
1
Basics

The purpose of this chapter is to get you started using R. It is assumed that
you have a working installation of the software and of the ISwR package
that contains the data sets for this book. Instructions for obtaining and
installing the software are given in Appendix A.

The text that follows describes R version 2.6.2. As of this writing, that is
the latest version of R. As far as possible, I present the issues in a way
that is independent of the operating system in use and assume that the
reader has the elementary operational knowledge to select from menus,
move windows around, etc. I do, however, make exceptions where I am
aware of specific difficulties with a particular platform or specific features
of it.

1.1 First steps

This section gives an introduction to the R computing environment and
walks you through its most basic features.

Starting R is straightforward, but the method will depend on your com-
puting platform. You will be able to launch it from a system menu, by
double-clicking an icon, or by entering the command “R” at the system
command line. This will either produce a console window or cause R
to start up as an interactive program in the current terminal window. In
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Figure 1.1. Screen image of R for Windows.

either case, R works fundamentally by the question-and-answer model:
You enter a line with a command and press Enter (←↩). Then the program
does something, prints the result if relevant, and asks for more input.
When R is ready for input, it prints out its prompt, a “>”. It is possi-
ble to use R as a text-only application, and also in batch mode, but for
the purposes of this chapter, I assume that you are sitting at a graphical
workstation.

All the examples in this book should run if you type them in exactly as
printed, provided that you have the ISwR package not only installed but
also loaded into your current search path. This is done by entering

> library(ISwR)

at the command prompt. You do not need to understand what the
command does at this point. It is explained in Section 2.1.5.

For a first impression of what R can do, try typing the following:

> plot(rnorm(1000))

This command draws 1000 numbers at random from the normal distri-
bution (rnorm = random normal) and plots them in a pop-up graphics
window. The result on a Windows machine can be seen in Figure 1.1.

Of course, you are not expected at this point to guess that you would ob-
tain this result in that particular way. The example is chosen because it
shows several components of the user interface in action. Before the style
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of commands will fall naturally, it is necessary to introduce some concepts
and conventions through simpler examples.

Under Windows, the graphics window will have taken the keyboard focus
at this point. Click on the console to make it accept further commands.

1.1.1 An overgrown calculator

One of the simplest possible tasks in R is to enter an arithmetic expression
and receive a result. (The second line is the answer from the machine.)

> 2 + 2
[1] 4

So the machine knows that 2 plus 2 makes 4. Of course, it also knows how
to do other standard calculations. For instance, here is how to compute
e−2 :

> exp(-2)
[1] 0.1353353

The [1] in front of the result is part of R’s way of printing numbers and
vectors. It is not useful here, but it becomes so when the result is a longer
vector. The number in brackets is the index of the first number on that
line. Consider the case of generating 15 random numbers from a normal
distribution:

> rnorm(15)
[1] -0.18326112 -0.59753287 -0.67017905 0.16075723 1.28199575
[6] 0.07976977 0.13683303 0.77155246 0.85986694 -1.01506772
[11] -0.49448567 0.52433026 1.07732656 1.09748097 -1.09318582

Here, for example, the [6] indicates that 0.07976977 is the sixth element in
the vector. (For typographical reasons, the examples in this book are made
with a shortened line width. If you try it on your own machine, you will
see the values printed with six numbers per line rather than five. The num-
bers themselves will also be different since random number generation is
involved.)

1.1.2 Assignments

Even on a calculator, you will quickly need some way to store intermedi-
ate results, so that you do not have to key them in over and over again.
R, like other computer languages, has symbolic variables, that is names that
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can be used to represent values. To assign the value 2 to the variable x,
you can enter

> x <- 2

The two characters <- should be read as a single symbol: an arrow point-
ing to the variable to which the value is assigned. This is known as the
assignment operator. Spacing around operators is generally disregarded
by R, but notice that adding a space in the middle of a <- changes the
meaning to “less than” followed by “minus” (conversely, omitting the
space when comparing a variable to a negative number has unexpected
consequences!).

There is no immediately visible result, but from now on, x has the value 2
and can be used in subsequent arithmetic expressions.

> x
[1] 2
> x + x
[1] 4

Names of variables can be chosen quite freely in R. They can be built from
letters, digits, and the period (dot) symbol. There is, however, the limita-
tion that the name must not start with a digit or a period followed by a
digit. Names that start with a period are special and should be avoided.
A typical variable name could be height.1yr, which might be used to
describe the height of a child at the age of 1 year. Names are case-sensitive:
WT and wt do not refer to the same variable.

Some names are already used by the system. This can cause some con-
fusion if you use them for other purposes. The worst cases are the
single-letter names c, q, t, C, D, F, I, and T, but there are also diff, df,
and pt, for example. Most of these are functions and do not usually cause
trouble when used as variable names. However, F and T are the standard
abbreviations for FALSE and TRUE and no longer work as such if you
redefine them.

