
Chapter 5
Gametophytic Self-Incompatibility in Petunia

Thomas L. Sims and Timothy P. Robbins

Abstract Gametophytic self-incompatibility (GSI), which prevents growth of a
pollen tube through the style, provides a means of preventing self-pollination. Seen
in most eudicot plant families, GSI in the genus Petunia was described by Darwin
in the 19th century. By the time the first edition of this monograph was published
in 1984, nearly a century later, most of the readily observable phenomena associ-
ated with self-incompatibility in the genus Petunia had been described and, as in a
number of other plant systems, it had been demonstrated to depend on the actions
of genes encoded at a single highly polymorphic S-locus. Molecular research of the
past two decades has provided a depth of understanding into the mechanisms under-
lying the earlier observations, particularly in the identification of a number of SI-
associated genes, their sites of action, and to some extent the mechanisms involved.
This chapter summarizes what has been learned, with a focus on the molecular
biology underlying GSI in Petunia, and highlights the major questions that remain
unanswered.

5.1 Introduction

....protected flowers with their own pollen placed on the stigma never yielded nearly a
full complement of seed; whilst those left uncovered produced fine capsules, showing that
pollen from other plants must have been brought to them, probably by moths. Plants grow-
ing vigorously and flowering in pots in the green-house, never yielded a single capsule; and
this may be attributed, at least in chief part, to the exclusion of moths (Darwin 1891).

Self-incompatibility (SI), the phenomenon by which plants can recognize “self ”
pollen and therefore prevent inbreeding, while accepting “non-self” pollen, has been
the subject of study ever since Darwin first described his observations of self- and
cross-fertilization in Petunia in his book The Effects of Self and Cross Fertiliza-
tion in the Vegetable Kingdom (Darwin 1891). At the time that the first Petunia
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monograph was published (Sink 1984), much of the essential phenomenology of
gametophytic self-incompatibility (GSI) had been described. Researchers such as
Mather (1943), Linskens (1975), and de Nettancourt (1977) had determined that
GSI in Petunia was governed by a single, multiallelic S-locus, and that recognition
and rejection of self pollen was controlled gametophytically by alleles expressed in
pollen. Mutations unilaterally inactivating self-incompatibility in pollen (pollen-part
mutations) had been identified and associated with centric chromosomal fragments
(Brewbaker and Natarajan 1960). Tetraploid plants with diploid heteroallelic pollen
had been shown to be self-compatible due to “competitive interaction” in pollen.
Shivanna and Rangaswamy (1969) had demonstrated that pollination of immature
styles could be used to overcome self-incompatibility (a phenomenon now under-
stood to result from high-level expression of the S-RNase late in the development
of the style). Ascher (1984) had demonstrated quantitative variation in the strength
of the self-incompatibility reaction, which he termed pseudo-self-compatibility. In
the ensuing years, research in this area has resulted in a far better understanding of
the molecular biology underlying many of the observations just described.

A variety of experimental approaches resulted in identification of the
S-ribonuclease (S-RNase) as the style-recognition component of gametophytic SI,
acting together with both the previously elusive “pollen-S” gene and a number
of other genes that play critical, supporting, or yet unclear roles in this response.
Despite the enormous progress that has been made in understanding the molecu-
lar basis of pollen recognition and rejection, many of the fundamental aspects of
gametophytic self-incompatibility remain to be fully deciphered. The most widely
accepted model for S-RNase-based incompatibility proposes that self and non-self
S-RNase proteins are imported into growing pollen tubes. In a compatible pollina-
tion, non-self S-RNases are inhibited from acting whereas in incompatible polli-
nations, self S-RNases act to degrade pollen RNA and inhibit growth. Recognition
of S-RNases as self or non-self is determined via the action of a pollen-expressed
S-locus-encoded F-box protein, SLF. What remains elusive, however, is how haplo-
type recognition (determined by the S-RNase and by the SLF protein) is integrated
with either the release or continued inhibition of S-RNase activity.

5.1.1 Genetics, Physiology, and Distribution of GSI

Gametophytic self-incompatibility has been estimated to occur in up to three-
quarters of eudicot families (Igic and Kohn 2001; Steinbachs and Holsinger 2002).
The most widespread form of GSI, as found in Petunia hybrida, is based on the
interaction of style- and pollen-expressed allelic proteins encoded by a single, mul-
tiallelic S-locus. The style and pollen components together form a recognition “hap-
lotype” (two or more tightly linked allelic variants). Recognition and rejection of
pollen depend on whether there is a match of haplotypes between the growing pollen
tube and the style. If the haplotype expressed in the pollen (“pollen-S”) matches one
of the two S-haplotypes expressed in the style (an incompatible cross), growth of the
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pollen tube is inhibited in the transmitting tract, and fertilization rarely occurs. Con-
versely, if there is no match between the haplotype expressed in the pollen and that
expressed in the style (compatible cross), pollen tube growth continues to the ovary,
resulting in fertilization and seed set. In most cases, compatible versus incompatible
crosses can be distinguished on the basis of seed capsule formation. In compati-
ble crosses, large seed capsules that may contain up to a few hundred seeds are
formed. In a fully incompatible cross, no seed capsules are formed, and no seed is
produced. An alternative method of assaying pollination success is the use of fluo-
rescence microscopy, traditionally using aniline blue as a fluorochrome, to monitor
the extent of growth of pollen tubes. Aniline blue stains callose, a �–1, 3 glucan
found in pollen tubes, and fluoresces with UV illumination. During incompatible
pollinations, the majority of pollen tubes terminate growth in the upper third of the
style, whereas in compatible pollinations pollen tubes reach the ovules.

As will be described more completely below, it is now understood that a self-
incompatibility haplotype is defined by the presence of a specific S-RNase allele
and a matching SLF allele linked at the same S-locus and inherited as a single unit
due to a local suppression of recombination. A number of other proteins, including
HT-B, the 120 kDa protein, SBP1, and SSK1, have been shown or hypothesized to
play critical roles in the expression of the self-incompatibility response. The known
and/or hypothesized roles of these genes and proteins are described in the sections
below.

Gametophytic self-incompatibility has been well studied not only in Petunia,
but also in other members of the Solanaceae, as well as in the Plantaginaceae
and Rosaceae (Igic and Kohn 2001; Olmstead et al. 2001). Although this chapter
focuses on the study of GSI in Petunia, much of our current understanding of this
response comes from experiments involving other genera of the Solanaceae, such as
Nicotiana, and Solanum, as well as from Antirrhinum (Plantaginaceae) and Prunus
(Rosaceae). Experimental results from these systems will be discussed as appropri-
ate. Where similar experiments have been performed in both Petunia and other plant
systems, in most cases only the Petunia experiments are mentioned.

