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Foreword

I am delighted to see this pioneering edited book on plant metabolic networks, by
Schwender. Now, and increasingly in the future, plant biotechnology will be key
element in enabling a renewable and sustainable world. Plants and their products
impact several economic sectors of society – food, feed, materials, environmental
aesthetics, pharmaceuticals, fuels, and feedstocks for the chemical industry. With the
advances in plant genomics, the plant researcher has a wealth of technologies avail-
able for enhanced plant productivity, but is left to ponder what the best approaches
to link genotype to phenotype are. The linchpin in this link is the plant metabolic
networks that govern plant product synthesis. The time is right for training many
young scientists and engineers to develop and maximize the knowledge base of
plant metabolic networks for the rational design of improved plant varieties.

Unfortunately, there have been relatively few complete and technical books
on quantitative analysis of metabolic networks, in plants in particular. Schwender
brings his experience in, and enthusiasm for, plant metabolic networks to this book.
His personal research experience in flux analysis is clear in guiding the organization
and content of this book, and adds a tremendous amount of practical insight and
relevance. One of the most impressive aspects of this book is its broad coverage
by expert and active researchers in the field of the challenges involved in analyzing
plant networks. Two highly divergent approaches are covered – the “omics” view
that uses global measurements of network parts (metabolites, transcripts, proteins)
and statistics to deduce correlative interactions versus the mechanistic view that
uses modeling and is typically not as comprehensive. This book will assist the plant
researcher in deciding when to use the “omics” approach versus the mechanistic
one, and how information for both approaches can be interpreted and consolidated
into working hypotheses of the functioning of plant networks.

Part I sets the stage and discusses the unique complexity of plant metabolism. I
am pleased to see that model organisms are described and encouraged as a general
framework for describing and understanding plant networks. In addition, two impor-
tant areas of active research, transport processes and metabolons, are highlighted.
The compartmentation within and between cells is one of the distinctive aspects of
plant metabolism, which gives plants “plasticity” to adapt to many different envi-
ronments. Bottlenecks in plant metabolic engineering can often be tied to these two
topics. Regarding transport, having the metabolite in the right place at the right time
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to undergo catalysis may be a rate-limiting step in making the desired product. For
metabolons, multienzyme complexes of several enzymes, overexpression of one en-
zyme in the complex may not affect the overall rate. These complexes will have to be
modeled differently than single enzymes – the enzymes will be tightly coupled and
coordinated. Hopefully, the material in these chapters will help prevent “irrational”
engineering by future plant biotechnologists!

Part II examines the key measuring parts of the metabolic network: i.e., metabo-
lites and enzyme kinetics. The technologies and associated challenges to mea-
sure both of these quantities are straightforwardly described. With the tremendous
amount and variety of chemistries in the plant cell, and with the number of method-
ologies for quantification of metabolites, including 13C-labeled ones, this is no small
feat! Here, the plant researcher can deduce major strategic decisions that they must
grapple with – how to balance breadth versus depth, both in terms of the measure-
ment quality and the statistical analysis required to analyze the information. These
questions are ones that must be continuously examined by the researcher in any
organization.

Part III discusses the analytical and organizational challenges that all researchers
of plant metabolic networks must tackle: how to analyze, interpret, and/or model the
data in order to draw relevant conclusions. Virtually, every technologist inevitably
wonders whether they need modeling. This is especially true, given the varying
mathematical backgrounds of the researchers – leading to a significant fraction with
an inherent distrust of models. This section debunks the mystique of the modeling
process, to enable a larger audience to comfortably understand the huge potential
and limitations of these vital tools for analyzing metabolic networks. Understand-
ing of the model structure, assumptions in building the model, and the uncertainty
in data and model parameters will enable the researcher to critically assess the
model results, resulting in increased power to generate testable hypotheses that by
inspection alone one cannot muster. After reading these chapters, the researcher will
become more comfortable with the uncertainty inherent in metabolism.

The quantitative analysis of plant metabolic networks is intrinsically interdisci-
plinary in nature – hence the challenges in training and utilization of these tech-
nologies. In looking through this practical and comprehensive treatment, my first
reaction was, “I wish I had available a book like this when I had begun to mentor
my students, before they started analyzing plant networks!” A similar reaction from
my students might have been, “I wish I had read a book like this when I began my
research project so that I knew what she was talking about!” Unfortunately, we had
to learn many of the topics covered here in real time.

This book does justice to the current state of the art for analyzing plant metabolic
networks. In my experience, the challenges discussed in this book have really proved
to be the hurdles to overcome.

With this new book, a new generation will get to share the extensive and deep
insights of Schwender and the books’ contributors, push the frontiers in quantitative
plant network analysis, and become tomorrow’s industrial and academic leaders in
plant biotechnology.

Ames, Iowa Jacqueline V. Shanks



Preface

The main motivation behind Plant Metabolic Networks was to bring together in
one book various, and in part, very diverse approaches that relate to the quantita-
tive analysis of metabolic networks in plants. Although flux analysis and related
approaches are not really new, their recent re-emergence in plant science made it
worthwhile to summarize recent advances in this area, and to give an overview of
the current state of knowledge. Expert authors from leading groups in plant science
could be convinced to contribute the 11 chapters to the book. I am very thankful
to all the contributors for their time and effort spent in writing the chapters, and I
hope that this book might be useful for plant biologists, students, and researchers in
related fields in order to stimulate further progress in plant metabolic research and
biotechnology.

Plant Metabolic Networks is intended to be in part tutorial, and in part review
of recent literature, and hopefully turns out to be more than a collection of review
articles. Two basic areas are touched: experimental/analytical techniques needed to
produce metabolic data, and the mathematical modeling used to analyze these data.
The authors kept the mathematical detail at a minimum to make the book accessible
for a broad audience of plant biologists. However, the metabolic research described
in this book certainly is of interdisciplinary nature and mathematicians who are
interested in analyzing plant metabolic networks should benefit from the book as
well.

February 23, 2009
Upton, New York Jörg Schwender

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jörg Schwender

2 Definition of Plant Metabolic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Andreas P.M. Weber

3 Metabolite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Ute Roessner and Diane M. Beckles

4 Enzyme Kinetics: Theory and Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Alistair Rogers and Yves Gibon

5 Quantification of Isotope Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
D.K. Allen and R.G. Ratcliffe

6 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Aaron Fait and Alisdair R. Fernie

7 Topology of Plant Metabolic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Eva Grafahrend-Belau, Björn H. Junker, Christian Klukas,
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Chapter 1
Introduction

Jörg Schwender

1.1 Why a Book on Plant Metabolic Networks?

With several complete plant genomes currently available and with massive amounts
of transcriptomic, proteomic, and metabolomic data being generated by plant scien-
tists, one could assume that making sense of all this data is only a minor problem.
However, it has been pointed out by many leading plant scientists that this is not the
case and that developing appropriate modeling skills and tools may lack behind the
technological progress that allows the data generation. In recent years, the plant sci-
ence community became more and more aware of the importance of different kinds
of analysis and modeling approaches, like metabolic flux analysis. Accordingly, in
this book, contributions from different expert authors have been assembled to give a
current view on plant metabolic networks, from the analysis of the molecular parts
to approaches of mathematical modeling of plant metabolic networks at the cellular
level. Other processes like gene regulation, cell signaling or models at the whole
plant or ecosystem level certainly have their justification [1], but have been mostly
excluded here to give cellular metabolism special attention.

1.1.1 What Constitutes Metabolism and Metabolic Networks?

Metabolism can be defined as a highly organized, self-regulated, and continu-
ous process of uptake, transport, chemical modification, and secretion of small
molecules. As pointed out by Wiechert et al. [2], metabolism has its manifesta-
tion in two quantities: concentration and flux – with analogy to potential and flow
in many different physical systems. Flow is causal for potential and vice versa [2].
This means that if the momentary metabolic state of a cell is to be described, both
of them have to be determined.

The many specific interactions between the multitude of different metabolites and
enzymes constitute a complex network. There is increasing awareness among plant

J. Schwender (B)
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e-mail: schwend@bnl.gov

J. Schwender (ed.), Plant Metabolic Networks, DOI 10.1007/978-0-387-78745-9 1,
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2 J. Schwender

scientists that analyzing the systems properties of these networks and the use of pre-
dictive models of metabolism will be of major importance for further progress in
understanding of plants at the molecular level [3]. Systems properties can describe a
system at its whole but are destroyed if the system is dissected into its elements. Sys-
tems theory assumes that there are different levels of organization with additional
properties arising at each level (“emerging properties”) [4]. Metabolic networks are
one level at which properties like elementary flux modes, metabolic flux, centrality
or robustness emerge.

1.1.2 Why Study Metabolic Networks?

In difference to protein–protein or protein–nucleic acid interaction networks,
metabolic networks, in particular, can be modeled in a very exact way. For example,
the stoichiometric coefficients in the mass balance of an enzyme-catalyzed reac-
tion are exact integer numbers. This may in part explain the success of the different
modeling approaches described and discussed in this book.

In an attempt to categorize current approaches to model plant metabolism, two
groups of approaches can be discerned. Global inquiry and discovery (Chapters 3
and 6) is based on global measurement of network compounds (metabolites, tran-
scripts, proteins), typically in response to different kinds of perturbation (e.g.,
growth condition, transgenic events). Mainly by use of multivariate statistics, this
approach typically identifies components that co-respond to a stimulus and there-
fore should have close functional relationship. In fact, it has been found that the
metabolome reacts in a very sensitive and dynamic way to many kinds of perturba-
tion (see Chapter 6). In this way, e.g., metabolites belonging to a metabolic path-
way can be identified. This approach can be applied to diverse plant systems and
most often captures the effect of perturbation globally. It also can integrate across
the organizational levels (metabolome, transcriptome, see Chapter 6). However, the
discovered underlying correlative relationship has subsequently to be investigated
in detail to reveal the molecular mechanisms behind.

An apparently diametrical approach tries to build mechanistic models based on
functions already known with some detail, such as reaction stoichiometry or enzyme
mechanisms. Systems properties on the level of metabolism can be analyzed and
predicted by these models and then verified on basis of experiments. This approach
receives increasing interest in the plant science community during recent years as
documented in several chapters of this book. Due to the apparent complexity of
metabolism, compromise in the level of detail represented in mechanistic models is
unavoidable, i.e., by far not all cellular reactions may be represented. Also, mod-
els bridging several organizational levels are still in their infancy, i.e., metabolic
models often ignore genetic regulation or the dynamics of the metabolic network
during development. Therefore one has always to be aware of the limited validity
of this kind of modeling. In addition, the experimental component of this approach
can be quite demanding and not easily applicable to whole plants. For example, if
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metabolic flux is to be measured, issues like metabolic non-steady state or hetero-
geneous cell types in tissues may result in misleading results.

For many plant scientist, mathematical and computational procedures are a hur-
dle in applying mechanistic models to plant metabolism – and hopefully this book
is helpful to alleviate this problem.

1.2 Contents of the Book

The book can be divided into three parts: First an introductory chapter (Chapter 2),
relating to the unique complexity of plant metabolism. The following three chap-
ters describe how to analyze the components that make up the metabolic network,
metabolites, and enzymes. Finally, Chapters 6–11 are devoted to network analysis
and modeling.

1.2.1 Complexity of Plant Metabolism

Chapter 2 introduces the elucidation of metabolic pathways in plants, pointing out
the importance of model organisms. While plants are characterized by a complex
organization into different cell types as well as by subcellular compartments with
different metabolic activity, big parts of core plant metabolic pathways had been
revealed by using simple model organisms such as unicellular green algae. The
choice of such a uniform cell type, as an experimental system, was critical to eluci-
date the structure of key metabolic routes in sufficient detail. Therefore, the author
encourages plant scientists to keep using some of these model organisms in research
on plant metabolism.

The discovery of pathway/network structure in plants is far from being com-
pleted. Due to the complex organization of plant metabolism into different cell types
and subcellular compartments, transport processes and transport proteins are criti-
cal parts of plant metabolism and by far not all of them have been identified and
characterized yet. For some metabolic pathways, the particular steps are distributed
across several subcellular compartments and even across different cell types. Here,
highly selective metabolite transporters take part in the control of metabolism and
cross-talk between compartments. For example, the photorespiratory cycle and C4
photosynthesis are both highly compartmentalized pathways and have been long
described in textbooks. However, the transport between the organelles is not yet
understood in detail at the molecular level, and many of the transporters involved
have yet to be identified.

Chapter 2 goes on to show that another important but not well-studied issue in
the organization of plant metabolism is the association of enzymes in metabolons.
Metabolons are macromolecular complexes of enzymes in which metabolic inter-
mediates are passed on from the active site of one enzyme to the next. Metabolon
organization has been detected in plant glycolysis, in photorespiration, but is also
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supposed to be present in Calvin cycle and secondary metabolism [5]. Recogniz-
ing the importance of macromolecular associations of enzymes, it is clear that more
structural studies in enzyme proteins and protein complexes will be necessary.

The definition of metabolic networks is possible based on genomic information.
With lower cost and faster throughput in sequencing technology, the number of
plant genomes is rapidly increasing. The genome information basically contains all
the genes that make up the metabolic network. For the reconstruction of genome
scale metabolic networks, it is important to note that such methods do not permit
the assignment of functions to unknown genes. Here, the author predicts that that
integration of different omics data types will be helpful. The author predicts that
integration of multivariate datasets from different “omics” approaches might even-
tually permit the ab initio computational deduction of complex networks.

1.2.2 Measurement of Network Components

The second part of the book is devoted to the generation of data that quantify and
describe the components of metabolic networks – metabolites and the enzymes.

Chapter 3 gives an overview over experimental approaches and technologies that
can be used to measure, identify, and quantify the vast amount of metabolites found
in plants. While these technologies are constantly evolving, GC/MS with electron
impact ionization is probably still the mostly used technology in metabolic profil-
ing and metabolomics, due to instrumentation cost, well-established methods, and
readily available mass spectral libraries. To just mention recent technologies not
reviewed here: Mass spectrometric imaging approaches (see e.g., Zhang et al. [6])
may represent an important progress in the field. While classical metabolite profil-
ing always uses extraction and separation/analysis of whole tissues (global analy-
sis), these more recent developments may be key to resolve the metabolism of the
different cell types.

Chapter 4 introduces the kinetic properties of enzymes and the parameters that
describe them and are needed to model metabolic networks dynamically. The chap-
ter then goes on to put emphasis on recent advances in high throughput profiling of
total enzyme activities as well as of apparent kinetic constants in extracts of plant tis-
sues. The enzyme analysis platform described here approaches the high throughput
scale, which is very desirable and already routine in metabolomics, transcriptomics,
or proteomics.

In Chapter 5, the analysis of metabolite labeling in stable isotope labeling exper-
iments is reviewed in much detail. The resulting data are basis for 13C-based
metabolic flux analysis. Isotope tracers can be used to follow the metabolic fate
of specific atoms through the metabolic network and to determine mass flows. First,
procedures commonly used in plant flux analysis for extraction of plant tissue and
subsequent fractionation and derivatization of the labeled compounds are described.
Quantification of stable isotope label by nuclear magnetic resonance (NMR) is
reviewed with respect to one-dimensional and two-dimensional NMR techniques
that have been applied. In NMR, fractional enrichment (i.e., position-specific
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isotope enrichment) as well as isotopomer information can be obtained. Then the
often used analysis of label by gas chromatography/mass spectrometry (GC/MS) is
discussed. MS has the advantage of high sensitivity and accuracy and is in particular
powerful if different fragments of one molecule can be analyzed. Different aspects
of chromatographic separation, ionization, ion fragmentation, and detector proper-
ties are discussed, which are the basis for accurate quantification of isotope label.
Finally, the correction of mass spectrometric isotopomer data for the occurrence of
natural isotopes is laid out in detail.

1.2.3 Network Modeling and Analysis

The third part of the book is devoted to the analysis of metabolic networks with
different approaches from topological analysis via stoichiometric models to the
dynamic simulation of biochemical reactions.

The metabolome, the complete set of small-molecule metabolites, changes
its quantitative composition in response to different perturbations and stimuli.
Metabolomic data indicate functional relations between metabolites. Accordingly,
the processing and analysis of metabolomic data is reviewed in Chapter 6, where
also the challenge of integration of different “omics” data is highlighted.

In order to describe topological features of metabolic networks, graph-theoretical
mathematical approaches are reviewed in Chapter 7. Different properties like net-
work motifs and diverse centrality measures help to understand network structures
and to compare networks. The chapter also introduces various visualization tools
that can be used to analyze complex data generated by metabolite profiling or tran-
scriptomics. This includes mapping of such data on network structures. Specific
reference is given to dynamic visualization of data.

The subsequent three chapters are all related to constraint-based steady-state flux
analysis, which is based on the stoichiometries of biochemical reactions and on
reaction directionality/reversibility. In Chapter 8, stoichiometry-based models are
discussed, which allow to analyze and predict the theoretical flux capabilities of
metabolic networks. The chapter first introduces the fundamentals of stoichiometric
modeling. Then flux balance analysis (FBA) is introduced, which allows to predict
the usage of pathways under the assumption of a certain cellular objective, such
as maximal yield in biomass compounds. Different variants of flux balance anal-
ysis like minimization of metabolic adjustment (MOMA) and dynamic FBA are
well explained. While these approaches are based on reaction stoichiometry, some
information on reaction directionality has to be known as well. This and other ther-
modynamic considerations that are current limitations to the reliability of the stan-
dard FBA approach are given broad space in the chapter. Following this, extreme
pathway analysis and elementary mode analysis are introduced, and applications to
plant systems discussed. Finally, a section on genome scale models describes model
reconstruction based on genomic data. Besides the general problems of incomplete
genome annotation, gaps in pathways and dead-end metabolites require manual
refinement of the models. A problem specific to eukaryotic cells is the presence of
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subcellular compartments. This means that for each enzyme, the subcellular local-
ization has to be known as well as the transport proteins that connect the compart-
ments. In addition, to realistically simulate plants, the stoichiometry-based approach
has to be extended to specific cell types.

Chapter 9 is focused on the estimation of intracellular flux, based on stable
isotope-labeling experiments. The chapter relates in particular to the steady-state
labeling approach, i.e., interpretation of labeling pattern in metabolites after the dis-
tribution of isotope label has reached steady state. First, application of the method-
ology to plants and main insights gained from such studies on plant metabolism are
reviewed. Then the basic experimental setup of a steady-state labeling experiment
is described and important assumptions inherent to the experimental approach, such
as the approximation of metabolic and isotopic steady state, are discussed. Some
characteristic features of metabolic networks used in 13C-flux analysis are high-
lighted. Different approaches for the interpretation of labeling data and estimation
of fluxes are reviewed with detailed consideration given to the underlying basic rela-
tion between labeling signatures and flux. Computational aspects of flux analysis are
discussed with regards to the limits to the complexity of networks that can be ana-
lyzed, as well as related to the reliability of flux values obtained by flux-parameter
fitting. Finally, the software tools available for 13C-MFA are discussed.

In addition to the steady-state isotope labeling described in Chapter 9, Chapter
10 discusses the study of plant metabolic networks by dynamic flux analysis. The
mathematical formalism is introduced, and classical examples of dynamic label-
ing as well as most recent studies on secondary plant metabolism are discussed.
Dynamic flux analysis is built on the principle of the classical pulse-chase exper-
iment. After feeding a labeled precursor, labeling pattern in metabolites are mon-
itored in a time course. In difference to steady-state labeling, multiple samples of
the time course have to be analyzed, as well as intracellular metabolite concentra-
tions have to be measured. However, as discussed in detail in this chapter, dynamic
labeling allows to circumvent some of the shortcomings of steady-state flux anal-
ysis. Actually from the famous pioneer work of Calvin Bassham and Benson until
today, dynamic labeling has been proved to be a powerful tool in pathway discovery
in plants. Careful interpretation of labeling time courses can establish precursor–
product relationships.

Chapter 11 gives a basic introduction into kinetic modeling of plant metabolic
networks. Based on a literature example, the setup, simulation, validation, and use of
a kinetic model is explained. Also, metabolic control analysis (MCA) is addressed as
many studies use this approach of sensitivity analysis to characterize kinetic models.
This includes experimental MCA, which has regularly been applied to plants.
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Chapter 2
Definition of Plant Metabolic Networks

Andreas P.M. Weber

2.1 Plant Metabolic Networks – More Complex
than Anything Else?

To the best of the author’s knowledge, the answer to this question is yes. In part,
the enormous complexity of plant metabolic networks is due to the high degree of
compartmentation of plant cells. That is, plant cells, in contrast to other non-plant
eukaryotic cells, display a higher degree of compartmentation, with the chloroplast
being the most prominent compartment that is exclusive to plants. In addition to
having a higher degree of compartmentation, most higher plants are sessile and
thus cannot escape from biotic or abiotic stressors, which promoted the evolution
of a host of metabolic adaptations to the sessile lifestyle, including an impressive
range of secondary metabolites that are synthesized by plants to serve as defense
compounds against pathogen attack, as attractants for pollinators, and as protective
agents against abiotic stress.

In this chapter, I will discuss the impact of compartmentation of plant cells on
plant metabolic networks. Particular emphasis will be given to the use of unicellular
model systems for deciphering metabolic routes, to solute transport across intracel-
lular membranes, to the concept of metabolons and substrate channeling, and to the
role of chloroplasts in the plant metabolic network. The role of chloroplasts will
also be considered in the context of their evolution from cyanobacterial ancestors
through the process of endosymbiosis because this process is a prime example for
integration of two separate metabolic entities into one “super-organism” (i.e., the
first plant cell).

A.P.M. Weber (B)
Institute for Plant Biochemistry, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
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10 A.P.M. Weber

2.2 Keeping It Simple – Why Unicells Are Cool

From above said, it becomes clear that gaining a deeper understanding of the
metabolic networks in plant cells is not a trivial pursuit. The high degree of compart-
mentation, the uncertainty about which metabolites are transported across organellar
membranes, and a lack of knowledge about the kinetic constants of many metabo-
lite transporters and of subcellular metabolite concentrations hamper progress. In
photosynthetic tissues, rapid randomization of applied label hinders the application
of metabolic flux analysis that has been applied very successfully to eukaryotic and
prokaryotic unicells and in heterotrophic plant tissues, such as developing oil seeds.
As described in more detail later in this chapter, further obstacle comes from the fact
that, e.g., leaf tissue of land plants consists of multiple cells types, such as the epi-
dermis, vasculature, and photosynthetic mesophyll tissue, which is frequently multi-
layered and differentiated into spongy and palisade parenchyma cells. Hence, tissue
extracts always represent a mixture of metabolites and enzymes derived not only
from various cellular compartments but also from a variety of tissues, with very dif-
ferent metabolic and enzymatic capacities. Some of these issues can be addressed by
subcellular fractionation techniques, such as the non-aqueous fractionation of plant
tissues, which provides insights into subcellular metabolite concentrations, although
it does not distinguish between the individual cell types that are present in a typi-
cal leaf of a land plant. Biological imaging techniques, based on NMR, do provide
some information at cellular and subcellular level, but they are restricted to rela-
tively few metabolites, minerals, and water [84, 85, 139]. Laser-micro-dissection of
fixed tissues followed by microanalytic methods such as the analysis of secondary
metabolites in individual stone cells of Norway spruce [92] and single-cell sampling
techniques such as measurements of sugar concentrations of individual cells of cas-
tor bean hypocotyls [154] or amino acid analysis in leaf mesophyll cells (MC) [5]
is also providing additional insights.

Many of the abovementioned limitations do not apply to unicellular photosyn-
thetic organisms, such as algae, and the “compartmentation issue” can be addressed
by investigation of prokaryotic photosynthetic organisms, such as cyanobacteria
which are evolutionary connected to plastids and thus might serve as models for
plastid metabolism. A prime example for the dissection of a relatively complex
metabolic pathway in photosynthetic organisms is the reductive pentose phosphate
pathway, also known as the Calvin cycle. In series of milestone papers in the late
1940s and early 1950s, using unicellular algae such as Scenedesmus and Chlorella,
as well as land plant leaves, the path of carbon in photosynthesis was elucidated.
In a landmark paper, it was shown that the first labeled organic carbon compound
found in Scenedesmus cells that were allowed to photosynthesize in the presence
of labeled carbon dioxide for five seconds was phosphoglyceric acid and that the
first free carbohydrate to appear was sucrose [25]. To cite from the introduction of
this classical paper, “The ideal design of an experiment to determine the chemical
path of carbon from carbon dioxide to the variety of plant constituents is relatively
simple and straightforward. It would consist of feeding a photosynthesizing organ-
ism radioactive carbon dioxide for various lengths of time and stopping the reaction
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by killing the plant. By determining those compounds into which the radioactive
carbon has been incorporated for each period of illumination and, further, by deter-
mining the distribution of radioactivity within each compound, these data could then
be used to construct a family of curves depicting the increase in radioactivity in each
compound (and in each carbon atom of each compound) as a function of time. From
a complete set of such curves it should be possible to draw a map of the path of
carbon as it flows into the plant in the form of carbon dioxide and distributes itself
among all the plant constituents.” In the opinion of this author, there is no better
way of explaining the principle, hence the quotation. This paper goes on to sug-
gest that hexose phosphates (i.e., glucose 1-phosphate and fructose 6-phosphate),
not free glucose and fructose, are the precursors of sucrose and that sucrose phos-
phate might be an intermediate of sucrose biosynthesis. From quantitative analysis
of the amount and the kinetics of radiolabel incorporated into the hexose phosphate
pool and in the glucose and fructose moieties of sucrose, they estimated the size and
turnover of the hexose phosphate pool. In a later publication, the authors also show
that the sugar nucleotide UDP-glucose is likely involved in biosynthesis of sucrose
[24]. A key benefit of using unicellular algae for these studies was that it was possi-
ble to very rapidly stop metabolism after applying the label, thus allowing very rapid
kinetic studies of metabolism. Since the algae used in these experiments were kept
as cell suspension, label could be injected into the solution and the cells be killed
shortly after by dumping the suspension into boiling ethanol. Similar studies would
have been very difficult, if not impossible with leaf tissue of land plants. However,
other metabolic pathways in plant cells, such as sucrose biosynthesis from oil via
the glyoxylate cycle and gluconeogenesis [27, 86, 87], was unraveled by feeding
of radioactive tracers to land plant tissues, such as castor bean embryos. Unicellu-
lar algae have been used in numerous studies of plant metabolism, and in many
cases, metabolic pathways were first worked out using algae as model systems.
A specific example is the discovery of the biosynthesis of isoprenoids in plants
such as carotenoids, sterols and the prenyl-side chains of chlorophyll and plastochi-
none by the non-mevalonate pathway [131]. This study took advantage of the fact
that Scenedesmus obliquus cells can be grown heterotrophically on 13C-labeled glu-
cose or acetate, thus permitting the application of metabolic flux analysis, based on
isotopomer distribution obtained by 13C-NMR spectroscopy.

Not only eukaryotic photosynthetic systems have been used to decipher
metabolic pathways but also prokaryotic photosynthetic organisms have been used
as model systems. For example, the process of nitrogen fixation was for the first time
directly demonstrated to be localized in the heterocysts of the N-fixing cyanobac-
terium Anabaena cylindrica, using radioactive 13N that was generated by proton
bombardment of 13C powder in combination with micro-autoradiography [174].
This study also permitted some insights into kinetics and flux of fixed nitrogen out
of the heterocysts along the filament. In two follow-up papers, the same group used
13N-short-term labeling (1–120s) and pulse-chase experiments to unravel the path-
way of nitrogen metabolism after fixation [146, 175]. It was clearly shown that the
reaction sequence moved from production of ammonia from nitrogen gas to the for-
mation of glutamine and eventually glutamate. From simultaneous application of
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specific enzyme inhibitors, it was concluded that fixed nitrogen is metabolized by
glutamine synthetase/glutamate synthase pathway [175]. Photosynthetic prokary-
otic unicells, such as Synechocystis sp. PCC 6803, are currently being rediscov-
ered as model systems to study metabolic fluxes [133, 132]. Cyanobacteria, such as
Synechocystis, offer the advantage of having only one metabolically active compart-
ment, while the carbon fixation pathway is generally similar to that of higher plants.
The genome of Synechocystis is fully sequenced, thus permitting the reconstruction
of its metabolic network from its genomic sequence. Unfortunately, steady-state
metabolic flux analysis is not directly applicable to autotrophic photosynthetic
organisms because incorporation of labeled carbon in the form of 13C–CO2 will
eventually lead to uniform labeling of all carbon atoms, thus preventing the deduc-
tion of flux information from isotopomer analysis. However, transient metabolic
flux analysis, basically following the ideas put forward by Benson and Calvin (see
above), in combination with modern analytical techniques, reconstructed stoichio-
metric metabolic networks from genomic data, and mathematical modeling does
allow the deduction of fluxes in photoautotrophic organisms [133].

2.3 Connections Are Everything – Solute Transport
and Metabolic Networks

A fundamental property of metabolic networks in plants is the selective partition-
ing of organic metabolites among different organelles, cells, tissues, and organs.
This requires various transport mechanisms to accommodate the directional trans-
port of metabolites. Transporters participate in basic metabolism by partitioning
metabolites within and between cells, and they are essential for intermediate and
long-distance transport between tissues and organs, respectively. Plants assimilate
inorganic carbon and nitrogen into organic compounds required for plant growth;
a very large variety of metabolites are produced, and the anabolic and catabolic
pathways that they feed into are complex and interconnected. Metabolic pathways
are frequently partitioned between organelles, cells, or even tissues and organs.
Thus, intracellular and long-distance transport processes are critical for sustaining
biosynthesis, catabolism, and growth. Since transport processes potentially affect
the availability of substrates or products, they also represent critical sites at which
metabolism and growth can be regulated. Hence, transport processes in plants, in
particular the location and kinetic properties of transporters, are essential compo-
nents of metabolic networks since they frequently influence metabolic fluxes, as
well as partitioning of nutrients between growth and storage.

The high degree of compartmentation of plant cells and the distribution of many
metabolic pathways across several cellular compartments and, in some cases, even
different cell types requires massive flux of metabolic intermediates across cellu-
lar and organellar membranes. Since most small molecules in plant cells are not
membrane permeable, metabolite transporters are required to catalyze the transport
of metabolites across membranes. The compartmentation of metabolic pathways
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provides additional options for regulation, permits the simultaneous operation of
pathways that compete for the same substrates within the same cell, and they help
avoiding futile cycles. Metabolite transporters thus play critical roles in connecting
the parallel and interdependent biosynthetic and catabolic pathways and thus repre-
sent the integrating elements in these metabolic networks, similar to interchanges in
road networks. In vascular plants, long-distance transport is critical for the allocation
of organic carbon and nitrogen compounds from their sites of synthesis to develop-
ing or reproductive plant organs that rely on import of the organic compounds for
growth and development. Obviously, a plethora of multicompartment pathways and
long-distance transport processes could be reviewed here to illustrate the principles;
however, due to space constraints, only two specific examples, the photorespiratory
C2 oxidation cycle and the biochemical CO2 pump of C4 photosynthesis, will be
given.

2.3.1 The Photorespiratory C2 Oxidation Cycle – A Highly
Compartmentalized and Interconnected Metabolic Route

The photosynthetic carbon-assimilating enzyme ribulose bisphosphate carboxylase-
oxygenase (Rubisco) is a bifunctional enzyme. That is, it catalyzes both the pro-
ductive carboxylation and non-productive oxygenation of ribulose 1,5-bisphosphate
(RuBP) [20, 21, 111]. Oxygenation of RuBP leads to the production of one
molecule of 3-phosphoglycerate (3-PGA) and one molecule of the toxic interme-
diate 2-phosphoglycolate (2-PG), which enters the photorespiratory carbon cycle
(Fig. 2.1).

The detoxification of 2-PG and its recycling to 3-PGA occurs by the complex
photosynthetic carbon oxidation cycle [125, 150]. Because this pathway leads to the
consumption of oxygen (oxygenation of RuBP) and production of carbon dioxide
(during the recycling of 2-PG) in the light, it is also called photorespiration. The
specificity factor of the bifunctional enzyme Rubisco for the carboxylation reaction
versus the oxygenation reaction is in the range of 80–100 for most land plants [137].

Fig. 2.1 Oxygenation reaction (+ O2) and carboxylation (+ CO2) reactions of Rubisco. A ratio of
carboxylation to oxygenation reaction of Rubisco of 75:25 is commonly observed in C3-type land
plants
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Under current atmospheric conditions, this leads to a carboxylation-to-oxygenation
ratio of approximately 3:1. Hence, in C3 plants, the rate of photorespiration would
be 25% of the rate of gross CO2 assimilation. These rates have been confirmed
by short-term labeling studies of the intermediates glycolate, glycine, and serine
with 18O2 [38], by using 13CO2 and mass spectrometry to determine CO2 fluxes
under conditions of steady-state photosynthesis [62], and from the post-illumination
photorespiratory CO2 burst [89].

2-Phosphoglycolate, one of the products of the oxygenation reaction of Rubsico,
cannot be further metabolized inside the chloroplast stroma but must undergo a
complex and highly compartmentalized reaction pathway in which two molecules
of 2-PG are converted into one molecule of 3-PGA. This pathway minimizes the
loss of fixed CO2 and prevents the depletion of intermediates from the Calvin cycle,
since 75% of the carbon of 2-PG is recycled in the photorespiratory pathway to yield
3-PGA, while 25% of the carbon is released in the form of CO2 (Fig. 2.2).

The photorespiratory pathway represents a coordinated network consisting of
14 soluble enzymes that have been compartimentalized between chloroplasts, leaf
peroxisomes, mitochondria, and cytoplasm and at least 12 transmembrane transport
steps that connect the compartments (Fig. 2.3).

The photorespiratory carbon cycle is initiated in the chloroplast stroma by
dephosphorylation of 2-phosphoglycolate, a reaction that is catalyzed by phospho-
glycolate phosphatase (PGP). The resulting glycolate leaves the chloroplast by a
glycolate/glycerate antiporter [69, 70, 179] and is taken up into the peroxisomes
by an unknown transporter. Inside the peroxisomal matrix, glycolate is oxidized to
glyoxylate by FMN-dependent glycolate oxidase, which catalyzes the transfer of
two electrons from glycolate to O2, yielding hydrogen peroxide (H2O2). Glyoxy-
late is transaminated to glycine by two aminotransferases – serine:glyoxylate and
glutamate:glyoxylate aminotransferase (SGT and GGT, respectively [73, 93, 122].
Glycine then leaves the peroxisomes by an unknown transporter and is taken up into
the mitochondria by a glycine/serine transporter [37, 36, 180]. In the mitochondrial
matrix, two molecules of glycine are converted to CO2, NH3, NADH, and serine
by the concerted actions of glycine dehydrogenase [114] and serine hydroxymethyl
transferase [156]. Serine leaves the mitochondria, likely by the same transporter
that also catalyzes the import of glycine, and is taken up into the peroxisomes,
where the amino group of serine is removed by SGT, yielding hydroxypyruvate
which is subsequently reduced to glycerate in a reaction consuming NADH by

Fig. 2.2 Summary view of
the photorespiratory carbon
oxidation cycle
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Fig. 2.3 Schematic representation of the photorespiratory carbon oxidation cycle. Please note that
the redox shuttles connecting the NADH/NAD pools of mitochondria, cytoplasm, and peroxisomes
via the respective isoforms of malate dehydrogenase are not shown for the sake of clarity

hydroxypyruvate reductase (HPR) [151, 181]. It has to be noted, though, that an
alternative (NADPH-dependent) pathway for the reduction of hydroxypyruvate to
glycerate apparently exists in the cytoplasm [81, 82]. Also, barley mutants defi-
cient in peroxisomal HPR [107] do not display the characteristic conditional lethal
phenotype at ambient CO2 displayed by mutants deficient in other enzymes of the
photorespiratory pathway [125], thus supporting the notion that a bypass exists for
the reaction catalyzed by peroxisomal NADH-HPR. Glycerate, resulting from the
reduction of hydroxypyruvate, is taken up into the chloroplast stroma by above-
mentioned glycolate/glycerate transporter, where it is phosphorylated by stromal
glycerate kinase in an ATP-dependent reaction to yield 3-PGA [14]. 3-PGA enters
the Calvin cycle, thus completing the photorespiratory carbon cycle.

Although photorespiration represents one the major carbon fluxes in photosyn-
thetic tissues of C3 plants, many aspects related to this pathway, such as its regu-
lation and its impact on the interaction between carbon and nitrogen metabolism
are not understood [94, 160, 165]. Particularly scarce is our knowledge about the
transport of photorespiratory intermediates across the membrane(s) of the three
participating organelles. To date, only two metabolite transporters involved in
photorespiration have been identified at the molecular level; i.e., the plastidic 2-
oxoglutarate/malate and glutamate/malate translocators (DiT1 and DiT2, respec-
tively) [124, 130, 160, 161].
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2.3.2 The Biochemical CO2 Pump of C4 Photosynthesis – Share of
Labor Between Two Cell Types Causing Massive Flux of
Metabolic Intermediates

A dramatic rise of atmospheric oxygen levels and a concomitant decline of the CO2

levels, approximately 300 million years ago, as a consequence of oxygenic photo-
synthesis and (bio-) geochemical processes [9, 10, 34, 127], increased the selective
pressure on photosynthetic organisms to evolve carbon-concentrating mechanisms
(CCM), in order to minimize the oxygenase activity of Rubisco and to thus decrease
the rate of photorespiration. Whereas many cyanobacteria and algae have evolved
highly efficient single-cell carbon-concentrating mechanisms [7, 147], some terres-
trial plants and few aquatic plants have evolved the process of C4 photosynthesis
[44, 58, 60, 61, 75, 120]. Because the carbon-concentrating mechanism of C4 plants
alleviates the CO2 limitation of photosynthesis that occurs in C3 plants at high tem-
perature due to the relative acceleration of the oxygenation reaction with increasing
temperature, C4 photosynthesis is more efficient in warmer climates or under con-
ditions of drought and salinity. In addition to a higher carbon-use efficiency, many
C4-type plants also have higher nitrogen use efficiency than C3-type plants [110].

Since the discovery of C4 photosynthesis in the 1960s, much has been learned
about the physiological, biochemical, and anatomical features associated with this
mode of photosynthesis. Until recently, it was believed that a distinct anatomical
feature, called the Kranz anatomy, is required for C4 photosynthesis. Kranz is the
German word for wreath – a “wreath” of chloroplast-containing mesophyll cells
surrounds a layer of chloroplast-containing bundle sheath cells (BSC) that in turn
form a second “wreath” around the vascular bundle. The recent discovery of single-
cell C4 photosynthesis in several Chenopodiaceae species demonstrated that Kranz
anatomy is not essential for C4 photosynthesis [43, 157, 158]. The unifying princi-
ple of single-cell and dual-cell (i.e., Kranz anatomy) C4 photosynthesis is compart-
mentation – either within a single cell or between two specialized cell types. In the
following, we will focus on dual-cell C4 plants.

Common to all C4 (and CAM) plants is that CO2 (in the form of HCO3
–) is

initially fixed by PEP carboxylase (PEPC):

PEP + HCO −
3 → OAA + Pi

This reaction happens in the cytosol of the mesophyll cells. The further fate of OAA
differs between the three biochemical variants (NADP+-malic enzyme type, NAD+-
malic enzyme type, PEP carboxykinase type) of the C4 pathway. In this review, we
will focus on the NADP+-malic enzyme type plant maize; the other two variants
will not be discussed.

In maize, OAA is taken up into mesophyll cell chloroplasts, reduced to malate
by NADP+-malate dehydrogenase (MDH); malate is subsequently transported back
to the mesophyll cell cytosol. Malate is then transported to the bundle sheath cell
chloroplasts, where it is decarboxylated and oxidized, yielding pyruvate, NADPH,
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and CO2. The liberated CO2 is refixed by Rubisco. The decarboxylation product,
pyruvate, is transported back to the mesophyll cells, taken up into mesophyll cell
chloroplasts, and phosphorylated to regenerate the CO2 acceptor PEP by pyruvate
phosphate dikinase (PPDK). Finally, PEP is exported to the mesophyll cytosol to
serve as CO2 acceptor. Simplified, malate generated from PEP can be considered as
a bucket for CO2, and a bucket chain of metabolites shuffles CO2 from mesophyll
cells to bundle sheath cells. In addition, malate also serves as a vehicle for the trans-
port of redox equivalents from mesophyll to bundle sheath cell chloroplasts. The
transport processes involved in the C4-CCM are summarized in Fig. 2.4.

The plastidic electron transfer chain in bundle sheath cell plastids is limited to
photosystem I, thus abolishing photosynthetic O2 production in these cells. The
enrichment of CO2 by malate decarboxylation and minimization of O2 allows pho-
tosynthesis to proceed more efficiently because the oxygenation reaction of Rubisco
is minimized due to high CO2 and low O2 partial pressures.

CO2 fixation by Rubisco in bundle sheath cells yields two molecules of phospho-
glycerate (3-PGA). The reduction of two 3-PGA to two triose phosphates requires
two NADPH. However, the oxidative decarboxylation of one malate yields only
one NADPH (and linear electron transport is insignificant in bundle sheath cells),
hence one molecule of 3-PGA has to be exported to the MC plastids where it can be
reduced to triosephosphate (TP). Two thirds of the generated triosephosphate then
need to be re-exported to bundle sheath plastids for regeneration of ribulose-1,5-
bisphosphate; the remainder can be exported as sucrose to sink tissues.

