� = BA−1BT + �−1I.
Noticing that λLS − λ ∈ ImB and taking norms, we get
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‖λ̃ − λ‖ ≤ ‖S−1
� |ImB‖

(
‖BA−1‖‖g‖ + �−1‖λLS − λ‖

)
. (4.52)

To estimate the first factor on the right-hand side, notice that by (1.43)
our task reduces to finding an upper bound for

‖(�−1I + BA−1BT )−1|ImBA−1BT‖.

Since ImBTA−1B is an invariant subspace of any matrix function of BT A−1B,
and the eigenvectors of BA−1BT |ImBA−1BT are just the eigenvectors of
BA−1BT which correspond to the nonzero eigenvalues, it follows by (1.24)
and (1.26) that

‖S−1
� |ImB‖ = ‖(�−1I + BA−1BT)−1|ImB‖ = 1/(�−1 + βmin).

After substituting into (4.52), we get (4.47). �

To simplify applications of Lemma 4.9 for λ0 /∈ ImB, let us formulate the
following easy lemma.

Lemma 4.10. Let λ0 ∈ R
m, let

λk+1 = λk + uk, uk ∈ ImB, k = 0, 1, . . . ,

let λLS denote the vector of the least square Lagrange multipliers for prob-
lem (4.1), so that λLS ∈ ImB, let P denote the orthogonal projector onto
ImB, and let

λ = λLS + (I − P)λ0. (4.53)

Then
λk − λ = Pλk − λLS, k = 0, 1, . . . . (4.54)

Proof. Since for k = 0, 1, . . .

(I − P)λk+1 = (I − P)(λk + uk) = (I − P)λk = · · · = (I − P)λ0,

we have

λk − λ = Pλk + (I − P)λk − λLS − (I − P)λ0 = Pλk − λLS.

�

4.4.3 Convergence Analysis

Now we are ready to use Lemma 4.9 in the proof of convergence of Algo-
rithm 4.3.
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Theorem 4.11. Let xk, λk, k = 0, 1, . . . , be generated by Algorithm 4.3 for
the solution of (4.1) with given λ0 ∈ R

m, � > 0, �k ≥ �, and εk > 0 such that
limk→∞ εk = 0. Let (x̂, λLS) denote the least square KKT pair for (4.1). Let
P denote the orthogonal projector on ImB, let βmin denote the least nonzero
eigenvalue of BA−1BT , let λmin denote the least eigenvalue of A, and denote

λ = PλLS + (I − P)λ0 = λLS + (I − P)λ0.

Then
lim

i→∞
xk = x̂, lim

i→∞
λk = λ,

and for any positive integers k, s, k + s = i,

‖λk+s − λ‖ ≤ Cεk
1

1 − ν
+ νsCε0

1
1 − ν

+ νk+s‖λ0 − λ‖, (4.55)

‖xi − x̂‖ ≤ λ−1
min‖B‖

(
‖λi − λ‖ + εi

)
, (4.56)

where εk = max{εk, εk+1, . . . },

C =
‖BA−1‖

βmin + �−1
, and ν =

�−1

βmin + �−1
< 1. (4.57)

Proof. First notice that by the assumptions

(A + �kBT B)xk = b + �kBT c − BT λk + gk, ‖gk‖ ≤ εk, (4.58)

where gk = ∇xL(xk, λk, �k), and observe that the update rule in Step 2 of
Algorithm 4.3 and Lemma 4.10 with uk = �k(Bxk − c) imply that

λk − λ = Pλk − λLS, k = 0, 1, . . . .

Since
Pλk+1 = Pλk + �k(Bxk − c)

and Pλk ∈ ImB, we can apply Lemma 4.9 with

λ = Pλk and λ̃ = Pλk + �k(Bxk − c) = Pλk+1

and use the assumptions to get

‖λk+1 − λ‖ = ‖Pλk+1 − λLS‖ ≤ ‖BA−1‖
βmin + �−1

k

‖gk‖ +
�−1

k

βmin + �−1
k

‖Pλk − λLS‖

≤ Cεk + ν‖λk − λ‖,

where C and ν are defined by (4.57).
It follows that for any positive integer s and k = 0, 1, . . . , we have
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‖λk+s − λ‖ ≤ Cεk+s−1 + ν‖λk+s−1 − λ‖
≤ C(εk+s−1 + νεk+s−2 + · · · + νs−1εk) + νs‖λk − λ‖
≤ Cεk(1 + ν + ν2 + · · · + νs−1) + νs‖λk − λ‖

≤ Cεk
1

1 − ν
+ νs‖λk − λ‖.

To prove (4.55), it is enough to use the above inequalities to bound the last
term by

‖λk − λ‖ = ‖λ0+k − λ‖ ≤ Cε0
1

1 − ν
+ νk‖λ0 − λ‖.

Observing that any large integer may be expressed as a sum of two large
integers, and that εk converges to zero, we conclude that λk converges to λ.

To prove the convergence of the primal variables, denote A�k
= A+�kBT B

and observe that
A�k

x̂ = b + �kBT c − BT λ.

After subtracting the last equation from (4.58) and simple manipulations, we
get

xk − x̂ = A−1
�k

BT
(
λ − λk + gk

)
.

Taking norms, using the properties of norms, the assumptions, and

‖A−1
�k

‖ ≤ λ−1
min,

we get (4.56). It follows by assumptions that xk converges to x̂. �

The analysis of the asymptotically exact augmented Lagrangian algorithm
for more general equality constrained problems may be found in Chap. 2 of
Bertsekas [11].

4.5 Adaptive Augmented Lagrangian Method

The analysis of the previous section reveals that it is possible to use an inexact
solution of the auxiliary problems in Step 1 of the augmented Lagrangian
algorithm. However, the terms related to the precision in the inequalities (4.55)
and (4.56) indicate that the convergence can be considerably slowed down if
the precision control is relaxed. The price paid for the inexact minimization
is an additional term in the estimate of the rate of convergence.

Here we present a different approach which arises from the intuitive argu-
ment that the precision of the solution xk of the auxiliary problems should
be related to the feasibility of xk, i.e., ‖Bxk − c‖, since it does not seem rea-
sonable to solve the auxiliary problems to high precision at the early stage of
computations with λk far from the Lagrange multiplier of the solution. Our
approach is based on the observation of Sect. 4.3 that the rate of convergence
of the augmented Lagrangian algorithm with the steplength rk = �k can be
controlled by the penalty parameter (4.40).



4.5 Adaptive Augmented Lagrangian Method 131

4.5.1 Algorithm

The new features of the algorithm that we present here are the precision
control in Step 1 and the update rule for the penalty parameter.

