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Introduction

Bacterial foodborne zoonotic diseases are of major concern, impacting public health
and causing economic losses for the agricultural-food sector and the wider soci-
ety. In the United States (US) alone foodborne illness from pathogens is respon-
sible for 76 million cases of illnesses each year (Mead et al., 1999). Salmonella,
Campylobacter jejuni and Enterohaemorraghic Escherichia coli (EHEC; predom-
inately serotype O157:H7) and Listeria monocytogenes are the most predomi-
nant foodborne bacterial pathogens reported in the developed world (United States
Department of Agriculture, 2001). The importance of meat and meat products
as a vehicle of foodborne zoonotic pathogens cannot be underestimated (Center
for Disease Control, 2006; Gillespie, O’Brien, Adak, Cheasty, & Willshaw, 2005;
Mazick, Ethelberg, Nielsen, Molbak, & Lisby, 2006; Mead et al., 2006). Pathogen
carriage in food animals, such as livestock and poultry can lead to both direct
and indirect contamination of raw and processed meats. Hide contamination and
fecal pathogen shedding contribute to the contamination of the beef carcass (Elder
et al., 2000; Koohmaraie et al., 2005), while skin and feathers contaminated with
feces serve as major sources of poultry contamination (Doyle & Erickson, 2006).
Processing of meat can further spread microbial contamination, while inadequate
temperature control can allow pathogens to increase in numbers. Eradication of
pathogens from farm livestock and the environment is not yet an achievable goal.
However, risk reduction measures can be implemented on the farm to minimize the
risk of infection. During meat slaughter and processing, methods to ensure food
safety and preservation may include a range of chemical preservative agents and/or
physical processing intervention strategies. However, increased consumer demand
for healthier and minimally processed food with lower amounts of additives as
well as concerns regarding antibiotic resistance in foodborne bacteria has led to
a greater interest and demand for natural, biological methods of food preservation
and safety.
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Extensive research on alternative biological methods (biocontrol) for biopreser-
vation and reduction of foodborne pathogens is an active area of research. Numerous
methods have been reported for the reduction of food pathogens at the pre-harvest
stage (in the animal) and post-harvest and processing stages of the meat chain. These
approaches include the use of organic compounds, vaccines and bacteriophages
as well as the use of antagonistic bacteria (Callaway et al., 2004; Joerger, 2003;
Koohmaraie et al., 2005; LeJeune & Wetzel, 2007). Antagonism refers to the
inhibition of other (e.g., undesired or pathogenic) microorganisms through either
competitive exclusion or by the production of one or more antimicrobial active
metabolites such as organic (lactic and acetic) acids, hydrogen peroxide, or bacteri-
ocins (Holzapfel, Geisen, & Schillinger, 1995; Kostrzynska & Bachand, 2006). The
criteria for biocontrol agents is that they must be (1) efficacious, (2) practical, and (3)
safe and not interfere with animal growth or development (Doyle & Erickson, 2006).
This chapter reviews various biocontrol agents and their applications to reduce the
carriage of key food pathogens Salmonella, EHEC, Listeria and Campylobacter in
animals or levels of these pathogens on carcasses or processed meats.

Organic Compounds

Organic Acids

Organic acid solutions are the most frequently used decontaminants in meat pro-
cessing. Organic acids including acetic and lactic acid are widely used in the USA
to decontaminate carcasses. The use of these organic acid solutions at concentra-
tions of up to 2.5% has been approved by the US Department of Agriculture’s
Food Safety and Inspection service (USDA-FSIS) (1996). Such solutions are usually
applied to a carcass following hide removal when the carcass is still warm. Numer-
ous studies have reported the effects of various organic acid solutions on general
microflora and pathogenic organisms on meat products (Table 12.1). The effec-
tiveness of organic acid solutions in inactivating or removing bacterial pathogens
on a carcass and meat product varies considerably (Table 12.1) (Dorsa, 1997;
Huffman, 2002; Smulders & Greer, 1998). Hardin et al. (1995) reported that a
beef carcass wash followed by a 2% acid spray was more effective than either
trimming or washing with water alone in the reduction of E. coli O157:H7 and
S. Typhimurium. In many studies, however, sanitizing rinses were either ineffec-
tive in reducing the level of E. coli O157:H7 on beef tissues or only reduced
the bacterial counts by 1 to 2 log CFU cm−2 (Brackett, Hao, & Doyle, 1994;
Fratamico, Schultz, Benedict, & Buchanan, 1996).

Recently, concerns have been expressed about whether acidic decontamination
may induce acid resistance in pathogens (Samelis, Sofos, Kendall, & Smith, 2002).
The efficiency of such compounds can also be dependent on a number of environ-
mental factors which can influence application in various food products. For exam-
ple, the antimicrobial effect of organic acids can be influenced by pH, tissue type and
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bacterial microorganisms (Smulders & Greer, 1998). Sensory effects such as color,
flavor or odor can also be a major concern. Dilute organic acid solutions of up to 3%,
generally, have no effect on the desirable sensory properties of meat when used as a
carcass decontaminant. However, some treatment conditions using lactic and acetic
acid can produce adverse sensory and appearance changes when applied directly to
meat cuts or products (Smulders & Greer, 1998). Further evaluation of organic acids
and their effects in meat processing and their wider impact on pathogens continues
to be researched and improved.

Essential Oils

Essential oils (EOs) are aromatic oily liquids obtained from plant materials. The
greatest use of EOs is as flavorings in food; however, their antimicrobial poten-
tial has attracted increased attention and research. EOs can comprise more than 60
individual components, where the major components make up 85% of the EO and
other components are present as trace (Burt, 2004). The mode of action of EOs
is relatively unknown (Burt, 2004; Lambert, Skandamis, Coote, & Nychas, 2001).
However, the extensive range of EOs and components suggest that there is most
likely to be many different modes of action (Burt, 2004). The phenolic compo-
nents of EOs are chiefly responsible for the antibacterial properties of the EOs
and usually EOs containing a high percentage of phenolic compounds have the
strongest activity (Lambert et al., 2001). Many studies have reported the antimi-
crobial effect of EOs or their components against foodborne pathogens (Burt, 2004;
Burt & Reinders, 2003; Hammer, Carson, & Riley, 1999; Lambert et al., 2001; Si
et al., 2006). EOs have a broad spectrum of activity, but are slightly more active
against Gram-positive than Gram-negative bacteria (Lambert et al., 2001). Appli-
cation of EOs and their components have been reported in many foods, including
meat products (Table 12.2). The physical structure and composition of the food
matrix as well as the environmental conditions of the food (e.g. temperature, vac-
uum/gas/air packaging) can affect the efficiency of the EO against pathogens in
foods (Tassou, Drosinos, & Nychas, 1995; Tsigarida, Skandamis, & Nychas, 2000).
For example, high levels of fat and/or protein in foods such as meat products can
protect the bacteria from the antimicrobial activity of the EO, whereby the EO can
dissolve in the lipid phase of the food and will therefore be less available against
bacteria (Gill, Delaquis, Russo, & Holley, 2002; Tassou et al., 1995). Many stud-
ies have attempted to improve microbial quality of meats by combining the use of
EOs with other preservation techniques, such as different packaging environments,
radiosensitization, bacteriocins, and incorporation of EOs into packaging films
(Brashears, Reilly, & Gilliland, 1998; Chiasson, Borsa, Ouattara, & Lacroix, 2004;
Ghalfi, Benkerroum, Doguiet, Bensaid, & Thonart, 2007; Gill et al., 2002; Tsigarida
et al., 2000). An important aspect to consider in the application of EOs to foods
is the effect on the organo-leptic properties of the food product. Low concentra-
tions of EOs in meat products have been reported to be acceptable after storage and
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cooking (Tsigarida et al., 2000). Oregano oil (1% v/w) was also found to improve
the flavor and quality of minced meat following storage in modified atmospheres
(Skandamis & Nychas, 2001). Further studies with respect to the interactions of
EOs and their components with food constituents is required to improve the efficacy
of EOs against food spoilage and pathogenic organisms whilst minimizing impact
on the organo-leptic properties of the product.

