
Chapter 22

Calcium, Phosphate, and Renal Osteodystrophy

A. Vardhan and A.J. Hutchison

The first association between uremia and bone disease wasmade by Lucas and reported inLancet in 1883 [1]. However,

it was not until nearly 40 years later that the major clinical and radiological manifestations of the skeletal changes were

accurately defined [2, 3]. In 1943, the histopathology of osteitis fibrosa and osteomalacia was described [4], and in the

same year the term ‘‘renal osteodystrophy’’ was coined by Liu and Chu [5]. Subsequently, the abnormalities of bone

mass that occur in osteopenia and osteosclerosis were also described [6]. Following the research of Stanbury and Lumb

[7, 8], there began a period of rapid advance in the understanding of the processes behind altered divalent ion

metabolism, and the abnormalities of parathyroid hormone and vitamin D3 production that are seen in end-stage

renal disease. Despite these advances with the introduction of vitamin D3 replacement therapy, new oral phosphate

binders and, most recently, calcimimetic therapy, osteodystrophy remains a common complication of end-stage renal

failure, and continues to pose diagnostic and therapeutic dilemmas for clinical nephrologists.
It has become apparent that the spectrum of bone lesions seen in dialysis patients has changed over the decades.

In the first two decades of dialysis, hyperparathyroid disease was usual but then became much less common with the

introduction of calcium-based phosphate binders and oral vitamin D therapy [9, 10]. Furthermore, a different pattern

of bone lesions is found in peritoneal dialysis (PD) and hemodialysis patients [9–12]. In a histological study of

259 chronic dialysis patients in Canada in the early 1990s, the commonest bone lesion found was high turnover

hyperparathyroid disease (50%) in hemodialysis patients, and low turnover, adynamic bone (61%) in PD patients [10].

In contrast, Malluche and Monier-Faugere (Kentucky, USA) reported that in a retrospective survey of 602 patients

from 1982 to 1991 the mixed lesion was the commonest diagnosis [9], regardless of mode of dialysis (56% in CAPD and

49% in hemodialysis). A more recent study of 96 hemodialysis patients demonstrated 60% had low turnover lesions

[13]. The difference between these reports is noteworthy in itself, since they are large and reliable studies, but from

centers thousands of miles apart. While varying diagnostic criteria may account for some of the difference, it

emphasizes the fact that, in dialysis patients, histomorphometric data represent the result of pathological processes,

treatment regimes, and environmental effects that have been on-going for many years.
Over the past decade, interest in osteodystrophy has exploded as the connections between calcium, phosphate,

parathyroid hormone, and cardiovascular disease have emerged. Unfortunately, most of the reports to date are from

retrospective analyses and are yet to be confirmed in interventional randomized, prospective studies.

Classification of Renal Osteodystrophy

In this chapter, the term renal osteodystrophy is used to encompass all its skeletal manifestations such as osteitis fibrosa,

osteomalacia, mixed lesions, the adynamic lesion, osteoporosis, osteosclerosis, and (in children) retardation of growth.

However, renal osteodystrophy also includes a variety of extraskeletal problems including myopathy, peripheral

ischemic necrosis, visceral calcification, and, perhaps most importantly, vascular and valvular calcification.
Since the introduction of the undecalcified bone biopsy, significant advances have been made in the understanding

of the histological changes underlying all forms of renal osteodystrophy. Renal osteodystrophy has its origins early in

the course of renal failure [14, 15], so that by the time GFR has fallen to 50% of normal, at least 50% of the patients

exhibit abnormal bone histology [16]. In a study of 16 patients with creatinine clearances between 20 and 59 mL/min,

Baker et al. found all of them to have abnormal bone histology [17]. By the time patients start peritoneal dialysis the
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majority have an identifiable histological abnormality [18], the nature of which depends to some extent on medical
management up to that time.

The classification of renal osteodystrophy is simplified by the recognition that there are essentially two groups of
histological lesions – high and low turnover bone lesions plus a third intermediate category referred to as a ‘‘mixed’’ lesion.
There may also be osteopenia or osteoporosis superimposed on these lesions, particularly in elderly female patients.

High Turnover Bone Lesions

In osteitis fibrosa cystica, the characteristic findings include a marked increase in bone resorption, osteoblastic and
osteoclastic activity, and endosteal fibrosis (Fig. 22.1). In particular, the number of osteoclasts is markedly increased, and
they may be larger than normal with multiple nuclei. There may be a large increase in surface resorption with dissecting
cavities where the osteoclasts have tunneled through the trabecular bone. This results in deposition of fibrous tissue in the
marrow spaces (peritrabecular fibrosis), and the formation of so-called ‘‘woven bone,’’ new bonematrix that is not lamellar
but disorganized in structure.Although the bonemay show increased osteoid, the use of tetracycline labeling prior to biopsy
demonstrates thatmineralization proceeds relatively normally. Skeletal massmay diminish as the rate of resorption exceeds
that of formation. The term osteitis implies inflammation of bone, which is not present, so that is it preferable to refer to this
lesion as severe or predominant hyperparathyroid bone disease.

In mild hyperparathyroidism, elevated parathyroid hormone levels increase bone turnover but peritrabecular
fibrosis is minimal or absent.

Low Turnover Bone Lesions

In osteomalacia, defective mineralization of bone, due to deficiency of 1,25-dihydroxyvitamin D3, results in a relative
increase in the amount of osteoid or unmineralized bone matrix (Fig. 22.2). Osteitis fibrosa can also increase osteoid

Fig. 22.1 Bone histology in severe hyperparathyroid disease. Numerous large, multinucleate osteoclasts can be seen tunnelling into
mineralized trabecular bone. Osteoblasts are also numerous, and peritrabecular fibrous tissue has been deposited in the marrow cavity
(toluidine blue stain; original magnification � 100)
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mass, simply as a result of increased bone turnover, but bone biopsy with dual tetracycline labeling will reliably
distinguish these diseases. Use of oral aluminium for phosphate binding is decreasing, but accumulation can also lead
to an osteomalacic-type osteodystrophy even in the presence of adequate 1,25-dihydroxyvitamin D3 levels [19].
In bone, the site of aluminium deposition is at the interface between mineralized bone and unmineralized osteoid.
Here it appears to reduce osteoblast numbers and delay the process of mineralization, as demonstrated by diminished
uptake of tetracycline into trabecular bone [20]. Studies have established an inverse relationship between bone
aluminium accumulation and the rate of bone formation [21] and, even in cell-free laboratory studies, aluminium
has been shown to reduce both the formation and growth of hydroxyapatite crystals [22].

Adynamic bone lesions, previously thought to be a result of aluminiumaccumulation in bone, are nowwell recognized to
occur in the absence of stainable bone aluminium (Fig. 22.3), and are characterized by an abnormally low bone formation
rate, a defect of bonemineralization, normal or decreased osteoid thickness, decreased osteoblastic surfaces, and normal or
decreasedosteoclastic surfaces [16, 23, 23–26]. This appearancewas sometimes referred to asaplastic, a termusually reserved
for structures that are congenitally absent, whereas adynamic more accurately conveys the inactivity of bone cells in this
lesion [27]. Little is knownabout its etiology, and even less about its natural history, although there is evidence to suggest that
it is commoner in patients with diabetes, elderly dialysis patients, and those on continuous ambulatory peritoneal dialysis
(CAPD) [23–25, 28]. Overtreatment with vitamin D, and use of corticosteroids, as well as low sexual and thyroid hormone
levels, are other causes that have been considered [25, 29].Recently, a small study of PDpatients implicated albumin and the
malnutrition-inflammation-cachexia syndrome in the pathophysiology of the adynamic lesion [27].

Mixed Bone Lesions

In many patients, hyperparathyroidism and defective mineralization coexist with variable bone volume and rates of
bone turnover. This probably reflects the fact that changes to rates of bone turnover occur much more slowly than

Fig. 22.2 Bone histology in osteomalacia (not aluminium-related). Broad lamellar osteoid seams surround the calcified trabecular bone. In
some areas the failure of mineralization has resulted in ‘islands’ of calcified bone so that the mechanical strength of the trabeculum is greatly
reduced (toluidine blue stain; original magnification � 100)
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changes to biochemical parameters. These changes will also be influenced by local structural stresses andmay therefore
vary in space as well as time within the skeleton.

Osteoporosis

In osteoporosis, the bone mineral density is reduced, bone microarchitecture is disrupted, and the amount and variety
of noncollagenous proteins in bone is altered and are therefore more at risk of fracture. Osteoporosis is defined by
the World Health Organization as a bone mineral density 2.5 SD below peak bone mass in women (20-year-old
sex-matched healthy person average) as measured by DEXA. Making a diagnosis in patients with chronic kidney
disease (CKD) is more difficult since any type of osteodystrophy can be associated with reduced bone density [18], with
no apparent correlation. Nevertheless, peritoneal dialysis patients are at greater risk of osteoporosis than the general
population because of numerous risk factors found more commonly in CKD 5. These include poor nutrition,
decreased physical activity, smoking and peripheral vascular disease, estrogen or androgen deficiency, low body
mass index, reduced mobility, previous steroid and heparin usage, low parathyroid hormone levels, b-2-microglobulin
amyloidosis, and chronic acidosis [30].

Pathogenesis of Renal Osteodystrophy

Renal osteodystrophy is recognized to be a common complication of end-stage renal failure and is believed to have its
origins early in the onset of renal impairment [31]. The mechanism of its development is both multifactorial and
controversial, but since normal kidneys maintain calcium, phosphate, magnesium and bicarbonate balance, synthesise
1.25- and 24,25-dihydroxyvitamin D3, act as a major target organ and excretory organ for parathyroid hormone, and also
excrete aluminium, it is self-evident that renal failure will have numerous profound effects on mineral metabolism. These
various factors all interact to a greater or lesser extent, but for simplicity are considered separately in the following sections.