1.1.3 Vectorized arithmetic

You cannot do much statistics on single numbers! Rather, you will look at
data from a group of patients, for example. One strength of R is that it can
handle entire data vectors as single objects. A data vector is simply an array
of numbers, and a vector variable can be constructed like this:

> weight <- c(60, 72, 57, 90, 95, 72)
> weight
[1] 60 72 57 90 95 72
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The construct c(...) is used to define vectors. The numbers are made
up but might represent the weights (in kg) of a group of normal men.

This is neither the only way to enter data vectors into R nor is it gen-
erally the preferred method, but short vectors are used for many other
purposes, and the c(...) construct is used extensively. In Section 2.4,
we discuss alternative techniques for reading data. For now, we stick to a
single method.

You can do calculations with vectors just like ordinary numbers, as long
as they are of the same length. Suppose that we also have the heights that
correspond to the weights above. The body mass index (BMI) is defined
for each person as the weight in kilograms divided by the square of the
height in meters. This could be calculated as follows:

> height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)
> bmi <- weight/height^2
> bmi
[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630

Notice that the operation is carried out elementwise (that is, the first value
of bmi is 60/1.752 and so forth) and that the ^ operator is used for raising
a value to a power. (On some keyboards, ^ is a “dead key” and you will
have to press the spacebar afterwards to make it show.)

It is in fact possible to perform arithmetic operations on vectors of differ-
ent length. We already used that when we calculated the height^2 part
above since 2 has length 1. In such cases, the shorter vector is recycled.
This is mostly used with vectors of length 1 (scalars) but sometimes also
in other cases where a repeating pattern is desired. A warning is issued if
the longer vector is not a multiple of the shorter in length.

These conventions for vectorized calculations make it very easy to specify
typical statistical calculations. Consider, for instance, the calculation of the
mean and standard deviation of the weight variable.

First, calculate the mean, x̄ = ∑ xi/n:

> sum(weight)
[1] 446
> sum(weight)/length(weight)
[1] 74.33333

Then save the mean in a variable xbar and proceed with the calculation
of SD =

√
(∑(xi − x̄)2)/(n− 1). We do this in steps to see the individual

components. The deviations from the mean are

> xbar <- sum(weight)/length(weight)
> weight - xbar
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[1] -14.333333 -2.333333 -17.333333 15.666667 20.666667
[6] -2.333333

Notice how xbar, which has length 1, is recycled and subtracted from
each element of weight. The squared deviations will be

> (weight - xbar)^2
[1] 205.444444 5.444444 300.444444 245.444444 427.111111
[6] 5.444444

Since this command is quite similar to the one before it, it is convenient
to enter it by editing the previous command. On most systems running R,
the previous command can be recalled with the up-arrow key.

The sum of squared deviations is similarly obtained with

> sum((weight - xbar)^2)
[1] 1189.333

and all in all the standard deviation becomes

> sqrt(sum((weight - xbar)^2)/(length(weight) - 1))
[1] 15.42293

Of course, since R is a statistical program, such calculations are already
built into the program, and you get the same results just by entering

> mean(weight)
[1] 74.33333
> sd(weight)
[1] 15.42293

1.1.4 Standard procedures

As a slightly more complicated example of what R can do, consider the
following: The rule of thumb is that the BMI for a normal-weight indi-
vidual should be between 20 and 25, and we want to know if our data
deviate systematically from that. You might use a one-sample t test to as-
sess whether the six persons’ BMI can be assumed to have mean 22.5 given
that they come from a normal distribution. To this end, you can use the
function t.test. (You might not know the theory of the t test yet. The
example is included here mainly to give some indication of what “real”
statistical output looks like. A thorough description of t.test is given in
Chapter 5.)



1.1 First steps 7

> t.test(bmi, mu=22.5)
One Sample t-test

data: bmi
t = 0.3449, df = 5, p-value = 0.7442
alternative hypothesis: true mean is not equal to 22.5
95 percent confidence interval:
18.41734 27.84791
sample estimates:
mean of x
23.13262

The argument mu=22.5 attaches a value to the formal argument mu,
which represents the Greek letter µ conventionally used for the theoret-
ical mean. If this is not given, t.test would use the default mu=0, which
is not of interest here.

For a test like this, we get a more extensive printout than in the earlier
examples. The details of the output are explained in Chapter 5, but you
might focus on the p-value which is used for testing the hypothesis that
the mean is 22.5. The p-value is not small, indicating that it is not at all un-
likely to get data like those observed if the mean were in fact 22.5. (Loosely
speaking; actually p is the probability of obtaining a t value bigger than
0.3449 or less than−0.3449.) However, you might also look at the 95% con-
fidence interval for the true mean. This interval is quite wide, indicating
that we really have very little information about the true mean.

1.1.5 Graphics

One of the most important aspects of the presentation and analysis of data
is the generation of proper graphics. R — like S before it — has a model
for constructing plots that allows simple production of standard plots as
well as fine control over the graphical components.

If you want to investigate the relation between weight and height, the
first idea is to plot one versus the other. This is done by

> plot(height,weight)

leading to Figure 1.2.