5.1.2 Early History of SI in Petunia

Although Darwin (1891) described the essential features of self-sterility in Petunia,
it was not until later that Harland and Atteck (1933) established that a gametophytic
mechanism controls the specificity of the pollen. Mather (1943) questioned the iden-
tity of the Petunia material used in some of these early studies and considered that it
was probably P. hybrida rather than P. violacea (synonymous with P. integrifolia;
see Chapter 1 and references therein). The current consensus is that P. hybrida
has arisen from hybridization between the purple-flowered SI species P. integri-
folia and the white-flowered self-compatible (SC) species P. axillaris. These inter-
specific crosses exhibit unilateral incompatibility (UI) and are successful only with
P. axillaris as the female parent (Mather 1943). This is typical of UI that has been
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described in other genera of the Solanaceae. A further important discovery in these
early studies was the phenomenon of breakdown in SI that occurs when a diploid
undergoes colchicine-induced tetraploidy (Stout and Chandler 1941).

Several authors have commented on the suitability of P. hybrida and its wild
relatives for SI research (Linskens 1975; Ascher 1984). These features include a
generally strong SI reaction leading to the absence of seed set, although this can
conveniently be overcome by bud pollination. The latter technique allows homozy-
gous stocks to be established and maintained by either bud pollination or vegetative
propagation. The large floral organs facilitate controlled pollinations but are also
advantageous for biochemical or physiological studies. This has allowed detailed
studies of pollen tube growth rates in both compatible and incompatible pollinations
(Herrero and Dickinson 1980, 1981). These indicated that the difference in growth
rate occurs in the stylar transmitting tissue, consistent with what is now known about
the distribution of S-RNase. For a detailed discussion of these and other cytological
studies the reader should refer to Ascher (1984).

5.1.3 Pseudo-Self-Compatibility, Partial Breakdown of SI

In early studies using Petunia hybrida, Ascher and coworkers revealed considerable
variation in the responses of different GSI plants (Ascher 1984). Detailed genetic
studies have shown that self-compatibility can arise because either the mater-
nal or the paternal aspects became nonfunctional. Ascher coined the term “non-
discriminating styles” and “pollen-mediated pseudo-self-compatibility” to describe
each of these conditions (Flaschenreim and Ascher 1979a, b). However, there is
also a state that is intermediate between the two extremes, in which some seed
set occurs. Described by Ascher as “Pseudo-self compatibility” (PSC), the phe-
nomenon has been widely studied in a number of systems. In one such study
in Nemesia, part of the system that causes this self-compatibility could not be
described as being attributed to either the pollen or the style (Robacker and Ascher
1982). A similar intermediate level of response has also been described in Senecio
(Hiscock 2000).

Ascher defined PSC as the ability of an otherwise self-incompatible plant to set
seed when self-fertilized or crossed to other individuals bearing the same S-allele.
This definition distinguished the partial breakdown of self-incompatibility found
in PSC plants from the compatibility seen in plants lacking an SI system. Ascher
further defined a quantitative measure of PSC, percent PSC, by taking the ratio of
the number of seeds produced in an incompatible cross to that produced in a fully
compatible cross using the same individual. By expressing SI behavior as % PSC,
Ascher could distinguish the partial breakdown of SI from generalized effects on
fertility. Because all of Ascher’s studies took place prior to the identification and
cloning of specific genes that govern self-incompatibility interactions, the molecu-
lar basis of PSC behavior has not been fully described. It is likely that the differ-
ent levels of stylar-based PSC described (Flaschenreim and Ascher 1979b; Dana
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and Ascher 1986b) resulted from reduced expression or activity of the S-RNase
protein in styles. The molecular basis of pollen tube–expressed PSC (Flaschenreim
and Ascher 1979a; Dana and Ascher 1986a) is yet to be elucidated, and will be an
interesting area of investigation now that the pollen-recognition component of GSI
has been identified.

In a study that attempted to determine whether PSC in Petunia hybrida resulted
from the hybrid origin of cultivated Petunia, Dana and Ascher (1985) selected for
the presence of PSC in Petunia integrifolia plants grown from seeds collected in
the wild. They found that individual self-pollinated P. integrifolia plants were capa-
ble of expressing greater than 20% PSC (20% of the number of seeds produced in
a fully compatible cross). Thus, whatever the molecular basis of the partial break-
down of self-incompatibility, it does not appear to have arisen as an artifact of the
hybrid cross(es) between P. integrifolia and P. axillaris that resulted in P. hybrida.
PSC or full SC is widespread in cultivated P. hybrida and in some cases appears
to be associated with a particular S-allele, SO (Ai, Kron, and Kao 1991; Robbins,
Harbord, Sonneveld, and Clarke 2000).

5.1.4 Early Biochemical Studies of SI

The early characterization of S-proteins in the pistils of Nicotiana alata plants of
defined S-genotypes paved the way for the subsequent isolation of the first cDNAs
encoding S-proteins in the Solanaceae (Anderson et al. 1986). In Petunia hybrida,
similar studies by Kamboj and Jackson (1986) identified electrophoretic variants of
abundant pistil proteins that correlated with different S-genotypes. These proteins
were basic (pI 8.3–8.7) but no N-terminal sequence was reported. In a subsequent
study using S-alleles obtained from H. Linskens at the University of Nijmegen,
a similar range of pI values (8.7–9.3) was reported (Broothaerts et al. 1989).

Table 5.1 A comparison of N-terminal S-RNase sequences reported for functional S-alleles in
Petunia hybrida and P. inflata. The underlined region is the first conserved domain (C1) common
to all S-RNases of the Solanaceae

Allele N-terminal sequence Reference

S1l D F D Y M Q L V L T W P A S F C Y R P R Clark et al. 1990
S2l Y F E Y M Q L V L T W P P A F C H I K X Clark et al. 1990
S3l E F E L L Q L V L T W P A S F C Y A N H Clark et al. 1990
S1 S F D H W Q L V L T W P A G Y C K V K G Broothaerts et al. 1989
S2 N F D Y F Q L V L T W P A S F C Y P K N Broothaerts et al. 1989
S3 N F D Y F Q L V L T W P A S F C Y P K N Broothaerts et al. 1989
Sb A F D H W Q L V L T W P A G Y C K I K G Broothaerts et al. 1991
Sx D F D Y M Q L V L T W P A S F C Y R P R Ai et al. 1992
Sv Y F E Y M Q L V L T W P P A F C H I K R Robbins et al. 2000
S1i N F E Y L Q L V L T W P A S F C F R P K Ai et al. 1990
S2i N F D Y F Q L V L T W P A S F C Y P K N Ai et al. 1990
S3i N F D Y I Q L V L T W P A S F C Y R P K Ai et al. 1990
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S-proteins were identified that cosegregated with three S-alleles (S1–S3) and were
shown to accumulate in the stigma and style during flower development, peaking
at anthesis. Protein purification allowed for the recovery of N-terminal sequences
of all three alleles, providing clear evidence of amino acid differences (Table 5.1).
These S-proteins were subsequently shown to be glycosylated, and the apparent dif-
ferences in MW (28–32 kD) could be accounted for by variations in the number
and length of the carbohydrate side chains (Broothaerts, Vanvinckenroye, Decock,
Van Damme, and Vendrig 1991). Similar patterns of glycosylation have been
established for the S-proteins of Nicotiana alata (Woodward, Bacic, Jahnen, and
Clarke 1989).

