
3

Conjugate Gradients for Unconstrained
Minimization

We shall begin our development of scalable algorithms by description of the
conjugate gradient method for the solution of

min
x∈Rn

f(x), (3.1)

where f(x) = 1
2x

T Ax− xTb, b is a given column n-vector, and A is an n× n
symmetric positive definite or positive semidefinite matrix. We are interested
especially in problems with n large and A sparse and reasonably conditioned.
We have already seen in Sect. 2.2.2 that (3.1) is equivalent to the solution of
a system of linear equations Ax = b, but our main goal here is not to solve
large systems of linear equations, but rather to describe our basic tool for
dealing with the auxiliary linear systems that are generated by algorithms for
the solution of constrained quadratic programming problems.

We shall use the conjugate gradient (CG) method as an iterative method
which generates improving approximations to the solution at each step. The
cost of one step of the CG method is typically dominated by the cost of the
multiplication of a vector by the matrix A, which is proportional to the number
of nonzero entries of A. The memory requirements are also proportional to the
number of nonzero entries of A.

To develop optimal algorithms for more general quadratic programming
problems, it is important that the rate of convergence of the conjugate gradi-
ent method depends on the distribution of the spectrum of A. In particular,
given a positive interval [amin, amax] with the spectrum of A, it is possible to
give a bound in terms of amax/amin on a number of the conjugate gradient
iterations that are necessary to solve problem (3.1) to a given relative pre-
cision. It is also important that the number of steps that are necessary to
obtain an approximate solution of a given problem is typically proportional
to the logarithm of prescribed precision, so that the algorithm can return a
low-precision solution at a reduced time.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 3,
c© Springer Science+Business Media, LLC 2009
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Overview of Algorithms

The first algorithm of this chapter is the method of conjugate directions defined
by the two simple formulae (3.6). The algorithm assumes that we are given
an A-orthogonal basis of R

n, leaving open the problem how to get it.
The conjugate gradient algorithm, Algorithm 3.1, the main hero of this

chapter, combines the conjugate gradient direction method with a clever con-
struction of conjugate directions. It is the best method as it exploits effectively
all the information gathered during the solution in order to maximize the de-
crease of the cost function. The CG method can be considered both as a direct
method and an iterative method.

A step of the restarted conjugate gradient method described in Sect. 3.4
comprises a fixed number of the conjugate gradient steps. Such algorithm is
more robust, but usually less efficient. If the chain of the CG iterations reduces
to just one iteration, we get the gradient method, known also as the method
of the steepest descent. It is the most robust and most simple variant of the
restarted CG method. See Algorithm 3.2 for a more formal description.

If we are able to find an easily invertible approximation of the Hessian,
we can use it to improve the performance of the CG method in the precon-
ditioned conjugate gradient method described in Sect. 3.6 as Algorithm 3.3.
The construction of preconditioners is problem dependent. The precondition-
ing by a conjugate projector described in Sect. 3.7 as Algorithm 3.4 is useful
in the minimization problems arising from the discretization of elliptic partial
differential equations and variational inequalities.

3.1 Conjugate Directions and Minimization

The conjugate gradient method, an ingenious and powerful engine of our al-
gorithms, is based on simple observations. In this section we examine the first
one, namely, that it is possible to reduce the solution of (3.1) to the solution
of a sequence of one-dimensional problems.

Let A ∈ R
n×n be an SPD matrix and let us assume that there are nonzero

n-vectors p1, . . . ,pn such that

(pi,pj)A = (pi)T Apj = 0 for i �= j.

We call such vectors A-conjugate or briefly conjugate. Specializing the argu-
ments of Sect. 1.7, we get that p1, . . . ,pn are independent. Thus p1, . . . ,pn

form the basis of R
n and any x ∈ R

n can be written in the form

x = ξ1p1 + · · · + ξnpn.

Substituting into f and using the conjugacy results in

f(x) =
(

1
2
ξ2
1(p1)T Ap1 − ξ1bTp1

)
+ · · · +

(
1
2
ξ2
n(pn)T Apn − ξnbTpn

)

= f(ξ1p1) + · · · + f(ξnpn).
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Thus
f(x̂) = min

x∈Rn
f(x) = min

ξ1∈R

f(ξ1p1) + · · · + min
ξn∈R

f(ξnpn).

We have thus managed to decompose the original problem (3.1) into n
one-dimensional problems. Since

df
(
ξpi

)

dξ

∣∣∣∣
ξi

= ξi(pi)T Api − bTpi = 0,

the solution x̂ of (3.1) is given by

x̂ = ξ1p1 + · · · + ξnpn, ξi = bTpi/(pi)T Api, i = 1, . . . , n. (3.2)

If the dimension of problem (3.1) is large, the task to evaluate x̂ may be
too ambitious. In this case it may be useful to modify the procedure that
we have just described so that it can be used to find an approximation x̃ to
the solution x̂ for (3.1) by means of some initial guess x0 and a few vectors
p1, . . . ,pk, k � n. A natural choice for the approximation x̃ is the minimizer
xk of f in Sk = x0 +Span{p1, . . . ,pk}. To find it, notice that any x ∈ Sk can
be written in the form

x = x0 + ξ1p1 + · · · + ξkpk,

so, after substituting into f and using that p1, . . . ,pk are conjugate, we get

f(x) = f(x0) +
(

1
2
ξ2
1(p1)T Ap1 + ξ1

(
Ax0 − b

)T
p1

)
+ . . .

+
(

1
2
ξ2
k(pk)T Apk + ξk

(
Ax0 − b

)T
pk

)
.

Denoting g0 = g(x0) = ∇f(x0) = Ax0 − b and

f0(x) =
1
2
xT Ax + xTg0,

we have
f(x) = f(x0) + f0(ξ1p1) + · · · + f0(ξkpk)

and

f(xk) = min
x∈Sk

f(x) = f(x0) + min
ξ1∈R

f0(ξ1p1) + · · · + min
ξk∈R

f0(ξkpk). (3.3)

We have thus again reduced our problem to the solution of a sequence of
simple one-dimensional problems. The approximation xk is given by

xk = x0 + ξ1p1 + · · ·+ ξkpk, ξi = −(g0)Tpi/(pi)T Api, i = 1, . . . , k, (3.4)
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as
df

(
ξpi

)

dξ

∣∣∣∣
ξi

= ξi(pi)T Api + (g0)Tpi = 0.

Since by (3.3) for k ≥ 1

f(xk) = min
x∈Sk

f(x) = f(xk−1) + min
ξ∈R

f0(ξpk), (3.5)

we can generate the approximations xk iteratively. The conjugate direction
method starts from an arbitrary initial guess x0. If xk−1 is given, then xk is
generated by the formula

xk = xk−1 − αkpk, αk = (g0)T pi/(pi)T Api. (3.6)

Thus f(xk−1 + ξpk) achieves its minimum at ξ = −αk and the procedure
guarantees that the successive iterates xk minimize f over a progressively
expanding manifold Sk that eventually includes the global minimum of f .

