
Chapter 3
Measuring Income Deprivation

3.1 Introduction

A person’s feeling of deprivation with respect to an attribute of well-being arises
from the comparison of his situation in the society with those of the persons that
are better-off in the attribute. Evidently, high deprivation may generate tensions in
the society which ultimately may lead to conflicts. A natural objective of the society
should, therefore, be to make deprivation as low as possible. In this chapter, for
simplicity, we will study only income deprivation.

The concept of deprivation was introduced into the income distribution litera-
ture by Sen (1973, 1976a). According to Sen (1973), in any pairwise comparison,
the person with lower income may have a feeling of depression on finding that
his income is lower. Assuming that the extent of depression suffered by an indi-
vidual is proportional to the difference between the two incomes concerned, the
average of all such depressions in all pairwise comparisons becomes the Gini index.
A more formal treatment of this result was provided by Hey and Lambert (1980).
Kakwani (1980a) interpreted the coefficient of variation from a similar perspective
under the assumption that an individual’s extent of depression is proportional to the
square of the income difference. Tsui and Wang (2000) characterized a transforma-
tion of the Donaldson and Weymark (1980, 1983) S-Gini indices as a deprivation
index using the concept of “net marginal deprivation.” Net marginal deprivation
demands that a rank-preserving increase in a person’s income will generate two ef-
fects: (1) the feeling of deprivation among those poorer than him will increase and
(2) his deprivation with respect to those richer than him will decrease. This approach
bears some similarity with the Berrebi and Silber (1981) formulation.

A person in subgroup i of persons with i lowest incomes in the society may regard
the subgroup highest income as his source of envy and the sum of gaps between the
subgroup highest income and all lower incomes can be taken as an aggregate depres-
sion index of the subgroup. Aggregation of depressions across subgroups generates
the absolute Bonferroni inequality index as the summary index of depression for the
population as a whole (Chakravarty, 2007).
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Sen (1976a) argued that for any person, an increasing function of the number
or share of the persons who have higher incomes can be taken as the level of de-
privation. Alternatively, one might use the individual’s income shortfall from a ref-
erence income level as an indicator of his deprivation. Yitzhaki (1979) considered
the former notion and showed that one plausible index of average deprivation in a
society is the absolute Gini index (see also Hey and Lambert, 1980). In either case,
the position of the individual on income hierarchy plays an important role in the
determination of his deprivation. Runciman (1966) discussed these two notions of
deprivation earlier in a more general context (see also Weiss and Fershatman, 1998).
In this general framework, an individual’s assessment of a social state depends on
the positions of those who are more favorably treated than him.

Bossert and D’Ambrosio (2007) considered time as a dimension in the determi-
nation of individual deprivation. In their framework, individual deprivation depends
on two components, the average income shortfall of a person from all persons who
are richer than him in the current period and the number of persons who were not
richer than him in the previous period but are now better-off than him. Thus, this ap-
proach incorporates the idea that a person feels deprived not only because he is poor
now but also because he was not poorer in the earlier period. They also developed
axiomatic characterizations of deprivation indices that capture these ideas.

Chakravarty et al. (1995), Chakravarty (1997b, 2008b), and Chakravarty and
Mukherjee (1999) looked at alternative implications of deprivation dominance in-
duced by Kakwani’s (1984a) relative deprivation curve (RDC), which is obtained
by plotting the normalized cumulative sum of income shortfalls of different indi-
viduals from richer individuals against the corresponding cumulative population
proportions. Chakravarty (1997b, 2008b) also studied satisfaction dominance in
details, where the notion “satisfaction” may be regarded as the dual of the no-
tion of deprivation. These issues have been examined further, among others, by
Zoli (2000), Chakravarty and Moyes (2003), Chateauneuf and Moyes (2004, 2006),
Moyes (2007), and Zheng (2007b).

Marshall et al. (1967) and Marshall and Olkin (1979) developed conditions
on pairwise absolute and relative (ratio) income differences that are sufficient for
Lorenz dominance. Preston (1990) provided some characterizations of these condi-
tions along with an empirical illustration. The absolute difference and ratio criteria
are, in fact, special cases of Zheng’s (2007b) general utility gap dominance. He in-
vestigated a weak dominance concept which imposes conditions only on the gap
between each person’s utility and some reference utility.

According to Temkin (1986, 1993), a person has a complaint if he has lower in-
come than others and inequality can be viewed in terms of such complaints. The
greater is the difference between the income of a person and income of those richer
than him, the greater will be his complaint. Similarly, the higher is the number of
persons richer than him, the higher is his complaint. Social inequality then aggre-
gates the complaints of different individuals concerning the income gaps and the
numbers of persons. More precisely, inequality is defined as an increasing function
of the total numbers and sizes of complaints of different individuals in the society.
An important case here is that the highest income of the society is the reference
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point for all and everybody except the richest has a legitimate complaint. Cowell
and Ebert (2004) used this structure to derive a complaint-based dominance crite-
rion and a new class of inequality indices (see also Cowell, 2008, and Cowell and
Ebert, 2008). Some implications of the complaint dominance relation have also been
examined.

This chapter provides a comprehensive and analytical treatment of alternative
notions of deprivation. Particularly, we examine the alternative notions of redistrib-
utive principles that take us from a more deprived distribution to a less deprived one
under general assumptions about the mean income and the population size.

3.2 Deprivation and Satisfaction

For a population of size n > 2, a typical income distribution is given by x =
(x1, . . . ,xn), where xi > 0 is the income of person i. Assuming that all income distri-
butions are illfare-ranked, the set of income distributions in this n-person economy
is Dn

+ and the set of all possible income distributions is D+ = ∪
n∈N

Dn
+, where N is

the set of natural numbers.
Let us now combine the two notions of deprivation explored in the introduction to

arrive at a single indicator. Essential to the construction of this indicator is the exis-
tence of higher incomes than the income of the person under consideration and they
constitute a source of frustration for the person. Given that x ∈ Dn

+ is illfare-ranked,
according to the first notion, a measure of deprivation felt by person i is (n− i)/n.
An alternative measure of deprivation for person i can be (λn−i(x)−xi)/λ (x), where
λn−i(x) is the mean income of the (n− i) persons richer than i in the distribution x.
We can arrive at a combined indicator from these two measures by a multiplicative
aggregation. The resulting indicator then becomes

RDi(x) =
(

n− i
n

)(
λn−i(x)− xi

λ (x)

)

=
(

n− i
n

) n

∑
j=i+1

(x j − xi)
λ (x)(n− i)

=
n

∑
j=i+1

(x j − xi)
nλ (x)

.

(3.1)

This is the Kakwani (1984a) measure of deprivation of person i. It determines the
sum of income share shortfalls of person i from all persons who are not poorer than
him.

Note that RDi is homogeneous of degree zero in incomes, that is, it is a relative
indicator of individual deprivation. Alternatively, we may assume that the individual
deprivation indicator is an absolute measure. Multiplying RDi by the mean we arrive
at the following simple specification, which looks at deprivation in terms of absolute
income differentials:

ADi(x) =
n

∑
j=i+1

(x j − xi)
n

. (3.2)

This absolute counterpart to RDi is the Yitzhaki measure of deprivation of person
i (Yitzhaki, 1979). It indicates the total income shortfall of person i from all those
who are not worse-off, as a fraction of the population size n.
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The following are some of the properties of the functions RDi and ADi (see
Chakravarty, 1997b, 2008b; Ebert and Moyes, 2000).

