
2
The R environment

This chapter collects some practical aspects of working with R. It de-
scribes issues regarding the structure of the workspace, graphical devices
and their parameters, and elementary programming, and includes a fairly
extensive, although far from complete, discussion of data entry.

2.1 Session management

2.1.1 The workspace

All variables created in R are stored in a common workspace. To see which
variables are defined in the workspace, you can use the function ls (list).
It should look as follows if you have run all the examples in the preceding
chapter:

> ls()
[1] "bmi" "d" "exp.lean"
[4] "exp.obese" "fpain" "height"
[7] "hh" "intake.post" "intake.pre"
[10] "intake.sorted" "l" "m"
[13] "mylist" "o" "oops"
[16] "pain" "sel" "v"
[19] "weight" "x" "xbar"
[22] "y"

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_2, © Springer Science+Business Media, LLC 2008

32 2. The R environment

Remember that you cannot omit the parentheses in ls().

If at some point things begin to look messy, you can delete some of the
objects. This is done using rm (remove), so that

> rm(height, weight)

deletes the variables height and weight.

The entire workspace can be cleared using rm(list=ls()) and also via
the “Remove all objects” or “Clear Workspace” menu entries in the Win-
dows and Macintosh GUIs. This does not remove variables whose name
begins with a dot because they are not listed by ls() — you would need
ls(all=T) for that, but it could be dangerous because such names are
used for system purposes.

If you are acquainted with the Unix operating system, for which the S lan-
guage, which preceded R, was originally written, then you will know that
the commands for listing and removing files in Unix are called precisely
ls and rm.

It is possible to save the workspace to a file at any time. If you just write

save.image()

then it will be saved to a file called .RData in your working directory.
The Windows version also has this on the File menu. When you exit R,
you will be asked whether to save the workspace image; if you accept,
the same thing will happen. It is also possible to specify an alternative
filename (within quotes). You can also save selected objects with save.
The .RData file is loaded by default when R is started in its directory.
Other save files can be loaded into your current workspace using load.

2.1.2 Textual output

It is important to note that the workspace consists only of R objects, not of
any of the output that you have generated during a session. If you want
to save your output, use “Save to File” from the File menu in Windows or
use standard cut-and-paste facilities. You can also use ESS (Emacs Speaks
Statistics), which works on all platforms. It is a “mode” for the Emacs
editor where you can run your entire session in an Emacs buffer. You can
get ESS and installation instructions for it from CRAN (see Appendix A).

An alternative way of diverting output to a file is to use the sink func-
tion. This is largely a relic from the days of the 80× 25 computer terminal,
where cut-and-paste techniques were not available, but it can still be use-

2.1 Session management 33

ful at times. In particular, it can be used in batch processing. The way it
works is as follows:

> sink("myfile")
> ls()

No output appears! This is because the output goes into the file myfile in
the current directory. The system will remain in a state where commands
are processed, but the output (apparently) goes into the drain until the
normal state of affairs is reestablished by

> sink()

The current working directory can be obtained by getwd() and changed
by setwd(mydir), where mydir is a character string. The initial working
directory is system-dependent; for instance, the Windows GUI sets it to
the user’s home directory, and command line versions use the directory
from which you start R.

2.1.3 Scripting

Beyond a certain level of complexity, you will not want to work with R on
a line-by-line basis. For instance, if you have entered an 8× 8 matrix over
eight lines and realize that you made a mistake, you will find yourself
using the up-arrow key 64 times to reenter it! In such cases, it is better to
work with R scripts, collections of lines of R code stored either in a file or
in computer memory somehow.

One option is to use the source function, which is sort of the opposite of
sink. It takes the input (i.e., the commands from a file) and runs them.
Notice, though, that the entire file is syntax-checked before anything is
executed. It is often useful to set echo=T in the call so that commands are
printed along with the output.

Another option is more interactive in nature. You can work with a script
editor window, which allows you to submit one or more lines of the script
to a running R, which will then behave as if the same lines had been
entered at the prompt. The Windows and Macintosh versions of R have
simple scripting windows built-in, and a number of text editors also have
features for sending commands to R; popular choices on Windows in-
clude TINN-R and WinEdt. This is also available as part of ESS (see the
preceding section).

The history of commands entered in a session can be saved and reloaded
using the savehistory and loadhistory commands, which are also
mapped to menu entries in Windows. Saved histories can be useful as a

34 2. The R environment

starting point for writing scripts; notice also that the history() function
will show the last commands entered at the console (up to a maximum of
25 lines by default).

2.1.4 Getting help

R can do a lot more than what a typical beginner can be expected to need
or even understand. This book is written so that most of the code you are
likely to need in relation to the statistical procedures is described in the
text, and the compendium in Appendix C is designed to provide a basic
overview. However, it is obviously not possible to cover everything.

