
13
Logistic regression

Sometimes you wish to model binary outcomes, variables that can have
only two possible values: diseased or nondiseased, and so forth. For in-
stance, you want to describe the risk of getting a disease depending on
various kinds of exposures. Chapter 8 discusses some simple techniques
based on tabulation, but you might also want to model dose-response re-
lationships (where the predictor is a continuous variable) or model the
effect of multiple variables simultaneously. It would be very attractive to
be able to use the same modelling techniques as for linear models.

However, it is not really attractive to use additive models for probabili-
ties since they have a limited range and regression models could predict
off-scale values below zero or above 1. It makes better sense to model
the probabilities on a transformed scale; this is what is done in logistic
regression analysis.

A linear model for transformed probabilities can be set up as

logit p = β0 + β1x1 + β2x2 + . . . βkxk

in which logit p = log[p/(1− p)] is the log odds. A constant additive ef-
fect on the logit scale corresponds to a constant odds ratio. The choice of
the logit function is not the only one possible, but it has some mathemat-
ically convenient properties. Other choices do exist; the probit function
(the quantile function of the normal distribution) or log(− log p), which
has a connection to survival analysis models.
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One thing to notice about the logistic model is that there is no error term as
in linear models. We are modelling the probability of an event directly, and
that in itself will determine the variability of the binary outcome. There is
no variance parameter as in the normal distribution.

The parameters of the model can be estimated by the method of maximum
likelihood. This is a quite general technique, similar to the least-squares
method in that it finds a set of parameters that optimizes a goodness-of-
fit criterion (in fact, the least-squares method itself is a slightly modified
maximum-likelihood procedure). The likelihood function L(β) is simply the
probability of the entire observed data set for varying parameters.

The deviance is the difference between the maximized value of −2 log L
and the similar quantity under a “maximal model” that fits data perfectly.
Changes in deviance caused by a model reduction will be approximately
χ2-distributed with degrees of freedom equal to the change in the number
of parameters.

In this chapter, we see how to perform logistic regression analysis in R.
There naturally is quite a large overlap with the material on linear models
since the description of models is quite similar, but there are also some
special issues concerning deviance tables and the specification of models
for pretabulated data.

13.1 Generalized linear models

Logistic regression analysis belongs to the class of generalized linear models.
These models are characterized by their response distribution (here the
binomial distribution) and a link function, which transfers the mean value
to a scale in which the relation to background variables is described as
linear ans additive. In a logistic regression analysis, the link function is
logit p = log[p/(1− p)].

There are several other examples of generalized linear models; for in-
stance, analysis of count data is often handled by the multiplicative
Poisson model, where the link function is log λ, with λ the mean of the
Poisson-distributed observation. All of these models can be handled using
the same algorithm, which also allows the user some freedom to define his
or her own models by defining suitable link functions.

In R generalized linear models are handled by the glm function. This
function is very similar to lm, which we have used many times for lin-
ear normal models. The two functions use essentially the same model
formulas and extractor functions (summary, etc.), but glm also needs to
have specified which generalized linear model is desired. This is done via
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the family argument. To specify a binomial model with logit link (i.e.,
logistic regression analysis), you write family=binomial("logit").

13.2 Logistic regression on tabular data

In this section, we analyze the example concerning hypertension from
Altman (1991, p. 353). First, we need to enter data, which is done as
follows:

> no.yes <- c("No","Yes")
> smoking <- gl(2,1,8,no.yes)
> obesity <- gl(2,2,8,no.yes)
> snoring <- gl(2,4,8,no.yes)
> n.tot <- c(60,17,8,2,187,85,51,23)
> n.hyp <- c(5,2,1,0,35,13,15,8)
> data.frame(smoking,obesity,snoring,n.tot,n.hyp)
smoking obesity snoring n.tot n.hyp

1 No No No 60 5
2 Yes No No 17 2
3 No Yes No 8 1
4 Yes Yes No 2 0
5 No No Yes 187 35
6 Yes No Yes 85 13
7 No Yes Yes 51 15
8 Yes Yes Yes 23 8