1. They are continuous, symmetric, population replication invariant, and nonneg-
ative, where the lower bound zero is achieved whenever there is no feeling of
deprivation.

2. When deprivation is measured by these two indicators, the richest individual with
income xn does not feel deprived at all.

3. They are decreasing under a rank-preserving increase in xi.
4. An increase in any income higher than xi that does not change the income ranks

increases them.
5. An increase in any income lower than xi, keeping the income hierarchy positions

unaltered, does not change ADi but decreases RDi.
6. They decrease under a rank-preserving income transfer of income from a person

with income higher than xi to someone with income lower than xi.
7. They remain unaltered if a rank-preserving income transfer takes place among

persons richer/poorer than person i.

Note that we can rewrite RDi(x) in (3.1) as

RDi(x) =
nλ (x)−

(
∑i

j=1 x j +(n− i)xi

)

nλ (x)
= 1−LC

(

x,
i
n

)

− (n− i)xi

nλ (x)
, (3.3)

where LC(x,(i/n)) is the ordinate of the Lorenz curve of x at the cumulative popu-
lation proportion i/n. We define the complement

RSi(x) =
∑i

j=1 x j +(n− i)xi

nλ (x)
(3.4)

of RDi(x) in (3.3) from unity as the relative satisfaction function of person i. The
function RSi can be interpreted as follows. Person i does not have any feeling of
frustration if he compares his income xi with the lower incomes x1, . . . ,xi−1. This

justifies the inclusion of first term
i
∑
j=1

x j, which depends on x1, . . . ,xi−1,xi, in the nu-

merator of the right-hand side of (3.4). Next, we can eliminate person i’s frustration
about the higher incomes xi+1, . . . ,xn by replacing each of them by xi. This then gen-
erates the distribution (x1,x2, . . . ,xi,xi, . . . ,xi) censored at xi. In the censored income
distribution (x1,x2, . . . ,xi,xi, . . . ,xi) corresponding to (x1,x2, . . . ,xi−1,xi, . . . , . . . ,xn),
person i does not feel frustrated because of absence of incomes that are higher than
xi. Given the position of an individual in the income distribution ladder, he can be
regarded as being either satisfied or frustrated. Since in the censored distribution
in addition to person i there are (n − i) persons with income xi and they are all
treated in a symmetric manner, we simply add (n− i)xi to ∑i

j=1 x j to arrive at the
numerator of RSi. Thus, the definition of RSi relies on the assumption that an indi-
vidual derives satisfaction from the observation that nobody in the society is richer
than him and there are people who are as well-off as he is. By multiplying RSi
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with the mean income, we get the generalized satisfaction function GSi. That is,
GSi(x) = λ (x)RSi(x) = 1/n(∑i

j=1 x j + (n− i)xi) = GL(x,(i/n)) + [((n− i)xi)/n],
where GL(x, i/n) is the ordinate of the generalized Lorenz curve of x at i/n. RSi
and GSi defined this way may be regarded as indicators of individual well-being.
Note that GSi is continuous, increasing in xi (assuming that income ranks are unal-
tered), linear homogeneous, unit translatable, and population replication invariant.
For any x ∈ Dn, x1 = GS1(x) ≤ GS2(x) ≤ . . . .. ≤ GSn(x) = λ (x). If incomes are
equally distributed, then RSi and GSi become respectively one and the common in-
come itself. [Further discussion along this line can be found in Yitzhaki (1979), Hey
and Lambert (1980), Stark and Yitzhaki (1988), Chakravarty (1997b, 2008b), and
Chakravarty and Mukherjee (1999).]

For any income distribution x, RDi(x) is, in fact, the ordinate RD(x, i/n)
of the RDC corresponding to the cumulative population proportion i/n (see
Kakwani, 1984a). The RDC of x, RD(x, t), where t ∈ [0,1], is completed by assu-
ming RD(x,0) = 1 and by defining

RD
(

x,
i+ τ

n

)

= (1− τ)RD
(

x,
i
n

)

+ τRD
(

x,
i+1

n

)

, (3.5)

for all 0 ≤ τ ≤ 1 and 1 ≤ i ≤ (n−1). Clearly, the RDC is downward sloping, which
means that for any two persons, the richer person has a lower level of deprivation
than the poorer person. If all the incomes are equal, then there is no feeling of depri-
vation by any person (RD(x, t) = 0 for all t). In this case, the curve coincides with
the horizontal axis. In contrast, maximum deprivation arises if the entire income is
monopolized by the richest person and the curve coincides with the line BC shown
in the Fig. 3.1. Equation (3.3) shows how we can generate the RDC from the Lorenz
curve.

C B
1

0 1

RD(x,t)

O A

Cumulative population proportion

Fig. 3.1 Relative deprivation curve
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The absolute deprivation curve (ADC) of x, AD(x, t), where t ∈ [0,1], is obtained
by multiplying the RDC of x by the mean. Formally, AD(x, t) = λ (x)RD(x, t), where
t ∈ [0,1]. We now define the absolute deprivation dominance (relative deprivation
dominance) rule using the ADC (RDC) as follows. Given x,y ∈ Dn

+, we say that
y absolute deprivation dominates (relative deprivation dominates) x, what we write
y ≥AD x(y ≥RD x), if we have AD(y, t) ≥ AD(x, t)(RD(y, t) ≥ RD(x, t)) for all t ∈
[0,1], with > for some t.

We can use RSi(x) values to define the relative satisfaction curve (RSC), RS(x, t)
associated with x, where t ∈ [0,1]. More precisely, assuming that the ordinate of the
curve at the cumulative population proportion i/n is given by RSi(x), it is drawn
under the assumption that RS(x,0) = 0 and by defining

RS
(

x,
i+ τ

n

)

= (1− τ)RS
(

x,
i
n

)

+ τRS
(

x,
i+1

n

)

, (3.6)

for all 0 ≤ τ ≤ 1 and 1 ≤ i ≤ (n−1). This curve is upward sloping. The generalized
satisfaction curve (GSC) of the distribution x, GS(x, t) is produced by scaling up
its RSC by the mean. That is, GS(x, t) = λ (x)RS(x, t), 0 ≤ t ≤ 1. It should now be
clear the RSC (GSC) of a distribution can be generated by taking complement of the
RDC (ADC) from unity (the mean). Given the relationship of GSi with GL(x, i/n),
we can say that the generalized Lorenz curve of a distribution never lies above its
positively sloped GSC. Like the generalized Lorenz curve, the satisfaction curves,
which show the levels of satisfactions enjoyed by different fractions of the popula-
tion, may be interpreted as measures of social welfare. Thus, while deprivation has a
negative impact on individual well-being, satisfaction makes a positive contribution
to it (Fig. 3.2).

We can define the generalized and relative satisfaction dominance relations ≥GS
and ≥RS using the GSC and the RSC curves, respectively, in the same way we
employed the ADC and the RDC curves to define ≥AD and ≥RD, respectively.