Parathyroid Hormone and Calcium Metabolism

Bone is continually being remodeled, and in health a balance is maintained between synthesis of bone matrix (osteoid
formation), its mineralization, and subsequent resorption. This balance is governed by the relative activity of
osteoblasts, osteoclasts, and osteocytes. Increased secretion of parathyroid hormone (PTH) increases both the activity
and numbers of these bone cells, causing an overall increase in bone turnover. Excessive production may result in
deposition of fibrous tissue in the marrow spaces (osteitis fibrosa), endosteal fibrosis, and the formation of so-called

Fig. 22.3 Bone histology in the adynamic
lesion. Osteoid seams are very thin or
almost absent. Numbers of osteoclasts and
osteoblasts are greatly reduced and
unrepaired microfractures can be seen
within the mineralized bone (hematoxylin
and eosin stain; original magnification,
� 100)
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‘‘woven bone,’’ new bone matrix that is not lamellar but disorganized in structure. Skeletal mass may diminish as the
rate of resorption exceeds that of formation. Studies from both Europe and the United States suggest that parathyr-
oidectomy is still required in a significant number of patients. A study of 14,180 patients undergoing dialysis in
Lombardy, Italy, from 1983 to 1996, reported parathyroidectomy rates of 3.3 cases per 1,000 patient-years for patients
receiving renal replacement therapy for less than 5 years, and 30 cases per 1,000 patient-years for those receiving renal
replacement therapy for more than 10 years [32]. In the United States, parathyroidectomy rates among prevalent
hemodialysis patients declined between 1988 and 1998 but increased progressively after 1998 despite introduction of
better therapies for preventing severe hyperparathyroidism [33]. However, it is generally accepted that, in the uremic
patient, low/normal levels of PTH result in excessively low bone cell activity and bone turnover, or adynamic bone [9,
10, 25, 29, 34–39], and this is associated with increased rates of vascular calcification [40].

PTH is a single-chain protein of 84 amino acids, the sequence of whichwas established byKeutmann et al. in 1978 [41].
It is synthesized in the parathyroid chief cell via two precursors, pre-pro-PTH and pro-PTH (115 and 90 amino acids,
respectively). PTH secretion occurs approximately 20 min after synthesis of the original pre-pro-PTH [42].

Significant elevations of serum parathyroid hormone have been reported in patients with only moderately abnormal
glomerular filtration rates of 60–80 mL/min [17, 43, 44]. The secretion of PTH is controlled by many factors, but in renal
impairment the most important stimulus is thought to be reduction in the level of serum-ionized calcium (Fig. 22.4).
Factors which contribute to hypocalcemia and elevation of serum PTH are phosphate retention, defective vitamin D
metabolism, skeletal resistance to the calcemic action of PTH, elevation of the ‘‘set point’’ at which serum calcium
suppresses PTH release and impaired degradation of circulating PTH [44].

Secretion of PTH is primarily controlled by the concentration of ionized calcium in the extracellular space so that
hypocalcemia stimulates, and hypercalcemia suppresses PTH release [45]. This relationship between PTH and serum
calcium can be represented as a sigmoidal curve, with a basal rate of secretion persisting even during hypercalcemia
[46]. In normal individuals, the basal PTH level is approximately 20–25%of themaximally stimulated PTH level and is
positioned in the initial part of the steep ascent of the sigmoidal curve. Therefore, a small decrease in serum calcium
produces a large increase in serum PTH secretion. Felsenfeld observed that for the same ionized calcium level serum
PTH was higher during the induction of hypocalcemia than during the recovery from hypocalcemia [47]. Conversely,
the PTH level was greater when hypercalcemia was induced from the nadir of hypocalcemia than when hypercalcemia
was induced from basal serum calcium. Furthermore, the set point of calcium was greater during the induction of
hypocalcemia than during the recovery from hypocalcemia. This differential response of PTH to the direction of
change of serum calcium is known as ‘‘hysteresis,’’ and there is evidence that the PTH–calcium curves may differ in
different forms of renal osteodystrophy or after a specific form of therapy such as desferrioxamine or calcitriol [47–49].

As well as suppressing PTH secretion, hypercalcemia is also known to decrease parathyroid cell cyclic adenosine
monophosphate (cAMP) but it is not clear whether this is the means by which PTH is controlled or whether it is a
secondary phenomenon [50].

Hyperplastic parathyroid glands are less sensitive to ionized calcium levels than are normal glands, suggesting that
one cause of elevated PTH in chronic renal failure may be a shift in the ‘‘set point’’ for calcium-regulated PTH
secretion, in addition to the increase in parathyroid mass. The set point is defined as a calcium ion concentration
necessary to suppress the secretion of PTH by 50%. Furthermore the degree of responsiveness across the calcium-
sensitive range is altered so that hyperparathyroidism is a product of the increase in tissue mass (because the
nonsuppressible, basal secretion is increased) and the lack of suppression by calcium in the normocalcemic range.

Fig. 22.4 Factors contributing to the
production of excess parathyroid hormone
in dialysis patients
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Thus normal concentrations of ionized calciummay not be sufficient to suppress hyperplastic parathyroid glands, and
serum levels have to be increased to the upper limits of normal to control the release of PTH in patients with secondary
hyperparathyroidism [46]. However, there is evidence that once the parathyroid gland size exceeds a certain limit, the
nonsuppressible basal secretion alone becomes sufficient to increase serum parathyroid hormone to hyperparathyroid
levels [51]. When this occurs parathyroidectomy was previously the only remaining option, but with the introduction
of cinacalcet many patients may now avoid this procedure.

Firm evidence now exists that parathyroid cells possess specific nuclear receptors for 1,25-dihydroxyvitamin D3
[51–53]. When given intravenously to a group of 20 hemodialysis patients calcitriol produced a marked suppression
(70.1 – 3.2%) of PTH levels without a significant change in serum calcium, confirming that it is an important regulator
of PTH secretion at least in states of calcitriol depletion [53]. Substantial degradation of calcitriol occurs in the intestine
so that oral vitamin D increases intestinal calcium absorption but the delivery of calcitriol to peripheral target organs
is limited [54, 55]. This could explain the greater effect of intravenous, compared to oral, calcitriol. PTH secretion is
also affected by ionizedmagnesium, however, only severe hypomagnesemia seems to have any clinical relevance in that
it has been shown to inhibit PTH secretion [56].

In addition to the abnormalities of secretion that occur in chronic renal failure, the process of degradation is
incomplete. Normally, intact PTH is degraded by the liver and kidneys, resulting in the production of amino (N)- and
carboxy (C)-terminal fragments. The fragments are further metabolized by the kidney, so that in the absence of
renal function they will accumulate. C-terminal fragments are detectable up to 2 weeks after parathyroidectomy in
chronic renal failure, yet decrease by 80% within 24 h of a successful renal transplant. So-called ‘‘second-generation’’
PTH assays, called ‘‘intact’’ PTH assays, have been developed since 1987. They use two different antibodies, the first,
directed against the C-terminal region of PTH, and the second directed against the N-terminal region. These
‘‘sandwich’’ assays were the first radioimmunometric assays, and were thought to measure only the full-length 1–84
PTH, however, they also measure large PTH fragments (namely 7–84 PTH). These N-terminal truncated PTH
fragments inhibit the action of PTH by blocking its binding to its normal receptor. They may also bind to a specific
C-terminal PTH receptor andmay have biological functions in the skin, bone, hematopoietic system, and placenta [57].
The third generation of PTH assays have been developed since 2000 and use the same sandwich and radioimmuno-
metric techniques, with the first antibody directed against amino acids 39–84, but the second antibody has been
restricted and directed against the first six N-terminal residues of 1–84 PTH. They have been demonstrated to be most
sensitive, and more specific, when measuring bioactive intact 1–84 PTH. It is now clear that different assays can give
significantly different results as demonstrated by a study of 15 different methods [58]. In terms of correlation with bone
histology, most experience has been gained with sandwich assays specific to the whole, or intact, 1–84 PTH molecule.
These appear to correlate well with the biological effects of PTH on bone in chronic renal failure [18, 59], and whether
‘‘third-generation’’ assays have any advantages remains to be seen [60].

Vitamin D Metabolism

The similarity between the bone disease caused by simple vitamin D deficiency and that which occurs in chronic renal
failure has been recognized for many years, both at clinical [1] and histological levels [4]. It was also known that renal
failure was associated with impaired intestinal absorption of calcium [5]. In renal failure both the bone lesions and the
defect in calcium absorption were shown to be correctable by oral calciferol, but the amount required to have an effect
is much larger than in simple deficiency states. The disease is ‘‘vitamin D resistant.’’ Vitamin D3 (calciferol) circulates
in the blood bound to vitamin D-binding protein, after having been synthesized in the skin or absorbed from the diet.
In the liver it is metabolized by the enzyme vitamin-D-25-hydroxylase to form 25-hydroxyvitaminD (calcidiol, 25-OH-
D). In most patients with chronic renal failure, 25-OH-D levels are normal if they eat a balanced diet and their skin is
not completely covered from the sun.

In the kidney 25-OH–D is further metabolized by a mitochondrial cytochrome P–450 oxidase, 25-OH–D-1a-
hydroxylase, to form 1,25-dihydroxyvitamin D3 (calcitriol), the biologically active form of vitamin D. Various studies
have indicated that the proximal convoluted tubules (PCT) are the principal site of 1,25(OH)2D3 production [61].
In 1973, Mawer et a1. showed that calcitriol could not be detected in the serum of patients with chronic renal failure,
after injection of radioactive cholecalciferol, and suggested that it was the inability to form this metabolite that was the
cause of the vitamin D resistance[62]. This is now known to be the case, and is a result of reduced renal 1a-hydroxylase
activity caused by loss of renal mass, hyperphosphatemia and possibly by uremic toxins [63]. In addition to renal
production of 1,25-OH–D3, humans can, in certain pathological states, produce it extrarenally. In sarcoidosis cultured
alveolar macrophages and lymph node homogenates can convert 25-OH–D to 1,25-OH–D3 and a similar process
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probably accounts for the hypercalcemia and hypercalciuria sometimes seen in other granulomatous diseases such as
tuberculosis, silicosis, berylliosis, and fungal diseases. In CAPD patients who have had one or more episodes of

peritonitis cultured peritoneal macrophages are also able to convert 25-OH–D3 to 1,25-OH–D3 [64].
Once synthesized in the kidney, 1,25-OH–D3 is transported by vitamin D-binding protein to its target cells. It enters

the cell by a mechanism that is poorly understood and is then transported to the nucleus. Here it interacts with its

nuclear receptor, phosphorylating it to bring about interaction with chromatin and transcription of specific genes. In
the small intestine this results in expression of the gene coding for calbindin, the calcium-binding protein. The activity

of other proteins is also affected, with the net result that calcium and phosphate absorption from the intestine is
stimulated. The effect of 1,25-OH–D3 on bone is to increase removal of calcium. A small decrease in serum ionized

calcium stimulates PTH production which in turn stimulates the kidney to produce 1,25-OH–D3, 1,25-OH–D3 in
conjunction with PTH increases osteoclastic activity and release of calcium, returning the ionized calcium level to

normal.
1,25-OH–D3 has been conclusively shown to suppress PTH secretion in dialysis patients when administered

orally or intravenously [53, 65–71]. It undoubtedly also has important immunoregulatory functions and is able to
decrease the rate of proliferation of certain tumour cells, such as the HL-60 (human promyelocytic) cell, and even

transform them into mature macrophages. 1,25-OH–D3 can also inhibit the proliferation of cultured human
keratinocytes, an ability that has important clinical implications in that it has been shown to dramatically improve

psoriasis in 75% of a group of patients given up to 2 mg/day [72]. It has recently been suggested that vitamin D
deficiency may be an important factor in the pathogenesis of hypertension and insulin resistance in end-stage renal

failure [73].