R also comes with extensive online help in text form as well as in the form
of a series of HTML files that can be read using a Web browser such as
Netscape or Internet Explorer. The help pages can be accessed via “help”
in the menu bar on Windows and by entering help.start() on any
platform. You will find that the pages are of a technical nature. Preci-
sion and conciseness here take precedence over readability and pedagogy
(something one learns to appreciate after exposure to the opposite).

From the command line, you can always enter help(aggregate) to get
help on the aggregate function or use the prefix form ?aggregate. If
the HTML viewer is running, then the help page is shown there. Other-
wise it is shown as text either through a pager to the terminal window or
in a separate window.

Notice that the HTML version of the help system features a very use-
ful “Search Engine and Keywords” and that the apropos function
allows you to get a list of command names that contain a given pat-
tern. The function help.search is similar but uses fuzzy matching and
searches deeper into the help pages, so that it will be able to locate,
for example, Kendall’s correlation coefficient in cor.test if you use
help.search("kendal").

Also available with the R distributions is a set of documents in various
formats. Of particular interest is “An Introduction to R”, originally based
on a set of notes for S-PLUS by Bill Venables and David Smith and modi-
fied for R by various people. It contains an introduction to the R language
and environment in a rather more language-centric fashion than this book.
On the Windows platform, you can choose to install PDF documents as
part of the installation procedure so that — provided the Adobe Acrobat
Reader program is also installed — it can be accessed via the Help menu.
An HTML version (without pictures) can be accessed via the browser
interface on all platforms.

2.1 Session management 35

2.1.5 Packages

An R installation contains one or more libraries of packages. Some of these
packages are part of the basic installation. Others can be downloaded from
CRAN (see Appendix A), which currently hosts over 1000 packages for
various purposes. You can even create your own packages.

A library is generally just a folder on your disk. A system library is created
when R is installed. In some installations, users may be prohibited from
modifying the system library. It is possible to set up private user libraries;
see help(".Library") for details.

A package can contain functions written in the R language, dynamically
loaded libraries of compiled code (written in C or Fortran mostly), and
data sets. It generally implements functionality that most users will prob-
ably not need to have loaded all the time. A package is loaded into R using
the library command, so to load the survival package you should
enter

> library(survival)

The loaded packages are not considered part of the user workspace. If
you terminate your R session and start a new session with the saved
workspace, then you will have to load the packages again. For the same
reason, it is rarely necessary to remove a package that you have loaded,
but it can be done if desired with

> detach("package:survival")

(see also Section 2.1.7).

2.1.6 Built-in data

Many packages, both inside and outside the standard R distribution, come
with built-in data sets. Such data sets can be rather large, so it is not a
good idea to keep them all in computer memory at all times. A mecha-
nism for on-demand loading is required. In many packages, this works
via a mechanism called lazy loading, which allows the system to “pretend”
that the data are in memory, but in fact they are not loaded until they are
referenced for the first time.

With this mechanism, data are “just there”. For example, if you type “thue-
sen”, the data frame of that name is displayed. Some packages still require
explicit calls to the data function. Most often, this loads a data frame with
the name that its argument specifies; data(thuesen) will, for instance,
load the thuesen data frame.

36 2. The R environment

What data does is to go through the data directories associated with each
package (see Section 2.1.5) and look for files whose basename matches the
given name. Depending on the file extension, several things can then hap-
pen. Files with a .tab extension are read using read.table (Section 2.4),
whereas files with a .R extension are executed as source files (and could,
in general, do anything!), to give two common examples.

If there is a subdirectory of the current directory called data, then it
is searched as well. This can be quite a handy way of organizing your
personal projects.

2.1.7 attach and detach

The notation for accessing variables in data frames gets rather heavy if
you repeatedly have to write longish commands like

plot(thuesen$blood.glucose,thuesen$short.velocity)

Fortunately, you can make R look for objects among the variables in a
given data frame, for example thuesen. You write

> attach(thuesen)

and then thuesen’s data are available without the clumsy $-notation:

> blood.glucose
[1] 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 6.7 5.2
[13] 19.0 15.1 6.7 8.6 4.2 10.3 12.5 16.1 13.3 4.9 8.8 9.5

What happens is that the data frame thuesen is placed in the system’s
search path. You can view the search path with search:

> search()
[1] ".GlobalEnv" "thuesen" "package:ISwR"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

Notice that thuesen is placed as no. 2 in the search path. .GlobalEnv
is the workspace and package:base is the system library where
all standard functions are defined. Autoloads is not described here.
package:stats and onwards contains the basic statistical routines such
as the Wilcoxon test, and the other packages similarly contain vari-
ous functions and data sets. (The package system is modular, and you
can run R with a minimal set of packages for specific uses.) Finally,
package:ISwR contains the data sets used for this book.