The coefficients αk can be evaluated by alternative formulae. For example,
using Corollary 2.9 and the definition of Sk, we get

(gk)T pi = 0, i = 1, . . . , k. (3.7)

Since for i ≥ 1

gi = Axi − b = A
(
xi−1 − αipi

)
− b =

(
Axi−1 − b

)
− αiApi

= gi−1 − αiApi,

we get for k ≥ 1 and i = 1, . . . , k − 1, by using the conjugacy, that

(gi)T pk = (gi−1)T pk − αi(pi)T Apk = (gi−1)T pk.

Thus
(g0)T pk = (g1)Tpk = · · · = (gk−1)Tpk

and

αk =
(g0)Tpk

(pk)T Apk
= · · · =

(gk−1)T pk

(pk)T Apk
. (3.8)

Combining the latter formula with the Taylor expansion, we get

f
(
xk
)

= f
(
xk−1

)
− 1

2

((
gk−1

)T
pk
)2

(pk)T
Apk

. (3.9)

So far, we have not discussed how to get the vectors p1, . . . ,pn. Are we
able to generate them efficiently? Positive answer in the next section is a key
to the success of the conjugate gradient method.
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3.2 Generating Conjugate Directions and Krylov Spaces

Let us now recall how to generate conjugate directions with the Gramm–
Schmidt procedure. Let us first suppose that p1, . . . ,pk are nonzero conjugate
directions, 1 ≤ k < n, and let us examine how to use hk /∈ Span{p1, . . . ,pk}
to generate a new member pk+1 in the form

pk+1 = hk + βk1p1 + · · · + βkkpk. (3.10)

Since pk+1 should be conjugate to p1, . . . ,pk, we get

0 = (pi)T Apk+1 = (pi)T Ahk + βk1(pi)T Ap1 + · · · + βkk(pi)T Apk

= (pi)T Ahk + βki(pi)T Api, i = 1, . . . , k.

Thus

βki = − (pi)T Ahk

(pi)T Api
, i = 1, . . . , k. (3.11)

Obviously
Span{p1, . . . ,pk+1} = Span{p1, . . . ,pk,hk}.

Therefore, given any independent vectors h0, . . . ,hk−1, we can start from
p1 = h0 and use (3.10) and (3.11) to construct a set of mutually A-conjugate
directions p1, . . . ,pk such that

Span{h0, . . . ,hi−1} = Span{p1, . . . ,pi}, i = 1, . . . , k.

For h0, . . . ,hk−1 arbitrary, the construction is increasingly expensive as
it requires both the storage for the vectors p1, . . . ,pk and heavy calculations
including evaluation of k(k +1)/2 scalar products. However, it turns out that
we can adapt the procedure so that it generates very efficiently the conjugate
basis of the Krylov spaces

Kk = Kk(A,g0) = Span{g0, Ag0, . . . , Ak−1g0}, k = 1, . . . , n,

with g0 = Ax0 − b defined by a suitable initial vector x0 and K0 = {o}. The
powerful method is again based on a few simple observations.

First assume that p1, . . . ,pi form a conjugate basis of Ki, i = 1, . . . , k, and
observe that if xk denotes the minimizer of f on x0+Kk, then by Corollary 2.9
the gradient gk = ∇f(xk) is orthogonal to the Krylov space Kk, that is,

(gk)T x = 0 for any x ∈ Kk.

In particular, if gk �= o, then
gk /∈ Kk.

Since gk ∈ Kk+1, we can use (3.10) with hk = gk to expand any conjugate
basis of Kk to the conjugate basis of Kk+1. Obviously
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Kk(A,g0) = Span{g0, . . . ,gk−1}.

Next observe that for any x ∈ Kk−1 and k ≥ 1

Ax ∈ Kk,

or briefly AKk−1 ⊆ Kk. Since pi ∈ Ki ⊆ Kk−1, i = 1, . . . , k − 1, we have

(Api)T gk = (pi)T Agk = 0, i = 1, . . . , k − 1.

It follows that

βki = − (pi)T Agk

(pi)T Api
= 0, i = 1, . . . , k − 1.

Summing up, if we have a set of such conjugate vectors p1, . . . ,pk that

Span{p1, . . . ,pi} = Ki, i = 1, . . . k,

then the formula (3.10) applied to p1, . . . ,pk and hk = gk simplifies to

pk+1 = gk + βkpk (3.12)

with

βk = βkk = − (pk)T Agk

(pk)T Apk
. (3.13)

Finally, observe that the orthogonality of gk to Span{p1, . . . ,pk} and
(3.12) imply that

‖pk+1‖ ≥ ‖gk‖. (3.14)

In particular, if gk−1 �= o, then pk �= o, so the formula (3.13) is well defined
provided gk−1 �= o.

3.3 Conjugate Gradient Method

In the previous two sections, we have found that the conjugate directions can
be used to reduce the minimization of any convex quadratic function to the
solution of a sequence of one-dimensional problems, and that the conjugate
directions can be generated very efficiently. The famous conjugate gradient
(CG) method just puts these two observations together.

The algorithm starts from an initial guess x0, g0 = Ax0 −b, and p1 = g0.
If xk−1 and gk−1 are given, k ≥ 1, it first checks if xk−1 is the solution. If
not, then the algorithm generates

xk = xk−1 − αkpk with αk = (gk−1)Tpk/(pk)T Apk

and
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gk = Axk − b = A
(
xk−1 − αkpk

)
− b =

(
Axk−1 − b

)
− αkApk

= gk−1 − αkApk.
(3.15)

Finally the new conjugate direction pk+1 is generated by (3.12) and (3.13).
The decision if xk−1 is an acceptable solution is typically based on the

value of ‖gk−1‖, so the norm of the gradient must be evaluated at each step.
It turns out that the norm can also be used to replace the scalar products
involving the gradient in the definition of αk and βk. To find the formulae, let
us replace k in (3.12) by k−1 and multiply the resulting identity by (gk−1)T .
Using the orthogonality, we get

(gk−1)T pk = ‖gk−1‖2 + βk−1(gk−1)T pk−1 = ‖gk−1‖2, (3.16)

so by (3.8)

αk =
‖gk−1‖2

(pk)T Apk
. (3.17)

To find an alternative formula for βk, notice that αk > 0 for gk−1 �= o and
that by (3.15)

Apk =
1
αk

(gk−1 − gk),

so that
αk(gk)T Apk = (gk)T (gk−1 − gk) = −‖gk‖2

and

βk = − (pk)T Agk

(pk)T Apk
=

‖gk‖2

αk(pk)T Apk
=

‖gk‖2

‖gk−1‖2
. (3.18)

The complete CG method is presented as Algorithm 3.1.

Algorithm 3.1. Conjugate gradient method (CG).

