13 Logistic regression

Sometimes you wish to model *binary outcomes*, variables that can have only two possible values: diseased or nondiseased, and so forth. For instance, you want to describe the risk of getting a disease depending on various kinds of exposures. Chapter 8 discusses some simple techniques based on tabulation, but you might also want to model dose-response relationships (where the predictor is a continuous variable) or model the effect of multiple variables simultaneously. It would be very attractive to be able to use the same modelling techniques as for linear models.

However, it is not really attractive to use additive models for probabilities since they have a limited range and regression models could predict off-scale values below zero or above 1. It makes better sense to model the probabilities on a transformed scale; this is what is done in logistic regression analysis.

A linear model for transformed probabilities can be set up as

logit
$$p = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_k x_k$$

in which logit $p = \log[p/(1-p)]$ is the *log odds*. A constant additive effect on the logit scale corresponds to a constant odds ratio. The choice of the logit function is not the only one possible, but it has some mathematically convenient properties. Other choices do exist; the probit function (the quantile function of the normal distribution) or $\log(-\log p)$, which has a connection to survival analysis models.

One thing to notice about the logistic model is that there is no error term as in linear models. We are modelling the probability of an event directly, and that in itself will determine the variability of the binary outcome. There is no variance parameter as in the normal distribution.

The parameters of the model can be estimated by the *method of maximum likelihood*. This is a quite general technique, similar to the least-squares method in that it finds a set of parameters that optimizes a goodness-of-fit criterion (in fact, the least-squares method itself is a slightly modified maximum-likelihood procedure). The *likelihood function* $L(\beta)$ is simply the probability of the entire observed data set for varying parameters.

The *deviance* is the difference between the maximized value of $-2\log L$ and the similar quantity under a "maximal model" that fits data perfectly. Changes in deviance caused by a model reduction will be approximately χ^2 -distributed with degrees of freedom equal to the change in the number of parameters.

In this chapter, we see how to perform logistic regression analysis in R. There naturally is quite a large overlap with the material on linear models since the description of models is quite similar, but there are also some special issues concerning deviance tables and the specification of models for pretabulated data.

13.1 Generalized linear models

Logistic regression analysis belongs to the class of *generalized linear models*. These models are characterized by their response distribution (here the binomial distribution) and a *link function*, which transfers the mean value to a scale in which the relation to background variables is described as linear ans additive. In a logistic regression analysis, the link function is logit $p = \log[p/(1-p)]$.

There are several other examples of generalized linear models; for instance, analysis of count data is often handled by the multiplicative Poisson model, where the link function is $\log \lambda$, with λ the mean of the Poisson-distributed observation. All of these models can be handled using the same algorithm, which also allows the user some freedom to define his or her own models by defining suitable link functions.

In R generalized linear models are handled by the glm function. This function is very similar to lm, which we have used many times for linear normal models. The two functions use essentially the same model formulas and extractor functions (summary, etc.), but glm also needs to have specified *which* generalized linear model is desired. This is done via

the family argument. To specify a binomial model with logit link (i.e., logistic regression analysis), you write family=binomial("logit").

13.2 Logistic regression on tabular data

In this section, we analyze the example concerning hypertension from Altman (1991, p. 353). First, we need to enter data, which is done as follows:

```
> no.ves <- c("No","Yes")</pre>
> smoking <- gl(2,1,8,no.yes)</pre>
> obesity <- gl(2,2,8,no.yes)
> snoring <- gl(2,4,8,no.ves)</pre>
> n.tot <- c(60,17,8,2,187,85,51,23)
> n.hyp <- c(5,2,1,0,35,13,15,8)
> data.frame(smoking,obesity,snoring,n.tot,n.hyp)
 smoking obesity snoring n.tot n.hyp
1 No No No 60 5
2
      Yes
                  No
                             No
                                      17
                                                2
                             No 8
No 2
                 Yes
       No
3
                                                1
      Yes
4
                Yes
                                               0
5
       No
                 No
                            Yes 187 35

        Yes
        No
        Yes
        85
        13

        No
        Yes
        Yes
        Yes
        51
        15

        Yes
        Yes
        Yes
        Yes
        23
        8

6
7
8
```