2.1 Session management 37

There may be several objects of the same name in different parts of the
search path. In that case, R chooses the first one (that is, it searches first in
.GlobalEnv, then in thuesen, and so forth). For this reason, you need
to be a little careful with “loose” objects that are defined in the workspace
outside a data frame since they will be used before any vectors and factors
of the same name in an attached data frame. For the same reason, it is not a
good idea to give a data frame the same name as one of the variables inside
it. Note also that changing a data frame after attaching it will not affect the
variables available since attach involves a (virtual) copy operation of the
data frame.

It is not possible to attach data frames in front of .GlobalEnv or fol-
lowing package:base. However, it is possible to attach more than one
data frame. New data frames are inserted into position 2 by default, and
everything except .GlobalEnv moves one step to the right. It is, how-
ever, possible to specify that a data frame should be searched before
.GlobalEnv by using constructions of the form

with(thuesen, plot(blood.glucose, short.velocity))

In some contexts, R uses a slightly different method when looking for ob-
jects. If looking for a variable of a specific type (usually a function), R will
skip those of other types. This is what saves you from the worst conse-
quences of accidentally naming a variable (say) c, even though there is a
system function of the same name.

You can remove a data frame from the search path with detach. If no
arguments are given, the data frame in position 2 is removed, which is
generally what is desired. .GlobalEnv and package:base cannot be
detach’ed.

> detach()
> search()
[1] ".GlobalEnv" "package:ISwR" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

2.1.8 subset, transform, and within

You can attach a data frame to avoid the cumbersome indexing of every
variable inside of it. However, this is less helpful for selecting subsets of
data and for creating new data frames with transformed variables. A cou-
ple of functions exist to make these operations easier. They are used as
follows:

38 2. The R environment

> thue2 <- subset(thuesen,blood.glucose<7)
> thue2

blood.glucose short.velocity
6 5.3 1.49
11 6.7 1.25
12 5.2 1.19
15 6.7 1.52
17 4.2 1.12
22 4.9 1.03
> thue3 <- transform(thuesen,log.gluc=log(blood.glucose))
> thue3

blood.glucose short.velocity log.gluc
1 15.3 1.76 2.727853
2 10.8 1.34 2.379546
3 8.1 1.27 2.091864
4 19.5 1.47 2.970414
5 7.2 1.27 1.974081
...
22 4.9 1.03 1.589235
23 8.8 1.12 2.174752
24 9.5 1.70 2.251292

Notice that the variables used in the expressions for new variables or for
subsetting are evaluated with variables taken from the data frame.

subset also works on single vectors. This is nearly the same as indexing
with a logical vector (such as short.velocity[blood.glucose<7]),
except that observations with missing values in the selection criterion are
excluded.

subset also has a select argument which can be used to extract
variables from the data frame. We shall return to this in Section 10.3.1.

The transform function has a couple of drawbacks, the most serious of
which is probably that it does not allow chained calculations where some
of the new variables depend on the others. The = signs in the syntax are
not assignments, but indicate names, which are assigned to the computed
vectors in the last step.

An alternative to transform is the within function, which can be used
like this:

> thue4 <- within(thuesen,{
+ log.gluc <- log(blood.glucose)
+ m <- mean(log.gluc)
+ centered.log.gluc <- log.gluc - m
+ rm(m)
+ })
> thue4

blood.glucose short.velocity centered.log.gluc log.gluc
1 15.3 1.76 0.481879807 2.727853
2 10.8 1.34 0.133573113 2.379546

2.2 The graphics subsystem 39

3 8.1 1.27 -0.154108960 2.091864
4 19.5 1.47 0.724441444 2.970414
5 7.2 1.27 -0.271891996 1.974081
...
22 4.9 1.03 -0.656737817 1.589235
23 8.8 1.12 -0.071221300 2.174752
24 9.5 1.70 0.005318777 2.251292

Notice that the second argument is an arbitrary expression (here a com-
pound expression, see p. 45). The function is similar to with, but instead
of just returning the computed value, it collects all new and modified
variables into a modified data frame, which is then returned. As shown,
variables containing intermediate results can be discarded with rm. (It is
particularly important to do this if the contents are incompatible with the
data frame.)

2.2 The graphics subsystem

In Section 1.1.5, we saw how to generate a simple plot and superimpose
a curve on it. It is quite common in statistical graphics for you to want to
create a plot that is slightly different from the default: Sometimes you will
want to add annotation, sometimes you want the axes to be different —
labels instead of numbers, irregular placement of tick marks, etc. All these
things can be obtained in R. The methods for doing them may feel slightly
unusual at first, but offers a very flexible and powerful approach.