Algorithm 4.4. Augmented Lagrangians with Adaptive Precision Control.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose η0 > 0, 0 < α < 1, β > 1, M > 0, �0 > 0, λ0 ∈ R

m

for k=0,1,2,. . .
Step 1. {Approximate minimization with respect to x.}

Choose xk ∈ R
n so that

‖∇xL(xk, λk, �k)‖ ≤ M‖Bxk − c‖ (4.59)

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + �k(Bxk − c)

Step 3. {Updating �k, ηk.}
if ‖Bxk − c‖ ≤ ηk

�k+1 = �k, ηk+1 = αηk (4.60)

else
�k+1 = β�k, ηk+1 = ηk (4.61)

end if
end for

The next lemma shows that Algorithm 4.4 is well defined, that is, any
convergent algorithm for the solution of the auxiliary problems required in
Step 1 generates either xk that satisfies (4.59) in a finite number of steps, or a
sequence of approximations that converge to the solution of (4.1). Thus there
is no hidden enforcement of exact solution in (4.59) and consequently typi-
cally inexact solutions of the auxiliary unconstrained problems are obtained
in Step 1.

Lemma 4.12. Let M > 0, λ ∈ R
m, and � ≥ 0 be given and let {yk} denote

any sequence that converges to the unique solution ŷ of the problem

min
y∈Rn

L(y, λ, �). (4.62)

Then {yk} either converges to the solution x̂ of problem (4.1), or there is
an index k such that

‖∇L(yk, λ, �)‖ ≤ M‖Byk − c‖. (4.63)
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Proof. First observe that ∇L(yk, λ, �) converges to zero by the assumptions.
Thus if (4.63) does not hold for any k, then we must have Bŷ = c. In this
case, since ŷ is the solution of (4.62), it follows that

Aŷ − b + BT λ + �BT (Bŷ − c) = o. (4.64)

After substituting Bŷ = c into (4.64), we get

Bŷ − b + BT λ = o. (4.65)

However, since (4.65) and Bŷ = c are sufficient conditions for ŷ to be the
unique solution of (4.1), we have ŷ = x̂. �

4.5.2 Convergence of Lagrange Multipliers for Large �

The convergence analysis of Algorithm 4.4 is based on the following lemma.

Lemma 4.13. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix, let M > 0, and let

� = ‖BA−1‖M/βmin, (4.66)

where βmin denotes the least nonzero eigenvalue of BA−1BT . Let λLS denote
the vector of the least square Lagrange multipliers for problem (4.1), let P
denote the orthogonal projector onto ImB, and let for any λ ∈ R

m

λ = λLS + (I − P)λ and λ̃ = λ + �(Bx − c). (4.67)

If � ≥ 2�, x ∈ R
n, λ ∈ R

m, and

‖∇xL(x, λ, �)‖ ≤ M‖Bx− c‖, (4.68)

then
‖λ̃ − λ‖ ≤ 2

�
(� + β

−1

min)‖λ − λ‖. (4.69)

Proof. Let us first denote μ = Pλ and μ̃ = Pλ̃, so that μ ∈ ImB and μ̃ ∈ ImB,
and observe that by the definition of λ

λ − λ = λ − (λLS + (I − P)λ) = μ − λLS, (4.70)

λ̃ − λ = λ + �(Bx − c) −
(
λLS + (I − P)λ

)
= μ̃ − λLS. (4.71)

Since PB = B, we have

BT λ = (PB)T λ = BT Pλ = BT μ,

∇xL(x, λ, �) = A�x − b + BT λ − �BT c = A�x − b + BT μ − �BT c,
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where A� = A + �BT B. Thus the assumption (4.68) is equivalent to

‖∇xL(x, μ, �)‖ = ‖∇xL(x, λ, �)‖ ≤ M‖Bx − c‖. (4.72)

Finally, notice that by the definition of λ̃ in (4.67), we have

Bx − c = �−1(λ̃ − λ). (4.73)

Let us now denote
g = ∇xL(x, μ, �)

and assume that x, λ, and � satisfy the assumptions including (4.68), so that
by (4.72)

‖g‖ ≤ M‖Bx− c‖. (4.74)

Using (4.71), Lemma 4.9, (4.70), (4.74), (4.73), and notation (4.66), we get

‖λ̃ − λ‖ = ‖μ̃ − λLS‖

≤ ‖BA−1‖
βmin + �−1

‖g‖ +
�−1

βmin + �−1
‖μ− λLS‖

≤ ‖BA−1‖
βmin + �−1

M‖Bx− c‖ +
�−1

βmin + �−1
‖λ − λ‖

=
‖BA−1‖

βmin + �−1

M

�
‖λ̃ − λ‖ +

�−1

βmin + �−1
‖λ − λ‖

≤ �

�

(
‖λ̃ − λ‖ + ‖λ − λ‖

)
+

1
βmin�

‖λ − λ‖.

Thus, since � ≥ 2�, it follows that

‖λ̃ − λ‖ ≤
(

�

�
+

1
βmin�

)
‖λ − λ‖/

(
1 − �

�

)
≤ 2

�
(� + β

−1

min)‖λ − λ‖.

�

Lemma 4.13 suggests that the Lagrange multipliers generated by Algo-
rithm 4.4 converge to the solution λ linearly when the penalty parameter is
sufficiently large. We shall formulate this result explicitly.

Corollary 4.14. Let {λk},{xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the initialization defined in Step 0. Using the notation of
Lemma 4.13, let for any index k ≥ 0

�k ≥ 2α−1
0 (� + β

−1

min), (4.75)

where α0 < 1 is a positive constant.
Then

‖λk+1 − λ‖ ≤ α0‖λk − λ‖. (4.76)
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Proof. Let k satisfy (4.75). Comparing (4.59) with (4.68), we can check that
all the assumptions of Lemma 4.13 are satisfied for x = xk, λ = λk, and
� = �k. Substituting into (4.69) and using λk+1 = λ̃, we get

‖λk+1 − λ‖ ≤ 2�k
−1(� + β

−1

min)‖λk − λ‖ ≤ α0‖λk − λ‖.

�

Notice that in (4.76), there is no term which accounts for inexact solutions
of auxiliary problems. This compares favorably with (4.55).

4.5.3 R-Linear Convergence for Any Initialization of �

The following lemma gives us a simple key to the proof of R-Linear conver-
gence of Algorithm 4.4 for any initial regularization parameter �0 ≥ 0.

Lemma 4.15. Let {λk}, {xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the assumptions of Lemma 4.13 and the initialization de-
fined in Step 0.