The gl function to “generate levels” was briefly introduced in Section 7.3.
The first three arguments to gl are, respectively, the number of levels,
the repeat count of each level, and the total length of the vector. A fourth
argument can be used to specify the level names of the resulting factor.
The result is apparent from the printout of the generated variables. They
were put together in a data frame to get a nicer layout. Another way of
generating a regular pattern like this is to use expand.grid:

> expand.grid(smoking=no.yes, obesity=no.yes, snoring=no.yes)
smoking obesity snoring

1 No No No
2 Yes No No
3 No Yes No
4 Yes Yes No
5 No No Yes
6 Yes No Yes
7 No Yes Yes
8 Yes Yes Yes

R is able to fit logistic regression analyses for tabular data in two different
ways. You have to specify the response as a matrix, where one column is
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the number of “diseased” and the other is the number of “healthy” (or
“success” and “failure”, depending on context).

> hyp.tbl <- cbind(n.hyp,n.tot-n.hyp)
> hyp.tbl

n.hyp
[1,] 5 55
[2,] 2 15
[3,] 1 7
[4,] 0 2
[5,] 35 152
[6,] 13 72
[7,] 15 36
[8,] 8 15

The cbind function (“c” for “column”) is used to bind variables together,
columnwise, to form a matrix. Note that it would be a horrible mistake to
use the total count for column 2 instead of the number of failures.

Then, you can specify the logistic regression model as

> glm(hyp.tbl~smoking+obesity+snoring,family=binomial("logit"))

Actually, "logit" is the default for binomial and the family argument
is the second argument to glm, so it suffices to write

> glm(hyp.tbl~smoking+obesity+snoring,binomial)

The other way to specify a logistic regression model is to give the
proportion of diseased in each cell:

> prop.hyp <- n.hyp/n.tot
> glm.hyp <- glm(prop.hyp~smoking+obesity+snoring,
+ binomial,weights=n.tot)

It is necessary to give weights because R cannot see how many
observations a proportion is based on.

As output, you get in either case (except for minor details)

Call: glm(formula = hyp.tbl ~ smoking + obesity + snoring, ...

Coefficients:
(Intercept) smokingYes obesityYes snoringYes

-2.37766 -0.06777 0.69531 0.87194

Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
Null Deviance: 14.13
Residual Deviance: 1.618 AIC: 34.54
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which is in a minimal style similar to that used for printing lm objects.
Also in the result of glm is some nonvisible information, which may be
extracted with particular functions. You can, for instance, save the result
of a fit of a generalized linear model in a variable and obtain a table of
regression coefficients and so forth using summary:

> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)
> summary(glm.hyp)

Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family ...

Deviance Residuals:
1 2 3 4 5 6

-0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602
7 8

-0.21262 0.56231

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.37766 0.38018 -6.254 4e-10 ***
smokingYes -0.06777 0.27812 -0.244 0.8075
obesityYes 0.69531 0.28509 2.439 0.0147 *
snoringYes 0.87194 0.39757 2.193 0.0283 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537

Number of Fisher Scoring iterations: 4

In the following, we go through the components of summary output for
generalized linear models:

Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family = ...

As usual, we start off with a repeat of the model specification. Obviously,
more interesting is when the output is not viewed in connection with the
function call that generated it.

Deviance Residuals:
1 2 3 4 5 6

-0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602
7 8

-0.21262 0.56231
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This is the contribution of each cell of the table to the deviance of the
model (the deviance corresponds to the sum of squares in linear normal
models), with a sign according to whether the observation is larger or
smaller than expected. They can be used to pinpoint cells that are par-
ticularly poorly fitted, but you have to be wary of the interpretation in
sparse tables.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.37766 0.38018 -6.254 4e-10 ***
smokingYes -0.06777 0.27812 -0.244 0.8075
obesityYes 0.69531 0.28509 2.439 0.0147 *
snoringYes 0.87194 0.39757 2.193 0.0283 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

This is the table of primary interest. Here, we get estimates of the re-
gression coefficients, standard errors of same, and tests for whether each
regression coefficient can be assumed to be zero. The layout is nearly
identical to the corresponding part of the lm output.