In this section, we look deeper into the structure of a typical plot and give
some indication of how you can work with plots to achieve your desired
results. Beware, though, that this is a large and complex area and it is not
within the scope of this book to cover it completely. In fact, we completely
ignore important newer tools in the grid and lattice packages.

2.2.1 Plot layout

In the graphics model that R uses, there is (for a single plot) a figure region
containing a central plotting region surrounded by margins. Coordinates
inside the plotting region are specified in data units (the kind generally
used to label the axes). Coordinates in the margins are specified in lines
of text as you move in a direction perpendicular to a side of the plotting
region but in data units as you move along the side. This is useful since
you generally want to put text in the margins of a plot.

A standard x–y plot has an x and a y title label generated from the ex-
pressions being plotted. You may, however, override these labels and also

40 2. The R environment

add two further titles, a main title above the plot and a subtitle at the very
bottom, in the plot call.

> x <- runif(50,0,2)
> y <- runif(50,0,2)
> plot(x, y, main="Main title", sub="subtitle",
+ xlab="x-label", ylab="y-label")

Inside the plotting region, you can place points and lines that are either
specified in the plot call or added later with points and lines. You
can also place a text with

> text(0.6,0.6,"text at (0.6,0.6)")
> abline(h=.6,v=.6)

Here, the abline call is just to show how the text is centered on the point
(0.6, 0.6). (Normally, abline plots the line y = a + bx when given a and b
as arguments, but it can also be used to draw horizontal and vertical lines
as shown.)

The margin coordinates are used by the mtext function. They can be
demonstrated as follows:

> for (side in 1:4) mtext(-1:4,side=side,at=.7,line=-1:4)
> mtext(paste("side",1:4), side=1:4, line=-1,font=2)

The for loop (see Section 2.3.1) places the numbers −1 to 4 on corre-
sponding lines in each of the four margins at an off-center position of 0.7
measured in user coordinates. The subsequent call places a label on each
side, giving the side number. The argument font=2means that a boldface
font is used. Notice in Figure 2.1 that not all the margins are wide enough
to hold all the numbers and that it is possible to use negative line numbers
to place text within the plotting region.

2.2.2 Building a plot from pieces

High-level plots are composed of elements, each of which can also be
drawn separately. The separate drawing commands often allow finer con-
trol of the element, so a standard strategy to achieve a given effect is first
to draw the plot without that element and add the element subsequently.
As an extreme case, the following command will plot absolutely nothing:

> plot(x, y, type="n", xlab="", ylab="", axes=F)

Here type="n" causes the points not to be drawn. axes=F suppresses
the axes and the box around the plot, and the x and y title labels are set to
empty strings.

2.2 The graphics subsystem 41

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Main title

subtitle
x−label

y−
la

be
l

text at (0.6,0.6)

−1
0
1
2
3
4

−
10123

−1
0
1
2
3

−
1 0 1

side 1

si
d

e
2

side 3

si
d

e
4

Figure 2.1. The layout of a standard plot.

However, the fact that nothing is plotted does not mean that nothing hap-
pened. The command sets up the plotting region and coordinate systems
just as if it had actually plotted the data. To add the plot elements, evaluate
the following:

> points(x,y)
> axis(1)
> axis(2,at=seq(0.2,1.8,0.2))
> box()
> title(main="Main title", sub="subtitle",
+ xlab="x-label", ylab="y-label")

Notice how the second axis call specifies an alternative set of tick marks
(and labels). This is a common technique used to create special axes on a
plot and might also be used to create nonequidistant axes as well as axes
with nonnumeric labelling.

Plotting with type="n" is sometimes a useful technique because it has
the side effect of dimensioning the plot area. For instance, to create a plot
with different colours for different groups, you could first plot all data
with type="n", ensuring that the plot region is large enough, and then

42 2. The R environment

add the points for each group using points. (Passing a vector argument
for col is more expedient in this particular case.)

2.2.3 Using par

The par function allows incredibly fine control over the details of a plot,
although it can be quite confusing to the beginner (and even to experi-
enced users at times). The best strategy for learning it may well be simply
to try and pick up a few useful tricks at a time and once in a while try to
solve a particular problem by poring over the help page.

Some of the parameters, but not all, can also be set via arguments to plot-
ting functions, which also have some arguments that cannot be set by par.
When a parameter can be set by both methods, the difference is generally
that if something is set via par, then it stays set subsequently.

The par settings allow you to control line width and type, character size
and font, colour, style of axis calculation, size of the plot and figure re-
gions, clipping, etc. It is possible to divide a figure into several subfigures
by using the mfrow and mfcol parameters.