You will often want to modify the drawing in various ways. To that end,
there are a wealth of plotting parameters that you can set. As an example,
let us try changing the plotting symbol using the keyword pch (“plotting
character”) like this:

> plot(height, weight, pch=2)
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Figure 1.2. A simple x–y plot.

This gives the plot in Figure 1.3, with the points now marked with little
triangles.

The idea behind the BMI calculation is that this value should be inde-
pendent of the person’s height, thus giving you a single number as an
indication of whether someone is overweight and by how much. Since
a normal BMI should be about 22.5, you would expect that weight ≈
22.5 × height2. Accordingly, you can superimpose a curve of expected
weights at BMI 22.5 on the figure:

> hh <- c(1.65, 1.70, 1.75, 1.80, 1.85, 1.90)
> lines(hh, 22.5 * hh^2)

yielding Figure 1.4. The function lines will add (x, y) values joined by
straight lines to an existing plot.

The reason for defining a new variable (hh) with heights rather than using
the original height vector is twofold. First, the relation between height
and weight is a quadratic one and hence nonlinear, although it can be diffi-
cult to see on the plot. Since we are approximating a nonlinear curve with
a piecewise linear one, it will be better to use points that are spread evenly
along the x-axis than to rely on the distribution of the original data. Sec-
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ond, since the values of height are not sorted, the line segments would
not connect neighbouring points but would run back and forth between
distant points.

1.2 R language essentials

This section outlines the basic aspects of the R language. It is necessary
to do this in a slightly superficial manner, with some of the finer points
glossed over. The emphasis is on items that are useful to know in interac-
tive usage as opposed to actual programming, although a brief section on
programming is included.

1.2.1 Expressions and objects

The basic interaction mode in R is one of expression evaluation. The user
enters an expression; the system evaluates it and prints the result. Some
expressions are evaluated not for their result but for side effects such as
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Figure 1.3. Plot with pch = 2.
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Figure 1.4. Superimposed reference curve, using lines(...).

putting up a graphics window or writing to a file. All R expressions return
a value (possibly NULL), but sometimes it is “invisible” and not printed.

Expressions typically involve variable references, operators such as +, and
function calls, as well as some other items that have not been introduced
yet.

Expressions work on objects. This is an abstract term for anything that can
be assigned to a variable. R contains several different types of objects. So
far, we have almost exclusively seen numeric vectors, but several other
types are introduced in this chapter.

Although objects can be discussed abstractly, it would make a rather bor-
ing read without some indication of how to generate them and what to do
with them. Conversely, much of the expression syntax makes little sense
without knowledge of the objects on which it is intended to work. There-
fore, the subsequent sections alternate between introducing new objects
and introducing new language elements.
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1.2.2 Functions and arguments

At this point, you have obtained an impression of the way R works, and
we have already used some of the special terminology when talking about
the plot function, etc. That is exactly the point: Many things in R are done
using function calls, commands that look like an application of a math-
ematical function of one or several variables; for example, log(x) or
plot(height, weight).

The format is that a function name is followed by a set of parentheses con-
taining one or more arguments. For instance, in plot(height,weight)
the function name is plot and the arguments are height and weight.
These are the actual arguments, which apply only to the current call. A func-
tion also has formal arguments, which get connected to actual arguments in
the call.

When you write plot(height, weight), R assumes that the first argu-
ment corresponds to the x-variable and the second one to the y-variable.
This is known as positional matching. This becomes unwieldy if a func-
tion has a large number of arguments since you have to supply every
one of them and remember their position in the sequence. Fortunately,
R has methods to avoid this: Most arguments have sensible defaults and
can be omitted in the standard cases, and there are nonpositional ways of
specifying them when you need to depart from the default settings.

The plot function is in fact an example of a function that has a large
selection of arguments in order to be able to modify symbols, line
widths, titles, axis type, and so forth. We used the alternative form of
specifying arguments when setting the plot symbol to triangles with
plot(height, weight, pch=2).

The pch=2 form is known as a named actual argument, whose name can
be matched against the formal arguments of the function and thereby
allow keyword matching of arguments. The keyword pch was used to
say that the argument is a specification of the plotting character. This
type of function argument can be specified in arbitrary order. Thus, you
can write plot(y=weight,x=height) and get the same plot as with
plot(x=height,y=weight).

The two kinds of argument specification — positional and named — can
be mixed in the same call.

Even if there are no arguments to a function call, you have to write, for
example, ls() for displaying the contents of the workspace. A common
error is to leave off the parentheses, which instead results in the display of
a piece of R code since ls entered by itself indicates that you want to see
the definition of the function rather than execute it.



12 1. Basics

The formal arguments of a function are part of the function definition. The
set of formal arguments to a function, for instance plot.default (which
is the function that gets called when you pass plot an x argument for
which no special plot method exists), may be seen with

> args(plot.default)
function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)

Notice that most of the arguments have defaults, meaning that if you do
not specify (say) the type argument, the function will behave as if you
had passed type="p". The NULL defaults for many of the arguments re-
ally serve as indicators that the argument is unspecified, allowing special
behaviour to be defined inside the function. For instance, if they are not
specified, the xlab and ylab arguments are constructed from the actual
arguments passed as x and y. (There are some very fine points associated
with this, but we do not go further into the topic.)

