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Preface

The Burrows-Wheeler Transform is one of the best lossless compression meth-
ods available. It is an intriguing — even puzzling — approach to squeezing
redundancy out of data, it has an interesting history, and it has applications
well beyond its original purpose as a compression method. It is a relatively
late addition to the compression canon, and hence our motivation to write
this book, looking at the method in detail, bringing together the threads that
led to its discovery and development, and speculating on what future ideas
might grow out of it.

The book is aimed at a wide audience, ranging from those interested in
learning a little more than the short descriptions of the BWT given in stan-
dard texts, through to those whose research is building on what we know
about compression and pattern matching. The first few chapters are a careful
description suitable for readers with an elementary computer science back-
ground (and these chapters have been used in undergraduate courses), but
later chapters collect a wide range of detailed developments, some of which
are built on advanced concepts from a range of computer science topics (for
example, some of the advanced material has been used in a graduate com-
puter science course in string algorithms). Some of the later explanations
require some mathematical sophistication, but most should be accessible to
those with a broad background in computer science.

We have aimed to provide a detailed introduction to the current state
of knowledge about the Burrows-Wheeler Transform. This ranges from ex-
planations and examples of how the transform works, through analyzing the
theoretical performance of the transform from various view points, to con-
sidering issues relevant to implementing it on “real” systems. Each chapter
(except the last one) contains a “further reading” section to guide the reader
around the large collection of literature that has explored the BWT in detail,
and Appendix B points to ongoing research.

An important theme in this book is pattern matching and text indexing
using the BWT. Because the transformed text contains a sorted version of
the original text, it has considerable potential to help with locating patterns,
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and we look in detail at a number of variations that have been proposed and
evaluated.

The BWT literature uses a variety of notation for the various structures
used in the transform. Where possible we have tried to use standard notation,
but unfortunately some key notations conflict with those used in the standard
pattern matching literature, and so we have chosen to coin some new notations
to avoid having the same notation with two meanings, at times in the same
paragraph! Appendix A gives a summary of the notation used to avoid any
confusion.

The BWT continues to be actively researched, and this book is merely a
milestone in its history. Appendix B gives links to web sites that will be worth
watching for future developments of the BWT and related systems.

We are also aware that despite some excellent help with checking this
book, it will contain errors and require updates. An errata site is available
at http://www.cosc.canterbury.ac.nz/tim.bell/bwt/. We welcome feed-
back on the book, and this can be sent to the authors via the contact details
on this web site.
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1

Introduction

The greatest masterpiece in literature is only a dictionary out of order.
Jean Cocteau

Here is a two word phrase in which the characters have been rearranged:
atd nrsoocimpsea. Can you work out what the two words are that contain
all these characters (including the space)? They could be comedian pastors,
but they aren’t. Nor are they darpa economists, massacred potion, maniac
doorsteps or even scooped martians.

This puzzle is an example of the Burrows-Wheeler Transform (BWT),
which uses the intriguing idea of muddling (we prefer to call it permuting) the
letters in a document to make it easier to find a compact representation and to
perform other kinds of processing. What is amazing about the BWT is that
although there are 2,615,348,735,999 different ways to unmuddle the above
characters into possible anagrams, the Burrows-Wheeler Transform makes it
very easy to find the unique correct permutation very quickly.

The main point of permuting a text using the BWT is not to make it dif-
ficult to read, but to make it easy to compress. For example, for the following
line from Hamlet’s famous soliloquy:

“To be or not to be: that is the question, whether tis nobler in the
mind to suffer the slings and arrows of outrageous fortune.”

we get the transformed text:

“sdoosrtesrsefeeoe:nsrrtdn,r h onnhbhhbglfhuhnofu antttttw mltt bs
ioaiui Tttn i fne r eoeetraoguiwi e ao es e. urqstoo o”
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Notice that many characters in the transformed text appear in runs, or
very close to previous occurrences. For longer texts this is even more notice-
able; here is a typical excerpt from a Burrows-Wheeler Transform of all of
Shakespeare’s Hamlet:

nnnnnnnnnnnnnnnnnntnnnnnnnhnnngnnnnnnnnjnnnnnhdnnng

nnnnonnNnnnhhNnnnnnnnnntnnhnnnnnnnnnnnnnnNnndnnnhnn

nnnNnnnnnnnnnnnnnnnnnnnnnonntnnNNnnnnnnnndngnnnnnnn

nnnnnnnNnnnnnnnngnnnnnnnnnnnnnnnnnngnnnnnnnnonnnnnn

nnnNNnlnnnhnnnnnnnnnntdbdnnrrmnnmnmnnnuoccppppppdnr

rDolBbbdddodbbBddbbddbdBdbbdbdDddddBbbbbdDbubbdbdbB

This clustering of characters makes compression very easy. One simplistic
way to code it would be to replace repeated characters with a number that
says how many times it is repeated; for example, the first line above could be
coded as:

19nt7nh3ng8nj5nhd3ng

In practice BWT coders use more sophisticated representations that take
advantage of the mixture of frequently occurring characters (for example, the
first four lines in the above example contain only 8 different characters, almost
all of which are “n”, “N”, “h” or “g”). The point is that the transform makes
the encoding task a lot simpler, and importantly, can give compression that
is comparable with the very best lossless compression methods. Furthermore,
it is generally faster than methods that give a similar amount of compression.

It has transpired that the BWT is useful for a lot more than compression
because it contains an implicit sorted index of the input string. In this book
we will review many of its other uses, especially for pattern-matching and
full-text indexing, which leads to applications ranging from bioinformatics to
machine translation.

The Burrows-Wheeler Transform method is often referred to as “block
sorting”, because it takes a block of text and permutes it. The main disad-
vantage of the block-wise approach is that it cannot process text character by
character; it must read in a block (typically tens of kilobytes) and then com-
press it. This is not a limitation for most purposes, but it does rule out some
applications that need to process data on-the-fly as it arrives. Another im-
portant point is that the text can be sorted ; throughout this book we assume
a unique ordering on the characters or symbols that are in the text so that
substrings can be compared by the sorting algorithms. Most implementations
work with a character set such as ascii or 8-bit bytes, for which comparisons
are trivial, but we shall see later that variations are possible where we take a
more sophisticated approach to the ordering.



1.1 An example of a Burrows-Wheeler Transform 3

1.1 An example of a Burrows-Wheeler Transform

In this section we will give a simple example of how a text is transformed
and reconstructed using the BWT. The method described here is for clarity
of explanation, and in later chapters we will look at equivalent approaches
that are a lot faster and simpler to implement, so don’t be put off if it seems
to be resource-hungry.

We will use a rather short block of text in this example: “aardvark$”.
The dollar sign is a sentinel, or end of string character, that we’ve added to
simplify the explanation.

To generate the BWT, we list all nine rotations of the nine-character string,
as shown in Figure 1.1a; that is, for every position in the string, we create a
string of nine characters, wrapping around to the beginning if it runs off the
end. The list is then sorted into lexical (dictionary) order (Figure 1.1b) (in
this case we’ve assumed that $ comes at the start of the lexical ordering). The
transform is now complete, and the last column (i.e. last character of each
row from top to bottom) is the output (Figure 1.1c).

aardvark$

ardvark$a

rdvark$aa

dvark$aar

vark$aard

ark$aardv

rk$aardva

k$aardvar

$aardvark

$aardvark

aardvark$

ardvark$a

ark$aardv

dvark$aar

k$aardvar

rdvark$aa

rk$aardva

vark$aard

k$avrraad

(a) (b) (c)

Fig. 1.1. Burrows-Wheeler Transform of the string “aardvark$”: (a) all rotations
of the text are listed; (b) the list is sorted; (c) the last column is extracted as the
BWT

The transform is that simple; in fact, in practice it is even simpler, as the
substrings are never created, but are simply stored as references to positions in
the original string. The size of the transformed text is identical to the original,
and contains exactly the same characters but in a different order. This might
seem to have achieved nothing, but as we shall see, it makes the text much
easier to compress because it has drawn together characters that occur in
related contexts — that is, characters that precede the same substrings.

It might seem that decoding the transformed text would be very difficult;
after all, how do you “unmuddle” a list when there is an exponential number
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of ways to do it? The amazing thing about the BWT is that the reverse
transform not only exists, but it can be done efficiently. A key observation
is that we can reconstruct the list in Figure 1.1b, one column at a time.
Figure 1.2a reproduces the list that we wish to construct, with the columns
labeled. Traditionally we use F and L to label the first and last columns
respectively; the others have been numbered for reference.

F2345678L

$aardvark

aardvark$

ardvark$a

ark$aardv

dvark$aar

k$aardvar

rdvark$aa

rk$aardva

vark$aard

F2345678L

        k

        $

        a

        v

        r

        r

        a

        a

        d

F2345678L

$       k

a       $

a       a

a       v

d       r

k       r

r       a

r       a

v       d

LF            F2

k$           $a

$a           aa

aa           ar

va           ar

rd           dv

rk           k$

ar           rd

ar           rk

dv           va

F2345678L

$a      k

aa      $

ar      a

ar      v

dv      r

k$      r

rd      a

rk      a

va      d

F2345678L

$aa     k

aar     $

ard     a

ark     v

dva     r

k$a     r

rdv     a

rk$     a

var     d

(a) (b) (c)

(d) (e) (f) (g)

sort

Fig. 1.2. Decoding the BWT: (a) the encoding information that we are trying to
reconstruct; (b) the transformed BWT text in column L; (c) adding column F ; (d)
using L and F to extract all pairs of characters; (e) sorting the pairs; (f) adding the
sorted pairs to the reconstruction; (g) adding sorted triples to the reconstruction
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Column L is what the encoder sent to the decoder, so the reconstruction
can start by filling column L (Figure 1.2b). Now observe that column F is
simply all of the characters in the text in lexical order. Since the transformed
text contains all of the characters, we can reproduce column F simply by
sorting column L (Figure 1.2c).

Our next observation is that because of the wrap-around from the rotations
used to generate the substrings, for a particular row, the character in column
L must be followed by the one in column F in the original string. Thus we
can find all pairs of characters in the original string by taking pairs from the
last and then first columns (Figure 1.2d). If we sort these pairs (Figure 1.2e),
they will give us the pairs in column 1 (F ) and 2, and we now know three of
the columns (Figure 1.2f).

Applying the wrap-around principle again, we can find all triples in the
original text, sort them, and add them to the list (Figure 1.2g). We continue
doing this until the whole list has been reproduced, giving us the information
that the encoder had (Figure 1.2a). At this point it is trivial to read off the
original string; we can take any row, and starting after the end-of-file symbol,
read the characters, wrapping around at the end of the row.

This may seem like a lot of work to do the decoding. In practice most of
the process just described is unnecessary and decoding can be done in O(n)
time by creating an auxiliary array that enables us to navigate around the
transformed text. This is covered in detail in Chapter 2, but in the meantime,
we will observe that the relationships just described mean that we can easily
match the characters in columns L and F .

The transform that we have just described doesn’t change the size of the
file that has been transformed. However, when it is done to large files, we shall
see that it makes the file a lot easier to compress because we end up with a
very obvious clustering of characters.

1.2 Genesis of the Burrows-Wheeler Transform

The Burrows-Wheeler Transform is one of the most effective text compres-
sion methods to come out of the 20th century, yet its intriguing method of
compression and its unusual history have meant that it was almost overlooked!

Data compression has turned out to be fundamental to getting things done
on digital devices. Without mp3 files we couldn’t download music or carry lots
of songs in portable devices; without jpeg files digital cameras would only take
a few shots before filling up and photos on web pages would take forever to
load; and without the mpeg standard DVDs would only hold a few minutes
of movies and the phrase “viral video” would never have been coined.

In this book we focus on lossless methods, which are able to decompress
a file to exactly the same as it was before being compressed. However, many
lossy methods (which are typically used for sound and images) rely on lossless
methods in their final stage.
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Compression on computers spans the second half of the 20th century. Shan-
non’s ground-breaking paper on information theory is generally regarded as
the foundation of compression systems (Shannon, 1948). The paper included
a proposed coding method that has come to be known as Shannon-Fano cod-
ing, which was one of the earliest methods used to take advantage of some
characters being more likely than others. Shannon-Fano coding is suboptimal,
and it was one of Fano’s students, David Huffman, who in 1952 published his
well-known algorithm (Huffman, 1952), which became a stock technique and
is still used today as a part of many kinds of compression system, includ-
ing general-purpose lossless methods and systems for compressing audio and
images. The next major improvements in compression performance came in
the late 1970s, when Ziv and Lempel published the “LZ” methods which are
still widely used in formats such as gif and png images, as well as the zip

and gzip utilities (Ziv and Lempel, 1977, 1978). The LZ family of methods
became popular because it gave excellent compression and yet was practical
to run on computers at the time. By the time the 1980s arrived, Rissanen and
Langdon (1979) had published a significant improvement on Huffman coding,
called “Arithmetic Coding”1. This opened up a new way of looking at com-
pression, and became the basis of a new wave of compression methods in the
mid 1980s that used sophisticated models of text to achieve a new level of
compression by “predicting” what the next character would be. At the time
these methods were too resource intensive to be used as a utility, but they
provided a new benchmark for compression performance. Of particular note
was the PPM method, developed by Cleary and Witten (1984), and several
subsequent variations that set new records for the amount of compression that
could be achieved.

Arguably the last 20th century breakthrough in general purpose lossless
compression methods was Burrows and Wheeler’s enigmatic transform, the
BWT. David Wheeler had come up with the transform as early as 1978,
but it wasn’t until 1994 that, with the help of Mike Burrows, the idea was
turned into a practical data compression method, which was then published
in a Digital Systems Research Center (Palo Alto) research report (Burrows
and Wheeler, 1994). Their “block-sorting code”, also dubbed the “Burrows-
Wheeler Transform”, left compression practitioners scratching their heads, as
it involved rearranging the characters in a text before encoding, and then
magically arranging them back in their original order in the decoder. The
fact that the original can be re-created at all is somewhat astonishing, and
their early work took some time to receive the recognition it deserved. Within
a couple of years several authors and programmers had picked up the idea,
apparently mainly through publications by Peter Fenwick (Fenwick, 1995b,c,

1 Peter Elias had come up with the idea some time earlier, but apart from a brief
mention in Abrahamson’s 1963 book Information Theory and Coding, it did not
get published as a feasible coding method until Rissanen and Langdon’s paper
appeared.
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1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.
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engine in 1995, which represented the state of the art prior to the arrival of
Google’s search engine. He later worked for Microsoft, and in 2007 is a senior
researcher working at Google on their distributed infrastructure. Burrows had
been supervised by Wheeler in the mid-1980s doing a PhD at Cambridge, and
then went to work at Digital in the US. Wheeler had invented the transform in
the 1970s, but it wasn’t until he visited Digital in Palo Alto and then worked
remotely with Burrows by email in 1990 that it was finally written up as a
compression method.

In the late 1990s BWT was still regarded as being too slow for many appli-
cations, but its compression performance became well understood. Wheeler’s
“bred” (block reduce) and “bexp” (block expand) programs provided a pub-
licly available implementation of the BWT method that proved the concept,
but it was Julian Seward’s efficient implementation as a general purpose util-
ity called bzip in 1996 that established BWT as something that had practical
utility. A new version of Seward’s utility called bzip2 is now widely used be-
cause on today’s hardware it can compress large files at speeds that are quite
acceptable for interaction, to a smaller size than other widely used general
purpose methods. For example, the 4 Mbyte file “bible.txt” from the Canter-
bury corpus can be compressed by bzip2 in about 2 seconds on a 2.4 GHz
computer, and decompressed in about 1 second. The gzip utility compresses
about three times as fast (and decompresses an order of magnitude faster),
but the gzip file is 40% larger than the bzip2 one. Interestingly, bzip2 com-
bines one of the most recent compression breakthroughs (BWT) with one of
the first (Huffman coding).

By the late 1990s researchers began to realize that the BWT approach
might be useful for more than just compressing text. Because the BWT hap-
pens to “sort” the text into alphabetical order, the permuted text has the
added benefit of acting as a kind of dictionary for the original text. Tradi-
tionally an index and the compressed text would be stored separately, even
though they contain effectively the same information. In this light, the BWT
is an intermediate representation that is halfway between a text and an index;
the original text can be reconstructed efficiently from it, yet sorted lists like
the one shown in Figure 1.1b are ripe for binary searching, giving very fast
searching for arbitrary fragments in the text.

In this book we explore this intriguing view of a transformed file as both
the text and an index, and look at applications that exploit this. But first let’s
take a look at some key ideas behind the BWT: transformation, permutation,
and recency.

1.3 Transformation

Suppose you had to calculate, in Roman numerals, the sum MCMXCIX + I.
Perhaps you know a method for adding Roman numerals, but chances are that
you would have transformed the problem into a more familiar notation: 1999
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+ 1. The sum is now easily calculated, and the answer in Roman numerals is
obtained by a reverse transform, as shown in Figure 1.4.

MCMXCIX + I 1999 + 1

2000MM

transform

reverse transform

calculate
in easier
domain

Fig. 1.4. Calculating MCMXCIX + I using a transform

Different representations have different strengths; Roman numerals might
not seem that easy to work with, but they look impressive, and some say that
they are used to show the dates in movie and TV credits to make it difficult
for a casual viewer to determine how old the film is.

Transformations have long been put to more practical uses in engineering,
to convert a representation to a “space” in which it is easier to work with.
One of the best known is the Fourier transform, which converts a signal into
the sum of a set of sine waves. In this format, it is easy to perform operations
such as boosting the bass in an audio signal (just increase the amplitude of
the low frequency sine waves), or to find areas in an image with a lot of detail
(look for high frequency sine waves with a high amplitude).

Transformations related to the Fourier transform, especially the Discrete
Cosine Transform (DCT), have long been used in lossy compression methods
for audio and image compression, such as mp3 and jpeg. Viewing a signal as a
sum of cosine waves makes it easy to compress because it is possible to decrease
the level of detail stored, especially for components that are difficult to hear or
see — in fact, some frequencies could even be eliminated. The information is
also easy to decompress, as it is simply the sum of the frequency components.

Transforms open up new ways to manipulate and store data, in the same
way as the language one is using can affect the way that we understand our
world (the Sapir–Whorf hypothesis). Or more bluntly, when the only tool that
you have is a hammer, every problem looks like a nail. A transformation gives
us a new tool to solve a problem, a new language to describe what we can do
with the data.

Generally a transform doesn’t change the amount of data used to represent
a signal; it just gives us a new way of looking at it. Here, any compression
happens after the transformation, and is done either by exploiting patterns
exposed by the transformation, or by using a less accurate representation for
components in a way that is not likely to be perceived by a human.
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The Burrows-Wheeler Transform was a breakthrough because it provided a
reversible transformation for text that made it significantly easier to compress.
There are many other reversible transformations that could be applied to a
text — for example, the characters could be stored backwards, or the first
two letters after each space could be transposed — but these don’t help us
to compress the text. The power of the BWT is that it pulls together related
characters, in the same way that a Fourier transform separates out high-
frequency components from low-frequency ones.

For example, Figure 1.5 shows a segment of a BWT-sorted file for Shake-
speare’s Hamlet. It is sorted into lexical order, starting at the first (F ) column.
Because each row of the table is generated by wrapping around the original
text, the last (L) column is actually the character that comes before the one
in the F column. So from the figure we can see that “ot ” is normally pre-
ceded by n, but occasionally by h, g or j. It now becomes clear why we get so
much repetition in the transformed file; the characters are clustered according
to what words or phrases they are likely to precede — u is likely to precede
estion, m or w are likely to precede ent, and so on. Some characters are very
predictable — osencrantz and Guildenstern is always preceded by an R,
while others are less so — est occurs in Hamlet preceded by every letter of
the alphabet except a, o, q, v, x, y and z.

F . . . L

ot look upon his like again. . . . n

ot look upon me; Lest with th . . . n

ot love on the wing,-- As I p . . . h

ot love your father; But that . . . n

ot made them well, they imita . . . n

ot madness That I have utter’ . . . n

ot me’? Ros. To think, my lor . . . n

ot me; no, nor woman neither, . . . n

ot me? Ham. No, by the rood, . . . g

ot mend his pace with beating . . . n

ot mine own. Besides, to be d . . . n

ot mine. Ham. No, nor mine no . . . n

ot mock me, fellow-student. I . . . n

ot monstrous that this player . . . n

ot more like. Ham. But where . . . n

ot more native to the heart, . . . n

ot more ugly to the thing tha . . . n

ot more, my lord. Ham. Is not . . . j

ot move thus. Oph. You must s . . . n

ot much approve me.--Well, si . . . n

Fig. 1.5. Part of the BWT sorted list for Shakespeare’s Hamlet
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1.4 Permutation

Permutations are rearrangements of the order of symbols, such as the re-
arrangement of letters in anagrams which we have already mentioned (for
example “eleven plus two” is an anagram of “twelve plus one”). Traditionally
permutations don’t allow the repetition of a symbol — in fact, a mathematical
permutation is a subset of symbols taken from a set of distinct symbols. In
the context of this book we are interested in rearrangements of a string that
can contain duplicate characters.

If duplicates are not allowed then the number of permutations of n sym-
bols is simply n!, the factorial of n. For example, the 6 characters abcdef can
be arranged 6! = 720 ways. Allowing duplicates reduces the number of per-
mutations; in the extreme, a string such as aaaaaa which contains only one
distinct character has only one permutation. In general, if we have n charac-
ters in the text, with one character occurring n1 times, another n2 times and
so on, then the number of permutations possible is n!

n1!n2!...nk! . Hence for our
opening example, atd nrsoocimpsea, we have n = 16, three of the ni values
are 2 (for a, s and o), and the rest are 1, giving us 16!

2.2.2 =2,615,348,736,000
possible permutations (including the unpermuted text itself). The number
of permutations for a text will generally exhibit a combinatorial explosion
of possibilities, which makes the existence of the reverse BWT all the more
surprising.

Permutations have been a staple method for encryption, and are featured
in the widely used “Advanced Encryption Standard” (AES), and its 1976 pre-
decessor, the “Data Encryption Standard” (DES). In encryption, the function
of permutation is to remove any clues that might be obtained by the juxtapo-
sition of characters. It is somewhat ironic that the Burrows-Wheeler Trans-
form, which also permutes the text, has almost the opposite purpose, as it
highlights the regularities of adjacent characters. It may even be that one of
the reasons that the BWT was initially viewed with some suspicion is that
the main application of permutations in coding up to that time had been to
make it impossible to reverse the coding. The connection with encryption is
intriguing because Burrows also developed the “Tiny Encryption Algorithm”
(TEA) mentioned earlier, which is based on a similar structure to DES and
AES.

Two special cases of a permutation arise in the process of performing the
Burrows-Wheeler Transform. One is the circular shift permutation, which can
be seen in the rows of Figure 1.1a, where all of the characters are moved one
position to the left, and the first character moves to the last position. A text of
n characters usually has n circular shift permutations, although if the text is
entirely composed of repeated substrings (such as blahblahblah) then some
of the n circular shifts will produce the same string. This situation is very
unlikely to occur in practice (the most likely case being a file containing only
a single character repeated many times), but it is a case which causes unusual
behavior for the BWT.
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The other kind of permutation that arises in the BWT is one found in
the columns of a sorted list such as the one in Figure 1.1b. Each column is
also a permutation of the input text, with the first one containing all identical
characters grouped together. This column is the result of sorting the input
characters, and indeed sorting is a special case of permutation. The last col-
umn is the output of the transform, and is the one permutation of the text
that we are the most interested in. The BWT uses this particular permuta-
tion which is dictated by the sort order, but later we will look at methods
that use slightly different permutations based on different ways of comparing
substrings of the text.

Finally, a trivial permutation which comes up when discussing the Burrows-
Wheeler Transform is the reverse of the input string. The simplest implemen-
tation of the BWT will output the file in reverse order, although this is easily
avoided by reversing the input when it is read into memory before encoding,
or reversing the output from the decoder. In general reversing a string does
not affect compression performance, but in some practical situations it can.
This is discussed in Section 2.2.

1.5 Recency

In the physical world, it’s often efficient to keep recently used documents,
equipment or other resources nearby on the basis that the most recently used
items are the most likely to be used again. Of course, one can argue the
opposite: if something has been used a lot recently then perhaps we will be
finished with it soon! In practice the recency effect is a safe observation to
take advantage of, and the output of the Burrows-Wheeler Transform very
much amplifies any recency effects in the text by bringing together characters
that have occurred in related contexts.

The traditional use of the recency effect on computers is the LRU (least
recently used) mechanism for caching: when data needs to be displaced from
high-speed memory, we generally favor discarding the data that has been used
furthest in the past. The extreme form of a recency mechanism is the stack,
which allows access to only the most recently used item. While this might seem
limiting, the stack is a very powerful construct, especially for the complex task
of parsing recursively structured input such as programming languages; and
of course, the stack is fundamental to most programming language implemen-
tations for allowing recursive function invocations.

There are various ways to take advantage of the recency effect of the
BWT output, and these are discussed in detail in Chapter 3. The original
BWT paper used a “move-to-front” (MTF) system where the shortest codes
are allocated to the characters at the “front” of a list. When a character is to
be coded, its position in the list is transmitted and then it is moved to the
front of the list, thereby demoting all the other characters that were ahead
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of it in the list. Variations of this approach have been used very successfully
with the BWT.

To implement the MTF system, the compression of the BWT output could
be done by simply storing how many different characters have been encoun-
tered since the previous occurrence of the current character. For example, if
the text abbc has just been decoded then if a 2 is received next it would rep-
resent an a (because you would need to skip two different characters to get
to the previous a), while a b would be coded as a 1, and c as a 0. Very small
numbers will be common in the output from the MTF system, and these num-
bers are then represented by codes that use fewer bits for smaller numbers,
and more bits for the larger ones.

An alternative approach which has found favor in recent years for com-
pressing the BWT output avoids using the move-to-front strategy to capture
the recency effect; we simply use a conventional coder (adaptive Huffman or
arithmetic coding) and bias the probabilities to favor recent occurrences of
characters. Since the coders work with estimated probabilities, we just need
a system that estimates high probabilities for characters that have occurred
a lot recently, since the coder will use shorter codes for the high probability
events. This is done by having recent occurrences of a character contribute
significantly more to its estimated probability than past ones by reducing the
weight of “old” characters. For the BWT this bias for recency has to be very
strong, as repeated characters can occur in relatively small clusters. This will
be discussed in more detail in Section 3.2.

1.6 Pattern matching

Compression and pattern matching are closely related. One way of looking at
a compression method is that it simply looks for patterns, and takes advan-
tage of them to remove repetition. For example, Ziv-Lempel methods search
previous sections of a text for matches; if Shakespeare’s “Hamlet” is being
compressed3, and the next string to be encoded is the 18th occurrence of the
string “noble”, the system will search to find that the string occurred 1366
characters earlier, and can replace it with a reference that points back 1366
characters, and gives the length of the match (5 characters). In other com-
pression methods the pattern is a context that is being searched for, to make
predictions based on what has happened in past occurrences of the context
— for example, a compression system might want to know what character
is most likely to come after “noble”, and could find this out by locating all
previous occurrences of “noble” which will reveal that 16 of the 17 previous
occurrences were followed by a space, and one was followed by an “r”.

Because the compression process involves pattern matching, it makes sense
to try to harness all the searching done during compression if a user wants

3 There are several versions of Hamlet available; these statistics are for a particular
version from Project Gutenberg.
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to search for a key in the compressed text. This means that we might be
able to search a compressed document without decompressing it, which is
“compressed-domain searching”. Simplistically, one might compress the search
key, and try to find the encoded key in the compressed file. Unfortunately this
is unlikely to work in practice because the encoding of a substring can depend
on other text surrounding it, although a number of algorithms have been
developed for compression methods that are able to work around this.

For the Burrows-Wheeler Transform, however, the matching process is
much simpler, at least in principle, because the encoding is based on sorting
every substring of the text into lexical order — we have a sorted list (ideal
for binary search) available as a by-product of compression! For example,
Figure 1.6 shows some of the sorted strings that are generated during the
BWT encoding of Shakespeare’s Hamlet. Of course, the full substrings aren’t
actually generated; they are simply a list of references to positions in the
original text. The L column (which shows the BWT output4) is really just
the character in the original string that comes before the one in the F column.
What makes searching in the Burrows-Wheeler Transformed text easy is that
using an auxiliary array that is needed for decoding, the rows in the list can
be accessed randomly, and characters in each row are easily read off in linear
time. Thus, without fully decoding the text we are able to perform a binary
search of the original text.

For example, if we were to search for the word “nobler” in the text, we
would begin by decoding the middle few characters of the sorted list (“there’s
a special providence. . . ”) and discover that “nobler” is lexically earlier in the
file. Carrying on with the binary search brings us to the section in Figure 1.6,
and consequently to the line beginning “nobler in the mind to suffer. . . ”,
which can be decoded for as many characters as are required to show the
matched part of the text.

From this point of view, the compressed text is like a wound-up spring,
containing lexical energy added by the sorting during encoding, and waiting
to be released in a search.

1.7 Organization of this book

Now that we have looked informally at how the BWT can achieve compression,
yet still allow efficient searching, in the next chapter we will describe in some
detail how the BWT is implemented in practice, including data structures for
doing the transformation quickly, and for reversing it efficiently. Chapter 3
will consider what to do with the transformed text, as there are a variety of
methods that can be used to code the very repetitive text that is generated.

Chapter 4 looks at suffix trees and suffix arrays, which are important ideas
in compression and pattern matching. They pre-date the Burrows-Wheeler

4 The Hamlet text is similar in length to the block size used by BWT coders, so
the L column shows the level of repetition typical of the output of a BWT coder.
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F . . . L
no_sooner_shall_the_mountains . . . _

no_spirit_dare_stir_abroad;_T . . . _

no_such_stuff_in_my_thoughts. . . . _

no_such_thing?_Laer._Know_you . . . _

no_tokens._Which_done,_she_to . . . _

no_tongue,_Nor_any_unproporti . . . _

no_tongue,_will_speak_With_mo . . . _

no_tongue:_I_will_requite_you . . . _

no_tongues_else_for’s_turn._H . . . _

no_touch_of_it,_my_lord._Ham. . . . _

no_truant._But_what_is_your_a . . . _

no_wind_shall_breathe;_But_ev . . . _

no_words_of_this;_but_when_th . . . _

nobility_of_love_Than_that_wh . . . _

noble_Hamlet:_Mine_and_my_fat . . . _

noble_and_most_sovereign_reas . . . _

noble_dust_of_Alexander_till_ . . . _

noble_father_in_the_dust:_Tho . . . _

noble_father_lost;_A_sister_d . . . _

noble_father_slain_Pursu’d_my . . . _

noble_father’s_person,_I’ll_s . . . _

noble_heart.--Good_night,_swe . . . _

noble_in_reason!_how_infinite . . . _

noble_lord?_Hor._What_news,_m . . . _

noble_mind_is_here_o’erthrown . . . _

noble_mind_Rich_gifts_wax_poo . . . _

noble_rite_nor_formal_ostenta . . . _

noble_son_is_mad:_Mad_call_I_ . . . _

noble_substance_often_doubt_T . . . _

noble_youth,_The_serpent_that . . . _

noble_youth:_mark._Laer._What . . . _

nobler_in_the_mind_to_suffer_ . . . _

noblest_to_the_audience._For_ . . . _

nocent_love,_And_sets_a_blist . . . n

nock_him_about_the_sconce_wit . . . k

nocked_about_the_mazard_with_ . . . k

nocking_each_other;_And_with_ . . . k

noculate_our_old_stock_but_we . . . i

nod,_take_away_her_power;_Bre . . . y

nods,_and_gestures_yield_them . . . _

noint_my_sword._I_bought_an_u . . . a

Fig. 1.6. Another part of the BWT sorted list for Shakespeare’s Hamlet; spaces are
shown as an underscore
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Transform, which is very similar to a suffix array, and it is valuable to study
them to help understand the BWT better.

Chapter 5 reviews theoretical results for BWT-based schemes, such as uni-
versal compression, optimality issues, and computational complexity. It also
covers current challenges in improving the BWT algorithm, with respect to
compression performance, theoretical space and time complexity. This chap-
ter also explores the connection between the BWT and other compression
algorithms, such as PPM (Prediction by Partial Matching), DMC (Dynamic
Markov Compression) and LZ (Ziv-Lempel) coding.

Chapter 6 will discuss other approaches that are very closely related to
the BWT. This will include members of the class of compression algorithms
that perform compression based on sorted contexts, such as permutation-
based coding, block-sorting schemes, and newer approaches such as word-
based BWT.

Chapter 7 introduces the problem of pattern matching, and some standard
algorithms for searching uncompressed text. We then look at methods that
perform searching with the aid of the BWT, including both methods that
store indexes as part of the BWT-based compression scheme, and those that
perform searching with limited partial decompression of the BWT. These
methods exploit the sorted contexts used by BWT and other members of this
class of compression algorithm. The remainder of the chapter moves away
from exact matching, and presents several algorithms for approximate pattern
matching, longest common subsequence and sequence alignment, including
algorithms for approximate pattern matching using the BWT. It also briefly
considers hardware-based methods for pattern matching.

Chapter 8 explores emerging applications of the BWT, different from text
compression and text pattern matching, such as using the BWT for com-
pressed suffix arrays and compressed suffix trees, compressed full-text index-
ing, image compression, shape analysis, DNA sequence analysis in bioinfor-
matics, and entropy estimation.

We conclude in Chapter 9 with an overview of the BWT with speculation
on the short- and long-term direction of research work on BWT.

1.8 Further reading

The “Further reading” section at the end of each chapter will provide key
references and tangential information that may be relevant to those wanting
to study the topic of the chapter further.

The key reference for this book is Burrows and Wheeler’s original 1994
paper titled “A block-sorting lossless data compression algorithm” (Burrows
and Wheeler, 1994). Early descriptions of the method were written by Fen-
wick, initially in three technical reports (Fenwick, 1995b,c, 1996a), and then
in a 1996 article in the Computer Journal (Fenwick, 1996b). Fenwick’s work
lead to Julian Seaward’s bzip program, which evolved into bzip2, a widely
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used general-purpose implementation based on the BWT. A 1996 article by
Mark Nelson in the Dr Dobb’s Journal (Nelson, 1996) also helped to make
the idea public. Soon after that papers about the BWT appeared in the Data
Compression Conference (held annually in Snowbird, Utah) and the method
became more widely understood. A survey article about the Burrows-Wheeler
compression can be found in Fenwick (2003a). A meeting to mark the tenth
anniversary of the BWT was held by the DIMACS Center at Rutgers Uni-
versity in August 2004, and a special edition of Theoretical Computer Science
in November 2007 (volume 387, issue 3) is focused on the BWT. The special
edition includes a foreword by Michael Burrows, which gives some interesting
background to how the method was developed. It also includes three papers
that provide useful overviews and analysis of BWT: Fenwick (2007), Kaplan
et al. (2007), and Giancarlo et al. (2007).

The move-to-front (MTF) method used in the original BWT paper is based
on work by Bentley et al. (1986) which uses the MTF list for compression,
although in this case it was based on coding words rather than characters,
and thus the MTF list had to be able to deal with a large vocabulary.

The puzzle at the start of the chapter is an anagram of data compression,
which can be decoded using the inverse Burrows-Wheeler Transform5. It also
happens to decode to “don amar to spices”. Purists might have preferred us to
use the example “The Magic Words are Squeamish Ossifrage” (made famous
by the 1977 RSA cipher challenge). Interestingly “Squeamish Ossifrage” has
an anagram relevant to data compression: “I squish for a message”. However,
the BWT of “squeamish ossifrage” is “hreugiassma sfiseoq”. The example used
from Shakespeare (“To be or not to be. . . ”) also has an interesting anagram,
discovered by Cory Calhoun: “In one of the Bard’s best-thought-of tragedies,
our insistent hero, Hamlet, queries on two fronts about how life turns rotten.”

Shannon’s original 1948 paper that is the basis of much of the work in
data compression was published in the Bell System Technical Journal (Shan-
non, 1948), and subsequently in a book by Shannon and Weaver (1949).
Other important milestones in data compression prior to the Burrows-Wheeler
Transform were Huffman’s codes (Huffman, 1952), Ziv and Lempel’s meth-
ods (Ziv and Lempel, 1977, 1978), arithmetic coding (Pascoe, 1976; Rissanen,
1976; Rissanen and Langdon, 1979), and “Prediction by Partial Matching”
(Cleary and Witten, 1984). General texts about data compression include
Storer (1988), Bell et al. (1990), Nelson and Gailly (1995), Williams (1991),
Witten et al. (1999), Sayood (2000), Moffat and Turpin (2002), Sayood (2003)
and Salomon (2004).

5 Actually, the transform gives only the order of the letters; some extra information
is needed to establish which letter is the starting point, but it is a puzzle after
all!
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How the Burrows-Wheeler Transform works

This chapter will look in detail at how the Burrows-Wheeler Transform is
implemented in practice. The examples given in Chapter 1 overlooked some
important practical details — to transform a text of n characters the encoder
was sorting an array of n strings, each n characters long, and the decoder
performed n sorts to reverse the transform. This complexity is not necessary
for the BWT, and in this chapter we will see how to perform the encoding
and decoding in O(n) space, and O(n log n) time. In fact, using a few tricks,
the time can be reduced to O(n).

We will also look at various auxiliary data structures that are used for
decoding the Burrows-Wheeler Transform, as some of them, while not essential
for decoding, are useful if the transformed text is to be searched. These extra
structures can still be constructed in O(n) time so in principle they add little
to the decoding cost.

This chapter considers only the transform; in the next chapter we will
look at how a compression system can take advantage of the transformed
text to reduce its size; we refer to this second phase as the “Local to Global
Transform”, or LGT.

We will present the Burrows-Wheeler Transform for coding a string T of
n characters, T [1 . . . n], over an alphabet Σ of |Σ| characters. Note that there
is a summary of all the main notation in Appendix A on page 309.

2.1 The forward Burrows-Wheeler Transform

The forward transform essentially involves sorting all rotations of the input
string, which clusters together characters that occur in similar contexts. Fig-
ure 2.1a shows the rotations A that would occur if the transform is given T
= mississippi as the input1, and Figure 2.1b shows the result of sorting A,
which we will refer to as As.

1 We will use mississippi as a running example in this chapter. This string is
often used in the literature as an example because it illustrates the features of
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mississippi

ississippim

ssissippimi

sissippimis

issippimiss

ssippimissi

sippimissis

ippimississ

ppimississi

pimississip

imississipp

(a)

imississipp

ippimississ

issippimiss

ississippim

mississippi

pimississip

ppimississi

sippimissis

sissippimis

ssippimissi

ssissippimi

(b)

Fig. 2.1. (a) The array A containing all rotations of the input mississippi; (b)
As, obtained by sorting A. The last column of As (usually referred to as L) is the
Burrows-Wheeler Transform of the input

However, rather than use O(n2) space as suggested by Figure 2.1, we can
create an array R[1 . . . n] of references to the rotated strings in the input
text T . Initially R[i] is simply set to i for each i from 1 to n, as shown in
Figure 2.2a, to represent the unsorted list. It is then sorted using the substring
beginning at T [R[i]] as the comparison key. Figure 2.2b shows the result of
sorting; for example, position 11 is the first rotated string in lexical order
(imiss...), followed by position 8 (ippim...) and position 5 (issip...);
the final reference string is R = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].

The array R directly indexes the characters in T corresponding to the first
column of As, referred to as F in the BWT literature. The last column of As

(referred to as L) is the output of the BWT, and can be read off as T [R[i]−1],
where i ranges from 1 to n (if the index to T is 0 then it refers to T [n]). In
this case the transformed text is L = pssmipissii. We also need to transmit
an index a to indicate to the decoder which position in L corresponds to the
last character of the original text (i.e. which row of As contains the original
string T ). In this case the index a = 5 is included.

In the above description the transform is completed using just O(n) space
(for R). The time taken is O(n) for the creation of the array R , plus the time
needed for sorting. Conventionally sorting is regarded as taking O(n log n)
average time if a standard method such as quicksort is used. However, some
string sequences can cause near-worst-case behavior in some versions of quick-
sort, particularly if there is a lot of repetition in the string and the pivot for
quicksort is not selected carefully. This corresponds to the traditional O(n2)
worst-case of quicksort where the data is already sorted — if T contains long
runs of the same character then the A array will contain long sorted sequences.

the BWT well. Note that there is no unique sentinel (end of string) symbol in this
example; it is not essential for the BWT, although it can simplify some aspects,
particularly when we deal with suffixes later.
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 R        T

 1        m

 2        i

 3        s

 4        s

 5        i

 6        s

 7        s

 8        i

 9        p

10        p

11        i

(a) (b)

 R           T

11           m

 8           i

 5           s

 2           s

 1           i

10           s

 9           s

 7           i

 4           p

 6           p

 3           i

...

...

...

...

...

...

...

Fig. 2.2. The R array used to sort the sample file mississippi

For example, Figure 2.3 shows the A array for the input aaaaaab. It is already
sorted because of the way the b terminates the long sequence of a characters.
It is possible to avoid this worst case behavior in quicksort with techniques
such as the median-of-three partition selection, but the nature of the BWT
problem means that even better sorting methods are possible.

Not only can the pre-sorted list cause poor performance in some versions of
quicksort, but the long nearly identical prefixes mean that lexical comparisons
will require many character comparisons, which means that the constant-time
assumption for comparisons is invalid; if all the characters are identical then
it could take O(n) time for each of the O(n2) comparisons, which would be
extremely slow, especially considering that for such a case the BWT involves
no permutations at all. Long repeated strings can occur in practice in images
that contain many pixels of the same color (such as a scan of a black-and-
white page with little writing on it) and in genomic data where the alphabet
is very small and repeated substrings are common.

aaaaaab

aaaaaba

aaaabaa

aaabaaa

aabaaaa

abaaaaa

baaaaaa

Fig. 2.3. The array A containing all rotations of the input aaaaaab
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There are several ways to avoid this problem. Burrows and Wheeler ob-
served in their original paper that by having a unique sentinel character, the
sorting problem is equivalent to sorting all the suffixes in T , which can be
done in linear time and space using a suffix tree. This is discussed in more
detail in Chapters 4 and 4, but we should mention that the main drawback
of this approach is that although the space requirement is O(n), the constant
factor can be significant.

Instead, Burrows and Wheeler proposed a modified version of quicksort
that applies a radix sort to the first two characters of each sort key. Each
of the two-character buckets now needs to be sorted, but special attention
is paid to buckets where the first two characters are the same, since these
are likely to indicate long runs of the same character (typically null or space
characters), which can take a long time to make a lexical comparison for
comparison based sorting, yet are trivial to sort because of how they were
generated. Eventually quicksort is only applied to groups of substrings that
need sorting within buckets. For example, the strings in Figure 2.3 would be
split into three buckets for those beginning with aa, ab and bb respectively.
The aa bucket does not automatically have quicksort applied to it because the
first two characters are the same, and indeed in this case the bucket happens to
already be sorted, and would cause long comparisons between strings because
of the long prefixes of runs of the letter a.

Another approach is to eliminate this problem by coding long runs of the
same character using a run-length encoding technique, where runs of repeated
characters are replaced with a shorter code. This can sometimes even have a
positive effect on the amount of compression, although the main purpose is to
avoid the poor sorting speed that occurs in the special cases described above
by eliminating long runs of the same character. One downside of this is that
the original text is no longer available directly in the BWT, which can affect
some of the compressed-domain searching methods described later in this
book. Also, the run-length encoding will change the context information that
the BWT uses, hence the effect on compression is not necessarily positive.

One issue that is inevitable with the BWT is that it requires a large block
of memory to store the input string (T ) and the index to the strings being
sorted (R). If the block is too small the compression will be poor, but if too
large, it may use too much memory. Even if the memory is available, there
can be issues with caching, and there are performance benefits from keeping
blocks within the size of a cache, not just within main memory. The pattern
of access to the memory will be random because of the sorting operations
that need to be done (the same problem occurs during decoding as well). On
modern computers there can be several layers of caching that will be trying to
guess the memory access patterns, and these may have complex interactions
with the accesses needed for the BWT. This concern needs to be taken into
consideration when deciding on the block size; if it fits within the cache (and
not just within main memory), it may well be able to operate faster. On the
other hand, as parallel machines with on-board memory become more popular
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the BWT method can potentially be adapted to take advantage of this kind of
architecture, and it is even possible that it will have performance benefits in
a parallel environment over other popular compression methods. The actual
performance in practice will depend on the architecture of the machine, the
amount of memory available, and the design of any caches.

Appendix B lists web sites that provide a variety of source code for per-
forming the BWT. Some are suitable for experimenting with the transform
and tracing the process, while others are production systems the have opti-
mized the details of coding to perform well in practice.

2.2 The reverse Burrows-Wheeler Transform

The reverse transform — taking a BWT permuted text and reconstructing
the original input T — is somewhat more difficult to implement than the
forward transform, but it can still be done in O(n) time and space if care is
taken. The example given in Figure 1.2 reconstructed the As array, but as
for encoding, in practice there is no need to store this O(n2) array. Generally
two O(n) index arrays will be needed, plus two O(|Σ|) arrays to count the
characters in the input. There are several ways that decoding can be done.
The original paper by Burrows and Wheeler produces the output in reverse,
although it is not difficult to produce the output in the original order. We will
show how to generate data structures for both of these cases.

We will use the decoding of the string mississippi as a running example.
Figure 2.4 shows the array As for this example, with columns F and L labeled.
As is not stored explicitly in practice, but we shall use it in the meantime to
illustrate how decoding can be done. The decoder can determine F simply
by sorting L, since it contains exactly the same characters, just in a different
order — each column of As contains the same set of characters because the
rows are all the rotations of the original string. In fact, F need not be stored,
as it can be generated implicitly by counting how often each character appears
in L.

Looking at As helps us to see the information that is needed to perform
the decoding. Given just F and L, the key step is determining which char-
acter should come after a particular character in F . Consider, for example,
the two rows ending with a p (rows 1 and 6). Because of the rotation, the
order of these two rows is determined by the characters that come after the
respective occurrences of p in T (imi... and pim... respectively). Thus the
first occurrence of p in L corresponds to the first occurrence of p in F , and
likewise with the second occurrence. This enables us to work through the text
backwards: if we have just decoded the second p in L, then it must correspond
to the one in row 7 of F . Looking at row 7, the L column tells us that the
p was preceded by an i. In turn, because this is the second i in L, it must
correspond to the second i in F , which is in row 2. We carry on traversing
the L and F arrays in this way until the whole string is decoded — in reverse.
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F                             L

i  m  i  s  s  i  s  s  i  p  p

i  p  p  i  m  i  s  s  i  s  s

i  s  s  i  p  p  i  m  i  s  s

i  s  s  i  s  s  i  p  p  i  m

m  i  s  s  i  s  s  i  p  p  i

p  i  m  i  s  s  i  s  s  i  p

p  p  i  m  i  s  s  i  s  s  i

s  i  p  p  i  m  i  s  s  i  s

s  i  s  s  i  p  p  i  m  i  s

s  s  i  p  p  i  m  i  s  s  i

s  s  i  s  s  i  p  p  i  m  i

1

2

3

4

5

6

7

8

9

10

11

Fig. 2.4. The array As for mississipi; F and L are the first and last columns
respectively

The correspondence could also have been used to decode the string in its
original order. For example, looking at the p in L[6], we can determine that it
is followed by F [6], a p. Since this is the first p in F , it corresponds to the first
p in L, that is, row 1. That p is followed by an i, and so on. It is marginally
simpler to decode the string in reverse order, so usually the BWT literature
uses the backwards decoding, although we shall be using both orders in this
book.

An easy way to follow the above relationships is to number the appearances
of the characters in F and L. Figure 2.5 shows the F and L columns from
Figure 2.4, but we have numbered the occurrences of each character in order
from first to last using subscripts. This makes the decoded string easy to read
off; for example, the fourth row has L[4] = m1, and the corresponding F [4]
tells us that it is followed by i4. Since i4 is in L[11], we can get the next
character from F [11], which is s4. The entire string is decoded in the order
m1i4s4s2i3s3s1i2p2p1i1.

In practice the decoder never reconstructs As or F in full, but implicitly
creates indexes to represent enough of its structure to decode the original
string. L is stored explicitly (the decoder just reads the input and stores it in
L), but F is stored implicitly to save space and to efficiently provide the kind
of information needed during decoding.

Figure 2.6 shows three auxiliary arrays that are useful for decoding. K[c]
is simply a count of how many times each character c occurs in F , which
is easily determined by counting the characters in L. M [c] locates the first
position of character c in the array F , so K and M together effectively store
the information in F . C[i] stores the number of times the character L[i] occurs
in L earlier than position i; for example, the last character in L is i, and i
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F L

1 i1 p
1

2 i2 s1

3 i3 s2

4 i4 m1

5 m1 i1

6 p
1
p
2

7 p
2
i2

8 s1 s3

9 s2 s4

10 s3 i3

11 s4 i4

Fig. 2.5. Using the character order to perform the reverse transform

occurs 3 times in the earlier part of L. These three arrays make it easy to
traverse the input in reverse.

F                             L

i  m  i  s  s  i  s  s  i  p  p

i  p  p  i  m  i  s  s  i  s  s

i  s  s  i  p  p  i  m  i  s  s

i  s  s  i  s  s  i  p  p  i  m

m  i  s  s  i  s  s  i  p  p  i

p  i  m  i  s  s  i  s  s  i  p

p  p  i  m  i  s  s  i  s  s  i

s  i  p  p  i  m  i  s  s  i  s

s  i  s  s  i  p  p  i  m  i  s

s  s  i  p  p  i  m  i  s  s  i

s  s  i  s  s  i  p  p  i  m  i

m  

p  

s  4

2

1

4

MK

i

C

0

0

1

0

0

1

1

2

3

2

3

Fig. 2.6. The array (As) that is implicitly reconstructed to decode the string
pssmipissii

Algorithm 2.1 shows how the input (transformed text L and starting index
a) is used to construct these three arrays, which are then used to produce Q,
the decoded text. The first step is simply to count the characters into K
by going through L (the input), shown in lines 1 to 7 of the algorithm. At
the same time, it is convenient to construct C by recording the value of K
before each increment. The array M is then constructed in lines 10 to 14 by
accumulating the values in C. We now have sufficient structures to decode the
text in reverse, which happens in lines 16 to 20.
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BWT-Decode(L, a)
1 for c← 1 to |Σ| do

2 K[c]← 0
3 end for

4
5 for i← 1 to n do

6 C[i]← K[L[i]]
7 K[L[i]]← K[L[i]] + 1
8 end for

9
10 sum← 1
11 for c← 1 to |Σ| do

12 M [c]← sum
13 sum← sum + K[c]
14 end for

15
16 i← a
17 for j ← n downto 1 do

18 Q[j]← L[i]
19 i← C[i] + M [L[i]]
20 end for

Algorithm 2.1: Reconstruction of the original text

Note that the decoder needs to be given the index a, which is the element
in L that corresponds to the end of the text. In our running example a would
be 5 — it corresponds to the row in As that represents the original string T .
L[5] gives us i as the last character of Q. The corresponding value in C is 0,
which means that this is the first occurrence of an i in L. Thus it corresponds
to the first occurrence of i in F , which is found by adding C[i] to M [L[i]], in
line 19 of the algorithm. This proceeds until n characters have been decoded,
at which point the whole string is stored in Q.

Reversing the BWT this way requires four arrays (L, K, C and M). K and
M contain just |Σ| entries (the characters are represented by integers from 1
to |Σ|) and are likely to be of negligible size; L and C contain n values, and
hence use O(n) space. We would normally also have to allow for Q, which
uses O(n) space to store the backwards string before it can be stored in the
correct order. The time taken is also O(n) + O(|Σ|), since the main work is
in the two passes through the n input items — once to count them, and once
to decode them.

It may be inconvenient that the output is generated backwards, and there
are two ways to address this. Below we will look at how to use an extra
auxiliary array to do this, but if the goal is simply to decode the input, this
is less efficient than using the temporary Q array to store the output. An
even simpler approach is to reverse the order of the string at encoding time.
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This should not take any extra time, since the whole string must be read into
memory anyway — we simply fill the array T in reverse. It may have an impact
on compression, depending on the type of data, but for most data there will
be no significant impact, and it may even improve compression. The cases
where there is an impact tend to be binary files with specific patterns such as
leading zeros before numbers. In such cases it is worth being aware of the issue
anyway, and the ordering should be chosen to suit the data, since the amount
of compression can depend on details such as whether the representation puts
the most significant byte of a large number first or last (big- or little-endian).
For textual data, reversing the input string means that the system is based
around prior contexts of characters, which is how many other compression
methods work anyway.

If the transformed text is to be decoded multiple times, it is possible to
store one or more auxiliary arrays that enable us to traverse sections of the
text at will. This can be useful for pattern matching because it allows segments
of the original string to be read off when needed for matching, but still relates
the data to the implicit sorted array As, which provides access to a sorted list
of strings that are useful for searching.

The value C[i] + M [L[i]] is the key to navigating through L to decode the
original string, so instead of doing the decoding immediately (which was in
lines 16 to 20 of Algorithm 2.1), an array V is created to store the navigation
information, shown in Algorithm 2.2. This array can then be used to step
backwards through the original characters; the character at L[i] is preceded
by the character at L[V [i]]. The values of V for our running example are
shown in Figure 2.7.

Compute-array-V(C, M, L) 1 i← a
2 for j ← n downto 1 do

3 V [i]← C[i] + M [L[i]]
4 i← V [i]
5 end for

Algorithm 2.2: Creating the array V to allow for efficient future decoding
of the input

It is just as easy to create an auxiliary array that will decode the original
text forwards rather than backwards. This array will be called W , and it
identifies the position of the character in L that comes after the present one,
compared with V , which gives the position that comes before. As for V , this
new array is not essential for decoding, but it can be useful because it preserves
access to the sorted structure of L, which can be exploited during pattern
matching. Figure 2.7 shows the values of W for the running example.

Algorithm 2.3 shows how the W array can be created. Note that the array
M that was created in Algorithm 2.1 is used, and that afterwards its contents
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    F                             L   V   W

 1  i  m  i  s  s  i  s  s  i  p  p   6   5

 2  i  p  p  i  m  i  s  s  i  s  s   8   7

 3  i  s  s  i  p  p  i  m  i  s  s   9  10

 4  i  s  s  i  s  s  i  p  p  i  m   5  11

 5  m  i  s  s  i  s  s  i  p  p  i   1   4

 6  p  i  m  i  s  s  i  s  s  i  p   7   1

 7  p  p  i  m  i  s  s  i  s  s  i   2   6

 8  s  i  p  p  i  m  i  s  s  i  s  10   2

 9  s  i  s  s  i  p  p  i  m  i  s  11   3

10  s  s  i  p  p  i  m  i  s  s  i   3   8

11  s  s  i  s  s  i  p  p  i  m  i   4   9

Fig. 2.7. The auxiliary arrays V and W which can be used to decode the sample
string

are changed so they are no longer valid. Like V , the W array is created in
just O(n) time.

Compute-array-W(M, L)
1 for i← 1 to n do

2 W [M [L[i]]]← i
3 M [L[i]]←M [L[i]] + 1
4 end for

Algorithm 2.3: Creating the array W to allow for future decoding of the
input

W can then be used to generate the original text in its correct order using
the simple sequence shown in Algorithm 2.4.

Decode-with-array-W(W, L)
1 i← a
2 for j ← 1 to n do

3 Q[j]← L[i]
4 i←W [i]
5 end for

Algorithm 2.4: Decoding the original text in its correct order using W
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If both forwards and backwards generation of the original text is needed,
it is possible to create V and W in one pass as shown in Algorithm 2.5.

V and W are essentially a mapping between F and L in each direction. In
some of the pattern matching algorithms in Chapter 7 we will also recreate the
array R that was used in the encoder to store the sort order of the substrings,
and the reverse mapping of R, called R′. These provide a mapping between
F and T ; for example, if R[i] is k, then F [i] was the k-th character in T ,
and R′[k] will be i. All of the arrays for our mississippi example are shown
in Figure 2.8, and the algorithm for creating R and R′ from W is given in
Algorithm 2.6.

i T F L C V W R′ R

1 m i p 0 6 5 5 11
2 i i s 0 8 7 4 8
3 s i s 1 9 10 11 5
4 s i m 0 5 11 9 2
5 i m i 0 1 4 3 1
6 s p p 1 7 1 10 10
7 s p i 1 2 6 8 9
8 i s s 2 10 2 2 7
9 p s s 3 11 3 7 4

10 p s i 2 3 8 6 6
11 i s i 3 4 9 1 3

Fig. 2.8. Array values that can be used to do the BWT and searching of the text
mississippi

Compute-arrays-V-and-W(M, L)
1 for i← 1 to n do

2 V [i]←M [L[i]]
3 W [M [L[i]]]← i
4 M [L[i]]←M [L[i]] + 1
5 end for

Algorithm 2.5: Creating both the V and W arrays in one pass

2.3 Special cases

In the previous examples the auxiliary arrays traverse each character in L to
recreate the original text. There is a special case for the BWT that occurs if the
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Compute-arrays-R-and-R′(W )
1 i← a
2 for j ← 1 to n do

3 R′[j]← i
4 R[i]← j
5 i←W [i]
6 end for

Algorithm 2.6: Construction of R and R′ auxiliary arrays in the decoder

input text T is nothing but repetitions of a substring, such as blahblahblah,
or even aaaaaaa. If this happens, some of the rotations of the text will be
identical, and the reverse transform will end up using only one of the substring
occurrences for decoding.

For example, the text cancan results in the decoding arrays shown in
Figure 2.9. The arrows show the cycle of three characters that will occur
following the V for W links; the other three characters in L are never used.
This will still decode correctly; it is just that it is important to decode n times,
rather than relying on coming back to the starting point to determine when
to stop.

F              L    V    W

a  n  c  a  n  c    3    5

a  n  c  a  n  c    4    6

c  a  n  c  a  n    5    1

c  a  n  c  a  n    6    2

n  c  a  n  c  a    1    3

n  c  a  n  c  a    2    4

Fig. 2.9. The V and W arrays that are constructed for the string cancan

An even simpler case occurs when the coded text is just one character
repeated many times; the decoder will only use the first occurrence of the
character for all decoding.

It is worth being aware of this special case because it can also affect pattern
matching. Of course, such a case is extremely unlikely to occur in practice. It
might happen that a file containing just one repeated value is coded, such as
the pixels in a blank image, but even in this case, just one different piece of
information in the file, such as the image resolution, will prevent the rotations
from being identical. If a particular algorithm is dependent on this not hap-
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pening, it can be prevented by simply inserting one unique character (such as
an end of string sentinel symbol) in T before it is transformed.

2.4 Further reading

The original Burrows and Wheeler paper (Burrows and Wheeler, 1994) re-
mains an excellent explanation of the transform, and includes techniques for
implementing the transform efficiently, including using a suffix tree in the for-
ward transform, ways to use quicksort efficiently for the forward transform,
and using counting rather than sorting in the reverse transform. Fenwick has
published a series of papers which look in detail at implementation of the
BWT; four early papers were mentioned in Chapter 1 (Fenwick, 1995b,c,
1996a,b); a summative paper can be found in the November 2007 special is-
sue of Theoretical Computer Science about the BWT (Fenwick, 2007), which
includes an algorithm for decoding a BWT file in natural order. The pro-
posal for using run-length encoding to avoid the sorting problem in the BWT
code was made in (Fenwick, 1996a). Fenwick’s report also describes a pri-
vate communication from Wheeler that gives an effective (if somewhat ad
hoc) adaptation of quicksort that takes advantage of the particular structures
available in the BWT.

The BWT is not the only way to permute texts and still be able to recover
them, although other approaches are closely related. A number of such variants
are described in Chapter 6.

The names of the arrays used in this chapter, and the rest of the book, differ
slightly from some of those used in the BWT literature. This is explained in
Appendix A; the main problem is that there is a conflict between the notation
used in the pattern matching literature, and that used in the BWT literature.
The use of F and L is consistent with Burrows and Wheeler’s original paper;
however, their T array corresponds to V in this chapter, since we use T for
the input text.
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Coders for the Burrows-Wheeler Transform

Like most transforms, the Burrows-Wheeler Transform does not change the
size of the file that has been transformed, but merely rearranges it so that
it will be easier to represent it compactly. It then needs to be coded using a
second phase which we will refer to as the “Local to Global Transform” (LGT).
Figure 3.1 shows a section of the transformed text for Shakespeare’s “Hamlet”,
which reveals the kind of regularities that the BWT exposes. These characters
are ones that appear before the context nd; initially the nd is followed by a
space, and hence a is very common, but then the character is followed by
ndeed, where the i becomes common, and the last few characters precede
nder.

Clearly the text in Figure 3.1 contains a lot of patterns, and therefore will
be easy to compress. Many sophisticated techniques have been proposed to
exploit the regularities of the BWT transformed text, and yet it has emerged
that one of the simplest approaches (RleAc, based on run-length encoding
and an order-zero arithmetic coder) gives the best compression and is also
very fast compared with more complicated methods. We will begin this sec-
tion by looking at this simple coder, but later we will also review various
other approaches that have been proposed, including Burrows and Wheeler’s
original “Move to Front” (MTF) list, inversion frequencies, distance coding,
frequency counting methods, wavelet trees, and alternative permutations. We
will also consider the effect of the block size on compression performance.

3.1 Entropy coding

Before we look in detail at how the structure of a BWT string can be exploited
for compression, we will briefly review some fundamentals of how symbols can
be converted to bits based on an estimated probability distribution for how
likely each symbol is. This process is often referred to as entropy coding,
because the aim is to represent symbols in as few bits as possible, and the
limit of this is dictated by the entropy. The BWT-based systems that we will
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AaaaaaAaaaAaAaAaAeAeiuaaAaoaaiAauaaauiaaaaaieaeeaoeuueauiiiAaaua

aaaaaaaaoaaaaiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAaAAaAAAAaAaa

AuaeaaaaaaaaaaauaaaaaeaaiaaauueuaeaaaieaaaaaaaaeAAaaaaeaeaaaaaaa

eaaAaaaAaaaaAaaiaaaaaeeiaaaaaaAiaaAaAaiAaAaaaaaaAaaaaaAaaaAAAaAA

aaAAaaaAaaaaoaaaaaAaaAAaAAaaAaaaaaAaaaaaaaaaaaAAaaaaaaAaAaaaaaaa

aaaaaaaaaaaaaaaaiiaAaaAAaaaaeaaaaAaAaaaaaAaaaAAaaaaaaAAAaaaaAaAa

aaaaaaAaaaaaaaaaaaaaaaAaAaauaAAaAaaaAAaAAaaAaaiaaAAAaaaaAAAaaaaa

aaaaaaaaaaaaaaaaaaaaaAAAAAaaAAauaAauaaaaaaaaaaAaaaieiiiieeAaaaaa

eeAaiaaoAaAaaaaAAaAoooaiaAaaiAAaaAaAAAAaaaaaaaiiiaeeeaaeAiuiaaaa

aaAaaaaaaaAAoaaaAAAAaAAAAAAAAaaAiaaaAaaaaAAaaaaAAaaaAaaAaaaoaaAu

aaieaauaeaaAAaaaaaaaaaAaaaaaaaaaaAaaaaaeaaaAaaaaaaAaaauAAaaaaaaa

aAaaAAAAaaAaAaaaaaAAiiiiiiaieaiaiaaiiAeeaaAaaeaaaaaAaaaaAaoaaiia

aaaaaaaAaaaaaaaAaAaaaaaaAaaaAaaaAaaAiaaaaaAaAoaaaaaaaaaaaaaoaaaa

AaaaaaaaaAAAaiaaaaaaaAaiaiaAaaAuAaAaaaAaaaaaaaaaaaaaaAAaaaaaaAaa

aaaaaAaaaaaaaAaaaAaaAAaaAAaaAAAaAaAaaAaiiiiaaaaauAaaaaaaaaaaAoae

auaaaaaaaaaaaieaaaeAAaaAAaAAAaaaaaaAAaAAaAaAAAaaAaaaeaaAAaAaaaAA

aAAAAaeaoaoaaeaaaauaaaaAiAAAuaaaaaaaaaaaaaaaaauaaaaaeiaAaaAAAaaa

AAAaaaaaaAaaaaAAaAAuaaAAaAaAeAaaaaaAaaaaaAaaaaAAaaAaAAaaaaaaaAAA

aauuAaAaAAaAAueaaaaaaAaAaaaeAAaAaaaaAaeaaAeeaaaeaaeaaueieaaiaeea

aaeeaaaaueiaaeaaaeeeeeeeeeeeauoueueeeeaeeueuuuaeiiiiiiIiiIIIiiiI

IiIiiiiiiiiiiIIeieaeoooouuuueaeeoauaeeeaoUUiaeaeooueaoeaeeuauuuu

Fig. 3.1. Some of the transformed text generated from Shakespeare’s “Hamlet”

be looking at often use entropy coding as their final stage, so it is good to
understand the methods that the BWT processing is preparing data for.

In entropy coding, the representation of a symbol is based on some esti-
mated probability of that symbol occurring. The next symbol to be coded will
be drawn from a probability distribution that is typically estimated based on
previous observations. For example, if the character “e” has occurred in 20
out of the last 100 characters, we might estimate that the probability of the
next character being an “e” is 20%.

Shannon (1948) showed that, on average, the optimal representation for
a symbol with probability p would use − log2 p bits. There are two general
approaches to generating the bits given a probability distribution: Huffman
coding, and arithmetic coding. Huffman coding can be computed very quickly,
but the number of bits used for a particular symbol are whole numbers, and
hence won’t necessarily be equal to the optimal size of − log2 p. This is a prob-
lem especially when p is close to one; in this case the optimal number of bits
approaches zero, but Huffman coding must use at least one bit to represent
each symbol. Arithmetic coding overcomes this problem by effectively overlap-
ping the bit representations of successive characters, so one bit in the output
might correspond to more than one symbol. Although arithmetic coding is
optimal, it is usually an order of magnitude slower than Huffman coding, and
hence should be used only in situations where the probability distribution will
cause poor behavior in a Huffman coder.
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The task of coding using Huffman or arithmetic coding is well understood,
and the further reading section at the end of this chapter gives a number of
references that explain these techniques in detail. Many BWT-based systems
rely on these entropy coders to produce their output. Generally Huffman
coding is used if speed is important and the loss of compression is tolerable;
otherwise arithmetic coding is used to get the best possible compression. The
main property that we need to understand about arithmetic coding is that
if it codes a symbol with an estimated probability of p, then the number of
bits used will be arbitrarily close to the optimum value of − log2 p bits, and
thus we can estimate the size of a compressed file without even performing
the coding.

Estimating the probability distributions for an entropy coder can be done
adaptively or non-adaptively. Non-adaptive systems use the same probability
estimates (and therefore the same code) for the entire coding, whereas adap-
tive systems allow the probability distributions to change from character to
character, effectively “learning” during the encoding. Non-adaptive methods
would typically scan the entire sequence to be encoded, estimate probabilities,
create a code table, and proceed to code the entire sequence using the code
table. Adaptive systems don’t need to scan the sequence in advance; they
generally start with simple assumptions (such as all characters being equally
likely), and then change the probabilities as coding proceeds. The decoder is
able to adapt in synchronization as long as the adaptation occurs after each
symbol is encoded, since the symbol can be decoded using the current codes,
and the decoder can update the statistics after each character is decoded.

For example, Figure 3.2 shows an adaptive estimation of probabilities for
coding the word mississippi assuming an alphabet of |Σ| = 4 characters.
The first four columns count how many times each character has been observed
so far, although they are initialized to 1 to avoid having zero probabilities.
The first row shows that with the initial counts all being equal, the first m in
the string is given a probability of 1

4 , and is therefore coded in 2 bits, which
is what we would expect for an alphabet of four characters if no compression
was being attempted. The next line shows the count of m incremented, as
both the encoder and decoder have observed that one m has occurred, and
therefore it might be more likely than other characters. Thus the next code,
which happens to be for an i, gives it a less than even chance of 1

5 (its count
is 1, and the total for all characters is 5). Using Shannon’s formula we find
that it should be coded in 2.32 bits. The system then “learns” from this, and
increases the count of i by 1, ready to code the next character. Notice that
the second s is coded in 1.8 bits, and the fourth one in just 1.32 bits, as the
adaptation has given s the highest probability.

This example is too short to show the effectiveness of adaptation, but
generally after initial poor performance where the probability estimates are
very crude, an adaptive system will settle down to represent the statistics of
the text it is modeling. The model used in this example is also very simple; it
assumes that each character occurs independently of the others. While this is
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Character Probability − log2 p
counts

i m p s

1 1 1 1 p(m) = 1

4
2 bits

1 2 1 1 p(i) = 1

5
2.32 bits

2 2 1 1 p(s) = 1

6
2.58 bits

2 2 1 2 p(s) = 2

7
1.8 bits

2 2 1 3 p(i) = 2

8
2 bits

3 2 1 3 p(s) = 3

9
1.58 bits

3 2 1 4 p(s) = 4

10
1.32 bits

3 2 1 5 p(i) = 3

11
1.87 bits

4 2 1 5 p(p) = 1

12
3.58 bits

4 2 2 5 p(p) = 2

13
2.7 bits

4 2 3 5 p(i) = 4

14
1.8 bits

Fig. 3.2. Adaptive order zero probability estimation for coding the word
mississippi

useful (especially for BWT applications), adaptive systems like this generally
take account of prior characters when making probability estimates.

In the example some arbitrary choices were made which affect the rate of
adaptation. The initial counts need not have been set to 1; a higher value could
have been used to make the system take longer to make significant changes
in the probabilities, and conversely, instead of incrementing by 1 each time,
a higher value could be used to increase the effect of each character arriving.
For example, if we were incrementing by 10, then the first m would cause the
probability on the next character being an m to be estimated at 11

14 and the
other three characters at 1

14 . This kind of aggressive increment (combined with
an aging scheme) is useful for BWT coding because of the strong clustering
of similar characters in the input, such as in the example in Figure 3.1.

At the other end of the spectrum from adaptive coding, for the probabil-
ity distributions that arise in some BWT systems (particularly using MTF)
often a simple fixed code can be effective, using the same representations re-
gardless of the statistics. This will inevitably give slightly worse compression
performance than if the probability distribution is taken into account, but the
gain in speed and simplicity may well justify making the approximation. For
example, the codes shown in Table 3.1 can be used to represent values where
very small numbers are the most common. For the α code, a value of one is
represented using just one bit; a value of two using two bits, and so on. It
is sometimes referred to as “unary”, because it is based on coding in base 1
(each position is worth 1 times as much as the one to the right). The disad-
vantage of this code is that larger values will require many bits. Because an
event with probability p is ideally represented in − log2 p bits, the unary code
implies that the probability of a zero is 1

2 , of a one is 1
4 , and so on. The α code

strongly favors small values, and is not used so often on its own, although, for
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example, it is used in bzip2 to select which Huffman table to use for coding,
as there are only six tables to choose from, and 1 and 2 are the most common.

A coding that grows in length somewhat slower than this is the γ code, also
shown in Table 3.1. The γ code represents a value as its binary number, but
because the length of the binary number can vary, a unary code is prefixed to
indicate the length of the binary number. Because all of the binary numbers
begin with a 1, that bit is omitted. For example, the number 5 has the 3-bit
binary representation 101; it is therefore represented as the unary value for 3,
followed by the last two digits of its binary representation (01).

value α γ δ

1 1 1 1
2 01 01 0 010 0
3 001 01 1 010 1
4 0001 001 00 011 00
5 00001 001 01 011 01
6 000001 001 10 011 10
7 0000001 001 11 011 11
8 00000001 0001 000 00100 000
9 000000001 0001 001 00100 001

Table 3.1. Two fixed-length codes for the integers

There are many more codes that use this kind of approach; these are often
referred to as Elias codes, after the author of a seminal paper on the topic
(Elias, 1975). An interesting one is the δ code, which essentially uses a γ
code to represent the number of bits in the integer, followed by the binary
representation of the integer (again, missing its highest order bit since that
will always be a 1). The δ code is a universal code, which means that the
expected code length is within a constant factor of what would have been
assigned by an entropy coder, as long as the ranking of the probabilities is
correct.

Codes such as α, γ and δ are fixed, and therefore are completely unrespon-
sive to any probability distribution changes in the input. Their main advantage
is that they are very fast, and no code table needs to be stored or transmit-
ted. In contrast, the Huffman and arithmetic entropy coders will use codes
that approach optimality for the given probability distribution, although in
principle a universal code will also be close to optimal. The further reading
section gives references for more information about the implementation and
performance of entropy coders and fixed codes, and Section 5.5.2 looks at this
kind of code in more detail.
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3.2 Run-length and arithmetic coder

One of the simplest ways to code the output of a Burrows-Wheeler Transform
is also one of the most effective. In this approach we put the output (such
as that shown in Figure 3.1) through a “run-length encoder”, which takes
advantage of runs of identical characters in a sequence, and then through an
arithmetic coder, not unlike the approach shown in Figure 3.2. This method
has been labeled RleAc (Ferragina et al., 2006a).

Traditionally these are combined with other techniques (such as the move-
to-front list) that exploit the structure of the transformed text, but a some-
what surprising result is that with properly chosen parameters these two com-
ponents perform very well on their own. Run-length encoding (RLE) features
strongly in much of the BWT research, and can be applied at almost any
stage (including before the transform). However, most of the compression is
achieved in the arithmetic coding, and there is some evidence that even the
run-length encoding isn’t necessary if the arithmetic coding is done correctly,
although RLE can make implementation simpler and faster.

The run-length encoder simply replaces a run of the same character with a
code that specifies what the character is, and how long the run is. For example,
in the second line of Figure 3.1 the letter a appears 36 times in a row, which
would be replaced with a code; on the other hand, the single occurrences of
a letter o are a trivial run of length one, and are not worth replacing. A run-
length code generally has three components: a flag to indicate that a run is
about to be encoded, the character in the run, and the length of the run. This
can be reduced to just two components if it is possible to have a run of length
one. In a Burrows-Wheeler transformed file, typically only about 33% of the
characters occur in runs of 3 or more, but nevertheless there are some gains to
be made as this still represents a significant proportion of the file that occurs
in a run.

The key component of the RleAc backend to a BWT system is the arith-
metic coding. This uses a simple adaptive model to count the occurrences of
each character in the transformed text, adapting the probability distribution
after each character is coded. Adaptive systems are particularly useful when
compression must start before the entire input is known, or where only one
pass through the input is possible. Because BWT-based systems work with a
block of text at a time, adaptive coding is not essential for this purpose. How-
ever, another feature of adaptive coding is not just the ability to “learn” new
symbols, but to “forget” old ones. Normally this is a side-effect of mechanisms
to prevent integer overflow in an arithmetic coder; as symbol frequencies are
collected, if the total count of symbols is threatening to cause overflow in the
calculations, all individual symbol counts are halved. As well as preventing
the overflow, the halving means that subsequent symbol occurrences will have
twice the weight of ones prior to the halving. This mechanism can be brought
into play more aggressively by incrementing counts by more than one, so that
the halving will occur more often, and hence even more weighting is given to
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recent symbols. A similar effect could be achieved by lowering the threshold
for halving, although this means that some accuracy may be lost in rounding
during the halving process, since counts are stored as integers. Another possi-
bility is instead of halving the counts, they can be divided by a larger number
to “age” them faster.

For example, consider the coding of the characters eeeeaeeueuuuaeiiiiii
(taken from the transformed text in Figure 3.1). Figure 3.3 shows them being
coded using a very aggressive policy where their counts are incremented by
10, and divided by 3 when the total count exceeds 50 (different figures would
be used in practice, and the table shows only four characters, with all “other”
characters lumped together in one count, which also is a simplification for
the sake of the example). Near the beginning of the sample text the letter
e is common. We can see that although at the very start of coding it has
an estimated probability of just 15

46 , because its count is incremented by 10
each time it occurs, by the time we get to the fourth e it has a probability of
28
39 , and is coded in just 0.48 bits. Notice also that each time the total count
exceeds 50 all the counts are divided by 3, and this means that the relative
weight of characters not seen recently is even lower. When dividing by 3 it is
important that none of the counts are set to zero, which is why the division is
not exact. Toward the end where the character i becomes common, again it
only takes a few occurrences (and especially one scaling) before it dominates
the probability distribution.

Using an arithmetic coder like this with very rapid adaptation has been
found to be very effective for coding the output of the BWT. Ferragina et al.
(2006a), for example, suggest incrementing counts by 64, and halving the
counts when they get to 16,383. This means that in the steady state counts
are being halved every 128 characters (since the total will be ranging from
about 8,192 to 16,383) — only the last 128 characters have their full weight,
the 128 before them have half the weight, the ones before them only a quarter,
and so on.

