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Suffix trees and suffix arrays

The Burrows-Wheeler Transform has a very close relationship with suffix trees
and suffix arrays — the array of indexes to the sorted array of substrings
generated during the transform is essentially a suffix array, which in turn
is a representation of the information in a suffix tree. As pointed out by
Burrows and Wheeler in their original work (Burrows and Wheeler, 1994), the
problem of sorting the rotated matrices is the major bottleneck in performing
the transformation, and this is essentially an exercise in suffix sorting. This
relationship between the BWT and suffix arrays and suffix trees also has
important implications in the applications of the BWT, and in its relationship
with other compression schemes, such as PPM. Analyzing the performance of
the BWT is greatly simplified by an understanding of the construction and
complexity of suffix trees and suffix arrays.

In this chapter we study suffix trees and suffix arrays in more detail. While
this is motivated by their relationship with the BWT, suffix trees and suffix
arrays have become important data structures in their own right, especially
for problems in pattern matching, full-text indexing, compression, and other
applications.

4.1 Suffix Trees

The suffix tree is a data structure used to represent the set of all suffixes
of a string. It has a strong resemblance to the trie data structure (Knuth,
1973; Gonnet et al., 1992). However, unlike the trie, the suffix tree provides a
more compact representation of the suffixes. While the size of the trie could
be quadratic with respect to the length of the input string, the suffix tree
provides a linear space representation of the suffixes.

The suffix tree is efficient in both time and space, and it is used for a
variety of applications, such as in pattern matching (Ukkonen, 1993), multiple
sequence alignment (Delcher et al., 1999; Kurtz et al., 2004), the identification
of repetitions in genome-scale biological sequences (Bieganski et al., 1994;
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Volfovsky et al., 2001), and in lossy image compression (Atallah et al., 1999).
Apostolico (1985), Giancarlo (1995) and Grossi and Vitter (2005) discussed
various applications of the suffix tree. More recently, Wired magazine reported
the use of the suffix tree data structure in studying an age-old Inca Mystery
(Cook, 2007) about the existence of written communication using knots and
threads in old Peruvian culture.

Various algorithms have been developed for linear time construction of suf-
fix trees (Weiner, 1973; McCreight, 1976; Ukkonen, 1995). In this section, we
will discuss basic algorithms for constructing suffix trees, with an emphasis on
newer approaches that lend themselves to direct construction of suffix arrays
(without suffix trees). The book by Dan Gusfield (Gusfield, 1997) provides a
comprehensive treatment of suffix trees, their construction, and applications.

4.1.1 Basic notations and definitions

We will continue to use T = T [1 . . . n] as our input text. T is a string of
length n, over an alphabet Σ. In this book, we assume that for a given string
the symbol alphabet is fixed. Thus, we will treat the alphabet size as being
constant, unless otherwise stated. Let T = αβγ, for some strings α, β, and γ
(α and γ could be empty). The string β is called a substring of T , α is called a
prefix of T , while γ is called a suffix of T . The prefix α is called a proper prefix
of T if α 6= T . Similarly, the suffix γ is called a proper suffix of T if γ 6= T .
We will also use ti = T [i] to denote the i-th symbol in T — both notations
are used interchangeably. We use Ti = T [i . . . n] = titi+1 . . . tn to denote the
i-th suffix of T . Similarly, we use T i = T [1 . . . i] = t1t2 . . . ti to denote the i-th
prefix of T .

For simplicity in constructing suffix trees, we usually ensure that no suffix
of the string is a proper prefix of another suffix. This can be done by placing
a sentinel symbol at the end of T , such that the sentinel does not appear
anywhere else in T . In practice this is often achieved by simply appending a
special symbol, say $ to T , such that $ /∈ Σ. This constraint implies that each
suffix of T will have its own unique leaf node in the suffix tree of T , since any
two suffixes of T will eventually follow separate branches in the tree. Unless
otherwise stated, we assume that this special symbol has been appended to
each string.

Given a string T of length n, its suffix tree TT is a rooted tree with n leaves,
where the i-th leaf node corresponds to the i-th suffix Ti of T . Except for the
root node and the leaf nodes, every node must have at least two descendant
child nodes. Each edge in the suffix tree TT represents a substring of T , and
no two edges out of a node start with the same character. For a given edge,
the edge label is simply the substring in T corresponding to the edge. We use
li to denote the i-th leaf node. Then, li corresponds to Ti, the i-th suffix of
T . Figure 4.1 shows the list of suffixes, the suffix trie, and the suffix tree for
an example string T = acracca$.
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Fig. 4.1. Suffix structures for the string T = acracca$: (a) list of suffixes; (b)
suffix trie, and (c) suffix tree. The number at each leaf node corresponds to the
starting position of the corresponding suffix in the original string. See the text for
explanation of the marked nodes u and v

For edge (u, v) between nodes u and v in TT , the edge label (denoted
label(u, v) ) is a non-empty substring of T . An edge is called a t-edge if its
edge label starts with the symbol t. For a given node u in the suffix tree,
its path label, L(u) is defined as the label of the path from the root node to
u. Since each edge represents a substring in T , L(u) is essentially the string
formed by the concatenation of the labels of the edges traversed in going from
the root node to the given node, u. The string depth of node u, (also called its
length) is simply |L(u)|, the number of characters in L(u). Using the labels in
the suffix tree in Figure 4.1, we will have L(u) = a, L(v) = ac, label(u, v) = c,
and the string depth of v = 2 (this also applies to the suffix trie). The number
at each leaf node corresponds to the starting position of the corresponding
suffix in the original string, T .

Properties of a suffix tree

Before discussing the construction of suffix trees, we summarize their basic
properties. Given the string T = T [1 . . . n]$, of length n, but with the end of
string symbol appended to give a sequence with a total length n+1, the suffix
tree of the resulting string T$ will have the following properties:
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1. Exactly n + 1 leaf nodes;
2. At most n internal (or branching) nodes (the root node is considered an

internal node);
3. Every distinct substring of T is encoded exactly once in the suffix tree.

Each distinct substring is spelled out exactly once by traveling from the
root node to some node u, such that L(u) is the required substring. Note
that the node u may be an implicit node (see Section 4.1.3).

4. No two edges out of a given node in the suffix tree start with the same
symbol.

5. Every internal node has at least two outgoing edges.

Properties (1), (2), (4), and (5) imply that a suffix tree will have at most
2n + 1 total nodes, and at most 2n edges;

The suffix tree is similar in spirit to the traditional trie data structure
(Gonnet et al., 1992). The major difference is the notion of path-label com-
pression and edge-label compression used in suffix trees. Thus, the suffix tree
is generally viewed as a compacted suffix trie, as can be seen in the difference
between the two trees in Figure 4.1. Path label compression and edge-label
compression are critical for the linear time and linear space complexity of
suffix tree construction. The notion of path-label compression is related to the
requirement that every internal node, except the root node, must have at
least two descendants, so we can remove all the internal nodes that have only
one descendant in the suffix trie. The characters that make up the labels for
the edges linking the removed nodes are concatenated in order, starting from
the node nearest to the root. Thus, for the suffix tree, the edge labels can
be substrings of the original sequence, rather than single symbols, which will
reduce the number of nodes. For edge-label compression, rather than writing
out the edge label explicitly, we use pointers into the original string to indicate
the starting and ending positions of the substring corresponding to an edge
label. This requires that the original string T must be available, in order to
determine the edge labels explicitly. This reduces the potential O(n2) space
required for suffix trees to O(n), since the maximum number of edges will be
2n. Figure 4.2 shows the suffix tree representation using edge-label compres-
sion for the example string used in Figure 4.1. For example, the edge label c
is now replaced with the pair (2,2), while ca$ is replaced with (6,8). Notice
that under edge-label compression, the same edge (substring) could be rep-
resented with different pairs of pointers, for instance, the edge label c could
have been represented with any of the pairs (2,2), (5,5), or (6,6). In practice,
the pair representing the first occurrence of the substring in T , or the current
occurrence, is generally used.

4.1.2 Construction of a suffix tree

Construction of the suffix tree for a string is not difficult. A simple algorithm
that accomplishes this task for any given string is given in Algorithm 4.1.
However, building the suffix tree efficiently is the key challenge.
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Fig. 4.2. Suffix tree for the string T = acracca$ using edge-label compression

Simple-Suffix-Tree-Algorithm(T )
Create the root node, with empty string
for i← 1 to n do

Traverse current tree from the root
Match symbols in the edge label one-by-one with symbols in

the current suffix, Ti

if a mismatch occurs then

Split the edge at the position of mismatch to create a new
node, if need be

Insert suffix Ti into the suffix tree at the position of mismatch
end if

end for

Algorithm 4.1: Simple suffix tree construction algorithm

A step-by-step construction of a suffix tree using Algorithm 4.1 is shown
in Figure 4.3 for the sample string T = acracca$. First, the root node is
created. Then the first suffix T1 = T = acracca$ is inserted by attaching
it to the root node. To insert the next suffix, T2 = cracca$, the algorithm
traverses the edge, matching its edge label symbol-by-symbol. A mismatch
occurs at the first position, hence suffix T2 is attached to the root node. Suffix
T3 is inserted in the same way. To insert suffix T4 = acca$, we traverse from
the root, on the a-edge until the mismatch with the third symbol c. Since the
match occurred in the middle of an edge, we split the edge to create a new node
at the mismatch position. Then the suffix is inserted by attaching a leaf node
to the newly created node. The edge from the node to the leaf is then labeled
with the remaining symbols in the suffix being inserted, starting with the
mismatched character in the suffix. This process of matching, edge-splitting,
and insertion continues until we reach the last suffix (the last symbol) of the
string.

The above algorithm, although simple to implement, unfortunately re-
quires construction time that is proportional to the square of n, the length of
the string. This O(n2) complexity may not pose a problem for short sequences
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Fig. 4.3. Step-by-step construction of a suffix tree using the simple algorithm

with a few symbols. However, for most practical applications of suffix trees,
such as in whole-genome sequence analysis with input strings that could have
billions of symbols, more efficient approaches are required.
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4.1.3 Ukkonen’s suffix tree algorithm

Several methods have been proposed for constructing suffix trees in linear time
and linear space. Ukkonen’s algorithm (Ukkonen, 1995) is popular mainly be-
cause it is easier to understand and implement, and also because of its rel-
atively small memory requirement. Our discussion of Ukkonen’s algorithm
mainly follows the description in Ukkonen (1995) and Gusfield (1997). Com-
plete details can be found in the book or in the original paper by Ukkonen.