Then �k is bounded and there is a constant C such that

‖Bxk − c‖ ≤ Cαk, (4.77)

where α < 1 is a positive constant defined in Step 0 of Algorithm 4.4.

Proof. Using the notation of Lemma 4.13, let us first assume that for any
index k, �k < 2(� + β

−1

min)/α, so that there is k0 such that for k ≥ k0 the
values of �k and ηk are updated by the rule (4.60) in Step 3 of Algorithm 4.4.
It follows that for any k ≥ k0,

‖Bxk − c‖ ≤ ηk = αk−k0ηk0 = Cαk,

where α < 1 is defined in Step 0 of Algorithm 4.4.
If there is k0 such that �k0 ≥ 2(� + β

−1

min)/α, then, since {�k} is nonde-
creasing, we can use Corollary 4.14 to get that for k > k0

‖λk − λ‖ ≤ αk−k0‖λk0 − λ‖. (4.78)

Using the update rule of Step 2 of Algorithm 4.4, we get

‖Bxk − c‖ = �−1
k ‖λk+1 − λk‖ ≤ �−1

k (‖λk+1 − λ‖ + ‖λk − λ‖).

Combining the last inequality with (4.78), we get

‖Bxk − c‖ ≤ �−1
k (αk−k0+1 + αk−k0 )‖λk0 −λ‖ ≤ 2αk−k0�−1

k0
‖λk0 −λ‖ = Cαk.

This proves (4.77).
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To prove that {�k} is bounded, notice that we can express each k ≥ 0 as a
sum k = k1 + k2, where ηk = αk1η0 and �k = βk2�0. Hence given k, k1 and k2

denote the numbers of preceding steps that invoked the updates (4.60) and
(4.61), respectively. Moreover, �k+1 = β�k > �k if and only if ‖Bxk−c‖ > ηk,
and for such k

αk1η0 = ηk < ‖Bxk − c‖ ≤ Cαk = Cαk1+k2 .

Since α < 1, it follows that k2 is finite and �k is bounded. �

Using that �k is uniformly bounded, it is now easy to show that {λk} and
{xk} converge R-linearly.

Corollary 4.16. Let {λk},{xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the initialization defined in Step 0. Then there are constants
C1 and C2 such that

‖xk − x̂‖ ≤ C1α
k and ‖λk − λ‖ ≤ C2α

k, (4.79)

where λ is defined by (4.67), x̂ is a unique solution of (4.1), and α < 1 is a
parameter of Algorithm 4.4.

Proof. Observe that Lemma 4.15 and the condition (4.59) in the definition of
Step 1 imply that there is a constant C such that

‖Bxk − c‖ ≤ Cαk and ‖gk‖ ≤ Cαk.

To finish the proof, it is enough to use Proposition 2.12 and simple manipu-
lations. �

4.6 Semimonotonic Augmented Lagrangians (SMALE)

In the previous section, we have shown that Algorithm 4.4 always achieves
the R-linear rate of convergence given by the constant α which controls the
decrease of the feasibility error. This looks like not a bad result, its only draw-
back being that such a rate of convergence is achieved only with the penalty
parameter �k which exceeds a threshold which depends on the constraint ma-
trix B. Is it possible to propose an inexact algorithm with any reasonable kind
of convergence independent of the constraint matrix B? A key to getting a pos-
itive answer is to return to the augmented Lagrangian algorithm viewed as an
alternative implementation of the penalty method with the adaptive precision
control used by Algorithm 4.4. We shall also see that the convergence can be
achieved with a rather small threshold on the penalty parameter independent
of the singular values of the constraint matrix B.
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4.6.1 SMALE Algorithm

The algorithm presented here is based on the observation that, having for a
sufficiently large � an approximate minimizer x� of the augmented Lagrangian
L(x, λ, �) with respect to x, we can modify λ in such a way that x� is also
an approximate unconstrained minimizer of L(x, λ̃, 0). Thus we can hopefully
find a better approximation by minimizing L(x, λ̃, �). Since the better penalty
approximation results in an increased value of the Lagrangian, it is natural to
increase the penalty parameter until increasing values of the Lagrangian are
generated. We shall show that the threshold value for the penalty parameter
is rather small and independent of the constraint matrix B. The algorithm
that we consider here reads as follows.

Algorithm 4.5. Semimonotonic augmented Lagrangians (SMALE).

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose η > 0, β > 1, M > 0, �0 > 0, λ0 ∈ R

m

for k=0,1,2,. . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk such that

‖g(xk, λk, �k)‖ ≤ min{M‖Bxk − c‖, η}. (4.80)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + �k(Bxk − c) (4.81)

Step 3. {Update � provided the increase of the Lagrangian is not sufficient.}
if k > 0 and

L(xk, λk, �k) < L(xk−1, λk−1, �k−1) +
�k

2
‖Bxk − c‖2 (4.82)

�k+1 = β�k

else
�k+1 = �k.

end if
end for

In Step 1 we can use any convergent algorithm for the minimization of
the strictly convex quadratic function such as the preconditioned conjugate
gradient method of Sect. 3.3. Let us point out that Algorithm 4.5 differs
from Algorithm 4.4 by the condition (4.82) on the update of the penalization
parameter in Step 3.
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To see that Algorithm 4.5 is well defined, let {yk} be a sequence generated
by any convergent algorithm for the solution of the auxiliary problem

minimize {L(y, λ, �) : y ∈ R
n}.

Then there is an integer k0 such that for k ≥ k0

‖g(yk, λ, �)‖ ≤ η

and we can use Lemma 4.12 to show that either {yk} converges to the solu-
tion x̂ of (4.1) or there is k such that (4.80) holds. Thus there is no hidden
enforcement of the exact solution in (4.80) and consequently typically inexact
solutions of the auxiliary unconstrained problems are obtained in Step 1.

4.6.2 Relations for Augmented Lagrangians

In this section we establish the basic inequalities that relate the bound on the
norm of the gradient g of the augmented Lagrangian L to the values of the
augmented Lagrangian L. These inequalities are the key ingredients in the
proof of convergence of Algorithm 4.5.