The note about the dispersion parameter is related to the fact that the bino-
mial variance depends entirely on the mean. There is no scale parameter
like the variance in the normal distribution.

Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537

“Residual deviance” corresponds to the residual sum of squares in ordi-
nary regression analyses which is used to estimate the standard deviation
about the regression line. In binomial models, however, the standard devi-
ation of the observations is known, and you can therefore use the deviance
in a test for model specification. The AIC (Akaike information criterion) is
a measure of goodness of fit that takes the number of fitted parameters
into account.

R is reluctant to associate a p-value with the deviance. This is just as well
because no exact p-value can be found, only an approximation that is valid
for large expected counts. In the present case, there are actually a couple
of places where the expected cell count is rather small.

The asymptotic distribution of the residual deviance is a χ2 distribution
with the stated degrees of freedom, so even though the approximation
may be poor, nothing in the data indicates that the model is wrong (the
5% significance limit is at 9.49 and the value found here is 1.62).
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The null deviance is the deviance of a model that contains only the in-
tercept (that is, describes a fixed probability, here for hypertension, in all
cells). What you would normally be interested in is the difference from the
residual deviance, here 14.13− 1.62 = 12.51, which can be used for a joint
test for whether any effects are present in the model. In the present case, a
p-value of approximately 0.6% is obtained.

Number of Fisher Scoring iterations: 4

This refers to the actual fitting procedure and is a purely technical item.
There is no statistical information in it, but you should keep an eye on
whether the number of iterations becomes too large because that might be
a sign that the model is too complex to fit based on the available data. Nor-
mally, glm halts the fitting procedure if the number of iterations exceeds
25, but it is possible to configure the limit.

The fitting procedure is iterative in that there is no explicit formula that
can be used to compute the estimates, only a set of equations that they
should satisfy. However, there is an approximate solution of the equations
if you supply an initial guess at the solution. This solution is then used as
a starting point for an improved solution, and the procedure is repeated
until the guesses are sufficiently stable.

A table of correlations between parameter estimates can be obtained via
the optional argument corr=T to summary (this also works for linear
models). It looks like this:

Correlation of Coefficients:
(Intercept) smokingYes obesityYes

smokingYes -0.1520
obesityYes -0.1361 -9.499e-05
snoringYes -0.8965 -6.707e-02 -0.07186

It is seen that the correlation between the estimates is fairly small, so that it
may be expected that removing a variable from the model does not change
the coefficients and p-values for other variables much. (The correlations
between the regression coefficients and intercept are not very informative;
they mostly relate to whether the variable in question has many or few
observations in the “Yes” category.)

The z test in the table of regression coefficients immediately shows that
the model can be simplified by removing smoking. The result then looks
as follows (abbreviated):

> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> summary(glm.hyp)

...



234 13. Logistic regression

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3921 0.3757 -6.366 1.94e-10 ***
obesityYes 0.6954 0.2851 2.440 0.0147 *
snoringYes 0.8655 0.3967 2.182 0.0291 *

13.2.1 The analysis of deviance table

Deviance tables correspond to ANOVA tables for multiple regression
analyses and are generated like these with the anova function:

> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)
> anova(glm.hyp, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: hyp.tbl

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 14.1259
smoking 1 0.0022 6 14.1237 0.9627
obesity 1 6.8274 5 7.2963 0.0090
snoring 1 5.6779 4 1.6184 0.0172

Notice that the Deviance column gives differences between models as
variables are added to the model in turn. The deviances are approximately
χ2-distributed with the stated degrees of freedom. It is necessary to add
the test="chisq" argument to get the approximate χ2 tests.

Since the snoring variable on the last line is significant, it may not be
removed from the model and we cannot use the table to justify model
reductions. If, however, the terms are rearranged so that smoking comes
last, we get a deviance-based test for removal of that variable:

> glm.hyp <- glm(hyp.tbl~snoring+obesity+smoking,binomial)
> anova(glm.hyp, test="Chisq")
...