GS(x,t)

GL(x,t)

Generalized Lorenz curve 

Generalized satisfaction curve

0 1 

Cumulative population proportion

Fig. 3.2 Generalized satisfaction curve and generalized Lorenz curve
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The following two theorems, which were established in Hey and Lambert (1980),
Chakravarty et al. (1995), Chakravarty (1997b, 2008b), and Chateauneuf and
Moyes (2004, 2006), show some implications of the relations ≥AD and ≥GS.

Theorem 3.1. Let x,y ∈ Dn
+, where λ (x) = λ (y), be arbitrary. Then y ≥RD x implies

that x is Lorenz superior to y (that is, x ≥LC y). But the converse is not true.

Proof. y ≥RD x along with λ (x) = λ (y), in view of (3.3), implies that

i

∑
j=1

x j +(n− i)xi ≥
i

∑
j=1

y j +(n− i)xi (3.7)

for all 1 ≤ i ≤ n, with > for some i < n. For i = 1, the above inequality becomes
nx1 ≥ ny1 which gives x1 ≥ y1. Suppose that the result is true for i = l, that is,
∑l

j=1 x j ≥ ∑l
j=1 y j . We will show that it is true for i = l + 1 also. Now, for i =

l +1, inequality (3.7) becomes∑l+1
j=1 x j +(n− l−1)xl+1 ≥∑l+1

j=1 y j +(n− l −1)yl+1.
Adding (n− l −1)∑l

j=1 x j((n− l −1)∑l
j=1 y j) to the left- (right-) hand side of this

inequality, we get (n− l)(∑l
j=1 x j + xl+1) ≥ (n− l)(∑l

j=1 y j + yl+1), from which it
follows that ∑l+1

j=1 x j ≥ ∑l+1
j=1 y j. This shows that the result is true for i = l + 1 also.

Hence, by the method of mathematical induction, the inequality
i
∑
j=1

x j ≥
i
∑
j=1

y j holds

for all 1 ≤ i ≤ n. Given that there is strict inequality in ≥RD for some i < n, there
will be similar strict inequality in ≥LC as well. For instance, if the inequality in (3.7)
is strict for i = l +1, then the corresponding inequality in ≥LC will be strict, that is,
we will have ∑l+1

j=1 x j > ∑l+1
j=1 y j. Hence we have x ≥LC y.

To demonstrate that the reverse implication does not follow, consider the distri-
bution y = (5,10,15,20). Then x = (5,11,14,20) is derived from y by transferring
one unit of income from the person with income 15 to the one with income 10. By
the Hardy et al. (1934) theorem, this transfer ensures that x ≥LC y holds, but y ≥RD x
does not hold. This completes the proof of the theorem. 	


To understand why y ≥RD x does not hold in the example taken above, note that
while the RDi measure for the recipient decreases, that of the donor increases, mak-
ing the net effect ambiguous. It is evident that in view of the equality of the means,
in Theorem 3.1, we can replace y ≥RD x by y ≥AD x or by x ≥RS y.

Theorem 3.2. Let x,y ∈ Dn
+ be arbitrary. Then x ≥GS y implies that x is generalized

Lorenz superior to y (i.e., x ≥GL y). But the converse is not true.

Proof. In this case, we compare GSi(x) = 1/n(∑i
j=1 x j +(n− i)xi) with the corre-

sponding expression for GSi(y) for all 1 ≤ i ≤ n. Since the structure of the proof of
the part that x ≥GS y implies x ≥GL y is similar to the demonstration of the claim
that y ≥RD x implies x ≥LC y, we are omitting the proof. To see that the converse
is not true, consider the distributions y′ = (2,3,6) and ȳ = (1,4,5). Then we have
y′ ≥GL ȳ but not y′ ≥GS ȳ. 	
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To understand the reason for not having y′ ≥GS ȳ in the proof of Theorem 3.2,
note that by increasingness of any increasing, strictly S-concave social welfare func-
tion W , we get W (ŷ) > W (ȳ), where ŷ = (1,4,6). Now, we get y′ from ŷ by transfer-
ring one unit of income from the second richest person to the poorest person. Hence
by strict S-concavity of W , W (y′) >W (ŷ), from which it follows that W (y′) >W (ȳ).
Thus, by the Shorrocks (1983a) theorem, we have y′ ≥GL ȳ. But while the increase
in the richest person’s income from 5 to 6 increases his satisfaction, the progres-
sive transfer reduces the satisfaction of the donor and increases that of the recipient,
generating an intersection between the GSCs of y′ and ȳ.

Given equivalence of the generalized Lorenz relation with second-order stochas-
tic dominance, it follows from Theorem 3.2 that the generalized satisfaction domi-
nance is a sufficient condition for second-order stochastic dominance as well.

In view of Theorem 3.1, it is clear that we need redistributive principles other than
the Pigou-Dalton condition that will be consistent with the dominance principles
introduced in this chapter. As a first step, following Chateauneuf and Moyes (2006)
and Moyes (2007), we say that for x,y ∈ Dn

+, where λ (x) = λ (y), x is obtained from
y by a T2-transformation if there exist σ̂ , ρ̂ > 0 and two individuals j, l(1 ≤ j < l ≤
n) such that:

xi = yi for all i ∈ {1,2, . . . ., j−1}∪{ j +1, . . . ., l −1};
x j = y j + σ̂ ;
xi = yi − ρ̂ for all i ∈ {l, . . . .,n}σ̂ = (n− l +1)ρ̂.

(3.8)

The essential idea underlying a Chateauneuf-Moyes transformation of type T2 is
that if some amount of income is taken from an individual l, then the same amount
of income should be taken from all the persons who are richer than l. The entire
rank-preserving transfer is received by person j, who is poorer than l. However,
individuals in the set {1,2, .. j−1} who are poorer than individual j do not benefit
from the redistribution.

We can look at the transformation T2 from a more general perspective. Let us
rewrite x as y + b, where bi = 0 for all i ∈ {1,2, . . . ., j − 1} ∪ { j + 1, . . . ., l − 1},
b j = σ̂ , and bi = −ρ̂ for all i ∈ {l, . . . .,n}. The condition σ̂ = (n − l + 1)ρ̂
shows that ∑n

i=1 bi = 0. Further, bi ≥ ∑n
j=i+1 b j/(n − i) with > for at least one

i < n. We may verify this claim using the example x = (10,24,30,38,48) and
y = (10,20,30,40,50). That is, in going from y to x, if person i has to forgo some
amount of money (bi < 0), then this amount should be less than the average net
giving up (total giving ups in excess of receiving) of all who are richer than him.
Likewise, if the redistribution enables him to get some amount of money (bi > 0),
then his receipt should be greater than the average net receipt (total receipt in ex-
cess of giving up) of all who are richer than him. One possible way in which such
a situation can arise is that a progressive transfer is shared by the recipients, start-
ing from the poorest, in decreasing order of income without destroying incentive
preservation. Incentive preservation of a scheme requires that it does not alter rank
orders of the individuals. This scheme has a lexicographic flavor in the sense that a
person cannot receive his share of the donation unless all persons poorer than him



