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This chapter illustrates the applicability of mathematical decision-analysis in 
VO partner selection. The approach allows for multiple criteria, which can 
also relate to inter-organizational issues such as collaboration history 
between partner candidates. Moreover, the approach is soft in the sense that it 
allows interval parameter data, instead of point estimates. Using the RPM 
method, Pareto-efficient VO configurations can be identified and the 
robustness of the candidates can be analyzed. The results suggest that the 
models are very useful in practical decision-making situations. 
 
 
 
 
1.  INTRODUCTION 
 
For some time, competition has changed from the level of individual firms towards 
rivalry among company networks (Jarillo, 1988). Through networking, companies 
can focus on their niche core competences, which may contribute to increased global 
efficiency (Hamel and Prahalad, 1990). Networking, however, involves transaction 
costs, which partly result from partner search and selection (Williamson, 1975). 
Therefore, several methods have been proposed for the reduction of these costs. 
Most notably, multi-criteria approaches to partner selection have attracted the 
interest of researchers and practitioners in the field. 

A Virtual Organization Breeding Environment (VBE) in particular is in good 
position for utilizing semi-automated approaches to support the partner selection in 
Virtual Organizations (VO). The repeated creation of VOs allows the collection of 
data on the VBE members. This data can be further used to evaluate the suitability 
of the candidates in specific VOs. (Camarinha-Matos and Afsarmanesh, 2003) 

This chapter models the partner selection problem as a multi-objective binary 
program. In multi-criteria problems it is typically more beneficial to identify the set 
of Pareto-efficient solutions rather than a unique solution (Steuer, 1976). Here, we 
employ the Robust Portfolio Modeling (RPM, Liesiö et al. 2007) method for 
identifying the Pareto-efficient configurations of a partner selection case. The 
advantage of RPM is that the model parameters need not be point estimates, which 
in many cases is too restrictive. Instead, the model can contain interval values as 
input data. The modeling approach allows for candidate-specific criteria, as well as 
network criteria that need to be measured for the configuration as a whole. 
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The rest of this chapter is organized as follows. Section 2 reviews earlier soft 
methods for partner selection. Section 3 formulates a multi-criteria mathematical 
programming model, which is operationalized in the partner-selection case of 
Section 4. Section 5 discusses the approach and Section 6 concludes with topics for 
future research. 
 
 
2.  ROBUST METHODS FOR NETWORK FORMATION 
 
In multi-criteria decision-making, the decision-maker (DM) can aggregate the 
different objectives, e.g., by way of a subjective value function which reflects his or 
her preferences for the relative importance of the selection criteria. This method is 
based on multi-attribute value theory (MAVT, Keeney and Raiffa, 1976). The value 
function is typically additive, and the preferences are captured through criteria 
weights, which can be elicited using systematic approaches, such as SMART 
(Edwards, 1977), SWING (von Winterfeldt and Edwards, 1986), SMARTS or 
SMARTER (Barron and Edwards, 1994). Another method, which has become 
popular among practitioners, is the analytic hierarchy process (AHP, Saaty, 1980). 
It relies on pairwise comparisons of the alternatives and selection criteria, but its 
theoretical foundations differ from that of MAVT (Dyer, 1990; Saaty, 2005). 

A common case in decision-making is that no perfect information is available on 
the decision alternatives and/or the DM’s preferences over the selection criteria. 
Therefore, several methods, based on MAVT or AHP, have been suggested to cope 
with imperfect information (Arbel, 1989; Mikhailov, 2000; Salo and Punkka, 2005). 
Using such methods can help evaluate the robustness of decisions under imperfect 
information, often referred to as soft modeling. 

VO partner selection is essentially a multi-criteria decision-making problem 
which involves several factors, such as corporate culture and social relations (Meade 
et al., 1997). Moreover, perfect data on such factors is hardly ever available, thus 
VO partner selection has been the subject of some soft modeling techniques. Since 
partner selection itself is a precise problem, the ambiguity is usually related to the 
partner candidates’ expected performance, or the preferences of the decision-maker. 
In many works, this ambiguity has been captured by fuzzy approaches.  