Phosphate Metabolism

In the past, overactivity of the parathyroid glands in renal failure was explained by the trade-off hypothesis of Bricker
[74, 75]. He postulated that as renal failure progresses there is a tendency for serum phosphate levels to rise and ionized

calcium levels to fall, resulting in a compensatory rise in PTH. The increase in PTH reduces tubular reabsorption of
phosphate in the remaining nephrons and increases serum calcium. Thus serum values of phosphate and calcium may

be kept within, or near, the normal range at the expense of rising PTH levels and its resultant effects on the skeleton.
However, more recent work has cast doubt on this, with the observations that hyperparathyroidism can develop

even in the presence of a high serum calcium [75], and that hyperphosphatemia stimulates PTH secretion independent
of serum calcium concentration [76–78]. However, increased phosphate excretion results in decreased activity of
25-OH–D-1a-hydroxylase, and consequently decreased production of 1,25-dihydroxyvitamin D3 [72]. This in turn

stimulates increased synthesis and secretion of PTH in an attempt to stimulate renal production of 1,25-dihydroxy-
vitamin D3. As renal failure progresses the compensatory effect of PTH on 1,25-dihydroxyvitamin D3 deficiency is

overcome and an absolute deficiency develops [16]. This further stimulates PTH levels and decreases gastrointestinal
calcium absorption [79].With further progression of renal failure, to a glomerular filtration rate of around 10 mL/min,

phosphate excretion can no longer be increased and hyperphosphatemia occurs, exacerbating the hypocalcemia.
At this stage, hypocalcemia further stimulates PTH secretion, although doubt remains as to its role in the earlier

stages of renal failure. In addition hyperphosphatemia is associated with extraskeletal calcification in soft tissues and,
perhaps more worryingly, in blood vessels.

Magnesium Metabolism

Although magnesium metabolism is affected by decreasing renal function, the clinical relevance of this is unknown.

In normal subjects magnesium is absorbed from the small intestine and excreted in the urine, so that elevated serum
levels are seen in renal failure [80]. In vitro, magnesium is an inhibitor of crystallization and may increase bone levels

of pyrophosphate – another inhibitor of mineralization [81]. In uremia, bone magnesium is correlated with serum
magnesium, and serum pyrophosphate is increased [82]. Hence, it is theoretically possible that elevated serum

magnesium could play a role in the development of osteomalacia, but there is no evidence in the literature that this
is the case.

Moderate hypomagnesemia can contribute to elevation of serum PTH [83], whereas severe hypomagnesemia has
been shown to inhibit PTH secretion [56].
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Aluminium and Osteodystrophy

In 1978, Ward et al. made the association between aluminium and bone disease in dialysis patients [19]. Since then the
importance attached to reducing exposure to aluminium has increased, but aluminium hydroxide is still in use as a
‘‘rescue therapy’’ in cases of severe hyperphosphatemia.

A normal human daily intake of aluminium ranges from 2 to 20 mg but gastrointestinal uptake is estimated to be
only 0.5–1% of this. Normal urinary aluminium excretion varies between 20 and 50 mg/day but was shown to increase
to 200–400 mg/day when normal individuals were given aluminium hydroxide in amounts commonly given to dialysis
patients [84]. In end-stage renal failure the loss of urinary excretion plus exposure to aluminium in dialysate solutions,
phosphate binders, and volume replacement fluids can result in the total body content rising by a factor of up to 20.
Serum levels are a poor guide to total body load, since it is strongly protein-bound and largely deposited quickly in
tissues such as bone, liver and spleen.

Aluminium accumulates at the interface between mineralized bone and unmineralized osteoid, where it delays the
process of mineralization. Aluminium also accumulates in parathyroid glands and suppresses their secretion of PTH.
In patients with aluminium-related bone disease and renal failure, PTH levels are commonly lower than would be
expected and may be suppressed to normal levels, giving some degree of protection from hyperparathyroid bone
disease [85], but possibly resulting in development of the adynamic bone lesion [59] and other toxic effects.

It is likely that aluminium-related bone disease will gradually disappear as fewer physicians use aluminium-based
phosphate binders, and exposure from other sources is sought out and reduced to minimal levels.

Acid-Base Balance

The role of acidosis in the pathogenesis of renal osteodystrophy is unclear. However, acidosis is involved in both
calcium balance and PTH release. Acidotic azotemic patients show increased losses of urinary and faecal calcium
which can be reduced by alkali treatment, resulting in restoration of a neutral calcium balance [86]. In a study of 54
uremic patients, infusion of sodium bicarbonate produced a rise in arterialized capillary blood pH and a propor-
tional fall of around 20% in serum PTH [87, 88]. No significant change in serum ionized calcium was observed
during the study. The clinical significance of these findings remains to be elucidated but it seems likely that, as with
changes in magnesium metabolism, the effects are of much less importance than those associated with PTH and
vitamin D.

Calcitonin

Calcitonin is a 32-amino acid single-chain peptide, and the major stimulus for its secretion is hypercalcemia.
Circulating calcitonin has a short half-life (around 10 min) and depends on renal function for degradation and
excretion, so that high circulating levels are found in patients with renal failure [89–91]. Its role in normal human
subjects is debated, since neither the absence of this hormone (as in completely thyroidectomized patients) nor its
thousand-fold excess (as in patients with thyroid medullary carcinoma) is generally associated with any abnormality of
calcium homeostasis or skeletal integrity [92]. However, there is around 40% structural homology between PTH and
calcitonin receptors, the latter being found in bone, kidney, central nervous system, testis, placenta and on some
tumour cells.

Clinical and Radiological Features of Renal Osteodystrophy

Clinical features of the altered mineral and skeletal metabolism that occurs in renal failure may be considered under
two broad headings: extraskeletal and skeletal manifestations (Table 22.1).

Extraskeletal Manifestations

Extraskeletal manifestations are a result of deposition of phosphate and calcium in soft tissues. Calcium deposition
in the skin may contribute to the pruritus that in severe cases can be quite disabling for dialysis patients, preventing
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sleep and resulting in widespread excoriations with skin sepsis [93]. Calcification in the conjunctiva is another

common problem leading to the intensely painful ‘‘red eye,’’ with flecks of calcium often clearly visible on

examination.
Perhaps the most important extraskeletal manifestation is calcification of the vascular tree that frequently becomes

visible on plain X-rays. Most commonly the calcification is localized to the medial layer of small and medium-sized

arteries (Monckeberg’s sclerosis) [40, 94–98]. However, the abdominal aorta, femoral and digital arteries are often

clearly outlined on films taken for skeletal survey, but the same process is undoubtedly occurring in the mesenteric,

cerebral and coronary vasculature, resulting in considerable morbidity and mortality in dialysis and transplant patients

[36, 99]. In severe cases, vascular calcification in the iliac and femoral vessels may render a patient untransplantable

because anastomosis of the vessels becomes impossible. Furthermore the risk of preoperative myocardial infarction is

greatly increased, and heart failure, controlled by strict attention to fluid balance while on dialysis, may be unmasked by

renal transplantation.
Although hyperphosphatemia can cause an increase in the calcium–phosphate product, to a point where its

solubility product is exceeded and precipitation may occur, analysis of vascular tissue has shown that calcification is

not simply a passive process. Rather, under the right conditions, vascular cells can express bone cell surface markers

and lay down hydroxyapatite, suggesting a much more active and regulated process. Recent studies have shown that

arterial calcification is an active process that is regulated by a variety of genes and proteins [100]. Arterial calcification

appears to be a process similar to bone formation implicating a variety of proteins involved in bone and mineral

metabolism detected in atherosclerotic plaques and/or medial calcifications Since elevations of phosphate, calcium,

and calcium–phosphate product have been associated with mortality and morbidity, it is now widely believed that

vascular calcification could be the link.
A study of the calcium–phosphate product in a large number of hemodialysis patients demonstrated that the relative

risk of death for those with a serum phosphate level greater than 6.5 mg/dL was 1.27 relative to those with a lower level

[101]. The increased risk was not reduced by statistical adjustment for coexisting medical conditions, delivered dose

of dialysis, PTH level, nutritional parameters or markers of noncompliance. The calcium–phosphate product showed

a mortality trend similar to phosphate alone, with those patients having products greater than 72 mg2/dL2 showing a

relative mortality risk of 1.34 compared to those with products less than 52mg2/dL2. Similar findings have been reported

from other studies of dialysis patients [102] as well as those with earlier CKD [103]. There seems little doubt that tight

control of serum phosphate is vitally important for any dialysis patient, although it must be remembered that these

studies are retrospective and not interventional.