3.2 Deprivation and Satisfaction 93

have received their shares. Since the general scheme is a fair way of redistribution,
we can refer to it as a “fair redistributive program.” We may relate this condition
with a balanced fiscal program (y,x) which is minimally progressive and incentive
preserving, where y is the pretax income distribution and x is the after tax distribu-
tion. Balancedness of the program means that ∑n

i=1 xi = ∑n
i=1 yi, that is, ∑n

i=1 bi = 0.
Since x and y are nondecreasingly ordered, the fiscal program is incentive preserv-
ing. Minimal progressivity requires that if yi ≥ y j then bi ≥ b j. Incentive preser-
vation and minimal progressivity of a tax function are necessary and sufficient for
the after tax distribution to be more equally distributed than the pretax distribution
by the absolute Lorenz criterion (Moyes, 1988, 1994). Note that fairness does not
need b1 ≥ b2 ≥ . . . ≥ bn. Hence, fairness is weaker than minimal progressivity (see
Chakravarty, 1997b, 2008b; Chakravarty et al., 1995; Moyes, 2007; Zheng, 2007b).

One can see that if we have y ≥RD x (or x ≥RS y) under the equality of the means,
then we can arrive at x from y by a fair redistribution. Conversely, we can start with
fairness, that is, xi − yi = bi ≥ ∑n

j=i+1 b j/(n− i) = ∑n
j=i+1 (x j − y j)/(n− i) with >

for some i < n. Then we can verify easily that y ≥RD x holds. The following theorem
can now be stated (see Chakravarty, 1997b, 2008b).

Theorem 3.3. Let x,y ∈ Dn
+, where λ (x) = λ (y), are arbitrary. Then the following

conditions are equivalent:

(i) y ≥RD x (or x ≥RS y).
(ii) x can be obtained from y by a fair redistributive program.

Essentially Theorem 3.3 says that x has less deprivation than y if and only if the
former is obtainable from the latter through a fair redistribution of incomes. Given
that the means are the same, we can replace ≥RD by ≥AD and ≥RS by ≥GS in the
theorem. We can also say that if condition (i) in the theorem is satisfied, then x is
regarded as less deprived than y by all symmetric deprivation indices whose values
reduce under a T2- transformation/fair redistribution. More precisely, dominance of
relative satisfaction of one distribution over that of another distribution is sufficient
to guarantee that they can be ranked unambiguously by deprivation indices of the
specified type. Furthermore, the converse is also true. If we assume that the means
are unequal and population sizes are also not the same, then in addition to population
replication invariance and these postulates, we need scale or translation invariance
of the indices according as we use ≥RD or ≥AD. We can develop similar results for
relative satisfaction indices using ≥RS.

In addition to the Gini index, the area under the RDC, the following is an example
of a deprivation index which corresponds to the relation ≥RD:

Cθ̄ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1− 1
λ (x)

⎛

⎝1
n

n

∑
i=1

(
i

∑
j=1

x j

n
+

n− i
n

xi

)θ̄
⎞

⎠

1/θ̄

, θ̄ ≤ 1, θ̄ �= 0,

1− 1
λ (x)

n

∏
i=1

(
i

∑
j=1

(
x j

n
+

n− i
n

xi

))1/n

, θ̄ = 1.

(3.9)
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This index is the shortfall of the ratio between the symmetric mean of order θ̄ of
the individual satisfactions and the mean from unity. Since none of the individual
satisfaction levels exceeds the mean, the index is bounded between zero and one,
where the lower bound is achieved for a perfectly egalitarian distribution. Evidently
(1−Cθ̄ ) can be regarded as a relative satisfaction index. A decrease in the value of
θ̄ makes Cθ̄ (1−Cθ̄ ) more sensitive to the deprivation (satisfaction) of the poorer
persons. Likewise, one minus the Gini index, the area under the RSC, can also be
used as an index of relative satisfaction. An example of an absolute deprivation
index is the absolute Gini index, the area under the ADC.

In Theorem 3.3, the RSC makes distributional judgments independently of the
size of the distributions, that is, over distributions with a fixed total. Thus, effi-
ciency considerations are absent in RSC comparison. In most circumstances of dis-
tributional comparisons, total income is likely to vary. This is likely to be true for
intertemporal and intercountry comparisons. For ordering of income distributions
with differing totals, we use the GSC.

Note that the area under the GSC is the (abbreviated) Gini welfare function.
This is consistent with our observation that GSi values may be used as indicators of
individual well-being. Therefore, it should be clear that the GSC should be helpful
in ranking income distributions in terms of welfare. The following theorem may be
regarded as a step toward this direction (Chakravarty, 1997b).

Theorem 3.4. Let x,y ∈ Dn
+ be arbitrary. Then the following conditions are equiva-

lent.

(i) x is weakly generalized satisfaction dominant over y, that is, GS(x, t)≥ GS(y, t)
for all 0 ≤ t ≤ 1.

(ii) W (x) ≥ W (y) for any symmetric social welfare function W : Dn
+ → R1 which

is nondecreasing in individual incomes and also nondecreasing under a fair
redistributive program.

Proof. (i) ⇒ (ii): Weak generalized satisfaction dominance, which we denote by
x ≥WGS y, implies that λ (x) ≥ λ (y). Define the distribution u ∈ Dn

+ by ui = yi
and un = n(λ (x)− λ (y)) + yn. By nondecreasingness of W , W (u) ≥ W (y). Note
that λ (u) = λ (x) and x ≥WGS u. Given the equality λ (u) = λ (x), and the fact that
GS(x, t) = λ (x)RS(x, t), we can say that x weakly relative satisfaction dominates u.
Hence by Theorem 3.3, W (x) ≥ W (u), which shows that W (x) ≥ W (y). Note that
W is symmetric since we have defined it directly on ordered distributions.

(ii) ⇒ (i): Consider the social welfare function W (x) = 1/n(∑i
j=1 x j +(n− i)xi),

where 1 ≤ i ≤ n. This welfare function satisfies all the assumptions stipulated in
condition (ii) of the theorem. Thus, W (x) = 1/n(∑i

j=1 x j+(n − i)xi) ≥ W (y) =
1/n(∑i

j=1 y j + (n− i)yi) for 1 ≤ i ≤ n, which in turn implies that x weakly gen-
eralized satisfaction dominates y. 	


Theorem 3.4 indicates that an unambiguous ranking of income distributions
by all nondecreasing, symmetric, and equity-oriented social welfare functions is
achievable if and only if their GSCs do not intersect, where equity orientation is
defined involving redistribution of income in a fair way. If we assume that the mean
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income is the same in the above theorem, then for weak satisfaction dominance
to hold the welfare function should only be symmetric and nondecreasing under a
fair transformation. This can then be regarded as the satisfaction counterpart to the
Dasgupta et al. (1973) theorem, whereas with variable mean, Theorem 3.4 parallels
Shorrocks’ theorem (1983a) on the generalized Lorenz criterion. Note that the GSC
is population replication invariant. Therefore, satisfaction ranking of distributions
over differing population sizes using the real valued welfare functions (defined on
D+) that fulfill population replication invariance, along with the requirements spec-
ified in condition (ii) of the theorem, can be implemented by seeking GSC dom-
inance. In addition to the Gini welfare function, the abbreviated welfare function
λ (1−Cθ ) satisfies all these postulates.