One of the earliest soft partner selection studies is that of Mikhailov (2002), who 
develops a fuzzy programming method for incorporating uncertain attribute weights 
and candidate scores into the AHP framework. A somewhat different one-criterion 
model is that of Ip et al. (2003), who maximize the probability of success of a virtual 
enterprise. Because their model is neither linear nor convex, they develop a genetic 
algorithm for solving it. Li and Liao (2004), in turn, use trapezoidal fuzzy numbers 
to express parameters related to various kinds of risk factors that they use to analyze 
risks in dynamic alliances. Since risk factors are difficult to measure quantitatively, 
the fuzzy approach helps the DM compare the risks of different alliances. The 
decision support tool of Crispim and Sousa (2005) allows the DM to use interval and 
linguistic variables in describing the candidates’ performance. Such variables are 
useful if no exact data on historical performance is available. 
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3.  MATHEMATICAL MODEL OF PARTNER SELECTION 

 
3.1  Decision Variables and Objective Function 

 
The partner selection problem can be mathematically formulated as follows. 
Following commonly used notation (e.g. Liesiö et al. 2007), let there be m  partner 

candidates },,{= 1 mxxX � . From these candidates a configuration p  is 

formulated by selecting partners into it. The jx s are used as the decision variables, 

if px j ∈  then 1=jx , otherwise 0=jx . Each candidate is evaluated with 

regard to the n  decision criteria ni ,1,= � , and the resulting score vector for jx  

is ],,[= 1
j

n
jj vvv � . The relative importance of the decision criteria are captured 

through criteria weights nww ,,1 � , which are non-negative and scaled to sum up 

to one. The value of a configuration p  is the weighted sum of the scores 
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Usually, partners are selected with respect to specific competences or project tasks, 
to which the above scores typically connect. 

 
3.2  Optional Constraints 

 
Without any constraints, the objective function (1) could prefer selecting all the 
candidates. Thus, the following types of restrictions are common and can be 
modeled as linear inequalities (Stummer and Heidenberger, 2003). 

Resource constraints: These are the most commonly used constraints. A 

candidate j  consumes or produces different kinds of resources l  denoted by j
lr , 

which are positive for consumption and negative for production. The resource limit 
for resource l  is lc . The following linear inequality determines the feasible 
configurations:  
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Positioning constraints: With these constraints we can ensure that at least or at 

most a certain number of partners from a subset XX ⊆′  will be chosen to our 
configuration. If at most m′  partners are wanted, we create a new positioning 
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resource constraint l̂  and set Xxr jj
l

′∈∀1=ˆ  and 0=ˆ
j

l
r  for the rest. The 

following inequality ensures that at most m′  partners from X ′  are chosen:  
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In contrast, if we multiply both sides of the inequality (3) by 1−  and keep the 

less than or equal sign as it is, the inequality ensures that at least m′  partners are 
chosen from X ′ . Positioning constraints are used to ensure e.g. that at least one 
partner is selected for each required competence. 

Logical constraints: As the name states, we use these constraints to build logical 

requirements to our configuration. If, for example, kx  can be selected only if at 

least m′  partners from X ′  are selected, we create constraint l
~

 and set 1=~ −j
l

r  

Xx j ′∈∀  and 0=~
j

l
r  to the rest, except mr k

l
′=~ . The following inequality 

ensures that kx  is in the configuration only if the requirement holds:  
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If at most m′  candidates can be chosen, both sides of the inequality should be 

multiplied by 1−  while the less than or equal sign remains as it is. If both of these 

inequalities are used at the same time either all the candidates in X ′  and kx  are 
chosen or none of them are chosen. The logical constraints can be used to ensure 

that kx  is chosen if exactly m′  partners are chosen from X ′ , but it is possible to 
choose less than m′  partners from X ′ . These inequalities are used to model inter-
organizational dependencies. 