Ukkonen’s algorithm is based on an observation on the relationship be-
tween the suffixes of substrings from the same string. Given a string T =
t1t2 . . . tn, and the substring T i = t1t2 . . . ti (i.e. the i-th prefix of T ), we ob-
serve that T i = T i−1ti. Thus, the suffixes of T i can be obtained from the
suffixes of its longest proper prefix T i−1 = t1t2 . . . ti−1 by appending the new
symbol ti at the end of each suffix of T i−1, and by adding the empty suffix.
Therefore, the suffix tree of T = t1t2 . . . tn = Tn can be constructed using a
left to right scan, by first building the suffix tree for T 0, the empty string,
expanding this to obtain the suffix tree for T 1, and continuing in this way
until we build the suffix tree of T = Tn from that of Tn−1. This incremental
construction and the left-to-right scanning ability also imply that the method
can be used to construct suffix trees online, that is, the algorithm can build
the suffix tree piece-by-piece as a new symbol is received, without having the
entire input string available at the beginning. To get the algorithm to work
in linear time, Ukkonen used various clever ideas based on the properties of
suffix trees.

Ukkonen’s algorithm starts with an implicit suffix tree. Given a string T ,
and its suffix tree TT , its implicit suffix tree is obtained from TT , by removing
the special symbol $ from the edge labels, removing each node that has no
label, and removing any node that has less than two children. The implicit
suffix tree is constructed incrementally as described above. The last implicit
suffix tree is then converted to a true suffix tree using a simple linear time
traversal of the implicit suffix tree. The implicit suffix tree represents all the
suffixes of a string, since each suffix is spelled out by some path from the root,
whereby the path can end inside an edge. However, each suffix may not have
a unique leaf node in the implicit suffix tree. If the last character in the string
is unique (i.e. does not appear anywhere else in the string), then the implicit
suffix tree and the true suffix tree will be the same. Figure 4.4 shows the
implicit suffix tree for the example string T = acracca; notice that nodes 7
and 8 are no longer shown explicitly.

Ukkonen’s algorithm also made use of suffix links. The notion of suffix links
is based on a well-known fact about suffix trees (Weiner, 1973; McCreight,
1976), namely, if there is an internal node u in TT such that its path label
L(u) = aα for some single character a ∈ Σ, and a (possibly empty) string
α ∈ Σ∗, then there is a node v in TT such that L(v) = α. A pointer from node
u to node v is called a suffix link. If α is an empty string, then the pointer
goes from u to the root node. In its simplest form, the suffix link from a given
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leaf node points to the leaf node that corresponds to the longest proper suffix
of the suffix represented by the leaf node.

We can now look at Ukkonen’s algorithm in more detail. We will give
a high level description of the algorithm in terms of its phases and the up-
dates in each phase. We then describe the cases involved in performing the
suffix updates at each step of the algorithm. Ukkonen’s algorithm may be
understood by first describing how we can use it to construct a suffix trie.
We then describe the modifications to the basic algorithm to yield the suf-
fix tree. To explain Ukkonen’s algorithm, we use a somewhat longer example
string, T = mississippi$, as this captures all the update cases that will be
encountered using the algorithm.

Suffix Trie Construction

Let JT denote the suffix trie of the string T . The suffix trie for the string
T = t1t2 . . . tn = Tn is constructed incrementally, from the suffix trie of its
longest proper prefix Tn−1 = t1t2 . . . tn−1. In turn J n−1

T is constructed from
J n−2

T , and so on. Thus, Ukkonen’s algorithm constructs the suffix tree in
phases, whereby J i

T is constructed in phase i of the algorithm. During phase
1 of the algorithm J 1

T is constructed from T 0, the empty suffix (empty string).
Then J 2

T is constructed from J 1
T in phase 2, and so on, until finally, J n

T , the
required suffix trie is constructed from J n−1

T in phase n. Thus, the major
question is how we construct J i

T , the suffix trie for the prefix T i = t1t2 . . . ti
from J i−1

T , the suffix trie of its longest proper prefix.
To construct J i

T from J i−1
T , we need to append the next symbol ti to

the end of each suffix in J i−1
T , and add the empty suffix. Thus, we visit each

suffix of J i−1
T , starting from its longest suffix, walking up to the shortest suffix

(which corresponds to the empty string), updating the tree as we walk. Let
node u in J i−1

T be the current node during the walk. How the tree is updated
depends on whether or not there is a ti-edge that starts from node u.

The following update cases can occur:

c
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Fig. 4.4. Implicit suffix tree for the string T = acracca



4.1 Suffix Trees 59

Case A : Node u does not have a path that started with symbol ti. This
could happen in two ways:

1. Node u is a leaf node. Here, we update the tree by appending ti to
L(u), the path label for node u. No new node is created. This can be
seen in Figure 4.5 (going from J 1

T to J 2
T ), extending the leaf node with

edge label m to mi; or in Figure 4.5 going from J 8
T to J 9

T , extending
the leftmost branch from mississi to mississip.

2. Node u is not a leaf node, but no edge from node u is a ti-edge. This
means that there is at least one edge that continues from node u, but
no such edge starts with the symbol ti. Here, we update the tree by
creating a new leaf node starting from u, with edge label ti. Examples
can be seen in Figure 4.5 (J 1

T ), creating the leaf node from the root,
with edge label m; or in Figure 4.5 (J 9

T ), creating the five leaf nodes,
each with edge label p, resulting in parent nodes with ≥ 2 outgoing
edges.

Case B : There is a ti-edge emanating from u. This means that node u is
not a leaf node, and the string L(u)ti has already been added to the suffix
trie. Since the end of a suffix need not be explicit in an implicit suffix tree,
no update is needed. This can be seen in Figure 4.5 (J 6

T ).

The root node, along with the set of nodes with old ti-edges, the set of
nodes with new ti-edges created from J i−1

T , and the empty string represent
J i

T , the suffix trie of T i.

Suffix links and boundary paths

Determining which nodes in J i−1
T should get new ti edges is performed us-

ing suffix links. Given the definition of suffix links, each node in J i−1
T that

represents a suffix of T i−1 can be found by traversing a path of suffix links
that start from the node with the largest depth (i.e. the node corresponding
to the longest suffix t1t2 . . . ti−1), and ends at the shortest suffix (the empty
string). This path is called the boundary path of the suffix trie J i−1

T . During
this traversal, for each node on the boundary path that does not have a ti-
edge, one is created. The new nodes are then connected with new suffix links
that form a new path, starting from the suffix t1t2 . . . ti−1. This new path thus
corresponds to the boundary path for the new suffix trie, J i

T .
An important observation is that the traversal of the boundary path of

J i−1
T can be stopped whenever the first node, say u, is found such that node

u already has a ti-edge. This corresponds to Case B above. We can terminate
the traversal at this point because if the string αti is a substring of T i−1, for
some string α, then each suffix of αti (which cannot be longer than |αti|) must
be a substring of T i−1. So, these shorter substrings must have already been
added to the suffix trie at some earlier phase. Thus, we can stop the update
earlier, whenever Case B applies. This means that the algorithm creates a
new node only when Case A2 applies.
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Figure 4.5 shows the step-by-step construction of the suffix trie for the
string T = mississippi using Ukkonen’s algorithm. The figure shows all
11 phases of the construction, and the suffix links created at each phase. In
some cases, only the suffix links from the current and last phase are included,
for ease of presentation. The suffix trie for T = Tn is thus constructed by
starting with the empty string, (J 0

T = ǫ). This contains just the root node,
and an auxiliary node (denoted as ⊥ in the figures), and the links between
them. The auxiliary node makes it possible to avoid an explicit distinction
between the root and non-root nodes (i.e. between the empty suffix and non-
empty suffixes) in the algorithm. Technically, the auxiliary node is defined as
the inverse of any symbol in the alphabet. That is, for all σ ∈ Σ, σ−1σ =
ǫ, the empty string. Therefore any σ-transition from ⊥, the auxiliary node
should lead to the root node, independent of σ. This is because the root node
corresponds to ǫ, the empty suffix.

Figure 4.5 shows the algorithm repeating for each suffix T i, for i =
1, 2, . . . , n. The algorithm is optimal in the sense that it requires time that is
linear with respect to its output size. However, this output size is proportional
to the number of substrings in the original string, which could be quadratic
with respect to the length of the string. Thus the running time will be in
O(n2).

From suffix trie to suffix tree

The above suffix-trie construction algorithm can be turned into a linear-time
algorithm for building suffix trees with some important modifications. The
suffix tree of T provides a more compact representation of the suffixes of T
by considering only a subset of the nodes in JT . This subset still includes all
the suffixes of T .

Path compression and edge label compression. The first improve-
ment is the use of path compression on the nodes of JT , which means that
only internal nodes with at least two edges are allowed in the tree. The suffix
tree TT will thus contain only explicit nodes in the suffix trie JT , that is, the
set of all branching nodes and all leaf nodes in JT . By definition, the root node
is considered a branching node. The non-explicit nodes (called implicit nodes)
are not stored in the suffix tree. The use of path compression, however, implies
that for suffix tree construction, we may need to split an edge at an implicit
node as the algorithm progresses (see below). A second improvement is the use
of edge-label compression, whereby each edge label (which is a substring in T )
is represented by a pair of pointers, say (p, q), where p and q point respectively
to the start and end of the corresponding substring in T . That is, given an
edge label, say α, p and q are chosen such that α = T [p . . . q] = tptp+1 . . . tq.

With this indexing, a copy of the original string T is needed as part of
the representation of the suffix tree. This means that any substring can be
accessed in constant time using its starting and ending pointers. An important
advantage here is that we now need only a constant number of symbols (simply
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Fig. 4.5. Step-by-step construction of the suffix trie for the sequence T =
mississippi using Ukkonen’s algorithm. The darker (filled) arrows represent tran-
sitions from one node to the other; the lighter (open) arrows are suffix links. For
clarity, only the last two layers of suffix links are shown in some cases
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two pointers) to represent each edge label, rather than requiring memory space
that is proportional to the length of the label. Since we have one leaf for each
non-empty suffix of T , we can have at most n leaves in the implicit suffix tree.
Further, the implicit suffix tree of T can contain no more than n−1 branching
nodes. The number of edges will be at most 2n− 1. This means that we can
represent TT using O(n) space.

The suffix links are now defined only for branching nodes. However, at
times imaginary suffix links, called implicit suffix links, are used. These links
are defined between explicit nodes. This is mandated by the path compression,
since some new explicit nodes may need to be created between two implicit
nodes.