Given a symmetric positive definite matrix A ∈ R
n×n and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, p1 = g0, k = 1

Step 1. {Conjugate gradient loop. }
while ‖gk−1‖ > 0

αk = ‖gk−1‖2/(pk)T Apk

xk = xk−1 − αkp
k

gk = gk−1 − αkApk

βk = ‖gk‖2/‖gk−1‖2 = −(Apk)T gk/
(
(pk)T Apk

)

pk+1 = gk + βkp
k

k = k + 1
end while

Step 2. {Return the solution.}
x̂ = xk
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Each step of the CG method can be implemented with just one matrix–
vector multiplication. This multiplication by the Hessian matrix A typically
dominates the cost of the step. Only one generation of vectors xk,pk, and gk

is typically stored, so the memory requirements are modest.
Let us recall that the algorithm finds at each step the minimizer xk of f

on x0 + Kk = x0 + Kk(A,g0) and expands the conjugate basis of Kk to that
of Kk+1 provided gk �= o. Since the dimension of Kk is less than or equal to
k, it follows that for some k ≤ n

Kk = Kk+1.

Since gk ∈ Kk+1 and gk is orthogonal to Kk, Algorithm 3.1 implemented in
the exact arithmetics finds the solution x̂ of (3.1) in at most n steps. We can
sum up the most important properties of Algorithm 3.1 into the following
theorem.

Theorem 3.1. Let {xk} be generated by Algorithm 3.1 to find the solution
x̂ of (3.1) starting from x0 ∈ R

n. Then the algorithm is well defined and
there is k ≤ n such that xk = x̂. Moreover, the following statements hold for
i = 1, . . . , k:

(i) f(xi) = min{f(x) : x ∈ x0 + Ki(A,g0)}.
(ii) ‖pi+1‖ ≥ ‖gi‖.
(iii) (gi)T gj = 0 for i �= j.
(iv) (pi)T Apj = 0 for i �= j.
(v) Ki(A,g0) = Span{g0, . . . ,gi−1} = Span{p1, . . . ,pi}.

It is usually sufficient to find xk such that ‖gk‖ is small. For example,
given a small ε > 0, we can consider gk small if

‖gk‖ ≤ ε‖b‖.

Then x̃ = xk is an approximate solution which satisfies

‖A(x̃ − x̂)‖ ≤ ε‖b‖, ‖x̃ − x̂‖ ≤ ελmin(A)−1,

where λmin(A) denotes the least eigenvalue of A. It is easy to check that the
approximate solution x̃ solves the perturbed problem

min
x∈Rn

f̃(x) =
1
2
xT Ax − b̃T x, b̃ = b + gk.

What is “small” depends on the problem solved. To keep our exposition gen-
eral, we shall often not specify the test in what follows. Of course gk = o is
always considered small.
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3.4 Restarted CG and the Gradient Method

Given an approximation x0 of the solution x̂, we can use k conjugate gradient
iterations to find an improved approximation xk. Repeating the procedure
with x0 = xk, we get the restarted conjugate gradient method.

A special case with k = 1 and p1 = ∇f(x0) is of independent interest.
Given xk, the gradient method (also called the steepest descent method) gen-
erates xk+1 by

xk+1 = arg min
α∈R

f(xk − αgk), gk = ∇f(xk).

The name “steepest descent” is derived from observation that the linear model
of f at x achieves its minimum on the set of all unit vectors

U = {d ∈ R
n, ‖d‖ = 1}

at d̂ = −‖∇f(x)‖−1∇f(x). Indeed, for any d ∈ U

∇f(x)T d ≥ −‖∇f(x)‖‖d‖ = −‖∇f(x)‖ = ∇f(x)T d̂.

The complete steepest descent method reads as follows:

Algorithm 3.2. Gradient (steepest descent) method.

Given a symmetric positive definite matrix A ∈ R
n×n and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, k = 0

Step 1. {Steepest descent loop. }
while ‖gk‖ is not small

αk = ‖gk‖2/(gk)T Agk

xk+1 = xk − αkg
k

gk+1 = gk − αkAgk

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

The gradient method is known to converge, but its convergence is for ill-
conditioned problems considerably slower than that of the conjugate gradient
method, as we shall see in the next section. The slow convergence is illustrated
in Fig. 3.1.

In spite of its slow convergence, the gradient method is useful as it is easy
to implement and uses a robust decrease direction. It is illustrated in Fig. 3.2
that even if ∂g is a relatively large perturbation of the gradient g, the vector
−g− ∂g is still a decrease direction, while a small perturbation ∂p of the CG
direction p can cause that −p− ∂p is not a decrease direction.
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f(x) = c

x̂

Fig. 3.1. Slow convergence of the steepest descent method

f(x) = c
x̂

−g − ∂g−p − ∂p

−p

−g

Fig. 3.2. Robustness of the gradient and CG decrease directions g and p

3.5 Rate of Convergence and Optimality

Although the conjugate gradient method finds by Theorem 3.1 the exact so-
lution x̂ of (3.1) in a number of steps which does not exceed the dimension of
the problem, it turns out that it can often produce a sufficiently accurate ap-
proximation x̃ of x̂ in a much smaller number of steps than required for exact
termination. This observation suggests that the conjugate gradient method
may also be considered as an iterative method. In this section we present the
results which substantiate this claim and help us to identify the favorable
cases.

3.5.1 Min-max Estimate

Let us denote the solution error as

e = e(x) = x − x̂

and observe that
g(x̂) = Ax̂ − b = o.

It follows that

gk = Axk − b = Axk − Ax̂ = A(xk − x̂) = Aek,

so in particular

Kk(A,g0) = Span{g0, Ag0, . . . , Ak−1g0} = Span{Ae0, . . . , Ake0}.
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We start our analysis of the solution error by using the Taylor expansion
(2.5) to obtain the identity

f(x) − f(x̂) = f(x̂ + (x − x̂)) − f(x̂)

= f(x̂) + g(x̂)T (x − x̂) +
1
2
‖x− x̂‖2

A − f(x̂)

=
1
2
‖x − x̂‖2

A =
1
2
‖e‖2

A.

Combining the latter identity with Theorem 3.1, we get

‖ek‖2
A = 2

(
f(xk) − f(x̂)

)
= min

x∈x0+Kk(A,g0)
2 (f(x) − f(x̂))

= min
x∈x0+Kk(A,g0)

‖x− x̂‖2
A = min

x∈x0+Kk(A,g0)
‖e(x)‖2

A.

Since any x ∈ x0 + Kk(A,g0) may be written in the form

x = x0 + ξ1g0 + ξ2Ag0 + · · · + ξkAk−1g0 = x0 + ξ1Ae0 + · · · + ξkAke0,

it follows that

x − x̂ = e0 + ξ1Ae0 + · · · + ξkAke0 = p(A)e0,

where p denotes the polynomial defined for any x ∈ R by

p(x) = 1 + ξ1x + ξ2x
2 + · · · + ξkxk.