Antagonistic Bacteria

Bacterial Metabolites

The production of one or more antimicrobial active metabolites is part of the
complex mechanisms by which a culture becomes established in the presence
of other competing organisms (Holzapfel et al., 1995). Along with bacteriocins,
bacteria can produce many types of substances or metabolites that are inhibitory
to other bacteria. These can include clinical or therapeutic low-molecular weight
antibiotics, lytic agents, toxins, bacteriolytic enzymes, bacteriophages and other
metabolic products such as hydrogen peroxide and diacetyl (Holzapfel et al., 1995;
Kostrzynska & Bachand, 2006). These substances can act as bio-preservatives
by inhibiting spoilage or pathogenic microorganisms (Deegan, Cotter, Hill, &
Ross, 2006). The main mechanism by which lactic acid bacteria (LAB) inhibit
microorganisms is through the production of organic acids such as lactic acid and
acetic acid. Organic acids produced by LAB, including lactic, acetic and propi-
onic acid, exert antimicrobial effects due to their action on the bacterial cyto-
plasmic membrane, which interferes with the maintenance of membrane potential
and inhibits active transport (Kostrzynska & Bachand, 2006). The use of LAB is
common in sausage fermentations, in which accumulating lactic acid levels inhibit
meat-borne pathogenic bacteria (Lucke, 2000). In addition, the inhibitory prop-
erty of hydrogen peroxide has also been reported. Lactobacillus lactis can pro-
duce hydrogen peroxide which in effect can reduce the numbers of E. coli O157
(0.37–1.09 log10 CFU ml−1 lower counts compared to controls) on refrigerated
raw chicken (Brashears et al., 1998). Senne & Gilliland (2003) reported that the
application of Lb. delbrueckii subsp. lactis (also found to produce hydrogen perox-
ide) could reduce the numbers of E. coli O157:H7 (0.8–1.3 log10 CFU cm−2) and
S. Typhimurium (0.8–1.5 log10 CFU cm−2) on pork and beef carcasses kept in refrig-
erated storage. Reuterin, a broad-spectrum low-molecular weight antimicrobial sub-
stance produced by Lb. reuteri during glycerol conversion has also been reported as
a potential biopreservative for food. One study found that Lb. reuteri in the presence
of glycerol was highly effective against inocula of E. coli O157:H7 of 3 log10 CFU
g−1 and 6 log10 CFU g−1 levels in ground beef during refrigerated storage in modi-
fied atmosphere packages (Muthukumarasamy, Han, & Holley, 2003). Reuterin was
also reported to inhibit the growth of L. monocytogenes but not Salmonella spp. on
the surface of sausages (Kuleasan & Cakmakci, 2002).
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Limitations of Using Metabolites

Although some metabolites of LAB have been shown to inhibit Gram-negative bac-
teria their use in maintaining the safety and stability of meat products is not ideal as
some metabolites can interfere with the sensory properties (e.g. hydrogen peroxide)
of the food or may not be produced in sufficient amounts (e.g. reuterin). Research
may provide methods to engineer metabolic pathways to give better control of the
rate and extent of formation of lactic and acetic acids, and to eliminate unwanted
properties such as formation of biogenic amines. Depending on the product and
processing situation, one or more of these metabolites may constitute a basis for
the selection of a protective culture (Holzapfel et al., (1995). It must be emphasized
that LAB used to reduce pathogens in foods should not affect the sensory charac-
teristic of the foods, ensuring that foods are palatable to consumers (Kostrzynska &
Bachand, 2006).

Competitive Exclusion Technology

Competitive exclusion (CE) as a technology, involves the addition of a non-pathogenic
bacterial culture to the intestinal tract of food animals in order to reduce colonization
or decrease populations of pathogenic bacteria in the gastrointestinal tract (Callaway
et al., 2004). A CE culture may be composed of one or many strains or species of
bacteria, but should ideally be composed of species normally resident in the animal
intestinal microflora. The use of CE is similar to using probiotics which are defined as
‘a preparation of or a product containing viable, defined microorganisms in sufficient
numbers which alter the microflora of the host and exert beneficial health effects in
this host’ (de Vrese, & Schrezenmeir, 2002). In contrast to CE, probiotic preparations
generally consist of individual species or mixtures of LAB or yeasts that are not nec-
essarily of animal origin (Callaway et al., 2004). The use of probiotics in food animals
have been extensively reviewed (Callaway et al., 2004; Nava, Bielke, Callaway, &
Castaneda, 2005; Wagner, 2006). This section will only focus on the use of CE cultures
as a food safety strategy in food animals.

The precise mechanism by which CE microorganisms reduce pathogens in the
animal intestine is unclear, however, the main role of CE cultures is to attach to the
surface of the intestinal epithelium and establish itself within the gut. This direct
binding of the CE culture to the intestinal wall prevents potentially pathogenic
strains from attaching to it. Some of the bacteria may produce antimicrobial com-
pounds such as acids or bacteriocins to eliminate species competing within the
same niche (Callaway et al., 2004). Some of these antimicrobial compounds have
been specifically investigated for use as biopreservatives and for food safety appli-
cations in meat and their products and will be discussed later in this chapter. CE
cultures may be composed of defined microbial strains (known and characterized)
or undefined (incompletely characterized or unknown) microbial strains. The use
of CE cultures has been used extensively in poultry to reduce Salmonella and
Campylobacter carriage (Chen & Stern, 2001; La Ragione & Woodward, 2003;
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Wagner, 2006; Zhang, Ma, & Doyle, 2007a, 2007b). The use of CE cultures, includ-
ing commercial products in poultry has been reported to reduce the colonization
of poultry with Salmonella spp. by up to 70% or by 7–9 log10 cycles (Davies &
Breslin, 2003; Hoszowski & Truszczynski, 1997; Schneitz & Hakkinen, 1998).
Reductions of between 3–100% of Campylobacter spp. colonization on poultry has
also been reported (Schoeni & Wong, 1994). The use of CE cultures in cattle and
pigs to eliminate E. coli O157:H7 and/or Salmonella from rumen and gastrointesti-
nal tract have also shown potential for further commercial development (Brashears,
Jaroni, & Trimble, 2003; Genovese et al., 2003; Zhao et al., 2003).

