
16
Nonlinear curve fitting

Curve fitting problems occur in many scientific areas. The typical case
is that you wish to fit the relation between some response y and a
one-dimensional predictor x, by adjusting a (possibly multidimensional)
parameter β. That is,

y = f (x; β) + error

in which the “error” term is usually assumed to contain independent nor-
mally distributed terms with a constant standard deviation σ. The class of
models can be easily extended to multivariate x and somewhat less easily
to models with nonconstant error variation, but we settle for the simple
case.

Chapter 6 described the special case of a linear relation

y = β0 + β1x + error

and we discussed the fitting of polynomials by including quadratic and
higher-order terms in Section 12.1. There are other techniques, notably
trigonometric regression and spline regression, that can also be formu-
lated in linear form and handled by software for multiple regression
analysis like lm.

However, sometimes linear methods are inadequate. The common case is
that you have a priori knowledge of the form of the function. This may
come from theoretical analysis of an underlying physical and chemical

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_16, © Springer Science+Business Media, LLC 2008

276 16. Nonlinear curve fitting

system, and the parameters of the relation have a specific meaning in that
theory.

The method of least squares makes good sense even when the relation
between data and parameters is not linear. That is, we can estimate β by
minimizing

SSD(β) = ∑(y− f (x; β))2

There is no explicit formula for the location of the minimum, but the min-
imization can be performed numerically by algorithms that we describe
only superficially here. This general technique is also known as nonlin-
ear regression analysis. For an in-depth treatment of the topic, a standard
reference is Bates and Watts (1988).

If the model is “well-behaved” (to use a deliberately vague term), then the
model can be approximated by a linear model in the vicinity of the opti-
mum, and it then makes sense to calculate approximate standard errors
for the parameter estimates.

Most of the available optimization algorithms build on the same idea of
linearization; i.e.,

y− f (x; β + δ) ≈ y− f (x; β) + D f δ

in which D f denotes the gradient matrix of derivatives of f with respect to
β. This effectively becomes a design matrix of a linear model, and you can
proceed from a starting guess at β to find an approximate least squares
fit of δ. Then you replace β by β + δ and repeat until convergence. Varia-
tions on this basic algorithm include numerical computation of D f and
techniques to avoid instability if the starting guess is too far from the
optimum.

To perform the optimization in R, you can use the nls function, which is
broadly similar to lm and glm.

16.1 Basic usage

In this section, we use a simulated data set just so that we know what we
are doing. The model is a simple exponential decay.

> t <- 0:10
> y <- rnorm(11, mean=5*exp(-t/5), sd=.2)
> plot(y ~ t)

The simulated data can be seen in Figure 16.1.

16.1 Basic usage 277

0 2 4 6 8 10

1
2

3
4

5

t

y

Figure 16.1. Simulated exponential decay.

We now fit the model to data using nls. Unlike lm and glm, the model
formula for nls does not use the special codings for linear terms, grouping
factors, interactions, etc. Instead, the right-hand side is an explicit expres-
sion to calculate the expected value of the left-hand side. This can depend
on external variables as well as the parameters, so we need to specify
which is which. The simplest way to do this is to specify a named vector
(or a named list) of starting values.

> nlsout <- nls(y ~ A*exp(-alpha*t), start=c(A=2, alpha=0.05))
> summary(nlsout)

Formula: y ~ A * exp(-alpha * t)

Parameters:
Estimate Std. Error t value Pr(>|t|)

A 4.97204 0.21766 22.84 2.80e-09 ***
alpha 0.20793 0.01572 13.23 3.35e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2805 on 9 degrees of freedom

Number of iterations to convergence: 5

278 16. Nonlinear curve fitting

Achieved convergence tolerance: 2.223e-06

Notice that nls treats t as a variable and not a parameter because it is not
mentioned in the start argument. Whenever the fitting algorithm needs
to evaluate A * exp(-alpha * t), t is taken from the variable in the
global environment, whereas A and alpha are varied by the algorithm.