Table 22.1 Clinical and radiological features of renal osteodystrophy

Clinical manifestations

Skeletal

Bone tenderness

Bone pain

Joint pains

Spontaneous fracture

Growth retardation

Extraskeletal

Renal ‘‘red eye’’

Pruritus

Myopathy

Tumoral calcification

Peripheral ischemic necrosis

Radiological manifestations

Hyperparathyroidism

Erosion of tips of terminal phalanges, radial aspects of middle phalanges, distal ends of clavicles

‘‘Pepper-pot’’ skull

Thinning of cortex in tubular bones

Osteopenic vertebral bodies with sclerotic upper and lower surfaces, results in ‘‘rugger-jersey spine’’ appearance

Visceral/vascular calcification

Osteomalacia

Looser’s zones (most often in pubic bones or femur), otherwise no specific features in milder cases

Adynamic lesion

No specific features, but associated with increased risk of vascular calcification
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Skeletal Manifestations

Skeletal signs and symptoms of renal osteodystrophy include bone pain, bone tenderness, spontaneous fractures,

retardation of growth, and joint disease. With the exception of adolescents with tubulo-interstitial pathology,

symptoms are unusual in patients with end-stage renal disease, unless the decline in renal function has been particularly

slow. However, those with tubulo-interstitial disease and adolescent patients are more prone to overt bone disease. The

prevalence of symptoms among dialysis patients varies greatly from unit to unit, which may reflect differences in

reporting or true differences due to a dialysis-induced cause such as aluminium intake [104, 105]. Both osteomalacia

and osteitis fibrosa may be associated with bone pain, tenderness, fatigue, and proximal muscle weakness. In addition,

lower back and lower limb pain contribute to the reduced exercise ability that is common in dialysis patients. This in

turn worsens muscle weakness and loss of skeletal mass. Periosteal new bone growth and osteosclerosis are usually

asymptomatic but may often be seen on skeletal radiography.

Radiological Features

Regular radiological assessment using plain radiographs – the traditional annual ‘‘skeletal survey’’ – is now rarely

carried out in order to monitor renal osteodystrophy since radiological signs of hyperparathyroid disease detected by

such radiographs are relatively late features.
The earliest radiological feature of hyperparathyroidism is subperiosteal erosion occurring at the tufts of the

terminal phalanges, the radial aspect of the middle phalanges and the distal ends of the clavicles. In a study of 30

end-stage renal failure patients, performed immediately prior to commencing dialysis, erosion of the terminal

phalanges was only seen in five of the eight patients who had severe hyperparathyroid disease on bone biopsy and

serum PTH values [18]. However, plain radiographs did not identify patients with mild hyperparathyroid disease, and

the majority of patients were judged to have essentially normal skeletal surveys. These findings are in agreement with

those of Owen et al., who compared plain skeletal radiology with bone histology in 82 patients with renal failure, and

found no correlation between radiological and histological indices [106] Malluche and Faugere agree that information

obtained from skeletal X-rays is limited and often misleading, and that most radiological signs considered to be

pathognomonic of severe osteitis fibrosa can be found in any of the three histological types of renal osteodystrophy

[16]. In addition, a skeletal survey provides a relatively high dose of ionizing radiation for such inconclusive

information.
Low turnover adynamic bonemay have no specific radiological features [36], and the introduction of oral vitaminD

metabolites has largely abolished osteomalacia so that it is rarely found, even in histological studies [107].
In recent years, other radiological techniques have been developed for examining bone in a more quantitative

fashion, including skeletal scintigraphy, measurement of bone density and mineral content by single or dual photon

densitometry, plus single and dual energy quantitative computed tomography (QCT) scan [108, 109]. These techniques

are discussed later in the chapter.

Renal Osteodystrophy and PD

The introduction of CAPD in the 1970s provided new opportunities for the investigation and management of renal

osteodystrophy. However, reports of its management in CAPD remain confusing, with some showing improvement

[55, 104, 110] and others showing deterioration [111–113].
The different pattern of bone lesions seen in PD and hemodialysis is now well described [9–12, 114]. There are

several differences between the dialysis modalities which may affect mineral metabolism [11]. PD is associated with

far greater losses of middle- and large-molecular-weight protein fractions, thereby removing more transferrin-

bound aluminium, as well as 25-hydroxyvitamin D3. With PD, weekly phosphate removal is greater than hemo-

dialysis, and it provides a steady-state biochemical profile unlike the ‘‘saw-tooth’’ pattern of hemodialysis. Further-

more, the high calcium concentration in standard peritoneal dialysis fluids of the past may have significantly

suppressed PTH levels, contributing to the higher incidence of low-turnover bone disease seen in PD. In contrast,

a hemodialysis patient may experience episodes of relative hypocalcemia two or three times each week, which may

well stimulate PTH production.
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Calcium and Phosphate Balance in PD

In end-stage renal disease serum phosphate levels begin to rise and ionized calcium levels begin to fall once the GFR
is less than 20 mL/min. These abnormalities can be at least partially corrected by the administration of oral calcium
carbonate, although some concern exists about its use in CKD 5. However, ionized calcium levels may still be low
(0.9–1.1 mmol/L) when patients start PD, even though total serum calcium levels are normal [115]. Serum levels
usually rise once PD has begun, despite the majority of patients now using dialysis fluids with a calcium concentration
of 1.25 mmol/L. Gastrointestinal absorption and peritoneal flux of calcium during dialysis are the two major
determinants of overall calcium mass balance in peritoneal dialysis patients.

Gastrointestinal Absorption

The gastrointestinal absorption of calcium has been studied by several groups and is known to be dependent on many
factors including the degree of uremia, serum phosphate level, PTH level, 1,25-dihydroxyvitamin D3 level, and total
calcium intake. In uremic subjects, Recker and Saville [116] found that calcium absorption ranged from 5 to 59%,
while Clarkson and colleagues [117] and Ramirez et al. [118] reported figures of 8% and 28%, respectively. In a
study of CAPD patients in our own unit, calcium absorption rate was subnormal in 18 of 19 subjects, although
significant variation existed between patients. Percentage absorption ranged from 3.2 to 23.9%, results not dissimilar
from those in uremics [119]. Blumenkrantz examined absorption of dietary calcium in CAPD patients over the range
500–2,500 mg/day [120] and suggested that it can be represented by the empirical relationship Y¼ 0.42X – 277 (where
Y ¼ amount absorbed, X ¼ intake in mg/day). Therefore if the intake is around 730 mg/day, approximately 30 mg of
calcium is absorbed by the patient.

If calcium salts are to be used as first-line therapy for hyperphosphatemia then oral intake and gastrointestinal
absorption will be necessarily high. Once a patient is established on dialysis, control of hyperphosphatemia is very
important, not only to minimize further stimulation of PTH secretion, but also to keep the calcium–phosphate product
within the normal range. Failure to do this can result in rapid progression of vascular and soft-tissue calcification. The
PD patient’s high-protein diet (recommended minimum protein intake 1.2 g/kg/day) provides an obligatory phosphate
intake of up to 1,200mg daily [120, 121]. Although peritoneal dialysis controls the hyperphosphatemia of end-stage renal
disease more effectively than does hemodialysis [113, 122, 123], it removes only 310–320 mg/day [120, 124] – rather less
than one-third of the amount required to bring phosphate levels into the normal range. Therefore, if a neutral phosphate
balance is to be achieved, the gastrointestinal elimination of phosphorus needs to be around 700 mg/day [125]. Since
40–80% of dietary phosphorus is absorbed by patients with renal failure [123], the fraction of phosphate absorbed must
be reduced, and hence gastrointestinal elimination increased, by oral phosphate-binding agents.

The Role of Calcium Salts in Renal Osteodystrophy

Established phosphate binders, available for clinical use, include aluminium hydroxide and carbonate, calcium
carbonate and acetate, magnesium carbonate, keto-analogues of amino acids, sevelamer hydrochloride, and lantha-
num carbonate (Table 22.2). Each of these binders has advantages and disadvantages, but only four are in widespread
use – calcium carbonate, calcium acetate, sevelamer hydrochloride, and lanthanum carbonate. Calcium carbonate
and acetate remain in regular use in many countries as first-line phosphate binders in PD patients, where maintenance
of optimal serum calcium and phosphate levels is central to the treatment of hyperparathyroidism. However, concern
has arisen that calcium overload may contribute to adynamic bone and vascular calcification [94, 97]. Therefore, the
U.S. National Kidney Foundation Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines suggest limiting
the dose to a maximum of 1.5 g elemental calcium per day [126]. Calcium ketoglutarate is also in use, particularly in
certain European countries [127].

Table 22.2 Available compounds for use as phosphate binders in dialysis patients

Calcium-based Others

Calcium carbonate Aluminium hydroxide/carbonate

Calcium acetate Magnesium hydroxide/carbonate

Calcium gluconate Sevelamer hydrochloride

Calcium alginate Lanthanum carbonate

Calcium-ketovalin
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When CAPD was first introduced aluminium gels were the standard phosphate binders, and a high calcium
concentration in the dialysis fluid (1.75 mmol/L–3.5 mEq/L) was therefore beneficial, rapidly bringing serum calcium
levels into the normal range. As the dangers of aluminium accumulation became apparent [85, 128], aluminium-
containing phosphate binders were replaced by calcium salts as first-line therapy for hyperphosphatemia in most renal
units. Unfortunately calcium salts frequently result in hypercalcemia when given in sufficiently large oral doses to
control serum phosphate [129–135], so that aluminium-containing phosphate binders continued to be used. It has been
suggested that, when used in low doses, with careful monitoring of serum aluminium, these binders are safe [85].
However, although only about 1% of the oral dose of aluminium is absorbed [136], even on modest doses this
represents between 5 and 10 mg of elemental aluminium daily. Since PD removes only 40–50 mg daily [137] it is
evident that tissue accumulation is inevitable and significant. Reduction of dialysis fluid calcium concentration was
advocated as a means of extending the use of calcium salts and preventing hypercalcemia and was studied both in
hemodialysis [138, 139] and peritoneal dialysis patients [140–146].

The demonstration of an association between mortality and high/normal calcium levels by United States Renal
Data System (USRDS) and Dialysis Outcomes and Practice Patterns Study (DOPPS) data [101, 102, 147] has
persuaded many physicians that utilizing high/normal serum calcium levels to suppress PTH is no longer tenable.
However, no prospective randomized trials have been undertaken so far to validate current guidelines. In order to
maintain serum calcium below 2.37 mmol/L while controlling hyperphosphatemia use of the more expensive non-
calcium-containing phosphate binders is required. This is impossible in many countries around the world on grounds
of cost, and is even causing concern the United States [148–150].