From above-said, it becomes obvious that C4 photosynthesis is dependent on the
exchange of malate, oxaloacetate, pyruvate, 3-PGA, and triosephosphate between

Fig. 2.4 Simplified, schematic representation of transport steps involved in the NADP+-malic
enzyme type C4 carbon-concentrating mechanism
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mesophyll and bundle sheath cells and their plastids. It has been hypothesized that
symplastic diffusion relying on a concentration gradient accounts for the flux between
both cell types. Stitt and Heldt found that gradients for 3-PGA, triosephosphate, and
malate were steep enough to drive the required metabolite fluxes between meso-
phyll and bundle sheath cells [140]. The gradient for pyruvate, however, was min-
imal and even opposing the direction of transfer. It was proposed that pyruvate could
be sequestered to a cellular compartment, most likely the plastids, thereby decreas-
ing the cytosolic concentration and thus generating a concentration gradient between
BSC and MC [140]. Weiner and Heldt later determined the subcellular metabolite
concentrations and largely corroborated the earlier results [170]. When modeling C4

photosynthesis, Laisk and Edwards assumed gradients for malate, pyruvate, 3-PGA,
and triosephosphate although a gradient for pyruvate was never directly demonstrated
[88]. This is likely the reason why the model was not affected by including active pyru-
vate uptake into plastids. The Laisk–Edwards model succeeds in reproducing data and
trends generated earlier by Leegood and von Caemmerer [90]. The maximum carbon
(C) fixation rate in their model is 55 μmol C per m2 leaf area and second, well within
the range of experimentally determined values. Maximal carbon fixation capacity
may vary between leaf samples as do malate concentrations and transport rates. The
enrichment of CO2 in bundle sheath cells is dependent on overcycling, a higher fix-
ation rate in the MC as compared to the BSC. Overcycling has been calculated and
estimated experimentally to be about 10%. A fixation rate of 55 μmol/m2s and over-
cycling of 10% thus requires a metabolite flow of ∼60 μmol/m2s: (1) OAA, pyruvate,
and 3-PGA into mesophyll plastids; malate, PEP, and triosephosphate out of meso-
phyll plastids; (2) malate and triosephosphate into bundle sheath plastids; pyruvate
and 3-PGA out of bundle sheath plastids. These fluxes are well above those needed
to sustain C3 photosynthesis. As a specific example, the phosphate/triosephosphate
translocator (TPT), which is the most abundant protein in C3 plant plastid envelopes
accounting for as much as 10–15% of total envelope protein, catalyzes a maximum
flux of 5 μmol substrate/m2s [48, 49, 54] and TPT limits maximal photosynthetic
capacity in C3 plants [63, 64]. Hence, it is reasonable to hypothesize that transporters
involved in C4 photosynthesis are likely very abundant proteins.

The transporters catalyzing the flux of C4 photosynthetic intermediates are
mostly unknown. Intercellular transport is likely driven by diffusion [140, 170];
thus, there are no apparent requirements for specific transporters at the plasma mem-
brane. In addition, mesophyll and bundle sheath cells in C4 species are connected
by an unusually high number of plasmodesmata.

The intracellular transport of triose phosphate and 3-PGA into and out of plas-
tids is thought to occur via the triose phosphate/phosphate translocator (TPT). This
transporter has initially been characterized from spinach [50] and was subsequently
found in all plant species that fix carbon, including maize [113]. TPT catalyzes the
strict counter-exchange of triose phosphate with 3-PGA or inorganic phosphate.

A PEP/phosphate translocator (PPT) from maize has been demonstrated in iso-
lated maize chloroplasts by Huber and Edwards [72]. A gene encoding a PPT
from maize was characterized later [47]. This gene is highly expressed in maize
endosperm but transcript abundance was very low in leaves [47], making it unlikely
that this particular transporter is involved in the high flux of PEP in the C4 pathway.
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After PEP is exported, OAA is formed by PEPC. OAA levels in maize are too
low to be measured, indicating a very rapid conversion of OAA to malate, which can
accumulate in considerable amounts. As MDH is localized in plastids, OAA needs
to be imported efficiently. Hatch and colleagues have described a high-affinity OAA
transporter (OAT) with a Km for OAA in the range of 0.05–0.07 mM and a corre-
sponding Ki for malate of about 7 mM [59]. The Vmax was very high in C4 plastids
of maize compared to C3 plastids from spinach, although Km and Ki values were
similar, indicating that the transporter protein is much more abundant in C4 plants.
We and others have recently demonstrated that the plastidic 2-oxoglutarate/malate
translocator DiT1 is able to characterize the specific counter-exchange of OAA with
malate [124, 141, 142, 160]. However, the Ki values for malate determined with
recombinant DiT1 from maize and spinach are one order of magnitude higher than
those determined by Hatch et al. for the OAT, hence DiT1 might not be identical
with the OAT that was characterized by Hatch et al. [124, 142].

The export of malate from mesophyll plastids occurs in counter-exchange with
oxaloacetate by OAT [59]. However, the malate importer of bundle sheath plastids
has not been characterized biochemically or at molecular level to date. For meso-
phyll cells, a 1:1 stoichiometry for the exchange of malate with OAA fits with the
biochemistry of the pathway; however, in bundle sheath cells, for one malate that
goes in, one pyruvate goes out. It is thus reasonable to hypothesize the presence of
a malate/pyruvate exchanger in bundle sheath chloroplasts of maize. Alternatively,
two distinct uniporters could be posited – one that catalyzes the uptake of malate
into chloroplasts, and a second one that exports pyruvate.

Pyruvate transport has been characterized in isolated maize mesophyll cell plas-
tids by Huber and Edwards [71]. Later, Flügge et al. analyzed pyruvate uptake into
maize leaf plastids and found that the uptake of pyruvate is protein dependent and
also dependent on the proton gradient across the inner envelope membrane gener-
ated by light [55]. Kanai’s group, however, has reported that pyruvate transport, in
some C4 species, is dependent on a sodium gradient [4]. The transport rates of both
OAA and pyruvate were calculated and are sufficient to account for the metabolite
fluxes during maize photosynthesis [55, 59].

In summary, the transport of 3-PGA and triose phosphates can be accounted for
by ZmTPT which is present in large amounts in maize leaf plastids. OAA uptake
and pyruvate uptake transporter have been characterized on the biochemical level
but their molecular nature is unknown to date. The malate import system of bundle
sheath plastids is unknown. A PEP transporter from maize has been reported but its
expression pattern argues against a role in C4 photosynthesis. Overall, most plastidic
transporters involved in C4 photosynthesis are not known at the molecular level.

2.4 Sticking Together – Metabolons and Metabolic Channeling

Compartmentation and distribution of pathways across several cellular organelles
is not the only obstacle for constructing networks of plant metabolism. Frequently,
several enzymes catalyzing consecutive steps of a multistep pathway are organized
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as macromolecular complexes in which metabolic intermediates are passed on from
the active site of one enzyme to the next in the cascade, without ever reaching the
bulk aqueous phase of the cell. This process is called metabolic or substrate chan-
neling, and the macromolecular complexes formed by soluble enzymes and other
polypeptides, such as transporters or scaffolding proteins, are commonly termed
“metabolons”; the concept metabolic channeling is not restricted to multienzyme
complexes, but it can also occur between different cells or between cellular com-
partments [77, 172]. While the concept of metabolic channeling is discussed in the
literature for half a decade now, the term metabolon is a relatively new one and was
originally applied to enzymes of the citric acid cycle that form interactions with the
inner mitochondrial matrix [138]. In slightly damaged (permeabilized) mitochon-
dria, these particles show, in comparison to solubilized enzymes, kinetic advantage
in converting malate to citrate and in fumarate oxidation [138].

Metabolic channeling is particularly interesting from the perspective of cellu-
lar compartmentation. The association of enzymes with macromolecular complexes
forms “micro-compartments” within cellular compartments, thus allowing sub-
strates and intermediates to be isolated from the surrounding “macro-compartment”
[136]. Hence, distinct pools of metabolites can exist in parallel within the same
compartment, thus increasing local substrate concentrations above bulk-phase sub-
strate concentrations and thereby permitting high metabolic rates with low overall
bulk concentrations of substrates and intermediates [136]. Also, metabolic interme-
diates are secluded from competing enzymatic reactions; unstable intermediates are
protected; and the release of toxic intermediates to the bulk phase is prevented. A
further advantage of metabolic channeling is the increased potential for metabolic
regulation by (reversible or temporary) association of enzymes with complexes,
which is of particular importance in plant secondary metabolism [2, 76, 77, 172].
It also has been proposed that metabolic channeling and the organization of prim-
itive metabolites and catalysts into ordered metabolic complexes predated the evo-
lution of cells and that cellular life originated from those ordered metabolic com-
plexes [45]. From the perspective of kinetic modeling of metabolic networks, the
organization of metabolism into metabolons is problematic, since kinetic constants
determined in vitro with purified enzymes cannot be applied to the in vivo situa-
tion. However, metabolons, such as the glycolytic subcompartment in heart mus-
cle cells, have been included in mathematical multicompartment models of cardiac
metabolism, and it has been demonstrated that the model accurately predicted exper-
imental observations, such as rapid activation of glycolysis and lactate production
at the onset of ischemia [182].

2.4.1 Substrate Channeling and Membrane Transport

Metabolic channeling is not exclusive to reactions catalyzed by soluble enzymes,
such as steps of arginine biosynthesis [1], cysteine biosynthesis [13], or the degra-
dation of branched-chain amino acids [74]. Also, membrane transport steps can
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be involved in the formation of metabolons and association of membrane trans-
porters with soluble enzymes. For example, it was shown that in red blood cells,
the Cl–/HCO3

– anion exchanger forms an interaction with carbonic anhydrase via
binding of carbonic anhydrase II (CAII) to an acidic motif of the transporter’s C-
terminus [123]. Carbonic anhydrase is thus positioned in close proximity to the
cytosolic domains of the transporter, allowing for efficient hydration of CO2 to
HCO3

– directly at the site of bicarbonate transport. It was shown that attachment
of CAII to the transporter accelerates the transport activity by either producing or
consuming bicarbonate, depending on the direction of transport [102]. Association
of carbonic anhydrase with the bicarbonate transporter and the proton antiporter
NHE1 was also demonstrated in renal tissues, and it was shown that the presence of
two distinct carbonic anhydrase isoforms on the cis and trans sites of the renal mem-
brane, respectively, provides the “push” and “pull” for bicarbonate transport [119].
Also, the activity of the monocarboxylate transporter MCT1 is increased when co-
expressed with carbonic anhydrase in Xenopus oocytes [8]. Another example for the
association of metabolic enzymes with a membrane transporter is the association of
hexokinase with the voltage-gated anion channel (VDAC) of the mitochondrial outer
membrane. Binding of hexokinase to the mitochondrial VDAC is associated with
changes in VDAC structure and in interaction with the adenine nucleotide trans-
porter (ANT) in the inner mitochondrial membrane [159]. Association of hexoki-
nase with VDAC prevents apoptosis by preventing the formation of a mitochondrial
transition pore consisting of VDAC and ANT working as a uniporter [6, 11]. Asso-
ciation of hexokinase with mitochondria was also recently shown for Arabidopsis
[35]; it was previously shown that hexokinase can be associated with the chloro-
plast outer envelope membrane [171]. Not only hexokinase but also other glycolytic
enzymes such as enolase are tightly associated with the outer mitochondrial mem-
brane in yeast [22] and Arabidopsis [57]. In Arabidopsis, 7 of the 10 glycolytic
enzymes were found by proteomics in the mitochondrial outer membrane fraction,
and it was shown that the entire glycolytic pathway is associated with mitochondria
by enzymatic activity assays [57]. Tracer analysis using 13C-glucose demonstrated
that isolated, purified mitochondria were able to convert glucose into intermediates
of the tricarboxylic acid cycle, providing further evidence for the association of gly-
colysis with the mitochondrial surface [57]. In yeast, it was shown that enolase is
part of a large macromolecular complex that contains glycolytic enzymes, metabo-
lite transporters of the mitochondrial carrier family, and enzymes of the TCA cycle
[57].

2.4.2 Metabolic Channeling in Photorespiratory Metabolism
in Peroxisomes

A particular good example for metabolic channeling and organization of multiple
enzymes as a metabolon represents the arrangement of enzymes of the photores-
piratory C2 oxidation pathway (photorespiration) in leaf peroxisomes [68, 125].
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The membrane surrounding intact isolated peroxisomes can be ruptured by incuba-
tion of peroxisomes in hypo-osmotic buffer (osmotic shock). However, the latency
of peroxisomal photorespiratory enzymes before and after osmotic shock remains
remarkably similar, indicating the organization of these enzymes in a multimeric,
macromolecular complex [68]. This assumption was supported by the observation
that matrix enzymes of osmotically shocked peroxisomes remained largely associ-
ated in the form of matrix particles that could be sedimented at low centrifugal force
and that were only slightly smaller in size than intact leaf peroxisomes.

When isolated, peroxisomes were supplemented with intermediates of the pho-
torespiratory pathway, such as glycolate, serine, glutamate, and malate at phys-
iological concentrations [65, 173], and the kinetics of glycolate formation was
measured – immediate glycerate formation without any apparent lag phase was
observed. Glycerate formation started at a constant rate immediately when using
either intact or osmotically shocked leaf peroxisomes [67, 68]. This indicates that
the reaction intermediates were efficiently channeled from one peroxisomal enzyme
to the next in the reaction sequence without the release of intermediates, even in the
absence of an intact peroxisomal membrane. It was indeed demonstrated that pho-
torespiratory intermediates, such as glyoxylate, H2O2, and hydroxypyruvate, were
not released during in vitro glycolate oxidation by osmotically shocked organelles.
Apparently, compartmentalization of the photorespiratory C2 cycle of leaf perox-
isomes is not dependent on a membrane surrounding the peroxisomes but on the
arrangement of the corresponding enzymes in a multimeric macromolecular com-
plex [67, 68]. The organization of peroxisomal enzymes in a metabolon prevents the
release of detrimental membrane-permeable photorespiratory intermediates such as
the strong oxidant H2O2 and the weak acid glyoxylate, which are strong inhibitors
of thioredoxin-activated enzymes, such as Rubisco and stromal fructose bisphos-
phatase and sedoheptulose bisphosphatase [26, 33, 51] from the peroxisomal matrix.
Metabolic channeling further increases the flux of metabolites through the pathway
and thus maximizes the rate of glycolate conversion and return of otherwise lost
carbon to the Calvin cycle.

2.5 Plastids – Plant-Specific Organelles with a Multitude
of Functions

What sets plants (i.e., land plants and algae) apart from all other eukaryotes is the
presence of plastids in plant cells, semi-autonomous organelles of endosymbiotic
origin that are bounded by two membranes, the inner and outer plastid envelope
membranes . Plastids, the defining organelle of all photosynthetic eukaryotes, play
essential roles in plants, being the site of photosynthesis and a plethora of other
essential metabolic pathways, and they represent one of the major hubs in plant
metabolic networks. Plastid function is also closely linked to that of other cellu-
lar compartments, with the majority of its proteins being encoded by the nuclear
genome and imported into plastids after translation in the cytosol. The metabolism
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of plastids is heavily intertwined and connected with that of the surrounding cytosol,
thus causing massive traffic of metabolic precursors, intermediates, and products
between the plastid and the cytosol [162, 164, 168]. Understanding the transport of
metabolites between plastid and cytosol is of crucial importance for understanding
plant metabolic networks [164, 167]; we will thus discuss the evolutionary context
of establishing metabolic connections between plastid and cytosol.

2.5.1 Endosymbiotic Origin of Chloroplasts and Its Relation
to Metabolic Networks

When discussing the role of plastids in plant cells, it is important to consider their
evolutionary origin – the first plant cell (also called the protoalga) has evolved only
after the basic architecture that is common to all eukaryotic cells, including the
presence of mitochondria, nucleus, and endomembrane system, had already been
established. Approximately 1.5– 2 billion years ago, a primitive eukaryotic unicell
engulfed a free-living photosynthetic cyanobacterium, and this engulfed cyanobac-
terium eventually evolved into a novel organelle, the plastid [12, 97, 98, 103, 126,
129]. This plastid-containing protoalga gave rise to the three photosynthetic eukary-
otic lineages containing primary plastids (i.e., the archaeplastida [3]) – the red and
green algae and the glaucocystophytes [12]. The two envelope membranes, bound-
ing modern plastids, are relics of this evolutionary history – while the inner envelope
membrane is believed to have evolved from the cyanobacterial plasma membrane,
the outer envelope membrane is a chimera between bacterial outer membrane and
host membrane, likely a food vacuole derived from the endomembrane system [30,
28]. While the inner leaflet of the lipid bilayer of the outer chloroplast envelope
membrane consists mostly of lipids with bacterial origin, the outer leaflet has a lipid
composition that resembles the ER membrane [39–42]. Whereas the plastids of the
archaeplastida are of monophyletic origin, the additional photosynthetic eukaryotes
evolved by secondary endosymbiosis – a process that happened multiple times dur-
ing which the primary-plastid-containing red or green algae were engulfed by other
eukaryotic cells and subsequently reduced to secondary plastids that are enveloped
by three to four membranes [29, 91, 177, 178].

Why is this important when talking about metabolic networks? It is important
because (a) the cyanobacterium introduced an entirely novel metabolic capacity
into eukaryotic cells, the process of oxygenic photosynthesis, and (b) establish-
ment of the plastid was accompanied by massive gene transfer from the cyanobacte-
rial genome to the host nucleus by endosymbiotic gene transfer, which contributed
approximately 3,000 additional genes to the genome of the newly evolving organ-
ism, thus providing a rich source of genetic material for the evolution of novel
metabolic functions [99–101, 148]. Amongst many other requirements, such as
the evolution of genome–plastome coordination and a protein translocation appa-
ratus, the merger of two free-living organisms into one necessitates the integration
and coordination of two previously independent metabolic entities, i.e., a photoau-
totrophic primary producer and a heterotrophic organism [166].
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2.5.2 A Crucial First Step in Establishing Chloroplast–Cytoplasm
Metabolic Connection – Evolution of the Triose
Phosphate/Phosphate Translocator

Apparently, establishing a metabolic connection between host and endosymbiont is
not a trivial process since it requires the establishment of mechanisms for the con-
trolled exchange of metabolic precursors, intermediates, and end products between
two previously free-living organisms, i.e., plastid and host. Very likely, of particular
importance was the export of photosynthetically assimilated organic carbon com-
pounds from the evolving plastid to the host organism [126, 166]. Controlled export
of carbon from the plastid to the host is very important in this context, because con-
tinued operation of the reductive pentose phosphate pathway (i.e., the Calvin cycle)
in the plastid is only possible if the withdrawal of Calvin cycle intermediates from
the plastid occurs at a rate that is equal to or lower than the rate of net CO2 assim-
ilation, otherwise the cycle would cease operation. Hence, a feedback mechanism
is required that ensures controlled release of photoassimilates from the chloroplast.
Triose phosphates not required for the regeneration of the CO2 acceptor Ru-1,5-bP
represent the first important branch point in the allocation of recently assimilated
carbon dioxide to different metabolic routes. They can either remain inside the
chloroplast to enter plastid-localized metabolic pathways or be exported to the
cytosol [145, 163]. It is long known that in land plants, the export of the triose phos-
phates GAP and DAP to the cytosol is mediated by a triose phosphate/phosphate
antiporter [49]. This antiporter catalyzes the strict counter-exchange of one molecule
of triosephosphate (TP) with one molecule of orthophosphate (Pi); that is, for each
molecule of organically bound phosphate that leaves the chloroplast in the form
of triosephosphate, one molecule of inorganic phosphate is returned to the chloro-
plast, thus avoiding phosphate depletion of the chloroplast stroma [48, 53, 66]. The
strict stoichiometry of the counter-exchange is essential for maintaining phosphate
homeostasis in the stroma, since inorganic phosphate is required for the biosyn-
thesis of ATP from ADP and Pi in the light reaction of photosynthesis. Depletion
of the plastidial phosphate pool by unbalanced export of phosphate in the form of
triose phosphates would lead to inhibition of photosynthetic electron transport and
ultimately to damage of the photosynthetic machinery.

It was recently shown that controlled export of reduced carbon from chloroplasts
is catalyzed by a triosephosphate/phosphate antiporter not only in green land plants
but in all photosynthetic eukaryotes for which genome or comprehensive expressed
sequence tag information is available, including photosynthetic organisms contain-
ing secondary plastids, such as diatoms and dinoflagellates [166]. Apparently, the
antiport mechanism of the triosephosphate/phosphate translocator is ideally suited
to connect metabolic pathways in separate compartments because the withdrawal of
a metabolite from one compartment is always strictly coupled with the availability
of a suitable counter-exchange substrate in the other compartment. This also allows
for flexible adaptation to changing metabolic requirements; that is, the direction of
transport is only dependent on substrate concentrations on cis and trans side of the
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membrane, and the direction of metabolite flux is thus largely directed by enzymatic
activities on both sides of the membrane [166].

Considering the situation of a free-living, coccal cyanobacterium, the presence
of a triosephosphate/phosphate antiporter in its plasma membrane would very likely
have been detrimental because it would have allowed for the efflux of triose phos-
phates from the cyanobacterium in the presence of suitable external concentra-
tions of orthophosphate. It is thus reasonable to hypothesize that the triosephos-
phate/phosphate antiporter was not introduced by endosymbiotic gene transfer
from the cyanobacterium, but it was derived from a pre-existing host protein that
was directed to the cyanobacterial plasma membrane (now the inner plastid enve-
lope membrane) after the endosymbiont had entered the host cell. This hypoth-
esis was recently tested by phylogenomic and phylogenetic analysis of genomic
and EST-sequence data from a broad range of organisms. It was shown that the
plastidial triosephosphate/phosphate translocators evolved from transport proteins
of the eukaryotic endomembrane system, specifically from sugar nucleotide trans-
porters of the ER and Golgi membranes [166]. These sugar nucleotide transporters
are ubiquitous in eukaryotes but absent from prokaryotes and thus likely represent a
eukaryote-specific evolutionary innovation. Possibly, the food vacuole that initially
engulfed the cyanobacterium was derived from the host endomembrane system and
eventually fused with the bacterial outer membrane to become the outer plastid enve-
lope membrane. A metabolite transporter originally residing in the host endomem-
brane system was then routed on to the bacterial plasma membrane (i.e., the plastid
inner envelope membrane) and thus enabled the host to tap into the photosynthetic
carbon pool of the endosymbiont. This hypothetic but nevertheless reasonable sce-
nario must have happened very early in plastid evolution because genes encoding
members of the plastidic phosphate translocator family have been detected in the
genomes of all sequenced photosynthetic eukaryotes, including red algae, green
algae, land plants, and photosynthetic organisms containing complex plastids, such
as diatoms and dinoflagellates [166]. In other words, plastidic phosphate transloca-
tors have already evolved at the stage of the protoalga, clearly before the split of the
red and green plant lineages.

In land plants, plastidial phosphate translocators can be classified into four
distinct groups with distinctive substrate specificities, namely the triosephos-
phate/phosphate translocators (TPT), the phosphoenolpyruvate/phosphate translo-
cators (PPT), the glucose 6-phosphate/phosphate translocators (GPT), and the
xylose 5-phosphate/phosphate translocators (XPT) (see [52, 83] for detailed reviews
of substrate specificities and kinetic constants). At least three of the subgroups have
evolved very early on: genes encoding proteins belonging to the TPT and PPT fam-
ilies can be clearly detected in the genomes of ancient red microalgae, as well as
in green plants, meaning these proteins have evolved before the split of the red and
green lineages. The situation is less clear for the GPT/XPT clade. Proteins belonging
to this clade can be detected in red algae, but based on phylogenetic analysis, it is
difficult to decide whether they actually represent functional GPTs or XPTs; exper-
imental analysis of their substrate specificity will be required. Nevertheless, clearly
three distinct clades of plastidial PTs are already established in basic red algae.
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Interestingly, the TPT of red algae, in contrast to that of land plants, has a
more narrow substrate specificity. Whereas the protein from land plants is able
to exchange orthophosphate (Pi) for triose phosphates (i.e., glyceraldehyde 3-
phosphate and dihydroxyacetone phosphate) and 3-phosphoglyceric acid (3-PGA),
its red algal paralog does not accept 3-PGA as counter-exchange substrate for either
triose phosphates or Pi (unpublished results, M. Linka and A.P.M. Weber). Thus,
other than the green plant protein, the red algal protein is not able to serve as a redox
shuttle between plastid stroma and cytoplasm by exchanging TPs for 3-PGA. Since
red algae, in contrast to green plants, do not store starch in the chloroplast stroma but
in the cytosol, red algae do not have the option of depositing recently assimilated
carbon inside the chloroplast as transitory starch; hence, most of the assimilated
carbon has to be efficiently exported from the chloroplast in the form of triose phos-
phates to the cytosol where they have to be metabolized to regain the Pi required
for continued operation of photosynthesis. Since in red algae all of the assimilated
carbon needs to leave the chloroplast via TPT at a rate close to the rate of photosyn-
thetic CO2 assimilation, a competition of 3-PGA with TPs for transport across the
chloroplast envelope membrane would be counter-productive. Hence, evolution of
a narrow-specificity TPT in red algae was of advantage.

In the process of secondary endosymbiosis that led to the evolution of secondary
plastids in the chromalveolates, a red alga was captured by a non-photosynthetic
protist and eventually reduced to a complex plastid that is surrounded by four enve-
lope membranes [91]. The two innermost membranes are thought to be derived from
the inner and outer chloroplast membranes of the red algae, the third layer is a rem-
nant of the red algal plasma membrane, and the outermost envelope membrane is
derived from the protist endomembrane system. Interestingly, the gene encoding the
red algal TPT was transferred from the degenerating red algal nucleus to the nuclear
genome of the host, whereas the genes encoding PPT and XPT/GPT apparently were
lost in the process. Once arrived at its new location, the TPT gene started to radi-
ate by duplication events and frequently evolved into small gene families [166]. In
the case of the apicoplast-containing malaria parasite Plasmodium falciparum, the
nuclear genome harbors two genes encoding TPTs – one of the gene products is tar-
geted to the inner envelope membrane, whereas the other one is targeted to the out-
ermost envelope membrane [106]. It is interesting that the recruitment of phosphate
translocators for the export of reduced carbon from plastids was recapitulated dur-
ing the evolution of complex plastids in the chromalveolates, thus emphasizing the
importance of a phosphate-balanced, controlled export of TPs from the chloroplast.

2.5.3 Integration of Endosymbiont Metabolism with Host
Metabolism Was a Host-Driven Process

A comprehensive analysis of the plastid envelope permeome of Arabidopsis
thaliana showed that at least 50% of the metabolite transporters residing in the
plastid envelope evolved from pre-existing host proteins and only a relatively small
portion of the permeome was contributed by the endosymbiont [152]. That is,
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integration of plastid and host metabolism was predominantly a host-driven pro-
cess, in which transport proteins encoded by the host genome acquired targeting
signals for routing to the chloroplast and were inserted into the chloroplast enve-
lope membrane. A surprisingly large share of plastid envelope membrane trans-
porters, such as the adenine nucleotide transporters, the dicarboxylate translocators,
and some metal-transporting ATPases have their evolutionary origin in prokary-
otic intracellular energy parasites (i.e., Chlamydia and/or Rickettsia). Most of these
genes have already been introduced into the genome of the protoalga by horizon-
tal transfer, and they have been maintained throughout plant evolution, emphasiz-
ing their importance for connecting the metabolism of plastid and cytosol [152].
Other plastid transporters belong to the mitochondrial carrier family, such as the
folate transporter FOLT1 and the S-adenosylmethionine transporter SAMT1 [16,
152, 164]. In this case, proteins that in non-photosynthetic eukaryotes serve as mito-
chondrial transporters have been recruited to the chloroplast in plants and algae. In
most cases, these metabolite transporters function in the antiport mode. Specifically,
they catalyze the strict counter-exchange of two substrates that belong to or origi-
nate from the same metabolic pathway or enzymatic reaction, such as the substrate
pairs ATP and ADP, S-adenosylmethionine and S-adenosylhomocysteine, oxaloac-
etate and malate, to mention only few. Apparently, it was of evolutionary advantage
to recruit substrate antiporters for the exchange of metabolites across the plastid
envelope membrane. More generally, this mode of transport seems to be the pre-
ferred one for transport of metabolites across the membranes of mitochondria and
plastids, and possibly also of the Golgi apparatus and the ER. This is in contrast to
the plasma membrane and the tonoplast of the vacuole, where transport is frequently
energized by proton co- or antiport, or, in the case of ABC-type transporters, by
hydrolysis of ATP. There are exceptions to this general pattern, though. For exam-
ple, the transport of pyruvate into chloroplasts was shown to occur by co-transport
with protons or sodium, depending on the plant species [4, 55, 71]. To make the sit-
uation even more complicated, uniport systems co-exist with antiporters. For exam-
ple, chloroplasts have in addition to the phosphate translocator family members also
a phosphate/proton cotransporter [153]. Although a possible role in cell metabolism
was suggested [121], the physiological relevance of this latter transporter is not yet
understood, in particular if it serves as a phosphate importer (i.e., import of phos-
phate into the chloroplast). A phosphate exporter is however required for starch-
synthesizing amyloplasts in storage organs, such as potato tubers: starch biosyn-
thesis in amyloplasts of dicotyledonous plants requires glucose 6-phosphate (G6P)
and ATP, which are both imported from the cytosol [78, 95, 109, 149]. Whereas
the import of G6P is Pi balanced – because for each G6P that is imported, one Pi
is exported – ATP import is not. ATP is imported in counter-exchange with ADP;
consequently, one Pi is accumulated in the plastid for each ATP that is hydrolyzed
to ADP and Pi. It is not known how Pi is exported from starch-synthesizing amy-
loplasts, although unidirectional export of orthophosphate across the envelope of
isolated cauliflower bud plastids has been demonstrated [108].

In summary, it becomes clear that many, if not most, metabolite translocators
of the plastid envelope membrane are of host origin, meaning that integration of
plastidic with cytosolic metabolism was predominantly a host-driven process [152].
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Metabolite transporters of the plastid envelope membrane frequently work as sub-
strate antiporters; as a consequence, rate and direction of transport are commonly
dependent on metabolic reactions and substrate concentrations on both sides of
the membranes. Put into the evolutionary context, it was apparently of advantage
to recruit substrate antiporters for connecting plastid and cytosolic metabolism
because this mode of transport, in addition to shuffling metabolites across mem-
branes, also provides a means for crosstalk between compartments and for coor-
dinating metabolic activities on two sides of a membrane. This is a very different
situation than substrate uptake across the plasma membrane. In this case, uptake is
predominantly dependent on transporter activity.

2.6 Bridging the Divide – Why Genomics, Phylogenetics,
Evolution, and Metabolic Networks Belong Together

Genomics is an essential foundation of systems biology, and genome sequences are
prerequisite for many other “omics” technologies, such as transcriptomics and pro-
teomics, and for the reconstruction of metabolic and regulatory networks. Recently
developed technology has massively increased throughput and decreased cost of
genomic sequencing, respectively, thus allowing for many additional genomes to
be sequenced, not just from model organisms but also from any source from which
DNA can be isolated. In addition, sequencing of transcriptomes will provide addi-
tional insights into gene content of genomes that are too large to be sequenced at
reasonable cost with current technology [23, 169].

Several novel ultra-low-cost sequencing (ULCS) technologies have recently
reduced the cost of DNA sequencing by several orders of magnitude [134]. Using
these technologies, a typical microbial genome with a 4 million base genome can be
sequenced and assembled within days by a single operator. Also, the novel sequenc-
ing technologies do not require cloning. Thus, they can be used to sequence un-
clonable DNAs with a high GC content and samples that are too degraded (e.g.,
fossil or ancient DNA) to be reasonably sequenced by traditional approaches. For
example, using massively parallel pyrosequencing, sequence information was gen-
erated from a wooly mammoth that perished 300,000 years ago [118] and the
genome of Mycoplasma genitalium (the causal agent of non-gonococcal urethri-
tis) was sequenced in one single instrument run [96]. Sequencing cost will further
decrease and throughput will further increase by application of multiplex polony
sequencing in the very near future [32, 135].

2.6.1 Orphans, Neighbors, Clusters

Basically, sequence information is just a combination of As, Cs, Gs, and Ts. So how
do the recent breakthroughs in genome sequencing technology affect metabolic net-
works? For this, we need to go beyond annotation, comparative genomics, designing
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mRNA profiling and whole-genome tiling microarrays, single gene and multigene
phylogenies, etc. The objective is to deduce the metabolic network of a recently
sequenced organism from its genome, or alternatively, its transcriptome sequence,
i.e., ab initio metabolic reconstruction. Usually, a basic reconstruction of the network
is founded on functional annotation of gene products that in turn is based on sequence
similarities. This strategy is, for example, applied by the KEGG automatic annotation
server (KAAS; http://www.genome.jp/kegg/kaas/) [105], which makes heavy use of
groups of orthologous genes that are generated from pairwise genome comparisons
using bi-directional best-hit (BBH) relationships [143, 144]. While these and other
automated procedures for functional annotation and network reconstruction provide
a good starting point, a detailed genome-scale reconstruction currently still requires a
large amount of manual annotation, literature-based data curation, and significant bio-
chemical and metabolic reaction knowledge. The intense effort required for network
reconstruction in terms of time and expertise is thus the reason for the relatively small
number of genomes for which detailed and reliable networks are available, such as the
unicelluar microbes Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae
[46, 56, 112], and the multicellular Homo sapiens [104]; see also Chapter 8.

Importantly, though, these methods for genome-scale network reconstruction do
not permit the assignment of functions to unknown genes and include assigning
genes to metabolic functions, for which no gene has been identified yet (orphan
metabolic activities) [31, 115]. Possible solutions to this dilemma might come from
combining multiple types of associative evidence, such as phylogenetic profiles,
gene co-expression patterns, protein interaction data, genetic neighborhood analy-
sis, and the construction of logical relationships [15, 18, 19, 31, 79, 80, 117, 128,
155, 176]. The power of these higher order data analyses increases with the depth of
the sequence space because more genomic sequence information permits to generate
deeper phylogenetic profiles (co-occurrence profiles across multiple species) [117]
and more complex logical relationships [17, 18] and to generate more information
from genomic neighborhood analysis [116]. The next challenge will be to overlay
and integrate these data with transcript co-expression data, protein–protein interac-
tion and protein fusion data, and with metabolomics data. Eventually, the integration
of multiple multivariate datasets might permit the ab initio computational deduction
of complex networks and the comprehensive prediction of metabolic capabilities
and pathways directly from genome sequence.
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168. Weber APM, Schwacke R, Flügge UI (2005) Solute transporters of the plastid envelope
membrane. Annu Rev Plant Biol 56:133–164.

169. Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidop-
sis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42.



38 A.P.M. Weber

170. Weiner H, Heldt HW (1992) Inter- and intracellular distribution of amino acids and other
metabolites in maize (Zea mays) leaves. Planta 187:242–246.
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Chapter 3
Metabolite Measurements

Ute Roessner and Diane M. Beckles

3.1 Introduction

Metabolites are the products of enzyme-catalyzed reactions that occur naturally
within living cells. Metabolites are synthesized by the cell for the purpose of per-
forming a useful, if not indispensable, function in the maintenance and survival
of the cells by, for example, contributing to its infrastructure or energy require-
ments. To do so, they have to be recognized and acted upon by enzymes, which
will change the properties of the metabolites by means of a chemical reaction.
Therefore, the properties of metabolites and their functionality as they interact
within their natural environment determine the chemistry of life. Thus, it can be
argued that the metabolome in a biological system represents the final result of
the expression of multiple genes in a cell. The analysis of metabolites has been
an important part of any biological sciences. A large number of technologies
have been developed for the analysis of metabolites in order to study metabolism
in great detail. Today, the accumulation and combination of knowledge on ana-
lytical biochemistry from the last 50 years is commonly called metabolomics,
and large investments are made to its application toward developments of new
technologies with greater sensitivity, comprehensiveness, robustness, and higher
throughput.

Oliver et al. introduced the term metabolomics in 1998 to describe the change
of relative metabolite concentrations due to the alteration of gene expression [62].
Later, the definition of metabolomics describing the “comprehensive and quantita-
tive analysis of all small molecules in a biological system” was introduced [26].
Today, metabolomics is commonly considered as the combination of analytics for
metabolite determination with appropriate informatics for data extraction, mining,
and interpretation.
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The range of chemical compounds synthesized by plants is astonishing. There
may be more than 200,000 chemicals produced within the plant kingdom, repre-
senting a diverse array of structures, functional groups, and chemicals with differ-
ent solubilities and reactivities [90]. This presents an enormous challenge for the
researcher trying to assay these compounds in a massively parallel fashion. Thus far,
only 50,000 compounds have been identified from a large number of species [20],
highlighting the difficult nature of the task and the existence of thousands of undis-
covered compound with different physical and chemical properties. Approximately
5,000–25,000 compounds may be produced in a single plant at a given developmen-
tal age and environmental state [61, 95, 99]. In contrast, about 500 are produced in
bacteria, about 730 in yeast, and approximately 3,000 in human beings [96]. Apart
from the sheer number and diversity of chemical structures, there are unique prob-
lems to cataloging the steady-state level of the plant metabolome. Reliable sam-
pling and capture of the subset of compounds in a specific organ and subcellular
location associated with the biological process of interest is, while not impossi-
ble, technically challenging and adds yet another layer of complexity to our ability
to accurately record or view the metabolic state of the plant cell. The overall pic-
ture that emerges is that current extraction, analytical methods, and instrumentation
are inadequate for truly assessing the plant metabolome, which may well remain
a lofty vision to aspire toward in the future. These issues explain in part why the
field of metabolomics lags behind genomics, transcriptomics, proteomics, and even
glycomics. Identifying, reproducing, and curating the chemical species that make
up the genome and transcriptome is comparatively facile, and even with the more
difficult proteome and glycome, this goal is still feasible. This is easy to under-
stand when the chemical structures of these compounds are considered. Nucleic
acids, proteins, and glycoproteins have a common chemical structure(s) [12, 37, 40,
84]. Both DNA and RNA have a phosphodiester bond; all proteins have the pep-
tide bond; glycoproteins have peptide bonds and glycoconjugates. In comparison,
there is an astounding array of chemical groups that make up even the simplest
of plant compounds. For example, several primary metabolites have inorganic and
organic phosphates, amines, esters, hydroxides, carboxyl groups, and this does not
even scratch the surface when one considers the exotic functional groups of sec-
ondary metabolites and that there are geometric and stereoisomers of many of these
chemicals.

In the following, a short overview of the technologies and methodologies most
commonly applied in metabolomics are described, with an emphasis on plant-based
applications.

3.2 Technologies for Metabolite Analyses

The most commonly used platforms for the detection and measurement of metabo-
lites involve their separation by gas chromatography (GC), liquid chromatography
(LC), or capillary electrophoresis (CE) coupled with subsequent mass spectrometry
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Fig. 3.1 Schematics of a typical GC-MS setup in metabolomics approaches

Fig. 3.2 Schematics of possible LC-tandem MS setups in metabolomics approaches

(MS) of the separated molecules (Figs 3.1 and 3.2). Compounds may also be mea-
sured directly without chromatographic separation. Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS) and nuclear magnetic resonance spec-
troscopy (NMR) are two such examples (for review see [66]). The advantages and
disadvantages of these technologies will be discussed in turn.

3.2.1 Mass Spectrometry

Different chemicals have different masses, and this fact is used in a mass spectrom-
eter (MS) to determine which chemicals are present in a sample. The underlying
principle of all MS is that the paths of gas phase ions in electric and magnetic fields
are dependent on their mass-to-charge ratios which are then used by the mass ana-
lyzer to distinguish the ions from one another. The most important requirement of
mass spectrometry is that compounds have to be vaporized and ionized (in an ion
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source). Techniques for ionization have been key to determining what types of sam-
ples can be analyzed by mass spectrometry. Electron impact ionization (EI, Fig. 3.3)
and chemical ionization (CI, Fig. 3.4) are mainly used for volatile compounds, e.g.,
in combination with gas chromatography (GC; see below, Fig. 3.1). In chemical
ionization sources, the analyte is ionized by chemical ion–molecule reactions dur-
ing collisions in the source.

Three ionization techniques often used with liquid and solid biological samples
include electrospray ionization (ESI) (Fig. 3.5, also see Fig. 3.2), atmospheric pres-
sure chemical or photon ionization (APCI/APPI), and matrix-assisted laser desorp-
tion/ionization (MALDI). Inductively coupled plasma sources are used primarily
for metal analysis on a wide array of sample types.

Others include glow discharge, fast atom bombardment (FAB), thermospray, des-
orption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), and
thermal ionization. The resulting ions are represented by their specific mass and
charge, which means that ions from different chemical compounds will have differ-
ent speed and directions within an electric or magnetic field. The ions are accelerated
to a high speed and are thus separated in an electric and/or magnetic field. This pro-
cess happens in the mass analyzer. There are many types of mass analyzers, using

Magnet

Magnet

e– e– e–

e– e– e–

GC column
M M+ Mass analyzer

Filament

Drift and acceleration

Trap plate

Fig. 3.3 Schematics of electron impact ionization. “M” is the molecule to be analyzed
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Fig. 3.4 Schematics of chemical ionization. “M” is the molecule to be analyzed
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either static or dynamic fields and magnetic or electric fields, but all operate accord-
ing to this same law. Most commonly used mass analyzers in biological applications
include time-of-flight analyzer (TOF), ion trap analyzer (TRAP), quadrupole (Q), or
Fourier transform ion cyclotron resonance MS (FT-ICR-MS).

Perhaps the easiest to understand is the time-of-flight (TOF) analyzer (Fig. 3.6A).
It uses an electric field to accelerate the ions through the same potential, and then
measures the time taken to reach the detector. If all the particles have the same
charge, then their kinetic energies will be identical and their velocities will depend
only on their masses. Lighter ions will reach the detector first and the heavier slower
ions will be last.