5.2 S-RNase: The Style-Recognition Component

The first cDNA sequences to be reported for S-proteins in Petunia were for
P. hybrida (Clark et al. 1990) and P. inflata (Ai et al. 1990). These sequences
revealed a similarity with the T2-type of fungal ribonucleases initially observed
in Nicotiana alata in a work that led to the term “S-RNase.” The S-RNase gene
is expressed at high levels late during the development of the pistil (Clark, Oku-
ley, Collins, and Sims 1990), and encodes a secreted protein that accumulates to
high levels in the transmitting tract of the style (Anderson et al. 1989; Ai et al.
1990). Comparative sequence analysis of S-RNase genes isolated from a number
of species (Anderson et al. 1989; Ai et al. 1990; Clark et al. 1990; Ioerger, Gohlke,
Xu, and Kao 1991; Xue, Carpenter, Dickinson, and Coen 1996; Ishimizu, Shinkawa,
Sakiyama, and Norioka 1998) demonstrated that S-RNase proteins show a regular
pattern of interspersion of highly conserved amino acid sequence with more vari-
able sequence. Conserved domains C2 and C3 contain two histidine residues, His32
and His91, that along with Lys90 make up the catalytic site of the ribonuclease (Ida
et al. 2001). S-RNase proteins in the Solanaceae and Plantaginaceae contain two
highly variable sequence domains, HVa and HVb (Ioerger et al. 1991; Xue et al.
1996). Gain-of-function experiments (Lee, Huang, and Kao 1994) in which a S3-
RNase of Petunia inflata was transferred to a plant of the S1S2 genotype showed
that transgenic plants expressing the S3 protein at levels comparable to endogenous
S-RNase had acquired the ability to reject S3 pollen. Lee et al. (1994) also used
an antisense approach to downregulate the S3-RNase in a S2S3 background. Plants
with reduced levels of S3-RNase were no longer capable of inhibiting S3-pollen. In
a subsequent experiment, McCubbin, Chung, and Kao (1997) introduced a RNase-

(H93R) variant of the S3 S-RNase of Petunia inflata into an S2S3 background. The
resulting transgenic S2S3(S3H93R) plant demonstrated a dominant-negative pheno-
type that affected only the S3 allele; when self-pollinated, the transgenic plant was
self-compatible. Crosses using pollen from other testers indicated that the dominant-
negative transgenic plant had lost the ability to reject S3 pollen but was unaffected
in its ability to reject S2 pollen. This result suggests that the S3H93R allele some-
how blocks an interaction or prevents the normal function of the S3 allele. In all of
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these experiments, only the style recognition was altered. Pollen-recognition speci-
ficity was not affected, confirming that a separate gene product from the S-RNase
encoded the “pollen-S” component.

The ribonuclease activity of the S-RNase is correlated with pollen rejection.
McClure, Gray, Anderson, and Clarke (1990) labeled pollen RNA in vivo by water-
ing plants with a solution containing 32P-orthophosphate, and showed that incom-
patible pollinations were associated with degradation of pollen-tube RNA, whereas
pollen tube RNA was not degraded following compatible pollination. Both trans-
genic experiments (Huang, Lee, Karunanandaa, and Kao 1994) and analysis of
spontaneous mutants (Royo et al. 1994) demonstrated that eliminating the catalytic
ribonuclease activity of the S-RNase (e.g., by mutation of the active site histidine to
asparagine), also eliminated the ability to reject pollen.

S-RNase proteins are glycoproteins, and show variability in the number, type, and
fine structure of glycan chains associated with S-RNases (Woodward et al. 1989).
The carbohydrate group does not appear to be essential for self-incompatibility, as
elimination of the glycosylation site has no effect on the ability of a S-RNase to
reject self pollen (Karunanandaa, Huang, and Kao 1994).

5.2.1 Basis of Recognition Specificity of the S-RNase

Experiments investigating the basis for allelic specificity in the S-RNase protein
have generally focused on the role of the hypervariable regions. An experiment
in Solanum chacoense appeared to provide strong evidence that the hypervariable
regions were both necessary and sufficient for the specificity (Matton et al. 1997).
The S11 and S13 S-RNase alleles of S. chacoense differ by only 10 amino acids
across the entire protein, three of which are found in HVa and one in HVb. Mat-
ton et al. (1997) used in vitro mutagenesis to change the four S11 residues in the
HVa and HVb regions to those found in S13, then expressed the altered allele trans-
genically in an S12S14 background. Pollination with S11 and S13 pollen demonstrated
that changing only these residues changed the recognition specificity of the trans-
ferred S-RNase from S11 to S13. In an extension of this experiment (Matton et al.
1999), changing only two residues in HVa plus the HVb residue, resulted in a “dual-
specificity” S-RNase that retained the ability to reject S11 pollen while acquiring the
ability to also reject S13 pollen. Other experiments, however, have suggested that
this may not be the outcome in all cases. Zurek, Mou, Beecher, and McClure (1997)
made constructs exchanging the complete HVa and HVb domains of the SA2 and
SC10 S-RNase alleles of Nicotiana alata. When expressed transgenically, the result-
ing protein had lost the ability to reject SA2 pollen, while not acquiring the ability
to reject SC10 pollen, suggesting that protein regions outside of the hypervariable
domains play a role in recognition.

The protein crystal structure has been determined for the SF11 S-RNase of
Nicotiana alata (Ida et al. 2001) and provides support for the involvement of the
hypervariable domains in allelic recognition and interaction. In Nicotiana the two
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hypervariable regions are separated in the primary amino acid sequence but located
next to each other on the surface of the tertiary structure (Ida et al. 2001). The HVa
region is further characterized by a cluster of positively charged side chains, whereas
the HVb region has a cluster of negative charges. Comparative sequence analysis
showed that the most highly variable amino acids in the hypervariable regions are
located on the surface of the SF11 S-RNase and readily accessible to solvent (Ida
et al. 2001). These include all four of the residues equivalent to those targeted in the
mutagenesis experiments of Matton et al. (1997, 1999).