Control of serum phosphate is not only important in terms of its effect on PTH, but also for prevention, and
sometimes treatment, of extraskeletal calcification. This potentially lethal aspect of renal osteodystrophy is a parti-
cular hazard in patients who have persistent hypercalcemia and hyperphosphatemia. It was traditional to prescribe
aluminium-containing binders for such patients on the grounds that the aluminium absorbed is likely to be less
harmful than allowing the process of vascular calcification to continue unchecked. Utilization of noncalcemic
phosphate binders is now a more appropriate (and expensive) approach.

Noncalcemic Phosphate Binders

A more efficient dialysis fluid is an attractive way of improving phosphate clearance, and this was tried in the early
1980s in an experimental rat model [151]. Polyethylenimine was utilized as an osmotic agent, and demonstrated
measurable binding to phosphate. Unfortunately it was toxic to the rats and produced gross morphological changes in
the visceral mesothelium and associated organs. A variety of other oral phosphate-binding agents have been tested and
some are in clinical use [152]. However, none has completely abolished the problem of hyperphosphatemia because of
problems with efficacy, potency or palatability.

Two noncalcemic compounds now generally available are poly[allylamine hydrochloride] (RenaGel, Geltex Phar-
maceuticals, Waltham, Mass., USA) and lanthanum carbonate (Fosrenol, Shire Pharmaceuticals, Andover, UK).
Poly[allylamine hydrochloride] is a nonabsorbable calcium- and aluminium-free compound that is as effective as
calcium carbonate [153]. It also has a beneficial effect on the patients’ lipid profile with a reduction in serum total and
LDL cholesterol.

Lanthanum was first reported as a potential oral phosphate binder by Graff and Burnel [154]. Phosphate binding
was estimated by the reduction of urinary excretion and increase in faecal excretion, and lanthanum citrate was found
to be as effective as aluminium chloride, with less (but not zero) systemic absorption. Human studies have confirmed
its phosphate binding properties in vivo [155–159] and it has been studied for up to 3 and 6 years, and has been
commercially available since 2005. Although concerns exist in some quarters about its long-term safety, no clinical
data has emerged to justify this [160]. The renewed interest in control of serum phosphate has reinvigorated the search
for other more effective binders and several are in various stages of development [161].

Peritoneal Flux and Reduced Calcium Dialysis Fluid

During an exchange of 2 L of 1.36% glucose, 1.75 mmol/L calcium PD solution there is a net influx of calcium to the
patient, although the amount varies from one study to the next (84 – 18 mg/day [120], 300 mg/day [162]). The transfer of
calcium is also influenced by ultrafiltration rate and volume [163], so that a 1.36% glucose solution results in a 10 mg
calcium uptake by the patient but the greater ultrafiltration from a 3.86% solution leads to a loss of 20 mg. This gives a
net daily absorption of 10mg if one hypertonic bag is used per day. In another study, Kwong et al. [164] found an uptake
of 29mg per 1.36% exchange and a loss of 6 mg per 3.86% exchange, suggesting a larger net gain of around 80 mg daily.
However, a lower PD fluid calcium concentration of 1.5mmol/L causes the balance to becomenegativewith a loss of 50 –
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36 mg/day [105]. These findings suggest that patients using dialysis solutions containing 1.75 mmol/L of calcium are in a
significantly positive calcium balance even before considering the additional gut absorption from oral calcium carbonate
and vitamin D therapy.

The theoretical work by Martis et al. [125] formed the basis for the commercial production of a peritoneal dialysis
fluid with a calcium concentration of 1.25 mmol/L, in an attempt to decrease the incidence of hypercalcemia in CAPD
patients taking oral calcium salt phosphate binders. Clinical studies have now confirmed this theoretical work [145,
165] and it is now the commonest concentration in general use. Although dialysis fluids with other concentrations of
calcium can be obtained (0, 0.60, 1.00, 1.45 mmol/L), 1.25 mmol/L would appear to be the logical choice for a standard
PD fluid because it is so close to normal serum ionized calcium levels. This results in a homeostatic effect, with calcium
being lost into the peritoneum when serum levels are above 1.25 mmol/L, but being absorbed from the peritoneum
during times of relative hypocalcemia. All other proposed calcium concentrations are outside the normal range of
serum ionized calcium and therefore cannot exert this homeostatic effect.

Convective effects of ultrafiltration increase the removal of calcium from the peritoneum so that patients using one
or more 3.86% glucose exchanges per day will have a significantly greater negative peritoneal calcium balance than
patients using only 1.36% exchanges [166]. While in theory this could result in some degree of hypocalcemia, in
practice it rarely occurs, as calcium absorption from oral phosphate binders is usually sufficient to compensate.

A 2-year prospective biochemical, radiological, and histological study of 1.25 mmol/L calcium PD fluid showed it to be
safe in compliant, well-monitored patients [141, 144]. It allowed administration of larger doses of calcium carbonate (now
considered less desirable) and achievement of good control of serum phosphate and calcium–phosphate product. Para-
thyroid hormone levels were suppressed in the majority of patients, and bone histology and density did not deteriorate.

Cunningham et al. [146] used 1.25 mmol/L calcium dialysis fluid to enable the use of calcium carbonate plus
alphacalcidol in a group of CAPD patients. In 17 CAPD patients taking oral calcium carbonate, reductions in dialysis
fluid calcium concentration to 1.45 mmol/L or 1.00 mmol/L enabled most of the patients to also take oral alphacalci-
dol. Parathyroid hormone, serum aluminium, and alkaline phosphatase levels were all decreased during the 11 months
of the study, with the authors concluding that a dialysate calcium concentration of 1.75 mmol/L is too high for the
majority of calcium carbonate–treated patients, and that substantial reductions of the dialysate calcium concentration
are required. Other workers have used 1.0 mmol/L calcium fluid in PD patients, again with similar results [39, 167].
Utilization of solutions with calcium concentrations of 1.00 mmol/L and below put the patient into a permanent
negative calcium balance, so that very close attention must be given to PTH levels and compliance with oral calcium
and vitamin D therapy, but this approach has been reported to increase PTH levels and bone turnover in patients with
adynamic bone [168].

Serum Magnesium in PD

Magnesium levels are consistently elevated in PD patients managed with standard dialysate containing 0.75mmol/L of
magnesium [140]. No toxicity has been reported at these levels, indeed hypermagnesemia may have a suppressive effect
on PTH release and retard the development of arterial calcification in PD patients [169]. Hypermagnesemia may
therefore be beneficial, but it has also been shown that normalization of serum magnesium is associated with an
improvement in bone histology in hemodialysis patients [170]. Reducing the magnesium content to 0.25 mmol/L
normalizes serum magnesium levels in CAPD patients [122, 165]. Parsons et al. [171, 172] have described the use of a
low-calcium/zero magnesium PD fluid with a combination of calcium carbonate and magnesium carbonate in liquid
form as the phosphate binder. Using this approach, mean serum phosphate levels of 1.4–1.5 mmol/L were obtained
without causing hypermagnesemia, although hypomagnesemia was seen in two of 32 patients. Zero magnesium fluids
have also been studied by Shah et al. [173] and offer the advantage of permitting larger doses of magnesium salt
phosphate binders, but there are two disadvantages. First, patients may experience gastrointestinal upset, since
magnesium salts have a laxative effect [174], and secondly monitoring of compliance and serum magnesium levels
becomes obligatory, as hypomagnesemia has been associated with cardiac rhythm disturbances [175–177] and
electrocardiographic abnormalities [178, 179].

Acid–Base Balance and 40 mmol/L Lactate PD Fluid

There is considerable evidence that as renal mechanisms for acid excretion fail, bonemineral stores become an important
source of buffer [180, 181]. Acetazolamide produces a metabolic acidosis in normal subjects by inhibiting carbonic
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anhydrase in the proximal tubular epithelium, resulting in a bicarbonate diuresis. In virtually anuric hemodialysis
patients it might therefore be expected to have little effect, but in fact produces a severe metabolic acidosis [182],
suggesting that it is interfering with extrarenal buffering. Carbonic anhydrase is present in osteoclasts [183], and may
be activated by PTH to promote bone resorption by release of Hþ ions [184]. The availability of bone buffers and
bicarbonate would therefore depend on the activity of PTH, and could be inhibited by acetazolamide. It can therefore be
seen that during a time of prolonged metabolic acidosis, such as exists in many PD patients using PD fluid with only
35 mmol/L lactate [185], buffering by bone would be linked to bone resorption and increased PTH levels.

The use of PD fluids containing 40 mmol/L lactate, or newer so-called biocompatible fluids containing only
bicarbonate, or bicarbonate plus lactate, correct the mild acidosis experienced by most PD patients using the older
lower lactate concentration [186]. Optimal correction of acidosis has been shown to change the progression of
osteodystrophy in hemodialysis patients by Lefebvre et al., who, over 18 months, prospectively studied two groups
of patients, dialyzed against either standard dialysis fluid (32–24 mmol/L), or against fluid supplemented with
7–15 mmol/L of bicarbonate to achieve a predialysis plasma bicarbonate of 24 mmol/L. The supplemented group
had a decreased rate of progression of secondary hyperparathyroidism in patients with high bone turnover, and
stimulated bone turnover in those with low bone formation rates [187].

Parathyroid Hormone in PD

Although the prevalence of symptomatic bone disease has decreased in recent years, the 1989 EDTA Registry report
showed that around 40% of all patients dialyzed for up to 15 years still required parathyroidectomy [188]. This partly
reflects the poor understanding of the pathogenesis of secondary hyperparathyroidism that existed in the 1970s
and 1980s, and partly the difficulty of monitoring vitamin D and PTH levels. However, only slightly better rates
have been reported more recently from the Lombardy registry in Italy, where it was noted that PD patients had
a higher likelihood of parathyroidectomy than HD patients [32]. In the multicenter DOPPS study, the adjusted
rate of parathyroidectomy varied four-fold across the DOPPS countries, and was significantly associated with
baseline concentrations of phosphorus, calcium, calcium-phosphorus product, PTH, and dialysate calcium concen-
tration [102].