Quadrupole mass analyzers use oscillating electrical fields to selectively stabi-
lize or destabilize ions passing through a radio frequency (RF) quadrupole field
(Fig. 3.6B). A quadrupole mass analyzer acts as a mass selective filter and is closely
related to the quadrupole ion trap. An ion trap may use an electric or an electric
and magnetic field to capture a cloud of ions in a region of a vacuum system or
tube (Fig. 3.6C). The two most common types of ion traps are the Penning trap
and the Paul trap. The Penning trap uses electric and magnetic fields while the

Fig. 3.6 Schematics of (A) time-of-flight, (B) quadrupole, and (C) ion trap mass analyzers (see
also Color Insert)
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Paul trap uses an electric field only. An ion trap MS may incorporate a Paul trap
or the Orbitrap (which like the Paul trap, uses only electric field), and other types
of mass spectrometers may also use a linear quadrupole ion trap as a selective mass
filter.

The Orbitrap is the most recently introduced mass analyzer (commercially avail-
able since 2005, ThermoFisher). In the Orbitrap, ions are electrostatically trapped in
an orbit around a central, spindle-shaped electrode. The electrode confines the ions
so that they both orbit around the central electrode and oscillate back and forth along
the central electrode’s long axis. This oscillation generates an image current in the
detector plates, which is recorded by the instrument. The frequencies of these image
currents depend on the mass-to-charge ratios of the ions in the Orbitrap. Mass spec-
tra are obtained by Fourier transformation of the recorded image currents. Similar
to FT-ICR-MS (see below), Orbitraps have a high mass accuracy, high sensitivity,
and a good dynamic range, but it is cheaper and less complex.

Fourier transform ion cyclotron resonance MS or FT-ICR-MS is regarded as the
most complex type of mass analyzer. It determines the mass-to-charge ratio of ions
based on the frequency of rotation of the ion inside a homogeneous magnetic field.
The ions are first trapped in a magnetic field with electric trapping plates (Penning
trap). The magnetic field causes the ions to adopt a circular motion perpendicular
to the field. When an RF pulse is applied across the electric trapping plates, the
ions are excited into a larger circular motion called the cyclotron frequency. The
frequency of rotation is determined by the mass-to-charge ratio of each individual
ion. Each ion will produce a current that is almost equivalent to the cyclotron fre-
quency which is then recorded on a pair of detector plates. The resulting signal is
called a free induction decay (FID), transient, or interferogram. The useful signal
is extracted from this data by performing a Fourier transformation to give the mass
spectrum. FT-ICR-MS is characterized by extremely high resolution in that masses
can be determined with very high accuracy. Many applications of FT-ICR-MS use
this mass accuracy to help determine the composition of molecules. This is possible
due to the mass defect of the elements. Another place that FT-ICR-MS is useful is
in dealing with complex mixtures since the resolution (narrow peak width) allows
the signals of two ions of similar mass to charge ratio (m/z) to be detected as distinct
ions. This high resolution is also useful in studying large macromolecules such as
proteins with multiple charges, which can be produced by electrospray ionization.
These large molecules contain a distribution of isotopes that produce a series of iso-
topic peaks. Because the isotopic peaks are close to each other on the m/z axis, due
to the multiple charges, the high resolving power of the FT-ICR is extremely useful.
FT-ICR-MS differs significantly from other MS techniques in that the ions are not
detected by hitting a detector such as an electron multiplier but only by passing near
detection plates. Additionally, the masses are not resolved in space or time as with
other techniques but only in frequency. Thus, the different ions are not detected in
different places as with sector instruments or at different times as with TOF instru-
ments, but all ions are detected simultaneously over some given period of time.

Each analyzer type has its strengths and weaknesses. Many mass spectrometers
use two or more mass analyzers for tandem mass spectrometry (MS/MS) (Fig. 3.7).
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Fig. 3.7 Schemata of tandem MS/MS. (A) Triple quadrupole mass spectrometer (QqQ) and (B)
quadrupole time-of-flight mass spectrometer (QqTOF) (see also Color Insert)

Tandem mass spectrometry involves multiple steps of mass selection or analysis,
usually separated by some form of fragmentation. A tandem mass spectrometer is
one capable of multiple rounds of mass spectrometry. For example, one mass ana-
lyzer can isolate one compound and determine its molecular weight. A second mass
analyzer then stabilizes the molecular ion while it collides with a gas, causing them
to fragment by collision-induced dissociation (CID). A third mass analyzer then cat-
alogs the fragments produced from the original compound. Tandem MS can also be
done in a single mass analyzer over time as in an ion trap. There are various methods
for fragmenting molecules for tandem MS, including collision-induced dissociation
(CID), electron capture dissociation (ECD), electron transfer dissociation (ETD),
infrared multiphoton dissociation (IRMPD), and blackbody infrared radiative dis-
sociation (BIRD). An important application, using tandem mass spectrometry, is in
the structural elucidation of compounds.

The final element of the MS is the detector. The detector records the charge
induced or current produced when an ion passes by or hits a surface. In a scanning
instrument, the signal produced in the detector during the course of the scan vs.
where the instrument is in the scan (at what m/q) will produce a mass spectrum,
a record of ions as a function of m/q. Typically, some type of electron multiplier
is used, though other detectors including Faraday cups and ion-to-photon detectors
are also used. Because the number of ions leaving the mass analyzer at a particular
instant is typically quite small, significant amplification is often necessary to get
a signal. Microchannel Plate Detectors are commonly used in modern commercial
instruments. In FT-ICR-MS and Orbitraps, the detector consists of a pair of metal
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surfaces within the mass analyzer/ion trap region which the ions only pass near
as they oscillate. No DC current is produced, only a weak AC image current is
generated in a circuit between the electrodes.

In metabolomics, mass spectrometry is mostly used as a detector system follow-
ing a specific separation procedure. Metabolite extracts from a biological source are
characterized by great complexity, which has to be reduced before the compounds
enter the mass spectrometer. Gas or liquid chromatography-based separation tech-
niques allow the separation of complex mixtures with great precision. It involves
passing a mixture dissolved in a “mobile phase” through a stationary phase, which
separates the analyte to be measured from other molecules in the mixture and allows
it to be isolated. Even very similar components, such as oligosaccharides that may
only vary by a single sugar monomer or bond structure, can be separated with chro-
matography. In fact, chromatography can purify basically any soluble or volatile
substance if the right adsorbent material, carrier fluid, and operating conditions are
employed. Second, chromatography can be used to separate delicate compounds
since the conditions under which it is performed are not typically severe. For these
reasons, chromatography is quite well suited to a variety of uses in the field of
biotechnology.

3.2.2 GC-MS

Gas chromatography linked to mass spectrometry is an effective and longstanding
method for chemical analysis (Fig. 3.1). GC-MS presents several advantages; it is
relatively easy to use, low in cost, gives reproducible results and excellent resolution
of separated compounds. Hence GC-MS has been widely used in several separation
applications since its first demonstrated use in 1964 for the quantitative and qualita-
tive determination of polar/organic constituents of a sample [24].

The basis on which components are separated is on differential partitioning
between a mobile gas phase and a solid stationary phase. Samples for GC-MS
must first be converted from solid or liquid phase to a gas. This process called
volatilization is accomplished by exposing the sample to high temperatures (up to
250◦C). Once in the gas or mobile phase, the components are forced along a series
of columns containing the solid or stationary phase. The volatilized compounds are
partitioned between the two phases and the extent to which this occurs is determined
by their chemical properties. Compounds that partition primarily in the mobile phase
are eluted from the column faster than those with a greater affinity for the stationary
matrix. The chemical behavior of each constituent, as it is eluted from the column,
is recorded by its retention time.

Each separated compound eluting from the column must be subjected to ion-
ization before entering the MS. Electron impact (EI) ionization produces electrons
using a standardized filament voltage of 70 eV that effectively ionizes compounds
(Fig. 3.3). These electrons are of high energy, and when they collide with separated
compounds in the MS, they cause the compounds to fragment. The fragmentation
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patterns are curated into mass spectral libraries for peak identification [51, 97].
Those produced from EI are highly reproducible which makes construction of spec-
tral libraries using this technique consistent across experiments.

Chemical ionization (CI)-MS in contrast to EI uses gases, such as methane or
ammonia, to provide the collision energy for fragmentation (Fig. 3.4). It is often
described as a “softer” form of ionization, especially when compared to EI. The
applications for CI, however, are limited. The fragmentation patterns produced by
this method are less reproducible than for EI because it is difficult to control tem-
perature and pressure of the ion source conditions. However, even with this draw-
back, CI-MS is an advantage for some types of applications, such as identifying
compounds based on both the mass of the parent ion and its isotopic pattern. For
example, most metabolic flux experiments use stable isotope labeling to monitor
the fate of the target compound when metabolized in the fed tissues [25, 77]. Here,
CI-MS is a better option for quantifying isotopic label in individual compounds pro-
duced from the labeled precursor, because the ligand–label complex likely remains
intact [69].

After ionization, the fragmented compounds are analyzed by mass detection
by which quantification of ions can be achieved. Mass detection may be per-
formed using quadrupole, ion-trap technology, or TOF detectors. The low-resolution
quadrupole-type instruments are most commonly used, although fast scanning time-
of-flight (TOF) MS detectors are becoming more popular.

The components eluted from the GC can be identified with a high degree
of accuracy by comparing mass spectral and specific retention time indices of
the eluted compounds to that of a reference database [51, 98]. Still, the iden-
tity of each compound should be verified by co-elution of authentic standards
when available, and recovery assays should be performed to assess accuracy
of measurements. Accomplishing these seemingly minor objectives is not as
straightforward as they should be, especially when analyzing plant extracts. Puri-
fied standards of most plant-derived compounds are not commercially available.
There are more than 350,000 curated chemical structures in GC-EI-MS libraries
(e.g., NIST: http://www.nist.gov/srd/nist1a.htm and MSRI: http://csbdb.mpimp-
golm.mpg.de/csbdb/gmd/msri/gmd˙msri.html); yet a significant fraction of the
detected compounds, in a typical GC-MS chromatogram, are not yet chemically
identifiable. This is due, in part, to our ignorance of the diversity of chemicals man-
ufactured in plants; it may also be due to the artifacts produced during extraction,
GC ionization, and analysis. Recovery assays, although useful, add a significant
time and cost factor to the analysis; however, it should be used in instances when
assaying novel, low abundant, or unstable compounds.

For the researcher wishing to perform a basic characterization of polar com-
pounds in plant extracts, GC-MS presents several advantages; it is reasonably inex-
pensive and easy to perform. Capital outlay is substantially lower when compared
with other techniques such as LC-MS or NMR, and bench-top GC-MS instrumen-
tation is readily available. From a quality control standpoint, GC-MS is exceptional
in that there are only minimal matrix effects, i.e., the ionization efficiency of an ana-
lyte is not confounded by the presence of co-eluting substances [43]. Finally, there
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are a growing number of easily adaptable methods available to survey the catalog
of low molecular weight compounds in different plant systems (for review see
[40, 96]).

There are some limitations to the application of GC-MS for metabolite pro-
filing of any complex mixture, especially plant extracts. GC-MS is only suitable
for analyzing compounds that can be volatilized either at high temperatures or by
chemical modification. The result is that only small compounds (∼1kD) can be
effectively evaluated and thermolabile compounds are excluded. Further, samples
must be derivatized, i.e., chemically modified to make them adaptable for GC-MS
analysis. Derivatization simultaneously increases the volatility, thermostability, and
detection limits of low-abundant compounds, and it is often achieved by silylation,
alkylation, and acylation of extracts. Trimethylsilylation (TMS) is the most com-
mon method used in GC-MS-based metabolomics because it can derivatize a broad
spectrum of compounds simultaneously, including sugars, amines, alcohols, amino,
and organic acids [49], thus minimizing the probability that a chemical bias is intro-
duced due to selective modification of one class of compounds. Derivatization is
achieved when acidic protons in the target compound are effectively exchanged
with TMS via a nucleophilic attack. It is imperative to use rigorous analytical pro-
cedures and standardized conditions when using TMS derivatives, as the deriva-
tized compounds, especially amino acids, are sensitive to water and oxygen and
are thermodynamically unstable [5]. An alternative derivatization method based on
tert-butyldimethylsilylation (TBS) increases the chemical stability of amino acids
and a range of other compounds thus widening the coverage of analytes potentially
detected and measured by GC-MS [44]. A typical approach of GC-MS analysis
using both types of derivatization is presented in Fig. 3.8.

Plant growth, treatment, harvest

homogenization

Extraction in 100% MeOH at 70°C

Chloroform cleanup

Derivatisation with TBS

Separation from insolubles

Derivatisation with TMS

Dry aliquot

Dry aliquot of polar phase

Amino acids, organic acids,
fatty acids, sterols

Amino acids, organic acids,
Sugars, sugar alcohols, amines 

GC-MSGC-MS

Fig. 3.8 Simplified workflow for GC-MS analysis of metabolites using TMS and TBS
derivatization
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3.2.3 LC-MS

LC-MS is gaining wider adoption as new technologies have allowed the high pres-
sure liquid chromatography (HPLC) module to be interfaced with the low pres-
sure (vacuum) of the MS (Fig. 3.2). Normal HPLC separation is accomplished
by coupling LC with UV/VIS or diode-array detectors; however, the use of mass
spectrometry enhances the specificity and selectivity of the system, thus improving
the likelihood that determining the structural properties of compounds in a com-
plex matrix can be identified. A requisite step in LC-MS is to convert the eluting
compounds from a solute to a gas phase ion. This involves solute vaporization with
concomitant ionization at the interface with the MS. Electrospray ionization (ESI,
Fig. 3.5) [101], and atmospheric pressure ionization (API) [13] are good options for
solute transformation. However, if the sample has a high concentration of salts or
other ionizable compounds, these methods produce matrix effects such as ion sup-
pression and ion enhancement [43], requiring additional downstream validation of
the results [8].

LC-MS however presents several advantages over GC-MS. Samples do not have
to be volatilized, which maintains the compounds in their native state before sep-
aration. Classes of compounds incompatible for analysis by GC such as those of
higher molecular mass, greater polarity, and lower thermostability can be detected.
Processing time may also be reduced in LC-MS because direct infusion methods
can be used for analysis. The downside of direct infusion is that matrix effects are
often a problem because of the larger number of compounds present in crude plant
samples that can simultaneously enter the MS. Therefore, in most applications, LC
separation prior to MS is advisable in order to reduce the complexity of ions to be
scanned, even though this is less expedient.

A wide selection of column matrices is now available that support LC sep-
arations based on ion exchange, reversed phase, and hydrophobic interaction
chromatography. Further, LC protocols that optimize the elution of constituents in
complex compound mixtures have been developed. Very recently, a new sophis-
ticated LC technology for nanoelectrospray application has been introduced.
Nanospray LC-MS provides much higher sensitivity than normal flow electrospray
LC-MS, however it uses several small capillary tubing connections which lead to
frequent clogging and/or leaking at the column and spray needle. This feature has
made nanospray-based LC-MS applications challenging. Agilent Technologies, Inc.
has developed an HPLC-Chip interface for mass spectrometry (Fig. 3.9). All com-
ponents required for LC and spray into the mass spec are integrated directly onto
a reusable biocompatible polymer chip. This supports the delivery of solvent and
sample, high pressure switching of flows, automated chip loading, and spray per-
formance into the MS. An illustrating video of how the chip technology works
can be retrieved from Agilent Technologies, Inc. website (www.agilent.com). Chips
are being manufactured with different column packings, and users are even able
to provide their own packing for custom-built chips. The HPLC-Chip has been
already extensively applied in proteomics and peptidomics applications showing
very high reproducibility, long shelf-life, and ease of use. Currently, its potential
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Fig. 3.9 HPLC-Chip and its integrated components related to the components of conventional LC
(picture provided in courtesy of Agilent Technologies, Inc.) (see also Color Insert)

and applicability is being explored in the metabolomics field. LC, used in tandem
with MS, produces a spectrum of separated compounds which can be detected with
great selectivity. The fragmentation patterns produced provide information on the
chemical structure of the compounds, and the system is also able to detect low-
abundance metabolites. LC-MS has found utility in the separation and analysis of
both primary and secondary metabolites in plant extracts [42, 89]. Mass detection
may be dramatically increased to 5,000 signals from a single plant extract if Fourier
transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is used with
LC [2].

The major obstacle that hinders the widespread use of LC-MS for many bio-
logical applications is that it is difficult to establish robust mass spectral libraries
for peak identification [58]. The type of mass spectra produced by LC-MS is largely
dictated by the instrument used (i.e., QqQ, QqTOF, Ion Trap, etc.), and the reference
LC-MS spectral libraries constructed are of limited use because they are instrument
specific. Each research group has to develop its own “in-house” LC-MS reference
library infrastructure, which is often difficult and beyond the capabilities of the aver-
age plant biology lab.

3.2.4 CE-MS

Capillary electrophoresis (CE), either coupled to MS or to laser-induced fluo-
rescence (LIF) detection, is a highly efficient and sensitive method for both tar-
geted and unbiased profiling in plant extracts. It has not been widely adopted in
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high-throughput metabolomic approaches, but has proven useful in particular appli-
cations because of its high sensitivity, especially compared to LC-MS. Derivati-
zation is not necessary; solvent consumption is less; separation of low-molecular
weight compounds with minimal pre-treatment is easily achieved; small sample
sizes can be used; separation runs are faster than with LC-MS [65]; and unlike
LC-MS, the separated species do not need to be ionized because they are already
charged [80]. However, there are some complications to the use of CE for plant
metabolomics. Only charged compounds or those that can be charged by chang-
ing the pH of the solution can be analyzed, and because there are limits to the
volume of sample that can be injected onto the capillary, this can make detecting
some compounds difficult. Still, some promising results have been already achieved.
CE coupled with UV analysis has supported targeted profiling of some plant com-
pound classes, e.g., organic acids [98], flavonoids [23] and amino acids [100]. When
coupled to MS, more than 80 primary metabolites belonging to glycolytic, pho-
torespiratory, and oxidative pentose phosphate pathways can be analyzed in rice
leaf extracts [75]. However, the resolution power of CE coupled to LIF holds even
greater promise for analyzing micro-amount of biological fluids. It has the sensi-
tivity to separate and quantify a large number of amino acids and sugars in only
∼50 picoliters of phloem sap, or the pooled sap of five leaf mesophyll cells from
Cucurbita maxima [3]. Once the technology becomes more routinely used, it is
likely to become very important for the development of cell-type-specific metabolite
analyses.

3.2.5 NMR

NMR is potentially one of the most potent but underused methods available for plant
metabolomics. NMR is a non-destructive, non-targeted fingerprinting technique that
can detect a multitude of different metabolite classes irrespective of size, charge,
volatility, or stability [21]. It is a powerful tool for comparative high-throughput
profiling of plant extract, for determining metabolite structure and for elucidating
metabolic fluxes. Although NMR use in the plant field lags that in others, e.g., med-
ical research, there is renewed interest and increasing applications of this technology
to addressing basic biological questions related to plant processes (67).

NMR spectroscopy uses the magnetic properties of atoms that make up the chem-
ical structure of compounds. A strong magnetic field is combined with radio fre-
quency pulses to produce high-energy spin states in nuclei with odd atomic or mass
numbers (e.g., 1H or 13C). The radiation emitted when these nuclei return to the
lower energy spin state is detected and used to eventually construct the chemical
structure of the analyte [21]. One of the most attractive features of NMR is that
metabolites can be measured non-destructively; permitting in vivo measurement of
metabolites in intact tissues [54]. Most importantly, NMR provides high-resolution
structural information about the metabolites for unambiguous identification. When
combined with stable-isotopic labeling, NMR becomes very informative. Real-time
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in vivo flux of compounds can be monitored and even resolved between subcellu-
lar compartments [54, 66, 73]. For example, the location of 31P in different plastids
can be determined based on the chemical shift caused by the different pH of the
subcellular compartments [73].

There are a number of factors that need to be considered when NMR is applied to
plant metabolomics. NMR is in general less sensitive and less discriminating than
other established separation techniques [21]. The signal-to-noise ratio and resolu-
tion of in vivo samples are much lower when compared to those in vitro extracts;
metabolites below 5 nmol will not be detected by NMR [52], and although volumes
of around 2μl may be used [38], NMR generally requires larger sample input. In
addition, NMR involves a considerably greater capital investment in instrumenta-
tion, and when the number of compounds actually detected is considered vs. cost,
it is not always the best option. NMR is best suited for specialized applications
involving in vivo real-time imaging of flux, structural elucidation of compounds, and
for metabolite fingerprinting. There are emerging technologies that may supersede
NMR in some applications because of their resolving power. Once such example is
imaging matrix assisted laser desorption ionization mass spectrometry (I-MALDI)
coupled with TOF-MS. This was used to detect and measure a range of metabolites
even at micromolar concentrations in different subcellular fractions of the plant cell
[14].

3.2.6 Other Novel, Highly Valuable Approaches
for Metabolite Analysis

As mentioned, the described technologies are currently the most commonly applied
analytical instrumentations for metabolite analyses. A range of well-established and
routinely applicable methodologies are available for the analysis of a number of dif-
ferent compound classes, ranging from primary metabolites, such as sugars, amino,
organic or fatty acids to highly complex secondary metabolites, such as alkaloids
and flavonoids [40]. Although claimed as being high-throughput methods, they often
are limited by time per sample due to time-consuming chromatographic separation
upfront MS analysis. A recently introduced separation technique that shows great
promise is based on ion mobility [94]. Ion mobility spectrometry coupled to mass
spectrometry (IMS-MS) is a technique where ions are first separated by drift time
through a neutral gas which was given an electrical potential gradient before being
introduced into a mass spectrometer. The IMS technique separates and detects ions
that have been sorted according to how fast they travel through an electrical field in
a tube. Small ions travel very fast, and they reach the detector first, with successively
larger ions following along. Unlike the mass spectrometry technique, which relies
on very low pressures to keep the ions from colliding with each other, IMS oper-
ates at normal atmospheric pressure, and the ions collide with each other repeatedly.
The ionized gas moves through an electrical field inside a drift tube. Smaller ions
collide less frequently than large ions because they present a smaller target and are
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harder to hit. Thus, they move through the tube relatively unimpeded and reach the
detector first. The largest ions take several seconds longer to travel to the detector
because they collide more frequently with other ions along the way. Because IMS
only sorts molecules by size, and not by chemical properties or other identifying
features, it is not a particularly good technique for making a positive identification
of unknown compounds. However, the duty cycle of IMS is short relative to LC or
GC separations and can thus be coupled to such techniques producing triply hyphen-
ated techniques such as LC-IMS-MS. Perhaps IMS’s greatest strength is the speed
at which the separations occur – typically on the order of 10s of milliseconds. As
a research tool, ion mobility has already shown great strides toward the analysis of
biological materials, specifically in proteomics and metabolomics [16, 56, 85, 93].

A powerful way of assaying low-abundant metabolites has recently been re-
introduced by Gibon and colleagues [33]. A large number of metabolites are present
in very small quantities, especially metabolic intermediates and cofactors in plant
cells. Also, in many cases, only small samples sizes can be harvested. To overcome
these obstacles, Gibon et al. developed robotized microplate-based activity assays
using enzymes involved in central carbon and nitrogen metabolism as tools to assay
the metabolites involved in the reaction mechanism. The distinct advantage of this
high-sensitivity assay is that limited sample size or metabolites in low abundance
are not insurmountable problems for analysis [31, 32].

3.3 Data Analysis

Analyzing the large volumes of data produced by metabolite profiling technologies
is still a major challenge facing researchers. The best approach for data analysis
will depend on the aim and application of the specific experiment or process investi-
gated. Although accurate detection of compounds is necessary regardless of research
objectives, slightly different emphases on the downstream analyses will be required
depending on if the primary aim is to identify hitherto unknown compounds, deter-
mine differences between samples, or evaluate broad changes in entire pathways.
The first step is to ensure adequate quality control of the raw data, i.e., accurate peak
identification, assignment, and quantification. Next, robust statistical validation of
raw data is critical as it affects the interpretation of the data if comparisons are made
between different systems. Finally, transformation and presentation of the data in a
manner that allows efficient and maximal extraction of biological information from
the system to be studied in an intuitive user-friendly interface are desirable.

Once validated, the data needs to be mined and presented in a manner to make
hypothesis testing facile, to highlight pattern or relationships among variables, or
to drive the generation of new biological questions. Several methods are currently
used including cluster analysis, pathway mapping, and comparative overlays, as
well as heatmaps. They each provide slightly different insight into multidimensional
datasets and may even be complementary.
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3.3.1 Data Extraction from Analytical Instrumentation

This is the most important, but often under-estimated process of data analysis in
metabolomics applications both based on mass spectrometry or NMR. The process
includes raw data format transformation (if necessary), chromatogram deconvolu-
tion, peak detection, peak alignments, baseline corrections, noise reduction, peak
assignment (identification), peak quantification, and data validation. Most impor-
tantly, the procedure has to be applicable for each batch measurement with the
desired or necessary level of correctness. A vast number of software packages are
available, both commercially and as free open-public packages. The description of
those software packages is beyond the scope of this chapter. Table 3.1 lists a few
of the most common software packages available for mass spectral data analysis.
Although much progress has been made in developing software application, manual
inspection and validation of raw data are still essential and represent a limiting step
in a process that could be automated. Therefore, constant evolution and improve-
ments of sophisticated programs capable of evaluating raw data are critical. This
would have the dual advantage of increased confidence that the effects of false posi-
tives are minimized and that operator time on data analysis is reduced. However, the
usefulness of such programs will be determined largely by how it meets the needs
of each individual application. Each metabolomics user should invest the time and
effort to test some of those packages to decide best suitability for their analytical
method as well as comfort in using the package.

3.3.2 Statistics

Data analysis is the process of transforming data with the aim of extracting useful
information from which to draw conclusions and develop new working hypotheses.
Depending on the type of data and the question asked, this includes the application

Table 3.1 Some examples of software available for mass spectral data analysis

Name URL

MSFACTs http://www.noble.org/PlantBio/MS/MSFACTs/MSFACTs.html [22]
MET-IDEA http://www.noble.org/plantbio/ms/MET-IDEA/index.html [11]
HiRes http://hatch.cpmc.columbia.edu/highresmrs.html [103]
MZmine http://mzmine.sourceforge.net/ [48]
XCMS http://metlin.scripps.edu/download/ [79]
SpectConnect http://spectconnect.mit.edu [83]
AMDIS http://chemdata.nist.gov/mass-spc/amdis/ [81]
AnalyzerPro www.spectralworks.com
metAlign www.metalign.nl
SIEVE http://www.thermo.com/
GeneSpringMS http://www.agilent.com/
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of statistical methods, selecting or discarding certain subsets based on specific cri-
teria, or other mathematical methods.

In applying statistics to a scientific problem, one begins with a biological process
or sets of organisms to be studied. This might be a population of transgenic plants
compared to untransformed wild type, plants treated with a specific stress elicitor
compared to unstressed plants, or plants growing in one environment vs. another.
It may instead be a comparison observed at various times; data collected about this
kind of “population” constitute what is called a time series. For practical reasons, a
chosen subset of the population – a sample – is studied, rather than compiling data
about an entire population. Once data are collected about the sample, they can be
subjected to statistical analysis which serves two related purposes: description and
inference. Descriptive statistics can be used to summarize the data, either numeri-
cally or graphically, to describe the sample. Basic examples of numerical descriptors
include the mean and standard deviation which can be presented as tables or vari-
ous kinds of graphs and charts. Inferential statistics is used to model patterns in the
data, accounting for randomness and drawing inferences about the larger popula-
tion. These inferences are then presenting a form of hypothesis testing, estimation
of numerical characteristics, correlation (description of associations), or regression
(modeling of relationships).

If a sample is representative of the population, then inferences and conclusions
made from the sample can be extended to the population as a whole. A major prob-
lem lies in determining the extent to which the chosen sample is representative.
Statistics offers methods to estimate and correct for randomness in the sample and in
the data collection procedure, as well as methods for designing robust experiments
in the first place. The fundamental mathematical concept employed in understand-
ing such randomness is probability.

The use of any statistical method is valid only when the system or population
under consideration satisfies the basic mathematical assumptions of the method.
Inappropriate use can produce subtle but serious errors in description and interpre-
tation – subtle in that even experienced professionals sometimes make such errors,
and serious is that they may affect data interpretation and decisions. Even when
statistics is correctly applied, the results can be difficult to interpret for a non-expert
– for example, the statistical significance of a trend in the data, which measures the
extent to which the trend could be caused by random variation in the sample and
may not agree with one’s intuitive sense of its significance. Therefore, a set of basic
statistical skills (and skepticism) is needed in the process of metabolomics data anal-
ysis and interpretation to deal with the vast amount of information metabolomics is
providing.

The most common statistical methods applied for metabolomics data are Stu-
dent’s t test and analysis of variance (ANOVA). A t test is any statistical hypothesis
test in which the test statistic has a Student’s t distribution if the null hypothesis
is true. A requirement is that the means of two normally distributed populations
are equal. Given two datasets, which are characterized by their means, standard
deviations, and a number of data points, the t test is used to determine whether
the means are distinct, provided that the underlying distributions can be assumed
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to be normal. Two versions of the t test exist; the two samples are either indepen-
dent or dependent of each other. When samples are dependent of each other, or
paired, it means that each member of one sample has a unique relationship with
a particular member of the other sample. Once a t value is determined, a p value
can be determined using lookup tables or integral calculus (http://www.danielsoper.
com/statcalc/calc08.aspx). A threshold chosen for statistical significance (usually
below 0.05 Student’s t distribution for P or with 95% confidence level) indicates
that the two sample groups differ from each other.

ANOVA is a collection of statistical models, in which the observed variance is
partitioned into components due to different variables. There are several types of
ANOVA depending on the number of comparing pairs (treatment, genotype, time)
under analysis. One-way ANOVA is used to test for differences among three or more
independent groups. Factorial or two-way ANOVA is used when the effects of two
or more treatment variables are under investigation. The most commonly used two-
way ANOVA is the “two-by-two” design, where there are two independent variables
and each variable has two levels or distinct values – for example, a control and a
mutant plant at two developmental stages.

Three problems occur when both t test and ANOVA are applied to metabolomics
data. First, both methods assume that the data under analysis are normal distributed
which may or may not be true for metabolite data. Secondly, inadequate sample
sizes for the large number of variables (metabolites, signals) measured that are
required to prove a metabolite are discriminant, and thirdly, multiple hypothesis
testing using only univariate statistical tests across all metabolites in parallel [9]. It
is worth to note here that the same issues are of concern in other “omics” or high-
throughput biological sciences, where a high number of variables are determined in
a comparably small sample collection. The issues will increase the so-called false
discovery rate (FDR), leading to the identification of apparently significant metabo-
lites/biomarkers which are in fact incorrect. The false discovery rate (FDR) can be
described as the expected percent of false prediction from the whole number of pre-
diction and increases with the number of tests performed on a given dataset.

The first problem is difficult to tackle, in theory for each metabolite measured
the distribution has to be determined and the appropriate statistical analysis chosen.
This is not always feasible and commonly it has been agreed to treat metabolomics
data as not normally distributed datasets. Therefore, before applying either t test
or ANOVA data should be transformed (e.g., by either log2 or log10 transforma-
tion) to achieve close to normal distribution. The second problem is only solvable if
the number of biological replications per sample would be increased dramatically,
which again is not feasible for time, cost, and other logistical factors. Therefore,
additional more stringent statistical methods have to be applied in order to deal with
the inadequate sample sizes. The third issue of multiple hypothesis testing using uni-
variate methods can be in fact only excluded by applying multivariate data analysis
methods, which will be described below. Broadhurst and Kell [9] summarized those
issues arising in metabolomics experiments very clearly and provided a framework
of tackling the issues in an easy way to implement. This method is based on the
Bonferroni correction [1] in which a new, more stringent p value is calculated by
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dividing the originally chosen p value threshold by the number of variables under
t test or ANOVA test (p′ = p/n). For example, if 100 metabolites are determined
and the p value threshold was set to 0.05, the new p′ value threshold would be
0.0005, leading to a substantially smaller number of statistically significant metabo-
lites (with now p value below 0.0005) giving much higher confidence for biological
interpretation. The Bonferroni correction is often criticized as being too stringent.
Metabolites that fail to meet the new p threshold may still be involved in the bio-
logical process studied. Therefore, the validity of using this parameter should be
examined on a case-by-case basis.

3.3.3 Data Mining, Classification, and Visualization

Data mining is the extraction of potentially useful information from large datasets
by multidimensional analysis. Dataset are sorted, analyzed, and sifted through to
extract non-intuitive, but potentially important information. The broad aims are to
discover new patterns between the variables examined, to test existing scientific
models, to refine the theoretical understanding of a system to the point where it is
fact based, and to enhance the ability to predict behavior or trends. Data mining is
distinct from data analysis in that it is the platform itself and the dynamic interaction
between the user and that platform that eventually provides the user with insight into
the data not readily obvious by a precursory examination.

Common data mining methods in metabolomics applications include clustering,
such as hierarchical clustering (HCA), multivariate data analysis, principle or inde-
pendent component analysis, and co-response or correlation analysis. It is outside
the scope of this chapter to describe the methods in detail and the ways in which
they are applied in metabolomics applications; therefore, the reader is referred to
Chapter 6 of this book. In addition, a number of summarizing reviews are available
for more detailed understanding (e.g., [96] and [45] and references therein).

A number of web-based tools for the visualization and interpretation of omic data
are becoming rapidly available. Ideally, these tools should allow the user to easily
extract meaningful biological data from large datasets in a highly interactive, user-
driven manner. With metabolomics, the ultimate goal is to understand the regulation
of biochemical pathways. This perhaps can be best achieved by integrating gene,
protein, and metabolite profiling data and examining the interrelationships of each
level of the system. Here we give a brief overview of some of the more popular
resources available for analyzing omic data generated from plant species. Each has
advantages and disadvantages, and their usefulness will depend on the specific needs
of the individual researcher.

The software module of the Pathway Tools database called the “Omics Viewer”
(Pathway Tools Omics Viewer – PTOV) is one of the most extensive available.
Gene and protein expression data, metabolite levels, and metabolic flux analysis
data can be integrated onto a single metabolic map or interface [63]. The full utility
of this tool is limited to species which have near-complete genomic sequence, i.e.,
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Arabidopsis (dicot; AraCyc) (http://www.arabidopsis.org:1555/expression.html),
rice (monocot; RiceCyc) (http://pathway.gramene.org/expression.html), and Med-
icago (legumes; MedicCyc) [92]. The output shows an overview of grouped
metabolic pathways where measured metabolites, transcript, etc. can be color-
coordinated based on their relative amount in the two samples compared. It is
anticipated that as resources grow for other model species, they will be interfaced
with PTOV. For example, preliminary data from the Solanaceace genomic projects
are already being integrated at RiceCyc. MetNet (Metabolic Network Exchange) is
another plant-specific tool for functional genomics, which permits the user to visu-
alize and overlay pathway components from comparative metabolite and transcrip-
tomic studies. What distinguishes MetNet from similar programs is that it incorpo-
rates regulatory pathway information and contains applications for network mod-
eling. In addition, MetNet contains rigorous statistical capabilities and it dovetails
with AraCyc at PTOV. One disadvantage is that it is developed solely for Arabidop-
sis. MapMan [87] is a popular interface that is being increasingly used because it is a
standalone, is relatively easy to navigate, and can be easily adapted to other species,
e.g., legumes [34] and tomato [91]. It, however, depicts pathway data that are cate-
gorized by function, and only two experiments can be compared on the same map.
Other publicly available tools include kaPPA-View and VANTED [46]. kaPPA-View
was developed using Arabidopsis genomic data; it boasts an extensive secondary
metabolic pathway depiction (added from other plant species), and gene expression
data from multiple enzyme isoforms can be shown on the pathway. The user also has
the option of showing transcript and metabolite data side by side, which is not pos-
sible with any other programs. VANTED (Visualization and Analysis of Networks
with related Experimental Data) has been more recently introduced and allows the
user to show detailed information for individual metabolites, which is advancement
over most other tools. It is also possible to compare more than two experiments
on the same map, but the trade-off is that this limits the number of pathway steps
shown [46].

3.4 Metabolomics Approaches

After some confusion over the correct nomenclature to accurately describe various
metabolite analytical approaches, Fiehn has provided clear definitions for each [27]
which are now commonly accepted and used in the metabolomics community.

Target analysis describes the determination and quantification of a small set of
known metabolites using one particular analytical technique, such as HPLC with
UV detection. This type of approach has been done for many decades, before even
the word metabolomics was invented. A number of different columns and elution
protocols for many different compounds or compound classes have been developed
and successfully applied for metabolic studies. Methods exist for small sugar anal-
ysis [15], amino acids [41], nucleotides [57, 68], flavonoids [59], volatiles [6], or
alkaloids [30].
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The second type of approach is called metabolite profiling, which includes the anal-
ysis of a larger set of both, identified and unknown metabolites, in a more unbiased
manner, for instance using GC-MS. A number of exciting applications of GC-MS in
plant metabolomics have been already described. To date, GC-MS is considered as
the “workhorse” of separation and profiling technologies because the methodologies
are well established and routinely applicable. Off the shelf, comparably affordable
instrumentation is available from a range of vendors. Existing methods allow the
detection and quantification of a large number of small metabolites, such as amino,
organic and fatty acids, sugars, sugar alcohols, amines, or sterols. The development
of a GC-MS mass spectral library (MSRI) in the public domain [51] is a great help to
the researcher planning to use GC-MS technology. This library contains not only the
electron impact originated mass spectra of metabolites but also their corresponding
retention time indices which together, provides a highly valuable tool for peak iden-
tification. In the past decade, the GC-MS technology has been successfully applied
for comparative metabolomics approaches in a range of different plant species, for
example in Arabidopsis thaliana [28], Solanum tuberosum [71], Medicago truncatula
[10], Lotus japonicus [17] or Hordeum vulgare [72], Oryza sativa [86], and Solanum
esculentum [68].

Metabolomics itself would represent the determination and quantification of as
many metabolites as possible, again both identified and unidentified, using com-
plementary analytical methodologies to ensure maximal comprehensiveness, e.g.,
LC-MS/MS, GC-MS, and CE-MS. A schematic approach for metabolomics start-
ing from sample harvest to data analysis is presented in Fig. 3.10.

Fig. 3.10 Schematic workflow of a metabolomics approach from tissue harvest to data interpreta-
tion using complementary analytical instrumentation for greater comprehensiveness of metabolite
detection and quantification (see also Color Insert)
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The study of Tohge et al. [88] illustrates the utility of using multiple technologies
platforms to investigate gene functions in rice. The aim of the study was to determine
the effects of over-expression of the PAP1 gene encoding an MYB transcription factor
on Arabidopsis plants. This T-DNA activation-tagged line is known to produce higher
levels of anthocyanins compared to untransformed plants. In order to unravel the mode
of action of this transcription factor, the transgenic plants were analyzed by targeted
profiling confirming the higher levels of flavonoids using liquid chromatography with
photodiodearraydetectionfollowedbymassspectralanalysis (LC-PAD-MS). Inaddi-
tion, amino acid levels were determined by HPLC and anions and sugars by CE-MS,
and a non-targeted analysis was performed using FT-ICR-MS. One outcome of the
study was that the sample origin (plant organ) and the growth conditions have greater
influences on the metabolite composition than the transgenic event. When different
analytical platforms are employed for comprehensive metabolite analysis, attention
must be paid to sample harvest (sufficient tissue for the different methods) and data
integration. Most importantly, when data are integrated for data mining and interpreta-
tion, each type of analysis should be performed using the same sample, or more ideally,
the same homogenate. The aliquots of this homogenate may then undergo different
extraction procedures to prepare the sample to be amendable for the chosen analyti-
cal techniques. If possible, a single extraction method for all measurements would be
preferable to reduce influences of variability of extraction onto the data generation.

The last more general approach is called metabolic fingerprinting, in which a
metabolic “signature” of the sample is generated, for instance, using direct infusion
ESI-MS (DIMS) or FT-ICR-MS. This approach is often used for high-throughput
screening of large mutant collection or mapping populations. In the first instance, no
attempt is made to assign detection signals to a particular metabolite but once a sig-
nificantly discriminating signal is obtained, identification becomes crucial for inter-
pretation. A recent example is provided by Oikawa and colleagues who described a
strategic approach of using FT-ICR-MS for high-throughput metabolomics in plants
[60]. The authors suggest a scheme for plant sample analysis starting from the data
generation in a reproducible manner using FT-ICR-MS without any further chro-
matographic separation of the complex extracts. Obtained mass fingerprints (m/z
values with respective ion intensity) were then mass-error corrected and directly
submitted to multivariate analysis using a newly developed software tool (DMASS).
Marker metabolites were identified by searching the open-source metabolite rela-
tionship database KNApSAcK, and putative identifications were confirmed by struc-
tural analysis using MS/MS mode of the FT-ICR-MS. The described scheme will
be extremely helpful for high-throughput metabolic phenotyping studies not only in
plants but also in other biological systems.