5.2.2 Allelic Diversity of S-RNases

Allelic diversity at the S-locus in Petunia hybrida is much more limited than that
of the wild species from which it is derived: P. axillaris and P. integrifolia (see
Chapter 1). The number of S-alleles found in the cultivated forms of P. hybrida
is probably fewer than 10 (Robbins et al. 2000), compared to that of the natu-
ral populations in South America, which may have 40 or more distinct S-alleles
(Tsukamoto et al. 2003). This reflects the bottleneck of plant breeding in which rela-
tively few individuals were used in the initial interspecific hybridizations. Moreover,
the low allelic diversity suggests that subsequent hybridizations and introgressions
from wild relatives have been relatively infrequent during the 150 years or so of P.
hybrida cultivation.

The estimate of the minimum number of S-alleles in P. hybrida is most eas-
ily based on the number of S-RNase sequences rather than on phenotypic assays
based on pollinations (Robbins et al. 2000). Broothaerts and coworkers reported the
N-terminal sequences for purified S-RNases derived from Linsken’s original three
S-alleles, S1, S2, and S3 (Broothaerts et al. 1989). They also reported an S-allele
derived from a commercial variety which was named Sb (Broothaerts et al. 1991).
Sims and coworkers were the first to report cDNA sequences for three S-RNases
from P. hybrida, derived from stocks originally described by Ascher (Clark et al.
1990). Rather confusingly, the Ascher S-alleles were also named S1–S3 and yet
sequence comparisons indicated that these were distinct from the Linskens alleles.
Robbins et al. (2000) proposed that the Linskens S-alleles be given the suffix “L”
to avoid future confusion. It is also important to distinguish these S-alleles from the
S1–S3 alleles of the species P. integrifolia ssp. inflata.

To this initial set of seven P. hybrida S-alleles (S1–S3, S1L–S3L, Sb) should also be
added a functional allele Sx, derived from crosses between P. hybrida and P. inflata
(Ai, Tsai, and Kao 1992). The Sx allele was derived from the P. hybrida parent and
was conditionally functional depending on background modifiers that segregated
from the P. hybrida parent (Ai et al. 1991). One additional functional allele was
identified from the self-incompatible stock V13 maintained by the Free University
of Amsterdam (Harbord, Napoli, and Robbins 2000). Surprisingly, this stock had
been maintained as an inbred line (perhaps by inadvertent early bud pollination),
yet it was homozygous for a novel S-RNase sequence (Robbins et al. 2000). This
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allele has also been identified in an independent cultivar by Entani et al. (1999).
Table 5.1 presents the N-terminal regions for all nine reported P. hybrida S-alleles
and of S1–S3 of P. inflata for comparison. The cDNA sequences are available for all
alleles except S1L and S2L, and these alleles may no longer be available. It is possible
that they are equivalent to extant alleles, as the N-terminal sequences of S1L and Sx

and of S2L and Sv are identical. It follows that the number of distinct functional
S-alleles identified in P. hybrida may be as few as seven.

The number of S-alleles identified in natural populations of Petunia has not been
rigorously determined at the level of population genetics. One study of a single
population of 100 individuals of P. inflata from Argentina identified 19 different S-
haplotypes (Wang, Hughes, Tsukamoto, Ando, and Kao 2001). The cDNA sequence
was obtained for 15 haplotypes maintained as bud self-homozygotes. Surprisingly,
one of these was identical to the S1 allele that has been extensively studied in
transgenic plants (Ai et al. 1990). Phylogenetic analysis of the P. inflata S-RNase
sequences revealed a trans-specific pattern of similarity with S-RNase sequences
from other members of the Solanaceae, as demonstrated previously for a small sam-
ple of alleles (Ioerger, Clark, and Kao 1990). Natural populations of P. axillaris have
been found to contain as many as 40 different haplotypes, although the situation is
complicated by self-compatibility that can occur as a result of loss of style or pollen
function (Tsukamoto et al. 2003).

5.2.3 RNase Mapping Studies

The S-locus has been mapped near the centromere of chromosome I in two closely
related members of the Solanaceae, Lycopersicon/Solanum esculentum (n=12)
(Tanksley and Loaiza-Figueroa 1985) and Solanum tuberosum (Gebhardt et al.
1991). In Petunia hybrida (n=7) an indirect approach was taken, using fluores-
cence in situ hybridization (FISH) localization of T-DNA inserts (ten Hoopen, Har-
bord, Maes, Nanninga, and Robbins 1998) that were known to be linked to the
S-locus (Harbord et al. 2000). This approach physically mapped the S-locus in
the V26 cultivar to a sub-centromeric region of chromosome III. In a more direct
approach, Entani et al. (1999) also employed FISH to localize the SB1-RNase gene
of P. hybrida to a sub-centromeric region of chromosome III in a SI line “PB”.

These two results are contradicted by an independent RFLP study by Strommer,
Gerats, Sanago, and Molnar (2000) who mapped the S-RNase gene to chromosome
IV using a VR hybrid mapping strategy. The situation is further complicated by
the RFLP mapping using a potato marker CP100 reported by ten Hoopen et al.
(1998). This heterologous RFLP marker has shown consistent cosegregation with
the S-locus of P. hybrida (Harbord et al. 2000). When mapped with the same VR
mapping population used by Strommer et al. (2000), the localization of CP100 was
to chromosome III rather than chromosome IV. This makes it difficult to explain
the different localizations due to cultivar-specific differences in genome organi-
zation, although such variability is known to be a recurring feature of P. hybrida



94 T.L. Sims and T.P. Robbins

cytological studies (Montijn, ten Hoopen, Fransz, Oud, and Nanninga 1998; see
also Chapter 10).

A common feature of these cytological studies in P. hybrida (ten Hoopen et al.
1998; Entani et al. 1999) is a localization for the S-locus at or near the cen-
tromere. Several authors have noted that a centromeric location of the S-locus in
the Solanaceae may provide tight linkage between the S-RNase and pollen-S, as this
region is characterized by suppressed recombination (Round, Flowers, and Richards
1997; Copenhaver, Browne, and Preuss 1998). However, this does not appear to be
a general feature, because in Antirrhinum the S-locus is located toward the telomere
(Yang, Zhang, Li, Cheng, and Xue 2007).