In principle even the run-length encoding need not be performed separately
from the statistical modeling since it simply captures a particularly predictable
sequence of characters. However, by using an RLE stage we effectively have
two models that are being switched between: the run-length model which
places a high probability on the next character being the same as the last
character, and the statistical model which places high probability on the next
character being the same as some recent characters.

3.3 Move-to-front lists

Traditionally BWT compressors use a “Move to Front” (MTF) list, which
essentially ranks characters based on how recently they have occurred. This
is done by keeping a list with one entry for each character in the alphabet,
and a character is moved to the front of the list each time it is coded, thereby



40 3 Coders for the Burrows-Wheeler Transform

Character Total Probability − log2 p
counts

a e i u other
12 15 2 1 16 46 p(e) = 15

46
1.62 bits

12 25 2 1 16 56
4 8 1 1 5 19 p(e) = 8

19
1.25 bits

4 18 1 1 5 29 p(e) = 18

29
0.69 bits

4 28 1 1 5 39 p(e) = 28

39
0.48 bits

4 38 1 1 5 49 p(a) = 4

49
3.61 bits

14 38 1 1 5 59
4 12 1 1 1 19 p(e) = 12

19
0.66 bits

4 22 1 1 1 29 p(e) = 22

29
0.40 bits

4 32 1 1 1 39 p(u) = 1

39
5.29 bits

4 32 1 11 1 49 p(e) = 32

49
0.61 bits

4 42 1 11 1 59
1 14 1 3 1 20 p(u) = 3

20
2.74 bits

1 14 1 13 1 30 p(u) = 13

30
1.21 bits

1 14 1 23 1 40 p(u) = 23

40
0.80 bits

1 14 1 33 1 50 p(a) = 1

50
5.64 bits

11 14 1 33 1 60
3 4 1 11 1 20 p(e) = 4

20
2.32 bits

3 14 1 11 1 30 p(i) = 1

30
4.91 bits

3 14 11 11 1 40 p(i) = 11

40
1.86 bits

3 14 21 11 1 50 p(i) = 21

50
1.25 bits

3 14 31 11 1 60
1 4 10 3 1 19 p(i) = 10

19
0.93 bits

1 4 20 3 1 29 p(i) = 20

29
0.54 bits

1 4 30 3 1 39 p(i) = 30

39
0.38 bits

Fig. 3.3. Aggressive adaptive order zero probability estimation for coding the text
eeeeaeeueuuuaeiiiiii

increasing its rank (and decreasing the corresponding number of bits that will
be used to code it next time).

For example, for the Burrows-Wheeler Transform of mississippi, we get
the text pssmipissii. The MTF list that is used for coding this is shown
in Figure 3.4, assuming only four characters in the alphabet and starting in
alphabetical order. The character at the front (left end) of the list is numbered
0, so the first character to be coded (p) has a rank of 2. After it has been
coded, it is then moved up to rank 0 (the move-to-front step), which in this
case happens to be unfortunate because every other character in our small
alphabet will be encoded before the next p. Next, the s is coded as rank 3,
and then moved up to rank 0. This time it works out well, because the next
character is also an s, and is represented by rank 0. The decoder maintains
the same list, and after each character is decoded it makes the same updates
to the list, so it always has the up-to-date ranking for each character.
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MTF rank
list

im(p)s 2
pim(s) 3
(s)pim 0
spi(m) 3
msp(i) 3
ims(p) 3
p(i)ms 1
ipm(s) 3
(s)ipm 0
s(i)pm 1
(i)spm 0

Fig. 3.4. The MTF ranks for the characters in the BWT transformed text L =
pssmipissii, assuming that the initial list is imps

In practice the list would typically have 256 entries, one for each possible
byte value, and for text such as the example in Figure 3.1 we can see that
most of the time we will be dealing with characters with very low ranks, with
the occasional high value when a new character is encountered for the first
time. Figure 3.3 shows the MTF ranks for a segment of this BWT transformed
Hamlet text; for such a text most of the codes are very low values (often 0)
because of the clustering of characters. One advantage of the ranks being so
low is that linear searches can be sufficient to locate characters in the MTF
list if the search starts at rank zero, since most searches will succeed in the
first few comparisons.

a e e a o e u u e a u i i i A a a u a a a a a a a a a o a a a a i a

2 1 0 1 5 2 4 0 1 3 2 4 0 0 5 3 0 3 1 0 0 0 0 0 0 0 0 5 1 0 0 0 4 1

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a A A a A A a A A A A a A a a A u a e a a a a a a a a a a a u a a a

0 4 0 1 1 0 1 1 0 0 0 1 1 1 0 1 4 2 5 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0

Fig. 3.5. MTF ranks for a series of characters from Hamlet that occur before the
sort key nd

Like the Burrows-Wheeler Transform, the MTF stage is really just another
transform, since an input text of n characters will still give us n ranks to
encode. However, the ranks are particularly easy to encode because the low
numbers are so common. The zero rank is particularly common — typically
around half of the ranks are zero — and runs of zeros occur frequently since
they correspond to runs of the same character, which is common in a BWT
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transformed file. For example, in the BWT transformed Hamlet file 76% of the
zero ranks occur in runs of three or more, and only 14% occur in isolation.
The longest run of 0 ranks is 575 (this occurs because of the character o

being common before u). In contrast, the longest run of ranks of 1 is 10,
which happens to be caused by alternating “s” and space characters occurring
before “how”. This is more due to chance than any inherent structure in the
text. Because of these kinds of patterns, the MTF ranks are often run-length
encoded before any further processing is done.

Eventually (whether or not run-length encoding is used), the ranks are
represented using an entropy coder — usually arithmetic coding or Huffman
coding. In principle arithmetic coding is best when such high probability sym-
bols need to be represented, but combined with run-length encoding of the
output, a Huffman code can be made to work satisfactorily (and in fact this
is what is used by bzip2). Probabilities are estimated using a simple order-0
model; that is, there seems to be little relationship between consecutive MTF
ranks apart from the runs of zero ranks. Even a fixed code such as the γ code
described in Section 3.1 produces satisfactory results for compressing the out-
put of the MTF, and may be preferred if speed and simplicity are preferred
to getting the best possible compression.

The MTF approach is very fast to promote new symbols as they are en-
countered; in fact, just one occurrence will instantly have a character desig-
nated as the most likely to occur next. This is a good assumption much of the
time, but the BWT-transformed text will also contain a number of characters
that occur in isolation, and promoting these so quickly will result in a higher
cost of coding subsequent characters while the one-off character slowly works
its way back down the MTF list. A number of variations to MTF have been
proposed, such as the “sticky MTF”, which checks how often the symbol at
the head of the MTF list has been used before demoting it; if it has only
been used once then it is moved some distance down the list, whereas if it has
occurred twice in succession, it stays at the top of the list and will be demoted
slowly in the future.

Recent research has established that the MTF stage may not be needed
to compress transformed texts effectively, but instead run-length encoding
followed by a fast-adapting entropy coder are sufficient to get excellent com-
pression. This makes sense given the predominance of zero ranks in the MTF
output; a zero rank simply means that the previous character has been re-
peated, and runs of zeros correspond to runs of the repeated character. Hence
an appropriately tuned run-length encoder can be expected to pick up this
structure.

3.4 Frequency counting methods

Frequency counting methods improve on MTF by basing the ranking of sym-
bols on their frequencies. The simplest approach, to simply give the highest
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rank to the symbol with the highest frequency, would not be very effective
since it would take too long to adapt to favoring symbols that have become
popular at the expense of previously popular ones.

The Weighted Frequency Count (WFC) addresses this by defining a func-
tion based on symbol frequencies and also the distance to the last occurrence
of each symbol within a sliding window, with higher weights being given to
more recent occurrences of a symbol. While this approach does give good
compression, it is very slow because of the computation involved.

An alternative is the Incremental Frequency Count (IFC) which approx-
imates the WFC by keeping count of character occurrences as they are ob-
served, giving more weight to recent occurrences. This makes computation
faster, but at a small cost in compression performance.

3.5 Inversion Frequencies (IF)

The inversion frequencies method is based on the distance between occur-
rences of symbols in the BWT-transformed text. It relates to an inverted
index, which contains a list for each symbol indicating where it occurs in a
text.

For example, our sample transformed text pssmipissii could be repre-
sented by the inverted index shown in Figure 3.6, which gives the number of
characters preceding the occurrence of each character named. In the example,
“p” occurs after 0 and 5 characters.

i: 4, 6, 9, 10

m: 3

p: 0, 5

s: 1, 2, 7, 8

Fig. 3.6. Inverted index of the sample transformed text pssmipissii

This table can be represented more efficiently by storing the gap since the
last occurrence of a character, rather than its absolute position. Furthermore,
if the output is being reconstructed by going through the symbols in lexical
order, it is only necessary to store the number of intervening symbols that
are lexically greater than the current one, as shown in Figure 3.7. From the
information in Figure 3.7 the original text is reconstructed by decoding the
character i first, then m and so on. The numbers are used to skip only unfilled
slots in the decoded text; the last line is not strictly needed, since the character
s is simply placed in any unfilled slots.

The inversion frequencies method is comparable in performance to MTF-
based methods, performing better on some files and worse on others.
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i: 4, 1, 2, 0

m: 3

p: 0, 2

s: 0, 0, 0, 0

Fig. 3.7. Inversion frequencies representation of the transformed text

3.6 Distance coding

Distance coding has a lot in common with the inversion frequencies method,
but is based on encoding the start of each run of characters in the transformed
text, where a run is a maximal consecutive repetition of the same character,
which might be as short as length 1. The end of the run need not be coded,
since it will be marked by the start of a run of another character. To seed the
decoding, we need to know where the first occurrence of each character is in
the text. Subsequent runs are represented as the distance from the previous
run of the same character. The distance between two characters is simply the
difference between their positions in the array, so two adjacent characters are
a distance of 1 apart1. A distance of 0 is used to mark the end of the entries
for each character.

A simplistic version of distance coding is shown in Figure 3.8, representing
the text pssmipissii. For example, the first i first occurs at character 5 in
the text, and then “runs” of i occur 2 characters later (a single i) and then
3 characters after that (the last two i’s in the string). We can detect the end
of the first of these “runs” (for example, we know there is a single i because
the entry for p shows that there is a p at position 6). The end of each row of
distances is marked with a 1.

Character First Distance to next run
occurrence

i 5 2, 3, 0
m 4 0
p 1 5, 0
s 2 5, 0

Fig. 3.8. Distance coding for the BWT output pssmipissii

In addition to this main idea that the ends of runs of a character can be
encoded implicitly, there are two other observations that can be used to reduce
the amount of information transmitted by this simplified distance coding:

1 A distance of 1 cannot occur in the coding as described so far, since run-lengths
are maximal and therefore adjacent runs are not possible, but later we shall see
that it is useful.
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1. If we know the length of the file to be decoded, the final 0 at the end of
each list is sometimes redundant because it will sometimes be the case
that there is no more space in the output for any more runs, hence the
decoder already knows that there will be no more occurrences of that
character.

2. Some of the characters being skipped by the distance code are known to
the decoder, and they need not be included in the distance. This enables
us to reduce the value representing the distance.

For example, in Figure 3.8 the first occurrence column tells us that the
text is of the form ps•mi•••••• (where a dot is an unknown character). The
first distance for p is 5 (putting the second p at position 6 in the text), but
based on the second rule above we only need to record the distance as 2 (i.e.
it is the second unknown character). Once that p is decoded we have the
text ps•mip•••••, and we know that the only possible character for the first
unknown gap is s, yielding pssmip••••• without using any extra information.
The distance from i to its next occurrence is 2, but since the p that must be
skipped is already known, we can simply record a distance of 1 (the next i is
in the next unknown position).

Thus relatively few numbers need be recorded to reconstruct the text,
particularly if there are long runs and a limited vocabulary. These numbers
are then coded using an entropy coder, yielding good compression results.

3.7 Wavelet trees

Another approach proposed for coding a BWT-transformed text is using
wavelet trees. Figure 3.9 shows a wavelet tree for our sample transformed text,
pssmipissii. The leaves of the tree correspond to the characters that occur
in the string to be represented. The root represents the transformed text, and
partitions its characters into two groups — those down the left branch and
those down the right. This partitioning is represented by the string of bits
associated with the node; a 0 means that the corresponding character is in
the left branch, and a 1 means that it is in the right branch. The wavelet tree
is stored using a binary-heap-like structure; that is, it is a complete tree, with
nodes being filled from left to right, top to bottom.

Coding is achieved by applying run-length encoding to the bit patterns for
each node; the decoder can reconstruct the original text given those patterns.
The run-lengths are coded using the γ code described above in Section 3.1.

Using wavelet trees can be faster than an MTF list, and they have some
nice theoretical properties as well as providing a potentially useful structure
for searching the text. However, because a simpler coding is used, the compres-
sion performance will be slightly less than the best methods, and with MTF,
they are likely to be outperformed all round by the simple fast-adapting sys-
tem described in Section 3.2.
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p  s  s  m  i  p  i  s  s  i  i

1  1  1  0  0  1  0  1  1  0  0

m  i  i  i  i

1  0  0  0  0

p  s  s  p  s  s

0  1  1  0  1  1

i,m p,s

p si m

Fig. 3.9. A wavelet tree for the string pssmipissii

3.8 Other permutations

The Burrows-Wheeler Transform appears to be the only possible basis of a
reversible permutation of the text that can be used for compression; the only
other generally reversible transformations are trivial ones that don’t usually
help with compression performance (such as swapping every second character
with its successor). Some variations of the basic BWT are possible. For ex-
ample, it is possible to limit the size of the substrings being sorted to some
constant k characters (typically k = 2 to 4). This will inevitably mean that
some identical contexts occur, in which case the original order of the sub-
strings is used to resolve the ordering (that is, a stable sort is used). The
main advantage of limiting the context size is that it can speed up processing,
especially if a very small context is used, since the entire sort can be done
using a radix sort. It also avoids the degenerate case where the original text
contains many runs of the same character, which can slow down sorting signif-
icantly. Contexts of about four characters are enough to capture most of the
dependencies in text, and so the loss of compression is very small (typically
well under 5% if k = 4). A trivial case occurs when k = 0, in which case
no re-ordering occurs, and the transformed text is the same as the original.
Of course, compression performance will be poor in this case. This type of
permutation is discussed in more detail in Section 6.1.

A method related to sorting with limited contexts is used in a technique
called “Compression boosting”, which partitions the BWT transformed text
into subsequences of characters that are from related contexts. The value
of this can be seen in Figure 3.10, where the sort key initially starts with
tz and then has a transition to starting with u (a u followed by a space).
The tz context is primarily preceded by n and i, whereas u is preceded by
o. Compression boosting partitions the text so that the bias being used for
one context can be dropped when the next one starts, avoiding having to take
some time to “learn” that a new set of characters is more likely. An important
feature of compression boosting is that it finds the optimal partition for a given
entropy coder in linear time.
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F L

tz and Guildenstern.] Ros. Wh . . . n

tz and Guildenstern, who go o . . . n

tz: And I beseech you instant . . . n

tz, Courtier. Guildenstern, C . . . n

tz go to’t. Ham. Why, man, th . . . n

tz! Good lads, how do ye both . . . n

tz, Guildenstern, and Attenda . . . n

tz, Guildenstern, and others. . . . n

tz, Guildenstern, and some At . . . n

tz, Guildenstern, &c.] Ham. G . . . n

tz.] How now! what hath befal . . . n

tzers? let them guard the doo . . . i

—
u a daughter? Pol. I have, my . . . o

u a groaning to take off my e . . . o

u a more horrid hent: When he . . . o

u a place. [Danish march. A f . . . o

u a spirit of health or gobli . . . o

u a wholesome answer; my wit’ . . . o

u advise me? Laer. I am lost . . . o

u again to bed; Pinch wanton . . . o

u all, If you have hitherto c . . . o

u all without. Danes. No, let . . . o

u alone. Mar. Look with what . . . o

u amble, and you lisp, and ni . . . o

Fig. 3.10. A variation of BWT where the sorting uses only the first two characters
to determine sort order

An efficient algorithm for performing the partitioning for compression
boosting is available using suffix trees to determine where the partitions should
fall. Compression boosting can be applied to various other local-to-global tech-
niques to improve them, but it is still out-performed by a simple arithmetic
coder that is set up to adapt quickly because the fast adaptation soon reduces
the significance of the change of context.

Variations on the BWT, such as using limited-length sort keys as above,
or using English words as the alphabet, are discussed in detail in Chapter 6.

3.9 Block size

Because a BWT-based compression system must have access to a whole text
before it can be encoded, a text which is too large to be processed in memory



48 3 Coders for the Burrows-Wheeler Transform

must be broken up into blocks that can be accommodated. These blocks are
then compressed independently2.

So far we have put aside the issue of the size of the blocks to be used.
In general, these blocks should be as large as possible to maximize the op-
portunity to capture patterns in the text, but will be limited by available
memory. Typically the amount of memory required is about 5 to 8 times the
block size (in bytes), with 1 Mbyte being a reasonable size for blocks (and
therefore about 8 Mbyte being used for encoding). An important factor is
that the access to memory for BWT is quite random, and implementations
should consider how this will interact with caching, since the random access
could lead to very slow memory retrieval if the cache cannot store the entire
block. Thus the limit in memory size may be more related to cache sizes than
the total RAM in a computer.

Burrows and Wheeler’s original paper evaluated the effect of block size
on compression performance, and found that gains of a few percent were still
being made by quadrupling the block size from 16 Mbytes to 64 Mbytes. And
of course, gains will be made only if the file being compressed is larger than
the block size, and if the material at the start of the file is similar to that
much later on.

The bzip2 program is a general-purpose compression system based on the
Burrows-Wheeler Transform. It has a maximum block size of 900 kilobytes,
which is larger than many of the files that are likely to be compressed, yet
allows the implementation to work with a small footprint in the memory of a
standard computer. At this size gains in the order of 1% are made by increasing
the block size by about 10%, so larger blocks may well give a little compression
gain, but is likely to be at the expense of severe speed deterioration because of
cache misses, and may never be noticed since files of that size are more likely
to be audio or video rather than text, which are typically compressed with a
lossy compression method. Lossless compression would be needed for genomic
data, but this kind of file generally does not benefit significantly from larger
block sizes.

3.10 Further reading

Entropy coders (especially Huffman and arithmetic coding) are discussed at
length in standard texts on lossless compression (see the Further reading
section of Chapter 1). They are a particular focus of the book by Moffat
and Turpin (2002), and the implementation of arithmetic coding is discussed
in Moffat et al. (1995) and Moffat et al. (1998). Some BWT-based systems
propose using “range coding”, which has similar performance to arithmetic
coding, but avoids some potential issues with patents on some versions of

2 This is why BWT-based compression systems are sometimes referred to as “Block-
sorting compression”.
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arithmetic coding; for examples see Foschini et al. (2004) and Ferragina et al.
(2006a). Run-length encoding in the context of the BWT is discussed in detail
by Deorowicz (2002) and Fenwick (2007).

The classic reference for fixed codes such as the α, γ and δ codes is Elias
(1975), which includes universal codes that will be within a constant factor
of the entropy even though the probability distribution is not specified. A
detailed description of the use of such codes in compression is given in Witten
et al. (1999) and Sayood (2003). Fenwick (2002a, 2003c) provides an extensive
investigation of the practical use of integer codes with the BWT, and a related
code used by Wheeler called the “1/2” code (Fenwick, 1996a, 2007).

The observation that a simple run-length coder with arithmetic coding
outperforms many other techniques for compressing a BWT transformed text
was made by Ferragina, Giancarlo and Manzini in their 2006 paper (Ferragina
et al., 2006a). This paper introduces RleAc, and compares it empirically with
a number of other coders, including “range coding”, which is very similar
to arithmetic coding. The idea of using a fast adapting arithmetic coder is
not a new one; Fenwick (1996a) reported using an arithmetic coder with an
increment of 16 and a limit of 8192.

The MTF method was proposed in Burrows and Wheeler’s original paper
(Burrows and Wheeler, 1994); seminal work on MTF was done by Bentley
et al. (1986) and Elias (1987). The proportion of zero ranks after MTF has
been applied to a BWT transformed string was reported by Fenwick (1996b)
to be about 63%. This paper proposes an approximate entropy coder described
as a “unary” model, which takes advantage of the probability distribution of
ranks but is simpler and therefore faster than arithmetic or Huffman coding.
Balkenhol and Kurtz (2000) explore a number of variations for compressing
the transformed text.

Variations on the MTF list which avoid the rapid promotion of one-off
symbols were first suggested in Burrows and Wheeler’s original paper (Bur-
rows and Wheeler, 1994), but were not evaluated. Subsequently a number of
variations have been published, including “Sticky MTF” by Fenwick (2002a,
2003c), Schindler’s system (Schindler, 1997a,b), which does not promote a
symbol to rank 0 unless it has been seen twice, Balkenhol et al. (1999), where
symbols are first promoted to rank 1 before rank 0, and Chapin (2000), which
switches between two update algorithms. Wirth (2001) compares the per-
formance of MTF and related approaches on BWT output. Bachrach and
El-Yaniv (1997) provide a detailed empirical evaluation of the performance of
the MTF and its variations on general text.

The idea of distance coding originated in a posting to the Usenet group
comp.compression by Edgar Binder in 2000. It was described and evaluated in
Deorowicz (2002), and in Gagie and Manzini (2007). Inversion frequencies (IF)
as an alternative to MTF are introduced by Arnavut and Magliveras (1997a)
and analyzed by Ferragina et al. (2006b). Improvements for the IF method
are noted by Abel (2007b), including changing the order in which characters
are stored in the table to achieve slight compression improvements. Coding
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BWT-transformed text without ranks is explored by Wirth (2001) and Wirth
and Moffat (2001).

The Weighted Frequency Count (WFC) was introduced by Deorowicz
(2002) and variations to it are explored by Abel (2007b). A comparison of
related methods is given by Abel (2007a). A comparison of move-to-front,
distance coding, and inversion frequencies can be found in Gagie and Manzini
(2007). The Incremental Frequency Count (IFC) is due to Jürgen Abel (Abel,
2005, 2007a).

“Wavelet trees” are introduced by Grossi et al. (2003) and applied to the
BWT in Foschini et al. (2004). Further analysis and application to the BWT
is given in Ferragina et al. (2006b).

The observation that limited-length contexts can be used for the BWT
sort was published by Schindler (1997a), and is discussed further in Sec-
tion 6.1. Partitioning the transformed text for “compression boosting” was
described in Ferragina and Manzini (2004), Ferragina et al. (2005a), and Fer-
ragina et al. (2006a). Deorowicz describes a system that does not explicitly
partition the BWT text according to context, but infers it from the trans-
formed file through a process called “context exhumation” (Deorowicz, 2005).
Other work on the Burrows-Wheeler permutation is described by Arnavut
(2002) and Crochemore et al. (2005).

A special edition of Theoretical Computer Science in November 2007 fea-
tured a number of papers about the BWT that are relevant to the material
in this chapter.
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Suffix trees and suffix arrays

The Burrows-Wheeler Transform has a very close relationship with suffix trees
and suffix arrays — the array of indexes to the sorted array of substrings
generated during the transform is essentially a suffix array, which in turn
is a representation of the information in a suffix tree. As pointed out by
Burrows and Wheeler in their original work (Burrows and Wheeler, 1994), the
problem of sorting the rotated matrices is the major bottleneck in performing
the transformation, and this is essentially an exercise in suffix sorting. This
relationship between the BWT and suffix arrays and suffix trees also has
important implications in the applications of the BWT, and in its relationship
with other compression schemes, such as PPM. Analyzing the performance of
the BWT is greatly simplified by an understanding of the construction and
complexity of suffix trees and suffix arrays.

In this chapter we study suffix trees and suffix arrays in more detail. While
this is motivated by their relationship with the BWT, suffix trees and suffix
arrays have become important data structures in their own right, especially
for problems in pattern matching, full-text indexing, compression, and other
applications.

4.1 Suffix Trees

The suffix tree is a data structure used to represent the set of all suffixes
of a string. It has a strong resemblance to the trie data structure (Knuth,
1973; Gonnet et al., 1992). However, unlike the trie, the suffix tree provides a
more compact representation of the suffixes. While the size of the trie could
be quadratic with respect to the length of the input string, the suffix tree
provides a linear space representation of the suffixes.

The suffix tree is efficient in both time and space, and it is used for a
variety of applications, such as in pattern matching (Ukkonen, 1993), multiple
sequence alignment (Delcher et al., 1999; Kurtz et al., 2004), the identification
of repetitions in genome-scale biological sequences (Bieganski et al., 1994;
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Volfovsky et al., 2001), and in lossy image compression (Atallah et al., 1999).
Apostolico (1985), Giancarlo (1995) and Grossi and Vitter (2005) discussed
various applications of the suffix tree. More recently, Wired magazine reported
the use of the suffix tree data structure in studying an age-old Inca Mystery
(Cook, 2007) about the existence of written communication using knots and
threads in old Peruvian culture.

Various algorithms have been developed for linear time construction of suf-
fix trees (Weiner, 1973; McCreight, 1976; Ukkonen, 1995). In this section, we
will discuss basic algorithms for constructing suffix trees, with an emphasis on
newer approaches that lend themselves to direct construction of suffix arrays
(without suffix trees). The book by Dan Gusfield (Gusfield, 1997) provides a
comprehensive treatment of suffix trees, their construction, and applications.

4.1.1 Basic notations and definitions

We will continue to use T = T [1 . . . n] as our input text. T is a string of
length n, over an alphabet Σ. In this book, we assume that for a given string
the symbol alphabet is fixed. Thus, we will treat the alphabet size as being
constant, unless otherwise stated. Let T = αβγ, for some strings α, β, and γ
(α and γ could be empty). The string β is called a substring of T , α is called a
prefix of T , while γ is called a suffix of T . The prefix α is called a proper prefix
of T if α 6= T . Similarly, the suffix γ is called a proper suffix of T if γ 6= T .
We will also use ti = T [i] to denote the i-th symbol in T — both notations
are used interchangeably. We use Ti = T [i . . . n] = titi+1 . . . tn to denote the
i-th suffix of T . Similarly, we use T i = T [1 . . . i] = t1t2 . . . ti to denote the i-th
prefix of T .

For simplicity in constructing suffix trees, we usually ensure that no suffix
of the string is a proper prefix of another suffix. This can be done by placing
a sentinel symbol at the end of T , such that the sentinel does not appear
anywhere else in T . In practice this is often achieved by simply appending a
special symbol, say $ to T , such that $ /∈ Σ. This constraint implies that each
suffix of T will have its own unique leaf node in the suffix tree of T , since any
two suffixes of T will eventually follow separate branches in the tree. Unless
otherwise stated, we assume that this special symbol has been appended to
each string.

Given a string T of length n, its suffix tree TT is a rooted tree with n leaves,
where the i-th leaf node corresponds to the i-th suffix Ti of T . Except for the
root node and the leaf nodes, every node must have at least two descendant
child nodes. Each edge in the suffix tree TT represents a substring of T , and
no two edges out of a node start with the same character. For a given edge,
the edge label is simply the substring in T corresponding to the edge. We use
li to denote the i-th leaf node. Then, li corresponds to Ti, the i-th suffix of
T . Figure 4.1 shows the list of suffixes, the suffix trie, and the suffix tree for
an example string T = acracca$.
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Fig. 4.1. Suffix structures for the string T = acracca$: (a) list of suffixes; (b)
suffix trie, and (c) suffix tree. The number at each leaf node corresponds to the
starting position of the corresponding suffix in the original string. See the text for
explanation of the marked nodes u and v

For edge (u, v) between nodes u and v in TT , the edge label (denoted
label(u, v) ) is a non-empty substring of T . An edge is called a t-edge if its
edge label starts with the symbol t. For a given node u in the suffix tree,
its path label, L(u) is defined as the label of the path from the root node to
u. Since each edge represents a substring in T , L(u) is essentially the string
formed by the concatenation of the labels of the edges traversed in going from
the root node to the given node, u. The string depth of node u, (also called its
length) is simply |L(u)|, the number of characters in L(u). Using the labels in
the suffix tree in Figure 4.1, we will have L(u) = a, L(v) = ac, label(u, v) = c,
and the string depth of v = 2 (this also applies to the suffix trie). The number
at each leaf node corresponds to the starting position of the corresponding
suffix in the original string, T .

Properties of a suffix tree

Before discussing the construction of suffix trees, we summarize their basic
properties. Given the string T = T [1 . . . n]$, of length n, but with the end of
string symbol appended to give a sequence with a total length n+1, the suffix
tree of the resulting string T$ will have the following properties:
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1. Exactly n + 1 leaf nodes;
2. At most n internal (or branching) nodes (the root node is considered an

internal node);
3. Every distinct substring of T is encoded exactly once in the suffix tree.

Each distinct substring is spelled out exactly once by traveling from the
root node to some node u, such that L(u) is the required substring. Note
that the node u may be an implicit node (see Section 4.1.3).

4. No two edges out of a given node in the suffix tree start with the same
symbol.

5. Every internal node has at least two outgoing edges.

Properties (1), (2), (4), and (5) imply that a suffix tree will have at most
2n + 1 total nodes, and at most 2n edges;

The suffix tree is similar in spirit to the traditional trie data structure
(Gonnet et al., 1992). The major difference is the notion of path-label com-
pression and edge-label compression used in suffix trees. Thus, the suffix tree
is generally viewed as a compacted suffix trie, as can be seen in the difference
between the two trees in Figure 4.1. Path label compression and edge-label
compression are critical for the linear time and linear space complexity of
suffix tree construction. The notion of path-label compression is related to the
requirement that every internal node, except the root node, must have at
least two descendants, so we can remove all the internal nodes that have only
one descendant in the suffix trie. The characters that make up the labels for
the edges linking the removed nodes are concatenated in order, starting from
the node nearest to the root. Thus, for the suffix tree, the edge labels can
be substrings of the original sequence, rather than single symbols, which will
reduce the number of nodes. For edge-label compression, rather than writing
out the edge label explicitly, we use pointers into the original string to indicate
the starting and ending positions of the substring corresponding to an edge
label. This requires that the original string T must be available, in order to
determine the edge labels explicitly. This reduces the potential O(n2) space
required for suffix trees to O(n), since the maximum number of edges will be
2n. Figure 4.2 shows the suffix tree representation using edge-label compres-
sion for the example string used in Figure 4.1. For example, the edge label c
is now replaced with the pair (2,2), while ca$ is replaced with (6,8). Notice
that under edge-label compression, the same edge (substring) could be rep-
resented with different pairs of pointers, for instance, the edge label c could
have been represented with any of the pairs (2,2), (5,5), or (6,6). In practice,
the pair representing the first occurrence of the substring in T , or the current
occurrence, is generally used.

4.1.2 Construction of a suffix tree

Construction of the suffix tree for a string is not difficult. A simple algorithm
that accomplishes this task for any given string is given in Algorithm 4.1.
However, building the suffix tree efficiently is the key challenge.
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Fig. 4.2. Suffix tree for the string T = acracca$ using edge-label compression

Simple-Suffix-Tree-Algorithm(T )
Create the root node, with empty string
for i← 1 to n do

Traverse current tree from the root
Match symbols in the edge label one-by-one with symbols in

the current suffix, Ti

if a mismatch occurs then

Split the edge at the position of mismatch to create a new
node, if need be

Insert suffix Ti into the suffix tree at the position of mismatch
end if

end for

Algorithm 4.1: Simple suffix tree construction algorithm

A step-by-step construction of a suffix tree using Algorithm 4.1 is shown
in Figure 4.3 for the sample string T = acracca$. First, the root node is
created. Then the first suffix T1 = T = acracca$ is inserted by attaching
it to the root node. To insert the next suffix, T2 = cracca$, the algorithm
traverses the edge, matching its edge label symbol-by-symbol. A mismatch
occurs at the first position, hence suffix T2 is attached to the root node. Suffix
T3 is inserted in the same way. To insert suffix T4 = acca$, we traverse from
the root, on the a-edge until the mismatch with the third symbol c. Since the
match occurred in the middle of an edge, we split the edge to create a new node
at the mismatch position. Then the suffix is inserted by attaching a leaf node
to the newly created node. The edge from the node to the leaf is then labeled
with the remaining symbols in the suffix being inserted, starting with the
mismatched character in the suffix. This process of matching, edge-splitting,
and insertion continues until we reach the last suffix (the last symbol) of the
string.

The above algorithm, although simple to implement, unfortunately re-
quires construction time that is proportional to the square of n, the length of
the string. This O(n2) complexity may not pose a problem for short sequences
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Fig. 4.3. Step-by-step construction of a suffix tree using the simple algorithm

with a few symbols. However, for most practical applications of suffix trees,
such as in whole-genome sequence analysis with input strings that could have
billions of symbols, more efficient approaches are required.
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4.1.3 Ukkonen’s suffix tree algorithm

Several methods have been proposed for constructing suffix trees in linear time
and linear space. Ukkonen’s algorithm (Ukkonen, 1995) is popular mainly be-
cause it is easier to understand and implement, and also because of its rel-
atively small memory requirement. Our discussion of Ukkonen’s algorithm
mainly follows the description in Ukkonen (1995) and Gusfield (1997). Com-
plete details can be found in the book or in the original paper by Ukkonen.

Ukkonen’s algorithm is based on an observation on the relationship be-
tween the suffixes of substrings from the same string. Given a string T =
t1t2 . . . tn, and the substring T i = t1t2 . . . ti (i.e. the i-th prefix of T ), we ob-
serve that T i = T i−1ti. Thus, the suffixes of T i can be obtained from the
suffixes of its longest proper prefix T i−1 = t1t2 . . . ti−1 by appending the new
symbol ti at the end of each suffix of T i−1, and by adding the empty suffix.
Therefore, the suffix tree of T = t1t2 . . . tn = Tn can be constructed using a
left to right scan, by first building the suffix tree for T 0, the empty string,
expanding this to obtain the suffix tree for T 1, and continuing in this way
until we build the suffix tree of T = Tn from that of Tn−1. This incremental
construction and the left-to-right scanning ability also imply that the method
can be used to construct suffix trees online, that is, the algorithm can build
the suffix tree piece-by-piece as a new symbol is received, without having the
entire input string available at the beginning. To get the algorithm to work
in linear time, Ukkonen used various clever ideas based on the properties of
suffix trees.

Ukkonen’s algorithm starts with an implicit suffix tree. Given a string T ,
and its suffix tree TT , its implicit suffix tree is obtained from TT , by removing
the special symbol $ from the edge labels, removing each node that has no
label, and removing any node that has less than two children. The implicit
suffix tree is constructed incrementally as described above. The last implicit
suffix tree is then converted to a true suffix tree using a simple linear time
traversal of the implicit suffix tree. The implicit suffix tree represents all the
suffixes of a string, since each suffix is spelled out by some path from the root,
whereby the path can end inside an edge. However, each suffix may not have
a unique leaf node in the implicit suffix tree. If the last character in the string
is unique (i.e. does not appear anywhere else in the string), then the implicit
suffix tree and the true suffix tree will be the same. Figure 4.4 shows the
implicit suffix tree for the example string T = acracca; notice that nodes 7
and 8 are no longer shown explicitly.

Ukkonen’s algorithm also made use of suffix links. The notion of suffix links
is based on a well-known fact about suffix trees (Weiner, 1973; McCreight,
1976), namely, if there is an internal node u in TT such that its path label
L(u) = aα for some single character a ∈ Σ, and a (possibly empty) string
α ∈ Σ∗, then there is a node v in TT such that L(v) = α. A pointer from node
u to node v is called a suffix link. If α is an empty string, then the pointer
goes from u to the root node. In its simplest form, the suffix link from a given
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leaf node points to the leaf node that corresponds to the longest proper suffix
of the suffix represented by the leaf node.

We can now look at Ukkonen’s algorithm in more detail. We will give
a high level description of the algorithm in terms of its phases and the up-
dates in each phase. We then describe the cases involved in performing the
suffix updates at each step of the algorithm. Ukkonen’s algorithm may be
understood by first describing how we can use it to construct a suffix trie.
We then describe the modifications to the basic algorithm to yield the suf-
fix tree. To explain Ukkonen’s algorithm, we use a somewhat longer example
string, T = mississippi$, as this captures all the update cases that will be
encountered using the algorithm.

Suffix Trie Construction

Let JT denote the suffix trie of the string T . The suffix trie for the string
T = t1t2 . . . tn = Tn is constructed incrementally, from the suffix trie of its
longest proper prefix Tn−1 = t1t2 . . . tn−1. In turn J n−1

T is constructed from
J n−2

T , and so on. Thus, Ukkonen’s algorithm constructs the suffix tree in
phases, whereby J i

T is constructed in phase i of the algorithm. During phase
1 of the algorithm J 1

T is constructed from T 0, the empty suffix (empty string).
Then J 2

T is constructed from J 1
T in phase 2, and so on, until finally, J n

T , the
required suffix trie is constructed from J n−1

T in phase n. Thus, the major
question is how we construct J i

T , the suffix trie for the prefix T i = t1t2 . . . ti
from J i−1

T , the suffix trie of its longest proper prefix.
To construct J i

T from J i−1
T , we need to append the next symbol ti to

the end of each suffix in J i−1
T , and add the empty suffix. Thus, we visit each

suffix of J i−1
T , starting from its longest suffix, walking up to the shortest suffix

(which corresponds to the empty string), updating the tree as we walk. Let
node u in J i−1

T be the current node during the walk. How the tree is updated
depends on whether or not there is a ti-edge that starts from node u.

The following update cases can occur:

c
1
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6

racca

racca

racca a

ca

ca

ac

Fig. 4.4. Implicit suffix tree for the string T = acracca
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Case A : Node u does not have a path that started with symbol ti. This
could happen in two ways:

1. Node u is a leaf node. Here, we update the tree by appending ti to
L(u), the path label for node u. No new node is created. This can be
seen in Figure 4.5 (going from J 1

T to J 2
T ), extending the leaf node with

edge label m to mi; or in Figure 4.5 going from J 8
T to J 9

T , extending
the leftmost branch from mississi to mississip.

2. Node u is not a leaf node, but no edge from node u is a ti-edge. This
means that there is at least one edge that continues from node u, but
no such edge starts with the symbol ti. Here, we update the tree by
creating a new leaf node starting from u, with edge label ti. Examples
can be seen in Figure 4.5 (J 1

T ), creating the leaf node from the root,
with edge label m; or in Figure 4.5 (J 9

T ), creating the five leaf nodes,
each with edge label p, resulting in parent nodes with ≥ 2 outgoing
edges.

Case B : There is a ti-edge emanating from u. This means that node u is
not a leaf node, and the string L(u)ti has already been added to the suffix
trie. Since the end of a suffix need not be explicit in an implicit suffix tree,
no update is needed. This can be seen in Figure 4.5 (J 6

T ).

The root node, along with the set of nodes with old ti-edges, the set of
nodes with new ti-edges created from J i−1

T , and the empty string represent
J i

T , the suffix trie of T i.

Suffix links and boundary paths

Determining which nodes in J i−1
T should get new ti edges is performed us-

ing suffix links. Given the definition of suffix links, each node in J i−1
T that

represents a suffix of T i−1 can be found by traversing a path of suffix links
that start from the node with the largest depth (i.e. the node corresponding
to the longest suffix t1t2 . . . ti−1), and ends at the shortest suffix (the empty
string). This path is called the boundary path of the suffix trie J i−1

T . During
this traversal, for each node on the boundary path that does not have a ti-
edge, one is created. The new nodes are then connected with new suffix links
that form a new path, starting from the suffix t1t2 . . . ti−1. This new path thus
corresponds to the boundary path for the new suffix trie, J i

T .
An important observation is that the traversal of the boundary path of

J i−1
T can be stopped whenever the first node, say u, is found such that node

u already has a ti-edge. This corresponds to Case B above. We can terminate
the traversal at this point because if the string αti is a substring of T i−1, for
some string α, then each suffix of αti (which cannot be longer than |αti|) must
be a substring of T i−1. So, these shorter substrings must have already been
added to the suffix trie at some earlier phase. Thus, we can stop the update
earlier, whenever Case B applies. This means that the algorithm creates a
new node only when Case A2 applies.
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Figure 4.5 shows the step-by-step construction of the suffix trie for the
string T = mississippi using Ukkonen’s algorithm. The figure shows all
11 phases of the construction, and the suffix links created at each phase. In
some cases, only the suffix links from the current and last phase are included,
for ease of presentation. The suffix trie for T = Tn is thus constructed by
starting with the empty string, (J 0

T = ǫ). This contains just the root node,
and an auxiliary node (denoted as ⊥ in the figures), and the links between
them. The auxiliary node makes it possible to avoid an explicit distinction
between the root and non-root nodes (i.e. between the empty suffix and non-
empty suffixes) in the algorithm. Technically, the auxiliary node is defined as
the inverse of any symbol in the alphabet. That is, for all σ ∈ Σ, σ−1σ =
ǫ, the empty string. Therefore any σ-transition from ⊥, the auxiliary node
should lead to the root node, independent of σ. This is because the root node
corresponds to ǫ, the empty suffix.

Figure 4.5 shows the algorithm repeating for each suffix T i, for i =
1, 2, . . . , n. The algorithm is optimal in the sense that it requires time that is
linear with respect to its output size. However, this output size is proportional
to the number of substrings in the original string, which could be quadratic
with respect to the length of the string. Thus the running time will be in
O(n2).

From suffix trie to suffix tree

The above suffix-trie construction algorithm can be turned into a linear-time
algorithm for building suffix trees with some important modifications. The
suffix tree of T provides a more compact representation of the suffixes of T
by considering only a subset of the nodes in JT . This subset still includes all
the suffixes of T .

Path compression and edge label compression. The first improve-
ment is the use of path compression on the nodes of JT , which means that
only internal nodes with at least two edges are allowed in the tree. The suffix
tree TT will thus contain only explicit nodes in the suffix trie JT , that is, the
set of all branching nodes and all leaf nodes in JT . By definition, the root node
is considered a branching node. The non-explicit nodes (called implicit nodes)
are not stored in the suffix tree. The use of path compression, however, implies
that for suffix tree construction, we may need to split an edge at an implicit
node as the algorithm progresses (see below). A second improvement is the use
of edge-label compression, whereby each edge label (which is a substring in T )
is represented by a pair of pointers, say (p, q), where p and q point respectively
to the start and end of the corresponding substring in T . That is, given an
edge label, say α, p and q are chosen such that α = T [p . . . q] = tptp+1 . . . tq.

With this indexing, a copy of the original string T is needed as part of
the representation of the suffix tree. This means that any substring can be
accessed in constant time using its starting and ending pointers. An important
advantage here is that we now need only a constant number of symbols (simply
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Fig. 4.5. Step-by-step construction of the suffix trie for the sequence T =
mississippi using Ukkonen’s algorithm. The darker (filled) arrows represent tran-
sitions from one node to the other; the lighter (open) arrows are suffix links. For
clarity, only the last two layers of suffix links are shown in some cases
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two pointers) to represent each edge label, rather than requiring memory space
that is proportional to the length of the label. Since we have one leaf for each
non-empty suffix of T , we can have at most n leaves in the implicit suffix tree.
Further, the implicit suffix tree of T can contain no more than n−1 branching
nodes. The number of edges will be at most 2n− 1. This means that we can
represent TT using O(n) space.

The suffix links are now defined only for branching nodes. However, at
times imaginary suffix links, called implicit suffix links, are used. These links
are defined between explicit nodes. This is mandated by the path compression,
since some new explicit nodes may need to be created between two implicit
nodes.

A leaf node stays a leaf node. Another important observation with
the construction algorithm is that, once a leaf node is created and given a
label, say li, then the node will remain a leaf node with the same label until
the end of the algorithm. Thus, the node will never have a descendant node,
rather, it can be extended only via character concatenation (update Case

A1 as described previously). As it is sometimes put, ‘once a leaf, always a
leaf’ (Gusfield, 1997). Recall that to extend J i−1

T to J i
T , we need to extend

the edges to each leaf node by appending the symbol ti to the edge label.
Ordinarily this concatenation will have to be performed for each leaf node at
each phase of the algorithm. These extensions can, however, be avoided by a
simple modification: whenever a new leaf node is created in phase i, we set
its edge label (using the two pointers) to be (i, n), that is, to the substring
ti, ti+1 . . . tn in T . Therefore explicit updates via character concatenations are
no longer required at later phases of the algorithm. When an edge is split,
the end point of the leaf node will still be fixed (at n, the end of the string),
although the starting position in T may change.

Active point and end point. Ukkonen’s algorithm also used the notions
of an active point and end point. During the traversal of the boundary path
at the current phase, the first non-leaf node encountered is called the active
point, while the first node where Case B applies (i.e. the first node with a
ti transition) is called the end point. The active point and end point are key
instruments used in achieving the linear time performance of the algorithm.
Examples of active and end points are shown in Figure 4.6. We have repeated
the suffix trie at some phases in Figure 4.5, but now with the active point
and end point clearly marked at each phase. Since we no longer need to per-
form explicit updates via Case A1 (from the foregoing discussion), and we
had already observed that we can stop traversal of the boundary path when-
ever Case B applies (see previous discussion under suffix links and boundary
paths), it means that we need to perform updates only on the implicit and
explicit nodes on the boundary path between the active point and the end
point.

Another important observation here is that the end point in the current
phase directly defines the active point in the next phase; the next node on
the ti−1 edge from the endpoint in J i−1

T becomes the active point in J i
T . This
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Fig. 4.6. Active points and end points for J 5
T , J 6

T and J 8
T , and J 9

T of the sequence
T = mississippi. A circle on a node denotes an active point, a box denotes the end
point, and a bulls-eye denotes a node that is both an active point and an end point

is very important, as it means that we can avoid a lot of computations that
would otherwise be required to update the nodes in the suffix tree. By keeping
record of the end point we already know the active point in the next phase.
Since updates are performed only between active points and end points, it
means that constructing J i

T from J i−1
T requires only one overlapping explicit

update (one performed at the end point of J i−1
T , or at the active point of J i

T ).
This is shown in Figure 4.6.

Splitting a node. The final issue we need to discuss is how tree updates
are performed when the active point is at an implicit node (i.e. between two
explicit nodes). Updating the tree in this situation involves three steps: testing
the node for possible splitting, splitting the node if necessary, and updating
the new explicit node. First, we test to know if the edge needs to be split.
If the continuing implicit edge (beyond the active point) is a ti-edge, we do
nothing (since we are working with implicit suffix trees). Otherwise we split
the edge at the active point to obtain an explicit node at that point. Then
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we attach a leaf node to the newly created node. Let edge (u,w) be the edge
before splitting, with edge label (p, q). Let v be the newly created explicit
node at the active point. Thus, u is the parent node of v, while w is now a
child node of v. The label for the upper edge (that is, label(u, v) ) is given as
(p, |L(v)|) = (p, p + |label(u, v)|), while the label for the edge that continues
from v (i.e label(v, w)) is given as (|L(v)| + 1, q). Then we apply the update
cases at this newly created explicit node. This will thus create a new leaf node
from the new explicit node (Case A2). The edge from the newly created
explicit node to this leaf node will be a ti-edge, with edge label (li + |L(v)|, n).

Figure 4.7 shows an example of the process for node splitting in Ukkonen’s
algorithm. The figure shows the suffix tree in phase 5 of the algorithm before
node splitting, just after node splitting but before update of the newly created
node, and after updating the node. Notice the new suffix link created after
node splitting.

T 5
T : T 5

T : T 5
T :

missi

issi

ssi

┴

"

┴

missi

issi si

s

"

┴

i
missi

issi si

s

"

(a) (b) (c)

Fig. 4.7. Node splitting during suffix tree construction: (a) tree before node split-
ting; (b) tree just after node splitting, before node updating; (c) tree after node
update. The marked node indicates the node where the splitting occurred

The complete construction phases for building the suffix tree for the run-
ning example T = mississippi are shown in Figure 4.8. We have used the
substrings as the edge labels for clarity of presentation. In practice, the pair
of their starting and ending positions in T will be used.

4.1.4 From implicit suffix tree to true suffix tree

The above algorithm constructs the implicit suffix tree for a given string T .
The final step is to convert this implicit suffix tree to a true suffix tree. This
can be performed by appending a special end-of-string symbol, $, ($ /∈ Σ) to
T , and letting the algorithm continue with this new symbol. Alternatively, we
can traverse the boundary path from the leaf node of T n

T up to the root, and
make all nodes on the path explicit. Either way, each leaf node in the resulting
tree will correspond to one unique suffix in the original string T . The resulting
tree is the true suffix tree. The above requires only O(n) time to traverse the
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Fig. 4.8. Step-by-step construction of the suffix tree for the string T = mississippi

using Ukkonen’s algorithm

leaf nodes in the tree. Therefore, overall, Ukkonen’s algorithm requires O(n)
space and time for the construction of the suffix tree for a string of length n.

Figure 4.9 shows the final suffix tree obtained using Ukkonen’s algorithm,
for T = mississippi$. For comparison, we have included the suffix tree with
strings for the edge labels, and the final tree with edge-label compression.
These can be compared with the suffix trie for the same string shown earlier.



66 4 Suffix trees and suffix arrays

mississippi$
ps

i

pi$

i$

i

ssippi$
ppi$

si

ssippi$ ppi$

$

ssi

ssippi$

ppi$
ppi$

$

2

1

3

4

5

6

78

9

10

11

12

1

3

4

6

7

9

10

2

5

8

11

12(1,12) (12,12)

(12,12)

(6,12)

(6,12)

(2,2)
(3,3)

(5,5)

(4,5)

(9,9)
(11,12)

(10,12)(3,5)

(6,12)

(9,12)

(9,12)

(9,12)

(9,12)

(a) (b)

Fig. 4.9. (a) Final suffix tree for the string T = mississippi using Ukkonen’s
algorithm; (b) the same suffix tree represented using edge-label compression

4.1.5 Farach’s recursive construction

Farach and colleagues (Farach, 1997; Farach and Muthukrishnan, 1996; Farach-
Colton et al., 2000) introduced a fundamentally different method for con-
structing suffix trees in linear time. Their approach makes use of a recursive
decomposition of the original string, whereby the suffix trees of smaller subsets
of the suffixes are constructed, and then combined to form the required suffix
tree for the original sequence. This new approach has led to some new insights
into the properties of suffix trees and their construction. More recently, it has
provided a motivation for new methods to construct suffix arrays directly,
without first constructing the suffix tree (Kärkkäinen et al., 2006; Kim et al.,
2005). This so called direct suffix sorting paradigm holds significant promise,
especially with respect to efficient computation of the Burrows-Wheeler Trans-
form (both the forward and inverse transformation). We present Farach’s suffix
tree construction method in detail because of its relationship to some of the
direct suffix sorting approaches, and to the BWT.

Basic Algorithm

Farach’s algorithm makes use of the relationship between the longest common
prefix of two strings, and the lowest common ancestor of two nodes in a tree.
lcp(α, β) denotes the longest common prefix between two strings α and β,
and |lcp(α, β)| denotes the length of lcp(α, β). Where the intended meaning
is clear from the context, we shall use lcp interchangeably to stand for both
the longest common prefix, and its length. lca(u, v) denotes the lowest com-
mon ancestor of two nodes, u and v, in a tree (that is, lca(u, v) is the node
furthest from the root that has both u and v as a descendant1). An important
relationship between the lcp and lca is the following:

1 The lowest common ancestor is sometimes referred to in the literature as the least

or most recent common ancestor.
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lcp(L(u), L(v)) = L(lca(v, u)), for all nodes u, v ∈ TT .

Thus,
|lcp(L(u), L(v))| = |L(lca(v, u))|.

It has been shown (Harel and Tarjan, 1984; Schieber and Vishkin, 1988;
Bender and Farach-Colton, 2000) that after linear-time preprocessing on a
tree, the lca between any two nodes on the tree can be computed in constant
time. This means that essentially, after such a linear-time preprocessing, two
arbitrary strings can be compared for equality, or to determine if one is a
prefix of the other, in constant time.

Let T be the given string. The odd tree of T , denoted T o
T is defined as the

suffix tree of all suffixes that start at an odd position in T . Similarly, the even
tree of T , denoted T e

T is defined as the suffix tree of all suffixes that start at
an even position in T . Each of T o

T and T e
T is half the size of TT , the true suffix

tree for T , with each having n/2 leaves. Farach’s algorithm then proceeds in
three steps:

1. Construct T o
T , the odd tree of T .

2. Using T o
T , construct T e

T , the even tree of T .
3. Merge T o

T and T e
T , to form TT , the final suffix tree for T .

Figure 4.10 shows examples of the odd and even trees, using the example
string T = mississippi. We describe each step of the algorithm in more
detail below. Farach’s algorithm relies heavily on integer sorting to achieve
linear time complexity, and assumes an integer alphabet Σ = {1, 2, 3, . . .},
where |Σ| ≤ n. For a general alphabet, we need to map the symbols in the
alphabet to an integer alphabet before applying the algorithm, and after con-
struction we map the integer symbols back to their corresponding symbols in
the general alphabet. Since the number of unique symbols in a string cannot
be greater than the length of the string, this mapping ensures that the linear
time complexity of the algorithm extends to general alphabets.

Constructing T
o

T
, the odd tree

Construction of the odd tree is performed in four substeps:

1. Map pairs of symbols to single characters. From the original string,
T = t1t2 . . . tn, form n/2 pairs of symbols from t2i−1t2i, 1 ≤ i ≤ n/2
(we can pad the string with an extra ’$’ symbol if n is odd). Radix sort
the pairs, and remove duplicates, to form a sorted list, SL. This requires
only linear time. Then, convert the pairs into their corresponding inte-
gers, based on their rank in SL. The result is a string S′ of length n/2,
defined as follows: S′[i] = rank of 〈t2i−1t2i〉 in SL. Using the example
T = mississippi$, and assuming the following mapping of the symbols
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Fig. 4.10. Odd and even trees for the string T = mississippi: (a) odd tree; (b)
even tree

to an integer alphabet : i→ 1,m→ 2, p→ 3, s→ 4, we get the following
result for the mapping: T = 21441441331$; Symbol Pairs = { 21, 44, 14,
41, 33, 1$ }; SL = [1$, 14, 21, 33, 41, 44] ; S′ = 362541$;

2. Recursively construct TS′ , the suffix tree of the mapped sequence, S′.
Figure 4.11a shows TS′ , the suffix tree for the mapped sequence S′.
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Fig. 4.11. Constructing the odd tree for T = 21441441331$: (a) suffix tree for the
mapped string S′ = 362541$; (b) initial odd tree constructed from (a); (c) final odd
tree after adjustments on (b)

3. Construct T o
T from TS′ . First, we observe the relationship between T

and S′. Each odd suffix in T has a corresponding suffix in S′. In fact,
the odd suffix t2i−1t2i . . . tn$ in T corresponds to the suffix S′[i]S′[i +
1] . . . S′[n

2 ]$ in S′. Thus, the leaf node li in TS′ corresponds to the leaf
node l2i−1 in T o

T . Any given internal node in TS′ with string depth d
becomes an internal node in T o

T , with depth 2d. Thus, we can construct
T o

T from TS′ by replacing the indexes of the leaf nodes and the lengths
of the edge labels in TS′ by the corresponding values in T o

T . However,
given that two symbols in T are mapped to one symbol in S′, the tree T o

T
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constructed as above may not form a suffix tree, as some nodes may have
two edges with edge labels that start with the same symbol (see Figure
4.11b, symbols 1 and 4.) This requires some adjustment to the tree.

4. Adjust the final suffix tree as needed. Here, for a given node u, all
the edges that start with the same symbol are combined by introducing a
new node (say v), between u and the child nodes. The edge (u, v) is then
labeled with the symbol shared by the child nodes. If the edge labels for all
descendant nodes from u start with the same symbol, the above procedure
will imply that node u will have one child node after the adjustment.
Thus, node u will be removed from the tree. Of course, this is done while
retaining the information in the edge from node u. This adjustment clearly
takes linear time with respect to the number of nodes, and the number of
edges, each of which is in turn linear with respect to the size of the string,
S′.

Figure 4.11 shows TS′ , the suffix tree for S′, the odd tree constructed
from S′ (before adjustment), and the final odd tree after adjustment. Let
ϕ(n) be the time required to construct the suffix tree for a length-n string,
T = t1t2 . . . tn. Then, the time to construct the odd tree using the above
procedure will be given by ϕ(n

2 ) + O(n).

Constructing T
e

T
, the even tree

Constructing the even tree from the odd tree is performed based on the fact
that, given an inorder traversal of the leaves of a tree, and the depth of the lca

of adjacent leaves in this ordering, we can re-construct the suffix tree in linear
time. Consider the example in Figure 4.9 for T = mississippi. Traversing the
leaf nodes from left to right in a depth-first manner will produce the following
list of leaf nodes: L1 = [1, 2, 5, 8, 11, 3, 6, 7, 4, 9, 10, 12]. Now, the list of lca

depths for the adjacent nodes in L1 will be: L2 = [0, 4, 1, 1, 0, 3, 1, 2, 0, 1, 0].
With only this information, we can easily re-construct the suffix tree using a
simple procedure as shown in Algorithm 4.2.

Figure 4.12 shows the result of the first five steps of the algorithm, using
the suffix tree of Figure 4.9. The final result of the algorithm is the suffix
tree for the given string. Farach’s algorithm constructs the suffix tree such
that the resulting leaf nodes are sorted in lexicographic order, based on their
corresponding suffixes. That is, the edges emanating from each given node
are sorted lexicographically by their edge labels. Notice that the algorithm for
constructing the suffix tree using the lca of adjacent leaf nodes also works
for suffix trees with sorted suffixes. Therefore, to construct the even tree from
the odd tree, we need to derive the sorted suffixes of the even tree from the
odd tree, and also the length of the longest common prefix of adjacent suffixes
in this ordering.

Obtaining the sorted even suffixes. The current tree T o
T already en-

codes the odd suffixes in lexicographic order. Thus, a simple inorder traversal
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Suffix-Tree-From-LCA-List(L1, L2)
/* L1: List of adjacent leaf nodes in a tree: l1, l2, . . . ln+1 */
/* L2: List of depth of lca of adjacent nodes in the tree */

Create root node, with empty string
Set l0 ← root node; set d0 ← 0
for i← 1 to n + 1 do

Compute di ← |lcp(li−1, li)| using L2

Starting from the root, jump to position di along the path L(li−1)
if di falls at an edge (i.e. between two nodes) then

Let the edge be (ui−1, v), with edge label (p, q)
Split the edge (ui−1, v) to create a new node ui at this position
Label edge (ui−1, ui): label(ui−1, ui)← (p, p + di − 1)
Label edge (ui, v): label(ui, v)← (p + di, q)

else /*di falls at an existing node */
Call this node ui

end if

Attach a new leaf node li at node ui

Label edge (ui, li): label(ui, li)← (li + di, n + 1)
end for

Algorithm 4.2: Suffix tree from LCA of adjacent nodes

1

2
5

(1,12)

(9,12)(6,12)

(2,5)
1

2 5

8

(1,12)

(9,12)

(9,12)

(6,12)

(2,2)

(3,5)

1

2

(1,12)

(2,12)

1

(1,12)

Fig. 4.12. First few steps in constructing the suffix tree from the list of depths
for the lca of adjacent nodes, using L1 = [1, 2, 5, 8, 11, 3, 6, 7, 4, 9, 10, 12] and L2 =
[0, 4, 1, 1, 0, 3, 1, 2, 0, 1, 0]. The final result should correspond to the suffix tree in
Figure 4.9b

of the tree will produce a list of the odd suffixes in sorted order. Observe that
an even suffix is just one symbol followed by an odd suffix. Thus, to obtain the
sorted even suffixes, we form two-element tuples using the pairs 〈t2i, r2i+1〉,
where rj is the rank of suffix Tj in the ordered odd suffixes. The tuples are
already sorted by the second element (the odd suffixes). Then, stable-sorting
the tuples using radix sort on the first elements will produce the sorted list of
even suffixes.

Using the previous example, the ordering of the odd suffixes (the leaves in
the odd tree T o

T ) will produce the list: Lo
s = [13, 11, 5, 1, 9, 7, 3]. These are then

combined with the symbols at the corresponding even positions (left of each
odd position) in T to give the tuples: [〈1, 7〉, 〈4, 3〉, 〈4, 6〉, 〈1, 5〉, 〈3, 2〉, 〈$, 1〉].
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Notice that the rank for T1 (i.e. 4) is not used, since there is no even
suffix to the left of position 1 in T . Stable-sorting this list using radix
sort with the first element as the key will produce the ordered list: LE =
[〈$, 1〉, 〈1, 5〉, 〈1, 7〉, 〈3, 2〉, 〈4, 3〉, 〈4, 6〉]. We call LE the sorted even tuples of T .
This is the lexicographically ordered list of even suffixes. Using the lists LE

and Lo
s, the corresponding ordered even positions in T can be obtained easily:

Le
s = Lo

s[LE [i, 2]]− 1, i = 1, 2, . . . ,
n

2
.

For the running example, the ordered positions will be:Le
s = [12, 8,2,10, 4,6].

Computing the lcp between the sorted even suffixes. Given the
relationship between the lca and lcp, the lcp between adjacent elements in
the sorted even suffixes can be determined based on the lca between the leaf
nodes in the odd tree. After linear time lca preprocessing (Harel and Tarjan,
1984; Schieber and Vishkin, 1988; Bender and Farach-Colton, 2000) of the
odd tree, we can determine the lcp of any two suffixes, represented by two
leaves (say, l2i, l2j in T e

T ) using the relation:

lcp(l2i, l2j) =

{

lcp(l2i+1, l2j+1) + 1, : if t2i = t2j

0 : otherwise

As described earlier, the value of lcp(l2i+1, l2j+1) can be obtained after
linear time preprocessing of the odd tree as follows:

lcp(l2i+1, l2j+1) = lcp(T2i+1, T2j+1) = L(lca(l2i+1, l2j+1))

where L(u) is the path label of node u. Thus, given the ordered list of even
suffixes and the computed lcp’s between adjacent elements in this ordering,
the even tree can be easily computed in linear time. The even tree of the
running example with T = mississippi is shown in Figure 4.13(b).

Merging the odd and even trees

The final suffix tree TT is obtained by merging T o
T and T e

T , the odd and even
tree respectively. This merging process is performed in two steps:

1. Initial merging. The first step of the merging process is simple. Farach’s
merging algorithm uses a coupled-depth-first traversal (coupled DFS) of T o

T

and T e
T . The coupled DFS starts with the root nodes in the two trees. Next,

it will take two edges from the respective trees with the same starting
symbol, and recursively merge the two subtrees. Repeating this coupled-
DFS procedure on each pair of edges with the same starting symbol from
the roots of T o

T and T e
T produces an initial merged tree. Notice that at any

given stage, merging is performed only if both the odd tree and even tree
share an edge with the same starting symbol. Otherwise there is nothing
to merge.
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The only complication in this procedure comes from the fact that we are
merging suffix trees (i.e. compacted tries), rather than simple suffix tries.
The problem is that even though two edges may start with the same
symbol, their edge labels may be different — one edge label could also
be a prefix of another. Thus, we may need to stop the merging at the
position of first mismatch. To check if the edge labels match symbol-by-
symbol would lead to an O(n2) time for merging. To solve this problem,
Farach used a clever approach: at any step during the coupled-DFS merge
process, simply merge any two edges that share the same starting symbol.
That is, if two edges start with the same symbol, then assume näıvely that
the shorter edge is a prefix of the longer edge, break the longer edge, and
merge its prefix with the shorter edge. Merging is therefore performed only
on equal-length edges. This simple strategy guarantees that we cannot fail
to merge any two edges that need to be merged, and requires only linear
time to run. However, it could merge more than we need at times. Thus,
we have to undo the extraneous merging that may be performed by the
algorithm. We call this partial “unmerge” process merge refinement.

2. Merge refinement. Let MT be the resulting merged tree using the
simple näıve strategy above. For each node inMT , we need to determine
whether the node requires merge refinement (i.e. merging went too far),
and then perform the partial unmerge procedure if needed. First, we pre-
processMT in linear time, so that lca queries can be answered in constant
time. The path label for each node inMT can be determined by using the
corresponding node in either T o

T or T e
T . Let u be a node inMT such that

it is the lowest common ancestor of two leaf nodes l2i and l2i−1. Let L(u)
be the path label of u in its corresponding node in T o

T or T e
T . Let L̂(u) be

the current path label of u in MT . That is, L̂(u) = lcp(l2i, l2i−1), since
u = lca(l2i, l2i−1).
Node u is thus declared as properly merged if |L(u)| = |L̂(u)|. Otherwise,
(|L(u)| > |L̂(u)|) and merging went too far at the node, and hence we have
to perform merge refinement by partially unmerging the merged edges. To
do this, we introduce a new node, v in MT , such that the parent of v is
set to the parent of u, and v is the parent of l2i and l2i−1. Node v is
sometimes called the refinement node. Then, set the path label of node
v as L(v) = L̂(u). Unmerge any merged edges between the odd tree and
even tree under u. Attach the odd tree and even tree under node u to
node v, maintaining the sorted order of the edges from node v. When the
unmerge procedure is completed on all nodes that had extraneous merging
inMT , the result will be TT , the final suffix tree for the input string. The
overall unmerging procedure requires linear time processing, which means
that Farach’s recursive algorithm for suffix tree construction will run in
O(n) time.

Figure 4.13c shows the merged tree for the running example, before merge
refinement to obtain the final suffix tree in Figure 4.13d. The edges and nodes
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involved in merge refinement are indicated using an oval. We can notice that
the initial merged tree before merge refinement has a structure that is gener-
ally similar to the final suffix tree; the difference is only in their edge labels.
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Fig. 4.13. Merging odd and even trees to construct the final suffix tree: (a) the
odd tree T o

T ; (b) the even tree T e
T ; (c) the initial merged (overmerged) treeMT ; (d)

the final suffix tree TT obtained after merge refinement via partial unmerging on
MT . Marked edges with two labels in (c) indicate ‘overmerged’ edges which require
merge refinement. Notice the difference between the lcp of the two labels and the
edge length in each case

4.1.6 Generalized suffix trees

For applications involving multiple files, the suffix tree can be constructed for
each file independently, and searches or other types of analysis can be per-
formed on each suffix tree. However, for some specific applications, especially
for problems such as searching for multiple patterns simultaneously over all
the files in a database, a better approach would be to construct a single suffix
tree for all the files, and then perform the search on this single tree. Such a
single suffix tree constructed for multiple strings is called a generalized suffix
tree (Gusfield, 1997).

For h multiple strings, T1, T2, . . . Th, building the generalized suffix tree is
simple. First, concatenate all the strings into one string: T = T1$1 ∗T2$2 ∗ . . .∗
Th$h, where the $i’s are end of string delimiters, and ∗ denotes concatenation.
Then, construct the suffix tree of T , the concatenated string. The overall time
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and space complexity is still linear with respect to |T |, the overall length of
the concatenated sequence.

4.1.7 Implementation issues

The practical time and space requirements for suffix tree construction, and
also the space needed to store the suffix tree after construction, depend on the
specific implementation method used. After construction, the required space
needed to store the suffix tree will include that for the original text, edge labels,
node labels for both branching and leaf nodes, and the space to indicate the
parent for each node. During construction (and for some applications), we have
to add the space required for the suffix links. In the following discussion, by
suffix tree construction, we will assume Ukkonen’s algorithm; some methods
such as Farach’s recursive construction may require more space.

The major consideration is how the outgoing edges from a node in the
suffix tree are represented. The three major representations used for outgoing
edges are arrays, linked lists, and binary search trees. However, independent of
the specific method adopted, we can use a simple analysis to provide an idea
of the space requirements of a suffix tree. Assume that a pointer is represented
as an integer, and that each integer requires 4 bytes to store. Also, we assume
that we are using, say, an ascii alphabet with 256 symbols; notice that in the
worst case we may be looking at an alphabet size as large as n, the size of the
sequence, or a system such as Unicode may require two bytes per character,
but for the meantime we will assume one byte for each character of the text,
which is sufficient to compare memory requirements. Based on the properties
of a suffix tree, we can expect to use n bytes for the original text, 2n integers for
suffix links, 2n integers for edge labels, 2n integers for node labels (including
branching nodes and leaf nodes), and 2n integers for indicating node parents.
Therefore, we need a total of 8n integers plus n bytes, or 33n bytes to store
the suffix tree with suffix links (for instance during construction), and 25n
bytes without the suffix links (for instance, for later use, or during search).

Now, consider the effect of the specific representation used for the branch-
ing edges at each node. The required cost can be broken down into four
components: the cost of storing T , the original sequence (n/4 integers); cost
of branching nodes, cost of leaf nodes, and cost of edge labels. Let nd be
the number of internal nodes in the suffix tree. The cost of edge labels will
be n + nd − 1 integers, independent of the specific node representation. Let
cL, cP , cB and cSL be the respective cost (in integers) of representing the node
label, parent label, edges at the branching node, and suffix links, at each node.
(From the discussion above, cL = cP = cSL = 1 integer, but we these nota-
tions for clarity.) Thus, for all the branching nodes, the space cost will be
nd(cL + cP + cB + cSL). For the non-branching (i.e. leaf) nodes, there are no
outgoing edges, so the cost will be nd(cL + cP + cSL).

With the simple array (also called vector) representation, the first symbols
on each branch from a node are represented as an array with |Σ| elements.
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This gives, cSL = |Σ| bytes at each node. Thus, using the array representation
at each node, the overall cost of storing the suffix tree will be (4n + nd(3 +
1
4 |Σ|)+ n

4 ) integers. With the linked list representation, the major difference is
that the first symbols on each edge at each branching node are now represented
using a linked list, rather than an array. The advantage is that we need to
provide space for only the symbols that actually appear at the node. Without
keeping a record of the count of symbols at each node, we can use the fact
that we have a maximum of 2n edges in the suffix tree to bound the cost.
Thus, we need at most 2n pointers (i.e. 2n integers) for all the liked lists used
for the suffix tree. This can be compared with the 1

4nd|Σ| integers required
by the vector representation, which can grow as large as 1

4n|Σ| integers in
the worst case. Thus, with the linked-list approach, the total cost for storing
the suffix tree will be (6n + 3nd + n

4 ) integers. Another approach is to use a
balanced binary search tree to implement the linked list structure used above.
This comes at a slightly reduced performance in search time, but is generally
more space efficient than the previous two methods. Use of the binary tree
approach makes more sense if the alphabet size is very large.

We can observe the significance of nd, the number of interior nodes in
the tree. Clearly, this number varies with the input string, and could signif-
icantly affect the required space. Also, for very large alphabets, the vector
representation, in its simplest form as given above, will lead to a huge storage
requirement. An improvement could be to use a bit map at each node to in-
dicate which symbols in Σ are the starting symbols for the edge labels for all
the edges from the node. This avoids the need to reserve space for the symbols
that are not represented at a given node. Results in Manber and Myers (1993)
show that the linked-list implementation provided an overall best result with
respect to space efficiency. Methods based on hash functions were described
by McCreight (1976), while Kurtz (1999) and Andersson and Nilsson (1995)
provide more discussions on space-efficient construction and representation of
suffix trees.

4.2 Suffix arrays

An important data structure, closely related to the suffix tree, is the suffix
array. The suffix array simply provides a lexicographically ordered list of all
the suffixes of a string. If the element at position i in the suffix array is j, it
means that Tj , the suffix starting at position j in T is the i-th smallest suffix of
T . This is essentially what the array R is in the Burrows-Wheeler Transform
(shown in Figure 2.2b for encoding, and in Figure 2.8 for decoding), except
the end of the string is treated slightly differently in each case. Combining
the suffix array with the (length of) lcp of adjacent suffixes in this array pro-
vides a powerful data structure for pattern matching. With this combination,
decisions on the occurrence (or otherwise) of a pattern P of length m in the
string T of length n can be made in O(m + log n) time.
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The suffix array can be used in most (though, not all) situations where a
suffix tree can be used. However, as was shown in the previous section, given
the suffix array and the lcp information, the suffix tree can be constructed
in linear time. The major motivation for the use of suffix arrays, rather than
suffix trees is their smaller memory footprint. Although the theoretical space
complexity is linear for both data structures, typically, the suffix tree requires
about three to five times more space than the corresponding suffix array of
a string. The construction time for both algorithms is also O(n) on average.
For suffix arrays, algorithms that run in O(n log n) worst case are relatively
easy to develop, but O(n) worst case algorithms are much harder to come by.
Traditionally, the construction of the suffix arrays have often required more
practical running time than suffix trees (see Manber and Myers (1990, 1993)
for examples). However, this is now changing, as indicated in the recent survey
by Puglisi et al. (2007).

To discuss suffix arrays we will need some more notation. We will continue
to use T = t1t2 . . . tn to denote the input sequence of length n, with symbol
alphabet Σ. For any two strings, say α and β, we use α ≺ β to indicate
that the string α lexicographically precedes the string β. (This includes the
case where α and β could be individual symbols, from the same alphabet,
i.e. |α| = |β| = 1.) We use $ as the end of string symbol, where $ /∈ Σ and
$ < σ,∀σ ∈ Σ. We also use the notion of order-k sorting. We say that a set
of strings are order-k sorted if the strings are sorted by their first k symbols.
Thus, for any two strings, say α and β, we use the notation α ≺k β to indicate
that string α precedes string β in the order-k sorted listing. Further, we use
AT to denote the suffix array of a string T . Where the string in question is
clear from the context, we may drop the T subscript for simplicity.

4.2.1 Traditional string sorting

Sorting a set of strings in a given order is an age-old problem in computer
science. A simple approach is to imagine the strings as vectors, with each row
corresponding to one of the strings in the set. Then, sorting the strings can be
performed by using standard sorting algorithms such as quicksort to sort the
vectors. Radix sort can also be easy to apply in this environment, particularly
if the alphabet is small, such as in a DNA sequence. Another approach is to
sort each column using character-by-character comparisons, starting from the
leftmost column. After the k-th iteration, rows that have the same symbol up
to the current (i.e. k-th) column are grouped together. At the next iteration,
sorting using the next column is then restricted to the rows in the same group
(that is, rows that are the same based on order-k sorting). Repeating this
process for all the groups of rows with the same symbol at each iteration,
and for all the columns, produces a sorted array of the original vector of
strings. The column-wise sorts can be performed using a fast character sorting
algorithm such as qsort, an improved quicksort algorithm reported in Bentley
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and McIlroy (1993). This simple algorithm will lead to an expected time in
O(n log n), with a potential O(n2 log n) worst case.

Bentley and Sedgewick (1997) proposed a better approach, based on multi-
key quicksort. Using code similar to the qsort algorithm, they sorted a given
set of strings by applying the idea of symbol-by-symbol ternary recursive de-
composition on the strings. Basically, given a string α, they group every other
string β into three partitions, viz:

β ≺k α: strings that are less than α,
α =k β: strings that are equal to α, and
α ≺k β: strings that are greater than α.

Here ternary partitioning is based on a pivot defined by the first k-symbols
in each string. Essentially, k is the number of active dimensions, that is, the
number of symbols (starting from the leftmost symbol) that need to be consid-
ered for a match. With this partitioning, sorting at any stage involves mainly
the strings that remain in the equal partition. Strings in this equal partition
can be compared (up to the k-th symbol) without requiring symbol-by-symbol
comparisons on the first k symbols. This approach results in a sorting algo-
rithm that runs in O(ns log ns +kns) worst case time, where ns is the number
of strings, and k is the required number of active dimensions. When k is small,
the time reduces to O(ns log ns). However, for the specific problem of sorting
the suffixes of a string, we will have ns = n, and k = n, leading to an O(n2)
time for suffix sorting.

In general, the longest common prefix, lcp, (see Section 4.1.5) provides an
important mechanism to estimate the level of difficulty in sorting the suffixes
of a given string. Define the average lcp, and maximum lcp as follows:

meanLCP =
1

n− 1

n−1
∑

i=1

lcp(TA[i], TA[i+1]) (4.1)

maxLCP = max
1≤i<n

{lcp(TA[i]), TA[i+1])} (4.2)

In Equations 4.1 and 4.2, we have used lcp as the length of the longest
common prefix. Usually the average lcp (and also the maximum lcp) between
any two adjacent suffixes in the sorted list provides a rough indication of the
number of symbol comparisons that will be needed to sort the suffixes. Larger
values of these statistics imply more difficulty in performing the suffix sorting.
Let µ = meanLCP . For methods that are based on standard string matching
using symbol- by-symbol comparisons, the average case complexity will be in
O(µn log n). When µ is small, or independent of n, this will result in O(n log n)
time. However, since µ could be in O(n), without careful consideration this
could lead to a worst-case complexity of O(n2 log n) for such schemes.
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4.2.2 Suffix arrays via suffix trees

A theoretically faster approach to construct the suffix array is via the suffix
tree. Given the suffix tree, the suffix array can be constructed in linear time
by a simple inorder traversal of the suffix tree. For instance, using Farach’s
recursive construction, all the edges from any given node are implicitly sorted
by their edge label. Thus, assuming the edges at each node are sorted from
left to right in ascending lexicographic order, a simple depth-first traversal of
TT , the suffix tree of T , will produce the suffix array, AT , the lexicographically
sorted list of all the suffixes in T .