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 14.1259
snoring 1 6.7887 6 7.3372 0.0092
obesity 1 5.6591 5 1.6781 0.0174
smoking 1 0.0597 4 1.6184 0.8069

From this you can read that smoking is removable, whereas obesity is
not, after removal of smoking.
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For good measure, you should also set up the analysis with the two re-
maining explanatory variables interchanged, so that you get a test of
whether snoring may be removed from a model that also contains
obesity:

> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> anova(glm.hyp, test="Chisq")
...

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 14.1259
obesity 1 6.8260 6 7.2999 0.0090
snoring 1 5.6218 5 1.6781 0.0177

An alternative method is to use drop1 to try removing one term at a time:

> drop1(glm.hyp, test="Chisq")
Single term deletions

Model:
hyp.tbl ~ obesity + snoring

Df Deviance AIC LRT Pr(Chi)
<none> 1.678 32.597
obesity 1 7.337 36.256 5.659 0.01737 *
snoring 1 7.300 36.219 5.622 0.01774 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here LRT is the likelihood ratio test, another name for the deviance
change.

The information in the deviance tables is fundamentally the same as that
given by the z tests in the table of regression coefficients. The results may
differ due to the use of different approximations, though. From theoretical
considerations, the deviance test is preferable, but in practice the differ-
ence is often small because of the large-sample approximation χ2 ≈ z2

for tests with a single degree of freedom. However, to test factors with
more than two categories, you have to use the deviance table because the
z tests only relate to some of the possible group comparisons. Also, the
small-sample situation requires special attention; see the next section.

13.2.2 Connection to test for trend

In Chapter 8, we considered tests for comparing relative frequencies using
prop.test and prop.trend.test, in particular the example of cae-
sarean section versus shoe size. This example can also be analyzed as a
logistic regression analysis on a “shoe score”, which — for want of a bet-
ter idea — may be chosen as the group number. This gives essentially the
same analysis in the sense that the same models are involved.
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> caesar.shoe
<4 4 4.5 5 5.5 6+

Yes 5 7 6 7 8 10
No 17 28 36 41 46 140
> shoe.score <- 1:6
> shoe.score
[1] 1 2 3 4 5 6

> summary(glm(t(caesar.shoe)~shoe.score,binomial))
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.87058 0.40506 -2.149 0.03161 *
shoe.score -0.25971 0.09361 -2.774 0.00553 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 9.3442 on 5 degrees of freedom
Residual deviance: 1.7845 on 4 degrees of freedom
AIC: 27.616
...

Notice that caesar.shoe had to be transposed with t(...), so that the
matrix was “stood on its end” in order to be used as the response variable
by glm.

You can also write the results in a deviance table

> anova(glm(t(caesar.shoe)~shoe.score,binomial))
...

Df Deviance Resid. Df Resid. Dev
NULL 5 9.3442
shoe.score 1 7.5597 4 1.7845

from the last line of which you see that there is no significant deviation
from linearity (1.78 on 4 degrees of freedom), whereas shoe.score has a
significant contribution.

For comparison, the previous analyses using standard tests are repeated:

> caesar.shoe.yes <- caesar.shoe["Yes",]
> caesar.shoe.no <- caesar.shoe["No",]
> caesar.shoe.total <- caesar.shoe.yes+caesar.shoe.no
> prop.trend.test(caesar.shoe.yes,caesar.shoe.total)

Chi-squared Test for Trend in Proportions
...
X-squared = 8.0237, df = 1, p-value = 0.004617

> prop.test(caesar.shoe.yes,caesar.shoe.total)
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6-sample test for equality of proportions without
continuity correction

...
X-squared = 9.2874, df = 5, p-value = 0.09814
...
Warning message:
In prop.test(caesar.shoe.yes, caesar.shoe.total) :
Chi-squared approximation may be incorrect

The 9.29 from prop.test corresponds to the 9.34 in residual deviance
from a NULL model, whereas the 8.02 in the trend test corresponds to
the 7.56 in the test of significance of shoe.score. Thus, the tests do not
give exactly the same result but generally almost the same. Theoretical
considerations indicate that the specialized trend test is probably slightly
better than the regression-based test. However, testing the linearity by
subtracting the two χ2 tests is definitely not as good as the real test for
linearity.