Limitations of Using CE Cultures

The most important property of a CE culture is the establishment of a complex
intestinal microbiota that resists colonization by human and animal pathogens.
While CE has been shown to work in several animal species, the benefits have not
been consistent. The differing results between studies involving CE in animals may
be due to the difference between host animals, cultures, or experimental designs.
Although the benefit of using CE to reduce human pathogen carriage in animals has
enormous potential, many of the effective and commercially available CE products
have their disadvantages. Firstly, the use of CE culture in which the microbial iso-
lates are unknown requires regulation as an animal drug due to the cultures’ effects
on animal health and the risk of transfer of undesirable bacteria to humans. There
is also the potential of these component bacteria of CE to transfer virulence genes
onto the animal or human microbiota resulting in enhanced antimicrobial resistance
(Wagner, 2006). Ongoing research in this area aims to characterize the bacteria
present in CE products which will lead to safe assurance of use of the product and
will allow optimization of their efficacy.

Bacteriocin-Producing Bacteria and Bacteriocins

Bacteriocins are ribosomally synthesized antimicrobial peptides or proteins pro-
duced by bacteria that kill or inhibit the growth of other bacteria, either in the
same species (narrow spectrum), or across genera (broad spectrum) (Cotter, Hill, &
Ross, 2005). The use of bacteriocins in biopreservation is a growing area of research.
Bacteriocins are a heterogeneous group, characteristically selected for evaluation
and used as specific antagonists against problematic bacteria. However, their effec-
tiveness in foods can become limited for various reasons, and cost remains an issue
impeding the broader use of bacteriocins as food additives. Evaluation of methods to
improve the use of bacteriocins in various food products is continually being inves-
tigated and new developments are frequently reported. Although, Gram-negative
and Gram-positive bacteria can produce bacteriocins, LAB continues to be the
preferred source of food-use bacteriocins as they are generally regarded as safe
(GRAS) bacteria (Chen & Hoover, 2003). The structure, biosynthesis, and appli-
cation of LAB bacteriocins in many different food products have been reviewed



12 Biocontrol of Pathogens in the Meat Chain 261

by others (Cleveland, Montville, Nes, & Chikindas, 2001; Cotter et al., 2005;
Deegan et al., 2006; Galvez, Abriouel, Lopez, & Omar, 2007; Kostrzynska &
Bachand, 2006; O’Sullivan, Ross, & Hill, 2002). The use of bacteriocin-producing
bacteria (BPB) or the derived bacteriocins in food safety strategies in meat applica-
tions will be further discussed below.

Bacteriocins generally act by creating pores in the membrane of their target cells
and may be cytotoxic to the target cell as a result of disturbance of the bacterial inner
or outer membranes. Alternatively, bacteriocins may pass through the membrane to
reach a target inside the cell causing major disruptions in cell functions. Different
mechanisms of action by bacteriocins have been described but interaction with the
bacterial membrane is an important requirement for most, if not all, bacteriocins
(Cleveland et al., 2001).

Application of BPB and Bacteriocins in Animals

Rather than applying the bacteriocin directly as a biocontrol, the bacteriocin-
producing bacteria (BPB) may be applied. BPB have been isolated from rumen
environments and some have been applied to manipulate the rumen environment
in poultry and cattle (Cole, Farnell, Donoghue, Stern, & Evetoch, 2006; Diez-
Gonzalez, 2007; Etcheverria, Arroyo, Perdigon, & Parma, 2005; Nava et al., 2005;
Russell & Mantovan, 2002; Svetoch et al., 2005; Zhao et al., 1998). BPB can be
administered to animals by mixing dried or wet cultures with feed or drinking water,
and depending on the ability of the bacterial strain to colonize the gastrointesti-
nal tract may be fed sporadically or continuously. The feeding of BPB can have a
direct effect on reducing the existing populations of foodborne pathogens such as
Salmonella and E. coli O157:H7 and long-term colonization with BPB would pre-
vent further re-introduction of the pathogenic bacteria. Few studies have addressed
the fate of bacteriocins in the intestinal tract, but some data suggests that some of
the low molecular weight bacteriocins can survive at least some of the intestinal
environments and possibly could be administered through feed (Ganzle, Hertel, van
der Vossen, & Hammes, 1999).

The use of colicins (bacteriocin produced by E. coli), as a pre-harvest control,
has been actively evaluated to reduce pathogenic E. coli in cattle populations (Diez-
Gonzalez, 2007; Schamberger, Phillips, Jacobs, Diez-Gonzalez, 2004). Calves fed
with a colicin-producing E. coli yielded an overall reduction of 1.1 log10 CFUg−1 of
E. coli O157:H7 and a maximum decrease of 1.8 log10 CFUg−1 of E. coli O157:H7
over 24 days (Schamberger et al., 2004). Colicins specific for E. coli are partic-
ularly advantageous in the rumen intestine in that it will only inhibit one type of
bacterial strain or species while not disrupting the other microbial populations in
the intestine (Diez-Gonzalez, 2007). Studies continue to investigate whether expres-
sion of colicins could be incorporated into bacteria which are normally present in
the animal rumen, which can decrease the chances of transfer of colicin genes to
other potentially pathogenic E. coli strains, such as E. coli O157:H7 (McCormick,
Klaenhammer, & Stiles, 1999). In poultry, a few studies have investigated the use
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of BPB to control foodborne pathogens. Bacteriocin-like compounds were shown
to have direct antimicrobial activity, in vitro against Campylobacter (Morency,
Mota-Meira, LaPointe, Lacroix, & Lavoie, 2001; Schoenis & Doyle, 1992; Svetoch
et al., 2005). A purified bacteriocin produced by Paenibacillus polymyxa microen-
capsulated and administered via feed was reported to reduce cecal Campylobac-
ter colonization in young broiler chickens and turkeys (Cole et al., 2006; Stern
et al., 2005). Treatment with bacteriocin eliminated detectable Campylobacter con-
centrations in turkey cecal contents (detection limit, 1 × 102 CFU g−1) compared to
controls (1.0 × 106 CFU g−1 of cacal contents) (Cole et al., 2006). In chicken cacel
samples, use of bacteriocin resulted in significant reductions in colonization by
C. jejuni for C. jejuni. These studies reported significant reductions of both intesti-
nal levels and frequency of chicken and turkey colonization by C. jejuni, suggesting
that this on-farm application would be an alternative to chemical disinfection of
contaminated carcasses (Stern et al., 2005). In order for BPB and their bacteriocins
to be used successfully in animal production, more research is required to improve
their efficacy in different animal systems.

Application of Bacteriocin-Producing Bacteria and Bacteriocins
in Meat Products

Bacteriocins are potentially valuable biological tools to improve food preservation
and food safety by reducing the prevalence of undesirable spoilage microorganisms
or foodborne pathogens in a food product (Deegan et al., 2006). Although the use of
LAB is common in many food processes, the use of these microorganisms in differ-
ent meat products and storage conditions continues to be evaluated (Kostrzynska &
Bachand, 2006). The application of bacteriocins is not recommended as a primary
processing step or barrier to prevent the growth or survival of pathogens, but should
form part of a system with multiple hurdles. Bacteriocins can be incorporated into
food as an ingredient in the form of a purified/semi-purified bacteriocin prepara-
tion (Table 12.3). Alternatively, a BPB can be introduced as a ‘protective culture’
in the form of a live culture which produces the bacteriocins in situ in the food
(Table 12.4). In this case, the BPB is either substituted for all or part of the starter or
is subsequently applied to the food to improve the safety of the culture (O’Sullivan
et al., 2002). A major criterion for a protective culture in meat products is to inhibit
pathogens and/or prolong shelf life, while not changing the sensory properties of
the product (Lucke, 2000). The use of purified bacteriocins is not always attractive
as some can be inactivated in meats and may also required regulatory approval or
be labeled as an additive on the meat product (Aasen et al., 2003). The use of BPB
as a protective culture is a more practical approach as it does not require regulatory
approval or preservative label declarations and can be substituted into the product
as a starter culture (Deegan et al., 2006; Jacobsen, Budde, & Koch, 2003; Katla
et al., 2002).