A leaf node stays a leaf node. Another important observation with
the construction algorithm is that, once a leaf node is created and given a
label, say li, then the node will remain a leaf node with the same label until
the end of the algorithm. Thus, the node will never have a descendant node,
rather, it can be extended only via character concatenation (update Case

A1 as described previously). As it is sometimes put, ‘once a leaf, always a
leaf’ (Gusfield, 1997). Recall that to extend J i−1

T to J i
T , we need to extend

the edges to each leaf node by appending the symbol ti to the edge label.
Ordinarily this concatenation will have to be performed for each leaf node at
each phase of the algorithm. These extensions can, however, be avoided by a
simple modification: whenever a new leaf node is created in phase i, we set
its edge label (using the two pointers) to be (i, n), that is, to the substring
ti, ti+1 . . . tn in T . Therefore explicit updates via character concatenations are
no longer required at later phases of the algorithm. When an edge is split,
the end point of the leaf node will still be fixed (at n, the end of the string),
although the starting position in T may change.

Active point and end point. Ukkonen’s algorithm also used the notions
of an active point and end point. During the traversal of the boundary path
at the current phase, the first non-leaf node encountered is called the active
point, while the first node where Case B applies (i.e. the first node with a
ti transition) is called the end point. The active point and end point are key
instruments used in achieving the linear time performance of the algorithm.
Examples of active and end points are shown in Figure 4.6. We have repeated
the suffix trie at some phases in Figure 4.5, but now with the active point
and end point clearly marked at each phase. Since we no longer need to per-
form explicit updates via Case A1 (from the foregoing discussion), and we
had already observed that we can stop traversal of the boundary path when-
ever Case B applies (see previous discussion under suffix links and boundary
paths), it means that we need to perform updates only on the implicit and
explicit nodes on the boundary path between the active point and the end
point.

Another important observation here is that the end point in the current
phase directly defines the active point in the next phase; the next node on
the ti−1 edge from the endpoint in J i−1

T becomes the active point in J i
T . This
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Fig. 4.6. Active points and end points for J 5
T , J 6

T and J 8
T , and J 9

T of the sequence
T = mississippi. A circle on a node denotes an active point, a box denotes the end
point, and a bulls-eye denotes a node that is both an active point and an end point

is very important, as it means that we can avoid a lot of computations that
would otherwise be required to update the nodes in the suffix tree. By keeping
record of the end point we already know the active point in the next phase.
Since updates are performed only between active points and end points, it
means that constructing J i

T from J i−1
T requires only one overlapping explicit

update (one performed at the end point of J i−1
T , or at the active point of J i

T ).
This is shown in Figure 4.6.

Splitting a node. The final issue we need to discuss is how tree updates
are performed when the active point is at an implicit node (i.e. between two
explicit nodes). Updating the tree in this situation involves three steps: testing
the node for possible splitting, splitting the node if necessary, and updating
the new explicit node. First, we test to know if the edge needs to be split.
If the continuing implicit edge (beyond the active point) is a ti-edge, we do
nothing (since we are working with implicit suffix trees). Otherwise we split
the edge at the active point to obtain an explicit node at that point. Then
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we attach a leaf node to the newly created node. Let edge (u,w) be the edge
before splitting, with edge label (p, q). Let v be the newly created explicit
node at the active point. Thus, u is the parent node of v, while w is now a
child node of v. The label for the upper edge (that is, label(u, v) ) is given as
(p, |L(v)|) = (p, p + |label(u, v)|), while the label for the edge that continues
from v (i.e label(v, w)) is given as (|L(v)| + 1, q). Then we apply the update
cases at this newly created explicit node. This will thus create a new leaf node
from the new explicit node (Case A2). The edge from the newly created
explicit node to this leaf node will be a ti-edge, with edge label (li + |L(v)|, n).

Figure 4.7 shows an example of the process for node splitting in Ukkonen’s
algorithm. The figure shows the suffix tree in phase 5 of the algorithm before
node splitting, just after node splitting but before update of the newly created
node, and after updating the node. Notice the new suffix link created after
node splitting.

T 5
T : T 5

T : T 5
T :

missi

issi

ssi

┴

"

┴

missi

issi si

s

"

┴

i
missi

issi si

s

"

(a) (b) (c)

Fig. 4.7. Node splitting during suffix tree construction: (a) tree before node split-
ting; (b) tree just after node splitting, before node updating; (c) tree after node
update. The marked node indicates the node where the splitting occurred

The complete construction phases for building the suffix tree for the run-
ning example T = mississippi are shown in Figure 4.8. We have used the
substrings as the edge labels for clarity of presentation. In practice, the pair
of their starting and ending positions in T will be used.

4.1.4 From implicit suffix tree to true suffix tree

The above algorithm constructs the implicit suffix tree for a given string T .
The final step is to convert this implicit suffix tree to a true suffix tree. This
can be performed by appending a special end-of-string symbol, $, ($ /∈ Σ) to
T , and letting the algorithm continue with this new symbol. Alternatively, we
can traverse the boundary path from the leaf node of T n

T up to the root, and
make all nodes on the path explicit. Either way, each leaf node in the resulting
tree will correspond to one unique suffix in the original string T . The resulting
tree is the true suffix tree. The above requires only O(n) time to traverse the
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Fig. 4.8. Step-by-step construction of the suffix tree for the string T = mississippi

using Ukkonen’s algorithm

leaf nodes in the tree. Therefore, overall, Ukkonen’s algorithm requires O(n)
space and time for the construction of the suffix tree for a string of length n.

Figure 4.9 shows the final suffix tree obtained using Ukkonen’s algorithm,
for T = mississippi$. For comparison, we have included the suffix tree with
strings for the edge labels, and the final tree with edge-label compression.
These can be compared with the suffix trie for the same string shown earlier.
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Fig. 4.9. (a) Final suffix tree for the string T = mississippi using Ukkonen’s
algorithm; (b) the same suffix tree represented using edge-label compression

4.1.5 Farach’s recursive construction

Farach and colleagues (Farach, 1997; Farach and Muthukrishnan, 1996; Farach-
Colton et al., 2000) introduced a fundamentally different method for con-
structing suffix trees in linear time. Their approach makes use of a recursive
decomposition of the original string, whereby the suffix trees of smaller subsets
of the suffixes are constructed, and then combined to form the required suffix
tree for the original sequence. This new approach has led to some new insights
into the properties of suffix trees and their construction. More recently, it has
provided a motivation for new methods to construct suffix arrays directly,
without first constructing the suffix tree (Kärkkäinen et al., 2006; Kim et al.,
2005). This so called direct suffix sorting paradigm holds significant promise,
especially with respect to efficient computation of the Burrows-Wheeler Trans-
form (both the forward and inverse transformation). We present Farach’s suffix
tree construction method in detail because of its relationship to some of the
direct suffix sorting approaches, and to the BWT.

Basic Algorithm

Farach’s algorithm makes use of the relationship between the longest common
prefix of two strings, and the lowest common ancestor of two nodes in a tree.
lcp(α, β) denotes the longest common prefix between two strings α and β,
and |lcp(α, β)| denotes the length of lcp(α, β). Where the intended meaning
is clear from the context, we shall use lcp interchangeably to stand for both
the longest common prefix, and its length. lca(u, v) denotes the lowest com-
mon ancestor of two nodes, u and v, in a tree (that is, lca(u, v) is the node
furthest from the root that has both u and v as a descendant1). An important
relationship between the lcp and lca is the following:

1 The lowest common ancestor is sometimes referred to in the literature as the least

or most recent common ancestor.



4.1 Suffix Trees 67

lcp(L(u), L(v)) = L(lca(v, u)), for all nodes u, v ∈ TT .

Thus,
|lcp(L(u), L(v))| = |L(lca(v, u))|.

It has been shown (Harel and Tarjan, 1984; Schieber and Vishkin, 1988;
Bender and Farach-Colton, 2000) that after linear-time preprocessing on a
tree, the lca between any two nodes on the tree can be computed in constant
time. This means that essentially, after such a linear-time preprocessing, two
arbitrary strings can be compared for equality, or to determine if one is a
prefix of the other, in constant time.

Let T be the given string. The odd tree of T , denoted T o
T is defined as the

suffix tree of all suffixes that start at an odd position in T . Similarly, the even
tree of T , denoted T e

T is defined as the suffix tree of all suffixes that start at
an even position in T . Each of T o

T and T e
T is half the size of TT , the true suffix

tree for T , with each having n/2 leaves. Farach’s algorithm then proceeds in
three steps:

1. Construct T o
T , the odd tree of T .

2. Using T o
T , construct T e

T , the even tree of T .
3. Merge T o

T and T e
T , to form TT , the final suffix tree for T .

Figure 4.10 shows examples of the odd and even trees, using the example
string T = mississippi. We describe each step of the algorithm in more
detail below. Farach’s algorithm relies heavily on integer sorting to achieve
linear time complexity, and assumes an integer alphabet Σ = {1, 2, 3, . . .},
where |Σ| ≤ n. For a general alphabet, we need to map the symbols in the
alphabet to an integer alphabet before applying the algorithm, and after con-
struction we map the integer symbols back to their corresponding symbols in
the general alphabet. Since the number of unique symbols in a string cannot
be greater than the length of the string, this mapping ensures that the linear
time complexity of the algorithm extends to general alphabets.

Constructing T
o

T
, the odd tree

Construction of the odd tree is performed in four substeps:

1. Map pairs of symbols to single characters. From the original string,
T = t1t2 . . . tn, form n/2 pairs of symbols from t2i−1t2i, 1 ≤ i ≤ n/2
(we can pad the string with an extra ’$’ symbol if n is odd). Radix sort
the pairs, and remove duplicates, to form a sorted list, SL. This requires
only linear time. Then, convert the pairs into their corresponding inte-
gers, based on their rank in SL. The result is a string S′ of length n/2,
defined as follows: S′[i] = rank of 〈t2i−1t2i〉 in SL. Using the example
T = mississippi$, and assuming the following mapping of the symbols
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Fig. 4.10. Odd and even trees for the string T = mississippi: (a) odd tree; (b)
even tree

to an integer alphabet : i→ 1,m→ 2, p→ 3, s→ 4, we get the following
result for the mapping: T = 21441441331$; Symbol Pairs = { 21, 44, 14,
41, 33, 1$ }; SL = [1$, 14, 21, 33, 41, 44] ; S′ = 362541$;

2. Recursively construct TS′ , the suffix tree of the mapped sequence, S′.
Figure 4.11a shows TS′ , the suffix tree for the mapped sequence S′.
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Fig. 4.11. Constructing the odd tree for T = 21441441331$: (a) suffix tree for the
mapped string S′ = 362541$; (b) initial odd tree constructed from (a); (c) final odd
tree after adjustments on (b)

3. Construct T o
T from TS′ . First, we observe the relationship between T

and S′. Each odd suffix in T has a corresponding suffix in S′. In fact,
the odd suffix t2i−1t2i . . . tn$ in T corresponds to the suffix S′[i]S′[i +
1] . . . S′[n

2 ]$ in S′. Thus, the leaf node li in TS′ corresponds to the leaf
node l2i−1 in T o

T . Any given internal node in TS′ with string depth d
becomes an internal node in T o

T , with depth 2d. Thus, we can construct
T o

T from TS′ by replacing the indexes of the leaf nodes and the lengths
of the edge labels in TS′ by the corresponding values in T o

T . However,
given that two symbols in T are mapped to one symbol in S′, the tree T o

T
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constructed as above may not form a suffix tree, as some nodes may have
two edges with edge labels that start with the same symbol (see Figure
4.11b, symbols 1 and 4.) This requires some adjustment to the tree.