The general form of the output is quite similar to that of glm, so we shall
not dwell too long upon it. One thing that might be noted is that the t test
and p-value stated for each parameter are tests for a hypothesis that the
parameter is zero, which is often quite meaningless for nonlinear models.

16.2 Finding starting values

In the previous section, we had quite fast convergence, even though the
initial guess of parameters was (deliberately) rather badly off. Unfortu-
nately, things are not always that simple; convergence of nonlinear models
can depend critically on having good starting values. Even when the al-
gorithm is fairly robust, we at least need to get the order of magnitude
right.

Methods for obtaining starting values will most often rely on an analy-
sis of the functional form; common techniques involve transformation to
linearity and the estimation of “landmarks” such asymptotes, maximum
points, and initial slopes.

To illustrate this, we again consider the Juul data. This time we focus on
the relation between age and height. To obtain a reasonably homogeneous
data set, we look at males only and subset the data to the ages between 5
and 20.

> attach(subset(juul2, age<20 & age>5 & sex==1))
> plot(height ~ age)

A plot of the data is shown in Figure 16.2. The plot looks linear over a large
portion of its domain, but there is some levelling off at the right end and
of course it is basic human biology that we stop growing at some point in
the later teens.

The Gompertz curve is often used to describe growth. It can be expressed
in the following form:

y = αe−βe−γx

16.2 Finding starting values 279

5 10 15 20

12
0

14
0

16
0

18
0

20
0

age

he
ig

ht

Figure 16.2. Relationship between age and height in juul2 data set.

The curve has a sigmoid shape, approaching a constant level α as x in-
creases and (in principle) zero for large negative x. The β and γ parameters
determine the location and steepness of the transition.

To obtain starting values for a nonlinear fit, one approach is to notice that
the relation between y and x is something like log-log linear. Specifically,
we can rewrite the relation as

log y = log α− βe−γx

which we may rearrange and take logarithms on both sides again, yielding

log(log α− log y) = log β− γx

That means that if we can come up with a guess for α, then we can guess
the two other parameters by a linear fit to transformed data. Since α is
the asymptotic maximum, a guess of α = 200 could be reasonable. With
this guess, we can make a plot that should show an approximately linear
relationship (log 200 ≈ 5.3):

280 16. Nonlinear curve fitting

5 10 15 20

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

age

lo
g(

5.
3

−
 lo

g(
he

ig
ht

))

Figure 16.3. Linearized plot of the Gompertz relation when assuming α ≈ 200.

> plot(log(5.3-log(height))~age)
Warning message:
In log(5.3 - log(height)) : NaNs produced

Notice that we got a warning that an NaN (Not a Number) value was pro-
duced. This is because one individual was taller than 200 cm, and we
therefore tried to take the logarithm of a negative value. The linearized
plot shows a clearly nonconstant variance and probably also some asym-
metry of the residual distribution, so the assumptions for linear regression
analysis are clearly violated. However, it is good enough for our purpose,
and a linear fit gives

> lm(log(5.3-log(height))~age)

Call:
lm(formula = log(5.3 - log(height)) ~ age)

Coefficients:
(Intercept) age

0.4200 -0.1538

Warning message:
In log(5.3 - log(height)) : NaNs produced

16.2 Finding starting values 281

Accordingly, an initial guess of the parameters is

log α = 5.3
log β = 0.42

γ = 0.15

Supplying these guesses to nls and fitting the Gompertz curve yields

> fit <- nls(height~alpha*exp(-beta*exp(-gamma*age)),
+ start=c(alpha=exp(5.3),beta=exp(0.42),gamma=0.15))
> summary(fit)

Formula: height ~ alpha * exp(-beta * exp(-gamma * age))

Parameters:
Estimate Std. Error t value Pr(>|t|)

alpha 2.428e+02 1.157e+01 20.978 <2e-16 ***
beta 1.176e+00 1.892e-02 62.149 <2e-16 ***
gamma 7.903e-02 8.569e-03 9.222 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.811 on 499 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 5.283e-06
(3 observations deleted due to missingness)

The final estimates are quite a bit different from the starting values. This
reflects the crudeness of the estimation methods used for the starting
values. In particular, we used transformations that were based on the
mathematical form of the function but did not take the structure of the er-
ror variation into account. Also, the important parameter α was obtained
by eye.