The gl function to "generate levels" was briefly introduced in Section 7.3. The first three arguments to gl are, respectively, the number of levels, the repeat count of each level, and the total length of the vector. A fourth argument can be used to specify the level names of the resulting factor. The result is apparent from the printout of the generated variables. They were put together in a data frame to get a nicer layout. Another way of generating a regular pattern like this is to use expand.grid:

```
> expand.grid(smoking=no.yes, obesity=no.yes, snoring=no.yes)
 smoking obesity snoring
    No No No
1
2
    Yes
            No
                    No
                   No
3
    No
           Yes
           Yes
4
    Yes
                   No
5
           No
     No
                  Yes
   Yes No Yes
No Yes Yes
Yes Yes Yes
6
7
8
```

R is able to fit logistic regression analyses for tabular data in two different ways. You have to specify the response as a matrix, where one column is

the number of "diseased" and the other is the number of "healthy" (or "success" and "failure", depending on context).

The cbind function ("c" for "column") is used to bind variables together, columnwise, to form a matrix. Note that it would be a horrible mistake to use the total count for column 2 instead of the number of failures.

Then, you can specify the logistic regression model as

> glm(hyp.tbl~smoking+obesity+snoring,family=binomial("logit"))

Actually, "logit" is the default for binomial and the family argument is the second argument to glm, so it suffices to write

```
> glm(hyp.tbl~smoking+obesity+snoring,binomial)
```

The other way to specify a logistic regression model is to give the *proportion* of diseased in each cell:

```
> prop.hyp <- n.hyp/n.tot
> glm.hyp <- glm(prop.hyp~smoking+obesity+snoring,
+ binomial,weights=n.tot)</pre>
```

It is necessary to give weights because R cannot see how many observations a proportion is based on.

As output, you get in either case (except for minor details)

```
Call: glm(formula = hyp.tbl ~ smoking + obesity + snoring, ...
Coefficients:
(Intercept) smokingYes obesityYes snoringYes
-2.37766 -0.06777 0.69531 0.87194
Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
Null Deviance: 14.13
Residual Deviance: 1.618 AIC: 34.54
```

which is in a minimal style similar to that used for printing lm objects. Also in the result of glm is some nonvisible information, which may be extracted with particular functions. You can, for instance, save the result of a fit of a generalized linear model in a variable and obtain a table of regression coefficients and so forth using summary:

```
> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)</pre>
> summary(glm.hyp)
Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family ...
Deviance Residuals:
                       3 4
    1 2
                                            5
                                                             6
-0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602
    7 8
-0.21262 0.56231
Coefficients:
        Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.37766 0.38018 -6.254 4e-10 ***
smokingYes -0.06777 0.27812 -0.244 0.8075
obesityYes 0.69531 0.28509 2.439 0.0147 *
snoringYes 0.87194 0.39757 2.193 0.0283 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537
Number of Fisher Scoring iterations: 4
```

In the following, we go through the components of summary output for generalized linear models:

```
Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family = ...
```

As usual, we start off with a repeat of the model specification. Obviously, more interesting is when the output is not viewed in connection with the function call that generated it.

```
Deviance Residuals:

1 2 3 4 5 6

-0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602

7 8

-0.21262 0.56231
```

This is the contribution of each cell of the table to the deviance of the model (the deviance corresponds to the sum of squares in linear normal models), with a sign according to whether the observation is larger or smaller than expected. They can be used to pinpoint cells that are particularly poorly fitted, but you have to be wary of the interpretation in sparse tables.

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.37766 0.38018 -6.254 4e-10 ***

smokingYes -0.06777 0.27812 -0.244 0.8075

obesityYes 0.69531 0.28509 2.439 0.0147 *

snoringYes 0.87194 0.39757 2.193 0.0283 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1

(Dispersion parameter for binomial family taken to be 1)
```

This is the table of primary interest. Here, we get estimates of the regression coefficients, standard errors of same, and tests for whether each regression coefficient can be assumed to be zero. The layout is nearly identical to the corresponding part of the lm output.

The note about the dispersion parameter is related to the fact that the binomial variance depends entirely on the mean. There is no scale parameter like the variance in the normal distribution.