Given the space requirement of suffix trees, there has been interest in direct
construction of suffix arrays, without the need to first construct the suffix tree
(so called direct suffix sorting problem). In the following, we describe some
of the proposed methods for direct suffix sorting, starting with the Manber-
Myers algorithm (Manber and Myers, 1993).

4.2.3 Manber-Myers suffix sorting algorithm

The problem with using the algorithms that sort a set of strings for the prob-
lem of suffix sorting is that they ignore important properties of the suffixes
of a string, which are not often shared by a random collection of strings. For
instance, suffixes of a string share a lot of common substrings, which can be
exploited for more efficient sorting. Moreover, conventional sorting algorithms
based on symbol-by-symbol comparisons are often limited to O(n log n) ex-
pected time, with some requiring a quadratic time or more in the worst case2.
The suffix tree on the other hand, requires much more space than may be
needed, and for some applications, avoiding the complications required for
efficient suffix tree construction could be advantageous.

Manber and Myers (Manber and Myers, 1990, 1993) were the first to pro-
pose an algorithm that directly computes the suffix array for a string, without
the need for an initial construction of the suffix tree. Their algorithm performs
suffix sorting in phases, using the idea of successive doubling, earlier used by
Karp et al. (1972) for identification of repeats in a string. Using successive
doubling, suffix sorting on a string of length n is performed using a maximum
of ⌈log n⌉ phases. First, the suffixes are placed into buckets according to their
first symbols. Essentially, the buckets can be viewed as the first pass on the
suffix array AT , whereby the array is sorted only by the first symbol in each
suffix (the ≺k ordering, with k = 1 ). Thus, consecutive entries in the same
bucket will have the same first character.

The above can be accomplished in linear time using a bucket sort. This
is phase 0 of the algorithm, and the sorted results correspond to the order-1

2 We note that fast algorithms for suffix arrays can be used to sort a set of strings (in
linear time with respect to the total length of the strings), by simply generating
the generalized suffix array of the set, and using simple bookkeeping.
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sorted suffixes. Then, at each subsequent phase, the buckets are partitioned
by sorting according to double the number of symbols used in the previous
phase. This means that the number of symbols affected in phase i will be 2i.
Therefore, after the i-th phase, (i = 0, 1, 2, . . . , ⌈log n⌉), the suffixes will be
order-k sorted, where k = 2i. Thus, after the i-th phase in the algorithm,
each bucket will hold only suffixes with the same first k symbols, k = 2i. The
major challenge is how the elements in each order-k bucket (which are so far
sorted according to the ≺k ordering) can now be sorted to obtain the order-2k
buckets (with elements in ≺2k ordering) all in linear time.

The key observation is that, after order-k bucketing, for a given suffix,
say Ti, the next k symbols of Ti are just the first k symbols of suffix Ti+k.
Thus, given two suffixes, say Ti and Tj in the same order-k bucket, (i.e. Ti =k

Tj), the relative order of Ti+k and Tj+k (with respect to the ≺k ordering) is
immediately available. Thus, at phase-2k (k = 2, 4, 8, . . .), in the algorithm
(we already have order-1 buckets from the initial bucket sort), we sort the
suffixes by starting with the first suffix in the first bucket (which necessarily
contains the smallest order-k suffixes). Let this first suffix at AT [1] be Ti.
Given that Ti starts with the smallest order-k suffix, then, the suffix Ti−k

must be the first suffix in its order-2k bucket. Therefore, we need to move
Ti−k to the start of its bucket. Then, take the next suffix according to the ≺k

ordering (i.e. the suffix at AT [2], say Tj), and move suffix Tj−k to the next
available place in its own bucket. The phase continues with this movement of
suffixes until all the suffixes in all buckets have been processed. The algorithm
will stop when each bucket contains exactly one suffix, which will occur after
⌈log2 n⌉ phases at the most. A basic description of Manber and Myers’ suffix
sorting algorithm is given in Algorithm 4.3.

Manber-Myers-Suffix-Sorting(T )
/* Returns the suffix array in the array AT */
Perform initial bucket sort on T to produce initial sorted array AT

for u← 0 to ⌈log n⌉ do

k ← 2u

for v ← 1 to n do

i← AT [v]
if (i− k > 0) or (i + k ≤ n + 1) then

Move suffix Ti−k to the next available slot in its bucket (in AT )
end if

end for

end for

Algorithm 4.3: Basic Manber-Myers suffix sorting algorithm
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Figure 4.14 shows a run of the algorithm on the example string, T =
mississippi$. For a given suffix Ti, Ti is not moved in its bucket when
i + k > n + 1, or if i− k ≤ 0. Thus we have:

• In phase k = 1, no movement at step v=6, since i− k = 0.
• In phase k = 2, no movement in step 4 (i−k = 0), and in step 6 (i−k < 0);

at step 1, T11 was not moved in its current position, since 11 + k > n + 1,
with k = 2, n = 11.

• In phase k = 4, no movement in steps 4, 6, and 11 (i− k < 0), and in step
10 (i − k = 0); no more movements within the p-bucket, since for each
suffix Ti in this partition, i + k > n + 1, with k = 4, n = 11.

The final sorted array is given by the values in AT at the end of the last
phase (the last column in the table): AT = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].

Bucket Phase k = 0 Phase k = 1 Phase k = 2 Phase k = 4
(Bucket Sorting)
Suffix A Step Suffix A Step Suffix A Step Suffix A

$ $ 12 $ 12 $ 12 $ 12
i ississippi$ 2 1 i$ 11 ⋄ 1 i$ 11 ⋄ i$ 11

ississppi$ 5 7 ippi$ 8 8 ippi$ 8 8 ippi$ 8
ippi$ 8 9 ississippi$ 2 11 ississippi$ 2 9 issippi$ 5
i$ 11 11 issippi$ 5 12 issippi$ 5 10 ississippi$ 2

m mississippi$ 1 2 mississippi$ 1 ⋄4 mississippi$ 1 ⋄4 mississippi$ 1
p ppi$ 9 5 pi$ 10 2 pi$ 10 ⋄ pi$ 10

pi$ 10 8 ppi$ 9 7 ppi$ 9 ⋄ ppi$ 9
s ssissippi$ 3 3 sissippi$ 4 3 sippi$ 7 3 sippi$ 7

sissippi$ 4 4 sippi$ 7 5 sissippi$ 4 5 sissippi$ 4
ssippi$ 6 10 ssissippi$ 3 9 ssissippi$ 3 11 ssippi$ 6
sippi$ 7 12 ssippi$ 6 10 ssippi$ 6 12 ssissippi$ 3

Fig. 4.14. Sample run of Manber-Myers suffix sorting algorithm on the string T =
mississippi$. The final result (the suffix array) is the last column in the figure.
The symbol ⋄i indicates that in step i of the current phase, no more comparison is
needed. The symbol ⋄ (without a number) indicates that the corresponding suffix is
now in its final position in the suffix array, and thus requires no more movements

Notice that only pointers to the suffixes need to be moved, there is no
need to physically copy the suffixes. Thus, each phase requires O(n) time to
complete in the worst case, leading to an overall worst case time of O(n log n)
for the algorithm. On average, however, the algorithm will run in O(n log log n)
time, since the length of the maximum lcp will be in O(log|Σ| n) on average,
for a string with uniformly distributed symbols (Karlin et al., 1983). This
can be further reduced to O(n) expected time, using a linear-time mapping
of appropriately sized small substrings to integers before sorting begins, for
instance, using a hash function (see Section 7.1.4). Further details of these
improvements are provided in the original paper (Manber and Myers, 1993).

An improvement and perhaps simplification of the algorithm could be to
use radix sort at each phase, rather than the successive doubling and move-
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ment of suffixes. That is, after the first phase of bucket sorting, subsequent
phases are performed by forming a tuple using the current symbol, and the
bucket number of its next symbol in T . Let AT be the current suffix array
at phase k. This will contain the indexes for the order-k sorted suffixes. As
in the original algorithm, AT will be progressively sorted as the algorithm
progresses. Let B[i] be the bucket number for the i-th suffix in AT . Suffixes
in the same bucket are given the same bucket number. Let ÃT be the inverse
of AT , that is, if AT [i] = j, then ÃT [j] = i. Then, at each phase the tuple is
formed as follows: 〈B[i], B[Ã[AT [i]+1]]〉. Then we radix-sort the set of tuples
in linear time. We continue in this way until each bucket contains exactly one
suffix. Overall, the complexity remains the same as in the original algorithm,
but using radix sorting will simplify the required movements needed when
using successive doubling. On average, this would also require less space in
practice, since after the initial bucket sort, radix sorting can be confined to
smaller buckets at subsequent phases.

The basic Manber and Myers algorithm has been implemented by McIl-
roy and McIlroy in the ssort suffix sorting routine. Larsson and Sadakane
(1999, 2007) proposed various improvements to the basic algorithm by combin-
ing the successive doubling technique with the ternary-partitioning quicksort
proposed by Bentley and Sedgewick (1997).

4.2.4 Linear-time direct suffix sorting

More recently, there has been interest in constructing direct suffix sorting
algorithms that do not use the suffix tree data structure, but still run in linear
time in the worst case. Example algorithms that achieve this running time
complexity can be found in Kärkkäinen et al. (2006), Ko and Aluru (2005)
and Kim et al. (2005). Here we describe the KS Algorithm (Kärkkäinen and
Sanders, 2003; Kärkkäinen et al., 2006) in more detail, given its simplicity.

The KS suffix sorting algorithm

Kärkkäinen and Sanders (Kärkkäinen et al., 2006) proposed a divide and
conquer approach similar to Farach’s suffix tree construction method of Sec-
tion 4.1.5, but for direct construction of suffix arrays. Here, rather than divid-
ing the sequence into two symmetric parts, the sequence was divided into two
unequal parts by considering suffixes that begin at positions ((i−1) mod 3 6=
0) in the sequence. These suffixes are recursively sorted, and then the remain-
ing suffixes are sorted based on information in the first part which is already
sorted. The two sorted lists of suffixes are then combined using a merging step
to produce the final suffix array. Thus, a major difference is in the way they
divided the sequences into two parts, and in the merging step. Also, the use of
a 2/3 recursion (rather than the traditional half recursion) significantly sim-
plified the later merging stage, since a relative order between any conflicting
symbols can be found in at most two steps of comparison.



82 4 Suffix trees and suffix arrays

Following Farach’s recursive suffix tree construction algorithm (Farach,
1997; Farach and Muthukrishnan, 1996; Farach-Colton et al., 2000) introduced
in Section 4.1.5, we describe the basic KS-Algorithm as follows:

1. Classify the suffixes into Type 1 and Type 2 suffixes as follows3:

• Ti is a Type 1 suffix if : (i− 1) mod 3 = 0
• Ti is a Type 2 suffix if : (i− 1) mod 3 6= 0

2. Sort Type 2 suffixes to form A2
T .

3. Using A2
T , construct A1

T , the sorted order for Type 1 suffixes.
4. Merge A2

T and A1
T to form AT , the final suffix array for T .

Sorting Type 2 suffixes. The major problem in the KS Algorithm is
the second step – sorting the Type 2 suffixes to form A2

T . This is performed
in a recursive manner. First, the algorithm sorts the Type 2 suffixes based
on their first three symbols. For suffix Ti, (i − 1) mod 3 6= 0, this will be
the trigrams or triplets [Ti[1], Ti[2], Ti[3]] = T [i . . . i + 2]. If all the triplets
are unique (and hence have unique ranks in the sorted order), the step is
complete. This will mean that the Type 2 suffixes have a maximum lcp of 3.
In most general cases, however, the maximum lcp will be more than 3, and
hence more computation is required to complete the sorting. To do this, a
new string of integers is formed by writing out the triplets from the Type

2 suffixes in their order of occurrence in T , and then replacing each triplet
with its rank in the current sorted order. Call this new string S. Notice the
similarity between the string S, and the string S′ used in Farach’s suffix tree
construction (see Section 4.1.5). The algorithm is then applied recursively on
S to construct its suffix array, AS . The array AS is equivalent to (has a one-
to-one mapping with) A2

T , the required sorted order of the original Type 2

suffixes from T .
Sorting Type 1 suffixes using sorted Type 2 suffixes. After sorting

the Type 2 suffixes, A1
T the sorted order of the Type 1 suffixes can be de-

duced from A2
T by forming the tuple: 〈Ti[1], rank of Ti+1 in A2

T 〉 for each
(i− 1) mod 3 = 0. This is equivalent to the pair 〈Ti[1], ÃS [i + 1]〉, where ÃS

is the inverse of AS . The pairs can then be sorted in linear time, using radix
sort to give A1

T .
Merging sorted Type 1 and Type 2 suffixes. The final step is to merge

A1
T and A2

T to form the required suffix array AT . The key is that conflicts that
can arise during the merging can each be resolved by using A2

T . To compare
a Type 1 suffix Ti with a Type 2 suffix Tj , at the merge stage, we need to
consider two cases:

• 1-Compare Case: If (j − 1) mod 3 = 1, we compare 〈Ti[1], rank of Ti+1

in A2
T 〉, versus 〈Tj [1], rank of Tj+1 in A2

T 〉. For this simple case, the relative
order of both Ti+1 and Tj+1 are available from A2

T .

3 We use Type 1 and Type 2 for ease of description. These were not necessarily
used by the authors in their original work.
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• i i i+2

in A2
T 〉, versus 〈Tj [1], Tj [2], rank of Tj+2 in A2

T 〉. Again, for this more dif-
ficult case, the tie is broken using the triplet, since the relative order of
both Ti+2 and Tj+2 are also available from A2

T .

Below, we further explain the working of the KS Algorithm using an ex-
ample. Consider the string T = mississippi$. First, we group the suffixes
into their respective types.

Type 1 suffixes for T : Ti|(i− 1) mod 3 = 0:

1mississippi$
4sissippi$
7sippi$
10pi$

For Type 1 suffixes, we have used superscripts to indicate their correspond-
ing positions in the parent sequence. Sorting these suffixes will produce A1

T .
Type 2 suffixes use the rule: Type 2 suffixes for T : Ti|(i−1) mod 3 6= 0. Table
4.1 shows the Type 2 suffixes, and their sorted order, based on the triplets
(≺3 ordering ). Complete sorting of the Type 2 suffixes will produce A2

T .

Suffix Sorted Sorted Label
Position Suffix Trippes Triples Positions (Index)

2 ississippi$ iss $$$ 12 1
3 ssissippi$ ssi i$$ 11 2
5 issippi$ iss ipp 8 3
6 ssippi$ ssi iss 2 4
8 ippi$ ipp iss 5 4
9 ppi$ ppi ppi 9 5
11 i$ i$$ ssi 3 6
12 $ $$$ ssi 6 6

Table 4.1. Type 2 suffixes after the first level of iteration in the KS Algorithm
using the example T = mississippi

Since the labels are not unique for all the triplets, we need to construct
a new string, and apply the algorithm recursively. The new string will be:
S = 46463521. We divide S into its Type 1 and Type 2 suffixes. The Type

1 suffixes for S will be the set: { 146463521$, 463521$, 721$ }. Sorting these
suffixes will produce the suffix array A1

S . Table 4.2 shows the Type 2 suffixes
for string S, and their sorted order, based on the triplets (≺3 ordering). A
complete sorting of these Type 2 suffixes will produce A2

S .
From Table 4.2 we have A2

S = [8, 5, 3, 6, 2] and Ã2
S = [5, 3, 2, 4, 1]. We

determine the order of the Type 1 suffixes in S by forming the array of tu-

2-CompareCase: If (j−1)mod 3=2,we compare 〈T [1], T [2], rank of T
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ples: [〈4, 5〉, 〈6, 2〉, 〈2, 1〉]. Sorting these tuples will give A1
S = [7, 1, 4]. (In this

particular case, the sorted order is available, without forming the tuples.)
The next step is to merge A1

S and A2
S to form AS = [8, 7, 5, 3, 1, 6, 4, 2].

These are based on the indexes in the shorter string S. We map these back
to their original positions in T to obtain A2

T = [12, 11, 8, 5, 2, 9, 6, 3]. Now,
we deduce the sorted order for the Type 1 suffixes in T by sorting the
tuples: [〈m, 5〉, 〈s, 4〉, 〈s, 3〉, 〈p, 2〉]. The result will be A1

T = [1, 10, 7, 4]. Fi-
nally, we merge A1

T and A2
T to form AT , the required suffix array: AT =

[12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].
Note that the number of Type 1 suffixes is n/3, while that of Type 2

suffixes is 2n/3. This is important, since the recursive call applies only to Type

2 suffixes. Thus, the running time for the algorithm is given by the solution
to the recurrence : ϕ(n) = ϕ(⌈2n/3⌉) + O(n). This gives ϕ(n) = O(n).

The KA algorithm

Ko and Aluru (2005) also used recursive partitioning, but following a funda-
mentally different approach to construct the suffix array in linear time and
space. They use a binary marking strategy whereby each suffix in T is classi-
fied as either an S-suffix or an L-suffix, depending on the relative order with
its next neighbor. An S-suffix is a suffix that is lexicographically smaller than
its right-neighbor in T , while an L-suffix is one that is lexicographically larger
than its right-neighbor. That is, Ti is an S-suffix if Ti ≺ Ti+1, otherwise Ti is
an L-suffix. This classification is motivated by the observation that an S-suffix
is always lexicographically greater than any L-suffix that starts with the same
character. The two types of suffixes are then treated differently: the S-suffixes
are sorted recursively by performing some special distance computations. The
L- suffixes are then sorted using the sorted order of the S-suffixes. The classi-
fication scheme is very similar to an approach used earlier by Itoh and Tanaka
(1999), (see Section 4.3), but the algorithm in Itoh and Tanaka (1999) runs
in O(n log n) time on average, and O(n2 log n) worst case.

Suffix Sorted Sorted Label
Position Suffix Trippes Triples Positions (Index)

2 6463521$ 646 1$$ 8 1
3 463521$ 463 352 5 2
5 3521$ 352 463 3 3
6 521$ 521 521 6 4
8 1$ 1$$ 646 2 5

Table 4.2. Type 2 suffixes after the second level of recursion in the KS Algorithm
using S = 46463521$



4.3 Space issues in suffix trees and suffix arrays 85

4.3 Space issues in suffix trees and suffix arrays

One major motivation for the use of suffix arrays over suffix trees is the small
memory footprint of the former. The time and space requirements of the two
data structures can be considered from two view points: at the construction
stage, and after construction (for storage, or at the time of use, for instance,
during search). While the suffix array generally requires a smaller space to
store, and less time for searching, traditionally, their construction requires
more time than suffix trees (Manber and Myers, 1993). The recent survey in
Puglisi et al. (2007), however, shows that some recent suffix sorting algorithms
can be faster than suffix arrays, even at construction time. Further, although
the suffix array also requires less space than suffix trees during construction,
it is still important to consider the actual space needed by a given suffix
sorting algorithm. With the increasing input data size for these algorithms
(for instance, in genomic applications with potentially billions of symbols in
one genome), the space requirement during construction is becoming critical.

There are three major approaches to dealing with the problem of the
space required for the construction and use of suffix trees and suffix arrays:
(1) space-efficient suffix tree/suffix array construction, (2) compressed suffix
trees/suffix arrays, and (3) the construction of suffix trees/suffix arrays in
external storage. Below we discuss methods that have been proposed for space-
aware suffix sorting. We discuss compressed suffix trees and compressed suffix
arrays in Section 8.1, given their very close relationship with BWT-based
compressed full-text indexing and other applications discussed in that chapter.
The further reading section at the end of this chapter provides some pointers
to key references on constructing suffix trees and suffix arrays in secondary
storage.

Lightweight suffix array construction

There has been some effort to reduce the actual space requirement in suffix
array construction. Algorithms that aim at this reduced space requirement
are sometimes called lightweight suffix sorting algorithms. More specifically,
Manzini and Ferragina (2004) use the term “lightweight” to refer to a suffix
sorting algorithm that requires no more than 5n bytes plus a small extra
space in constructing the suffix array of a string of length n. This is based on
the assumption that the alphabet size is no more than 256 characters (which
means 1 byte is enough to hold each symbol), and that integers are stored in 4
bytes (32 bits), as is done in most current machine models. Thus, lightweight
algorithms require little or no memory beyond those needed to store the text
itself (n bytes) and those needed to store the suffix array (4n bytes).

Existing lightweight algorithms can be characterized by the following four
steps:

Bucketing. Typically, they start with an initial bucketing to partition the
suffixes, usually based on the first one or first two symbols.
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Suffix classification. The suffixes are then classified or grouped into differ-
ent suffix types, often based on their relationship with neighboring suffixes
in the string.

Sorting within groups. Based on the suffix group, the lightweight algo-
rithms often use standard string sorting algorithms (such as ternary quick-
sort (Bentley and McIlroy, 1993), or multikey quicksort (Bentley and
Sedgewick, 1997)) to sort suffixes in the same group. Some also use other
existing suffix sorting algorithms at this stage, for instance, Seward’s copy

algorithm (Seward, 2000) or Larsson and Sadakane’s qsufsort algorithm
(Larsson and Sadakane, 2007).

Derived sorting. Finally, the lightweight algorithms typically exploit the
fact that we are sorting suffixes of the same string, by deriving the sorted
order of certain buckets or suffixes from previously sorted suffixes.

The difference between the various lightweight suffix sorting algorithms
is primarily in the specific approach they used in one or more of the above
steps. We describe the popular lightweight algorithms below, with an emphasis
on Itoh and Tanaka’s two-stage algorithm, one of the earliest lightweight
algorithms.

Itoh-Tanaka Algorithm. Itoh and Tanaka (1999) proposed the two-

stage algorithm for suffix sorting. After initial bucketing based on the first
symbol in each suffix, the suffixes in each bucket are then classified into Type

A and Type B suffixes as follows:

• Ti is Type A suffix if : T [i + 1] ≺ T [i]
• Ti is Type B suffix if : T [i] ≺ T [i + 1]

The Type B suffixes are then sorted using a standard string sorting algo-
rithm. Specifically, they used a hybrid of sorting algorithms, depending on
the size of the group. They proposed simple insertion sort for small buckets,
multikey quicksort (Bentley and Sedgewick, 1997) for medium sized buckets,
and MSD radix sort (McIlroy et al., 1993) for large groups.

Note that when a Type A and Type B suffix are in the same bucket, the
Type A suffix will always precede the Type B suffix. Itoh and Tanaka then
used the key observation that, after all Type B suffixes have been correctly
sorted, the sorted order of Type A suffixes can be directly derived from the
sorted Type B suffixes in one single pass. That is, we simply scan over the
suffix array being constructed in ascending order; for a given suffix, say Ti,
check if suffix Ti−1 is Type A; if so, move the suffix Ti−1 to the first empty
position in its bucket. Figure 4.15 shows the result of the Itoh-Tanaka two-

stage algorithm on our sample string, T = mississippi$.
As can be observed, when the number of Type A suffixes is relatively

large compared to the number of Type B suffixes, the algorithm will work
faster in practice. To increase the number of Type A suffixes, Itoh and Tanaka
suggested the use of buckets based on the first two symbols at the bucketing
step (i.e. using ≺2 ordering, rather than ≺1).
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Position 1 2 3 4 5 6 7 8 9 10 11 12

Symbol m i s s i s s i p p i $

Type A B B A B B A B B A A −

(a)

Bucket Position Suffix Type Type B Type A Merged
Sorted (Induced sort)

$ 12 $ − 12 12

i 2 ississippi$ B 11 11
5 issippi$ B 8 8
8 ippi$ B 5 5
11 i$ A 2 2

m 1 mississippi$ A 1 1

p 9 ppi$ B 10 10
10 pi$ A 9 9

s 3 ssissippi$ B 7 7
4 ssissippi$ A 4 4
6 ssippi$ B 6 6
7 sippi$ A 3 3

(b)

Fig. 4.15. Itoh-Tanaka two-stage algorithm on the string T = mississippi$: (a)
classification of suffixes; (b) sorting process

Two other popular lightweight algorithms are Seward’s copy algorithm

and Ferragina, 2004). Algorithm copy performs bucketing on the suffixes
based on the first symbols, and for each bucket it further partitions the suf-
fixes into smaller buckets based on their second symbols. It then sorts these
smaller partitions using ternary quicksort. When a bucket (say with initial
symbol σ) is completely sorted, copy can deduce the sorted order of all other
smaller partitions that have symbol σ as its second symbol directly, by a single
pass over the bucket. These are therefore not directly sorted using the string
sorting algorithm.

Algorithm deep-shallow extends the copy algorithm in several ways.
Rather than use ternary quicksort (Bentley and McIlroy, 1993) for sorting the
smaller partitions, they use the multikey quicksort proposed by Bentley and
Sedgewick (1997). More importantly, they divide the suffixes within a smaller
partition into two parts, based on a threshold on the length of their common
prefix. For suffixes with the lcp less than the threshold, they use multikey
quicksort as above. For those with lcp beyond the threshold, they abandoned
the multikey quicksort, and used a different string sorting algorithm. They
call the former approach (for small lcp) shallow sorting, and the latter (for
smaller partitions with large lcp) deep sorting. In Manzini and Ferragina
(2004), three algorithms for deep sorting were proposed, one generalizing the

(Seward, 2000) and Manzini and Ferragina’s deep-shallow algorithm (Manzini
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idea of direct determination of the sorted order of the smaller partitions based
on an already sorted bucket. Recent related work on light-weight suffix sorting
has been reported by Maniscalco and Puglisi (2006).

Other algorithms that are closely related to the lightweight algorithms in-
clude Larsson and Sadakane’s qsufsort (Larsson and Sadakane, 1999, 2007),
and more recently Schürmann and Stoye’s bkpr (bucket-pointer refinement)
algorithm (Schürmann and Stoye, 2007). Both algorithms use the successive
doubling technique of Manber and Myers as their basic working principle.
Both also have a space requirement of 8n bytes, with a worst case complexity
in O(n log n) for the former, and O(n2) for the latter. Schürmann and Stoye
focused on strings with variable lcp’s as may be needed for applications such
as in bioinformatics, using a hybrid of both standard sorting and suffix sorting
algorithms.

4.4 Further reading

The suffix tree was originally introduced by Weiner (1973), with space-efficient
constructions considered by McCreight (1976). Related data structures such
as suffix tries and Patricia trees (Morrison, 1968; Knuth, 1973; Gonnet et al.,
1992) have also been studied. Ukkonen (1995) made the suffix tree easier
to understand, and showed a simpler method to construct the tree in lin-
ear time. Giegerich and Kurtz (1997) showed the close relationship between
the seemingly different approaches to suffix tree construction. Farach et al.
(Farach, 1997; Farach-Colton et al., 2000) introduced a fundamentally differ-
ent approach to constructing suffix trees, by simple recursive decomposition.
Szpankowski (1993a,b) analyzed suffix trees and the generalized suffix tree.
Suffix tree on words are studied in Andersson et al. (1999). Gusfield (1997)
provides a detailed study on suffix trees and their various applications. See
also Apostolico (1985) for other applications of suffix trees.

The suffix array was introduced by Manber and Myers in the early 1990s
(Manber and Myers, 1990, 1993) as a more space efficient alternative to suffix
trees. Their algorithm required O(n log n) time in the worst case, with an av-
erage time of O(n). Around the same period, Gonnet et al. (1992) introduced
the PAT-array, a very closely-related data structure. Grossi and Vitter (2005)
presented various applications of the suffix array data structure. Spurred by
the introduction of the BWT in 1994 (Burrows and Wheeler, 1994), which
relied heavily on sorting the suffixes of a string, various methods and algo-
rithmic improvements were proposed for the suffix sorting problem (Larsson,
1998; Larsson and Sadakane, 2007; Itoh and Tanaka, 1999; Seward, 2000).
While some of the algorithms improved the space needed to construct the
suffix array, most of these algorithms still required O(n log n) time or more in
the worst case. It was not until 2003 that algorithms that can construct the
suffix array in linear time and linear space in the worst case were introduced
(Kärkkäinen and Sanders, 2003; Kärkkäinen et al., 2006; Kärkkäinen, 2007;
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Ko and Aluru, 2003, 2005; Kim et al., 2003, 2005; Adjeroh and Nan, 2008).
Puglisi et al. (2007) provide a recent survey on suffix arrays. The problem
of constructing lightweight suffix sorting algorithms that run in linear time
worst case is still open.

Given the problem of space, especially for certain applications that require
huge data sizes, more recent efforts have focused mainly on methods to re-
duce the space requirements for suffix trees and suffix arrays. Space efficient
construction of suffix trees were studied in Kurtz (1999) and Andersson and
Nilsson (1995). Compressed suffix trees were studied in Munro et al. (2001),
Grossi and Vitter (2005), and Kim and Park (2005), while compressed suffix
arrays were considered in Grossi and Vitter (2000), Grossi and Vitter (2005),
Hon et al. (2003a), and Na (2005). Algorithms that can perform the construc-
tion in external storage were proposed in Bieganski et al. (1994), Clark and
Munro (1996), Farach-Colton et al. (2000), Hunt et al. (2001), and Cheung
et al. (2005) for suffix trees, and in Kärkkäinen et al. (2006) and Crauser and
Ferragina (2002) for suffix arrays. Ferragina (2005) looks at the general prob-
lem of string searching in external memory. Franceschini and Muthukrishnan
(2007) reports on in-place suffix sorting.
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Analysis of the Burrows-Wheeler Transform

The Burrows-Wheeler Transform performs a permutation of the input string,
and thus provides no compression on its own. Rather, the BWT essentially
reorganizes the input sequence so that symbols with similar contexts are clus-
tered together in the output stream. In this sense the BWT can be seen as
a preprocessing scheme to expose potential redundancies in a given input,
and hence enhance later compression, using existing compression algorithms.
Thus, the BWT can be viewed as a “compression booster”, since it makes
it possible for relatively simple compression algorithms to perform better on
most input sequences (Ferragina et al., 2005a). Interestingly, some of the bet-
ter compression methods don’t do so well on the BWT output because they
are being too “clever” looking for patterns when the patterns are very simple.
This ability of the BWT to reorganize (sort) the input sequence based on
contexts is central to its relationship with other compression algorithms. It is
also the key to its use in various other fields and applications, different from
data compression. Not surprisingly, this context sorting stage of the BWT is
also the major bottleneck in performing the transformation on a given input
sequence.

In this chapter, we analyze the theoretical performance of the Burrows-
Wheeler Transform. We consider its performance in terms of its computational
complexity (both space and time complexity). We also consider its theoretical
performance in data compression, in terms of how close or how fast it could
approach the theoretically optimal performance for a given source. We will
examine how the theoretical performance of the BWT, be it computational
complexity or compression ability, is related to the sorted contexts used by
the transform. We will then relate it to other compression methods, especially
those based on using contexts, as the BWT approach turns out to effectively
be partitioning the input according to contexts in which the characters occur.

Since compression is traditionally the major application of the BWT, it is
appropriate to discuss the performance from the viewpoint of the two general
stages of BWT-based compression. Thus, our analysis will be based on the
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general BWT-based compression pipeline introduced in Chapter 3, as shown
in Figure 5.1.

Input
Burrows-Wheeler

Transform
(BWT)

Local to Global
Transformation

(LGT)

Entropy
Encoding

(EC)

Output

Second stageFirst stage

Fig. 5.1. Stages in the BWT compression pipeline

The local to global transform (LGT) converts the local structure induced
by the BWT to a global structure that can be exploited by standard entropy
encoding algorithms. Let X be some intermediate encoding(s) or transfor-
mation(s) on the BWT output. Using the acronyms MTF for move-to-front
encoding, RLE for run-length encoding, and EC for order zero entropy coding,
we can represent the BWT compression pipeline on an input sequence T as
follows: EC(X(BWT (T))). Using specific instantiations of X will generally
lead to different compression schemes. Example schemes under this general
framework are:

• BWTEC : EC(BWT(T )) (i.e. no MTF, no RLE)
• BWTMTF : EC(MTF(BWT(T )))
• BWTMTF−RLE : EC(RLE(MTF(BWT(T ))))
• BWTRLE : EC(RLE(BWT(T ))) (i.e. no MTF)
• BWTZ−RLE : EC(RLE(Z(BWT(T ))))
• BWTZ : EC(Z(BWT(T )) )

In the above, Z simply denotes any other local to global structure trans-
formation scheme different from MTF, such as distance coding, or inversion
frequencies. We observe that the BWT and EC stages are present in each
of the schemes. The variations differ mainly in terms of the further trans-
formations/encodings (such as move-to-front, distance coding and run-length
encoding) they apply to the BWT output before final encoding, which uses
any order-0 entropy encoder, typically arithmetic coding or Huffman coding.
The BWTRLE scheme includes the RleAc method that was discussed at the
beginning of Chapter 3 as one of the best methods overall — the entropy coder
in this case is arithmetic coding with the aggressive counting strategy. Some
authors have applied the RLE on the input sequence T before passing it to the
BWT (Balkenhol and Kurtz, 2000; Fenwick, 1997b). On average, this leads to
a reduction in the practical compression time, since the length of the output
sequence from the RLE will typically be shorter than the input, and perhaps
more importantly, the lack of long runs will reduce the average number of
character comparisons required to perform string comparisons. However, the
RLE also reorganizes the input string in a way that affects the later stages
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of the BWT compression. It is not clear whether this initial RLE generally
improves or degrades overall compression performance (see Fenwick (1996a,b,
1997b); Deorowicz (2002)). The effect tends to depend more on the specific
nature of the input sequence. Furthermore, although the original BWT-based
compression introduced by Burrows and Wheeler (1994), which we shall refer
to as BWT0 (corresponding to BWTMTF above), was based on the MTF,
there is also the issue of whether the MTF is really necessary in compressing
the BWT output close to the source entropy.

5.1 The BWT, suffix trees and suffix arrays

The context clustering stage of the BWT involving sorting the rows of A into
the rotation matrix As is critical to its performance. This sorting procedure
can be performed using suffix trees or suffix arrays, providing an important
link between the BWT and these data structures. In fact, an analysis of the
BWT can be performed by considering the close relationship between the
BWT and suffix trees and suffix arrays because its computational complexity
can be traced to the complexity of these important data structures. Similarly,
its performance in compression can be analyzed based on its relationship with
suffix trees, and the relationship between suffix trees and context trees.

To see the relationship between the BWT and these data structures, con-
sider Figure 5.2, which shows the list of suffixes, the suffix tree, and the BWT
sorted rotation matrix for the sample string T = mississippi. In this exam-
ple a $ symbol is used to denote the end-of-string; it isn’t strictly necessary
for the BWT, but it does simplify the descriptions by marking the end of each
suffix. The L array, the final BWT output, is given in the last column of the
table. We have also included the corresponding BWT output symbol (given
in brackets) at each leaf node in the suffix tree.

We will assume that the suffix tree of a given input string is available,
and that the edges from each node in the tree are sorted in lexicographically
increasing order from left to right based on the edge labels, for example using
Farach’s construction (see Chapter 4). As pointed out in the original work
by Burrows and Wheeler (1994), the BWT output can be obtained by a
simple traversal of the leaf nodes in the suffix tree from left to right. Let
li (1 ≤ i ≤ n+1) be the label of the i-th leaf node in the suffix tree (scanning
left to right). Recall that li is the starting position of the i-th suffix in the
input string T . Thus, at the i-th leaf node, with n as the length of T , we
obtain the corresponding BWT output as follows:

L[i] = BWT [i] =

{

T [li − 1] : if i 6= 1
T [n + 1] = $ : otherwise

Given that the suffix array records the index of the sorted suffixes of a
string, it is easy to see the relationship between the BWT and suffix arrays. If
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Suffixes ID Sorted Suffix Sorted Rotations BWT
Suffixes Array (As matrix) Output (L)

mississippi$ 1 $ 12 $mississippi i

ississippi$ 2 i$ 11 i$mississipp p

ssissippi$ 3 ippi$ 8 ippi$mississ s

sissippi$ 4 issippi$ 5 issippi$miss s

issippi$ 5 ississippi$ 2 ississippi$m m

ssippi$ 6 mississippi$ 1 mississippi$ $

sippi$ 7 pi$ 10 pi$mississip p

ippi$ 8 ppi$ 9 ppi$mississi i

ppi$ 9 sippi$ 7 sippi$missis s

pi$ 10 sissippi$ 4 sissippi$mis s

i$ 11 ssippi$ 6 ssippi$missi i

$ 12 ssissippi$ 3 ssissippi$mi i

(a)

i

s

si

6 (i)

3 (i)
ssippi$

ppi$

$
12 (i)

mississippi$ ssippi$ppi$

4 (s)7 (s)ppi$

$

i

11 (p)

8 (s)

ppi$ ssippi$

2 (m)5 (s)

ssi
1 ($)

p

i$ pi$

9 (i)10 (p)

(b)

Fig. 5.2. Relationship between the BWT, suffix trees, and suffix arrays, using the
string T = mississippi: (a) the suffixes and the rotation matrix; (b) the suffix tree
— the number at each leaf node in the suffix tree corresponds to the suffix ID,
which indicates the starting position of the suffix in the original sequence T . The
symbol in brackets at each leaf node corresponds to the BWT output symbol for
the leaf. The label on each edge corresponds to a substring of T

we ignore the characters after the special symbol $ in the final results from the
BWT rotation and permutation procedures, the sorted suffixes (Figure 5.2a,
third column) correspond exactly to the sorted rotated matrix from the BWT
(fifth column). Therefore, given AT , the suffix array of the input string T , the
BWT output can be computed as follows:

L[i] =

{

T [AT [i]− 1] : if AT [i] 6= 1
T [n + 1] = $ : otherwise
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5.2 Computational complexity

To analyze the overall computational complexity of using the BWT, we con-
sider the two major stages in the BWT compression pipeline. The first stage is
concerned with the transformation (permutation and sorting) that produces
the L array. The second stage concerns the subsequent stage of possibly trans-
forming the local structures in the BWT output into a global structure (for
instance, using some recency ranking scheme) and a final entropy encoding
using a given variable length code. Thus, stage two corresponds to LGT and
EC in the general compression framework. For some applications of the BWT
such as in pattern matching, only the first stage is needed, while applications
such as biological sequence comparison and phylogeny in bioinformatics may
not require the entropy encoding stage. We analyze the computational com-
plexity by considering the two stages in the BWT pipeline.

5.2.1 BWT first stage — the transform

In Chapter 4, we showed that there are algorithms for suffix tree construction
that are generally linear in time and space. It is simple to obtain the suffix
array from a suffix tree using a simple inorder traversal. However, given the
space requirement of suffix trees, various methods have been proposed to
perform suffix sorting directly, without the need for initial construction of the
suffix tree. Chapter 4 discussed more recent techniques for direct suffix sorting,
with worst case time and space complexity in O(n), for a string of length n.
Table 5.1 provides a summary of the theoretical time and space complexity
of most existing algorithms for suffix sorting. The reported time complexity
is with respect to the worst case, while space requirement (in bytes) includes
space for both the input string and the suffix array.

Given the relationship between the BWT, suffix arrays, and suffix trees,
it is clear that the complexity of the forward Burrows-Wheeler Transform is
linear in the length of the input string T , with respect to both time and space.
In fact, more recently, Kärkkäinen (Kärkkäinen, 2007) observed that the full
suffix array may not even be needed, if one is interested in just the L array,
the direct BWT output. This leads to a more memory-efficient algorithm for
computing the forward BWT. The resulting algorithm however could not run
in linear time.

From Chapter 2, we can observe that given L, the reconstruction of the
original sequence T requires the construction of F , the array of first characters,
and other count arrays. These can be accomplished in linear time. Hence, the
forward BWT and inverse BWT (BWT first stage) can each be performed in
linear time and linear space in the worst case.

5.2.2 BWT second stage — coding the transformed text

The second stage of BWT-based compression involves the encoding of the
BWT output — the L array and the index value, a. It is easy to see that most
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Reference General Time Space
methodology complexity needed

Manber and Myers (1993) successive doubling O(n log n) 10n
Larsson and Sadakane (2007) successive doubling O(n log n) 8n
Schürmann and Stoye (2005) bucket pointers O(n2) 10n

Itoh and Tanaka (1999) binary suffix grouping O(n2 log n) 5n
Seward (2000) grouping and copying O(n2 log n) 5n
Manzini and Ferragina (2004) deep-shallow sorting O(n2 log n) 5n

Kärkkäinen and Sanders (2003) and recursive partitioning O(n) 12n
Kärkkäinen et al. (2006)
Ko and Aluru (2003, 2005) recursion with O(n) 10n

suffix grouping

Suffix tree based methods

Weiner (1973) suffix trees O(n) —
McCreight (1976) and suffix trees and hashing O(n) 28n
Kurtz and Balkenhol (2000)
Ukkonen (1995) suffix trees O(n) 33n
Kurtz and Balkenhol (2000) suffix trees O(n) 16n
Farach (1997) and recursive partitioning with O(n) —
Farach-Colton et al. (2000) odd/even suffix trees

Table 5.1. Worst case time complexity and space complexity for some popular
suffix sorting algorithms; the actual space requirement (in bytes) is included where
it is known

algorithms at this stage require linear time and linear space (in the worst
case) to perform the required encoding. As discussed in Chapter 3, most of
the local to global structure transformation (LGT) algorithms (for example
recency ranking schemes such as MTF) require only a single pass over the
BWT output. For example, consider the i-th step in the MTF algorithm. Let
σ = L[i], and let the position of σ in the current alphabet list be pσ. At
the i-th step, the MTF algorithm records pσ on the output stream, and then
moves σ to the head of the alphabet list. Thus, the algorithm requires O(n|Σ|)
time to process all the symbols in the input sequence L. The only additional
space required is an O(|Σ|) space to maintain the alphabets, where Σ is the
symbol alphabet. With a fixed alphabet, the time will be linear with respect
to n, the length of the input string. Similarly, the entropy encoding stage can
be implemented in linear time and linear space for a given input sequence
(see, for instance, Moffat (1990) for arithmetic coding, or Fenwick (2002a)
for variable length codes for the integers). The decoding process essentially
reverses the encoding steps, and subsequent processing of the output using
the inverse LGT. Thus, decoding can equally be performed in O(n) time and
space in the worst case.
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5.3 BWT context clustering property

An important characteristic of the Burrows-Wheeler Transform is its ability
to find symbols that have similar contexts in the input string and cluster
them together in the output stream. Traditionally, for a given sequence, T =
t1t2 . . . tn, the context of symbol ti is defined by the symbols that immediately
precede ti in T . This is sometimes called the preceding context (or left context),
and is defined by the substring ti−1ti−2 . . . t1. Thus, the context of ti is defined
by reversing the prefix T i−1. With the BWT, context clustering is performed
based on the succeeding context (also called right context, or forward context),
defined by the symbols that immediately succeed ti in T . Given the cyclic
rotation of the input string by the BWT, the forward context for ti is therefore
essentially defined by the string Ti+1 ∗ T i−1, where the symbol ∗ denotes
concatenation. When the special end of string terminator $ is used, the forward
context will be determined only by the suffix Ti+1.

With the suffix sorting stage of the BWT, suffixes that are similar in the
original sequence will be placed together in the sorted matrix of rotations of
the BWT. From the discussion on the relationship between the BWT and
suffix trees and suffix arrays in Section 5.1, it therefore follows that the BWT
output symbols in the same region of the output array L are likely to have
similar following suffixes, that is, similar forward contexts in the original se-
quence.

Thus, the output stream can be partitioned into different segments based
on the similarity in the symbol contexts, for instance, based on the lcp be-
tween the contexts of nearby symbols in L. Table 5.2 shows the partitioning
that will occur for the example from Figure 5.2 where T = mississippi$

and L = ipsm$pissii, for longest common prefixes greater than 1 and 2. In
the table the output stream L that has been partitioned based on lcp ≥ 1
gives L1 = [i|pssm|$|pi|ssii]; for lcp ≥ 2, we get the partitioning
L2 = [i|p|s|sm|$|p|i|ss|ii]. For lcp ≥ 1, we have one of the partitions
being (L[2], L[3], L[4], L[5]), which is (p, s, s, m), corresponding to sym-
bols (T [10], T [7], T [4], T [1]) each having the same forward context in T , which
is the symbol i in this case, and thus they are in the same partition.

Analysis of the BWT output and the BWT performance in compression
can be performed based on the above context clustering (or partitioning)
property. This can be done by relating the context clustering property of the
BWT with traditional context trees, which are easier to analyze.

5.3.1 Context trees

For a given string T , with symbols taken from the alphabet Σ, the context tree
is a rooted tree that records the context of each symbol at any given position
in T . Figure 5.3 shows an example context tree (with compressed paths) for
the string T = mississippi. Each leaf node in the context tree corresponds
to a unique context in T . Contexts are read in reverse from the character of
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lcp ≥ 1 lcp ≥ 2
Position Contexts L Contexts L

1 $ i $m i

2 i p ı$ p

3 i s ip s

4 i s is s

5 i m is m

6 m $ mi $

7 p p pi p

8 p i pp i

9 s s si s

10 s s si s

11 s i ss i

12 s i ss i

Table 5.2. Two partitions of the BWT output (the L-array) based on symbol
contexts

interest; for example, in Figure 5.3 the context of the 3rd character (s) is mi,
so we traverse the tree using this string in reverse (im), which goes down the
left-most branches terminated at the leaf labeled with s. Each internal node
in an uncompressed context tree has exactly |Σ| outgoing edges. Each edge is
labeled with a symbol from Σ, and the substring spelled by the path from the
root to a given node defines the path label for the node. In the compressed
representation, sequences of nodes with only single branches are compressed
into a single branch showing the corresponding sequence of characters.

The nodes in a context tree are further decorated with context statistics:
for each node, say u, we record the subsequence of symbols that were ob-
served in the context u. These are typically converted to context statistics,
which represent the probability distribution of the symbols that were observed
following the context u. Thus, at a node, the context statistics describe the
distribution of the symbols, given the context represented by the node. Notice
that as each leaf node has just one symbol, the count at a leaf node will be
just for this symbol, with the counts for the other symbols all zero.

For the example string, Figure 5.3b shows the context tree decorated with
context statistics at each node in the tree — the four numbers correspond,
respectively, to the number of times each character in Σ ={ i, m, p, s } has
been counted. Each node, say u, then corresponds to a subsequence of symbols
in T . The root node is taken to have a null context, and corresponds to the
entire string. The statistics for the root correspond to the symbol probabilities
for the entire sequence. The context statistics of a given node are obtained
from the statistics of its descendant nodes, except for the root, which includes
the count for the first character in the text, which doesn’t occur in any other
context.

So far we have considered the unbounded contexts in a given string, which
includes all the possible preceding contexts of all lengths to each position in the
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Fig. 5.3. Context tree for the sequence T = mississippi: (a) context tree with
path label compression; (b) context tree decorated with context statistics; (c) order-
3 context tree. The subsequences at each node in (b) and (c) are the symbols in T
that have the path label to the node as their preceding context. The numbers in
the boxes at each node are the symbol distribution (as counts) for i, m, p, and s

respectively
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string. In practice, most context-based systems use bounded contexts, that is,
they have a maximum number of preceding symbols that can be considered in
the context. Thus, an order-k context refers to a context of maximum length k,
formed using only the first k preceding symbols. Figure 5.3c shows the order-
3 context tree for our example. The order-3 context for the first p (position
9) in mississippi will be the three characters preceding it: iss. Thus, the
context tree for an order-k context is simply the full context tree truncated
to a maximum depth of k. Some of the counts in the original context tree are
combined in the order-3 tree.

We can also observe that with the context tree, all the contexts of a given
symbol, say ti in T (independent of the context order or length) will lie along
the same path, from the root of the context tree to the leaf node correspond-
ing to ti. The path itself defines the longest context for ti so far observed.
Any other contexts of ti can be found as some ancestor of the leaf node. Fur-
ther, the depth of the lowest common ancestor between any pair of nodes (or
equivalently, the lowest common prefix between the contexts) is an indication
of the similarity between the contexts.

5.3.2 Estimation using context trees

In data compression, the input string is often considered to be coming from
a certain information source. The information source is simply a random se-
quence {Xi}, where the symbols Xi are taken from a defined alphabet, Σ,
with −∞ ≤ i ≤ +∞.

The information source may be memoryless, that is, each symbol is inde-
pendent of the previous symbols. It could also have memory, whereby each
symbol depends on one or more of the previous symbols. An information
source is called ergodic if it produces infinitely long sequences of symbols,
whereby the statistics of each sequence are generally the same as those from
any other sequence generated by the source. Further, an ergodic source is also
stationary, that is, the distribution of symbols in any sequence generated do
not change with time. The parameter θ is used to describe the probability
distribution of the symbols in Σ. That is, θ is a |Σ|-length vector, where the
i-th element is the probability that symbol σi ∈ Σ will be emitted by the
source at any given time.

Let Pa(ti) be the actual probability of symbol ti in the string T = tn1 =
t1t2 . . . tn (the subscript a denotes actual probability). For the case of a mem-
oryless source, the probability that the source will generate a particular se-
quence tn1 is given by:

Pa(tn1 ) =

n
∏

i=1

Pa(ti)

In practice, we may not know θ, the true distribution of the source symbols.
This must be estimated at each point as we process the sequence, based on
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the symbols observed so far. Consider the case of binary symbols. Let x be
the number of zeros and y the number of ones so far observed in the string
T i = ti1. A simple estimate of the probability that the next symbol ti+1 will be
a one is given by: Pe(ti+1 = 1|ti1) = y/(x + y). Here, the subscript e denotes
estimated probability. The Krichevsky-Trofimov (K-T) estimator (Krichevsky
and Trofimov, 1981) generally provides a better estimate, as it handles the
case when x = y = 0. The K-T estimate is defined as follows:

Pe(ti+1 = 1|ti1) =
y + 1

2

x + y + 1
.

In general, the K-T estimate for the probability of a string with x zeros
and y ones, is calculated iteratively as follows:

Pe(0, 0) = 1

Pe(x + 1, y) =
x+ 1

2

x+y+1 .P (x, y); x, y ≥ 0

Pe(x, y + 1) =
y+ 1

2

x+y+1 .P (x, y); x, y ≥ 0

This can be computed using a closed form formula:

Pe(x, y) =
( 1
2 .32 . . . 2x−1

2 )(1
2 .32 . . . 2y−1

2 )

1.2.3 . . . (x + y)

In most practical situations of interest, however, there is likely to be some
dependence between the current symbol and other symbols emitted by the
information source — the information source has memory of previous symbols
emitted. For such sources with memory, the symbol distribution is not fixed,
but could vary from one symbol to the other, depending on the context of the
symbol. Thus, the same symbol, say σ observed under two different contexts
could potentially have different probabilities (for example, in English, the
probability of the character u is quite different if the previous character was
a space compared to the previous character having been a q).

The Markov source is a typical example of a source with memory. For an
order-k Markov source, the probability of a given symbol depends only on the
preceding k symbols, that is, its order-k context. The context tree thus serves
as a model of the source, and the source is sometimes called a tree source. The
symbol probability distribution θ is then called the parameter of the source.
For each node with path label w, the parameter is defined by the probability
distribution, P (.|ŵ), where ŵ is the reverse of w. Let ci denote the path label
to the i-th leaf node in the context tree.

For such a source, the actual probability of a particular string tn1 ∈ Σn is
given by:

Pa(tn1 ) = Pa(t1t2 . . . tp)
n
∏

i=p+1

P (ti|ĉi) (5.1)



102 5 Analysis of the Burrows-Wheeler Transform

where p is the length of the shortest context in the context tree, and ci is the
context of ti in the string tn1 , with ci = ti−1

i−|ci|
= ti−|ci|ti−|ci|−1 . . . ti−1 and

ĉi = t
i−|ci|
i−1 , the reverse of ci. For order-k Markov sources, ci = ti−1

i−k.
For stationary sources, the probability of a symbol depends only on the

symbol and its context, and not on the position of the symbol in the text. For
such sources, the symbols in tn1 can be partitioned into different groups based
on the similarity of their contexts. Using the context tree, such partitioning is
simply performed by considering the leaf nodes that have common ancestors of
a given depth. Using this partitioning on the context tree, Equation 5.1 above
for the actual probability of the string tn1 can now be modified as follows:

Pa(tn1 ) = Pa(t1t2 . . . tp)
∏

c∈C

∏

ti∈Q(c)

P (ti|ĉ)

where C is the set of all contexts in the string (essentially, the set of leaf nodes
in the context tree), and Q(c) = set of symbols in tn1 with the same context,
c.

Balkenhol and Kurtz (2000) showed that for a tree source, for each con-
text c ∈ C, the subsequence of tn1 formed by the symbols with context c is
independent and identically distributed. This is important, as it implies that
the subsequence can be encoded based on θc, the corresponding symbol distri-
bution under this context, using any locally adaptive encoding scheme, such
as arithmetic coding or adaptive Huffman codes.

If we know the model of the tree source, we know at which points to change
from one context to the other, thus, we can code the symbols based on their
contexts. The model parameter, however, is not always known beforehand.
An important issue therefore is how we can estimate the model parameter,
θc, which defines the probability distribution for the symbols with context
c. The K-T estimator described earlier was given just for the case of binary
symbols (|Σ| = 2). Let T = tn1 be the input string. For general alphabets with
|Σ| > 2, the K-T estimator can be extended to approximate Pr(T ) as Pr(tn1 ),
the probability of string tn1 as follows. Let ni(σ, T ) be the number of times

symbol σ, σ ∈ Σ has occurred in the prefix T i = ti1, where n0(σ)
def
= 0. By

definition, the probability of the empty string (the only zero-length string) is
taken to be 1. Where it is obvious from the context of discussion, we will drop
the T in the notation ni(σ, T ).

Then,

Pe(ti|ti−1
1 ) =

ni−1(ti) + 1
2

i− 1 + |Σ|
2

The required probability Pr(T ) = Pr(tn1 ) is then estimated sequentially:

Pe(T ) = Pe(t
n
1 ) =

n
∏

i=1

Pe(ti|ti−1
1 ) =

n
∏

i=1

ni−1(ti) + 1
2

i− 1 + |Σ|
2

(5.2)



5.3 BWT context clustering property 103

This can be written in a closed form formula:

Pe(T ) =
1

(n + 1)!

|Σ|
∏

i=1
nn(σi)>0

1

2

3

2
. . .

(2nn(σi)− 1)

2

For the example with T = mississippi, assuming that |Σ| = 4, the
estimated probability will be:

Pe(T ) =

( 1
2

2

)( 1
2

3

)( 1
2

4

)( 3
2

5

)( 3
2

6

)( 5
2

7

)( 7
2

8

)( 5
2

9

)( 1
2

10

)( 3
2

11

)( 7
2

12

)

= 3.3715× 10−8.

Or, equivalently

Pe(T ) = Pe([4, 1, 2, 4]) =

(

1
2

)4 ( 3
2

)3 ( 5
2

)2 ( 7
2

)2

12!

5.3.3 BWT and context trees

There is a striking similarity between the context tree and the suffix tree —
in fact, if we ignore the context statistics, the context tree for unbounded
contexts as described above is simply the prefix tree of T . The prefix tree of
a string T is just the suffix tree of T̂ , the reversed version of T . In the prefix
tree, reading the path labels from the leaf to the root gives the corresponding
prefix. Figure 5.4b shows the prefix tree for the sequence T = mississippi,
that is the suffix tree for the reversed sequence, T̂ = ippississim. This can
be compared with the context tree of Figure 5.3a. The leaf node with symbol
ti in the context tree corresponds to the leaf node with label (i − 1) in the
prefix tree.

Thus, by applying the BWT on T̂ , the reversed version of the input string
T , we produce a cluster of contexts. Essentially, this can be viewed as anal-
ogous to the context tree of T , based on the relationship between the BWT
and suffix trees. The major difference here is that contexts in the context tree
formed via the BWT are sorted, which is not necessarily a requirement for
ordinary context trees. The BWT also allows us to have contexts of arbitrary
order (i.e. unbounded contexts), without needing to keep explicit statistics
for each node of the context tree. After applying the BWT, encoding the i-
th partition on L requires us to maintain the statistics for only the current
context, that is, the i-th context in sorted order.
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Fig. 5.4. The prefix tree: (a) List of prefixes for the string T = mississippi; (b)
The corresponding prefix tree — compare with the context tree in Figure 5.3

5.4 Analysis of BWT output

The output of the Burrows-Wheeler Transform can be analyzed both through
a theoretical approach (assuming particular kinds of input), and through em-
pirical evaluation. In this section we will review results based on both ap-
proaches.

5.4.1 Theoretical distribution of BWT output

A detailed theoretical study of the output distribution of the Burrows-Wheeler
Transform (before the application of the local to global structure transforma-
tion algorithms) was performed by Visweswariah et al. (2000) and Effros et al.
(2002). They showed that, in general, for an input sequence that is indepen-
dent and identically distributed (i.i.d.), the BWT output is also asymptotically
i.i.d. They demonstrated this by showing that the normalized relative entropy
(Kullback-Leibler distance) between an i.i.d. distribution and the BWT out-
put distribution tends to zero for an infinitely long input sequence. The i.i.d.
nature of the BWT output for i.i.d. input is in line with the results of Balken-
hol and Kurtz (2000, 1998), where they argued that the BWT output for a
tree source should be i.i.d.

Following a similar line of argument, Visweswariah et al. also showed that
for sources with finite-memory, (such as Markov sources), the relative entropy
between the BWT output and a source that is piecewise-constant independent
and identically distributed (p.i.i.d.) (Merhav, 1993; Willems, 1996) tends to
zero in the long run. Thus, the BWT output for a Markov source can be
described as a piecewise constant i.i.d. This is a very significant result. Given
the sorted nature of the BWT contexts, and the partitioning of the BWT
output (the L-array) as induced by these sorted contexts, intuitively, one
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would expect that the output distribution of the BWT can be modeled by
a piecewise constant i.i.d. However, this is the very first theoretical proof of
this result. The implication is that, further analysis on the BWT output, for
instance, later encoding of the output, can be performed using methods for
p.i.i.d. sources.

The results above are without reference to later LGT algorithms. While
the MTF and various other LGT algorithms have been proposed, there is not
much reported work on a similar theoretical study on the distribution of the
BWT output after application of MTF, or other similar transformation, such
as interval ranking, inversion frequencies, and so on, although Manzini (2001,
1999) report an initial study on the MTF. Likewise, there is not much reported
theoretical study on the nature of the distribution after RLE is applied to the
MTF(BWT(T )) results. Clearly, such a theoretical study will be of interest,
as it will show clearly the impact the MTF and other LGT algorithms have
on the long-term performance of the BWT as a compression booster.

5.4.2 Empirical distribution of BWT output

Motivated by the theoretical study above, it is useful to perform a corre-
sponding empirical study on the nature of the BWT output. To what extent
does the output from the BWT come close to the i.i.d. or p.i.i.d. distributions
in practice? How does the LGT stage affect the compression performance?
Can we do without the LGT stage in its entirety, and code the BWT out-
put directly with an entropy encoding algorithm, perhaps, with appropriate
modifications? Various authors have performed an empirical analysis of the
BWT output, especially based on the MTF coding (Fenwick, 1996a, 1997b;
Deorowicz, 2002).

The last of the questions just posed, about whether we can do without
an LGT stage (in particular, dispensing with the MTF transform) has been
answered in the positive in recent research, despite the MTF having been
strongly associated with the BWT since it was first published. As discussed
at the beginning of Chapter 3, it is possible to have the entropy coder itself
model the recency effect simply by having it use an adaptive counting system
where the probability of a character is estimated from its count, but the
count is heavily weighted toward recent occurrences of that character. For
example, Ferragina et al. (2006a) describe their fast adaptation system where
the count of a symbol is incremented by 256 each time it is encoded, and
all symbol counts are halved if the total count reaches 65,536. This means
that after the first 256 symbols have been coded, each 128 symbols will have
double the weight of the previous 128 symbols, and so on. They use a run-
length encoder on the output of the BWT, which will pick up immediate
repetitions of characters, but apart from this simple pre-processing, the BWT
output is only processed by the arithmetic coder, which means that processing
time is very good. Looking at the output sample in Figure 3.1 on page 34,
we can see that the window of 128 symbols (runs) corresponds to just a
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few lines of text, so a small set of symbols will very quickly dominate the
statistics. Changes in the input (such as the large number of “i” characters in
the last line of the figure) will also be acquired very quickly. Ferragina et al.
(2006a) reported that the fast adaptation system performed better than the
equivalent MTF-based system; for example, using RLE(BWT(T )) with the
fast adaptation compressed a large collection of files to an average of 1.126
bits per character, whereas the equivalent MTF system compressed them to
1.158 bits per character. Fenwick (1996a) also reported good results using an
arithmetic coder with an increment of 16 and a limit of 8192.

We are interested in the empirical behavior of the BWT output not just
for compression performance, but for other applications that take advantage
of the structure that it finds in its input. In the remainder of this section
we report experimental results that help us to understand the nature of the
BWT, and how it behaves on data that might be encountered in practice. We
do this using five files with different content characteristics. Some details of the
files are described in Table 5.3. The first three files are from the Canterbury
corpus (http://corpus.canterbury.ac.nz, “large” collection), while “lena”
is a widely-used test image for image processing, and “random16” is a random
sequence over an alphabet of 16 symbols, which should be compressed to 4
bits per byte.

File name Size (bytes) Description

bible 4,047,392 King James Bible (English text).
E.coli 4,638,690 Complete genome of the Escherichia coli bacterium,

stored with 1 symbol per byte. This file is known for
its low level of redundancy.

world192 2,473,400 The CIA world fact book (English text).
random16 10,000,000 A sequence of random 4-bit numbers generated using the

uniform distribution.
lena 262,322 Test image from the USC collection, 512×512 pixels, 8

bit gray scale. Raw gray scale values, not pixel differences
or prediction errors.

Table 5.3. Files used for empirical analysis of BWT output

First we look at the statistics and nature of the direct output from the
BWT (the L array), the output when L is passed through MTF:

LMTF =MTF(BWT(T )),

and the result when LMTF is passed through RLE:

LRLE = RLE(MTF(BWT(T ))).

For each representation of the original sequence we consider the direct proba-
bilities (bigrams, trigrams, and so on), the order-k entropy, the Zipf’s law fit,
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and the effect of each stage on compression, via context-based entropy estima-
tion. We also considered what happens when the four sequences T , L, LMTF ,
and LRLE are passed through some other popular compression schemes. In a
sense, this last experiment provides a simple method to check the compression
boosting performance of the BWT.

We begin by looking at bigrams (pairs of characters) in the transformed
files, as these reflect higher-order dependencies. Figure 5.5 shows the bigram
frequencies for each file, using the four representations indicated above, and
Figure 5.6 shows an enlargement of the detail of these graphs. In this and
other figures from experiments discussed in this section, we use txt to denote
T , the original sequence; bwt for L, the direct BWT output; mtf for LMTF , the
MTF results, and rle for LRLE , the resulting sequence after applying the RLE
on the MTF output. Figure 5.5 shows that for the textual files, the original
sequence tended to have fewer bigrams than the other representations. For the
genome sequence, the MTF output and the original sequence seemed to have
a higher occurrence of repeated bigrams. The LRLE sequence had more than
16 distinct bigrams, which is because new symbols are included as part of the
encoding process for RLE. For the image file, the MTF and the RLE seem
to be necessary to achieve higher proportions of repeated bigrams, yet the
actual percentages are quite low. For the random sequence, LRLE produced
much higher occurrences of repeated bigrams, although we can also observe
the piecewise linear nature of the probability in this case. Overall, the BWT-
based sequences L, LMTF , and LRLE tended to produce a higher probability
of bigrams for the first few most frequent bigrams, although in some cases, T ,
the original sequence had a comparable number.

Similar trends can be observed for other q-grams, with q > 2. We have
shown the results for bigrams (q = 2) only, since any repetition for q-grams
with higher values of q will always include the bigrams by necessity; the re-
sults on q-gram probabilities provide an indication on the compressibility of
the sequences. Each q-gram will provide an indication of the nature of the q-
order entropy. Rather than focusing on the q-grams, we will consider how the
BWT stages affect the higher order entropy of the original sequence. Figure
5.7 shows the order k entropy for the representations for small values of k. For
text data, the best results (lower values) were produced using L and LMTF .
For the genome sequence, all the representations produced similar results, ex-
cept the RLE output, LRLE . For the image sequence, the lowest entropies were
produced using either the direct BWT output or the original pixel sequence;
the BWT isn’t well suited to compressing raw photographic images because
very few patterns are repeated exactly in such files. As with the genome se-
quence, all four representations produced similar higher-order entropies on
the random sequence, with LRLE producing a slightly lower value at k = 2
and 3. Apart from the random sequence, the LRLE sequence almost always
resulted in the highest entropy. However, in practice the best BWT coders
do not simply use the entropy (which is based on the relative frequencies of
the symbols), but they use the adaptive system described at the start of this
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Fig. 5.5. Bigram frequencies for different BWT-based representations of the original
sequence (continued on next page)
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.coli lena random16  world192
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Fig. 5.5 continued: Bigram frequencies for different BWT-based representations
of the original sequence

section. This has the important property of halving counts frequently, so that
recent symbols will have more weight than older ones. If this is done aggres-
sively enough then it achieves a recency effect, similar to the MTF system,
and thus gives comparable compression.

Another way to consider the BWT output is by looking at how different
words or substrings are distributed within each representation. One way to do
this would be to consider the distribution of the frequency counts for the sub-
strings, which gives an indication of the level of repetition of these substrings
in a given sequence. Zipf’s law (Zipf, 1949) provides a way of viewing such
frequencies for the ensemble of words or substrings in the sequence (rather
than for an individual word). Essentially, the law states that given a set of
words from a natural language, ranked by their probability of occurrence, the
probability of any word is inversely proportional to its rank. That is, the word
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bible  E.coli lena random16  world192

Fig. 5.6. Expanded view of bigram frequencies in Figure 5.5 (continued on next
page)
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Fig. 5.6 continued: Expanded view of bigram frequencies in Figure 5.5

with the highest probability will occur about twice as frequently as the second
most probable word, which in turn will occur twice as frequently as the third
most probable word. More specifically, if n is the number of words or phrases,
k is their rank order, and s is an exponent parameter used to characterize the
distribution, the generalized Zipf’s law predicts that the probability of the

word with rank order k will be given by pk,s,n = 1/ks

∑

n

i=1
1/is

. The classic Zipf’s

law is a special case with s = 1. Different data sets could follow Zipf’s law, but
with different exponents. Thus, although originally motivated by observations
on words in a natural language, Zipf’s law provides another way to study the
structure of a given data ensemble, be it natural language texts, biological
sequences, or general sequences.

Figure 5.8 shows the Zipf’s law fit for each representation, with an ex-
panded view of the graphs shown in Figure 5.9 — Zipf’s law is characterized
by straight lines on a log-log graph. The figures indicate that for text se-
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Fig. 5.7. Order-k entropy for T, L, LMTF , and LRLE (continued on next page)
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Fig. 5.7 continued: Order-k entropy for T, L, LMTF , and LRLE

quences, the frequency versus rank order plots follow Zipf’s law for all the
representations, perhaps with different exponents. For the genome sequence,
again LRLE was distinct from the rest, which seemed to have a similar behav-
ior. The results for LMTF and LRLE were quite similar on the image data,
while L and T were closer to each other. Again, all the representations had
similar characteristics on the random sequence, except for LRLE . Generally,
the plots for this sequence were unusual compared with those from other types
of data, with a seemingly piecewise-linear characteristics.

Figure 5.10 shows the estimated entropy using order-k contexts for each
of the representations. Here, entropy estimation is performed using k-order
contexts as defined by the BWT. To do this, symbols in the L array that have
the same order k following context (that is, the same order-k common prefix
starting in their corresponding rows in the A array) are grouped together, and
their statistics used to compute the entropy for that region in L. We apply the
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Fig. 5.8. Zipf’s law fit for T, L, LMTF , and LRLE based on order-k sorted contexts
(continued on next page)
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Fig. 5.8 continued: Zipf’s law fit for T, L, LMTF , and LRLE based on order-k
sorted contexts

same method to LMTF (and LRLE). This means that rather than passing one
long sequence to the MTF or RLE, we pass chunks of adjacent symbols from
L (or LMTF ). The estimated entropy using this scheme can be compared with
the entropy results shown earlier (Figure 5.7), and the practical compression
results shown in Table 5.4. The estimated entropy doesn’t include the space
for storing the statistics, so this level of compression is not possible in practice.

Table 5.4 shows the results obtained when the four representations of the
sequence (T,L, LMTF and LRLE) are each passed to different compression
schemes, namely simple arithmetic coding, gzip and ppmc. The first row (T )
in each table corresponds to not using the BWT. All other results are with
inputs as the output at some given stage in the BWT compression pipeline. In
almost all cases, the BWT-based representations led to improved compression,
even when used on other compression schemes. In general, LRLE did not do
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Fig. 5.9. Zipf’s law fit — expanded view of Figure 5.8 (continued on next page)
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Fig. 5.9 continued: Zipf’s law fit — expanded view of Figure 5.8

well on the random sequence, although it produced the best overall result
across different compression schemes. In particular, LRLE with ppmc resulted
in some compression on the genomic sequence, and significant compression of
the text sequences.

Table 5.5 shows the corresponding results when the order-1 context parti-
tions on these representations are used. These results can be compared with
those in Table 5.4, which did not use context partitions. Context partitions are
formed based on the L array, as described above for context-based entropy
estimation. Thus, this does not apply to the original sequence T , so there
are no results for txt. We can notice the general improvement of compression
performance, especially for the text sequences, and the DNA sequence.
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Fig. 5.10. Estimated entropy for L, LMTF , and LRLE based on order-k sorted
contexts (continued on next page)
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Fig. 5.10 continued: Estimated entropy for L, LMTF , and LRLE based on order-k
sorted contexts

5.5 Analysis of BWT compression performance

The Burrows-Wheeler Transform performs a permutation of the input se-
quence, and thus provides a one-to-one mapping between the input symbols
and the output symbols. Since symbol permutations do not change the order-
zero entropy, in principle, the BWT cannot change the minimal code lengths
that can be used to describe the source, at least for an order-zero model
where context and locality are ignored. However, the BWT makes it easier
to approach the limits of achievable compression performance. In this section
we describe some methods for analyzing the theoretical performance of com-
pression schemes that are based on the BWT. The description in this section
borrows a lot of terminology and notation from information theory, and we
start by defining some of these. Details and proofs of the relations can be
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arith bible E.coli lena random16 world192

txt 0.5440 0.2537 0.9293 0.5041 0.6248
bwt 0.4888 0.2518 0.7669 0.5041 0.5558
mtf 0.2652 0.2530 0.7112 0.5041 0.2729
rle 0.2511 0.3558 0.7246 0.5286 0.2549

(a)

gzip bible E.coli lena random16 world192

txt 0.2907 0.2801 0.8940 0.5708 0.2893
bwt 0.2959 0.2848 0.7639 0.5705 0.3025
mtf 0.2889 0.2849 0.7426 0.5706 0.2940
rle 0.2841 0.3220 0.7577 0.5852 0.2866

(b)

ppmc bible E.coli lena random16 world192

txt 0.2948 0.2502 0.8493 0.6313 0.3141
bwt 0.2981 0.2499 0.8511 0.6316 0.3266
mtf 0.2681 0.2518 0.8558 0.6276 0.2828
rle 0.2172 0.2445 0.7943 0.6312 0.2205

(c)

Table 5.4. Using BWT-based representations of a sequence (T, L, LMTF , and
LRLE) as the input to different compression algorithms: (a) arithmetic coding; (b)
gzip; (c) ppmc

found in any standard text on information theory, such as Cover and Thomas
(2006).

5.5.1 Definitions and notation

In this section we will take some liberties with the notation, and use T = tn1 =
tn. The three will be used interchangeably, depending on ease of presentation
in the context of the discussion. Let Y be a discrete random variable with
values taken from an alphabet Σ = {σ1, σ2, . . . , σ|Σ|}. Let p(σ) = Pr{Y = σ},
(σ ∈ Σ) be the probability mass function. The entropy of the random variable
Y , denoted H(Y ), is a measure of the amount of uncertainty in the random
variable, or equivalently, the minimum number of bits we need to describe the
random variable, on average. The entropy is defined as1:

H(Y ) =

|Σ|
∑

i=1

p(σi) log
1

p(σi)

The entropy depends only on the probability of symbols in Σ, and not
on their actual values. The n-th order entropy, denoted H(Y n), indicates the

1 In this book, all logarithms are to base 2, unless otherwise indicated.
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arith bible E.coli lena random16 world192

bwt 0.3587 0.2480 0.7251 0.5088 0.4497
mtf 0.2264 0.2523 0.7731 0.5094 0.2276
rle 0.2162 0.2775 0.7882 0.5338 0.1965

(a)

gzip bible E.coli lena random16 world192
bwt 0.2438 0.2923 0.7421 0.5827 0.2233
mtf 0.2493 0.2924 0.7898 0.5834 0.2291
rle 0.2459 0.3143 0.8074 0.5995 0.2221

(b)

ppmc bible E.coli lena random16 world192

bwt 0.2440 0.2474 0.8169 0.6529 0.2334
mtf 0.2480 0.2495 0.8707 0.6536 0.2499
rle 0.2381 0.2571 0.8847 0.6621 0.2305

(c)

Table 5.5. Using order-1 context partitions of the BWT-based representations
(L, LMTF , and LRLE) as the input to different compression algorithms: (a) arith-
metic coding; (b) gzip ; (c) ppmc. Order-1 contexts are determined based on the L
array, as was done for context-based entropy estimation

uncertainty in the outcome of a sequence of n experiments with Y . The n-th
order entropy is given as :

H(Y n) =
∑

yn∈Σn

p(yn) log
1

p(yn)

where yn = (y1, y2, . . . , yn) ∈ Σn is an n-length sequence.
For stationary ergodic sources we can define the entropy rate, given as

follows:

H(Σ) = lim
n→∞

1

n
H(Y n).

In practice, the true probability distribution of the source symbols may not
always be known with complete accuracy. Thus, the probabilities may have
to be approximated based on previous observations on the symbols from the
source. For a given input sequence, the probabilities can be estimated using the
frequency of occurrence of each symbol, computed based on symbols observed
so far in the sequence. Thus, sometimes, we make use of the empirical entropy
of the source, rather than the true entropy, which may not be known.

Recall that nj(σ) is the number of times symbol σ has been observed
just after we consider the j-th symbol in the sequence. Suppose we have
n observations of the random variable Y , recorded as the n-sequence yn =
(y1, y2, . . . , yn). Then, the empirical entropy is given by:
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H̃(Y ) =

|Σ|
∑

i=1

nn(σi)

n
log

n

nn(σi)
(5.3)

Suppose we have chosen a source coding strategy for Y , say code C,
such that symbol σ ∈ Σ is coded with a codeword with length ℓ(σ). Then
the expected code length for the random variable Y using this coding strat-

egy will be ℓ(C) =
∑|Σ|

i=1 p(σ)ℓ(σ). Similarly, we can define the code length
when the coding strategy is used on a sequence of n symbols from Y . Let
ℓn(yn) = ℓ(y1, y2, . . . , yn) be the code length for the codeword assigned to the
n-sequence yn. Then, the expected code length for an n-sequence will be:

ℓn(C) =
∑

yn∈Σn

p(yn)ℓn(yn).

Thus, the per-symbol code length will be:

ℓn =
ℓn(yn)

n
=

1

n

∑

yn∈Σn

p(yn)ℓn(yn).

For an optimal coding strategy, the average code length per symbol ℓn will
be bounded as follows:

H(Y ) ≤ ℓn ≤ H(Y ) +
1

n

Thus, by using increasingly long sequences (large values of n), we can get
the average code length per symbol to approach the entropy of the source as
close as we wish. For a stationary stochastic process, limn→∞ ℓn = H(Σ), the
entropy rate of the process.