Threshold constraints: These constraints can be used as balancing constraints, to 
ensure certain performance levels or to reject otherwise high value configurations 
where too low performance on some criterion has been compensated by other 
criteria. If we require that the resulting configurations earn at least lh  points from 

the i th criterion, we create constraint l  and set jvr j
i

j
l ∀−= . The following 

inequality ensures that the required performance levels are reached:  
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The inter-organizational dependencies can be modeled into the selection problem 

with the help of logical constraints and dummy partners. For example, we gain 

synergy value jv
~

 if partners kx  and kx ′  are chosen to our configuration. We 
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create a dummy partner jx
~

 and set its score vector to be jv
~

. In addition, we create 

new constraints l
~

 and 1
~ +l  and set 1== ~~ −′k
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rr +  for all the other partners. The following inequalities 

ensure that the dummy partner jx
~

 is selected if and only if partners kx  and kx ′  are 
selected, too:  
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Partner synergies are illustratively modeled through a network of project 

proposals. With ten candidates there can be at maximum 45 edges between the 10 
vertices, thus to model this network with the help of dummy candidates and 
inequalities which we already used for synergy requires only at worst case 45 
dummy candidates. Each edge defines one dummy candidate, which is chosen only 
when both its end-point vertices are chosen. The edges can be weighted with the 
scores of the dummy candidates. 

Finally, some of the tasks can be more important to the completion of the project 
than the others. We can model this with additional criteria for all the tasks and by 
giving scores to candidates depending on how important they are to a certain task. 

 
3.3  Solving the Partner Selection Model 

 
In summary, the model (1)-(6) comprises a binary linear program (BP), where the 

binary jx s are variables, the objective function is in (1), and the optional 
constraints are in (2)-(6). Linear models are favorable in that they can be readily 
solved using for instance Simplex (Dantzig, 1963) and Branch-and-Bound 
algorithms (Land and Doig, 1960), which solve the problem with exact parameter 
values. 

The recently developed RPM method (Liesiö et al., 2007) is particularly suitable 
for solving multi-criteria portfolio-selection problems, where a subset of elements is 
to be chosen from a larger set, with respect to multiple criteria. The above partner 
selection model fits into this category. The advantage of RPM is that it allows 
interval-values for model parameters and criterion weights. Given the parameter 
space, the result of the RPM algorithm is the set of Pareto-efficient solutions, which 
offers good grounds for further analysis of the decision alternatives. 

 
 
 

4.  ILLUSTRATIVE CASE EXAMPLE 
 
We applied the model to a partner selection case of Virtuelle Fabrik 
(http://www.vfeb.ch), which is an operative VBE located in Switzerland (Jarimo et 
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al., 2006). The results suggest that relevant criteria can be taken into account and 
reasonable configurations are identified. 

 
4.1  Project Description 
 
The aim of the project was to construct a prototype magnetic clutch to be used in 
trucks. The project was broken down into nine tasks, which were 1) Grinding, 2) 
Gear milling, 3) Metal sheet forming, 4) Milling and turning of bigger parts, 5) 
Welding, 6) Bending of pipes, 7) Engineering, 8) Milling and turning of smaller 
parts, and 9) Project management. For each task, there were two to five partner 
candidates, some of which were candidates for several tasks (Table 1). 

 

Table 1 – Tasks and partner candidates of the case project 

Tasks Candidates 
Grinding Sulzer AG, Brunner 
Gear milling Okey AG, Humbel 
Metal sheet forming Beni Butscher, Unima AG 
Milling bigger parts  SMA, Knobel, OMB AG, SIG 
Welding Beni Burtscher, Amsonic 
Bending of pipes Fornara, SMA 
Engineering Schuler, AE&P AG, Schär Engineering 
Milling smaller parts Innotool, SIG, Wiftech, Bühler, Alwo AG 
Project management VF AG, Schär Engineering, AE&P AG, CCB 

 
 
The partners were to be selected according to the following criteria: 1) 

Punctuality, 2) Partnership synergy, 3) Reliability, 4) Cost, and 5) Economical 
situation. The Customer of the project was a large German auto manufacturer, and a 
very important reference to Virtuelle Fabrik. The project had a tight schedule and 
the Customer’s top priority was to finish the project in time. Thus, punctuality and 
reliability were the most important criteria in partner selection. Moreover, it was 
assumed that a successful collaboration history contributes to finishing the project in 
time. The Cost and Economical situation do not directly influence the schedule of 
the project, therefore they were less important. However, this only means that in the 
additive model the weights of the less important criteria do not exceed those with 
higher importance – Costs and Economical situation are not ignored. In general, the 
criteria need to be selected and weighted case-specifically; in another case for 
instance Costs or some completely new criteria could be the most important ones 
(Baldo et al., 2007). 