Numerous studies have attempted to isolate BPB, particularly LAB from meat
products (Albano et al., 2007; Arlindo et al., 2006; Budde, Hornbaek, Jacobsen,
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Barkholt, & Koch, 2003; Noonpakdee, Santivarangkna, Jumriangrit, Sonomoto, &
Panyim, 2003; Prema, Bharathy, Palavesam, Sivasubramanian, & Immanuel, 2006;
Schneider et al., 2006; Yin, Wu, & Jiang, 2003), with the aim of identifying a poten-
tial protective culture that can not only be used as a starter culture but also possess
bacteriocin activity to eliminate or reduce foodborne pathogens (Benkerroum
et al., 2005; Benkerroum, Daoudi, & Kamal, 2003; Leroy & De Vuyst, 2005). Many
LABs are used to combat other spoilage organisms in aerobic or vacuum packed
meat products (Barakat, Griffiths, & Harris, 2000; Lucke, 2000). With respect to
meat safety, majority of the studies investigating the use of bacteriocins in meat
products have targeted the pathogen L. monocytogenes due to its ability to grow at
refrigeration temperature and survive in fermented foods (Tables 12.3 and 12.4).
The disadvantage of many LAB bacteriocins is that although they are active against
Gram-positive organisms they are not as effective against Gram-negative foodborne
pathogens such as E. coli (particularly E. coli O157:H7) or Salmonella spp. which
are also a concern in meat products (Lucke, 2000). This is due to the fact that
Gram-negative bacteria are protected by their outer membrane, which prevents bac-
teriocins from reaching the cytoplasmic membrane (Abee, Krockel, & Hill, 1995).
Studies have therefore attempted to find alternative bacteriocins with broader
spectrums or have used other combinations of strategies to improve bacteriocin
activity.

The most commonly used bacteriocin in foods, including meat products is
Nisin (produced by Lactococcus lactis subsp. lactis). Nisin is one of the com-
mercially available bacteriocins with US Food and Drug Administration (FDA)
approval. It inhibits the growth of a wide range of Gram-positive bacteria including
L. monocytogenes. Nisin has been shown to be effective in a number of food sys-
tems but is predominantly used in canned foods and dairy products, particularly in
cheese production, where it protects against heat-resistant, spore forming organisms
such as Bacillus and Clostridium spp (Cotter et al., 2005; Deegan et al., 2006).
Nisin has been used as a food safety agent in beef (Ariyapitipun, Mustapha, &
Clarke, 2000; Barboza De Martinez, Ferrer, & Marquez Salas, 2002; Zhang &
Mustapha, 1999), sausages (Patel, Sanglay, Sharma, & Solomon, 2007), ground
mince (Castillo, Meszaros, & Kiss, 2004) and poultry (Yuste, Pla, Capellas and
Mor-Mur, 2002; Zuckerman & Abraham, 2002), but is not as effective in the preser-
vation of meat as it is in dairy products. The inhibitory activity of Nisin is reduced by
interference from meat components such as phospholipids, especially where there
may be a high fat content (Leroy & De Vuyst, 2005). In addition, Nisin has a low
solubility at normal meat pH and its interaction with phospholipids results in the
uneven distribution of the bacteriocin in the meat (De Martinis, Publio, Santarosa,
& Freitas, 2001; Stergiou, Thomas, & Adams, 2006).

Substantial research has been done to evaluate and improve the effectiveness
of Nisin and other bacteriocins activity against Gram-negative pathogens and its
applicability in different food products. Several bacteriocins show additive or syn-
ergistic effects when used in combination with other antimicrobial agents includ-
ing, organic acids, other antimicrobials or sublethal treatments such as mild heat
or high pressure (Ananou, Galvez, Martinez-Bueno, Maqueda, & Valdivia, 2005;
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Ariyapitipun et al., 2000; Arques et al., 2004; Ganzle, Weber, & Hammes, 1999;
Rodriguez, Nunez, Gaya, & Medina, 2005).

An alternative use of bacteriocins is as the agent incorporated into packaging
materials (Cooksey, 2005; Quintavalla & Vicini, 2002). Combining the bacteriocin
directly into a plastic material provides a number of advantages for delivery of the
bacteriocin to the food product. Firstly, only the necessary amount of bacteriocin
would be required. Secondly, the agent would not be a direct additive to the food
product and would therefore avoid labeling and regulatory approval. Thirdly, if
the plastic material were made from an edible and/or biodegradable plastic ben-
efits for the environment would be apparent (Siragusa, Cutter, & Willett, 1999).
Bacteriocins such as Nisin and Pediocin among others have been incorporated into
different films and have been successful in inhibiting spoilage microorganisms, such
as LAB and Brochothrix thermosphacta on beef carcass tissue, as well as Listeria
spp. on meat and poultry samples (Marcos, Aymerich, Monfort, & Garriga, 2007;
Mauriello, Ercolini, La Storia, Casaburi, & Villani, 2004; Ming, Weber, Ayres, &
Sandine, 1997; Scannell et al., 2000; Siragusa et al., 1999). Further development of
packaging technologies may prove to be an effective way of delivering bacteriocins
to the surface of food to improve food safety and preservation.

Limitations of Using Bacteriocins and Future Prospects

The extensive use of bacteriocins in foods is hindered by a number of factors.
One of the main limitations is the narrow spectrum of activity of most bacte-
riocins, though the specificity of a bacteriocin can be advantageous for appli-
cations in which a single bacterial strain of species is targeted without disrupt-
ing other microbial populations. Research continues to identify alternative bac-
teriocins which may extend the bacteriocin applications either through their use
alone or in combination with other antimicrobials or hurdle technologies. Con-
siderable studies are also required to investigate the factors influencing the appli-
cability of certain bacteriocins in various food systems. Bacteriocin activity is
difficult to maintain in a range of foods particularly in meat products. Another
potential problem associated with using bacteriocins in foods is the development
of resistant populations of problematic bacteria. Resistance can occur naturally
and it has been reported especially with regard to Class IIa bacteriocins (Nagh-
mouchi, Kheadr, Lacroix, & Fliss, 2007). Consequently, studies have examined
the possibility of generating multiple bacteriocin producers to limit the potential
of bacteriocin-resistant populations (O’Sullivan, Ryan, Ross, & Hill, 2003). Some
BPB strains may also spontaneously loss their ability to produce bacteriocin(s)
due to genetic instability (Holzapfel et al., 1995; Riley & Wertz, 2002) and can
also become ineffective if the cell membrane of a target organism changes in
response to a particular environmental condition. Although there are some limita-
tions for the use of bacteriocins in meat applications, the ongoing study of existing
bacteriocins as well as the identification of new bacteriocins and improvements
of application will only optimize the potential of these agents in many different
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food applications which will lead to further improvements of food safety and
quality of meat products.