For instance, the default margin sizes are just over 5, 4, 4, and 2 lines.
You might set par(mar=c(4,4,2,2)+0.1) before plotting. This shaves
one line off the bottom margin and two lines off the top margin of the
plot, which will reduce the amount of unused whitespace when there is
no main title or subtitle. If you look carefully, you will in fact notice that
Figure 2.1 has a somewhat smaller plotting region than the other plots in
this book. This is because the other plots have been made with reduced
margins for typesetting reasons.

However, it is quite pointless to describe the graphics parameters com-
pletely at this point. Instead, we return to them as they are used for specific
plots.

2.2.4 Combining plots

Some special considerations arise when you wish to put several elements
together in the same plot. Consider overlaying a histogram with a normal
density (see Sections 4.2 and 4.4.1 for information on histograms and Sec-
tion 3.5.1 for density). The following is close, but only nearly good enough
(figure not shown).

> x <- rnorm(100)
> hist(x,freq=F)
> curve(dnorm(x),add=T)

2.2 The graphics subsystem 43

The freq=F argument to hist ensures that the histogram is in terms of
densities rather than absolute counts. The curve function graphs an ex-
pression (in terms of x) and its add=T allows it to overplot an existing
plot. So things are generally set up correctly, but sometimes the top of the
density function gets chopped off. The reason is of course that the height
of the normal density played no role in the setting of the y-axis for the his-
togram. It will not help to reverse the order and draw the curve first and
add the histogram because then the highest bars might get clipped.

The solution is first to get hold of the magnitude of the y values for both
plot elements and make the plot big enough to hold both (Figure 2.2):

> h <- hist(x, plot=F)
> ylim <- range(0, h$density, dnorm(0))
> hist(x, freq=F, ylim=ylim)
> curve(dnorm(x), add=T)

Histogram of x

x

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.2. Histogram with normal density overlaid.

When called with plot=F, hist will not plot anything, but it will re-
turn a structure containing the bar heights on the density scale. This and
the fact that the maximum of dnorm(x) is dnorm(0) allows us to cal-
culate a range covering both the bars and the normal density. The zero in

44 2. The R environment

the range call ensures that the bottom of the bars will be in range, too.
The range of y values is then passed to the hist function via the ylim
argument.

2.3 R programming

It is possible to write your own R functions. In fact, this is a major as-
pect and attraction of working with the system in the long run. This book
largely avoids the issue in favour of covering a larger set of basic statistical
procedures that can be executed from the command line. However, to give
you a feel for what can be done, consider the following function, which
wraps the code from the example of Section 2.2.4 so that you can just
say hist.with.normal(rnorm(200)). It has been slightly extended
so that it now uses the empirical mean and standard deviation of the data
instead of just 0 and 1.

> hist.with.normal <- function(x, xlab=deparse(substitute(x)),...)
+ {
+ h <- hist(x, plot=F, ...)
+ s <- sd(x)
+ m <- mean(x)
+ ylim <- range(0,h$density,dnorm(0,sd=s))
+ hist(x, freq=F, ylim=ylim, xlab=xlab, ...)
+ curve(dnorm(x,m,s), add=T)
+ }

Notice the use of a default argument for xlab. If xlab is not specified,
then it is obtained from this expression, which evaluates to a character
form of the expression given for x; that is, if you pass rnorm(100) for
x, then the x label becomes “rnorm(100)”. Notice also the use of a ...
argument, which collects any additional arguments and passes them on
to hist in the two calls.

You can learn more about programming in R by studying the built-in
functions, starting with simple ones like log10 or weighted.mean.

2.3.1 Flow control

Until now, we have seen components of the R language that cause evalua-
tion of single expressions. However, R is a true programming language
that allows conditional execution and looping constructs as well. Con-
sider, for instance, the following code. (The code implements a version
of Newton’s method for calculating the square root of y.)

2.3 R programming 45

> y <- 12345
> x <- y/2
> while (abs(x*x-y) > 1e-10) x <- (x + y/x)/2
> x
[1] 111.1081
> x^2
[1] 12345

Notice the while(condition) expression construction, which says
that the expression should be evaluated as long as the condition is TRUE.
The test occurs at the top of the loop, so the expression might never be
evaluated.

A variation of the same algorithm with the test at the bottom of the loop
can be written with a repeat construction:

> x <- y/2
> repeat{
+ x <- (x + y/x)/2
+ if (abs(x*x-y) < 1e-10) break
+ }
> x
[1] 111.1081

This also illustrates three other flow control structures: (a) a compound ex-
pression, several expressions held together between curly braces; (b) an if
construction for conditional execution; and (c) a break expression, which
causes the enclosing loop to exit.