Thus denoting by Pk the set of all kth degree polynomials p which satisfy
p(0) = 1, we have

‖ek‖2
A = min

x∈x0+Kk(A,g0)
‖e(x)‖2

A = min
p∈Pk

‖p(A)e0‖2
A. (3.19)

We shall now derive a bound on the expression on the right-hand side of
(3.19) that depends on the spectrum of A, but is independent of the direc-
tion of the initial error e0. Let a spectral decomposition of A be written as
A = UDUT , where U is an orthogonal matrix and D =diag(λ1, . . . , λn) is
a diagonal matrix defined by the eigenvalues of A. Since A is assumed to be
positive definite, the square root of A is well defined by

A
1
2 = UD

1
2 UT .

Using p(A) = Up(D)UT , it is also easy to check that

A
1
2 p(A) = p(A)A

1
2 .

Moreover, for any vector v ∈ R
n

‖v‖2
A = vT Av = vT A

1
2 A

1
2 v = (A

1
2 v)T A

1
2 v = ‖A 1

2 v‖2.
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Using the latter identities, (3.19), and the properties of norms, we get

‖ek‖2
A = min

p∈Pk
‖p(A)e0‖2

A = min
p∈Pk

‖A 1
2 p(A)e0‖2 = min

p∈Pk
‖p(A)A

1
2 e0‖2

≤ min
p∈Pk

‖p(A)‖2‖A 1
2 e0‖2 = min

p∈Pk
‖p(D)‖2‖e0‖2

A.

Since
‖p(D)‖ = max

i∈{1,...,n}
|p(λi)|,

we can write
‖ek‖A ≤ min

p∈Pk
max

i∈{1,...,n}
|p(λi)| ‖e0‖A. (3.20)

3.5.2 Estimate in the Condition Number

The estimate (3.20) reduces the analysis of convergence of the CG method to
the analysis of approximation of the zero function on the spectrum of A by
a kth degree polynomial with the value one at origin. This result helps us to
identify the favorable cases when the conjugate gradient method is effective.
For example, if the spectrum of A is clustered around a single point ξ, then
the minimization by the CG should be very effective because |(1 − x/ξ)k| is
small near ξ. We shall use (3.20) to get a “global” estimate of the rate of
convergence of the CG method in terms of the condition number of A.

Theorem 3.2. Let {xk} be generated by Algorithm 3.1 to find the solution x̂
of (3.1) starting from x0 ∈ R

n. Then the error

ek = xk − x̂

satisfies

‖ek‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖e0‖A, (3.21)

where κ(A) denotes the spectral condition number of A.

Proof. First notice that if Pk is the set of all kth degree polynomials p such
that p(0) = 1, then for any t ∈ Pk

min
p∈Pk

max
λ∈[λmin,λmax]

|p(λ)| ≤ max
λ∈[λmin,λmax]

|t(λ)|. (3.22)

A natural choice for t is the kth (weighted and shifted) Chebyshev polynomial
on the interval [λmin, λmax]

tk(λ) = Tk

(
2λ − λmax − λmin

λmax − λmin

)
/Tk

(
−λmax + λmin

λmax − λmin

)
,
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where Tk(x) is the Chebyshev polynomial of the first kind on the interval
[−1, 1] given by

Tk(x) =
1
2

(
x +

√
x2 − 1

)k

+
1
2

(
x −

√
x2 − 1

)k

.

This tk is known to minimize the right-hand side of (3.22) (see, e.g., [172]).
Obviously tk ∈ Pk, so that we can use its well-known properties to get

max
λ∈[λmin,λmax]

|tk(λ)| = 1/Tk

(
λmax + λmin

λmax − λmin

)
.

Simple manipulations then show that

Tk

(
λmax + λmin

λmax − λmin

)
=

1
2

(√
κ(A) + 1√
κ(A) − 1

)k

+
1
2

(√
κ(A) − 1√
κ(A) + 1

)k

.

Thus for any λ ∈ [λmin, λmax]

|pk(λ)| ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

.

Substituting this bound into (3.20) then gives the required result. 
�

The estimate (3.21) can be improved for some special distributions of
the eigenvalues. For example, if the spectrum of A is in a positive interval
[amin, amax] except for m isolated eigenvalues λ1, . . . , λm, then we can use
special polynomials p ∈ Pk+m of the form

p(λ) =
(

1 − λ

λ1

)
. . .

(
1 − λ

λm

)
q(λ), q ∈ Pk

to get the estimate

‖ek+m‖A ≤ 2

(√
κ̃ − 1√
κ̃ + 1

)k

‖e0‖A, (3.23)

where κ̃ = amax/amin.
If the spectrum of A is distributed in two positive intervals [amin, amax]

and [amin + d, amax + d], d > 0, then

‖ek‖A ≤ 2
(√

κ − 1√
κ + 1

)k

‖e0‖A, (3.24)

where κ = 4amax/amin approximates the effective condition number of a ma-
trix A with the spectrum in [amin, amax]∪ [amin + d, amax + d]. An interesting
feature of the estimates (3.23) and (3.24) is that the upper bound is inde-
pendent of the values of some eigenvalues or d. The proofs of the above and
some other interesting estimates can be found in papers by Axelsson [3] and
Axelsson and Lindskøg [5].
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3.5.3 Convergence Rate of the Gradient Method

Observing that the step of the gradient method defined by Algorithm 3.2 is
just the first step of the CG algorithm, we can use the results of Sect. 3.5.1
to find the rate of convergence of the gradient method. The estimate is for-
mulated in the following proposition.

Proposition 3.3. Let {xk} be generated by Algorithm 3.2 to find the solution
x̂ of (3.1) starting from x0 ∈ R

n. Then the error

ek = xk − x̂

satisfies

‖ek‖A ≤
(

κ(A) − 1
κ(A) + 1

)k

‖e0‖A, (3.25)

where κ(A) denotes the spectral condition number of A.

1

0

−1

p

λmin + λmax

λmin λmax

Fig. 3.3. The best approximation of zero on σ(A) by linear polynomial with p(0) = 1

Proof. Let xk+1 be generated by the gradient method from xk ∈ R
n and let

P1 denote the set of all linear polynomials p such that p(0) = 1. Then the
energy norm ‖ek‖A of the error

ek = xk − x̂

is by (3.20) reduced by a factor which can be estimated from

‖ek+1‖A ≤ min
p∈P1

max
i∈{1,...,n}

|p(λi)| ‖ek‖A = min
ξ1∈R

max
i={1,...,n}

|ξ1λi + 1| ‖ek‖A.

Using elementary properties of linear functions or Fig. 3.3, we get that the
minimizer ξ1 satisfies
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ξ1λmin + 1 = −(ξ1λmax + 1).