Antimicrobial Peptides

Antimicrobial peptides (AMPs) are generally short cationic peptides produced by
both animals and plants that have potent killing activity against a range of bac-
teria, fungi, viruses, and protozoa (Higgs et al., 2007). They are ubiquitous in
nature and they play an important role in host defence and microbial control. Their
exact mode of action is not completely understood, but it is thought that cationic
AMPs are attracted to negatively charged phospholipids in the cell membrane and
interact with the membrane, displacing lipids and altering the membrane structure.
A number of hypotheses have been put forward as to how AMPs kill microbes
and these are discussed elsewhere (Zasloff, 2002). Over 850 AMPs have been
identified from a host of species and a catalogue of these can be found online
(http://www.bbcm.univ.trieste.it/∼tossi/amsdb.html). AMPs can also be designed
and chemically synthesized and have been shown to possess antimicrobial activity
(Anzai et al., 1991; Appendini & Hotchkiss, 1999; Haynie, Crum, & Doele, 1995).

Many studies have demonstrated the activity of AMPs and derivatives from a
variety of species, including host species, against pathogens including Salmonella,
E. coli O157, and Listeria. A selection of these studies is shown in Table 12.5.
AMPs are now emerging as a solution to the development of antibiotic resistance
by bacterial pathogens, and therefore, the focus at present is on understanding their
mode of action and potential application from a clinical point of view (Hancock &
Sahl, 2006). Investigations of AMPs in food systems to date are limited. Some stud-
ies have been performed in food products or suggest the potential of the AMP in
a food product (Table 12.5). Yaron, Rydlo, Shachar, and Mor (2003) studied the
antimicrobial activity of dermaseptin S4 and its derivative K4-S4 which come from
tree frogs. It was found that K4-S4 reduced the population of E. coli O157:H7 in
apple juice by more than 7 log units in less than 2 hours, indicating its potential
usefulness as a biocontrol agent. The authors put forward potential advantages for
the use of animal derived AMPs in food safety and preservation measures, such as
their activity over a wide range of conditions. Another study in apple juice showed
that a synthetic AMP could reduce the E. coli O157:H7 numbers by 3.5 log units in
8 hours. However, the same peptide had no effect on E. coli O157:H7 when grown
in skim milk indicating that components from the milk could be interacting with the
peptide causing it to lose its antibacterial activity (Appendini & Hotchkiss, 1999).
A different study showed that peptides produced by Lb. acidophilus fermenta-
tion of sodium caseinate had bacteriocidal activity against Enterobacter sakaza-
kii, L. innocua and E. coli, and it was suggested that such peptides could be used
as a protection mechanism against E. sakazakii in infant formula by producing
a casein-cased milk ingredient by fermentation (Hayes, Ross, Fitzgerald, Hill, &
Stanton, 2006).
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Very little research has focused on the use of AMPs in the meat industry. One
study looked at the effect of a synthetic peptide on the microflora in meat exudates,
but aerobic and anaerobic counts were reduced by less than one log indicating a
small degree of inhibition (Appendini & Hotchkiss, 1999). Although studies in this
area are limited at the moment, the potential advantages provided by AMPs, such as
their wide spectrum of activity and lack of bacterial resistance to AMPs, suggests
that the interest in their use as biocontrol agents in foods can only grow in the years
to come.

Bacteriophage

Bacteriophages are viruses that infect and kill bacterial cells by reproducing within
the bacteria and disrupting the host metabolic pathways, causing the bacterium
to lyse. Bacteriophage are ubiquitous in the environment; they specifically tar-
get bacterial cells and do not infect mammalian cells, hence the reason why
they are proposed as biocontrol agents in human, animal, clinical and industrial
applications.

Classification and Mode of Action

Most bacteriophages range in size from 24–200 nm in length and are classified into
13 families. The bacteriophage structure consists of a head or capsid; composed
of protein that acts as a protective barrier in which either DNA or RNA is stored.
Some bacteriophages possess a tail through which the nucleic acid is delivered to
the bacterial cell during infection.

Bacteriophages are classified as either lytic or lysogenic. Lytic bacteriophages
bring about rapid lysis and death of the bacterial cell, whereas a lysogenic bacte-
riophage does not result in immediate lysis, but instead enters a quiescent state and
is known as a prophage during this period (Hanlon, 2007). A lysogenic bacterio-
phage integrates into the genome of the host bacterial cell, it undergoes replication
with the host chromosome and the viral DNA is passed onto the daughter cells.
Lysogenic bacteriophages have the ability to transfer genes for toxin production
or pathogenicity factors between bacterial communities (Wagner & Waldor, 2002).
Therefore, lytic bacteriophages are preferred for the purpose of bacteriophage
therapy.

Bacteriophage first come in contact with bacterial host cells during Brownian
motion. Infection of a bacterial cell by a bacteriophage involves attachment of the
bacteriophage to the bacterial membrane. This is accomplished by the tail fibers or
an equivalent structure, attaching to specific receptors on the surface of the bacterial
cell. These receptors may be protein, peptidoglycan, teichoic acid, lipopolysaccha-
ride and oligosaccharide (Lenski, 1988).
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Application of Bacteriophage

There has been a vast amount of research into the application of bacteriophage to
control foodborne pathogens such as Campylobacter, E. coli O157:H7, Listeria
and Salmonella in animal food products, and food processing environments.
Bacteriophage has also been applied to fruit and vegetables to control against
bacterial pathogens pre-harvest, (Balogh et al., 2003; Pao, Randolph, Westbrook, &
Shen, 2004). Another aspect of bacteriophage biocontrol is the use of bacterio-
phages as indicators for detection of pathogens in foods and fecal contamination
of animal feeds (Goodridge, Chen, & Griffiths, 1999; Hsu, Shieh, & Sobsey, 2002;
Maciorowski, Pillai, & Ricke, 2001). Detection of bacterial contamination can
be achieved quickly by using bacteriophage rather than using bacteria (Hsu
et al., 2002). An area of interest is the use of bacteriophage enzymes in foods
and food grade bacteria (LAB). Endolysins are bacteriophage enzymes that are
synthesized late during virus replication. They target bacterial peptidoglycan which
results in the release of progeny virions (Gaeng, Scherer, Neve, & Loessner, 2000;
Loessner, 2005). Gaeng et al. (2000) applied endolysin encoding genes from
Listeria bacteriophage to lactococcal starter organisms to obtain organisms with
biopreservation properties against L. monocytogenes.

Application of Bacteriophage in Animals: Preharvest Control

Wagenaar, Van Bergen, Mueller, Wassenaar, and Carlton (2005) applied a bacterio-
phage (bacteriophage strain 71 and 69) with a wide host range against C. jejuni
strains to control C. jejuni colonization in broiler chickens. They observed a 3
log10 CFUg−1 reduction in C. jejuni counts initially in the therapeutic group; how-
ever, counts stabilized after 5 days to 1 log10 CFUg−1 lower than the control
group. They concluded that this bacteriophage treatment could be an alternative
method for reducing C. jejuni colonisation in broiler chickens. Loc Carrillo et al.
(2005) reported a reduction in C. jejuni counts of between 0.5 and 5 log10 CFUg−1

when broiler chickens were orally administered bacteriophage CP8 and CP34 in an
antacid suspension to reduce C. jejuni colonization in broiler chickens.