The coding redundancy is a measure of the performance of a coding strat-
egy. It indicates to what extent the average code length per symbol achieved
by the coding strategy differs from that of the optimal code. Various expres-
sions are used for coding redundancy. In this section we use the simple form:
ρn = ℓn −H(Y ), or ρn = ℓn −H(Σ), for stationary stochastic sources. The
rate at which ρn, the coding redundancy, converges to zero is an important
theoretical performance measure for a lossless source coding strategy.

The divergence between two distributions is measured by the relative en-
tropy between them. The relative entropy (also called the Kullback-Leibler
distance) between two distributions p(y) and q(y) is defined as follows:

D(p(y)||q(y)) =
∑

y∈Σ

p(y) log
p(y)

q(y)

The KL-distance is not symmetric. A symmetric distance can be obtained
by using the average:
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D(p, q) = (D(p||q) + D(q||p))/2

Given a source with a known symbol probability distribution, say p(y),
arithmetic coding or Huffman coding are two simple methods that can be
used to encode a given sequence from the source to a size close to the entropy.
If however, we assume an incorrect distribution, for instance, q(y), then, cod-
ing with Huffman coding or arithmetic coding will result in an additional
code length of D(p(y)||q(y)) per symbol. This sensitivity to the accuracy of
the distribution motivated the need for source coding methods that can still
code the source close to the entropy without necessarily knowing the true
symbol distribution. A coding strategy that achieves an average code length
ℓn = λH(Y ) + γ, where λ and γ are constants, without prior knowledge of
the symbol probabilities, is called a universal code. Typical examples of such
universal codes are the Elias γ- and δ-codes (Elias, 1975). Values for the Elias
γ code for sample inputs are given in Table 3.1. Lengths for Elias codes for
different input values are given in Section 5.5.2 (Table 5.6). A comparison of
integer codes can be found in the paper by Fenwick (2002b).

Some of the results in this section will make use of Jensen’s inequality
(Cover and Thomas, 2006), an important inequality in information theory.
Let x be a random variable, and let f be a concave function. The inequality
states that

h
∑

i=1

pif(xi) ≤ f

(

h
∑

i=1

pixi

)

,

where the pi’s are positive weights, such that
∑h

i=1 pi = 1. Figure 5.11 illus-
trates Jensen’s inequality for h = 2 and p1 = p2 = 1

2 — the average of the
function values is less than the function of the average values.

5.5.2 Performance using recency ranking

As can be seen in the basic BWT compression pipeline (see Figure 5.1), the
transformation of local structure to global structure is an important stage in
most BWT-based coding schemes. This can be traced back to the original
paper by Burrows and Wheeler (1994), where they suggested the use of MTF
for post-processing on the BWT output before final encoding. Most practi-
cal BWT-based compression schemes have thus followed this paradigm, so
not surprisingly, this basic EC(MTF(BWT(T ))) approach has also received
the most attention in terms of theoretical analysis of BWT compression per-
formance (Arimura and Yamamoto, 1998; Effros et al., 2002; Balkenhol and
Kurtz, 2000; Manzini, 2001). Thus, we start our analysis of BWT performance
in compression by considering this basic compression scheme, with special
emphasis on symbol ranking schemes, such as the MTF (also called recency
ranking) (Bentley et al., 1986; Elias, 1987). Our discussion below follows the
approach used by Arimura and Yamamoto (1998) and Effros et al. (2002).
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Fig. 5.11. Illustration of Jensen’s inequality

With the MTF, the symbols in the BWT output (the L-array) are coded
as integers, such that the i-th symbol in L is coded based on the last time it
was observed. Specifically, at step i, the MTF transmits the number of distinct
symbols observed since the last occurrence of symbol L[i], and then moves the
symbol to the front of its list. We can analyze the BWT performance using
recency ranking by considering three major components:

1. Choice of the universal code for the integers to be used;
2. Performance of the chosen universal integer code with recency ranking on

general sequences; and
3. Performance of the scheme on BWT output sequences, considering the

nature of such sequences.

Choice of universal codes

To code the results generated by the MTF, we need a specific prefix-free code
for the integers. Here we will use the Elias γ-code and δ-code (Elias, 1975),
which we will denote as c1 and c2, respectively2. Let f1(x) and f2(x) be the
corresponding code length functions that give the number of bits required to
represent the integer x using codes c1 and c2 respectively. The γ-code (c1)
describes a positive integer x using f1(x) number of bits, using a two part
code, where

f1(x) = 1 + 2⌊log x⌋

The first part is a prefix with ⌊log x⌋ zeros. The second part is the binary
representation of x, which requires 1+ ⌊log x⌋ bits. Concatenating the second

2 These have been introduced already and are shown in Table 3.1 on page 37.
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part to the first gives the c1 code for x. The δ-code (c2) is obtained by re-
using the c1 code as follows. Replace the ⌊log x⌋ zeros followed by a 1 using
the c1 encoding of (1+ ⌊log x⌋). The result will be a code that uses f2(x) bits
to represent the integer x, where

f2(x) = 1 + ⌊log x⌋+ 2⌊log(1 + log x)⌋

We can apply the method again to define the c3 code, a slightly improved
representation with code length function:

f3(x) = 1 + ⌊log x⌋+ ⌊log(1 + log x)⌋+ 2⌊log(1 + log(1 + log x))⌋

This process can be applied again and again to get a family of codes with
successively improved representation of the integer. Each member of the family
of ci codes, i = 1, 2, . . . is a prefix code. However, as can be observed from the
code length functions, for most practical purposes, the improvement may not
be very significant, except for very large integers. Table 5.6 shows example
code lengths using the ci-family of codes for some sample input values.

x log2(x) f1(x) f2(x) f3(x) G1(x) G2(x) G3(x)

1 0 1 1 1 1.0000 1.0000 1.0000
2 1 3 4 5 3.0000 4.0000 5.0000
10 4 7 8 8 7.6439 8.5453 9.7090
100 7 13 11 11 14.2877 13.5125 14.5304
256 8 17 15 16 17.0000 15.3399 16.2900
1000 10 19 16 17 20.9316 17.8757 18.7315
10000 14 27 20 21 27.5754 21.9611 22.6725
100000 17 33 25 25 34.2193 25.8862 26.4705
1000000 20 39 28 28 40.8631 29.7068 30.1785
109 30 59 38 38 60.7947 40.7962 40.9923
1015 50 99 60 59 100.6578 62.1641 61.9708
1020 67 133 79 77 133.8771 79.5896 79.1597
1025 84 167 96 94 167.0964 96.8345 96.2137
1030 100 199 112 110 200.3157 113.9645 113.1833
1050 167 333 181 180 333.1928 181.8655 180.6164

Table 5.6. Code lengths and their bounds for the ci-family of codes

Performance of integer codes with MTF

The performance of MTF using the family of ci codes was analyzed in Bentley
et al. (1986), while Elias (1987) performed a similar analysis for both recency
ranking (MTF) and interval codes. Let un ∈ Σn be a sequence of length n,
with symbols from the alphabet Σ. Let ℓn(un) be the total length (in bits)
of the sequence un after it is encoded with MTF and a chosen integer code.
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They showed that using the ci family of codes with code length function fi(x)
bits, then ℓn(un) is bounded by:

ℓn(un) ≤ nGi(H(un)) bits,

where Gi(x) is related to fi(x), with fi(x) ≤ Gi(log(x)). For example,

G1(x) = 1 + 2x;
G2(x) = 1 + x + 2 log(1 + x),
G3(x) = 1 + x + log(1 + x) + 2 log(1 + log(1 + x)).

Thus, with the c2 code for instance, we have

ℓn(un) ≤ n (H(un) + 1 + 2 log(1 + H(un))) .

Performance on BWT output

Given the foregoing, we can now analyze the effect of MTF when presented
with the output stream from the BWT (the input string is assumed to be
reversed before applying the BWT). The major issues here are the partitioned
nature of the BWT output, and the need to send the row index a for the BWT.
With |C| context partitions, the subsequences of the L-array that are in the
same partition can each be coded using the MTF independently. Suppose we
use c2 as the integer code, and let Si denote the subsequence in the i-th
partition. Then, coding the BWT output using this strategy will result in an
overall code length (in bits) for the input sequence T = tn bounded by:

ℓn(tn) ≤
|C|
∑

i=1

|Si| [H(Si) + 1 + 2 log(1 + H(Si))] + (log(n + 1) + 1)

The last component is needed to code a, the row index of the original
string in the sorted BWT rotation matrix. Expanding and dividing through
by n, we get

ℓn =
ℓn(tn)

n
≤

|C|
∑

i=1

|Si|
n

H(Si)+

|C|
∑

i=1

|Si|
n

+2

|C|
∑

i=1

|Si|
n

log(1+H(Si))+
log(n + 1)

n
+

1

n

Since the log is a concave function, we can use Jensen’s inequality (Cover
and Thomas, 2006) to pull the log function outside the summation to obtain:

|C|
∑

i=1

|Si|
n

log(1 + H(Si)) ≤ log





|C|
∑

i=1

|Si|
n

(1 + H(Si))



 = log(1 + H(tn))

Thus the bound on per-symbol code length can be simplified to:
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ℓn ≤ H(tn) + 1 + 2 log(1 + H(tn)) +
log(n + 1) + 1

n

Or,

ℓn = H(T ) + 2 log(1 + H(T )) + 1 + O

(

log n

n

)

With the 2 log(1 + H(T )) term in the result, the above bound may not
attain the entropy, even for very long sequences. While we can reduce this
term by using, say, ci codes with higher values of i, the O(log(1+H(T )) term
will still persist. To get the average code length to approach the entropy of
the source, we can apply the BWT on k-extensions of the source (Cover and
Thomas, 2006). That is, symbols in the original sequence are now grouped
into n

k blocks of size k each, such that a symbol block in T now maps to one
symbol in the extended sequence. For an original sequence Y with symbols
in Σ, and its k-th extension, Y k, with symbols in Σk, the following relation
holds:

H(Y k) = Hk(Y ) = kH(Y ).

Applying this to the BWT code above, the average code length for each
k-length block will be:

ℓk
n(T ) = ℓk

n(tn) ≤ Hk(tn) + 1 + 2 log(1 + Hk(tn)) +
log(n/k + 1) + 1

n/k
.

Thus, the average code length for the original symbols in T using this k-
extension will be:

ℓn =
ℓn(tn)

n
=

ℓk
n(tn)

k
≤ H(tn)+

1

k
+

2

k
log(1+kH(tn))+

log(n/k + 1) + 1

n/k

1

k
.

Taking the limits as k →∞ gives the final result:

ℓn ≤ H(tn)+ǫ+O

(

log(n/k + 1) + 1

n

)

= H(T )+ǫ+O

(

log(n/k + 1) + 1

n

)

.

where ǫ is a small constant. Observe that k ≤ n.
Analysis of BWT-based coding using the extended alphabet Σk with

blocks of k symbols was originally performed in Arimura and Yamamoto
(1998), and studied in detail by Effros et al. (2002). Effros et al. also dis-
cussed various options for the choice of k the extension parameter, and their
implications in the redundancy of the BWT-code. They observed that for a
string T = tn, the BWT output obtained when T is treated as a sequence of
symbols from Σ is very closely related to the BWT output that will result if
we consider T as a sequence of n/k symbols from the extended alphabet Σk.
In particular, for each row in the BWT sorted rotation matrix As using Σk,
there is a corresponding row in the As matrix using Σ. Further, the ordering
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of the rows is also the same in the two matrices. Thus, the BWT output for T
using extended symbols in Σk can be obtained from the BWT of T using the
original symbols in Σ. This relationship is demonstrated in Figure 5.12. This
has an important implication in implementing the approach using extended
sources, since we can now use the transformation on the extended source,
while maintaining the same general time and space complexity as with the
original sequence. In practice though, alphabet extension can create a prob-
lem for using entropy coding (such as Huffman coding or arithmetic coding)
after MTF, since the coding tables could become quite large. BWT-based
compression by alphabet extension which is usually used to obtain theoretical
bounds on compression performance is somewhat similar in concept to the
more practical technique of word-based BWT (see Chapter 6).
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Fig. 5.12. Using the BWT on extended alphabets, using the example T =
mississippi: (a) original BWT matrix of sorted rotations; (b) BWT matrix of
sorted rotations for extended alphabet, Σ2. The BWT on the extended alphabet Σ2

(b) can be obtained from the BWT output on the original alphabet Σ by remov-
ing the even rows in (a). The arrowhead indicates the row that corresponds to the
original sequence T

The analysis above closely follows the performance analysis of MTF and
recency ranking given in Bentley et al. (1986) and Elias (1987). In fact, Bent-
ley et al. (1986) showed that the MTF algorithm can achieve universal coding
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performance via alphabet extension. Thus, the MTF does not necessarily need
the BWT to achieve universal coding performance. Yet, while it may be dif-
ficult to exactly quantify the impact of the BWT on MTF, especially given
the sorting performed by the BWT, it is, however, clear that the BWT can
help the MTF converge faster to the source entropy, especially for smaller se-
quences. This is supported by the fact that for most practical input sequences,
applying the MTF to the L-array (the BWT output) leads to a smaller integer
output, on average, when compared to using the MTF directly on the original
sequence T .

The above results have been obtained based on a reversed version of the
original sequence. Although reversing the string before applying the BWT
made the analysis somewhat easier, time reversal is not a necessary condition
to achieve the coding performance results reported. This is supported by the
fact that the entropy of a source is not affected by time reversal (Cover and
Thomas, 2006):

H(Y ) = lim
n→∞

1

n
H(Y1Y2 . . . Yn) = lim

n→∞

1

n
H(YnYn−1 . . . Y1). (5.4)

Fenwick (2002a) studied the performance of BWT using integer codes,
rather than entropy encoding. He showed that integer codes can produce com-
petitive practical compression results, comparable with results obtained with
entropy codes. In his earlier work on a detailed analysis of the empirical per-
formance of BWT, Fenwick (1996b, 1997b) showed that there is no significant
performance difference whether the BWT is applied directly, or on a reversed
sequence. This is to be expected given the relationship in Equation 5.4.

5.5.3 Performance without LGT

An interesting debate has been whether the MTF or other variants of the local
to global transformation (LGT) are really necessary for BWT-based compres-
sion (Wirth and Moffat, 2001; Effros et al., 2002; Giancarlo and Sciortino,
2003; Ferragina et al., 2005a). In particular, for some applications, such as in
lossless image compression, the use of the MTF on BWT output does not seem
to provide much improvement in compression, when compared with direct
coding of the BWT output using arithmetic codes (Arnavut and Magliveras,
1997a; Arnavut, 2002). Given the observed partitioning of the BWT output
based on sorted contexts, it becomes possible to analyze the performance of
the BWT in compression by coding directly on the L-array, without the need
for local to global structure transformation algorithms, such as MTF. If we
know the boundary for each partition of the BWT output, it becomes possible
to code the partitions independently, for instance, by using possibly different
universal codes for the subsequences contained in different partitions.

For the unbounded contexts, each context partition could contain just one
symbol. Thus, for this approach to work, we need to choose contexts with a
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specific order. For a given context order, say k, the encoder can determine
all the order-k forward contexts that appeared in the original data sequence,
by an iterative use of the L-array, and F -array, using a process similar to the
BWT decoding procedure. Thus, we can determine the number of times each
context occurred (i.e. the size of the context). Given the sorted nature of the
contexts, this essentially gives the boundary (or transition) points between
adjacent contexts or partitions in the L-array, the BWT output. We can then
encode the BWT output by explicitly encoding the boundary points (or anal-
ogously, the length of each partition), and then encoding the subsequence in
each partition independently, using any universal encoder, such as arithmetic
coding. The parameters of each partition still need to be estimated, which can
be done using the Krichevsky-Trofimov (K-T) estimator as described previ-
ously.

Let Bi be the lower boundary point for the i-th context (i.e. the i-th
partition). Let Si be the subsequence in the i-th partition of the L-array.
That is, the symbols in Si all have the same k-order forward context in T . We
can analyze the performance of the above coding strategy by considering the
three major components:

1. The cost of encoding a, the row index of the original string in the sorted
rotation matrix of the BWT;

2. The cost of describing Bi, i = 1, 2, . . . , |C|, the boundary points, or alter-
natively the size of each context partition; and

3. The cost of encoding Si, i = 1, 2, . . . , |C|, the subsequence in each context
partition.

The BWT index a can be encoded using no more than ⌊log n⌋ + 1 bits.
Rather than coding the boundary points (Bi’s) directly, it may be more ef-
ficient to code the length of the context partitions — that is, the difference
between adjacent boundary points. Thus, for the i-th partition, we code its
size using Bi − Bi−1, where B0 = 0 by definition. Using the example in Ta-
ble 5.2 (page 98), with k = 1, we have 5 partitions, with boundary points given
by: B = [1, 5, 6, 8, 12], and partition sizes given by: Bi − Bi−1 = [1, 4, 1, 2, 4],
with i = 1, 2, 3, 4, 5. Similarly, with k = 2, we will have 9 partitions, with
sizes defined similarly. We observe that, given the nature of the BWT out-
put, the context in the first partition always starts with $, the special end
of string symbol. Its size must always be 1, since the symbol appears only
once in the input string to the BWT. Thus, we do not really need to send
boundary information about this context. Similarly, we do not need to send
the last boundary point, since it must always be n + 1. Thus, the size of the
last partition can be computed, if we already know the size of all the other
partitions, since the sum of all the partition lengths must be n+1. Therefore,
we need to encode only |C|− 2 integers representing the size of the partitions,
i = 2, 3, . . . , |C|−1. Thus, the total cost of explicitly coding the partition sizes
will be:
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|C|−1
∑

i=2

(⌊log(Bi −Bi−1)⌋+ 1) ≤ (|C| − 2)(1 + log n) (5.5)

To code the symbols in the L-array, we can consider each Si, i =
1, 2, . . . , |C|, the subsequence for the i-th partition individually, using arith-
metic coding, with the K-T estimator for the symbol probabilities.

Let Hθ̂(t
n) be the first order entropy of the sequence tn ∈ Σn, with the

empirical distribution given by θ̂. Krichevsky and Trofimov (1981) showed that
using the K-T estimator as given in Equation 5.2 to determine Pe(T ) = Pe(t

n),
the estimated probability of the sequence T = tn, the resulting description
length will be bounded by:

nHθ̂(t
n)+

|Σ| − 1

2
log n−d ≤ log

1

Pe(tn)
≤ nHθ̂(t

n)+
|Σ| − 1

2
log n+d (5.6)

where d is a small constant.
Thus, if we code each Si independently, using the K-T estimate to deter-

mine the probability distribution for the symbols in each partition, we obtain
an overall coding length for describing the original sequence T = tn after
the BWT transformation on T̂ , the reverse of T . Using Equation 5.5 and the
inequality on the right-hand side of Equation 5.6 above, we can bound the
overall coding length as follows:

ℓ n(tn) ≤ (1+log n)+(|C|−2)(1+log n)+

|C|
∑

i=1

(

|Si|Hθ̂(Si) +
|Σ| − 1

2
log |Si|+ di

)

≤ (|C| − 1)(1 + log n) +

|C|
∑

i=1

|Si|Hθ̂(Si) +
|C|(|Σ| − 1)

2
log |n|+ d

Dividing through by n, and after a little manipulation we obtain the bound
on the average code length per symbol:

ℓn =
ℓn(T )

n
=

ℓn(tn)

n
≤ 1

n

|C|
∑

i=1

|Si|Hθ̂(Si) +
|C|(|Σ|+ 1)

2

log n

n
+

d

n

≤ Hθ̂(T ) +
|C|(|Σ|+ 1)

2

log n

n
+ O

(

1

n

)

.

The first component is simply the empirical entropy of the input string,
while the last two components represent the extra cost incurred in using this
coding strategy. Thus, the redundancy in using this coding strategy on the
BWT output is simply:
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ρn(θ, T ) =
|C|(|Σ|+ 1)

2

log n

n
+ O

(

1

n

)

In terms of the dominant components, the above result is very close to the
optimal rate of convergence for finite memory sources as described by Rissanen

(1986). The difference is only by a constant factor of |Σ|+1
|Σ|−1 . The largest differ-

ence will be for the case of binary strings when |Σ| = 2. For larger alphabets,
the difference becomes insignificant. The above results show that the BWT
output can in fact be coded for optimal compression performance (for finite
memory sources), without the need for MTF or other local to global structure
transformation algorithms. Here, universality was obtained without the need
for alphabet extension, as was required for coding with MTF (see the previous
subsection). More importantly, for applications like image compression where
the alphabet size could be relatively large, for example 256 for gray scale im-
ages, or 511 for their pixel differences, one should expect a relatively better
performance from the BWT. Interestingly, MTF-based approaches typically
do not perform well on images.

5.5.4 Performance using piecewise constant parameters

Given the p.i.i.d. nature of the BWT output as described earlier, it is no
surprise that methods used for efficient coding of sources with piecewise and
identically distributed distributions can be adapted for equally efficient cod-
ing of the BWT output. Thus, Effros et al. (2002) studied the performance
of BWT-based coding when the BWT output is coded using published meth-
ods for coding p.i.i.d. sources (Shamir and Merhav, 1999; Willems, 1996).
They showed that, for finite memory sources with unknown state space and
unknown memory constraint (i.e. essentially, unknown |C|, the number of con-
texts, and unknown k, the context order), using p.i.i.d. parameters, the coding
length of the BWT-output can be bounded, depending on the specific p.i.i.d.
coding algorithm. In particular, they showed that, when using Willems’ algo-
rithm (Willems, 1996), which runs in O(n3) time, the following bound can be
obtained:

ℓn =
ℓn(T )

n
≤ Hθ̂(T ) +

|C|(|Σ|+ 1)

2

log n

n
+ O

(

1

n

)

.

They also showed that, using Shamir and Merhav’s algorithm (Shamir and
Merhav, 1999) that runs in O(n2) time, the bound will be:

ℓn =
ℓn(T )

n
≤ Hθ̂(T ) +

|C|(|Σ|+ 1)

2

log n

n
+ O

(

log log n

n

)

.

As before, the coding redundancy in each case is given by the last two terms
in the right hand side of the inequality. Thus, while the p.i.i.d. approaches can
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provide universal coding performance, in general, they are no better than cod-
ing directly, using an explicit description of the boundary points and the sub-
sequences within each partition. Further, the time complexity for the p.i.i.d.
approaches is generally worse than the linear time complexity required by the
method that uses explicit boundary point description. However, the p.i.i.d.-
based methods could be seen as more general, since they assume no knowledge
of the memory constraint (the context order), or the specific contexts.

5.5.5 Performance on general sources via empirical entropy

Some of the analysis results above are valid only for finite memory sources,
such as Markov sources. In practice, some parameters of such sources, such
as the true number of states, (that is, the number of contexts) may not be
easily available. Further, some practical data may be difficult to model us-
ing such finite state sources. Also, the analysis so far has ignored run-length
encoding on the MTF output, an important component of some of the best
performing BWT-based practical compression schemes. Manzini (1999, 2001)
took a fundamentally different approach to the analysis of BWT performance,
addressing the problems listed by analyzing the performance of BWT without
any assumptions on the probability distribution of the symbols. Rather, he
used the empirical entropy as defined previously, and in a modified form that
is more realistic for BWT coding.

Starting with the empirical entropy defined in Equation 5.3, Manzini de-
fined a modified zero-order empirical entropy:

H∗
0 (T ) =







0 : if |T | = 0,
1+⌊log |T |⌋

|T | : if |T | 6= 0 and H0(T ) = 0,

H0(T ) : otherwise

(5.7)

where H0(T ) is the zeroth-order empirical entropy of T using Equation 5.3.
Clearly, H0(Y ) ≤ H∗

0 (Y ). The motivation for this modification is the ob-
servation that the empirical entropy as defined in Equation 5.3 could under-
estimate the length required to represent certain inputs, such as the string
T = an, with n repetitions of the same symbol. Here, H0(T ) = 0, while

H∗
0 (T ) = (1+⌊log n⌋)

n . Thus, the modified empirical entropy ensures that the
entropy should contain enough information to recover the length of the input
sequence.

Using H0(T ), Manzini defined an analogous quantity for H∗
k(T ), the k-th

order modified entropy of T , as the minimum length per symbol that can
be achieved by using, for each symbol in T , a codeword that is based on a
context order of at most k (see Manzini (2001)). This is quite different from
the traditional definition that codes the sequence in blocks of fixed size k.

Manzini’s analysis also made use of results on the performance of arith-
metic coding (Howard and Vitter, 1993), where it was shown that the code
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length per symbol obtained using arithmetic coding on a sequence Y = yn =
(y1, y2, . . . , yn) can be bounded by:

ℓn(Y )

n
≤ H0(Y ) + µ1 +

µ2

n

where µ1 and µ1 are constants, with µ1 ≈ 1
100 . This result is different from

(but similar to) the usual bound on arithmetic coding performance using
ℓn(Y )

n ≤ H(Y ) + 2 bits.
Based on the above, the general approach is then similar to the approach

described earlier that uses the partitioned nature of the BWT output. First,
Manzini performed a detailed theoretical study on the nature of the MTF
output. Let T = t1t2 . . . tn be a given string, with ti ∈ Σ = {σ1, σ2, . . . , σ|Σ|}.
Let T̄ = MTF (T ), and let T = SiS2 . . . Su be some partition of T , where
each Si is a subsequence of T . Notice that |T̄ | = |T | = n, and that
∑u

i=1 |Si|H0(Si) ≤ nH0(s). He showed that the entropy of the MTF output
can be bounded as follows, using the empirical entropy:

nH0(T̄ ) ≤ 8

(

u
∑

i=1

|Si|H0(Si)

)

+
2

25
n + u(9 + 2|Σ| log |Σ|)

Based on this result, Manzini showed that for any context length, k ≥ 0,
the performance of BWT0, (the BWT-based compression scheme originally
proposed by Burrows and Wheeler) which uses the EC(MTF(BWT(T )))
model (where EC is an order-0 arithmetic coder) can be bounded as follows:

ℓn(tn) = ℓn(L̄) ≤ 8nHk(tn)+

(

µ1 +
2

25

)

n+ |Σ|k(9+2|Σ| log |Σ|)+µ2 (5.8)

where L̄ =MTF(L).
In practice, the bound can be improved slightly by observing that, rather

than all the |Σ|k possible subsequences, we may need to consider only the
order-k subsequences that actually appear in T . Although the constants in
the bound are admittedly high for most practical purposes, it still provides
another proof that the BWT can, at least in theory, provide competitive
results over very long sequences.

So far the analysis has used the empirical entropy, but a problem with
this approach is that the definition of empirical entropy implies that certain
strings can be “coded for free”, which may not be true in practice. Manzini
used the modified empirical entropy (Equation 5.7) to alleviate this problem.

For BWT-based compression using the model EC(RLE(MTF(BWT(T )))),
Manzini used the modified empirical entropy to show that

ℓn(tn) = ℓn(RLE(L̄)) ≤ (5 + ε)nH∗
k (tn) + gk (5.9)

where gk is a constant.
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The result was based on the use of c2 codes for the run-lengths, after MTF.
Essentially, the use of RLE has improved the bound in Equation 5.8 by elim-
inating the constant overhead per symbol, and by reducing the multiplicative
constant on the entropy.

The Manzini bounds in Equation 5.8 and 5.9 have been improved by more
recent work (Giancarlo and Sciortino, 2003; Ferragina et al., 2005a; Kaplan
et al., 2006, 2007). For instance, in Giancarlo and Sciortino (2003), using a
different partitioning technique, the multiplicative constant was reduced from
(5 + ε) to 5

2 , while in Kaplan et al. (2006, 2007), the factor was reduced
further to 1.7286. In theory, as with the previous analysis on MTF output
(see Section 5.5.2), the bounds could possibly be further improved with the
extra overheads made as small as we wish, by applying the analysis using
alphabet extensions on the original sequence.

5.6 Relationship with other compression schemes

Although the encoding and LGT stages of the BWT-compression pipeline
are generally sequential, the overall BWT-based compression is still non-
sequential because the BWT requires access to the complete string during
its computation. This is one core difference between the BWT and most other
compression algorithms, especially those discussed in this section, which are
generally sequential, with coding statistics being updated adaptively as more
and more of the input string is observed3. We start our discussion of the re-
lationship between BWT and other compression schemes by considering the
class of context-based compression schemes.

5.6.1 Context-based schemes

Most compression methods predict the probability of the next symbol based
on an observation of the previous symbols. An order-k finite-context com-
pression scheme is one that performs symbol predictions based on the pre-
ceding k symbols observed in the input stream. Among compression schemes
that are members of this class are the PPM-family, the Associative Coder
of Buyanovsky (ACB), context-tree weighting (CTW) method, and Dynamic
Markov Coding (DMC). The LZ family of compression methods have also
been shown to relate to context prediction (Langdon Jr., 1983; Bell, 1987;
Bell et al., 1990; Bell and Witten, 1994; Yokoo, 1997), and variations have
been explored that incorporate explicit contexts (Hoang et al., 1995, 1999).

Not surprisingly, given the sorted contexts used by the BWT, we can
expect a strong relationship with this class of compression algorithms. In this
subsection, we explore the link between the BWT and some members of the
class of finite-context compression schemes.

3 See Chapter 6 on sequential variants of the BWT.
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PPM — Prediction by Partial Matching

For lossless compression, the PPM family of compression algorithms (Cleary
and Witten, 1984; Bell et al., 1990; Moffat, 1990) is known to be among the
best in terms of data compaction ability, and are rivaled only by BWT-based
methods, which appeared nearly a decade after PPM was developed. The PPM
compression scheme uses a symbol-wise model that adaptively generates the
statistics of the input text sequence as the sequence is being compressed. Given
a current symbol ti, and its k-th order context ci, with ci = ti−kti−k+1 . . . ti−1,
a key problem in symbol-wise compression schemes is to generate a prediction
of ti based on its context ci. These predictions are used to compute the con-
ditional probability P (ti|ci) for each input symbol, which is then used by an
entropy encoder — typically an arithmetic coder, which will code a probability
p in close to − log2 p bits.

Rather than using a single fixed-order context to generate the required pre-
diction, the PPM scheme uses a set of finite order contexts that can range over
different values of k (this is the “partial matching” referred to in the name).
By using an “escape” mechanism, it carefully switches from the highest order
context to lower order contexts, depending on the input data. Coding a single
character is done by sending a series of messages to the decoder to inform it
which size context is being “escaped” to, before coding the character in that
context. This mechanism is equivalent to a blend of the different contexts,
although implementations generally code a symbol in just one context, aug-
menting the alphabet with an “escape” symbol 〈esc〉, which is used to tell the
decoder to change to the next smaller context. Initially the context size k is
set to the maximum order context (typically about 3 to 5 characters). At the
i-th coding step, PPM tries to use its maximum order context to predict the
next symbol, ti. If the symbol has appeared previously in this k-order context,
the symbol is coded with an estimated probability P (ti|ti−kti−k+1 . . . ti−1). If
the symbol has never appeared in this context, an escape symbol is sent,
and the context order is reduced to k − 1. The process is repeated with this
reduced-order context. If the model reaches the lowest-order context, the sym-
bol is encoded based on a fixed pre-determined probability distribution. By
convention, the lowest order context is denoted with k = −1, with symbol
probabilities typically defined by the uniform distribution, p(σ) = 1

|Σ| for all

σ ∈ Σ.
For example, suppose PPM is coding the sequence T = mississippi, and

it is up to the first p, which has a 5th order context of sissi. The sequence of
decisions made to code the p is shown in Table 5.7. With k = 5, the context
sissi has not occurred before, so both the encoder and decoder know to
switch down to k = 4 without an information being sent. issi has occurred
once, where it was followed by s. If we use a simple scheme that allocates a
count of 1 to 〈esc〉, then we have p(s) = 1

2 and p(〈esc〉) = 1
2 . We take the latter

because we want to code a p, not an s. (If the next character had been an s,
it would have been coded at this point with a probability of 1

2 , which requires
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1 bit.) The 〈esc〉 means that both encoder and decoder switch to k = 3, ssi.
This has occurred once before, but it only predicts an s which would have
already been coded, so p(〈esc〉) = 1 (the s is excluded), and we shift to k = 2,
si. This also generates p(〈esc〉) = 1, shifting to k = 1, which is the context
of i. This has occurred twice, but in both cases predicts s which has already
been coded, so again, we escape to k = 0. Note that these escapes will add 0
bits to the output, since their probability is 1. In the zero order context we
have 3 occurrences of i, 1 occurrence of m and 4 of s. s is excluded since it
would have already been coded, giving p(i) = 3

5 , p(m) = 1
5 and p(〈esc〉) = 1

5 .
If the next symbol was i or s, it would be coded at this point, but since it
is p, we escape to k = −1, where all symbols are equally likely. At this point
we code the p with p(p) = 1

|Σ| (note that in this context exclusions are not

applied even though the other characters would never be coded here; although
it would be beneficial for this small example, in practice it is not worth the
effort).

context σ count prob next context

sissi → → issi

→ issi → s 1 1

2

→ 〈esc〉 1 1

2
→ ssi

→ ssi → s × ×
→ 〈esc〉 1 1 → si

→ si → s × ×
→ 〈esc〉 1 1 → i

→ i → s × ×
→ 〈esc〉 1 1 → ǫ

→ ǫ → i 3 3

5

→ m 1 1

5

→ s × ×
→ 〈esc〉 1 1

5
→ (−1)

→ (−1) → i 1 ×
→ m 1 ×
→ p 1 1

4

→ s 1 ×

Table 5.7. PPM procedure for coding the first p in T = mississippi, with the
context reducing through k = 5, 4, 3, 2, 1, 0,−1. At the lowest context order (k =
−1), the symbol is coded based on the uniform distribution (p = 1

|Σ|
). Exclusions

are indicated by a cross

Different variants of the PPM model exist, such as PPMA, PPMB, PPMC,
PPMD, and PPM* (Cleary and Witten, 1984; Bell et al., 1990; Moffat, 1990;
Cleary and Teahan, 1997; Witten et al., 1999). The models differ mainly in
the way the escape probability is determined, which is a manifestation of the
zero-frequency problem — estimating the probability of an event for which
there are no samples on which to base the estimate (Witten and Bell, 1991).
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Table 5.7 uses the simple idea of assigning a count of 1 to the escape symbol
(sometimes referred to as PPMA), but a better way that works well is based
on the number of distinct symbols seen so far — effectively it is estimating
the probability of a novel symbol occurring based on how often novel symbols
have occurred in the past; the more novel symbols we have seen, the more
likely it is that the next symbol is novel, and vice versa. One could argue
the opposite of course; if many novel symbols have occurred, perhaps it is
less likely that a new one will occur in the future. However, this approach
works well in practice, and is supported by statistically sound approaches
to estimating novel events (Witten and Bell, 1991). This is the idea behind
the PPMC model (Moffat, 1990), where escape probabilities are assigned as
P (esc|c) = v

v+x , where v is the number of distinct symbols so far observed
in the context c, and x represents the total number of symbols observed in
the context c. Under the PPMC model, symbol ti with z counts in context
c will be assigned the probability P (ti|c) = z

v+x . The probability is further
modified by the exclusion mechanism mentioned in the example; there is no
point allocating probabilities to symbols that will not be coded in the current
context, as this will always make compression worse, although keeping track of
excluded characters can slow the system down. Another variation is “update
exclusions”, which updates the count of a character only in the context in
which it would be coded; this speeds up compression, and can have a positive
effect on the amount of compression obtained too (Bell et al., 1990; Moffat,
1990; Cleary and Teahan, 1997).

In principle the performance of PPM should always improve with a higher
maximum context order. However, empirical results show that while the per-
formance improves as we increase the maximum from 0, the best results are
achieved with a maximum of about 5 or 6, beyond which the compression per-
formance starts to degrade slowly. The main reason is that although longer
contexts can provide more reliable predictions, they often lead to more escape
symbols, since we are less likely to be able to find samples for longer contexts.
Fenwick (2007) reports that if PPM uses high-order contexts, as much as 95%
of the output is accounted for by the cost of identifying the context; very few
bits are needed to identify the character once the decoder knows the context
that it occurs in.

The PPM* algorithm (Cleary and Teahan, 1997) addresses this problem
by removing the need to specify the maximum context order beforehand.
This allows the algorithm to automatically adapt to contexts of arbitrary
order, essentially giving the PPM algorithm the ability to use contexts of
unlimited order (that is, unbounded contexts). The key idea used in PPM*
to support unbounded contexts is the concept of “deterministic contexts”. A
context is said to be deterministic when it gives a unique prediction. Thus, a
deterministic context will have only one following symbol. The deterministic
contexts are then exploited using the following strategy: at a given step, first,
check if there are already some deterministic contexts in the current context
list; if so, choose the shortest deterministic context; if no deterministic context
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is found, then choose the longest context in the list. Then, apply the PPM
algorithm starting from the chosen context. The result is that the PPM*
approach generally leads to a significant reduction in the number of novel
characters observed, and hence, the number of escape symbols, leading to an
overall improved compression.

Of course, maintaining unbounded contexts for PPM* requires the ability
to access every possible context already observed, all the way back to the first
symbol. A simple approach would require an O(n2) time and space. To solve
the associated computational problem with maintaining unbounded contexts,
PPM* uses a context trie, which is very similar to the context tree. The key
idea is that whenever a unique context is observed, a leaf node in the context
trie is allowed to point back into the original string. Extending a context thus
requires only that the pointer be moved forward by one position. Figure 5.13
shows the PPM* context trie for the example sequence mississippi. Non-
unique contexts observed so far in the string extend downwards until they
become unique. At this point, a pointer is inserted to point to the start of the
context in the input string.

Some variants of the PPM have also been implemented using compacted
suffix tries and suffix pointers (Bunton, 1997; Cleary and Teahan, 1997). Fig-
ure 5.14 shows the suffix tree representation of the PPM context tree of Fig-
ure 5.13. The PPM context tree can be compared with the standard context
tree of the same sequence, discussed earlier (see Section 5.3).
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Fig. 5.13. PPM* context trie for the string mississippi; the edge labels start from
the root until the context is unique, at which point the leaf node is made to point
to the starting position of the context in the original string

Relationship between PPM and BWT

When one considers a version of PPM implemented with suffix tries or suf-
fix trees (and context tries), and the context-tree view of the BWT explored
earlier in this chapter, the similarity between the two compression methods



140 5 Analysis of the Burrows-Wheeler Transform

i

s

$

$

ssi

m p

i

s

p

p

si

pi$

sp

sp

s i s s i p p i $sim

Fig. 5.14. Suffix tree representation of the PPM context shown in Figure 5.13. Only
the edge labels that lead to unique contexts are used. The suffix links are not shown

start to emerge. The connection between the PPM family and the BWT was
initially observed by Cleary et al. (1995); Cleary and Teahan (1997), and
later studied by Larsson (1998). Effros (2000) further studied the relationship
between the PPM and BWT, with the objective of improving the compu-
tational efficiency of PPM (using ideas from BWT), while maintaining its
superior compression performance.

To see the relationship, consider Figure 5.15, which shows the BWT trans-
formation matrices for T = mississippi$, as used earlier. In addition, we
have added the matrix Ass. Ass is obtained from As, the original BWT sorted
rotation matrix, but each row contains only just enough symbols to make the
context represented by the row to be unique. Thus, the unique contexts in
Ass form a one-to-one mapping with the leaves of the PPM context tries (see
Figures 5.13 and 5.14). The BWT output (the L-array) is also shown. It can
be observed that, for any given row, the element in L is simply the symbol
that immediately precedes the corresponding unique context in the same row
using Ass (the PPM context). This corresponds to the forward context used
by the BWT. Essentially, this means that both the BWT and the PPM use
the same contexts, up to the length of the deterministic context used by the
PPM. Thus, while the BWT sorts its contexts, and exploits the unbounded
contexts after observing the complete input string, PPM* adaptively predicts
the next symbol, based on an unbounded context, as determined by its short-
est deterministic context.

Context Tree Weighting

The context tree was introduced earlier in Section 5.3. It was assumed that
the tree (the model of the source) is known, and the problem was to estimate
the parameter, θ, the symbol distribution. In general, neither the model nor
the parameter will be known at the time of compression, and thus will need
to be estimated by the compression algorithm. The context tree weighting
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algorithm (CTW) provides a method to estimate both the model and the
model parameter (Willems et al., 1995).

First, the context tree is constructed based on the part of the input se-
quence observed so far. For an order-k model, the context tree is truncated
at a maximum depth of k. At the heart of the CTW algorithm is the compu-
tation of weighted probabilities for each node in the context tree. Recall that
at each node, say u, in the context tree, we have a record of the number of
occurrences of each symbol in the subsequence associated with u. Rather than
using Pe(u) (Equation 5.2) to compute the estimated probabilities directly,
for each node u in the context tree, the CTW method computes a weighted
probability, denoted Pu

w. This is the probability that is then used to encode
the subsequence associated with node u. Let S(u) be the subsequence.

For simplicity in notation, we let nu(σ) = n|S(u)|(σ, S(u)). Then, we can
write Pe(u) = Pe([nu(σ1), nu(σ2), . . . , nu(σ|Σ|)]). The CTW algorithm starts
at the leaf nodes; these will be at depth k for an order-k model. Consider the
leaf node u. At this node, we have available the counts

[nu(σ1), nu(σ2), . . . , nu(σ|Σ|)].

Since we do not have much more information beyond the counts, the best we
can do is to assume that the subsequence associated with each leaf is mem-
oryless. Therefore, the weighted probability for this node is best determined
using the K-T estimator. Thus, we should have:

Pu
w = Pe(u) = Pe

(

[nu(σ1), nu(σ2), . . . , nu(σ|Σ|)]
)

: if depth(u) = k

This computation is performed for each leaf node, and the resulting prob-
abilities are then used to recursively compute the weighted probabilities for
the internal nodes. Now consider the internal node u. Let u1, u2, . . . u|Σ| be
its children. We already know the weighted probabilities for the child nodes.
The subsequence associated with u could be memoryless, and hence the K-T
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estimate, Pe(u), will be a good estimate. If the subsequence is not memoryless,

the CTW algorithm then uses the product
∏i=|Σ|

i=1 Pui

w as the best estimate
for the probability. Since we are not sure of which of the two cases holds, the
CTW algorithm chooses the simple average of the two. Thus, we have:

Pu
w =

Pe

(

[nu(σ1), nu(σ2), . . . , nu(σ|Σ|)]
)

+
∏i=|Σ|

i=1 Pui

w

2
: if depth(u) < k.

where ui is the child node on the σi-edge starting from node u. Figure 5.16
shows the weighted context tree for the order-3 context tree of Figure 5.3. For
the sequence T = mississipi, we have Pe(T ) = Pe([4, 1, 2, 4]) = 3.3715 ×
10−8, and PT

w = 1.3008× 10−6.
The next question is how we update the tree when the next symbol is

observed. Interestingly, the CTW algorithm has a simple way to do this, and
hence can compute the weighted probability of the new sequence incrementally
based on the current weighted probabilities. Let the encoded sequence be
T = t1t2 . . . ti−1 and the new symbol be ti = σ. Thus we need to update the
context tree of T to derive the tree for T ∗σ. Let U be the set of nodes on the
path in the context tree (starting from the root) defined by symbols preceding
the next symbol, ti = σ. The update is performed as follows:

For each node u ∈ U ,

1. Increment nu(σ);
2. Update Pe([nu(σ1), nu(σ2), . . . , nu(σ|Σ|)]);
3. Update Pu

w.

Figure 5.16b shows the updated tree, for the tree in Figure 5.16a when
the new symbol is σ = s. The path that contains the nodes in U has been
highlighted. It is easy to see that, for each update, a maximum of k nodes will
need to be visited. Thus, the context tree weighting algorithm requires time
and space that is linear, for a fixed context order k.

Traditionally, text compression with the CTW is usually performed by
applying the CTW independently on each bit plane for the symbols involved.
For instance, 7 binary planes are used for the ascii symbols (assuming 7-
bit ASCII symbols); that is, the text is sliced into 7 strings, each consisting
of the bits from each position of a byte. Thus, seven context trees will be
needed, and the results can be combined for the final compressed data. The
use of binary CTW may be attributed to the fact that any symbol alphabet
can be converted to an equivalent binary alphabet. Moreover, the original
CTW paper (Willems et al., 1995), and most of its extensions (Willems et al.,
1996; Willems, 1998) have been based on the binary alphabet. However, with
the formulation above which is based on the general K-T estimator for fixed
alphabets of arbitrary size, it becomes possible to apply the CTW algorithm
to compress sequences from a general alphabet.

In terms of theoretical performance, it was shown in Willems et al. (1996)
that the CTW algorithm can achieve Rissanen’s theoretical bound for finite
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Fig. 5.16. Context tree weighting method: (a) Weighted context tree for the context
tree of Figure 5.3 using T = mississippi; (b) updated context tree when the next
symbol is s. In (b), the path that contains nodes that require updating have been
highlighted. Fractions at each node correspond to the weighted probability at the
node

memory sources. The CTW also provides very good compression performance
in practice. Results on practical compression experiments using the CTW
method have been reported for general text (Tjalkens et al., 1997; Volf, 1997),
genomic sequences (Chen et al., 2002), and map images (Kopylov and Fränti,
2005).

Section 5.3 showed the close relationship between the BWT and context
trees. This implies that the BWT and the CTW methods are equally closely
related. Again, the major difference is the fact the BWT sorts its contexts,
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while the CTW does not require that the contexts be sorted. Further, while
the BWT makes use of unbounded contexts, data compression with the CTW
requires that the context order be stipulated beforehand, and should remain
fixed during the compression. Thus the context order has to be transmitted
to the decoder. The results of Section 5.5 show that BWT (using context
partitions without LGT, or with p.i.i.d. parameters) can achieve the same
theoretical compression performance bounds as the CTW method.

Ziv-Lempel (LZ) coding

The family of Ziv-Lempel codes (abbreviated as LZ due to some historical
confusion) are widely used in data compression, most notably in the zip and
gzip utilities, and in the gif and png image compression formats. LZ coding
is based on replacing strings in a text with references to where the string has
occurred earlier in the text. This means that they are adaptive; even if the
text is about an unusual topic, once a relevant phrase or component of a word
has been introduced then it can be used for future reference. The LZ family of
methods can generally be divided into two groups: the “LZ77” group, which
allow pointers to reference substrings at any position in the recent text, and
the “LZ78” group4, which parse the text into substrings that are numbered
and can be referenced simply with the number, as the length is determined
when the phrase is parsed. The LZ77 group tend to be slow for encoding and
fast for decoding, while the LZ78 tend to be moderately fast for both encoding
and decoding. Over the years the LZ77 based methods, in combination with
Huffman coding, have emerged as giving the best compression performance.

The LZ77 group have pointers with two components; the first identifies
which previous substring is being referenced, and the other gives the length of
the match that should be copied. For example, the word mississippi could
be coded as miss(3,4)ppi, where the pointer (3,4) means to count back 3
characters (to the first i in the text), and then copy 4 consecutive characters
(issi). This particular example uses a recursive pointer; the decoder must
begin copying the 4 characters before the 4th one is known, but it will be
available by the time it is needed. Recursive pointers are particularly good for
simulating run-length encoding; for example, a(1,19) represents the letter
a repeated 20 times. LZ77 methods usually put a limit on how far back the
pointer can reach; this limits the search that must be made to find a match,
and it also allows the pointer component to be a fixed size. It also means that
adaptation focuses on recent history so that if the text gradually changes (is
not stationary) then older text will be lost from this “window” of available
characters.

The LZ78 group generally parse the input using a trie structure. For ex-
ample, the LZW method (based on LZ78) starts with a trie that contains

4 LZ77 and LZ78 are named for the years in which they were first published; they
are sometimes referred to as LZ1 and LZ2 respectively (Ziv and Lempel, 1977,
1978).
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all symbols in the alphabet, and then grows branches of the trie as the text
is encoded. The initial LZW trie for the alphabet {i,m,p,s} is shown in Fig-
ure 5.17a. Nodes in the trie contain the code that will be used to encode a
string represented by a path from the root to that node, so initially we just
have the codes from 0 to 3 for the four characters respectively. If we are com-
pressing the input mississippi, the first m will be coded as a 1, and then we
extend this branch of the trie by one character using the next input character
(i), giving us node 4 which can be seen in Figure 5.17b. The second i has
not been coded yet, and it in turn is coded as 0. The 0 node is then extended
using the third character, s. This continues, giving the coded form as shown
in Figure 5.17c. Of course, the example is too short to show any good com-
pression, but notice that the trie is building up a collection of useful phrases
that can be used to represent substrings of the text with just one number. The
trie itself is a good structure for finding the longest match for substrings in
the text, since one just follows the path from the root until a leaf is reached.
At this point we have the phrase number for coding, and it is also the place
where the tree is extended by one character. There is a minor problem if a leaf
node is used for encoding as soon as it is generated, as the decoder does not
have the next character available. However, it turns out that in this situation
the first and last character of the phrase will be the same, so the unknown
character can be obtained from the first character of the phrase that was just
used.

Even at a simplistic level both LZ77 and LZ78 have strong commonali-
ties with the Burrows-Wheeler Transform. The LZ77 method searches for the
longest match for the upcoming characters, and the pointer back to a previ-
ous occurrence of that phrase is effectively linking together maximally match-
ing phrases that would have been brought together in the Burrows-Wheeler
Transform. LZ78 based methods use the trie structure shown in Figure 5.17b,
which is an abbreviated suffix tree being used to find longest matches, and the
branches from any node share the common context represented by the path
to that node.

Yokoo (1997) presents an approach to compression that bridges the gap
between BWT-based methods and Ziv-Lempel methods; it is based on the
binary search tree used for LZ77 style coding in Bell (1986) which was used
to find the longest match in the previous text for LZ coding. Yokoo uses a
variant of the binary search tree, which groups similar contexts together in
lexical order (an inorder traversal of the tree gives the prefixes of the text in
lexical order). These prefixes are searched to make predictions about what the
next character can be (which is similar to PPM), but the idea is extended if
the characters beyond the first one being predicted are also strongly predicted
to occur next, in which case more than one character is encoded at that step.
The group of characters coded in one step require a reference to where they
have occurred before, and hence we end up with a kind of LZ coding, but
with a context to predict which sequence of characters is likely to occur next.
Yokoo’s approach is described in more detail in Section 6.4.



146 5 Analysis of the Burrows-Wheeler Transform

21 30

i s

m p

(a)

21 30

5

8

4 11 10 7

9

6

i s

s

s p

sipii

m p

(b)

m i s s i s s i p p i

1 0 3 3 5 7 2 2 0

(c)

Fig. 5.17. Coding mississippi using LZW: (a) the initial trie; (b) after coding the
text; (c) how the text is coded

This is not the only way the LZ coding has been related to finite context
predictions. Langdon Jr. (1983) showed a model based on the trie of an LZ78
compressor which assigned probability distributions to individual input sym-
bols in a way that the number of bits coded was identical to what it would
have been for the LZ78 coding. This established that LZ78 coding is equiv-
alent to a predictive model; the weakness of the model that was revealed is
that it doesn’t use a maximal context for prediction, but instead starts with
a zero-order prediction for one character, then first-order for the next char-
acter, and so on until no prediction can be made. At this point it resets to
the zero-order context for prediction and restarts. This contrasts with PPM
(and BWT), which use the longest possible context for predictions. The idea
of finding an equivalent predictive model was extended to the LZ77 family by
Bell (1987).
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Dynamic Markov Compression (DMC)

The Dynamic Markov Compression (DMC) method (Cormack and Horspool,
1987) is a relatively simple method to implement, yet gives compression com-
parable to the PPM- and BWT-based methods. Its main disadvantage is that
it is relatively slow because it codes only one input bit at each step, when
most methods code a byte at a time. It is based on a Finite State Machine
which models the text as a Markov model, with each state storing a probabil-
ity distribution to code the next character, and a transition to the next state
to be used depending on which character is encoded. DMC is most easily im-
plemented using a binary alphabet, and files with larger alphabets are simply
read one bit at a time.

Figure 5.18 shows a small model generated as part of DMC. For example,
state 1 has a transition to state 2 on a 0, and its count is 25. A 1 from the same
state has a count of 10, and so for this state we can estimate p(0) = 25/35
and p(1) = 10/35. After a transition is followed, its count is incremented for
future probability estimates. A key idea in DMC is that new states are added
to the model by a process called “cloning”; a heuristic is used to determine
if a state and a transition into it are heavily used, in which case a copy of
the state is made so that more detail can be stored in that part of the model.
As cloning continues, the size of the model can grow very large (typically the
number of states is comparable to the number of characters in the input).

21
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0/25

1/35

1/5

0/10

0/3

1/10

Fig. 5.18. A small DMC model

Although in general the state that a finite state machine is in depends on
the whole input string prior to the current character, in practice the cloning
heuristic proposed for DMC ensures that only a finite number of previous bits
from the input string need to be known to determine the state of the system,
and hence which probability distribution will be used (Bell and Moffat, 1989).
For example, in Figure 5.18, if the previous character(s) are 01 then we will
always end up in state 1, and conversely, if we are in state 1 then the string
must have ended with the characters 01.

This result means that the DMC model is effectively implementing a finite
context model (based on a finite number of previous bits), and the coding of a
symbol depends entirely on a finite prior context. Thus it is closely related to
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the BWT, where the context is used to partition characters into different areas
of the transformed string, and their coding depends on what other characters
have been seen in a similar context.

5.6.2 Symbol ranking schemes

The general family of symbol-ranking text compression algorithms provide
another way to consider the relationship between the BWT and other pop-
ular compression algorithms. In his original work on entropy of the English
language, Shannon (1951) performed experiments to predict the information
content of an English text by using humans (who are well experienced with
English) to guess the next symbol. Shannon’s idea was to use human subjects
to predict the contents of a passage (character by character), and from that
estimate the best possible compression that might be obtained if a computer
was able to predict English text as competently as a human. There are two
versions of the experiment.

1. Type-1: In the first version, the subject is asked to guess the next charac-
ter in the text. The subject is then informed whether the guess is correct,
or if not, the correct answer is revealed to the subject.

2. Type-2 In a second version, the subject is asked to continue guessing
until the correct answer is obtained.

Thus, the human subjects make use of knowledge of the preceding sym-
bols (that is, the context) to predict the next symbol. This is essentially an
unbounded context, the performance of which is, perhaps, only limited by a
person’s memory capacity, patience and experience.

Table 5.8 shows the results of this experiment as reported by Shannon
(1951) for the Type-2 experiment. Notice the significant skew in the distri-
bution of the number of guesses, which implies a potential for significant
compression — the table shows that, on average, 79% of the symbols are pre-
dicted correctly at the first guess. By considering the sequence of successful
and unsuccessful guesses, Shannon was able to estimate the entropy of English
text. His estimate of 0.6 to 1.3 bits per symbol for English is still a challenge
for most practical compression algorithms.

Number of guesses 1 2 3 4 5 > 5
(or symbol ranking)

Probability (%) 79 8 3 2 2 5

Table 5.8. Shannon’s results for the probability of correct guesses for English text

Fenwick (1997a,b, 1998, 2003b) was the first to make the connection be-
tween some of the popular compression algorithms and Shannon’s original
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experiment, leading to a family of “symbol ranking” text compression algo-
rithms. Members of this class include most of the high-performing text com-
pression algorithms available today, such as the BWT, ACB, LZP, the MTF,
and Elias’ recency and interval ranking schemes. In general, symbol-ranking
compression algorithms work in two steps.

1. Ranking Phase: This is the symbol ranking step, where the ranked list
of symbols is generated. For each context, we maintain a list of symbols
ranked in order of their probability of appearing in the given context. Any
input symbol is then placed into its correct rank in the sorted list. It is
this rank that is then transmitted as the code for the symbol. An identical
list is maintained at the decoder, and can be used to recover the correct
symbol based on the transmitted rank.

2. Coding Phase: This phase performs the final encoding of the sequence of
ranks produced by the ranking phase. In general, the recorded sequence of
ranks often have a highly skewed distribution, which can be exploited by
entropy coding algorithms, such as arithmetic coding or Huffman codes.
The sequence of ranks can also be coded with simple integer codes, such
as the Elias γ-codes or δ-codes.

With respect to the BWT, symbol ranking comes into play at two stages.
The context sorting stage groups symbols with similar contexts together in one
partition of the BWT output. Thus, adjacent contexts in a partition should
have sequences with similar ranks. In the second stage, BWT-based methods
often use a move-to-front (MTF) list to maintain one single ranked list (with
the same size as the alphabet), transmitting the rank of the current output
symbol in the list, before the symbol is moved to the front of the list. The
MTF list changes to adapt to changing symbols observed in the L array, the
BWT output. Given the similarity of nearby contexts in the BWT output, the
nearby symbols in the BWT output are expected to be similar. Thus, changes
in the MTF list will mainly be gradual.

Methods that belong to this class of symbol ranking compression algo-
rithms can also be seen as preprocessors, whereby the output of the pre-
processor can be sent to another compression algorithm for final compression.
Some recent work has viewed the BWT as a “compression booster” (Ferragina
et al., 2005a), whereby the output of the BWT can be passed on to a poten-
tially low-performing basic compression algorithm for improved performance
of the basic algorithm, for instance, without the MTF.

5.7 Further reading

The computational complexity of the BWT is typically analyzed by consid-
ering the complexity of suffix tree or suffix array construction algorithms.
(Kurtz and Balkenhol, 2000) described improved suffix-tree based algorithms
for computing the BWT. Kärkkäinen (Kärkkäinen, 2007) also provided a new
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scheme that is specifically tuned for computing the BWT, without computing
the complete suffix array. Szpankowski (1993a) analyzed the height of suffix
trees for data compression. Suffix trees were surveyed in Giegerich and Kurtz
(1997), while more recent surveys on suffix arrays appear in Puglisi et al.
(2005, 2007). Chapter 4 on suffix trees and suffix arrays provides more details
on suffix sorting and suffix trees.

The only major work on the output distribution of the BWT was per-
formed by Visweswariah et al. (2000) and Effros et al. (2002). Yokoo (1997)
was among the first to provide some theoretical analysis of block-sorting text
compression. Other earlier work on theoretical analysis of the performance
of the BWT in universal source coding was performed by Arimura and Ya-
mamoto (1998), Sadakane (1998), Balkenhol and Kurtz (1998, 2000), Effros
(1999) and Effros et al. (2002). Manzini (1999, 2001) took a comparatively
different approach, using the notion of empirical entropy (Bentley et al., 1986)
and its modifications to obtain bounds on the compression ratio of BWT-based
compression schemes. More recent work in this area has followed Manzini’s
approach (see Giancarlo and Sciortino (2003); Ferragina et al. (2005a); Kaplan
et al. (2006)). Fenwick (1998) studied the empirical performance of BWT com-
pression using universal codes for the integers, after the MTF, rather than the
more traditional approach of using entropy coding. Kaplan and Verbin (2007)
is a another recent paper analyzing BWT-based compression systems.

The PPM method was presented by Cleary and Witten (1984), with fur-
ther descriptions and development provided by Bell et al. (1990) and Moffat
(1990). The LZ compression methods originally appeared in Ziv and Lempel
(1977) and Ziv and Lempel (1978). The LZW method is by Welch (1984). The
DMC method appeared in Cormack and Horspool (1987). More information
about these methods can be found in Witten et al. (1999), and in other gen-
eral compression books listed in the “Further reading” section at the end of
Chapter 1.

The relationship between the BWT (and sorted-context based methods in
general) and other well-known compression schemes, such as the LZ family
was initially pointed out by Yokoo (1997). Larsson (1998), Cleary and Tea-
han (1997), and Effros (1999, 2000) studied the close relationship between the
BWT and PPM-family, especially the PPM* algorithm with unbounded con-
texts. Fenwick (2007) presents a more recent work on the relationship between
BWT and PPM. Larsson (1998) also studied the close relationship between the
BWT and context trees, although without relating it to the CTW (context-
tree weighting) approach. He described heuristics for generating pruned con-
text trees needed for compression, based on the expected compression gain
in including a given node in the PPM context tree. Context-tree weighting is
described in detail in the classic paper by Willems et al. (1995). The K-T esti-
mator was originally proposed by Krichevsky and Trofimov (1981) for binary
sources.

The discussion on BWT and symbol ranking compression schemes is
mainly due to Fenwick (1998). There is related information about compres-
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sion methods that are similar to the BWT in Chapter 6. The experiments
on estimating the entropy of English by human guesses were performed by
Shannon (1951). The entropy of English was further studied by Cover and
King (Cover and King, 1978) using a gambling estimate.
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Variants of the Burrows-Wheeler Transform

With the huge excitement that was generated by the publication of the origi-
nal paper on the Burrows-Wheeler Transform in 1994, followed by a more de-
tailed empirical study by Fenwick between 1995 and 1996 (Fenwick, 1995b,c,
1996a,b), it did not take long before researchers started considering differ-
ent variations, extensions and generalizations of the transform. There were
many questions to ask; for instance, given the sorted BWT rotation matrix,
is the array of last characters (the last column L of the matrix As) selected
by the BWT as its output the only possible choice? And if other choices are
possible, might they give better compression? The first column (F ) would be
an attractive choice if it were possible to recover the original text from this
column, since it can be represented very efficiently. It would seem that there
is insufficient information to recover the text T from F , and we know how to
recover it from L, but what of the columns between them?

Another debate was about the transformation itself. Do we need a complete
sorting of all the cyclic rotations of the original text, or can we make do
with a limited-length key comparison — for instance, sorting based on the k-
length prefix of each row, for an arbitrary k? Can we recover the original text
without error from such limited-order sorting? Given that sorting is the major
bottleneck in BWT-based analysis, if this simplified sort were possible it could
have a significant advantage with respect to computational complexity; but
what will be the impact on compression? Other questions included whether
the BWT can be applied to a word-based alphabet, especially given that the
original paper that proposed the MTF algorithm for compression (Bentley
et al., 1986) used word-based alphabets.

In this chapter we address the above issues and more by considering various
published extensions and generalizations of the BWT. Where possible, we
include empirical performance of the BWT variant or generalization.
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6.1 The sort transform

One generalization of the BWT is found by considering the number of char-
acters used to compare lines in the array A. With the BWT, the position of
a given symbol in the output list is determined by its unbounded context.
That is, sorting a row in A uses as many symbols as are needed to compare
it with another row, so the character in the L column (BWT output) has
its position based on an unbounded number of following characters, which
we regard as its context. One question is whether one can recover the original
string from an L-array formed using only a limited-length context, rather than
unbounded contexts. The question was settled in the affirmative by Michael
Schindler (Schindler, 1997a,b, 2001), who showed that for a given k, a trans-
formation similar to the BWT can be performed using only order-k contexts.
He demonstrated that with only small values of k, for instance k ≤ 16, the
compression loss when compared with using the full unbounded contexts (i.e.
with k = n) can be minimal. Schindler’s algorithm, called the Sort Transform,
can be viewed as a generalization of the BWT with parameter k, where the
original BWT corresponds to the case of k = n. In fact, with a k value greater
than the maximum lcp between any two suffixes in the original string, the
output of the sort transform will be identical to that of the BWT. The sort
transform algorithm is implemented in the compression program szip.

6.1.1 Forward sort transform

We will use the symbols Lk and Vk to denote the corresponding BWT arrays L
and V respectively when using the sort transform with order-k contexts. Sim-
ilarly, we use ak to denote the corresponding starting index using the order-k
sort transform, and Ak to denote the sorted matrix or rotated substrings (at
k = n, we have Lk = L, ak = a, Vk = V , and Ak = As). The forward sort
transform is simple. For a text T with |T | = n, and the parameter k for the
size of the sort context, the steps are similar to the forward BWT described
in Chapter 2:

1. Perform cyclic rotations of the input string T to form the rotation matrix
A;

2. Sort the rows in A based only on the first k symbols in each row; if there
are ties, use the position in T of the starting symbol in each row involved
in the tie as the tie breaker. Call the resulting order-k sorted rotation
matrix Ak.

3. Record the pair (Lk, ak) as the output of the sort transform, where Lk is
the last column of Ak, and ak is the row index of the original string T in
Ak.

Figure 6.1 shows a run of the sort transform on a sample string T = banana

for different values of k. In general, whenever k is greater than the maximum
lcp between any adjacent rows in the BWT sorted rotation matrix, then the



6.1 The sort transform 155

results from the k-order sort transform become identical to those of the BWT.
This can be observed at k = 4 in the example (maxLCP , the maximum lcp

is 3).
With the limited-context sorting there are likely to be duplicate sort keys

— for example, with k = 1 there can only be |Σ| different keys. Schindler
(1997b) suggested that the sort order for duplicate keys should follow the
reverse order of the substrings in T ; that is, the index to the substring in
T is used as the tie-breaker for key comparisons. However, with appropriate
modifications to the transformation arrays, this is not a necessary condition
for the algorithm to work.

One major attraction of sorting with limited-order contexts is computa-
tional efficiency. With small values of k it is easy to use a simple radix sort to
provide a fast transformation, leading to O(kn) time in the worst case. When
k approaches n, this defaults to quadratic time with respect to the length of
the input string. In practice though, only small values of k are required, and
hence the algorithm is fast. Further, for random text where the maxLCP is
expected to be small compared with the length of the text, the algorithm can
be expected to provide superior speed performance.

6.1.2 Inverse sort transform

The major problem is how to recover the original T , given only Lk and ak. As
with the original BWT, it is quite remarkable that, indeed, there is an algo-
rithm to perform this recovery. However, unlike the BWT, which has a rela-
tively simple inverse transformation, computing the inverse of the Schindler’s
sorting transform is quite involved, and can be more time consuming than
the forward transform (Schindler, 1997a,b). Although Schindler showed em-
pirical results of his algorithm, his descriptions are not sufficient to clearly
understand how the inverse transformation is performed.

Inverting the sort transform generally requires two stages:

• Sorting stage: From Lk generate all the order-k contexts, and sort these
contexts lexicographically. When there is a tie, use the position of the
symbols to break the tie as was done during the forward transform.

• Retrieval stage: Using the sorted order-k contexts, generate new trans-
formation vectors. Using these vectors, sequentially retrieve the symbols
in T .

The sorting stage can be performed in a manner very similar to the BWT
inversion procedure shown in Figure 1.2 (page 4). Starting with the Lk-array,
we can reconstruct the initial order-k sorted rotation matrix. From Lk, the last
column of the matrix, construct F by simply sorting Lk. Construct the order-2
contexts by concatenating Lk[i] to F [i] for each i, 1 ≤ i ≤ n. Sort the resulting
bigrams to obtain the order-2 sorted contexts. Repeat this concatenation and
sort process to obtain the order-3, order-4, . . ., order-k sorted contexts. Figure
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Fig. 6.1. Example of Schindler’s sort transform, for four values of k: (a) the unsorted
rotation matrix A; Sorted rotation matrix for (b) k = 1; (c) k = 2; (d) k = 3; (e)
k = 4. For this particular example, we have ak = 4 for each value of k. The transform
vectors required for the inverse sort transform are also included. Position indicates
original row indexes before sorting. See the text for definitions of Ck and Mk
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6.2 shows how the sorting stage is performed during the inversion process,
using the example in Figure 6.1.

Step: 1 2 3 4 5 6

L3 sort concatenate L3 ∗ F sort concatenate sort

n
b
n
a
a
a

a . . . n
a . . . b
a . . . n
b . . . a
n . . . a
n . . . a

na

ba

na

ab

an

an

ab . . . n
an . . . b
an . . . n
ba . . . a
na . . . a
na . . . a

nab

ban

nan

aba

ana

ana

aba . . . n
ana . . . b
ana . . . n
ban . . . a
nab . . . a
nan . . . a

Fig. 6.2. Sorting stage in performing the inverse sort transform; this is based on
the example in Figure 6.1, for k = 3

The retrieval stage is the major challenge. Schindler (1997a,b) gave a high-
level description of the above inversion procedure. In his patent on the sort
transform (Schindler, 2001), he described the possibility of using various data
structures, such as hash tables and tries to implement the inversion procedure.
More recently, Chan and Nong (2005) and Nong and Zhang (2006, 2007a)
provided a more detailed study of the Schindler’s sorting transform, especially
its inversion. They showed that given the output of the sort transform, the
original inverse BWT algorithm can be modified to compute the inverse of
the sort transform.

To understand the inverse transformation we need to consider the prop-
erties of the arrays and the sorted rotation matrix involved in limited-order
sorting. The properties generally follow those of the original BWT, with some
important differences in certain cases. Recall that Vk maps the symbols in Lk

to F , such that Lk[i] = F [Vk[i]]. The first observation is that, similar to the
original BWT L and F arrays, when the same symbol, say σ, occurs in two
positions in Lk, their relative order in Lk is maintained in F , the array of
first characters. That is, if the same symbol appeared in Lk[i] and Lk[j], and
i < j, then, their respective positions in F as defined by the mapping vector
Vk must be such that Vk[i] < Vk[j].

As with the original BWT matrices, we can also notice that, for a given
position i, i = 1, 2, . . . , n, Ak[Vk[i], 1] = Lk[i]. Thus we should have, for
j = 2, 3, . . . , n, Ak[Vk[j], 1 . . . k] = Lk[j] ∗ Ak[Vk[j], 1 . . . k − 1]. Chan and
Nong (2005) proved an important theorem about limited-order sorting. Con-
sider two positions i, j (1 < i < j) in Lk with Lk[i] = Lk[j] = σ.
They showed that, if rows Vk[i] and Vk[j] have the same first k sym-
bols, that is, lcp(Ak[Vk[i], 1 . . . n], Ak[Vk[j], 1 . . . n]) ≥ k (or equivalently,
Ak[Vk[i], 1 . . . n] =k Ak[Vk[j], 1 . . . n]), then, for any position, say r, i < r < j,
if Lk[r] = Lk[i] = σ, the corresponding row in Ak, starting at Vk[r] must
have the same first k symbols as the row starting at Vk[i]. This means that
the rows Vk[i] . . . Vk[r] . . . Vk[j] in Ak must all have the same k-order context,
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and hence must belong to the same group or contiguous region in F . This
relationship is the key to correct inversion of the sort transform, given only
the pair (Lk, ak). Furthermore, when the sentinel symbol $ is appended to
the end of the string T before the transform, it is easy to see that the matrix
An−1 will be identical to An = As, the original BWT sorted rotation matrix.

The retrieval stage is then performed using a modified BWT inversion
procedure. Following the methods proposed in Chan and Nong (2005) and
Nong and Zhang (2006, 2007a), we can modify the BWT inversion algorithms
of Section 2.2 to realize the inversion procedure for limited-order sort trans-
form.

To invert the original BWT we used two primary arrays. One was the array
C, such that C[i] is the number of instances of symbol L[i] in L[1 . . . i − 1].
The second array M contained the cumulative count of each symbol in L.
Essentially M recorded the starting position in F of each distinct symbol in
the alphabet. To use the same general approach for the limited order contexts
used in the sorting transform, we must modify the above arrays, to reflect the
fact that the sorting now uses only the order-k contexts along with position
sorts, and not the unbounded contexts used by the BWT.

Consider each distinct order-k context as forming a partition of the matrix
Ak, or equivalently of F , the array of first characters. Let Ck be a count array,
such that, Ck[i] gives the size of the i-th distinct order-k context partition in
Ak. Thus, all positions in F that share the same order-k context in Ak will
have one Ck[i] value. Therefore, Ck[i] is defined only for rows in F (and hence
Ak) that represent the starting position of a new order-k context. Thus, in
Figure 6.1 the Ck entries mark the start of each partition, with just 3 partitions
for k = 1, and every row being a partition for k = 4. Mk is another array with
the cumulative count of contexts in each context partition. More specifically,
Mk[i] is the cumulative number of order-k contexts in the context partition to
which symbol L[i] belongs; that is, the order-k context partition containing
row Vk[i] in Ak (or equivalently, row Vk[i] in F ). Thus, Mk is also defined
with respect to order-k context partitions. All rows in Ak that belong to the
same context partition share the same values for Ck and Mk, respectively.
Both Ck and Mk are easy to compute — after generating the order-k sorted
context, both vectors can be computed in O(n) time. Figure 6.1 shows values
for Ck and Mk for a sample run. Notice how the elements in the vector Ck

progressively tend to unity as k approaches the value of (1 + maxLCP ).
Similarly, the vector Mk becomes identical to Vk, which in turn will be equal
to V , the original BWT vector, whenever k is greater than the maxLCP .

Using the new vectors, the retrieval stage needed to recover the symbols
in T when inverting the sort transform can be performed by modifying the
retrieval segment of the BWT reconstruction procedure (lines 16 to 20 in
Algorithm 2.1 on page 26). This modification is shown in Algorithm 6.1.

The following is a run of the above algorithm for the retrieval stage of the
sort transform inversion procedure, after the initial sorting stage. We continue
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Inverse-Sort-Transform(Lk, ak, Ck, Mk)
16 j ← ak

17 for i← n down to 1 do

18 T [i]← Lk[j]
19 j ←Mk[j] + (Ck[Mk[j]]− 1)
20 Ck[Mk[j]]← (Ck[Mk[j]− 1)
21 end for

Algorithm 6.1: Inverse sort transform after initial sorting

with the example used earlier in Figure 6.1, and consider the case with k = 2,
and ak=4.

j = a2 = 4;
i = 6 : T [6] = L2[4] = a; j = M2[4] + C2[M2[4]]− 1 = 1 + 1− 1 = 1; C2[1] = 1− 1 = 0;
i = 5 : T [5] = L2[1] = n; j = M2[1] + C2[M2[1]]− 1 = 5 + 2− 1 = 6; C2[5] = 2− 1 = 1;
i = 4 : T [4] = L2[6] = a; j = M2[6] + C2[M2[6]]− 1 = 2 + 2− 1 = 3; C2[2] = 2− 1 = 1;
i = 3 : T [3] = L2[3] = n; j = M2[3] + C2[M2[3]]− 1 = 5 + 1− 1 = 5; C2[5] = 1− 1 = 0;
i = 2 : T [2] = L2[5] = a; j = M2[5] + C2[M2[5]]− 1 = 2 + 1− 1 = 2; C2[2] = 1− 1 = 0;
i = 1 : T [1] = L2[2] = b; j = M2[2] + C2[M2[2]]− 1 = 4 + 1− 1 = 4; C2[4] = 1− 1 = 0;

We can see that at the last step, the value of the index variable j becomes
j = a2 = 4, the original starting value, indicating a complete cycle for the
retrieval stage.

With the above approach, the sorting stage can be performed in O(kn)
time, which could be quadratic as k tends to n. The retrieval stage can be
performed in O(n). Given the discussion on suffix sorting in Chapter 4, it may
be possible to perform the sorting stage in O(n) time, leading to an overall
linear time algorithm for both the forward sort transform, and the inverse sort
transform.

6.1.3 Performance of the sort transform

Figure 6.3 compares the performance of Schindler’s sort transform with the
original BWT method. The figure shows results for different input sequences
for different values of k, up to k = 100. The files used are described in detail
in Section 5.4.2, on page 106, and were chosen because of the variety of the
nature of their contents. To clearly show the effect of a limited-order trans-
form on the compression performance these tests use the same second stage
algorithms (simply MTF followed by run-length encoding and the arithmetic
coding) for both BWT (k = n) and Schindler’s sort transform (k < n). As
can be seen from the figure, the compression performance becomes almost
indistinguishable from that of the original BWT from around order k = 8.

Figures 6.4 and 6.5 show the performance of the sort transform with re-
spect to compression and decompression time1. The graphs show an essentially

1 The times are for a 2.4GHz dual-core processor.
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Fig. 6.3. (a) Compression performance of Schindler’s sort transform for different
values of k; (b) an expanded view of the graph. Results using the original BWT are
indicated at order k = 150 in (a) and at k = 25 in (b). The compression ratio is
given as (compressed size) / (original size)

linear relationship between the compression or decompression time and the
sorting order, k. In general, the compression time for the original BWT cor-
responds to around the time needed between order k = 10 and order k = 17
with the sort transform. However, for decompression, the original BWT was
always a lot faster than the sort transform, even for very small k values. This
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is borne out by the relative performance of the implementations of szip and
bzip, which use Schindler’s method and the original BWT method respec-
tively; szip is a little faster for compression but does not reduce the file size
as much, whereas bzip is faster for decompression.
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Fig. 6.4. (a) Encoding time for Schindler’s sort transform for different values of k;
(b) detailed view for smaller values of k. The original BWT results are shown at
k = 40 and k = 25 respectively
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Fig. 6.5. (a) Decompression time for Schindler’s sort transform for different values
of k; (b) detailed view for smaller values of k. The original BWT results are shown
at k = 40 and k = 25 respectively

The results highlight differences depending on the nature of the files being
compressed. The textual files give good compression, and benefit the most
from higher values of k. The “E.coli” file compressed to just over 25% of its
original size, which is what would be expected since there are only 4 symbols in
its alphabet — beyond the two bits per symbol the BWT and related systems
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find few patterns in such files without being adapted for genomic data. The
“lena” file was difficult to compress because the compression is lossless, and
such images really require a lossy method, or at least one that does not rely on
patterns being repeated exactly (no spatial error prediction stage was used for
the results reported here). The compression and decompression speeds for this
file are quite variable, largely because it is a small file and compression time is
influenced more by overheads than the main processing time. The “random16”
file was compressed close to a half of its size, as should be expected, and this
was achieved even with very small values of k. Because the characters are
random, contexts would have been evenly distributed with small lcps, and
this is reflected in it being the fastest file to encode and decode.