Now, if a person feels deprived when comparing himself with a better-off per-
son, he may as well have a feeling of “contentment” when he compares his position
with that of a less fortunate person. In other words, he remains contented with the
existence of persons who are poorer than him in the society. This specific way of
definition of contentment does not take the higher incomes into account. Formally,
given the income distribution x ∈ Dn

+, following Zheng (2007b), we define the ab-
solute contentment function of person i as

ACi(x) =
i

∑
j=1

(xi − x j)
n

. (3.10)

Although both ACi and GSi are increasing under rank-preserving increments in
xi, there are important differences between them. While the latter possesses an al-
truistic flavor in the sense that an order preserving increase in any income less than
xi increases GSi, the opposite happens for ACi. ACi is a focused index, it is based
on the distribution (x1,x2, . . . ,xi), which is obtained by truncating x form above at
xi. In contrast, GSi is defined on the distribution in which all incomes higher than
xi are censored at xi. Note also that the worst-off person derives some satisfaction if
he has a positive income but contentment is not a source of happiness for him even
if his income is positive.

We can interpret ACi from an alternative perspective. Consider the subgroup
{1,2, . . . i} of i persons with i lowest incomes in the society. Any person with
income less than xi may consider the subgroup highest income as his source of
envy and, therefore, 1/i∑i

i=1 (xi − x j) may be taken to represent the average level
of depression in the subgroup. Thus, ACi is the product of the proportion i/n
of persons in the subgroup and the average depression of this proportion (see
Chakravarty, 2007). This interpretation is quite similar to the one we have provided
for the Kakwani (1984a) index.1 If xi is taken as the poverty line for the persons in
the subgroup, then (xi − x j) is individual j’s poverty gap and ∑i

j=1 (xi − x j) gives
us the total amount of money necessary to put the persons in the subgroup at the
poverty line itself. Then, under the strong definition of the poor, ACi becomes the

1 Chateauneuf and Moyes (2006, p. 31) used the term “measure of the absolute satisfaction felt by
individual ranked i” for the equation in (3.10). However, we follow Zheng’s (2007b) terminology
“contentment.”
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product of two crude poverty indicators, the headcount ratio and the average poverty
gap of the poor 1/∑i

j=1 (xi − x j)/i.
The society absolute contentment curve (ACC) is a plot of individual content-

ment functions ACi ’s against the cumulative population proportions i/n. That is,
ACC(x, i/n) = ACi(x) and the curve is made smooth throughout assuming that
ACC(x,(i + τ)/n) = (1− τ)ACC(x, i/n) + τACC(x,(i + 1)/n), where 0 ≤ τ ≤ 1,
1 ≤ i ≤ (n−1), and ACC(x,0) = 0. Clearly, the ACC of a distribution has a positive
slope. For x,y ∈ Dn

+, we say that x is absolute contentment inferior to y (y ≥AC x,
for short) if ACC(x, t) ≤ ACC(y, t) for all 0 ≤ t ≤ 1 with < for some t. That is, the
relation ≥AC stands for absolute contentment dominance. Now, ≥AD concentrates
on the distribution (xi,xi+1, . . . .,xn), which is obtained by truncating x from below
at xi. Therefore, by definition, ≥AC is different from ≥AD (see also Chateauneuf and
Moyes, 2006).

As Chateauneuf and Moyes (2006) and Zheng (2000b) noted, ≥AC is stronger
than ≥LC (see also Chakravarty et al., 2003). Formally,

Theorem 3.5. Let x,y ∈ Dn
+, where λ (x) = λ (y), be arbitrary. Then y ≥AC x implies

x ≥LC y but the converse is not true.

Proof. The nth inequality in y ≥AC x can be written more explicitly as nxn −
∑n

j=1 x j ≤ nyn −∑n
j=1 y j, which in view of the equality of the means gives xn ≤ yn.

Therefore, we must have ∑n−1
j=1 x j ≥ ∑n−1

j=1 y j. Thus, the following inequality holds
for i = 1,2.

n−i+1

∑
j=1

x j ≥
n−i+1

∑
j=1

y j. (3.11)

Assume that the inequality is true for i = l. We will show that it is true for i = l+1
also.

Now, by assumption
n−l+1

∑
j=1

x j ≥
n−l+1

∑
j=1

y j, (3.12)

which by the equality of the means implies

n

∑
j=n−l+2

x j ≤
n

∑
j=n−l+2

y j. (3.13)

The (n− l +1)th inequality in y ≥AC x gives (n− l)xn−l+1 −xn−l − . . .− x1 ≤
(n− l)yn−l+1 − yn−l − . . .− y1, which can be rewritten as

(n− l +1)xn−l+1 +
n

∑
j=n−l+2

x j −
n

∑
j=1

x j ≤ (n− l +1)yn−l+1 +
n

∑
j=n−l+2

y j −
n

∑
j=1

y j.

(3.14)
Given the equality of the means, inequality (3.14) implies that
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(n− l +1)xn−l+1 +
n

∑
j=n−l+2

x j ≤ (n− l +1)yn−l+1 +
n

∑
j=n−l+2

y j. (3.15)

Multiplying both sides of (3.13) by (n–l) and then adding the right- (left-) hand
side of the resulting expression to the corresponding side of (3.15), we get:

(n− l +1)
n

∑
j=n−l+1

x j ≤ (n− l +1)
n

∑
j=n−l+1

y j. (3.16)

Canceling (n− l + 1) from both sides of (3.16) and invoking the condition that
λ (x) = λ (y), we deduce that

n−l

∑
j=1

x j ≥
n−l

∑
j=1

y j. (3.17)

Hence, the inequality (3.11) is true for i = l +1 also. Thus, by the method of math-
ematical induction, (3.11) holds for 1 ≤ i ≤ n and a perfect equality occurs for i = 1
(given). The existence of < for some i in ≥AC implies that there will be similar >
in ≥LC as well. This demonstrates the claim that x ≥LC y holds. For the numerical
income distributions considered in the proof of Theorem 3.1, we have x ≥LC y but
not y ≥AC x. This completes the proof of the theorem. 	

Another implication of ≥AC is Zheng’s (2007b) look-down dominance. For x,y ∈
Dn

+, we say that y look-down dominates x, what we write y ≥LD x, if xi−x1 ≤ yi−y1
holds for i = 1,2, . . . ,n, with < for some i. Thus, look-down dominance compares
the excess of each income in a distribution over its minimum with the corresponding
excess in another distribution. Evidently, in the dominated distribution, all incomes
will be closer to the reference income – the minimum. For this to materialize, the
minimum income should be increased. Apart from this, all other incomes can be
increased or decreased such that the excesses over the minimum are lower. Formally,
we have

Theorem 3.6. Let x,y ∈ Dn
+ be arbitrary. Then y ≥AC x implies y ≥LD x but the

converse is not true.