Lemma 4.17. Let A, B, b, and c be those of problem (4.1), x ∈ R
n, λ ∈ R

m,
� > 0, η > 0, and M > 0. Let λmin denote the least eigenvalue of A and
λ̃ = λ + �(Bx − c).
(i) If

‖g(x, λ, �)‖ ≤ M‖Bx − c‖, (4.83)

then for any y ∈ R
n

L(y, λ̃, �) ≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx − c‖2 +

�

2
‖By − c‖2. (4.84)

(ii) If
‖g(x, λ, �)‖ ≤ η, (4.85)

then for any y ∈ R
n

L(y, λ̃, �) ≥ L(x, λ, �) +
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2 − η2

2λmin
. (4.86)

(iii) If (4.85) holds and z0 is any vector such that Bz0 = c, then

L(x, λ, �) ≤ f(z0) +
η2

2λmin
. (4.87)

Proof. Let us denote δ = y − x, A� = A + �BT B, g = g(x, λ, �), and
g̃ = g(x, λ̃, �). Using

L(x, λ̃, �) = L(x, λ, �)+�‖Bx−c‖2 and g(x, λ̃, �) = g(x, λ, �)+�BT (Bx−c),
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we get

L(y, λ̃, �) = L(x, λ̃, �) + δT g̃ +
1
2
δT A�δ

= L(x, λ, �) + δTg +
1
2
δT A�δ + �δT BT (Bx − c) + �‖Bx − c‖2

≥ L(x, λ, �) + δTg +
λmin

2
‖δ‖2 + �δT BT (Bx − c) +

�

2
‖Bδ‖2

+�‖Bx− c‖2.

Noticing that

�

2
‖By− c‖2 =

�

2
‖Bδ +(Bx− c)‖2 = �δT BT (Bx− c)+

�

2
‖Bδ‖2 +

�

2
‖Bx− c‖2,

we get

L(y, λ̃, �) ≥ L(x, λ, �)+δTg+
λmin

2
‖δ‖2 +

�

2
‖Bx−c‖2 +

�

2
‖By−c‖2. (4.88)

Assuming (4.83) and using simple manipulations, we get

L(y, λ̃, �) ≥ L(x, λ, �) − M‖δ‖‖Bx− c‖ +
λmin

2
‖δ‖2

+
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

= L(x, λ, �) +
(

λmin

2
‖δ‖2 − M‖δ‖‖Bx − c‖ +

M2‖Bx − c‖2

2λmin

)

−M2‖Bx − c‖2

2λmin
+

�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx − c‖2 +

�

2
‖By − c‖2,

which proves (i).
If we assume that (4.85) holds, then by (4.88) and similar manipulations

as above

L(y, λ̃, �) ≥ L(x, λ, �) − ‖δ‖η +
λmin

2
‖δ‖2 +

�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

≥ L(x, λ, �) +
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2 − η2

2λmin
,

which proves (ii).
Finally, let ŷ denote the solution of the auxiliary problem

minimize L(y, λ, �) s.t. y ∈ R
n, (4.89)

Bz0 = c, and δ̂ = ŷ − x. If (4.85) holds, then
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0 ≥ L(ŷ, λ, �)−L(x, λ, �) = δ̂Tg+
1
2
δ̂T A�δ̂ ≥ −‖δ̂‖η+

1
2
λmin‖δ̂‖2 ≥ − η2

2λmin
.

Since L(ŷ, λ, �) ≤ L(z0, λ, �) = f(z0), we conclude that

L(x, λ, �) ≤ L(x, λ, �) − L(ŷ, λ, �) + f(z0) ≤ f(z0) +
η2

2λmin
.

�

4.6.3 Convergence and Monotonicity

The analysis of SMALE is based on the following lemma.

Lemma 4.18. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5 for
the solution of problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m.
Let λmin denote the least eigenvalue of the Hessian A of f .
(i) If k ≥ 0 and

�k ≥ M2/λmin, (4.90)

then

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k+1

2
‖Bxk+1 − c‖2. (4.91)

(ii) For any k ≥ 0

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k

2
‖Bxk − c‖2

+
�k+1

2
‖Bxk+1 − c‖2 − η2

2λmin
.

(4.92)

(iii) For any k ≥ 0 and z0 such that Bz0 = c

L(xk, λk, �k) ≤ f(z0) +
η2

2λmin
. (4.93)

Proof. In Lemma 4.17, let us substitute x = xk, λ = λk, � = �k, and
y = xk+1, so that inequality (4.83) holds by (4.80), and by (4.81) λ̃ = λk+1.

If (4.90) holds, we get by (4.84)

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k) +
�k

2
‖Bxk+1 − c‖2. (4.94)

To prove (4.91), it is enough to add

�k+1 − �k

2
‖Bxk+1 − c‖2 (4.95)

to both sides of (4.94) and to notice that
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L(xk+1, λk+1, �k+1) = L(xk+1, λk+1, �k) +
�k+1 − �k

2
‖Bxk+1 − c‖2. (4.96)

If we notice that by the definition of Step 1 of Algorithm 4.5

‖g(xk, λk, �k)‖ ≤ η,

we can apply the same substitution as above to Lemma 4.17(ii) to get

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k)

+
�k

2
‖Bxk − c‖2 +

�k

2
‖Bxk+1 − c‖2 − η2

2λmin
. (4.97)

After adding the nonnegative expression (4.95) to both sides of (4.97) and
using (4.96), we get (4.92). Similarly, inequality (4.93) results from application
of the substitution to Lemma 4.17(iii). �

Theorem 4.19. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5
for the solution of problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and
λ0 ∈ R

m. Let λmin denote the least eigenvalue of the Hessian A of f and let
s ≥ 0 denote the smallest integer such that

βs�0 ≥ M2/λmin.

(i) The sequence {�k} is bounded and

�k ≤ βs�0. (4.98)

(ii) If z0 denotes any vector such that Bz0 = c, then

∞∑

k=1

�k

2
‖Bxk − c‖2 ≤ f(z0) − L(x0, λ0, �0) + (1 + s)

η2

2λmin
. (4.99)

(iii) The sequence {xk} converges to the solution x̂ of (4.1).
(iv) The sequence {λk} converges to the vector

λ = λLS + (I − P)λ0,

where P is the orthogonal projector onto ImB, and λLS is the least square
Lagrange multiplier of (4.1).

Proof. Let s ≥ 0 denote the smallest integer such that βs�0 ≥ M2/λmin and
let I denote the set of all indices ki such that {�ki > �ki−1}. Using Lemma
4.18(i), �ki = β�ki−1 = βi�0 for ki ∈ I, and βs�0 ≥ M2/λmin, we conclude
that there is no k such that �k > βs�0. Thus I has at most s elements and
(4.98) holds.

By the definition of Step 3, for k > 0 either k + 1 �∈ I and
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�k

2
‖Bxk − c‖2 ≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1),

or k + 1 ∈ I and by (4.92)

�k

2
‖Bxk − c‖2 ≤ �k−1

2
‖Bxk−1 − c‖2 +

�k

2
‖Bxk − c‖2

≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1) +
η2

2λmin
.