Data concerning Punctuality, Reliability, and Economical situation consisted of 
Virtuelle Fabrik’s managerial assessment of the candidates’ performance, evaluated 
on a 1-6 scale. No exact estimates were required, but instead the score could be an 
interval within the 1-6 scale. The costs were given as the total price in Euros for 
performing the task for which the candidate is attached. Partnership synergy was 
modeled through a network that described the candidates’ collaboration history 
(Figure 1).  
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Figure 1 – Intensity of past collaboration between the partner candidates 

 
In Figure 1 each circle represents a partner candidate of the case and the links 
between the candidates represent the number of past joint projects; a thicker line 
between two candidates represents a greater number of joint projects in the past. 
Also here, the score related to links need not be exact; intervals are allowed. 
Candidates that had no earlier collaboration with the others are excluded from the 
figure. 
 
4.2  Case Analysis 
 
With this data, the problem is that of selecting a good partner for each task, with 
respect to minimizing Cost and maximizing Punctuality, Partnership synergy, 
Reliability, and Economical situation. This can be modeled as a multi-criteria binary 
programming problem as described above. Using the novel RPM-algorithm (Liesiö 
et al. 2007) developed for this kind of selection problems, the model was solved as 
follows. 

First, we defined that Punctuality, Partnership synergy, and Reliability are more 
important than Cost and Economical situation. The minimum weight of a criterion 
was 0.1. Solving the problem with this information resulted in 129 various Pareto-
efficient configurations, which is too much to consider for a DM. 

Second, we made our preference information more accurate by raising 
Punctuality and Reliability to be the most important criteria, leaving Partnership 
synergy as the second important and Cost and Economical situation as the least 
important ones. This increase of information reduced the number of Pareto-efficient 
configurations to 109, which is still too much. 

Finally, we defined that the weights of Punctuality and Reliability are close to 
each other, which results in configurations with good scores in both of the most 
important criteria. Consequently, six Pareto-efficient configurations remained, listed 
in Table 2. It is worth noting that making the information more accurate reduces the 
set of Pareto-efficient configurations so that the DM can finally end up with a 
manageable number of solutions. 
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Table 2 – Performance of six Pareto-efficient configurations  

Configuration Punctuality Reliability  
Partnership 
synergy 

Economical 
situation Cost (€) 

#74 48 52 29 45 123710 
#76 48 52 28 45 123010 
#80 48 52 27 47 126270 
#73 46 53 29 44 123110 
#75 46 53 28 44 122410 
#79 46 53 27 46 125670 

 
With a closer look at Table 2, the most interesting one is Configuration #74, which 
has the highest scores on Punctuality and Partnership synergy, and the second 
highest score on Reliability. It is also estimated as one of the least expensive 
configurations.  

An interesting measure for the robustness of the partner candidates is the 
percentage of Pareto-efficient configurations in which the candidates are involved. 
Table 3 shows these robustness scores for those candidates that are involved in at 
least one Pareto-efficient configuration. Candidates with a score of 100 are robust 
choices within the parameter space, irrespective of the relative importance of the 
selection criteria.  

 

Table 3 – Sensitivity analysis on the efficient partner candidates 

Task Candidates and their robustness scores 
Grinding Sulzer 67 Brunner 33 
Gear milling Humbel 50 Okey AG 50 
Metal sheet 
forming Beni Burtscher 100   
Milling bigger 
parts  Knobel 100   
Welding Beni Burtscher 100   
Bending of pipes SMA 100   
Engineering AE & P AG 100   
Milling smaller 
parts Innotool 67 Bühler 33 
Project 
management AE & P AG 100   

 
Selecting the candidates that have the highest robustness scores leads to 
Configurations #73 (Gear milling: Okey AG) or #74 (Gear milling: Humbel). 
Configuration #73 outperforms #74 in terms of Reliability and Cost, but has lower 
scores with respect to other criteria. Neither Okey AG nor Humbel had earlier 
collaboration with the other partners of Configurations #73 and #74, thus these 
configurations have the same score on Partnership synergy. In conclusion, through 
the score table together with robustness analysis we have come up with two 

COLLABORATIVE NETWORKS



 
 

 

interesting configurations, namely #73 and #74, on which the decision-maker can 
focus in further analysis and negotiations. 
 