Incidentally, the loop could allow for y being a vector simply by changing
the termination condition to

if (all(abs(x*x - y) < 1e-10)) break

This would iterate excessively for some elements, but the vectorized
arithmetic would likely more than make up for that.

However, the most frequently used looping construct is for, which loops
over a fixed set of values as in the following example, which plots a set of
power curves on the unit interval.

> x <- seq(0, 1,.05)
> plot(x, x, ylab="y", type="l")
> for (j in 2:8) lines(x, x^j)

Notice the loop variable j, which in turn takes the values of the given
sequence when used in the lines call.

46 2. The R environment

2.3.2 Classes and generic functions

Object-oriented programming is about creating coherent systems of data
and methods that work upon them. One purpose is to simplify programs
by accommodating the fact that you will have conceptually similar meth-
ods for different types of data, even though the implementations will have
to be different. A prototype example is the print method: It makes sense
to print many kinds of data objects, but the print layout will depend on
what the data object is. You will generally have a class of data objects and
a print method for that class. There are several object-oriented languages
implementing these ideas in different ways.

Most of the basic parts of R use the same object system as S version 3. An
alternative object system similar to that of S version 4 has been developed
in recent years. The new system has several advantages over the old one,
but we shall restrict attention to the latter. The S3 object system is a sim-
ple system in which an object has a class attribute, which is simply a
character vector. One example of this is that all the return values of the
classical tests such as t.test have class "htest", indicating that they
are the result of a hypothesis test. When these objects are printed, it is
done by print.htest, which creates the nice layout (see Chapter 5 for
examples). However, from a programmatic viewpoint, these objects are
just lists, and you can, for instance, extract the p-value by writing

> t.test(bmi, mu=22.5)$p.value
[1] 0.7442183

The function print is a generic function, one that acts differently depend-
ing on its argument. These generally look like this:

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

What UseMethod("print") means is that R should pass control to a
function named according to the object class (print.htest for objects of
class "htest", etc.) or, if this is not found, to print.default. To see all
the methods available for print, type methods(print) (there are 138
of them in R 2.6.2, so the output is not shown here).

2.4 Data entry

Data sets do not have to be very large before it becomes impractical to type
them in with c(...). Most of the examples in this book use data sets in-

2.4 Data entry 47

cluded in the ISwR package, made available to you by library(ISwR).
However, as soon as you wish to apply the methods to your own data,
you will have to deal with data file formats and the specification thereof.

In this section we discuss how to read data files and how to use the data
editor module in R. The text has some bias toward Windows systems,
mainly because of some special issues that need to be mentioned for that
platform.

2.4.1 Reading from a text file

The most convenient way of reading data into R is via the function called
read.table. It requires that data be in “ASCII format”; that is, a “flat
file” as created with Windows’ NotePad or any plain-text editor. The result
of read.table is a data frame, and it expects to find data in a corre-
sponding layout where each line in the file contains all data from one
subject (or rat or . . .) in a specific order, separated by blanks or, option-
ally, some other separator. The first line of the file can contain a header
giving the names of the variables, a practice that is highly recommended.

Table 11.6 in Altman (1991) contains an example on ventricular circum-
ferential shortening velocity versus fasting blood glucose by Thuesen et
al. We used those data to illustrate subsetting and use them again in the
chapter on correlation and regression. They are among the built-in data
sets in the ISwR package and available as the data frame thuesen, but
the point here is to show how to read them from a plain-text file.

Assume that the data are contained in the file thuesen.txt, which looks
as follows:

blood.glucose short.velocity
15.3 1.76
10.8 1.34
8.1 1.27
19.5 1.47
7.2 1.27
5.3 1.49
9.3 1.31
11.1 1.09
7.5 1.18
12.2 1.22
6.7 1.25
5.2 1.19
19.0 1.95
15.1 1.28
6.7 1.52
8.6 NA
4.2 1.12

48 2. The R environment

10.3 1.37
12.5 1.19
16.1 1.05
13.3 1.32
4.9 1.03
8.8 1.12
9.5 1.70

To enter the data into the file, you could start up Windows’ NotePad
or any other plain-text editor, such as those discussed in Section 2.1.3.
Unix/Linux users should just use a standard editor, such as emacs or
vi. If you must, you can even use a word processing program with a little
care.

You should simply type in the data as shown. Notice that the columns
are separated by an arbitrary number of blanks and that NA represents a
missing value.

At the end, you should save the data to a text file. Notice that word pro-
cessors require special actions in order to save as text. Their normal save
format is difficult to read from other programs.

Assuming further that the file is in the ISwR folder on the N: drive, the
data can be read using

> thuesen2 <- read.table("N:/ISwR/thuesen.txt",header=T)

Notice header=T specifying that the first line is a header containing
the names of variables contained in the file. Also note that you use for-
ward slashes (/), not backslashes (\), in the filename, even on a Windows
system.