It follows that
ξ1 = −2/(λmin + λmax)

and

‖ek+1‖A ≤
(

−2λmin

λmin + λmax
+ 1

)
‖ek‖A =

λmax − λmin

λmax + λmin
‖ek‖A. (3.26)

The estimate (3.25) can be obtained from (3.26) by simple manipulations. 
�

Notice that the estimate (3.21) for the first step of the conjugate gradi-
ent method may give worse bound than the estimate (3.25) for the gradient
method, but for large k, the estimate (3.21) for the kth step of the conjugate
gradient method is much better than the estimate (3.25) for the kth step of the
gradient method. The reason is that (3.21) captures the global performance of
the CG method, in particular its capability to exploit the information from the
previous steps, while (3.25) is based on analysis of just one step, in agreement
with the one-step information used by the gradient method.

3.5.4 Optimality

Theorem 3.2 implies an easy optimality result concerning the number of iter-
ations of the CG algorithm. To formulate it, let T denote any set of indices
and assume that for any t ∈ T there is defined the problem

minimize ft(x)

with ft(x) = 1
2x

T Atx − bT
t x, At ∈ R

nt×nt symmetric positive definite, and
bt,x ∈ R

nt . Moreover, assume that the eigenvalues of any At are in the interval
[amin, amax], 0 < amin ≤ amax. Then the number of the CG iterations that
are necessary to reduce the error by a given factor ε is uniformly bounded. It
easily follows that the CG algorithm starting from x0

t = o finds xk
t such that

‖Atxk
t − bt‖ ≤ ε‖bt‖

at O(1) iterations. It follows that if the matrices At have O(nt) elements, then
we can get approximate solutions at the optimal O(nt) arithmetic operations.

3.6 Preconditioned Conjugate Gradients

The analysis of the previous section shows that the rate of convergence of the
conjugate gradient algorithm depends on the distribution of the eigenvalues of
the Hessian A of f . In particular, we argued that CG converges very rapidly
if the eigenvalues of A are clustered around one point, i.e., if the condition
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number κ(A) is close to one. We shall now show that we can reduce our
minimization problem to this favorable case if we have a symmetric positive
definite matrix M such that M−1x can be easily evaluated for any x and M
approximates A in the sense that M−1A is close to the identity.

First assume that M is available in the form

M = L̃L̃T ,

so that M−1A is similar to L̃−1AL̃−T and the latter matrix is close to the
identity. Then

f(x) =
1
2
(L̃T x)T (L̃−1AL̃−T )(L̃T x) − (L̃−1b)T (L̃Tx)

and we can replace our original problem (3.1) by the preconditioned problem
to find

min
y∈Rn

f̄(y), (3.27)

where we substituted y = L̃T x and set

f̄(y) =
1
2
yT (L̃−1AL̃−T )y − (L̃−1b)T y.

The solution ŷ of the preconditioned problem (3.27) is related to the solution
x̂ of the original problem by

x̂ = L̃−T ŷ.

If the CG algorithm is applied directly to the preconditioned problem
(3.27) with a given y0, then the algorithm is initialized by

y0 = L̃T x0, ḡ0 = L̃−1AL̃−T y0 − L̃−1b = L̃−1g0, and p̄1 = ḡ0;

the iterates are defined by

ᾱk = ‖ḡk−1‖2/(p̄k)T L̃−1AL̃−T p̄k,

yk = yk−1 − ᾱkp̄k,

ḡk = ḡk−1 − ᾱkL̃−1AL̃−T p̄k,

β̄k = ‖ḡk‖2/‖ḡk−1‖2,

p̄k+1 = ḡk + β̄kp̄k.

Substituting

yk = L̃Txk, ḡk = L̃−1gk, and p̄k = L̃Tpk,

and denoting
zk = L̃−T L̃−1gk = M−1gk,

we obtain the preconditioned conjugate gradient algorithm (PCG) in the orig-
inal variables.
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Algorithm 3.3. Preconditioned conjugate gradient method (PCG).

Given a symmetric positive definite matrix A ∈ R
n×n, its symmetric positive

definite approximation M ∈ R
n×n, and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, z0 = M−1g0, p1 = z0, k = 1

Step 1. {Conjugate gradient loop.}
while ‖gk−1‖ is not small

αk = (zk−1)T gk−1/(pk)T Apk

xk = xk−1 − αkp
k

gk = gk−1 − αkApk

zk = M−1gk

βk = (zk)T gk/(zk−1)T gk−1

pk+1 = zk + βkp
k

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

Notice that the PCG algorithm does not exploit explicitly the Cholesky
factorization of the preconditioner M. The pseudoresiduals zk are typically ob-
tained by solving Mzk = gk. If M is a good approximation of A, then zk is close
to the error vector ek. The rate of convergence of the PCG algorithm depends
on the condition number of the Hessian of the transformed function f̄ , i.e., on
κ(M−1A) = κ(L̃−1AL̃−T ). Thus the efficiency of the preconditioned conjugate
gradient method depends critically on the choice of a preconditioner, which
should balance the cost of its application with the preconditioning effect. We
refer interested readers to specialized books like Saad [163] or Axelsson [4]
for more information. Since the choice of the preconditioner is problem de-
pendent, we limit our attention here to the brief discussion of a few general
strategies.

The most simple preconditioners may be defined by means of the decom-
position

A = D + E + ET ,

where D is the diagonal of A and E is its strict lower part with the entries
[E]ij = [A]ij for i > j and [E]ij = 0 otherwise.

The Jacobi preconditioner MJ = D is the easiest one to implement, but
its efficiency is very limited. Better approximation of A can be achieved by
choosing the block diagonal Jacobi preconditioner

MBJ =

⎡

⎢⎢⎣

A11 O . . . O
O A22 . . . O
. . . . . .
O O . . . Akk

⎤

⎥⎥⎦ , (3.28)
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where Aii are diagonal blocks of A (see, e.g., Greenbaum [106, Sect. 10.5]).
The pseudoresiduals zk are typically obtained by solving Aiizk

i = gk
i .

Good results may be often achieved with the symmetric Gauss-Seidel pre-
conditioner

MSGS = (D + E)D−1(D + ET ).

Notice that
L̃ = (D + E)D− 1

2

is a regular lower triangular matrix, so we have the triangular factorization

MSGS = L̃L̃T

for free.
More generally, the factorized preconditioners can be produced by incom-

plete Cholesky (IC) which neglects some fill-in elements in the factor L. When
the elements of L are neglected because they are smaller than a certain thresh-
old, the factorization is called “IC-by-value”, and when they are omitted
because they do not belong to a certain sparsity pattern, we have “IC-by-
position”. See for example Axelsson [4] or Saad [163]. The drawback of this
method is that it can fail on the generation of diagonal entries.

3.7 Preconditioning by Conjugate Projector

So far we have assumed that the preconditioners to a symmetric positive
definite matrix A are nonsingular matrices that approximate A. In this section
we describe an alternative strategy which is useful when we are able to find
the minimizer x0 of f over a subspace U of R

n. We shall show that in this
case we can get the preconditioning effect by reducing the conjugate gradient
iterations to the conjugate complement of U .

3.7.1 Conjugate Projectors

Our main tools will be the projectors with conjugate range and kernel. We
shall use the basic relations introduced in Sect. 1.3 and some observations
that we review in this subsection.