Physical mapping of S-locus genes in Petunia has also been achieved by genomic
cloning strategies. McCubbin, Wang, and Kao (2000a) isolated pollen cDNAs linked
to the S-locus, and subsequently McCubbin, Zuniga, and Kao (2000b) and Wang and
colleagues (Wang, Wang, McCubbin, and Kao 2003; Wang et al. 2004) used these
cDNAs, along with the S-RNase, to screen BAC libraries for S-locus contig clones.
This work suggested that the S-locus of Petunia inflata may span >4.4 Mb of chro-
mosomal DNA. Sequencing of a 328 kb region containing the S2-RNase revealed the
presence of approximately 50 genes, one of which was a pollen-expressed polymor-
phic F-box gene termed PiSLF2. PiSLF2 was subsequently shown by a transgenic
approach to be a pollen-S gene (Sijacic et al. 2004).

5.3 Non-S-Locus Stylar Factors

Although the S-RNase plays a key recognition (and cytotoxic) role in the style, other
factors are required for expression of self-incompatibility. For example, using dif-
ferent species of Nicotiana for transgenic experiments, Murfett et al. (1996) showed
that expression of the S-RNase gene in transgenic SC Nicotiana plumbaginifolia
was insufficient for S-allele-specific pollen rejection, whereas expression of the
S-RNase in N. plumbaginifolia X SC N. alata hybrid plants did result in S-allele-
specific pollen rejection. The clear implication was that some factor(s) must be
expressed in Nicotiana alata that is/are not expressed in N. plumbaginifolia, and that
the factor(s) is/are required for pollen rejection. Using a differential screen based on
the above observation, McClure, Mou, Canevascini, and Bernatzky (1999) cloned a
small (101 amino acid) asparagine-rich protein from SC N. alata that they named
HT. This protein was predicted to be secreted and processed to a mature form of
86 kDa. Antisense experiments in transgenic plants showed that downregulation of
HT in styles resulted in the inability to reject pollen, even though the S-RNase was
expressed at normal levels (McClure et al. 1999).

O’Brien et al. (2002), working in Solanum chacoense, extended this work to
demonstrate two different isoforms of HT, which they named HT-A and HT-B.
Antisense downregulation of HT-B duplicated the results of McClure et al. (1999)
in that incompatible plants were converted to self-compatible plants. Downregula-
tion of HT-A had no effect on the self-incompatibility response. The requirement of
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HT-B for pollen rejection was further demonstrated by analyzing different SC and
SI species of tomato as well as cultivated tomato. Kondo et al. (2002a, b) showed
that SC tomato species had various defects in expression of both S-RNase and HT-B,
ranging from deletion of the genes, to low expression, to mutations that prevented
production of normal protein. The role of HT and S-RNase expression in SC in
P. hybrida is unclear at present. However, there is clear evidence for SC factors that
are unlinked to the S-locus (Ai et al. 1991; Harbord et al. 2000), and the mapping of
the HT genes in Petunia will be informative.

The style expresses several proteins at high levels in addition to the S-RNase.
Among these are TTS (Cheung, May, Kawata, Ou, and Wu 1993), PELPIII
(Goldman, Pezzotti, Seurinck, and Mariana 1992; de Graaf, Knuiman, Derksen, and
Mariani 2003), and a 120 kDa protein (Lind, Bacic, Clarke, and Anderson 1994).
In affinity-gel binding assays, Cruz-Garcia, Hancock, Kim, and McClure (2005)
showed that all three of these stylar glycoproteins formed high molecular weight
complexes with the S-RNase. These authors hypothesized that S-RNase may be
taken up into pollen tubes in the form of a complex that includes one or more of
these proteins. Indeed, in a recent work, Goldraij et al. (2006) showed that S-RNase
taken up into pollen tubes is sequestered in a vacuolar-like compartment that is
bounded by the 120 kDa protein. The 120 kDa protein, like HT-B, is also required
for S-allele-specific pollen rejection. Downregulating the 120 kDa protein using
RNA interference in Nicotiana plumbaginifolia X N. alata hybrids eliminated the
ability to reject S-allele specific pollen. The same RNAi plants could, however, con-
tinue to reject pollen from N. plumbaginifolia, whereas plants downregulated for
HT-B failed to reject either S-allele-specific pollen or N. plumbaginifolia pollen
(McClure et al. 1999; Hancock, Kent, and McClure 2005).

5.4 SLF: the Pollen-Recognition Component

‘The first cDNA encoding an S-RNase protein was reported in 1986 (Anderson et al.
1986), but it would be sixteen years before the first published cloning of a gene that
would turn out to be pollen-S (Lai et al. 2002). Despite numerous attempts over the
ensuing period to identify pollen-S, it was only the improvement in techniques for
cloning large-insert DNA libraries along with the ability to sequence long stretches
of DNA the made it possible to finally identify and clone the S-locus F-box gene
subsequently shown to be pollen-S. Prior research led to several predictions for the
expected properties of the pollen-S component, which formed the basis for attempts
to clone this gene. First, mutants defective in style or pollen expression of GSI are
often fully functional for GSI in the complementary organ, indicating that the style
(S-RNase) component and the pollen component (pollen-S) are encoded by sepa-
rate genes. This observation was reinforced by transgenic experiments (discussed
above) in which gain-of-function or loss-of-function experiments that altered
S-RNase specificity had no effect on recognition specificity in the pollen. Second,
because recombination between the S-RNase and pollen-S is rarely observed, it
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has been assumed that the two genes are physically linked, or may be located in
chromosomal regions suppressed for recombination. Third, the pollen-S gene must
be expressed in pollen, most likely in a pollen-specific fashion. Fourth, models of
GSI recognition strongly suggested that pollen-S and the S-RNase must physically
interact. Fifth, because S-RNase alleles are highly polymorphic (primarily in the
hypervariable regions) and recombination is suppressed at the S-locus, pollen-S
alleles were expected to be similarly polymorphic. As will be elaborated below,
the first four of these predictions hold true, while the expectations of high levels
of polymorphism for the pollen-S component are only partially supported. Finally,
the observation that GSI breaks down in tetraploid plants, and in plants where the
S-locus is partially or fully duplicated such that heteroallelic pollen is produced,
provided a clear test for the behavior of a gene putatively identified as pollen-S.

5.4.1 The Inhibitor Model for Pollen-S

Most current evidence supports a cytotoxic model for pollen-tube rejection wherein
the S-RNase acts to degrade pollen RNA, thereby inhibiting protein synthesis and
further elongation of pollen tubes (Sims 2005). Cross-compatibility, therefore, must
result from the absence of S-RNase activity in pollen tubes, either by preventing the
initial import of S-RNase or by inhibiting the action of S-RNases inside pollen tubes.
Several different experimental approaches have now demonstrated that the model of
S-RNase inhibition is correct, although the precise nature of that inhibition has not
yet been conclusively demonstrated.