 
5.  DISCUSSION 
 
The multi-criteria approach has several advantages: 
• The methods are theoretically sound, relying on multi-attribute value theory and 

mathematical optimization. This facilitates for instance efficient identification 
of Pareto-efficient configurations and flexibility in that additional linear 
constraints and objectives can be formulated. 

• No point estimates on parameter values of criterion weights are required. 
Instead, interval values can be given as input, which is practically favorable. For 
a decision maker it may be difficult or overly expensive to collect exact 
information. Therefore, the softness of the model indeed contributes to the 
practicality of the approach. 

• The robustness of the partner candidates can be analyzed easily. Calculating the 
percentage of Pareto-efficient configurations in which each partner candidate is 
involved divides the candidates in three categories: 1) candidates that are 
selected in each Pareto-efficient configuration, 2) candidates that are selected in 
at least one Pareto-efficient configuration, and 3) candidates that are not 
selected in any of the Pareto-efficient configurations. Category 1) candidates are 
the most robust choices, since they are selected irrespective of the uncertainty in 
parameter values or the relative importance of the selection criteria. 

 
We model partner selection as a centralized decision-making problem. This is 
reasonable if one entity is fully responsible for selecting the network partners. In the 
above Virtuelle Fabrik case the customer wanted that the broker company takes 
responsibility of the project, hence it was natural that the broker selected the partners 
unilaterally. Indeed, centralized decision making typically fits cases that involve a 
hierarchical topology. 

However, there are situations where the decision-making is in fact decentralized. 
This is the case if the partner candidates themselves decide with whom to 
collaborate. An example of a decentralized partner selection process is the formation 
of inter-organizational research projects. In this case, the formation of the final 
consortium is a multi-party negotiation process between research teams at 
universities, research institutes, and companies. 

Another decentralized partner selection case could be that of selecting a new 
partner into the VO, whereby the original partners may be willing to influence the 
selection process. For such cases the candidates that were not originally selected but 
who were part of some Pareto-efficient configurations provide a good starting point 
for searching. The use of decision-support tools increases transparency in group 
decision-making, too. 

A prerequisite for the use of decision support tools in partner selection is the 
availability of data for parameter estimation. The long-term VBE cooperation 
structure supports parameter estimation because it enables the collection of 
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longitudinal performance data. Moreover, longitudinal data helps VBE management 
in identifying trends for instance in individual members’ performance. 
 
 
 
 
6.  CONCLUSIONS AND FURTHER CHALLENGES 
 
This chapter illustrated the use of multi-criteria mathematical programming methods 
for robust partner selection in collaborative networks. The objective of the model is 
to match the core competencies of partner candidates with the requirements of a 
project and thereby select the optimal VO to serve the customer. The analysis and 
the realistic case study suggest that the methods are both theoretically sound and 
practically useful. 

Solving the models with RPM allows the decision makers to give interval 
parameter-estimates. The more imprecise the information the larger is the set of 
Pareto-efficient solutions. Thus, the decision maker can gradually increase the 
accuracy of the parameter estimates until a manageable number of Pareto-efficient 
solutions remains. From the remaining set, the decision maker can select the most 
preferred configuration and make possible manual modifications to it. 

The models are potentially useful in cases where one decision maker selects 
network partners. Such cases occur in a VBE that repeatedly creates VOs whenever 
there is potential for value creation through collaboration. Customers often wish that 
only a single partner – the broker – is responsible for the operations of the VO. It is 
therefore natural that the broker has the control over the VO and partner selection. In 
group decision-making, the models can improve the common understanding of the 
case at hand and increase transparency of the decision criteria and their assessment. 

Topics for future research are manifold. First, our optimization model could be 
improved by several features. These include for instance dynamic decision-making 
and uncertainties, interdependent risks, hedging against capacity risk, etc. Second, 
the effect of incentives, e.g. profit sharing rules, on VO creation should be studied. 
Third, VBE member performance measurement models are needed in order to most 
efficiently use operative models. For instance, our model raises the need to measure 
factors related to cooperative efficiency. 
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