The triple-dot (...) argument indicates that this function will accept
additional arguments of unspecified name and number. These are of-
ten meant to be passed on to other functions, although some functions
treat it specially. For instance, in data.frame and c, the names of the
...-arguments become the names of the elements of the result.

1.2.3 Vectors

We have already seen numeric vectors. There are two further types,
character vectors and logical vectors.

A character vector is a vector of text strings, whose elements are specified
and printed in quotes:

> c("Huey","Dewey","Louie")
[1] "Huey" "Dewey" "Louie"

It does not matter whether you use single- or double-quote symbols, as
long as the left quote is the same as the right quote:

> c(’Huey’,’Dewey’,’Louie’)
[1] "Huey" "Dewey" "Louie"

However, you should avoid the acute accent key (´), which is present on
some keyboards. Double quotes are used throughout this book to prevent
mistakes. Logical vectors can take the value TRUE or FALSE (or NA; see
below). In input, you may use the convenient abbreviations T and F (if you
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are careful not to redefine them). Logical vectors are constructed using the
c function just like the other vector types:

> c(T,T,F,T)
[1] TRUE TRUE FALSE TRUE

Actually, you will not often have to specify logical vectors in the manner
above. It is much more common to use single logical values to turn an
option on or off in a function call. Vectors of more than one value most
often result from relational expressions:

> bmi > 25
[1] FALSE FALSE FALSE FALSE TRUE FALSE

We return to relational expressions and logical operations in the context
of conditional selection in Section 1.2.12.

1.2.4 Quoting and escape sequences

Quoted character strings require some special considerations: How, for
instance, do you put a quote symbol inside a string? And what about spe-
cial characters such as newlines? This is done using escape sequences. We
shall look at those in a moment, but first it will be useful to observe the
following.

There is a distinction between a text string and the way it is printed. When,
for instance, you give the string "Huey", it is a string of four characters,
not six. The quotes are not actually part of the string, they are just there
so that the system can tell the difference between a string and a variable
name.

If you print a character vector, it usually comes out with quotes added to
each element. There is a way to avoid this, namely to use the cat function.
For instance,

> cat(c("Huey","Dewey","Louie"))
Huey Dewey Louie>

This prints the strings without quotes, just separated by a space character.
There is no newline following the string, so the prompt (>) for the next
line of input follows directly at the end of the line. (Notice that when the
character vector is printed by cat there is no way of telling the difference
from the single string "Huey Dewey Louie".)

To get the system prompt onto the next line, you must include a newline
character
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> cat("Huey","Dewey","Louie", "\n")
Huey Dewey Louie
>

Here, \n is an example of an escape sequence. It actually represents a sin-
gle character, the linefeed (LF), but is represented as two. The backslash
(\) is known as the escape character. In a similar vein, you can insert quote
characters with \", as in

> cat("What is \"R\"?\n")
What is "R"?

There are also ways to insert other control characters and special glyphs,
but it would lead us too far astray to discuss it in full detail. One impor-
tant thing, though: What about the escape character itself? This, too, must
be escaped, so to put a backslash in a string, you must double it. This
is important to know when specifying file paths on Windows, see also
Section 2.4.1.

1.2.5 Missing values

In practical data analysis, a data point is frequently unavailable (the pa-
tient did not show up, an experiment failed, etc.). Statistical software
needs ways to deal with this. R allows vectors to contain a special NA
value. This value is carried through in computations so that operations on
NA yield NA as the result. There are some special issues associated with the
handling of missing values; we deal with them as we encounter them (see
“missing values” in the index).

1.2.6 Functions that create vectors

Here we introduce three functions, c, seq, and rep, that are used to create
vectors in various situations.

The first of these, c, has already been introduced. It is short for “con-
catenate”, joining items end to end, which is exactly what the function
does:

> c(42,57,12,39,1,3,4)
[1] 42 57 12 39 1 3 4

You can also concatenate vectors of more than one element as in

> x <- c(1, 2, 3)
> y <- c(10, 20)
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> c(x, y, 5)
[1] 1 2 3 10 20 5

However, you do not need to use c to create vectors of length 1. People
sometimes type, for example, c(1), but it is the same as plain 1.

It is also possible to assign names to the elements. This modifies the way
the vector is printed and is often used for display purposes.

> x <- c(red="Huey", blue="Dewey", green="Louie")
> x

red blue green
"Huey" "Dewey" "Louie"

(In this case, it does of course make sense to use c even for single-element
vectors.)

The names can be extracted or set using names:

> names(x)
[1] "red" "blue" "green"

All elements of a vector have the same type. If you concatenate vectors of
different types, they will be converted to the least “restrictive” type:

> c(FALSE, 3)
[1] 0 3
> c(pi, "abc")
[1] "3.14159265358979" "abc"
> c(FALSE, "abc")
[1] "FALSE" "abc"

That is, logical values may be converted to 0/1 or "FALSE"/"TRUE" and
numbers converted to their printed representations.