The reason for avoiding backslashes in Windows filenames is that the
symbol is used as an escape character (see Section 1.2.4) and therefore
needs to be doubled. You could have used N:\\ISwR\\thuesen.txt.

The result is a data frame, which is assigned to the variable thuesen2
and looks as follows:

> thuesen2
blood.glucose short.velocity

1 15.3 1.76
2 10.8 1.34
3 8.1 1.27
4 19.5 1.47
5 7.2 1.27
6 5.3 1.49
7 9.3 1.31
8 11.1 1.09
9 7.5 1.18
10 12.2 1.22

2.4 Data entry 49

11 6.7 1.25
12 5.2 1.19
13 19.0 1.95
14 15.1 1.28
15 6.7 1.52
16 8.6 NA
17 4.2 1.12
18 10.3 1.37
19 12.5 1.19
20 16.1 1.05
21 13.3 1.32
22 4.9 1.03
23 8.8 1.12
24 9.5 1.70

To read in factor variables (see Section 1.2.8), the easiest way may be to
encode them using a textual representation. The read.table function
autodetects whether a vector is text or numeric and converts it to a factor
in the former case (but makes no attempt to recognize numerically coded
factors). For instance, the secretin built-in data set is read from a file
that begins like this:

gluc person time repl time20plus time.comb
1 92 A pre a pre pre
2 93 A pre b pre pre
3 84 A 20 a 20+ 20
4 88 A 20 b 20+ 20
5 88 A 30 a 20+ 30+
6 90 A 30 b 20+ 30+
7 86 A 60 a 20+ 30+
8 89 A 60 b 20+ 30+
9 87 A 90 a 20+ 30+
10 90 A 90 b 20+ 30+
11 85 B pre a pre pre
12 85 B pre b pre pre
13 74 B 20 a 20+ 20
....

This file can be read directly by read.table with no arguments other
than the filename. It will recognize the case where the first line is one item
shorter than the rest and will interpret that layout to imply that the first
line contains a header and the first value on all subsequent lines is a row
label — that is, exactly the layout generated when printing a data frame.

Reading factors like this may be convenient, but there is a drawback: The
level order is alphabetic, so for instance

> levels(secretin$time)
[1] "20" "30" "60" "90" "pre"

50 2. The R environment

If this is not what you want, then you may have to manipulate the factor
levels; see Section 10.1.2.

A technical note: The files referenced above are contained in the ISwR
package in the subdirectory (folder) rawdata. Exactly where the file is
located on your system will depend on where the ISwR package was
installed. You can find this out as follows:

> system.file("rawdata", "thuesen.txt", package="ISwR")
[1] "/home/pd/Rlibrary/ISwR/rawdata/thuesen.txt"

2.4.2 Further details on read.table

The read.table function is a very flexible tool that is controlled by many
options. We shall not attempt a full description here but just give some
indication of what it can do.

File format details

We have already seen the use of header=T. A couple of other options
control the detailed format of the input file:

Field separator. This can be specified using sep. Notice that when this is
used, as opposed to the default use of whitespace, there must be ex-
actly one separator between data fields. Two consecutive separators
will imply that there is a missing value in between. Conversely, it
is necessary to use specific codes to represent missing values in the
default format and also to use some form of quoting for strings that
contain embedded spaces.

NA strings. You can specify which strings represent missing values via
na.strings. There can be several different strings, although not
different strings for different columns. For print files from the SAS
program, you would use na.strings=".".

Quotes and comments. By default, R-style quotes can be used to delimit
character strings, and parts of files following the comment character
are ignored. These features can be modified or removed via the
quote and comment.char arguments.

Unequal field count. It is normally considered an error if not all lines con-
tain the same number of values (the first line can be one item short,
as described above for the secretin data). The fill and flush
arguments can be used in case lines vary in length.

2.4 Data entry 51

Delimited file types

Applications such as spreadsheets and databases produce text files in for-
mats that require multiple options to be adjusted. For such purposes, there
exist “precooked” variants of read.table. Two of these are intended
to handle CSV files and are called read.csv and read.csv2. The for-
mer assumes that fields are separated by a comma, and the latter assumes
that they are separated by semicolons but use a comma as the decimal
point (this format is often generated in European locales). Both formats
have header=T as the default. Further variants are read.delim and
read.delim2 for reading delimited files (by default, Tab-delimited files).

Conversion of input

It can be desirable to override the default conversion mechanisms in
read.table. By default, nonnumeric input is converted to factors, but
it does not always make sense. For instance, names and addresses typi-
cally should not be converted. This can be modified either for all columns
using stringsAsFactors or on a per-item basis using as.is.