Proof. For i = 2,y ≥AC x gives the inequality x2 − x1 ≤ y2 − y1. Thus, the result
is true for i = 1,2. Assume that it is true for all i ≤ l. That is, we have xi − x1 ≤
yi − y1 for all i = 1,2, . . . , l. We will show that it is true for i = l + 1 also. Now,
(l + 1)th inequality in y ≥AC x implies l xl+1 − xl − . . .x1 ≤ lyl+1 − yl − . . .− y1.
Adding the left- (right-) hand side of the latter inequality with corresponding sides
of the inequalities xi − x1 ≤ yi − y1 for i = 1,2, . . . , l, it can be deduced that xl+1 −
x1 ≤ yl+1 − y1. Hence, by the method of induction, the result is true for all 1 ≤
i ≤ n. If for some i (say, for i = j), strict inequality occurs in y ≥AC x, then x j −
x1 < y j − y1. To see that the opposite is not true, let x = (15,15,35,35,50) and
y = (20,30,40,50,60). Then xi − x1 ≤ yi − y1 for all i, with three inequalities being
strict. But y ≥AC x does not hold. 	


It will now be worthwhile to identify a redistributive criterion consistent with
the absolute contentment dominance principle. An attempt along this line has been
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made by Chateauneuf and Moyes (2006). According to these authors, for x,y ∈ Dn
+,

where λ (x) = λ (y), x is obtained from y by a T3-transformation if there exist σ̃ , ρ̃ >
0 and two individuals j, l(1 ≤ j < l ≤ n) such that:

xi = yi for all i ∈ { j +1, . . . ., l −1}∪{l +1, . . . .,n};
xi = yi + σ̃ for all i ∈ {1, , . . . ., j};
xl = yl − ρ̃;
jσ̃ = ρ̃.

(3.18)

A Chateauneuf-Moyes transformation of type T3 demands that if a person receives
some amount of income through a rank-preserving progressive transfer, then the
transfer should give the same amount of income to all persons poorer than him. This
is similar to the lexicographically equitable transfer defined in Chap. 1, this volume.
We have stated this here for the sake of completeness and because of its alternative
presentation.

Rewriting x = y + b, as before, it now appears that if we arrive at x from y by
a T3-transformation, then bi ≤ ∑i−1

j=1 b j/(i− 1) for all i = 2, . . . ,n, with < for some
i > 1 (see Zheng, 2007b). From this, it follows that x has lower contentment than y.
The converse is true as well, that is, if we start with an inequality system of the type
bi ≤∑i−1

j=1 b j/(i−1), then we can deduce that y ≥AC x holds. Hence, we can refer to
b as a contentment reducing transformation. The interpretation of the transformation
is similar to the one provided for a fair redistributive program. This enables us to
state the following:

Theorem 3.7. Let x,y ∈ Dn
+, where λ (x) = λ (y), be arbitrary. Then the following

conditions are equivalent:

(i) y ≥AC x.
(ii) x is obtained from y by a contentment reducing transformation.

Note that we can also have an index counterpart to Theorem 3.7, which says that
the ranking of two income distributions of a given total, over a given population size,
by all symmetric contentment indices that reduce under a transformation defined
above is obtainable if and only if their ACCs do not intersect. An example of an
index of this type can be the following:

Cr̂(x) =

(
1
n

n

∑
i=1

1
n

i

∑
j=1

(x j − xi)r̂

)1/r̂

(3.19)

where r̂ ≥ 1 is a parameter. For r̂ = 1,2, Cr̂ corresponds respectively to the absolute
Gini index and the standard deviation. An increase in the value of r̂ > 2 makes the in-
dex more sensitive to the extents of contentment of the poorer persons (Chakravarty
et al., 2003).
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3.3 Absolute and Relative Income Differentials and Deprivation

Since absolute income differentials are easy to imagine and calculate, they often
constitute a natural source of envy for a person when he compares his income with
higher incomes. Given x,y∈Dn

+, we say that y dominates x by absolute differentials,
which we denote by y ≥ADI x, if xi −yi ≥ xi+1 −yi+1, for all i = 1,2, . . . ,n−1, with
> for some i < n. Since we can rewrite xi −yi ≥ xi+1 −yi+1 as yi+1 −yi ≥ xi+1 −xi,
y ≥ADI x simply means that differences between any two consecutive incomes are
not lower in y than in x, and will be higher in some case(s). It was first introduced
by Marshall et al. (1967) and has been considered as a suitable inequality criterion
by Preston (1990) and Moyes (1994, 1999). Marshall and Olkin (1979) showed that
for distributions of a given total, absolute differentials dominance implies Lorenz
domination. More precisely, for x,y ∈ Dn

+, where λ (x) = λ (y), y ≥ADI x implies
x ≥LC y. This is intuitively reasonable because nondominant consecutive gaps under
x along with the equality of the means will ensure that x has lower inequality. The
numerical income distributions x and y taken in the proof of Theorem 3.1 show that
x ≥LC y is true but y ≥ADI x is not.

If U stands for the identical individual utility function, person i’s utility distance
from person j can be defined as U(x j)−U(xi). Then we say that y utility gap dom-
inates x if U(xi)−U(yi) ≥ U(xi+1)−U(yi+1) holds for all i = 1,2, . . . ,n− 1, with
> for some i < n (Zheng, 2007b). We can now imagine ≥ADI as utility gap domi-
nance if U(xi) = xi. Likewise, if U(xi) = logxi, then the utility difference inequality
U(xi)−U(yi)≥U(xi+1)−U(yi+1) becomes log(xi/yi)≥ log(xi+1/yi+1), which re-
duces to xi/yi ≥ xi+1/yi+1. This forms the basis of Marshall and Olkin’s relative
or ratio differentials dominance (Marshall and Olkin, 1979). Formally, y dominates
x by ratio differentials, which is denoted by y ≥RDI x, if xi/yi ≥ xi+1/yi+1 for all
i = 1,2, . . . ,n− 1, with > for some i < n. Moyes (1994) showed that the relations
≥ADI and ≥RDI are different.

We will now examine some implications of the relations ≥ADI and ≥RDI. The
following theorem shows that the former is sufficient for absolute contentment dom-
inance (see Chakravarty et al., 2003; Chateauneuf and Moyes, 2006).

Theorem 3.8. Let x,y ∈ Dn
+ be arbitrary. Then y ≥ADI x implies y ≥AC x but the

converse is not true.

Proof. From y ≥AC x, we have

i

∑
j=1

(yi − y j) ≥
i

∑
j=1

(xi − x j) (3.20)

for all i = 1,2, . . . ,n. Given any i, a sufficient condition for (3.20) to hold is that
(xi − x j) ≤ (yi − y j) for j = 1,2, . . . , i − 1. This is same as the condition that
(y j−x j)≤ (yi−xi). We write this more explicitly as (y1−x1)≤ (yi−xi), (y2−x2)≤
(yi − xi), . . . ,(yi−1 − xi−1) ≤ (yi − xi). A sufficient condition for this inequality to
hold is that (y1 −x1)≤ (y2 −x2)≤ . . . .(yi−1−xi−1)≤ (yi −xi), which follows from
y ≥ADI x. Evidently, whenever there is a strict inequality for some i, say, for i = l,
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in y ≥ADI x, there will be strict inequality for i = l in y ≥AC x. Falsity of the
converse can be proved using the numerical example y = (10,20,30,40) and x =
(15,20,25,40). Here we have y ≥AC x but not y ≥AD x. 	