```
Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537
```

"Residual deviance" corresponds to the residual sum of squares in ordinary regression analyses which is used to estimate the standard deviation about the regression line. In binomial models, however, the standard deviation of the observations is known, and you can therefore use the deviance in a test for model specification. The AIC (Akaike information criterion) is a measure of goodness of fit that takes the number of fitted parameters into account.

R is reluctant to associate a *p*-value with the deviance. This is just as well because no exact *p*-value can be found, only an approximation that is valid for large expected counts. In the present case, there are actually a couple of places where the expected cell count is rather small.

The asymptotic distribution of the residual deviance is a χ^2 distribution with the stated degrees of freedom, so even though the approximation may be poor, nothing in the data indicates that the model is wrong (the 5% significance limit is at 9.49 and the value found here is 1.62).

The null deviance is the deviance of a model that contains only the intercept (that is, describes a fixed probability, here for hypertension, in all cells). What you would normally be interested in is the difference from the residual deviance, here 14.13 - 1.62 = 12.51, which can be used for a joint test for whether any effects are present in the model. In the present case, a *p*-value of approximately 0.6% is obtained.

Number of Fisher Scoring iterations: 4

This refers to the actual fitting procedure and is a purely technical item. There is no statistical information in it, but you should keep an eye on whether the number of iterations becomes too large because that might be a sign that the model is too complex to fit based on the available data. Normally, glm halts the fitting procedure if the number of iterations exceeds 25, but it is possible to configure the limit.

The fitting procedure is *iterative* in that there is no explicit formula that can be used to compute the estimates, only a set of equations that they should satisfy. However, there is an approximate solution of the equations if you supply an initial guess at the solution. This solution is then used as a starting point for an improved solution, and the procedure is repeated until the guesses are sufficiently stable.

A table of correlations between parameter estimates can be obtained via the optional argument corr=T to summary (this also works for linear models). It looks like this:

```
Correlation of Coefficients:
(Intercept) smokingYes obesityYes
smokingYes -0.1520
obesityYes -0.1361 -9.499e-05
snoringYes -0.8965 -6.707e-02 -0.07186
```

It is seen that the correlation between the estimates is fairly small, so that it may be expected that removing a variable from the model does not change the coefficients and *p*-values for other variables much. (The correlations between the regression coefficients and intercept are not very informative; they mostly relate to whether the variable in question has many or few observations in the "Yes" category.)

The z test in the table of regression coefficients immediately shows that the model can be simplified by removing smoking. The result then looks as follows (abbreviated):

```
> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> summary(glm.hyp)
...
```

234 13. Logistic regression

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3921 0.3757 -6.366 1.94e-10 ***

obesityYes 0.6954 0.2851 2.440 0.0147 *

snoringYes 0.8655 0.3967 2.182 0.0291 *
```

13.2.1 The analysis of deviance table

Deviance tables correspond to ANOVA tables for multiple regression analyses and are generated like these with the anova function:

```
> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)
> anova(glm.hyp, test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: hyp.tbl
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 14.1259
smoking 1 0.0022 6 14.1237 0.9627
obesity 1 6.8274 5 7.2963 0.0090
snoring 1 5.6779 4 1.6184 0.0172
```

Notice that the Deviance column gives *differences* between models as variables are added to the model in turn. The deviances are approximately χ^2 -distributed with the stated degrees of freedom. It is necessary to add the test="chisq" argument to get the approximate χ^2 tests.

Since the snoring variable on the last line is significant, it may not be removed from the model and we cannot use the table to justify model reductions. If, however, the terms are rearranged so that smoking comes last, we get a deviance-based test for removal of that variable:

From this you can read that smoking is removable, whereas obesity is not, after removal of smoking.

For good measure, you should also set up the analysis with the two remaining explanatory variables interchanged, so that you get a test of whether snoring may be removed from a model that also contains obesity:

```
> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> anova(glm.hyp, test="Chisq")
...
Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 14.1259
obesity 1 6.8260 6 7.2999 0.0090
snoring 1 5.6218 5 1.6781 0.0177
```

An alternative method is to use drop1 to try removing one term at a time:

Here LRT is the likelihood ratio test, another name for the deviance change.

The information in the deviance tables is fundamentally the same as that given by the *z* tests in the table of regression coefficients. The results may differ due to the use of different approximations, though. From theoretical considerations, the deviance test is preferable, but in practice the difference is often small because of the large-sample approximation $\chi^2 \approx z^2$ for tests with a single degree of freedom. However, to test factors with more than two categories, you have to use the deviance table because the *z* tests only relate to some of the possible group comparisons. Also, the small-sample situation requires special attention; see the next section.