Looking at the fitted model, however, it is not reassuring that the final
estimate for α suggests that boys would continue growing until they are
243 cm tall (for readers in nonmetric countries, that is almost eight feet!).
Possibly, the Gompertz curve is just not a good fit for these data.

We can overlay the original data with the fitted curve as follows
(Figure 16.4)

> plot(age, height)
> newage <- seq(5,20,length=500)
> lines(newage, predict(fit,newdata=data.frame(age=newage)),lwd=2)

282 16. Nonlinear curve fitting

5 10 15 20

12
0

14
0

16
0

18
0

20
0

age

he
ig

ht

Figure 16.4. The fitted Gompertz curve.

The plot suggests that there is a tendency for the dispersion to increase
with increasing fitted values, so we attempt a log-scale fit. This can be
done expediently by transforming both sides of the model formula.

>
> fit <- nls(log(height)~log(alpha*exp(-beta*exp(-gamma*age))),
+ start=c(alpha=exp(5.3),beta=exp(.12),gamma=.12))
> summary(fit)

Formula: log(height) ~ log(alpha * exp(-beta * exp(-gamma * age)))

Parameters:
Estimate Std. Error t value Pr(>|t|)

alpha 255.97694 15.03920 17.021 <2e-16 ***
beta 1.18949 0.02971 40.033 <2e-16 ***
gamma 0.07033 0.00811 8.673 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.04307 on 499 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 2.855e-06
(3 observations deleted due to missingness)

16.2 Finding starting values 283

5 10 15 20

4.
7

4.
8

4.
9

5.
0

5.
1

5.
2

5.
3

age

lo
g(

he
ig

ht
)

Figure 16.5. Fitted Gompertz curve on log scale.

> plot(age, log(height))
> lines(newage, predict(fit,newdata=data.frame(age=newage)),lwd=2)

On the log-scale plot (Figure 16.5), the distribution around the curve ap-
pears to be more stable. The parameter estimates did not change much,
although the maximum height is now increased by a further 13 cm
(5 inches) and the γ parameter is reduced to compensate.

Closer inspection of the plots (whether on log scale or not), however, re-
veals that the Gompertz curve tends to overshoot the data points at the
right end, where a much flatter curve would fit the data in the range from
15 years upwards. Although visually there is a nice overall fit, this is not
hard to obtain for a three-parameter family of curves, and the Gompertz
curves seem unable to fit the characteristic patterns of human growth.

284 16. Nonlinear curve fitting

16.3 Self-starting models

Finding starting values is an art rather than a craft, but once a stable
method has been found, it may be reasonable to assume that will apply
to most data sets from a given model. nls allows the nice feature that
the procedure for calculating starting values can be embodied in the ex-
pressions that are used on the right-hand side of the model formula. Such
functions are by convention named starting with “SS”, and R 2.6.2 comes
with 10 of these built-in. In particular, there is in fact an SSgompertz
function, so we could have saved ourselves much of the trouble of the
previous section by just writing

> summary(nls(height~SSgompertz(age, Asym, b2, b3)))

Formula: height ~ SSgompertz(age, Asym, b2, b3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

Asym 2.428e+02 1.157e+01 20.98 <2e-16 ***
b2 1.176e+00 1.892e-02 62.15 <2e-16 ***
b3 9.240e-01 7.918e-03 116.69 <2e-16 ***
...

Notice, though, that the parameterization is different: The parameter b3
is actually eγ, whereas the two other parameters are recognized as α and
β.