3.5 Application Examples in Plant Sciences

Even with the challenges and limitation of truly producing a comprehensive metabo-
lite profile of plant extracts, metabolomics has already been successfully applied
to many fields in plant science. This discipline is rapidly becoming useful to
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address fundamental and longstanding questions in biochemistry and physiology,
which in turn has, and will continue to broaden our understanding of plant biol-
ogy. Metabolomics has found applications for the comprehensive phenotyping of
genetic varieties or genetically modified plants (GMOs), to determine gene func-
tion, to monitor plant behavior, responses to biotic and abiotic stress, and to make
determinations of substantial equivalence. Because metabolites are the end prod-
ucts of gene expression, metabolic profiling also has the potential to bridge the gap
between genotype and phenotype [36] and thus provides a more comprehensive
and integrated view of how cells function in multicellular organisms. In addition,
metabolic profiling has the potential to uncover new or dramatic changes in specific
metabolites that can point to new hitherto undiscovered regulatory mechanisms or to
a prediction of gene or protein function. Academically intriguing questions, testable
hypotheses, and potentially new biotechnological targets can be generated and iden-
tified from analysis and data mining of metabolic metadata sets. Here we summarize
a selection of metabolomics applications in plant research. A vast amount of primary
research literature and excellent books and reviews demonstrating and summarizing
the fast-growing field of plant metabolomics are available, and the reader is referred
to [40, 74, 96] or [78]. In this chapter, we present only a small selection of examples
for potential applications of metabolomics.

Metabolomics can be used for comprehensive phenotyping of genetic varieties
or genetically modified plants (GMOs). This was capably demonstrated in pioneer-
ing work by Fiehn et al. [29] in which GC-MS-based metabolomics was applied
to compare the metabolite profiles of two Arabidopsis ecotypes (parentals) and two
respective, well-characterized mutants produced from each of the two parental lines.
This study showed that the differences in the metabolomes of the ecotypes were far
greater than those observed in the respective mutants. Roessner et al. [71] used
GC-MS-based metabolite profiling to investigate the influence of transgenic modi-
fications of the sucrose degradation and starch synthetic pathway in potato tubers.
Large differences in the metabolite profile as a result of the genetic modification
were detected. However, when the wildtype tubers were incubated under different
in vitro culture conditions, the metabolite profiles of wildtype tubers could be dras-
tically altered, such that even greater modulations in metabolite levels were intro-
duced than that in the transgenics [71]. These two works established the discrimi-
natory power of metabolomics to resolve and molecularly separate organisms based
on genotype and culture conditions. Thereafter, metabolomics has been used to test
substantial equivalence of GMO crops to examine potential “unintended” effects
on the chemical constitution of the cell caused by transgenic manipulation [4, 16,
53, 104]. Although limited in scope and thus requiring caution in interpretation,
the results thus far tend to support the view that traditional breeding, different eco-
types/cultivars, or growth in different environments may produce inherently more
genetic variation in plants than that from some transgenic manipulations.

Metabolic profiling has also helped to redirect our knowledge of plant primary
metabolism. For example, Roessner-Tunali et al. established that the de novo syn-
thesis of amino acids occurs in non-photosynthetic organs (potato tuber) and was
independent on import from leaves which was a departure from classical textbook
description of this pathway [70]. Another long-held view was that import of sugars
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into tomato fruit was symplastic early in development and then switched to an
apoplastic route during ripening [64]. This was challenged after analysis of metabo-
lite profiles in transgenic tomatoes with reduced expression of a sucrose importer, as
the results implied that sugar import was apoplast [39]. These two examples show
the power of the metabolomics approach in putting new knowledge within reach by
taking an unbiased approach to studying metabolism.

Metabolomics is set to become important as a high-throughput method to screen
and accurately quantify the phenotypes of large genetic mapping populations. An
important tool for identifying novel genetic variation and new genes determining
plant performance and fitness is quantitative trait locus (QTL) mapping. Almost by
necessity, traditional QTL analysis was done on easily scorable phenotypes such as
fruit color, yield, or stress tolerance. However, the availability of novel technolo-
gies for high-throughput and simultaneous analysis of transcripts or metabolites has
proved to be efficient for the rapid and efficient dissection of multiple traits at the
molecular level, offering unprecedented access to QTLs. Large recombinant pop-
ulations can therefore be characterized with greater precision for desired features,
e.g., carotenoids, vitamins, acid, and/or sugar content in fruits, thus connecting DNA
content to the measurable change in phenotype.

Novel QTLs that control the level of a single or a network of metabolites can
be rapidly identified by direct comparison of the metabolite profile of progeny with
the parents from whom they were derived. For example, Schauer et al. [76] used
GC-MS technology to profile fruit from a well-characterized mapping population
made from a cross of the cultivated tomato species (Solanum lycopersicum) and a
wild, non-ripening tomato species (Solanum pennellii). Genomic regions from S.
lycopersicon, which were populated with markers, were introgressed into homol-
ogous regions of S. pennellii thus allowing mapping of the genes responsible for
contrasting traits, e.g., yield, fruit color, fruit sugars between the parentals [76]. A
large number of single metabolite QTLs were identified; for example, four lines
with overlapping genomic regions correlated with an increase in malate, suggesting
that the QTL may map to potential metabolic enzyme(s) or regulatory gene(s) that
controls or regulates malate levels. Many QTLs that affected entire pathways and/or
metabolic networks in tomato fruit were also discovered, and due to careful mea-
surement of physiological parameters, the study also showed that events in source
or photosynthetic tissues has a large control over traits in fruit, even though there is
large degree of spatio-temporal separation of biological activities of the two organs.
This work will undoubtedly provide tomato breeders with an arsenal of new gene
targets that could drive future tomato genetic improvement strategies. Further, it has
heightened our awareness of the inseparable and indivisible nature of the biochem-
ical and physiological behavior of crop plants in determining quality traits.

In another example, Keurentjes et al. [50] used a non-targeted LC-qTOF-MS
method to produce metabolic fingerprints of 14 Arabidopsis thaliana accessions
which could serve as parentals in a subsequent mapping experiment. The goal of
this study is to support QTL detection by comparing the metabolite profiles of
these fingerprinted parental accessions and their resulting progeny in a recombinant
inbred line (RIL) population. Over 2,000 individual mass peaks were detected by
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LC-qTOF-MS, and careful examination of the metabolomes of the two most diver-
gent accessions allowed QTLs to be assigned to about 75% of all mass peaks [50].
If each mass peak can be unequivocally identified and chemically determined, this
application has the power to chart new metabolic pathways and simultaneously elu-
cidate their underlying genetic control which is potentially exciting. The two exam-
ples we offer here may well be pioneering work for future QTL identification and
mapping; regardless, they demonstrate the potential that metabolomics offers to this
field dominated by DNA sequencing technologies. As innovations in metabolomics
support faster, easier, and more robust measurements, it will be possible to broadly
apply metabolomics to study genetic segregation and to identify novel genes that
contribute to biotechnologically important phenotypic traits. It can be envisioned
that this new “reverse-QTL” approach will identify pathways based on metabolic
profiles that underlie a trait of interest thus enabling a new paradigm in QTL screen-
ing and mapping.

Metabolomics represents a powerful approach of monitoring response, adapta-
tion, and tolerance mechanisms of plants to challenging environments and is there-
fore ripe for use as a diagnostic and investigative tool. Plants are often able to
survive and protect themselves against an onslaught of environmental stresses such
as extreme temperature, aridity, and salinity by modulating intracellular solutes.
This is usually achieved by increased synthesis and accumulation of compati-
ble solutes or osmoprotectant such as polyols (including glycerol and sorbitol),
amino acids (especially proline), quaternary compound (glycine betaine), or ter-
tiary sulfonium compounds (dimethylsulfoniopropionate) [7, 67, 82, 102]. Integrat-
ing metabolomics with physiology is proving to be yet another valuable resource to
dissect plant molecular response to abiotic stress and has generated new and excit-
ing results in this emerging field. Kaplan et al. [47] and Cook et al. [19] detailed
the plant metabolic adaptations after perturbation of the systems by exposure to
variations in temperature. Low temperatures had greater repercussions for metabo-
lite levels than did high temperatures, and several previously unknown adaptive
mechanistic responses to cold stress were revealed, including changes in cellular
amino acids, intermediates of both the TCA cycle and carbohydrate metabolism
[18, 47].

To identify networks responsible for differential adaptation to salinity, Gong
et al. [35] examined transcript and metabolite abundances of Arabidopsis and a
closely related salt-tolerant species, Thellungiella halophila. They found that the
metabolomes of both species were surprisingly similar except for two key differ-
ences – Arabidopsis had a greater flux of carbon to protein synthesis and Thel-
lungiella appeared to have a pre-adaptation strategy to salinity stress that was not
obvious or present in Arabidopsis [35]. Identifying novel metabolites or pathways
that underlie plant adaptation to abiotic stress could lead to the production of crop
species more tolerant to salt stress. It can be envisioned that in the near future, we
will be able to compare the metabolite responses of different plant species to a range
of different stresses, which will in turn allow the detection of metabolites affected by
stress in all or most species (species independent) as well as species/genus-specific
metabolite alterations (species specific).
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3.6 Summary and Future Outlook

Plant metabolism is dazzlingly complex, and its study is one of the most fascinating
and fast-exploding areas of biology. This complexity challenges any approach used
to understand the detailed metabolic events occurring at the cellular or subcellular
level. However, regardless of the difficulties or limitation of metabolomics, it is
central to the development of the systems approach, which argues for and embraces
the comprehensiveness, interrelationships, and interconnected nature of all levels of
organism organization, i.e., gene, transcript, protein, metabolite, and physiology, in
an attempt to complete our understanding of the system. Perhaps the greatest hurdle
is the impossibility at the current time, of obtaining an accurate description of the
total metabolic composition of a plant cell.

We have presented the current state of the art for identifying, measuring, and fin-
gerprinting metabolites in plant cells. Although these analytical methods for assess-
ing plant metabolites are becoming more efficient, repeatable, and even dynamic,
the field of metabolomics is still very much in its infancy and we are just on
the cusp of realizing its potential. Several areas of this new and burgeoning field
need to be addressed; constant refinement and development of new enabling tech-
nologies and statistical and data mining tools to support data interpretation will
broaden the realm of what is now possible in the plant metabolomic field. How-
ever, we stress that regardless of the metabolomic application used or the desired
outcome, the need for quality control and rigorous statistical analysis cannot be
compromised.
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Chapter 4
Enzyme Kinetics: Theory and Practice

Alistair Rogers and Yves Gibon

4.1 Introduction

Enzymes, like all positive catalysts, dramatically increase the rate of a given
reaction. Enzyme kinetics is principally concerned with the measurement and math-
ematical description of this reaction rate and its associated constants. For many
steps in metabolism, enzyme kinetic properties have been determined, and this
information has been collected and organized in publicly available online databases
(www.brenda.uni-koeln.de). In the first section of this chapter, we review the funda-
mentals of enzyme kinetics and provide an overview of the concepts that will help
the metabolic modeler make the best use of this resource. The techniques and meth-
ods required to determine kinetic constants from purified enzymes have been cov-
ered in detail elsewhere [4, 12] and are not discussed here. In the second section, we
will describe recent advances in the high throughput, high sensitivity measurement
of enzyme activity, detail the methodology, and discuss the use of high throughput
techniques for profiling large numbers of samples and providing a first step in the
process of identifying potential regulatory candidates.

4.2 Enzyme Kinetics

In this section, we will review the basics of enzyme kinetics and, using simple exam-
ples, mathematically describe enzyme-catalyzed reactions and the derivation of their
key constants. However, first we must turn to the mathematical description of chem-
ical reaction kinetics.
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4.2.1 Reaction Rates and Reaction Order

4.2.1.1 First-Order Irreversible Reaction

The simplest possible reaction is the irreversible conversion of substance A to
product P (e.g., radioactive decay).

A
k1−→ P (4.1)

The arrow is drawn from A to P to signify that the equilibrium lies far to the right,
and the reverse reaction is infinitesimally small. We can define the reaction rate or
velocity (v) of the reaction in terms of the time (t)-dependent production of product
P. Since formation of P involves the loss of A, we can also define v in terms of the
time-dependent consumption of substance A, where [A] and [P] are the concentra-
tions of the substance and product, respectively.

v = δ[P]

δt
= −δ[A]

δt
= k1[A] (4.2)

The transformation of substance A to product P is an independent event and there-
fore is unaffected by concentration. As substance A is transformed to product P,
there is less of substance A to undergo the transformation, and therefore the con-
centration of substance A will decrease exponentially with time (Fig 4.1A). The rate
constant (k1) of this reaction is proportional to the concentration of A and has the
unit s−1.This type of unimolecular reaction is known as a first-order reaction because
the rate depends on the first power of the concentration. Integration of Eq. (4.2) from
time zero (t0) to time t gives

ln
[A]

[A]0
= − k1t (4.3)

or

[A]

[A]0
= e−k1t (4.4)

where [A]0 is the starting concentration at t0. Eq. (4.4) describes how the concentra-
tion of A decreases exponentially with time as shown in Fig. 4.1A. When the ln[A]
is plotted against time (Fig. 4.1B), a first-order reaction will yield a straight line,
where the gradient is equal to –k1.

4.2.1.2 First-Order Reversible Reaction

Few reactions in biochemistry are as simple as the first-order reaction described
above. In most cases, reactions are reversible and equilibrium does not lie far to
one side.
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[A
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Time

ln
 [A

]

A

B

gradient = – k1

Fig. 4.1 A first-order
reaction showing the decrease
of substance A over time
expressed as the
concentration of A ([A],
Panel A) and in a
semi-logarithmic plot (ln[A],
Panel B)

[P][A] ⎯→⎯
⎯⎯ ⎯←

k 1

k − 1 (4.5)

Therefore, the corresponding rate equation is

v = −δ[A]

δt
= k1[A] − k−1[P] (4.6)

where k1 and k–1 are the rate constants for the first-order, forward and reverse, reac-
tions respectively. Consumption of A will stop when the rates of the forward and
reverse reactions are equal and the overall reaction rate is zero, i.e., when a state
of equilibrium has been attained ([A]eq and [P]eq are the substrate concentrations
at equilibrium). Note that in catalyzed reactions, the position of equilibrium is not
altered by the presence of an enzyme. The effect of a catalyst is to increase the rate
at which equilibrium is attained.

0 = −k1[A]eq + k−1[P]eq (4.7)
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For this reaction, where the forward and reverse reactions are both first order, the
equilibrium constant (Keq) is equal to the ratio of the rate constants for the forward
and reverse reactions. For a reaction to precede in the direction of product (P) for-
mation, the equilibrium constant must be large.

Keq = k1

k−1
= [P]eq

[A]eq
(4.8)

4.2.1.3 Second-Order Reaction

In addition to being reversible, most reactions are second order or greater in their
complexity. Whenever two reactants come together to form a product, the reaction
is considered second order, e.g.,

A + B
k1−→ P (4.9)

The rate of the above reaction is proportional to the consumption of A and B and
to the formation of P. The reaction is described as second order because the rate is
proportional to the second power of the concentration; the rate constant k1 has the
unit s–1 M–1.

v = −δ[A]

δt
= −δ[B]

δt
= δ[P]

δt
= k1[A][B] (4.10)

Integration of Eq. (4.10) yields an equation where t is dependent on two variables,
A and B. To solve this equation, either A or B must be assumed to be constant.
Experimentally, this can be accomplished by using a concentration of B that is far
in excess of requirements such that only a tiny fraction of B is consumed during the
reaction and therefore the concentration can be assumed not to change. The reaction
is then considered pseudo-first order.

v = k1[A][B]0 = k ′
1[A] (4.11)

Alternatively, when the concentration of both A and B at time zero are the same,
i.e., [A0] = [B0], Eq. (4.10) can be simplified:

v = −δ[A]

δt
= k1[A]2 (4.12)

4.2.2 What Does an Enzyme Do?

Transition state theory suggests that as molecules collide and a reaction takes place,
they are momentarily in a strained or less stable state than either the reactants
or the products. During this transition state, the potential energy of the activated
complex increases, effectively creating an energy barrier between the reactants and
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Fig. 4.2 A free energy (G) diagram for a simple reversible exothermic reaction A↔P (solid
and broken lines). GA and GP represent the average free energies per mole for the reactant A and
the product P, the initial and final states respectively. The standard state free energy change for the
reaction is ΔG◦. In order for reactant A to undergo transformation to product P, it must pass through
the transition state (indicated at the apex of these plots). The ΔG1

‡ and ΔG1
‡ ′ indicate the energy

of activation necessary to make that transition for the uncatalyzed (solid) and catalyzed (broken)
reactions respectively. The energy of activation for the reverse reaction (P→A) is indicated by
ΔG−1

‡ (uncatalyzed) and ΔG−1
‡′ (catalyzed)

products (solid line, Fig. 4.2). Products can only be formed when colliding reac-
tants have sufficient energy to overcome this energy barrier. The energy barrier
is known as the activation energy (ΔG‡) of a reaction. The greater the activation
energy for a given reaction is, the lower the number of effective collisions. The
molecular model currently used to explain how an enzyme catalyzes a reaction is
the induced-fit hypothesis. In this model, the enzyme binds it’s substrate to form
an enzyme–substrate complex where the structure of the substrate is distorted and
pulled into the transition state conformation. This reduces the energy required for
the conversion of a given reactant into a product and increases the rate of a reaction
by lowering the energy requirement (broken line, Fig. 4.2) and therefore increasing
the number of effective collisions that can result in the formation of the product. In
addition, enzymes also promote catalysis by positioning key acidic or basic groups
and metal ions in the right position for catalysis. In reality, the free energy diagram
for an enzyme-catalyzed reaction is considerably more complicated than the exam-
ple in Fig. 4.2. Typically an enzyme-catalyzed reaction will involve multiple steps,
each with an activation energy that is markedly lower than that for the uncatalyzed
reaction.

4.2.3 The Michaelis–Menten Equation

The Michaelis–Menten equation (Eq. 4.26), as presented by Michaelis and Menten
and further developed by Briggs and Haldane [6, 34], is fundamentally impor-
tant to enzyme kinetics. The equation is characterized by two constants: the
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Michaelis–Menten constant (Km) and the indirectly obtained (see Eq. 4.25) cat-
alytic constant, kcat. Although derived from a simple, single-substrate, irreversible
reaction, the Michaelis–Menten equation also remains valid for more complex reac-
tions.

The simple conversion of substrate (A) into product (P) catalyzed by the enzyme
(E) is described below. As outlined by the induced-fit hypothesis, the first step is
substrate binding and the second step is the catalytic step.

E + PEAE + A ⎯→⎯⎯→⎯
⎯⎯⎯←

k2
k1

k−1 (4.13)

Following Eq. (4.2), we can define the formation of the product in terms of the
dissociation rate (k2) of the enzyme–substrate complex, commonly denoted as kcat,
and the concentration of the enzyme–substrate complex ([EA]).

ν = kcat[EA] (4.14)

It is assumed that the dissociation rate (kcat in Eq. 4.14 or k2 in Eq. 4.13) of the
enzyme–substrate complex (EA) is slow compared to association (k1) and redisso-
ciation (k–1) reactions and that the reverse reaction (P→A) is negligible. Figure 4.3
shows how the consumption of substrate, the production of product, and the concen-
tration of the free enzyme and the enzyme–substrate complex change over the course
of the reaction. During a very brief initial period, the enzyme–substrate complex is

Time

C
on

ce
nt

ra
tio

n

Et

EA

E

P

A

Fig. 4.3 Change in substrate (A), product (P), free enzyme (E), enzyme–substrate complex (EA),
and total enzyme (Et) concentration over time for the simple reaction described in Eq. (4.13). After
a very brief initial period, the concentration of the enzyme–substrate complex reaches a steady state
in which consumption and formation of the enzyme–substrate complex are balanced. As substrate
is consumed, the concentration of the enzyme–substrate complex falls slowly and the concentration
of the free enzyme rises. The amounts of enzyme and enzyme–substrate are greatly exaggerated
for clarity
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formed and reaches a concentration at which its consumption is matched by its for-
mation. The [EA] then remains almost constant for a considerable time; this period
is known as the steady state, and it is this steady-state condition that the Michaelis–
Menten equation describes. Eventually, the reaction enters a third phase character-
ized by substrate depletion in which the [EA] gradually falls.

At steady state, the enzyme–substrate concentration is stable, i.e.,

δ[EA]

δt
= 0 (4.15)

and therefore the formation of the ES complex (association reaction) and the break-
down of the ES complex (the sum of the redissociation and dissociation reactions)
are equal.

k1[E][A] = k−1[EA] + kcat[EA] (4.16)

Rearrangement of Eq. (4.16) yields

k1[E][A]

k−1 + kcat
= [EA] (4.17)

The three rate constants can now be combined as one term. This new constant, Km,
is known as the Michaelis–Menten constant

Km = k−1 + kcat

k1
(4.18)

and Eq. (4.17) can be rewritten as

[E][A]

Km
= [EA] (4.19)

The concentration of enzyme in Eq. (4.19) refers to the unbound enzyme. The
amount of free enzyme (E) and enzyme that is bound to the substrate (EA) varies
over the course of a reaction, but the total amount of enzyme (Et) is constant (see
Fig. 4.3) such that

E = Et − EA (4.20)

Substituting into Eq. (4.19) yields

([Et] − [EA])[A]

Km
= [EA] (4.21)

which can be rearranged to yield

[Et][A]

Km + [A]
= [EA] (4.22)
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Substituting into Eq. (4.14) gives

ν = kcat[Et][A]

Km + [A]
(4.23)

The maximum possible reaction rate (vmax) would be achieved when all the available
enzyme is bound to the substrate and involved in catalysis, i.e.,

[EA] = [Et] (4.24)

Substituting Eq. (4.24) into Eq. (4.14) under conditions of saturating substrate con-
centration yields

νmax = kcat[Et] (4.25)

and substituting Eq. (4.25) into Eq. (4.23) yields what is widely recognized as the
Michaelis–Menten equation.

ν = vmax[A]

Km + [A]
(4.26)

4.2.4 Key Parameters of the Michaelis–Menten Equation

4.2.4.1 Km (mol.l−1)

Assuming a stable pH, temperature, and redox state, the Km for a given enzyme is
constant, and this parameter provides an indication of the binding strength of that
enzyme to its substrate. Michaelis–Menten kinetics assumes that kcat is very low
when compared to k1 and k–1. Therefore, following Eq. (4.18), a high Km indicates
that the redissociation rate (k–1) is markedly greater than the association rate and
that the enzyme binds the substrate weakly. Conversely, a low Km indicates a higher
affinity for the substrate (E1 in Fig. 4.4). However, as Eq. (4.18) shows, a large Km

could also be the result of very large kcat. Therefore, care should be taken when using
Km as a proxy for the dissociation equilibrium constant of the enzyme–substrate
complex.

4.2.4.2 kcat (s–1)

The kcat, also thought of as the turnover number of the enzyme, is a measure of the
maximum catalytic production of the product under saturating substrate conditions
per unit time per unit enzyme. The larger the value of kcat, the more rapidly catalytic
events occur. Values for kcat differ markedly, e.g., 2.5 s–1 for rubisco (EC 4.1.1.39)
with CO2 as a substrate to c. 1,150 s−1 for fumarase (EC 4.2.1.2) with fumarate as
a substrate [13, 49].
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[A]

v

vmax

0.5 vmax

Km of Enzyme E1

Km of Enzyme E2

E1

E2

Fig. 4.4 Change in velocity
(v) with the concentration of
substrate A ([A]) for the
reaction shown by Eq. (4.13)
catalyzed by two enzymes E1
and E2. The substrate
concentration at the point at
which the reaction has half its
maximum velocity (0.5 vmax)
is equal to the Km. Enzyme
E2 has a Km four times
greater than enzyme E1 but
the same vmax

4.2.4.3 Enzyme Efficiency (s–1 (mol.l–1) −1)

The ratio of kcat/Km is defined as the catalytic efficiency and can be taken as a mea-
sure of substrate specificity. When the kcat is markedly greater than k−1, the cat-
alytic process is extremely fast and the efficiency of the enzyme depends on its
ability to bind the substrate. Based on the laws of diffusion, the upper limit for
such rates, as determined by the frequency of collisions between the substrate and
the enzyme, is between 108 and 109. Some enzymes actually have efficiencies that
approach this range, indicating that they have near-perfect efficiency, e.g., fumarase,
2.3 × 108 s−1(mol.l−1)−1 [13, 50].

4.2.4.4 vmax

The vmax is the maximum velocity that an enzyme could achieve. The measurement
is theoretical because at given time, it would require all enzyme molecules to be
tightly bound to their substrates. As shown in Fig. 4.4, vmax is approached at high
substrate concentration but never reached.

4.2.5 Graphical Determination of Michaelis–Menten Parameters

Since the Michaelis–Menten parameters provide useful information for the network
modeler, we need to consider the methods used to estimate Km, kcat, and vmax. There
are a number of practical approaches to measuring reaction rates (see Section 4.3).
Briefly, we need some way to follow the consumption of substrate or formation
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Fig. 4.5 Linear
representations of the
Michaelis–Menten equation
(Eq. 4.26). Lineweaver–Burk
(A), Eadie–Hofstee (B), and
Hanes (C) plots. The
intercepts with the x- and
y-axis and the gradient can be
used to determine Km and
vmax

of product over time. We could simply mix enzyme with substrate and follow the
formation of product in a progress reaction (e.g., Fig. 4.3) or conduct several exper-
iments at multiple substrate concentrations and measure initial velocity at each sub-
strate concentration (e.g., Fig. 4.4). However, the graphical evaluation of nonlinear
plots to obtain Michaelis–Menten parameters relies on accurate curve fitting. The
problems associated with evaluating enzyme kinetics using a nonlinear plot can be
avoided by using one of the three common linearization methods to obtain estimates
for Km and vmax (Fig. 4.5). However, these methods are not without problems either.
Errors in the determination of v at low substrate concentration are greatly magnified
in Lineweaver–Burke and Eadie–Hofstee plots and to a lesser extent in Hanes plots.
Despite this disadvantage, and in contrast to nonlinear plots, changes in enzyme
kinetics, for example, due to the action of an inhibitor, are readily apparent on linear
plots (see Fig. 4.6). Clearly, selection of a linear or nonlinear plot should be based
on an understanding of the sources of error in the experiment and consistent with
the goal of that experiment.

4.2.6 Multisubstrate Reactions

Most biochemical reactions are not simple-, single-substrate reactions, but typically
involve two or three substrates that combine to release multiple products. However,
the Michaelis–Menten equation is robust and remains valid as reaction complexity
increases. When an enzyme binds two or more substrates, the order of the biochem-
ical steps determines the mechanism of the reaction. Below we have detailed the
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Fig. 4.6 A Lineweaver–
Burke plot of an uninhibited
enzyme (solid line) and the
same enzyme in the presence
of noncompetitive inhibitor
(plot 1), competitive inhibitor
(plot 2), and an uncompetitive
inhibitor (plot 3). The point
where the plots meet the
x-axis indicates –1/Km, and
the intercept with the y-axis
indicates 1/vmax

three major classes of mechanisms for the reaction where two substrates (A and B)
react to yield two products (P and Q). Full derivation of the rate equations for these
reactions and discussion of more complex mechanisms is covered elsewhere [4, 12]
and is beyond the scope of this chapter.

4.2.6.1 Random Substrate Binding

In its simplest form, this mechanism assumes independent binding of substrates
and products. Either substrate A or B can be bound first and either product P or Q
released first; binding of the first substrate is independent of the second substrate.
The catalytic reactions occur in central complexes and are shown here in parenthe-
ses to distinguish them from intermediate complexes that are capable of binding
substrates. The phosphorylation of glucose by ATP, catalyzed by hexokinase, is an
example of a random-ordered mechanism, although there is tendency for glucose to
bind first.

(4.27)

4.2.6.2 Ordered Substrate Binding

In some cases, one substrate must bind first before the second substrate is able to
bind effectively. This mechanism is frequently observed in dehydrogenase reactions
where NAD+ acts as a second substrate.
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E + P + QEQ + P

(EAB – EPQ)EA + BE + A + B

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯⎯←

k4

k−4

k3

k−3

k2

k−2

k1

k−1

(4.28)

4.2.6.3 The Ping-Pong Mechanism

In this mechanism, enzyme E binds substrate A and then releases product P. An
intermediate form of enzyme E (E∗), which often carries a fragment of substrate A,
then binds substrate B. Finally, product Q is released, and the enzyme is returned to
its original form (E). Aminotransferases use this mechanism, e.g., aspartate amino-
transferase catalyses the ping-pong transfer of an amino group from aspartate to
2-oxoglutarate to form oxaloacetate and glutamate.

E + P + Q(E*B–EQ) + P

E* + P + B(EA – E*P) + BE + A + B

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯ ⎯←

⎯→⎯
⎯⎯⎯←

k4

k−4

k3

k−3

k2

k−2

k1

k−1

(4.29)

4.2.7 Regulation

The catalytic capacity for a given process in a cell can be regulated at many lev-
els of biological organization. Coarse control is provided by the regulation of the
transcription of genes that encode the enzymatic machinery. Here, we outline the
major mechanisms by which the activity of functional enzymes can be altered by
fine control mechanisms and show how these mechanisms impact enzyme kinetics.

4.2.7.1 Enzyme Inhibition

Here, we define inhibition as a reduction in enzyme activity through the binding of
an inhibitor to a catalytic or regulatory site on the enzyme, or in the case of uncom-
petitive inhibition, to the enzyme–substrate complex. Inhibition can be reversible or
irreversible. Irreversible inhibition nearly always involves the covalent binding of a
toxic substance that permanently disables the enzyme. This type of inhibition does
not play a role in the fine control of enzyme activity and is not discussed further.
In contrast, reversible inhibition involves the noncovalent binding of an inhibitor to
the enzyme which results in a temporary reduction in enzyme activity. Inhibitors
differ in the mechanism by which they decrease enzyme activity. There are three
basic mechanisms of inhibition – competitive, noncompetitive, and uncompetitive
inhibition – and these are outlined below using simple examples. The reality is more
complex and typically reactions involve mixed and partial mechanisms comprised
of these three component mechanisms [4, 12].
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4.2.7.2 Competitive Inhibition

A competitive inhibitor is usually a close analogue of the substrate. It binds at
the catalytic site but does not undergo catalysis. A competitive inhibitor wastes
the enzyme’s time by occupying the catalytic site and preventing catalysis. Or put
another way, the presence of an inhibitor decreases the ability of the enzyme to bind
with its substrate. The reaction scheme below details the mechanism. Here, k1 and
k–1 are the rates for the association and redissociation reactions for the enzyme–
substrate complex (see Eq. 4.13), and k2 and k−2 are the rates for the association
and redissociation reactions between the enzyme and inhibitor (I).

(4.30)

At steady state, the enzyme–inhibitor concentration is stable; so following
Eqs 4.15–4.18, the association and redissociation rate constants for the enzyme–
inhibitor complex can be combined in one term Ki, the dissociation constant for
inhibitor, and following Eq. (4.19) can be expressed as follows:

Ki = [E][I]

[EI]
(4.31)

Since some enzyme is bound to the inhibitor, the equation describing the total
amount of enzyme has an extra term and Eq. (4.20) becomes

E = Et − EA − EI. (4.32)

The resulting rate equation becomes

v = kcat[E]t[A]

Km

(
1 + [I]

Ki

)
+ [A]

(4.33)

and following Eq. (4.25),

ν = vmax[A]

Km

(
1 + [I]

Ki

)
+ [A]

(4.34)

As can be seen from Eq. (4.34), an increase in the concentration of a competitive
inhibitor will increase the apparent Km of the enzyme. However, since an infinite
substrate concentration will exclude the competitive inhibitor, there is no effect
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on vmax. The effect of competitive inhibition is readily apparent on a Lineweaver–
Burke plot (Fig. 4.6, plot 2).

4.2.7.3 Noncompetitive Inhibition

A noncompetitive inhibitor does not bind to the catalytic site but binds to a second
site on the enzyme and acts by reducing the turnover rate of the reaction. The
reaction scheme (Eq. 4.35) details the mechanism for a noncompetitive inhibitor.
Consider the simplest example of a noncompetitive inhibitor. Here, the binding of
the inhibitor and substrate is completely independent, and binding of the inhibitor
results in total inhibition of the catalytic step. In this simple case, the association and
disassociation rates k1 and k−1 are identical to k3 and k−3 (i.e., Km), and similarly,
k2 and k−2 are equal to k4 and k−4 (i.e., Ki)

(4.35)

The apparent kcat for this simple example is given by

kapp
cat = kcat(

1 + [I]

Ki

) (4.36)

and the resulting rate equation is

v = kapp
cat [E]t[A]

Km + [A]
(4.37)

As can be seen from the rate equation, a simple noncompetitive inhibitor will not
alter the Km but will reduce the apparent kcat as inhibitor concentration increases
(Fig. 4.6 plot 1).

4.2.7.4 Uncompetitive Inhibition

An uncompetitive inhibitor does not bind to the enzyme but only the enzyme–
substrate complex. Consider the simple example where binding of the uncompetitive
inhibitor to the enzyme–substrate complex prevents catalysis (Eq. 4.38):
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(4.38)

The rate equation is

v = vmax[A]

Km + [A]

(
1 + [I]

Ki

) (4.39)

Sequestration of the enzyme–substrate complex by the inhibitor will reduce the
apparent kcat because the inhibited enzyme is less catalytically effective. Apparent
vmax is reduced (and apparent Km increased) because binding of the inhibitor cannot
be prevented by increasing the substrate concentration (Fig 4.6, plot 3).

4.2.7.5 Substrate and Product Inhibition

The activity of enzymes can also be regulated by their substrates and products. Sub-
strate inhibition, also know as substrate surplus inhibition, occurs when a second
substrate molecule acts as an uncompetitive inhibitor binding to the enzyme–
substrate complex to form an enzyme–substrate–substrate complex. This mecha-
nism is the same as for uncompetitive inhibition, but here, the inhibitor is replaced
by the second substrate molecule. In reversible reactions, the buildup of product
can theoretically competitively inhibit the forward reaction by competing with the
substrate for the active site. However, since the equilibrium constant is often large,
favoring product formation, this type of inhibition is typically negligible. However,
the product of a reaction can also behave as a noncompetitive or uncompetitive
inhibitor. The mechanisms for these types of inhibition have been described above
for the action of inhibitors.

The regulation of enzyme activity by its immediate substrate and or product is not
sufficient to allow regulation of complex metabolic pathways with shared substrates.
Effective regulation must include the inhibition and activation of enzyme activity
by molecules that are distinct from the substrates and products of the regulated rate.
These molecules are usually produced by reactions that are multiple biochemical
steps away from the regulated enzyme. Allosteric regulation allows this type of
control.

4.2.7.6 Allosteric Enzymes

Allosteric enzymes exhibit cooperativity in their substrate binding and regulation of
their active site through the binding of a ligand to a second regulatory site. These two
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traits make allosteric enzymes particularly good at controlling flux through a given
metabolic chokepoint when compared to enzymes with classic Michaelis–Menten
kinetics. Indeed, classic Michaelis–Menten enzymes require an 81-fold increase in
substrate concentration to increase reaction rate from 10% to 90% of the maximal
velocity [12].

4.2.7.7 Cooperativity (Homoallostery)

In enzymes with multiple binding sites, cooperative substrate binding describes the
phenomenon whereby the binding of the first substrate molecule impacts the ability
of the subsequent substrate molecules to bind. In the case of positive cooperativ-
ity, binding of the first substrate molecule enhances the ability of the following
molecules to bind. An enzyme exhibiting positive cooperativity will appear to have
a large Km at low substrate concentration, but as the substrate concentration rises,
the Km will decrease and the substrate will be bound more readily. Figure 4.7 shows
an example of positive cooperativity (plot 3). The physiological advantage of the
sigmoidal kinetics is that enzyme activity can be increased more markedly within
a narrow range of substrate concentration (gray area Fig. 4.7) when compared to
a normal hyperbolic kinetic response (plot 1). The enzyme with positive coopera-
tivity is much more responsive to changes in substrate concentration and can also
better maintain a substrate concentration at or below a given threshold. In negative
cooperativity, the binding of the first substrate interferes with the occupation of the
second site. This can be advantageous when an enzyme needs to respond to a wide

[A]

v

1

2

3

4

Fig. 4.7 Change in velocity
(v) with substrate
concentration ([A]) for an
enzyme with normal binding
(plot 1) and positive
cooperative binding (plot 3)
in the presence of an
allosteric activator (plot 2)
and an allosteric inhibitor
(plot 4). The gray area
indicates a hypothetical
physiological range for this
enzyme
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range of substrate concentrations. An enzyme with negative cooperativity will be
activated by a low concentration of substrate but will not saturate until the substrate
concentration is extremely high.

There are two main models that attempt to describe how the enzyme changes
its affinity for substrate with cooperative binding [28, 35]. These models share the
concept that the subunits of the enzyme can exist in both a tense state (T-state),
where substrate binding is weak, and a relaxed state (R-state), where substrate bind-
ing is strong, and that the initial binding of the substrate to the T-state enzyme shifts
more subunits/enzyme molecules to the R-state, where the substrate can bind more
readily.

The Hill equation (Eq. 4.40) describes the fraction of binding sites filled (r) by
n molecules of substrate A, where Kd is the dissociation constant for A. The Hill
coefficient derived from the gradient of a log-transformed plot of Eq. (4.40) indi-
cates the degree and direction of cooperativity. An enzyme with classic hyperbolic
binding behavior has a Hill coefficient of 1; enzymes with positive cooperativity
have a Hill coefficient >1; and enzymes with negative cooperativity have a Hill
coefficient <1.

r = n[A]n

Kd + [A]n
(4.40)

4.2.7.8 Heteroallostery

The second major component of allosteric enzymes is the control of enzyme activ-
ity by heteroallosteric effectors (inhibitors or activators). Since allosteric enzymes
exhibit cooperativity and can be considered to exist in two states, the T-state and
R-state, it follows that an effector that can alter the balance between the T and R
states will be able to effect the kinetics. Allosteric inhibitors bind to the subunit
and stabilize its T-state. Therefore, a greater substrate concentration is required to
compensate for the shift of equilibrium toward the T-state. Activators shift the equi-
librium toward the R-state by acting as a cooperative ligand. Figure 4.7 shows the
effect of an allosteric inhibitor (plot 4) and activator (plot 2) on the sigmoidal kinet-
ics of an allosteric enzyme.

4.3 Measurement of Enzyme Activity

Enzyme activities have been measured for more than a century in the frame of a
wide range of applications ranging from fundamental approaches to industrial appli-
cations, from biochemistry to medical diagnostics, and assessment of food quality.
The importance of characterizing the catalytic properties of individual enzymes is
self-evident to biochemists. Traditionally, enzymes have been purified from indi-
vidual organisms or tissues and subjected to various in vitro experiments in order to
study the corresponding reaction mechanisms (e.g., [3, 5, 22, 33]), and eventually
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determine their constants (Km, Ki, kcat, vmax); such data can now be found in
databases, e.g., BRENDA (www.brenda.uni-koeln.de/).

The next step is to integrate catalytic properties with data describing the struc-
ture of proteins, from sequence data to crystal structures. The understanding
of structure–function relationships indeed represents one of the major aims in
biology [23]. Recent progress in molecular techniques has enabled the design of
alterations in the structure of enzymes, via site-directed mutagenesis [43] or till-
ing [44], and in cases combined with heterologous expression systems [1] which
can provide new insight into structure–function relationships. Such approaches are
generally focused on a few targets and do not usually involve high throughput tech-
niques.

Another major aim in biology is to link the properties of macromolecules with
phenotypes. Variation in the properties of enzymes can indeed have important con-
sequences on metabolism, also on plant form and function. Variation in the sequence
of a given structural gene may affect the properties of the corresponding enzyme,
and depending or not on growth conditions, affect the phenotype. For example, the
introgression of a regulatory subunit of ADP-glucose pyrophosphorylase, from a
wild tomato species into a cultivated tomato, has been found to stabilize the active
protein and thus maintain a higher activity of this key enzyme in starch synthesis.
As a consequence, developing fruits accumulate more starch, which results in the
release of more soluble sugars in ripening fruits [38]. Another striking example is
the effect of an apoplastic invertase introgressed from another wild tomato species.
Its higher affinity for sucrose, due to a single nucleotide polymorphism, results in
a higher content of soluble organic compounds in the ripe fruits [15]. Both exam-
ples show that variations in properties of enzymes can dramatically affect pheno-
types. We can thus predict that many such relationships will be found by screening
genotypes (natural populations or mutants) for alterations in the properties of key
enzymes.

In addition, environmental parameters like light, temperature, or nutrient avail-
ability can influence enzyme activities, via transcriptional, posttranscriptional, post-
translational, or allosteric regulations. Several enzymes, like nitrate reductase [26]
and ADP-glucose pyrophosphorylase [1, 25, 51], have been intensively investigated,
revealing highly complex regulations, but only a few studies haven been undertaken
in a more systematic way. These studies showed, for example, that diurnal changes
in transcript levels were not reflected at the level of the activities of the encoded
enzymes in leaves of Arabidopsis [16], but were generally integrated over time,
leading to semi-stable metabolic phenotypes [17, 36, 45, 52].

Finally, the properties and response of enzymes need be understood in their phys-
iological context. In other words, kinetic properties, usually determined in vitro
on isolated enzymes, need to be linked to pathway kinetics. Modeling metabolic
networks will benefit from the accumulation of data dealing with variations in the
levels and catalytic properties of enzymes associated with given genotypes and/or
precise growth conditions. Furthermore, high throughput approaches will be crucial
to access such data, especially in natural communities where diurnal, seasonal, spa-
tial, and climatic variability requires extensive sampling. We will thus emphasize
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methodologies dedicated to the determination of activities in complex samples, as
they typically represent the first step in the identification of regulatory candidates.

4.3.1 Methodology

Enzyme activity is determined by measuring the amount of product formed or
substrate consumed under known conditions of temperature, pH, and substrate con-
centration. In general, the initial rate, defined as the slope of the tangent to the
progress curve at time 0, is determined. It is important to keep in mind that activities
express velocities, not concentrations or amounts of molecules. By definition, the
determination of a given enzyme activity thus requires unique physical and chemi-
cal conditions. In consequence and due to the fact that enzymes catalyze very diverse
reactions (dehydrogenations, transfers, isomerizations, etc.), the profiling of various
enzyme activities implies the application of a wide range of principles. It is there-
fore at the opposite of “true” profiling approaches, in which a class of molecules
(transcripts, metabolites, proteins) sharing similar physical and chemical properties
is being analyzed. Below we have detailed some of the key concepts and advances
that have made high throughput enzyme analysis possible.