Direct observations of pollen tubes using electron microscopy and immuno-
gold labeling of S-RNases demonstrated that both compatible and incompatible
S-RNases were imported into pollen tubes (Luu, Qin, Morse, and Cappadocia 2000).
These results are inconsistent with a receptor model for pollen-S, in which it acts
as a “gatekeeper” to exclude non-self S-RNases. Rather, these results support a
model in which the S-RNase is imported into all pollen tubes regardless of geno-
type, but is specifically prevented from acting in non-self (compatible) pollen tubes.
More recently, Goldraij et al. (2006) showed that S-RNases imported into Nicotiana
pollen tubes are apparently sequestered in a vacuolar-like compartment in compati-
ble pollen tubes and in the early stages of self-incompatible pollinations.

5.4.2 Breakdown of Incompatibility and Competitive Interactions

Prior to direct observations of S-RNase import into pollen tubes, most of the evi-
dence supporting the hypothesis of a pollen-expressed inhibitor came from investi-
gations of “competitive interaction” in diploid heteroallelic pollen from tetraploid
plants. It is a well-established observation (Crane and Lewis 1942; Lewis and Mod-
libowska 1942; Brewbaker and Natarajan 1960; de Nettancourt 1977) that game-
tophytic self-incompatibility breaks down in tetraploid plants, provided that the
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diploid parent is heterozygous at the S-locus. Under these conditions, however, the
breakdown of self-incompatibility is only on the pollen side. That is, tetraploid
heterozygous styles remain capable of rejecting haploid pollen with a matching
S-allele, but diploid, heteroallelic pollen is self-compatible on either diploid or
tetraploid styles. This phenomenon of breakdown of self-incompatibility in the
pollen has been termed “competitive interaction.”

Competitive interaction does not require complete duplication of genomes.
Brewbaker and Natarajan (1960) showed that self-compatible mutants of Petunia
inflata had centric chromosome fragments that presumably duplicated the S-locus.
In a similar mutational analysis of the pollen component in Nicotiana alata, Golz
and coworkers (Golz, Su, Clarke, and Newbigin 1999; Golz, Oh, Su, Kusaba, and
Newbigin 2001) induced pollen-part mutations by gamma irradiation, and then char-
acterized the genetic behavior and molecular basis of the induced mutations. All
of the recovered pollen-part mutants were self-compatible and demonstrated com-
petitive interaction in pollen with other S-alleles. All of the pollen-part mutants
resulted from duplications of all or part of the S-locus, and no pollen-part mutations
were associated with chromosomal deletions. Thus, pollen-part mutations induced
by radiation phenocopy the tetraploid condition via duplication of the S-locus, most
likely by duplication of pollen-S. These results are consistent with a model in which
pollen-S is an inhibitor of self-S-RNases. According to this model, in tetraploid
plants (or in plants with radiation-induced duplicated S-loci), heteroallelic pollen
would possess two inhibitors, each capable of inhibiting all S-RNases except their
cognate inhibitor, and therefore all S-RNases would be inhibited. According to this
model, deletions in pollen-S would not be recoverable, since any pollen tube having
a deleted pollen-S would be unable to inhibit the S-RNase, and would be rejected.

5.4.3 Evidence that the S-Locus F-Box Protein Is Pollen-S

Transgenic experiments that relied on the phenomenon of competitive interac-
tion in pollen (described above) provided definitive proof that the S-locus F-box
genes are pollen-S. Sijacic et al. (2004) transformed S1S1 Petunia inflata with a
PiSLF2 gene construct. Transgenic plants expressing both the PiSLF2 transgene
and the endogenous F-box gene PiSLF1 were self-compatible, as would be pre-
dicted from the phenomenon of competitive interaction. The breakdown in self-
incompatibility occurred only in the pollen and did not affect stylar expression of
self-incompatibility. Pollen from the transgenic S1S1/PiSLF2 plants was compati-
ble on non-transgenic S1S1 plants, while S1 pollen from the non-transgenic S1S1

plants was rejected by styles of the transgenic S1S1/PiSLF2 plants. Progeny result-
ing from the compatible pollinations carried the PiSLF2 transgene, and all were
self-compatible. In a further experiment, PiSLF2 was used to transform S2S3 Petu-
nia inflata. Transgenic S2S3/PiSLF2 plants produced a mixture of pollen genotypes:
haploid S2 and S3 pollen (rejected via the standard self-incompatibility response),
heteroallelic S3/PiSLF2 pollen, and homoallelic S2/PiSLF2 pollen. The transgenic
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S2S3/PiSLF2 plants were all self-compatible. Analysis of the progeny showed that
the resulting plants were all S2S3 or S3S3. Failure to recover S2S2 plants in the
progeny indicates that only S3/PiSLF2 was functional, as predicted, because com-
petitive interaction should not occur in S2/PiSLF2 pollen.

In similar experiments, Qiao et al. (2004) transformed S3S3 Petunia hybrida with
the AhSLF-S2 pollen F-box gene together with the S2-RNase gene from Antirrhinum
hispanicum. Transgenic plants carrying intact genes for AhSLF-S2 and the S2-RNase
and expressing both at normal levels were self-compatible, and all produced seed
when used as the pollen donor to non-transformed S3S3 Petunia. This is the expected
result from competitive interaction between different pollen-S genes expressed in
the same pollen grain. In the reciprocal cross, these plants rejected non-transgenic
S3 pollen. Taken together with the results reported by Sijacic et al. (2004), these
experiments demonstrate that the F-box gene encodes the pollen-recognition factor
of gametophytic self-incompatibility, pollen-S. It is striking in the work reported by
Qiao et al. (2004) that the transferred AhSLF-S2 demonstrated functional conserva-
tion in the ability to induce competitive interaction in the pollen, despite sharing
only 30% amino acid sequence identity with endogenous Petunia SLF genes.