Let A ∈ R
n×n be a symmetric positive definite matrix. A projector P is an

A-conjugate projector or briefly a conjugate projector if ImP is A-conjugate
to KerP, or equivalently

PT A(I − P) = PT A − PT AP = O.

It follows that Q = I − P is also a conjugate projector,

PT A = AP = PT AP, and QT A = AQ = QT AQ. (3.29)
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Let us denote V = ImQ. If x ∈ AV , then y = Qx satisfies y ∈ V and

QT AQx = AQx = Ay,

so that
QT AQ(AV) ⊆ AV . (3.30)

Thus AV is an invariant subspace of QT AQ.
The following lemma shows that the mapping which assigns to each x ∈ AV

the vector Qx ∈ V is expansive as in Fig. 3.4.

AV
V

U

Q

P

Fig. 3.4. Geometric illustration of Lemma 3.4

Lemma 3.4. Let Q denote a conjugate projector on V and x ∈ AV. Then

‖Qx‖ ≥ ‖x‖.

Proof. For any x ∈ AV , there is y ∈ R
n such that x = AQy. It follows that

QTx = QT AQy = AQy = x.

Since xT Qx = xT QT x = ‖x‖2, we have

‖Qx‖2 = xT QT Qx = xT
(
(QT − I) + I

)
((Q − I) + I)x = ‖(Q − I)x‖2 + ‖x‖2.


�

3.7.2 Minimization in Subspace

Let us assume that U is the subspace spanned by the columns of a full column
rank matrix U ∈ R

n×n and notice that UT AU is regular. Indeed, if UT AUx = o,
then
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‖Ux‖2
A = xT (UT AUx) = 0,

so x = o by the assumptions that U is the full column rank matrix and A is
SPD. Thus we can define

P = U(UT AU)−1UT A.

It is easy to check directly that P is a conjugate projector onto U as

P2 = U(UT AU)−1UT AU(UT AU)−1UT A = P

and
PT A(I − P) = AU(UT AU)−1UT A(I − U(UT AU)−1UT A) = O.

Since any vector x ∈ U can be written in the form x = Uy, y ∈ R
m, and

Px = U(UT AU)−1UT AUy = Uy = x,

it follows that
U = ImP.

The conjugate projector P onto U can be used for the solution of

min
x∈U

f(x) = min
y∈Rm

f(Uy) = min
y∈Rm

1
2
yT UT AUy − bT Uy.

Using the gradient argument of Proposition 2.1, we get that the minimizer y0

of the latter problem satisfies

UT AUy0 = UTb, (3.31)

so that the minimizer x0 of f over U satisfies

x0 = Uy0 = U(UT AU)−1UTb = PA−1b. (3.32)

Our assumption concerning the ability to find the minimum of f over U
effectively amounts to the assumption that we are able to solve (3.31). Notice
that we can evaluate the product PA−1b without solving any system of linear
equations with the matrix A.

3.7.3 Conjugate Gradients in Conjugate Complement

In the next step we shall use the conjugate projectors P and Q = I − P to
decompose our minimization problem (3.1) into the minimization on U and
the minimization on V = ImQ. We shall use the conjugate gradient method
to solve the latter problem.

Two observations are needed to exploit the special structure of our prob-
lem. First, using Lemma 3.4, dimV = dimAV , and (1.2), we get that the
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mapping which assigns to each x ∈ AV a vector Qx ∈ V is an isomorphism,
so that

Q(AV) = V .

Second, using (3.29) and (3.32), we get

g0 = Ax0 − b = APA−1b − b = PTb − b = −QTb. (3.33)

Using both observations, we get

min
x∈Rn

f(x) = min
y∈U ,z∈V

f(y + z) = min
y∈U

f(y) + min
z∈V

f(z)

= f(x0) + min
z∈V

f(z) = f(x0) + min
x∈AV

1
2
xT QT AQx − bT Qx

= f(x0) + min
x∈AV

1
2
xT QT AQx +

(
g0
)T

x, (3.34)

where x0 is determined by (3.32).
It remains to solve the minimization problem (3.34). First observe that

using Lemma 3.4, we get that QT AQ|AV is positive definite. Since by (3.33)
g0 ∈ ImQT ,

ImQT = Im(QT A) = Im(AQ) = AV , (3.35)

and AV is an invariant subspace of QT AQ, we can use the procedure described
in Sect. 3.2 to generate QT AQ-conjugate vectors p1, . . . ,pk of

Kk = Kk(QT AQ,g0) = Span{g0, QT AQg0, . . . , (QT AQ)k−1g0}.

It simply follows that

q1 = Qp1,q2 = Qp2, . . .

are A-conjugate vectors of V . Using (3.14), pi ∈ AV , and Lemma 3.4, it is
easy to see that

‖qk‖ ≥ ‖pk‖ ≥ ‖gk−1‖,
so that we can generate a new conjugate direction qk whenever gk−1 �= o.
We can sum up the most important properties of the CG algorithm with the
preconditioning by the conjugate projector into the following theorem.

Theorem 3.5. Let xk be generated by Algorithm 3.4 to find the solution x̂ of
(3.1) with a full column rank matrix U ∈ R

n×m. Then the algorithm is well
defined and there is k ≤ n − m such that xk = x̂. Moreover, the following
statements hold for i = 1, . . . , k:

(i) f(xi) = min{f(x) : x ∈ U + QKi(QT AQ,g0)}.
(ii) ‖qi‖ ≥ ‖gi−1‖.
(iii) (qi)T Aqj = 0 for i > j.
(iv) (qi)T Ax = 0 for x ∈ U .

The complete conjugate gradient algorithm with the preconditioning by
the conjugate projector reads as follows:
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Algorithm 3.4. Conjugate gradients with projector preconditioning
(CGPP).

Given a symmetric positive definite matrix A ∈ R
n×n, a full column rank matrix

U ∈ R
n×m, and b ∈ R

n.

Step 0. {Initialization.}
P = U(UT AU)−1UT A, Q = I − P
x0 = PA−1b = U(UT AU)−1UT b
k = 1, g0 = Ax0 − b, q1 = Qg0

Step 1. {Conjugate gradient loop. }
while ‖gk−1‖ > 0

αk = (gk−1)T qk/(qk)T Aqk

xk = xk−1 − αkq
k

gk = gk−1 − αkAqk

βk = (gk)T Aqk/(qk)T Aqk

qk+1 = Qgk + βkq
k

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

3.7.4 Preconditioning Effect

As we have seen in the previous section, the iterations of Algorithm 3.4 may
be considered as the conjugate gradient iterations for the minimization of

f0,Q(x) =
1
2
xT QT AQx + (g0)Tx

that generate the iterations

xk ∈ Kk(QT AQ,g0) ⊆ AV .

Thus only the positive definite restriction QT AQ|AV of QT AQ to AV takes
part in the process of solution, and the rate of convergence may be estimated
by the spectral condition number κ(QT AQ|AV) of QT AQ|AV .