Automatic conversion is often convenient, but it is inefficient in terms
of computer time and storage; in order to read a numeric column,
read.table first reads it as character data, checks whether all elements
can be converted to numeric, and only then performs the conversion. The
colClasses argument allows you to bypass the mechanism by explic-
itly specifying which columns are of which class (the standard classes
"character", "numeric", etc., get special treatment). You can also skip
unwanted columns by specifying "NULL" as the class.

2.4.3 The data editor

R lets you edit data frames using a spreadsheet-like interface. The
interface is a bit rough but quite useful for small data sets.

To edit a data frame, you can use the edit function:

> aq <- edit(airquality)

This brings up a spreadsheet-like editor with a column for each vari-
able in the data frame. The airquality data set is built into R; see
help(airquality) for its contents. Inside the editor, you can move
around with the mouse or the cursor keys and edit the current cell by typ-
ing in data. The type of variable can be switched between real (numeric)
and character (factor) by clicking on the column header, and the name of

52 2. The R environment

the variable can be changed similarly. Note that there is (as of R 2.6.2) no
way to delete rows and columns and that new data can be entered only at
the end.

When you close the data editor, the edited data frame is assigned to aq.
The original airquality is left intact. Alternatively, if you do not mind
overwriting the original data frame, you can use

> fix(aq)

This is equivalent to aq <- edit(aq).

To enter data into a blank data frame, use

> dd <- data.frame()
> fix(dd)

An alternative would be dd <- edit(data.frame()), which works
fine except that beginners tend to reexecute the command when they need
to edit dd, which of course destroys all data. It is necessary in either case
to start with an empty data frame since by default edit expects you to
want to edit a user-defined function and would bring up a text editor if
you started it as edit().

2.4.4 Interfacing to other programs

Sometimes you will want to move data between R and other statistical
packages or spreadsheets. A simple fallback approach is to request that
the package in question export data as a text file of some sort and use
read.table, read.csv, read.csv2, read.delim, or read.delim2,
as previously described.

The foreign package is one of the packages labelled “recommended”
and should therefore be available with binary distributions of R. It
contains routines to read files in several formats, including those from
SPSS (.sav format), SAS (export libraries), Epi-Info (.rec), Stata, Systat,
Minitab, and some S-PLUS version 3 dump files.

Unix/Linux users sometimes find themselves with data sets written on
Windows machines. The foreign package will work there as well for
those formats that it supports. Notice that ordinary SAS data sets are
not among the supported formats. These have to be converted to ex-
port libraries on the originating system. Data that have been entered
into Microsoft Excel spreadsheets are most conveniently extracted using a
compatible application such as OOo (OpenOffice.org).

2.5 Exercises 53

An expedient technique is to read from the system clipboard. Say, high-
light a rectangular region in a spreadsheet, press Ctrl-C (if on Windows),
and inside R use

read.table("clipboard", header=T)

This does require a little caution, though. It may result in loss of accu-
racy since you only transfer the data as they appear on the screen. This is
mostly a concern if you have data to many significant digits.

For data stored in databases, there exist a number of interface packages on
CRAN. Of particular interest on Windows and with some Unix databases
is the RODBC package because you can set up ODBC (“Open Database
Connectivity”) connections to data stored by common applications, in-
cluding Excel and Access. Some Unix databases (e.g., PostgreSQL) also
allow ODBC connections.

For up-to-date information on these matters, consult the “R Data Im-
port/Export” manual that comes with the system.

2.5 Exercises

2.1 Describe how to insert a value between two elements of a vector at a
given position by using the append function (use the help system to find
out). Without append, how would you do it?

2.2 Write the built-in data set thuesen to a Tab-separated text file with
write.table. View it with a text editor (depending on your system).
Change the NA value to . (period), and read the changed file back into R
with a suitable command. Also try importing the data into other applica-
tions of your choice and exporting them to a new file after editing. You
may have to remove row names to make this work.

	2 The R environment
	2.1 Session management
	2.1.1 The workspace
	2.1.2 Textual output
	2.1.3 Scripting
	2.1.4 Getting help
	2.1.5 Packages
	2.1.6 Built-in data
	2.1.7 attach and detach
	2.1.8 subset, transform, and within

	2.2 The graphics subsystem
	2.2.1 Plot layout
	2.2.2 Building a plot from pieces
	2.2.3 Using par
	2.2.4 Combining plots

	2.3 R programming
	2.3.1 Flow control
	2.3.2 Classes and generic functions

	2.4 Data entry
	2.4.1 Reading from a text file
	2.4.2 Further details on read.table
	2.4.3 The data editor
	2.4.4 Interfacing to other programs

	2.5 Exercises