The second function, seq (“sequence”), is used for equidistant series of
numbers. Writing

> seq(4,9)
[1] 4 5 6 7 8 9

yields, as shown, the integers from 4 to 9. If you want a sequence in jumps
of 2, write

> seq(4,10,2)
[1] 4 6 8 10

This kind of vector is frequently needed, particularly for graphics. For ex-
ample, we previously used c(1.65,1.70,1.75,1.80,1.85,1.90) to
define the x-coordinates for a curve, something that could also have been
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written seq(1.65,1.90,0.05) (the advantage of using seqmight have
been more obvious if the heights had been in steps of 1 cm rather than
5 cm!).

The case with step size equal to 1 can also be written using a special
syntax:

> 4:9
[1] 4 5 6 7 8 9

The above is exactly the same as seq(4,9), only easier to read.

The third function, rep (“replicate”), is used to generate repeated values.
It is used in two variants, depending on whether the second argument is
a vector or a single number:

> oops <- c(7,9,13)
> rep(oops,3)
[1] 7 9 13 7 9 13 7 9 13
> rep(oops,1:3)
[1] 7 9 9 13 13 13

The first of the function calls above repeats the entire vector oops three
times. The second call has the number 3 replaced by a vector with the
three values (1, 2, 3); these values correspond to the elements of the oops
vector, indicating that 7 should be repeated once, 9 twice, and 13 three
times. The rep function is often used for things such as group codes: If it
is known that the first 10 observations are men and the last 15 are women,
you can use

> rep(1:2,c(10,15))
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

to form a vector that for each observation indicates whether it is from a
man or a woman.

The special case where there are equally many replications of each value
can be obtained using the each argument. E.g., rep(1:2,each=10) is
the same as rep(1:2,c(10,10)).

1.2.7 Matrices and arrays

A matrix in mathematics is just a two-dimensional array of numbers. Ma-
trices are used for many purposes in theoretical and practical statistics,
but it is not assumed that the reader is familiar with matrix algebra,
so many special operations on matrices, including matrix multiplication,
are skipped. (The document “An Introduction to R”, which comes with
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the installation, outlines these items quite well.) However, matrices and
also higher-dimensional arrays do get used for simpler purposes as well,
mainly to hold tables, so an elementary description is in order.

In R, the matrix notion is extended to elements of any type, so you could
have, for instance, a matrix of character strings. Matrices and arrays are
represented as vectors with dimensions:

> x <- 1:12
> dim(x) <- c(3,4)
> x

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The dim assignment function sets or changes the dimension attribute of x,
causing R to treat the vector of 12 numbers as a 3× 4 matrix. Notice that
the storage is column-major; that is, the elements of the first column are
followed by those of the second, etc.

A convenient way to create matrices is to use the matrix function:

> matrix(1:12,nrow=3,byrow=T)
[,1] [,2] [,3] [,4]

[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Notice how the byrow=T switch causes the matrix to be filled in a rowwise
fashion rather than columnwise.

Useful functions that operate on matrices include rownames, colnames,
and the transposition function t (notice the lowercase t as opposed to
uppercase T for TRUE), which turns rows into columns and vice versa:

> x <- matrix(1:12,nrow=3,byrow=T)
> rownames(x) <- LETTERS[1:3]
> x
[,1] [,2] [,3] [,4]

A 1 2 3 4
B 5 6 7 8
C 9 10 11 12
> t(x)

A B C
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
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The character vector LETTERS is a built-in variable that contains the cap-
ital letters A–Z. Similar useful vectors are letters, month.name, and
month.abb with lowercase letters, month names, and abbreviated month
names.

You can “glue” vectors together, columnwise or rowwise, using the cbind
and rbind functions.

> cbind(A=1:4,B=5:8,C=9:12)
A B C

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> rbind(A=1:4,B=5:8,C=9:12)
[,1] [,2] [,3] [,4]

A 1 2 3 4
B 5 6 7 8
C 9 10 11 12

We return to table operations in Section 4.5, which discusses tabulation of
variables in a data set.

1.2.8 Factors

It is common in statistical data to have categorical variables, indicating
some subdivision of data, such as social class, primary diagnosis, tu-
mor stage, Tanner stage of puberty, etc. Typically, these are input using
a numeric code.

Such variables should be specified as factors in R. This is a data structure
that (among other things) makes it possible to assign meaningful names
to the categories.

There are analyses where it is essential for R to be able to distinguish
between categorical codes and variables whose values have a direct
numerical meaning (see Chapter 7).

The terminology is that a factor has a set of levels — say four levels for con-
creteness. Internally, a four-level factor consists of two items: (a) a vector of
integers between 1 and 4 and (b) a character vector of length 4 containing
strings describing what the four levels are. Let us look at an example:

> pain <- c(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3)
> levels(fpain) <- c("none","mild","medium","severe")
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The first command creates a numeric vector pain, encoding the pain lev-
els of five patients. We wish to treat this as a categorical variable, so we
create a factor fpain from it using the function factor. This is called
with one argument in addition to pain, namely levels=0:3, which in-
dicates that the input coding uses the values 0–3. The latter can in principle
be left out since R by default uses the values in pain, suitably sorted, but
it is a good habit to retain it; see below. The effect of the final line is that
the level names are changed to the four specified character strings.