13.3 Likelihood profiling

The z tests in the summary output are based on the Wald approximation,
which calculates what the approximate standard error of the parameter
estimate would be if the true values of the parameters were equal to the es-
timates. In large data sets, this is fine because the result is nearly the same
for all parameter values that fit the data reasonably well. In smaller data
sets, however, the difference between the Wald tests and the likelihood
ratio test can be considerable.

This also affects the calculation of confidence intervals since these are
based on inverting the tests, giving a set of parameter values that are
not rejected by a statistical test. As an alternative to the Wald-based
±1.96 × s.e. technique, the MASS package allows you to compute inter-
vals that are based on inverting the likelihood ratio test. In practice, this
works like this

> confint(glm.hyp)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -3.2102369 -1.718143
obesityYes 0.1254382 1.246788
snoringYes 0.1410865 1.715860

The standard type of result can be obtained using confint.default.
The difference in this case is not very large, although visible in the lines
relating to snoring and the intercept:
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Figure 13.1. Profile plot for hypertension model.

> confint.default(glm.hyp)
2.5 % 97.5 %

(Intercept) -3.12852108 -1.655631
obesityYes 0.13670388 1.254134
snoringYes 0.08801498 1.642902

The way this works is via likelihood profiling. For a set of trial values of the
parameter, the likelihood is maximized over the other parameters in the
model. The result can be displayed in a profile plot as follows:

> library(MASS)
> plot(profile(glm.hyp))

Notice that we need to load the MASS package at this point. (The function
was used by confint earlier on, but without putting it on the search
path.)

The plots require a little explanation. The quantity on the y-axis, labelled
tau, is the signed square root of the likelihood ratio test.

τ(β) = sgn(β− β̂)
√
−2(`(β)− `(β̂))
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Here ` denotes the profile log-likelihood. The main idea is that when the
profile likelihood function is approximately quadratic, τ(β) is approxi-
mately linear. Conversely, likelihood functions not well approximated by
a quadratic show up as nonlinear profile plots.

One important thing to notice, though, is that although the profiling
method will capture nonquadratic behaviour of the likelihood function,
confidence intervals based on the likelihood ratio test will always be
limited in accuracy by the approximation of the distribution of the test.

13.4 Presentation as odds-ratio estimates

In parts of the epidemiological literature, it has become traditional to
present logistic regression analyses in terms of odds ratios. In the case
of a quantitative covariate, this means odds ratio per unit change in the
covariate. That is, the antilogarithm (exp) of the regression coefficients is
given instead of the coefficients themselves. Since standard errors make
little sense after the transformation, it is also customary to give confidence
intervals instead. This can be obtained quite easily as follows:

> exp(cbind(OR=coef(glm.hyp), confint(glm.hyp)))
Waiting for profiling to be done...

OR 2.5 % 97.5 %
(Intercept) 0.09143963 0.04034706 0.1793989
obesityYes 2.00454846 1.13364514 3.4791490
snoringYes 2.37609483 1.15152424 5.5614585

The (Intercept) is really the odds of hypertension (for the not snoring
non-obese) and not an odds ratio.

13.5 Logistic regression using raw data

In this section, we again use Anders Juul’s data (see p. 85). For easy ref-
erence, here is how to read data and convert the variables that describe
groupings into factors (this time slightly simplified):

> juul$menarche <- factor(juul$menarche, labels=c("No","Yes"))
> juul$tanner <- factor(juul$tanner)

In the following, we look at menarche as the response variable. This vari-
able indicates for each girl whether or not she has had her first period. It
is coded 1 for “no” and 2 for “yes”. It is convenient to look at a subset of
data consisting of 8–20-year-old girls. This can be extracted as follows:
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> juul.girl <- subset(juul,age>8 & age<20 &
+ complete.cases(menarche))
> attach(juul.girl)

For obvious reasons, no boys have a nonmissing menarche, so it is not
necessary to select on gender explicitly.