PD has been shown to clear significant amounts of PTH from the serum. Using a C-terminal assay Delmez et al.
[163] found a clearance rate of 1.5 mL/min or 13.6 – 3.2% of the estimated total extracellular iPTH. Despite this, there
is no clearcut consensus on the effect of PD on PTH levels, although the weight of evidence is in favor of a steady
decline with time [104, 110, 189, 190]. However, other reports show no change [163], an increase in the levels [111] or a
variable response [112]. The reason for these differences probably lies in the widely varying practices between centres
with regard to the use of phosphate binders, vitamin D3 treatment and also the different radioimmunoassays used for
measurement of iPTH and its fragments.

Until the 1990s, CAPD tended to be seen as a prescription in itself, with a standard set of guidelines that were
suitable for every patient. As a result, the majority were treated with four 2-L exchanges, a phosphate binder, vitamin
supplements and a small oral dose of 1,25-dihydroxyvitamin D3. PTH levels were rarely measured, and the dosage of
calcitriol was changed only if hypercalcemia occurred or evidence of osteitis fibrosa appeared on plain radiology of the
hands.

Maintenance of a high serum ionized calcium (1.2–1.3 mmol/L) and strict control of serum phosphate, from the
time of first starting dialysis, has been shown to decrease PTH levels in CAPD patients without the addition of vitamin
D3 therapy [142, 143]. However, the increased incidence of adynamic bone, its association with vascular calcification
and studies of bone turnover rate, have resulted in a plethora of guidelines suggesting that the appropriate target range
for PTH is somewhere between 2 and 5�ULN (upper limit of normal) [126]. Although these opinion-based guidelines
seem sensible given the current state of our knowledge, they have never been tested in a randomized controlled,
outcome trial, and it is not known whether targets for PD patients should be different.

In a large and long-term study of PTH and all-cause mortality in 345 HD and 277 PD patients, over 14 years,
survival after adjustment for age, race, gender, months on dialysis at enrollment, diabetic status, and nutritional
markers were significantly better for patients with enrollment PTH greater than 200 pg/mL than for patients with
PTH 65 to 199 pg/mL and patients with PTH less than 65 pg/mL. For PD patients, age, diabetes, and months on
PD at enrollment were inversely associated with PTH, whereas black race, albumin, creatinine, and phosphate
were associated positively [191]. However, in a very similar size study of 251 PD patients, Oreopolous’s group
found no such association [192] emphasizing the difficulty of interpreting observational, retrospective chart
studies.
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Vitamin D in PD

VitaminDmetabolism is well known to be abnormal in uremia, with very low levels of 1,25-dihydroxyvitaminD3 [62].
However, there are additional factors affecting vitamin D levels relating to the PD itself. Levels of 1,25-dihydrox-
yvitamin D3 are known to be very low, and sometimes undetectable, at the start of PD if prior treatment has not been
given [18]. 25-Hydroxyvitamin D3 levels are usually within the normal range at the start of CAPD but begin to decline
thereafter [104, 124]. This is not unexpected since peritoneal dialysis effluent contains significant amounts of vitaminD
binding protein, an a2-globulin of molecular weight 59 kDa, which binds all three vitamin D metabolites (1,25-
dihydroxyvitamin D3, 25-hydroxyvitamin D3, and 24,25-hydroxyvitamin D3). Losses of 1,25-dihydroxyvitamin D3
and 24,25-dihydroxyvitamin D3 have been shown to average approximately 6–8% of the plasma pool per day [193].
Thus, PD patients may require 2–3 times the maintenance doses used in hemodialysis patients if it is thought necessary
to bring serum levels of 1,25-dihydroxyvitamin D3 into the normal range, These doses frequently produce the problem
of hypercalcemia.

In England a seasonal variation in 25-hydroxy-vitamin D3 levels was found by Cassidy et al. [194], and in sunnier
climates patients may be able to maintain 25-hydroxyvitamin D3 levels within the normal range throughout the year.
Whether 24,25-dihydroxyvitamin D3 plays an important role in bone mineralization remains to be proved, but Dunstan
et al. [195] have shown that the combination of 1,25-dihydroxyvitaminD3 and 24,25-dihydiroxy-vitaminD3 given orally
did not appear to confer any additional benefit compared with 1,25-dihydrox-yvitamin D3 alone. This result is
challenged by the work of Chaimovitz, Gal-Moscovitzer, and others, who suggest that 24,25-dihydroxyvitamin D3
plays a role in the regulation of PTH levels [196–199], and when given in conjunction with 1,25-dihydroxyvitamin
D3 suppressed osteoclastic parameters without causing hypercalcemia.

The Role of Vitamin D Analogue Therapy in PD

Vitamin D therapy in PD has traditionally been used for the treatment of elevated PTH levels (greater than 5–6 �
ULN) in one of two ways. If serum calcium levels are low, then a daily oral dose of calcitriol or 1-alphacalcidol will
raise serum calcium and thereby suppress PTH secretion. Alternatively if serum calcium is already towards the top end
of the normal range then twice weekly, ‘‘pulse therapy’’ will produce larger peak serum vitamin D levels, which, in
theory, should also suppress PTH secretion, but with less stimulation of gastrointestinal calcium uptake. Small-scale
studies have provided some evidence for this approach [67, 70, 71, 200, 201].

Oral Pulse Calcitriol Therapy

The idea of pulse therapy was initially investigated in hemodialysis patients, where thrice-weekly intravenous pulses of
1,25-(OH)2D3 were administered at the end of a hemodialysis session [53]. This regime resulted in marked suppression
of iPTH levels with a mean decrement of around 70%, although Slatopolsky surmised that this was largely as a result
of the rise in serum ionized calcium that occurred during the study. Furthermore, this study also demonstrated that
when equal doses of intravenous or oral calcitriol were given, the serum concentration of calcitriol was 6–8 times higher
with the intravenous preparation, resulting in a greater delivery to nonintestinal target tissues and allowing greater
expression of its biological effect on the parathyroid glands. However, even this degree of suppression was insufficient
to restore iPTH to satisfactory levels, because of the large nonsuppressible basal secretion rate of hypertrophied
glands. Interestingly, it has also been shown that administering calcitriol at night reduces both the incidence and
severity of hypercalcemia in hemodialysis patients [202].

Korkor demonstrated that the parathyroid glands from patients with chronic renal failure contained only one-third
as many calcitriol receptors as are found in parathyroid adenomas [203], and in animal studies it is known that uremia
results in a two- to four-fold decrease in receptor numbers as compared to normal values [204, 205]. Thus it is likely that
reduced receptor numbers in the parathyroid glands of uremic patients render them less responsive to the inhibitory
effects of calcitriol, so that suppression requires high peak serum levels.

Since the initial work of Slatopolsky several other workers have confirmed that both pulse intravenous 1,25-
dihydroxyvitamin D3 and a-calcidol are effective in reducing serum PTH levels in hemodialysis patients [65, 66, 70],
although all found difficulty in distinguishing direct effects on parathyroid secretion from indirect effects mediated by
raising serum calcium. Subsequent studies in CAPD patients have tended to confirm this work, but some controversy
still exists over the ideal regime of administration [206–208]. It is, however, clear that 1,25-dihydroxyvitamin D3 does
have a direct suppressive effect on parathyroid cells by influencing transcription of the parathyroid gene [52, 205, 209].
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With current concern about vascular calcification and calcium loading, oral pulse therapy would appear to be the
most appropriate method of administration for PD patients, but outcome studies are once again lacking, and
cinacalcet may have obviated the need to study this further. However, vitamin D manufacturers are ‘‘fighting back’’
with retrospective, observational data to suggest that perhaps vitaminD therapy confers a small survival benefit inHD
patients [210], and its immunological effects may yet turn out to be important to dialysis patients.

Intraperitoneal Vitamin D Therapy

Delmez et al. demonstrated that calcitriol could also be given intraperitoneally in CAPD patients where again it
produced a rise in serum ionized calcium levels and a significant fall in serum PTH [55]. However, continued control of
serum phosphate is also required, since hyperphosphatemia will significantly blunt the effect of calcitriol therapy [211].
It has been shown that 22-oxa-calcitriol can be given effectively by the intraperitoneal route, but adherence to PD vinyl
bags varies and may result in uncertain serum levels [212, 213]. However, the risk of introducing infection while
injecting vitamin D, and the fact that such a route has additional practical difficulties in automated PD has prevented
this technique from gaining general acceptance.

Calcitriol Analogues

In rats with normal renal function 22-oxa-calcitriol has been shown to have very little calcemic activity [214], yet it
suppresses PTH mRNA levels equally as effectively as 1,25-(OH)2D3 [215]. A similar effect is reported in dogs with
over 12 months of renal failure, where administration of a single intravenous dose of 5 mg of 22-oxa-calcitriol
decreased PTH by 80% over 24 h without any change in serum calcium or phosphate levels [215]. However, Drueke
and co-workers found similar degrees of hypercalcemia in rats with chronic renal failure treated with either 1,25-
(OH)2D3 or 22-oxa-calcitriol [216], and this observation has been confirmed in other studies of hyperparathyroid
hemodialysis patients, where PTH suppression was associated with a rise in serum calcium [217–219]. Other analogues,
such as 2b-3-hydroxypropoxy calcitriol, EB 1089, andKH 1060, are under investigation as immunosuppressive agents,
as well as for their effects on divalent ion metabolism [220].

Although prospective comparisons against calcitriol are very limited, current evidence suggests that new active vitamin
D analogues, such as 19-nor-paracalcitol and doxercalciferol, adequately control PTH levels with minimal changes in
serum calcium and phosphate during treatment with calcium-containing phosphate binders. In the past, the development
of adynamic bone occurred in a substantial proportion of dialyzed patients treated with calcitriol therapy and calcium
containing binders. Therefore, the long-term skeletal response to the new active vitamin D sterols remains to be
established and whether patients will develop adynamic bone is not known at the present time. Furthermore, the impact
of the addition of calcium-free phosphate binders on the control of secondary hyperparathyroidism in conjunction with
the new active vitamin D analogues remains to be studied. A retrospective, observational study has suggested a small
improvement in survival with intravenous paricalcitol but such data cannot be regarded as scientifically robust at this time
[210]. Whether the cost of these new analogues can be justified by improved patient outcomes remains to be proven.

Calcimimetics

Compounds that act as calcium receptor agonists are called calcimimetics because they mimic or potentiate the effects
of extracellular calcium on parathyroid cell function. By targeting the calcium sensing receptor, cinacalcet provides a
new means of regulating PTH secretion by amplifying the receptor’s sensitivity to extracellular calcium and reducing
PTH concentrations [221]. The discovery of such compounds with potent and selective activity enables a pharmaco-
logical approach to regulating plasma levels of PTH.