One minor drawback of self-starting models is that you cannot just trans-
form them if you want to see if the model fits better on, for example, a log
scale. In other words, this fails:

> nls(log(height) ~ log(SSgompertz(age, Asym, b2, b3)))
Error in nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter estimates

Calls: nls -> switch -> nlsModel
In addition: Warning message:
In nls(log(height) ~ log(SSgompertz(age, Asym, b2, b3))) :
No starting values specified for some parameters.

Intializing ‘Asym’, ‘b2’, ‘b3’ to ’1.’.
Consider specifying ’start’ or using a selfStart model

The error message means, in essence, that the self-start machinery is
turned off, so nls tries a wild guess, setting all parameters to 1, and then
fails to converge from that starting point.

Using expression log(SSgompertz(age, Asym, b2, b3)) to com-
pute the expected value of log(height) is not a problem (in itself). We
can take the starting values from the untransformed fit but this is still not
enough to make things work.

16.4 Profiling 285

There is a hitch: SSgompertz returns a gradient attribute along with the
fitted values. This is the derivative of the fitted value with respect to each
of the model parameters. This speeds up the convergence process for the
original model but is plainly wrong for the transformed model, where it
causes convergence failure. We could patch this up by calculating the cor-
rect gradient, but it is expedient simply to discard the attribute by taking
as.vector.

> cf <- coef(nls(height ~ SSgompertz(age, Asym, b2, b3)))
> summary(nls(log(height) ~
+ log(as.vector(SSgompertz(age,Asym, b2, b3))),
+ start=as.list(cf)))

Formula: log(height) ~ log(as.vector(SSgompertz(age, Asym, b2, b3)))

Parameters:
Estimate Std. Error t value Pr(>|t|)

Asym 2.560e+02 1.504e+01 17.02 <2e-16 ***
b2 1.189e+00 2.971e-02 40.03 <2e-16 ***
b3 9.321e-01 7.559e-03 123.31 <2e-16 ***
...

It is possible to write your own self-starting models. It is not hard once
you have some experience with R programming, but we shall not go
into details here. The essence is that you need two basic items: the
model expression and a function that calculates the starting values. You
must ensure that these adhere to some formal requirements, and then
a constructor function selfStart can be called to create the actual
self-starting function.

16.4 Profiling

We discussed profiling before in connection with glm and logistic re-
gression in Section 13.3. For nonlinear regression, there are some slight
differences: The function that is being profiled is not the likelihood func-
tion but the sum of squared deviations, and the approximate confidence
intervals are based on the t distribution rather than the normal distribu-
tion. Also, the plotting method does not by default use the signed version
of the profile, just the square root of the difference in the sum of squared
deviations.

Profiling is designed to eliminate parameter curvature. The same model can
be formulated using different parameterizations (such as when Gompertz
curves could be defined using γ or b3 = eγ). The choice of parameteri-
zation can have a substantial influence on whether the distribution of the

286 16. Nonlinear curve fitting

240 260 280 300 320

0.
0

1.
0

2.
0

alpha

τ

1.15 1.20 1.25 1.30

0.
0

1.
0

2.
0

beta

τ

0.05 0.06 0.07 0.08 0.09

0.
0

1.
0

2.
0

gamma

τ

Figure 16.6. Parameter profiles of the Gompertz fit on log scale.

estimate is approximately normal or not, and this in turn means that the
use of symmetric confidence intervals based on the standard errors from
the model summary can be misleading. Profile-based confidence intervals
do not depend on parameterization — if you transform a parameter, the
ends of the confidence interval are just transformed in the same way.

There is, however, also intrinsic curvature of the models. This describes
how far the model is from an approximating linear model. This kind of
curvature is independent of parameterization and is harder to adjust for
than parameter curvature. The effect of intrinsic curvature is that the t
distribution used for the calculation of profile-based confidence intervals
is not exactly the right distribution to use. Experience suggests that this
effect is usually much smaller than the distortions caused by parameter
curvature.