4. Adjust the final suffix tree as needed. Here, for a given node u, all
the edges that start with the same symbol are combined by introducing a
new node (say v), between u and the child nodes. The edge (u, v) is then
labeled with the symbol shared by the child nodes. If the edge labels for all
descendant nodes from u start with the same symbol, the above procedure
will imply that node u will have one child node after the adjustment.
Thus, node u will be removed from the tree. Of course, this is done while
retaining the information in the edge from node u. This adjustment clearly
takes linear time with respect to the number of nodes, and the number of
edges, each of which is in turn linear with respect to the size of the string,
S′.

Figure 4.11 shows TS′ , the suffix tree for S′, the odd tree constructed
from S′ (before adjustment), and the final odd tree after adjustment. Let
ϕ(n) be the time required to construct the suffix tree for a length-n string,
T = t1t2 . . . tn. Then, the time to construct the odd tree using the above
procedure will be given by ϕ(n

2 ) + O(n).

Constructing T
e

T
, the even tree

Constructing the even tree from the odd tree is performed based on the fact
that, given an inorder traversal of the leaves of a tree, and the depth of the lca

of adjacent leaves in this ordering, we can re-construct the suffix tree in linear
time. Consider the example in Figure 4.9 for T = mississippi. Traversing the
leaf nodes from left to right in a depth-first manner will produce the following
list of leaf nodes: L1 = [1, 2, 5, 8, 11, 3, 6, 7, 4, 9, 10, 12]. Now, the list of lca

depths for the adjacent nodes in L1 will be: L2 = [0, 4, 1, 1, 0, 3, 1, 2, 0, 1, 0].
With only this information, we can easily re-construct the suffix tree using a
simple procedure as shown in Algorithm 4.2.

Figure 4.12 shows the result of the first five steps of the algorithm, using
the suffix tree of Figure 4.9. The final result of the algorithm is the suffix
tree for the given string. Farach’s algorithm constructs the suffix tree such
that the resulting leaf nodes are sorted in lexicographic order, based on their
corresponding suffixes. That is, the edges emanating from each given node
are sorted lexicographically by their edge labels. Notice that the algorithm for
constructing the suffix tree using the lca of adjacent leaf nodes also works
for suffix trees with sorted suffixes. Therefore, to construct the even tree from
the odd tree, we need to derive the sorted suffixes of the even tree from the
odd tree, and also the length of the longest common prefix of adjacent suffixes
in this ordering.

Obtaining the sorted even suffixes. The current tree T o
T already en-

codes the odd suffixes in lexicographic order. Thus, a simple inorder traversal
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Suffix-Tree-From-LCA-List(L1, L2)
/* L1: List of adjacent leaf nodes in a tree: l1, l2, . . . ln+1 */
/* L2: List of depth of lca of adjacent nodes in the tree */

Create root node, with empty string
Set l0 ← root node; set d0 ← 0
for i← 1 to n + 1 do

Compute di ← |lcp(li−1, li)| using L2

Starting from the root, jump to position di along the path L(li−1)
if di falls at an edge (i.e. between two nodes) then

Let the edge be (ui−1, v), with edge label (p, q)
Split the edge (ui−1, v) to create a new node ui at this position
Label edge (ui−1, ui): label(ui−1, ui)← (p, p + di − 1)
Label edge (ui, v): label(ui, v)← (p + di, q)

else /*di falls at an existing node */
Call this node ui

end if

Attach a new leaf node li at node ui

Label edge (ui, li): label(ui, li)← (li + di, n + 1)
end for

Algorithm 4.2: Suffix tree from LCA of adjacent nodes

1

2
5

(1,12)

(9,12)(6,12)

(2,5)
1

2 5

8

(1,12)

(9,12)

(9,12)

(6,12)

(2,2)

(3,5)

1

2

(1,12)

(2,12)

1

(1,12)

Fig. 4.12. First few steps in constructing the suffix tree from the list of depths
for the lca of adjacent nodes, using L1 = [1, 2, 5, 8, 11, 3, 6, 7, 4, 9, 10, 12] and L2 =
[0, 4, 1, 1, 0, 3, 1, 2, 0, 1, 0]. The final result should correspond to the suffix tree in
Figure 4.9b

of the tree will produce a list of the odd suffixes in sorted order. Observe that
an even suffix is just one symbol followed by an odd suffix. Thus, to obtain the
sorted even suffixes, we form two-element tuples using the pairs 〈t2i, r2i+1〉,
where rj is the rank of suffix Tj in the ordered odd suffixes. The tuples are
already sorted by the second element (the odd suffixes). Then, stable-sorting
the tuples using radix sort on the first elements will produce the sorted list of
even suffixes.

Using the previous example, the ordering of the odd suffixes (the leaves in
the odd tree T o

T ) will produce the list: Lo
s = [13, 11, 5, 1, 9, 7, 3]. These are then

combined with the symbols at the corresponding even positions (left of each
odd position) in T to give the tuples: [〈1, 7〉, 〈4, 3〉, 〈4, 6〉, 〈1, 5〉, 〈3, 2〉, 〈$, 1〉].
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Notice that the rank for T1 (i.e. 4) is not used, since there is no even
suffix to the left of position 1 in T . Stable-sorting this list using radix
sort with the first element as the key will produce the ordered list: LE =
[〈$, 1〉, 〈1, 5〉, 〈1, 7〉, 〈3, 2〉, 〈4, 3〉, 〈4, 6〉]. We call LE the sorted even tuples of T .
This is the lexicographically ordered list of even suffixes. Using the lists LE

and Lo
s, the corresponding ordered even positions in T can be obtained easily:

Le
s = Lo

s[LE [i, 2]]− 1, i = 1, 2, . . . ,
n

2
.

For the running example, the ordered positions will be:Le
s = [12, 8,2,10, 4,6].

Computing the lcp between the sorted even suffixes. Given the
relationship between the lca and lcp, the lcp between adjacent elements in
the sorted even suffixes can be determined based on the lca between the leaf
nodes in the odd tree. After linear time lca preprocessing (Harel and Tarjan,
1984; Schieber and Vishkin, 1988; Bender and Farach-Colton, 2000) of the
odd tree, we can determine the lcp of any two suffixes, represented by two
leaves (say, l2i, l2j in T e

T ) using the relation:

lcp(l2i, l2j) =

{

lcp(l2i+1, l2j+1) + 1, : if t2i = t2j

0 : otherwise

As described earlier, the value of lcp(l2i+1, l2j+1) can be obtained after
linear time preprocessing of the odd tree as follows:

lcp(l2i+1, l2j+1) = lcp(T2i+1, T2j+1) = L(lca(l2i+1, l2j+1))

where L(u) is the path label of node u. Thus, given the ordered list of even
suffixes and the computed lcp’s between adjacent elements in this ordering,
the even tree can be easily computed in linear time. The even tree of the
running example with T = mississippi is shown in Figure 4.13(b).

Merging the odd and even trees

The final suffix tree TT is obtained by merging T o
T and T e

T , the odd and even
tree respectively. This merging process is performed in two steps:

1. Initial merging. The first step of the merging process is simple. Farach’s
merging algorithm uses a coupled-depth-first traversal (coupled DFS) of T o

T

and T e
T . The coupled DFS starts with the root nodes in the two trees. Next,

it will take two edges from the respective trees with the same starting
symbol, and recursively merge the two subtrees. Repeating this coupled-
DFS procedure on each pair of edges with the same starting symbol from
the roots of T o

T and T e
T produces an initial merged tree. Notice that at any

given stage, merging is performed only if both the odd tree and even tree
share an edge with the same starting symbol. Otherwise there is nothing
to merge.
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The only complication in this procedure comes from the fact that we are
merging suffix trees (i.e. compacted tries), rather than simple suffix tries.
The problem is that even though two edges may start with the same
symbol, their edge labels may be different — one edge label could also
be a prefix of another. Thus, we may need to stop the merging at the
position of first mismatch. To check if the edge labels match symbol-by-
symbol would lead to an O(n2) time for merging. To solve this problem,
Farach used a clever approach: at any step during the coupled-DFS merge
process, simply merge any two edges that share the same starting symbol.
That is, if two edges start with the same symbol, then assume näıvely that
the shorter edge is a prefix of the longer edge, break the longer edge, and
merge its prefix with the shorter edge. Merging is therefore performed only
on equal-length edges. This simple strategy guarantees that we cannot fail
to merge any two edges that need to be merged, and requires only linear
time to run. However, it could merge more than we need at times. Thus,
we have to undo the extraneous merging that may be performed by the
algorithm. We call this partial “unmerge” process merge refinement.

2. Merge refinement. Let MT be the resulting merged tree using the
simple näıve strategy above. For each node inMT , we need to determine
whether the node requires merge refinement (i.e. merging went too far),
and then perform the partial unmerge procedure if needed. First, we pre-
processMT in linear time, so that lca queries can be answered in constant
time. The path label for each node inMT can be determined by using the
corresponding node in either T o

T or T e
T . Let u be a node inMT such that

it is the lowest common ancestor of two leaf nodes l2i and l2i−1. Let L(u)
be the path label of u in its corresponding node in T o

T or T e
T . Let L̂(u) be

the current path label of u in MT . That is, L̂(u) = lcp(l2i, l2i−1), since
u = lca(l2i, l2i−1).
Node u is thus declared as properly merged if |L(u)| = |L̂(u)|. Otherwise,
(|L(u)| > |L̂(u)|) and merging went too far at the node, and hence we have
to perform merge refinement by partially unmerging the merged edges. To
do this, we introduce a new node, v in MT , such that the parent of v is
set to the parent of u, and v is the parent of l2i and l2i−1. Node v is
sometimes called the refinement node. Then, set the path label of node
v as L(v) = L̂(u). Unmerge any merged edges between the odd tree and
even tree under u. Attach the odd tree and even tree under node u to
node v, maintaining the sorted order of the edges from node v. When the
unmerge procedure is completed on all nodes that had extraneous merging
inMT , the result will be TT , the final suffix tree for the input string. The
overall unmerging procedure requires linear time processing, which means
that Farach’s recursive algorithm for suffix tree construction will run in
O(n) time.