It is rather easy to see that

κ(QT AQ|AV) ≤ κ(A).

Indeed, denoting by λ1 ≥ · · · ≥ λn the eigenvalues of A, we can observe that
if x ∈ AV and ‖x‖ = 1, then by Lemma 3.4

xT QT AQx ≥ (Qx)T A(Qx)/‖Qx‖2 ≥ λn

and
xT QT AQx ≤ xT QT AQx + xT PT APx = xT Ax ≤ λ1. (3.36)
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To see the preconditioning effect of the algorithm in more detail, let us
denote by E the m-dimensional subspace spanned by the eigenvectors corre-
sponding to the m smallest eigenvalues λn−m+1 ≥ · · · ≥ λn of A, and let RAU
and RE denote the orthogonal projectors on AU and E , respectively. Let

γ = ‖RAU − RE‖

denote the gap between AU and E . It can be evaluated provided we have
matrices U and E whose columns form the orthonormal bases of AU and E ,
respectively. It is known [170] that if σ is the least singular value of UT E, then

γ =
√

1 − σ2 ≤ 1.

Theorem 3.6. Let U ,V , Q be those of Algorithm 3.4, let λ1 ≥ · · · ≥ λn de-
note the eigenvalues of A, and let λmin denote the least nonzero eigenvalue of
QT AQ. Then

λn ≤
√

(1 − γ2)λ2
n−m + γ2λ2

n ≤ λmin (3.37)

and
κ(QT AQ|AV) ≤ λ1√

(1 − γ2)λ2
n−m + γ2λ2

n

.

Proof. Let x ∈ AV , ‖x‖ = 1, so that ‖Qx‖ ≥ 1 by Lemma 3.4. Observing that
ImRE and Im(I − RE) are orthogonal invariant subspaces of A, we get that

‖AQx‖2 = ‖A(I − RE)Qx‖2 + ‖AREQx‖2

≥ λ2
n−m‖(I − RE)Qx‖2 + λ2

n‖REQx‖2

≥
(
λ2

n−m‖(I − RE)Qx‖2 + λ2
n‖REQx‖2

)
/‖Qx‖2

≥ λ2
n−m(1 − ξ2) + λ2

nξ2,

(3.38)

where ξ = ‖Qx‖−1‖REQx‖. We have used that

‖(I − RE)Qx‖2 + ‖REQx‖2 = ‖Qx‖2.

Since ImQ = V , it follows by the definition of RAU that RAUQ = O and

ξ = ‖Qx‖−1‖(RE − RAU )Qx‖ ≤ γ.

As the last expression in (3.38) is a decreasing function of ξ for ξ ≥ 0, it
follows that

‖QT AQx‖2 = ‖AQx‖2 ≥ λ2
n−m(1 − γ2) + λ2

nγ2.

The rest is an easy consequence of (3.36). 
�

The above theorem suggests that the preconditioning by the conjugate pro-
jector is efficient when U approximates the subspace spanned by the eigenvec-
tors which correspond to the smallest eigenvalues of A. If UT E is nonsingular
and λn < λn−m, then γ < 1 and



96 3 Conjugate Gradients for Unconstrained Minimization

κ(QT AQ|AV) < κ(A).

If the minimization problem arises from the discretization of elliptic partial
differential equations, than U can be obtained by aggregation. It turns out that
even the subspace with a very small dimension can considerably improve the
rate of convergence. See Sect. 3.10.1 for a numerical example.

3.8 Conjugate Gradients for More General Problems

Let A be only positive semidefinite, so that the cost function f is convex but
not strictly convex, and let the unconstrained minimization problem (3.1) be
well posed, i.e., b ∈ ImA by Proposition 2.1.

If we start the conjugate gradient algorithm from arbitrary x0 ∈ R
n, then

the gradient g0 and the Krylov space Kn(A,g0) satisfy

g0 ∈ ImA and Kn(A,g0) ⊆ ImA.

Since the CG method picks the conjugate directions from Kn(A,g0), it follows
that the method works only on the range of A. Thus the algorithm generates
the iterates xk which converge to a solution x with the rate of convergence
which can be described by the distribution of the spectrum of the restriction
A|Kn(A,g0). Observing that the least eigenvalue of A|Kn(A,g0) is bounded
from below by the least nonzero eigenvalue λmin of A, we get the error estimate

‖ek‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖e0‖A, (3.39)

where κ(A) denotes the regular spectral condition number of A defined by

κ(A) = κ(A|ImA) = λmax/λmin.

Let P and Q = I − P denote the orthogonal projectors on ImA and KerA,
respectively, so that

x = Px + Qx.

Since the reduction A|ImA is nonsingular, it follows that there is a unique
solution xLS ∈ ImA of (3.1), and by Proposition 2.1 any solution x satisfies

x = x̂LS + d, d ∈ KerA.

Thus if x is a solution of (3.1), then Px = xLS and

Qx = Qx0.

It follows that xLS is the least square solution of Ax = b, and to get it by the
conjugate gradient algorithm, it is enough to take x0 ∈ ImA.
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If A is indefinite, then, using the arguments of Sect. 3.2, it is easy to check
that the conjugate gradient method still generates conjugate directions, but
it fails when (pk)T Apk = 0. The latter case may happen with pk /∈ KerA, as
in

[1, 1]
[

1 0
0 −1

] [
1
1

]
= 0.

It follows that there is no guarantee that the CG Algorithm 3.1 is able, at
least without modifications, to find a stationary point of f .

3.9 Convergence in Presence of Rounding Errors

The elegant mathematical theory presented above assumes implementation
of the conjugate gradient algorithm in exact arithmetic and captures well the
performance of only a limited number of conjugate gradient iterations in com-
puter arithmetics. Since we are going to use the conjugate gradient method
mainly for a low-precision approximation of well-conditioned auxiliary prob-
lems, we shall base our exposition on this theory in what follows. However, it
is still useful to be aware of possible effects of rounding errors that accompany
any computer implementation of the conjugate gradient algorithm.

It has been known since the introduction of the CG method and the Lanc-
zos method [140], which generates the same iterates, that, when used in finite
precision arithmetic, the vectors generated by these algorithms can seriously
violate their theoretical properties. In particular, it has been observed that
the evaluated gradients can lose their orthogonality after as small a number
of iterations as twenty, and that nearly dependent conjugate directions can
be generated. In spite of these effects, it has been observed that the conjugate
gradient method still converges in finite precision arithmetic, but that the
convergence is delayed [105, 107].