The result should be apparent from the following:

> fpain
[1] none severe medium medium mild
Levels: none mild medium severe
> as.numeric(fpain)
[1] 1 4 3 3 2
> levels(fpain)
[1] "none" "mild" "medium" "severe"

The function as.numeric extracts the numerical coding as numbers
1–4 and levels extracts the names of the levels. Notice that the origi-
nal input coding in terms of numbers 0–3 has disappeared; the internal
representation of a factor always uses numbers starting at 1.

R also allows you to create a special kind of factor in which the lev-
els are ordered. This is done using the ordered function, which works
similarly to factor. These are potentially useful in that they distinguish
nominal and ordinal variables from each other (and arguably text.pain
above ought to have been an ordered factor). Unfortunately, R defaults
to treating the levels as if they were equidistant in the modelling code (by
generating polynomial contrasts), so it may be better to ignore ordered
factors at this stage.

1.2.9 Lists

It is sometimes useful to combine a collection of objects into a larger
composite object. This can be done using lists.

You can construct a list from its components with the function list.

As an example, consider a set of data from Altman (1991, p. 183) concern-
ing pre- and postmenstrual energy intake in a group of women. We can
place these data in two vectors as follows:

> intake.pre <- c(5260,5470,5640,6180,6390,
+ 6515,6805,7515,7515,8230,8770)
> intake.post <- c(3910,4220,3885,5160,5645,
+ 4680,5265,5975,6790,6900,7335)
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Notice how input lines can be broken and continue on the next line. If
you press the Enter key while an expression is syntactically incomplete, R
will assume that the expression continues on the next line and will change
its normal > prompt to the continuation prompt +. This often happens in-
advertently due to a forgotten parenthesis or a similar problem; in such
cases, either complete the expression on the next line or press ESC (Win-
dows and Macintosh) or Ctrl-C (Unix). The “Stop” button can also be used
under Windows.

To combine these individual vectors into a list, you can say

> mylist <- list(before=intake.pre,after=intake.post)
> mylist
$before
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

$after
[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

The components of the list are named according to the argument names
used in list. Named components may be extracted like this:

> mylist$before
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Many of R’s built-in functions compute more than a single vector of values
and return their results in the form of a list.

1.2.10 Data frames

A data frame corresponds to what other statistical packages call a “data
matrix” or a “data set”. It is a list of vectors and/or factors of the same
length that are related “across” such that data in the same position come
from the same experimental unit (subject, animal, etc.). In addition, it has
a unique set of row names.

You can create data frames from preexisting variables:

> d <- data.frame(intake.pre,intake.post)
> d

intake.pre intake.post
1 5260 3910
2 5470 4220
3 5640 3885
4 6180 5160
5 6390 5645
6 6515 4680
7 6805 5265
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8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Notice that these data are paired, that is, the same woman has an intake
of 5260 kJ premenstrually and 3910 kJ postmenstrually.

As with lists, components (i.e., individual variables) can be accessed using
the $ notation:

> d$intake.pre
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

1.2.11 Indexing

If you need a particular element in a vector, for instance the premenstrual
energy intake for woman no. 5, you can do

> intake.pre[5]
[1] 6390

The brackets are used for selection of data, also known as indexing or sub-
setting. This also works on the left-hand side of an assignment (so that you
can say, for instance, intake.pre[5] <- 6390) if you want to modify
elements of a vector.

If you want a subvector consisting of data for more than one woman, for
instance nos. 3, 5, and 7, you can index with a vector:

> intake.pre[c(3,5,7)]
[1] 5640 6390 6805

Note that it is necessary to use the c(...)-construction to define the vec-
tor consisting of the three numbers 3, 5, and 7. intake.pre[3,5,7]
would mean something completely different. It would specify indexing
into a three-dimensional array.

Of course, indexing with a vector also works if the index vector is stored
in a variable. This is useful when you need to index several variables in
the same way.

> v <- c(3,5,7)
> intake.pre[v]
[1] 5640 6390 6805

It is also worth noting that to get a sequence of elements, for instance the
first five, you can use the a:b notation:
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> intake.pre[1:5]
[1] 5260 5470 5640 6180 6390

A neat feature of R is the possibility of negative indexing. You can get all
observations except nos. 3, 5, and 7 by writing

> intake.pre[-c(3,5,7)]
[1] 5260 5470 6180 6515 7515 7515 8230 8770

It is not possible to mix positive and negative indices. That would be
highly ambiguous.

1.2.12 Conditional selection

We saw in Section 1.2.11 how to extract data using one or several indices.
In practice, you often need to extract data that satisfy certain criteria, such
as data from the males or the prepubertal or those with chronic diseases,
etc. This can be done simply by inserting a relational expression instead
of the index,

> intake.post[intake.pre > 7000]
[1] 5975 6790 6900 7335

yielding the postmenstrual energy intake for the four women who had an
energy intake above 7000 kJ premenstrually.