6.2 Lexical permutation sorting

Another possible generalization of the BWT can be found by considering the
choice of the specific column to select after the BWT sorting stage. Tradi-
tionally the BWT selects L, the last column of the sorted rotation matrix As,
as its output, accompanied by the index of the original string in the matrix.
Compression is then performed by further post-processing of the selected col-
umn, for instance, using the MTF algorithm and entropy coding. There is
therefore the question of whether we can choose any other column of As and
still recover the original sequence without error. This was exactly the problem
studied by Arnavut and Magliveras in the late nineties in lexical permutation
sorting (Arnavut and Magliveras, 1997a,b; Arnavut and Arnavut, 2004). They
showed that, indeed, for a certain class of strings, it is possible to choose some
other columns, and still recover the data. For general strings, which can be
considered as multiset permutations, this can also be done, but with some
added overhead. Before we get into details of their lexical permutation sort-
ing algorithm (LPSA), we introduce some further notation.

Given n distinct objects, a permutation of the objects is simply a linear
arrangement of the objects. Thus, for a collection of n distinct objects, we
have n! possible permutations of the collection. A permutation can also be
considered as a re-labeling of the objects in the collection, i.e. a one-to-one and
onto mapping of the n objects. Let χ be a set of objects. Then a permutation
π of χ is a bijection from χ onto χ, π : χ → χ. Suppose χ = {a, b, c, d, e, f}.
An example permutation π is denoted as follows:

π =

(

a b c d e f

d f b c a e

)

This corresponds to the mapping, a→ d, b→ f, c→ b, d→ c, e→ a, f →
e, or equivalently π(a) = d, π(b) = d, etc. The permutation is not affected if
we swap the columns, or more generally, if we change the order of the columns.
Thus, the permutation above could be written as :
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π =

(

a d c b e f

d c b f a e

)

However, if we impose a fixed order on the elements in χ, we can denote
the permutation by simply writing out only the second row. For instance,
if we choose [a, b, c, d, e, f ], the lexical ordering of the elements of χ, then
the permutation above will be π = (d f b c a e). The result is sometimes
called the Cartesian form of the permutation. A permutation can sometimes
be decomposed into a product of disjoint cycles. For example, the permu-
tation π = (a e d f b c) can be depicted using the equivalent notation:
π = (a)(b e)(c d f).

To every permutation π, there is a corresponding inverse, denoted π−1.
Every permutation has a unique inverse. For the example above, we have

π =

(

a b c d e f

d f b c a e

)

and π−1 =

(

d f b c a e

a b c d e f

)

=

(

a b c d e f

e c d a f b

)

In Cartesian form, we have π−1 = (e c d a f b). This inverse permutation
can be used to undo the effect of the permutation. The identity permutation
is obtained by multiplying a permutation with its inverse, that is, the prod-
uct π−1π. This notation applies the inverse permutation after applying the
original permutation. In general, the order of the permutations is important
in computing the product of two permutations. For two permutations π1 and
π2, we use the notation π3 = π1π2 to represent π3(i) = π1(π2(i)). Notice that
for the identity permutation, ππ−1 = π−1π.

6.2.1 Sorting permutations

Consider what happens when we apply the BWT on a permutation. For in-
stance, suppose we are given the permutation T = (d f b c a e), with n = 6.
We obtain the BWT rotation matrix A, and its sorted form As as follows:

A =

















d f b c a e
f b c a e d
b c a e d f
c a e d f b
a e d f b c
e d f b c a

















, As =

















a e d f b c
b c a e d f
c a e d f b
d f b c a e
e d f b c a
f b c a e d

















.

Each column in A (also As) is a permutation of the original sequence, and
so is each row. Since the symbols in a permutation are unique, to sort A, we
need to consider only the first symbol in each row. The original permutation
T occurs at row 4 in As (i.e. a=4). Let Ci be the i-th column in the sorted
rotation matrix As. That is, C1 = F and Cn = C6 = L. Observe that if
we view the columns as permutations, C1 = F is the identity permutation.
Further, C2 = (e c a f d b) (the second column) and Cn = (c f b e a d) (the
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last column) are inverses (C2Cn = C1 = F ). That is, ∀i, j, if C2[i] = j, then
L[j] = i. Also notice that C2+1 = C3 and Cn−1 = C5 are inverses.

With the BWT, we would choose the pair (L, a) = (Cn, a) as the BWT
output. Given the above relationship between L and C2 however, it means
that we can as well choose (C2, a) as the BWT output, and still be able to
recover the original string. In fact, there is a simple procedure to perform this
recovery, given in Algorithm 6.2.

Inverse-BWT-From-Second-Column(C2, a)
T [1]← C2[a]
for i← 2 to n do

T [i]← C2[T [i− 1]]
end for

Algorithm 6.2: Inverse BWT from second column

Now consider the general case. T is the given permutation, with n = |T |.
A is the BWT rotation matrix, and As is its sorted form. The permutation
πi denotes the i-th column of A. That is,

A = [π1, π2, . . . πi, πi+1, . . . , πn].

We can observe that A is symmetric, and hence π1 = T , the original input
permutation. Also, to sort A, all that is required is to rearrange the rows such
that the first column after the rearrangement is the identity permutation.
Based on these observations, Arnavut and Magliveras (1997a,b) proved an
important lemma about sorting a matrix of cyclic permutations, such as A.
They showed that the columns in As, the sorted rotation matrix, can be
described using a simple form: Ci = π−1

1 πi. That is, Ci[k] = πi(π
−1
1 [k]).

Hence, the sorted matrix will be:

As = [π−1
1 π1, π

−1
1 π2, . . . , π

−1
1 πi π−1

1 πi+1, . . . , π
−1
1 πn].

For the previous example, we have T = π1 = (d f b c a e) and π−1
1 =

(e c d a f b). We can then compute any of the columns, for instance, C3 =
π−1

1 π3 = (e c d a f b)(b c a e d f) = (d a e b f c). From the above, we can see
that with Cn = L = π−1

1 πn, and its inverse, C−1
n = π−1

n π1, we should have
T [i + 1] = C−1

n [T [i]].
Let the permutation θ = C2. Any column of As can be derived as some

power of θ. For example, C3 = θ2. More specifically, Ck = θk−1. Thus, the
columns of As form a cyclic group of order n. More generally, let G be the
set of columns of As that are generators of the cyclic group 〈θ〉. Then, both
θ = C2 and its inverse θ−1 = L = Cn can be completely specified as an integer
power of any column, Ck ∈ G. Further, since any column can be specified as
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an integer power of θ, it follows that any column of As can be specified as an
integer power of any column in G.

The number of such generators for a cyclic group is given by Euler’s phi
function:

φ(n) = n
∏

p|n

(

1− 1

p

)

,

where p runs over all primes that divide n (n inclusive, if n is prime). Thus,
whenever n is prime, we have φ(n) = n− 1, otherwise, φ(n) < n− 1.

Since the Ci’s, the columns of As, form a group, each column must be an
inverse of some column in As. We can observe the following relationship about
the sorted permuted matrix, As: The columns Ci and Cn−(i−2) are inverses,

where 2 ≤ i ≤ (n+2
2 ) when n is even, and where 2 ≤ i ≤ (n+1

2 ) when n is

odd. Thus, when n is even, we must have Ck = C−1
k , where k = n+2

2 . That is,
ignoring C1, the middle column in As will be the inverse of itself.

Consider the example permutation π = (3 1 5 4 2). Applying the BWT to
this permutation will produce the A and As matrices as follows:

A =













3 1 5 4 2
1 5 4 2 3
5 4 2 3 1
4 2 3 1 5
2 3 1 5 4













, As =













1 5 4 2 3
2 3 1 5 4
3 1 5 4 2
4 2 3 1 5
5 4 2 3 1













.

Table 6.1 shows the permutations generated when we choose δ as each
column in As, δ = Ci, i = 2, 3, . . . 5 and the corresponding results for δq,
where q = 1, 2, . . . , 5. Thus, we have 4 generators (φ(5) = 4), and in every
single case in the table, we can observe that each column of As is generated
by some power of δ. This can be compared with the previous example with
T = (d f b c a e), where n = 6, and hence we again have 4 generators. In that
case, C4 is not a generator as it is the inverse of itself.

δ = C2 δ = C3 δ = C4 δ = C5

δ δ2 δ3 δ4 δ5 δ δ2 δ3 δ4 δ5 δ δ2 δ3 δ4 δ5 δ δ2 δ3 δ4 δ5

5 4 2 3 1 4 3 5 2 1 2 5 3 4 1 3 2 4 5 1
3 1 5 4 2 1 4 3 5 2 5 3 4 1 2 4 5 1 3 2
1 5 4 2 3 5 2 1 4 3 4 1 2 5 3 2 4 5 1 3
2 3 1 5 4 3 5 2 1 4 1 2 5 3 4 5 1 3 2 4
4 2 3 1 5 2 1 4 3 5 3 4 1 2 5 1 3 2 4 5

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 4 5 1 3 5 2 4 1 4 2 5 3 1 5 4 3 2 1

Table 6.1. Generating columns in the BWT, starting from different columns (dif-
ferent generators) in the sorted rotation matrix; the up arrows indicate the corre-
sponding columns in As generated at the indicated power of δ
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For cases with δ 6= C2, we can find some q, such that δq = θ = C2. In
fact, given n, the chosen column Ci (i.e. δ = Ci), and the power p, we can
determine the value of k, the column index of the permutation that will be
generated, such that Ck = δq. The above results imply that, for the special
case where the input string T represents a permutation of distinct characters,
we can choose any column of As, the BWT sorted rotation matrix, as the
BWT output, and still recover the data without error. This approach implies
the possibility of selecting a column that could lead to more compression than
the L array (last column) which is always chosen by the BWT.

6.2.2 Lexical permutation sorting algorithm

To apply the idea of permutation sorting for the more general case of text
strings, we consider multiset permutations. A multiset is similar to a set,
however, elements in a multiset can be repeated, which corresponds to the
more normal situation of having strings over an alphabet where symbols from
the alphabet can be used more than once in a string. A multiset permutation
is an ordered arrangement of the elements in a multiset. For example, if χ =
{a, a, a, b, b, c} is a multiset then π = (a b b a c a) is a permutation of χ.
Let T = t1t2 . . . , tn be a given text string, with symbols from an alphabet
Σ. Then, we can consider T as a multiset permutation: T = (t1, t2, . . . , tn).
Suppose we apply cyclic rotations on the string T . Let T (i)(1 ≤ i ≤ n) denote
the result obtained after left-cyclic shifts on T by (i−1) positions. The lexical
index permutation for T , denoted λT , is defined by the permutation λT = ρ−1,
where ρ−1(j) = i iff T (i) is, lexically, the j-th string among {T (h)}h=n

h=1 , the
n strings formed from the cyclic rotations of T .

Using the example multiset permutation above as T , that is,T =(a b b a c a),
we have ρ−1 = λT = (2 5 4 3 6 1) = (1 2 5 6)(3 4), and ρ = λ−1

Y =
(6 1 4 3 2 5) = (1 6 5 2)(3 4). Thus, the lexical index permutation of the
string T is a sorting permutation, and essentially corresponds to the lexico-
graphic sorting of the resulting strings from the left-cyclic rotations of T . We
can thus observe the relationship with the BWT: λ−1

T , the inverse of the lexical
index permutation, basically maps T to F , the array of first characters.

Hence by considering strings as multisets, we can cater for the more general
case of text strings where symbols in the alphabet can be repeated. The input
T , and the BWT output L, each represents a different multiset permutation of
the input. Arnavut and Magliveras (1997a,b) extended the idea of permutation
sorting to multisets. They showed that if the symbols in T are taken from an
integer alphabet, and F = (1 2 . . . n) is the identity permutation after sorting
T lexicographically, then As[i, j] = F [As[i, j]].

For text strings, which are generally multisets rather than ordinary sets,
Arnavut and Magliveras (1997a,b) proposed the lexical permutation sorting
algorithm (LPSA). The LPSA works as follows: first transmit the F array (the
sorted symbols in T ), for instance, by simply sending the count of each symbol.
Then, transmit λT , the lexical index permutation of T . Observe that for most
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practical cases, this will generally lead to worse compression performance than
the BWT. The problem of applying LPSA to multisets is that, in general, the
BWT (or the LPSA) on multisets is not always surjective over Σ∗. That is,
they may be one-to-one but not onto, and hence, no longer bijective. Therefore,
it is possible to have a multiset from the same symbol alphabet such that no
input string can be mapped to it using any multiset permutation, so given only
the multiset permutation of the input string, it may not always be possible
to reconstruct the original string.

6.3 The extended BWT

Another way to generalize the Burrows-Wheeler Transform is to consider the
ordering required at the sorting stage. This addresses the question of whether
the BWT output is more useful given a specified sort-order for the symbols
in the alphabet other than that imposed by the particular alphabet represen-
tation used, such as ascii. Obviously, the lexicographic ordering used in the
original BWT (and the LPSA) is just one example of a possible ordering of
the alphabet. In an attempt to address this issue, Mantaci et al. (2005, 2007)
proposed an extension of the BWT that uses an ordering different from the
lexicographic ordering. The new ordering allows the BWT to be extended to
handle a multiset of strings (rather than just a single string which is a multiset
of symbols).

The extended BWT also has the nice property that it is surjective: that
is, for any string in Σ∗, there will always be some input multiset of strings
that will map to it via the extended BWT.

6.3.1 Sort order between strings

Before describing the new sort order between strings and the extended BWT,
we introduce some more definitions. Given the symbol alphabet Σ, two strings
S1, S2 ∈ Σ∗ are called conjugate if S1 = uv and S2 = vu, for some strings
u, v ∈ Σ∗. Notice that two conjugate strings will be cyclic rotations of each
other. The string u is said to be primitive if u = vk iff u = v and k = 1. For
any given string u, there is a unique primitive string s, and an exponent k,
such that u = sk. For the string u = sk, we use the notations: s = root(u)
and k = exp(u). The string uω = uuuu . . . is used to denote a string formed
by infinitely iterating u. Clearly, two strings uω and vω are equal iff root(u) =
root(v). That is, u and v are powers of the same primitive string.

In Chapter 4, we introduced the ≺ relation as corresponding to the lexico-
graphic ordering. That is, for u = u1u2 . . . , and v = v1v2 . . ., we have u ≺ v iff
there exists some index j, such that ui = vi, ∀i = 1, 2, . . . , j, and uj+1 < vj+1.

Using the above notations, Mantaci et al. introduced the following relation
between strings u, v ∈ Σ∗:
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u �ω v ⇐⇒
{

exp(u) ≤ exp(v) if root(u) = root(v)
uω ≺ vω otherwise

We can observe that the relation u �ω v enforces a total order between u
and v. Clearly, u �ω v is different from the lexicographic ordering u ≺ v in
general. For instance, with u = ab and v = aba, we have u ≺ v, but v �ω u.
The periodicity lemma (Smyth, 2003) shows that, in practice, when u 6= v,
we can decide if u �ω v by considering only the prefk(u) and prefk(v), the
respective k-length prefix of uω and vω, where k = |u| + |v| − gcd(|u|, |v|).
That is,

u �ω v ⇐⇒ prefk(u) ≺ prefk(v)

Or equivalently, using the notation of Section 4.2:

u �ω v ⇐⇒ uω ≺k vω

Using the previous example u = ab and v = aba, we have k = 2 + 3 −
gcd(2, 3) = 4. Thus, we can differentiate between uω = abababab . . . and
vω = abaabaaba . . . by considering only their first 4 symbols. Thus we have
v �ω u in this case.

6.3.2 Performing the extended BWT

Based on the above order relation, Mantaci et al. (2005, 2007) proposed an
extension of the BWT to a multiset of primitive strings. When it is required,
each string can be made primitive by simply appending an end of string
symbol. Let T = {S1, S2, . . . Ss} be a multiset of s primitive strings. The
extended transformation is performed on T using the following steps:

1. Compute the conjugates of each element of T . Form an array of conjugates
A, whereby each element in A corresponds to exactly one of the conjugates
computed. Notice that here the rows do not necessarily have the same
number of columns. We can pad the rows so that they all have the same
number of columns, without affecting the results.

2. Sort A, the array of conjugates according to the new order relation. Let
As = w1, w2, . . . , wm be the list of conjugates in sorted order. That is, for
1 ≤ i < j ≤ m, wi �ω wj .

3. Let a = {a1, a2, . . . , as} be the set of indexes representing the respective
positions in As of the original strings in T . That is, ai is the position of
Si in As.

4. Let L be the array of last characters of the elements in As. That is, for
1 ≤ i ≤ m, L[i] = wi[|wi|], the last symbol in the string wi. Similarly, we
define F , such that F [i] = wi[1], the first symbol in string wi.

5. The output of the extended transformation is the pair (L, a).
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To make the similarity with computing the BWT clearer, we have de-
liberately modified the description given by Mantaci et al. by using no-
tation and terminology similar to the usual Burrows-Wheeler Transform.
The BWT is a special case of the extended transformation, where s = 1;
that is, when we have only one single string in T . Table 6.2 shows the
results of applying the extended BWT to an example multiset of strings:
T = {S1, S2, S3, S4} = {ab, aba, cbac, bac}. We have included the F and L
arrays, the permutation π that maps F to L, and its inverse. From the table,
the results of the extended BWT will be:

(L, a) = (babbbaaccaca, {3, 2, 11, 8}).

Conjugates, A Index As F L π π−1

ab

ba

aba

baa

aab

cbac

bacc

accb

ccba

bac

acb

cba

1
2
3
4
5
6
7
8
9
10
11
12

aab

aba

ab

acb

accb

baa

ba

bac

bacc

cba

cbac

ccba

a

a

a

a

a

b

b

b

b

c

c

c

b

a

b

b

b

a

a

c

c

a

c

a

2
6
7
10
12
1
3
4
5
8
9
11

6
1
7
8
9
2
3
10
11
4
12
5

Table 6.2. Example transformation using the extended BWT on a sample multiset
of strings, T = {ab, aba, cbac, bac}

For comparison, Table 6.3 shows the corresponding results using the origi-
nal BWT on the same multiset of strings (assuming the individual strings are
concatenated, i.e. T = S1 ∗ S2 ∗ S3 ∗ S4 = ababacbacbac). Comparing Tables
6.2 and 6.3 we can see that the extended BWT will require less time and space
to perform the required sorting, since each conjugate will be shorter than any
given concatenated rotated sequence.

6.3.3 Inverting the transform

The extended BWT is reversible; as with the forward transformation, the
inversion procedure closely follows that of the original BWT. Let n = |T | = |L|
be the total number of symbols in the multiset T . Two key observations used
in inverting the BWT can be used in performing the required inversion (with
slight modifications):

• For each i, 1 ≤ i ≤ n, if i /∈ a, then F [i] succeeds L[i] in one of the strings
in T .
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A Index As F L π π−1 = V

ababacbacbac

babacbacbaca

abacbacbacab

bacbacbacaba

acbacbacabab

cbacbacababa

bacbacababac

acbacababacb

cbacababacba

bacababacbac

acababacbacb

cababacbacba

1
2
3
4
5
6
7
8
9
10
11
12

ababacbacbac

abacbacbacab

acababacbacb

acbacababacb

acbacbacabab

babacbacbaca

bacababacbac

bacbacababac

bacbacbacaba

cababacbacba

cbacababacba

cbacbacababa

a

a

a

a

a

b

b

b

b

c

c

c

c

b

b

b

b

a

c

c

a

a

a

a

6
9
10
11
12
2
3
4
5
1
7
8

10
6
7
8
9
1
11
12
2
3
4
5

Table 6.3. Using the original BWT on the sample multiset of strings, T =
{ab, aba, cbac, bac} used in Table 6.2, assuming the strings are concatenated to
one string: T = ababacbacbac

• The order of appearance of a particular symbol from the alphabet is the
same in both F and L. That is, the j-th instance of symbol σ in L corre-
sponds to the j-th instance of σ in F .

The following steps can be used to perform the reverse transformation:

1. Sort the elements in L, the output of the transform, to obtain F , the array
of first characters.

2. Define a permutation π on {1, 2, . . . , n} that maps F to L, computed as
follows: π(i) = j if F [i] and L[j] refer to the same symbol in T . Thus, π−1

is analogous to the BWT transformation vector V that maps L to F .
3. Decompose the permutation π into disjoint cycles: π = π1π2 . . . πk. Each

cycle πi corresponds to a conjugacy class of a component string in the
multiset T . Since the strings in T are primitive, then for each i, 1 ≤ i ≤ k,
there exists a unique index that is moved by πi. Each index in a, the set
of starting indexes, appears in one and only one disjoint cycle.

4. Let ai be an index such that ai ∈ a and ai ∈ πi. Then, for each i, 1 ≤ i ≤ s,
Si, the i-th string in T is reconstructed as follows:

Si = F [ai] ∗ F [π(ai)] ∗ F [π2(ai)] ∗ . . . ∗ F [πli(ai)]

where li =|πi|, the length of the disjoint cycle πi.

Continuing with the previous example, we have F = aaaaabbbbccc and
L = babbbaaccaca, giving the following mapping:

π =

(

1 2 3 4 5 6 7 8 9 10 11 12

2 6 7 10 12 1 3 4 5 8 9 11

)

with
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π−1 =

(

1 2 3 4 5 6 7 8 9 10 11 12

6 1 7 8 9 2 3 10 11 4 12 5

)

These can be decomposed into their respective disjoint cycles:

π = (1 2 6)(3 7)(4 10 8)(5 12 11 9)

π−1 = (1 6 2)(3 7)(4 8 10)(5 9 11 12).

Based on the permutations, we can recover the original strings as follows:

a1 = 3;S1 = F [3] ∗ F [7] = ab

a2 = 2;S2 = F [2] ∗ F [6] ∗ F [1] = aba

a3 = 11;S3 = F [11] ∗ F [12] ∗ F [5] ∗ F [9] = cbac

a4 = 8;S4 = F [8] ∗ F [4] ∗ F [10] = bac

Alternatively, we could use ρ = π−1, and then reconstruct the strings using
L:

Si = L[ρli(ai)] ∗ L[ρli−1(ai)] ∗ . . . ∗ L[ρ2(ai)] ∗ L[ρ(ai)]L[ai]

where li =|ρi|, the length of the cycle ρi. Thus, just as with the original BWT,
we can use L and π−1 to reconstruct the original strings, starting with the
last symbol, and ending at the first.

Mantaci et al. showed that, for any given string S ∈ Σ∗, there must
exist some multiset of primitive strings, T , and a set of indexes a, such that
applying the extended BWT on T will produce the result (S, a). That is,
any given string has some input multiset of strings that maps to it via the
extended BWT. Thus the extended BWT is one-to-one and onto, and hence
bijective. For example, the string S = bccaaab has no corresponding string
T that maps to it via the BWT. However, with the extended BWT, we can
see that T = {ab, abcac} maps to S. This important distinction from the
original BWT provides a link with a known theorem in string combinatorics,
due to Gessel and Reutenauer (1993): given a symbol alphabet Σ, there exists
a bijection between Σ∗ and the family of multisets of conjugacy classes of
primitive strings in Σ∗.

In practical experiments, Mantaci et al. showed that when the multiset
of strings corresponds to the blocks used in BWT-based block-sorting, the
extended BWT performed better than the usual block-sorting using the same
size of blocks. When the block size is set to be the same as the size of the
original sequence, both the BWT and extended BWT produced the same
result. There is a potentially simpler approach to compressing a multiset of
strings, though. One can simply concatenate them, and then use the BWT
to compress the concatenated sequence. The length of each component string
can then be transmitted to the decoder to determine the beginning and end
of each component. The major advantage of the extended BWT appears to be
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in its use of a smaller memory footprint, and potentially faster sorting stage
on average, since the complete BWT rotation matrices will not be needed.
However, in the worst case, the complexity will still be quadratic with respect
to the total number of symbols in the multiset of strings.

6.4 Sort-based context similarity measurement

The sorting stage of the BWT orders the cyclic rotations such that symbols
with a similar forward context are brought closer in the BWT output. This
essentially provides a form of context sorting for the input symbols, and is
a fundamental step in the Burrows-Wheeler Transform. One major criticism
of the BWT is its offline nature, requiring all the data to be available before
the transformation can be performed. In an independent, but very closely
related work, Yokoo (1996, 1997) proposed a sort-based context similarity
measurement suitable for use in data compression. The method is adaptive and
online, and performs the required context sorting as each symbol is observed.
Given its use of context sorting as a primary mechanism in the compression
process, this method is sometimes viewed as an online variant of the Burrows-
Wheeler Transform. In this section we will have a closer look at Yokoo’s
original method, its later improvements, and their relationship with the BWT.

6.4.1 Context similarity measurement and ranking

The similarity of two contexts is measured simply by the longest common
suffix between the contexts. If we consider the contexts in reversed order, this
similarity measurement becomes the same as the lcp between the reversed
contexts. Just as we defined order-k contexts, we can equally define the context
similarity measure based on the lexicographic order of the first k symbols,
where the symbols are read in reverse order.

Yokoo (1996, 1997) described a method to use the context similarity mea-
surement in lossless compression. The idea is very closely related to symbol-
wise ranking methods, whereby for each context the encoder maintains a list
of candidate symbols, with each symbol assigned some rank, based mainly on
the likelihood of the symbol being observed in the given context. Using the
above similarity measure, and given previously observed contexts, we can sort
the contexts in reverse-lexicographic order.2 Using this ordering, a rank can
be assigned to the symbol following each given context. Based on these ranks,
we can encode each incoming symbol once it is observed (i.e. one symbol at a
time, without the need to observe all the symbols as in BWT). When the next
symbol is observed, its corresponding rank is written to the output stream for
subsequent entropy encoding. For a novel symbol which has not yet been ob-
served in the existing contexts, the rank is assigned (1 + x), where x is the

2 Recall that our definition of contexts in Chapter 5 already embodies prefix rever-
sal.
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number of distinct symbols so far observed. This rank and the raw symbol
are then written to the output stream.

Figure 6.6 shows an example using the sequence mississippi. The figure
shows the list of contexts (the prefixes) and the sorted contexts in reverse-
lexicographic order. The similarity measurement (and hence, the ranking) in
the table is based on similarity with respect to the current context, which
corresponds to the entire string (read in reverse order). In this particular
case the first three contexts each have the length of 1 as the longest common
suffix with mississippi, hence their similarity measurement is 1. After the
lcp criteria on the reversed prefixes, we use the simple alphabetical listing to
break possible ties, and hence define a total order on the contexts. The final
ranks for each symbol are given in the rightmost column in Figure 6.6b.

Context Symbol

ǫ
m

mi

mis

miss

missi

missis

mississ

mississi

mississip

mississipp

mississippi

m

i

s

s

i

s

s

i

p

p

i

σ

(a)

Similarity Context Symbol Rank

mississippi σ

1 mi s 1
missi s

mississi p 2

0 ǫ m 3
m i 4

mississip p

mississipp i

mis s

missis s

miss i

mississ i

(b)

Fig. 6.6. Context similarity and ranking using an example string T = mississippi:
(a) context list; (b) sorted contexts with similarity value and rank
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Consider what happens when we observe the new symbol σ. To encode σ,
we check the ranks. If σ is one of the four symbols so far observed (that is, σ ∈
{m,i,p,s}), the corresponding rank is transmitted. For example, if σ = m, the
number 3 is transmitted. However, if σ /∈ {m,i,p,s} (for example σ = e), then
the symbol is novel, so the virtual rank (5 in this case) is transmitted, followed
by the raw novel symbol e. Figure 6.7 shows how the similarity measurement
and the ranks change after observing two instances of the next symbol, one
for when the next symbol has previously been observed, and the other for
when the next symbol is novel. Notice that after observing a novel symbol,
the context sorting is not affected by the current context, but rather depends
on the lexicographic order of the symbols.

6.4.2 The prefix list data structure

In the original implementation of the sort-based context similarity method
(Yokoo, 1997), the context-symbol pairs were maintained in reverse lexico-
graphic order using a binary search tree. This required the use of doubly-
linked lists to connect the nodes in the tree, which made it easier to compute
the ranks. The idea was motivated by the method initially proposed in Bell
(1986) for implementing LZ-based compression, by storing strings in lexical
order. However, the complexity of the scheme was still relatively high, requir-
ing time in O(k2 log |Σ|) for inserting a context-symbol pair in the tree, for an
order-k context similarity, assuming a balanced tree. Thus, the method could
be implemented only for limited-order contexts (for example, with k limited
to 8).

In a later work, Yokoo (1999) proposed the prefix list as a data structure
to maintain all prefixes of a given string in reverse-lexicographically sorted
order. Let T i and T j be two adjacent suffixes in the prefix list. Tj is called an
immediate predecessor of T i if T j immediately follows T i in the prefix list.
Conversely, T j is called an immediate successor of T i.

The prefix list is a doubly-linked list, whereby each node in the list contains
an integer index and three pointers, succ, pred, and next. Every prefix in the
string is represented by one node in the prefix list. If a node, say P , contains
the i-th prefix, T i = T [1 . . . i], then the integer index P.index will be the
position index i. The pointers P.succ and P.pred respectively point to the
immediate successor and immediate predecessor nodes in the list. The pointer
P.next points to the next prefix in the original string, starting from the current
prefix. That is, at the node for T i, P.next will point to the node for prefix
T i+1. For the original string T = Tn, the pointer P.next is null. The list
head, the empty string T 0, is denoted by a special symbol H. The end of the
list (list tail) is indicated by another special symbol E.

Table 6.4 shows the list of prefixes for T = mississippi, sorted in reverse
lexicographic order. Observe the difference from the result in Figure 6.6, where
the prefixes were arranged with respect to their similarity to the current con-
text. Figure 6.8a shows a representation of the notation described above for
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Similarity Context Symbol Rank

mississippis σ

2 mis s 1
missis s

1 miss i 2
mississ i

0 ǫ m 3
mi s

mississippi s

missi s

mississi p 4
m i

mississip p

mississipp i

(a)

Similarity Context Symbol Rank

mississippie σ

0 ǫ m 1
mi s 2

mississippi e 3
missi s

mississi p 4
m i 5

mississip p

mississipp i

mis s

missis s

miss i

mississ i

(b)

Fig. 6.7. Context similarity and ranking for example string T = mississippi, for
two cases of the next symbol: (a) next symbol σ = s has been observed previously;
(b) next symbol σ = e is novel, and has not been observed so far in the string

the prefix list, while Figure 6.8b shows an example prefix list for the sequence
T = mississippi. The prefix list can be constructed incrementally as we
observe the symbols in T . Suppose we have inserted T 0, T 1, . . . , T i, the pre-
fixes at the initial segment of the input string (T 0 is the empty prefix). If the
incoming symbol ti+1 is lexicographically smaller than all symbols seen so far,
then the prefix T i+1 should be inserted just to the right of the list head, H.
Conversely, if ti+1 is lexicographically greater than all symbols seen so far,
then T i+1 should be inserted just to the left of the list tail E. Otherwise, if
the symbol ti+1 does not occur in the prefix T [1 . . . i], then we must have some
unique position in the prefix tree corresponding to some node Q, such that:
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T [Q.index] ≺ ti+1 ≺ T [Q.succ.index].

Thus, the new node for T i+1 should be inserted between the nodes pointed
to by Q and Q.succ.

Sort ID Sorted Original Following
prefixes position symbol

0
1
2
3
4
5
6
7
8
9
10
11

ǫ
mi

mississippi

missi

mississi

m

mississip

mississipp

mis

missis

miss

mississ

0
2
11
5
8
1
9
10
3
6
4
7

m

s

σ =?
s

p

i

p

i

s

s

i

i

Table 6.4. Sorted prefixes for the string T = mississippi
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Fig. 6.8. The prefix list data structure: (a) basic structure of a node in the prefix
list; (b) prefix list for the sample string T = mississippi



178 6 Variants of the Burrows-Wheeler Transform

The case where ti+1 has already appeared in T [1 . . . i] involves more work,
since the inequalities above may turn into equalities. However, notice that
since the list is already in sorted order, we need to compare only the incoming
symbol ti+1 with the last symbol of the existing prefixes. In this case, the
immediate successor or predecessor of T i+1 has the same last symbol as T i+1,
namely ti+1. Let T j+1 be the immediate predecessor of T i+1. If T j+1 has the
same last symbol as T i+1, (that is tj+1 = ti+1, 0 ≤ j < i), then T j = T [1 . . . j]
must precede T i = T [1 . . . i] in the prefix list. Thus, in moving from the current
node towards H, the head of the list, the node representing T j should be the
first node with the same following symbol tj+1 as ti+1. This can be tested by
following the next pointer. Similarly, let T j+1 be the immediate successor of
T i+1. If the last symbol tj+1 of T j+1 is the same as ti+1 (the last symbol of
T i+1), then in moving from the current node toward the list tail E, the node
representing T j should be the first node such that tj+1 = ti+1. Therefore,
starting from the node for the current prefix T i, we need to search forward
and backward, looking for the node T j , while comparing the last symbols tj+1

with the incoming ti+1. Once we find the node representing T j we can follow
the next pointer to reach the node to get T j+1. Then, the new node (for T i+1)
should be inserted adjacent to the node representing T j+1.

Using the prefix list, it is simple to compute the symbol ranks required
in compression with context-based similarity measurement. On average, the
prefix list can be constructed in linear time for Markov sequences (Yokoo,
1999), however, the worst case complexity for general sequences could be
quadratic in the length of the string.

6.4.3 Relationship with the Burrows-Wheeler Transform

The first connection between the BWT and the sort-based context similarity
approach is clearly the fact that both methods use sorted contexts. Earlier, it
was noted that after a novel symbol is observed, the context sorting result no
longer depends on the current context, but rather on the lexicographic order
of the symbols. This provides a simple link with the BWT: if we append
the special end of sequence symbol $ to the string being compressed, the list
of symbols obtained after context similarity sorting corresponds exactly to
the BWT output (L-array) when the input is the reversed string. The use
of ranks as a primary step in Yokoo’s approach also connects the method
with the second stage of the BWT, where the BWT output is passed though
the LGT (local to global transformation) stage to produce ranks, which are
subsequently coded using entropy coding, or some integer codes.

A more direct relationship with the BWT can be established using the
prefix list data structure. Using the previous notation for the prefix tree, the
BWT can be realized using the procedure shown in Algorithm 6.3. Consider
the example with T = mississippi$. The corresponding reversed string will
be T̂ = reverse(T ) = $ippississim. Applying the BWT on this reversed
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string will produce the sorted suffixes and the final BWT output array shown
in Table 6.5.

Compute-BWT-From-Prefix-List(T, H, E)
P ← H
i← 1
while P 6= E do

if P.next = null, then

L[i]← $
else

L[i] = T [P.next.index]
end if

P ← P.succ
i← i + 1

end while

Algorithm 6.3: Algorithm to compute the BWT from a prefix list

Sort ID Sorted Original BWT
suffixes position output, L

0
1
2
3
4
5
6
7
8
9
10
11

$ . . .
im . . .
ip . . .
issim . . .
issis . . .
m$ . . .
pi . . .
pp . . .
sim . . .
sis . . .
ssim . . .
ssis . . .

0
10
1
7
4
11
3
2
9
6
8
5

m

s

$

s

p

i

p

i

s

s

i

i

Table 6.5. BWT sorted rotation matrix and L-array for T̂ =
reverse(mississippi$) = $ippississim

Using the above algorithm on the example in Figure 6.8, we obtain the
following first few results:

L[1] = T [#5.index] = T [1] = m;
L[2] = T [#8.index] = T [3] = s;
L[3] = $, since T [#1.succ.next] = null;
L[4] = T [#9.index] = T [6] = s; etc.
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Thus, the final result will be L = ms$spipissii, which is exactly the
BWT output when the input string is reverse(T ) = $ippississim.

Yokoo (1997, 1999) also described the strong relationship between the
sort-based similarity method and LZ-family of compression algorithms. This
could be seen as another indirect link between the BWT and the LZ-family.
Also, the phrase sorting and ranking steps of the ACB compression scheme
(a variant of the LZ-family) makes the ACB compression scheme (Salomon,
2004) another closely related method to the BWT.

6.4.4 Performance of the prefix list

The compression performance on the Calgary corpus3 as reported in Yokoo
(1997) using the Method C encoding scheme is shown in Table 6.6. The other
methods given for comparison are bzip and szip (two of the best implemen-
tations of BWT-based compression), gzip (the widely used LZ-based gzip
utility with default settings), and “ppmc” (one of the better implementations
of PPM). The parameters indicated in the table for each method are the
default values which give good speed and compression performance for each
method.

The results for Yokoo’s prefix list method are worse than standard BWT
results (bzip and szip), but for the natural language text files it is generally
better than gzip. Given the online nature of the context-based sort similarity
measurement approach, the compression performance is reasonable. The re-
sults could be further improved by passing the ranks to an MTF algorithm,
or some other LGT schemes.

In terms of encoding time, Yokoo (1997) reports that compression using
only order-k context sorting (with k = 8) was about 20 times slower than
gzip. Using the prefix data structure, the time required was reduced ten-fold
(Yokoo, 1999).

6.5 Word-based compression

So far we have described the BWT with an input string that is considered to
be made up of tokens, where the tokens are simply individual characters or
symbols, typically from a small alphabet. Like most other data compression
schemes, the BWT can also be applied when the tokens are a sequence of
symbols (for example, words in a language), rather than the individual char-
acters. With word-based approaches we have the immediate problem of very
large alphabets, and hence efficiency considerations in terms of both space

3 The corpus and evaluations on a number of compression methods are available
from http://corpus.canterbury.ac.nz/. Note that Yokoo (1997) did not report
results for two of the files in the corpus, and hence Table 6.6 shows only 12 of the
14 files in the corpus.
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Method: bzip gzip ppmc szip Yokoo Yokoo

Parameter: -6 -d -896 C8 C∞

bib 1.95 2.52 2.12 1.98 2.53 2.40
book1 2.49 3.26 2.52 2.36 2.83 2.78
book2 2.06 2.71 2.28 2.03 2.53 2.44
news 2.51 3.07 2.77 2.50 3.00 2.87
paper1 2.46 2.79 2.48 2.50 2.84 2.76
paper2 2.42 2.90 2.46 2.44 2.81 2.75
progc 2.50 2.68 2.49 2.52 2.89 2.81
progl 1.72 1.82 1.87 1.75 2.30 2.12
progp 1.71 1.82 1.82 1.82 2.34 2.13

Average 2.20 2.62 2.31 2.21 2.67 2.56
(text files)

geo 4.48 5.35 5.01 4.29 6.18 6.07
obj1 3.87 3.84 3.68 3.78 4.88 4.74
obj2 2.46 2.65 2.59 2.48 3.17 2.96

Average 2.55 2.95 2.67 2.54 3.19 3.07
(all files)

Table 6.6. Comparative compression performance using sort-based context simi-
larity measurement

and time become important. Word-based compression using the BWT can be
viewed as another variation of the general theme of Burrows and Wheeler, and
has been studied in detail in Isal and Moffat (2001a,b) and Isal et al. (2002).
We begin this section by first reviewing the general concept of word-based
compression, and then we explain how word-based BWT fits into the general
framework.

6.5.1 General word-based compression

The first problem in word-based compression schemes is how to define what
is a word and what is not. This is required when parsing the input, before
applying the particular compression scheme. For text strings, such as English
text, we can use natural words in the language, and hence use natural delim-
iters such as the space character to indicate the end of a word. However, this
overlooks other special symbols and punctuation marks. A simple approach
to the problem is to simply divide up the input into bigrams, trigrams, or
general q-grams, where q = 2, 3, . . ., and then assume that each q-gram is a
word. Using q = 1 corresponds to the usual case of treating each character or
symbol as the elementary token. Of course, the q-gram approach may not be
able to exploit the structure and dependencies between words in the sequence,
for instance if the input sequence is from an English text. Another way to han-
dle the problem is to use two dictionaries, one for alphanumeric words, and a
second dictionary for non-alphanumeric symbols, such as punctuation and the
space character. With this scheme, for any given input, the parsed sequence
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will thus contain a strict alternation of words from the two dictionaries. A
third approach is to use one dictionary and a pre-specified delimiter, and thus
consider any combination of symbols between two consecutive instances of the
delimiter to be a word. This results in an immediate saving, as the delimiter
need not be transmitted to the decoder, since the decoder already knows the
delimiter, and hence can re-construct the sequence. When the delimiter is
the space character, this corresponds to the spaceless word model proposed
in de Moura et al. (2000). For non-text data such as images, or genomic se-
quences, it is not so clear how the sequence should be split into words. For
images for instance, one can consider the most frequently used symbols as the
delimiter. Thus, if the sequence to be compressed represents prediction errors
for an image, the symbol “0” represents a good choice.

As an example, suppose we are given the following input text (which uses
“_” as the space symbol):

this_one,_this_one,_is_the_one

The alternating dictionary approach will produce the following (using “|”
to separate entries):

Word list: this|one|this|one|is|the|one
Non-word list: _|,_|_|,_|_|_|

The q-gram approach (using 2-grams) will produce the parsing:

th|is|_o|ne|,_|th|is|_o|ne|,_|is|_t|he|_o|ne

The spaceless word model will give :

this|one,|this|one,|is|the|one|

After initial parsing into words, the next issue is how to represent the dic-
tionary and the parsed sequence. One method is to use a two-pass approach
using an explicit dictionary. Here, unique items in the lists are given integer
numbers, and these numbers are then used to replace the items in the list. The
resulting list of integers is then coded using an entropy encoder, and trans-
mitted to the decoder. For the decoder to be able to recover the transmitted
data, the list of unique items (the dictionary) must also be transmitted to the
decoder. For the alternating dictionary approach, for instance, we must trans-
mit two dictionaries, and two coded integer lists. For the example we would
need to transmit the word list : {this|one|is|the} with the corresponding
numbers {1, 2, 3, 4}, and the parsed word list: 〈1, 2, 1, 2, 3, 4, 2〉. Similarly, for
the non-word list, the dictionary will be: {_|,_}, with corresponding numbers
{1, 2}, and the parsed non-word list: 〈1, 2, 1, 2, 1, 1〉.

Although using explicit dictionaries is simple to understand and imple-
ment, the two pass requirement may make it less attractive for some applica-
tions. More importantly, the overhead of the dictionary may have a significant
impact on the achievable compression, especially for short sequences, where
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most of the words will occur only a few times. With an implicit dictionary,
the dictionary is constructed adaptively as the text is being parsed and then
embedded into the parsed sequence without the need for explicit transmission
of the dictionary. In this case the first occurrence of each word (sequence of
two or more symbols) will be coded using a sequence of its constituent symbols
in order. Subsequent occurrences are then coded as an integer number. For
an original symbol alphabet Σ = {σ1, σ2, . . . , σ|Σ|}, the dictionary entries are
numbered starting from |Σ|+1, so that all the alphabet symbols are available
regardless of what else is in the dictionary. For English text and assuming an
alphabet of 8-bit symbols (numbered 0 to 255), the dictionary elements will
be given integer numbers starting from 256.

Using the above scheme on the running example,

“this_one,_this_one,_is_the_one”

the three parsing strategies described above will produce the following results:
The alternating dictionary approach will produce the following, where

words are spelled out the first time they occur, and a space is used to mark
the end of a new word:

Word list: t|h|i|s|_|o|n|e|_|256|257|i|s|_|t|h|e|_|257
Non-word list: _|_,|255|256|255|255|

Using 2-grams we get the following (where 256 is allocated to the first pair,
th, 257 to the second pair, is, and so on):

t|h|i|s|_|o|n|e|,|_|256|257|258|259|260|257|_|t|h|e|258|259

The spaceless word model produces the following (where a new word is
delimited by a space, so 256 is allocated to this, 257 to one, 258 to is and
so on):

t|h|i|s|_|o|n|e|,|_|256|257|i|s|_|t|h|e|_|257|

6.5.2 Word-based Burrows-Wheeler Transform

After the parsing stage, the resulting parsed sequence(s) can be used as an
input to any standard compression scheme, such as the LZ or PPM families.
For BWT-based compression schemes, after the parsing stage the resulting
sequence(s) of integer codes could be passed directly to the BWT compression
pipeline. This means that, in principle, for word-based BWT, all that is needed
is a kind of preprocessing scheme on the input, and then the BWT is applied
on the resulting sequence(s). This view is depicted in Figure 6.9, where we
have inserted a parsing stage between the input and the BWT first stage.
Given that the MTF algorithm (Bentley et al., 1986) was originally described
using words as the basic token, in principle, the MTF can equally be used
with little modification for the word-based BWT.

Practical implementation, however, could become an issue. Given the sig-
nificantly expanded alphabet size in word-based schemes, the standard BWT
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Fig. 6.9. The BWT pipeline, modified for word-based BWT

procedure may become difficult to use. For instance, the large alphabet may
become a major problem for the sorting stage, as most algorithms assume
that the alphabet is small compared to the input size. This may no longer
hold for word-based schemes, and could result in more complications in both
space and time requirements. In particular, methods based on suffix trees as
the basic mechanism for sorting the suffixes must find mechanisms to combat
the potential space problem. Similar problems can also arise for the MTF
implementation, which again assumes that the alphabet is small, and this can
be implemented using simple arrays.

Isal and Moffat performed detailed studies on word-based BWT, and pro-
posed various mechanisms for its implementation, especially for the BWT-
second stage. They proposed a variant of the MTF that uses a forest of search
trees, specifically, multiple splay search trees (which was also suggested in the
original paper on MTF (Bentley et al., 1986)). Each tree in the forest con-
tains information about a range of current MTF rank values, such that the
first tree contains records about the most recently accessed items, the second
tree contains records about the second most recently accessed items, and so
on. The ordering of items within a given tree depends on both the integer
value that is being represented, and also on the standard MTF list. The chal-
lenge is how items are moved from one tree to the other, and how the exact
rank of each item is computed. Details on various methods for moving items
between the trees, and for getting (moving) items to (off) the head of the list
are discussed in Isal et al. (2002). Isal et al. also considered improvements
on the entropy coding stage when large alphabets are involved, as is the case
in word-based BWT. In particular, they proposed modifications of arithmetic
coding to provide methods for coding with large alphabets, which can be used
for word-based compression schemes.

An approach related to word-based BWT is the word-based FM index
(WFM) (Ferragina, 2007), which is a combination of the BWT-based FM in-
dex (see Chapters 7 and 8), and a byte-aligned Huffman coding (Navarro et al.,
2000; de Moura et al., 2000). One major advantage here is that since queries
are usually word-oriented, using a word-based FM index avoids the need for
later post-processing. Furthermore, only a few (3 or 4) random accesses are
required, independent of the query word, since the maximum codeword length
is typically small.
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6.6 Further reading

The Burrows-Wheeler Transform has generated a lot of interest since its ini-
tial publication in 1994, perhaps based on its simplicity, and the existence of
efficient algorithms for its computation. There have been several variations on
the original theme by Burrows and Wheeler. Early attempts at generalizing
the BWT were made by Arnavut and Magliveras (Arnavut and Magliveras,
1997a; Arnavut, 2002) on the choice of the particular column to use after
the sorting, and by Schindler (1997a,b) on the order of the contexts required
for the sorting stage. The work by Schindler has been discussed in detail by
Chan and Nong (2005) and Nong and Zhang (2007b). An approach simi-
lar to the permutation-based approach adopted by Arnavut and Magliveras
(1997a,b) was followed in more recent work by Mantaci et al. (2005, 2007),
where they extended the BWT to a multiset of strings. Their approach re-
sulted in a transformation of multistrings that is bijective, unlike the original
BWT. There is a growing body of work in this direction, and the extended
BWT provides a strong link between the BWT and other known theorems and
structures in string combinatorics, such as the relationship between the BWT
and Sturmian strings (Mantaci et al., 2003), and the connection between the
BWT and combinatorics of multiset permutations (Gessel and Reutenauer,
1993; Crochemore et al., 2005). Multiset permutations are discussed in Knuth
(1973). The idea of changing the sort ordering has been used in constructing
suffix arrays that sort using ordering relations different from the lexicographic
order (Franek and Smyth, 2006). This provides another avenue to investigate
the performance of BWT in compression and other applications, with alter-
native sort orderings.

Yokoo’s context-based similarity measurement (Yokoo, 1997) was another
early work that is very closely related to the block-sorting nature of the BWT.
The prefix list data structure was proposed in Yokoo (1999), as an efficient
data structure for implementing the context-based similarity measurement
approach. Yokoo reported that using the prefix list resulted in a ten-fold
improvement in the efficiency of sort-based context-based sort similarity mea-
surement. The ACB (Associative Coder of Buyonoski) is described in Salomon
(2004) and Fenwick (2003b). The sorting stages used by the ACB make it a
very close cousin of the BWT.

Moffat and his group (Isal and Moffat, 2001a,b; Isal et al., 2002) proposed
the word-based BWT, as a way to use the BWT on natural text. In Wirth
(2001) and Wirth and Moffat (2001) they also studied segmentation methods
for coding the BWT output, without the need for MTF. The word-based ap-
proach can be viewed as a preprocessing scheme on the input string before
the application of the BWT. Abel and Teahan (2005) present a detailed study
on various preprocessing schemes that can be applied before actual compres-
sion, including results on BWT performance after preprocessing. Grabowski
(1999) also described initial ideas on preprocessing, by converting capital let-
ters to small letters, and adding a flag, as a way to improve BWT compression.
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Kruse and Mukherjee (1998, 1999) studied the use of the star family of trans-
formation schemes as an initial preprocessing stage for general compression
algorithms, including the BWT. Related work reported in Awan et al. (2001),
Awan and Mukherjee (2001), Sun et al. (2003a,b) and Mukherjee and Awan
(2003) describes a “Length Index Preserving Transform” (LIPT), which uses
a static English dictionary to boost compression.

Another recent variation of the Burrows-Wheeler Transform is the XBW
(XBW transform) of Ferragina et al. (2005b, 2006c). While the BWT works
on strings, the XBW applies to labeled trees, after appropriate linearization.
Using path-label sorting and grouping, the XBW transforms a labeled tree
into two components; the first captures the structural properties of the tree,
and the second captures the tree labels. After path linearization, the XBW
basically sorts the nodes in the tree based on their node labels. From one view
point, the XBW provides a compressed representation of the suffix tree, and
provides facilities for supporting different types of navigational, visualization,
and subpath queries on the tree.
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Exact and approximate pattern matching

A fundamental operation with strings is determining whether a pattern of
characters or symbols occurs as a substring in a larger string called the text, or
as an approximate subsequence in the text. This problem has been investigated
since the early 1960s, not only for its theoretical importance in computer
science but because it has many applications in information processing and
biological sciences. In computer science, string pattern matching algorithms
are used in database search and retrieval, text processing and editing, lexical
analysis of computer programs, data compression, cryptography and other
applications. In recent years, string matching algorithms have been used as
powerful tools in the study of genomics and proteomics, in finding genes and
regulatory motifs, and in comparative genomics, gene expression analysis and
molecular evolutionary theory.

As noted in Chapter 1, pattern matching and data compression are in-
timately related, and at the same time they can work against each other.
The process of compression removes redundancies in a text by replacing data
with smaller and irregular bit patterns, which unfortunately also destroys the
natural structure of the text and makes it harder to search for patterns and
retrieve information.

A simple solution is a decompress-then-search approach that involves
restoring the original data before a search is performed with a pattern match-
ing algorithm. The decompression process, however, can be time consuming,
and is likely to be doing work to decompress material that won’t be of inter-
est in the pattern matching. A better solution would allow a direct search of
the compressed data with minimal or no decompression. Searching without
any decompression is called fully-compressed pattern matching, or sometimes
just compressed pattern matching. This process involves compressing the pat-
tern and matching it to the compressed text representation. Of course, for
many compression methods this is not possible, particularly with compres-
sion algorithms that use different representations for a substring depending
on its context. This is the case with adaptive compression algorithms, and
also occurs with some coders, including arithmetic coders, where there is no
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unique representation for a particular character. An alternative technique is
compressed-domain pattern matching, which performs partial decompression
of the text to remove some of the obstacles that the compression has intro-
duced, while still providing the advantages of avoiding complete decompres-
sion.

Another approach is to construct a secondary index data structure to ac-
celerate searching, which would seem to increase the space used, although it is
possible to take advantage of the relationship between the index and the text
to improve both compression and searching. This approach is commonly used
for full-text retrieval (FTR) applications such as search engines. Normally an
FTR system will identify terms in the text that can be indexed (typically En-
glish words). However, in this book we are focusing on pattern-matching, in
which any substring of the text might be matched; traditionally this involves
processing the entire text looking for the pattern, but it is also possible to
construct various kinds of index to support the pattern matching, particu-
larly if multiple patterns are to be located, in which case the effort used in
building the index can be amortized over the multiple searches. Adapting the
Burrows-Wheeler Transform for this sort of application is particularly attrac-
tive because the compression process automatically provides a sorted index
of the text, and thus we have a nice compromise between avoiding doing ex-
tra work to create an index, yet we can benefit from such information being
available.

In this chapter we will begin in Section 7.1 by looking at classic exact pat-
tern matching algorithms for uncompressed text, as some of the compressed-
domain methods build on these. The section also looks at algorithms for pat-
tern matching with “don’t-care” characters, which allow for uncertainty in the
search. We then discuss the compressed domain pattern matching problem in
Section 7.2, with the main emphasis on the use of the Burrows-Wheeler Trans-
form to aid compressed-domain pattern search. We will then move on to ap-
proximate pattern matching algorithms (Section 7.4), including “k-mismatch
algorithms” which allow a fixed number of characters to be different between
a pattern and the text it matches. Some uncompressed-domain approximate
matching methods are introduced, and then implementations of BWT domain
approximate pattern matching are described. It is also possible to design hard-
ware algorithms to accelerate pattern matching, and these will be discussed
briefly in Section 7.5.

7.1 Exact pattern matching algorithms

The problem of searching a text for occurrences of a given pattern is well
understood, and this section reviews the most commonly used methods.

First we will define some terms and notation that will be used in the
descriptions. We will represent the pattern being searched for as an array or
string P [1 . . . m], containing m characters over an alphabet Σ, where Σ =
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{σ1, σ2, . . . σ|Σ|}, with |Σ| representing the size of the alphabet. We will refer
to the input text as an array T [1 . . . n] of n characters over the same alphabet,
(m,n ≥ 1 and n ≥ m). The pattern matching problem is to determine whether
pattern P occurs as a substring in text T . If P occurs in T then we also want
to determine the position(s) in T of the occurrence(s) of P .

There are several ways to tackle this problem. In the well-known Knuth-
Morris-Pratt (KMP) (Knuth et al., 1977) and Boyer-Moore (BM) (Boyer and
Moore, 1977) algorithms, the pattern is pre-processed off-line to identify useful
structures in the pattern, and the text is used as an input string to the algo-
rithm. Another approach is to pre-process the text into a data structure which
expedites the search of pattern(s) in the text. Suffix trees (Section 4.1), suffix
arrays (Section 4.2), and the Burrows-Wheeler Transform are typical exam-
ples of this approach. A third approach is to transform both the text and the
pattern into numeric or binary strings, and the computation is performed in
this transformed domain. The Karp-Rabin algorithm (Karp and Rabin, 1987)
is the most well-known method that uses the numeric transformation via a
hash function, and Baeza-Yates and Gonnet (1992) have developed methods
that use bitwise operations on binary strings. A few other relevant methods
will be mentioned, although this section is not exhaustive as this topic is
not the main focus. The descriptions of the algorithms are based on Gusfield
(1997) where a comprehensive discussion of other algorithms can be found.

In the analysis of these algorithms we will use the standard random access
machine (RAM) as our model of computation, and quantify the performance
of the algorithms in terms of the asymptotic time and storage complexity by
using the standard “Big-O” notation. We will also occasionally constrain our
complexity measures by imposing additional properties such as whether the
algorithm can operate on-line (in a single pass of the text) or in real time
(each character in the text T can be processed only once, and the processing
time must be bounded by a constant). The complexity is also sometimes
parameterized by the alphabet size.

7.1.1 Brute force matching

The most obvious approach for pattern matching is to compare the given
pattern characters P [1 . . . m] with the first m characters of the text T [1 . . . m]
stored in a buffer, and compare the corresponding pairs of characters. If all
character pairs match, the algorithm reports that P has been found in T , and
notes the text position where the first pair of characters matched. Whether
or not a match is found, the pattern characters are then compared with the
characters starting at the next position in T (i.e. T [2 . . . m+1]) to see if every
pair matches. This process is iterated n−m + 1 times, and then terminates.
Pseudo-code for this method is given in Algorithm 7.1.

This algorithm takes O(nm) time. An example of the worst case is when
T = an−1b, and P = am−1b. For the first n − m attempts the character
comparison fails at the last (m-th) character position of the pattern after m−1
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Brute-force-pattern-matching(P, T )
i← 1 /* pointer to a character in pattern P */
j ← 1 /* pointer to a character in text T */
while (i ≤ m and j ≤ n) do

if P [i] = T [j] then

i← i + 1
j ← j + 1

else

j ← j − i + 2
i← 1

end if

if i > m then report P found in T , beginning at position j −m
end while

Algorithm 7.1: Brute force pattern matching algorithm

successful matches. The last iteration leads to a successful match which needs
an additional m comparisons, giving a total of (n−m)m+m = nm−m2 +m
character comparison operations. The algorithm needs O(m) storage to hold
the pattern and m text characters buffered from the input. For random text,
the time required by the brute force algorithm is in O(n). Thus, for such
text, and in most practical situations, the brute force algorithm generally
performs as well as the theoretically optimum algorithm of Knuth-Morris-
Pratt (described next), because pattern matches will usually fail early in the
character-by-character comparison process.

7.1.2 The Knuth-Morris-Pratt Algorithm

The worst case inefficiency of the brute force algorithm arises because it does
not use the information that it has already encountered during the partial
match between the pattern and the text. When a mismatch occurs at the j-th
input character of the text, the text pointer does not necessarily have to be
reset back to j−i+2 because the algorithm already “knows” the previous i−1
characters of the pattern P . More precisely, if we imagine placing the pattern
under the text and sliding it right during the matching process, the brute
force method blindly slides the pattern by just one character right whenever
a mismatch occurs, but it may be possible to slide it further than that —
for example, if the pattern abc has just mismatched with the text abd. . . we
know that none of the first three starting positions will be a match because
of the nature of the two strings. What is the maximum amount of right shift
that can be made without missing the occurrence of the pattern in the text?
If this can be answered, we can use the general approach in Algorithm 7.2 to
find the first occurrence of the pattern.

To determine the appropriate amount of right shift, we need to define the
concept of a border. A border of a pattern P [1 . . . i] is any prefix of P [1 . . . i]
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General-pattern-matching(pattern, text)
align the pattern at left of text
while (all pattern characters have not been compared with text characters

and text is not exhausted) do

while (a pattern character mismatches with the current text character)
do

right shift pattern appropriately

resume matching operation with the text
end while

if pattern is exhausted then report pattern found
else report not found
end if

end while

Algorithm 7.2: A general pattern matching algorithm

that is equal to a proper suffix of P [1 . . . i]. The longest border for P [1 . . . i] will
be denoted as bi with a length li. The sequence of li’s for i = 1 to n is called the
border array. If we add the constraint that P [i+1] 6= P [li+1], then the border
will be denoted as Bi and its length will be denoted as Li (Figure 7.1a). As
an example, if P = xxxccaexxxcaxd, then the single character x is a border
for position i = 10, the longest border for i = 10 is b10 = xxx with l10 = 3,
and B10=xx with L10 = 2. Suppose for a given alignment of the pattern with
the text, the first mismatch between the text and the pattern occurs at the
k-th character in the input text, T [k]=z, and the (i + 1)-th character of the
pattern P [i + 1] = y as shown in Figure 7.1b.

This means that the first Li characters of the pattern P match the same
number of characters preceding T [k]=z. This is significant because, unlike the
brute force method, we can right-slide the pattern by i−Li places so that the
next comparison operation will be between the characters P [Li + 1]=x and
T [k]=z. Note that the amount of this shift depends only on the pattern P ,
and is independent of the text T . We can pre-compute and store in an array
the values of Li for each value of i (1 ≤ i ≤ m) for a given pattern P . We
formally define the failure function for 1 ≤ i ≤ m + 1 as F [i] = Li−1 + 1,
and define L0 = 0. Thus, if a mismatch occurs in position i + 1 > 1 of P
with T [k], the pattern is right shifted so that the next comparison takes place
between position T [k] and the character in position Li + 1 = F [i + 1]. This
can be done by setting a pointer p to F [i + 1] in the pattern. There are two
special cases: if a mismatch occurs at position i = 1, set F [1] = 1; and if the
entire pattern matches and we are interested in continuing the search process
to find all matches in the text, we right shift the text by (m − Lm). This
is done by setting F [m + 1] = Lm + 1. A formal proof of the fact that no
actual occurrence of a pattern in the text will be missed by such a right shift
is omitted here. The computation of the failure function F takes O(m) time
(this is explained below). The KMP algorithm is given in Algorithm 7.3.
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Fig. 7.1. Knuth-Morris-Pratt Algorithm: (a) definition of border Bi with length
Li; (b) Knuth-Morris-Pratt shift

The critical lemma that allows O(m) computation time to pre-process the
pattern to determine the failure function is the following.

Lemma 1 For any i, li+1 ≤ li+1. The equality holds if and only if P [li+1] =
P [i + 1].

The following is an intuitive explanation of the lemma. It is obvious that
if P [li + 1] = P [i + 1]=x, then x contributes to incrementing li by 1, that
is, if the border is li at position i we will be able to find a longer border at
position i + 1 (see Figure 7.1b). Now, assume P [i + 1]=y and x 6= y. If y does
not appear to the left of x between locations 1 through li, then obviously
li+1 = 0. If y appears to the left of x, possibly more than once, then li+1

will have a non-zero value. The problem essentially has now been reduced to
finding a border on an instance of the original problem on a smaller string
P [1 . . . li]. This process can be recursed until either a valid prefix bi+1 is found
or the beginning of the pattern is reached. In this case, if P [1]=y then bi+1=y

and li+1 = 1. Otherwise, li+1 = 0, as noted earlier.
To illustrate this idea, as an example we will use a Fibonacci string, which

is defined as: F0=b, F1=a and for q > 2, Fq = Fq−1 ∗ Fq−2, where ∗ denotes
the concatenation operation. This gives F6 as abaababaabaab. Suppose, by
using some algorithm, we have obtained the value of the border for i = 11
as b11=abaaba with l11 = 6. We now want to obtain l12 and b12. First, we
try to extend the border by one character by checking whether P [l11 + 1] =
P [i+1] which is not true for our example because P [l11+1]=b and P [i+1]=a.
Let’s assign a variable v = l11. If P [v + 1] = P [i + 1] were true, we could
have immediately set l12 = l11 + 1 and proceeded to compute l13. But, since
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KMP-string-matching (P, T )
pre-process pattern P to compute the failure functions:

F [j] = Lj−1 + 1 for 1 ≤ j ≤ m + 1
p← 1 /* a pointer into the pattern P */
k ← 1 /* a pointer into the text T */
/* The pattern is aligned at the left of the text */
while (k + (m− p) ≤ n ) do /* T matches P so far */

while (P [p] = T [k] and p ≤ m ) do /* match continues */
k ← k + 1
p← p + 1

end while

if p = m + 1 then

report pattern P occurs at position k −m in the text T
end if

if p = 1 then

/* a special case when mismatch occurs at position 1 of P */
k ← k + 1

end if

p← F [p]
end while

Algorithm 7.3: KMP pattern matching algorithm

P [v+1] 6= P [i+1], we repeat the procedure with respect to the smaller string
by “bouncing” back to location 6 where the prefix b11 ends. Now we have
l6 = 3 and b6=aba. Actually, l6 is already available since, as we will see soon,
the computation of borders proceeds from left to right in the main algorithm.
We can now extend v = l6, because P [v+1] = P [4]=a and P [i+1] = P [12]=a.
Thus, l12 = 4.

This discussion leads to an O(m) algorithm to find all the bi’s and li’s as
shown in Algorithm 7.4. For positions 1 to 13 for the string abaababaabaab

the algorithm will give the border length values (0,0,1,1,2,3,2,3,4,5,6,4,2), re-
spectively.

The for loop is executed m − 1 times. The variable v is assigned a new
value m − 1 times each time this loop is executed, where its value either
increases by one or remains unchanged. The variable v is also assigned new
values in the while loop a variable number of times corresponding to the
number of times a pointer “bounces” back, each time working with a reduced
length prefix whose minimum value is 0. Thus the total reduction of the value
of v is also bounded by m − 1, which is the maximum number of times its
value is assigned in the while loop. This yields a total complexity of O(m)
for Algorithm 7.4.

The constrained values of the borders Bi and their lengths Li can be com-
puted similarly, as shown in Algorithm 7.5. The algorithm assumes that the
unconstrained values of border lengths computed by Algorithm 7.4 are avail-
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Compute-failure-function (P, T )
l1 ← 0
for i← 1 to m− 1 do

x ← P [i + 1]
v ← li
while (P [v + 1] 6= x and v 6= 0) do

v ← lv
end while

if P [v + 1] = x then

li+1 ← v + 1
else

li+1 ← 0
end if

end for

Algorithm 7.4: Computing the KMP failure function for pattern P

able to this algorithm. The proof of correctness and the complexity analysis
are left as exercises. Note that the KMP algorithm, Algorithm 7.3 that we
presented earlier, uses these constrained values.

Compute-constrained-failure-function (P )
L1 ← 0
for i = 2 to m do

v ← li
if P [v + 1] 6= P [i + 1] then

Li ← v
else

Li ← Lv

end if

end for

Algorithm 7.5: Computing the KMP constrained failure function for pat-
tern P

In the KMP algorithm, when there is a mismatch between a pattern and a
text character, the pattern is shifted right as specified by the failure function.
But, failures may repeat and in the worst case this may happen |Σ| times.
Thus, in the worst case the KMP algorithm has complexity (O(m|Σ|+ n). If
we assume that |Σ| is constant the complexity is O(m+n). But, the possibility
of multiple comparisons makes the algorithm non-real time. To be real time,
the time between two successive comparisons with text characters cannot
exceed a prescribed constant amount of work and once a text character has
been examined, it cannot be seen again. This can be achieved by modifying
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the definition of Bi to a specific character x in the alphabet in Figure 7.1,
and denoting it by Bi,x and its corresponding length by Li,x. Algorithm 7.3
remains essentially unchanged except that in the case of a mismatch, it is
shifted right by an amount i− Li,x.

7.1.3 The Boyer-Moore algorithm

The Boyer-Moore algorithm is currently considered to be one of the most
efficient pattern matching algorithms for searching an ordinary text and has
become the practical exact pattern matching algorithm of choice. Using shift
heuristics, it is able to avoid making comparisons with some parts of the
text and can therefore produce a sub-linear performance of O( n

m ) in the best
case, although on average it requires O(m + n) comparisons and in the worst
case deteriorates to O(mn) time complexity. The algorithm, however, requires
access to the text in a particular order and is not suitable for on-line or real
time applications. Although it is not strictly on-line or real time, in practice
it needs a buffer of only O(m) characters, so in practice it can be adapted to
work through a text in a single sequential pass.

The algorithm scans the characters right to left starting with the right-
most character of the pattern P , but the pattern is shifted left to right as
in the KMP algorithm. When a mismatch is found, the maximum of two
pre-computed shifts obtained by two rules, called the good-suffix rule and
bad-character rule, are used to determine how far to shift the pattern be-
fore beginning the next set of comparisons. This shifts the pattern along the
text from left to right, without missing possible matches, until the required
patterns have been located or the end of the text is reached.

The good-suffix rule is used when a suffix s of P has already been matched
to a substring of the text T , but the next comparison results in a mismatch
between the text character z and the pattern character x (see Figure 7.2). The
set of diagrams shown in Figure 7.2 illustrates the ideas. There are several
cases to be considered.

The first case is when there is a rightmost copy of s, denoted s′, which is
not a suffix of P , and the character to the left of this copy, y, is not equal to
the character x. In this case we shift the pattern right until s′ aligns with s
of T . We continue the matching operation from the rightmost character of P
and proceed left one character at a time if characters match. Note the strings
s and s′ could partially overlap each other as shown in Figure 7.2b.

The second case is when the copy s′ satisfying the above conditions does
not exist. In this case we shift the left end of P past the left end of s in T
by the least amount so that a proper prefix of the shifted pattern matches a
suffix t of s in T (see Figure 7.3).

If neither of the above two cases apply, we shift the entire pattern P right
m places.

Now consider the case when the pattern matches entirely and we are inter-
ested in finding all occurrences of the pattern. In this case, we right shift the
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(a) Boyer-Moore good suffix shift

(b) The good suffixes may overlap

s

z
text

s

x

s´

y
pattern

Next character comparison 

starts here

s

x

s´

y
good suffix shift

       … … … a b b a a b b a b b a … … …

 b a b b a a b b a b b a    

        b a b b a a b b a b b a   

s´ s

pattern

right-shifted pattern

text

Fig. 7.2. The Boyer-Moore shift rules

pattern by the least amount such that a proper prefix of the pattern matches
a suffix of matched portion s in the text T . If no such suffix exists, then we
shift the entire pattern to the right of the mismatched character.

The bad character heuristic is illustrated in Figure 7.4. If the first mismatch
occurs as (P [i] = b) 6= (T [j] =a), then we shift pattern P so that the closest
a to the left of position i in P is aligned with position j in the text. If no
such a appears in the pattern, then we shift the pattern to the right of the
mismatched character (see the examples in Figure 7.4). A formal description
of the algorithm in the context of compressed-domain pattern matching is
given in Algorithm 7.7 with only one change: in line 6 for the while statement
the condition should be replaced with (i > 0 and P [i] = T [k]).

A table of shift distances for the good-suffix rule can be computed before
searching begins in O(m) amortized time, and requires O(m) space. A table for
the bad-character rule can be calculated before searching begins in O(m+|Σ|)
time and requires O(m + |Σ|) space. The original Boyer-Moore algorithm
required an overall time of O(mn), but this has since been improved to O(m+
n) by various authors. The good suffix heuristic is essential for the linear
time worst case performance. The book by Smyth (2003) provides a detailed
treatment and analysis of different variants of the BM algorithm.
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(a) Partial good suffix shift

(b) An example
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7.1.4 The Karp-Rabin algorithm

The Karp-Rabin algorithm (Karp and Rabin, 1987) converts the successive
m-character substrings of the text into a sequence of n − m + 1 numbers,
called fingerprints, with the help of a hash function h that interprets the
substring as an integer in a |Σ|-radix number system, where the alphabet
of the characters is assumed to be Σ = {0, 1, . . . , |Σ − 1|}. Thus, for binary
strings with Σ = {0, 1}, the integer associated with the m-length binary
string s = s1s2 . . . sm is h(s) =

∑m
i=1 2m−isi. Similarly, an integer associated

with a m-length substring in the text T starting at location r, denoted as
tr = T [r . . . r + m− 1], is given by:

h(tr) =

m
∑

i=1

2m−iT [r + i− 1].

Thus, if we take s to be the pattern P , and h(s) 6= h(tr), then we can
immediately conclude that the pattern (P ) cannot possibly match the m-
character segment of text at location r. One of the problems with this approach
is that the integers generated by the simple hash function h can be extremely
large in any practical situation for a reasonably-sized alphabet and pattern
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Fig. 7.4. Boyer-Moore Bad Character rule

length, and the representations of these large numbers may violate the random
access computation model. Karp and Rabin tackled both of these problems by
using a fingerprint hp(x), rather than h(x). The fingerprint hp(x) is defined
as hp(x) = h(x) mod p, where p is a suitably chosen prime number and x =
x1x2 . . . xm is a string of m integers in the range 0 to |Σ| − 1.

There are two tricks to implementing this efficiently. First, we can take
advantage of the associative property of the modulo operation and compute
the fingerprint using Horner’s rule for a binary string x:

hp(x) = (xm + 2(xm−1 + 2(xm−2 + . . . + 2(x2 + 2(x1) mod p) mod p) . . .
modp) mod p) mod p

For an alphabet of size |Σ|, the multiplicative factor 2 should be re-
placed by |Σ|. This approach means that no number at any intermediate
stage of computation will exceed |Σ|p. The expression takes O(m) multipli-
cation and addition operations. A second optimization can be done when we
first compute hp(t1) by taking O(m) time, which will then enable us to obtain
hp(t2), hp(t3), . . . hp(tn−m−1) in a constant amount of time each. The idea
of this optimization can be explained by a simple example using a binary
string. We take an example text T = · · · 111011 · · ·, a sample pattern length
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m = 5, with tr−1 = 11101 corresponding to the start of the substring of T ,
and therefore tr = 11011. Thus, h(tr−1) = 24 + 23 + 22 + 0.21 + 20 = 29 and
h(tr) = 24 + 23 + 0.22 + 21 + 20 = 27. If we take h(tr−1), multiply it by 2
(adds a zero on the right-hand side), subtract 1.25 (remove the first bit) and
add 1.20 (add the last bit), we get h(tr) = 29.2-32+1=27. In general, for a
binary text string we can write

h(tr) = 2h(tr−1)− 2mtr−1[1] + T [r + m− 1]

Now we can apply the mod operation to obtain the final recurrence relation

hp(tr) = [(2h(tr−1) mod p)− (2m mod p)tr−1[1]) + T [r + m− 1]] mod p

However, if h(s) = h(tr) under modulo p, we cannot guarantee that the
pattern occurs unless we compare the pattern with tr character by character.
If such comparison gives a mismatch, it is said to be a false match. Choosing a
prime number p so that it is not too large, yet gives a low probability of false
match, is a challenging one. Karp and Rabin proposed a randomized procedure
using a number theoretic approach to establish that a random prime can be
chosen which is less than mn2 and which yields a very low probability of false
match. For example, the probability is less than 0.001 for a 32-bit fingerprint.
In the worst case, the Karp-Rabin algorithm takes O(mn) time, and in the
average case it takes O(m + n).

7.1.5 The shift-and method

The basic operations in the Knuth-Morris-Pratt and the Boyer-Moore meth-
ods are comparisons of characters. Baeza-Yates and Gonnet (1992) published
an exact pattern matching algorithm that is based on bitwise operations. The
method is very efficient for small patterns, although it has O(mn) time com-
plexity in the worst case.

We define a binary matrix M with m rows and n columns such that
M [i, j] = 1 if and only if the prefix of the pattern P [1 . . . i] equals the suffix
T [j − i + 1 . . . j] in the text at the j-th position. For a text T = xabxabaaca

and a pattern P = abaac, the matrix M is shown in Figure 7.5.
Note that if there is a diagonal of 1’s starting from row 1 and ending in

row m, it means the pattern has occurred in the text. The algorithm can
be defined formally after we define two binary column vectors. The first is
Pos, which stores a bit vector for each character in the alphabet. Pos[x] is
an m-bit vector whose i-th position is set to one if the character x occurs in
the i-th position of the pattern P , 1 ≤ i ≤ m. The second column vector is
Bitshift [j − 1], and is the (j − 1)-th column of M shifted downward by 1 bit
with an appended one as the first bit and the overflowed last bit discarded.
Column 1 is initialized to all zeros if P [1] 6= T [1]; otherwise its row 1 entry
is one and rest are zero bits. To compute M , the j-th column is obtained
from the (j − 1)-th column by bitwise logical AND operation of Pos[T [j]]
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x a b x a b a a c a
a 0 1 0 0 1 0 1 1 0 1
b 0 0 1 0 0 1 0 0 0 0
a 0 0 0 0 0 0 1 0 0 0
a 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0

Fig. 7.5. Matrix M for the shift-and method on text T = xabxabaaca and a pattern
P = abaac

with Bitshift [j − 1]. The operation is repeated n times until the last column
is obtained. If at any time during construction of M , the bit in the last m-
th row becomes one, it implies the pattern must have occurred in the text.
The worst case computation time is O(mn), although only a linear amount
of storage is needed since we need keep only the previous column and the
current column at any time during the execution. One big advantage of the
software implementation is that if m is small and fits into a computer word
(32 to 128 bits which fits most practical situations for pattern lengths), the
bitwise logical AND operation can be performed very quickly, yielding a very
fast algorithm.