4.3.1.1 Quantification Techniques

Various principles allow the quantification of changes in the concentrations of
substrates or products of enzymatic reactions. The most widely used principles are
UV-visible spectrophotometry [2], fluorimetry, [19, 20] and, to a lesser extent, lumi-
nometry [10, 11, 14]. Spectrophotometric methods benefit from the fact that many
reactions involve directly or indirectly the oxidized and reduced forms of NAD(P),
the reduced forms absorbing specifically at 340 nm. NAD(P)H can also be deter-
mined in a fluorimeter, with a much higher sensitivity [24]. Furthermore, various
fluorogenic substrates reacting with a wide range of enzymes are commercially
available. The luminometric method involving luciferase and its substrate luciferin
is very often used to measure ATP, ADP, and AMP [11], giving access to the quan-
tification of ATP-dependent reactions [10]. Such methodology can benefit from a
multiparallel setup (microplates, microfluidic systems) which is well suited for high
throughput.

Radioactivity is used when specificity and/or sensitivity cannot be achieved with
conventional methods. A typical application is the determination of the incorpo-
ration of 14CO2 in the carboxylation reaction catalyzed by rubisco (EC 4.1.1.39;
[30]). The throughput of such methods is generally low, and their use is increas-
ingly affected by constraints on the use of radioactivity due to increased regulation
of environmental health and safety.

Mass spectrometry methods are increasingly developed for the determination of
enzyme activities [21]. One major advantage is the possibility to check and quantify
almost every type of molecule, given substrates and products can be easily separated
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and/or have different masses. This technology however requires expensive equip-
ment and considerable expertise.

Electrochemical detection [27] can also be applied to biochemistry, as for exam-
ple, amperometry which consists of the determination of electrical currents with
electrodes eventually coated with enzymes catalyzing ion-producing reactions. The
use of such biosensors remains limited and requires sophisticated equipment. This
technology is however amenable to high throughput, for example, when combined
with microfluidics [41, 54].

In plants, fluorimetric and luminometric methods are difficult to use, due to the
presence in extracts of high levels of various compounds interfering at almost every
wavelength, e.g., pigments or polyphenols. Without careful fractionation, such com-
pounds will quench the emitted signals, even when present at low concentrations,
leading to an underestimation of the actual activities. This is a pity because most
recent technological developments in enzymology rely on fluorimetry, in particu-
lar, microfluidic chips [40]. In consequence, the microplate1 format still offers the
best compromise between cost and throughput. Microplates can be used manually
but are amenable to high throughput applications. Due to the wide range of appli-
cations and equipment available nowadays, microplates have almost completely
replaced cuvette-based applications. Although microplate readers also exploit the
Beer–Lambert law [7], there might be some confusion. In a cuvette photometer, the
absorbance (OD for optical density) is defined as follows:

OD = ε.c.l (4.41)

where ε is the extinction coefficient of the substance being measured, c is its con-
centration, and l, the length of the optical path (generally 1 cm, see Fig. 4.8). In a
cuvette, the light path is constant and OD varies with concentration. In a microplate
reader, the light path is vertical and dependent on the volume (V) of the solution
being measured. Where r is the radius of a well,

l = V

π r2
(4.42)

since,

c = n

V
(4.43)

OD will be proportional to the amount (moles) of absorbing molecules (n) and will
be independent of the light path, i.e., in Fig. 4.8 the OD for wells B and C will be
the same. Thus giving:

1This format was invented in the early 1950s by the Hungarian G. Takatsky and became popu-
lar during the late 1970s with the ELISA application, that’s probably the reason why so many
researchers call microplates “elisa plates.”
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Fig. 4.8 Incident (I0) and transmitted (I) light in a cuvette (A) and two microplate wells (B and C).
The light path (l) is constant in the cuvette (typically 1 cm) but varies in the microplate well. Wells
(B) and (C) have the same amount of analyte (black dots) but different concentrations. However,
the amount of transmitted light (I) will be the same

OD = ε.n.
1

π r2
(4.44)

It is worth noting that the well radius in microplates varies with manufacturer and
model and care should be taken to select a plate with a flat bottomed cylindrical
well. In addition, the presence of a meniscus in the well can affect this relationship,
especially when using low volumes.

4.3.1.2 Continuous and Discontinuous Assays

In a continuous assay, the progress of the reaction is monitored directly in a recorder.
This is only possible when changes in either a product or a substrate can be moni-
tored in real time, as is the case with highly active dehydrogenases. In discontinuous
assays, the reaction is stopped after fixed time intervals and a product is measured
with a second specific reaction. In routine measurements, only two time points may
be measured but linearity has to be checked to ensure that the supply of substrates
and cofactors has not been depleted.

4.3.1.3 Sensitivity

The sensitivity of an assay can be defined as the smallest quantity that can be deter-
mined significantly. When activities are measured in raw extracts, it is also conve-
nient to express it as the smallest amount of biological material that can be assayed.
The theoretical detection limit of a standard filter-based photometric microplate
reader is 0.001 which represents 0.06 nmol of NADH at 340 nm. In practice, due to
experimental noise, the detection limit is much higher, at least 10 times when per-
forming endpoint measurements. Highly sensitive assays allow the determination of
activities that are present at very low levels but increased sensitivity also means that
interferences can be removed, or significantly reduced by dilution.

A range of highly sensitive methods dedicated to the determination of enzyme
activities are available commercially, but as mentioned above, most of them are not
suitable for plant extracts, as they rely on fluorimetry or luminometry, an alternative
is the use of cycling assays (Fig. 4.9).



92 A. Rogers and Y. Gibon

Fig. 4.9 Examples of assay principles based on the glycerol-3-phosphate cycling. Each enzyme
activity (represented in bold italics) can be determined by adding coupling enzymes and metabo-
lites downstream of its relevant product. After stopping the reaction, the product is determined
using the cycling system (highlighted), directly or after conversion into either G3P or DAP. The
principle is that the net rate of the cycle is a pseudo-zero-order reaction whose rate (δ[analyte
measured]/δt = δ[precursor of this analyte]/δt) depends on the initial concentration of G3P and/or
DAP being determined. Quantification is achieved by measuring the rate of NADH consump-
tion at 340 nm, and by comparison with a standard curve, in which different concentrations
of the G3P and/or DAP are added in the presence of pseudo-extract. Abbreviations: Metabo-
lites 3PGA, 3-phosphoglycerate; ADPG, ADP-glucose; DAP, dihydroxyacetone phosphate; DPG,
1,3-diphosphoglycerate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; G, glyc-
erol; G1P, glucose-1-phosphate; G3P, glycerol-3-phosphate; GAP, glyceradehyde-3-phosphate;
NTP, nucleotide triphosphate; PPi, pyrophosphate; RUBP, ribulose-1,5-bisphosphate; UDPG,
UDP-glucose. Enzymes AGPase, ADPG pyrophosphorylase; FBPALD, FBP aldolase; GAPDH,
NAD-GAP dehydrogenase; GK, glycerokinase; G3PDH, G3P dehydrogenase; G3POX, G3P
oxidase; MK, myokinase; PFK, ATP-phosphofructokinase; PGK, phosphoglycerokinase; PFP,
PPi-phosphofructokinase; rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; TPI, triose-
phosphate isomerase; UGPase, UDPG pyrophosphorylase

Cycling assays are less prone to interferences coming from raw extracts as
they can be used with standard microplate photometers and provide a 100–10,000
increase in sensitivity compared to direct or endpoint spectrophotometric meth-
ods. Cycling assays were developed by Warburg et al. [53] and made popular
by the efforts of Lowry et al. [31, 32]. However, these assays are time consum-
ing and tedious when used in cuvettes. Cycling assays prove to be much eas-
ier in microplates [18] and can be adapted for the determination of a number
of enzyme activities via discontinuous assays [16]. A wide range of reactions
can be measured provided they can be coupled to the production or consump-
tion of NAD(H), NADP(H), glycerol-3-phosphate, dihydroxyacetone phosphate, or
nucleotide triphosphates (Fig. 4.9).

4.3.1.4 Coupling Reactions

The majority of enzyme activities cannot be monitored directly. One or more cou-
pled reactions are needed to convert a product of the enzyme reaction being mea-
sured into a quantifiable product. For example, phosphoglucose isomerase can be
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assayed by coupling the production of glucose-6-phosphate to NADPH production,
using glucose-6-phosphate dehydrogenase, as shown below:

NADPHG6PF6P ⎯⎯⎯ →⎯⎯⎯→⎯ G6PDHPGI
(4.45)

Abbreviations: F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; NADPH,
reduced nicotinamide adenine dinucleotide phosphate; PGI, phosphoglucose iso-
merase (EC5.3.1.9); G6PDH, glucose-6-phosphate dehydrogenase (EC1.1.1.49)

Coupling reactions may also be used when the primary reaction has an unfa-
vorable equilibrium constant, e.g., malate dehydrogenase in its forward direction

MDH Oxaloacetate + NADH + H+Malate + NAD+ ⎯⎯ →←
Keq = 5.94 x10−13 (4.46)

Abbreviation: MDH, malate dehydrogenase (EC 1.1.1.37). The value for Keq is from
Outlaw and Manchester [37].

The addition of citrate synthase and acetyl coenzyme A will consume oxaloac-
etate and thus displace the equilibrium of the primary reaction:

Citrate + Coenzyme A

Oxaloacetate + Acetyl coenzyme A ⎯→⎯CS

(4.47)

Abbreviation: CS, citrate synthase (EC 2.3.3.1).
A number of theoretical studies have been undertaken to model and optimize cou-

pled enzyme assays [2, 46]. Coupled assays are valid if the velocity of the coupling
system equals the velocity of the reaction of interest. Thus, an efficient coupling is
only possible if steady-state concentrations of the product of the primary reaction
are much smaller than the corresponding Km [46]. The fact that a coupling reac-
tion may increase the time lag required to reach steady state has also to be taken
into account. Equations can be used to optimize the concentrations of the coupling
enzymes, generally in order to reduce costs or to avoid interfering reactions. It is
however recommended to test a range of concentrations of coupling enzymes and to
check the duration of the lag phase for each of them.

4.3.1.5 Interferences with Other Components of the Extract

The use of raw extracts to determine kinetic properties of enzymes is subject to var-
ious interferences. Undesired substrates of reactions under investigation, including
coupling reactions, can lead to underestimations or overestimations of actual activ-
ities, especially when non-saturating conditions are being used. Specific or non-
specific inhibitors or activators may also interact with the reactions under study.
Another possible source of error is the presence of numerous enzymes in the extract,
as some of them may react with constituents of the assay.
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Running blanks is a way to retrieve interferences; it is particularly useful when
an enzyme yielding a common product is present. A typical example is given by the
assay for glutamine synthetase, an enzyme involved in nitrogen assimilation and in
photorespiration [39]:

Gln + ADP + PiGlu + NH4 ⎯→⎯+ ATP+ GS

(4.48)

Abbreviations: Glu, glutamate; ATP, adenosine triphosphate; Gln, glutamine; ADP,
adenosine diphosphate; Pi, orthophosphate; GS, glutamine synthetase (EC 6.3.1.2).

Pyruvate kinase and lactate dehydrogenase are then used as coupling enzymes,
to convert the ADP into NAD+:

⎯⎯ →⎯

⎯→⎯

Lactate + NAD+Pyruvate + NADH, H+

Pyruvate + ATPPEP + ADP
LDH

PK

(4.49)

Abbreviations: PEP, phosphoenolpyruvate; PK, pyruvate kinase (EC 2.7.1.40);
NADH,H+, reduced nicotinamide adenine dinucleotide; NAD+, oxidized nicoti-
namide adenine dinucleotide; LDH, lactate dehydrogenase (EC 1.1.1.27).

In the presence of AMP (generally present as a contaminant of commercial
preparations of ATP), adenylate kinase from the extracts will also yield ADP:

ATP + AMP
AK−→ ADP + ADP (4.50)

Abbreviations: AMP, adenosine monophosphate; AK, adenylate kinase (EC
2.7.4.3).

Thus, the coupling system will measure the activities of both glutamine syn-
thetase and adenylate kinase. It will then be useful to run a blank without ammo-
nium (or conversely glutamate). However, the effect of ammonium (or glutamate)
on the activity of adenylate kinase has to be checked.

Therefore, it is sometimes useful to add specific inhibitors to block interfering
enzymes. P1,P5-di (adenosine-5′)-pentaphosphate is a strong inhibitor of adenylate
kinase [29] and can be included into the assay mixture for the determination of glu-
tamine synthetase. A blank without one of the substrates is however still necessary,
as the inhibition of the interfering activity may be incomplete.

Another way to diminish interferences from the extracts is to dilute them until
interferences become negligible. As mentioned above, purification steps including
desalting of extracts are time consuming and may provoke losses of activities. Nev-
ertheless, the fact that many enzymes become unstable when they are diluted [42]
has to be taken into account. Dilution experiments can be performed in order to
determine the optimal dilution of the extract in the assay. Interestingly, various
enzymes from leaves of various species could be measured at strong dilutions with-
out losses in activity ([16] and unpublished results). When stopped assays are used,
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linearity with time should always be checked, as well as the recovery of the product
of the enzyme under investigation. This is best achieved by spiking the extraction
buffer with various amounts of the product, below and above the range expected to
be produced by the enzyme. Alternatively, extracts under study can be mixed with
an extract with a known activity.

4.3.2 Logistics

Building a microplate-based platform enabling the determination of dozens of
enzyme activities in parallel requires several points to be taken into account.

4.3.2.1 Type of Assay

Stopped assays are usually preferred to continuous assays, as they provide sev-
eral major advantages. First, they offer more flexibility because the determination
of the products of the enzymatic reactions under study can be performed sepa-
rately, while the continuous assays require as many temperature-controlled pho-
tometers as enzymes being measured. Incubators, including automated hotels, where
microplates can be incubated at predetermined temperatures for set periods of time
before reactions are stopped, are indeed less expensive than photometers and can
easily be included as part of an automated pipetting station. Secondly, stopped
assays can provide a much higher sensitivity, when products of enzymes are being
measured with kinetic or fluorimetric methods. This allows routine determination
of enzymes with low activities from raw extracts, without the need for sophisti-
cated time-consuming purification and concentration procedures. Thirdly, the first
step of stopped assays can be performed with low volumes (e.g., 20 μl in 96-well
microplates), while for optical reasons, continuous assays require a minimal vol-
ume (e.g., 100 μl in 96-well flat bottom microplates). This can lead to a substantial
lowering of the costs, assuming the reagents used for the determination of the prod-
ucts are less expensive than those used in the first step. The major disadvantage of
stopped assays is that they require more pipetting steps, which implies that they are
more time consuming and more prone to error. Time and error can however be con-
siderably reduced when using electronic multichannel pipettes or liquid handling
robots. The use of continuous assays will be usually restricted to enzymes with high
activities and those requiring inexpensive reagents, like triose phosphate isomerase,
malate dehydrogenases, or phosphoglucomutase.

4.3.2.2 Reagents

As by definition, each enzyme activity requires unique conditions to be determined;
a multiparallel platform will require a large variety of reagents, which implies
well-organized logistics. Typically, microplates have to be prepared in advance,
so that enzyme reactions can be started right after extracts have been prepared.
However, assay mixes are generally stable for only a few hours, so that they
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have to be prepared right before starting extractions. It is very useful to build a
“bank” of reagents that can be organized as ready-to-use kits. Whenever possible,
stock solutions should be prepared in advance and stored at adequate temperatures
(e.g., −80◦C when containing enzymes and/or coenzymes). Pipetting schemes used
for the preparation of assay mixes should be kept as simple as possible in order to
decrease the time needed, for example, by adjusting concentrations of reagents in
such a way that only a few, easy to manage, pipetting volumes will be used.

Another important issue is that more and more reagents are no longer com-
mercially available, probably due to the fact that many enzyme-based analytical
procedures used to determine metabolites have been replaced by mass spectrometry-
based methods. For example, yeast glycerokinase, used as a coupling enzyme in
a range of assays measuring ATP- or UTP-producing enzymes and exploiting the
glycerol-3-phosphate cycling system [16, 18], cannot be replaced by its homo-
logues from bacteria, as these have a much weaker affinity for ATP and do not
react with UTP. Heterologous expression systems can be used to produce such
enzymes, but imply extra costs and can be time consuming. Substrates like xylulose-
5-phosphate or sedoheptulose-1,7-bisphosphate, necessary for the determination of
important enzymes from the Calvin cycle or the oxidative pentose phosphate path-
way, also became unavailable recently. In these cases, skills in organic chemistry
will be welcome. Alternatively, private or public laboratories can produce such com-
pounds on demand, as relevant protocols are often available, but this is usually very
expensive.

4.3.2.3 Sample Handling

Samples are prepared by quenching tissues into liquid nitrogen immediately after
harvesting. If labile posttranslational modifications are studied, sampling should
happen within seconds. Furthermore, several enzymes that are regulated via light-
dependent redox mechanism, like fructose-1,6-bisphosphase (EC 3.1.3.11;[9]), may
activate/deactivate very quickly. It is then crucial to plunge the tissues into liquid nitro-
gen in the light. Samples should always be stored at –80◦C and processed at very low
temperatures (grinding and weighing of aliquots for analysis) until extraction.

4.3.2.4 Preparation of Extracts

The optimal dilution varies from enzyme to enzyme, in large part because enzymes
from various pathways cover 4–5 orders of magnitude in terms of activity. Thus,
depending on the enzymes being measured, it will be necessary to achieve several
dilutions of the extracts. This is best achieved when extracts are prepared in 96-well
format.

4.3.2.5 Stability of Enzymes

Many enzymes are not stable once extracted and do not resist a freezing/thawing
cycle, even in the presence of glycerol. The assay must therefore be performed
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as quickly as possible once the extracts have been prepared. This implies that a
compromise has to be found between number of extractions and number of enzymes
to be measured.

4.3.2.6 Temperature

Kinetic properties of enzymes vary with temperature, it is thus important to keep it
constant, by using incubators and/or temperature controlled photometers.

4.3.2.7 Timing

Time management is essential for conducting stopped assays. When several
enzymes are assayed in parallel in many extracts, manual timing becomes very dif-
ficult. This can be simplified by using the automated timing available in standard
programs driving liquid handling robots.

4.3.2.8 Automation

The need to process more samples faster is a continuing trend in academic and
industrial research. The wide adoption of microplates in laboratory routines has sig-
nificantly influenced the development of a huge diversity of labware and automation
solutions. Almost everything dealing with enzyme activities can now be processed
with the help of robots in this format, from preparation of samples to detection.
Depending on needs and means, the best balance between man and machine has
nevertheless to be found in the jungle of laboratory robotics.

Based on the desired throughput, and assuming the labor of 2–4 people, we can
roughly estimate the needs:

– Low throughput, below 500 activity determinations a week, robotics is not an
absolute requirement. Standard microplate equipment including multichannel
pipettes and a spectrophotometer might be adequate.

– Mid throughput, between 500 and 50,000, at least one liquid handling robot
is needed, ideally a 96-channel robot equipped with a gripper to transport
microplates, a shaker, temperature control, and several microplate readers. Pipet-
ting robots working in the range of 0.5–50 μl are the most adequate; in addition
to the throughput, they usually provide a very good accuracy at low volumes. A
cryogenic grinding/weighing robot (Labman, Stokesley, UK) may also be very
useful to process samples prior to extraction, as these steps are highly time con-
suming. A laboratory information management system may also be implemented
in order to decrease time and error in calculations.

– High throughput, above 50,000, requires fully automated solutions. A high
degree of sophistication will be required to include steps such as centrifugation,
adhering, or removing adhesive lids, integration of microplate readers, and so on,
implying an exponential increase of the costs. A further consequence is a strong
decrease in flexibility.
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4.3.3 Determination of Enzyme Properties in Raw Extracts

The purification of enzymes from living organisms, even partial, is a time-
consuming process eventually leading to losses in activity and/or alterations in the
actual catalytic properties. In consequence, its use is generally restricted to detailed
biochemical studies. Highly purified enzymes are needed to determine important
kinetic parameters like Km and kcat, to search for inhibitors or activators, or to obtain
crystals.

If kcat is known, it is then theoretically possible to evaluate enzyme concentra-
tions in complex extracts. This is however biased by possible changes due to isoform
composition or to posttranslational regulation events. This is also not a priority, as
advances in proteomics are likely to become more adequate for such purpose and
able to deal with a much larger number of analytes in parallel [8]. Apparent activities
of enzymes should therefore be considered as integrating various levels of regula-
tion, each of them being potentially subject to environmental or genetic inputs.

We believe that the collection of large sets of activity data obtained from various
genotypes, organs, or tissues and from various growth conditions could be useful
to modeling scientists. It would therefore be advantageous to determine the activi-
ties in standardized conditions, like temperature, pH (depending on the subcellular
compartmentation and assuming that most enzymes from a compartment will have
similar pH optima), or buffers. Metadata consisting in precise documentations of
the assay condition for each enzyme should also be documented.

4.3.3.1 Measurement of Total Activity

When assay conditions are optimized in such a way that a given activity from a raw
extract is maximized, we will consider that vtotal is being measured. Under condi-
tions at which enzymes are by far more diluted than their substrates, most of them
obey the law of Michaelis–Menten. As a consequence and assuming that assay con-
ditions, including concentrations of substrates, are kept nearly constant, rates of
reactions will be dependent solely on the enzyme concentration, due to the estab-
lishment of pseudo-zero-order reactions (see Section 4.2.1). Thus, measurement of
vtotal is an estimate of the amount of enzyme present.

4.3.3.2 Measurement of Apparent Kinetic Constants

Various linearization methods have been established to determine such constants
(see Section 4.2.5 and Fig. 4.5), but as previously stated [12], computer-based meth-
ods should be preferred, assuming some understanding of the underlying calcula-
tions. In particular, the structure of the experimental error may drive the choice of
the method being used, as each method handles the error in a different way (see Sec-
tion 4.2.5). It is possible to determine kinetic constants in raw extracts that are close
to kinetic data obtained with purified enzymes and that can be found in literature or
in databases [47, 48]. As shown in Fig. 4.10, the affinity of rubisco for ribulose-1,5-
bisphosphate and its total activity were determined by fitting the Michaelis–Menten
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Fig. 4.10 Change in velocity with the concentration of ribulose-1,5-bisphosphate for the reaction
catalyzed by ribulose-1,5-carboxylase/oxygenase (EC 4.1.1.39) and determination of Km and Vtotal

with hyperbola fitting (A), Lineweaver and Burk (B), and Hanes (C) methods. Data are expressed
as means ± SD (n = 6). The fitting of the hyperbola was achieved using the Sigma Plot soft-
ware [48]

equation (Eq. 4.26) and by using the methods of Lineweaver and Burk, and Hanes.
Values obtained with the three methods were very similar, with the exception of
the apparent Km for ribulose-1,5-bisphosphate which was found to be higher when
using the method of Lineweaver and Burk, probably due the overweighting of the
2 points obtained with the two lowest substrate concentration (see Section 4.2.5).
The apparent Km or K0.5 for ribulose-1,5-bisphosphate was found to have a value
of about 20 μM, which is close to values obtained with the purified enzyme from
various species of higher plants (http://www.brenda.uni-koeln.de/).

Kinetic properties obtained with raw extracts should always be considered with
caution as various sources of error are possible. Effectors present in the extracts
may inhibit or activate the enzyme under study and thus lead to erroneous results.
Artifacts may also result from the destabilizing effect of the dilution of the substrate,
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especially when the enzyme is already highly diluted [42]. Such an effect can lead to
an erroneous interpretation, as the dose–response curve may have a sigmoid shape
and thus evoke cooperativity (see Section 4.2.7). It may therefore be useful to repeat
measurements with different concentrations of both extract and substrate. Further-
more, the use of Km might be misleading and should be replaced with apparent Km

or more generally K0.5, i.e., the condition at which the enzyme reaches 50% of its
total velocity in the extract.

Inhibition types and constants may also be determined using raw extracts. There-
fore, a large number of determinations have to be performed, i.e., various sub-
strate concentrations at various inhibitor concentrations. Such determinations are
probably prone to error, due to the complexity of raw extracts. If alterations in
inhibition constants are to be searched across a large range of genotypes and/or
growth conditions, it seems more adequate to determine the K0.5 corresponding to
the inhibitors or activators under study first, by using the same approach described
above.

It is important to note that both low and high concentrations of substrate should
be used anyway. For example, competitive inhibitors would not exert any visible
effect at high substrate concentrations. Once K0.5 has been determined in condi-
tions that are satisfactory in terms of accuracy and reproducibility, a high throughput
screen can be designed in “saturating” and “half saturating” conditions. Any shift in
the ratio between v0.5 and vtotal would indicate a possible variation in the properties
of the enzyme under study.

4.4 Conclusion

Enzyme activity integrates information from several levels of biological organi-
zation and in that respect the information is perhaps more valuable than relying
on assumptions made from, for example gene transcript abundance alone, and
unlike metabolite or gene transcript data, enzyme activity also provides infor-
mation about flux, which is key to understanding metabolic networks. However,
parallel determination of, for example, gene transcript abundance, metabolite and
protein levels in conjunction with enzyme activity will provide rich data sets where
integration of information is likely to be of greater value than the sum of the
parts.

Traditional methods for analyzing enzyme activity are laborious and not com-
parable to the high throughput “omics” approaches currently being used to investi-
gate the levels of gene transcripts, proteins, and metabolites. The enzyme analysis
platform described here is a step toward the type of high throughput tool that we
have become familiar with in the “omics” arena. However, because the biochem-
istry of enzyme activity analysis is considerably more complex than other high
throughput technologies, true high throughput profiling on the scale of genomics
is unlikely. Nevertheless, high throughput enzyme activity analysis is now a
reality.
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Chapter 5
Quantification of Isotope Label

D.K. Allen and R.G. Ratcliffe

5.1 Introduction

The use of stable and radioactive isotopes of low natural abundance has a long
history in plant research. At a metabolic level, isotope labeling leads to the dis-
covery of new pathways (e.g., [48, 70]) and to detailed descriptions of the fluxes
that underpin the metabolic phenotype [93, 108]. In particular, and as described
in detail elsewhere in this book, 13C-labeling experiments provide the inputs for
generating the large-scale flux maps that emerge from network flux analysis. The
availability of robust, accurate methods for the analysis of the redistribution of label
is central to the success of this approach, and so this chapter focuses on the nuclear
magnetic resonance (NMR) and mass spectrometry (MS) techniques that make this
possible.

Typically, a 13C-labeling experiment will lead to the production of a range of
isotopomers for any given metabolite. Isotopomers differ in the number and posi-
tion of the incorporated isotopes, and the resulting labeling pattern will reflect the
pathways that led to the incorporation of the label into the metabolite. It turns out
that the quantification of these isotopomers is crucial for the analysis of typical
metabolic networks. While net intracellular fluxes can be deduced from measure-
ments of metabolic inputs and outputs using flux-balancing techniques, this method
requires additional assumptions [12], and a cellular objective such as optimal cell
growth, to predict the flux patterns (see Chapter 8). In contrast, labeling experiments
[97] permit the calculation of net and exchange flux values for reversible reactions
[146], the analysis of parallel fluxes in subcellular compartments [44], and the mea-
surement of cyclic fluxes for nonlinear pathways like the tricarboxylic acid cycle
[109]. The success of the labeling approach arises because variations in fluxes at
branch points can lead to differences in isotopomer distribution [103], reflecting the
carbon rearrangements of the different pathways. As a result, investigations of label
enrichment are invaluable for network-based studies of metabolism [60, 138].
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Both gas chromatography/mass spectrometry (GCMS) and 13C NMR can pro-
vide large amounts of labeling information, and their use is universal in network
flux analysis. As GCMS and 13C NMR evaluate chemical compounds differently,
the information content of the spectra is complementary and sometimes redundant.
Figure 5.1 compares the spectra and labeling information obtained from MS and 13C
NMR. In principle, both techniques are capable of completely resolving all of the
isotopomers of a given compound, though for larger compounds (>4 carbons) deter-
mination of even the majority of the isotopomers is time consuming, laborious [10],
and rarely attempted. However, partial identification of isotopomer distributions is
often sufficient for flux estimation [27].
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Fig. 5.1 Spectroscopic signatures for a chemical structure containing three carbon atoms that
can each be labeled (13C, •) or unlabeled (12C, ◦): (a) NMR; (b) MS. All 2n = 23 = 8 positional
isotopomers (n = total number of atoms that can be either unlabeled or labeled) and their spec-
troscopic signatures are shown for both instruments. The NMR spectrum shows three complex
signals, corresponding to the three carbon atoms, and the relative intensities of the signals contain
information on the relative abundance of seven of the eight positional isotopomers. The MS spec-
trum shows four signals, corresponding to the four mass isotopomers, and their relative intensity
defines the mass enrichment for each mass isotopomer
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MS characterizes the labeling of a molecular fragment in terms of molecular
mass, and fragments that only differ in the number of labeled atoms are referred to
as mass isotopomers. The mass enrichment of a mass isotopomer is defined as the
abundance of the isotopomer (Ai) as a fraction of the total abundance of the fragment
(i.e., Ai/

∑
A, Ai+1/

∑
A, etc.). Note that it is also common to represent the abundance

Ai for a particular mass fraction (e.g., M+, M+1+, etc.) as the bracketed form ([M]+,
[M+1]+, etc.). The brackets signify the relative abundance or concentration of the
mass isotopomer. NMR techniques characterize the labeling of intact molecules in
terms of the abundance of positional isotopomers, defined as molecules with the
same chemical structure that differ in isotopic (13C) composition. NMR can also
detect the presence or absence of adjacent 13C atoms, and this is referred to as bond
connectivity information. These terms are discussed in more detail elsewhere [93].

A number of factors, including time, accessibility to instruments, sample number,
sample size, instrument sensitivity, label(s) selection, and label costs will affect the
choice of analysis by MS or NMR. Furthermore, GCMS requires derivatization of
metabolites to convert them into volatile forms that can pass through the GC column
(see also Chapter 3). Accordingly, if both methods are used, it may be advantageous
to perform the non-destructive NMR measurements first, and then to recover the
sample for subsequent derivatization and MS processing.

5.2 Sample Preparation

Sample preparation is an essential first step in analyzing the redistribution of label
by either MS or NMR, and indeed it has been suggested that advances in sam-
ple preparation, including derivatization techniques for particular compounds, will
result in more significant progress than the use of increasingly sophisticated and
expensive instrumentation [54]. Moreover, the complexity of compartmented plant
metabolism increases the need for high-quality information on the redistribution of
the label, and comprehensive flux maps can only be obtained from large datasets.
Fortunately, careful fractionation before NMR analysis or derivatization for GCMS
can increase both the range and the number of metabolites available for analysis.
Some of the extraction procedures that are commonly used in flux analysis are sum-
marized in the following paragraphs.

Lipid extraction is often the first step in sample processing because the oil frac-
tion can complicate subsequent processing steps if it is present in significant quan-
tities. Extraction with hexane:isopropanol or chloroform:methanol mixtures can be
followed by acid-catalyzed esterification with boron trifluoride or methanolic:HCl
[13], base-catalyzed hydrolysis with sodium or potassium hydroxide or methoxide
[39], or butyl amide formation [1, 62]. If the oil fraction is the only component
of interest, then transmethylation can be carried out in situ to aid recovery, but the
tissue is then unavailable for further analysis. More general instructions on lipid
handling and analysis are given in [18].
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Low molecular weight polar components can be extracted with 80% ethanol,
70% methanol, or perchloric acid in water. The sugars, free amino acids, and organic
acids can be further fractionated with cation and anion exchange columns (e.g., [64,
151]).

Proteins are extracted using buffered aqueous solutions that also contain surfac-
tants and denaturants, precipitated with trichloroacetic acid (TCA), and hydrolyzed
with 6 M HCl at elevated temperatures (above 100◦C) for up to 24 h to liberate the
amino acids [106]. The hydrolysis process is detrimental to several amino acids.
The basic amino acids glutamine and asparagine are largely converted to glutamate
and aspartate, and tryptophan and cysteine are destroyed [42]. Also the side chain
of arginine is labile and may only be recognized in GCMS as a smaller product [57,
85]. After liberation, the amino acids can be processed through a cation exchange
column and dried for subsequent derivatization (see Section 5.4.3).

Following protein extraction, starch can be solubilized by heating with an alka-
line solution, and after adjusting the pH to 4.5–5 using acetic acid, the soluble starch
can be degraded with amyloglucosidase/amylase [45]. Glucose can be converted to
the alditol acetate derivative for label quantitation with or without prior reduction
[11, 88].

Finally, the recalcitrant material that remains is likely to be composed in large
part of cell wall, including pectins, hemicellulose, and cellulose. By treating the
cell wall with 2 M trifluoroacetic acid for several hours at 120◦C [11], the pectin
and hemicellulose and to a far lesser extent the cellulose are broken down to their
monomeric forms. Protein glycans segregated with the protein extraction can be
handled in a similar fashion [1]. These monosaccharides can also be derivatized
with or without prior reduction. Alternatively, during protein hydrolysis, glycans are
converted to levulinic acid and hydroxyacetone which can then be analyzed directly
[117].

5.3 Nuclear Magnetic Resonance (NMR)

NMR is a property of isotopes with non-zero nuclear magnetic moments. It pro-
vides a mechanism for detecting such isotopes in a wide range of circumstances,
and it gives rise to a method, NMR spectroscopy, that is arguably one of the most
versatile analytical techniques available for the detection and identification of chem-
ical compounds. The general principles of NMR spectroscopy are fully described in
many textbooks (e.g., [43, 51, 69]). Moreover, given that the versatility of NMR
spectroscopy as an analytical technique stems in large part from the plethora of
experiments that exist for manipulating the nuclear spin system prior to detection,
guides to the implementation of comprehensive selections of the many different
NMR experiments are also available (e.g., [7]).

The specific application of NMR spectroscopy relevant here is the analysis of
the redistribution of label that occurs when an isotopically labeled substrate is intro-
duced into the plant metabolic network. NMR is well suited to this task, since it is
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readily applied to the analysis of plants and plant metabolites [92, 94], and it is also
well established that NMR is a powerful method for analyzing the complex mixtures
of metabolites that are routinely obtained in tissue extracts [36, 63]. Accordingly
after a brief description of some general considerations, this section will focus on
the NMR analysis of fractional enrichments and isotopomeric composition.

5.3.1 General Considerations

The NMR-detectable isotopes that are most commonly used in isotopic labeling
experiments are 2H, 13C, and 15N. These isotopes have low natural abundance
(0.015, 1.1, and 0.37%, respectively), and supplying a plant tissue with a suit-
ably labeled substrate will generally lead to the selective enhancement of the NMR
signals from a range of metabolites. The redistribution of the label reflects the
metabolic activity of the tissue, and thus provides information on the pathways that
are present and the fluxes they support. However, while all three isotopes are used
extensively in pathway delineation, network flux analysis is largely based on mea-
suring the redistribution of 13C [93] (see Chapter 9). It follows that 1H and 13C NMR
methods are the most important for flux analysis, although notable exceptions can
be found, for example, a 15N NMR analysis of the time course of [15N]ammonium
assimilation in Corynebacterium glutamicum [124].

Typically, flux analysis requires an analysis of the labeling of a mixture of
metabolites in one or more fractions obtained by tissue extraction (Section 5.2). The
sensitivity of the chosen NMR experiment and the extent to which the NMR signals
overlap are key factors in defining the scope of the analysis. Adequate sensitivity
can be achieved by extracting sufficient labeled material – typically a few grams
fresh weight – and in general, the NMR analysis will always need a larger quan-
tity of labeled material than the corresponding MS analysis. In compensation, NMR
can usually provide a wealth of information on the positional isotopomers within
the mixture, thus ensuring that NMR is used extensively in flux analysis [121].

The other important consideration is the extent to which the signals overlap
in the NMR spectrum. 13C NMR signals are dispersed over an intrinsically large
spectral window (∼200 ppm), but the signals from the isotopomers that contribute
to the labeling of a specific carbon atom will invariably overlap. Similarly in the
much more crowded 1H NMR spectrum, it may be difficult to detect the informative
13C satellites because of overlap with other signals. Fortunately, the limitations that
sometimes arise in one-dimensional (1D) NMR analysis (Section 5.3.2) can often
be solved by switching to a two-dimensional (2D) NMR experiment (Section 5.3.3),
and in general, the success of an NMR flux analysis is not limited by the availability
of sufficient data on the redistribution of the label.

Several other considerations and experimental options have a bearing on the over-
lap problem. First, the NMR signals from low-molecular weight compounds are
usually narrower than those from macromolecules. It follows that it is more informa-
tive to analyze hydrolysates of macromolecules, for example starch [28] and protein
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[120], than to attempt to record spectra from the macromolecules themselves. This
generalization holds true even though several amino acids (Asn, Cys, Gln, and Trp)
are lost during acid hydrolysis of protein. Secondly, the resolution of some NMR
signals is adversely affected by the presence of paramagnetic ions in aqueous tis-
sue extracts, and this problem can be avoided by the addition of small amounts of
a chelating agent such as EDTA. Thirdly, the extent to which a tissue extract is
fractionated before analysis is entirely at the discretion of the investigator. Since
absolute pool sizes are not required for steady-state analysis, the inevitable losses
that will occur in a multi-step procedure are of no consequence, provided there is
sufficient label for analysis in the final fraction. Moreover for time-course analysis,
the same consideration holds true if NMR is only used to measure the isotopomeric
composition of the pool, with some other technique being used to measure pool size
at an earlier stage in the fractionation procedure. In practice, many NMR investi-
gations are based on rather crude fractionation of the tissue extract, relying on the
peak separation attributes of 2D NMR to reduce spectral overlap to manageable
levels. Finally, some readily detected metabolites exist in solution as a mixture of
stereoisomers, for example, the α- and β-anomers of glucose. This increases the
number of peaks in the NMR spectrum without increasing the information content.
Depending on the investigation, this may turn out to be only a minor complication
that can be minimized spectroscopically; but on other occasions, it may be worth-
while finding a chemical route to eliminate the problem. For example, glucose can
be converted to monoacetone glucose, a procedure that halves the number of glucose
signals because the derivative only exists as a single stereoisomer [1, 56]. Note that
the redundancy arising from the detection of the α- and β-anomers of glucose can
be useful because a comparison between the two sets of signals provides a check on
the analysis [32]. However, this advantage is probably outweighed by the reduced
overlap and improved sensitivity achievable, when the signals from the two anomers
are combined through the formation of a suitable derivative.

5.3.2 One-Dimensional NMR Methods

5.3.2.1 Fractional Enrichments

One way of characterizing the isotopic composition of a metabolite pool is to mea-
sure the fractional enrichment of specific carbon atoms. A metabolite with n carbon
atoms has n fractional enrichments – also known as positional enrichments – and
there are several ways of extracting this information from 1D NMR spectra [121].
Note that every method depends on comparing signal intensities, and it is there-
fore important to ensure that the signals are indeed comparable. Thus, if the signals
are not fully relaxed, then the degree of saturation must be identical or a suitable
correction factor must be determined. Similarly if 1H-decoupled 13C NMR signals
have different nuclear Overhauser enhancement (NOE) effects [51], then this must
be allowed for in the calculation.
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All carbon-bonded hydrogen atoms give 1H NMR signals with 13C-satellites.
Only 1.1% of the total signal intensity will be in the satellites at natural abundance,
but this fraction increases if the carbon atom is selectively labeled. Accordingly,
measuring the relative intensities of the satellite and central resonances provides a
direct route to the fractional enrichment of the specific carbon atom that is bonded to
the observed hydrogen atom. The fractional enrichments of the other carbon atoms
in the metabolite can then be obtained by comparing the intensities of the signals
in the 13C NMR spectrum (Fig. 5.2). A useful refinement to the basic method is to
compare 1H NMR spectra recorded with or without 13C-decoupling [113]. The dif-
ference between these two spectra allows accurate quantification of satellites that
would otherwise be obscured by signals from hydrogen atoms bonded to unla-
beled carbon moieties. Even with this refinement, the method is largely restricted
to metabolites that give rise to readily resolvable signals in the less crowded regions
of the 1H NMR spectra of tissue extracts, such as glucose, the glucosyl moiety of
sucrose, and alanine (e.g., [28]). However, the scope of the method increases con-
siderably if specific metabolites are separated from the tissue extract by chromatog-
raphy before analysis [76].

A 1H NMR method has also been developed for measuring the fractional enrich-
ment of non-protonated carbon atoms [137]. The method exploits the weaker cou-
pling that occurs between the carbon of interest and the proton(s) attached to the
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Fig. 5.2 1H (inset) and 13C NMR spectra of glucose extracted from maize root tips after labeling
with [1-13C]glucose. Each carbohydrate 1H signal consists of a central resonance flanked by two
satellite peaks. The former derives from H bonded to 12C and the latter to H bonded to 13C. The
relative intensities can be used to obtain the fractional enrichments listed. The figure is adapted
from Alonso et al. [2] with permission from the American Society of Plant Biologists
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neighboring carbon atom(s). 1H spin-echo spectra are recorded with and with-
out selective 13C inversion of the neighboring carbon atom(s) and the difference
between these spectra reveals the extent to which the neighboring non-protonated
carbon atom is labeled. The method requires careful calibration, but it works well
and it was shown to give more reliable estimates of the fractional enrichment of the
non-protonated carbon atoms in glutamate than a method based on quantifying the
13C NMR spectrum [137].