Results from clinical trials examining single and multiple doses up to 180 mg once daily suggest that treatment with
cinacalcet not only reduces plasma PTH concentrations but also leads to a concomitant decrease of serum calcium and
phosphate in patients with secondary hyperparathyroidism receiving hemodialysis [222–225]. It reduces PTH to within
K/DOQI targets in 44–56% of patients with a greater number (�60%) achieving at least a 30% reduction in serum
PTH from baseline [226]. Analyses of combined data from randomized, blinded, placebo-controlled, 6- to 12-month
studies of cinacalcet versus standard care for secondary HPT showed statistically significant and clinically meaningful
reductions in the risks of parathyroidectomy, fracture, and cardiovascular hospitalization. Although the individual
clinical studies were designed to assess changes in biochemical parameters and not a priori clinical end points, the
prospective and interventional nature of the combined data lends credibility to the clinical relevance of biochemical
control in secondary HPT and suggests that therapy with cinacalcet may lead to beneficial effects on clinical outcomes
[227]. Long-term treatment has been shown to effectively sustain reductions in PTH for up to 3 years [228]. Cinacalcet’s
efficacy appears to be similar in both hemodialysis and peritoneal dialysis patients [229].
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Side effects reported in a trial of cinacalcet [230] compared to placebo include nausea (32 versus 19%) and vomiting
(30 versus 16%). The frequency of nausea was unrelated to dose, but vomiting occurred more frequently at higher
doses. Hypocalcemia (<1.90 mmol/L) occurred significantly more frequently in cinacalcet-treated than placebo-
treated patients (5 versus 1%). In the titration phase of this study more cinacalcet-treated patients than placebo-
treated patients withdrew (15 versus 7%), and just less than another 5% of patients later withdrew from treatment as a
result of these adverse effects.

Renal Osteodystrophy in Diabetic PD Patients

A number of reports over the past 12 years have suggested that insulin-dependent diabetes mellitus is associated with
lower serum levels of PTH [114, 231, 232], and decreased responsiveness to acute hypocalcemia [233]. Therefore, it has
been suggested that diabetic patients may be more prone to low-turnover bone disease, and relatively protected from
severe hyperparathyroidism. However, until recently it has been difficult to separate the effects of diabetes from those of
aluminium accumulation, but Pei et al. [114] have now shown that diabetes mellitus is an important risk factor for both
aluminium-related bone disease and the adynamic bone lesion. These authors also noted that diabetes appears to
enhance the risk of developing aluminium bone disease, possibly by increasing gastrointestinal absorption and bone
surface accumulation of aluminium. This finding adds further impetus to the drive to eliminate use of aluminium-based
phosphate binders wherever possible.

The Idiopathic Adynamic Bone Lesion in PD

The spectrum of bone disease has changed over the past 15 years with the emergence of the adynamic bone lesion, now
present in 20–60% of dialysis patients according to various histological studies [9, 23, 25, 35, 36, 234, 235], and the
welcome decline in the usage of aluminium-containing phosphate binders. The association of adynamic bone with low
PTH levels has resulted in a reassessment of attempts to suppress serum PTH to ‘‘normal’’ levels in both predialysis and
dialysis patients [34, 35] and acknowledgement that blanket prescription of continuous low-dose oral calcitriol therapy
for all dialysis patients is unwise [236].

This lesion occurs more commonly in patients aged over 50 years at start of dialysis (Table 22.3), in those with a
longer duration of predialysis renal failure [36], in diabetic patients [114], and in PD patients compared to HD patients
[28]. In a longitudinal histological study of bone disease in CAPD [142], five of eight patients who completed a full
2 years of follow-up were found to have developed the adynamic lesion (Fig. 22.5). None of the patients reported
symptoms attributable to the lesion, and it has no characteristic radiological findings. Bone mineral density did not
decline over the 2 years, but even longer follow-up may be required for signs and symptoms to appear. It is associated
with normal or suppressed levels of parathyroid hormone [9, 28, 36, 237, 238], and high or high normal levels of ionized
calcium. Sherrard et al. noted that the adynamic bone lesion was the commonest histological diagnosis in their study of
267 dialysis patients [10], and that it occurred more frequently in PD (61%) than in hemodialysis patients (36%). They
suggest that this may be due to the more sustained and higher calcium levels associated with PD, which may result in
more effective suppression of PTH than the intermittent calcium load of hemodialysis.

Perhaps the most significant feature of the adynamic bone lesion is its association with vascular calcification, which
may be related to the higher serum calcium levels found in patients with this lesion. This is a worrying association

Table 22.3 Associations of the idiopathic a dynamic bone lesion

Clinical

Age >50 years

Diabetes mellitus

Commoner in PD than hemodialysis patients

Biochemical

Low/normal parathyroid hormone

High/normal ionized calcium

Low/normal bone alkaline phosphatase and other markers of bone turnover

Radiological

Increased incidence of vascular calcification
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since many of these patients will be hoping for renal transplantation, which may become impossible when vascular

calcification is severe. Evidence has accumulated pointing to the active and regulated nature of the calcification process.

Elevated phosphate and calcium, common in patients with adynamic bone, may stimulate sodium-dependent phosphate

co-transport involving osteoblast-like changes in cellular gene expression. Arterial calcification is responsible for stiffen-

ing of the arteries with increased left-ventricular afterload and abnormal coronary perfusion as the principal clinical

consequences [239]. It also seems likely that adynamic bone would be significantly more prone to the osteoporotic effects

of high-dose steroid immunosuppression, as well as avascular necrosis of the femoral head [240]. Treatment of

osteoporosis remains uncertain, since the long-term effects of bisphosphonates in CKH are unknown [241–243].
Under normal circumstances the skeleton provides a large buffering capacity for both serum calcium and phosphate.

If the bone is adynamic its buffering ability may be significantly reduced, and serum levels are therefore much more

easily influenced by dietary intake or absorption from the dialysis fluid. Under these conditions there is a greater

Fig. 22.5 Changes in bone histology in eight patients over 24 months of continuous ambulatory peritoneal dialysis. OM, Osteomalacia;
HPTH, hyperparathyroidism

·        Measure corrected calcium (C.Ca)/Inorganic phosphate (Pi)/Intact PTH (iPTH) 
·        Assess Bone Density if predisposing conditions exist e.g. long term steroid therapy, post menopausal female, smoker 
·        Bone Biopsy–consider in patients with spontaneous fractures or aluminium exposure 

iPTH-NORMAL iPTH-MILD/MODERATE ELEVATION iPTH-GROSS ELEVATION 

10–100 pg/mL 101–400 pg/mL >400 pg/mL 

Avoid Vit D or vit D analogues Control phosphate with binders & diet Control phosphates first with 
Control phosphate to < 1.8 mmol/L Use calcium based binders if C.Ca < 2.4 Calcium based/non calcemic binders 
Use dietary restriction Use non-calcemic binders if C.Ca 2.4 or more Supress PTH to < 300 pg/mL 
Use calcium based binders (Lanthanum/Sevelamer) Use pulsed oral alfacalcidol or calcitriol 

iPTH - NORMAL 
continue as above 

iPTH - MILD ELEVATION 
continue as above 

iPTH - GROSS ELEVATION 
or rising despite therapy 

C.Ca 2.6 or more           /                 C.Ca < 2.6 

Parathyroid scan (USG/Isotope/CT) 

Parathyroid adenoma/hyperplasia 

Cinacalcet and/or surgery 

Aim to keep corrected calcium (C.Ca) between 2.2 and 2.4 mmol/L 

On starting peritoneal dialysis 

Re-measure C.Ca/Pi/iPTH every 3 months 

Fig. 22.6 Clinical algorithm for the monitoring and management of renal osteodystrophy in PD patients

666 A. Vardhan and A.J. Hutchison



likelihood of the calcium–phosphate product being exceeded, and the process of metastatic calcification beginning.

If this is the case then it would be very important to allow PTH levels to rise slightly and stimulate bone turnover, while

maintaining strict control of serum phosphate. In this way one would also hope to induce resorption of vascular

calcium deposits [168]. It is evident that the use of calcitriol, a powerful modulator of calcium and PTH, should be

tailored to the individual patient’s clinical situation, not merely prescribed in an unthinking fashion as a ‘‘vitamin

supplement.’’ Tailoring of any therapy requires the clinician to gather certain data in order to determine appropriate

management. In this case one needs to examine the patient’s serum calcium, phosphate, and parathyroid hormone

levels, in conjunction with bone histology data in certain cases. On the basis of these findings one can plan individual

treatment along the lines of the clinical algorithm shown in Fig. 22.6.

Recommendations for Management of Osteodystrophy in PD

Techniques for monitoring renal osteodystrophy in PD patients are still evolving. In the past, different units have

approached the problem in widely differing ways, with some only monitoring serum calcium, phosphate and alkaline

phosphatase plus annual skeletal surveys, and others performing much more detailed (and expensive) investigations,

sometimes including bone biopsy. If we consider the available techniques under three broad headings – biochemical,

radiological and histological – certain recommendations can be made, given the present state of understanding

(Table 22.4).

Biochemical Monitoring

In dialysis patients, changes in serum calcium and phosphate do not reflect disease processes within the skeleton as they

may do in patients with normal renal function. They are primarily influenced by the patient’s diet and oral intake of

phosphate binders plus the amount of dialysis that patient is receiving. A rise in serum alkaline phosphatase is more

indicative of increased bone turnover, but is seen only in advanced hyperparathyroidism and levels are influenced by liver

and intestinal production. A rising level is generally associated with histologically severe osteitis fibrosa. The bone

isoenzyme of alkaline phosphatase is a more sensitive indicator and low levels are associated with a greater likelihood of

adynamic bone histology [36]. Measurement of serum osteocalcin is possible, providing a marker of osteoblast activity,

but the very short half-life of the molecule means that unless the serum is spun and frozen within 20 min any subsequent

assay is likely to be invalid. For this reason it seems unlikely to be helpful in clinical practice, and in any case reports show

a close correlation with intact PTH levels in dialysis patients [244]. Another marker of hyperparathyroid bone disease,

tartrate-resistant acid phosphatase (TRAP), has recently been reported to be a sensitive indicator of high- and low-

turnover bone states [245–247]. This enzyme is produced by actively resorbing osteoclasts, and can bemeasured in serum

by immunoassay or colorimetrically. Experience with this marker is limited at present [247].
The most widely available, and generally useful, marker at present, is intact PTH, which should be measured every

3 or 4 months in all PD patients. Regular measurement of total alkaline phosphatase is unnecessary, although it will

continue to be performed as part of the ‘‘liver screen.’’