A hardware implementation of this idea is described at the end of this
chapter, in Section 7.5.1.

7.1.6 Multiple pattern matching

A generalization of the pattern matching problem is to search for sets of
patterns. Given a set of patterns P = [P1, P2, . . . , Pk] and an input text string
T of length n, we need to determine whether some pattern Pi occurred as a
substring in T . We will assume that the total length of the patterns is m, and
the text is longer than the shortest pattern in the set P . We also assume that
the patterns in the set are distinct. A straightforward approach to this problem
is to apply either the KMP or Boyer-Moore algorithm for each pattern in the
set over the text T . This will take O(m + kn) time in total.

Aho and Corasick (1975) solved the multiple pattern matching problem us-
ing only O(n+m) time. If the number of patterns k is large, this is a significant
improvement. The idea of their algorithm is to generalize the KMP approach
using a finite state machine. A similar approach was originally developed by
Knuth following a theorem by Cook (1972) which proved the existence of
a linear pattern matching algorithm from language theoretic considerations.
The state transition rules of this automaton were realized by the KMP shifts
that we discussed earlier. Aho and Corasick adopted a similar approach but
we will present a better known formulation using a digital trie or digital search
tree, and a variation of a trie known as a keyword tree. The term keyword sim-
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ply refers to a pattern being searched for, and so in the following the terms
pattern and keyword are used interchangeably.

The digital trie is a data structure developed by Knuth in 1973, and is
very useful for pattern matching. An example of a kind of trie that is be-
ing used as a keyword tree is shown in Figure 7.6a containing the keywords
{abca, aca, acabb, bcb, bcc}. The branch factor of the tree can be up to the
size of the alphabet (|Σ|), with each branch corresponding to the next charac-
ter in a substring. In the case of a keyword tree, the substrings represented in
the tree are the set of patterns that are to be matched (in other applications
a digital trie stores substrings of the text rather than the patterns). A subset
of nodes in the tree represents a given set of keywords over the finite alphabet
Σ. The concatenation of characters from the root to the nodes spell out the
keywords. Each edge is labeled by a character, and sibling edges must have
distinct characters.

a b
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a b

b c c

cc bb
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Fig. 7.6. (a) Keyword tree for {abca, aca, acabb, bcb, bcc}; (b) digital search tree
(trie) for the patterns {abca, acbbb, bcb, bcc}; (c) one of the failure links; solid nodes
correspond to the keywords

In Figure 7.6a the keywords are marked by solid nodes. Every node v
in the tree represents a string of characters from Σ corresponding to the
concatenation of characters on the path from the root to v, and this string
will be denoted as path(v). The root represents the null string ǫ. Note that the
keyword aca is a proper prefix of the keyword acabb. If no pattern is allowed to
be the prefix of another, then each terminal node represents a pattern, and the
tree is called a digital search tree, although the terms keyword tree and digital
search tree are sometimes used interchangeably. An example of a digital search
tree is shown in Figure 7.6b for the pattern set {abca, acbbb, bcb, bcc}. The
construction of the tree takes O(m) time. This is easy to see: the tree for P1

is simply a path with edges labeled by the characters of P1. Suppose we have
the tree of the first i patterns in the tree. To add the pattern Pi+1, just trace
the path using the letters in Pi+1 as far as possible. At some point a distinct
sibling edge has to be added, which will lead to a sub-path terminating in a
terminal node representing the pattern. Thus the work involved is bounded
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by the length of the pattern Pi+1. Adding all the pattern lengths gives us m
characters, so the total construction time is O(m).

A brute force method to search a text for any of the patterns in the set
is to start at each position in the text and trace a unique path from the
root, matching text characters with the characters labeling the edges in the
path until a failure occurs or a node representing a pattern is reached. For a
keyword tree, a node representing a pattern may be reached more than once
if some patterns in P are prefixes of other patterns in P . For example, as a
special case, all the patterns occur in just one path in the keyword tree if the
patterns P consists of all the prefixes of a given string. In general, to find all
patterns for a given position in the text the tree traversal time is bounded
by the length of the longest pattern which could be O(m). Since there are n
positions in the text, the brute force algorithm thus takes O(nm) time in the
worst case. The Aho-Corasick algorithm generalizes the KMP algorithm for
a keyword tree and reduces this time to O(n + m + ηocc), where ηocc is the
number of occurrences of the patterns in P in T .

To motivate the idea, we will use the example text abcbcaabcc and try to
find the patterns in the digital search tree of Figure 7.6b. After matching the
first three characters abc of P1 = abca, the search fails so the process needs to
be started from the root beginning with the second character of the text, b. We
cannot make a KMP-like shift since no suffix of abc is a proper prefix of abc.
However, the third pattern in the set, bcb, has a prefix bc which matches with
the suffix bc of abc. So, the “border” of the KMP algorithm is now located in
a different pattern, bcb, and therefore rather than starting the search process
at the root node, it should skip the first two edges labeled by bc and proceed
to find the pattern bcb after just one more character comparison operation.
This can be achieved by storing a failure link, as shown in Figure 7.6c (note
that not all the failure links are shown).

More formally, for the node v, define lp(v) to be the length of the longest
proper suffix of path(v) that is a prefix pri of some pattern Pi in P . The
unique node in the tree that has a path label pri will be denoted as link(v).
The ordered pair (v, link(v)) will be called a failure link. If lp(v) = 0, then
link(v) will be the root node; in this case it need not be stored, as nodes
that do not have an explicit failure link will have an implicit failure link to
the root node. Now, suppose we are tracing a text T on the digital tree to
find patterns and come to node v after matching with the character T [c− 1]
of text, and there is a mismatch with character T [c], where c points to a
position in the text. Then, by the definition of the failure link (v, link(v)), it
is guaranteed that the characters T [c−lp(v) . . . c−1] will match the characters
of path(link(v)). We can then proceed to compare the character T [c] with the
next character after path(link(v)). This is a generalization of the notion of
shifting the pattern in KMP algorithm as discussed earlier in the chapter.

Before we give the final algorithm, we need to resolve the situation where
one pattern is a substring of another pattern in P . For example, consider
P = (abacc, ba) and T = abacd. The tree for P will have two separate paths
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leading to two terminal nodes. After traversing the path abac, it will fail and
start from the root and then encounter the character d of text; it will fail
again and never find the pattern ba even though it is present in the text. This
happened because the pattern ba is embedded in abac but is not a suffix of
abac. This can be taken care of easily by noting that if there is a failure link
or a directed path of failure links from any node v in the tree to a terminal
node corresponding to pattern Pi, then whenever the node v is reached during
the tree traversal, one can conclude that the pattern Pi has occurred in the
text ending at the current text position (c) when v was reached. Thus we can
modify our algorithm by stating that if a node v is reached at T [c], and if v
is either a terminal node, a link or a directed path of links from v that leads
to a terminal node, then a pattern must have occurred in the text ending
in position c. We can now state the Aho-Corasick algorithm as shown in
Algorithm 7.6.

Multiple-pattern-matching (T, KeywordTree)
c = 1 /* a pointer into the text */
v = root /* search begins at root node */
repeat

while (v is root node and T [c] does not match with
any character labeling outgoing edges (v, v′) from v) do

c← c + 1
end while

until character of outgoing edge (v, v′) = T [c] or c > n
if c > n then report no pattern found and quit

repeat

while ( T [c] matches the character labeling
outgoing edges (v, v′) from v ) do

if v′ corresponds to a pattern Pi or there is a directed path of
failure links from v′ to a node associated with a pattern Pi then

report Pi occurs in T ending at position c− 1
end if

v ← v′

c← c + 1
end while

v ← link(v)
until c > n

Algorithm 7.6: Aho-Corasick multiple pattern matching algorithm

Several improvements of the KMP, Boyer-Moore and Aho-Corasick algo-
rithms have been reported in the literature; see the further reading section for
more information.
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7.1.7 Pattern matching with don’t-care characters

A fixed length don’t-care or wild-card character, which we will refer to as
the FLDC character φ, is a symbol that does not belong to Σ but matches
with every character in Σ including φ itself. However, the “match” relation
is no longer transitive. For example, ab matches with aφ which matches with
ac, but b 6= c. This creates problems if one attempts to apply the KMP or
Boyer-Moore shifts for pattern matching. For example, if P = babφab and
T = babcbaab, using the KMP algorithm when the pattern is aligned with
the beginning of the text, φ matches with c. The KMP algorithm will now
right shift the pattern by two places and the pattern is found because after
the shift, φ matches with a. This is a false match because a 6= c, and we have
mistakenly assumed transitivity.

Another variation of the pattern matching problem is when the pattern has
a variable length don’t-care or VLDC character, denoted as θ, which matches
with any string of characters of arbitrary length. For example, the pattern
a θ b matches with any string that starts with a and ends with b. Another
variation is to use both fixed length and variable length don’t-care characters
together, for example, aθbφφc. Normally it is assumed that θ has at least one
character but patterns described by regular expressions can handle the case
when null strings have to be embedded.

If the pattern has a bounded constant number k of don’t-care characters,
then there are O(n + m) algorithms to find the pattern in the text. The basic
idea of one approach is to define an integer array C of length |T | which is
initialized to all zeros. From a single pattern P with don’t-care characters we
construct an ordered sequence of substrings M = [P1, P2, . . . , Ps] in P that do
not contain any wild-card characters. These can be obtained in O(m) time by
scanning the pattern P left to right and noting down the pairs of transitions
in order from a don’t-care character to a character in Σ immediately followed
by a transition from a character from Σ to a don’t care character with some
special attention to the beginning and end of P . The maximum value of s
is k. Also note some patterns may be repeated in M . Let li be the starting
location of Pi in P . Using the Aho-Corasick algorithm, we now find, for each
Pi, all starting positions of Pi in T . Suppose a starting location of Pi is found
in T at position w. Then, add 1 to C[w − li + 1]. The incremented value of
C in this location acts as a witness that Pi occurred at a distance li from
this location in C. If this happens to cell C[w − li + 1] for all patterns Pi in
M , then the count of C[w − li + 1] will be exactly s and the pattern P has
occurred in T at position T [w − li + 1]. The time to find patterns of P in T
is O(n + m + s) for one occurrence of P in T . The quantity s depends on the
number k of FLDC characters in relation to m, the total length of the pattern
P . Assuming k to be a constant, we can also assume s to be bounded by a
constant. Thus, the complexity is O(n + m). Since each cell of C can have
a maximum value of s, if P appears in each location in T , incrementing all
the cells in C will involve O(sn) amount of work, giving a total complexity of
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O(sn + m). Since s is assumed to be a constant, the worst case complexity is
O(n + m).

If the number of don’t-care characters in the pattern is not a constant,
we can use a method proposed by Pinter (1985) as follows: let di,j = pi − pj

denote the distance between the pattern Pi and Pj , where pi and pj denote the
positions of Pi and Pj , respectively, in P . Using the Aho-Corasick algorithm,
obtain the lists L1, L2, . . . Ls corresponding to patterns P1, P2, . . . , Ps where
the list Li contains the positions of occurrences of Pi in the text T . Then,
the intersection of the two lists Li and Li+1 is obtained by keeping only
those positions in Li that are at a distance di,i+1 to the left of the positions
in list Li+1. This intersection list is denoted Li,i+1. A set of intersection lists
L1,2, L3,4, . . . , Ls−1,s is then obtained. Without loss of generality, assume that
s is an even number. The computation is now done hierarchically upwards by
computing lists Li,i+1.i+2,i+3 by intersecting two lists Li,i+1 and Li+2,i+3 by
retaining the positions in list Li,i+1 that are at a distance di,i+1 + di+2,i+3

to the left of positions in Li+2,i+3. This process is continued until the list
L = L1,2,...,s−1,s is obtained. If L is a non-empty list then the pattern P
occurs in T and the entries in L give the beginning positions where P occurs
in T . The proof of correctness of this algorithm is left to the reader as an
exercise. The time complexity of the algorithm is O(m1.5 + n

√
m).

If both the pattern and the text contain don’t-care characters, the problem
can be reduced to multiplying an m-bit number by an n-bit number (Fischer
and Paterson, 1974). If the time for this multiplication is t(m,n), it can be
shown that the complexity of pattern matching with don’t-cares is given by
O(t(n,m) log m log |Σ|). Using the Schönhage-Strassen integer multiplication
algorithm, (Strassen, 1969; Schönhage and Strassen, 1971) the time becomes
O(n log2 m log log m log |Σ|). This is a theoretical result and the algorithm has
not been implemented in practice.

We will conclude this section with a previously unpublished method for
matching with don’t-care characters. Consider first the case when the pattern
has both the fixed length don’t-care character φ as well as the variable length
don’t-care character θ, the text has no don’t-cares, and the size of n is small
enough that computation using position index numbers in the text can be
performed in a RAM model of computation. As before, we first extract the
ordered sequence of substrings M = [P1, P2, . . . , Ps] in P that do not contain
any wild-card characters in O(m) time. For each pattern Pi, we determine the
ranges, that is, the beginning position taili and the end position headi of all
Pi in T . We create a sorted tail array TLi = [taili] and a sorted head array
HLi = [headi] for each Pi. For example, let the pattern be P = abθbcθcaφφaa.
Without loss of generality, assume that the first and the last characters of P
are from Σ. Let T = ababbcaabcabbccaabaab. The component patterns are
P1 = ab, P2 = bc, P3 = ca and P4 = aa. The sorted tail and head arrays
are shown in Table 7.1. During the execution of the Aho-Corasick algorithm,
these sorted lists can be derived as auxiliary outputs without going through
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separate sorting algorithms to sort these arrays, and thus it takes only O(m)
time to compute them.

Pattern TL1 HL1

ab [1,3,8,11,17,20] [2,4,9,12,18,21]
bc [5,9,13] [6,10,14]
ca [6,10,15] [7,11,16]
aa [7,16,19] [8,17,20]

Table 7.1. The head and tail arrays for P = abθbcθcaφφaa

We now draw a range order graph using the following procedure (an ex-
ample is shown in Figure 7.7). For each component Pi, we create a row of
vertices in order from left to right, where a vertex v corresponds to the range
TLi[r] − HLi[r]. The range vertices for patterns Pi and Pi+1 are placed in
consecutive rows. The vertices in the second to last row are connected by a
thin directed edge from the r-th range to the (r+1)-th range. The first vertex
in any row does not have any incoming edge, and neither do any of the edges
in the first row. A vertex in row j (1 ≤ j ≤ (s − 1)) is connected by a thick
directed edge to the left-most node in row j +1 if the head value of the vertex
is less than or equal to the tail value of the vertex in row j + 1 and there is
a variable length don’t-care character between pattern Pj and Pj+1 in P . On
the other hand, if there are δ don’t-care characters φ between pattern Pj and
Pj+1 in P , then the vertex in row j is connected to a vertex in row (j + 1)
if and only if the tail value in the (j + 1)-th row is exactly equal to the head
value of the vertex in row j plus δ + 1. Such a j-th row is designated in the
graph by writing “+δ” beside the row (shown beside row 3 in Figure 7.7).

1-2 3-4

5-6

8-9

9-10

10-11

11-12 17-18 20-21

19-20

13-14

15-16

16-17

6-7

7-8

+2 row

Fig. 7.7. The range order graph for P = abθbcθcaφφaa and T =
ababbcaabcabbccaabaab. Each row corresponds to some pattern Pi in P . Each node
corresponds a pairs of (tail – head) for some pattern in P
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It is easy to prove that if one can find a path in this graph which originates
in the first row and terminates in a node in the last row, then the pattern
P occurs in T . The thick edges encountered in the path correspond to the
matches with the Pi substrings. The rows (linked by thin lines) indicate the
following property: if an edge from row j terminates in a left-most vertex in
row j +1, then there are also thick edges from this vertex to all the vertices to
the right of this left-most vertex connected by thin edges. One can now verify
that for our running example there are 8 occurrences of P in the text T by
following all possible paths from the top to bottom row. One of them is (1-
2,9-10,15-16,19-20) which corresponds to P1=ab, θ=abbcaa, P2=bc, θ=abbc,
P3=ca followed by φφ = ab and aa at positions 19-20.

The time complexity of the construction of the range graph is O(n log n).
This is because there can be at most n range values and the left most thick
edges can be found by doing an O(log n) search on the sorted tail array, which
can also have O(n) values. The graph also requires O(n) storage since each
vertex can have a maximum of one outgoing thick edge and one outgoing thin
edge. Searching for a thick edge from row j to row j + 1 begins at the left
most vertex with an incoming thick edge, and proceeds by tracing the path
on thin edges until a node is found that has an outgoing thick edge. Thus this
step takes O(m) time. So, to find just one occurrence of P in T , the algorithm
takes O(m + n log n) time, which is O(n log n) if n is large compared to m
(this is the case in most practical situations). If there are ηocc occurrences of
P in T , the algorithm requires O(n log n + mηocc) time. The algorithm can
also handle FLDC characters in the text but in the worst case the number
of occurrences of component patterns might become O(n2) which will cause
the range graph to have O(n2) size.

References for other approaches for pattern matching with don’t-care char-
acters are given in the “Further reading” section of this chapter.

7.2 Pattern matching using the Burrows-Wheeler
Transform

Pattern matching in the compressed domain can have the advantage of avoid-
ing having to fully decompress a file before it is searched, and potentially it can
be faster because there is less data to search. Many methods for compressed-
domain pattern matching have been proposed for a variety of compression
methods, but are generally based on transforming the pattern into the com-
pressed domain and performing a linear search on the compressed file. In
contrast, compressed-domain pattern matching using the Burrows-Wheeler
Transform has the potential to accommodate a binary search, because the
compressed domain under the BWT provides a representation of the sub-
strings of the text in sorted order. This represents a significant potential per-
formance improvement, since it could potentially support searching in loga-
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rithmic time rather than linear time. Of course, in practice it isn’t quite that
simple!

When discussing pattern matching in the compressed-domain, particularly
with Burrows-Wheeler Transform algorithms, we classify the algorithms as
either index-based or non-index based. An algorithm is index-based if it pre-
computes and stores information beyond the compressed representation of the
text, before search time, for the purpose of facilitating later search on the text.
In this chapter we will discuss both non-index based algorithms (such as one
based on binary search of the transformed file), and index-based algorithms
(such as the FM-index algorithm). There are many approaches to searching
Burrows-Wheeler transformed files; in addition to binary search, it is possible
to do pattern matches based on “q-grams” (substrings of length q, typically
just a few characters long) which also make approximate matching possible;
and the Boyer-Moore algorithm can be adapted for compressed-domain BWT
matching.

In this section we first look at exact matching algorithms for BWT com-
pressed files, and evaluations of their performance; we then move to approx-
imate matching in the BWT domain, which is considerably harder to eval-
uate because of the many possibilities for what we mean by “approximate”
matches. This book focuses on BWT-based compression methods. References
are provided in the further reading section at the end of this chapter for pat-
tern matching based on other compression methods. Full-text indexing based
on the BWT is described in Chapter 8.

The formal definitions of the Burrows-Wheeler Transform, the inverse
transform and their associated arrays have been described in Chapter 2. A
summary of the arrays is given in Appendix A on page 309. Many of these
arrays are used for compressed-domain pattern matching. The ones that are
used the most are L, which is the transformed text (last column of the sorted
array As which contains the n rotated substrings from the text T ); F , which
is the first column of As and is simply the characters of the text sorted into
lexical order; R, an index showing the permutation caused by sorting the texts
i.e. it is a mapping from the rows of A to those of As; and V and W , which are
used to navigate through the transformed text to produce the original text
both backwards and forwards (respectively).

The search algorithms described in this section (excluding the FM-index),
will work with any post-transform compression scheme suitable for BWT be-
cause they work on the BWT transformed text, L. This means we must reverse
the compression (typically a combination of move-to-front coding, run-length
encoding, and/or order-0 arithmetic/Huffman coding) to retrieve the per-
muted string L before searching can begin. The evaluations reported in this
chapter will use bsmp, the BWT-based compression technique reported in
Bell et al. (2002) when we compare the different approaches. bsmp is a fairly
traditional approach to encoding Burrows-Wheeler Transform files, involving
three stages. The first stage passes the BWT output through a move-to-front
(MTF) coder (Bentley et al., 1986) to take advantage of the clustering of char-
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acters. The resulting output is then given to a run-length coder to remove long
sequences of zeros, and finally an order-0 arithmetic coder compresses the run
lengths.

The compression for the FM-index method described later is provided by
a move-to-front coder, followed by a multiple table Huffman coder (Wheeler,
1997). Although this results in a lower compression ratio than bsmp, it is faster
and allows random access into the compressed file, which permits searching
without reversing the compression of the entire file. As well as the compressed
text, auxiliary indexing information is also stored to improve search perfor-
mance at a small cost to the size of the resulting file.

7.2.1 Boyer-Moore pattern matching using the BWT

To be used in the compressed-domain, the Boyer-Moore algorithm must be
able to access the text in the correct order. For BWT-based compression, this
is achieved by decoding parts of the text, as needed, through the F array
and R′ arrays as shown in Algorithm 7.7. In this algorithm, the variable k
represents the position in the original text (from 1 to n), and is incremented
using the Boyer-Moore rules. The text T isn’t available of course, but because
T [k] = F [R′[k]], each value is easily obtained by making two index lookups
instead of one.

Compared with decompress-and-search, this approach is generally a little
faster because the array T does not need to be generated, and the extra
auxiliary information needed can be generated faster than the time it would
have taken to create T . However, two array references are needed to access
each character for comparison, and if several patterns are to be matched, it
will probably be more efficient to decode T than to work in the compressed
domain.

7.2.2 BWT-based exact pattern matching with binary search

The output of the Burrows-Wheeler Transform is remarkable in that it pro-
vides access to a list of all suffixes of the text in sorted order. This makes it
possible to use a binary search on the list that operates in O(m log n) time.

For example, Figure 7.8 shows the sorted list of suffixes for the text
mississippi. This is basically the same as the sorted matrix As (shown in
Figure 2.1b), but strings are not wrapped around to the start of the text. If a
search pattern appears in the text, it will be located at the beginning of one
or more of these lines. Additionally, because the list is sorted, all occurrences
of a search pattern will be located next to each other; for instance, si appears
at the start of lines 8 and 9. In principle, As is represented using the array
R, but this would require access to T to match the characters. Below we shall
see how intermediate arrays from the BWT decoding can be used to access
the rows of As.
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Compressed-Domain-Boyer-Moore-Search(P, F, R′)
1 Compute-Good-Suffix(P )
2 Compute-Bad-Character(P )
3 k ← 1
4 while (k ≤ n−m + 1) do

5 i← m
6 while (i > 0 and P [i] = F [R′[k + i− 1]]) do

7 i← i− 1
8 end while

9 if i = 0 then

10 Report a match beginning at position k − 1
11 k ← k + <shift proposed by the good-suffix rule>
12 else

13 sG ← <shift proposed by the good-suffix rule>
14 sB ← <shift proposed by the extended bad-character rule>
15 k ← k + Max(sG, sB)
16 end if

17 end while

Algorithm 7.7: Boyer-Moore search using the Burrows-Wheeler Transform

1
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i

ippi

issippi

ississippi

mississippi

pi

ppi

sippi

sissippi

ssippi

ssissippi

Fig. 7.8. Sorted substrings for the text mississippi

In practice, this structure is accessed through the M array, which stores
the starting locations of each group of characters in F , and thus provides
a “virtual index” to the first character of each row in the sorted substring
list. The remaining characters in a row are decoded as needed using the W
transform array (see Appendix A for its definition; Figure 7.9 shows the BWT
arrays for this example, including W — it is the same as Figure 2.8, repeated
here for ease of reference). A row from As needs to be decoded only if it is
needed to perform a string comparison as part of the binary search (that is,
a maximum of log n rows need to be decoded), and even then only enough
is decoded to make the comparison decision. This comparison is shown in
Algorithm 7.8, where i is the number of the row in As being compared to
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the pattern, P . If t is a string representing that row, the return value of the
function is 0 if P is a prefix of t, negative if P < t and positive if P > t.

i T F L C V W R′ R

1 m i p 0 6 5 5 11
2 i i s 0 8 7 4 8
3 s i s 1 9 10 11 5
4 s i m 0 5 11 9 2
5 i m i 0 1 4 3 1
6 s p p 1 7 1 10 10
7 s p i 1 2 6 8 9
8 i s s 2 10 2 2 7
9 p s s 3 11 3 7 4

10 p s i 2 3 8 6 6
11 i s i 3 4 9 1 3

Fig. 7.9. Array values that can be used to do the BWT and searching of the text
mississippi

Binary-Search-Strcmp(P, W, L, i)
1 m← Length(P )
2 j ← 1
3 i←W [i]
4 while (m > 0 and L[i] = P [j]) do

5 i←W [i]
6 m← m− 1
7 j ← j + 1
8 end while

9 if m = 0 then

10 return 0
11 else

12 return P [j]− L[i]
13 end if

Algorithm 7.8: String comparison function for binary search of BWT-
transformed text; pattern P is being matched against the characters starting
at position i in L (i.e. row i of As)

For example, if row i = 9 of As is being compared with the pattern P =
sip, the comparison algorithm uses W to change i from 9 to 3 to identify the
first character of row 9, which is at L[3]. This character is s, which matches
P [1], and so i is changed to 10, and L[10] is i, which matches P [2]. Finally, i
is changed to 8, and L[8] is s, which is greater than the character p at P [3].
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A negative value is returned, indicating that sip comes before row 9 if it is
in As.

The use of the M array to index the substrings allows an improvement on
the O(m log n) performance of binary search by narrowing the initial range of
the search. If c is the first character of the pattern1, the initial lower and upper
bounds for a binary search are given by M [c] and M [c + 1]− 1. For instance,
in the example in Figure 7.8, if the search pattern begins with the letter s,
M tells us that it can occur only between lines 8 and 11. This range contains
n
|Σ| rows on average and therefore reduces the search time to O(m log n

|Σ| ) in

the average case.
Binary search on a BWT-compressed file is illustrated in Algorithm 7.9

(Bell et al., 2002). It operates by performing a standard binary search on the
range M [c] . . . M [c+1]−1, which results in a match with one occurrence of the
pattern if any exists. It is also necessary, however, to locate other occurrences.
This could be done by a simple linear search backward through the sorted
substrings until the first mismatch is found, as well as forward to find the first
mismatch in that direction (thus, identifying the first and last occurrence of
the pattern). If there are ηocc occurrences of the pattern in the text, this would
take O(ηocc) time, however, and would be rather time consuming if there are
many occurrences. Instead, it is more efficient to apply two further binary
searches. The first search locates the first substring that has P as a prefix and
operates on the range M [c] . . . p−1, where p is the location of the initial match.
Like a standard binary search, each step compares the midpoint of the range
to the pattern, however, if the comparison function returns a negative value
or zero, it continues searching the range low . . . mid; otherwise, it searches the
range mid+1 . . . high. The second search locates the last occurrence of P and
is performed in the range p + 1 . . . M [c + 1] − 1, but this time choosing the
range low . . . mid − 1 for a negative comparison result and mid . . . high for
a positive or zero result. A further improvement can be made by basing the
ranges for the two subsequent searches on mismatches of the initial search.
The first of the two extra searches operates in the range q . . . p − 1 where q
is the largest known mismatched row in the range M [c] . . . p− 1, that is, the
last low value of the range. A similar range can be identified for the second
search.

Finally, after all occurrences have been found in the sorted matrix, the
corresponding matches in the text must be located. This is achieved using the
R array. If the pattern matches lines i . . . j of the sorted matrix As, then the
indexes for the matches in the text are identified by R[i . . . j], because R maps
from F (the first characters of As) to T .

The version of the BWT-based binary search presented here uses W and
L to compare the sorted strings of As, but the comparison could alternatively
have been based on R′ and F , since R′ is the sorted array, and F [R′[i]] gives

1 We will assume that the alphabet can easily be mapped to integers, as is the case
with codes such as ascii.
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Binary-Search(P, W, L, R)
1 c← P [1]
2 P ′ ← P [2 . . . m]
3 low ←M [c]
4 high←M [c + 1]− 1
5
6 while (low < high) do

7 mid← (low + high)/2
8 cmp← Binary-Search-Strcmp(P ′, W, L, W [mid])
9 switch cmp

10 case = 0 : break

11 case > 0 : low ← mid + 1
12 case < 0 : high← mid
13 end switch

14 end while

15
16 if cmp = 0 then

17 h← mid− 1
18 while (low < h) do

19 m← (low + h)/2
20 if Binary-Search-Strcmp(P ′, W, L, W [m]) > 0 then

21 low ← m + 1
22 else

23 h← m
24 end if

25 end while

26 if Binary-Search-Strcmp(P ′, W, L, W [low]) 6= 0 then

27 low ← mid /* No matches in low . . . mid− 1 */
28 end if

29
30 l← mid + 1
31 while l < high do

32 m← (l + high + 1)/2 /* Round up */
33 if Binary-Search-Strcmp(P ′, W, L, W [m]) ≥ 0 then

34 l← m
35 else

36 high← m− 1
37 end if

38 end while

39 if Binary-Search-Strcmp(P ′, W, L, W [high]) 6= 0 then

40 high← mid /* No matches in mid + 1 . . . high */
41 end if

42 return R[low . . . high]
43 else

44 return null /* No matches found */
45 end if

Algorithm 7.9: BWT-based binary search algorithm
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T [i]. This different formulation is used for inexact matching using q-grams, and
it is closely related to pattern matching with suffix arrays (see Section 7.2.3),
which also use the R array in place of W to determine the position for a
comparison.

7.2.3 BWT-based exact pattern matching with suffix arrays

Suffix arrays (described in Section 4.2) are a useful tool for pattern match-
ing, and the Burrows-Wheeler Transform naturally provides a suffix array
because of the sorting that occurs during encoding. A suffix array is an index
to all suffixes of a text sorted in the lexicographical order of the suffixes, and
therefore allows patterns to be located in the text through a binary search
of the index. This array is very similar to the sorted context structure used
by binary search. However, the suffix array approach discussed in this section
is really an indexed-decompress-then-search approach because it fully decodes
the original text, T . The cost of constructing the index is trivial because it
is just the R array (defined in Section 2.1), which can be produced as a by-
product of decoding. The R array corresponds directly to a suffix tree; the
suffix T [R[i] . . .] is the i’th entry in the suffix array.

Unlike the BWT-based binary search approach, the suffix array needs more
work to set up searching, since it decodes the entire text T . However, it will be
faster to perform matches, because the characters in T are accessed directly,
whereas the binary search had to go through the W array for every character
access.

Algorithm 2.6 shows how to construct R. Although this is shown as a sepa-
rate operation from the decoding, it is possible to combine the two operations
to reduce the number of passes through the text and avoid having to generate
the W array. This is shown in Algorithm 7.10, which replaces the last loop in
Algorithm 2.1.

Suffix-array-from-L-array (C, M, L)
16 i← a
17 for j ← n downto 1 do

18 R[i]← j + 1
19 if R[i] = n + 1 then

20 R[i]← 1
21 end if

22 Q[j]← L[i]
23 i← C[i] + M [L[i]]
24 end for

Algorithm 7.10: Suffix array construction as the text is decoded (replaces
lines 16 onwards from Algorithm 2.1)
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Pattern matching with this structure can be performed in a manner similar
to that of the BWT binary search approach. In fact, the steps described in
Algorithm 7.9 can be reused, the only alterations being to the calls to Binary-

Search-Strcmp. These calls are replaced with:

Suffix-Array-Strcmp(P ′, T,R[x])

where x is the line in the suffix array to be compared with P ′. This string
comparison function for suffix arrays is much simpler than that of binary
search because the text has already been decoded and is referenced directly
— hence only the single array T is used for comparison, whereas binary search
used the array L to get the text characters, and W to navigate around L. The
suffix array comparison differs from an ordinary string comparison that might
be found in a standard programming language library only in that it also
reports that a match exists if the first string (the pattern) is a prefix of the
second — they are not required to have the same length.

The suffix array approach (and indeed, the binary search method) can be
adapted to be case insensitive. The general idea is quite simple: the comparison
method is changed to ignore case when comparing two characters. However,
this can’t be done at just decode time; the encoder must also use the case-
insensitive comparison, since the R array is based on the sort order of the
encoding, and therefore both encoding and pattern matching must use the
same rules for comparison so that they have the same lexical ordering for
strings.

7.2.4 Pattern matching using the FM-index

The FM-index approach to compressed-domain pattern matching uses a com-
bination of the Burrows-Wheeler Transform compression algorithm and a suf-
fix array data structure to obtain a compressed suffix array (Ferragina and
Manzini, 2000, 2001b, 2005). It is called FM-index because it is a Full-text in-
dex that occupies a “minute” amount of space2. The authors refer to it as an
“Opportunistic Data Structure” because it reduces the storage requirements
of the text without lowering the query performance. Indexing is added to the
compressed BWT file to allow random access into the compressed data with-
out the need to decompress completely at query time. This is an attractive
property, since it avoids the pre-processing needed by the methods described
earlier to obtain the BWT arrays.

The FM-index is a forerunner of what has become a relatively large fam-
ily of compressed full-text indexes based on the BWT. A broad survey that
covers related methods has been published by Navarro and Mäkinen (2007),
and the “pizzachili” website (see Appendix B) is an ongoing source for evalu-
ating related research. Chapter 8 has a section on compressed suffix trees and
compressed suffix arrays.

2 Coincidentally, “FM” also matches the initials of its authors, Ferragina and
Manzini.



216 7 Exact and approximate pattern matching

Searching using FM-index

Searching with the FM-index is performed through two key functions: Count

and Locate. Count determines how many matches there are for the pattern
in the text, and Locate identifies where they can be decoded from. Both
use the Occ function, which for Occ(c, k) returns the number of occurrences
of the character c in L[1 . . . k]. In principle this can be done directly using
the C array generated during BWT decoding, but because FM-index avoids
decompression, this information must instead be stored with the compressed
file, and therefore it needs to be represented as efficiently as possible. We shall
see in the section below on compression and auxiliary information that it is
possible to store this auxiliary information compactly with the compressed
file, and still retrieve it in O(1) time.

The Occ function is an important feature of the FM-index because it
allows random entries of the V array3 to be calculated as needed (see Ap-
pendix A for a definition of V , and Figure 7.9 for its values for our running
example). Thus, unlike the other algorithms in this section, the transform
arrays need not be constructed in their entirety before searching begins; only
the M array is required4. Access to M is described in the section below on
compression and auxiliary information; it has just one entry for each character
in the alphabet, so is very small. When required, an entry in V is calculated
as

V [i]←M [c] + Occ(c, i)− 1, where c = L[i].

This is equivalent to line 19 of Algorithm 2.1.
The function Count identifies the starting position sp and ending posi-

tion ep of the pattern in the rows of the sorted matrix. For example, if we are
searching for occurrences of ssi in the text T = mississippi then the rele-
vant matches are at the start of rows in the range from 10 to 11 in the suffix
array, as shown in Figure 7.10, so the Count function will return sp = 10 and
ep = 11. The number of times the pattern appears in the text is ep− sp + 1.

The Count function can be implemented in O(m) time as illustrated in
Algorithm 7.11. Matching is performed from right to left along the pattern,
taking advantage of the grouping of all occurrences of a character in F . There
are m phases, whereby, at the i-th phase, sp points to the first row of the suffix
matrix that has P [i . . . m] as a prefix and ep points to the last row that has
P [i . . . m] as a prefix. Thus, after the m phases, the first and last occurrences
of the pattern are referenced. For example, when searching for the phrase ssi
in the text mississippi (Figure 7.10), in the first phase the range (sp to ep)

3 Papers about the FM-index method refer to V as LF , since it maps the L array
to the F array.

4 Instead of M , papers about FM-index use an array called C, for which C[i] =
M [i]−1. For consistency with other algorithms in this book, we use M , and have
changed the FM-index algorithms accordingly.
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1 i

2 ippi

3 issippi

4 ississippi

5 mississippi

6 pi

7 ppi

8 sippi

9 sissippi

→ 10 ssippi

→ 11 ssissippi

Fig. 7.10. Looking for matches for ssi in the text mississippi using the FM-index
method

is 1 to 4 (rows starting with i), in the second phase it is 8 to 9 (rows starting
with si), and the third time it is 10 to 11 (rows starting with ssi).

Count(P, M)
1 i← m
2 c← P [m]
3 sp←M [c]
4 ep←M [c + 1]− 1
5 while (sp ≤ ep and i ≥ 2) do

6 c← P [i− 1]
7 sp←M [c]+ Occ(c, sp− 1)
8 ep←M [c]+ Occ(c, ep)− 1
9 i← i− 1

10 end while

11 if ep < sp then

12 return ep− sp + 1
13 else

14 return 0
15 end if

Algorithm 7.11: Counting pattern occurrences with FM-index

For some applications it may be sufficient just to count the number of
occurrences of the pattern, but generally we will want to read the text sur-
rounding the pattern. This is done by the Locate function, which takes the
index of a row in the sorted matrix As and returns the starting position of
the corresponding substring in the text. Thus, an iteration over the range
sp . . . ep identified by Count, calling Locate for each position, will result in
a list of all occurrences of the pattern in the text. Normally we could just use
the array R to locate the position, but because the text is still compressed at
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this point and R would be too large to store, the Locate function is used.
Instead of storing all of R, only a small number of selected values are stored,
and the positions that they correspond to are “marked”. The technique for
determining which rows are marked and how they are represented is discussed
in the section below on compression and auxiliary information, but the main
point is that the Locate function simply works backwards through the text
until it finds a “marked” position i′ for which pos(i′) is available, and from
that pos(i) can be determined.

The method for locating the position pos(i) using the auxiliary information
is shown in Algorithm 7.12. The location of row i is denoted by pos(i), and if
it is a marked row, the value is available directly. If i is not marked then, M
and Occ are used to locate the previous character, T [pos(i)− 1], in the text
(each loop in the algorithm is just calculating the entry V [i′] on the fly). For
example, for Figure 7.10, if we wish to locate where the first match for ssi

occurs in the text, we will call Locate(10) since it appears in line 10 of As.
If row 10 is not “marked”, then the iteration will change i′ to 3, because L[3]
is the character in T that comes before L[10]. If row 3 isn’t marked then it
will continue back with i′ going through 9, then 11, 4, and so on. Note that
this is equivalent to setting i′ ← V [i′], but does not need the V array to be
stored explicitly. This is repeated v times until a marked row, iv, is found.
The marked row is therefore v characters earlier in the text than the one we
wanted to locate, so at this point we can return pos(i) = pos(iv) + v. Using
this algorithm, pos(i) has calculated R[i] based on a small subset of the R
array which was stored as “marked” nodes.

Locate(i)
1 i′ ← i
2 v ← 0
3 while (row i′ is not marked) do

4 c← L[i′]
5 m← Occ(c, i′)
6 i′ ←M [c] + m− 1
7 v ← v + 1
8 end while

9 return pos(i′) + v

Algorithm 7.12: Locating the position of a match in the original text for
FM-index

In many respects, the search algorithm of the FM-index is very similar
to that of the BWT binary search, but where binary search first locates one
instance of the pattern in the sorted matrix and then uses another two binary
searches to locate the first and last instances, the FM-index uses an incremen-
tal approach, identifying the first and last occurrences of the suffixes of the
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pattern, increasing the size of the suffix until the locations have been found for
the entire pattern. Lines 8 and 9 of Algorithm 7.11 effectively perform map-
pings using the V array rather than W , which was used by the BWT binary
search. This is because V corresponds to processing the text in reverse. Also,
binary search is able to report the location in the text of a match with one
array lookup to the R auxiliary array, instead of the more complex operations
employed by the Locate function, which effectively reconstructs parts of R
as needed. The price paid by binary search is that it must decompress before
pattern matching can begin.

Compression and auxiliary information

The compression process used by the FM-index method is different from the
other algorithms in this section because it needs to allow random access into
the compressed file. Additional indexing information is also stored with the
compressed file so that the search algorithm may perform the Occ function
efficiently and report the location of matches. The file structure is designed
so that the extra information takes up little space.

To compress the text, the Burrows-Wheeler Transform permuted text, L,
is created and partitioned into segments of size ℓsb which are referred to as
superbuckets, with each superbucket being partitioned into smaller segments
of size ℓb which are referred to as buckets. The buckets are then compressed
individually using multiple-table Huffman coding (Wheeler, 1997).

Random access is available to the start of a superbucket, and in turn
to one of the buckets within it. Thus if the buckets are too large then the
access time will be slow because of having to decode irrelevant material to
get to the desired location; however if they are too small then compression
performance will be poor because coding is done independently in each bucket.
Ferragina and Manzini performed extensive experiments with the FM-index
and found that 16 kilobyte superbuckets and 1 kilobyte buckets provide a
good compromise between compression and search performance in general;
these are the values used for the evaluation of this method.

For each superbucket, a header is created that stores a table of the num-
ber of occurrences of all characters in the previous superbuckets. That is,
the header for superbucket Si contains the number of occurrences for each
character c ∈ Σ in S1 . . . Si−1. Each bucket has a similar header, but con-
tains character counts for the buckets from the beginning of its superbucket.
Thus, Occ(c, k) can be calculated in O(1) time by decompressing the bucket
containing L[k] and counting the occurrences in that bucket up to L[k], then
adding the values stored for c in the corresponding superbucket and bucket
headers. To increase search performance, a bucket directory has also been pro-
posed. This directory records the starting positions in the compressed file of
each bucket, so that any bucket may be located with a single directory lookup.

This auxiliary information can also be compressed because, as described in
Section 7.2, the L array often has clusterings of characters, which means that
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the range of characters in each superbucket will usually be small. A bitmap
is stored to identify which subset of characters appears in each superbucket.
Thus, a header needs to contain only counts for characters that are recorded in
the corresponding superbucket’s bitmap. Furthermore, variable integer coding
may be used to reduce the space required for the entries that are stored.

One further structure that must be considered contains the information
about the marked rows that identify the location in the text of some of the
rows in the sorted matrix. Empirical results have shown that marking 2% of
the rows provides a suitable compromise between storage requirements and
search speed when using a superbucket size of 16 kilobytes and a bucket size
of 1 kilobyte (Ferragina and Manzini, 2001b). A number of marking schemes
have been proposed to determine which of the rows should be marked. One
possibility marks rows at evenly spaced intervals, where the interval is deter-
mined by the percentage of rows that are marked. However, an alternative
scheme was favored (which is also used in the discussion of performance later
in this chapter) to make the search algorithm simpler even though it performs
poorly in some circumstances. It takes advantage of the fact that each char-
acter in the alphabet appears roughly evenly spaced throughout an ordinary
English text. The character c that appears in the text with the frequency
closest to 2% is selected, and any row ending with c is marked by storing
its corresponding location using log n bits. This simplifies the searching be-
cause, if i is a marked row, pos(i) is stored in entry Occ(c, i) of the marked
rows, whereas the former strategy requires extra information to be calculated
or stored to relate a marked row to the position where its value is stored.
The latter strategy, however, relies heavily on the structure of the text and
performance deteriorates significantly if characters are not evenly spaced.

Finally, we note that the search algorithm also requires access to the M
array. This is not defined in the original FM-index papers, although it contains
only |Σ| entries and so will have an insignificant effect on the size of the
compressed file. In principle it could be constructed with a single pass over
the auxiliary information before searching begins, but this is unlikely to be
justified given that it is such a small array.

7.2.5 Algorithm improvements with overwritten arrays

This section describes a way to improve some of the pattern matching algo-
rithms, both in memory requirements and search time, by introducing over-
written arrays.

Overwritten arrays are a simple modification to the BWT-based suffix
arrays and binary search algorithms that re-use the space allocated to one of
the temporary BWT arrays rather than allocate more memory for a new array.
They are able to reduce search time, and for suffix arrays, reduce memory
usage.

Algorithm 7.10 showed the method for constructing the R array construc-
tion as the text is being decoded. During one iteration of the for loop, the



7.3 Performance of BWT-based exact pattern matching 221

i-th element of C is read and a value is stored in the i-th element of R. The
suffix array method does not require the C array after R has been constructed,
so it is possible to write the entry for R[i] into C[i] at the end of each loop,
avoiding the need to allocate a separate area of memory for a second array.
Furthermore, if the computer is using a cache then this approach can reduce
the number of cache misses during the creation of R, which means that the
modification increases the speed as well.

Binary search uses Algorithm 2.6 (page 30) to create R (note that line 3 can
be omitted because R′ is not needed). The array W will be needed afterward
as part of the searching process, so we cannot overwrite it. However, it turns
out that because of caching, it can be more efficient to create W , then copy its
values to another array and overwrite that copy with R. This is because the
loop in Algorithm 2.6 is now only reading and writing sequentially from one
array, providing excellent locality of reference. This provides a faster search
performance, but unlike the suffix array method, does not reduce memory
usage.

7.3 Performance of BWT-based exact pattern matching

In this section we will compare the different approaches for using BWT-coded
files for pattern matching. Results for a decompress-then-search approach (us-
ing the standard Boyer-Moore algorithm described in Section 7.1.3) have also
been included to provide a reference point. Boyer-Moore was selected as the
reference because it is currently considered to be one of the most efficient
pattern matching algorithms for searching an ordinary text file. For more ex-
tensive and updated comparisons the reader is referred to the sites mentioned
in Appendix B, particularly the “pizzachili” site.

The implementations reported here employ the improvements introduced
in Section 7.2.5, since these make a worthwhile improvement to both the speed
and memory performance. Unless stated otherwise, the tests were performed
on “bible.txt”, a 4 Mbyte English text file from the Canterbury corpus5.
The nature of the BWT output for this file was studied in Section 5.4. For
most experiments, patterns were selected randomly from the set of words that
appear in the text being searched. Of course, some selected words will appear
as substrings of other words, and so the substrings will also be located by
the search algorithms. For the experiment on pattern length (Section 7.3.2),
the search patterns were not restricted to English words; they could be any
string that appeared in the text that had the required length. Because different
selections of search patterns will take different amounts of time, error bars are
shown in graphs that report the speed of each method. These are based on
50 repetitions of each search, and the error bars show the confidence intervals
one standard deviation above and below the mean. Unless otherwise stated,

5 http://corpus.canterbury.ac.nz
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the reported times include the time for full or partial decompression (that
is, construction of the auxiliary arrays) as is required, as well as the time
for searching. Section 7.3.3 investigates the time required to construct the
auxiliary arrays, without searching.

7.3.1 Compression performance

The compression performance of BWT-based systems for pattern matching
is reported in this chapter using files from the Canterbury corpus. A brief
description of the files is given in Table 7.2. Some of the files (such as the
large “E.coli” file, which uses only the four characters a, c, g and t) are not
conventional text, and provide a good test of the systems for more unusual
kinds of inputs.

Table 7.3 compares the compression ratio of the pattern-matching based
methods with bzip2. bzip2, a production-quality compression program that
uses the Burrows-Wheeler Transform, and represents the state-of-the-art in
terms of a practical system that has been developed with both speed and
compression in mind. The bsmp method is the compression approach used to
evaluate the binary search and suffix array pattern matching algorithms in
this chapter; in principle the methods from bzip2 could have been used to get
better performance, but we are mainly concerned with relative performance,
and the simpler bsmp suffices for this. The table also gives the compression
performance of the FM-index method (abbreviated as FM-i), which must store
auxiliary information with the compressed text.

File name Size (bytes) Description

alice29.txt 152,089 English text (“Alice in Wonderland”)
asyoulik.txt 125,179 Shakespeare (“As you like it”)
bible.txt 4,047,392 King James Bible
cp.html 24,603 HTML source
E.coli 4,638,690 Complete genome of the E. Coli bacterium
fields.c 11,150 C source code
grammar.lsp 3,721 LISP source code
lcet10.txt 426,754 Technical writing
plrabn12.txt 481,861 Poetry
world192.txt 2,473,400 The CIA world fact book
xargs.1 4,227 GNU manual page

Table 7.2. The files in the Canterbury corpus

In most cases, bzip2 provides the best compression, closely followed by
bsmp. The exception is “E.coli” where bsmp is marginally better. This file
contains genetic data, which has little structure that the Burrows-Wheeler
Transform can exploit, and thus is only compressible due to the ability to
store the characters in two bits (because the alphabet has a size of four)
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Compression Ratio
File Size bzip2 bsmp FM-i

alice29.txt 152,089 2.27 2.56 3.52
asyoulik.txt 125,179 2.53 2.85 3.79
bible.txt 4,047,392 1.67 1.79 2.58
cp.html 24,603 2.48 2.72 4.26
E.coli 4,638,690 2.16 2.12 2.69
fields.c 11,150 2.18 2.43 3.88
grammar.lsp 3,721 2.76 2.92 4.65
lcet10.txt 426,754 2.02 2.30 3.30
plrabn12.txt 481,861 2.42 2.74 3.57
world192.txt 2,473,400 1.58 1.60 2.66
xargs.1 4,227 3.33 3.54 5.24

mean 2.31 2.51 3.65

Table 7.3. Compression achieved by algorithms based on the Burrows-Wheeler
Transform. Size is in bytes and compression ratio is in bits per character

instead of the eight bits used in the uncompressed file. In this situation, the
technique used by bsmp of compressing the entire file in one block has a lower
overhead than that of bzip2, which segments the file into 900 kilobyte blocks
and compresses each block independently of the others.

In all cases, the FM-index produces the largest files. Their size, on average,
is more than one bit per character larger, which is due to the additional in-
dexing information that is stored (see Section 7.2.4). This compares favorably,
however, to full-text retrieval systems such as mg (Witten et al., 1999), which
is an offline system for compressing and indexing text. mg uses an inverted
file for indexing, which, for “bible.txt”, occupies 14.4% of the space of the
original file. In contrast, the index structure of the FM-index occupies less
than 10%. The FM-index also saves a small amount of space by compressing
the text using a BWT-based method, as opposed to the word-based Huffman
coder used by mg. Overall, the FM-index uses 0.68 bits per character less
than mg when the auxiliary files of mg are ignored, and 1.56 less, when they
are included.

Table 7.4 shows the time taken by the three compression approaches to
compress and decompress the files in the large collection of the Canterbury
corpus6. The large collection was used because some of the running times
on smaller files are too short to make significant comparisons. Note that the
speed of bsmp is poor simply because the implementation has not been tuned
carefully. In particular, it treats the file as a single block, and most of the
encoding time is spent sorting the block, which can be several megabytes
for the test files. In contrast, bzip2 limits blocks to 900 kilobytes. The bsmp

6 The times reported in this section are based on experiments run on a 1.4GHz
AMD Athlon with 512 Mbytes of memory, running Red Hat Linux 7.2. The CPU
had a 64 kilobyte first level cache and a 256 kilobyte second level cache.
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Compression Time Decompression Time
File Size bzip2 bsmp FM-i bzip2 bsmp FM-i

bible.txt 4,047,392 3.29 48.62 6.98 0.98 4.05 1.68
E.coli 4,638,690 4.01 64.45 6.96 1.39 5.53 2.17
world192.txt 2,473,400 2.06 33.14 4.24 0.66 2.39 0.95

Table 7.4. Speed of the compression and decompression algorithms; size is in bytes
and times are in seconds

method could easily be improved by using smaller blocks, and a better sorting
algorithm.

In all cases, bzip2 has the best compression time. The FM-index was
slightly slower, partly because it is not as highly optimized as bzip2, but
also because of the additional time required to create the necessary indexing
information.

The decompression time is the more important measurement, because all
of the search methods require at least partial decompression for searching.
When decompressing, the performance of bsmp was comparatively closer to
that of the FM-index, with most of the difference caused by the slower nature
of an arithmetic coder (used by bsmp) over a Huffman coder (used by the
FM-index). Again, the highly tuned bzip2 significantly outperforms the other
two approaches.

7.3.2 Search performance

Search performance is often reported in terms of the number of comparisons
required for a search, although in practice other metrics may be more mean-
ingful. As shown in Section 7.2, the index-based algorithms that use binary
search (binary search and suffix arrays), require O(m log n

|Σ| ) comparisons.

The remaining two index-based algorithms evaluated here — BWT-BM and
the decompress-then-search approach (both based on Boyer-Moore) — use
O(m+n) comparisons on average. These analyses consider only the searching
process, however, and ignore the requirements of some algorithms to create
indexes or decompress the text before searching begins. A better measure of
search time would be O(n + sm log n

|Σ| ) and O(n + s(m + n)), respectively,

where s is the number of searches performed, and the additional O(n) term
covers the decompression and indexing steps, which operate in linear time.

Although the FM-index method also uses a binary search, comparisons
are made in a linear fashion during both the Occ function and the Locate

function. In Occ, a bucket is decompressed and the occurrences of a particular
character in the required portion of the bucket are counted. Each step of the
Locate function involves determining whether the given row is marked. For
the marking scheme described in Section 7.2.4 (Compression and auxiliary
information), this involves a comparison of the last character in the row with
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the character used for marking. Thus, FM-index requires only O(m) time and
in O( n

log n log log n) bits of extra space to count the number of occurrences of
a single pattern in the text. If the pattern occurs ηocc times, FM-index will
require O(m+ηocc log2 n) time, using space bounded by 5Hk(T )+O( log log n

log m )

bits to locate all the ηocc occurrences, where Hk(T ) is the k-th order entropy.
Figure 7.11 shows the mean number of comparisons, plotted against pat-

tern length, to search for all words in “bible.txt” — that is, the text sequence
was the contents of “bible.txt”, and each distinct word in “bible.txt” was used
as a pattern.

The binary search and suffix array methods based on BWT work particu-
larly well, which is not surprising given the logarithmic effort required — the
text had about 4 million characters, which implies only about 22 substring
comparisons, and each string comparison involves just a few characters. In
contrast, the FM-index method requires a lot of comparisons to locate a word
because it must search linearly back through the text to find a marked entry.
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Fig. 7.11. Mean number of comparisons by pattern length for “bible.txt”

Interestingly, for patterns of length one, no comparisons are required by
the non-index based algorithms that use binary search (binary search and
suffix arrays), or for counting in FM-index. This is due to the use of the M
array, which can be used to identify the first and last positions in the sorted
array of any character with only two array lookups (see Section 7.2.2) and
thus, the locations for any pattern containing just one character.

The number of comparisons for BWT-BM and the decompress-then-search
approaches decreases as the pattern length increases. With larger patterns, the
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probability of a match is reduced, and the shifts proposed by the two heuristics
of Boyer-Moore tend to be larger. Thus, more of the text is skipped and the
number of comparisons decreases.

The number of comparisons for locating occurrences with the FM-index
also decreases with an increasing pattern length, but for a different reason.
Because the number of comparisons is highly dependent on the number of
occurrences of the pattern, small patterns, which are likely to appear more
often in the text, require more comparisons.

Of course, the actual performance of each algorithm is not just dependent
on the number of comparisons executed. Search time can vary greatly depend-
ing on which arrays are used for indexing and how they are constructed. In
the following, we evaluate the performance of the algorithms when locating
patterns, and explore reasons for the differences between algorithms. We also
discuss the situation where it is necessary only to count the number of times
a pattern occurs in the text, without needing to identify the locations of the
occurrences. Finally, we explore additional factors that affect search times,
such as file size, pattern length and file content.

Locating patterns

Apart from the FM-index, before searching begins, the search algorithms re-
quire the compression of the move-to-front coder, run-length coder and arith-
metic coder to be reversed, as well as temporary arrays to be constructed
in memory. Once created, however, the arrays may be used to execute many
searches. Thus, multiple searches during one run of a search program will
not take the same amount of time as the equivalent number of searches on
separate occasions. Situations where multiple searches may be useful include
boolean queries with many terms, or interactive applications where users re-
fine or change their queries. Figure 7.12a shows how the search time increases
with the number of patterns being matched. Figure 7.12b shows the same
data, but focuses on a smaller range of the results.

Figure 7.12a indicates that binary search and suffix arrays give virtually
constant performances regardless of the number of patterns involved. This is
because of the small number of comparisons required for a search and means
that almost all of the time is used to construct the required arrays before
searching begins. From Figure 7.12b, we can see that binary search was a
little faster of the two, but there isn’t a significant difference between them.
The minor difference is largely due to the time taken to construct the different
arrays needed by the respective algorithms.

The search times for the decompress-then-search and BWT-BM algorithms
increase linearly as the number of patterns increases. For a small number
of patterns, the decompress-then-search approach is slower than compressed-
domain Boyer-Moore because of the overhead of completely decompressing the
text before searching begins. It is the more efficient algorithm, however, when
there are more searches to be performed. This is because it has direct access
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Fig. 7.12. (a) Effect of the number of occurrences (multiple search patterns) on
search time; (b) magnified view of the search times

to the text to make comparisons, whereas the compressed-domain version
must decompress the required substrings before a comparison can be made,
and with more searches, more comparisons are required. Figure 7.12b shows
that the overhead of the comparisons outweighs the initial savings of BWT-
BM when more than three searches were performed. It also shows that for
a small number of patterns, BWT-BM is more efficient than suffix arrays,
although it was always slower than binary search. At best, decompress-then-
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search provided a similar performance to suffix arrays when the number of
searches, s, is one.

Finally, we note that the FM-index has the best performance on aver-
age until about 10 patterns are involved. For a single search, it takes only
0.5 seconds on average because, unlike the other algorithms, there is no need
to construct any indexes before searching begins. Without the indexing in-
formation in memory, however, performance deteriorates significantly as the
number of patterns increases, and for more than 25 patterns, it has the worst
performance on average.

From the error bars in Figure 7.12a, we can see that the performance
of the FM-index is highly variable. Variations in the other algorithms are
insignificant. The inconsistency of the FM-index is caused by the technique
used to locate the positions of matches. If the matching row of the sorted
matrix is not marked, the FM-index must iterate backwards through the text
until a marked row is found (see Section 7.2.4). When the search pattern
appears in the text many times, this inefficient location process is executed
often, resulting in a poor performance overall, whereas a pattern that occurs
only once will be located quickly. This variation against the number of pattern
occurrences is shown explicitly in Figure 7.13.
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Counting occurrences

For some applications, it may be necessary only to determine the number of
times that a pattern appears in a text, or perhaps, to determine whether it
exists at all. An example of such an application is an Internet search engine
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that returns a page as long as it contains a specified pattern, possibly ranked
by the number of times the pattern appears. Another is a program such as
grep in unix (-c option) which locates the directory files that contain a
given pattern, and for each file displays the number of lines with the input
pattern. Figure 7.14 shows the time taken by each of the methods to count
the occurrences of patterns.

Apart from the FM-index and binary search, the algorithms take the same
amount of time to count the patterns as they do to locate them — even when
match positions are not required, decompress-then-search and compressed-
domain Boyer-Moore must still pass through the entire file to count the ap-
pearances. Suffix arrays identify the positions of matches using just a single
array lookup for each occurrence, so in this case where the positions are not
required, they only avoid simple array references and therefore showed no
noticeable difference in their performances.

In contrast, FM-index is particularly good at counting occurrences, and it
is the location phase that is slow. In fact, it returns the counts almost instantly
regardless of the number of patterns because the information is looked up
directly without decoding the compressed text. Binary search also saves time
by not locating matches because it does not need to construct the R array
(which is used to locate the matches). Nevertheless, it is still significantly
slower than the FM-index method.

Other factors

The performance reported so far has been for a large file of English text. The
performance of many algorithms can vary considerably, however, if a file of a
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Search Construction Memory for Maximum
Algorithm Arrays Arrays Searching Memory

Decompress-then-search T L, W n 6n
Compressed-domain BM F , R′ L, W 5n 8n
Binary Search R, L, W 9n 9n
Suffix Arrays R, T C, L 5n 6n
FM-index 1 Bucket 1000 1000

Table 7.5. Memory requirements of the search algorithms, given in bytes

different size is used, or if the file type is altered. In this section we look at
the effect of other factors on performance.

File Size. The FM-index method is almost unaffected by file size, since
it works with the compressed file and accesses buckets directly. However, the
other methods must decode the file at least to get L, as well as some aux-
iliary arrays, and so the time taken to prepare for any search will increase
approximately linearly with the file size. These methods will have problems if
the file is too large for memory. The access patterns for BWT processing are
not suitable for virtual memory, and so the file will need to be broken up into
smaller blocks. In contrast, the FM-index method can work with any size file,
since only a small block is decoded at any time.

File type. Files with a very small alphabet (such as E.coli which uses only
four characters) can cause slow performance for some compression systems.
The binary search and suffix array approaches are resilient to this type of file
because they have a logarithmic search time which is not affected significantly
by the file content. However, the FM-index method slows down for files with a
small alphabet because there is a higher frequency of short patterns, leading to
many matches that need to be located individually. The Boyer-Moore based
method can also behave poorly if there is a lot of repetition in the input,
because the proposed shift will be one if there are many candidate match
positions.

Memory Usage. Several of the arrays used by the algorithms are O(n)
size, although some space can be saved by using the overwriting technique
mentioned in Section 7.2.5. The arrays used by each algorithm are listed in
Table 7.5, separating those that are required during searching from those that
are needed to construct the search structures, and can then be discarded.
The memory size is estimated assuming that arrays storing characters (F , L
and T ) use 1-byte entries and the remaining arrays store 4-byte integers. We
have neglected the small auxiliary arrays M and K, as they contain only one
entry for each character in the alphabet and will be very small compared with
the other arrays. The FM-index uses just one kilobyte regardless of file size
because it loads only one bucket at a time during searching, and the remaining
data is stored on disk until it is needed.
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7.3.3 Array construction speeds

For most of the methods described there is a considerable overhead in creating
the auxiliary arrays before pattern matching can start. Figure 7.15 shows the
arrays used by each algorithm and indicates the time required to construct
them for the compressed “bible.txt” file. The average time to search for one
pattern is indicated in gray, although for some algorithms this search time was
insignificant and is not visible on the diagram. As all of these times increase
linearly with the file size, the ratios between them will stay fairly constant.

All of the algorithms require L, the Burrows-Wheeler Transform permu-
tation of the file that was compressed. The construction of L involves reading
the compressed file from disk, then reversing the arithmetic coding, run-length
coding and move-to-front coding that was originally used to compress L. Each
algorithm also uses K and M , both of which can be created relatively quickly
in comparison to other arrays. They are primarily used in the construction of
W or C and have therefore been included in the cost of building those arrays.

Usage of the remaining arrays varies, and is the cause of the difference
in performance of the algorithms. In particular, decompress-then-search and
suffix arrays both use the decoded text, T . While producing T , however, suffix
arrays create R as a by-product. This takes additional time but makes search-
ing considerably more efficient (see Section 7.3.2) so that the first search,
and subsequent searches, are performed almost instantly. In contrast, the first
search by the decompress-then-search approach takes almost the same amount
of time as the construction of R in suffix arrays, so that the time to search
for a single pattern is similar for both algorithms. With the availability of R,
however, multiple pattern searches were more efficient with suffix arrays. Us-
ing the overwriting technique (Section 7.2.5), the cost of creating R′ is lower
than that of T which means that, even though it also requires F , BWT-BM
is more efficient for a single search than decompress-then-search and suffix ar-
rays. The BWT-based binary search is the fastest algorithm because it avoids
constructing R′ and T . (The asterisk in the binary search time represents the
process of copying W ).
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7.3.4 Comparison with LZ-based compressed-domain pattern
matching

With respect to pattern matching, the major focus of this book is on BWT-
based methods. However, to place the results in context, this section provides
a brief comparison with non-BWT based search methods, especially methods
that work with LZ-based compression schemes: gzip-grep (compress with
gzip, decompress then search with grep), gzip-agrep (compress with gzip,
decompress then search with agrep), and lzgrep, a compressed pattern
matching program for LZ-compressed files (Navarro and Tarhio, 2005).

The LZ-based methods are generally faster than BWT-based methods for
compression, but the major advantage of using BWT over LZ algorithms is
the amount of compression achieved. For example, the three files in the Large
corpus in the Canterbury corpus give an average compression of 2.33 bits per
character (bpc) with gzip -9, which is one of the best LZ-based compression
methods, compared with 1.84 bpc produced by bsmp, or 1.80 bpc for bzip2.

Figure 7.16 shows the performance of the BWT-based and LZ-based meth-
ods in terms of total search time. As usual, this includes the time needed by
the BWT algorithms to perform the partial decoding and to compute the
auxiliary arrays when needed.
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Fig. 7.16. Search times for multiple single-occurrence patterns

The bottleneck for the BWT-based methods is the time required to com-
pute the auxiliary arrays. Table 7.6 shows a break-down of the total time used
by the BWT-based search algorithms. The table shows that the actual search
time, after these arrays have been constructed, is relatively insignificant. Also,
bear in mind that the bsmp method measured is not particularly fast, and
the techniques used in the bzip2 implementation could be used to accelerate
it considerably.
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Search Auxiliary array Search Total
Method Construction Time Time Time

BWT-BM 3.39 53.29 56.68
Binary Search 3.4 0.03 3.43
Suffix Arrays 3.8 0.02 3.82
FM-Index - - 151.25

gzip-grep - - 3.37
gzip-agrep - - 0.25
lzgrep - - 0.36

Table 7.6. Break down of search time (in seconds) measured over a search of 200
patterns

Overall, LZ-based methods will be preferred when speed is more important
than compression, while BWT-based methods give better compression, and
are also more suited if multiple patterns are to be matched after the overhead
of setting up arrays has been done.

7.4 Approximate pattern matching

Until now we have assumed that patterns must match exactly with the text
being searched. However, there are many applications where we would pre-
fer to find close matches, rather than require strict identity; and there are
other applications where we wish to apply a metric to the difference, and find
matches that conform to some specified parameters.

This section is concerned with such situations, which require inexact or
approximate pattern matching. The need to consider approximation may arise
in the context of errors which might occur in a text file because of inaccuracies
in the data stored, or in the pattern being searched for; and it arises in the
context of determining how similar two strings are.

There are many practical situations where approximate pattern matching
algorithms are very useful. The first is searching a text database using key-
words where both the text and the keywords could have spelling errors, or are
partially specified, or have variants with very similar spelling. The second is to
reconstruct a text transmitted via a noisy channel which might have corrupted
the text by dropping, inserting or changing characters. Approximate pattern
matching algorithms have also been used as powerful tools in the study of
genomics and proteomics; in finding genes, regulatory motifs, conserved se-
quences in DNA, sequence alignment and multiple sequence alignments. The
goal of this section is to present a few fundamental algorithms on approximate
pattern matching and show how the Burrows-Wheeler Transform can be used
to expedite approximate pattern search. There is a huge amount of literature
on the subject of approximate pattern matching, and the interested reader is
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referred to additional references at the end of this chapter to pursue the topic
more in-depth.

7.4.1 Edit distance: dynamic programming formulation

Given two strings S1 = a1a2 . . . am and S2 = b1b2 . . . bn, the problem is to
determine how similar they are. This can be made more precise by defining
an integer parameter k and a distance function d and then stating the problem
as finding all substrings S of S2 such that d(S1, S) ≤ k. Let us first consider
how to compute d(S1, S2). A natural way to compare these two strings is
to determine their edit distance (sometimes called the Levenshtein distance),
defined as the minimum number of editing operations that will transform one
string to the other string. The two simplest such operations are insertion and
deletion of a character, and a cost of 1 is usually associated with each such
operation. A third operation is substitution or replacement of a character of
one sequence by another character of the second sequence, as it happens in
a mutation of a DNA sequence. The cost for this operation is also usually
assumed to be 1, but in text editing operations this can be realized by one
delete operation followed immediately by an insert operation in which case
the cost should then be 2 for this operation. If two characters match, the cost
is assumed to be 0. In general, arbitrary cost values can be defined for these
operations depending on the application. The sequence of edit operations to
transform S1 to S2 is called the edit transcript. A dynamic programming
formulation to compute the edit distance is as follows: define d(i, j) to be the
edit distance between the prefix strings S1[1 . . . i] and S2[1 . . . j]. The “basis”
equations are: d(0, 0) = 0 because no cost is involved in converting a null string
to a null string, d(i, 0) = i for 1 ≤ i ≤ m signifying that i deletion operations
are needed to convert the prefix of S1 to a null string, and d(0, j) = j for
1 ≤ j ≤ n signifying that j insertion operations are needed to covert a null
string to the prefix S2[1 . . . j]. We can write the recurrence relation as

d(i, j) = min{d(i− 1, j) + 1, d(i, j − 1) + 1, d(i− 1, j − 1) + c(i, j)},

where c(i, j) = 0 if ai = bj ; otherwise let us assume c(i, j) = 1 for the moment.
Consider a minimum cost edit transcript for d(i, j). If the last operation of
this transcript is an insertion operation in S2, then this corresponds to the
term d(i, j− 1) + 1 and the alignment must have been at this point (−, S2[j])

or

(

−
S2[j]

)

where ‘-’ stands for a gap created in sequence S1. This is also

symbolized by a horizontal arrow in the m + 1 by n + 1 matrixM associated
with d(i, j) values, from cell (i, j − 1) to cell (i, j) inM. If the last operation
of this transcript is a deletion operation in S1, then the corresponding term
is d(i − 1, j) + 1 and the alignment must have been at this point (S1[i],−)

or

(

S1[i]
−

)

. This is also symbolized by a vertical arrow in M from cell (i −
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1, j) to cell (i, j) in M. The columns of the alignment having one space are
sometimes called indels, meaning insertions or deletions. Otherwise, it is either
a match, or a substitution (i.e replacement) of S2[j] by S1[i]. This corresponds
to the term d(i − 1, j − 1) + c(i, j) in the expression for d(i, j). Both match
and replacement operations are symbolized by a diagonal arrow from cell

(i − 1, j − 1) to cell (i, j) in M or in the alignment diagram as

(

S1[j]
S2[j]

)

.

Recursively, we have assumed that d(i−1, j), d(i, j−1) and d(i−1, j−1) are
all minimum values of edit distances up to those points in the computation.
Then d(i, j) has to be optimal if we take the minimum cost path from one of
these three neighboring points. Note that this path may not be unique, as we
will see in our example below.

We have described the recursive procedure as a top-down approach. How-
ever, in practical implementations, it can cause an exponential number of
calls, and it turns out that a bottom-up tabular computation is more effi-
cient. To compute the value at any point (i, j) in the matrix M associated
with d(i, j) values, it is sufficient if we know the minimum edit distances of
its north, north-west and west neighbors, and the pair of characters from the
two sequences under consideration. We know how to compute the 0th row and
the 0th column of the matrix (the minimum edit distance is simply the index
of the row or column), and so we can compute the rest of the matrix one row
at a time consecutively with increasing row indexes, or one column at a time
consecutively with increasing column indexes. The edit distance of the two
strings S1 and S2 is given by d(m,n). The time complexity of the algorithm
is O(mn) since a matrix of size (m + 1)(n + 1) has to be computed and each
entry takes a constant amount of work (three additions, one comparison and a
minimum operation). The space complexity is also O(mn), however, this can
be reduced to O(min{n,m}), since we only need to keep information about
the last column or last row in order to perform the required computation at
any point.

An example illustrating this algorithm is shown in Figure 7.17 using the se-
quences S1=abccdab and S2=babcabc. Two possible alignments (correspond-
ing to the squares enclosed by heavy lines and arrows indicating insert, delete
or match operations) are also shown with the edit transcripts. During con-
struction of the table, back pointers to neighboring cells can be kept to trace
the paths taken by the minimum edit distance computation. The forward
pointers are drawn to show the operations performed. Since the maximum
path length cannot exceed m + n, the edit transcript can be obtained in
O(m + n) time.

Several variations of the general edit distance problem have been inves-
tigated in the literature. In the context of biological applications, scientists
are more interested in finding similarities than the difference between two
sequences. This can be cast into another dynamic programming formulation
by defining a score or value to each of the edit operations, giving the match
operation a high score and giving other edit operations an appropriate low or
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Fig. 7.17. Computation of edit distances

negative score. The problem then is to compute the maximum score v(i, j)
between the two prefixes of S1 and S2. The similarity of the two strings is then
expressed by the value v(m,n). Other variations give arbitrary weight to the
operations and/or provide a table of weights for pairs of characters in Σ for
these operations, or give a penalty for long runs of insert or delete operations;
for example, see Gusfield (1997).

7.4.2 Edit graphs

Another way of understanding the alignment of two sequences is to interpret
it as a directed path in a grid called an edit graph. Here, a series of horizontal
(thin) lines marked by the symbols of the sequence S1 (including the empty
prefix ǫ) and a series of vertical (thin) lines marked by the symbols of the
sequence S2 (including the empty prefix ǫ) define cells or vertices of the graph,
as shown in Figure 7.18.

A typical cell is connected to its east neighbor by a (solid) directed edge
representing an insert of a symbol of S2 corresponding to the vertical line
passing through it, and to its south neighbor by a (solid) directed edge repre-
senting a delete of a symbol of S1 corresponding to the horizontal line passing
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through it. A solid diagonal directed edge connects to its south east neighbor
via the point of intersection of a horizontal and a vertical line representing
the symbols from S1 and S2, respectively, participating in the match or re-
placement operation. If the edges are weighted by the weights of the indels,
match or replacement operations, then it is easy to see that the minimum
edit distance alignment corresponds to a directed path from the upper left
cell called the source vertex at location (0,0) to the lower right cell called the
sink at location (m,n) in the grid. This lowest cost path can be obtained by
a dynamic programming algorithm as discussed before. Two such alignments
discussed in the previous subsection are represented by a thick solid directed
path on the edit graph.

An interesting way to describe this path is to specify the two-dimensional
addresses of the vertices of the path as follows: the sequences -abccdab- and
babc--abc can be depicted as 012345677 and 123444567 showing the number
of symbols in S1 and S2, respectively, up to the positions in the sequences. If we
align these two sequences in two rows, as shown in Figure 7.18, the sequence
of pairs of integers in the columns of this alignment gives the sequence of
addresses in the grid graph, depicted as A(S1) and A(S2).

7.4.3 Local similarity

An important variant of similarity search is local alignment or local similar-
ity. Suppose we have two long DNA sequences in which there is a particularly
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interesting subsequence representing a gene that is common between the se-
quences. Doing a global alignment or similarity search will not be able to
identify this because there may be a lot of dissimilarities in the rest of the se-
quence which yield a low value for similarity and a large edit distance, neither
of which say anything about this interesting region. If the regions of highly
similar local alignment are small, they can get lost in the context of global
alignment. An obvious exhaustive algorithm is to enumerate all the substrings
of S1 and S2 and execute a dynamic programming algorithm on each pair.
For one string, a substring is defined by two positions in the string which
can be chosen in O(m2) and O(n2) ways for S1 and S2, respectively. There
are O(m2n2) such pairs. For each pair, dynamic programming takes O(mn)
time. Thus, the complexity of this simple approach is O(m3n3). Surprisingly,
there is an O(mn) algorithm to find the optimal local similarity (Smith and
Waterman, 1981), which works as follows.

Consider first a related problem called the local suffix similarity problem,
which is to find a suffix s1 (possibly null) of the prefix S1[1 . . . i], and a suffix s2

(possibly null) of the prefix S2[1 . . . j], (i ≤ m, j ≤ n) such that the similarity
value v(i, j) between s1 and s2 is maximal among all such pairs of suffixes. We
will assign a negative or zero value to both the insert and delete operations,
a high positive value to matching, and a negative value to the substitution
operation. Since we allow empty strings, the maximum similarity value can
never be negative. It can be easily proved that the optimal local similarity
value v∗(i, j) = max{v(i, j) : i ≤ m, j ≤ n}. This is because for any (i, j), if we
find the optimal local suffix similarity value V , then v∗(i, j) ≥ V . Conversely,
if there exist substrings of S1 and S2 ending at positions i∗ and j∗, respectively,
giving an optimal similarity value, then this optimal value is a solution of the
suffix similarity problem for the prefixes S1[1 . . . i∗] and S2[1 . . . j∗]. It will be
then sufficient if we can show that we can determine v(m,n) in O(mn) time.
The dynamic programming equations are very similar to the edit distance
computation and v(i, j) is given as:

v(i, j) = max{ 0,
v(i− 1, j) + v(S1[i],−),
v(i, j − 1) + v(−, S2[j]),
v(i− 1, j − 1) + v(S1[i], S2[j])}

where v(S1[i],−), v(−, S2[j]) and v(S1[i], S2[j]) are the values assigned to the
insertion, deletion and substitution operations, respectively. An example is
shown in Figure 7.19. Note that the local similarity alignments are located
inside the solid box starting with the maximum alignment value (a match has
a score of +2, a mismatch or a space are given a score of -1) of V [6, 6]=5 to
the nearest 0 entry in the alignment path(s) indicated by the bold integers
in the matrix. Two such maximum similarity alignments are also shown in
Figure 7.19.