Then you can analyze menarche as a function of age like this:

> summary(glm(menarche~age,binomial))
Call:
glm(formula = menarche ~ age, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.32759 -0.18998 0.01253 0.12132 2.45922

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -20.0132 2.0284 -9.867 <2e-16 ***
age 1.5173 0.1544 9.829 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 719.39 on 518 degrees of freedom
Residual deviance: 200.66 on 517 degrees of freedom
AIC: 204.66

Number of Fisher Scoring iterations: 7

The response variable menarche is a factor with two levels, where the last
level is considered the event. It also works to use a variable that has the
values 0 and 1 (but not, for instance, 1 and 2!).

Notice that from this model you can estimate the median menarcheal age
as the age where logit p = 0. A little thought (solve −20.0132 + 1.5173×
age = 0) reveals that it is 20.0132/1.5173 = 13.19 years.

You should not pay too much attention to the deviance residuals in this
case since they automatically become large in every case where the fitted
probability “goes against” the observations (which is bound to happen in
some cases). The residual deviance is also difficult to interpret when there
is only one observation per cell.

A hint of a more complicated analysis is obtained by including the Tan-
ner stage of puberty in the model. You should be warned that the exact
interpretation of such an analysis is quite tricky and qualitatively different
from the analysis of menarche as a function of age. It can be used for pre-
diction purposes (although asking the girl whether she has had her first
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period would likely be much easier than determining her Tanner stage!),
but the interpretation of the terms is not clear-cut.

> summary(glm(menarche~age+tanner,binomial))
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -13.7758 2.7630 -4.986 6.17e-07 ***
age 0.8603 0.2311 3.723 0.000197 ***
tanner2 -0.5211 1.4846 -0.351 0.725609
tanner3 0.8264 1.2377 0.668 0.504313
tanner4 2.5645 1.2172 2.107 0.035132 *
tanner5 5.1897 1.4140 3.670 0.000242 ***
...

Notice that there is no joint test for the effect of tanner. There are a cou-
ple of significant z-values, so you would expect that the tanner variable
has some effect (which, of course, you would probably expect even in the
absence of data!). The formal test, however, must be obtained from the
deviances:

> drop1(glm(menarche~age+tanner,binomial),test="Chisq")
...

Df Deviance AIC LRT Pr(Chi)
<none> 106.599 118.599
age 1 124.500 134.500 17.901 2.327e-05 ***
tanner 4 161.881 165.881 55.282 2.835e-11 ***
...

Clearly, both terms are highly significant.

13.6 Prediction

The predict function works for generalized linear models, too. Let us
first consider the hypertension example, where data were given in tabular
form:

> predict(glm.hyp)
1 2 3 4 5 6

-2.3920763 -2.3920763 -1.6966575 -1.6966575 -1.5266180 -1.5266180
7 8

-0.8311991 -0.8311991

Recall that smoking was eliminated from the model, which is why the
expected values come in identical pairs.

These numbers are on the logit scale, which reveals the additive structure.
Notice that 2.392− 1.697 = 1.527− 0.831 = 0.695 (except for roundoff er-
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ror), which is exactly the regression coefficient to obesity. Likewise, the
regression coefficient to snoring is obtained by looking at the differences
2.392− 1.527 = 1.697− 0.831 = 0.866.

To get predicted values on the response scale (i.e., probabilities), use the
type="response" argument to predict:

> predict(glm.hyp, type="response")
1 2 3 4 5 6

0.08377892 0.08377892 0.15490233 0.15490233 0.17848906 0.17848906
7 8

0.30339158 0.30339158

These may also be obtained using fitted, although you then cannot use
the techniques for predicting on new data, etc.