5.4.4 Pollen-Part Mutants in the Rosaceae

Several Prunus species, in the Rosaceae, have been shown to carry SLF (also called
SFB) genes linked to the S-locus (Ushijima et al. 2003; Entani et al. 2003; Yamane,
Ikeda, Ushijima, Sassa, and Tao 2003). Transgenic assays to demonstrate that the
SFB/SLF genes encode functional pollen components of GSI are not yet possible
in Prunus. Several self-compatible mutants have, however, been identified in differ-
ent species of Prunus, and all show various defects in SFB. Sequence analysis of
S-locus F-box genes showed that the F-box motif was located at the N-terminus of
the protein. The Prunus SFB/SLF proteins also have two hypervariable regions, HVa
and HVb, located near the C-terminus of the protein. Ushijima et al. (2004) reported
the characterization of two self-compatible mutants of Prunus avium and P. mume.
DNA sequence analysis predicted that the HVa and HVb domains should be miss-
ing in the two mutant SFB proteins. SFB4′ has a frame shift mutation that produces
an altered amino acid sequence in the HVa region and a stop codon just upstream
of the HVb region. SFBf has a 6.8 kb insertion sequence in the region encoding
the C-terminal portion of the protein. The insertion would code for 37 amino acids
before a stop codon is reached; the mutant protein would lack the C-terminal 195
amino acids found in normal SFB proteins, and therefore lack both HVa and HVb
regions. Sonneveld, Tobutt, Vaughan, and Robbins (2005) characterized two pollen-
part mutants of Prunus avium. One of these was the same SFB4′ mutant described
by the previous group. A second mutant, S3′ , had a deletion that removed the entire
SFB gene. The S13′ self-compatible mutant in Prunus cerasus also shows alterations
in the SFB gene (Tsukamoto, Hauck, Tao, Jiang, and Iezzoni 2006). In this allele, a
1 bp guanine-to-thymine substitution at position +733 produces a UAA stop codon
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that truncates the SFB protein and eliminates the HVa and HVb regions. Two addi-
tional SFB mutations have been reported in self-compatible peach, Prunus persica
(Tao et al. 2007). SFB1 contains a 155 bp insertion that results in a truncated SFB
protein, while SFB2 has a 5 bp insertion that produces a stop codon in the middle of
the protein, truncating the protein upstream of the HVa and HVb regions (Tao et al.
2007). Together, the identification of different pollen-part mutants in these species
provides strong support for the identification of SFB/SLF as the pollen component
of GSI in the Rosaceae. It is noteworthy that pollen-part mutants resulting from a
deletion or mutation of SLF have not been reported in the Solanaceae.

5.5 The Role of Ubiquitination in GSI

The identification of F-box proteins as pollen-S, along with the identification
of a RING-HC protein PhSBP1 (see below), suggested a role for the ubiquitin-
proteosome system in self-incompatibility recognition. F-box proteins are the recog-
nition components of multiprotein SCF-type E3 ubiquitin ligases. These complexes
target proteins for ubiquitination and degradation via the 26S proteosome. The pro-
totypical SCF complex consists of the F-box protein, SKP1, a Cullin protein and
a RING domain protein RBX1 (Cardozo and Pagano 2004; Schwechheimer and
Villalobos 2004).

A potential role for ubiquitination in gametophytic self-incompatibility was first
suggested by the isolation of a gene encoding the RING-HC-containing protein
PhSBP1 from Petunia hybrida (Sims and Ordanic 2001). In an attempt to identify
pollen-expressed proteins interacting with the S-RNase, Sims and Ordanic (2001)
screened a yeast two-hybrid library from mature pollen of P. hybrida with a bait
construct for the N-terminal half of the P. hybrida S1-RNase. This screen identi-
fied a gene, named PhSBP1 (for P. hybrida S-RNase binding protein), that bound
to N-terminal but not C-terminal regions of the S-RNase. Sequence characterization
of PhSBP1 indicated that it contained a C-terminal RING-HC (or C3HC4) protein
domain. Such domains have been shown to be characteristic of E3 ubiquitin ligases,
the components of the ubiquitin-proteosome system that interact with specific sub-
strates targeted for ubiquitination and protein turnover (Freemont 2000). O’Brien,
Major, Chantha, and Matton (2004) similarly screened a pollen two-hybrid library
from Solanum chacoense with a bait consisting of the HVa and HVb domains of the
S. chacoense S11 allele. This screen resulted in the isolation of a Solanum PhSBP1
ortholog, ScSBP1. In a confirmation of the apparently key role of SBP1, Hua and
Kao (2006) carried out a yeast two-hybrid screen using three separate bait con-
structs of the PiSLF2 F-box gene of Petunia inflata. All three of these baits bound
to a protein 98% identical to PhSBP1, which was named PiSBP1. Further protein
interaction assays showed that PiSBP1 also bound to PiSLF1 of P. inflata, as well as
to an unrelated F-box protein PiFBP2411 (Hua and Kao 2006).

These results suggested an attractive model for how SLF/SFB, and possibly
SBP1, function in recognition of self/non-self pollen and inhibition of the growth
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of self pollen (Kao 2004; Sims 2005). This model can be stated as follows: dur-
ing pollination, pollen grains (either self or non-self) are deposited on the stigmatic
surface, germinate and produce pollen tubes that begin to grow through the trans-
mitting tract of the style, where they encounter secreted S-RNases. Both self and
non-self S-RNases are imported into pollen tubes. S-RNases recognized as non-self
are recognized by a SCFSLF (SCF-S-locus F-box)-E3 ubiquitin ligase complex, and
targeted for ubiquitination and degradation via the 26S proteosome. S-RNases rec-
ognized as self are not ubiquitinated, retain ribonuclease activity, and act to degrade
pollen tube RNA, thereby inhibiting protein synthesis and pollen tube growth. This
model makes at least two predictions: first, that S-RNase should be polyubiquiti-
nated and degraded in compatible pollinations, and second, that downregulation of
SLF/SFB should result in complete self-incompatibility. Available evidence, how-
ever, provides only modest support for these two predictions. Experiments designed
to determine if S-RNases were degraded in pollen tubes (Qiao et al. 2004) suggested
a possible reduction in S-RNase levels. The observed reduction was far from dra-
matic however, and it was difficult to determine from the data presented whether
the observed reduction was statistically significant at all time points. Goldraij et al.
(2006) also assayed the level of S-RNase protein in both compatible and incom-
patible pollinations, and found little evidence to support large-scale degradation
of S-RNase in compatible pollen. Hua et al. (Hua, Fields, and Kao 2008) have
argued, however, that the failure to observe significant differences in S-RNase lev-
els between compatible and incompatible pollen tubes cannot be used as evidence
against the protein degradation model. To date there have been no reports regard-
ing the effect of downregulation of SLF in transgenic plants. As discussed above,
however, mutants of different Prunus species in which truncated SFB/SLF proteins
are produced or the gene is completely deleted are self-compatible rather than uni-
versally incompatible. The study of downregulation or mutation of the SLF gene in
Solanaceae will be an important area for future comparative studies of the S-RNase-
based mechanism in these two families.