It might be intuitively easier to understand the local similarity solution
using an interpretation using the edit graph. If we add in the edit graph, edges
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of weight 0 from the source vertex (0,0) to every other vertex in the graph, this
will initiate similarity computation starting from any location in the longer
string to whatever maximum value it will lead to by a directed path. This
is because the source vertex (0,0) becomes a predecessor of every vertex in
the graph. This also explains the first entry 0 in the dynamic programming
equation as stated above. The local similarity alignments will be located inside
the subgraph starting with the maximum alignment value to the nearest source
vertex having similarity value of 0. This is illustrated also in the matrix shown
in Figure 7.19. The 5×5 submatrix with the maximum value of 5 in the lower
right hand cell corresponds to the maximum similarity solutions. There are
two possible alignment paths depicted by bold entries.

7.4.4 The longest common subsequence problem

Another important variant of the similarity search problem is the problem of
determining the longest common subsequence between two sequences S1 and
S2. Given a string S of length n, a subsequence is a string S[i1]S[i2] . . . S[ik]
such that 1 ≤ i1 ≤ i2 . . . ≤ ik for some k ≤ n. A substring is a subset of
characters from S which is located contiguously, but in a subsequence the
characters are not necessarily contiguous, just in the same order from left to



240 7 Exact and approximate pattern matching

right. Thus a substring is a subsequence but the converse is not true. The
longest common subsequence (LCS) of two strings S1 and S2 is the longest
subsequence common between S1 and S2. As an example, there are two LCS’s
for the pair of strings (abba, abab), which are abb and aba. Since aba can be
derived from abba in two different ways, this gives three distinct solutions. If
we assume that the cost of substitution is 2 (one delete followed by an insert,
with both insert and delete having a cost of 1), then the edit distance d and
the length of the LCS, l, are related by the equation d = m + n − 2l. This
is because we can convert string S1 to string S2 by first deleting all m − l
characters from S1 that are not part of the LCS and then inserting back into
it all n − l characters of S2 that are not part of the LCS. For example, the
edit distance of (abba, abab) is 2 (= 4 + 4− 2× 3) since we can drop the last
a from the first sequence abba to obtain abb and insert the second a from the
second string after ab in abb to obtain abab. However, a direct computation
of the LCS using dynamic programming is more efficient than going through
the edit distance computation first, although the asymptotic complexity of
O(mn) remains the same. The formulation is as shown below.

l(0, 0) = 0
l(i, 0) = 0
l(0, j) = 0

l(i, j) = 1 + l(i− 1, j − 1) if S1[i] = S2[j]
l(i, j) = max[l(i, j − 1), l(i− 1, j)] if S1[i] 6= S2[j]

An example is shown in Figure 7.20. Note that since l = 5, the edit distance
has to be d = 6 + 8− 2.5 = 4, which can be verified separately for each entry
in the LCS matrix. The LCS matrix also has some interesting properties:
the entries in any row or in any column are monotonically increasing, and
between any two consecutive entries in any row or column the difference is
either 0 or 1. This has important hardware and software implications.

Since the LCS is simpler and is a special case of the edit distance problem,
one might wonder whether algorithms with better than O(mn) worst case
complexity can be found to solve this problem. Indeed, Hunt and Szymanski
(1977) defined a 2-dimensional grid G with m + 1 horizontal lines and n + 1
vertical lines, and marked the point of intersection of the i-th horizontal line
and the j-th vertical line with a 1 if ai = bj , and 0 otherwise. They showed
how to obtain the LCS by drawing a strictly monotonically decreasing line
through the points marked 1 in G. If there are r points in the line, their
algorithm takes (r + n) log n time, assuming that n is very large compared
to m. When two huge files with small differences are compared, r is of the
order of n and this leads to a practical O(n log n) algorithm. Myers (1986) and
Ukkonen (1985a) independently used this idea to come up with a minimum
cost path determination problem in the grid where the path takes a diagonal
line from (i − 1, j − 1) to (i, j) if ai = bj with cost 0, and takes a horizontal
or vertical line with a cost of 1 corresponding to insert or delete operations.



7.4 Approximate pattern matching 241

0

null

null 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 00

j

i

1

b a

a

a

a

b

b

b c c

c

c

d

b

1

1

1 1 1 1 1 1

1

1

1

1

1

2

2

2

2

2 2

2

2

2

2

2 2 2

3

3

3 3

3 3 3

3 3 3

3 3 3

3

4

4 4

4

444

4

4

5

5

5 5

6

6

7

7

S
2

S
1

a   b   c   c   d   a   b

b   a   b   c   a   b   c

Trace

Fig. 7.20. Longest common subsequence with a trace

These two approaches can be easily visualized with the aid of an edit graph
as shown in Figure 7.21 for the sequences abba and abab.

The end points of the diagonals then define a LCS. This formulation was
then implemented using the classic shortest path algorithm of Dijkstra (1959).
Several other improvements of this basic idea have been proposed by Masek
and Paterson (1980) and others.

Another interesting formulation of the LCS problem is in terms of the
longest increasing subsequence problem, described in Gusfield (1997). Let π
be a set of n integers, not necessarily distinct. An increasing subsequence, IS
of π is a subsequence of values strictly increasing from left to right. For ex-
ample, if π=(5,3,4,4,9,6,2,1,8,7,10) then IS=(3,4,6,8,10), (5,9,10) and so on.
A longest increasing subsequence (LIS) of π is an IS of maximum length.
A decreasing subsequence (DS) is a non-increasing subsequence of π, such
as DS=(5,4,4,2,1) for the previous example. A cover (C) is a set of dis-
joint DS’s of π that cover or contain all elements of π. The size of the
cover (c) is the number of DS’s in the cover. If π=(5,3,4,9,6,2,1,8,7) then
C={(5,3,2,1),(4),(9,6),(8,7)} and c = 4. A smallest cover (SC) is a cover with
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a minimum value of c. Any increasing sequence cannot have more than two
elements from a decreasing sequence. This means that no increasing subse-
quence can have a size greater than the size of any cover. Thus, the size |LIS|
cannot exceed c, the size of the smallest cover. The converse of this statement
is also true. If there exists c′ < c and if we derive IS from C, then it must
contain more than one element from one of the decreasing sequences of C ′,
which is not possible. This proves an important property: if an increasing se-
quence IS of π has a length equal to the size of a cover, then IS is an LIS
and C is a smallest cover of size c.

A greedy algorithm can be used to derive a cover as follows. Starting from
the left of π, examine each successive number in π. Append the current num-
ber at the left-most subsequence derived so far if it is possible to do that
maintaining the decreasing sequence property. If not, start a new decreasing
subsequence beginning with the current element. Proceed until π is exhausted.
For example, if π=(5,3,4,9,6,2,1,8,7,10) then it has four decreasing sequences:
D1 = (5, 3, 2, 1), D2 = (4), D3 = (9, 6), D4 = (8, 7), D5 = (10). The greedy al-
gorithm has O(n2) complexity. We will now look at a more efficient O(n log n)
algorithm, which is given in Algorithm 7.13.

The algorithm uses two data structures: the decreasing sequence list Di

for the shortest cover, and a list L of items (x, j) to keep the running min-
imum value x in the decreasing sequence j. Searching the x-field in L takes
O(log n) time. At any time in the execution of the algorithm, the list L is
sorted in increasing order with respect to the x-values, as well as with respect
to the identifier value i. Since a total of n elements are inserted, the time com-
plexity of the algorithm is O(n log n). For example, if π=(5,3,4,9,6,2,1,8,7,10),
then initially, L=[(5,1)] and D1=(5). After inserting 3, 4 and 9 the lists be-
come L=[(3,1),(4,2),(9,3)], D1=(5,3), D2=(4) and D3=(9). After inserting
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Decreasing-sequence(π)
/* π = (x1, x2, . . . xn) is the list of input numbers */
i← 1
Di ← x1

L← [(x1, i)]
j ← 1
for i← 2 to n do

Search the x-field of L using binary search to find the first
x-value such that xi < x

if such a value exists then

insert x at the end of the list Di and xi ← x in L
else

j ← j + 1
insert in L a new element (x, j) and start a new Dj ← (x)

end if

end for

Algorithm 7.13: Decreasing sequence computation

the last element 10, the final lists are: L=[(1,1),(4,2),(6,3),(7,4),(10,5)] and
D1=(5,3,2,1), D2=(4), D3=(9,6), D4=(8,7) and D5=(10). Now we will show
how to map the LCS problem to an LIS problem.

Given sequences S1 and S2, let ri be the number of occurrences of the
i-th character of S1 in S2. For example, if S1 = abacx and S2 = baabca,
then, r1=3, r2=2, r3=3, r4=1, and r5=0. Define for each character σ in S1,
a List(σ) to be the position of σ in S2 in decreasing order. In the example,
List(a)=(6,3,2), List(b)=(4,1), List(c)=(5) and List(x) = ǫ (the empty se-
quence). Let Π(S1, S2) be a sequence obtained by concatenating the set of
List(si) for i = 1, 2, . . . m, where m is the length of S1 and si is the i-th
character of S1. In the example, Π(S1, S2)=(6,3,2,4,1,6,3,2,5). One can prove
the following theorem:

Theorem: Every increasing sequence I of Π(S1, S2) specifies an equal
length common subsequence of S1 and S2 and vice versa. Thus a longest
common subsequence LCS of S1 and S2 corresponds to a longest increasing
sequence of Π(S1, S2).

For our example Π(S1, S2)= (6,3,2,4,1,6,3,2,5), the possible longest in-
creasing sequences and the corresponding LCS’s are: (1,2,5)= bac, (2,3,5)=aac,
and (3,4,6)= aba. Note that the indexes in the LIS’s are used to access char-
acters from S2. An informal justification of the above theorem is that the
sequence Π guarantees that the groups of sequences correspond to the se-
quences of characters in S1 in left to right order, and the increasing indexes
makes sure that the characters from S2 are also accessed in left to right order,
and finally the ‘longest’ IS guarantees that the common sequence derived
by the process is indeed an LCS. With r =

∑

i ri = |Π(S1, S2)|, the LIS
approach solves the LCS problem in O(r log n) time (where m ≤ n). Note
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that r ≤ mn, although in general, r ≪ mn. Thus, when r ≈ nm, the time
complexity will be worse than that of using edit-distance.

7.4.5 String matching with k differences

In this subsection we will consider a few important variants of the general
edit distance problem. The k-mismatch problem finds all positions in T where
pattern P occurs with at most k mismatches. The approximate string match-
ing problem with k differences is to find all occurrences of P in T such that
d(P, x) ≤ k where x is a substring of T . The k-difference global alignment
problem is to find the best global alignment, if one exists, of strings S1 and
S2 with at most k mismatches and spaces (insertions and deletions). These
problems have applications in situations where one wants to find nearly exact
matches of P with T . The dynamic programming formulation with a time
complexity of O(mn) can be adapted to solve these problems. But, being
special cases, more efficient algorithms have been developed for each of these
problems. In this section we will briefly describe some of them and give a brief
review for others.

The k-mismatch problem

The k-mismatch problem can also be stated in terms of the Hamming distance.
The Hamming distance between two strings of equal length is the number of
positions where the characters in the strings mismatch. Thus, the k-mismatch
problem is to find all positions i in T where pattern P and T [i, i+1, . . . i+m−1]
have a maximum Hamming distance of k. The dynamic programming formu-
lation of local similarity is applicable to this problem, but being a special case
it can be solved using running time better than O(mn). Landau and Vishkin
(1985) developed an O(k(m log m+n)) algorithm for this problem with a pat-
tern preprocessing time of O(k(m log m)). The algorithm creates a table for
shifting the pattern so that certain comparisons can be avoided, as is done in
the KMP algorithm, as long as the number of errors do not exceed k. Improve-
ments to this algorithm have been proposed by Galil and Giancarlo (1988),
Grossi and Luccio (1989), Tarhio and Ukkonen (1993) and Baeza-Yates and
Perleberg (1992, 1996). Baeza-Yates and Gonnet (1992) extended their shift-
and algorithm to handle the k-mismatch problem. Wu and Manber (1992a,b)
developed the software agrep incorporating Baeza-Yates and Gonnet’s idea.

Recall the definition of a binary matrix M with m rows and n columns
such that M [i, j] = 1 if and only if the prefix of the pattern P [1 . . . i] equals
the suffix in the text at the j-th position, that is, T [j− i+1 . . . j] (see Section
7.1.5). Let Mk be a generalization of M such that Mk[i, j] = 1 if and only if
at least i− k characters of the pattern P [1 . . . i] match with the suffix in the
text at the j-th position, that is, with T [j− i + 1 . . . j]. The matrix M0 = M .
The algorithm computes for any text location j the matrix M l[j] from the
matrix M l−1[j] by the relation
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M l[j] = M l−1[j] ∪ (Bitshift(M l[j − 1] ∩ U [T [j]]) ∪M l−1[j − 1])

where U is a binary vector of length m, such that, for each symbol σ ∈ Σ,
U [σ] = 1 for the positions in P where the symbol σ appears.

Thus, M l[j] is set to 1 under three conditions:

1. The first i characters of P match a substring of the text T ending at
location j of T ;

2. The first i− 1 characters of P match a substring of T ending at location
j−1 of T with at most l mismatches, and that the next pair of characters
of P and T match;

3. The first i− 1 characters of P match a substring of T ending at location
j − 1 with at most l − 1 mismatches.

Thus, for each value of l, l = 0, 1, . . . , k, and for n−m positions in the text
the columns have to be computed leading to a worst case time complexity of
O(kmn). Fortunately, like in the computation of M0, only two columns have
to be kept in main memory during the computation. For small k and with a
pattern length that fits into a computer word, agrep is quite fast and efficient.
The reader is referred to the text books by Stephen (1994), Gusfield (1997),
and Smyth (2003) for further information.

We will conclude this subsection by describing a suffix tree method which
uses the concept of longest common extension (lce) of two strings. The lce of
two strings S1 and S2 for a given pair of indexes (i, j), is the longest substring
of S1 beginning at position i that matches a substring of S2 beginning at
position j. With O(n+m) preprocessing to construct a generalized suffix tree
and with the help of a constant time lowest common ancestor algorithm (Harel
and Tarjan, 1984; Gusfield, 1997), a constant time complexity algorithm for
determining the length l of the longest common extension can be obtained.
Using this result, the k-mismatch algorithm is described in Algorithm 7.14.

Since the while loop can execute a maximum of k times and the lce algo-
rithm takes constant time, and j can range from 1 to n −m, the total time
complexity is O(nk) for the k-mismatch problem, which is an improvement
over the O(mn) algorithm, particularly when k is small.

Approximate string matching with k differences

As defined earlier, the approximate string matching problem with k differences
is to find all occurrences of P in T such that d(P, x) ≤ k where x is a substring
of T . The situation is comparable to the local similarity problem except that
we slide the pattern P (recognized as the smaller string S1) over the text
T (identified as string S2), so that P is aligned with each position in the
text, and compute the distance between P and the next m characters in the
text. If this distance has a value less than k, we include the text position in
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k-mismatch-suffix-tree(l, T, P )
/* l is the longest common extension of strings T and P */
i← 1 /* index to pattern P */
j ← 1 /* index to text T */
count← 0 /* mismatch count */
while (count ≤ k) do

if i + l = m + 1 then

/* a solution has been found with count number of mismatches, since
count ≤ k) */

stop

else

count← count + 1
j ← j + l + 1
i← i + l + 1

end if

end while

if count = k + 1 then a k-mismatch of P not found in T starting position j

Algorithm 7.14: Suffix tree method: Determining the k-mismatch using
the longest common extension

our solution. In the context of dynamic programming formulation, this can
be achieved by initializing the (m + 1) × (n + 1) distance matrix M with
d(0, 0) = 0, d(i, 0) = i for 1 ≤ i ≤ m and d(0, j) = 0 for 1 ≤ j ≤ n.
Interpreting this on the edit graph means that we let every node in the first
row of the grid to have its predecessor as the source node (0,0). If we now
examine the last row of computed edit distance values inM, every entry with
a value up to k will represent an approximate string matching solution with
k differences. By choosing different definitions of the distance function, we
can obtain variants of the solution. For example, we can choose the distance
function as the Hamming distance in which case the solution will stand for the
approximate k-mismatch solution. We can even extend this to approximate
similarity computation by assigning positive values to the distance function
in a prescribed way and choosing only those as solutions whose values are
greater than or equal to a minimum threshold value. A final variation of the
problem will be to initialize M with conditions d(0, 0) = d(i, 0) = d(j, 0) = 0
for all i and j. This will be analogous to the local similarity problem and
produce solutions that will compare substrings of S1 with substrings of S2

and identify as solutions those pairs whose distance function is less than or
equal to k or whose similarity function is greater than or equal to a threshold.
A comprehensive survey on approximate pattern matching can be found in
Navarro (2001).



7.4 Approximate pattern matching 247

The k-difference global alignment problem

A similar approach is applicable to the k-difference global alignment problem,
where we want to find the best global alignment, if one exists, of strings S1

and S2 with at most k insertions and deletions. The dynamic programming
formulation presented earlier can again be applied. At the conclusion of the
computation of the edit distance matrix, some approximate occurrences of the
pattern in the text with up to k differences can be found by identifying an
entry in the last row of the matrix having a value less than or equal to k. If
this entry is in column j, then the edit distance between P and T [1, 2, . . . , j]
is less than or equal to k. Being a special case, we can expect a running time
better than O(mn). Consider the main diagonal cells [i, i] in the dynamic
programming matrix M (i ≤ m ≤ n). A path specifying a global alignment
begins at the cell [0, 0] and ends at the cell [m,n] or to the right of cell [m,n].
An insert or delete operation will push the path off the main diagonal by
one square and it cannot do this more than k times if the path is to be a
k-difference solution. This also means that n − m ≤ k must be true to get
any k-difference solution. If there is a substitution operation, the path moves
diagonally but adds 1 (or some specified number) to the edit distance. It will
thus suffice if rather than computing the whole matrix M, a strip of cells of
length 2k+1 off the main diagonal is computed. The recurrence relations have
to be altered slightly at the border cells of this strip to ignore the values of
cells that do not fall in the strip. Because of this, the value in the cell [m,n]
may not be the actual edit distance, but if it is greater than k, we can conclude
that there is no k difference match between strings S1 and S2. If there is a
k-difference match, the edit distance in the cell [m,n] will be correctly set
and it will be less than or equal to k. The total number of cells in the strip is
O(km) which is also O(kn) since n−m ≤ k and k is a constant. An example
is shown in Figure 7.22. The diagonal strip of width 3 for k=1 shows that
there is no 1-difference global alignment — for this particular example, the
smallest value of k for which there is a k-difference global solution is 4.

If the value of k is not specified, we can determine k by successive appli-
cation of the algorithm by beginning with k=1 and doubling the value to 2,
4, 8 . . . until the desired value of k is obtained.

7.4.6 The k-mismatch problem using the BWT

In this section we will describe an efficient algorithm to solve the k-mismatch
problem based on the Burrows-Wheeler Transform. The approach described
here works on the transformed text, so we assume that L is available, and also
the index a which gives the position in L corresponding to the last character
of T (from where decoding the text backwards can begin). As we have seen in
the earlier chapters, we can reconstruct the original text T , the array F and a
list of sorted suffixes of the text from (L, a). In the context of compressed text



248 7 Exact and approximate pattern matching

0

null

null 00

j

i

1

b a

a

a

a

b

b

b c c

c

c

d

b

1

2

2

3

3

33

4

3

4

5

5

6

6

3

4 5

3 4

3 4

5

7

1 2 3 4 5 6 7

7

1

1

1

1

1

2

2

2

2

2

3

4

5

6

7

S
1

S
2

Fig. 7.22. Diagonal strip for k = 1

using BWT, we will have |L| = |T | = n. We can then perform the k-mismatch
or k-approximate pattern matching directly on this data.

The approximate matching techniques are based on using the BWT in-
formation to generate q-grams, which are simply substrings of a text, where
the length of the substring is q. For example, the set of 5-grams for the text
mississippi is { missi, issis, ssiss, sissi, issip, ssipp, sippi }. For ex-
act pattern matching, we could construct all m length q-grams (the m-grams)
of the pattern and the text, and find the intersection of these two sets to pro-
duce the set of matches. If instead we wish to perform approximate matching,
we use smaller q-grams (q ≤ m), based on the allowable distance between the
pattern and a matching string.

There is just one m-gram for the pattern P , which is simply the pattern
itself. Construction of the required m-grams of a text from the F and R′ BWT
arrays is also straightforward and can be performed in O(n) time as follows:

∀i : 1 ≤ i ≤ n− q + 1, QT
q [i] = F [R′[i]] . . . F [R′[i + q − 1]]

where QT
q [i] denotes the i-th array of q-gram from T . Although this definition

does not list the q-grams in sorted order, sorting can be performed efficiently
by reordering them according to the values in the R auxiliary array. For ex-
ample, the text mississippi has R = {11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3}. Thus, for
q = 5, the sorted q-grams are {QT

5 [5], QT
5 [2], QT

5 [1], QT
5 [7], QT

5 [4], QT
5 [6], QT

5 [3]},
with 8, 9, 10 and 11 being ignored because they are greater than n− q + 1.
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Generating q-grams from the BWT V array output

Algorithm 7.15 generates the sorted set of q-grams given F , L, V and q,
in O(qn) rather than O(n2) time. In this algorithm the sorted x-grams are
denoted as F (x-gram) which is a vector of length n = |T | of x-tuples of
characters. We will allow the q-grams to rotate at the end of the text, but
this could be avoided later by ignoring the q-grams that correspond to the
last q − 1 starting positions in the text. Obviously, F = F (1-gram) and the
lexicographically sorted matrix of all cyclic rotations of T is F (n-gram). We
assume x ≤ n. The character ‘*’ denotes concatenation of character strings.

gram(F, L, V, q)
F (1-gram)=F
for x = 2 to q do

for i = 1 to u do

F (x-gram)[V [i]]← L[i] ∗ F ((x− 1)-gram)[i]
end for

end for

Algorithm 7.15: Algorithm for generating q-grams using V

For example, if this algorithm is used with q = 2, the result will be the
sorted bi-grams. The series of 11 2-grams generated with T = mississippi

are shown in Table 7.7a. This will place them in sorted order in the vector
F (2-gram); Table 7.7b shows the same values in the vector, but with the index
ranging from 1 to 11. The sorted matrix As (which is not actually stored) is
also shown for comparison; the q-grams are simply the first q characters of
each line of As. Because the algorithm has wrapped the text around to the
beginning, the 2-gram starting at the last position of T should not really be
used. It happens to be in F (2-grams)[1] in the example, and in practice it
would be ignored during pattern matching.

The algorithm to generate the q-grams is O(qn) in the worst case, but in
practice q will be a small and constant value, in which case the complexity is
O(n).

From the above algorithm we get a set of q-grams that represents all the
q-length segments of text, and the q-grams are sorted. This property gives us
the advantage of being able to apply binary search on the arrays, in a similar
way to the technique for exact matching in Algorithm 7.9.

We need to introduce the idea of a permissible q-gram, which is simply
a q-gram that is totally contained in T , that is, it doesn’t include rotations
from the start to the end of T . For example, for T = abac, the permissible
bi-grams are {ab, ba, ac}, but not ca.
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i F (2-gram)[V [i]] = L[i] * F (1-gram)[i]

1 F (2-gram)[6] = p * i

2 F (2-gram)[8] = s * i

3 F (2-gram)[9] = s * i

4 F (2-gram)[5] = m * i

5 F (2-gram)[1] = i * m

6 F (2-gram)[7] = p * p

7 F (2-gram)[2] = i * p

8 F (2-gram)[10] = s * s

9 F (2-gram)[11] = s * s

10 F (2-gram)[3] = i * s

11 F (2-gram)[4] = i * s

(a)

F (2-gram)[i] = 2-gram As[i]

F (2-gram)[1] = im imississipp

F (2-gram)[2] = ip ippimississ

F (2-gram)[3] = is issippimiss

F (2-gram)[4] = is ississippim

F (2-gram)[5] = mi mississippi

F (2-gram)[6] = pi pimississip

F (2-gram)[7] = pp ppimississi

F (2-gram)[8] = si sippimissis

F (2-gram)[9] = si sissippimis

F (2-gram)[10] = ss ssippimissi

F (2-gram)[11] = ss ssissippimi

(b)

Table 7.7. (a) The 2-grams in the order generated by Algorithm 7.15 on the text
mississippi; (b) the final array F (2-gram)

Using the BWT for the k-mismatch problem

This section describes a k-mismatch algorithm based on q-gram matching
using the BWT auxiliary arrays. Here, the q-grams are not generated all
in advance, but are obtained incrementally by generating the BWT arrays
as they are needed. This can be seen in the code in Algorithm 7.16 under
the nested for loop. It performs a binary search on the sorted q-grams one
character of P at a time. The algorithm starts by finding the first character of
the pattern in the first column of the matrix, F . All the matches are located
contiguously in the sorted matrix and it identifies a suffix block or a segment
in As that begins with the first character. The binary search then proceeds
to the next character of the segment matching the corresponding character
of the pattern. When the match is found, the segment is further narrowed.
The procedure is continued until the pattern is found in the final segment or
there is a mismatch. The average search time is O(m + log(n/|Σ|)) and is
O(m log(n/|Σ|)) in the worst case.
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We know that the As matrix contains the sorted suffixes of the text. The
occurrences of suffixes with the same prefix will be in consecutive segments.
For exact matching, there will be only one segment matching the whole pat-
tern. But when k mismatches are allowed, there could be more than one seg-
ment that will satisfy the k mismatch criterion. For each segment, the rows
have a common prefix with length l of the q-grams in the segment, where l is
the position of the last character of P that matches the q-gram or they will
have the same number of allowable mismatches. We use a triplet (st, ed, count)
to store the start and end positions of the segment in F and the number of
mismatches between the common prefix of q-grams of T and P (1 . . . l), respec-
tively. Only the segments with count less than or equal to k are considered
valid in any step and stored together in a set Candidate. Each element of
Candidate is a valid triplet storing the possible matching segment informa-
tion. In practical implementations, the vector F can be stored in an array of
character counts M = c1, c2, . . . c|Σ| where Σ is the alphabet with an ordered
index for each character. For a given index c, 1 ≤ i ≤ |Σ|, M [i] stores the
beginning index of the segment having σi in the first column. For example,
with Σ = {a, b, c, d} and T = abdaca, M [1] = 1,M [2] = 4,M [3] = 5,M [4] = 6
at the start of the algorithm. The algorithm is given in Algorithm 7.16.

Note that we do not actually create the j-gram for each row in the q-gram
matrix during binary search. Instead, given the row index pos of a q-gram in
F , the j-th character s of the q-gram can be accessed in constant time as:
s = F [R′[R[pos] + j]].

An example to illustrate the algorithm is shown in Figure 7.23, with T =
mississippi, P =ssis, and k = 2. Initially there is one triple set up for
each character in the alphabet (in the first column of the Figure 7.23). The
left most column gives the index to the rows of the sorted BWT matrix. The
column numbers (1,12,123 and 1234) are marked on top for the 1, 2, 3, . . . , q-
grams being generated by successive iterations of the algorithm along with the
character P [q] of the pattern being compared with the last character of the q-
gram. For each block of identical q-grams, the associated triplet indicating the
start and end indexes of the block and the number of mismatches accumulated
so far for each block is appended to the right beside the braces or a left
arrow (for a single element block). Triplets are kept as long as the number
of mismatches does not exceed k which for our example has a value of 2. If
the number of mismatches exceeds 2, the triplet is discarded from the set
Candidate. This is indicated by the symbol ‘x’ in the diagram.

The main loop starts with j = 2, which is matching the second character of
P . For each of the existing triplets, an extension of one character is evaluated
for each character σc in the alphabet. If that character matches then a new
triplet is created that indicates the subrange of As that still matches — in the
example, extending the triple (8,11,0) with an s does this for the range from
10 to 11, and so the triple (10,11,0) is recorded. If the character doesn’t match,
then the count of mismatches is incremented for that triple. If the increment
makes it greater than k, then we have too many mismatches — in the example
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BWT-k-mismatch(F , P , M , R′, R, k)
Initialize Candidates to have no triplets
for each distinct character σc ∈ Σ, the c-th character in

Σ, that appears in F do

create a triplet (st, ed, count) with
st←M [c] /* start a segment */
ed←M [c + 1]− 1 if c < |Σ| else ed = u /* end of a segment */
if σc = P [1] then count← 0 else count← 1

if count ≤ k append the triplet to Candidates

end for

for j ← 2 to m do

for each triplet in Candidates do

Remove the triplet (st, ed, count) from Candidates

for each distinct character σc that appears in F do

locate the start and end positions st′ and ed′ in F between st and
ed using binary search with the j-th character of the q-grams

if σc = P [j] then

add triplet (st′, ed′, count) into Candidates

/* Since it is a match with P (j), there is no change to count */
else if count + 1 ≤ k then

add triplet (st′, ed′, count + 1) to Candidates

/* Since a mismatch occurred, count is incremented by one */
end if

end for

end for

end for

Read the list Candidates to report all the k-mismatch results between
st and ed in each element of Candidates.

/* The position in F can be converted to the position in T using R */

Algorithm 7.16: Determining the k-mismatch based on q-grams

this happens when the triple (2,2,2) in the second column is extended with
a p, taking the count from 2 to 3 mismatches. In this case no corresponding
triple is added to the list; this also happens in the few cases where the match
has reached the end of the text, which happens for the character i in the
first row of Figure 7.23. If the incremented value is within the bound set by
k then a new triple can be created, such as extending (8,11,0) with the letter
i, giving (8,9,1), a mismatch of 1 character. Once all m characters in P have
been used to extend the triples, the remaining set of triples gives the range
(in As) of the matches, and the count gives the size of the mismatch. In the
example, the last column shows 3 matches, at positions 9 (2 mismatches), 10
(1 mismatch), and 11 (exact match).
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1
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Fig. 7.23. Example of the q-gram based k-mismatch algorithm, for T =
mississippi, P = ssis, and k = 2; the symbol × indicates a row that has been
exhausted, and thus no further match is required

For this k-mismatch algorithm, the preprocessing time to construct the
auxiliary arrays is O(n). For each loop, we have to use binary searches to locate
all the segments with the same q-gram. At most n groups will be generated
which is really a theoretical worst case scenario. The worst case search time
for the whole pattern is O(mn log n). In practice, for English language most
often the groups will be resolved after 4 or 5 refinements of the segments. The
average case is O((nm

k ) log n).
Zhang et al. (2003) compared the qgram method for k-mismatches based

on the BWT with the suffix tree based method presented in Algorithm 7.14
(described in Gusfield (1997)). They found that the BWT-based method con-
sistently outperforms the suffix tree based method. With q = 3, the number of
triplets generated initially increases with each iteration, but generally peaks
around the fourth iteration because the first few characters play a role in
breaking the segments into many sub-segments, but only a few of them actu-
ally survive for a given k as the candidate list loses valid triplets.

7.4.7 k-approximate matching using the BWT

In the previous section, we utilized the ease of deriving the q-grams once a
text has been transformed by the Burrows-Wheeler Transform to obtain an
efficient implementation of the k-mismatch problem. In a similar fashion, it is
possible to use the q-grams to expedite the k-approximate pattern matching
problem.

One approach is to use two phases. In the first phase, we locate areas in the
text that contain potential matches by performing some filtering operations
using appropriate q-grams. In the second phase, we verify the results that
are suggested by the filtering operations. The verification stage could use any
of k-approximate pattern matching algorithms that have been reported in
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the literature, such as Ukkonen (1985b); Chang and Lawler (1994); Myers
(1994); Landau and Vishkin (1986). This means that the overall performance
depends critically on the number of suggestions generated. The first phase is
based on a known fact in approximate pattern matching due to Baeza-Yates
and Perleberg (1992, 1996):

Lemma : Given a text T , a pattern P with length m, and the parameter
k, for a k-approximate match of P to occur in T , there must exist at least one
r-length block of characters in P that form an exact match to some r-length
substring in T , where r = ⌊ m

k+1⌋.
This is trivially the case for exact pattern matching, in which k = 0, and

hence r = m. With this lemma, we can perform the filtering phase in three
steps:

1. Compute r, the minimum block size for the q-grams;
2. Generate QT

r and QP
r , the permissible r-grams from the text T , and the

pattern P , respectively; and
3. Perform q-gram based exact matching of QT

r and QP
r using a Burrows-

Wheeler Transform based search algorithm described earlier in Algo-
rithm 7.9.

Let MQk = QP
r ∩QT

r , and ηh = |MQk|. Let MQi
k be the i-th matching

q-gram. LetMQi
k[j] be the j-th character inMQi

k, j = 1, 2, . . . r. Further, let
iF be the index of the first character ofMQi

k in the array of first characters,
F . That is, iF = x, if F [x] = MQi

k[1]. We call MQk the matching q-grams
at k. Its size, ηh is an important parameter for the next phase of verifying the
matches.

In the second phase we need to verify if the r-grams that were hypothesized
in the first phase are true matches. We perform the verification in two steps:
(1) Using R′ and F determine the potential matching neighborhood in T for
each r-gram inMQk. The maximum size of the neighborhood will be m+2k;
and (2) verify if there is a k-approximate match within this neighborhood.

LetN i be the neighborhood in T forMQi
k, the i-th matching q-gram. Let t

be the position in T whereMQi
k starts. That is, t = R′[iF ]. The neighborhood

is defined by the left and right limits: tleft and tright viz:

tleft =

{

t− (m− r)− k : if t− k ≥ 1,
1 : otherwise

tright =

{

t + m + k : if t + m + k ≤ n,
n : otherwise

Hence, the i-th matching neighborhood in T is given by:

Ni = T [tleft . . . t . . . tright].
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Thus, |N i| ≤ 2(m+k)−r,∀i, i = 1, 2, . . . ηh. We then obtain a set of matching
neighborhoods SMQ = {N1,N2, . . .Nηh

}, and then verify a match within any
given Ni using a k-approximate pattern matching algorithm such as Ukko-
nen’s. The cost of the first step in the verification will be in O(ηh). The cost
of the second step will be O(ηhk(m + 2k)) ≤ O(ηhk(3m)) ≈ O(ηhkm).

For example, if T = abraca, P = brace and k = 1, then r = 2, and the per-
missible q-grams will be QP

2 = {ac, br, ce, ra}, QT
2 = {ab, ac, br, ca, ra}, yield-

ing MQ1 = {ac, br, ra}, and N1 = [3 . . . 6];N2 = [1, . . . , 6];N3 = [2, . . . , 6].
Matches will be found in N1 and N2 at positions 1 and 2 in T , respectively.

There are cases when overlaps between the neighborhood sets may occur.
If there is an exact match in the text T , there will be at least m − r such
neighborhoods overlapping for the same region in T matching P of length m.
Thus we can merge these neighborhoods into a single one covering all of them
as stated in the following lemma:

Lemma : Given strings S1 = s1, . . . si, and S2 = sj , . . . sn where i ≤ n
and j ≥ 1, the merge of the two string S1 and S2, S = s1s2, . . . sn, will include
all the possible k-approximate matches in S1 and S2.

Sometimes the merging overhead is larger than the cost of searching all the
neighborhoods directly, as it is possible to have a lot of neighbors scattered
over the text. To merge a neighborhood with the current neighborhoods, we
may need to search for the right position to merge, incurring an overhead of
O(w), where w is the number of distinct neighborhoods in the text T .

7.5 Hardware algorithms for pattern matching

This section gives a brief introduction to the field of hardware algorithms for
pattern matching. Interested readers should look at the references for more
information.

There is an unwritten theorem understood by hardware designers that
whatever can be done in software can also be done in hardware, but the
converse is not true. The software that is used to control a robot arm or a
nuclear power plant or a space ship can be encoded in hardware microcode
and the systems will function autonomously. The problem with this approach
is that the hardware is fixed and can not be changed if the system needs to
adapt to new or slightly altered design specifications. Special purpose hard-
ware has been used since the early days of computers — for example, the
floating point processor has been used as a standard hardware “component”
in most computers. With the advent of LSI (large scale integration), which led
to the microprocessor revolution in the early seventies, and the development
of VLSI (very large scale integration) in the eighties, which led to the advent
of very powerful general purpose processors, the special purpose processors
faced tough competition. The advantage of the general purpose processor is
that it provides programmability and can be used in almost any application
(except for time-critical applications where “embedded” processors have an
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advantage). In fact, high speed general purpose processors have been used in
many special purpose applications such as the graphics cards with microcoded
graphics applications. Nevertheless, a large number of researchers worldwide
continued with a substantial amount of research on the development of hard-
ware algorithms, as is evidenced by the publications of hundreds of papers and
the proliferation of journals and conferences on VLSI design and application-
specific VLSI architectures.

The area of parallel and “systolic” algorithms and architectures received
special attention by many, although by the end of the decade no significant
hardware was built that received general acceptance. In the area of string
processing, several hardware algorithms have been developed (see later in the
section). Two other projects on biosequence analysis are worth mentioning
— one led by the California Institute of Technology, and a “Bioscan” chip
developed by a group at North Carolina University at Chapel Hill in the early
nineties. The whole field of special purpose architectures (systolic algorithms
and so on) and massively parallel machines took a hit and more or less col-
lapsed due to the advent of the very powerful chips such as the Pentium and
its successors. This led to the development of multi-processor systems (4 to
6 processors on a single motherboard), multi-threaded VLIW (Very Large
Instruction Word) architectures with extensive pipelining, and grid architec-
tures. In the early nineties a new technology arrived on the horizon: the FPGA
(Field Programmable Gate Arrays). The FPGA was developed in the eighties,
but they were not competitive in speed and performance. This is now turning
around. The FPGA has become very fast, dense and competitive in perfor-
mance and speed with general purpose processors, and maintains its inherent
programmability and reconfigurability. This coupled with the availability of
very high speed DNA sequencing machines which are being used today for
accumulating massive amounts of genome and protein sequencing data, plus
the need to analyze, search and mine this data, might cause a resurgence in
the hardware algorithms field.

7.5.1 An equivalent hardware algorithm

We begin by describing a simple hardware method for pattern matching
that was discovered in the late seventies by one of the authors of this book
Mukhopadhyay (1979)7 which used the same basic principle used in the shift-
and method of Baeza-Yates and Gonnet (1992). The algorithm will be pre-
sented at a high functional level so that the reader can understand the basic
idea without delving into low-level hardware details. The basic cell (module,
or block) used is a two-input one-output functional block (see Figure 7.24).
The horizontal input coming from left is binary and is called the anchor; the
other input coming from the vertical direction is a single character (typically
8 binary signals representing an ascii code).

7 This paper is also known as Mukherjee, 1979.
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a b a a canchor output

x

yanchor output

1 0           0            0           0           0

2 1           0            0           0           0

3 0           1            0           0           0 

4 0           0            0           0           0

5 1           0            0           0           0

6 0           1            0           0           0

7 1           0            1           0           0

8 1           1            0           1           0

9 0           0            0           0           1

10 1           0            0           0           0

time

Input: xabxabaaca

The ith row of matrix M is same as ith column of this matrix

Basic  pattern matching cell

Fig. 7.24. Hardware pattern matching

The cell holds a single character in a buffer and has logic to perform a
comparison operation between the incoming character and the resident char-
acter. The operation of the cell is as follows: If at time t (coinciding with a
clock pulse), the anchor input is ‘1’ and the incoming character equals the
resident character, then the output becomes ‘1’ at time t+1; otherwise, if the
anchor is ‘0’ or the characters do not match, the output is ‘0’ at time t + 1.
To perform an exact pattern matching operation with a pattern of length m,
m such functional blocks are cascaded together, connecting the output of the
i-th block to the anchor input of the (i + 1)-th block 1 ≤ i ≤ m − 1. The
inputs are all connected in “parallel” via a “bus” so that the same character
is input to all cells at the same time. The anchor input of the first block is
connected to a clock throughout the operation.

The important output to observe is the output of the last cell. The text
is applied sequentially, one character at a time, to all cells simultaneously. If
at any time t = k, the output of the cascade shows a ‘1’ output, the pattern
appears in the text beginning at the (t−m+1)-th position. For our example,
given the example from Section 7.1.5 with text T =xabxabaaca and a pattern
P =abaac, the cascade will have 5 functional blocks holding the pattern and
the output will become ‘1’ at time t = 9, indicating the pattern appears in the
text beginning at the 5-th position. Also note that if we observe the outputs
in time sequence from the i-th block in the cascade, it yields a bit string that
is exactly equal to the bit string in the i-th row (from left to right order) in
the matrix M of the Baeza-Yates-Gonnet method. The role of the “anchor”
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input is to enable the pattern matching operation starting from any position
in the text. This also performs the equivalent operation of shifting downward
the column of the bit matrix M by 1 bit with an appended ‘1’ as the first bit
in the Baeza-Yates-Gonnet scheme.

7.5.2 A brief review of other hardware algorithms

This subsection discusses several improvements of the basic scheme described
above, and a brief overview of other hardware algorithms for pattern matching.

Rather than broadcasting the pattern characters to all the cells in parallel,
which might slow down the hardware due to excessive “loading” in the bus,
another scheme has been proposed in which the text characters are moved
serially from the first to the last stage at half the speed of the propagation
of the match signals. Furthermore, in both the schemes the pattern may have
FLDC or VLDC characters for fixed- or variable-length don’t-cares. To handle
these cases, each cell needs only two bits of storage and a few logic gates. In
a 1-bit storage device F , the bit is set to 1, simulating a don’t-care character.
This bit is used to bypass the comparison hardware, and the output signal is
set to 1 to enable the next cell. Another 1-bit storage device V is set to 1 if
the character should correspond to a VLDC. In this case, the output is set
to 1 independent of the success or failure of the comparison operation, but at
the same time the storage bit V enables a feedback path within a cell which
circulates the match signal through the cell so that its output is set to 1 again
in the next cycle. This action simulates a non-null variable length don’t-care
by sustaining an enable output to the next cell forever, simulating a match
with an arbitrary length string.

Foster and Kung (1980) proposed a similar scheme in which the pattern
and the text string enter the array from opposite ends at each clock cycle. The
pattern must, however, be recirculated twice through the array. Each cell at
every clock cycle encounters two characters entering the cell, compares them
for match or mismatch, and accumulates a result that is sent to the output
along with the last character of the text. The method does not handle any
FLDC or VLDC characters, and this is also true for parallel comparator-
based pattern matching proposed earlier by Mead et al. (1976) and Stellhorn
(1974).

For matching with a small bit length pattern, associative memories have
been used extensively in the context of memory control hardware for high
speed table look-up, such as in the management of cached memories and pag-
ing schemes. Bird et al. (1977) and Burkowski (1982) proposed similar asso-
ciative memory based hardware for pattern matching, but these schemes also
do not handle don’t-care characters. The finite-state automaton based pat-
tern matching schemes proposed by Roberts (1978) and Hollaar and Roberts
(1978) can handle both FLDC and VLDC, although a large memory overhead
is needed to store the transition tables.
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Hardware schemes for approximate pattern matching and the computa-
tion of the longest common subsequence have been developed by Mukherjee
(1989), Mukherjee and Acharya (1995) and Lipton and Lopresti (1985). In
particular, Mukherjee and Acharya (1995) describes a hardware scheme to
perform compressed-domain pattern matching for the Huffman code.

A collection of classic papers on VLSI algorithms and architectures can
be found in Ranganathan (1993). Special purpose VLSI architectures with
application to BWT have been presented in Mukherjee et al. (2001) and Mar-
tinez et al. (2005). In view of the advent of genomic and proteomic databases,
developing hardware support for rapid search of biological sequence patterns
and approximate patterns will become a challenge for both algorithm design-
ers and hardware architects, and there is a growing literature on hardware
algorithms for pattern matching and biosequence analysis. Some of these are
Hunkerpiller et al. (1990), Dettloff et al. (1991), White et al. (1991), Lopresti
(1991), Hughey (1991), Yu et al. (2003) and Li et al. (2007).

7.6 Conclusion

In this chapter we have reviewed a range of algorithms for exact and approx-
imate pattern matching, starting with classic methods for the uncompressed
domain, and then focusing on ways to exploit the structures in the Burrows-
Wheeler transformed text to achieve fast searching.

The first search on an uncompressed file can be faster with conventional
pattern matching, because no decoding at all is needed. But conventional
pattern matching has no access to structures that can accelerate subsequent
searches, and the uncompressed files will be larger, which requires both more
storage, and more time to read their contents.

For exact pattern matching, there are three general categories of methods
with different performance characteristics:

1. A simple approach is a compressed-domain implementation of a conven-
tional pattern matching algorithm such as the Boyer-Moore algorithm.
This involves decoding the entire text each time a pattern match is made,
which means that although it is fairly fast for a single search, it will be
slow for multiple searches.

2. Another possibility is to take advantage of the sorted information held in
the BWT transformed arrays to do a binary search or to use the infor-
mation as a suffix array. These methods require that the post-transform
compression stages be reversed, imposing an overhead before any search-
ing can be done, but after that the logarithmic access times mean that
the time taken by each search of the file is negligible. Thus these methods
are well suited when multiple pattern matches must be made.

3. The FM-index approach stores a little extra information with the com-
pressed file which saves having to decompress much of it when searching.
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This means that the time taken for a single search is very low, and unlike
the previous two approaches, very little memory is required because the
BWT arrays are not decoded into memory. It is particularly fast at re-
turning the number of matches for a pattern in the compressed text, and
is an obvious candidate if one requires only a count of the matches, and
not their locations. The main disadvantages are that the size of the com-
pressed file is a little more than normal BWT-compressed files because of
the auxiliary information, and individual searches are slower than the bi-
nary search type methods, so it is less suitable if multiple pattern matches
are to be made for one file.

Approximate pattern matching, which allows for a small difference between
the pattern and the matching text, comes in a number of forms depending on
the nature of the approximation that is acceptable. We have described several
ways that BWT-based methods can be exploited for approximate matching,
either by providing fast access to q-grams in the text (substrings of length q
that reveal candidate match positions), or by traversing the implicit sorted
array available through the BWT structures, but allowing for an acceptable
number of mismatches. The possibility of using hardware for pattern matching
was explored at the end of the chapter, and although it is not widely applied
to general purpose pattern matching at present, there is the potential for it
to become important as the demand grows for pattern matching on very long
strings. Hardware implementations that are based on the Burrows-Wheeler
Transform have begun to emerge, with some initial work reported by Martinez
et al. (2005) and Mukherjee et al. (2001).

There is a very rich and growing literature on pattern matching in general,
compression-based pattern matching, and approximate pattern matching. The
“further reading” section provides more information.

7.7 Further reading

For further details and complete descriptions of the standard pattern matching
algorithms such as Knuth-Morris-Pratt, Boyer-Moore and Karp-Rabin, the
reader is referred to Baeza-Yates (1989), Gusfield (1997) and Smyth (2003).

The shift-and method was by Baeza-Yates and Gonnet (1992). The basic
mechanism of the principle of operation of this algorithm was discovered much
earlier by Dömölki (1968) in the context of recognizing symbols in a compiler,
and by Mukhopadhyay (1979) in the context of developing hardware algo-
rithms for pattern matching.

Aho and Corasick’s multiple pattern matching algorithm is reported in
Aho and Corasick (1975). Tao and Mukherjee (2005) developed a pattern
matching algorithm in LZW compressed files using the Aho-Corasick algo-
rithm. A similar approach for a single pattern was originally developed by
Knuth et al. (1977) following a theorem by Cook (1972). The keyword (dig-
ital) tree is presented, for example, in Gusfield (1997). Improvements of the
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KMP, Boyer-Moore and Aho-Corasick algorithms have been reported in the
literature, including the results reported by Cole (1994), Galil (1978), Hume
and Sunday (1991), Sunday (1990), Baeza-Yates and Gonnet (1992), and
Crochemore and Rytter (1994). A number of good review articles have also
been published and many text books on algorithms describe some of these
methods.

Fenwick (2001a) developed a new algorithm for intensive pattern matching
where a single block of text needs to be searched repeatedly. This occurs in
the context of the LZ77 compression algorithm in which successive phrases of
the input text are replaced by references to earlier occurrences of such phrases
in a window of the most recent characters. A major motivation of developing
such an approach comes from the observation by Gutmann (Fenwick, 1995a)
that the use of simple data structures which are easy to generate and maintain
often perform much more efficiently in practice compared to the use of com-
plex and theoretically efficient data structures. The method creates a hash
table linking the text to bigrams (pairs of characters), searching on the least
frequent bigrams, which are used as filters to select parts of the text for full
pattern matching. Test results on alphabetic data showed that this reduces
the number of character comparisons by two orders of magnitude compared
to the KMP algorithm, with a small amount of initial overhead.

The digital trie is a data structure that is particularly relevant for pattern
matching. Knuth (1973) describes tries (also known as digital search trees) in
some detail.

A good survey of compressed full-text indexing in general is given by
Navarro and Mäkinen (2007). Gupta et al. (2007) provides a recent investi-
gation into compressed indexing. A website devoted to compressed searching
methods, and testing them, can be found at the two mirror sites,

http://pizzachili.dcc.uchile.cl/ and
http://pizzachili.di.unipi.it/.

The BWT suffix array approach is due to Sadakane and Imai (1999). Suf-
fix arrays were first developed by Manber (Manber and Myers, 1993). Algo-
rithm 7.10 that constructs R during decoding is due to Sadakane and Imai
(1999). The case-insensitive suffix array search is due to Sadakane (1999).
Binary search on BWT text and BWT-BM are due to Bell et al. (2002).

The FM-index approach was proposed by Ferragina and Manzini (2000,
2005). The original version was difficult to implement on conventional ma-
chines, but a more practical implementation has been described by Ferragina
and Manzini (2001b) and evaluation can be found in Ferragina and Manzini
(2001a). An extensive analysis of FM-index and variations can be found in
Ferragina and Manzini (2005). Experiments to determine good bucket sizes
for the FM-index method are reported in Ferragina and Manzini (2001b), who
performed extensive experiments with the FM-index and came up with the
sizes of 16 kilobyte for superbuckets and 1 kilobyte for buckets. An extension
of the FM-index to arbitrary alphabets is reported by Ferragina et al. (2007).
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A modification to the FM-index method is given in Firth et al. (2005),
which avoids the multiple random disk access by reading all of the data (in-
cluding L) into memory. This is a little slower to start up, but saves time
during pattern matching. It also gives slightly better compression because L
is decompressed when read into memory, so coding does not need to restart at
each bucket. Obviously it can consume large amounts of memory, depending
on the size of L, and it pays off only if the number of pattern matches to be
made is in the thousands.

Approximate pattern matching for uncompressed texts is surveyed by Gus-
field (1997), including the k-difference global alignment problem. Another im-
provement over the dynamic programming approach presented in this chapter
was suggested by Ukkonen (1985b), who observed that in a diagonal of the
matrix the values are non-decreasing, which means that computation for a
particular diagonal can be stopped as soon as a value of k + 1 is obtained. It
has been proved by Chang and Lampe (1992) that this optimization improves
the expected performance of the algorithm to O(kn). Another approach was
also suggested by Ukkonen (1993), in which a finite state automaton is de-
fined that accepts all strings that differ from the pattern string by a distance
of at most k. The text is then applied to this automaton and substrings are
recognized when the automaton is in an accepting state. The diagonalwise
monotonicity property has been used to develop several algorithms (Stephen,
1994).

The method for searching for don’t-care characters when the number is not
a constant was proposed by Pinter (1985). For the case where both the pat-
tern and the text contain don’t-care characters, Fischer and Paterson (1974)
reduced the problem to the multiplication of an m-bit number by an n-bit
number. The multiplication can then be done using the Schönhage-Strassen
method (Schönhage and Strassen, 1971). The method for don’t-care matching
based on sorted head and tail arrays is an unpublished algorithm by Amar
Mukherjee. Other relevant references for pattern matching with don’t care
characters can be found in Wu and Manber (1992b); Baeza-Yates and Gonnet
(1992); Abrahamson (1987). The use of q-grams for exact and inexact pattern
matching is described in Adjeroh et al. (2002), Zhang et al. (2003) and Zhang
(2005).

The Canterbury corpus, which was used for evaluations in this chap-
ter, was described by Arnold and Bell (1997). The files are available from
http://corpus.canterbury.ac.nz. Most of the empirical results reported
in this section are from Firth et al. (2005). Firth (2002) reports extensive ex-
periments that evaluate a range of factors for BWT-based pattern matching
methods.

Recent papers on applications of BWT and related approaches to searching
can be found in the November 2007 Theoretical Computer Science special issue
on the BWT: Gupta et al. (2007), Mäkinen and Navarro (2007), and Golynski
(2007).
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Fenwick (2001b) notes that performance analysis of pattern matching al-
gorithms does not always reflect reality; for example, it is traditional to count
comparisons, but counting array references may be better, not to mention is-
sues with caching that mean that we can’t assume that memory accesses take
a constant time.
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Other applications of the Burrows-Wheeler
Transform

Traditionally the major application of the Burrows-Wheeler Transform has
been for data compression and efficient storage, and earlier chapters in this
book have provided a detailed consideration of the BWT from this viewpoint,
analyzing its performance for data compression. However, recent research on
the Burrows-Wheeler Transform has shown the versatility of the BWT, and
hence efforts are shifting from its traditional application in data compression
to other areas of study. In Chapter 7 we showed how the BWT provides an
effective mechanism for rapid pattern matching. In this chapter we expand
more on its many uses, focusing on new and emerging applications. Some of
the applications discussed in this chapter also relate to new data compression
applications; given that the original purpose of the Burrows-Wheeler Trans-
form was for text compression, it is no surprise that the method could be
used for compression of other types of data. The data compression applica-
tions discussed in this chapter exploit the specific nature of the data under
consideration in combination with relevant properties of the BWT to provide
effective compaction of the data. We discuss the applicability of the BWT to
the compression of specialized data sets, including compression of test pat-
terns used in automatic testing in chip manufacturing, image compression,
and compression of biological sequences.

Other applications described in this chapter are somewhat different from
data compression, but make use of some of the special characteristics of the
BWT, such as its clustering property. Examples here include its use in shape
analysis in computer vision, and in machine translation. We also discuss recent
reports of the application of the BWT in bioinformatics and computational
biology, full-text compressed indexes, prediction and entropy estimation, and
recent approaches in joint-source channel coding.

The major objective in this chapter is to show the myriad virtues of the
BWT, and hopefully motivate others to think of how the BWT could be used
to effectively address some important problems that at first glance may seem
to be unrelated to the transform.
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8.1 Compressed suffix trees and compressed suffix arrays

Given the space required during the construction of the suffix tree, and also
during the later stage of searching with the suffix tree, there has been in-
creasing interest in reducing the space requirement for this important data
structure. For instance, as discussed in Section 4.3, using Ukkonen’s algo-
rithm, even after a careful consideration, we could still need more than 28n
bytes of storage at the time of construction, and more than 20n bytes of stor-
age during searching, if we do not need the suffix links, where n is the length
of the sequence. Farach’s algorithm requires even more space at the time of
construction. Thus for applications such as whole genome sequence analysis
involving sequences with potentially billions of symbols (see discussions later
in this chapter), the required space could be way beyond the current capa-
bilities of standard computers. The same space problem, though to a smaller
extent, also applies to suffix arrays. Compression of the suffix tree and suf-
fix array data structures is one way to deal with the problem of expanding
demands on memory space.

Without compression, these data structures generally require space of
O(n log n) bits (since it can be assumed that any number in the range
1, 2, 3, . . . , n can be represented with at most log n bits), and can support
certain operations, such as counting the number of occurrences of a given
pattern of length m in O(m) time using the suffix tree, or O(m log n) time
using the suffix array, or O(m + log n) time using the suffix array with the
lcp-array at an additional cost of O(n log n) bits of space. The challenge in
compressing suffix trees and suffix arrays is to reduce the required space, for
instance from O(n log n) bits to say O(n log |Σ|) bits, or even O(n) bits, while
maintaining similar time complexities for performing corresponding opera-
tions on the compressed representations. In practice, compression could also
be used to reduce the space needed in practice to store the suffix tree or suffix
array (for instance, by reducing the constants in the complexity figures) with-
out necessarily reducing the theoretical space complexity. This is often easier
to achieve and could even have more benefits in practice.

In this section we focus mainly on how suffix trees and suffix arrays can
be represented in a compressed form, and how such compressed data struc-
tures can be constructed. We consider the use of compressed suffix trees and
compressed suffix arrays (in terms of the operations they should support) as
an application in full-text indexing and retrieval, which is treated in another
section.

Before continuing, we note that the material in this section could easily
be placed in Chapter 4. However, from one point of view, compressed suffix
arrays (CSA) and compressed suffix trees (CST) can be viewed as another
important application of the BWT. For instance, the FM-index (introduced
in Chapter 7) can be seen as an example of a compressed suffix array. Fur-
thermore, given that the major applications of compressed suffix arrays and
compressed suffix trees are mainly in (or related to) full-text indexing, it
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makes it more appropriate to cover them in this chapter on applications of
the BWT. The discussion on the use of BWT in full-text indexing then follows
naturally from that of compressed suffix arrays and trees. Though motivated
by the practical need of various applications, compressed suffix trees and suf-
fix arrays and full-text indexing represent an important new direction in both
theoretical research and empirical studies on the Burrows-Wheeler Transform.

8.1.1 Compressed suffix trees

One approach to reducing the space required for suffix trees is by exploiting
the repeating structures in the suffix tree. For instance, in a suffix tree, we can
observe repeated smaller subtrees within the suffix tree. Directed acyclic word
graphs (DAWGs) are variations of the suffix tree that exploit this observed
isomorphism between subtrees in a suffix tree to construct directed graphs,
rather than trees, which can be used to support the functionalities of a suffix
tree, such as pattern matching. Details on DAWG data structures can be
found in Smyth (2003) and Crochemore and Vérin (1997). Mäkinen (2003)
used a similar idea to propose the compact suffix array, which uses reduced
space compared with the usual suffix arrays. Here we consider more direct
approaches that treat the suffix tree as a tree, rather than a graph. Our
discussion on compressed suffix trees mainly follows the approach of suffix tree
representation using a sequence of parentheses (Munro et al., 1998, 2001).

Parenthesis representation for suffix trees. A rooted tree such as
a suffix tree can be represented as a nested string of balanced parentheses.
Each node in the tree is represented as a pair of open and closed parentheses,
“(. . .)”. Thus, for an n-node suffix tree, we need 2n parentheses. The procedure
performs an inorder traversal starting from the root node of the suffix tree,
as follows:

1. If the current node is a leaf, simply output the node’s label;
2. For internal nodes, whenever a node is first visited, write an open paren-

thesis, and visit the subtree rooted at the node;
3. When we finish traversing the subtree rooted at the node, write a closing

parenthesis.

We can assume that the suffix tree is constructed such that at each non-
leaf node, the edges emanating from the node are sorted in lexicographic order
based on their first symbols. The traversal at each node can also follow this
ordering. Thus, a listing of the leaf nodes in the order they are visited using
this preorder traversal will produce the suffix array of the original text. Fig-
ure 8.1 shows an example of the parenthesis representation using the sequence
T = mississippi. From the properties of a suffix tree (see Section 4.1.1), we
know that the suffix tree for an n-length sequence (with the end of sequence
symbol $) has at most n internal nodes, and n + 1 leaf nodes. Thus, with
the above parenthesis representation, we require at most 4n bits to store the
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topology of the suffix tree, and an additional n log n bits to store the index
for the leaf nodes, plus at most n log n bits to store the text itself. This is a
significant improvement over the 20n bytes required to store the suffix tree
without the suffix link.
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Fig. 8.1. Example parenthesis representation, using the suffix tree for T =
mississippi$: (a) suffix tree with internal nodes labeled; (b) parenthesis repre-
sentation — the first row indicates the order in which the nodes (both internal
nodes and leaf nodes) are visited

A key question then is how operations such as searching and pattern
matching can be performed on this compressed representation, and the com-
plexity of such operations. By convention, each node is represented by its cor-
responding left parenthesis. For the suffix tree of a binary sequence, Munro
et al. (2001) showed that using extra space of o(n) bits, basic operations on
a given node, such as finding the left child, the right child, the parent, or the
size of the subtree rooted at the node, can each be performed in constant
time. Two other popular operations on the parenthesis representation (more
generally, on binary sequences) are the rank and select operations defined as
follows:

• rank(k): returns the number of 1’s up to and including position k in the
binary sequence

• select(k): returns the position of the k-th 1 in the sequence

Again, these operations can be performed in constant time (Jacobson,
1989; Munro et al., 1998, 2001). Using an additional o(n) bits of storage,
Munro et al. (2001) then generalized these two basic operations to define two
more constant time operations, namely,
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• rankp(k): returns the number of occurrences of a binary string pattern p
of length m up to and including position k in the given binary sequence.
The occurrences could be overlapping.

• selectp(k): returns the position of the k-th occurrence of pattern p in the
binary sequence.

Based on these operations, they introduced other operations to aid navi-
gation of the compressed suffix tree, each of which can also be performed in
constant time. These include leafrank(k): returns the number of leaves to the
left (in the preorder number) of node k; leafsize(k): returns the number of
leaves in the subtree rooted at node k; leftmost(k): returns the leftmost leaf
in the subtree rooted at node k; rightmost(k): returns the rightmost leaf in
the subtree rooted at node k.

For a more general alphabet, each symbol, including the end of sequence
marker ($) is first converted into a binary representation. The suffix tree for
the resulting binary sequence is then encoded using the parenthesis repre-
sentation, and the operations described above can be used to navigate the
tree. We describe how pattern matching is performed on this structure in
Section 8.2 on full-text indexing.

Various improvements have been made on the above basic representation.
For instance, Munro et al. (2001) described how the suffix array can be used
to reduce the actual space required to store the suffix tree encoded using the
parenthesis representation. The basic idea is to recursively decompose the suf-
fix array. At each level, the current suffix array is divided into log2 n partitions,
and for each partition, the suffix tree is constructed for every suffix starting
at the first position in the partition. With three levels of decomposition, the
result is a structure with n⌈log n⌉+ O( n

log log n ) bits of storage, plus the space
for the original sequence. Details of this scheme and how it can be used to
search for patterns on the suffix tree can be found in Munro et al. (2001).
Sadakane (2002, 2007) introduces new operations on the basic structure, such
as for retrieving the depth of a node, the suffix links, and for answering lca

queries. Efficient methods for supporting rank and select operations on large
alphabets were studied by Grossi et al. (2003) and Golynski et al. (2006),
along with techniques to use them in full-text indexing. Kim and Park (2005)
introduced a method for suffix tree compression different from the parenthe-
sis representation, based on the notions of lcp-intervals, and an lcp-interval
tree, which can be constructed based on the lcp-array. Another method for
suffix array-based representation of compressed suffix trees is discussed below
in Section 8.1.2 on compressed suffix arrays.

One major problem with the above approaches for compressed suffix trees
is the very initial step. The methods all require that the suffix tree be con-
structed first, presumably using standard approaches such as Ukkonen’s al-
gorithm. Thus, they will still have to deal with the huge space needed for
suffix tree construction. Lam et al. (2002) provide ideas toward a direct con-
struction of compressed suffix arrays (and hence suffix trees), without ini-
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tial construction of the uncompressed versions. There is also the question of
whether the O(log n) bit factor for the space requirement can be reduced to,
say, O(log log n), or even to O(1) space. Optimal representations of balanced
parentheses are considered in Geary et al. (2006), where they present a method
that requires 2n+ o(n) bits of storage, and still supports the navigational op-
erations in constant time.

8.1.2 Compressed suffix arrays

While the space requirement for storing suffix arrays is generally smaller than
that of suffix trees, it may still be too high for certain applications that re-
quire huge volumes of data. Compressing the suffix array provides one method
to reduce the space requirement without an undue cost to the time of query
operations, as compared with performing the same operations on an uncom-
pressed suffix array. Grossi and Vitter (2000, 2005) introduced the problem
of compressing suffix arrays, and showed how compressed suffix trees (CSTs)
can be constructed via their compressed suffix arrays (CSAs). Their work
has generated a lot of attention, and different variations and improvements
have been proposed. Our discussion on compressed suffix arrays follows their
description.

Without compression, the suffix array is represented simply as a permuta-
tion of a list of n integers, in the range 1 to n. This thus requires n log n bits
of storage, since each integer can be stored in log n bits. The text sequence
itself can be stored using log |Σ| bits. This disparity provides a basis for po-
tential compression of a suffix array. The motivation for possible compression
is the observation that for a given n-length sequence, T , the elements in its
suffix array form a one-to-one correspondence with the symbols in T . Since
there are a maximum of |Σ|n different n-length sequences over a given alpha-
bet Σ, we should have at most |Σ|n suffix arrays. Assuming each of these
permutations is equally probable, we should require n log |Σ| (rather than
n log n) bits to represent each suffix array. A direct implication of this argu-
ment is that not all the potential n! permutations of n numbers in a given
suffix array represent valid suffix arrays. In fact, we can even do better: given
that the uniform distribution represents the worst compression, it could be
possible to reduce the size to a value that is proportional to the entropy of
the sequence, that is, to nH(T ), where H(T ) ≤ log |Σ| is the entropy of the
text, T . The above information-theoretic argument, however, only indicates
the existence of a possible succinct representation. The challenge is in how
such data structures can be constructed.

Grossi and Vitter (2005) addressed this problem by viewing the suffix
array as an abstract data type, with two basic operations, namely compress
and lookup. The two operations are defined as follows for a given text T and
its suffix array A:

• compress(T,A): compress A to obtain the compressed suffix array, CSA.
Retain T and the CSA. The suffix array A can be discarded.
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• lookup(k): Given the CSA, return A[k], the index position in the suffix
array, of the k-th lexicographically smallest suffix in T . That is, the index
position of the suffix TA[k] = T [A[k] . . . n].

For the uncompressed suffix array, the lookup operation can be performed
in constant time, requiring O(n log n) bits of storage. Thus, the problem of
compressed suffix arrays is to develop succinct representations for the suf-
fix array using O(n log |Σ|) + o(n) bits of storage, or even O(nH(T )) + o(n)
bits, while supporting standard query operations in time bounds compara-
ble to those obtained with the uncompressed suffix array. Constructing the
compressed suffix array is performed using a recursive divide and conquer
approach, similar in spirit to the recursive construction of suffix trees (see
Chapter 4). A given suffix array (which is a permutation of numbers) is di-
vided into smaller permutations, which are further divided. At each level,
certain information is stored to aid later reconstruction of the suffix array.

Suffix array decomposition. We assume that n, the number of entries
in the suffix array, is a power of 2. The decomposition is performed recursively
as follows. At level k = 0, let A0 = A, with n0 = n. At level k, k ≥ 0, we have
Ak, the suffix array at the k-level of length nk = n/2k. Thus, Ak will be a
permutation of numbers in the set {1, 2, . . . nk}. Essentially, the permutation is
what we obtain if we sort the suffixes of T whose position indexes in the suffix
array are multiples of 2k. Transforming Ak into its corresponding compressed
representation is then performed in four major steps:

1. Bit vector: Compute a bit vector Bk of length nk using Ak as follows:

Bk[i] =

{

1, : if Ak[i] is even;
0, : otherwise

2. Mapping function: Compute the CSA mapping function:

Ψk(i) =

{

j, : if Ak[i] is odd and Ak[j] = Ak[i] + 1;
i, : otherwise

Thus Ψk(i) = j implies that Bk[i] = 0 and Bk[j] = 1.
3. Rank operation: Count the number of 1’s for each prefix of Bk. This

can be performed using the function rankk(j), similar to the rank function
introduced earlier in this section. rankk(j) returns the number of 1’s in
Bk[1, 2, . . . j], the first j entries in Bk.

4. Computing Ak+1: Sequentially, pick out the even values in Ak[i], and
divide each by 2. The result is a new (reduced) suffix array Ak+1, a permu-
tation of the numbers in the set {1, 2, . . . , nk+1}, where nk+1 = n/2k+1 =
nk/2. Store Ak+1, the reduced suffix array. Discard Ak, the old suffix
array.

An example of the above decomposition for our running example T =
mississippi$, with suffix array A = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3] is shown
in Figure 8.2 for three levels of decomposition.
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Remarkably, this recursive decomposition preserves all the information in
the original suffix array. That is, Ak can be completely recovered using Ak+1

and the other auxiliary arrays. This is supported by an important lemma
proved in Grossi and Vitter (2005): Let the rankk function, Bk, Ψk,Ak+1, the
resulting vectors after the k-th level of decomposition be given. Then Ak, the
suffix array at the previous level of decomposition, can be reconstructed from
Ak+1, using the relation:

for 1 ≤ i ≤ nk

Ak[i] = 2.Ak+1[rankk(Ψk(i))] + (Bk[i]− 1) (8.1)

For example, using the decomposition in Figure 8.2, we can recover A1[1]
and A1[2] as follows:

A1[1] = 2.A2[rank1(Ψ1(1))] + (B1[1]− 1) = 2.A2[rank1(1)] + (1− 1) = 6

A1[2] = 2.A2[rank1(Ψ1(2))] + (B1[2]− 1) = 2.A2[rank1(2)] + (1− 1) = 4

We can also observe that for the positions with Bk[i] = 0, the Ψk(i) values
in any given σ-partition form an increasing subsequence. See for example, the
cases with σ = i, and σ = s. This is the key to compressing the decomposed

k = 0, n0 = 12:

ID 1 2 3 4 5 6 7 8 9 10 11 12
T = m i s s i s s i p p i $

A0 12 11 8 5 2 1 10 9 7 4 6 3
B0 1 0 1 0 1 0 1 0 0 1 1 0

rank0 1 1 2 2 3 3 4 4 4 5 6 6
Ψ0 1 1 3 11 5 5 7 7 3 10 11 10

k = 1, n1 = 6:

ID 1 2 3 4 5 6

A1 6 4 1 5 2 3
B1 1 1 0 0 1 0

rank1 1 2 2 2 3 3
Ψ1 1 2 5 1 5 2

k = 2, n2 = 3:

ID 1 2 3

A2 3 2 1
B2 0 1 0

rank2 0 1 1
Ψ2 1 2 2

Fig. 8.2. Recursive decomposition of the Ψ function, using the suffix array for
T = mississippi$
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suffix array. The result of the compress operation is a representation of the
information from all the k-levels of decomposition, with k = 0, 1, . . . , l for a
given choice of l. This representation forms the compressed suffix array of the
original suffix array.

At level k, 0 ≤ k < l, we store only the vectors Bk, Ψk and rankk. The
suffix array Ak is not stored. Also the arrays Ψk and rankk are not stored
directly, but in a compressed form, based on the observed nature of these
arrays. At the last level k = l, the suffix array Al is stored directly since it
is typically very small, and can be represented in O(n) bits. Thus, the other
vectors (Bl, Ψl and rankl ) are not needed at this level.

The operation lookup(i) to return the value at A[i] can then be performed
recursively, using Equation 8.1, for instance, using a recursively defined func-
tion:

Ak[i] =

{

Al[i], : if l = k;
2.Ak+1[rankk(Ψk(i))] + (Bk[i]− 1), : otherwise

That is, at the last level, k = l, it simply uses direct lookup in the array
Al[i]. For levels less than l, it then returns the value in Ak[i] using Equa-
tion 8.1. Grossi and Vitter (2005) suggested a choice of l = Θ(log log n).
However, a number of authors have suggested a much simpler form, using
only one level of decomposition (i.e. with just k = 0, l = 1). Our further
discussion on CSAs will assume this one-level decomposition, hence we can
drop the subscript on the Ψ function, and simply use Ψ in place of Ψ0.

Compressing the resulting vectors. Given the above decomposition,
the next question is how compression is achieved. Compression of the arrays
is based on key observations about the nature of these arrays. The major
concern is the mapping vector Ψk, since the arrays Bk and rankk can easily
be represented succinctly for constant time access (see for example, Jacobson
(1989)). Consider, say, Ψ0. An important characteristic of this mapping vector
is that for positions i, 1 ≤ i ≤ n with B0[i] = 0 and having the same first
symbol in their corresponding suffixes (that is, TA[i]), the corresponding values
in Ψ0 form an increasing subsequence.

Thus, for each σ ∈ Σ, we can form a σ-list, which contains the subsequence
in the σ-partition of Ψ0. Since each list is an increasing subsequence, we can
use simple compression schemes such as using gap encoding (Witten et al.,
1999) or Elias codes for the integers (see Sections 3.1, 5.5.2) on the difference
between adjacent numbers in each list. The resulting differences will typically
be much smaller than n, and hence this can achieve significant compression.
Grossi and Vitter (2005) described various ways to perform the compression
with tradeoffs between space and time complexities. Overall, for the simplest
of the schemes, it was shown that for a sequence of length n over a binary
alphabet, the CSA can be built using 1

2 log log n + 6n + O( n
log log n ) bits, and

O(n) processing time such that the lookup operation can be performed in
O(log log n) time. For a general alphabet, Σ, with |Σ| > 2, the CSA can be
constructed in O(n log|Σ| n) processing time and stored in (1+ 1

2 log log|Σ| n+
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5n + O( n
log log n )) bits, such that each lookup operation can be performed in

O(log log|Σ| n) time.
From suffix trees to suffix arrays and back. Originally suffix arrays

were constructed from a suffix tree, using a linear time traversal of the suffix
tree. More recent results have shown that the compressed suffix array can be
used for more compact representation of the suffix tree. The basic idea is as
follows: represent information about the tree topology using the parenthesis
approach; use the CSA (either Ψ or the L to F mapping function, which are
the BWT W and V arrays respectively) to deduce information about the suffix
links; use the lcp-array to deduce information about the edge labels and leaf
nodes; the text itself can now be compressed independently, or compressed via
the BWT L array. It could also be recovered from the compressed CSA, using
array C of BWT and Ψ , or LF mapping. Thus, given the new results on linear
time worst case direct suffix sorting without first building a suffix tree, and the
fact that this construction circumvents the huge storage requirement for the
suffix tree construction, it appears that one way to construct the compressed
suffix tree will be to first build the suffix array (requiring smaller memory
space), construct the compressed suffix array, then build the compressed suffix
tree based on the compressed suffix array. We have then gone a full cycle —
from suffix trees to suffix arrays and back!

Connection with the BWT. An interesting issue is the relationship
between the BWT and the Ψ function used in compressed suffix arrays and
compressed suffix trees. Consider a variation of the Ψ mapping function which
is given as follows (Grossi and Vitter, 2005):

Ψk(i) =

{

j : if Ak[i] 6= nk and Ak[j] = Ak[i] + 1;
1 : otherwise

(8.2)

Assume just one level of decomposition, Ψ0 = Ψ . With the above variation,
we can see that with i as the position in A of the suffix starting at position A[i]
in T , that is, the suffix TA[i] = T [A[i] . . . n]. Then the value returned by Ψ(i)
is simply the position in A of the next suffix in T , which is the suffix starting
at position A[i] + 1 in T , or equivalently, the suffix TA[i]+1 = T [A[i] + 1 . . . n].
Thus, Ψ can be viewed as the suffix link for positions in the suffix array, A.
We can also observe that, except for the case when Ψ(i) = 1, in general we
have Ψ(i) = Ã[A[i] + 1], where Ã is the inverse of A.

Figure 8.3 shows the values for Ψ , and the corresponding suffix array, using
the example string T = mississippi. For each given symbol partition, we
can see the increasing subsequence formed by the Ψ values.

The major connection between Ψ and the BWT is that the Ψ function in
Equation 8.2 is simply the inverse of the BWT transform vector, V , that maps
symbols in the BWT output L to their corresponding positions in F , the array
of first characters. This vector V is the LF (last-to-first) mapping function,
which is the basis of the FM-index. (The FM-index was discussed in some
detail in Section 7.2.4). Therefore the Ψ function corresponds to our array
W , which is defined as the inverse of V (see Section 2.6). This relationship
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becomes clearer when we compare Figure 8.3 with Figure 2.7 (page 28), in
Chapter 2. This important relationship therefore implies that we can derive
the Ψ function directly from the BWT output, L, by simply computing the
V array, and then computing W , its inverse, all in linear time.