In the analysis of menarche, the primary interest is probably in seeing a
plot of the expected probabilities versus age (Figure 13.2). A crude plot
could be obtained using something like

plot(age, fitted(glm(menarche~age,binomial)))

(it will look better if a different plotting symbol in a smaller size, using the
pch and cex arguments, is used) but here is a more ambitious plan:

> glm.menarche <- glm(menarche~age, binomial)
> Age <- seq(8,20,.1)
> newages <- data.frame(age=Age)
> predicted.probability <- predict(glm.menarche,
+ newages,type="resp")
> plot(predicted.probability ~ Age, type="l")

This is Figure 13.2. Recall that seq generates equispaced vectors, here ages
from 8 to 20 in steps of 0.1, so that connecting the points with lines will
give a nearly smooth curve.

13.7 Model checking

For tabular data it is obvious to try to compare observed and fitted
proportions. In the hypertension example you get

> fitted(glm.hyp)
1 2 3 4 5 6

0.08377892 0.08377892 0.15490233 0.15490233 0.17848906 0.17848906
7 8

0.30339158 0.30339158
> prop.hyp
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Figure 13.2. Fitted probability of menarche having occurred.

[1] 0.08333333 0.11764706 0.12500000 0.00000000 0.18716578
[6] 0.15294118 0.29411765 0.34782609

The problem with this is that you get no feeling for how well the rela-
tive frequencies are determined. It can be better to look at observed and
expected counts instead. The former can be computed as

> fitted(glm.hyp)*n.tot
1 2 3 4 5 6

5.0267351 1.4242416 1.2392186 0.3098047 33.3774535 15.1715698
7 8

15.4729705 6.9780063

and to get a nice print for the comparison, you can use

> data.frame(fit=fitted(glm.hyp)*n.tot,n.hyp,n.tot)
fit n.hyp n.tot

1 5.0267351 5 60
2 1.4242416 2 17
3 1.2392186 1 8
4 0.3098047 0 2
5 33.3774535 35 187
6 15.1715698 13 85
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Figure 13.3. Fitted probability for menarche having occurred and observed
proportion in age groups.

7 15.4729705 15 51
8 6.9780063 8 23

Notice that the discrepancy in cell 4 between 15% expected and 0% ob-
served really is that there are 0 hypertensives out of 2 in a cell where the
model yields an expectation of 0.3 hypertensives!

For complex models with continuous background variables, it becomes
more difficult to perform an adequate model check. It is especially a
hindrance that nothing really corresponds to a residual plot when the
observations have only two different values.

Consider the example of the probability of menarche as a function of age.
The problem here is whether the relation can really be assumed linear on
the logit scale. For this case, you might try subdividing the x-axis in a
number of intervals and see how the counts in each interval fit with the
expected probabilities. This is presented graphically in Figure 13.3. Notice
that the code adds points to Figure 13.2, which you are assumed not to
have deleted at this point.

> age.group <- cut(age,c(8,10,12,13,14,15,16,18,20))
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> tb <- table(age.group,menarche)
> tb

menarche
age.group No Yes
(8,10] 100 0
(10,12] 97 4
(12,13] 32 21
(13,14] 22 20
(14,15] 5 36
(15,16] 0 31
(16,18] 0 105
(18,20] 0 46

> rel.freq <- prop.table(tb,1)[,2]
> rel.freq

(8,10] (10,12] (12,13] (13,14] (14,15] (15,16]
0.00000000 0.03960396 0.39622642 0.47619048 0.87804878 1.00000000

(16,18] (18,20]
1.00000000 1.00000000
> points(rel.freq ~ c(9,11,12.5,13.5,14.5,15.5,17,19),pch=5)

The technique used above probably requires some explanation. First, cut
is used to define the factor age.group, which describes a grouping
into age intervals. Then a crosstable tb is formed from menarche and
age.group. Using prop.table, the numbers are expressed relative to
the row total, and column 2 of the resulting table is extracted. This con-
tains the relative proportion in each age group of girls for whom menarche
has occurred. Finally, a plot of expected probabilities is made, overlaid by
the observed proportions.

The plot looks reasonable on the whole, although the observed proportion
among 12–13-year-olds appears a bit high and the proportion among 13–
14-year-olds is a bit too low.