The literature, till date, suggests that application of a cocktail of bacterio-
phage yields more successful results in biocontrol of E. coli than bacteriophage
administered singly (Bach, McAllister, Viera, Gannon, & Holley, 2002). Waddell
et al. (2000) administered a cocktail of bacteriophage to control shedding of E. coli
O157:H7 in calves and showed that shedding of the pathogen was observed for 6 to 8
days in bacteriophage treated calves, compared to 6 to 14 days in the control calves.
Kudva, Jelacic, Tarr, Youderian, and Hovde (1999) isolated three coliphages (KH1,
KH4, and KH5) and applied them to a number of O157 and non-O157 strains to
determine their ability to lyse laboratory cultures. The three coliphages were capable
of lysing the O157 serotype, and did not have any effect on the non-O157 strains. A
high multiplicity of infection (MOI) of 103 plaque forming units (PFU) and aeration
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were required for successful control of E. coli O157:H7. Multiplicity of infection
is the ratio of infectious agents to infection targets. A difference between the three
coliphages in their ability to kill host cells was observed. KH1 was the most effective
coliphage in reducing host cell numbers; however, the three coliphages were unable
to eliminate E. coli O157:H7.

Sheng, Knecht, Kudva, & Hovde (2006) applied bacteriophage to determine their
ability to control intestinal E. coli 0157:H7 in ruminants. Bacteriophage KH1 and
SH1 were applied orally and rectally to sheep and cattle respectively. No reduction
in intestinal carriage of E. coli O157:H7 in sheep was observed when KH1 was
administered orally. An equal mixture of KH1 and SH1 were administered rectally
to cattle. Combination of the two bacteriophages reduced the numbers of E. coli
O157:H7; however, they were unable to clear the E. coli O157:H7 infection from
the cattle.

Raya et al. (2006) demonstrated that a single oral dose of E. coli O157:H7 spe-
cific bacteriophage (CEV1) applied to sheep reduced shedding of the pathogen by
2 log10 CFUg−1. Recently, the US Department of Agriculture approved a bacterio-
phage for hide washing. The product produced by OmniLytics is administered on
the hides of live animals prior to slaughter to minimize contamination of E. coli
O157:H7 onto beef carcasses.

Application of Bacteriophage in Meat and Meat Products

The application of bacteriophage has been reported for a range of pathogens on
poultry and meat. Atterbury, Connerton, Dodd, Rees, and Connerton (2003) showed
that when bacteriophage � 02 was applied to chicken skin inoculated with C. jejuni
and stored at 4 and −20◦C a reduction of approximately 1 log10 CFU ml−1 was
obtained. They also observed a reduction in Campylobacteraceae on the frozen
samples by 2 log10 CFU ml−1 after day 1, and remained at similar levels thereafter.
Goode, Allen, and Barrow (2003), also showed that three bacteriophages, specific
for C. jejuni and Salmonella gave a 1 log10 CFU ml−1 reduction of both pathogens,
at a MOI of 1. When other bacteriophages were applied at a MOI of 100 to 1000, a
reduction of 2 log10 CFU ml−1 in S. Enteritidis was observed over 48 hours.

The effectiveness of a three bacteriophage cocktail in reducing E. coli O157:H7 on
inoculated meat samples has been demonstrated by O’Flynn et al. (2004). The three
bacteriophages (e11/2, pp01 e41c) reduced E. coli O157:H7 from initial numbers of
approximately 3 log10 CFU ml−1 to undetectable levels during a 2 hour enrichment
process. The effectiveness may be due to lysis from outside the cell as the MOI used
was 106 – fold, the bacterial cells may have been overwhelmed by the number of
bacteriophage attaching to the cell surface causing the bacterial cell to lyse.

Dykes and Moorhead (2002), applied listeriophage LH7 to beef inoculated with
L. monocytogenes, which was vacuum packed and stored at 4◦C. They also applied
LH7 to mixed population of L. monocytogenes stored in PBS. A combination of liste-
riophage and nisin had no effect when applied to vacuum packed beef. Listeriophage
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alone had no effect when applied to broth, however, when nisin was combined with
LH7 and applied to broth a decrease in L. monocytogenes counts was observed. In
2006, the US Food and Drug Administration approved a bacteriophage preparation to
beappliedonReady-To-Eat (RTE)meatandpoultryproductsasanantimicrobialagent
against L. monocytogenes (Federal Register, 2006). The bacteriophage preparation
consists of six Listeria specific bacteriophages, which were combined to reduce the
possibility of L. monocytogenes developing resistance to the agent. Once L. mono-
cytogenes is no longer present in the product the bacteriophage remains dormant.
The regulation specifies that the cocktail of bacteriophage must be negative for L.
monocytogenes and listeriolysin O, a toxin produced by L. monocytogenes. Another
commercially available product is Listex TMP100, produced by EBI Food Safety. It is a
bacteriophage used for the control of L . monocytogenes in meat and cheese products.
It is recognized as GRAS by the FDA and has a wide host range against Listeria strains
(Carlton, Noordman, Biswas, de Meester, & Loessner, 2005).

Whichard, Sriranganathan, & Pierson (2003) investigated the ability of bacterio-
phage Felix 01 (wild type) and a variant of Felix 01, to control Salmonella growth on
chicken frankfurters. A 1.8 and 1.2 log10 CFU ml−1 reduction of S. Typhimurium in
artificially contaminated chicken frankfurters was reported for the wild type Felix 01
and the variant respectively. Another study artificially inoculated broiler carcasses
with S. Enteritidis and stored them at 4◦C for 2 hours. Carcasses were then sprayed
with 5.5 ml of saline containing bacteriophage PHL 4 at various concentrations.
This resulted in a 93% reduction in recovery of S. Enteritidis when inoculated with
108 or 1010 PFU. They also applied PHL 4 to carcass rinse water at concentrations
of 106 and 1010 PFU. When bacteriophage was applied at 1010 PFU recovery of
S. Enteritidis was reduced to between 50 and 100% (Higgins et al., 2005).

Limitations of Bacteriophage Use

Adsorption of a bacteriophage to receptors on a bacterial cell occurs during Brow-
nian motion. This process may be obstructed by the existence of considerable num-
bers of non host bacterial cells. This initial interaction may also be hindered by
a viscous environment, for example, the rumen environment (Joerger, 2003). This
type of environment may protect the bacterial cell from bacteriophage infection.
Host bacterial cells may also be protected by biofilms present in a food environment
as bacteriophage would be incapable of penetrating and accessing the bacterial cell
within the biofilm. Many meat products are distributed and stored at refrigeration
temperatures, conditions under which many pathogens may not grow. This poses a
problem with bacteriophage use as replication can not occur under conditions where
the host is not dividing. In addition, other food conditions can also affect bacterio-
phage use, these include visible and UV light, osmotic shock and pressure and ther-
motolerence. Bacteriophages may be destroyed in food processing environments as
they are effectively cleaned and sanitized. There are reports of dairy bacteriophages
being destroyed by sodium hypochlorite (100 ppm free chlorine) and peracetic acid
(Quiberoni, Suarez, & Reinheimer, 1999). Some pathogens can survive the low pH
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environments while bacteriophages would be instable at such low acidity. Smith,
Huggins, and Shaw (1987) reported the stability of bacteriophage over a pH range
of 3.5 to 6.8, however a decrease in bacteriophage titer was observed at pH 3, and a
large decrease was observed below pH 3.