Summing up the appropriate cases of the last two inequalities for k = 1, . . . , n
and taking into account that I has at most s elements, we get

n∑

k=1

�k

2
‖Bxk − c‖2 ≤ L(xn, λn, �n) − L(x0, λ0, �0) + s

η2

2λmin
. (4.100)

To get (4.99), it is enough to replace L(xn, λn, �n) by the upper bound (4.93).
To prove (iii) and (iv), let us denote

gk = g(xk, λk, �k) = A�k
xk + BT λk − b − �kBT c, A�k

= A + �kBT B,

and let us assume that B is a full row rank matrix. Since the unique KKT
pair (x̂, λ̂) is fully determined by

Ax̂ + BT λ̂ = b,
Bx̂ = c,

we can rewrite gk as

gk = A�k
(xk − x̂) + BT (λk − λ̂). (4.101)

The last equation together with

B(xk − x̂) = Bxk − c (4.102)

may be written in the matrix form as
(

A�k
BT

B 0

)(
xk − x̂
λk − λ̂

)
=
(

gk

Bxk − c

)
. (4.103)

Since ‖Bxk −c‖ converges to zero due to (4.99), ‖gk‖ ≤ M‖Bxk −c‖, and the
matrix of the system (4.103) is regular, we conclude, using Proposition 2.12,
that xk converges to x̂ and λk converges to λ̂. Since B is a full rank matrix,
it follows that λ̂ = λLS = λ.

If B is not a full rank matrix, then the augmented matrix on the left-hand
side of (4.103) is singular, but the solution x̂ is still uniquely determined, as
KerA ∩ KerB ⊆ KerA = {o} by the assumptions. Since any KKT pair (x̂, λ)
satisfies
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(
A�k

BT

B 0

)(
xk − x̂
λk − λ

)
=
(

gk

Bxk − c

)
, (4.104)

we can use the same arguments as above and Proposition 2.12 to find out
again that xk converges to x̂, but now we shall get only that BT λk converges
to BT λ. However, using Lemma 4.10, we get

λk − λ = Pλk − λLS,

so that in particular λk − λ ∈ ImB. It follows by (1.34) that

‖BT (λk − λ)‖ ≥ σmin‖λk − λ‖.

Since the right-hand side converges to zero, we conclude that λk converges to
λ, which completes the proof of (iii) and (iv). �

4.6.4 Linear Convergence for Large �0

Using the estimates of the previous section, we can prove that Algorithm 4.5
converges to the solution λ linearly provided �0 is sufficiently large. We shall
formulate this result explicitly.

Proposition 4.20. Let {λk},{xk}, and {�k} be generated by Algorithm 4.5
for problem (4.1) with the initialization defined in Step 0 and

�0 ≥ 2α−1(� + β
−1

min), (4.105)

where we use the notation of Lemma 4.13 and α is an arbitrary constant such
that 0 < α < 1.

(i) For any index k ≥ 0

‖λk+1 − λ‖ ≤ α‖λk − λ‖. (4.106)

(ii) There is a constant C1 such that for any index k ≥ 0

‖Bxk − c‖ ≤ C1α
k. (4.107)

(iii) There is a constant C2 such that for any index k ≥ 0

‖xk − x̂‖ ≤ C2α
k. (4.108)

Proof. (i) Let �0 satisfy (4.105). Comparing (4.80) with (4.68) and taking into
account that �k ≥ �0, we can check that all the assumptions of Lemma 4.13
are satisfied for x = xk, λ = λk, and � = �k. Substituting into (4.69) and
using λk+1 = λ̃, we get
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‖λk+1 − λ‖ ≤ 2�k
−1(� + β

−1

min)‖λk − λ‖ ≤ α‖λk − λ‖.

This proves (4.106).
(ii) Using the update rule of Step 2 of Algorithm 4.5, we get

‖Bxk − c‖ = �−1
k ‖λk+1 − λk‖ ≤ �−1

k (‖λk+1 − λ‖ + ‖λk − λ‖),

and by (4.106), we get

‖Bxk − c‖ ≤ �−1
k (αk+1 + αk)‖λ0 − λ‖ ≤ 2αk�−1

0 ‖λ0 − λ‖ = C1α
k.

This proves (4.107).
(iii) Observe that (4.107) and the condition (4.80) in the definition of Step 1
of Algorithm 4.5 imply that there is a constant C1 such that

‖Bxk − c‖ ≤ C1α
k and ‖gk‖ ≤ C1α

k.

To finish the proof, it is enough to use Proposition 2.12 and simple manipu-
lations. �

4.6.5 Optimality of the Outer Loop

Theorem 4.19 suggests that for homogeneous constraints, it is possible to
give a rate of convergence of the feasibility error that does not depend on
the constraint matrix B. To present explicitly this qualitatively new feature
of Algorithm 4.5, at least as compared to the related Algorithm 4.4, let T
denote any set of indices and assume that for any t ∈ T there is defined a
problem

minimize ft(x) s.t. x ∈ Ωt (4.109)

with Ωt = {x ∈ R
nt : Btx = o}, ft(x) = 1

2x
T Atx − bT

t x, At ∈ R
nt×nt sym-

metric positive definite, Bt ∈ R
mt×nt , and bt,x ∈ R

nt . Our optimality result
then reads as follows.

Theorem 4.21. Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 4.5
for (4.109) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, λ0

t = o. Let
0 < amin be a given constant. Finally, let the class of problems (4.109) satisfy

amin ≤ λmin(At),

where λmin(At) denotes the smallest eigenvalue of At, and denote

a = (2 + s)/(amin�0),

where s ≥ 0 is the smallest integer such that βs�0 ≥ M2/amin. Then for each
ε > 0 there are the indices kt, t ∈ T , such that
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kt ≤ a/ε2 + 1

and xkt
t is an approximate solution of (4.109) satisfying

‖gt(xkt
t , λkt

t , �t,kt)‖ ≤ Mε‖bt‖ and ‖Btxkt
t ‖ ≤ ε‖bt‖. (4.110)

Proof. First notice that for any index j

j�0

2
min

i∈{1,...,j}
‖Btxi

t‖2 ≤
j∑

i=1

�t,i

2
‖Btxi

t‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2. (4.111)

Denoting by Lt(x, λ, �) the Lagrangian for problem (4.109), we get for any
x ∈ R

nt and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

If we substitute this inequality and z = zt
0 = o into (4.99) and use ‖bt‖ ≥ ηt,

we get for any t ∈ T
∞∑

i=1

�t,i

2
‖Btxi

t‖2 ≤ ‖bt‖2

2amin
+

(1 + s)η2
t

2amin
≤ 2 + s

2amin
‖bt‖2 =

a�0

2
‖bt‖2. (4.112)

Combining the latter inequality with (4.111), we get

min{‖Btxi
t‖2 : i = 1, . . . , k} ≤ a‖bt‖2/j. (4.113)

Taking for j the smallest integer that satisfies a/j ≤ ε2, so that

a/ε2 ≤ j ≤ a/ε2 + 1,

and denoting for any t ∈ T by kt ∈ {1, . . . , j} the index which minimizes
{‖Btxi

t‖ : i = 1, . . . , j}, we can use (4.113) to obtain

‖Btxkt
t ‖2 = min{‖Btxi

t‖2 : i = 1, . . . , j} ≤ a‖bt‖2/j ≤ ε2‖bt‖2.