But how do you evaluate whether the deviation is larger than what can
be expected from the statistical variation? One thing to try is to extend the
model with a factor that describes a division into intervals. It is not prac-
tical to use the full division of age.group because there are cells where
either none or all of the girls have had their menarche.

We therefore try a division into four groups, with cutpoints at 12, 13, and
14 years, and add this factor to the model containing a linear age effect.

> age.gr <- cut(age,c(8,12,13,14,20))
> summary(glm(menarche~age+age.gr,binomial))
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -21.5683 5.0645 -4.259 2.06e-05 ***
age 1.6250 0.4416 3.680 0.000233 ***
age.gr(12,13] 0.7296 0.7856 0.929 0.353024
age.gr(13,14] -0.5219 1.1184 -0.467 0.640765
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Figure 13.4. Logit-cubical fit of menarche data.

age.gr(14,20] 0.2751 1.6065 0.171 0.864053
...

> anova(glm(menarche~age+age.gr,binomial))
...

Df Deviance Resid. Df Resid. Dev
NULL 518 719.39
age 1 518.73 517 200.66
age.gr 3 8.06 514 192.61
> 1-pchisq(8.058,3)
[1] 0.04482811

That is, the addition of the grouping actually does give a significantly
better deviance. The effect is not highly significant, but since the devia-
tion concerns the ages where “much happens”, you should probably be
cautious about postulating a logit-linear age effect.

Another possibility is to try a polynomial regression model. Here you
need at least a third-degree polynomial to describe the apparent stagna-
tion of the curve around 13 years of age. We do not look at this in great
detail, but just show part of the output and in Figure 13.4 a graphical
presentation of the model.
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> anova(glm(menarche~age+I(age^2)+I(age^3)+age.gr,binomial))
...

Df Deviance Resid. Df Resid. Dev
NULL 518 719.39
age 1 518.73 517 200.66
I(age^2) 1 0.05 516 200.61
I(age^3) 1 8.82 515 191.80
age.gr 3 3.34 512 188.46
Warning messages:
1: In glm.fit(x = X, y = Y, weights = weights, .... :
fitted probabilities numerically 0 or 1 occurred

2: In method(x = x[, varseq <= i, drop = FALSE], .... :
fitted probabilities numerically 0 or 1 occurred

> glm.menarche <- glm(menarche~age+I(age^2)+I(age^3), binomial)
Warning message:
In glm.fit(x = X, y = Y, weights = weights, start = start, .... :
fitted probabilities numerically 0 or 1 occurred

> predicted.probability <-
+ predict(glm.menarche, newages, type="resp")
> plot(predicted.probability ~ Age, type="l")
> points(rel.freq~c(9,11,12.5,13.5,14.5,15.5,17,19), pch=5)

The warnings about fitted probabilities of 0 or 1 occur because the cubic
term makes the logit tend much faster to ±∞ than the linear model did.
There are two occurrences for the anova call because two of the models
include the cubic term.

The thing to note in the deviance table is that the cubic term gives a sub-
stantial improvement of the deviance, but once that is included, the age
grouping gives no additional improvement. The plot should speak for
itself.

13.8 Exercises

13.1 In the malaria data set, analyze the risk of malaria with age and
log-transformed antibody level as explanatory variables.

13.2 Fit a logistic regression model to the graft.vs.host data set, pre-
dicting the gvhd response. Use different transformations of the index
variable. Reduce the model using backwards elimination.

13.3 In the analyses of the malaria and graft.vs.host data, try us-
ing the confint function to find improved confidence intervals for the
regression coefficients.

13.4 Following up on Exercise 8.2 about “Rocky Mountain spotted
fever”, splitting the data by age groups gives the table below. Does this
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confirm the earlier analysis?

Western Type Eastern Type
Age Group Total Fatal Total Fatal
Under 15 108 13 310 40
15–39 264 40 189 21
40 or above 375 157 162 61

747 210 661 122

13.5 A probit regression is just like a logistic regression but uses a differ-
ent link function. Try the analysis of the menarche variable in the juul
data set with this link. Does the fit improve?
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