Table 22.4 Recommendations for the management of renal osteodystrophy in adult PD patients (see also Fig. 22.6)

1. Restrict dietary phosphate, as far as possible within the confines of a 1.2 g/kg/day protein diet.

2. Use 1.25 mmol/L (2.5 mEq/L) calcium dialysis fluid to minimize hypercalcemia. Individual patients may require higher or lower
concentrations depending on serum ionized calcium (or total corrected calcium) and phosphate levels.

3. If serum phosphate >1.8 mmol/L and calcium <2.30 mmol/L start calcium carbonate/acetate given twice daily with main meals. Dose
titrated to serum calcium and phosphate levels. Educate patients to distribute dose according to phosphate intake.

3. If serum phosphate >1.8 mmol/L and calcium >2.30 mmol/L start lanthanum carbonate or sevelamer hydrochloride given twice daily
with main meals. Dose titrated to serum phosphate levels. Educate patients to distribute dose according to phosphate intake.

4. Measure serum parathyroid hormone every 3 months (see Fig. 22.6) and use pulse oral vitamin D3 therapy if necessary. Replace
25-hydroxyvitamin D3 if serum levels are low.

5. Introduce cinacalcet if PTH continues to rise.

6. Measure serum magnesium and aluminium every 6 months, unless patient is taking oral aluminium (then measure every 3 months).
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Radiological Monitoring

Routine, full skeletal surveys are unnecessary, and have largely been replaced by regular monitoring of serum PTH
with plain X-rays of the hands plus a single lateral view of the lumbar spine [106, 248, 249]. This greatly reduces the
dose of radiation previously received by PD patients without detriment to patient care. Ideally, some measurement of
skeletal bone density should be made at the time of starting dialysis in all patients, so that those with subnormal bone
density can be identified and special efforts made to improve the situation. Whether this measurement is best
performed by QCT, SPA, DPA or DEXA scan would depend on local facilities, finance, and expertise.

Skeletal scintigraphymay be performed using technetium labeled 99m-methylene diphosphonate, but correlation of
scan results with bone histology is poor, although increased uptake has been demonstrated in severe hyperparathyroid
bone disease [250–252], and it has been demonstrated to be a method of monitoring response to treatment [253, 254].

Single-photon absorptiometry (SPA): A highly collimated beam of photons is used with 125I as a source. However,
the single-energy beam requires a constant thickness of soft tissue around the bone to produce reliable results, and it
cannot distinguish between trabecular and cortical bone. Studies have found that mineral content tends to be lower
than normal in patients with renal failure [18, 255–257], but it does not allow differentiation between different types of
osteodystrophy.

Dual photon absorptiometry (DPA): DPA utilizes an isotope with two energies (153 Gd), thereby overcoming the
requirement of SPA for a constant thickness of soft tissue around the bone. It can therefore be used to measure bone
mineral density in any skeletal site, but normal scan results have been seen in hemodialysis patients with histologically
proven osteodystrophy [249].

Quantitative computed tomography (QCT): the principle of this technique is the same as for standard CT scanning,
and a calibration phantom placed under the patient is used to relate bone mineral density to Hounsfield units. True
bone density is measured in g/cm3 and it is less affected by artefacts such as soft tissue calcification. However, it delivers
a relatively high radiation dose.

In our own experience, bone density measurements are, if anything, less helpful than plain radiographs, since there
is no correlation with histological diagnosis. Although end-stage renal failure patients were found to have reduced
bone density, compared to age- and sex-matched normal values, the majority of patients had both QCT and SPA
results within 2 SD of normal. Piraino et al. used QCT to measure bone mineral density in a group of 31 patients who
had been on dialysis (19 peritoneal dialysis, 10 hemodialysis) for amean of 5.3 years [258]. It is now known that the type
of dialysis influences bone histology [11], therefore it may be misleading to consider peritoneal dialysis and hemodia-
lysis patients together. However, as in our study, Piraino et al. found that serum PTHwas a better indicator of the type
of bone disease present than was QCT-determined bone density, and concluded that the usefulness of this technique in
patients with renal failure is limited.

Dual-energy X-ray absorptiometry (DEXA): this has become the most widely used method of quantifying bone
mineral density in renal osteodystrophy and osteoporosis. It has several theoretical advantages over the other
techniques, including low radiation dose, greater precision and rapidity of scanning. Despite this, measurements can
be distorted by several artefacts such as osteophytes, calcification of the aorta or other soft tissues, and previous
vertebral collapse. In 25 dialysis patients no correlation was found between QCT and DEXA measurements of
vertebral bone mineral density [259]. Results can be difficult to interpret because low density can be associated with
almost any type of osteodystrophy [18, 36, 260–262].

While single bone density measurements may be unhelpful, sequential studies might be more helpful, especially if
one has initially established the histological diagnosis by biopsy. Decreasing bone density in a patient known to
previously have osteitis fibrosa would suggest deterioration, especially if associated with a high iPTH.

Transiliac Bone Biopsy

Bone biopsy with tetracycline labeling is undoubtedly the only reliable method of diagnosing the type and severity of
renal osteodystrophy. This is rarely performed in clinical practice because of patients’ and doctors’ perceptions of its
painfulness and invasiveness. In our experience it is no more painful than Jamshidi marrow biopsies, which are
routinely performed in many clinical situations if the blood film suggests it is necessary.

Local expertise permitting, PD patients could undergo a tetracycline-labeled bone biopsy at the time of starting
dialysis, to establish the exact histology of their bone plus the degree of aluminium accumulation. In many cases this
could be performed under general anesthetic by the surgeon as the Tenckhoff catheter is inserted. Thereafter, one can
probably surmise what is happening to the histology on the basis of regular PTHmeasurements once the initial histology
is known. However, few centers have the expertise to either perform a biopsy or to interpret them histologically.
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Most countries have created guidelines formanagement of bone andmineral metabolism, or else they follow European
Best Practice or K/DOQI. However, all these guidelines have similar underlying principles. They all depend first on
maximal restriction of dietary phosphate, within the limitations of a diet providing 1.2 g protein/kg body weight per day,
and usually on the routine use of PD fluid with a calcium concentration of 1.25 mmol/L, magnesium of 0.25mmol/L, and
lactate of 40mmol/Lor bicarbonate buffer. Appropriate phosphate binders should be given in doses adequate tomaintain
serum phosphate below 1.8 mmol/L and aluminium-containing binders should be avoided. If hypercalcemia occurs,
calcium carbonate could be partially or completely replaced by lanthanum carbonate [157] or sevelamer hydrochloride
[153]. Serum ionized calcium and iPTH should be measured every 3 months to provide a guide for treatment with oral
calcitriol. If iPTH is less than 300 pg/mL (or 5�ULN) then vitamin D3 is not required. If iPTH exceeds 300 pg/mL then
attention should be paid to maintenance of a mid-range serum calcium level and tighter dietary control of phosphate
where possible. Calcitriol should be given as intermittent-pulse doses [71], and iPTH remeasured after 3 months. If the
level remains significantly elevated, or is rising, then introduction of cinacalcet may be appropriate if it is financially
affordable. If PTH continues to rise appropriate scans should be ordered to search for a parathyroid adenomawith a view
to possible parathyroidectomy (provided the patient does not have significant aluminium deposition).

Serum magnesium levels should be measured once every 6 months, especially in those patients whose dietary intake
may be low, to check for hypomagnesemia. Plasma aluminium levels should also be monitored every 6 months
depending on local circumstances, although some units now reserve this only for patients taking aluminium-based
phosphate binders. It must be remembered that aluminium uptake can be significantly enhanced by citrate ingestion
and oral vitamin D3.

Utilization of any carefully thought out guidelines should enable reasonable control of divalent ion metabolism,
and prevention or amelioration of osteodystrophy in the majority of PD patients. However, while the targets for
calcium, phosphate, calcium-phosphate product, and PTH are more easily achieved in PD patients than HD [263],
somemay be mutually exclusive. Further advances will hinge on a greater understanding of the vitamin D/parathyroid
axis in renal failure, along with the development of safe, noncalcemic analogues of vitamin D3 plus more efficient
phosphate binders and calcimimetics, and most importantly prospective, randomized, controlled, interventional
studies to examine patient outcomes.

Summary

Disorders of calcium,magnesium, phosphate, vitaminD3, and parathyroid hormone can combine to produce a variety
of skeletal and extraskeletal pathologies in PD patients. The recognition that osteodystrophy is linked to vascular
disease and patient mortality has reinvigorated research into the underlying mechanisms and the creation of new
pharmaceutical agents.

New noncalcemic phosphate binders have now entered clinical use, and further increase the options available to
clinicians. Calcimimetic agents are also available and provide an effective means of controlling PTH independently of
serum calcium levels. Vitamin D analogues are currently perhaps of least certain value in PD, especially since they are
largely only available for intravenous use. However, new pharmaceuticals come with significant expense, to the point
that many patients, even in wealthy countries, will never be able to receive them, and at present their effect on patient
outcome remains unknown. It is imperative that both pharma and academia combine to demonstrate these agents’
benefit, or lack of benefit, in order not to waste large amounts of money which might be better invested in the dialysis
process itself.

The judicious use of a variety of biochemical and radiological investigations, plus bone histomorphometry where
appropriate, can provide a rational basis for the monitoring and management of divalent ion metabolism and renal
osteodystrophy in PD patients. Sadly, most guidelines can at present only be based on opinion, and therefore we must
heed the words of the K/DOQI authors: Since the majority of the recommendations made in this set of guidelines are
based on opinion, it is imperative that evaluation of their clinical outcomes be made a component of their implementation.
In addition, the paucity of evidence based information in this field requires that a more integrated approach to research
efforts be planned and conducted to provide answers to the many issues that remain to be elucidated [126].
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