For two distributions x and y over the population size n, y ≥AD x implies that
∑n

j=i+1 (y j − yi) ≥ ∑n
j=i+1 (x j − xi) for all i = 1,2, . . . ,n, with > for some i < n.

For any given arbitrary i, a sufficient condition that ensures this inequality sys-
tem is (yi+1 − yi) ≥ (xi+1 − xi), (yi+2 − yi) ≥ (xi+2 − xi), . . . ,(yn − yi) ≥ (xn − xi),
1≤ i≤ n. We rewrite this latter condition as (yi+1−xi+1)≥ (yi−xi), (yi+2−xi+2)≥
(yi − xi), . . . ,(yn − xn) ≥ (yi − xi), 1 ≤ i ≤ n. This is guaranteed if we assume that
(yn−xn)≥ . . .≥ (yi+2−xi+2)≥ (yi+1−xi+1)≥ (yi−xi), 1 ≤ i ≤ n. But this follows
from the condition that y ≥ADI x. Strict inequality for some i < n in y ≥ADI x gen-
erates the corresponding condition in y ≥AD x. Thus, y ≥ADI x implies y ≥AD x. For
x = (1,3,6,6)andy = (1,3,5,7), we have y ≥AD x but not y ≥ADI x (Moyes, 2007).
These observations are summarized in the following theorem.

Theorem 3.9. For arbitrary x,y ∈ Dn
+, y ≥ADI x implies y ≥AD x but the converse is

not true.

Chateauneuf and Moyes (2006) defined a T1-transformation which when applied
successively results in distributional improvement according to ≥ADI. For x,y ∈ Dn

+,
where λ (x) = λ (y), x is obtained from y by a T1-transformation if there exist σ ′,ρ ′ >
0 and two individuals j, l(1 ≤ j < l ≤ n) such that:

xi = yi for all i ∈ { j +1, . . . ., l −1};
xi = yi +σ ′ for all i ∈ {1, , . . . ., j};
xi = yi −ρ ′ for all i ∈ {l, , . . . .,n};
jσ ′ = (n− l +1)ρ ′.

(3.21)

A Chateauneuf-Moyes transformation of type T1 says that if some amount of
income is transferred progressively from a person, then the same amount of income
should also be transferred from all those who are not poorer than him. Further, if the
progressive transfer gives some amount of income to a person, then all those who
are not richer than him are also recipients of the same amount of income. In fact, a
T1-transformation can be regarded as a fiscal program which is balanced, minimally
progressive, and incentive preserving (see Moyes, 2007). The following theorem of
Chateauneuf and Moyes (2006) can now be stated.

Theorem 3.10. Let x,y ∈ Dn
+, where λ (x) = λ (y), be arbitrary. Then the following

conditions are equivalent:

(i) y ≥ADI x.
(ii) x can be obtained from y by a finite sequence of T1-transformations.

Theorem 3.10 establishes the connection between the absolute differentials
dominance relation and the rank-preserving progressive transfers underlying a
T1-transformation.
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People often view depression in terms of relative income differentials. Marshall
et al. (1967) established that for two distributions x and y of a given total, y ≥RDI x is
sufficient for x ≥LC y (see also Marshall and Olkin, 1979, p. 129). For the numerical
distributions x and y considered in the proof of Theorem 3.1, we have x ≥LC y and
not y ≥RDI x. Hence, x ≥LC y does not imply y ≥RDI x.

In the following theorem, we identify the relationship between the dominance
based on income ratios and the relative contentment dominance relation ≥RC, which
relies on the ratios xi/x j, 1 ≤ j ≤ i. Formally for x,y ∈ Dn

+, y ≥RC x means that
∑i

j=1 (yi − y j)/ny j ≥ ∑i
j=1 (xi − x j)/nx j for 1 ≤ i ≤ n, with > for some i.

Theorem 3.11. For all x,y ∈ Dn
+, y ≥RDI x implies that y relative contentment dom-

inates x, but the converse is not true.

Proof. By y ≥RC x we have ∑i
j=1 (yi − y j)/y j ≥ ∑i

j=1 (xi − x j)/x j for 1 ≤ i ≤ n,
with > for some i. Given i, a sufficient condition for the above inequality to hold
is that yi/y j ≥ xi/x j for 1 ≤ j ≤ i. We rewrite this latter inequality as yi/xi ≥ y j/x j
for 1 ≤ j ≤ i. This requirement is satisfied if we assume that yi/xi ≥ yi−1/xi−1 ≥
. . . . ≥ y1/x1, a condition implied by y ≥RDI x. Whenever there is a strict inequality
in y ≥RDI x, there will be a strict inequality in y ≥RC x also. To check that the
converse is not true, consider the numerical distributions x and y taken in the proof
of Theorem 3.8. Then we have y ≥RC x but not y ≥RDI x. 	


It may now be worthwhile to make a comparison between ≥RC and ≥RD. Note
that for the distributions y′ = (10,20,30,40) and y′′ = (15,20,30,35), we have
both y′ ≥RC y′′ and y′ ≥RD y′′. Next, for the distributions ȳ = (2,4,6,8) and
ỹ = (6,6,12,16), ȳ ≥RC ỹ holds but ȳ ≥RD ỹ does not hold. To see the converse,
consider the distribution ŷ = (4,8,14,14). One can check that ȳ ≥RD ŷ is true but
ȳ ≥RC ŷ is not true. Finally, consider the distribution ÿ = (2,5,5,8) and note that
neither ≥RD nor ≥RC can rank the distributions ÿ and ȳ. These, observations enable
us to conclude that ≥RC and ≥RD are different.

One can prove that the relations ≥AC and ≥RC are also different. To see this,
note that while ≥AC also cannot rank the distributions ÿ and ȳ, we have y′ ≥AC y′′.
Next, we can verify that ȳ ≥AC ỹ does not hold. Finally, for the distributions ẏ =
(1,1,4,6) and ȳ, we have ȳ ≥AC ẏ but not ȳ ≥RC ẏ. These observations combined
with our observations in the earlier paragraph regarding ranking of distributions by
≥RC demonstrate that ≥AC and ≥RC are different (see Chakravarty et al., 2003).

3.4 Complaints and Deprivation

The central idea underlying the Temkin (1986, 1993) notion of inequality is individ-
ual complaint. Thus, like our earlier treatments in the chapter, the Temkin approach
is also an individualistic approach to the assessment of income distributions. Among
the various possibilities considered by Temkin (1986, 1993), the one that received
principal focus is that the highest income in the society is the reference point and
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everybody except the richest person has a legitimate complaint. Alternatively, the
average income or incomes of all better-off persons can be the reference points of
different worse-off individuals (see Chakravarty, 1997b). By aggregating the indi-
vidual complaints in an unambiguous way, we arrive at an overall inequality index.
Although there appears to be similarity of this approach with the Runciman (1966)
approach, there are differences as well. For instance, reference to the best-off person
is one case of difference.