13.2.2 Connection to test for trend

In Chapter 8, we considered tests for comparing relative frequencies using prop.test and prop.trend.test, in particular the example of caesarean section versus shoe size. This example can also be analyzed as a logistic regression analysis on a "shoe score", which — for want of a better idea — may be chosen as the group number. This gives essentially the same analysis in the sense that the same models are involved.

236 13. Logistic regression

```
> caesar.shoe
  <4 4 4.5 5 5.5 6+
Yes 5 7 6 7 8 10
No 17 28 36 41 46 140
> shoe.score <- 1:6
> shoe.score
[1] 1 2 3 4 5 6
> summary(glm(t(caesar.shoe)~shoe.score,binomial))
. . .
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.87058 0.40506 -2.149 0.03161 * shoe.score -0.25971 0.09361 -2.774 0.00553 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 9.3442 on 5 degrees of freedom
Residual deviance: 1.7845 on 4 degrees of freedom
AIC: 27.616
. . .
```

Notice that caesar.shoe had to be transposed with t (...), so that the matrix was "stood on its end" in order to be used as the response variable by glm.

You can also write the results in a deviance table

```
> anova(glm(t(caesar.shoe)~shoe.score,binomial))
...
Df Deviance Resid. Df Resid. Dev
NULL 5 9.3442
shoe.score 1 7.5597 4 1.7845
```

from the last line of which you see that there is no significant deviation from linearity (1.78 on 4 degrees of freedom), whereas shoe.score has a significant contribution.

For comparison, the previous analyses using standard tests are repeated:

```
6-sample test for equality of proportions without
continuity correction
...
X-squared = 9.2874, df = 5, p-value = 0.09814
...
Warning message:
In prop.test(caesar.shoe.yes, caesar.shoe.total) :
Chi-squared approximation may be incorrect
```

The 9.29 from prop.test corresponds to the 9.34 in residual deviance from a NULL model, whereas the 8.02 in the trend test corresponds to the 7.56 in the test of significance of shoe.score. Thus, the tests do not give exactly the same result but generally *almost* the same. Theoretical considerations indicate that the specialized trend test is probably slightly better than the regression-based test. However, testing the linearity by subtracting the two χ^2 tests is definitely not as good as the real test for linearity.

13.3 Likelihood profiling

The *z* tests in the summary output are based on the *Wald approximation*, which calculates what the approximate standard error of the parameter estimate would be if the true values of the parameters were equal to the estimates. In large data sets, this is fine because the result is nearly the same for all parameter values that fit the data reasonably well. In smaller data sets, however, the difference between the Wald tests and the likelihood ratio test can be considerable.

This also affects the calculation of confidence intervals since these are based on inverting the tests, giving a set of parameter values that are not rejected by a statistical test. As an alternative to the Wald-based $\pm 1.96 \times$ s.e. technique, the MASS package allows you to compute intervals that are based on inverting the likelihood ratio test. In practice, this works like this

The standard type of result can be obtained using confint.default. The difference in this case is not very large, although visible in the lines relating to snoring and the intercept:

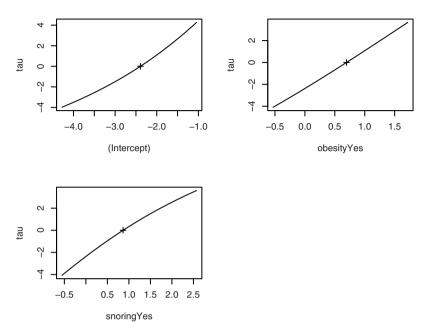


Figure 13.1. Profile plot for hypertension model.

The way this works is via *likelihood profiling*. For a set of trial values of the parameter, the likelihood is maximized over the other parameters in the model. The result can be displayed in a profile plot as follows:

```
> library(MASS)
> plot(profile(glm.hyp))
```

Notice that we need to load the MASS package at this point. (The function was used by confint earlier on, but without putting it on the search path.)

The plots require a little explanation. The quantity on the *y*-axis, labelled tau, is the signed square root of the likelihood ratio test.

$$\tau(\beta) = \operatorname{sgn}(\beta - \hat{\beta}) \sqrt{-2(\ell(\beta) - \ell(\hat{\beta}))}$$

Here ℓ denotes the profile log-likelihood. The main idea is that when the profile likelihood function is approximately quadratic, $\tau(\beta)$ is approximately linear. Conversely, likelihood functions not well approximated by a quadratic show up as nonlinear profile plots.