Thus
‖Btxkt

t ‖2 ≤ ε2‖bt‖2,

and, using the definition of Step 1 of Algorithm 4.5, we get also the inequality

‖gt(xkt
t , λkt

t , �t,kt)‖ ≤ M‖Btxkt
t ‖ ≤ Mε‖bt‖.

�

Let us recall that

‖gt(xkt
t , λkt+1

t , 0)‖ = ‖gt(xkt
t , λkt

t , �t,kt)‖,

so that (xkt
t , λkt+1

t ) is an approximate KKT pair of problem (4.109). The
assumption on homogeneity of the constraints was used to find zt

0 such that
f(zt

0) is uniformly bounded, in this case by zero.
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4.6.6 Optimality of SMALE with Conjugate Gradients

We shall need the following simple lemma to prove optimality of the inner
loop.

Lemma 4.22. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5 for
problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Let λmin

denote the least eigenvalue of A.
Then for any k ≥ 0

L(xk, μk+1, �k+1)−L(xk+1, μk+1, �k+1) ≤
η2

2λmin
+

β�k

2
‖Bxk − c‖2. (4.114)

Proof. Notice that by definition of the Lagrangian function and by the update
rule (4.81)

L(xk, λk+1, �k+1) = L(xk, λk, �k) + �k‖Bxk − c‖2 +
�k+1 − �k

2
‖Bxk − c‖2

= L(xk, λk, �k) +
�k+1 + �k

2
‖Bxk − c‖2.

After subtracting L(xk+1, λk+1, �k+1) from both sides and observing that by
(4.92)

L(xk, λk, �k) − L(xk+1, λk+1, �k+1) ≤
η2

2λmin
− �k

2
‖Bxk − c‖2,

we get

L(xk, λk+1, �k+1) − L(xk+1, λk+1, �k+1) ≤
η2

2λmin
+

β�k

2
‖Bxk − c‖2.

�

Now we are ready to prove our main result concerning the inner loop.

Theorem 4.23. Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 4.5
for (4.109) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, λ0

t = o.
Let 0 < amin < amax and 0 < Bmax be given constants. Let Step 1 be
implemented by the conjugate gradient method which generates the iterates
xk,0

t ,xk,1
t , . . . ,xk,l

t = xk
t starting from xk,0

t = xk−1
t with x−1

t = o, where
l = l(k, t) is the first index satisfying either

‖g(xk,l
t , λk

t , �k)‖ ≤ M‖Btx
k,l
t ‖ (4.115)

or
‖g(xk,l

t , λk
t , �k)‖ ≤ εM‖bt‖. (4.116)

Finally, let the class of problems (4.109) satisfy
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amin ≤ λmin(At) ≤ λmax(At) = ‖At‖ ≤ amax and ‖Bt‖ ≤ Bmax. (4.117)

Then Algorithm 4.5 generates an approximate solution xkt
t of any problem

(4.109) which satisfies (4.110) at O(1) matrix–vector multiplications by the
Hessian of the augmented Lagrangian Lt for (4.109).

Proof. Let t ∈ T be fixed and let us denote by Lt(x, λ, �) the augmented
Lagrangian for problem (4.109), so that for any x ∈ R

p and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

Applying the latter inequality to (4.99) with z0 = o and λ0
t = o, we get, using

the assumption ‖bt‖ ≥ ηt, that for any k ≥ 0

�t,k

2
‖Btxk

t ‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2 ≤ f(z0) − L(x0
t , λ

0
t , �t,0) + (1 + s)

η2
t

2amin

≤ (2 + s)‖bt‖2/(2amin),

where s ≥ 0 denotes the smallest integer such that βs�0 ≥ M2/amin. Thus by
(4.114)

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ η2
t

2amin
+

β�t,k−1

2
‖Btxk−1

t ‖2

≤ (3 + s)β‖bt‖2/(2amin), (4.118)

and, since the minimizer xk
t of Lt( . , λk

t , �t,k) satisfies (4.115) and is a possible
choice for xk

t , also

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ (3 + s)β‖bt‖2/(2amin). (4.119)

Denoting
a1 = (3 + s)β/amin,

we can estimate the energy norm of the gradient by

‖gt(x
k,0
t , λk

t , �t,k)‖2
A−1

t,k

= 2
(
Lt(xk−1

t , λk
t , �t,k) − Lt(xk

t , λk
t , �t,k)

)
≤ a1‖bt‖2,

where
At,k = At +

�t,k

2
BT

t Bt.

Since

amin ≤ λmin(At,k) ≤ ‖At,k‖ ≤ ‖At‖ + �t,k‖Bt‖2 ≤ amax + βs�0B
2
max,

we can also bound the spectral condition number κ(At,k) of At,k by

K =
(
amax + βs�0B

2
max

)
/amin.
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Combining this bound with the estimate (3.21) which reads in our case

‖gt(x
k,l
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4

(√
κ(At,k) − 1√
κ(At,k) + 1

)2l

‖gt(x
k,0
t , λk

t , �t,k)‖2
A−1

t,k

,

we get

‖gt(x
k,l
t , λk

t , �t,k)‖2 ≤ 1
amin

‖gt(x
k,l
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4σ2l

amin
‖gt(x

k,0
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4a1

amin
σ2l‖bt‖2,

where

σ =

√
K − 1√
K + 1

< 1.

It simply follows by the inner stop rule (4.116) that the number of the inner
iterations is uniformly bounded by any index l = lmax which satisfies

4a1

amin
σ2l‖bt‖2 ≤ ε2‖bt‖2M2.