Figure 4.13c shows the merged tree for the running example, before merge
refinement to obtain the final suffix tree in Figure 4.13d. The edges and nodes
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involved in merge refinement are indicated using an oval. We can notice that
the initial merged tree before merge refinement has a structure that is gener-
ally similar to the final suffix tree; the difference is only in their edge labels.
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Fig. 4.13. Merging odd and even trees to construct the final suffix tree: (a) the
odd tree T o

T ; (b) the even tree T e
T ; (c) the initial merged (overmerged) treeMT ; (d)

the final suffix tree TT obtained after merge refinement via partial unmerging on
MT . Marked edges with two labels in (c) indicate ‘overmerged’ edges which require
merge refinement. Notice the difference between the lcp of the two labels and the
edge length in each case

4.1.6 Generalized suffix trees

For applications involving multiple files, the suffix tree can be constructed for
each file independently, and searches or other types of analysis can be per-
formed on each suffix tree. However, for some specific applications, especially
for problems such as searching for multiple patterns simultaneously over all
the files in a database, a better approach would be to construct a single suffix
tree for all the files, and then perform the search on this single tree. Such a
single suffix tree constructed for multiple strings is called a generalized suffix
tree (Gusfield, 1997).

For h multiple strings, T1, T2, . . . Th, building the generalized suffix tree is
simple. First, concatenate all the strings into one string: T = T1$1 ∗T2$2 ∗ . . .∗
Th$h, where the $i’s are end of string delimiters, and ∗ denotes concatenation.
Then, construct the suffix tree of T , the concatenated string. The overall time
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and space complexity is still linear with respect to |T |, the overall length of
the concatenated sequence.

4.1.7 Implementation issues

The practical time and space requirements for suffix tree construction, and
also the space needed to store the suffix tree after construction, depend on the
specific implementation method used. After construction, the required space
needed to store the suffix tree will include that for the original text, edge labels,
node labels for both branching and leaf nodes, and the space to indicate the
parent for each node. During construction (and for some applications), we have
to add the space required for the suffix links. In the following discussion, by
suffix tree construction, we will assume Ukkonen’s algorithm; some methods
such as Farach’s recursive construction may require more space.

The major consideration is how the outgoing edges from a node in the
suffix tree are represented. The three major representations used for outgoing
edges are arrays, linked lists, and binary search trees. However, independent of
the specific method adopted, we can use a simple analysis to provide an idea
of the space requirements of a suffix tree. Assume that a pointer is represented
as an integer, and that each integer requires 4 bytes to store. Also, we assume
that we are using, say, an ascii alphabet with 256 symbols; notice that in the
worst case we may be looking at an alphabet size as large as n, the size of the
sequence, or a system such as Unicode may require two bytes per character,
but for the meantime we will assume one byte for each character of the text,
which is sufficient to compare memory requirements. Based on the properties
of a suffix tree, we can expect to use n bytes for the original text, 2n integers for
suffix links, 2n integers for edge labels, 2n integers for node labels (including
branching nodes and leaf nodes), and 2n integers for indicating node parents.
Therefore, we need a total of 8n integers plus n bytes, or 33n bytes to store
the suffix tree with suffix links (for instance during construction), and 25n
bytes without the suffix links (for instance, for later use, or during search).

Now, consider the effect of the specific representation used for the branch-
ing edges at each node. The required cost can be broken down into four
components: the cost of storing T , the original sequence (n/4 integers); cost
of branching nodes, cost of leaf nodes, and cost of edge labels. Let nd be
the number of internal nodes in the suffix tree. The cost of edge labels will
be n + nd − 1 integers, independent of the specific node representation. Let
cL, cP , cB and cSL be the respective cost (in integers) of representing the node
label, parent label, edges at the branching node, and suffix links, at each node.
(From the discussion above, cL = cP = cSL = 1 integer, but we these nota-
tions for clarity.) Thus, for all the branching nodes, the space cost will be
nd(cL + cP + cB + cSL). For the non-branching (i.e. leaf) nodes, there are no
outgoing edges, so the cost will be nd(cL + cP + cSL).

With the simple array (also called vector) representation, the first symbols
on each branch from a node are represented as an array with |Σ| elements.
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This gives, cSL = |Σ| bytes at each node. Thus, using the array representation
at each node, the overall cost of storing the suffix tree will be (4n + nd(3 +
1
4 |Σ|)+ n

4 ) integers. With the linked list representation, the major difference is
that the first symbols on each edge at each branching node are now represented
using a linked list, rather than an array. The advantage is that we need to
provide space for only the symbols that actually appear at the node. Without
keeping a record of the count of symbols at each node, we can use the fact
that we have a maximum of 2n edges in the suffix tree to bound the cost.
Thus, we need at most 2n pointers (i.e. 2n integers) for all the liked lists used
for the suffix tree. This can be compared with the 1

4nd|Σ| integers required
by the vector representation, which can grow as large as 1

4n|Σ| integers in
the worst case. Thus, with the linked-list approach, the total cost for storing
the suffix tree will be (6n + 3nd + n

4 ) integers. Another approach is to use a
balanced binary search tree to implement the linked list structure used above.
This comes at a slightly reduced performance in search time, but is generally
more space efficient than the previous two methods. Use of the binary tree
approach makes more sense if the alphabet size is very large.

We can observe the significance of nd, the number of interior nodes in
the tree. Clearly, this number varies with the input string, and could signif-
icantly affect the required space. Also, for very large alphabets, the vector
representation, in its simplest form as given above, will lead to a huge storage
requirement. An improvement could be to use a bit map at each node to in-
dicate which symbols in Σ are the starting symbols for the edge labels for all
the edges from the node. This avoids the need to reserve space for the symbols
that are not represented at a given node. Results in Manber and Myers (1993)
show that the linked-list implementation provided an overall best result with
respect to space efficiency. Methods based on hash functions were described
by McCreight (1976), while Kurtz (1999) and Andersson and Nilsson (1995)
provide more discussions on space-efficient construction and representation of
suffix trees.

4.2 Suffix arrays

An important data structure, closely related to the suffix tree, is the suffix
array. The suffix array simply provides a lexicographically ordered list of all
the suffixes of a string. If the element at position i in the suffix array is j, it
means that Tj , the suffix starting at position j in T is the i-th smallest suffix of
T . This is essentially what the array R is in the Burrows-Wheeler Transform
(shown in Figure 2.2b for encoding, and in Figure 2.8 for decoding), except
the end of the string is treated slightly differently in each case. Combining
the suffix array with the (length of) lcp of adjacent suffixes in this array pro-
vides a powerful data structure for pattern matching. With this combination,
decisions on the occurrence (or otherwise) of a pattern P of length m in the
string T of length n can be made in O(m + log n) time.
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The suffix array can be used in most (though, not all) situations where a
suffix tree can be used. However, as was shown in the previous section, given
the suffix array and the lcp information, the suffix tree can be constructed
in linear time. The major motivation for the use of suffix arrays, rather than
suffix trees is their smaller memory footprint. Although the theoretical space
complexity is linear for both data structures, typically, the suffix tree requires
about three to five times more space than the corresponding suffix array of
a string. The construction time for both algorithms is also O(n) on average.
For suffix arrays, algorithms that run in O(n log n) worst case are relatively
easy to develop, but O(n) worst case algorithms are much harder to come by.
Traditionally, the construction of the suffix arrays have often required more
practical running time than suffix trees (see Manber and Myers (1990, 1993)
for examples). However, this is now changing, as indicated in the recent survey
by Puglisi et al. (2007).

To discuss suffix arrays we will need some more notation. We will continue
to use T = t1t2 . . . tn to denote the input sequence of length n, with symbol
alphabet Σ. For any two strings, say α and β, we use α ≺ β to indicate
that the string α lexicographically precedes the string β. (This includes the
case where α and β could be individual symbols, from the same alphabet,
i.e. |α| = |β| = 1.) We use $ as the end of string symbol, where $ /∈ Σ and
$ < σ,∀σ ∈ Σ. We also use the notion of order-k sorting. We say that a set
of strings are order-k sorted if the strings are sorted by their first k symbols.
Thus, for any two strings, say α and β, we use the notation α ≺k β to indicate
that string α precedes string β in the order-k sorted listing. Further, we use
AT to denote the suffix array of a string T . Where the string in question is
clear from the context, we may drop the T subscript for simplicity.

4.2.1 Traditional string sorting

Sorting a set of strings in a given order is an age-old problem in computer
science. A simple approach is to imagine the strings as vectors, with each row
corresponding to one of the strings in the set. Then, sorting the strings can be
performed by using standard sorting algorithms such as quicksort to sort the
vectors. Radix sort can also be easy to apply in this environment, particularly
if the alphabet is small, such as in a DNA sequence. Another approach is to
sort each column using character-by-character comparisons, starting from the
leftmost column. After the k-th iteration, rows that have the same symbol up
to the current (i.e. k-th) column are grouped together. At the next iteration,
sorting using the next column is then restricted to the rows in the same group
(that is, rows that are the same based on order-k sorting). Repeating this
process for all the groups of rows with the same symbol at each iteration,
and for all the columns, produces a sorted array of the original vector of
strings. The column-wise sorts can be performed using a fast character sorting
algorithm such as qsort, an improved quicksort algorithm reported in Bentley
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and McIlroy (1993). This simple algorithm will lead to an expected time in
O(n log n), with a potential O(n2 log n) worst case.

Bentley and Sedgewick (1997) proposed a better approach, based on multi-
key quicksort. Using code similar to the qsort algorithm, they sorted a given
set of strings by applying the idea of symbol-by-symbol ternary recursive de-
composition on the strings. Basically, given a string α, they group every other
string β into three partitions, viz:

β ≺k α: strings that are less than α,
α =k β: strings that are equal to α, and
α ≺k β: strings that are greater than α.