5.5.1 Evidence for a SCFSLF-Like E3 Ubiquitin Ligase Complex

Although the precise role of ubiquitination and/or protein degradation in GSI
remains unclear, there is strong evidence for the involvement of a SCF-type com-
plex in self-incompatibility. It appears, however, that the proposed SCFSLF complex
differs somewhat from the prototypical SCF complex. The canonical SCF complex
contains the core subunit SKP1; however, Hua and Kao (2006) showed that SKP1
proteins did not bind to products of PiSLF alleles in protein interaction assays. Sim-
ilarly, Huang, Zhao, Yang, and Xue (2006) could not detect binding between SKP1
proteins in Antirrhinum and AhSLF. Huang et al. (2006) identified a SKP1-like pro-
tein, AhSSK1, by using a bait construct of the Antirrhinum F-box protein AhSLF-
S2 to screen a yeast two-hybrid library. In addition to its interaction with AhSLF,
AhSSK1 interacted with another scaffold component of SCG complexes, CUL1.
Huang et al. (2006) proposed that AhSSK1 may act as a bridge between AhSLF
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and CUL1. The prototypical SCF complex contains a small RING protein RBX1. In
the experiments of Hua and Kao, no interaction could be detected between RBX1
from Petunia inflata and either CUL1 or SLF. Lastly, both Sims (unpublished) and
Hua and Kao (2006) found that SBP1 binds to the E2 ubiquitin conjugation pro-
tein PhUBC1. Together, these results suggest that a SCFSLF-like E3 ubiquitin ligase
complex may function in gametophytic self-incompatibility. Components of this
complex would include SLF, SBP1 (replacing RBX1), CUL1, and SSK1 (replac-
ing SKP1). This complex could play a role in recognizing either all S-RNases or in
specific recognition and inhibition of non-self S-RNases.

5.6 Vacuolar Sequestration of S-RNase in Compatible
Pollen Tubes

Two style-expressed proteins, HT-B and the 120 kDa glycoprotein, have been shown
to be required for expression of self-incompatibility (McClure et al. 1999; Hancock
et al. 2005). Downregulation of either renders otherwise self-incompatible plants
incapable of rejecting pollen. In an examination of the role that they play in com-
patible and incompatible pollination, Goldraij et al. (2006) investigated the subcel-
lular localization of these proteins, the S-RNase, and compartment-marker proteins
in growing pollen tubes. S-RNase, HT-B and the 120 kDa protein were all imported
into both compatible and incompatible pollen tubes. In compatible pollen tubes, and
in pollen tubes at early stages of incompatible pollinations, the S-RNase appeared
to be sequestered in a vacuolar compartment bounded by the 120 kDa glycopro-
tein. HT-B appeared to be degraded in compatible pollen tubes. In incompatible
pollen tubes, late in pollination, this compartment appeared to break down. S-RNase
levels persisted, as did HT-B, but the 120 kDa protein was no longer evident. In
antisense HT-B plants, which were completely self-compatible, S-RNase remained
sequestered (Goldraij et al. 2006).

5.7 Conclusion: Models for Pollen Recognition and Rejection

Taken together, current results support two alternative models for how S-RNase
activity is inhibited in compatible pollen tubes, but released in incompatible pollina-
tions. According to the SCFSLF complex model, an E3 ubiquitin ligase complex pref-
erentially recognizes non-self S-RNases and ubiquitinates them, most likely leading
to degradation. In the sequestration model, compatibility occurs due to the contin-
ued sequestration of S-RNase in a vacuolar compartment, which is coupled to the
degradation of HT-B. In an incompatible pollination, according to this model, HT-B
remains intact and the vacuolar compartment breaks down, releasing the S-RNase.
The challenge for researchers in this field is in how to distinguish and/or resolve
these models. Particularly in the sequestration model, it is unclear what the role of
SLF or the proposed SCF complex might be, and also how a vacuolar-sequestered
S-RNase can interact in any fashion with pollen-S, which is cytoplasmic. It is
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possible that the role of ubiquitination in this response is not to target proteins for
degradation, but instead to target a specific protein substrate to the endomembrane
system. Indeed, mono-ubiquitination (as opposed to poly-ubiquitination) has been
shown to target proteins for endocytosis rather than degradation (D’Azzo, Bongio-
vanni, and Nastasi 2005). Given the significant contributions of Petunia inflata and
P. hybrida as model systems for GSI research to date, Petunia will undoubtedly
continue to provide insights into the mechanisms of this agronomically significant
trait.

References

Ai, Y., Singh, A., Coleman, C.E., Ioerger, T.R., Kheyr-Pour, A. and Kao T.-H. (1990) Self-
incompatibility in Petunia inflata: Isolation and characterization of complementary DNA
encoding three S-allele-associated proteins. Sex. Plant Reprod. 3, 130–138.

Ai, Y., Kron, E. and Kao, T.-H. (1991) S-alleles are retained and expressed in a self-compatible
cultivar of Petunia hybrida. Mol. Gen. Genet. 230, 353–358.

Ai, Y., Tsai, D.S. and Kao, T.-H. (1992) Cloning and sequencing of cDNAs encoding two S proteins
of a self-compatible cultivar of Petunia hybrida. Plant Mol. Biol. 19, 523–528.

Anderson, M.A., Cornish, E.C., Mau, S.-L., Williams, E.G., Hoggart, R., Atkinson, A., Bonig, I.,
Grego, B., Simpson, B., Roche, P.J., Haley, J.D., Penschow, J.D., Niall, H.D., Tregear, G.W.,
Coghlan, J.P., Crawford, R.J. and Clarke, A.E. (1986) Cloning of cDNA for a stylar glycopro-
tein associated with expression of self-incompatibility in Nicotiana alata. Nature 321, 38–44.

Anderson, M.A., McFadden, G.I., Bernatzky, R., Atkinson, A., Orpin, T., Dedman, H.,
Tregear, G., Fernley, R. and Clarke, A.E. (1989) Sequence variability of three alleles of the
self-incompatibility gene of Nicotiana alata. Plant Cell 1, 483–491.

Ascher, P.D. (1984) Self-incompatibility. In: K.C. Sink (Ed.), Petunia:Monographs on Theoretical
and Applied Genetics 9. Springer-Verlag, Berlin, pp. 22–109.

Brewbaker, J.L. and Natarajan, A.T. (1960) Centric fragments and pollen-part mutation of incom-
patibility alleles in Petunia. Genetics 45, 699–704.

Broothaerts, W.J., van Laere, A., Witters, R., Préaux, G., Decock, B., van Damme, J. and Vendrig,
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