One important thing to notice, though, is that although the profiling method will capture nonquadratic behaviour of the likelihood function, confidence intervals based on the likelihood ratio test will always be limited in accuracy by the approximation of the distribution of the test.

13.4 Presentation as odds-ratio estimates

In parts of the epidemiological literature, it has become traditional to present logistic regression analyses in terms of odds ratios. In the case of a quantitative covariate, this means odds ratio per unit change in the covariate. That is, the antilogarithm (exp) of the regression coefficients is given instead of the coefficients themselves. Since standard errors make little sense after the transformation, it is also customary to give confidence intervals instead. This can be obtained quite easily as follows:

The (Intercept) is really the odds of hypertension (for the not snoring non-obese) and not an odds ratio.

13.5 Logistic regression using raw data

In this section, we again use Anders Juul's data (see p. 85). For easy reference, here is how to read data and convert the variables that describe groupings into factors (this time slightly simplified):

```
> juul$menarche <- factor(juul$menarche, labels=c("No","Yes"))
> juul$tanner <- factor(juul$tanner)</pre>
```

In the following, we look at menarche as the response variable. This variable indicates for each girl whether or not she has had her first period. It is coded 1 for "no" and 2 for "yes". It is convenient to look at a subset of data consisting of 8–20-year-old girls. This can be extracted as follows:

```
> juul.girl <- subset(juul,age>8 & age<20 &
+ complete.cases(menarche))
> attach(juul.girl)
```

For obvious reasons, no boys have a nonmissing menarche, so it is not necessary to select on gender explicitly.

Then you can analyze menarche as a function of age like this:

```
> summary(glm(menarche~age, binomial))
Call:
glm(formula = menarche ~ age, family = binomial)
Deviance Residuals:
                  Median 3Q Max
    Min 1Q
-2.32759 -0.18998 0.01253 0.12132 2.45922
Coefficients:
       Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.0132 2.0284 -9.867 <2e-16 ***
age 1.5173 0.1544 9.829 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 719.39 on 518 degrees of freedom
Residual deviance: 200.66 on 517 degrees of freedom
AIC: 204.66
Number of Fisher Scoring iterations: 7
```

The response variable menarche is a factor with two levels, where the last level is considered the event. It also works to use a variable that has the values 0 and 1 (but *not*, for instance, 1 and 2!).

Notice that from this model you can estimate the median menarcheal age as the age where logit p = 0. A little thought (solve $-20.0132 + 1.5173 \times age = 0$) reveals that it is 20.0132/1.5173 = 13.19 years.

You should not pay too much attention to the deviance residuals in this case since they automatically become large in every case where the fitted probability "goes against" the observations (which is bound to happen in some cases). The residual deviance is also difficult to interpret when there is only one observation per cell.

A hint of a more complicated analysis is obtained by including the Tanner stage of puberty in the model. You should be warned that the exact interpretation of such an analysis is quite tricky and *qualitatively* different from the analysis of menarche as a function of age. It can be used for prediction purposes (although asking the girl whether she has had her first period would likely be much easier than determining her Tanner stage!), but the interpretation of the terms is not clear-cut.

Notice that there is no joint test for the effect of tanner. There are a couple of significant z-values, so you would expect that the tanner variable has some effect (which, of course, you would probably expect even in the absence of data!). The formal test, however, must be obtained from the deviances:

```
> drop1(glm(menarche~age+tanner,binomial),test="Chisq")
...
Df Deviance AIC LRT Pr(Chi)
<none> 106.599 118.599
age 1 124.500 134.500 17.901 2.327e-05 ***
tanner 4 161.881 165.881 55.282 2.835e-11 ***
...
```

Clearly, both terms are highly significant.

13.6 Prediction

The predict function works for generalized linear models, too. Let us first consider the hypertension example, where data were given in tabular form:

Recall that smoking was eliminated from the model, which is why the expected values come in identical pairs.

These numbers are on the logit scale, which reveals the additive structure. Notice that 2.392 - 1.697 = 1.527 - 0.831 = 0.695 (except for roundoff er-

ror), which is exactly the regression coefficient to obesity. Likewise, the regression coefficient to snoring is obtained by looking at the differences 2.392 - 1.527 = 1.697 - 0.831 = 0.866.