Undesirable effects of the rounding errors can be reduced by reorthogo-
nalization. A simple analysis reveals that the full reorthogonalization of the
gradients is costly and requires large memory. A key to an efficient implemen-
tation of the reorthogonalization is based on observation that accumulation of
the rounding errors has a regular pattern, namely, that large perturbations of
the generated vectors belong to the space generated by the eigenvectors of A
which can be approximated well by the vectors from the current Krylov space.
This has led to the efficient implementation of the conjugate gradient method
based on the selective orthogonalization proposed by Parlett and Scott [158].
More details and information about the effects of rounding errors and imple-
mentation of the conjugate gradient method in finite arithmetic can be found
in the comprehensive review paper by Meurant and Strakoš [152].
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3.10 Numerical Experiments

Here we illustrate the performance of the CG algorithm and the effect of pre-
conditioning on the solution of an ill-conditioned benchmark and a class of
well-conditioned problems. The latter was proposed to resemble the class of
problems arising from application of the multigrid or domain decomposition
methods to the elliptic partial differential equations. The cost functions fL,h

and fLW,h introduced here are used in Sects. 4.8, 5.11, and 6.12 as bench-
marks for the solution of constrained problems, so that we can assess ad-
ditional complexity arising from implementation of various constraints and
better understand our algorithms. Moreover, using the same cost functions in
our benchmarks considerably simplifies their implementation.

3.10.1 Basic CG and Preconditioning

Let Ω = (0, 1) × (0, 1) denote an open domain with the boundary Γ and its
part Γu = {0} × [0, 1]. Let H1(Ω) denote the Sobolev space of the first order
in the space L2(Ω) of functions on Ω whose squares are integrable in the
Lebesgue sense, let

V = {u ∈ H1(Ω) : u = 0 on Γu},
and let us define for any u ∈ H1(Ω)

fL(u) =
1
2

∫

Ω

‖∇u(x)‖2dΩ +
∫

Ω

udΩ.

Thus we can define the continuous problem to find

min
u∈V

fL(u). (3.40)

Our ill-conditioned benchmark was obtained from (3.40) by the finite ele-
ment discretization using a regular grid defined by the discretization param-
eter h and linear elements. The Dirichlet conditions were enhanced into the
Hessian AL,h of the discretized cost function fL,h, so that AL,h ∈ R

n×n is pos-
itive definite, n = p(p − 1), and p = 1/h + 1. Moreover, AL,h is known to be
ill-conditioned with the condition number κ(AL,h) ≈ h−2. The computations
were carried out with h = 1/32, which corresponds to n = 1056 unknowns.

We used the benchmark to compare the performance of CG, CG with
SSOR preconditioning, and CG with preconditioning by the conjugate pro-
jector. To define the conjugate projector, we decomposed the domain into 4×4
squares with typically 8× 8 variables which were aggregated by means of the
matrix U with 16 columns.

The graph of the norm of the gradient (vertical axis) against the number
of iterations for the basic CG algorithm (CG), the CG algorithm with SSOR
preconditioning (CG–SSOR), and the CG algorithm with preconditioning by
the conjugate projector (CG–CP) is in Fig. 3.5. We can see that though the
performance of the CG algorithm is poor if the Hessian of the cost function
is ill-conditioned, it can be considerably improved by preconditioning.
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Fig. 3.5. Convergence of CG, CG–SSOR, and CG–CP algorithms

3.10.2 Numerical Demonstration of Optimality

To illustrate the concept of optimality, let us consider the class of problems
to minimize

fLW,h(x) =
1
2
xT ALW,hx − bT

LW,hx,

where

ALW,h = AL,h + 2I, [bLW,h]i = −1, i = 1, . . . , n, n = 1/h + 1.

The class of problems can be given a mechanical interpretation associated
to the expanding spring systems on Winkler’s foundation. Using Gershgorin’s
theorem, it can be proved that the spectrum of the Hessian ALW,h of fLW,h is
located in the interval [2, 10], so that κ(ALW,h) ≤ 5.
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Fig. 3.6. Optimality of CG for a class of well-conditioned problems
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In Fig. 3.6, we can see the numbers of CG iterations kn (vertical axis) that
were necessary to reduce the norm of the gradient by 10−6 for the problems
with the dimension n ranging from 100 to 1000000. The dimension n on the
horizontal axis is in the logarithmic scale. We can see that kn varies mildly
with varying n, in agreement with the theory developed in Sect. 3.5. Moreover,
since the cost of the matrix–vector multiplications is in our case proportional
to the dimension n of the matrix ALW,h, it follows that the cost of the solution
is also proportional to n.

3.11 Comments and Conclusions

The development of the conjugate gradient method was preceded by the
method of conjugate directions [92]. If the conjugate directions are generated
by means of a suitable matrix decomposition, the method can be considered
as a variant of the direct methods of Sect. 1.5 (see, e.g., [169]).

Since its introduction in the early 1950s by Hestenes and Stiefel [117], a
lot of research related to the development of the CG method has been carried
out, so that there are many references concerning this subject. We refer an
interested reader to the textbooks and research monographs by Saad [163], van
der Vorst [178], Greenbaum [106], Hackbusch [110], Chen [21], and Axelsson
[4] for more information. A comprehensive account of development of the
CG method up to 1989 may be found in the paper by Golub and O’Leary
[102]. Most of the research is concentrated on the development and analysis
of preconditioners.

Preconditioning by conjugate projector presented in Sect. 3.7 was intro-
duced by Dostál [39]. The same preconditioning with different analysis was
presented independently by Marchuk and Kuznetsov [150] as the conjugate
gradients in subspace or the generalized conjugate gradient method and by
Nicolaides [154] as the deflation method.

Finding at each step the minimum over the subspace generated by all the
previous search directions, the conjugate gradient method exploits all the in-
formation gathered during the previous iterations. To use this feature in the
algorithms for the solution of constrained problems, it is important to generate
long uninterrupted sequences of the conjugate gradient iterations. This strat-
egy also supports exploitation of yet another unique feature of the conjugate
gradient method, namely, its self-preconditioning capabilities that were de-
scribed by van der Sluis and van der Vorst [168]. The latter property can also
be described in terms of the preconditioning by the conjugate projector. In-
deed, if Qk denotes the conjugate projector onto the conjugate complement V
of U = Span{p1, . . . ,pk}, then it is possible to give the bound on the rate
of convergence of the conjugate gradient method starting from xk+1 in terms
of the regular condition number κk = κ(QT

k AQk|V) of QT
k AQk|V and observe

that κk decreases with the increasing k.
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For the solution of large problems, the basic CG algorithm is most suc-
cessful when it is combined with the preconditioning which exploits additional
information about A, often obtained by tracing its generation. Thus the multi-
grid (see, e.g., Hackbusch [109] or Trottenberg et al. [176]) or FETI (see, e.g.,
Farhat, Mandel, and Roux [85], or Toselli and Widlund [175])-based precon-
ditioners for the solution of problems arising from the discretization of elliptic
partial differential equations exploit the information about the original con-
tinuous problems so efficiently that the discretized problems can be solved at
a cost proportional to the number of unknowns. It follows that the conjugate
gradient method should outperform direct solvers at least for some large prob-
lems. Special preconditioners for singular or nearly singular systems arising
in optimization were proposed, e.g., by Hager [114].
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