Here ternary partitioning is based on a pivot defined by the first k-symbols
in each string. Essentially, k is the number of active dimensions, that is, the
number of symbols (starting from the leftmost symbol) that need to be consid-
ered for a match. With this partitioning, sorting at any stage involves mainly
the strings that remain in the equal partition. Strings in this equal partition
can be compared (up to the k-th symbol) without requiring symbol-by-symbol
comparisons on the first k symbols. This approach results in a sorting algo-
rithm that runs in O(ns log ns +kns) worst case time, where ns is the number
of strings, and k is the required number of active dimensions. When k is small,
the time reduces to O(ns log ns). However, for the specific problem of sorting
the suffixes of a string, we will have ns = n, and k = n, leading to an O(n2)
time for suffix sorting.

In general, the longest common prefix, lcp, (see Section 4.1.5) provides an
important mechanism to estimate the level of difficulty in sorting the suffixes
of a given string. Define the average lcp, and maximum lcp as follows:

meanLCP =
1

n− 1

n−1
∑

i=1

lcp(TA[i], TA[i+1]) (4.1)

maxLCP = max
1≤i<n

{lcp(TA[i]), TA[i+1])} (4.2)

In Equations 4.1 and 4.2, we have used lcp as the length of the longest
common prefix. Usually the average lcp (and also the maximum lcp) between
any two adjacent suffixes in the sorted list provides a rough indication of the
number of symbol comparisons that will be needed to sort the suffixes. Larger
values of these statistics imply more difficulty in performing the suffix sorting.
Let µ = meanLCP . For methods that are based on standard string matching
using symbol- by-symbol comparisons, the average case complexity will be in
O(µn log n). When µ is small, or independent of n, this will result in O(n log n)
time. However, since µ could be in O(n), without careful consideration this
could lead to a worst-case complexity of O(n2 log n) for such schemes.
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4.2.2 Suffix arrays via suffix trees

A theoretically faster approach to construct the suffix array is via the suffix
tree. Given the suffix tree, the suffix array can be constructed in linear time
by a simple inorder traversal of the suffix tree. For instance, using Farach’s
recursive construction, all the edges from any given node are implicitly sorted
by their edge label. Thus, assuming the edges at each node are sorted from
left to right in ascending lexicographic order, a simple depth-first traversal of
TT , the suffix tree of T , will produce the suffix array, AT , the lexicographically
sorted list of all the suffixes in T .

Given the space requirement of suffix trees, there has been interest in direct
construction of suffix arrays, without the need to first construct the suffix tree
(so called direct suffix sorting problem). In the following, we describe some
of the proposed methods for direct suffix sorting, starting with the Manber-
Myers algorithm (Manber and Myers, 1993).

4.2.3 Manber-Myers suffix sorting algorithm

The problem with using the algorithms that sort a set of strings for the prob-
lem of suffix sorting is that they ignore important properties of the suffixes
of a string, which are not often shared by a random collection of strings. For
instance, suffixes of a string share a lot of common substrings, which can be
exploited for more efficient sorting. Moreover, conventional sorting algorithms
based on symbol-by-symbol comparisons are often limited to O(n log n) ex-
pected time, with some requiring a quadratic time or more in the worst case2.
The suffix tree on the other hand, requires much more space than may be
needed, and for some applications, avoiding the complications required for
efficient suffix tree construction could be advantageous.

Manber and Myers (Manber and Myers, 1990, 1993) were the first to pro-
pose an algorithm that directly computes the suffix array for a string, without
the need for an initial construction of the suffix tree. Their algorithm performs
suffix sorting in phases, using the idea of successive doubling, earlier used by
Karp et al. (1972) for identification of repeats in a string. Using successive
doubling, suffix sorting on a string of length n is performed using a maximum
of ⌈log n⌉ phases. First, the suffixes are placed into buckets according to their
first symbols. Essentially, the buckets can be viewed as the first pass on the
suffix array AT , whereby the array is sorted only by the first symbol in each
suffix (the ≺k ordering, with k = 1 ). Thus, consecutive entries in the same
bucket will have the same first character.

The above can be accomplished in linear time using a bucket sort. This
is phase 0 of the algorithm, and the sorted results correspond to the order-1

2 We note that fast algorithms for suffix arrays can be used to sort a set of strings (in
linear time with respect to the total length of the strings), by simply generating
the generalized suffix array of the set, and using simple bookkeeping.
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sorted suffixes. Then, at each subsequent phase, the buckets are partitioned
by sorting according to double the number of symbols used in the previous
phase. This means that the number of symbols affected in phase i will be 2i.
Therefore, after the i-th phase, (i = 0, 1, 2, . . . , ⌈log n⌉), the suffixes will be
order-k sorted, where k = 2i. Thus, after the i-th phase in the algorithm,
each bucket will hold only suffixes with the same first k symbols, k = 2i. The
major challenge is how the elements in each order-k bucket (which are so far
sorted according to the ≺k ordering) can now be sorted to obtain the order-2k
buckets (with elements in ≺2k ordering) all in linear time.

The key observation is that, after order-k bucketing, for a given suffix,
say Ti, the next k symbols of Ti are just the first k symbols of suffix Ti+k.
Thus, given two suffixes, say Ti and Tj in the same order-k bucket, (i.e. Ti =k

Tj), the relative order of Ti+k and Tj+k (with respect to the ≺k ordering) is
immediately available. Thus, at phase-2k (k = 2, 4, 8, . . .), in the algorithm
(we already have order-1 buckets from the initial bucket sort), we sort the
suffixes by starting with the first suffix in the first bucket (which necessarily
contains the smallest order-k suffixes). Let this first suffix at AT [1] be Ti.
Given that Ti starts with the smallest order-k suffix, then, the suffix Ti−k

must be the first suffix in its order-2k bucket. Therefore, we need to move
Ti−k to the start of its bucket. Then, take the next suffix according to the ≺k

ordering (i.e. the suffix at AT [2], say Tj), and move suffix Tj−k to the next
available place in its own bucket. The phase continues with this movement of
suffixes until all the suffixes in all buckets have been processed. The algorithm
will stop when each bucket contains exactly one suffix, which will occur after
⌈log2 n⌉ phases at the most. A basic description of Manber and Myers’ suffix
sorting algorithm is given in Algorithm 4.3.

Manber-Myers-Suffix-Sorting(T )
/* Returns the suffix array in the array AT */
Perform initial bucket sort on T to produce initial sorted array AT

for u← 0 to ⌈log n⌉ do

k ← 2u

for v ← 1 to n do

i← AT [v]
if (i− k > 0) or (i + k ≤ n + 1) then

Move suffix Ti−k to the next available slot in its bucket (in AT )
end if

end for

end for

Algorithm 4.3: Basic Manber-Myers suffix sorting algorithm
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Figure 4.14 shows a run of the algorithm on the example string, T =
mississippi$. For a given suffix Ti, Ti is not moved in its bucket when
i + k > n + 1, or if i− k ≤ 0. Thus we have:

• In phase k = 1, no movement at step v=6, since i− k = 0.
• In phase k = 2, no movement in step 4 (i−k = 0), and in step 6 (i−k < 0);

at step 1, T11 was not moved in its current position, since 11 + k > n + 1,
with k = 2, n = 11.

• In phase k = 4, no movement in steps 4, 6, and 11 (i− k < 0), and in step
10 (i − k = 0); no more movements within the p-bucket, since for each
suffix Ti in this partition, i + k > n + 1, with k = 4, n = 11.

The final sorted array is given by the values in AT at the end of the last
phase (the last column in the table): AT = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].

Bucket Phase k = 0 Phase k = 1 Phase k = 2 Phase k = 4
(Bucket Sorting)
Suffix A Step Suffix A Step Suffix A Step Suffix A

$ $ 12 $ 12 $ 12 $ 12
i ississippi$ 2 1 i$ 11 ⋄ 1 i$ 11 ⋄ i$ 11

ississppi$ 5 7 ippi$ 8 8 ippi$ 8 8 ippi$ 8
ippi$ 8 9 ississippi$ 2 11 ississippi$ 2 9 issippi$ 5
i$ 11 11 issippi$ 5 12 issippi$ 5 10 ississippi$ 2

m mississippi$ 1 2 mississippi$ 1 ⋄4 mississippi$ 1 ⋄4 mississippi$ 1
p ppi$ 9 5 pi$ 10 2 pi$ 10 ⋄ pi$ 10

pi$ 10 8 ppi$ 9 7 ppi$ 9 ⋄ ppi$ 9
s ssissippi$ 3 3 sissippi$ 4 3 sippi$ 7 3 sippi$ 7

sissippi$ 4 4 sippi$ 7 5 sissippi$ 4 5 sissippi$ 4
ssippi$ 6 10 ssissippi$ 3 9 ssissippi$ 3 11 ssippi$ 6
sippi$ 7 12 ssippi$ 6 10 ssippi$ 6 12 ssissippi$ 3

Fig. 4.14. Sample run of Manber-Myers suffix sorting algorithm on the string T =
mississippi$. The final result (the suffix array) is the last column in the figure.
The symbol ⋄i indicates that in step i of the current phase, no more comparison is
needed. The symbol ⋄ (without a number) indicates that the corresponding suffix is
now in its final position in the suffix array, and thus requires no more movements

Notice that only pointers to the suffixes need to be moved, there is no
need to physically copy the suffixes. Thus, each phase requires O(n) time to
complete in the worst case, leading to an overall worst case time of O(n log n)
for the algorithm. On average, however, the algorithm will run in O(n log log n)
time, since the length of the maximum lcp will be in O(log|Σ| n) on average,
for a string with uniformly distributed symbols (Karlin et al., 1983). This
can be further reduced to O(n) expected time, using a linear-time mapping
of appropriately sized small substrings to integers before sorting begins, for
instance, using a hash function (see Section 7.1.4). Further details of these
improvements are provided in the original paper (Manber and Myers, 1993).

An improvement and perhaps simplification of the algorithm could be to
use radix sort at each phase, rather than the successive doubling and move-
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ment of suffixes. That is, after the first phase of bucket sorting, subsequent
phases are performed by forming a tuple using the current symbol, and the
bucket number of its next symbol in T . Let AT be the current suffix array
at phase k. This will contain the indexes for the order-k sorted suffixes. As
in the original algorithm, AT will be progressively sorted as the algorithm
progresses. Let B[i] be the bucket number for the i-th suffix in AT . Suffixes
in the same bucket are given the same bucket number. Let ÃT be the inverse
of AT , that is, if AT [i] = j, then ÃT [j] = i. Then, at each phase the tuple is
formed as follows: 〈B[i], B[Ã[AT [i]+1]]〉. Then we radix-sort the set of tuples
in linear time. We continue in this way until each bucket contains exactly one
suffix. Overall, the complexity remains the same as in the original algorithm,
but using radix sorting will simplify the required movements needed when
using successive doubling. On average, this would also require less space in
practice, since after the initial bucket sort, radix sorting can be confined to
smaller buckets at subsequent phases.