Of course, this kind of expression makes sense only if the variables that go
into the relational expression have the same length as the variable being
indexed.

The comparison operators available are < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to), and !=
(not equal to). Notice that a double equal sign is used for testing equality.
This is to avoid confusion with the = symbol used to match keywords with
function arguments. Also, the != operator is new to some; the ! symbol
indicates negation. The same operators are used in the C programming
language.

To combine several expressions, you can use the logical operators & (log-
ical “and”), | (logical “or”), and ! (logical “not”). For instance, we find
the postmenstrual intake for women with a premenstrual intake between
7000 and 8000 kJ with

> intake.post[intake.pre > 7000 & intake.pre <= 8000]
[1] 5975 6790
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There are also && and ||, which are used for flow control in R
programming. However, their use is beyond what we discuss here.

It may be worth taking a closer look at what actually happens when you
use a logical expression as an index. The result of the logical expression is
a logical vector as described in Section 1.2.3:

> intake.pre > 7000 & intake.pre <= 8000
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[11] FALSE

Indexing with a logical vector implies that you pick out the values where
the logical vector is TRUE, so in the preceding example we got the 8th and
9th values in intake.post.

If missing values (NA; see Section 1.2.5) appear in an indexing vector, then
R will create the corresponding elements in the result but set the values to
NA.

In addition to the relational and logical operators, there are a series of
functions that return a logical value. A particularly important one is
is.na(x), which is used to find out which elements of x are recorded
as missing (NA).

Notice that there is a real need for is.na because you cannot make
comparisons of the form x==NA. That simply gives NA as the result for
any value of x. The result of a comparison with an unknown value is
unknown!

1.2.13 Indexing of data frames

We have already seen how it is possible to extract variables from a
data frame by typing, for example, d$intake.post. However, it is also
possible to use a notation that uses the matrix-like structure directly:

> d <- data.frame(intake.pre,intake.post)
> d[5,1]
[1] 6390

gives fifth row, first column (that is, the “pre” measurement for woman
no. 5), and

> d[5,]
intake.pre intake.post

5 6390 5645

gives all measurements for woman no. 5. Notice that the comma in d[5,]
is required; without the comma, for example d[2], you get the data frame
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consisting of the second column of d (that is, more like d[,2], which is the
column itself).

Other indexing techniques also apply. In particular, it can be useful to ex-
tract all data for cases that satisfy some criterion, such as women with a
premenstrual intake above 7000 kJ:

> d[d$intake.pre>7000,]
intake.pre intake.post

8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Here we extracted the rows of the data frame where intake.pre>7000.
Notice that the row names are those of the original data frame.

If you want to understand the details of this, it may be a little easier if it is
divided into smaller steps. It could also have been done like this:

> sel <- d$intake.pre>7000
> sel
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[11] TRUE
> d[sel,]

intake.pre intake.post
8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

What happens is that sel (select) becomes a logical vector with the value
TRUE for to the four women consuming more than 7000 kJ premenstrually.
Indexing as d[sel,] yields data from the rows where sel is TRUE and
from all columns because of the empty field after the comma.

It is often convenient to look at the first few cases in a data set. This can be
done with indexing, like this:

> d[1:2,]
intake.pre intake.post

1 5260 3910
2 5470 4220

This is such a frequent occurrence that a convenience function called head
exists. By default, it shows the first six lines.

> head(d)
intake.pre intake.post

1 5260 3910
2 5470 4220
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3 5640 3885
4 6180 5160
5 6390 5645
6 6515 4680

Similarly, tail shows the last part.

1.2.14 Grouped data and data frames

The natural way of storing grouped data in a data frame is to have the data
themselves in one vector and parallel to that have a factor telling which
data are from which group. Consider, for instance, the following data set
on energy expenditure for lean and obese women.

> energy
expend stature

1 9.21 obese
2 7.53 lean
3 7.48 lean
4 8.08 lean
5 8.09 lean
6 10.15 lean
7 8.40 lean
8 10.88 lean
9 6.13 lean
10 7.90 lean
11 11.51 obese
12 12.79 obese
13 7.05 lean
14 11.85 obese
15 9.97 obese
16 7.48 lean
17 8.79 obese
18 9.69 obese
19 9.68 obese
20 7.58 lean
21 9.19 obese
22 8.11 lean

This is a convenient format since it generalizes easily to data classified
by multiple criteria. However, sometimes it is desirable to have data in a
separate vector for each group. Fortunately, it is easy to extract these from
the data frame:

> exp.lean <- energy$expend[energy$stature=="lean"]
> exp.obese <- energy$expend[energy$stature=="obese"]

Alternatively, you can use the split function, which generates a list of
vectors according to a grouping.
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> l <- split(energy$expend, energy$stature)
> l
$lean
[1] 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05
[11] 7.48 7.58 8.11

$obese
[1] 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

1.2.15 Implicit loops

The looping constructs of R are described in Section 2.3.1. For the purposes
of this book, you can largely ignore their existence. However, there is a
group of R functions that it will be useful for you to know about.