To finish the proof, it is enough to combine this result with Theorem 4.21. �

We can observe optimality in the solution of more general classes of prob-
lems than those considered in Theorem 4.23 provided we can bound the num-
ber of iterations in the inner loop. For an example of optimality when ‖Bt‖ is
not bounded see Sect. 4.8.2.

4.6.7 Solution of More General Problems

If A is positive definite only on the kernel of B, then we can use a suitable
penalization to reduce such problem to the convex one. Using Lemma 1.3, it
follows that there is � > 0 such that A + �BT B is positive definite, so that we
can apply our SMALE algorithm to the equivalent penalized problem

min
x∈ΩE

f�(x), (4.120)

where
f�(x) = xT (A + �BT B)x − bTx.

Alternatively, we can modify the inner loop of SMALE so that it leaves
the inner loop and increases the penalty parameter whenever the negative
curvature is recognized. Let us point out that such modification does not
guarantee optimality of the modified algorithm.
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4.7 Implementation of Inexact Augmented Lagrangians

We shall complete the discussion of inexact augmented Lagrangian algorithms
by a few hints concerning their implementation.

4.7.1 Stopping, Modification of Constraints,
and Preconditioning

While implementing the inexact augmented Lagrangian algorithms of Sects. 4.4
and 4.6, a stopping criterion should be added not only after Step 1, but also
into the procedure which generates xk in Step 1. We use in our experiments
the stopping criterion

‖∇L(xk, λk, �k)‖ ≤ εg‖b‖ and ‖Bxk − c‖ ≤ εf‖b‖.

The relative precisions εf and εg should be judiciously determined. Our stop-
ping criterion in the inner conjugate gradient loop of SMALE reads

‖g(yi, λi, �i)‖ ≤ min{M‖Byi−c‖, η} or ‖g(yi, λi, �i)‖ ≤ min{εg, Mεf}‖b‖,

so that the inner loop is interrupted when either the solution or a new iterate
xk = yi is found.

Before applying the algorithms presented to problems with a well-conditioned
Hessian A, we strongly recommend to rescale the equality constraints so that
‖A‖ ≈ ‖B‖. Taking into account the estimate of the rate of convergence like
(4.69), it is also useful to orthonormalize or at least normalize the constraints.
This approach has been successfully applied, e.g., in the FETI-DP-based solver
for analysis of layered composites [137].

If the Hessian A is ill-conditioned and there is an approximation M of A
that can be used as preconditioner, then we can use the preconditioning strate-
gies introduced in the discussion on implementation of the penalty method in
Sect. 4.2.6. The construction of the matrix M is typically problem dependent.
We refer interested readers to the books by Axelsson [4], Saad [163], van der
Vorst [178], or Chen [21].

Sometimes it is possible to exploit the structure of the problem for very
efficient implementation of preconditioning. For example, it has been shown
that it is possible to find multigrid preconditioners to the discretized Stokes
problem so that the latter can be solved by SMALE with asymptotically linear
complexity [144].

4.7.2 Initialization of Constants

Though all the inexact algorithms converge with 0 < α < 1, β > 1, η > 0,
η0 > 0, �0 > 0, M > 0, and λ0 ∈ R

m, their choice affects the performance of
the algorithms and should exploit available information. Here we give a few
hints and heuristics that can be useful for their efficient implementation.
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The parameter α is used only in the adaptive augmented Lagrangian algo-
rithm 4.4. This parameter determines the final rate of convergence of approxi-
mations of the Lagrange multipliers in the outer loop; however, its small value
can slow down the convergence in the inner loop via increasing the penalty
parameter. We use α = 0.1.

The parameter β is used by SMALE algorithm 4.5 and the adaptive aug-
mented Lagrangian algorithm 4.4 to increase the penalty parameter. Our ex-
perience indicates that β = 10 is a reasonable choice.

The parameter η is used only by SMALE algorithm 4.5. It helps to avoid
outer iterations that do not invoke the inner CG iterations; we use η = 0.1‖b‖.

The parameter η0 is used by Algorithm 4.4 to define the initial bound
on the feasibility error which is used to control the update of the penalty
parameter. The algorithm does not seem to be sensitive with respect to η0;
we use η0 = 0.1‖b‖.

The estimate (4.99) shows that a large value of the initial penalty pa-
rameter �0 guarantees fast convergence of the outer loop. By analysis of the
penalty method in Sect. 4.2, it is even possible to find the solution in one
outer iteration. At the same time, the large value of the penalty parameter
slows down the rate of convergence of the conjugate gradient method in the
inner loop, but the analysis of the conjugate gradient method in Sect. 4.2.6
based on the effective condition number of A� = A + �BT B indicates that
the slowdown need not be severe when the number of constraints is small, or
when the constraints are close to orthogonal. If neither is the case and at least
crude estimates of ‖A‖ and ‖B‖ are available, a simple strategy can be based
on the observation that

λmin(A) ≤ λmin(A�) and ‖A�‖ ≤ ‖A‖ + �‖B‖2,

so that
�‖B‖2 ≤ C‖A‖ ⇒ κ(A + �BT B) ≤ (C + 1)κ(A).

For example, choosing �0 = 8×‖A‖/‖B‖2 seems to be a reasonable guess which
results in κ(A�) ≤ 9κ(A). Let us stress that the update of the penalty param-
eter should be considered as a safeguard that guarantees the convergence; we
should always try to avoid invoking increase of the penalty parameter as the
iterates with too small penalty parameters are inefficient.

The parameter M balances the weight of the cost function and the con-
straints. In our implementations we use

M = εg/εf .

Notice that by Lemma 4.18 small M can prevent the penalty parameter from
increasing. We can even replace the update of the penalty parameter in Step 3
by the reduction of the parameter M using Mk+1 = Mk/β and obvious mod-
ifications of the rest of Algorithm 4.5. See also Sect. 6.11.

If there is no better guess of the initial approximation of λ0, we use λ0 = o.
Recall that using λ0 ∈ ImB results in λk converging to the least square
Lagrange multiplier λLS.
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4.8 Numerical Experiments

Here we illustrate the performance of the exact Uzawa algorithm, the exact
augmented Lagrangian algorithm, and SMALE Algorithm 4.5 on minimiza-
tion of the cost functions fL,h and fLW,h introduced in Sect. 3.10 subject
to ill-conditioned multipoint constraints. Let us recall that we refer to Al-
gorithm 4.2 as the Uzawa algorithm when � = 0, and as the augmented
Lagrangian algorithm when � > 0.