Cowell and Ebert (2004) considered the framework where the highest income xn
is the reference point for all the persons except the richest. Then SCi(x) = (xn − xi)
is the size of complaint of person i. These sizes form the basis of our analy-
sis in this section. The graph of cumulative complaints 1/n∑i

j=0 SC j(x) against
the corresponding cumulative population proportions i/n gives us the cumula-
tive complaint contour CCC(x, i/n) of the distribution x, where SC0(x) = 0 and
i = 0,1, ..,n. Segments of the curve between any two consecutive population propor-
tions i/n and (i + 1)/n is defined by the convex combination CCC(x,(i + τ)/n) =
(1− τ)CCC(x, i/n) + τCCC(x,(i + 1)/n), where 0 ≤ τ ≤ 1. By construction, the
CCC of a distribution is upward sloping. We then say that for x,y ∈ Dn

+, y complaint
dominates x (y ≥CC x, for brevity) if CCC(y, t) ≥ CCC(x, t) for all 0 ≤ t ≤ 1, with
> for some t.

The following theorem of Cowell and Ebert (2004) shows the relationship be-
tween the generalized Lorenz relation ≥GL and the complaint dominance rule ≥CC.

Theorem 3.12. Let x,y ∈ Dn
+ be arbitrary. Then y ≥CC x implies (x− xn1n) ≥GL

(y− yn1n).

Proof. From y ≥CC x, we get ∑i
j=1 (xn − x j) ≤ ∑i

j=1 (yn − y j) for all 1 ≤ i ≤ n−1,
with < for some i. We rewrite this inequality as ∑i

j=1 (x j − xn1n)≥∑i
j=1 (y j − yn1n)

for all 1 ≤ i ≤ n, with > for some i. This latter inequality gives (x− xn1n) ≥GL
(y− yn1n). 	


The next theorem is concerned with the relationship between ≥AC and ≥CC.

Theorem 3.13. Let x,y ∈ Dn
+, where λ (x) = λ (y), be arbitrary. Then y ≥AC x im-

plies y ≥CC x, but the converse is not true.

Proof. Suppose that we have y ≥CC x, which by Theorem 3.12 implies the condition
that (x− xn1n) ≥GL (y− yn1n). We can write this latter relation explicitly as:

1
n

(

iyn +
i

∑
j=1

x j

)

≥ 1
n

(

ixn +
i

∑
j=1

y j

)

, (3.22)

for all i = 1,2, . . . ,n with > for at least one i. Given the equality of the total incomes
in x and y, two sufficient conditions for (3.22) to hold are xn ≤ yn and x ≥LC y. By
Theorem 3.5, under the assumption of the equality of the means, y ≥AC x implies
x ≥LC y. Further, from the proof of Theorem 3.5, we know that under the given
assumption xn ≤ yn holds. Hence, y ≥AC x implies y ≥CC x. Using the example that
y = (10,20,30,40) and x = (10,24,26,40), one can check that y ≥CC x holds but
y ≥AC x does not hold. 	
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Cowell and Ebert (2004) characterized weighted mean of order υ ≥ 1 of individ-
ual complaints as an index of overall complaint. Formally, the Cowell-Ebert index
is given by

Cυ(x) =

[
n−1

∑
i=1

w̃i(xn − xi)υ
]1/υ

, (3.23)

where the positive weight sequence {w̃i}, satisfying the restriction ∑n−1
i=1 w̃i = 1, is

nonincreasing if υ > 1 and decreasing if υ = 1. Members of the class Cυ decrease
under a rank-preserving transfer from a person to anyone with lower income. They
also demonstrated that y ≥CC x is equivalent to the condition that Cυ(y) > Cυ(x).

Instead of comparing the aggregated look-up complaints across distributions, we
can compare them at individual levels. More precisely, following Zheng (2007b), for
x,y ∈ Dn

+, we say that y look-up dominates x, what we write y ≥LU x, if (xn − xi) ≤
(yn − yi) holds for all 1 ≤ i ≤ n, with < for some i. Thus, look-up dominance is
an alternative dominance implication of Temkin’s (1986, 1993) suggestion that the
highest income is the reference point. Clearly, ≥LU requires reduction in the highest
income of the dominated distribution because all look-up differences are getting
smaller in this distribution. It is easy to see that ≥ADI implies ≥LU, which in turn
implies ≥CC.

Our discussion so far has concentrated on distributions in a particular period. Let
us denote the current and previous period income distributions on a set of n persons
by x1 and x0, respectively, where both x1,x0 ∈ Γn

+. However, they are not assumed
to be illfare-ranked. Bossert and D’Ambrosio (2007) suggested the use of

BDi(x0,x1) =
ᾱ |B̂i(x1)−B̂i(x0)|

n ∑
j∈B̂i(x1)

(x1
j − x1

i ) (3.24)

as an index of the extent of deprivation felt by person i, where ᾱ ≥ 1 is a constant.
B̂i(x) is the set of persons that are better-off than i in the distribution x, the difference
B̂i(x1)− B̂i(x0) gives the set of persons that are in B̂i(x1) but not in B̂i(x0) and for
any set S, |S| is the number of elements in S. If ᾱ = 1, the Bossert-D’Ambrosio
index BDi becomes the Yitzhaki (1979) index of deprivation ADi. Higher values of
ᾱ assign higher weight to the deprivation suffered from the information that there
are people who were not previously richer than i are now richer than him. This
information takes into account the dynamic aspect of deprivation. Thus, the dynamic
aspect of deprivation depends on the number of persons who were at most as well
off as i in the previous period but have now become more well-off than i. If the set
of such persons is empty, then also BDi coincides with ADi. This implies that if we
regard (x0,x1) as an incentive preserving fiscal program, then BDi and ADi are the
same. Bossert and D’Ambrosio (2007) characterized general classes of indices that
contain BDi as special cases.

Our analysis in this chapter reveals that deprivation is a multifaceted phenom-
enon. There are many ways of incorporating components, such as envy and depres-
sion, of individual judgments into distributive justice. Furthermore, we have seen
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that the required alternative notions of redistributive principles are different from
the one based on the Lorenz curve. In each case, our discussion makes the structure
and the fundamental properties of the principle quite transparent. It should definitely
be clear that the dominance relations we have investigated are incomplete – there
may be situations where we have to withhold our judgment concerning superiority
of one distribution over another in terms of deprivation.

We may recall here that the “deprivation profile” of Shorrocks (1998) looks
at deprivation from a completely different perspective. We may also mention that
Satts’ (1996) study of relative deprivation in the kibbutz economy uses a completely
different structure as well. It explores the equity characteristics of the ideal kibbutz
economy which maintains perfect equality as the benchmark. An investigation of the
issue has been made in the distributive and productive justice framework of Varian
(1974).

Finally, it may be worthwhile to mention that some of the relations discussed
in the chapter have also been analyzed from alternative perspectives. For instance,
Jewitt (1989), Gilboa and Schmeidler (1994), and Landsberger and Meilijson (1994)
used the absolute contentment dominance condition to characterize location-
independent riskier prospects. Likewise, Doksum (1969) suggested the use of the
absolute differential relations as a tail dominance, whereas Bickel and Lehmann
(1979) used it as a dispersion dominance (see also Landsberger and Meilijson, 1994;
Quiggin, 1993).