The basic Manber and Myers algorithm has been implemented by McIl-
roy and McIlroy in the ssort suffix sorting routine. Larsson and Sadakane
(1999, 2007) proposed various improvements to the basic algorithm by combin-
ing the successive doubling technique with the ternary-partitioning quicksort
proposed by Bentley and Sedgewick (1997).

4.2.4 Linear-time direct suffix sorting

More recently, there has been interest in constructing direct suffix sorting
algorithms that do not use the suffix tree data structure, but still run in linear
time in the worst case. Example algorithms that achieve this running time
complexity can be found in Kärkkäinen et al. (2006), Ko and Aluru (2005)
and Kim et al. (2005). Here we describe the KS Algorithm (Kärkkäinen and
Sanders, 2003; Kärkkäinen et al., 2006) in more detail, given its simplicity.

The KS suffix sorting algorithm

Kärkkäinen and Sanders (Kärkkäinen et al., 2006) proposed a divide and
conquer approach similar to Farach’s suffix tree construction method of Sec-
tion 4.1.5, but for direct construction of suffix arrays. Here, rather than divid-
ing the sequence into two symmetric parts, the sequence was divided into two
unequal parts by considering suffixes that begin at positions ((i−1) mod 3 6=
0) in the sequence. These suffixes are recursively sorted, and then the remain-
ing suffixes are sorted based on information in the first part which is already
sorted. The two sorted lists of suffixes are then combined using a merging step
to produce the final suffix array. Thus, a major difference is in the way they
divided the sequences into two parts, and in the merging step. Also, the use of
a 2/3 recursion (rather than the traditional half recursion) significantly sim-
plified the later merging stage, since a relative order between any conflicting
symbols can be found in at most two steps of comparison.
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Following Farach’s recursive suffix tree construction algorithm (Farach,
1997; Farach and Muthukrishnan, 1996; Farach-Colton et al., 2000) introduced
in Section 4.1.5, we describe the basic KS-Algorithm as follows:

1. Classify the suffixes into Type 1 and Type 2 suffixes as follows3:

• Ti is a Type 1 suffix if : (i− 1) mod 3 = 0
• Ti is a Type 2 suffix if : (i− 1) mod 3 6= 0

2. Sort Type 2 suffixes to form A2
T .

3. Using A2
T , construct A1

T , the sorted order for Type 1 suffixes.
4. Merge A2

T and A1
T to form AT , the final suffix array for T .

Sorting Type 2 suffixes. The major problem in the KS Algorithm is
the second step – sorting the Type 2 suffixes to form A2

T . This is performed
in a recursive manner. First, the algorithm sorts the Type 2 suffixes based
on their first three symbols. For suffix Ti, (i − 1) mod 3 6= 0, this will be
the trigrams or triplets [Ti[1], Ti[2], Ti[3]] = T [i . . . i + 2]. If all the triplets
are unique (and hence have unique ranks in the sorted order), the step is
complete. This will mean that the Type 2 suffixes have a maximum lcp of 3.
In most general cases, however, the maximum lcp will be more than 3, and
hence more computation is required to complete the sorting. To do this, a
new string of integers is formed by writing out the triplets from the Type

2 suffixes in their order of occurrence in T , and then replacing each triplet
with its rank in the current sorted order. Call this new string S. Notice the
similarity between the string S, and the string S′ used in Farach’s suffix tree
construction (see Section 4.1.5). The algorithm is then applied recursively on
S to construct its suffix array, AS . The array AS is equivalent to (has a one-
to-one mapping with) A2

T , the required sorted order of the original Type 2

suffixes from T .
Sorting Type 1 suffixes using sorted Type 2 suffixes. After sorting

the Type 2 suffixes, A1
T the sorted order of the Type 1 suffixes can be de-

duced from A2
T by forming the tuple: 〈Ti[1], rank of Ti+1 in A2

T 〉 for each
(i− 1) mod 3 = 0. This is equivalent to the pair 〈Ti[1], ÃS [i + 1]〉, where ÃS

is the inverse of AS . The pairs can then be sorted in linear time, using radix
sort to give A1

T .
Merging sorted Type 1 and Type 2 suffixes. The final step is to merge

A1
T and A2

T to form the required suffix array AT . The key is that conflicts that
can arise during the merging can each be resolved by using A2

T . To compare
a Type 1 suffix Ti with a Type 2 suffix Tj , at the merge stage, we need to
consider two cases:

• 1-Compare Case: If (j − 1) mod 3 = 1, we compare 〈Ti[1], rank of Ti+1

in A2
T 〉, versus 〈Tj [1], rank of Tj+1 in A2

T 〉. For this simple case, the relative
order of both Ti+1 and Tj+1 are available from A2

T .

3 We use Type 1 and Type 2 for ease of description. These were not necessarily
used by the authors in their original work.
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• i i i+2

in A2
T 〉, versus 〈Tj [1], Tj [2], rank of Tj+2 in A2

T 〉. Again, for this more dif-
ficult case, the tie is broken using the triplet, since the relative order of
both Ti+2 and Tj+2 are also available from A2

T .

Below, we further explain the working of the KS Algorithm using an ex-
ample. Consider the string T = mississippi$. First, we group the suffixes
into their respective types.

Type 1 suffixes for T : Ti|(i− 1) mod 3 = 0:

1mississippi$
4sissippi$
7sippi$
10pi$

For Type 1 suffixes, we have used superscripts to indicate their correspond-
ing positions in the parent sequence. Sorting these suffixes will produce A1

T .
Type 2 suffixes use the rule: Type 2 suffixes for T : Ti|(i−1) mod 3 6= 0. Table
4.1 shows the Type 2 suffixes, and their sorted order, based on the triplets
(≺3 ordering ). Complete sorting of the Type 2 suffixes will produce A2

T .

Suffix Sorted Sorted Label
Position Suffix Trippes Triples Positions (Index)

2 ississippi$ iss $$$ 12 1
3 ssissippi$ ssi i$$ 11 2
5 issippi$ iss ipp 8 3
6 ssippi$ ssi iss 2 4
8 ippi$ ipp iss 5 4
9 ppi$ ppi ppi 9 5
11 i$ i$$ ssi 3 6
12 $ $$$ ssi 6 6

Table 4.1. Type 2 suffixes after the first level of iteration in the KS Algorithm
using the example T = mississippi

Since the labels are not unique for all the triplets, we need to construct
a new string, and apply the algorithm recursively. The new string will be:
S = 46463521. We divide S into its Type 1 and Type 2 suffixes. The Type

1 suffixes for S will be the set: { 146463521$, 463521$, 721$ }. Sorting these
suffixes will produce the suffix array A1

S . Table 4.2 shows the Type 2 suffixes
for string S, and their sorted order, based on the triplets (≺3 ordering). A
complete sorting of these Type 2 suffixes will produce A2

S .
From Table 4.2 we have A2

S = [8, 5, 3, 6, 2] and Ã2
S = [5, 3, 2, 4, 1]. We

determine the order of the Type 1 suffixes in S by forming the array of tu-

2-CompareCase: If (j−1)mod 3=2,we compare 〈T [1], T [2], rank of T
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ples: [〈4, 5〉, 〈6, 2〉, 〈2, 1〉]. Sorting these tuples will give A1
S = [7, 1, 4]. (In this

particular case, the sorted order is available, without forming the tuples.)
The next step is to merge A1

S and A2
S to form AS = [8, 7, 5, 3, 1, 6, 4, 2].

These are based on the indexes in the shorter string S. We map these back
to their original positions in T to obtain A2

T = [12, 11, 8, 5, 2, 9, 6, 3]. Now,
we deduce the sorted order for the Type 1 suffixes in T by sorting the
tuples: [〈m, 5〉, 〈s, 4〉, 〈s, 3〉, 〈p, 2〉]. The result will be A1

T = [1, 10, 7, 4]. Fi-
nally, we merge A1

T and A2
T to form AT , the required suffix array: AT =

[12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].
Note that the number of Type 1 suffixes is n/3, while that of Type 2

suffixes is 2n/3. This is important, since the recursive call applies only to Type

2 suffixes. Thus, the running time for the algorithm is given by the solution
to the recurrence : ϕ(n) = ϕ(⌈2n/3⌉) + O(n). This gives ϕ(n) = O(n).

The KA algorithm

Ko and Aluru (2005) also used recursive partitioning, but following a funda-
mentally different approach to construct the suffix array in linear time and
space. They use a binary marking strategy whereby each suffix in T is classi-
fied as either an S-suffix or an L-suffix, depending on the relative order with
its next neighbor. An S-suffix is a suffix that is lexicographically smaller than
its right-neighbor in T , while an L-suffix is one that is lexicographically larger
than its right-neighbor. That is, Ti is an S-suffix if Ti ≺ Ti+1, otherwise Ti is
an L-suffix. This classification is motivated by the observation that an S-suffix
is always lexicographically greater than any L-suffix that starts with the same
character. The two types of suffixes are then treated differently: the S-suffixes
are sorted recursively by performing some special distance computations. The
L- suffixes are then sorted using the sorted order of the S-suffixes. The classi-
fication scheme is very similar to an approach used earlier by Itoh and Tanaka
(1999), (see Section 4.3), but the algorithm in Itoh and Tanaka (1999) runs
in O(n log n) time on average, and O(n2 log n) worst case.

Suffix Sorted Sorted Label
Position Suffix Trippes Triples Positions (Index)

2 6463521$ 646 1$$ 8 1
3 463521$ 463 352 5 2
5 3521$ 352 463 3 3
6 521$ 521 521 6 4
8 1$ 1$$ 646 2 5

Table 4.2. Type 2 suffixes after the second level of recursion in the KS Algorithm
using S = 46463521$
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4.3 Space issues in suffix trees and suffix arrays

One major motivation for the use of suffix arrays over suffix trees is the small
memory footprint of the former. The time and space requirements of the two
data structures can be considered from two view points: at the construction
stage, and after construction (for storage, or at the time of use, for instance,
during search). While the suffix array generally requires a smaller space to
store, and less time for searching, traditionally, their construction requires
more time than suffix trees (Manber and Myers, 1993). The recent survey in
Puglisi et al. (2007), however, shows that some recent suffix sorting algorithms
can be faster than suffix arrays, even at construction time. Further, although
the suffix array also requires less space than suffix trees during construction,
it is still important to consider the actual space needed by a given suffix
sorting algorithm. With the increasing input data size for these algorithms
(for instance, in genomic applications with potentially billions of symbols in
one genome), the space requirement during construction is becoming critical.