The need for high bacterial populations for phage replication to occur and lyse
the bacterial cells has been reported in the literature. Berchieri, Lovell, and Barrow
(1991), stated that approximately 104 CFU ml−1 of the host cell was required for
the bacteriophage to have an effect on the host cell.

Bacteriophages also have the capability to transfer unfavorable genes from one
bacterium to another; these could be virulence genes or antibiotic resistance genes
(Alisky, Iczkowski, Rapoport, & Troitsky, 1998; Figueroa-Bossi & Bossi, 1999;
Mirold, Rabsch, Tschape, & Hardt, 2001; Schmieger & Schicklmaier, 1999). This
is a major concern and much effort must be applied to characterize and determine
the potential of a bacteriophage to transfer virulence factors and antibiotic resistance
genes to commensal or pathogenic bacteria before it is commercialised.

The emergence of host resistance to bacteriophages due to DNA mutations has
been reported in pathogens in pre-harvest (Sklar & Joerger, 2001) and post- harvest
environments (Greer & Dilts, 2002). A cocktail of bacteriophage may settle the
issues of host resistance (Barrow & Soothill, 1997; Leverentz et al., 2003; Tanji
et al., 2004). Desirably, bacteriophages with a broad host spectrum are favourable
for biocontrol as there are many subtypes in each pathogen species that may possess
different cell surface receptors. Finally, if bacteriophages are to be used in food pro-
ducts, consumer acceptance will be a major factor. The marketing strategy involved
for bacteriophage products will be a critical area to ensure consumer acceptance.

Vaccines

An option which has been investigated as a potential biocontrol agent at the pre-
harvest stage is vaccination of food animals. In this way the animal’s own immune
system is used to reduce pathogen loads by producing antigens against particular
pathogens. A successful vaccine would prevent colonization of the host by the
pathogen; i.e. when the animal ingests the pathogen it can not colonize and multiply
and therefore less of the pathogen would be present at slaughter or in the feces thus
reducing the likelihood of the pathogen entering the food chain. There are obstacles
to be overcome; however, a major challenge being the ability to prime the mucosal
immune response of animals to mount a protective response against an otherwise
commensal organism (LeJeune & Wetzel, 2007). Vaccinations have been developed
with varying degrees of success for a number of zoonotic pathogens. The following
is by no means an exhaustive list but provides an overview of the different types of
vaccine, currently either in development or in use.

Intimin from E. coli O157:H7 has been identified as a potential vaccine candi-
date. Intimin is an outer membrane protein encoded by the eae gene that is required
for intestinal colonization and attaching and effacing activity of E. coli O157:H7 in
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piglets and calves (Dean-Nystrom, Bosworth, Moon, & O’Brien, 1998). A vaccine
containing intiminO157 was tested using neonatal piglets as a challenge model and it
was demonstrated that piglets that ingested maternal antibodies against intiminO157

were protected from colonization with an intimin producing E. coli O157:H7 strain
(Dean-Nystrom, Gansheroff, Mills, Moon, & O’Brien, 2002). This provides evi-
dence that this may be a viable candidate for an anti-E. coli O157:H7 vaccine in
cattle, the main reservoir of enterohaemorrhagic E. coli. Another study looked at
the use of the cell-binding domain of intimin or a truncated EHEC factor for adher-
ence (Efa-1) as potential vaccines. Both were found to induce humoral immunity
in calves but did not protect against intestinal colonization by E. coli O157:H7
and O26:H- upon subsequent challenge (van Diemen et al., 2007). Similarly, the
same study showed that an inactivated vaccine comprising of formalin-killed E. coli
O157:H7 was ineffective, despite IgG responses. Nonetheless, the authors con-
cluded that it may be possible to use these antigens, provided appropriate exposure
to the intestinal immune system can be achieved.

Potter et al. (2004) looked at the use of proteins involved in intestinal colonization
as possible vaccine targets. In this case, the authors used the proteins Tir, EspA and
EspB, which are part of a type III secretion system involved in bovine intestinal
colonization. Cattle were immunised with supernatant proteins containing Esps and
Tir and subsequently challenged with E. coli O157:H7 and the fecal shedding was
monitored. It was found that fecal shedding of E. coli O157:H7 was significantly
reduced following vaccination, and the number of animals in the group shedding
the pathogen and the duration of shedding were also reduced. It was also suggested
that this vaccine could be used as a vaccine for non-O157 serotypes as the type III
secreted antigens are relatively conserved among non-O157 serotypes. However, a
subsequent field trial of the vaccine in nine feedlots showed no significant asso-
ciation between vaccination and pen prevalence of fecal E. coli O157:H7 (Van
Donkersgoed, Hancock, Rogan, & Potter, 2005). A number of possible reasons were
suggested for this, including different preparation of the vaccine, different vacci-
nation strategies, different pen sizes and different timeframes. Another study also
investigated the use of highly purified recombinant EspA as a vaccine for calves, and
while this induced antigen specific IgG and salivary IgA responses, these responses
did not protect against intestinal colonization upon subsequent challenge with E. coli
O157:H7 (Dziva et al., 2007).

Salmonella is another zoonotic pathogen where substantial efforts have been
invested to develop an effective vaccine. The success of this is dependent on under-
standing how Salmonella infect their hosts and the host response. However, a major
obstacle is that Salmonella pathogenicity is both serotype-dependent and host-
dependent and the factors influencing serotype-host specificity are not well known
(Barrow, 2007).

Salenvac� is a commercially available, killed iron-restricted S. enteriditis PT4
vaccine which has been used as part of control programmes to reduce the burden
of S. enteriditis infection of poultry flocks. A laboratory trial showed that the vac-
cine was successful in decreasing egg contamination (5.4–7.4% had culture posi-
tive shells in comparison to 16.7% for unvaccinated birds) and tissue colonization
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subsequent to intravenous S. enteriditis challenge (Woodward, Gettinby, Breslin,
Corkish, & Houghton, 2002). However, it has been suggested that oral or respiratory
challenge would have been more relevant (Barrow, 2007). Another study evaluated
the efficacy of Salenvac� T which is made up of inactivated S. Typhimurium and
S. enteriditis which have been grown under iron restriction. In this case the chickens
were orally challenged with S. Typhimurium. Vaccination resulted in a significant
reduction in the shedding of S. Typhimurium (Clifton-Hadley et al., 2002). Liu,
Yang, Chung, & Kwang (2001) used formalin-inactivated S. enteriditis encapsu-
lated in biodegradable microspheres as a vaccine and dosed chickens either orally
or via an intramuscular route and also challenged them by these routes. It was found
that shedding and colonization by S. enteriditis was significantly decreased in the
vaccinated birds in comparison to the control birds. When challenged intramus-
cularly vaccinated birds were 27.9% feces positive and 18.7% organ positive for
S. enteriditis in comparison to 59.3% feces positive and 44% organ positive for
nonvaccinated chickens.