Fractional enrichments can also be deduced directly from 13C NMR spectra in
particular circumstances. For example, if there are grounds for considering that one
or more carbon atoms in a metabolite will not be enriched in the labeling experi-
ment, then the intensity of the corresponding signals represents natural abundance,
allowing the fractional enrichment of the labeled carbon atoms in the metabolite to
be determined by direct comparison of their intensities. For example, in an analysis
of a [1-13C]glucose labeling experiment on transgenic tobacco (Nicotiana tabacum)
cells, it was assumed that C3 of fructose would be negligibly enriched, allowing the
redistribution of label between C1 and C6 to be quantified directly [38]. Similarly
if a labeled metabolite is derivatized with an unlabeled reagent, then comparison of
the natural abundance signals from the unenriched part of the derivative with the
signals derived from the metabolite leads directly to the fractional enrichments for
the labeled metabolite [5, 56].

Although measurements of fractional enrichments provide only a limited char-
acterization of the isotopic composition of a labeled metabolite pool, such mea-
surements can provide sufficient constraints to generate large-scale flux maps of
central metabolism. Examples include an early demonstration of the approach in C.
glutamicum [76] and a series of papers on heterotrophic plant tissues [28, 29, 96].
NMR-determined fractional enrichments have also been used in studies that focus
on specific features of central metabolism in heterotrophic plant cells, including car-
bon entry into the tricarboxylic acid cycle [30], recycling between triose phosphates
and hexose phosphates [38] glucose resynthesis [2], and cold-induced sweetening
of potato tubers [75].

5.3.2.2 Isotopomer Analysis

The most informative way of characterizing the isotopic composition of a metabo-
lite pool is to analyze the entire isotopomer content. A metabolite with n carbon
atoms has 2n positional isotopomers, each of which can be specified using a nota-
tion in which 0 and 1 represent 12C and 13C, respectively. So for a four-carbon com-
pound, the fractional enrichment of carbon 2 will depend on the relative abundance
of the isotopomers labeled in carbon 2 (0100, 1100, 0110, 1110, 0101, 1101, 0111,
1111) and those that are unlabeled (0000, 1000, 0010, 1010, 0001, 1001, 0011,
1011). Many of these isotopomers give a recognizable spectroscopic signature in the
13C NMR spectrum as a result of the fine structure that arises when two chemically
inequivalent 13C atoms are bonded to each other. This fine structure arises from the
13C–13C scalar coupling interaction, and it is characterized by a coupling constant J.
For directly bonded carbon atoms, the one-bond coupling constant (1JCC) tends to
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be in the range 30–60 Hz giving rise to a readily detectable splitting of the signals in
1D 13C NMR spectra. Unfortunately, the interactions between carbon atoms linked
by two or more bonds are much weaker, and rarely detectable, with the result that
a complete isotopomer analysis is unlikely to be an option for molecules with more
than three carbon atoms. However, even the incomplete analysis that is possible for
larger molecules is very informative, and NMR is frequently the method of choice
for steady-state flux analysis [121].

The fine structure caused by 13C–13C interactions is a conspicuous feature in 1D
13C NMR spectra of multiply labeled compounds (Fig. 5.3), and there is a long
history of using this information for metabolic analysis [71, 102]. The spectra are
invariably recorded with 1H-decoupling, to remove the additional fine structure that
would otherwise arise from the scalar interactions between 1H and 13C atoms, and
the contribution of specific isotopomers, and groups of isotopomers, to the intensity
of the signal for a particular carbon atom is determined by integrating the peaks
within the fine structure.

This procedure is generally robust, but as discussed elsewhere [71, 121], it is
necessary to be aware of the several factors that can complicate the analysis. First, it
is essential to avoid acquisition conditions that might distort the relative intensities
through relaxation effects. Long relaxation delays are necessary if the analysis is to
include carboxyl and carbonyl group carbon atoms with long relaxation times; and
small variations in NOE, particularly for carbon atoms with long relaxation times,
may make it preferable to record spectra without the NOE, despite the penalty in
sensitivity. Secondly, the appearance of the expected multiplets becomes increas-
ingly distorted as the chemical shift separation decreases between the signals of
the scalar coupled atoms. This problem is less severe at higher magnetic fields, but
if necessary, multiplets can be analyzed by simulating the pattern using measured
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Fig. 5.3 1H-decoupled 13C NMR spectrum of malate extracted from an Arabidopsis thaliana cell
culture after labeling with [1-13C]glucose. The spectrum shows the C2 signal of malate, with the
fine structure arising from multiply labeled isotopomers. The signals are assigned according to the
following scheme: 0, 12C; 1, 13C; and X, 12C or 13C
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chemical shift and coupling constant data. Finally, 13C isotope effects lead to small
shifts in the signals of carbon atoms bonded to one or more 13C atoms, and this leads
to a slight asymmetry in the separation of the signals of the expected multiplets.

A good example of the scope of isotopomer analysis by 1D 13C NMR can
be found in a comprehensive analysis of the isotopomers of 13C-labeled glucose,
extracted from the leaves of tobacco plants grown on a medium supplemented with
[U-13C6]glucose (Fig. 5.4; [32]). Glucose was isolated chromatographically from a
tissue extract, and the complex multiplets in the resolution-enhanced 1D 13C NMR
spectrum were analyzed by numerical deconvolution using a genetic algorithm [31].
In this procedure, the aim is to identify the contributions of different positional iso-
topomers to the observed multiplets, which in turn requires an accurate knowledge
of the observable 13C–13C coupling constants and the 13C isotope shifts for each
carbon atom in both anomers. Inevitably, it is not possible to observe a unique spec-
troscopic signature for every isotopomer because scalar coupling is only detectable
between carbon atoms separated by at most two, or in some cases three, bonds.
The labeling of carbon atoms that do not contribute to the multiplet structure is

Fig. 5.4 1H-decoupled 13C NMR signals of glucose extracted from tobacco leaves after labeling
with [U-13C6]glucose. Detailed analysis of the fine structure allows intensity measurements to be
made for many different isotopomers. The spectra have been resolution enhanced with a Gaus-
sian function, and asterisks (∗) indicate contaminants. Adapted from Ettenhuber et al. [32] with
permission from Elsevier
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unknown: it is either 0 or 1 in the nomenclature used above, and this uncertainty can
be represented by the symbol X.

To take a specific example, analysis of the C1 signal of the α-anomer of glu-
cose allowed the detection of four sets of isotopomers (“X groups”): 10XXXX;
11XXXX; 11XX11; 11XX00. In the tobacco leaf analysis, it was possible to obtain
intensity measurements for 29 of these X groups, and numerical deconvolution
of these measurements yielded the relative abundances of the 21 positional iso-
topomers that could have been expected to contribute to the NMR signals. Note that
by supplementing the growth medium with only a small amount of [U-13C6]glucose,
it was possible to argue that the 42 isotopomers with non-contiguous labeling would
have made a negligible contribution to the observed X groups, thus converting an
under-determined problem (29 measurements, 63 variables) into an over-determined
one (29 measurements, 21 variables). This procedure has been successfully applied
to both Drosophila melanogaster [31] and tobacco leaves [32], and the relative abun-
dance of the observed isotopomers can be used to model the relative contribution of
the fluxes that are responsible for the recycling of glucose.

The extent to which 1D 13C NMR can provide a complete analysis of the iso-
topomer composition of a 13C-labeled metabolite is limited by two factors. First,
as mentioned above, the strength of the interaction that causes the all-important
splitting of the signals falls off very rapidly as the number of bonds separating the
coupled carbon atoms increases. The coupling constant for directly bonded carbon
atoms is typically 30–60 Hz leading to well-resolved splitting; whereas the coupling
constants for carbon atoms linked by two or more bonds (2JCC, 3JCC, etc.) are invari-
ably less than 5 Hz with the result that two and three bond coupling is only resolved
in favorable cases. Secondly, it is not uncommon for different pairs of carbon atoms
to have identical coupling constants leading to overlapping signals. For example, in
glutamate, 1JC2C3 and 1JC3C4 have the same value (35 Hz) making it impossible to
distinguish the contributions of [2,3-13C2]glutamate and [3,4-13C2]glutamate to the
C3 signal [65]. It follows from these inherent limitations that it is not usually pos-
sible to determine the complete isotopomer composition of a metabolite with more
than three carbon atoms by NMR. In this respect, the determination of 21 of the
63 independent isotopomers of glucose in the studies described above is a notable
achievement. However, it should also be emphasized that a complete analysis of
the isotopomer composition is not usually necessary – measurements of isotopomer
subsets (unresolved X groups) still provide constraints on the redistribution of the
label – and the flux mapping problem is in any case usually over-determined, with
many more isotopomer measurements than free fluxes.

A 1H NMR method that allows a more complete analysis of isotopomeric com-
position has been described [24]. The method is based on heteronuclear spin-echo
difference spectroscopy, in which 1H spin-echo spectra are recorded with and with-
out selective 13C inversion of carbon atoms 2JCH or 3JCH coupled to the observed
proton. This 13C editing of the 1H NMR spectrum reveals weak interactions that
would usually give only poorly resolved fine structure in the 1H spectrum, allow-
ing the quantitative determination of the corresponding isotopomers. The method
was demonstrated on an aspartate sample that was shown to contain only unlabeled,
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[1-13C]-, [4-13C]- and [1,4-13C2]-labeled aspartate. The method is sensitive and gen-
erates isotopomer data that would otherwise be inaccessible, and it can provide key
information in specific instances [24]. However, it has not been used extensively,
most probably because it is quite intricate to implement and because flux analysis is
not usually limited by a shortage of isotopomer measurements.

In general, 1D NMR is a convenient approach for generating isotopomer data,
and such measurements are frequently used for flux analysis in plant and microbial
systems. For example, in a notable study, 58 isotopomer measurements, almost all
determined by 1D NMR, and 15 fractional enrichment measurements were used as
constraints in an analysis of anaplerosis in C. glutamicum [87].

5.3.3 Two-Dimensional NMR Methods

5.3.3.1 Fractional Enrichments

Many of the 13C satellite signals that can provide information on the specific enrich-
ment of particular carbon atoms are masked by overlapping signals in the 1D 1H
NMR spectrum of a typical tissue extract, and while it is possible to circumvent
this problem by purifying individual metabolites, the procedure is time consuming.
The alternative is to use 2D 1H,1H correlation experiments to reduce overlap by
distributing the signals along two 1H frequency axes. In principle, two commonly
used 2D NMR experiments, COSY and TOCSY (Fig. 5.5), could be useful, and a
detailed comparison of the implementation and reliability of these experiments for
measuring fractional enrichments is available [78]. This comparison showed that the
2D double quantum filtered COSY experiment was incapable of producing accurate
measurements of positional enrichment and that the TOCSY experiment was much
better, provided zero quantum filters were applied during the mixing period.

The unreliability of the COSY experiment stemmed from the distortion of the line-
shapes in the magnitude corrected spectra and the effects of long-range heteronuclear
couplings (2JCH, etc.). Neither of these problems occurs in the TOCSY experiment,
and this experiment is capable of determining fractional enrichments with good pre-
cision [66, 77]. It appears that the best approach is to implement a version of the
TOCSY experiment with zero quantum filters since this avoids signal distortions
that would otherwise arise from zero quantum coherences. These unwanted coher-
ences lead to dispersive components in the signals, reducing the accuracy of peak
integration and compromising measurements of fractional enrichment [77]. The effi-
ciency of this approach for quantifying fractional enrichments in complex mixtures
has been demonstrated for a protein hydrolysate, where it was possible to obtain
reliable measurements for 35 protonated carbon atoms simultaneously [78].

5.3.3.2 Isotopomer Analysis

2D NMR spectroscopy can also be used for isotopomer analysis. Here, the objective
is to perform a 1H,13C correlation experiment that produces a spectrum with the 1H
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Fig. 5.5 2D zero quantum filtered TOCSY spectrum of a biomass hydrolysate from E. coli cells
grown on 20% [U-13C6]glucose +80% [1-13C]glucose. The annotated cross-peaks derive from the
labeled amino acids, and the greatly improved resolution in the 2D spectrum allows direct mea-
surement of the fractional enrichment of numerous carbon atoms. In contrast, the severe overlap in
the 1D spectrum makes the analysis of the 13C fine structure impracticable in most cases. Reprinted
from Massou et al. [78] with permission from Elsevier

and 13C chemical shifts along the two axes. Several experiments are available, and
while there are occasional applications of HMQC in flux analysis (e.g., [149, 150]),
the most commonly implemented method is HSQC (often referred to as 2D-[13C,1H]
COSY). The increased spectral dispersion in the 2D spectrum has the immediate
advantage of reducing spectral overlap in the 13C dimension; there is also a sen-
sitivity advantage because the 13C signals are detected via the more sensitive 1H
nucleus. HSQC is particularly useful for experiments involving uniformly labeled
substrates, since these lead to NMR signals with a rich multiplet structure, allowing
the relative abundance of the corresponding isotopomers to be deduced from the rel-
ative intensities of the peaks within a particular signal and avoiding the difficult task
of comparing HSQC intensities from different carbon atoms. Note that the method
reports only on the carbon atoms directly bonded to hydrogen in most instances and
so it provides no information on the labeling of the carboxyl groups in amino acids
and organic acids.

The power of HSQC for isotopomer analysis was demonstrated in a compre-
hensive analysis of the 13C-labeling of the amino acids in a protein hydrolysate,
obtained from E. coli [120]. This study showed that 48 of the 50 aliphatic 13C reso-
nances expected for the 16 amino acids present in the hydrolysate (recall that Asn,
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Cys, Gln, and Trp are lost during hydrolysis) were well resolved in the 2D spectrum,
and 42 signals were useful for the subsequent metabolic analysis. Note that it was
not possible to encompass the entire 13C chemical shift range in a single spectrum,
and it was necessary to run a second HSQC spectrum with the 13C carrier frequency
centered on the aromatic region to capture further data for Tyr and His.

Subsequently, HSQC was adopted as a routine tool for analyzing fluxes through
the pathways of central metabolism in microbes [101], and the usefulness of the
approach was extended by the development of parameter fitting methods for ana-
lyzing the data [104, 139]. Several refinements of the basic HSQC experiment have
been proposed on the basis of a detailed analysis of the way the data are used for
network flux analysis [130]. First, a line-fitting tool was developed for the accu-
rate determination of peak areas, together with a method for estimating the errors
in the relative intensities. Secondly, it was also shown that improved spectral res-
olution could be obtained for protein hydrolysates by derivatizing the amino acids
and recording spectra in a non-polar solvent. This derivatization procedure is not
often implemented since it adds a further step to the analysis, and the benefit is
usually modest. Thirdly, the paper describes a method for correcting HSQC data
for incomplete isotopic equilibration in a continuous flow culture, thus facilitating
more cost-effective experiments in which the labeled substrate is deliberately sup-
plied for periods shorter than those that would approximate to an isotopic steady
state. Finally, it is shown that additional, non-redundant labeling information, aris-
ing from long-range coupling, can be extracted with the line-fitting tool from some
of the tyrosine and histidine signals [130].

HSQC has been used to analyze protein hydrolysates from plant cell extracts
(Fig. 5.6; [115, 116]). Non-overlapping multiplets were quantified using NMRView
(http://onemoonscientific.com/nmrview), and overlapping multiplets were analyzed
using software based on the peak-fitting model proposed by van Winden et al. [130].
Sriram et al. [115] investigated the accuracy of the HSQC experiment by record-
ing spectra from mixtures containing known quantities of natural abundance, [2,3-
13C2]- and [U-13C3] alanine, and obtained good agreement between the measured
and expected relative abundances of the multiplet signals. NMR signal intensities
can be easily manipulated by the spectroscopist, and verification of the validity of
the measured intensities is a sensible precaution prior to investing time and effort
in analyzing the data. Note that the isotopomer abundances derived from these
spectra can either be used directly [115] or be reduced to a smaller number of
bondomers [114, 131] before starting the parameter fitting [116]. Bondomers are
defined according to whether the carbon–carbon bonds in a molecule are derived
intact from a uniformly labeled substrate or whether they have been formed ab ini-
tio through biosynthesis. Qualitatively, this focus on connectivity provides a conve-
nient method for interpreting labeling experiments, while quantitatively it leads to
computationally efficient modeling.

Overlap in the indirect (13C) dimension of an HSQC spectrum can be further
reduced by using J-scaling [140]. This technique increases the apparent coupling
constants between 13C atoms, improving the separation of signals in multiplets by a
defined factor. This method has been used to good effect in the analysis of soybean
embryo labeling experiments [117].
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Fig. 5.6 (a) HSQC spectrum of hydrolysate from Catharanthus roseus hairy roots grown on 5%
[U-13C6]glucose. Expansion of the signals for (b) the Ile γ methyl group and (c) the Asp α carbon
atom, in each case showing a 1D slice alongside the 2D multiplet. The relative intensities of the
multiplet signals provide information on the relative abundance of the contributing isotopomers.
Reprinted from Sriram et al. [116] with permission from Elsevier

While HSQC is the main 2D NMR method used in isotopomer analysis, other
methods may be used to decipher complex coupling patterns. For example, the 2D
INADEQUATE pulse sequence was used to identify multiply labeled glucose iso-
topomers derived from starch in 13C-labeling experiments on maize (Zea mays) kernel
cultures [45]. This double quantum coherence experiment was particularly useful
in analyzing the results of [U-13C6]glucose labeling, and, for example, could be
used to show the presence of [1,2-13C2]glucose, [1,2,3-13C3]glucose, but not [2,3-
13C2]glucose isotopomers. Similarly, it provided a clear demonstration that the con-
tiguous labeling of C3 and C4 in the original [U-13C6]glucose source did not survive
metabolic rearrangement toanysignificantextentprior to incorporationofglucose into
starch. Ultimately, the value of this experiment lies in the way in which it correlates
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pairs of contiguous carbon atoms, thus removing the uncertainties in the interpretation
of the 1D spectrum arising from the similarity of most of the JCC values.

5.3.4 In Vivo NMR

In contrast to MS, NMR signals can be detected directly from living tissues, and this
in vivo NMR approach has found many applications in the analysis of plants [91, 94].
In vivo NMR is particularly useful when it can supply information that would be lost
on tissue extraction; for example, in some circumstances, in vivo NMR can provide
information on the subcellular distribution of ions and metabolites. In vivo NMR can
also provide a convenient and statistically robust way of monitoring changes in a
tissue over a time course without the need for serial extraction. This latter approach is
potentially useful in labeling studies since it allows in vivo NMR to be used to monitor
thekineticsof label redistributionand toobtaindirect evidence for theestablishmentof
the isotopic and metabolic steady states that are required for steady-state network flux
analysis.However, it shouldbenoted that theresolutionof invivospectra isusually less
good than in the corresponding extracts, and in vivo NMR requires careful attention
to the maintenance of the tissue under relevant physiological conditions during data
acquisition [94]. These two considerations probably explain why the in vivo approach
has not been commonly used in flux studies on plant and microbial tissues, where it
is relatively straightforward to analyze multiple extracts from replicate experiments.
In contrast, in vivo NMR is used extensively in flux analysis in animals systems,
including the human brain [50].

The potential of in vivo NMR in this area for plants can be judged from a recent
study on excised linseed (Linum usitatissimum) embryos [126]. The large pools of
sucrose and lipids were readily detected in vivo, and time-course data showed that
the intermediates of the central carbon metabolism reached isotopic equilibrium
over a time scale of 3 h, that the sucrose pool required 6 h, and that it took 18 h to
reach a complete isotopic and metabolic steady state. It was also possible to extract
the rates of lipid and sucrose synthesis from the time course, and a detailed anal-
ysis led to the expected conclusion that sucrose synthesis was largely the result of
sucrose phosphate synthase activity. Overall in vivo NMR analysis is not a substi-
tute for the detailed NMR and MS analysis of tissue extracts, but it does provide an
efficient and direct assessment of the time scales necessary to achieve isotopic and
metabolic steady state, thus facilitating the design of steady-state experiments.

5.4 Mass Spectrometry

From the time of its experimental conception by the “father of mass spectrome-
try” J. J. Thomson nearly a century ago, the mass spectrometer has become widely
recognized as an instrument of choice for identification of chemical structures. A
mass spectrometer measures abundances for given mass-to-charge ratios (m/z) of
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gas phase ions. The charge (z) is almost always equal to one so that the measure-
ment of abundance will be on an atomic mass unit (amu) basis. Each compound is
fragmented during MS and the abundances of ions within each fragment are moni-
tored. The comparison of ion abundances within a fragment provides a relative set of
mass enrichments. Together, all mass isotopomers of a fragment represent the com-
plete isotopomer pool for that combination of atoms. Therefore, mass enrichments
are reported on a fractional basis with their sum totaling one.

The MS is usually linked in series behind a chromatograph that separates com-
pounds as a function of their chemical and physical properties. Given the analytical
capabilities of these two techniques to resolve complex mixtures and precisely iden-
tify compounds at very sensitive levels, it is not surprising that the two are frequently
used in tandem with biological samples that are diverse in composition and present
at low concentrations.

MS has recently received much attention as a tool in flux analysis and network
studies for several reasons. First, it has been shown that the mass isotopomer distri-
butions given by MS measurements reflect the fluxes through metabolic pathways
and are therefore diagnostic of cellular behavior [23, 103, 143]. Secondly, mass iso-
tope ratios can be measured accurately and precisely, to within 0.4 mol% for many
amino acid fragments [3], and the precision of these measurements is matched by a
sensitivity that greatly exceeds the sensitivity of NMR.

The number of isotopomer measurements can be maximized by analyzing dif-
ferent carbon fragments (Figs 5.7 and 5.8). A compound of n carbons contains 2n

isotopomers and can have up to 2n−1 different fragments. In practice, only a subset
of the possible fragments is observable at sufficiently high intensities for quanti-
tative analysis. For example, the three-atom molecule in Fig. 5.7 has seven pos-
sible fragmentation products, but molecular rearrangement to obtain the two-atom
fragment containing atoms one and three would require both bond-breaking and
bond-forming steps, whereas the other two-atom products only require bond break-
ing. Although some molecular rearrangements are characteristic of the ion collision
processes (e.g., TBDMS-derived [M-85]+), multi-step rearrangements are generally
limited by energetics and proximity of other reactive groups. Furthermore, the label
information for one-atom fragments is likely to be obscured by the contaminating
ions that are higher in number at lower molecular weights.

The ionization of a molecule results in fragments that contain carbon atoms from
different positions in the molecule (Fig. 5.8). It is essential to establish the origin of
the carbon atoms in each fragment, and this is usually done by using labeled stan-
dards. Note that fragment identification can be complicated when multiple break-
down products are formed with different carbon compositions but the same masses
[3]. The measurement of the mass enrichments can also be confused by the presence
of contaminating peaks with the same mass. This may lead to inconsistencies with
the expected relationship between the labeling of the different fragments (Fig. 5.8),
and if this is observed, then further investigation of the fragmentation pattern would
certainly be necessary before proceeding with the quantitative analysis.

Multiple fragment measurements can also provide positional labeling informa-
tion. Thus as well as direct measurement of the completely unlabeled (000) and
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Fig. 5.7 Theoretical fragmentation and mass distribution of isotopomers for a three-carbon com-
pound. A statistical analysis shows that there are 2n−1 possible fragments, each of which can
contain both 12C and 13C atoms
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Fig. 5.8 Mass isotopomers for two fragments from alanine. The labeling of the 23 fragment
will necessarily reflect the labeling of the 123 fragment, as indicated by the brackets, and in the
absence of any underlying contaminant signals, [M]+123 ≤ [M]+23 ≤ ([M]+123 +[M+1]+123) and
[M+3]+123 ≤ [M+2]+23 ≤ ([M+2]+123 +[M+3]+123)

completely labeled (111) isotopomers from the Ala123 fragment, the abundance of
the 100 and 011 isotopomers can be deduced by comparing the Ala123 and Ala23
measurements (Fig. 5.8). In favorable instances, it is possible to deduce the abun-
dance of all the positional isotopomers for molecules such as serine or glycine,
depending on the number of measurements made [23].



5 Quantification of Isotope Label 123

Overall, accurate quantification of label by MS relies on (i) adequate separation
of metabolites through sample preparation and chromatography; (ii) the detection of
multiple fragmentation patterns that are readily identifiable and well separated from
other fragments; and (iii) proper corrections for naturally abundant isotopes. Each
of these topics is considered in the following sections.

5.4.1 Chromatographic Parameters

The use of chromatography to separate molecules dates back to the separation of
plant pigments by Tswett in the early 1900s [46]. Today, the separation of the com-
pounds is efficiently achieved using either high performance liquid chromatography
(HPLC) or capillary GC, the methodological descendants of the earlier work. Much
work has been done on establishing the theory associated with chromatographic
separations, and this is discussed elsewhere (e.g., [46]).

Several considerations influence the choice between liquid and gas chromatogra-
phy. LC analyses do not require volatilization, since they exploit properties such as
ion exchange, size exclusion, and hydrophobicity, and so may not require derivatiza-
tion. However, liquids are more viscous and therefore require equipment (e.g., seals,
pumps, valves, lines, injectors) with higher pressure tolerances. Moreover finding
the right column for LC can be an expensive and time-consuming process, and it
may require substantial method development. It is also usually necessary to use
tandem MS/MS to generate daughter ions because the initial ionization of the com-
pounds coming off the LC column does not lead to extensive fragmentation.

Recent applications of LCMS in flux analysis have focused on the analysis of
intracellular intermediates [58, 61, 73, 128, 133]. The lack of a derivatization step is
an advantage for unstable intermediates, but there are some limitations in the extent
to which the positional isotopomers of the amino acids can be analyzed [90, 100],
and the use of LCMS analysis requires higher amounts of labeled material than
GCMS [21].

Capillary electrophoresis (CE) provides another option for compound separation,
and this has recently been explored as an alternative to GC or LC for isotopomer
analysis [125] This study reported improvements in sensitivity and mass resolution
when CE was coupled to time-of-flight MS, suggesting that this approach may be an
emerging technology for flux analysis. However, CE and LC are currently used less
frequently for isotopomer analysis than GC, and it is GCMS that is emphasized here.

Accurate isotopomer analysis by GCMS starts with a good separation of metabo-
lites in the labeled mixture. GC parameters such as column length, the choice of
column packing material for the stationary phase, the time and temperature profile
for the column (i.e., ramp profile), sample injection volume, sample concentration,
and purity of the sample can all have dramatic consequences on the separation pro-
cess and need to be chosen with care [14]. Some of the instrumental components
and parameters are well established. For example, helium gas, because of its inert,
non-reactive, non-toxic, non-flammable, and affordable nature, is commonplace.
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Splitless injection of 0.1–2 μl avoids compound partitioning from differences in
volatility and is therefore frequently used. Finally, oven temperature profiles are set
to vary over the range 5–400◦C for optimized separation of compounds as well as
sample throughput.

The power of GC with careful attention to these parameters is evident in the clean
separation of many peaks. Free amino acids or those resulting from protein hydrol-
ysis are handled with ease (Fig. 5.9), and this is routinely exploited in biological
studies of metabolic networks (e.g., [16, 41, 60, 61, 147]). However, in the chro-
matography field, far more elaborate separations have been achieved. For example,
the modified GC column construction by Berger [8] resulted in separation of 970
components from standard gasoline by serially connecting nine 50-m columns.

In fact, the superior separation qualities of GC can also lead to errors in quantita-
tive analysis. GC resolution is sufficient in some cases to partially separate isotopes
by weight. Isotope fractionation has been the study of many investigations (reviews:
[40, 129]) and was apparently first reported with deuterium labeling studies by
Wilzbach and Riesz [141]. Generally, ions elute in a weight-decreasing fashion,
with the highest weight ions eluting first (Fig. 5.10), reflecting reduced molecular
interactions with the stationary phase for the larger atoms. The degree of separation
is not enough to cause peak splitting for most deuterated amino acids [135], though
it can be more pronounced with deuterated (e.g., [86]), tritiated (e.g., [110]), or
13C-labeled (e.g., [81]) fatty acid methyl esters and sugars (e.g., [6, 119]). To avoid
bias from isotopic discrimination, the entire peak must be integrated, sacrificing
some of the sensitivity at each measurement.

5.4.1.1 Column Stationary Phase

Adequate separation of most compounds is provided by a relatively small subset
of the available column stationary phases [142]. The 100% dimethyl polysiloxane
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Fig. 5.9 Gas chromatogram of TBDMS-derivatized amino acids from a protein hydrolysate moni-
tored by selected ion mode (SIM) MS. Cysteine and tryptophan are absent because they are oxida-
tively destroyed; glutamine and asparagine are barely detectable because of deamidation. Arginine
is often not monitored because the detectable ions for SIM result from more complex fragmentation
patterns (Section 5.4.3)
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Fig. 5.10 Isotope fractionation during gas chromatography. The dispersion in the peak depends
on the nature of the compound and its size, so the relative peak positions in the figure are only
indicative of a general trend

and 5% methyl-replaced phenyl groups known commercially as DB-1 R©, DB-5 R©,
HP-1 R©, HP-5 R© (Agilent J&W), or SPB-1 R©, SPB-5 R© (Supelco) are the most non-
polar and very resilient to repeated use. Changing the stationary phase will change
the binding interactions between the column and the mobile phase and affect sep-
aration. In some instances, failure to adequately resolve the metabolites of inter-
est necessitates a longer column or a different column choice. The phenomenon is
exemplified by fatty acid methyl esters or butyl amides, where the separation of 18-
carbon compounds with different degrees of unsaturation cannot be resolved by a
DB-1 R©, and instead a DB-23 R© (Agilent J&W) is used (Fig. 5.11). See Niessen [83]
for a more thorough description of column packing compounds.

5.4.1.2 Derivative Groups

Low volatility, thermal instability, and complications arising from covalent and
hydrogen bond formation can all interfere with the separation of compounds con-
taining carboxyl, mercaptan, hydroxyl, amino, imino, phosphate, sulfoxide, and car-
bonyl groups by GC. Fortunately, proton substitution with less polar acyl, isopropyl,
silyl, or other functional groups is routine. The choice of derivative is important
because derivatives are not universally reactive, and the added group can enhance
sensitivity, selectivity, resolution, improve peak symmetry, and when coupled to the
MS can result in distinct carbon fragments that provide unique isotopomer informa-
tion. A suitable derivative should bestow improved volatility and thermal stability,
and result in high yields, with few if any side reactions, while being cost effective
and simple to use. Table 5.1 lists the most commonly used derivatization methods
for biomolecules and the functional groups they block. TBDMS is especially use-
ful because it reacts with most functional groups and because the resulting deriva-
tives are stable, have high molecular weight, and have several common breakdown
fragments that lose only derivative components, making them ideal for quantifying
isotopomers. See Section 5.4.3 for further information.
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results in complete separation of the same compounds

5.4.2 Spectrometric Detection

5.4.2.1 Types of Mass Spectrometer

Mass spectrometers come in different forms, including ion traps, time of flight,
Fourier transform, and magnetic-sector and quadrupole instruments. All instruments
rely on the same basic concept: interaction of charged particles with electrical or
magnetic fields, but vary in dynamic range, sensitivity, resolution, and throughput.
Ion traps and quadrupoles offer a lot of the same benefits: high sensitivity, ease of
use, and low cost, but with a primary disadvantage of limited mass range. However,
ion traps generally have a smaller linear dynamic range than quadrupoles. Time-of-
flight and Fourier transform instruments can measure a large range of masses, and
along with magnetic sector analyzers offer the highest resolution (up to 1 part in
10,000) but require significant expertise and can be quite costly. Moreover, mag-
netic sensor instruments have relatively poor sensitivity. The use of the quadrupole
remains the scientific and industrial workhorse in network studies (e.g., [16, 41]).
Overviews describing the physical construction and principles of each instrument
are given elsewhere (e.g., [112]). Aside from quadrupoles, several notable network
studies have used ion traps [60], MALDI-TOF [144, 145], or LCMS-TOF [148].
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5.4.2.2 Quadrupole Design

Quadrupole mass filters are designed with four rods running parallel to the stream of
ions. The rods impose different radiofrequency (rf) and direct current (dc) voltages
to separate the ions as they travel toward the detector. A small m/z window of ions
reaches the detector (an electron multiplier), where they strike metal surfaces, emit-
ting electrons. The electron signal is amplified through more collisions with metal
surfaces, until sufficiently amplified to be accurately recorded digitally. By alternat-
ing radiofrequency voltages, each m/z is monitored in succession, generating a spec-
trum of intensities of different ions (y-axis) for the range of m/z values monitored
(x-axis) by the spectrometer. Mechanically adjusting the ion beam and the source
and detector slits through which the beam passes alters the resolution and sensitiv-
ity in an inverse fashion. Masses within the instrument’s range are distinguishable
to levels of 0.1 amu [14]. However since there is a trade-off between resolution and
sensitivity, detection sensitivity can be maximized by limiting the quantitative reso-
lution to 1 Da, since this is sufficient to separate the mass isotopomers that arise in
labeling experiments.

Mass spectrometers can also be operated in tandem, an approach referred to as
MS/MS. For triple quadrupole instruments, this is done by separating two linked MS
by a third set of quadrupole rods that operate on a radiofrequency only. By adjusting
the voltages on the first quadrupole, particular masses are transmitted to the second
rf-only quadrupole. In the second quadrupole, they collide with argon atoms that
are neutral leading to further ion fragmentation, producing daughter ions that are
measured by the third quadrupole. MS/MS monitoring of the parent and daughter
spectra provides further information on structure and labeling [55, 58, 128], and it is
particularly important for LC-based MS because the usual ionization method, elec-
trospray, imparts less energy to the molecular ion reducing the tendency to fragment.

5.4.2.3 Ionization Methods

There are three main approaches to ionization: desorption, evaporative, and gas-
phase ionization. Desorption methods include fast atom bombardment (FAB),
plasma desorption, matrix-assisted laser desorption (MALDI), and field desorp-
tion. These methods are used with compounds that are poorly volatilized or of high
molecular weight (e.g., proteins). Evaporative ionization methods include electro-
spray and thermospray. In both approaches, liquid particles from an LC column pass
through a capillary tube and are nebulized into aerosols as they enter the ion source.
These methods are frequently used for peptides, proteins, and non-volatiles but have
found fewer applications in analyzing metabolite labeling. This may change with the
increasing availability of LC-MS/MS spectrometers. Finally gas-phase ionization
methods, particularly electron impact (EI), and to a lesser extent, chemical ioniza-
tion (CI), are both well suited for volatile, nonionic compounds of molecular weight
less than 1,000 Da.

EI is the most common ionization technique for GCMS. Briefly, electrons
released from a hot filament are accelerated at 70 V through a small opening toward
the effluent from the GC column. As the electrons bombard the sample, they impart
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an excess of energy to strip off the outer shell electrons, generating positive ions.
The remaining energy results in covalent bond cleavage to produce characteristic
fragmentation patterns composed of cations and neutral radicals. The fragments
contain different subsets of the original molecule and therefore provide unique label-
ing information. The molecular ion is often present at low abundance, and it may
be difficult to measure accurately. However, fragments that result from small losses
of part of the derivative group are usually abundant, diagnostic for the compound
under study, and provide the same mass isotopomer measurements as the molecular
ion. The electron voltage can be reduced if greater abundance of molecular ions is
desired, but this will come at the expense of the fragmentation, as well as the overall
sensitivity of the instrument.

CI is a “softer” method that results in less fragmentation and would appear to be
particularly well suited for label quantification in the molecular ion but has received
little attention. In this approach, the volatile sample is subjected to an ionized gas
(usually methane that has itself been ionized by electron bombardment). The colli-
sions result in ionized sample molecules through proton transfer events to generate
[M+H]+ ions. Labeled sugars have been analyzed in this way [26, 27, 49]. Negative
ion chemical ionization is also possible, but it has been used infrequently and is not
discussed here. For further details on ionization techniques and the voltage set points
that are adjusted to control ionization for optimal sensitivity and resolution, see [4].

5.4.2.4 Ion Monitoring

An important distinction in using MS for label quantification versus structural iden-
tification is that the compound(s) of interest are known. This allows the instrument
to be set up for selective ion monitoring (SIM) rather than total ion monitoring
(TIM). Derivatized standards, both labeled and unlabeled, provide a quick assess-
ment of the fragmentation patterns and masses of interest, and the conclusions can
be confirmed by calculation of expected losses and by comparison with existing MS
libraries (e.g., National Institute of Standards and Technology (NIST) Mass Spec-
tral Libraries, or Palisade Complete MS Library 600 KTM). For example, glucose
standards labeled at different carbon atoms provide direct evidence for the fragmen-
tation of the original derivative (Fig. 5.12). Note that while it is standard practice
to use a single calibrant, and single fragments, the resulting abundances include not
only the species ion enrichment but also the effects of mass discrimination, contam-
inants, background noise, and electrometer offset errors [105]. It follows that it is
advisable to run multiple standards.

SIM allows the entire instrumental monitoring time to be focused on a selected
number of diagnostically important ions, reducing the workload of the spectrometer,
and improving sensitivity. The use of SIM was pioneered by Sweeley et al. [119] and
provides optimal signal and minimal interference [89, 142]. In a quadrupole system,
the ions are selected by altering the rod voltage (“ion beam switching”), and accu-
rate monitoring/quantifying of the chosen ions is limited by the user-defined dwell
times [79]. The dwell time is the amount of time in each pass that is spent monitor-
ing a particular ion. It is limited by the GC peak width that defines the total time that
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Fig. 5.12 The spectrum of the glucitol hexa-acetate derivative of glucose shows peaks at m/z
289 and 361 that are well removed from other peaks. The 361-amu base peak was hypothesized
to represent the loss of CH2OCOCH3 (M-73) that would occur by cleavage between either carbon
1 and 2 or carbon 5 and 6 of the symmetric derivative. This was verified by running spectra of
labeled glucose derivatives. The boxes show the expected shifts of the 361 base peak to higher
molecular weights, with a splitting of the peak when the carbon is labeled at C1 or C6 because of
the ambiguity in the cleavage of the symmetric derivative

ion information will be collected for a particular compound. The dwell time should
be sufficiently small that all of the monitored ions within the compound are counted
at least 15–20 times [79, 118]. Obviously the more peaks that are monitored the
less time that can be devoted to each ion, and decreasing the amount of a compound
shortens the monitoring time for each ion. By measuring each ion abundance multi-
ple times, isotope discrimination events from the GC separation process are allowed
for through averaging [23].

Even so, electrometer offsets, poor ion monitoring, and nonlinear gain character-
istics or recording can still result in significant systematic errors [79, 105] and may
require further study. Given a peak retention time window, the selection of the ions
to be monitored is driven by the nature of the investigation. Higher molecular weight
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fragments are the most diagnostic because there are fewer possible breakdown
products with high molecular weights. The smaller number of fragments reduces
the opportunity for overlaps in the spectrum, although usually these high molec-
ular weight fragments are less abundant and more difficult to measure accurately.
In terms of sensitivity, SIM-GCMS allows analysis of nanograms to picograms of
material even when chromatography does not resolve compounds completely. For
isotope measurements, the resolution of the peaks for adjacent ions serves to define
measurement precision. More general considerations on SIM-GCMS can be found
in the literature (e.g., [72]).

Accurate analysis also depends on operating within the linear range of abun-
dance measurement for the spectrometer [9, 34]. At low abundance levels, the
background chemical interference becomes significant, while at very high levels
some of the most abundant fragments may saturate the detector and result in an
inaccurate ceiling value. This problem is particularly important when quantifying
isotopomers because of large disparities between the most abundant and least abun-
dant ions. Acceptable conditions are established by running multiple concentrations
(Fig. 5.13).

The ratio of the mass isotopomers within a compound should be constant over
the linear concentration range [9], and Dauner and Sauer [23] noted no impact on
the ratios of isotopomers for amino acids over a concentration range of three orders
of magnitude. Evidence for saturation can usually be found on modern instruments
by extracting individual ion chromatograms, and if sample dilution is not possible
then saturation can also be avoided by reducing the electron multiplier voltage [142].
A nonlinear response can also arise for other reasons [33, 85, 127], including sample
volume, repeller voltage, or changes in chemical compound size/length [34,127].
Differences in gas phase chemistry [35], and operating conditions such as sample
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of the saturating fraction
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pressure [47], can also affect the response of the instrument. Some of these issues
have been addressed elsewhere [3, 9] and running sets of standards can help to
identify whether these concerns are justified. In all cases, background noise should
be minimized by subtracting a baseline signal from integrated ion chromatograms
during the processing of data [3].

5.4.3 Analysis of Biomolecules

All the major classes of biomolecule can be analyzed by GCMS, and methods for stor-
age lipids, amino acids, organic acids, sugars, and storage carbohydrates are described
in this section. In general, quantitative analysis of the label distribution in these com-
pounds requires (i) clear chromatographic separation of the metabolites within a class;
(ii) well-documented fragmentation patterns; and (iii) detection of abundant ions rep-
resenting multiple fragments of the carbon skeleton. While numerous protocols are
described in the literature, it is essential to verify the reproducibility of the chosen
method using appropriate standards before implementing a new method.

5.4.3.1 Storage Lipids

Biosynthesis of lipids can be regarded as a polymeric addition of repeating acetyl-
CoA building blocks. From a modeling perspective, there is a direct relation between
the labeling of the acetyl-CoA pool and the labeling of the entire fatty acyl chain, if
the acetyl CoA pool is in an isotopic steady state. Fatty acid methyl ester (FAME)
derivatives are easily quantified by flame ionization detection (GC-FID), making
them a frequent choice. FAME produces two-carbon McLafferty fragments [80,
122] as base peaks that represent the labeling of carbons 1 and 2 of the fatty acid
and presumably describe carbons within one acetate group (Fig. 5.12).