There are three major approaches to dealing with the problem of the
space required for the construction and use of suffix trees and suffix arrays:
(1) space-efficient suffix tree/suffix array construction, (2) compressed suffix
trees/suffix arrays, and (3) the construction of suffix trees/suffix arrays in
external storage. Below we discuss methods that have been proposed for space-
aware suffix sorting. We discuss compressed suffix trees and compressed suffix
arrays in Section 8.1, given their very close relationship with BWT-based
compressed full-text indexing and other applications discussed in that chapter.
The further reading section at the end of this chapter provides some pointers
to key references on constructing suffix trees and suffix arrays in secondary
storage.

Lightweight suffix array construction

There has been some effort to reduce the actual space requirement in suffix
array construction. Algorithms that aim at this reduced space requirement
are sometimes called lightweight suffix sorting algorithms. More specifically,
Manzini and Ferragina (2004) use the term “lightweight” to refer to a suffix
sorting algorithm that requires no more than 5n bytes plus a small extra
space in constructing the suffix array of a string of length n. This is based on
the assumption that the alphabet size is no more than 256 characters (which
means 1 byte is enough to hold each symbol), and that integers are stored in 4
bytes (32 bits), as is done in most current machine models. Thus, lightweight
algorithms require little or no memory beyond those needed to store the text
itself (n bytes) and those needed to store the suffix array (4n bytes).

Existing lightweight algorithms can be characterized by the following four
steps:

Bucketing. Typically, they start with an initial bucketing to partition the
suffixes, usually based on the first one or first two symbols.
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Suffix classification. The suffixes are then classified or grouped into differ-
ent suffix types, often based on their relationship with neighboring suffixes
in the string.

Sorting within groups. Based on the suffix group, the lightweight algo-
rithms often use standard string sorting algorithms (such as ternary quick-
sort (Bentley and McIlroy, 1993), or multikey quicksort (Bentley and
Sedgewick, 1997)) to sort suffixes in the same group. Some also use other
existing suffix sorting algorithms at this stage, for instance, Seward’s copy

algorithm (Seward, 2000) or Larsson and Sadakane’s qsufsort algorithm
(Larsson and Sadakane, 2007).

Derived sorting. Finally, the lightweight algorithms typically exploit the
fact that we are sorting suffixes of the same string, by deriving the sorted
order of certain buckets or suffixes from previously sorted suffixes.

The difference between the various lightweight suffix sorting algorithms
is primarily in the specific approach they used in one or more of the above
steps. We describe the popular lightweight algorithms below, with an emphasis
on Itoh and Tanaka’s two-stage algorithm, one of the earliest lightweight
algorithms.

Itoh-Tanaka Algorithm. Itoh and Tanaka (1999) proposed the two-

stage algorithm for suffix sorting. After initial bucketing based on the first
symbol in each suffix, the suffixes in each bucket are then classified into Type

A and Type B suffixes as follows:

• Ti is Type A suffix if : T [i + 1] ≺ T [i]
• Ti is Type B suffix if : T [i] ≺ T [i + 1]

The Type B suffixes are then sorted using a standard string sorting algo-
rithm. Specifically, they used a hybrid of sorting algorithms, depending on
the size of the group. They proposed simple insertion sort for small buckets,
multikey quicksort (Bentley and Sedgewick, 1997) for medium sized buckets,
and MSD radix sort (McIlroy et al., 1993) for large groups.

Note that when a Type A and Type B suffix are in the same bucket, the
Type A suffix will always precede the Type B suffix. Itoh and Tanaka then
used the key observation that, after all Type B suffixes have been correctly
sorted, the sorted order of Type A suffixes can be directly derived from the
sorted Type B suffixes in one single pass. That is, we simply scan over the
suffix array being constructed in ascending order; for a given suffix, say Ti,
check if suffix Ti−1 is Type A; if so, move the suffix Ti−1 to the first empty
position in its bucket. Figure 4.15 shows the result of the Itoh-Tanaka two-

stage algorithm on our sample string, T = mississippi$.
As can be observed, when the number of Type A suffixes is relatively

large compared to the number of Type B suffixes, the algorithm will work
faster in practice. To increase the number of Type A suffixes, Itoh and Tanaka
suggested the use of buckets based on the first two symbols at the bucketing
step (i.e. using ≺2 ordering, rather than ≺1).
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Position 1 2 3 4 5 6 7 8 9 10 11 12

Symbol m i s s i s s i p p i $

Type A B B A B B A B B A A −

(a)

Bucket Position Suffix Type Type B Type A Merged
Sorted (Induced sort)

$ 12 $ − 12 12

i 2 ississippi$ B 11 11
5 issippi$ B 8 8
8 ippi$ B 5 5
11 i$ A 2 2

m 1 mississippi$ A 1 1

p 9 ppi$ B 10 10
10 pi$ A 9 9

s 3 ssissippi$ B 7 7
4 ssissippi$ A 4 4
6 ssippi$ B 6 6
7 sippi$ A 3 3

(b)

Fig. 4.15. Itoh-Tanaka two-stage algorithm on the string T = mississippi$: (a)
classification of suffixes; (b) sorting process

Two other popular lightweight algorithms are Seward’s copy algorithm

and Ferragina, 2004). Algorithm copy performs bucketing on the suffixes
based on the first symbols, and for each bucket it further partitions the suf-
fixes into smaller buckets based on their second symbols. It then sorts these
smaller partitions using ternary quicksort. When a bucket (say with initial
symbol σ) is completely sorted, copy can deduce the sorted order of all other
smaller partitions that have symbol σ as its second symbol directly, by a single
pass over the bucket. These are therefore not directly sorted using the string
sorting algorithm.

Algorithm deep-shallow extends the copy algorithm in several ways.
Rather than use ternary quicksort (Bentley and McIlroy, 1993) for sorting the
smaller partitions, they use the multikey quicksort proposed by Bentley and
Sedgewick (1997). More importantly, they divide the suffixes within a smaller
partition into two parts, based on a threshold on the length of their common
prefix. For suffixes with the lcp less than the threshold, they use multikey
quicksort as above. For those with lcp beyond the threshold, they abandoned
the multikey quicksort, and used a different string sorting algorithm. They
call the former approach (for small lcp) shallow sorting, and the latter (for
smaller partitions with large lcp) deep sorting. In Manzini and Ferragina
(2004), three algorithms for deep sorting were proposed, one generalizing the

(Seward, 2000) and Manzini and Ferragina’s deep-shallow algorithm (Manzini
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idea of direct determination of the sorted order of the smaller partitions based
on an already sorted bucket. Recent related work on light-weight suffix sorting
has been reported by Maniscalco and Puglisi (2006).

Other algorithms that are closely related to the lightweight algorithms in-
clude Larsson and Sadakane’s qsufsort (Larsson and Sadakane, 1999, 2007),
and more recently Schürmann and Stoye’s bkpr (bucket-pointer refinement)
algorithm (Schürmann and Stoye, 2007). Both algorithms use the successive
doubling technique of Manber and Myers as their basic working principle.
Both also have a space requirement of 8n bytes, with a worst case complexity
in O(n log n) for the former, and O(n2) for the latter. Schürmann and Stoye
focused on strings with variable lcp’s as may be needed for applications such
as in bioinformatics, using a hybrid of both standard sorting and suffix sorting
algorithms.

4.4 Further reading

The suffix tree was originally introduced by Weiner (1973), with space-efficient
constructions considered by McCreight (1976). Related data structures such
as suffix tries and Patricia trees (Morrison, 1968; Knuth, 1973; Gonnet et al.,
1992) have also been studied. Ukkonen (1995) made the suffix tree easier
to understand, and showed a simpler method to construct the tree in lin-
ear time. Giegerich and Kurtz (1997) showed the close relationship between
the seemingly different approaches to suffix tree construction. Farach et al.
(Farach, 1997; Farach-Colton et al., 2000) introduced a fundamentally differ-
ent approach to constructing suffix trees, by simple recursive decomposition.
Szpankowski (1993a,b) analyzed suffix trees and the generalized suffix tree.
Suffix tree on words are studied in Andersson et al. (1999). Gusfield (1997)
provides a detailed study on suffix trees and their various applications. See
also Apostolico (1985) for other applications of suffix trees.

The suffix array was introduced by Manber and Myers in the early 1990s
(Manber and Myers, 1990, 1993) as a more space efficient alternative to suffix
trees. Their algorithm required O(n log n) time in the worst case, with an av-
erage time of O(n). Around the same period, Gonnet et al. (1992) introduced
the PAT-array, a very closely-related data structure. Grossi and Vitter (2005)
presented various applications of the suffix array data structure. Spurred by
the introduction of the BWT in 1994 (Burrows and Wheeler, 1994), which
relied heavily on sorting the suffixes of a string, various methods and algo-
rithmic improvements were proposed for the suffix sorting problem (Larsson,
1998; Larsson and Sadakane, 2007; Itoh and Tanaka, 1999; Seward, 2000).
While some of the algorithms improved the space needed to construct the
suffix array, most of these algorithms still required O(n log n) time or more in
the worst case. It was not until 2003 that algorithms that can construct the
suffix array in linear time and linear space in the worst case were introduced
(Kärkkäinen and Sanders, 2003; Kärkkäinen et al., 2006; Kärkkäinen, 2007;
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Ko and Aluru, 2003, 2005; Kim et al., 2003, 2005; Adjeroh and Nan, 2008).
Puglisi et al. (2007) provide a recent survey on suffix arrays. The problem
of constructing lightweight suffix sorting algorithms that run in linear time
worst case is still open.

Given the problem of space, especially for certain applications that require
huge data sizes, more recent efforts have focused mainly on methods to re-
duce the space requirements for suffix trees and suffix arrays. Space efficient
construction of suffix trees were studied in Kurtz (1999) and Andersson and
Nilsson (1995). Compressed suffix trees were studied in Munro et al. (2001),
Grossi and Vitter (2005), and Kim and Park (2005), while compressed suffix
arrays were considered in Grossi and Vitter (2000), Grossi and Vitter (2005),
Hon et al. (2003a), and Na (2005). Algorithms that can perform the construc-
tion in external storage were proposed in Bieganski et al. (1994), Clark and
Munro (1996), Farach-Colton et al. (2000), Hunt et al. (2001), and Cheung
et al. (2005) for suffix trees, and in Kärkkäinen et al. (2006) and Crauser and
Ferragina (2002) for suffix arrays. Ferragina (2005) looks at the general prob-
lem of string searching in external memory. Franceschini and Muthukrishnan
(2007) reports on in-place suffix sorting.