4.8.1 Uzawa, Exact Augmented Lagrangians, and SMALE

Let us start with minimization of the quadratic function fL,h defined by the
discretization parameter h (see page 98) subject to the multipoint constraints
which join the displacements of the node with the coordinates (0, 1/3) with
all the other nodes in the square [h, 1/3] × [1/3, 2/3]. Let us recall that the
Hessian AL,h of fL,h is ill-conditioned with the spectral condition number
κ(AL,h) ≈ h−2.
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Fig. 4.3. Outer iterations of exact AL and SMALE algorithms

The graph of the relative feasibility error (vertical axis) against the num-
bers of outer iterations (horizontal axis) for exact augmented Lagrangians
(exact AL) with rk = �k = 10 and SMALE algorithm with �0 = 10 is in
Fig. 4.3. The results were obtained with h = 1/33, which corresponds to
n = 1156 unknowns and 131 multipliers. The inexact solution of auxiliary
problems by SMALE has a small effect on the number of outer iterations.
The SMALE algorithm required 964 CG iterations to reach the final preci-
sion. The same result was achieved by the original Uzawa algorithm with the
optimal steplength after 3840 (!!!) iterations, each of them comprising direct
solves of auxiliary linear problems. We conclude that even moderate regular-
ization improves the convergence of the outer loop and the rate of convergence
need not be slowed down by the inexact solution of auxiliary problems.
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4.8.2 Numerical Demonstration of Optimality

To illustrate the optimality of SMALE for the solution of (4.1), let us consider
the class of problems to minimize the quadratic function fLW,h (see page 99)
subject to the multipoint constraints defined above. The class of problems can
be given a mechanical interpretation associated to the expanding and partly
stiff spring systems on Winkler’s foundation. The spectrum of the Hessian
ALW,h of fLW,h is located in the interval [2, 10]. Thus the assumptions of
Theorem 4.21 are satisfied and the number of outer iterations is bounded.
Moreover, the rows of B ∈ R

m×n have a simple pattern given by

Bi∗ = [0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0], i = 1, . . . , m.

It can be checked that BT B can be expressed as the sum of a matrix with
the norm not exceeding four and a matrix of rank two. Using the reasoning
of Sect. 4.2.6, we get that also the number of inner iterations is bounded.
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Fig. 4.4. Optimality of SMALE

In Fig. 4.4, on the vertical axis, we can see the numbers of the CG iterations
kn required to reduce the norm of the gradient and of the feasibility error to
10−6‖∇fLW,h(o)‖ for the problems with the dimension n ranging from n = 49
to n = 2362369. The dimension n on the horizontal axis is in the logarithmic
scale. We can see that kn varies mildly with varying n, in agreement with
Theorem 4.23 and the optimal property of CG. Moreover, since the cost of the
matrix–vector multiplications is in our case proportional to the dimension n
of the matrix ALW,h, it follows that the cost of the solution is also proportional
to n. The number of outer iterations ranged from seven to ten.

The purpose of the above numerical experiment was just to illustrate the
concept of optimality. For practical applications, it is necessary to combine
SMALE with a suitable preconditioning. Application of SMALE with the
multigrid preconditioning to development of in a sense optimal algorithm for
the solution of the discretized Stokes problem is in Lukáš and Dostál [144].
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4.9 Comments and References

The penalty method was exploited by a number of researchers to the solu-
tion of contact problems of elasticity [9, 108, 123, 125]. Theoretical results
concerning the penalty method (e.g., Dostál [40], or Sect. 3.5 of Kikuchi and
Oden [127]) yield that the norm of the approximation error depends on the
condition number of the Hessian of the cost function. The analysis presented
here generalizes the results of Dostál and Horák [65, 66]. The optimal fea-
sibility estimate for the penalty methods (4.14) was used in development of
a scalable algorithm for variational inequalities [65, 66]. The preconditioning
preserving the gap in the spectrum was proposed in Dostál [44]. Reducing the
spectrum of the penalized term to the one point, this preconditioning seems
to be related to the constraint preconditioning for the saddle point systems
introduced in nonlinear programming by Lukšan and Vlček [145]; see also
Keller, Gould, and Wathen [126].

Augmented Lagrangian method was proposed independently by Powell
[160] and Hestenes [116] for problems with a general cost function subject
to general equality constraints. Comprehensive analysis of the augmented
Lagrangian method (called the Lagrange multiplier method) including the
asymptotically exact minimization of auxiliary problems was presented in the
monograph by Bertsekas [11]. Applications to the solution of boundary value
problems are discussed in Glowinski and Fortin [91] and Glowinski and Le
Tallec [100]. Hager in [111, 113] obtained global convergence results for an al-
gorithm of this type using inexact minimization in the solution of the auxiliary
problems. In both papers the size of the optimality error was compared with
the size of the feasibility error of the solution of the auxiliary problems trying
to balance these quantities throughout the whole process. In [111] this com-
parison was used to decide whether the penalty parameter will be increased
or not. In [113] it was used as a stopping criterion for the minimization of
the auxiliary problems. The rate of convergence was free of any term due to
inexact minimization when the least squares estimate of the Lagrange multi-
pliers is used. Similar results for the linear update combined with the update
of the penalty parameter that enforces a priori prescribed reduction of feasi-
bility error were obtained by Dostál, Friedlander, and Santos [56] and Dostál,
Friedlander, Santos, and Alesawi [58]. The same strategy was used by Conn,
Gould, and Toint [26] for the solution of more general bound and equality
constrained problems.

The SMALE algorithm was proposed by Dostál [46, 50]. The most attrac-
tive feature of this algorithm is a bound on the number of iterations which is
independent of the constraint data. The bound has been obtained by a kind of
global analysis; the result can hardly be obtained by analysis of one step of the
algorithm. The algorithm has been combined with a multigrid precondition-
ing to develop in a sense optimal solver for the solution of a class of equality
constrained problems arising from discretization of the Stokes problem; see
Lukáš and Dostál [144].
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Let us point out that our optimality results for the SMALE algorithm refer
to the type of convergence which is known from the classical analysis of infinite
series, but which is seldom exploited in numerical analysis. We shall call it
the sum bounding convergence of the second order as it exploits the bound
on the sum of the squares of errors. Though our sum bounding convergence
does not guarantee even the linear rate of convergence, it is in our opinion
rather a different characteristic of convergence than only a weaker one. For
example, it does guarantee that the error bound for the following iterations is
essentially reduced after any “bad” (here far from feasible) iteration, which is
the property not guaranteed by more standard types of convergence. In our
case, since we can control the upper bound by the penalty parameter, the
sum bounding convergence offers an explanation to the fast convergence of
the outer loop of SMALE which was observed in our numerical experiments
[144].
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