However, the GCMS evaluation of McLafferty product labeling is problematic for
several reasons. First, while the abundance and carbon composition of the McLaf-
ferty fragments make them ideal for analysis, their molecular weight of 74 lies in
a region of the spectrum that has overlapping fragments (Fig. 5.14). For example,
the C5H9 alkane radical (m/z 69) also represents a significant (up to ∼20% of base
peak) breakdown product of fatty acids. In a highly labeled fatty acid, this alkyl
fragment may contaminate the McLafferty region. Secondly, FAME labeling can
be accurately quantified only for saturated fatty acids, so plant oils that are usually
high in unsaturated oil content must first be hydrogenated [106] involving extra pro-
cessing steps. Thirdly, well-documented proton transfer events [35] and the bias of
operational parameters [33, 85, 127] also make interpretation of FAME spectra more
challenging. An alternative that circumvents some of these problems is to use the
butyl amide approach to move the fragments to a higher weight (m/z 115) [1, 62].

5.4.3.2 Amino and Organic Acids

Numerous options are available for the derivatization of amino and organic acids,
and silyl derivatives are particularly useful (Table 5.1). The choice of derivative
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Fig. 5.14 Comparison of FAME and butyl amide McLafferty fragments. (a) FAME shows over-
lapping/nearby peaks in the McLafferty region for the derivatized heptadecanoate. (b) Butyl amide
fragments are shifted to higher molecular weights away from other fragment products, and, unlike
FAME, can produce accurately quantified label measurements for both unsaturated (octadecenoate
shown) and saturated fatty acids, and therefore do not require hydrogenation. Reprinted from Allen
et al. [1] with permission from Elsevier

has implications for derivative stability, molecular weight, volatility, and ion
fragmentation and therefore needs to be considered carefully. The derivatization of
amino acids is particularly challenging because of the presence of carbamide, imino,
hydroxyl, disulfidic, and extra amino and carboxyl groups. The derivatization and
GC analysis of amino acids has received much attention with a review published
over 30 years ago citing 415 publications that describe approximately 100 different
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approaches to chemical derivatization [53]. Today, the literature frequently reports
the use of TBDMS derivatives because of the good reactivity with multiple func-
tional groups, good volatility, and good peak resolution.

TBDMS derivatives are synthesized by combining equal volumes of N-
(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) and dimethyl-
formamide (DMF) to the dried sample and heating to a temperature above 60◦C
for 60 min [59, 82]. Longer times or increased temperatures are used to prevent
incomplete derivatization. The use of MTBSTFA is advantageous because of lim-
ited byproduct generation and interference. The quantitative isotopomer analysis of
amino acids in protein hydrolysates has been the subject of many recent investiga-
tions. Common fragments for TBDMS-amino acids are the [M-15]+ and [M-57]+

signals that represent the entire carbon backbone and the [M-85]+ and [M-159]+

signals that reflect carbon cleavage between the first and second carbons. Using this
approach, Dauner and Sauer [23] identified 125 independent mass isotopomer mea-
surements that were deemed acceptable. Acceptance was based on the correction
of an unlabeled BSA standard. Signals for [M+1]+ and [M+2]+ that combined
to more than 7% of the [M]+ peak were discarded. No fragments were accepted for
histidine or threonine due to their low abundance, and arginine was rejected because
of difficulties defining the fragmentation patterns. However, arginine has been ana-
lyzed by others [57, 85, 142] (and references within), and Fig. 5.15 shows one of the
several TBDMS-substituted arginine products with m/z = 499, following the loss of
NH3 from the guanidino group. It has also been suggested [85] that the product
formed after the NH3 loss could be a side-chain nitrile in which two derivatizing
groups are attached to the amino group at carbon 2 of the amino acid, although this
would be sterically less favored.

Si   C    CH

CH3 CH3

C O Si C CH3

CH3 CH3
CH3 CH3

H3C   C    Si NH CH

CH3 CH3

CH3 CH3

C N 3

CH3 CH3

O

N

(CH2)3

H2N

Cleaved Before
Detection

C24 2H53O N3Si3 = 499

Common Losses:
M–15   = 484
M–57   = 442
M–85   = 414
M–159 = 340

Fig. 5.15 GCMS fragmentation of arginine-TBDMS. The loss of NH3 from the guanidino group
is shown. The masses of other common losses are given
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Other derivatizing agents, such as DMFDMA and DMFDBA, have been used but
do not lead to particular differences in measurable amino acids, fragment numbers,
or overall information [16]. Husek and Simek [54] have summarized recent work in
this area.

TBDMS, TMS, and methyl ester formation have also been used for Krebs cycle
intermediates (e.g., [20, 26, 27]). Due to the symmetry of some organic acid metabo-
lites, the total number of isotopomers and thus label descriptions are reduced [143].

5.4.3.3 Sugars and Storage Carbohydrates

Plant tissue may contain considerable starch and cell wall, along with simple sugars
such as glucose and sucrose. For MS, glycans can be broken down to provide infor-
mation on the labeling of the cytosolic and plastidic pools of hexose phosphates.
Cell wall components report on the labeling of cytosolic UDP-glucose [19], and a
comparison of this pool with the labeling of the plastidic glucose units in starch [22]
allows an assessment of the degree of equilibration of the upper glycolytic pathways
between the plastid and cytosol. This analysis establishes whether there is sufficient
information to identify fluxes for parallel pathways in multiple compartments and
thus to allow compartmental modeling. Comparison of the monosaccharide units
from starch, cell wall, and protein glycans using GCMS has been considered in the
context of embryo labeling studies of soybean [1]. Additionally, starch labeling has
been considered in flux models of Brassica [107, 109], and soybean [115].

Sugars offer a high ratio of reactive groups to the total number of atoms, and in the
open-chain form, all six carbons of a hexose molecule can be derivatized. While most
derivatives are suitable for carbohydrate label analysis (Table 5.1), often the metabolic
interest lies in establishing the extent of bond breaking and reforming between car-
bons 1 and 2 since this reflects the relative contribution of glycolysis and OPPP to
carbohydrate oxidation. In this regard, it is useful that sugars with a reducing carbon,
for example glucose, can be derivatized uniquely because of the aldehyde group at
carbon 1, allowing this atom to be distinguished from the other backbone carbons (see
[74, 88] for more details). The aldehyde group can also be converted directly to an
alcohol, and for small sample sizes this has the benefit of grouping α and β anomers
that would otherwise elute from the GC differently. The ready interconversion of the
anomers means that analyzing both sets of peaks would only yield redundant informa-
tion. Prior reduction to sugar alcohols therefore increases the sensitivity of analysis by
combining two peaks into one, leading to higher signal-to-noise ratios. Unfortunately,
reduction can also introduce symmetry, for example in the case of glucose, and this
restricts the analysis of the mass isotopomers.

Reduction prior to acetylation is performed by first suspending carbohydrates
in 2 M NH4OH and then reducing through the addition of NaBH4 (e.g., [1, 11]).
Peracetylation follows after water removal by resuspension in 1-methyl-imidazole
or pyridine and subsequent addition of acetic anhydride [1, 88]. The reaction is
neutralized with water and extracted multiple times with methylene chloride. The
soluble fraction can be directly loaded into the GCMS and analyzed as described
elsewhere [1, 10, 88].
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Additional isotopomer information can be abstracted from formation of deu-
terioalditol acetates, aldonitrile acetates, or dialkyldithioacetal acetate derivatives
(see [88] for review). The analysis of most of these derivatives is relatively straight-
forward, with [M-59]+, arising from the loss of acetate, being one of the most
informative fragments. For the peracetate derivative, other prominent losses include
cleavage of the C1–C2 or C2–C3 bonds generating m/z 317 and 242 products respec-
tively. Deuterioalditol acetates give the symmetrical cleavage of C2–C3 or C4–C5
bonds resulting in a peak at m/z 289, while the aldononitrile acetates result in sig-
nificant cleavage between C5–C6.

5.4.4 Corrections for Natural Abundance

MS is unable to discriminate between 13C atoms derived from a labeled precursor and
the naturally abundant 13C found at low levels in all carbon compounds. Failure to
account for the natural abundance of 13C can lead to significant errors in flux analysis
[143] and so it is necessary to apply corrections for natural abundance to MS data.

Ultimately, the correction has to take account of every atom in the detected frag-
ment of the derivatized metabolite, and in making the correction it is important
to make a distinction between the atoms that could have been labeled in the experi-
ment, i.e., the carbon atoms of the detected metabolite for a 13C-labeling experiment,
and the atoms that can only be labeled by virtue of the natural isotopic abundance.
In a commonly used approach, the experimental measurements are first corrected
for the atoms in the latter category only, and then the labeling of the backbone is
simulated using the correct isotopomer abundances for the input substrate during
the modeling of the fluxes that redistribute the label [67, 68, 136, 152].

The correction procedure can be conveniently implemented using a matrix
approach. The first step is to define a mass isotopomer distribution vector (MDV)
for the detected fragment:

MDVobs =

⎡
⎢⎢⎢⎣

[M]+

[M + 1]+
...

[M + n]+

⎤
⎥⎥⎥⎦where :

n∑
i=0

[M + i]+ = 1 (5.1)

Here [M]+, [M+1]+, etc. represent the abundances of the signals observed for the
fragment. The corrected MDV (MDVcor) is calculated by multiplying MDVobs by
an inverted correction matrix (CM):

MDVcor = CM−1
CHNOSiS · MDVobs (5.2)

where CMCHNOSiS is the product of individual correction matrices for each element
[132]:
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CMCHNOSiS = CMC · CMH · CMN · CMO · CMSi · CMS (5.3)

Note that the dimensions of the MDV vectors in Eq 5.2 establish the dimensions
of the overall correction matrix. The row dimension in MDVobs represents the mea-
sured mass isotopomers, and the row dimension in MDVcor contains all the mass
isotopomers that arise from the labeling experiment. As the number of atoms within
a molecule increases so too does the number of possible masses that can be mea-
sured, reflecting the contribution of the naturally abundant isotopes. However, the
probability of obtaining higher masses due to the presence of multiple heavy iso-
topes at natural abundance becomes very small, and the number of rows in MDVobs

is determined by the detection sensitivity of the instrument.
Consider a compound containing a single atom of each of the three elements

(X, Y, Z), each of which has a heavy isotope (1X, 1Y, 1Z) with a mass 1 unit higher
than the naturally more abundant isotope (0X, 0Y, 0Z). If 1X is supplied during a
labeling experiment, then the observed mass isotopomer abundances for XYZ must
be corrected for the natural abundance of the Y and Z isotopes. The observed mass
isotopomer abundances have contributions from the following isotopomers:

[M]+ 0X0Y0Z

[M + 1]+ 0X1Y0Z + 0X0Y1Z + 1X0Y0Z

[M + 2]+ 0X1Y1Z + 1X1Y0Z + 1X0Y1Z

[M + 3]+ 1X1Y1Z

The relative contributions of these isotopomers to the observed abundances depend
on the natural abundances of the Y and Z isotopes − p(0X), etc. – and the relative
abundance of 0X and 1X in the labeled molecule. The latter corresponds to the values
of [M]+ and [M+1]+ after correction for the natural abundance of Y and Z. This
leads to a matrix relationship:

⎡
⎢⎢⎣

[M]+
[M + 1]+
[M + 2]+
[M + 3]+

⎤
⎥⎥⎦

obs

=

⎛
⎜⎜⎜⎜⎝

p
(

0Y
)

p
(

0Z
)

0

p
(

1Y
)

p
(

0Z
)+p

(
0Y
)

p
(

1Z
)

p
(

0Y
)

p
(

0Z
)

p
(

1Y
)

p
(

1Z
)

p
(

1Y
)

p
(

0Z
)+p

(
0Y
)

p
(

1Z
)

0 p
(

1Y
)

p
(

1Z
)

⎞
⎟⎟⎟⎟⎠
[

[M]+
[M + 1]+

]
cor

(5.4)

This equation can be rearranged as shown in Eq. (5.2), allowing MDVcor to be cal-
culated from MDVobs and the generalized inverse of the correction matrix.

Note that the size of the matrix is determined by the number of detectable mass
isotopomers and the number of X atoms that can be labeled [23, 136]. It is advan-
tageous to make use of all reliable measurements, even if they provide redundant
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information, but making extra measurements for a given compound may limit the
number of different fragments that can be measured during the dwell time – most
current mass spectrometers allow for 30 ions to be monitored and the time associ-
ated with each ion will be reduced as more are monitored. So if the [M+2]+ and
[M+3]+ mass isotopomers are undetectable, Eq. (5.4) would reduce to

[
[M]+

[M + 1]+

]
obs

=
(

p
(

0Y
)

p
(

0Z
)

0

p
(

1Y
)

p
(

0Z
)+p

(
0Y
)

p
(

1Z
)

p
(

0Y
)

p
(

0Z
)
) [

[M]+

[M + 1]+

]
cor

(5.5)
This can be re-written as

[
[M]+

[M + 1]+

]
obs

=
(

p
(

0Y
)

0

p
(

1Y
)

p
(

0Y
)
)(

p
(

0Z
)

0

p
(

1Z
)

p
(

0Z
)
) [

[M]+

[M + 1]+

]
cor

(5.6)

emphasizing that the correction matrix can be broken down into elemental matrices,
CY and CZ, as indicated in Eq. (5.3).

The elemental correction matrices in Eq. (5.6) apply to a fragment with only
a single atom of each element, Y and Z. If there is more than one atom of each
element, then the fractional abundance or probabilities of the naturally abundant
isotopomers that contribute to the observed mass isotopomers can be calculated
from the combinatorial probability equation [23, 132]:

Fractional abundance = N ! ·
n∏

i=1

(
p(Ii )

f(Ii )

f(Ii )!

)
(5.7)

Here, n is the number of naturally occurring isotopes, I1,. . .,In of the element under
consideration, p(Ii) is the natural abundance of the isotope Ii (Table 5.2), f(Ii) is the
number of atoms of Ii in the fragment that is being analyzed, and N is the total
number of atoms of the element in the fragment.

The correction for natural abundance can be illustrated with a specific example.
Assume that the observed ion abundances for the M-57 fragment of TBDMS-serine
(Fig. 5.16) are [M]+ = 225,000; [M+1]+ = 100,000; [M+2]+ = 53,000; [M+3]+

= 90,000.

Table 5.2 Natural abundances for some commonly encountered elements [99]

Element [M+0]+ [M+1]+ [M+2]+ [M+4]+

Carbon 0.9893 0.0107
Hydrogen 0.999885 0.000115
Nitrogen 0.99632 0.00368
Oxygen 0.99757 0.00038 0.00205
Silicon 0.922297 0.046832 0.03087
Sulfur 0.9493 0.0076 0.0429 0.0002
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C21H49O3N1Si3 = 447.3

Common Losses:
M–15   = 432.3
M–57   = 390.2
M–85   = 362.2
M–side chain = 302.2
M–159 = 288.2

Fig. 5.16 The chemical structure of serine-TBDMS showing fragmentation of the amino acid
backbone. Fragments M-15 and M-57 correspond to losses of methyl and t-butyl groups respec-
tively; while fragments M-145 and M-159 correspond to the loss of carbon 3 and carbon 1 respec-
tively of the serine backbone. Here the loss of the amino acid side chain corresponds to a loss of
145

These values define an MDVobs in which the relative abundances sum to 1:

MDVobs =

⎡
⎢⎢⎣

0.4808
0.2137
0.1132
0.1923

⎤
⎥⎥⎦ (5.8)

The M-57 fragment contains 14 carbon atoms from the derivatizing agent and since
the observed fragment ions extend to [M+3]+, it is necessary to construct a car-
bon matrix that allows for contributions to the ion abundances from up to three
13C atoms:

CMC =

⎛
⎜⎜⎝

12C14 0 0 0
12C13

13C1
12C14 0 0

12C12
13C2

12C13
13C1

12C14 0
12C11

13C3
12C12

13C2
12C13

13C1
12C14

⎞
⎟⎟⎠ (5.9)

The probabilities of these combinations can be calculated from (5.7) using the frac-
tional abundances of 12C and 13C given in Table 5.2:

CMC =

⎛
⎜⎜⎝

0.8602 0 0 0
0.1302 0.8602 0 0
0.0092 0.1302 0.8602 0
0.0004 0.0092 0.1302 0.8602

⎞
⎟⎟⎠ (5.10)

Correction matrices can be generated for each of the other elements in the fragment
in a similar fashion. The overall correction matrix is the product of each elemental
matrix and this turns out to be
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CMCHNOSi =

⎛
⎜⎜⎝

0.6644 0 0 0
0.2081 0.6644 0 0
0.1003 0.2081 0.6644 0
0.0213 0.1003 0.2081 0.6644

⎞
⎟⎟⎠ (5.11)

Finally, the MDVcor is calculated from the inverse of the correction matrix and
MDVobs using (5.2):

MDVcor =

⎡
⎢⎢⎣

0.6626
0.0870
0.0288
0.2216

⎤
⎥⎥⎦ (5.12)

Note that the sum of the values in MDVcor has been rescaled to 1, to allow for
round-off errors caused by truncating the natural abundance values in the calculation
of the probabilities for the correction matrix. The more precise the mathematical
accounting and the estimate of natural abundance (see [99]), the less is the need for
scaling. However, scaling is always recommended, particularly if the data are to be
used for flux modeling.

The assumptions behind this correction strategy are described by Lee et al. [67].
In particular, it is assumed that (i) the relative abundance of any isotopomer is equiv-
alent to the probability of finding that isotopomer in the entire population of possible
isotopomers and (ii) the occurrence of a particular isotope at a particular position in
a molecule is independent of the presence/absence of all other isotopes elsewhere
in the molecule. These assumptions allow the distribution of label to be treated as a
multinomial probability problem (5.7).

Corrections for natural abundance are routinely and systematically implemented
through the use of matrix algebra developed in the literature [23, 37, 84, 132, 143].
The correction for all isotopes of a particular element should be performed in a
single step [132], and the corrections can be implemented through the use of a stan-
dard spreadsheet or mathematical software packages available upon request [37,
123, 136, 152].

Generally, natural abundance correction is applied only to the atoms that can-
not be labeled during the experiment. The natural abundance associated with other
atoms, for example the backbone carbon atoms in a 13C-labeling experiment, is built
into the model that describes the metabolic redistribution of the label. However, sev-
eral authors [37, 98] have developed approaches to correct for natural abundance in
the atoms that are labeled in an experiment, as well as those that cannot be labeled.
This strategy entails the use of extra labeled standards that can be costly, and it is
usually unnecessary in flux analysis when the fluxes have to be simulated anyway.

After correction for natural abundance, it may also be necessary to adjust for the
contribution of unlabeled original biomass to the MDV [82, 130, 150]. Suppose that
the analytical sample used to analyze the labeling of serine above was contaminated
with 5% of the original biomass. The MDV (MDVbiomass) for this original biomass
can be calculated using (5.7):
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MDVbiomass =

⎡
⎢⎢⎣

12C3
12C2

13C
12C13C2

13C3

⎤
⎥⎥⎦ · 5% =

⎡
⎢⎢⎣

0.9682
0.0314
0.0003
0.0000

⎤
⎥⎥⎦ · 0.05 =

⎡
⎢⎢⎣

0.0484
0.0016
0.0000
0.0000

⎤
⎥⎥⎦ (5.13)

MDVbiomass can then be subtracted from MDVcor, to give, after scaling, the MDV
that is corrected for both natural abundance and original biomass (MDVfinal):

MDVfinal =

⎡
⎢⎢⎣

0.6626
0.0870
0.0288
0.2216

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

0.0484
0.0016
0.0000
0.0000

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.6142
0.0854
0.0288
0.2216

⎤
⎥⎥⎦ ⇒

⎡
⎢⎢⎣

0.6465
0.0899
0.0303
0.2333

⎤
⎥⎥⎦ (5.14)

Note that the biomass correction can be applied before the correction for natural
abundance if preferred, but it is then necessary to include atoms other than carbon
in MDVbiomass.

Finally, particular care is required if the mass ion is affected by the loss of an ion,
for example the loss of a proton leading to the detection of [M-1]+. Correction for
natural abundance in this situation is discussed elsewhere [60, 72]. Sometimes it is
better to avoid using the mass isotopomer data from such ions [23], athough the loss
of a proton is characteristic of a number of compounds (e.g., sugars) that contain
very useful label information.

5.5 Concluding Remarks

Although many steady-state flux analyses are based on quantifying the redistribu-
tion of stable isotopes using either NMR or MS, it should be emphasized that the
two approaches provide complementary information. In fact, it has been repeatedly
demonstrated that combining NMR and MS measurements leads to more reliable
flux analysis [15, 16, 23, 60, 61, 149]. In particular, a combined approach invariably
provides a more complete picture of the isotopomer distribution at steady state and
thus helps to improve the definition of the flux map. Confirmation of this can be
found in a recent flux analysis of Saccharomyces cerevisiae using GCMS, LCMS,
and NMR data on the redistribution of 13C-label [61]. This study found that three
methods varied significantly in the extent to which they could define the flux dis-
tribution around specific metabolic nodes, with each of the methods being the best
approach in particular instances.

While there are clear advantages in combining NMR and MS for flux analysis,
it is likely that personal preferences, access to equipment, and the availability of
expertise will continue to hinder the adoption of such an analytical strategy. This is
not necessarily a disadvantage, since either technique is fully capable of providing
useful information on its own and a sensitivity analysis will demonstrate the quality
of the deduced flux map. NMR will continue to have the advantages of minimal
sample handling and direct insight into labeling pathways via the readily obtainable
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information on positional labeling; while MS methods will continue to have the
advantage of sensitivity and rapid data collection. Sensitivity will be a key issue
as the experimental focus switches from steady-state analysis to dynamic analysis
of time courses, and for this purpose MS will be the method of choice in most
instances.
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24. de Graaf AA, Mahle M, Möllney M, Wiechert W, Stahmann P, Sahm H (2000) Determina-
tion of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin
echo difference spectroscopy. J Biotechnol 77:20–35.

25. Des Rosiers C, Montgomery JA, Descrochers S, Garneau M, David F, Mamer OA, Brune-
graber H (1988) Interference of 3-hydroxyisobutyrate with measurements of ketone body
concentration and isotopic enrichment by gas chromatography-mass spectrometry. Anal
Biochem 173:96–105.

26. Des Rosiers C, Di Donato L, Comte B, Laplante A, Marcoux C, David F, Fernandez CA,
Brunengraber H (1995) Isotopomer analysis of citric acid cycle and gluconeogenesis in rat
liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in glu-
coneogenesis. J Biol Chem 270:10027–10036.

27. Di Donato L, Des Rosiers C, Montgomery JA, David F, Garneau M, Brunengraber H (1993)
Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass
spectrometric assay of the 13C labeling pattern of glutamate. J Biol Chem 268:4170–4180.

28. Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantifica-
tion of compartmented metabolic fluxes in maize root tips using isotope distribution from
13C- or 14C-labeled glucose. J Biol Chem 270: 13147–13159.

29. Dieuaide-Noubhani M, Canioni P, Raymond P (1997) Sugar-starvation-induced changes of
carbon metabolism in excised maize root tips. Plant Physiol 115:1505–1513.

30. Edwards S, Nguyen BT, Do B, Roberts JKM (1998) Contribution of malic enzme, pyruvate
kinase, phosphoenolpyruvate carboxylase, and the Krebs cycle to respiration and biosyn-
thesis and to intracellular pH regulation during hypoxia in maize root tips observed by
nuclear magnetic resonance and gas chromatography-mass spectrometry. Plant Physiol 116:
1073–1081.

31. Eisenreich W, Ettenhuber C, Laupitz R, Theus C, Bacher A (2004) Isotopolog perturbation
techniques for metabolic networks: metabolic recycling of nutritional glucose in Drosophila
melanogaster. Proc Natl Acad Sci USA 101:6764–6769.

32. Ettenhuber C, Radykewicz T, Kofer W, Koop HU, Bacher A, Eisenreich W (2005) Metabolic
flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants. Phyto-
chemistry 66:323–335.

33. Fagerquist CK, Schwarz JM (1998) Gas-phase acid-base chemistry and its effects on mass
isotopomer abundance measurements of biomolecular ions. J Mass Spectrom 33:144–153.

34. Fagerquist CK, Neese RA, Hellerstein MK (1999) Molecular ion fragmentation and its
effects on mass isotopomer abundances of fatty acid methyl esters ionized by electron
impact. J Am Soc Mass Spectrom 10:430–439.

35. Fagerquist CK, Hellerstein MK, Faubert D, Bertrand MJ (2001) Elimination of the concen-
tration dependence in mass isotopomer abundance mass spectrometry of methyl palmitate
using metastable atom bombardment. J Am Soc Mass Spectrom 12:754–761.

36. Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of com-
plex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219.

37. Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of
13C mass isotopomer distributions for natural stable isotope abundance J Mass Spectrom
31:255–262.

38. Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates
pyrophosphate: fructose-6-phosphate 1-phospho-transferase and increases triose phosphate
to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263.



144 D.K. Allen and R.G. Ratcliffe

39. Feuge RO, Gros AT (1949) Modification of vegetable oils. 7. Alkali catalyzed interesterifi-
cation of peanut oil with ethanol. J Amer Oil Chem Soc 3:97–102.

40. Filer CN (1999) Isotopic fractionation of organic compounds in chromatography. J Labeled
Cpd Radiopharm 42:169–197.

41. Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central
carbon metabolism using GC-MS. Eur J Biochem 270:880–891.

42. Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of pro-
teins. J Chromatog A 826:109–134.

43. Freeman R (2003) Magnetic Resonance in Chemistry and Medicine. Oxford University
Press, Oxford.

44. Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and
fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb
Cell Fact 4:Art. 30.

45. Glawischnig E, Girl A, Tomas A, Bacher A, Eisenreich W (2002) Starch biosynthesis
and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by
nuclear magnetic resonance. Plant Physiol 130:1717–1727.

46. Grob RL (1985) Modern Practice of Gas Chromatography. John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, Singapore.

47. Harrison AG, Cotter RJ (1990) Methods of ionization. Meth Enzymol 193:3–37.
48. Hatch MD, Slack CR (1966) Photosynthesis by sugar cane leaves – a new carboxylation

reaction and pathway of sugar formation. Biochem J. 101:103–111.
49. Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A (1997) Hep-

atic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope
study. J Clin Invest 100:1305–1319.

50. Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Öz G, Seaquist ER, Shestov
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Chapter 6
Data Integration

Aaron Fait and Alisdair R. Fernie

6.1 Introduction

In the last decade, an unprecedented amount of post-genomic experimental
information has become available. Datasets originating from transcriptomic anal-
ysis, metabolite profiling, and proteomics can be produced faster, with ever increas-
ing accuracy and decreasing cost. However, putting the pieces together is not trivial.
Our understanding of cellular phenomena based on “omics” data depends on – and is
limited by – our capability to implement appropriate analysis tools able to integrate
the different “omics” approaches [75, 78]. Bringing together such disparate datasets
presents a considerable challenge [76]. Such analysis is time consuming and prone
to both error and speculation. Consequently, there is a substantial need to consider
both the methods currently being used and the statistical principles involved in the
analysis of post-genomic experimental data.

Metabolic profiling has become a commonly used tool to characterize a
plant under different environmental, developmental, or genetic conditions. The
metabolome, the complete set of small-molecule metabolites in a system of
interest,1 is a dynamic entity. Its quantitative composition results from the com-
bined actions of gene regulation, gene expression, and enzyme activity. It thus
can be seen as a manifestation of the biological information flow. Several stud-
ies have shown that small changes in transcript and enzyme levels have significant
effect on the concentration of the metabolic intermediates but only limited effects
on the metabolic fluxes [39]. Thus, the metabolome more sensitively responds to
genetic and environmental changes than fluxes. Furthermore, a substantial part of
the regulation of the metabolic steady state is being processed at the posttran-

1Common-used instruments for metabolomics can identify only a fraction of the whole metabolic
variability within a cell at once. This is mainly due to the extreme diversity in the chemical nature
and abundance exposed by biological systems. Specifically in the plant kingdom, roughly hundred
thousands of metabolites, primary and secondary, are estimated to occur.
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scriptional and posttranslational levels. As a result, the regulation of the metabolic
network cannot be predicted solely from the genomic sequence or transcriptome
analysis [21, 44, 83]. For instance, when the tricarboxylic acid (TCA) cycle in
tomato plants is impaired by reducing the activity of one of its enzymes, suc-
cinyl coA ligase, 2-oxoglutarate is diverted to a metabolic bypass known as the
γ-aminobutyrate (GABA) shunt [74]. Increased GABA shunt activity is eventu-
ally measured. However, when a broad gene expression analysis of the transgenic
lines was performed, the authors measured only a minor increase in transcripts of
the GABA shunt key enzyme glutamate decarboxylase (GAD). On the other hand,
high-throughput analysis of primary metabolism revealed a major accumulation of
its product, GABA. Enzymatic essays and stable isotope-based feeding experiments
confirmed the increase in the activity of GAD and glutamate dehydrogenase (GDH)
and in the enrichment of Glu-derived 13C-GABA [74]. These results corroborate the
metabolite profile results and reflect the posttranslational nature of the regulation of
GABA biosynthesis [5].

Nowadays, the accuracy of analysis and metabolic coverage of the metabolome
is constantly increasing, and a systems approach to metabolism is becoming realistic
[7, 17, 60, 86 see also Chapter 3]. Parallel high-throughput analysis of transcripts,
metabolites, and proteins from one sample has become routine [4, 51]. Data integra-
tion across these different data types can reveal system-wide regulatory principles.
This has necessitated the development of new algorithms to analyze complex data
matrices as well as databases, annotation tools, and pathway mappings, in order to
facilitate maximal knowledge acquisition [55]. In the following sections, we will
discuss methodologies and possible pitfalls of complex data management, includ-
ing data standardization, the problems of outliers and missing data, and non-linear
features of metabolism. We will additionally highlight clustering tools, co-response
analysis as well as network and pathway reconstruction.

6.2 Overcoming the Noise

6.2.1 Data Normalization

Non-biological variability in experimental data can be reduced by data normaliza-
tion. For example, running samples at different days on an analytical instrument will
contribute to technical variability, which may, e.g., be caused by changes in detec-
tor sensitivity of the instrument. To reduce bias of the data analysis by this kind
of technical variability, randomization of the order in which the samples are mea-
sured as well as inclusion of reference samples is important. During subsequent data
elaboration, normalization of the elements building the data matrix aims at filtering
out the non-biological contribution to the variance of the dataset. For a variable x
with n elements, median normalization can be achieved by dividing each element
xi (i = 1 . . . n) by the median across the n categories. The median as a statistical
measure is preferred to the average since it is more robust to outliers. In comparative
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analysis, where control samples are available, data can be standardized by dividing
the relative response of each element of a sample, xi, by the relative response of the
corresponding element in the control (c) sample, xi

c, or the median response in the
control sample [64]. A similar approach is used for microarray data [89]. After nor-
malization, data are typically transformed into logarithmic form (the choice of the
base is irrelevant). Transformation by logarithm adds symmetry to positive and neg-
ative changes within the dataset as well as minimizes the impact of outlier entries.

A different approach to normalize the dataset is the use of unit vector normal-
ization. This method was used by Scholz et al. [66] to normalize data from direct
infusion Q-TOF MS fingerprinting. Unit vector normalization is done by scaling
each sample vector to the unit vector norm [64]. Geometrically interpreted, this
means that the length of each sample vector is scaled to one, and each sample can
be interpreted as a projection onto a hypersphere. Here vectors that have similar
direction are found close to each other, although the un-scaled vectors may differ in
intensity.

Z-score transformation provides an additional standardizing tool across a wide
range of experiments and separate measurements. By definition, Z-score transfor-
mation of a sample vector results in a mean of zero and a standard deviation of
one. Comparisons across samples or experiments are performed on the transformed
data, and changes in gene expression or metabolite levels are expressed as differ-
ences between Z scores (Z ratios). Z-score transformation allows the comparison
of, for instance, microarray data independent of the original hybridization intensi-
ties [12]. Normalized data can be used in the calculation of significant changes in
transcript/metabolite abundance between different samples and conditions. Compar-
ative analysis of data originating from different instruments/ measurements is thus
possible.

When approaching the experimental data, often the assumption is made that bio-
logical data follow a parametric distribution (e.g., normal distribution) and that
skewing in the data distribution is solely of technical origin. However, several
studies have shown that metabolic data can follow a non-parametric distribution
[19, 38, 42, 85]. Normalization of such data can result in the loss of biologi-
cally significant information. In order to avoid this, bootstrapping tools can be
used for the elaboration of non-normalized data showing skewed parametrics. Non-
parametric methods should otherwise be implemented for the analysis of bimodal
or non-parametric data, like small samples, for which population parameters are not
estimable (Section 6.3).

Several statistical methods, known as goodness of fit tests, exist to test the
nature of the distribution of experimental data (e.g., normal, log-normal, Weibull,
exponential). Examples of such tests are the chi-square goodness-of-fit test, which
can be applied to discrete distributions such as the binomial and the Poisson, the
Kolmogorov–Smirnov and Anderson–Darling tests, which are restricted to contin-
uous distributions, and the Shapiro–Wilk test, which specifically tests whether a
random sample, x1, x2, ..., xn comes from a normally distributed population.
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6.2.2 Outliers Detection

Additional pretreatment of data prior to statistical analysis includes the detection of
outliers. These are defined as atypical observations, namely data points that do not
appear to follow the characteristic distribution of the rest of the data. The Grubbs’
test or the kurtosis test [47] can identify such outliers in order to be removed from
the dataset. In addition to the problem of outliers, the interpretation of intrinsically
small values may be problematic if they are not well above background noise. While
a small change in intensity might have high biological significance, background
noise may render these small values useless [56].

6.2.3 Missing Values

Similar to outliers, a common phenomenon in metabolomics measurements is the
occurrence of missing values in the data matrix. A certain metabolite may be
present in low concentration under the detection limit in most samples while being
detectable only under a certain condition, e.g., a certain genetic alteration. Deciding
a priori to entirely delete such a metabolite in the dataset will obviously cause a
significant loss of potentially relevant information. Since many multivariate meth-
ods require a complete data matrix without absentees, estimation of missing values
might be necessary. In result, methods of missing value imputation can significantly
improve clustering and interpretation of large datasets. In a comparative study of a
number of advanced imputation methods on microarray datasets, Tuikkala et al. [80]
concluded that, regardless of the evaluation approach, imputation always gave a bet-
ter reproduction of the original gene clusters or biological interpretation, than ignor-
ing missing values. A simple method for missing data imputation is replacement of
a missing entry by the mean of the values of the whole data row in the data matrix.
More complex is the use of a k-nearest neighbors algorithm. However, such lin-
ear methods can have limitations for non-linear data structures. Non-linear pattern
of data distribution was shown to occur in instances such as temporal response to
cold stress [38] or as part of natural variation [19]. Thus, a different approach was
proposed by Scholz et al. [65]. The authors compared different linear and non-linear
missing values algorithms (Fig. 6.1) to test their efficiency in estimating missing val-
ues in an artificial non-linear dataset. The authors suggested an inverse non-linear
principle component analysis (PCA2) algorithm to extract the non-linear component
from a highly incomplete dataset (artificially produced). The algorithm performed
far better for estimation of missing values than the other methods used, except for
the self-organizing map (SOM) algorithm (Fig. 6.1). The latter was also successfully
used in the analysis of the relationship between biomass and metabolites profile
in an Arabidopsis RIL population with 6% of the data missing [49]. In the analy-
sis of the non-linear dataset by Scholz et al. [65], linear approaches such as PCA

2See Section 6.3.2 for an introduction to PCA.
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Fig. 6.1 Test of different missing value algorithms on artificial data with non-linear structure. A
total of 1,000 three-dimensional samples were generated (black dots). Consecutively, each of the
three-dimensional samples was removed and then re-estimated by a missing value algorithm (grey
circles). The inverse NLPCA, followed by SOM, is able to extract the non-linear component from
highly incomplete dataset (see text), and hence it can give a very good estimation of the missing
values. In contrast, linear approaches BPCA and PPCA, as well as the k-nearest neighbor-based
approach KNNimpute, fail with this non-linear dataset. (Reprinted with permission from [65])

and k-nearest neighbor algorithm (KNN) displayed the lowest predictive efficiency.
When the different algorithms were tested against a real experimental dataset, dif-
ferent percentages of values were randomly removed and regarded as missing for
the estimation test.

In this case, the linear methods were shown to be highly comparable to the non-
linear methods and, to a certain degree, even with higher estimation efficiency.
Nonetheless, in a successive analysis, it was shown that the performance of each
approach fairly depends on the linearity of the dataset. The authors conclude that in
the analysis of datasets with a limited number of variables (metabolic profiles) and
which are non-linearly structured, non-linear techniques can improve the missing
value estimation performances. In larger datasets (gene expression matrices), best
missing data estimations were achieved by the Bayesan and probabilistic principle
component analysis, BPCA and PPCA, respectively.

6.3 The Analysis of the Dataset

6.3.1 Correlation Analysis

Both transcripts and metabolites are usually characterized by high natural variation.
Correlation analysis rather than average-based statistics can provide a more reliable
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and less noise-dependent statistical analysis. Indeed, like other post-genomic tech-
niques, the data produced by metabolic profiling is usually in the form of ratios,
while measuring absolute concentrations is limited to targeted analysis. Further-
more, the correlation-based approach has also a biological reasoning behind: the
remarkable and organized biological variability in metabolite abundance is sug-
gested to reflect the intrinsic flexibility of metabolic networks [72, 73, 81, 86]. In this
regard, a perturbation which propagates through the metabolic net is expressed as
measurable pattern of correlations among metabolites [50]. In other words, metabo-
lites are produced from other metabolites, and this creates a network of interdepen-
dencies based on the stoichiometry of the metabolic pathways involved.

It should be noted however that metabolic co-regulation does not depend solely
on sharing a biochemical pathway but rather on being part of all reactions and
regulatory interactions present in a system. In this regard, several studies across
different biological systems have shown the occurrence of weak, but widespread,
correlations between metabolites on neighboring biochemical pathways, while few
strong correlations characterized the pairs of metabolites – some of which are dis-
tant in biochemical steps [18, 48, 58]. A recent co-response analysis of metabo-
lite and transcript data [16, 63] suggests a novel regulatory mechanism for the
production of GABA. The GABA shunt has been classically defined as a bypass
of the TCA cycle. Intriguingly, by querying the Comprehensive Systems-Biology
Database (http://csbdb.mpimp-golm.mpg.de/) for the response pattern of genes of
the GABA shunt and of the TCA cycle, the authors found a highly specific and pos-
itive co-response, suggesting that these two pathways act in a concerted rather than
alternate manner [16]. However, when analyzing the metabolite profiles of a tomato
introgression lines collection for the metabolite:metabolite associations, GABA was
shown to cluster deeply within the amino acid group, suggesting the occurrence of
an N-metabolism driven co-regulation. It is notable that, within this class of N-
rich metabolites, Glu – a direct biochemical precursor of GABA – is located on
a statistical scale more distant from GABA than other amino acids biochemically
less related [16]. Finally, biological systems can differ in their set of co-responding
metabolites further complicating the understanding of general regulatory mecha-
nisms at the basis of metabolites levels. For example, in a comparative analysis of
different tissue types in three species, Arabidopsis thaliana, Solanum tuberosum,
and Nicotiana tabacum, it was found that the extent of correlation among metabo-
lite pairs changed in magnitude (or even in sign, e.g., Glc:putrescine and Glc:Gly)
between different organs, reflecting different regulatory networks [50]. While theo-
retical and computational analysis suggests that correlation is shaped by a combina-
tion of stoichiometric and kinetic elements [73], the examples reported suggest that
the factors accountable for metabolic co-variation are yet to be fully understood.

Regardless of the cause of the correlation between a set of parameters, let us
briefly address the basics of correlation analysis. Correlation and regression are
often confused. While the algebraic formulas are quite similar, the structure of the
data and the purpose of the investigation may make one or the other of the techniques
inappropriate. In regression, the aim is to describe the dependence of a variable Y
on an independent variable X. We employ regression analysis to explain Y (and



6 Data Integration 157

its variation) in terms of X. On the other hand, in correlation analyses, we aim to
determine the co-variance of two variables; in other words, we test if two variables
are interdependent as an effect of a common cause. For example, we might want
to understand the relationship between different sugars, as their content is affected
by developmental stages. The structure of the data can be misleading. We might
want to explain the changes in sucrose content as a function of tomato fruit weight
by applying regression analysis. However, none of the variables was deliberately
chosen; thus, none is independent. Therefore, either we will need to implement a
modification to the commonly used regression analysis (defined as Model II, Sokal
and Rohlf [71]) or, if it is the degree of association between X and Y that is of inter-
est, we should employ a correlation analysis. Correlation coefficients are depen-
dent on the structure and size of the dataset under analysis. In correlation analysis,
rank-order correlation like Spearman or Kendall test statistics should be used for
non-linear relationships. These non-parametric methods for correlation analysis are
less sensitive to outliers in the dataset. Furthermore, they are appropriate also for
experiments with limited number of data points, where a normal distribution can-
not be estimated and thus parametric methods like Pearson correlation analysis,
which assumes normal distribution of the data, cannot be implemented. Nonethe-
less, among the many correlation coefficients available in statistics, the most com-
mon in use is the product–moment correlation coefficient, the Pearson correlation,
which assumes normal distribution of the data.