To get predicted values on the response scale (i.e., probabilities), use the type="response" argument to predict:

These may also be obtained using fitted, although you then cannot use the techniques for predicting on new data, etc.

In the analysis of menarche, the primary interest is probably in seeing a plot of the expected probabilities versus age (Figure 13.2). A crude plot could be obtained using something like

```
plot(age, fitted(glm(menarche~age,binomial)))
```

(it will look better if a different plotting symbol in a smaller size, using the pch and cex arguments, is used) but here is a more ambitious plan:

This is Figure 13.2. Recall that seq generates equispaced vectors, here ages from 8 to 20 in steps of 0.1, so that connecting the points with lines will give a nearly smooth curve.

13.7 Model checking

For tabular data it is obvious to try to compare observed and fitted proportions. In the hypertension example you get

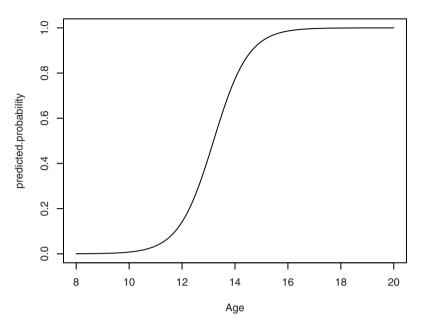


Figure 13.2. Fitted probability of menarche having occurred.

[1] 0.08333333 0.11764706 0.12500000 0.00000000 0.18716578 [6] 0.15294118 0.29411765 0.34782609

The problem with this is that you get no feeling for how well the relative frequencies are determined. It can be better to look at observed and expected *counts* instead. The former can be computed as

and to get a nice print for the comparison, you can use

```
> data.frame(fit=fitted(glm.hyp)*n.tot, n.hyp, n.tot)
         fit n.hyp n.tot
   5.0267351
                 5
1
                       60
2
   1.4242416
                  2
                       17
3
  1.2392186
                 1
                        8
                        2
4
  0.3098047
                 0
5 33.3774535
                35
                     187
6 15.1715698
                13
                      85
```

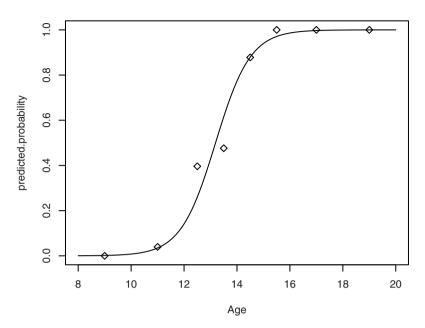


Figure 13.3. Fitted probability for menarche having occurred and observed proportion in age groups.

7	15.4729705	15	51
8	6.9780063	8	23

Notice that the discrepancy in cell 4 between 15% expected and 0% observed really is that there are 0 hypertensives out of 2 in a cell where the model yields an expectation of 0.3 hypertensives!

For complex models with continuous background variables, it becomes more difficult to perform an adequate model check. It is especially a hindrance that nothing really corresponds to a residual plot when the observations have only two different values.

Consider the example of the probability of menarche as a function of age. The problem here is whether the relation can really be assumed linear on the logit scale. For this case, you might try subdividing the *x*-axis in a number of intervals and see how the counts in each interval fit with the expected probabilities. This is presented graphically in Figure 13.3. Notice that the code *adds* points to Figure 13.2, which you are assumed not to have deleted at this point.

> age.group <- cut(age,c(8,10,12,13,14,15,16,18,20))</pre>

```
> tb <- table(age.group,menarche)</pre>
> tb
       menarche
age.group No Yes
 (8,10] 100 0
  (10,12] 97 4
  (12,13] 32 21
  (13,14] 22 20
  (14,15] 5 36
  (15,16] 0 31
  (16,18] 0 105
 (18,20] 0 46
> rel.freq <- prop.table(tb,1)[,2]</pre>
> rel.freq
   (8, 10]
           (10,12] (12,13] (13,14] (14,15] (15,16]
0.0000000 0.03960396 0.39622642 0.47619048 0.87804878 1.00000000
  (16,18] (18,20]
1.00000000 1.00000000
> points(rel.freq ~ c(9,11,12.5,13.5,14.5,15.5,17,19),pch=5)
```

The technique used above probably requires some explanation. First, cut is used to define the factor age.group, which describes a grouping into age intervals. Then a crosstable tb is formed from menarche and age.group. Using prop.table, the numbers are expressed relative to the row total, and column 2 of the resulting table is extracted. This contains the relative proportion in each age group of girls for whom menarche has occurred. Finally, a plot of expected probabilities is made, overlaid by the observed proportions.