A common application of loops is to apply a function to each element of
a set of values or vectors and collect the results in a single structure. In
R this is abstracted by the functions lapply and sapply. The former
always returns a list (hence the ‘l’), whereas the latter tries to simplify
(hence the ‘s’) the result to a vector or a matrix if possible. So, to compute
the mean of each variable in a data frame of numeric vectors, you can do
the following:

> lapply(thuesen, mean, na.rm=T)
$blood.glucose
[1] 10.3

$short.velocity
[1] 1.325652

> sapply(thuesen, mean, na.rm=T)
blood.glucose short.velocity

10.300000 1.325652

Notice how both forms attach meaningful names to the result, which
is another good reason to prefer to use these functions rather than ex-
plicit loops. The second argument to lapply/sapply is the function that
should be applied, here mean. Any further arguments are passed on to the
function; in this case we pass na.rm=T to request that missing values be
removed (see Section 4.1).

Sometimes you just want to repeat something a number of times but still
collect the results as a vector. Obviously, this makes sense only when the
repeated computations actually give different results, the common case
being simulation studies. This can be done using sapply, but there is a
simplified version called replicate, in which you just have to give a
count and the expression to evaluate:
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> replicate(10,mean(rexp(20)))
[1] 1.0677019 1.2166898 0.8923216 1.1281207 0.9636017 0.8406877
[7] 1.3357814 0.8249408 0.9488707 0.5724575

A similar function, apply, allows you to apply a function to the rows
or columns of a matrix (or over indices of a multidimensional array in
general) as in

> m <- matrix(rnorm(12),4)
> m

[,1] [,2] [,3]
[1,] -2.5710730 0.2524470 -0.16886795
[2,] 0.5509498 1.5430648 0.05359794
[3,] 2.4002722 0.1624704 -1.23407417
[4,] 1.4791103 0.9484525 -0.84670929
> apply(m, 2, min)
[1] -2.5710730 0.1624704 -1.2340742

The second argument is the index (or vector of indices) that defines what
the function is applied to; in this case we get the columnwise minima.

Also, the function tapply allows you to create tables (hence the ‘t’) of the
value of a function on subgroups defined by its second argument, which
can be a factor or a list of factors. In the latter case a cross-classified table
is generated. (The grouping can also be defined by ordinary vectors. They
will be converted to factors internally.)

> tapply(energy$expend, energy$stature, median)
lean obese
7.90 9.69

1.2.16 Sorting

It is trivial to sort a vector. Just use the sort function. (We use the built-
in data set intake here; it contains the same data that were used in
Section 1.2.9.)

> intake$post
[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335
> sort(intake$post)
[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335

(intake$pre could not be used for this example since it is sorted
already!)

However, sorting a single vector is not always what is required. Often
you need to sort a series of variables according to the values of some other
variables — blood pressures sorted by sex and age, for instance. For this
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purpose, there is a construction that may look somewhat abstract at first
but is really very powerful. You first compute an ordering of a variable.

> order(intake$post)
[1] 3 1 2 6 4 7 5 8 9 10 11

The result is the numbers 1 to 11 (or whatever the length of the vec-
tor is), sorted according to the size of the argument to order (here
intake$post). Interpreting the result of order is a bit tricky — it should
be read as follows: You sort intake$post by placing its values in the
order no. 3, no. 1, no. 2, no. 6, etc.

The point is that, by indexing with this vector, other variables can be
sorted by the same criterion. Note that indexing with a vector containing
the numbers from 1 to the number of elements exactly once corresponds
to a reordering of the elements.

> o <- order(intake$post)
> intake$post[o]
[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335
> intake$pre[o]
[1] 5640 5260 5470 6515 6180 6805 6390 7515 7515 8230 8770

What has happened here is that intake$post has been sorted — just as
in sort(intake$post) — while intake$pre has been sorted by the
size of the corresponding intake$post.

It is of course also possible to sort the entire data frame intake

> intake.sorted <- intake[o,]

Sorting by several criteria is done simply by having several arguments to
order; for instance, order(sex,age)will give a main division into men
and women, and within each sex an ordering by age. The second variable
is used when the order cannot be decided from the first variable. Sorting
in reverse order can be handled by, for example, changing the sign of the
variable.

1.3 Exercises

1.1 How would you check whether two vectors are the same if they
may contain missing (NA) values? (Use of the identical function is
considered cheating!)

1.2 If x is a factor with n levels and y is a length n vector, what happens
if you compute y[x]?
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1.3 Write the logical expression to use to extract girls between 7 and 14
years of age in the juul data set.

1.4 What happens if you change the levels of a factor (with levels) and
give the same value to two or more levels?

1.5 On p. 27, replicate was used to simulate the distribution of the
mean of 20 random numbers from the exponential distribution by re-
peating the operation 10 times. How would you do the same thing with
sapply?
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