Although the original motivation was different, Ferragina and Manzini
(2005) have shown that the FM-index based on the LF -mapping (the V array)
can indeed be viewed as a variant of the compressed suffix array, supporting
analogous compress and lookup operations, in a manner similar to Grossi and
Vitter’s CSA, which is based on the Ψ mapping function (the W array). While
the FM-index based CSA performs backward search (that is, the pattern is
matched in reverse (right to left) from the last to the first symbol), the Ψ -
based CSA supports forward search (that is, matching left to right), in a
manner similar to standard uncompressed suffix arrays. Ferragina and Manzini
(2005) showed that a variant of FM-index based CSA can support enumerative
queries in O(m + ηocc log1+ǫ n) time, for some fixed constant 0 < ǫ < 1,
using storage space of 5nHk(T ) + o(n) bits, where Hk(T ) is the k-th order
empirical entropy of T . Hon et al. (2003b) showed how the Ψ function could
be augmented to support backward search.

8.2 Compressed full-text indexing

In Chapter 7 we provided a detailed discussion of the problems of general
pattern matching and how the BWT can be used in such problems. In this
section the focus is on the use of the BWT and related data structures in
full-text indexing. The pattern matching methods discussed in Chapter 7 are
mainly geared toward applications where the text, the pattern, and the ac-
companying data structures required for pattern matching (if any) can all fit

Position Sorted Rotations Suffix F L Ψ LF -map
ID (As matrix) Array (= W ) (= V )

1 $mississippi 12 $ i 1 11

2 i$mississipp 11 i p 1 7
3 ippi$mississ 8 i s 8 9
4 issippi$miss 5 i s 11 10
5 ississippi$m 2 i m 12 6

6 mississippi$ 1 m $ 5 1

7 pi$mississip 10 p p 2 8
8 ppi$mississi 9 p i 7 3

9 sippi$missis 7 s s 3 11
10 sissippi$mis 4 s s 5 12
11 ssippi$missi 6 s i 9 4

12 ssissippi$mi 3 s i 10 5

Fig. 8.3. Relationship between Ψ and the BWT; the Ψ function is simply the BWT
transformation vector W , which is the inverse of the BWT vector, V
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in main memory, or where the text is changing so frequently that storing in-
dexes for later matching doesn’t make sense, since it may have to be rebuilt
many times. For some applications, however, for instance, in natural language
processing, or in whole-genome sequence analysis, the data may be relatively
static for a reasonable time, or could be too large to fit into memory, and
thus it may be beneficial to construct some indexes for searching on the data.
For these applications, constructing such indexes without compression could
actually exacerbate the problem of space — for instance, the suffix tree could
expand the required space 20-fold over that needed for the original text.

Traditionally text indexing is performed using the inverted index. This is
a list of important terms and keywords in the text. For each keyword there is
a corresponding list of the positions where it occurred in the text. For huge
multi-page documents or web pages, the positions could simply be the page
numbers or web page ID where the keyword occurred. In such systems, the
choice of keyword(s) is a critical issue, as it would affect space considerations,
indexing time, time for query support, and retrieval effectiveness. Compressed
inverted indexes have been studied as a way to further reduce the space re-
quirement (Ziviani et al., 2000; Zobel and Moffat, 2006). Witten et al. (1999)
provide a detailed study on issues in text indexing using inverted files, for
both compressed and uncompressed formats. While this may be appropriate
for some natural languages where there are clear word boundaries, text index-
ing using inverted indexes may not be applicable in other applications such as
genomic sequence analysis, where there are no clear-cut boundaries between
tokens. The subjectivity of determining keywords is also another issue.

Rather than indexing based on a selected subset of the keywords in the
text, full-text indexing aims at indexing every substring of the text. A basic
problem with this approach is the amount of space that is required, and the
solution is compressed full-text indexing, whereby the text is indexed while it
is being compressed. A variation is the concept of self-indexing, whereby the
compressed index not only supports search and retrieval, but can also be used
to recover the original text without error. This means that the self-index can
in fact replace the text. Depending on the nature of the input text, the size of
the compressed index (even for some self-indexes) can be significantly smaller
than the original text.

8.2.1 Full-text indexing using CSTs and CSAs

As pointed out by Grossi and Vitter (2005), a full-text indexing system is
expected to be able to support three basic types of queries, namely, existential
query: returns a binary value (true or false) indicating whether a pattern, P
occurs in the text, T ; counting query: returns ηocc, (0 ≤ ηocc ≤ n), the number
of occurrences of P in T ; and enumerative query: returns ηocc numbers, each
indicating the starting position in T , of an occurrence of P .

The suffix tree and suffix array are two data structures that are used in
full-text indexing. But these are not compressed, and usually take a signifi-
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cant amount of extra space, beyond that of the original text. A recent trend
has been to use the compressed suffix tree and/or compressed suffix array
in full-text indexing. Sadakane (2007) listed different functionalities that are
needed for the compressed suffix tree to support the different types of query.
In addition to the operations on compressed suffix trees discussed in Section
8.1, the functionalities include child(u, s): returns node v that is a child of
u and the edge (u, v) that starts with s as the first symbol; edge(u, k): re-
turns the k-th symbol of the edge label of an edge pointing to u; depth(u):
returns the string depth of node u — simply |L(u)|, the length of its path
label; lca(u, v): returns lca(u, v), the lowest common ancestor of nodes u and
v; sl(u): returns the node v pointed to by the suffix link from u.

8.2.2 Searching on compressed suffix trees

Searching and retrieval of a pattern using a compressed suffix tree can be
performed by using the navigational operations on the suffix tree. Consider the
example in Figure 8.1 for the sequence T = mississippi. Let P = iss be the
search pattern. Given that the edges emanating from each node are sorted by
their first characters, searching for a pattern in the parenthesis representation
can be performed in a manner similar to the method described for exact
pattern matching using the BWT in Section 7.2. Searching for a pattern
starts at the root node, which corresponds to the first open parenthesis. At
each internal node we first determine the leftmost and rightmost leaf nodes
in the subtree rooted at the node. These are done in constant time using
the leftmost(k) and rightmost(k) operations, respectively. Start comparing
the text starting at these positions until there is a mismatch. This can be
done using binary search on the leaf nodes in the range of the leftmost and
rightmost leaves. For the example, at step 1, we have P [1] = i. Recall that
the text T is stored as part of the suffix tree. The first step is to perform a
binary search between the leftmost and rightmost leaf nodes emanating from
the root (that is, nodes 12 and 3 respectively). This will point to the leaf
node 10. Since P [1] = i < T [10] = p, another binary search is performed
(between leaf nodes 12 and 1). Finally, binary search reports leaf node 2,
where we determine that P[1] matches T[2]. Matching is then continued on
the i-edge from the root, which leads to the internal node labeled 1©. The
above procedure is repeated at this node, finding the leftmost and rightmost
leaf nodes rooted at this internal node 1© (that is, leaf nodes 2 and 11). This
will show that P [2] matches T [3]. We continue in this vein until a mismatch
is found or the pattern is exhausted.

If a mismatch occurs before we reach the end of the pattern (that is, at
some step i ≤ m ), then the pattern P does not occur in T . Otherwise P
is exhausted, and thus must occur in T . If the pattern matching ended at
an internal node, then the number of occurrences ηocc is given by the size
of the subtree rooted at that node. If the pattern matching ended between
two nodes (on an edge), ηocc will be given by the size of the subtree rooted
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at the immediate node moving down the edge. The size of the subtree can
be returned in constant time using the leafsize(k) operation. Reporting the
actual positions of occurrences will require O(ηocc) extra time, by listing all
the leaves rooted under the subtree. If the pattern matching ended at a leaf
node, then there is only one occurrence, and the position of occurrence in T
is given simply by the leaf identifier. The overall time will be in O(m log |Σ|)
to determine if p occurs in T , and to count all the occurrences (if any), and
in O(m log |Σ| + ηocc) to find and report all the ηocc occurrences of P in T .
Using the lcp-array and an additional O(n log |Σ|) bits of storage, the time
can be reduced to O(m + log |Σ|) to answer existential and counting queries,
and O(m + log |Σ|+ ηocc) to answer enumerative queries.

8.2.3 Searching on compressed suffix arrays.

For a full-text index based on the compressed suffix array, searching and
text retrieval can be performed in a manner similar to binary search using
standard non-compressed suffix arrays, or using BWT-based arrays as de-
scribed in Section 7.2. The matching requires comparing a prefix of some
suffix in T , say suffix TA[j], with the pattern, P . The symbols making up
such a prefix can be recovered recursively, using the Ψ mapping function:
j, Ψ [j], Ψ2[j], Ψ3[j], . . ., where, for example, Ψ3[j] = Ψ [Ψ [Ψ [j]]]. These will thus
point to the sequence of symbols T [A[j]], T [A[j]+1], T [A[j]+2], . . .. For each
i = j, Ψ [j], Ψ2[j], Ψ3[j], . . . we can use the lookup(i) function defined for the
CSA to recover the corresponding symbol. With some extra space of n+ o(n)
bits, each lookup() operation can be supported in constant time. The overall
time for existential and counting queries will thus be in O(m log n), while enu-
merative queries will be in O(m log n+ηocc) time. Again, this is similar to the
time bound on pattern matching on standard suffix arrays, or for BWT-based
exact pattern matching. With extra space of O(n log |Σ|) bits for storing the
compressed lcp-table, the above complexities can be reduced to O(m+log n)
and O(m + log n + ηocc) for counting and existential queries, respectively.

8.3 Bioinformatics and computational biology

Given the availability of complete genomes of various organisms, a major
challenge is how to make some sense out of the growing mass of data. Com-
putational methods have been brought to bear on this problem, and different
algorithms have been proposed for various problems. One major character-
istic of problems in this area is the huge size of data often involved. The
human genome, for instance, contains about 3 billion symbols, and there are
organisms with genomes that are orders of magnitude larger. A suffix array
would require 12 gigabytes of storage for the human genome, while the suffix
tree may take as much as 5 times this amount. This will dwarf the storage
capabilities in terms of the main memory available in present-day standard
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computers. Developing efficient search algorithms for patterns of various forms
in the genomic sequence thus represents an important problem. It is easy to
see that given the problem of data sizes, the suffix array or the suffix tree may
not be used directly for this problem, and hence, another approach is needed
to perform compression.

Another important characteristic of genomic sequences is the relatively
large amount of repetition often observed in such data, which can cause poor
behavior in some compression and searching algorithms. Identification, group-
ing and effective exploitation of the various types of repetition found in biolog-
ical sequences is another challenge. Currently, most applications of the BWT
in bioinformatics and computational biology mainly exploit the context clus-
tering ability of the BWT, which leads to logarithmic time for most search
operations. Given the background material on BWT-based pattern match-
ing (Chapter 7), and BWT-based compressed full-text indexing (Sections 8.1
and 8.2), the discussion in this section will be brief. The objective will be
mainly to relate the biological problem being solved to one or more prob-
lems with a known effective solution based on the BWT, for instance pattern
matching or full-text indexing.

8.3.1 DNA sequence compression

Given the large data sizes involved in biological sequences, one way to deal
with the increasing data sizes is by compressing the sequence. Yet most com-
pression algorithms (such as gzip or traditional BWT) will expand the size of
a DNA sequence rather than compress it. The major problem is that these al-
gorithms deal with the data as merely a sequence of symbols, without exploit-
ing the special nature of such sequences. In Adjeroh et al. (2002), two off-line
dictionary-oriented methods were proposed for DNA sequence compression,
based on the BWT. The basic idea was to exploit the different repetition struc-
tures observed in DNA sequences in order to compress them. Thus, repetition
analysis was performed on the sequence based on the relationship between
the BWT and suffix trees and suffix arrays. They proposed two vocabulary
parsing schemes which use a repetition code for repeat types, to parse the
input sequence. Here, vocabulary refers to the ensemble of repeat structures
without reference to their specific locations in the sequence. In one scheme,
each repeated substring is removed from the input sequence, and moved to
an external dictionary. The positions in the sequence where each repetition
occurred, along with the corresponding repetition code, is recorded in the
dictionary. Thus there is no reference or pointer information in the original
sequence.

The suggested repetition analysis could be performed at different stages
in the BWT-compression pipeline, for instance, before the BWT, between the
BWT and LGT, or a combination of these. The compression performance
will depend on factors such as the size of the pointers and the way they are
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coded; the type of referencing used (absolute or relative); the type of dic-
tionary used (on-line or off-line); the size of the dictionary (the number of
distinct repetition structures); the type of referencing used in the dictionary
(if any), especially for offline dictionaries; and the encoding method adopted
for the dictionary and the remaining parsed sequence. Results in the paper
showed that the introduction of repetition analysis and parsing in the BWT
compression pipeline generally improves the compression result. In essence,
the analysis and parsing stage further exposed the hidden regularities in the
DNA sequence (such as reverse complements), which typically will not be
discovered by traditional compression algorithms such as the bzip2 or gzip.
This was the case whether the repetition analysis was done before or after
the BWT. However, it was also observed that repetition analysis and parsing
before the BWT generally produced a better result than after. One reason for
this is that the replacement of various types of repetition typically disrupts
the original nature of the BWT output, and hence could make the results less
suitable for MTF transformation. Thus, an analysis of the nature of the result-
ing sequence after the replacement of repeats will be important in matching
the subsequent stages of the BWT compression pipeline to the parse results,
and hence will be a key to further compression.

While the overall result on DNA sequences was better than those obtained
using general compression schemes, the performance could still be improved,
for instance, by considering the more recent context-partitioning view of the
Burrows-Wheeler Transform. In a related work on biological sequence com-
pression, Adjeroh and Nan (2006) proposed a method for compressing protein
sequences based on long-range correlations in the sequence. In this work, the
BWT was not used directly for compression; rather, its clustering property was
used as the basis for identifying long range correlations in protein sequences,
which were then exploited for improved compression of the sequences.

8.3.2 Analysis of repetition structures

Repetition structures represent an important characteristic of genomic se-
quences. Long runs of tandem repeats and of randomly interspersed repeats
are prominent features of DNA sequences. The family of Alu repeats (usually
about 300 bases in length) is typical of short interspersed repeat sequences,
referred to as SINEs — short interspersed nuclear elements. These have been
estimated to make up about 9% of the human genome, thus out-numbering
the proportion of protein coding regions (Herzel et al., 1994). There are also
the long interspersed repeat sequences (LINEs — long interspersed nuclear
elements) which are usually more than 6000 bases in length. In the human
genome, the L1 family is the most common LINEs, with about 60,000 to
100,000 occurrences. There are also short repeats (sometimes called “random
repeats”), attributed to the fact that typical sequences and genomes are orders
of magnitude larger than the alphabet size (4 in this case).
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Although the precise biological function of these repetition structures is
still a topic of intensive debate, it is well known that the redundancy due to
the repetition structures provides some form of stability for the genome. Tan-
dem repeats in particular play a major role in various regulation mechanisms
in the genome, such as in protein binding (Richards et al., 1993). Repeti-
tion structures have been implicated in various diseases and genetic disorders.
For instance, the triplet repeats (CTG)n/(CAG)n have been associated with
Huntington’s disease, while the hairpins formed in (CGG)n/(CCG)n repeats
have been linked to the Fragile-X mental retardation syndrome (Bat et al.,
1997). Sinden et al. (2002) identified fourteen such genetic diseases that are
linked with triplet repeats. An important observation for computational anal-
ysis of such repetition structures is that, in every single case listed, the sus-
ceptibility to (or incidence of) the disease critically depends on the number
of copies (that is, the copy exponents in the repeat), and how many times the
triple repeat occurs with a given exponent.

Obviously, given the strong relationship between the BWT and data struc-
tures such as suffix trees and suffix arrays, it can be expected that the BWT
can be used in the identification and analysis of repetitions. Again, finding
repeats can be viewed as a variant of the pattern matching problem. Identifi-
cation of interspersed repeats, for instance, is simply the same as locating all
the occurrences of a given pattern. The difficult problems in repetition arise
in dealing with tandem repeats, in its various forms. This can be performed as
a pattern matching (or search retrieval) problem, with a later stage of post-
processing. Abouelhoda et al. (2005) provide a detailed treatment on how the
suffix array, enhanced with the lcp-array, can be combined with the BWT
for various applications, including repetition finding. They gave specific algo-
rithms for locating maximal unique matches (MUMs), supermaximal repeats,
and maximal tandem repeats. Adjeroh and Feng (2004) used the BWT as a
basis for analyzing tandem repeat families in DNA sequences.

8.3.3 Whole-genome comparisons

Despite the significant space reduction provided by compressed suffix arrays
and compressed suffix trees, their use in applications such as bioinformatics
and computational biology is still hampered by the space needed for their
initial construction. The problem is due to the typically large amounts of
data often involved in these applications. Thus, there is an interest in space-
efficient methods that are practical and can support data-intensive problems
in biology. Lippert (2005); Lippert et al. (2005) adapted the space-efficient
construction of CSAs originally proposed in Lam et al. (2002) for the specific
purpose of DNA sequences, suitable for genome-scale comparison of mam-
malian genomes. First, the DNA sequence was converted into a binary rep-
resentation, using a unary encoding of each symbol in the DNA alphabet.
The motivation for the unary encoding (rather than simply using 2 bits per
symbol) is that with unary codes, the boundaries between symbols are easily
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identified (for instance, by a 0), and that the encoding maintains the lexi-
cographic ordering between the symbols. The BWT is then applied on this
binary sequence, based on which the CSA is constructed. Their implementa-
tion resulted in a reduced space requirement, from about 10 bits per symbol
during CSA construction to about 5 bits, and from about 5 bits per symbol
for storage to about 2.5 bits per symbol.

Using the above, pattern matching and searching on the genome sequence
can then be performed on the CSA of this binary representation using an
equivalent encoding of the patterns, using search methods such as those de-
scribed in Section 8.2. Thus, Lippert (2005); Lippert et al. (2005) performed
whole-genome comparisons using human and mouse genomes by finding all
the unique q-mers (that is q-grams) that are common to both genomes. More
specifically, they used exact matching 20-mers between the two genomes (with
size of 2.84GB and 2.74GB respectively) and reported a total time of 14 hours
22 minutes on a Macintosh G5 with 1.5GHz and 1.8GB of RAM. They showed
that their result was better than those obtained using other data structures
used in comparative genomics.

8.3.4 Genome annotation

Another issue in the analysis of genomic sequences is determining changes in
the copy number of certain important repeating elements over time, perhaps
in response to a drug or environmental changes. A special case of this problem
is in detecting changes in the gene copy number between a normal genome
and a mutant genome (Lucito et al., 2003). For such analysis, substrings in the
genome sequence can be viewed as a word, and the major problem becomes
that of performing a word count over the genome. When the word length is
small (for instance ≤ 15), or we have only one or two words, the problem
is easy and could be solved using direct methods. However, with increasing
word lengths, or an increasing number of words, improved data structures
and algorithms are needed. Again, given the problem of data sizes, the suffix
array or the suffix tree can not be used directly for this problem. Using the
BWT and related data structures, Healy et al. (2003) developed a method for
genome-wide annotation using exact word counts. Thus, the problem is turned
into that of simply reporting counting queries for each word or pattern, for
instance using either BWT-based compressed-domain pattern matching meth-
ods discussed in Chapter 7, or using BWT-based full-text indexing methods,
described earlier in this chapter.

At each position along the genome, annotation is performed in terms of
the number of occurrences of the q-mer at this position in both the forward
and the reverse directions, for different values of q. The result is a visual-
ization of the annotation “terrain” along the entire genome, which provides
a quick view of the structure of repeats within a localized region along the
genome. Healy et al. (2003) also describe how this terrain could be used in
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addressing other challenging problems in computational biology, such as iden-
tifying chromosome-specific repeats, in probe design for oligonucleotides, and
in monitoring genome assemblage.

8.3.5 Distance measure between sequences and phylogeny

In Section 6.3 we described the extended BWT proposed by Mantaci et al.
(2005, 2007). In the same set of papers they showed how the extended BWT
can be used to define a distance measure between sequences. Such a distance
measure can thus be used to cluster species based on their similarity with re-
spect to this measure. This is based on the nature of the resulting output from
the extended BWT. The basic premise is that, given two input sequences, say
S and T , the number of segments shared by S and T could be used as a mea-
sure of their similarity over evolution. Given the extended BWT, the extent to
which the two sequences share some segments can be captured by considering
the extent of mixing between symbols from the two sequences in the output
array after the transformation. Thus, even when large but similar segments of
two genomes are shuffled within each genome, the distance measure can still
capture their potential relatedness. This is important in other applications
such as in the analysis of genome rearrangements in computational biology.

Using the above, a distance measure is defined based on the extent of mix-
ing between conjugates from the two sequences in the final transform output.
The distance measure is therefore simply given by the number of alternations
between symbols from each sequence in the output of the extended BWT.
Using a marking scheme on the symbols in the L array, the transform output,
it is easy to compute the distance between two sequences. Each conjugate
is assigned a color or mark, based on its originating sequence. Let γi be the
marker for sequence Si. Suppose we use γ = {γ1, γ2, γ3, . . .} = {A,B,C, . . .}.
Then, the marker sequence between two strings u and v can be represented as
Aγ(u, v) = An1Bn2An3 . . . Bnk , where the ni’s are the exponents. Then, the
distance measure between u and v is defined as:

δ(u, v) =
k
∑

i=1
ni6=0

(ni − 1) =
k
∑

i=1
ni6=0

ni − k.

Figure 8.4 shows an example of this marking scheme using the same mul-
tiset of sequences

T = {S1, S2, S3, S4} = {ab, aba, cbac, bac}
used in Section 6.3. Using the example, we obtain the sequence of markers
Aγ(S1, S2, S3, S4) = BBADCBADCDCC = B2ADCBADCDC2. For pair-
wise distances, we just use only the markers from the pair of interest. Thus, we

γ(S1, S2)= B2ABA,Aγ(S2, S3)=B2CBCC2, Aγ(S2, S4) =
B2DBDD,Aγ(S3, S4) = DCDCDC2

1 2

have, for example:A
, with the respective distances: δ(S ,S ) =
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1, δ(S2, S3) = 3, δ(S2, S4) = 2, δ(S3, S4) = 1. The distances show S3 should be
closer to S4, than to S2.

This scheme can easily be extended to computing pair-wise distances
between multiple sequences in the input multiset. Based on this measure,
Mantaci et al. (2007) constructed phylogenic trees between different species
based on their mitochondria DNA. It’s easy to see that this distance measure
is not a metric, since it does not obey the triangular inequality. Also, it could
be significantly affected by a simple difference in sequence lengths. In a sense,
the distance measure could be related to general methods in alignment-free
sequence comparison (Vinga and Almeida, 2003), and hence could help to re-
duce the time required in multiple sequence alignments. BWT-based methods
for DNA sequence alignment have been studied in Lam et al. (2007).

Conjugates, A Index As F L Aγ
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Fig. 8.4. Measuring distance between sequences using the extended BWT. Results
are for the multiset of strings, T = {ab, aba, cbac, bac}. The last column is the
marker sequence needed to compute the distance

8.4 Test data compression

Test data compression is an important problem in the design and develop-
ment of high performance chips, such as application-specific integrated cir-
cuits (ASICs) and core-based system-on-chips (SoCs). For instance, SoC de-
signs are usually made up of various reusable intellectual property (IP) cores
(potentially from different manufacturers) which are integrated on a single
die to provide a wide range of functionality. With the growing complexity of
the cores, each core must be rigorously tested using a set of test patterns.
These test vectors could be random patterns or deterministic patterns, de-
signed to exercise the cores for specific faults. For effective testing of the IP
cores, however, a huge volume of test data is required, and this poses critical
problems.
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One approach is to use built-in-self-test (BIST) which allows the use of
pre-computed test sequences or pseudo-random test patterns that will be
generated by hardware included as part of the chip. The major motivation
is to reduce both the complexity of testing, and avoid reliance on expensive
external automatic testing equipment. Not all IP cores, however, have the
capability for BIST. Furthermore, given hardware limitations, BIST may not
be able to provide enough test patterns for complete testing of the device.

An alternative approach is to use an external automatic test equipment
(ATE) to perform the required testing of the chip. Typically with the ATE,
pre-computed test sets are stored on an external workstation. During testing,
test patterns are then downloaded from the workstation to an interface work-
station attached to the ATE, as needed for the particular test required. The
test data is then later transferred from the ATE interface workstation to the
main pattern memory using a dedicated high-speed bus.

The testing time under such scenarios will depend critically on the volume
of test data required to be downloaded, the rate at which the data is being
downloaded, and the rate of data transfer from the ATE interface workstation
to the main pattern memory. Data compression is useful in such a situation
as it reduces the overall amount of data to be downloaded, and consequently
the download time, and therefore the overall testing time and idle time of
the expensive ATE. Compression in such ATE environments requires that
the compression be lossless, and that decompression be as simple and as fast
as possible. We can compress the data off-line (at the workstation), but de-
compression must be on-the-fly, and simple enough to be implemented in
hardware.

Various methods have thus been proposed for compression of test data
(Chandra and Chakrabarty, 2001; Yamaguchi et al., 2002; Karimi et al., 2002).
The asymmetry between the decoding and encoding time of the BWT makes
it particularly suited for compression under the ATE environment, where very
fast and simple decompression is needed, but encoding is only done once, and
can be done on a fast system. Given this asymmetry and the specific nature of
test data sequences, Yamaguchi et al. (2002) presented a BWT-based method
for compressing test data sequences.

8.4.1 Nature of test data

A test pattern is generally a collection of binary sequences. During testing,
each pin of the device under test is subjected to a sequence of test patterns.
For compression, an important characteristic of test data sets is that for a
given pin, the sequence of test patterns subjected to the pin are usually highly
correlated; but the patterns applied to different pins are relatively weakly cor-
related. Another observation (Yamaguchi et al., 2002) is that a block of test
sequences is usually directed to test a few modules of the IC at a time, while
the other modules are kept in a relatively constant state. Thus, for the module,
only a subset of the input pins will be subjected to varying test patterns, while
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the test patterns to the other pins will be held relatively constant. Therefore,
for given input lines (to a given pin), there will be stretches of relative in-
activity, where the test patterns will have relatively constant values. A final
observation made by Yamaguchi et al. (2002) is that, for large industrial test
suites, the test sequences to an active input pin usually contain repeating test
patterns (or cycles). Based on the above, each pin in the chip can be charac-
terized by the activity on its test sequence, defined simply as the number of
transitions on the test sequence applied to the pin.

8.4.2 BWT-based test data compression

Given the correlated nature of the test patterns to the same input pin, and
the observed cycles in the sequences, the clustering property of the BWT can
be exploited to bring such similar test patterns together in the BWT output.
Thus, after applying the BWT to sequences, run-length encoding could be-
come an effective means to exploit the exposed redundancies. Further, given
that the decoding stage of the BWT is straightforward, with a relatively more
time consuming encoding stage (given the suffix sorting process), the BWT
provides a good tool for the compression of test patterns for use in automatic
test equipment. The decoding can also be implemented in hardware for more
speed, even if the encoding stage may be more difficult to be implemented in
hardware (see Section 7.5 for hardware considerations in the Burrows-Wheeler
Transform).

Let D = D[1 . . . n, 1 . . . m] be an n ×m matrix representing a given test
dataset. Typically, m corresponds to the number of pins in the device under
test. Thus, each column in D represents the sequence of test patterns applied
to a particular pin. The number of rows, n, indicates the extent of the test.
Given that n could be very large, to compress the test data using the BWT,
Yamaguchi et al. (2002) divided D into smaller submatrices, Di, each with m
columns: D = [D1, D2, . . . , Dk]. The BWT is then applied independently to
each column of Di, rather than the submatrix Di, and run-length encoding
is then used on the output sequence. The problem is that even though the
BWT will cluster symbols with similar contexts in the BWT output, it does
not guarantee that the resulting output will have less activity than the original
input sequence. Thus, before applying RLE, the BWT output is checked for
its level of activity. More specifically, let α(S) be the activity computed for
sequence S, that is, the number of transitions in S. Let dk be the k-th column
of the submatrix Di, and let L∗

k be the corresponding BWT output for dk.
Given the input Di, the output submatrix Ei = [e1e2 . . . em] that is passed to
the RLE stage is defined as follows:

ek =

{

L∗
k, : if α(L∗

k) < α(dk) and α(L∗
k) < τ

dk : otherwise

where τ is a threshold.
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Thus, the matrix Ei includes the data from the BWT transformed sequence
only if the activity in the sequence is below a threshold, and not worse than
the activity in the original sequence. Run-length encoding is then applied only
to columns in Ei with activity less than the same threshold. This guarantees
that the RLE always does better on Ei compared with Di, apart from the
minor issue of having to encode whether or not the BWT coding has been
applied to each dk. Avoiding the use of the BWT on high activity sequences
also saves decompression time, which is a critical parameter in compression
for ATEs.

Applying the BWT to the individual columns rather than to the entire
data set exploits the observed characteristics of test sequences applied to the
same pin. It also implies less time to compress the entire data, since the time-
consuming sorting stage will now be applied only to smaller-sized blocks.
This is akin to the blocking used in the earlier days of the BWT to make
the transform practical. Although the partitioning is not strictly necessary
for the BWT to work in this scenario, applying the BWT to each column
of a smaller partition makes it possible to use parallel hardware for faster
processing, especially at the decoder. Furthermore, for some activity values
on a given column of the Di’s, we do not gain any compression improvement
by applying the BWT (for instance, when the activity is 0). Thus we can save
some time in both decoding and encoding by avoiding the use of the BWT
in such cases. Results in Yamaguchi et al. (2002) showed that the BWT-
based method performed better than six other popular methods of test data
compression on standard test data sets, including those for a disk controller,
RISC microcontroller, and CD-ROM controller.

8.5 Image compression, computer vision and machine
translation

In this section we look at some of the more creative applications that the
Burrows-Wheeler Transform has been used for. The BWT was designed for
lossless compression, but it can be useful for compressing images, even though
they normally require a lossy approach. The BWT has also found applications
in computer vision, where matching shapes can be formulated as a pattern
matching problem. Finally, we will look at applications in machine translation,
where it can be used to recognize language patterns.

8.5.1 Image compression

Image compression methods are generally classified as lossless or lossy. Loss-
less methods enable the original image to be recovered exactly, and are impor-
tant for general purpose situations, particularly medical and legal applications
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where small changes in the image can have significant consequences. In con-
trast, lossy image compression allows some deterioration in the original im-
age. Usually the level of deterioration is near-imperceptible, yet considerable
compression improvement can be achieved because the system is not storing
unnecessary detail. Many lossy image compression methods include a lossless
compression scheme as a sub-component. For example, an image compression
system might transform the image to a frequency domain, and then encode
only the lower frequency components using a lossless compression algorithm.
Thus techniques for lossless compression can be of relevance to lossy systems,
such as image and video compression systems.

Figure 8.5 shows a general model for image compression. The data trans-
formation stage transforms the input data into some form that will expose
the redundancies or repetitions in the data. This stage can also be used to
reduce other forms of redundancy in an image. For instance, pixel prediction
is often used as an initial transformation stage, since neighboring pixels in an
image are likely to have similar pixel values unless there is an edge boundary
between them. The encoding stage (also called the coding stage) codes the
data to remove the exposed redundancies. The quantization stage is used to
reduce some other forms of redundancy in the image (for instance, detail that
is beyond the limitations of the human eye), at the expense of accuracy in the
data representation.

Transformation Quantization

Quantization
Table

Encoding

Inverse
Transformation

De-Quantization Decoding

0 0 0 01 1 1 1

Compressed
bit-stream

Input Image
Compression Stage

Decompression Stage
Reconstructed

Image

Fig. 8.5. General model for image compression

Decompression involves doing the reverse operations: decoding, inverse
quantization and inverse transformation. The operations before and after the
quantization stage are generally reversible and hence do not introduce any
loss or artifacts in the compression. Quantization, however, is not reversible
and thus introduces some errors in the compression process. In effect, from the
viewpoint of compression models, the major difference between lossless and
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lossy image compression is the quantization stage: lossless image compression
does not involve any quantization. The quantization stage also accounts for
the huge compression ratios often achievable in lossy image compression.

The BWT in lossless image compression. As might be expected,
given its performance in text compression, there have been various attempts
to use the BWT in lossless compression of images and other digital signals such
as video, audio, and electrocardiogram signals. In general, however, the BWT
(especially with the MTF as the second stage) does not produce competitive
results for natural images. This may be related to the difficulty in defining
contexts in images in a way that is similar to contexts as encountered in
natural languages and other text documents.

Since nearby samples in most digital signals are similar (for example,
neighboring pixels at a given position typically have similar pixel values),
an initial step in their compression is often a prediction stage, whereby the
current sample is predicted based on its neighboring samples that have already
been encoded. The difference between the actual value and predicted value is
the prediction error. For natural images, the sequence of prediction errors has
more well-defined characteristics, and hence is generally more compressible
than the original sequence of pixels. The final step is the entropy encoding
of the prediction errors, using schemes such as arithmetic coding or Huffman
codes.

Motivated by the context-sorting method of the BWT, Ciavarella and Mof-
fat (2004) proposed a permutation method that re-orders the prediction errors
based on the nature of their conditioning contexts. In a sense, this is similar to
the BWT that reorders the symbols in text based on their forward contexts.
Thus, after the reordering, nearby prediction error values in the reordered list
are expected to be similar, and should have similar contexts. Symbol ranking
schemes such as the MTF that exploit the local clustering of similar contexts
can then be used for effective compression of the re-ordered list. On a test
set of 12 standard 8-bit images, the approach resulted in an average compres-
sion rate of 4.59 bits per pixel (bpp) using the MTF followed by an adaptive
arithmetic coder, and 4.41 bpp without the MTF. Using a special scanning
order with pixel reordering, as opposed to prediction error reordering (that is,
without prediction), they achieved 4.52 bpp with bzip2. Without reordering,
bzip2 produced 4.62 bpp. These results can be compared with the results
of 4.63 bpp and 4.42bpp for LOCO-I (the JPEG-LS standard) and CALIC
respectively, which are among the best performing lossless compression algo-
rithms with comparable space and time complexity.

The performance of the BWT and its variants such as a low-order sort
transform, or Arnavut’s linear order transform, has been evaluated on electro-
cardiogram (EEG) signals by Arnavut (2007b). Using the MTF as the second
stage, he showed that block sorting provides an effective way to compress such
signals, after the initial stage of sample prediction. Here, sample prediction
was performed using a simple auto-regressive model. In Arnavut (2007a), a
similar study was conducted using the BWT, but with inversion ranks, rather
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than MTF as the second stage. The results showed that the BWT-based
methods are competitive, if not better than, the state-of-the-art compression
schemes specially designed for EEG signals. A similar experiment on using the
BWT for compression of volume data was reported in Komma et al. (2007),
where it was found that bzip2 produced the best result when compared with
other general-purpose compression schemes. BWT-based methods for lossless
compression of DNA microarray images were reported in Lonardi and Luo
(2004). The BWT produced the best result for general purpose compression
schemes. Although not as good, the results can be compared with those for
special purpose DNA microarray compression algorithms (see Adjeroh et al.
(2006) for example).

The BWT in lossy image compression. Lossy image and video com-
pression schemes such as jpeg1 and mpeg2 typically include a lossless entropy
encoding stage. Thus, lossless compression schemes such as the BWT often
find applications in lossy image compression.

For lossy image compression, after initial pixel prediction, the transforma-
tion stage is often based on linear transforms, such as the FFT (Fast Fourier
Transform), DCT (Discrete Cosine Transform, used in jpeg and mpeg), or
DWT (Discrete Wavelet Transform, used in jpeg2000). The applicability of
the BWT in lossy image compression is motivated by the nature of the quan-
tized coefficients, after the linear transformation stage. After application of a
zig-zag scan of the two-dimensional array of coefficients, the quantized coef-
ficients’ values in a given block of the DCT or DWT usually contain runs of
repeating zeros, or other symbols with generally small values. Thus, an imme-
diate way to exploit the properties of the BWT is to apply the BWT directly
on the quantized coefficients, and then code the resulting BWT output as for
conventional BWT-based compression (using RLE and entropy encoding), or
using standard entropy encoding that is used in image compression. The latter
approach was taken in Baik et al. (1999b), where they observed mixed results
using jpeg compression: some images resulted in improved compression using
the BWT, while compression deteriorated in others.

A better approach would be to apply the BWT selectively, based on some
measure of the degree of repetitiveness in the quantized coefficients. Baik et al.
(1999a) defined the degree of repetitiveness using the frequency of given sub-
strings in the quantized DCT block, and the length of substrings. Then, the
BWT is applied to the quantized block only if the degree of repetitiveness
is more than a predefined threshold. As reported, on average, this improved
scheme resulted in an 18.19% improvement in compression on a test set of
30 images, compared with the standard jpeg compression. One can observe
the similarity with the problem of activity in test data compression in Sec-
tion 8.4. Thus, one form of improvement could be to use activity (as defined
in Section 8.4) as the degree of repetitiveness, and to make the decision on

1 Joint Photographic Experts Group.
2 Motion Picture Experts Group.
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whether to use the BWT output after (rather than before) the application of
the BWT. In other words, as with the case of test data compression, we can
compare the activity of the quantized coefficients before and after the BWT,
and then select the BWT results only if they pass a threshold. There three
variations are depicted in Figure 8.6.
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Fig. 8.6. Three approaches to BWT-based lossy image compression: (a) basic BWT-
based method; (b) improved approach proposed in Baik et al. (1999a); (c) suggested
modification (see text); the abbreviations T, Q, and Z in the figures denote trans-
formation, quantization, and zig-zag scan, respectively

More recently, Wiseman (2006) suggested a slight modification to the
BWT-based lossy image compression scheme described above. Rather than
feeding the quantized coefficients directly to the BWT, a run-length encoder
is used, and the RLE results are used as the input to the BWT. Subsequently
the BWT outputs are encoded as in usual BWT-based compression (via MTF,
RLE, and entropy encoding). The general BWT-based approach to lossy im-
age compression can equally be applied for improved jpeg2000 compression,
even though the underlying transformation is different from that used in jpeg.
In fact, similar modifications were suggested for wavelet-based image compres-
sion by Guo and Burrus (1997).

Perhaps with the exception of the work of Ciavarella and Moffat (2004),
most other research on BWT-based compression of digital signals, be it lossy
or lossless compression, have treated the BWT as a black box, using the pre-
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diction residues as the input. While improved compression is observed in some
cases, these methods fail to exploit the important properties of the BWT in
compressing these signals. This may explain the widely held belief that in
general, the BWT (with MTF) does not produce competitive results in com-
pressing natural images. However, the results in Ciavarella and Moffat (2004)
have shown that improved performance is possible by a careful consideration
of the data at hand, and relating it to one or more of the processing steps
in BWT-based compression. This represents a promising direction for future
work in BWT-based compression of digital signals.

8.5.2 Shape matching

Shape matching and the analysis of object shapes are well-known object recog-
nition problems in computer vision and in general pattern recognition. Ap-
plications range from motion planning in robotics to content-based image
retrieval in multimedia databases (where images are retrieved based on auto-
matically extracted information in the image, rather than manually entered
keywords). Given an input query shape, the problem of shape matching is
to produce a list (or ranking) of object shapes in a database of shapes that
are similar to the query shape. To match one m-length query shape segment
against one n-length shape in a database, existing methods require O(nmk2)
time for open shapes, or O(nm2k2) for closed shapes, where m is the number
of segments in the query shape, n is the number of segments in the database
shape, and k is an error parameter (number of segments), used to model the
merging and splitting required for scale invariance, and for robustness against
noise. With N shapes in the database, and an average of n segments per
database shape, this would mean an average cost of O(nm2k3N) for match-
ing closed shapes, for example. Thus, scalability in terms of database size, and
in terms of the number of shape segments, will become a major problem for
such algorithms. This is important, especially given that shape databases with
millions of shape objects, each with potentially hundreds or thousands of seg-
ments, are becoming common. These sizes occur, for example, in the analysis
of protein structure in bioinformatics, or for a large database of mechanical
parts, such as for an airplane.

Using the context clustering property of the BWT, Adjeroh et al. (2007)
proposed a method to perform efficient shape matching for boundary-based
shape representations. Given a shape boundary, they decompose it into prim-
itive shape segments that capture the salient aspects of object parts, and
perform matching based on the primitives. Motivated by the sorted contexts
of the Burrows-Wheeler Transform, they developed an algorithm for efficient
shape matching, suitable for large-scale shape databases, where the shape
boundaries are represented as a sequence of shape primitives. Their approach
is related in principle to the method of shape contexts used in shape repre-
sentation and shape matching (Belongie et al., 2002; Mori et al., 2001). For
a given point on a shape, the shape context is captured in terms of the rela-
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tive position of all the remaining points on the shape, using both boundary
points and internal points on the shape. However, rather than shape contexts
as described above, they used the concept of sorted shape contexts, as in-
duced by the BWT. Conceptually, when the BWT is applied to a database of
shape sequences, shapes with similar contexts will be clustered together in the
transformed sequence, making it easier to identify similar shapes to a query.
Thus, unlike with shape contexts, the contexts are sorted, and the method
depends primarily on boundary-based information, since no information from
the internal shape regions is used.

The basic idea is as follows: Decompose each shape segment into a sequence
of primitive shapes, namely line, concave, or convex segments (see Figure 8.7).
Given that the important determinants of the saliency of an object’s part in-
clude its size, protrusion, curvature, and the turning angle between adjacent
parts (Hoffman and Singh, 1997), three different string sequences are used to
capture these important features. These are: (i) the string of primitive shape
types, (ii) the string of primitive shape lengths, and (iii) the string of transi-
tion angles. These three shape primitives capture an object’s curvature and
protrusion. Their lengths are a measure of a part’s size, while the transition
angle between the primitives provides information about the turning angle.
These are thus represented using symbols from three shape alphabets.

Consider the example in Figure 8.7c. The three symbols for the basic
segments are C, V, L for concave curves, convex curves, and line segments,
respectively. Angles are represented using 16 symbols (ΣA = {a, b, c, . . . , p}).
The segments and angles have been marked with their corresponding symbols
(d for 90◦, h for 180◦). The lengths have been left out for this example.
The resulting strings will be LLCV L for the segments, and dddhd for the
transition angles. Using the three string sequences, shape comparison can
then be performed using methods of string pattern matching, as described in
Chapter 7.
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Fig. 8.7. Shape representation using shape strings: (a) primitive shape segments;
(b) transition angle; (c) example shape representation. S denotes the starting point,
and the arrow indicates the scanning direction. The parameters a and b capture the
size of the primitives, while θ is the transition angle
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For instance, Adjeroh et al. (2007) described a two-phase shape matching
algorithm, using BWT-based methods for k-approximate matching (see Sec-
tion 7.4.7). At the hypothesis phase, the algorithm locates the areas in the
database sequence that contain potential matches to the query shape. This is
done by filtering the database sequence using carefully chosen q-gram sizes.
At the verification phase, the algorithm confirms the results proposed at the
hypothesis phase. The verification stage is generally slow, but usually, it will
be performed on only a small proportion of the database sequence. Thus, the
performance of the algorithm depends critically on the efficiency of the filter-
ing stage — in terms of computational time and also the number of hypotheses
generated.

As an example, consider the two sample shapes in Figure 8.8. Assume the
first shape to be the database sequence, with T = CLV LLL.CLV LLL, and
the query shape to be the second, P = CLV CL.CLV CL (Shapes are repre-
sented using the original concatenated to itself to eliminate the problem of
knowing the starting point). For ease of illustration, we ignore the respective
symbols from the angle and length alphabets. Assume k = 1. Here, m = 5,
and hence, hypothesis generation will be performed using exact matching
on shape segments of length 2. After shape q-gram generation, the 2-grams
from T will be: CL,LV, V L,LL,LL,LC. Similarly, from the query shape
P we get the 2-grams: CL,LV, V C,CL,LC. These will produce the match-
ing 2-grams CL,LC,LV , with potential match neighborhoods in T given by
N1 = [1 . . . 6];N2 = [2 . . . 6];N3 = [6 . . . 12]. These will then be verified. The
correct matches will be found in N1 and N3, starting at positions 1 and 6 re-
spectively in the database sequence (The last match required wrapping around
the database shape). The matching segments are shown in Figure 8.8c and
8.8d. The segments are quite similar in terms of the segment primitives. Using
the angle and length primitives will improve the accuracy of the matching.

CLVLLL CLVLL CLVLLCLVCL LCLV LCLV

(b) (c) (d)(a)

Fig. 8.8. Example of shape matching using sorted shape contexts: (a) database
shape; (b) query shape; (c) and (d) two sets of matching segments, at k = 1

8.5.3 Machine translation

The problem of machine translation can be stated as follows: Given a stream
of text or speech from one originating natural language, develop an auto-
mated system to translate the source text or speech to a given target natural



8.5 Image compression, computer vision and machine translation 295

language. In its simplest form, machine translation can be performed by sub-
stituting words in the source language with corresponding words in the target
language, for instance using a lookup table, or a dictionary. However, im-
proved quality in translation calls for more sophisticated methods that can
account for issues such as linguistic typology, phrase recognition, idiomatic
expressions, word-sense disambiguation, recognition of named entities, and
identification and handling of anomalies (Hutchins and Somers, 1992). Such
sophisticated methods therefore face the core challenge of first understand-
ing the original text, and then expressing this understanding in the target
language, in a way that will sound natural (that is, similar to what a skilled
human would have done). This decoding and re-encoding process is the key
challenge in machine translation.

Example-based machine translation (EBMT) is one popular approach to
machine translation and involves the use of a large bilingual corpus for training
at the time of translation. Translation is then performed by analogy based on
examples extracted from the training corpus. Thus, a primary component of
such a system is an effective index of the training instances. Most existing
systems use traditional indexing methods such as the inverted file. Brown
(2004) showed how the BWT clustering property and BWT-based compressed
indexes can be used to provide improved quality in machine translation. The
basic observation is that the BWT provides a clustering of all occurrences of
a given q-gram, and thus can be used to extract the most frequent q-grams
in the corpus. In principle there is no restriction on the q-gram — it could
be a word, substring, phrase, or even a complete sentence. The key idea then
is to pre-compute the translation for these frequent q-grams, and store the
translations for later use. The result is an order-of-magnitude speedup in
processing time. The side effect of this improved processing speed is that the
system now has enough time to perform more detailed analysis of the resulting
initial translation, leading to an overall improved quality of the translation.

For ambiguous lookups involving equivalence classes or sets of terms, the
matching is split into different steps. At each step (corresponding to some
word position in the input text), an extension of the match is attempted for
each active partial match using each alternative term in the set. If an ex-
tension results in a match, the process is applied recursively on the resulting
matches. Otherwise the extension is discontinued and matching terminates
for the particular word. This is therefore very similar to the BWT-based k-
mismatch algorithm, described in Section 7.4.6. The corpus was represented
using FM-index style compressed full-text indexes, with self-indexing sup-
ported. Therefore, the actual matching referred to above is performed using
backward search using the compressed V array. Thus, the original source lan-
guage is not stored explicitly, as it can be recovered from the compressed
representation of V .
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8.6 Joint source-channel coding

For certain applications the major problem is data storage, and hence effi-
cient compression of the data from a given information source is all that is
needed. So far, we have seen that the BWT provides an effective mechanism
for compressing the data. For some other applications (such as in wireless
communications), data compaction is not enough: we still need mechanisms
for efficient and reliable transmission of the compressed data, even in the
presence of errors in the transmission channel.

Figure 8.9 shows a general communication system. Data from an infor-
mation source is passed to a source encoder which performs compression to
remove redundancy in the original sequence. The information source here
could be a human, a sensor, a computer, or something else. The compressed
sequence is then passed to a channel encoder which systematically introduces
controlled redundancy in order to protect the data from potential errors in
the communication channel. Thus, while source coding involves the removal of
redundancy from the data, channel coding essentially introduces redundancy
in the compressed sequence.

In his ground breaking work in information theory, Shannon (1948) showed
that, in fact, as long as the transmission rate is below the capacity of the
channel, it is possible to transmit information with near-zero error (or with the
error made as small as we may wish), with appropriate encoding (for both the
source coding and channel coding). Various methods exist for channel coding.
A simple example is repetition codes, whereby the data is simply repeated,
typically an odd number of times. Channel decoding is then performed by
a simple majority rule. Other methods include cyclic-redundancy-codes, low-
density parity check codes (LDPC), convolutional codes, and turbo codes. The
book by Lin and Costello Jr. (2004) provides a detailed treatment of channel
coding and error protection.
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8.6.1 General source coding via channel coding

Figure 8.9 suggests that source coding and channel coding need to be treated
separately and sequentially in order to achieve Shannon’s results. This, how-
ever, requires asymptotically long sequences for its realization, which may
not be the case in most practical applications. This has led to the idea of
joint source-channel coding, whereby source encoding can make use of some
knowledge of the channel and/or the channel encoding algorithm, and con-
versely, the channel encoding process can exploit known characteristics of the
information source, the source coding algorithm, and the channel.

In linear error correction codes, such as parity check codes or LDPC, the
channel encoder is characterized by a parity check matrix H. Given a source
sequence, say s, channel encoding is then a simple matter of matrix multipli-
cation using s and H. The result will be an error syndrome. That is, given
the result, we can see immediately whether there is an error or not, since
every valid codeword will result in a zero vector for the product. Any non-
zero vector implies that there is an error, and the syndrome can be used to
determine the location of the error. Similarly, a linear fixed-length n-to-m
compression scheme can be viewed as a mapping of n-length source symbols
to m-length codewords. Thus, the compression process can be described using
an m × n matrix H, such that for a given n-length input s, the correspond-
ing m-length output will be the matrix product Hs. At the decoder, we can
use a maximum-likelihood decoder which selects some source vector, say u,
such that Hu = Hs, as the decoded message. The encoder can determine
whether decoding will be possible by a simple check, given its knowledge of
both the decoder and the message being transmitted. This shows that source
coding and channel coding are closely related, and both can be performed
using essentially the same basic framework.

The key idea in using channel coding for compression (i.e. source coding) is
that the encoder has access to all information that is available to the decoder.
Therefore, it can check to determine whether the decoder can correctly decode
the output without error. This is depicted in Figure 8.10. The channel encoder
can iteratively modify its parameters, and at each iteration it can check the
integrity of the encoded outputs to determine if the decoder will be able to
decode it without error, or possibly the amount of compression achieved. The
effectiveness of lossless data compression (in terms of both lossless decoding
and achieved compression) therefore critically depends on how this parameter
modification is performed.

Caire et al. (2004, 2006) proposed methods for source encoding using low-
density parity-check codes (LDPC). They used an ensemble of LDPCs, which
is maintained at both the encoder and at the decoder. Parameter modification
then involves the selection of an appropriate matrix. The label of the selected
matrix is sent to the encoder, based on which of the encoded data can be
decoded. Caire et al. (2004) also described a modification of the basic idea
whereby coding is performed using an erasure channel encoder. Here, param-
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eter modification is performed by intelligently discarding part of the resulting
encoded output.

Dütsch et al (Dütsch and Hagenauer, 2004; Dütsch et al., 2006) adopted
the same basic approach for source coding via channel codes, but used turbo
codes rather than linear block codes. To achieve compression, coded bits are
punctured in a rate-compatible manner — puncturing here simply means
deleting some specific bits in the encoder output. The choice of specific bits
to be deleted is defined in a puncturing matrix. The final encoded sequence is
thus composed of the surviving non-punctured bits, and the additional side in-
formation required for lossless recovery. Here, parameter adjustment is in the
form of modification to the puncturing rate. Essentially, the puncturing rate
is increased (reduced redundancy) if the integrity test is successful, and de-
creased (increased redundancy) whenever there is a failure. This is performed
in an iterative loop until a desired level of compression (or data redundancy)
is reached. The surviving coded bits that resulted in a successful decoding are
then stored as the compressed data.

8.6.2 BWT-based joint source-channel coding

The major advantage of joint source-channel coding is that sequences com-
pressed using a channel code are usually more resilient to channel errors during
transmission, when compared with traditional compression schemes, even for
the same overall compression rate. This is important for low capacity devices,
such as cell phones, or sensors in a wireless sensor network. However, as dis-
cussed in Caire et al. (2004),Dütsch and Hagenauer (2004) and Dütsch et al.
(2006), the above general scheme for compression via channel coding works
only for independent and identically distributed (i.i.d.) sources, and it breaks
down for sources with memory, such as Markov sources. The problem is the
difficulty of designing an optimal decoder using the non-memoryless source
statistics.

To address the problem of memory, and thus extend the method to sources
with memory, the Burrows-Wheeler Transform can be used. This exploits
the context partitioning property of the BWT and the statistical properties
of the BWT output, as discussed in Chapter 5. Recall that for very long
sequences, the output distribution of the BWT is piece-wise i.i.d., with the
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length and distribution of the i.i.d. segments being determined by the statistics
of the input sequence. Thus, to solve the problem of memory in the general
scheme for compression via channel codes, the source sequence can first be
passed through the BWT. Subsequently, each context partition in the BWT
output (which now is i.i.d.) is passed through the scheme described above,
which works for memoryless sources. Figure 8.11 shows a modified version of
Figure 8.10, incorporating the BWT stages. At the decoder, after decoding,
the different segments are arranged back into their correct order, and the
inverse BWT is performed to recover the original data. The context partition
boundaries need to be transmitted to the decoder for correct decoding.
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Fig. 8.11. BWT-based joint source-channel coding

Observe that the compressibility of BWT transformed sequences is not the
issue here, and hence was not really exploited in this application. Also, the use
of the BWT does not depend on the specific channel coding method adopted.
For instance, both Caire et al. (2004) and Dütsch and Hagenauer (2004) used
the BWT as a way to extend their respective methods to sources with memory,
but using different underlying channel coding methods. The results in both
cases showed that the use of the BWT in joint source-channel coding led to
a significant improvement over traditional source coding followed by indepen-
dent channel coding, for instance, using bzip2 and rate-compatible punctured
turbo codes. Extending the method to universal source coding mainly requires
the encoder to send the model parameters for each context partition, in addi-
tion to information on the block boundaries. This is also related to the issue
of prediction and entropy estimation — see the next section.

8.7 Prediction and entropy estimation

The problem of entropy estimation is very closely related to universal coding
in data compression. In compression, there is the decoding stage that must be
able to recover the input sequence given the compressed data stream. Both
compression and entropy estimation can be based on the same basic informa-
tion, namely, an estimate of the probability of each symbol generated by the
source. For compression this estimate of probabilities is passed to a subse-
quent entropy encoder, such as an arithmetic coder. For entropy estimation,
however, there is no decoding stage, and the objective is to predict as close as
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possible, what the true entropy of the source is. Thus, the estimated probabil-
ities can be used to directly compute an estimate of the source entropy. Actual
compression need not be performed. The important role of entropy in informa-
tion theory makes it important to study methods for estimating the entropy
of a source. Entropy estimation has been used in various applications, such
as sequence classification, identification of tree sources, performance measure-
ment between compression algorithms, phylogenic tree construction in com-
putational biology (Lanctot et al., 2000; Schmitt and Herzel, 1997), language
modeling, analysis of neural spike trains in neuroscience (Strong et al., 1998)
and so on.

The use of the BWT in entropy estimation and tree source identification
have been studied in (Baron and Bresler, 2004, 2000; Cai et al., 2004). The ba-
sis is the fact that the BWT output distribution for a tree source can be mod-
eled as being piecewise constant i.i.d. Thus, based on the context-partitions
of the BWT output, entropy estimation can be performed by estimating the
parameters for each partition and averaging over all the partitions. In Chap-
ter 5, we defined entropy, empirical entropy, and entropy rate of a source. For
a finite memory Markov source, the entropy rate can also be expressed as
follows:

H(p) =
∑

c∈C

p(c)
∑

σ∈Σ

p(α|c) log
1

p(α|c) (8.3)

where p denotes a probability measure on the source, c ∈ C is a state in the
Markov model, and σ ∈ Σ is a symbol emitted by the source. Thus, if the
source is known to be i.i.d. or piecewise i.i.d. (that is, we know the states,
and the parameters of the model), entropy estimation will be easy, since all
we need to do is to plug in the numbers in the formula, based on the context
partitions in the BWT. Here, each unique context will correspond to a state in
the model. The real challenge is that the source is typically unknown, and thus
we need to estimate its parameters – the states and the symbol distribution
at each state.

Building on the context partitioning induced by the clustering property of
the BWT, Cai et al. (2004) outlined the following procedure to estimate the
empirical conditional distributions, based on which the estimated entropy can
be computed.

1. Compute the BWT of the reversed sequence. The inverse BWT is not
needed.

2. Divide L, the BWT output into b segments. Segment lengths could, but
need not, be equal.

3. Estimate the first-order probability distribution for each segment, using
the count of each symbol σ within the segment. Compute the empirical
entropy of each segment, using Equation 5.3.
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4. Compute the overall entropy estimate by taking the average of all the
segment entropies computed in step 3 above. This implements Equation
8.3 above.

Therefore, the main problem is in Step 2: segmentation of the BWT out-
put. Since we do not know the Markov order of the source, we cannot rely
on k-order contexts for performing segmentation. Thus, Cai et al. (2004) pro-
posed two methods to perform the segmentation, and hence determine the
length of each segment. The first method simply used a uniform length for
each partition. For a sequence of length n, they suggested w(n) = O(

√
n) for

the length of each sequence for a total of b(n) = n
w(n) segments. With this

scheme, b(n) the number of segments could grow without bounds, as n→∞.
Thus, they suggested a second approach which is based on an adaptive seg-
mentation. The method starts out with a uniform length for each segment,
assuming a fixed number of segments. Then, each segment is considered for
potential merging or splitting based on a metric that depends on the statis-
tics of its neighboring segments. Surprisingly, the simple partitioning scheme
using the same length for each segment also resulted in an entropy estimate
that converges to the true entropy, with probability 1, for stationary ergodic
sources. For the specific case of finite memory sources, they showed that es-
timates produced by the uniform length scheme approaches the true entropy

at a convergence rate in O( log2 n
n ). Simulation results showed that the method

produces a better entropy estimate (with respect to the mean-square error)
than published LZ-based and PPM-based estimation schemes. These rather
theoretical results can be contrasted with the empirical compression results
reported in (Wirth, 2001), where it was shown that a uniform segmentation
of the BWT output does not lead to good practical compression performance.

8.8 Further reading

In this chapter we have tried to discuss some of the observed and promising
applications of the Burrows-Wheeler Transform. Apart from the sections on
compressed suffix trees and suffix arrays, and compressed full-text indexing,
the descriptions have been at a relatively high level, without going into all the
details, and in most cases we have provided pointers to related work within
the specific sections. In this section we simply provide further information
that may be helpful in following the many applications of the BWT.

A detailed treatment of text indexing and document retrieval is presented
in the book by Witten et al. (1999). Baeza-Yates and Ribeiro-Neto (1999)
discuss various issues in modern information retrieval, for both text and non-
text information. Zobel and Moffat (2006) provide a survey of recent advances
in text indexing using inverted indexes. Ferragina and Venturini (2007) adapt
existing compressed indexing systems (including the BWT) to implement the
“permuterm” index in a space-efficient manner.
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Compressed suffix arrays, compressed suffix trees, and full-text indexing
are active and exciting areas of research very closely related to the BWT.
The original work by Grossi and Vitter (2000, 2005) and by Ferragina and
Manzini (2000, 2001b) laid the foundation for work in this area, and has no
doubt motivated various researchers to study different problems in compressed
indexing and compressed pattern matching. The recent survey by Navarro and
Mäkinen (2007) provides a thorough review of work in this field, especially
for compressed suffix arrays and full-text indexing. Firth et al. (2005) provide
a comparison of various algorithms for BWT-based pattern matching.

Methods for dynamic update have been proposed for compressed suffix
arrays (Hon et al., 2007), and for compressed suffix trees (Chan et al., 2005).
The use of the lcp-array in compressed suffix arrays and in compressed suffix
trees was mentioned, but without much detail. Details on these approaches can
be found in Sadakane (2007, 2002) and Kim and Park (2005). Further methods
for compressed indexing with different forms of compression are reported in
Foschini et al. (2006); Golynski et al. (2007) and Gonzalez and Navarro (2006).
Välimäki et al. (2007) present a practical implementation of Sadakane’s CST
that was reported in Sadakane (2007). The relationship between BWT-based
compressed indexes and LZ-based compressed index structures (Kärkkäinen
and Sutinen, 1998) was discussed in Ferragina and Manzini (2005).

In general, image compression using the BWT still represents a major chal-
lenge, as is the compression of other multidimensional data, such as video, or
some types of medical images. One major problem is how to define contexts
in two or more dimensions. Given that the BWT is context-based, this can
have a definite impact on its performance on such data. Although the BWT
has shown promising results in image compression (for both lossy and lossless
compression), so far most of the methods use a simple application of the BWT
to an image — simply using the BWT as a black box. A better matching of
some of the established properties of the BWT with the image compression
problem should lead to improved results. The work by Ciavarella and Moffat
(2004) provides an initial indication of the potential of this approach. But
more work is needed to modify one or more steps of the BWT compression
pipeline to take advantage of specific image characteristics, or the specific na-
ture of images for a given application. A similar comment applies to using the
BWT in compressing general digital signals. General discussions on the rela-
tionship between image compression and text compression, and on searching
compressed text and images can be found in Bell et al. (2001).

Cover and Thomas (1991, 2006) is the classic reference that provides an
excellent theoretical background on source coding. Channel coding is treated
in great detail in another classic text by Lin and Costello Jr. (2004). This con-
tains detailed material on linear block codes, such as parity check codes and
LDPC, and non-linear codes such as convolutional codes and turbo codes. The
LDPC was introduced by Gallager (1962). Further details on LDPC and the
belief propagation mechanism that it uses can be found in Richardson and
Urbanke (2001). Punctured convolutional codes were introduced by Hage-
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nauer (1988). The effect of the BWT in energy savings for energy-constrained
devices is explored in Sadler and Martonosi (2006). They showed that for gen-
eral compressed data, the BWT can result in significant savings in transmis-
sion energy, especially for long-range radio transmissions. Fenwick (2007) also
mentioned the possible connection between lossless compression and error-
correction codes, though in a manner different from those described in this
chapter.
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Conclusion

The story of the Burrows-Wheeler Transform is a valuable case study in the
process of research and discovery. The idea was conceived in 1978, but it
didn’t see the light of day until published through a collaboration that led to
the seminal technical report number 124 at Digital Equipment Corporation,
published in 1994. Despite this being Burrows and Wheeler’s only publication
relating to the idea, a few people recognized its value, picked it up, evaluated
it, and gave it enough exposure that it grew a large community that brought it
to a level of maturity where it could be used in a general purpose compression
utility. In the following dozen or so years, literally hundreds of papers had been
published by scores of researchers based on the single technical report. The
most visible application coming out of the BWT is the bzip2 compression
program, which will have saved many terabytes of disk space and weeks of
download time. And with the number of papers produced that are built on
the method, no doubt many careers have been greatly helped by the fertile
research ground that it provided.

Through this book we have covered many of the directions that the BWT
has led people in: new algorithms and data structures for performing the trans-
form, fine-tuning the coding that can be done with the transformed file, new
ways to sort the strings for the transform, a better understanding of other
compression methods by relating them to the BWT, using the BWT data
structures to aid searching and pattern matching, and applying its algorithms
and data structures in contexts ranging from image analysis to computational
biology. Yet there is a strong sense that we are only just beginning to un-
derstand the transform and its potential, as new variants and applications
continue to be published regularly. The BWT is a powerful idea, and in the
process of decoding generates a collection of useful arrays (R, V , W and so
on) which can be used to provide a variety of indexes and views of the original
text. The transform process thus provides us with data structures that have
opened up novel possibilities, and may yet hold more opportunities for future
applications.
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As a compression system, the BWT is quite mature, having experiments
done on it with that purpose in mind for over 10 years. It has been related to a
broad range of the main lossless compression methods, including Ziv-Lempel
methods, PPM, and DMC; the obvious relationship is that they all are using
longest matches in some sense as part of their processing, but the literature
has also established more subtle relationships where these apparently different
methods gain their compression power by exploiting variable size contexts.
The BWT has forced the issue of considering forward and backwards contexts,
and has led us through a different path to the suffix array as a structure for
identifying contexts, performing longest matches, and supporting compressed
full-text indexing.

The promising theory underpinning the BWT for compression is backed
up by practice. Seward’s free open source system, bzip2, is one of the best
general purpose compression systems implemented, and is available for Linux,
Windows and Macintosh systems. In contrast to the maturity of work relat-
ing to compression with the BWT, for other applications, especially pattern
matching and text indexing, important new ideas are still being published,
and we are only now starting to understand how to exploit it.

Even in the area of compression new developments are being made; for
example, it has only recently come to light that the MTF list may not be
necessary despite having been very closely associated with the BWT since its
first publication. These developments (like most in lossless compression) are
generally to do with the tradeoff between compression and speed. Squeezing
extra compression out of existing systems seems to have hit very firm limits,
and only small gains are made by applying even large amounts of computing
power. However, researchers are still finding faster data structures and cod-
ing techniques that are not so demanding, which provide more options for
applications where a balance must be struck between computing effort and
compression.

Another issue that has serious implications for the future of the BWT
is how it interacts with real computer hardware, particularly cache memory
systems that may not be able to work well given the random nature of the
transform’s accesses to the large block of data that is being processed in
memory. Other general-purpose compression methods (such as the widely used
derivatives of Ziv-Lempel coding) appear to work better with cached systems
because of the repeated use of a smaller section of memory, and potentially
this may give them an advantage over BWT methods in the future, if speed is
the issue. Balanced against this are two important trends in hardware: larger
caches, and parallelization. In general the BWT benefits from having as large
a block size as possible, but there are diminishing returns on this, and it is
possible that caches will grow to the size that the BWT is able to exploit
them and yet still give some of its best compression performance. Perhaps
more significantly, multiprocessor systems with a large amount of memory
parallelism have the potential to, for example, process different parts of a
BWT decoding at the same time, which offers significant speed improvements.
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In addition to applying parallel systems to existing BWT-based methods,
variants of the BWT may develop that are more amenable to working in a
parallel environment, or with whatever architectures develop in the future.
There is also a growing body of work on hardware-based BWT implementa-
tions which are specifically designed for this kind of processing. Again, there
is considerable potential here for improvement.

Because this area is such an active area of research, we have included
in Appendix B a list of web sites that have up-to-date information about
the Burrows-Wheeler Transform, and its connection with compression, suffix
arrays and pattern matching.

We look forward to a promising future for this transform as it goes through
its second decade; it is being applied in an environment of new data struc-
tures, more powerful computers with new models of computation, increasing
amounts of data to be processed for storage, indexing and pattern matching,
and new theory to help us better understand how we can exploit a powerful
technique that is based on simply muddling up the contents of a file.



A

Notation

This appendix summarizes the main notation used in the book.
Where possible the notation that we use is the same as the main literature;

however, unfortunately there is a conflict between the main notation used in
the BWT literature and the pattern matching literature, and of course, this
book uses both. The key problem is that the original Burrows-Wheeler paper,
and many others about the Burrows-Wheeler Transform, use S for the input
string, and T for the decoding array for the transform. The pattern matching
literature generally uses T for the input string. We have chosen to use the
latter, and hence some of the BWT terminology is non-standard.

Inputs
T The input text or string, i.e. the original document that is being

transformed or searched. It is an array of characters T [1 . . . n].
n The number of characters in T , i.e. n = |T |.
P The pattern (or key) being matched in the search of T . It is an

array of characters P [1 . . . m] (Section 7.1).
m The number of characters in P , i.e. m = |P |.
Σ The alphabet on which T and P draw their symbols. There are |Σ|

characters, and Σ = {σ1, σ2, . . . σ|Σ|}. Σ is assumed to be indexed
and ordered.

σi The i-th character of the alphabet Σ.
Σ∗ Set of all finite strings in Σ, including the empty string ǫ. Σ∗ =

Σ+ ∪ ǫ, where Σ+ is the set of all possible finite concatenations
of symbols from Σ.

BWT arrays and values
F The first column of the sorted block As, which is all n characters

of the text in sorted order (Section 1.1).
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L The last column of the sorted block As, which is the n-character
output of the Burrows-Wheeler Transform. Also referred to as
BWT (T ) (Section 2.1).

BWT (T ) See L (this notation is used in Chapter 5).
a The position in L of the first character that should be decoded,

which is the last character in T , since the text is usually decoded
from right to left (Section 2.1).

A The n by n matrix constructed by listing all n rotations of T . This
array is not normally constructed in practice (Section 2.1).

As The sorted version of A, in which the first and last columns are
F and L respectively. This array is not normally constructed in
practice, but is represented by R (Section 2.1).

R An array of n entries used to store the sorted order of the rotated
substrings. T [R[i] . . .] is the i-th substring in sorted order (i.e. the
i-th row in As). This array is used during encoding instead of As,
since it contains the same information, but is much more compact.
It is also sometimes reconstructed by the decoder as it provides
a one-to-one mapping between F and T , which can assist with
pattern matching (T [R[i]] = F [i]) (Section 2.1 and 2.2).

R′ The reverse mapping of R; R′[R[i]] = i, F [R′[i]] = T [i] (Sec-
tion 2.2).

V One-to-one mapping between L and F , used in the decoder to map
the transform to the original text. V [j] identifies which character
in L is previous to the one at L[j], hence it can be traversed
to generate T in reverse. V is sometimes referred to as the LF
mapping. F [V [j]] = L[j] (Section 2.2).

W The inverse of V , so renders the output in forward order. W [j]
identifies which character in L comes after the one at L[j], hence
it can be traversed to generate T in the original order. W is some-
times referred to as the FL mapping. L[W [j]] = F [j], W [V [i]] = i,
V [W [i]] = i (Section 2.2).

Q The decoded file, output from the BWT decompressor, which will
be the same as T (Section 2.2).

C[i] Number of occurrences of character L[i] in L[1 . . . i − 1] (Sec-
tion 2.2).

K[c] Number of occurrences of character c in L, which is the same as
the number of times that c occurs in T (Section 2.2).

M [c] Cumulative count of the values in K, used to index the starting
position of c in F ; if the first character in the alphabet is repre-
sented as zero and the first element of F is F [1] then M [0] = 1,
M [c] = M [c− 1]+K[c− 1] (Section 2.2). M also has other mean-
ings in the text; in Sections 7.1.5 and 7.5.1 it is used as a bit-map
for the shift-and pattern matching method.
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Other notation
ǫ The empty string.
Ti The i-th suffix of T , that is, T [i . . . n] (Section 4.1.1).
T i The i-th prefix of T , that is, T [1 . . . i] (Section 4.1.1).

T̂ Reverse of the string T .
AT The suffix array of the text T (Section 5.1).

ÃT Inverse of AT .
ηocc The number of times that pattern P occurs in the text T (Sec-

tion 7.1.7).
lcp(α, β) The longest common prefix between two strings α and β (Sec-

tion 4.1.5).
lca(u, v) The lowest common ancestor of nodes u and v in a tree; the node

furthest from the root that has both u and v as a descendant
(Section 4.1.5).

L(u) In a tree, the label of the path from the root node to u (Sec-
tion 4.1.1).

JT The suffix trie of the string T (Section 4.1.3).
J i

T The suffix trie in phase i of Ukkonen’s construction algorithm
(Section 4.1.3).

TS′ The suffix tree for the mapped sequence S′ (Section 4.1.5).
α ≺ β Denotes that the string α lexicographically precedes the string β

(Section 4.2).
α ≺k β Denotes that the string α lexicographically precedes the string β

in an order-k sorting (i.e. comparing the first k characters) (Sec-
tion 4.2).

C The set of partitions of the BWT input based on having the same
context (Section 5.3.1 and 5.5.2).

Q(c) The set of symbols in tn1 with the same context, c (Section 5.3.1).
Pe(T ) Estimated probability of the string T (Section 5.3.2).
Pa(T ) Actual probability of the string T (Section 5.3.2).
H(Y ) Entropy of the random variable Y (Section 5.5).
H(Y k) k-th order entropy of the random variable Y (Section 5.5).

H̃(Y ) Empirical entropy of a random variable Y (Section 5.5).
Hθ(T ) The entropy of T using the probability distribution defined by the

model parameter θ (Section 5.5.2).
ℓn Average code length per symbol, for an n-length sequence (Sec-

tion 5.5).
fi(x) Code length function for the family of ci codes. (Section 5.5.2).
nσ,T Number of times that the symbol σ occurred in the prefix T [1 . . . i].
D(p||q) The relative entropy (Kullback-Leibler distance) between two dis-

tributions p(y) and q(y) (Section 5.5.2).



312 A Notation

ρn(θ, T ) The coding redundancy of the sequence T of length n using the
probability distribution defined by the model parameter θ (Sec-
tion 5.5.2).

Bi Boundary points for context partitions (Section 5.5.2).
φ The fixed-length don’t-care character (FLDC) (Section 7.1.7).
θ The variable-length don’t care character (VLDC) (Section 7.1.7).



B

Ongoing work on the Burrows-Wheeler
Transform

There is an active body of continuing research relating to the Burrows-Wheeler
transform. This appendix lists some websites that will help the reader to access
“live” material on the BWT, and also a list of related Ph.D. theses that have
been published.

B.1 BWT-related web sites

This section provides links to websites that report on useful background and
ongoing work relating to the BWT. These links are also available from the
book’s web page, at http://www.cosc.canterbury.ac.nz/tim.bell/bwt/.

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html

The original Burrows and Wheeler technical report, stored online at HP
labs (originally DEC).

ftp://ftp.cl.cam.ac.uk/users/djw3/

Wheeler’s experimental programs (“bred” and “bexp” for block-reduction
and expansion respectively).

http://citeseer.ist.psu.edu/76182.html

Citeseer page for the original Burrows and Wheeler report, listing hun-
dreds of papers that cite it.

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Wikipedia entry for BWT.
http://pizzachili.di.unipi.it/, http://pizzachili.dcc.uchile.cl/

Web site on compressed indexes and testing.
http://datacompression.info/BWT.shtml

List of projects working with BWT.
http://www.data-compression.info/Algorithms/BWT/

More information and references about the BWT.
http://www.cs.auckland.ac.nz/~peter-f/

Peter Fenwick’s papers about the BWT, published between 1995 and 2007
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http://www.dogma.net/markn/FAQ.html#Q5

Mark Nelson’s FAQ about the BWT and links to his articles about com-
pression, including his 1996 article about the BWT.

http://en.wikipedia.org/wiki/Comparison_of_file_archivers

A comparison of file archiving software, including BWT-based systems
(bzip).

http://corpus.canterbury.ac.nz/

The Canterbury corpus, which provides test files and compares compres-
sion methods, including BWT variants.

http://www.nist.gov/dads/HTML/burrowsWheelerTransform.html

NIST dictionary of algorithms entry for the BWT.
http://dimacs.rutgers.edu/Workshops/BWT/

Site for the 10th anniversary conference on the BWT (2004).
http://www.bzip.org/

The bzip2 home page (Seward’s implementation).
http://www.compressconsult.com/szip/

The szip home page (Schindler’s implementation).
http://www.frozenether.com/?s=bwt

Online tutorial on the BWT.
http://james.fabpedigree.com/bwt.htm

An extensive example of the BWT with source code of an implementation.
http://www-math.mit.edu/~lippert/software/bbbwt/

Implementations of the BWT by Ross Lippert.

B.2 Ph.D. theses relating to the Burrows-Wheeler
Transform

Larsson, N.J. 1999. Structures of String Matching and Data Compression.
PhD thesis, Department of Computer Science, Lund University, Sweden.

Sadakane, K 2000. Unifying Text Search And Compression -Suffix Sorting,
Block Sorting and Suffix Arrays. PhD thesis, Graduate School of Infor-
mation Science, University of Tokyo, Japan.

Deorowicz, S. 2000. Universal lossless data compression algorithms, PhD the-
sis, Silesian University of Technology.

Chapin, B. 2001. Higher Compression from the Burrows-Wheeler Transform
with New Algorithms for the List Update Problem, PhD dissertation,
Dept. of Computer Science, Univ. of North Texas.

Mäkinen, V. 2003. Parameterized approximate string matching and local-
similarity-based point-pattern matching. Department of Computer Sci-
ence, University of Helsinki.

Baron, D. 2003. Fast Parallel Algorithms for Universal Lossless Source Cod-
ing, Ph.D. dissertation, Electrical and Computer Engineering Depart-
ment, University of Illinois at Urbana-Champaign.
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Hon, W-K. 2004. On Construction and Application of Compressed Text In-
dexes. Doctoral thesis, University of Hong Kong.

Zhang, N. 2005. Transform based and search aware text compression schemes
and compressed domain text retrieval, PhD dissertation, School of Com-
puter Science, University of Central Florida.

Tao, T. 2005. Compressed Pattern Matching For Text and Images, PhD dis-
sertation, School of Computer Science, University of Central Florida.

Abouelhoda, M. I. 2005. Algorithms and a Software System for Comparative
Genome Analysis, PhD Thesis, University of Ulm, Germany.
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