The plot looks reasonable on the whole, although the observed proportion among 12–13-year-olds appears a bit high and the proportion among 13–14-year-olds is a bit too low.

But how do you evaluate whether the deviation is larger than what can be expected from the statistical variation? One thing to try is to extend the model with a factor that describes a division into intervals. It is not practical to use the full division of age.group because there are cells where either none or all of the girls have had their menarche.

We therefore try a division into four groups, with cutpoints at 12, 13, and 14 years, and add this factor to the model containing a linear age effect.



Figure 13.4. Logit-cubical fit of menarche data.

age.gr(14,20] 0.2751 1.6065 0.171 0.864053 . . . > anova(glm(menarche~age+age.gr,binomial)) . . . Df Deviance Resid. Df Resid. Dev NULL 518 719.39 518.73 517 1 200.66 age 8.06 514 192.61 3 age.gr > 1-pchisq(8.058,3) [1] 0.04482811

That is, the addition of the grouping actually does give a significantly better deviance. The effect is not highly significant, but since the deviation concerns the ages where "much happens", you should probably be cautious about postulating a logit-linear age effect.

Another possibility is to try a polynomial regression model. Here you need at least a third-degree polynomial to describe the apparent stagnation of the curve around 13 years of age. We do not look at this in great detail, but just show part of the output and in Figure 13.4 a graphical presentation of the model.

```
> anova(glm(menarche~age+I(age^2)+I(age^3)+age.gr,binomial)))
. . .
         Df Deviance Resid. Df Resid. Dev
NULL
                       518 719.39
age 1 518.73
I(age^2) 1 0.05
                           517
                                   200.66
                           516 200.61
515 191.80
512 188.46
I(age^3) 1
                8.82
age.gr 3 3.34
Warning messages:
1: In glm.fit(x = X, y = Y, weights = weights, .... :
  fitted probabilities numerically 0 or 1 occurred
2: In method(x = x[, varseq <= i, drop = FALSE], .... :
 fitted probabilities numerically 0 or 1 occurred
> glm.menarche <- glm(menarche~age+I(age^2)+I(age^3), binomial)</pre>
Warning message:
In glm.fit (x = X, y = Y, weights = weights, start = start, \dots :
 fitted probabilities numerically 0 or 1 occurred
> predicted.probability <-
      predict(glm.menarche, newages, type="resp")
+
> plot(predicted.probability ~ Age, type="l")
> points(rel.freq~c(9,11,12.5,13.5,14.5,15.5,17,19), pch=5)
```

The warnings about fitted probabilities of 0 or 1 occur because the cubic term makes the logit tend much faster to $\pm \infty$ than the linear model did. There are two occurrences for the anova call because two of the models include the cubic term.

The thing to note in the deviance table is that the cubic term gives a substantial improvement of the deviance, but once that is included, the age grouping gives no additional improvement. The plot should speak for itself.

13.8 Exercises

13.1 In the malaria data set, analyze the risk of malaria with age and log-transformed antibody level as explanatory variables.

13.2 Fit a logistic regression model to the graft.vs.host data set, predicting the gvhd response. Use different transformations of the index variable. Reduce the model using backwards elimination.

13.3 In the analyses of the malaria and graft.vs.host data, try using the confint function to find improved confidence intervals for the regression coefficients.

13.4 Following up on Exercise 8.2 about "Rocky Mountain spotted fever", splitting the data by age groups gives the table below. Does this

confirm the earlier analysis?

	Western Type		Eastern Type	
Age Group	Total	Fatal	Total	Fatal
Under 15	108	13	310	40
15–39	264	40	189	21
40 or above	375	157	162	61
	747	210	661	122

13.5 A *probit* regression is just like a logistic regression but uses a different link function. Try the analysis of the menarche variable in the juul data set with this link. Does the fit improve?