For the Gompertz fit (after log transformation), we get the plots shown in
Figure 16.6.

> par(mfrow=c(3,1))
> plot(profile(fit))

16.5 Finer control of the fitting algorithm 287

The plots show that there is a marked curvature for the α and β pa-
rameters, reflected in the curved and asymmetric profiles, whereas the γ
profile is more linear and symmetric. This is also seen when comparing
the profile-based confidence intervals with those of confint.default,
which uses the normal approximation and the approximate standard
errors.

> confint(fit)
Waiting for profiling to be done...

2.5% 97.5%
alpha 233.49688706 294.76696435
beta 1.14429894 1.27416518
gamma 0.05505754 0.08575007
> confint.default(fit)

2.5 % 97.5 %
alpha 226.50064512 285.45322721
beta 1.13125578 1.24772846
gamma 0.05443819 0.08622691

16.5 Finer control of the fitting algorithm

The Juul example that has been used in this chapter has been quite benign
because there are a large number of observations and an objective func-
tion that is relatively smooth as a function of the parameters. However,
convergence problems easily come up in less nice examples. Nonlinear
optimization is simply a tricky topic, to which we have no chance of do-
ing justice in this short chapter. The algorithms have several parameters
that can be adjusted in order to help convergence, but since we are not
describing the algorithms, it is hardly possible to give more than a feeling
for what can be done.

The possibility of supplying a gradient of the fitted curve with respect
to parameters was mentioned earlier. If the curve is given by a simple
mathematical expression, then the deriv function can even be used to
generate the gradient automatically. If a gradient is not available, then the
algorithm will estimate it numerically; in practice, this often turns out to
be equally fast.

The nls function features a trace argument that, if set to TRUE, allows
you to follow the parameters and the SSD iteration by iteration. This
is sometimes useful to get a handle on what is happening, for instance
whether the algorithm is making unreasonably large jumps. To actually
modify the behaviour, there is a single control argument, which can be
set to the return value of nls.control, which in turn has arguments to
set iteration limits and tolerances (and more).

288 16. Nonlinear curve fitting

You can switch out the entire fitting method by using the algorithm
argument. Apart from the default algorithm, this allows the settings
"plinear" and "port". The former allows models of the form

y = ∑
i

αi fi(x; βi)

that are partially linear since the αi can be determined by multiple lin-
ear regression if the βi are considered fixed. To specify models with more
than one term, you let the expression on the right-hand side of the model
formula return a matrix instead of a vector. The latter algorithm uses a
routine from the PORT library from Lucent Technologies; this in partic-
ular allows you to set contraints on parameters by using the upper and
lower arguments to nls.

It should be noted that all the available algorithms operate under the im-
plicit assumption that the SSD(β) is fairly smooth and well behaved, with
a well-defined global minimum and no other local minima nearby. There
are cases where this assumption is not warranted. In such cases, you might
attack the minimization problem directly using the optim function.

16.6 Exercises

16.1 Try fitting the Gompertz model for girls in the Juul data. How
would you go about testing whether the same model fits both genders?

16.2 The philion data contain four small-sample EC50 experiments
that are somewhat tricky to handle. We suggest the model y = ymax/(1 +
(x/β)α). It may be useful to transform y by the square root since the data
are counts, and this stabilizes the variance of the Poisson distribution.
Consider how to obtain starting values for the model, and fit it with nls.
The "port" algorithm seems more stable for these data. For profiling and
confidence intervals, it seems to help if you set the alphamax argument
to 0.2.

16.3 (Theoretical) Continuing with the philion data, consider what
happens if you modify the model to be y = ymax/(1 + x/β)α.

	16 Nonlinear curve fitting
	16.1 Basic usage
	16.2 Finding starting values
	16.3 Self-starting models
	16.4 Profiling
	16.5 Finer control of the fitting algorithm
	16.6 Exercises