A number of live Salmonella vaccines have also been developed, some of which
are commercially available. TAD Salmonella vac� E and TAD Salmonella vac� T
are metabolic drift mutants of S. enteriditis and S. Typhimurium respectively, which
were produced by chemical mutagenesis (Linde, Beer, & Bondarenko, 1990). It
was shown in laboratory studies that these vaccines used either singly or in combi-
nation reduced organ and reproductive tract colonization and internal egg contami-
nation, in comparison to control birds. This indicates cross protection provided by
the TAD Salmonella vac� T vaccine (Gantois et al., 2006). Another example of a
live Salmonella vaccine for use in chickens was described by Cerquetti and Gher-
ardi (2000). Trials showed that in the case of S. enteriditis and S. Gallinarum there
was a significant decrease in colonization of the cecum and also reduced coloniza-
tion by S. Typhimurium but not to a significant degree. A recent study has looked
at using strains harbouring mutants in the Salmonella pathogenicity islands 1 and
2 (either hilA, sipA, or ssrA) as protective vaccines against S. enteriditis challenge
in newly hatched chicks. While the sipA and ssrA mutants were found to protect
against challenge strain colonization of the cecum and internal organs they were not
deemed to be useful due to the vaccine strains’ persistent colonization throughout
the study. However, the hlyA mutant strain was found to confer protection against
colonization by the challenge strain and the vaccine strain could not be detected
in the cecum four weeks post inoculation. The authors proposed that the longer
the vaccine strain colonized the intestine, the longer the protection against virulent
Salmonella. Therefore, the challenge is to provide a balance between colonization
of the vaccine and clearance of the vaccine before slaughter to exploit colonization
inhibition as a protection mechanism (Bohez et al., 2007).

The investigation of Salmonella vaccines has not just been limited to poultry
with numerous studies being carried out in other animal models. One such example
is the use of an attenuated S. Typhimurium strain which has a mutation in DNA
adenine methylase in calves. It was found that it provided protection against sub-
sequent virulent S. Typhimurium challenge via adaptive immunity and competitive
exclusion (Dueger, House, Heithoff, & Mahan, 2003a). This strain was also found
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to provide protection in avian models (Dueger, House, Heithoff, & Mahan, 2001,
2003b). Pigs usually do not develop clinical salmonellosis, but as they can be car-
riers and shedders they can be a reservoir for the disease in humans. A metabolic
drift mutant of S. Typhimurium was used as an oral vaccine for piglets that were
subsequently challenged with a highly virulent S. Typhimurium strain. It was found
that vaccinated animals shed substantially smaller amounts of the challenge strain
and for a shorter period of time (Roesler et al., 2004). A similar trend was seen when
the same strain was tested in poultry (Linde, Hahn, & Vielitz, 1996).

Subunit vaccines, i.e., vaccines which only contain individual proteins which
will act as antigens, have received much less attention as a control agent for
Salmonella and appear to have focused on using outer membrane proteins. Two
studies of such vaccines were shown to either reduce colonization of S. enteriditis
to the chicken intestinal mucosa following challenge (Khan, Fadl, & Venkita-
narayanan, 2003) or had significantly reduced shedding of the challenge organism
(Meenakshi et al., 1999).

There are presently no commercially available vaccines against Campylobacter
in poultry. The development of such vaccines is hampered by a number of factors
including the antigenic variety of strains and the lack of knowledge of antigens
which induce a protective immune response. Also, there is a need to provide pro-
tection in the very early days of life as Campylobacter infection can occur at a very
early stage (Wagenaar, Mevius, & Havelaar, 2006). However, a number of strategies
have been or are being investigated and are reviewed by de Zoete, van Putten, &
Wagenaar (2007). Killed whole cell vaccines have been examined and have shown
mixed results. In one study, formalin-inactivated C. jejuni was administered with
and without E. coli heat-labile toxin and after challenge by the homologous strain
it was found that lower numbers of C. jejuni were isolated from the cecum (Rice,
Rollins, Mallinson, Carr, & Joseph, 1997). However, another study which also used
formalin-inactivated C. jejuni did not result in reduced cecal colonization upon
subsequent homologous strain challenge (Cawthraw, Ayling, Nuijten, Wassenaar, &
Newell, 1998). Subunit vaccines have also been looked at, and again have had vari-
able levels of success. A number of studies have looked at using flagellin, which is
involved in colonization of Campylobacter in the chicken gut. One such study by
Widders et al. (1998) found that birds immunized twice intraperitoneally with killed
C. jejuni and purified flagellin showed a significant reduction in cecal coloniza-
tion, whereas, birds that received a second immunization orally, or birds immunized
twice with flagellin alone did not show significant reductions in cecal colonization
of C. jejuni. Another study created a fusion protein where flagellin was fused to
the B-subunit of the labile toxin of E. coli and was administered as a vaccine to
chickens that were subsequently challenged with C. jejuni. It was found that there
was significantly less colonization in comparison to the control birds (Khoury &
Meinersmann, 1995). A cocktail of attenuated live C. jejuni strains has also been
used, but subsequent challenge with the parent strain did not result in reduced
colonization compared to control birds (Ziprin, Hume, Young, & Harvey, 2002).
These studies clearly indicate that there is a long way to go in designing an efficient
Campylobacter vaccine.
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A major advantage of vaccines as a biocontrol agent is that they can be used
as a pre-harvest intervention. Their use has the potential to reduce pathogen car-
riage, thereby lessening the likelihood of contamination and occurrence of horizon-
tal transfer which allows the pathogen into the food chain. However, the overall
results from vaccine trials to reduce the pathogen load in food animals have been
mixed and results appear to be very specific to the host used. Arguments also exist
about what type of vaccine is best to use-live, killed or subunit vaccines. In the case
of Salmonella, live vaccines are seen to be more efficacious but concerns such as
public acceptability and safety do exist. Killed vaccines are considered safer but
appear be less efficient at prompting a protective immune response. Subunit vac-
cines require an indepth understanding of the pathogen’s interaction with its host, in
order to choose an effective antigen. Overall, the development of effective vaccines
against foodborne pathogens for animals still faces many hurdles.

Concluding Remarks

The key role which meat and meat products play as a vehicle of foodborne zoonotic
pathogens is in no doubt. Microbial contamination can occur at all areas of the farm
to fork chain. Numerous chemical methods can be employed to remove microbial
contamination but more and more there is an increased consumer demand for foods
with less additives and an interest in the use of alternative biological agents. It has
been shown in this review that numerous potential options are available which can
be applied at various points in the food chain and there is substantial research being
invested in the area of biocontrol agents. Many of these are in the early stages of
development, but some have been employed in food products or in animal trials,
with varying degrees of success. What is very clear is that the success of a particular
biocontrol agent depends very much on the food matrix, the target pathogen and the
conditions used, and a biocontrol which works successfully in one food or animal
environment cannot necessarily be extrapolated to another food product type. From
a meat perspective, the potential for the use of biocontrol agents is huge as has been
exemplified in this review. However, much work remains to be done to tailor these
agents for particular products and pathogens and will no doubt be the focus of much
research in the years to come.
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