Once measured, an association between a pair of variables (e.g., metabo-
lite:metabolite level, metabolite:transcript level) must be proved as significant.
A test of significance for correlation coefficients determines whether a sample corre-
lation coefficient could have come from a population with a parametric correlation
coefficient of zero. The null hypothesis is tested as a t-test with n–2 degrees of
freedom:

Ts = r

[
n − 2

1 − r2

]0.5

(6.1)

where r is the correlation coefficient and n is the sample size. In a multiple compar-
ison approach, as is the case for the analysis of metabolite:metabolite relationships
in metabolic profiling studies, the recurring inference of “false” correlation can be
avoided by P-value correction (e.g., Bonferroni correction).

Sometimes we are interested to discern between correlation coefficients in sev-
eral samples. A relevant example would be to test the degree of homogeneity of
correlation between metabolites in different mutants or transgenic lines as affected
by changes in environmental conditions. A test of homogeneity among two or more
correlation coefficients may help us to determine whether these can be considered
samples from a population exhibiting a common correlation among variables. With-
out entering into details, we suggest the interested reader to consult biometry [71].
In correlation analysis of extensive datasets and multiple tests, we might incur into
what are called non-sense correlations. In other words, often a significant correla-
tion can be confused with causation. This means, significant correlation can lead
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to terribly false conclusions. One variable can be the entire or partial cause of
another; in other instances, both variables have a common cause(s); finally, the
correlation might result as a complex interaction of both direct and indirect com-
mon causes. The distinction between the different types of correlation is particularly
acute in metabolic data, where metabolites are converted into other metabolites or
can regulate the level of other, possibly distant – on a scale of biochemical steps –
metabolites. A useful approach to identify common causes of relationships between
variables would be to measure partial correlation coefficients. In this approach, we
measure the correlation between any pair of variables when others have been held
constant. Via this approach, we can test the possibility of common causes of a series
of variable by excluding the one kept constant.

The described abundance-based correlation analysis is commonly used in
network reconstruction from gene expression data [40] and metabolite profiles
data [41]. However, it might not be optimal in the analysis of metabolite profile
data for the reasons we already mentioned: the spike character often observed in
metabolite abundance data and consequent departure from normal Gaussian dis-
tribution; the intrinsic redundant nature of metabolic profiling datasets; and “false-
positive” scores for significant correlation. Other more complex forms of correlation
analysis have been thus developed. Canonical correlation analysis (CCA) is a mul-
tivariate statistical model that facilitates the study of interrelationships among sets
of multiple dependent variables and multiple independent variables (for in depth
covering of CCA, the reader is referred to Hair et al. [24]). CCA calculates the
highest possible correlation between linear combinations of each set of variables.
The correlation thus found is called canonical correlation and the corresponding
linear combination, canonical variate. Another objective of CCA is explaining the
nature of the relationships existing between the variables, by measuring the relative
contribution of each to the canonical function. Backdrops of CCA are the sensi-
tivity to sample size (small dataset will not represent the correlations well; large
size could create inaccurate significant instances); and the assumption of linear-
ity between any two variables; normal distribution of the data is not compulsory,
but highly recommended. The power of CCA in analyzing multivariate datasets
and the relationships among variables was shown by Meyer et al. [49] to test
the hypothesis that changes in biomass are expressed in – and can be predicted
from – the metabolite composition. Using Arabidopsis thaliana RIL populations,
the authors conducted a parallel analysis of biomass and metabolite profiles. By
implementing CCA, the authors show that major global changes in metabolism are
the result of variation in growth rather than vice versa. By comparing the data matri-
ces, the authors found that the compound changes of a combination of the levels
of a large number of metabolites, rather than few individual metabolites, showed
to be highly associated with changes in biomass. Variation in growth, thus, coin-
cides with characteristic combinatorial changes of metabolite levels, whereas indi-
vidual metabolites may fluctuate largely independently of alterations in growth.
In fact when pair-wise correlation was applied, it yielded a mere 7% explana-
tion of the total variance observed in biomass. By further analyzing the metabo-
lites highly ranked in CCA, the authors found that central-metabolism-derived
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intermediates were significantly represented, specifically those of the hexose
phosphate pool.

A different computational protocol, based on complex correlations, was recently
developed to cope with aforementioned pitfalls in metabolite-abundance-based cor-
relation analysis [20]. Here, associations between metabolites of an Arabidopsis RIL
population were not inferred based on correlation matrices between abundance data,
but rather between metabolites’ Quantitative Trait Locus (QTL) profiles (vectors of
P-values associated with markers along the genome for each mass). In principle, once
associationsbetweenmetabolitesaredrawn, themost relevant relationshipscanbe iso-
lated by second-order correlations. These are defined as correlation between metabo-
lite pairs independent of covariance with any other pair. This method was successfully
implemented by Keurentjes et al. [41] to reconstruct glucosinolate biosynthetic path-
way. The resulting correlation network was found to reasonably represent the known
pathway for glucosinolate formation, validating the method used.

Correlation analysis is thus an efficient method to extract biological meaningful
information from the complex interactions between multiple molecular compounds
and mechanisms stretched at different levels and which give rise to a certain cellular
response.

6.3.2 Principle and Independent Component Analyses

Principle component analysis (PCA) and independent component analysis (ICA)
are unsupervised (“blind”) methods to analyze data, unbiased from the experimen-
tal target knowledge [88]. They are used to extract biologically relevant informa-
tion from multidimensional complex datasets and to reduce data dimensionality.
A high-throughput experiment can consist of a number of conditions (e.g., geno-
types, developmental stages, treatments) and a number of variables (e.g., metabo-
lites, genes) with hundreds to thousands of entries. The analysis of the resulting
data matrix necessitates algorithms aimed at expressing its multidimensional nature
by a set of meaningful new variables (components). Generally speaking, compo-
nents are sought that best reflect a specific aspect of the study, e.g., genotype- or
development-induced changes within the dataset. The data is then often visualized
in two dimensions by projection of the original data into two selected components.
Eventually, original variables can be identified which highly contribute to each com-
ponent. They can be detected by ranking according to the respective weights in each
component (loadings, eigenvalues).

The classic multivariate analysis used is principle component analysis (PCA).
The data containing n variables are expressed with n new variables (PCs). Geomet-
rically, the n-multidimensional data are transformed into in a new coordinate sys-
tem in a way that the highest variability (variance) is displayed by the first axis (1st
PC). Along the following axes (PCs) of increasing order, the variance successively
diminishes. Often, most of the variability in the dataset is captured by the first two or
three components, i.e., the data can be visualized without much loss of information.
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PCA was successfully used by Taylor et al. [77], to discriminate between parent lines
and progeny in an Arabidopsis ecotypes Col0∗C24 crossing. The scores of the orig-
inal variables enabled the detection of variables which contributed to a significant
section of the variance within the dataset. These corresponded to the metabolites
citrate and malate on principle component 1 and the sugars glucose and fructose
on principle component 2. These results were in line with the fact that the genetic
differences in the crossings were the maternally inherited mitochondria and chloro-
plast, key sites for the production of the above mentioned metabolites. The output
of PCA was also used to look for noisy metabolites, metabolites with great vari-
ance among samples, or those in which outliers were present. PCA analysis was
also shown to efficiently discriminate between developmental stages during seed
maturation in Arabidopsis [15]. The analysis, in combination with ANOVA, was
employed to determine what metabolites significantly contributed to the metabolic
shift measured during the developmental process and identify a previously not
reported metabolic switch [23] at the transition between late maturation and desicca-
tion [15]. This event was characterized by the accumulation of specific free metabolic
intermediates, which decreased during the very early stages of germination and
are presumably involved in the reactivation of the metabolic processes [15].

Similar to PCA, independent component analysis (ICA) is an unsupervised
method to analyze data [88]. In recent years, it has become increasingly popular
as an alternative to PCA. However, in ICA, different components represent non-
overlapping information, thought to be caused by unrelated processes or causes,
thus termed independent components. ICA differs from other factor analysis in that
it considers the non-Gaussianity (or super-Gaussianity) of the biological data, thus
providing a more flexible model to represent them. In biological systems, data often
behave in a non-Gaussian manner. For instance, variables that are characterized by
more values close to zero and/or very large ones are said to have a super-Gaussian
distribution. The probability density thus is peaked at zero and has heavy tails.
Scholz et al. [66] proposed a PCA preprocessing coupled to ICA to elaborate data
arising from metabolic fingerprinting. This PCA processing aims at reducing the
numbers of variables, since ICA is best suited to low number of variables against
high number of samples. On the given experimental dataset, the authors have shown
advantages of ICA in the detection of biological features as well as technical fac-
tors, not detected by a comparative PCA analysis. In a different study [62], ICA
was used to analyze co-regulation of genes in endometrial cancer cells. The analy-
sis employing ICA showed increased biological relevance and robustness as com-
pared to other statistical approaches, filtering out elements of noise and unrelated
patterns. ICA can be found as freely available web-based tool at MetaGeneAlyse
(http://metagenealyse.mpimp-golm.mpg.de).

6.3.3 Clustering Techniques

Clustering techniques allow classification of objects into different groups accord-
ing to similarity and visualization in dendrograms. A dataset is partitioned into
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subsets (clusters), typically in an iterative procedure. Similarity between data sub-
sets is defined according to some distance measure. Clustering techniques can reveal
co-response of metabolites/genes in a given biological process or to an environmen-
tal signal. Clustering can also be used to distinguish between biological defined
entities, e.g., genotypes/environmental conditions. Statistical clustering approaches
can be supervised or unsupervised [25]. Un-supervised procedures define homo-
geneous clusters from a given collection of objects or statistical units. The cluster
structure is then interrogated for biological/experimental significance. On the con-
trary, in supervised classification, the groups are a priori inferred. The choice of
a specific algorithm for the analysis can be a cumbersome task given the increas-
ing number of alternatives, tuning parameters, threshold values, etc. It is impor-
tant to note that results can vary based on the chosen method [14, 56]. Conse-
quently, decision making on the statistical method to be used in the elaboration
of a given dataset is crucial. Datta and Datta [13] proposed a protocol to evalu-
ate the efficiency of a clustering method on a given dataset in producing biolog-
ically meaningful clusters. Two measures are proposed by the authors. The first
is a biological homogeneity index (BHI), which measures the biological homo-
geneity of the clusters on a given set of data. The second performance measure
is defined as biological stability index (BSI), which measures the reproducibil-
ity of the clustering output on a specific dataset through a number of test repeti-
tions. By comparing ten different clustering algorithms, the authors conclude that
the proposed measures are useful in identifying the optimal clustering algorithm,
in terms of biological-based discriminative efficiency, for each given dataset, since
no single clustering method can be generally applied to all datasets. When choos-
ing a specific algorithm, the distribution nature of the dataset must be taken into
account.

Clustering analysis is a complex task which involves data pre-processing (see
Section 6.2), choosing of an appropriate measure of similarity, selection of a clus-
tering algorithm, and finally, careful interpretation of the results: First, data pre-
processing (the way of scaling or weighting, see Section 6.2.1) is influential on the
final results and interpretation of the analysis. Of similar influence is the choice
of the similarity measure which defines the inter-observation distances. Among
the distance functions are the Manhattan metric or the squared distance func-
tions. By choosing to cluster categories (e.g., genotypes or treatments) instead of
observations, a measure of association (e.g., correlation coefficients) between every
pair of category should be used. Furthermore, there are numerous different clus-
tering algorithms available, which fall under hierarchical or k-means clustering
(see also Chapter 7). Hierarchical algorithms find successive clusters using previ-
ously established clusters. Agglomerative hierarchical clustering starts with all data
elements separately. Clusters are then obtained by successively merging existing
elements/clusters. In divisive hierarchical clustering, existing clusters are divided
successively. In biological research concerned with grouping of entities (species,
metabolite, genes), hierarchical clustering might be the method of choice, although
in certain instances clustering per se of biological entities could have no clear
biological meaning.
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In addition to the different distance functions between the observations used
in clustering, there are different measures to define the distance between clusters.
Among those are the single linkage method (minimum distance between elements of
two clusters), the complete linkage method (maximum distance between elements
of two clusters), or the average linkage method (mean distance between elements
of two clusters). The single and the complete linkage methods can yield different
results when applied to the same dataset. The first tends to create fewer distinct
clusters than the second, thus finding more compact and smaller clusters. The aver-
age linkage method is an intermediary option between the two (for more detailed
description of the different methods see Johnson [34]). After the cluster analysis is
completed, the reliability of the dendrogram can be investigated by statistical meth-
ods (see Levenstien et al. [46] or Gnanadesikan [22] and references therein).

6.4 Bridging Platforms: Correlation-Based Integration
of Large Datasets of Different Origin

The metabolic network interacts with and is modeled by many other cellular pro-
cesses, such as transcriptional regulation and protein–protein interaction dynam-
ics [75]. The study of metabolic networks from transcript data provides important
knowledge on regulatory metabolic processes in a wide range of systems from Ara-
bidopsis seeds [61] to Caenorhabditis elegans [29], from which novel information
can be acquired on the impact of environmental signals and genetic alteration on
gene expression and metabolic adjustment [8, 26, 28, 45, 67]. Nowadays, integra-
tion of multiple matrices describing the structure and kinetics of the system under
study with extensive post-genomic datasets is, however, possible only for few micro-
bial model organisms and limited to their primary metabolism. In yeast [52], the
transcriptional regulatory architecture of metabolic networks as an expression of
environmentally induced perturbations was investigated. The analysis (correlation
based) led to insights in the relationship between environment, metabolites, and
gene expression. The grouping into subnetworks (modules) with biological signifi-
cance was possible when the experimental data were integrated with structural data
of the very well-characterized yeast metabolic network, using the KEGG database
(see also Section 6.5.2). In this way, the authors could identify differential response
of the metabolic network to environmental signals. For example, stress responses
to temperature shocks and amino acid starvation induced a larger number of genes
scattered on the metabolic map, while the impact of nitrogen depletion or station-
ary phase was of more repressing nature. Metabolic subnetwork responses to spe-
cific conditions were also identified. Namely, heat shock had specific impact on
carbohydrate metabolism, while lipid and amino acid metabolism were repressed
specifically under nitrogen depletion experiments and energy metabolism for hyper-
osmotic shocks. The authors, further, show that expression responses to certain
conditions are significantly correlated, e.g., alternative carbon sources and hypo-
osmotic shock, nitrogen depletion and stationary phases form exemplary pairs.
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Considering the fact that 50% of the genes with maximum response (induction or
repression) to given conditions were shown to have no assigned molecular function,
this co-response analysis can lead to the identification of novel regulatory elements
and modules in response to environmental signals.

Given the importance of posttranslational and allosteric regulation in govern-
ing metabolic processes, the understanding of cellular physiology is incomplete
without information on the metabolite steady-state levels and fluxes. An analyti-
cal approach based solely on gene expression data and structural information of the
system, while ignoring the interdependency between enzymatic regulation, metabo-
lite levels, and fluxes [54], is prone to speculation. Combined analysis enables to
elucidate gene:gene or gene:metabolite/metabolite:gene networks and to describe
different patterns of regulation, from metabolic to hierarchical, namely enzyme pro-
duction/activity. Modules or co-regulated entities in response to environmental sig-
nals or genetic manipulation might then be detected. Post-genomic studies will thus
increasingly focus on the integration of different level of analysis via bioinformat-
ics tools. However, in the process of association between genes and reactions, one
must keep in mind that not all genes have one-to-one relationship with their corre-
sponding enzymes or metabolic reactions. Examples are genes that code for subunits
of proteins governing one reaction or those that encode for so-called promiscuous
enzymes that can catalyze several different reactions.

The major goal of combining data originating in different platforms is eventually
to obtain an overall quantitative description of cellular systems, the core idea of
systems biology. The limit for this to be achieved is the large parameter space due
to the high number of components and interactions. Reducing dimensionality is
thus a priority to get started with inter-platform analysis and isolate key points in
the numerous cellular processes.

To analyze datasets of different origin, e.g., microarray data and GC-MS pro-
files, co-responsive pattern of change in gene expression and metabolite level can
be identified by non-parametric Spearmans’ rank order correlation analysis. In one
of the first parallel analysis of transcript and metabolic profiles in plants, Urbanczyk-
Wochniak et al. [84] have identified three classes of correlation between transcripts
and metabolites in Arabidopsis thaliana: (a) confirmatory correlations, in line with
previously identified co-responses; (b) correlation with a functional basis and can
be retrospectively assigned; and (c) novel correlations unrelated to the biochemical
pathway, where the gene product operates. Intriguingly, the majority of the cases
fell in the third class suggesting a non-linear, non-causative, and non-trivial rela-
tion between metabolome and transcriptome in response to changing environmental
and/or genetic conditions.

Similar conclusions were drawn when studying the response of Arabidopsis
to low temperature exposures, resulting in cold acclimation. Kaplan et al. [37]
performed parallel analyses of transcript and metabolite changes during cold accli-
mation to study the dynamics of gene–metabolite relationships. PCA revealed
temporally dependent, global changes in both gene expression and metabolite pro-
files, in response to the stress conditions. Changes in transcript abundance reflected
changes in many metabolic processes, and part of these temporally correlated with
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changes in metabolite levels. For other metabolic processes, however, this was not
the case, suggesting that regulatory processes independent of transcript abundance
represent a significant portion of the metabolic adjustments during cold acclimation.
In a different study, Hirai and coworkers [30] have analyzed the time-dependent
changes in the metabolome and transcriptome of Arabidopsis plants subjected to
sulfur deprivation. In their study, around 2,000 metabolites were detected, by tar-
geted and non-targeted analysis, and 21,500 transcripts. Among these, variables
which did not show significant changes were filtered out prior to the analysis.
Multivariate analysis, specifically batch-learning self-organizing map (BL-SOM),
was used for the integrated analysis on the combined log-normalized dataset. This
method classified metabolites and transcripts according to their time-dependent pat-
tern of changes in accumulation and expression, building a matrix of cells in a
two-dimensional lattice. Each cell (or neighboring cells) contains entities showing
similar patterns of change [30]. Using this approach, the authors could show that a
group of metabolites/genes regulated by the same mechanism clustered together,
e.g., glucosinolates metabolism and glucosinolate biosynthesis genes and sulfo-
transferases or genes involved in sulfur assimilation and O-acetylserine, a posi-
tive regulator of these genes. The BL-SOM algorithm implements a characteristic
non-linear projection from the high-dimensional space of input data onto a two-
dimensional array of weight vectors [1, 43]; the reduction in dimensions is achieved
by PCA analysis [3]. This strategy was applied successfully to classify complex data
in diverse system; for instance, in the analysis of global characteristics of genome
sequences to identify species-specific genome signatures [2].

Carrari et al. [9, 10] investigated tomato fruit development on a broad scale, mea-
suring a total of 92 metabolites comprising sugars, sugar alcohols, organic acids,
amino acids, vitamins, and a select few secondary metabolites in addition to pig-
ments and the monosaccharide composition of the cell wall, in parallel to transcript

Table 6.1 Online freely available resources for metabolic network reconstruction

Reconstruction tools

MetaFluxNet http://mbel.kaist.ac.kr/mfn
MFAML http://mbel.kaist.ac.kr/mfaml
MapMan http://gabi.rzpd.de/projects/MapMan/
CentiBiN http://centibin.ipk-gatersleben.de/
PATIKA http://www.patika.org

Pathway databases

BioSilico http://biosilico.org
KEGG http://kegg.com
KaPPA-View http://kpv.kazusa.or.jp/kappa-view/
MetaCyc http://metacyc.org
MRAD http://capb.dbi.udel.edu/whisler
Phylosopher http://www.genedata.com/phylosopher.php
PUMA2 http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi
EMP http://www.empproject.com
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Fig. 6.2 Selected transcript–metabolite correlation visualizations. Heat map surface of selected
transcript–metabolite correlations was drawn, and correlation coefficients were calculated. Each
dot indicates a given r value resulted from a Spearman correlation analysis in a false color scale.
Asc met, ascorbate metabolism; CHO met, carbohydrate metabolism; CW, cell wall; sugars-ol,
sugar alcohols; sugars-P, sugar phosphates; f.a., fatty acids; TFs, transcription factors [63] (see
also Color Insert)

levels. The pattern of changes in this multidimensional parametric matrix was eval-
uated on a temporal scale utilizing the recently developed Solanaceous MapMan
[82]. This is one of the increasingly available online tools for bioinformatics elab-
oration of complex dataset (Table 6.1). The study suggested that transcript abun-
dance was less strictly coordinated by functional group than metabolite abundance.
This implies that posttranslational mechanisms govern metabolic regulation during
tomato fruit ripening. Nevertheless, correlations between specific transcripts, e.g.,
ripening associated, and distinct metabolites classes were identified, such as TCA-
cycle organic acids and sugar phosphates (Fig. 6.2). The integrated analysis iden-
tified specific metabolic pathways with characteristic behavior during tomato fruit
development, suggesting a functional significance in the process of fruit ripening
and which might have importance for biotechnology applications [10].

Taken together, the conclusions drawn in these case studies add to the impor-
tance of parallel and integrative analyses. Indeed, while it is not yet possible to
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quantify all or even the majority of the metabolites in a cellular system [17], inte-
gration of datasets originating from different platforms is being increasingly used
[27, 30, 31, 32, 79].

6.5 Entering the Systems Biology Era: The Challenges

6.5.1 Integrating Flux Profiling into Network Modeling

Identifying regulatory elements and the type of regulatory events in cellular pro-
cesses is challenging. A major obstacle for this kind of analysis is the restricted
availability of flux data. Although metabolic networks are highly redundant, the
evaluation of the flux load of various metabolic pathways can be achieved [6, 35,
57, 59, 68, 69, 70]. That said, we lack a great deal of information on the majority
of the fluxes involved. In most flux analysis studies, an important assumption is that
of metabolic steady state. This and other simplifying assumptions [87] can preclude
its use in certain biological systems. For example, fluxes in the central metabolism
of developing embryos – a closed system – of Brassica napus were characterized
with success, and a modeling was possible [69]. However, the approach is not at all
effective for the description of other tissues, for example, potato tubers [59]. For this
reason, some groups attempt to develop dynamic flux modeling approaches [6, 57],
requiring fewer simplifying assumptions and being based on the accurate measure-
ment of isotope labeling in many metabolite pools at multiple time points during an
experiment. A major constraint of this strategy is its mathematical complexity and
the need to determine concentration levels of metabolites (see Chapters 9, 10). In
addition, both flux methods are limited by our current paucity of knowledge of path-
way structure. In combination, these factors represent major hurdles for a broader
scale flux analysis; however, given the impressive recent progress in this area, it
remains likely that it will evolve into an important component of metabolic network
study in the next years.

6.5.2 Putting Things into Their Context

Scientific literature is the ultimate end of experimental information – a fact that has
prompted the establishment of an increasing number of publicly available databases
to collect such “hidden” information [53]. Among the best known (Table 6.1) are
KEGG [36] and Metacyc [11, 90]. The first provides a frame on top of which one
can overlay functional and pathway information onto rank-ordered gene lists. The
second provides an interspecific reference database for metabolism and can be used
to computationally predict the components of a metabolic pathway of an annotated
genome. Due to the increasingly growing high-throughput experimental data hidden
in published scientific literature, computational tools need to be designed to effi-
ciently extract relevant information on molecular components (metabolites, genes,
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proteins), to reconstruct the system [33]. In this context, synonym extraction and
terminology disambiguation are a must. Furthermore, the establishment of publicly
available databases, where to collect, elaborate, and analyze experimental results, is
needed.

6.6 Conclusion

An integrated approach is the key for robust conclusion drawing in systems biol-
ogy [75]. This approach requires an unprecedented effort to reduce the complex
multidimensional nature of the data matrices produced, in order to extract biolog-
ically relevant information on the system in study. Great attention must however
be given to avoid losing important information during the process of data analysis.
Success depends on an experimental design to minimize non-biological variability
and missing data in large-scale “omics” measurements. Statistical and computa-
tional tools developed must cope with large experimental dataset, the implicit vari-
ance of technical or biological origin and eventually extract biologically relevant
information, e.g., regulatory elements or modules. In this context, software tools are
developed to store, manage, integrate, and visualize the dataset in a user friendly but
comprehensive manner. Databases and literature mining are used to extract relevant
facts from the scientific literature. Finally, mathematical modeling for the extrapo-
lation and prediction of biological processes is used to test hypotheses and generate
new ones.
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Chapter 7
Topology of Plant Metabolic Networks

Eva Grafahrend-Belau, Björn H. Junker, Christian Klukas, Dirk Koschützki,
Falk Schreiber, and Henning Schwöbbermeyer

Metabolic networks can be modeled as graphs, i.e., mathematical structures
consisting of vertices (representing objects such as metabolites) and edges/hyper-
edges (representing the connection between objects such as reactions). An example
of a very simple metabolic network is shown in Fig. 7.1. Often the term network
refers to an informal concept describing a structure composed of objects and con-
nections, whereas the term graph refers to an abstract mathematical structure formed
by a set of vertices and a set of edges. For simplicity, we will consider both terms
equivalent in the following.

In this chapter, networks/graphs, important properties, and initial findings in
metabolic networks based on graph/network analysis methods will be discussed.
Section 7.1 gives an overview of graphs, graph types, and simple graph properties.
Section 7.2 deals with advanced network properties such as the bow-tie structure
of metabolic networks. In Section 7.3, centrality measures in networks are studied.
Section 7.4 presents network motifs and their application to metabolic networks. In
Section 7.5, clustering methods for networks are discussed, and Section 7.6 deals
with graph layout and network visualization.

7.1 Introduction

7.1.1 Graph Notation and Graph Types

A metabolic network can be seen as a hyper-graph, see Fig. 7.1. A hyper-graph
G = (V, E) is a special graph consisting of a set of vertices V and a set of hyper-edges
E; each hyper-edge connects several vertices. The vertices represent the substances,
and the hyper-edges represent the reactions. A hyper-edge connects all substances
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Fig. 7.1 A metabolic
network where an edge
connects more than two
elements. This so-called
hyper-edge is labeled with the
name of the enzyme
catalyzing the reaction

of a reaction, is directed from reactants to products, and is labeled with the enzymes
that catalyze the reaction.

Hyper-graphs are not commonly used in graph theory and therefore other graphs
are preferred to model metabolic networks. Let us first consider general graphs. A
(directed) graph G = (V, E) consists of a set of vertices V and a set of edges E,
where each edge is assigned to two (not necessarily disjunct) vertices. A directed
edge e connecting the vertex u with the vertex v is denoted by e = (u, v). A graph
G = (V, E) is called bipartite if there is a partition of its vertex set V = S ∪ T such
that each edge in E has exactly one vertex in S and one vertex in T.

Hyper-graphs mentioned before can be represented by bipartite graphs. Usually
metabolic networks are modeled by bipartite graphs, see Fig. 7.2 which shows a
bipartite graph representation of the hyper-graph in Fig. 7.1. Additionally to the
vertices representing substances, there are vertices representing reactions (which
can be labeled with the enzyme names). Edges are binary relations connecting the
substances of a reaction with the corresponding reaction vertex.

We model a metabolic network by a directed bipartite graph G = (V1 ∪ V2,
E). The vertices v ∈ V1 represent the substances, and the vertices v ∈ V2 represent
the reactions with the enzymes. Edges connect substances (vertices of V1) with the

Fig. 7.2 A representation of
the hyper-graph in Fig. 7.1 as
directed bipartite graph. The
two different sets of vertices
are represented by circles and
squares
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corresponding reactions/enzymes (vertices of V2). An example of this modeling of
metabolic networks is shown in Fig. 7.2.

There are other networks closely related to metabolic networks which will be
used in this chapter. In the following, two are particularly important:

• Metabolite network is a network which consists only of substances (metabo-
lites). The reactions/enzymes are removed from this network and two substances
are connected if they are both connected to the same reaction/enzyme in the
metabolic network.

• Enzyme network is a network which consists only of the enzymes catalyzing
the reactions. The substances are removed from this network and two reac-
tions/enzymes are connected if they are both connected to the same substance
in the metabolic network.

For these two types of networks, a corresponding metabolic network cannot always
be directly derived. For example, the metabolites in a metabolite network are not
necessarily connected according to the reactions of a metabolic network, but these
connections can be established by correlation analysis of metabolite profiles [64].

To use graphs in a computer program, they have to be represented in the com-
puter. Two representations are common: adjacency matrix and adjacency list. The
choice between them depends on the operations which should be applied on the
graph and whether the graph is dense or sparse, i.e., contains many or few edges in
relation to the number of vertices.

A graph G = (V, E) with n vertices can be represented by a (n × n) adjacency
matrix A. The rows and columns of the matrix correspond to the vertices. A matrix-
element Aij = 1 if and only if there is an edge from vertex vi to vertex vj, and Aij = 0
otherwise. A simple way to implement an adjacency matrix is an array [1. . .n, 1. . .n].
For the representation of biological networks, adjacency matrices are often used as
their structure is simple and matrix operations can be directly applied. However, these
matrices need a lot of memory, n2 places for a network with n vertices, and several
network analysis algorithms may need longer computation time than with other rep-
resentations. A different representation of graphs is an adjacency list. A graph G =
(V, E) with n vertices can be represented by n connected lists. For each vertex v∈V, a
list Lv contains all edges incident to this vertex (and therefore all vertices adjacent to
it). A simple way to implement an adjacency list is an array [1. . .n] of lists.

7.1.2 Definition of Network Properties

In the following, some terms are introduced which will be used in the reminder of
this chapter. Given a graph G = (V, E), a walk is a sequence (v0, e1, v1, e2, v2, . . .,
vk-1, ek, vk) of vertices and edges with ei = (vi-1, vi). Often the vertices of the walk are
omitted and it is denoted by a sequence (e1, e2, . . ., ek) of edges. Such a walk v0 →
vk connects vertex v0 with vertex vk. A walk is called a path if all edges of the walk
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are distinct. The length of a walk or path is given by its number of edges. A path
between two vertices is a shortest path if no other path with shorter length exists
between these vertices. There may be several shortest paths between two vertices.
The distance between two vertices is the length of a shortest path between them.

If there exist paths vi → vj and vj → vi between two vertices vi and vj, these
vertices are called strongly connected. If any pair of different vertices of the graph
is strongly connected, the graph is strongly connected. If the direction of edges can
be neglected (i.e., edges can be reversed if necessary) and there exists a path between
two vertices, these vertices are called connected.

Note that in undirected graphs, the term connected is used if an (undirected) path
exists between two vertices (or all pairs of vertices in which case the graph would
be called connected).

A subgraph G ′ = (V ′, E ′) of the graph G = (V, E) is a graph where V ′ is a subset of
V and E ′ is a subset of V ′ × V ′, that is the subset of E which contains only edges with
vertices in V ′. A subgraph G ′ is called an induced subgraph of G if G ′ is a subgraph
of graph G and the edge set E ′ contains all edges of E which connect vertices of V ′.

If two graphs contain the same number of vertices connected in the same way,
these graphs are considered as the same or isomorphic graphs. Formally, two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there exists a bijective mapping
between the vertices in V1 and V2 with the property that there is an edge between any
two vertices u, v∈ V1 if and only if there is an edge between the two corresponding
vertices in the other graph, see Fig. 7.3. Such a bijection is called an isomorphism.

In the following, three relatively robust measures of network topology will be dis-
cussed: degree distribution, average path length, and clustering coefficient. Robust
means that small changes of the networks such as the removal of some vertices only
result in small changes of the measures.

Fig. 7.3 Two isomorphic
graphs
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The degree d(v) of a vertex v is the number of its neighbors. In directed graphs,
we distinguish between the in-degree of a vertex v, that is, the number of neighbors
with the edge pointing to v, and the out-degree of v, that is, the number of neighbors
with the edge pointing away from v. The degree of a vertex v is the sum of its in-
degree and its out-degree. An undirected graph with |V| vertices and |E| edges is
characterized by an average degree

d = 2 | E |
| V | (7.1)

The degree distribution P(d) gives the probability that a chosen vertex has exactly a
degree of d, that is, that the vertex is incident to d edges. Let X(d) be the number of
vertices with degree d. The degree distribution P(d) of a graph G = (V, E) is

P(d) = X (d)

|V | (7.2)

For a strongly connected graph, the average path length (or characteristic path
length) is the average of the length of the shortest paths between each pair of vertices
in the graph. If the graph is not strongly connected, then pairs of vertices without a
path between them have to be excluded from the computation of the average path
length. The average path length is a measure of how far in average an arbitrary
vertex is from another vertex.

The clustering coefficient is a measure of the connectivity within a graph. It can
be defined locally (to measure the “clustering” of a vertices) or globally (to measure
the clustering of the whole graph). The local clustering coefficient c(v) of a vertex v
is defined as the number of connections that exist among the neighbors of v, divided
by the number of connections that could exist if all neighbors of v were completely
connected. The local clustering coefficient

c (v) = |E (v)|
|Eall(v)| (7.3)

where |E(v)| is the number of edges in the neighborhood of vertex v and |Eall(v)| is
the total number of possible edges in the neighborhood of v. The (global) clustering
coefficient c is the average of the local clustering coefficient c(v) of each vertex v∈
V in the graph.

7.2 Special Properties of Metabolic Networks

Even though metabolic networks share many common properties with biological,
technical, and social networks, they also have some unique properties. The global
and local properties of metabolic networks strongly depend on the way that these
networks have been prepared, a fact that is unfortunately often neglected.
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When a metabolic network is modeled as a bipartite graph (see Fig. 7.2), in
which one kind of vertices represents the enzymes and the other kind of vertices
the metabolites, we have to keep in mind that this is already a fundamental simplifi-
cation of the real-world situation: the stoichiometric constraints are lost. If we look
at Fig. 7.2, we could in principle make ADP from fructose 6-phosphate. Stoichio-
metric constraints are therefore often considered by modeling metabolic networks
as Petri nets [62], which have to obey a “firing rule”, which means that only when all
substrates are present a reaction can take place by transforming the set of substrates
into the set of products.

In many studies, metabolic networks are simplified to metabolite networks or
enzyme networks (see Section 7.1.1 for a definition). By this transformation, espe-
cially the global network properties will change dramatically, as will be outlined in
the next two sections. Although most of the results have been obtained from bacte-
ria or single-celled eukaryotes, the observations are in principle transferable to plant
metabolic networks.

7.2.1 Local Properties

Just like many other large biological and non-biological networks, it has been shown
that metabolic networks exhibit properties that are typical for small-world networks.
Jeong and coworkers described for the first time that the degree distribution of
metabolic networks follows a power law [49], a characteristic that has been con-
firmed many times since then, e.g., in [70]. This means that there are many metabo-
lites that are connected only to one or two others, while there are a few metabolites
(“hubs”) that are connected to hundreds. It has been proposed that this network
structure is responsible for a high robustness against failure, e.g., a mutation, a fea-
ture that is clearly an evolutionary advantage [60].

The clustering coefficient for the metabolite network of E. coli was found to
be significantly higher than could be expected for random networks with pre-
served degree distribution [111]. These results have been confirmed by analyzing
the metabolite network of Saccharomyces cerevisiae [119]. Interestingly, by taking
the bipartite metabolic network instead of the metabolite graph, and by choosing
an appropriate random rewiring scheme to generate the random networks for com-
parison, it was concluded that the metabolic network of S. cerevisiae shows no sig-
nificant clustering beyond the trivial clustering imposed by the construction of the
network – namely a projection that was constructed from a bipartite graph [119].
Thus, depending on the preparation of the network, entirely different conclusions
may be drawn on the degree of clustering in metabolic networks.

7.2.2 Global Properties

The global structure of metabolic networks has been described as a bow-tie struc-
ture. This analogy to the elegant piece of clothing becomes apparent from Fig. 7.4.
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Fig. 7.4 Bow-tie structure of
metabolic networks. See text
for details. GSC: giant strong
component; IS: isolated
components

In a directed metabolic network, a subgraph can be found in which all nodes are
reachable from all other ones. This giant strong component (GSC) is connected to
an in-component, which contains nodes from which it is possible to reach the GSC,
but it is impossible to go back to these nodes from the GSC. On the other side, the
GSC is connected to the out-component, which contains nodes that can be reached
from the GSC, but from which it is impossible to go back to the GSC. From a biolog-
ical point of view, the GSC is the central metabolic network which contains all sorts
of anabolic and catabolic pathways, but from which it is always possible to get back
to the central part. The in-component contains specialized pathways for the usage of
different substrates. The out-component yields metabolic products, e.g., secondary
metabolites. The isolated components are subgraphs similar to the GSC, as they
connect in- with out-metabolites, but these subgraphs are significantly smaller than
the GSC.

There has been a long debate about the average path length of metabolic networks
(APL; see Section 7.1.2 for a definition). In the first study, Jeong and coworkers [49]
started with the metabolic network of E. coli, and generated a metabolite network
from this by the simple algorithm described in Section 7.1.1. They calculated an
APL of 3.2, which means that any metabolite can be reached from any other one by
an average, a bit more than three reaction steps. However, the algorithm will have
the effect that for any pair of metabolites A and B, in which A is substrate of a
reaction that produces ATP, and the other one is product of a reaction that uses ATP,
the network will suggest that B can be made from A in two reaction steps, which is
clearly not possible in most cases. Thus, all highly connected metabolites, such as
water, phosphate, ATP, and all other co-factors, will render the network seemingly
small.

Recognizing this problem, Wagner and Fell [111] took an undirected metabolite
network and removed the metabolites ATP, ADP, NAD, NADP, NADH, NADPH,
carbon dioxide, ammonia, sulfate, thioredoxin, phosphate, and pyrophosphate. Nev-
ertheless, this resulted in an only slightly higher APL of 3.8, probably because there
are still many other highly connected metabolites such as glutamate that serves as a
donor of an amino group in many transaminase reactions.

Ma and Zeng [70] defined one or more main reactant pair(s) in every reaction and
removed all other metabolites, which they termed “current” metabolites (elsewhere
also termed “currency” metabolites). As a result, an APL of 8.2 was obtained, which
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is most probably a much more realistic number for the average number of steps it
takes to convert any metabolite into any other.

Arita [2] introduced the concept of carbon atomics traces. For each reaction, the
fate of individual carbon atoms are traced and metabolites are connected if at least
one carbon atom is transferred from the substrate to the product (see also Section
7.3.2). With an APL of 8.4, this strategy yielded a value close to that of Ma and Zeng
[70]. Arita concluded correctly in the title of his publication that “the metabolic
world of Escherichia coli is not small.”

In conclusion, it can be argued that the average path length of a metabolic net-
work depends more on the way the network was prepared than on the network itself.

7.3 Centralities in Metabolic Networks

7.3.1 Basic Concepts

Centrality analysis of metabolic networks is easily explained by an example: the
election of a class spokesperson in school. Every pupil has a vote and may issue his
vote for himself or for another pupil. Clearly the pupil with the most votes becomes
the class spokesperson, and the pupil receiving the second most votes becomes the
substitute.

The election can be modeled as a directed graph. Every pupil is represented by a
labeled vertex, and votes are modeled as directed edges from a pupil giving his vote
to the pupil voted for. Fig. 7.5 shows an example. In this example, Uta received the
most votes (6) and is therefore the class spokesperson and Klaus is her substitute.

Fig. 7.5 A directed network
modeling the election of a
class spokesperson. In this
example, every pupil has two
votes and votes have to be
given to other pupils. By
counting the number of votes,
a ranking of the pupils is
established and Uta is elected
as the spokesperson. The
centrality applied in this
example is called the
in-degree centrality
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Obviously within cells no votes for the most prominent metabolites are casted.
Nevertheless a ranking of enzymes, metabolites, or other network elements based
on the network structure is of interest. The prioritization of candidate target genes
during drug discovery is a plausible example [42].

The general idea of ranking vertices based on the structure of the underlying
network is known from sociology since about 1930 [81] and is termed centrality
analysis. A centrality is a function which assigns every vertex of a given network a
real value. By convention, vertices with higher centrality value are more important
than others. A formal definition of a centrality as a function from the set of the
vertices (or edges) to the set of the reals is given in a recent review [63].

More than 20 different centrality measures are known [63]. Some of them are
simple, for example, the degree centrality simply counts the number of edges con-
nected to a vertex. Others are more complicated, for example, PageRank or eigen-
vector centrality, which uses feedback as the underlying concept. By this idea, the
centrality value of a vertex is more or less dependent on the centrality values of
adjacent vertices. For the analysis of metabolic (and other biological) networks,
shortest-path based centralities were applied in several cases.

The following three centralities using information about shortest paths inside a
network are applied most:

• Eccentricity centrality assigns to the vertex under analysis the reciprocal of the
longest distance from the vertex of interest to all other vertices.

• Closeness centrality assigns to the vertex under analysis the reciprocal of the sum
of distances from the vertex of interest to all other vertices.

• Shortest-path betweenness centrality assigns to the vertex under analysis the ratio
of the number of shortest paths between all vertex pairs which use the vertex of
interest as an inner vertex on the shortest paths.

Even in the simple network in Fig. 7.6, the three shortest-path based centralities
produce different rankings, see Table 7.1.

The selection of a centrality for the analysis of a network is based on two aspects:
the process modeled by the network and the restrictions which some centralities
enforce on the network. Every network somehow models a process. In the case of
the election shown above, the process is the cast of a vote. In a transport network,
for example, a map of a road system, the process is the transport of individuals or

Fig. 7.6 An example graph to explain the three different shortest-path based centralities
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Table 7.1 Centrality values for the network in Fig. 7.6 for the three different shortest-path (SP)-
based centralities

Vertex Eccentricity Closeness SP Betweenness

1 0.167 0.026 0
2 0.200 0.032 8
3 0.250 0.040 14
4 0.333 0.048 18
5 0.250 0.053 20
6 0.200 0.053 26
7 0.167 0.037 0
8 0.167 0.037 0
9 0.167 0.037 0

10 0.167 0.037 0

goods. Depending on the process and on the notion which vertices are important
inside the modeled process, a centrality has to be selected. As a counter example
take again the election and the shortest-path betweenness. The ranking produced
by the shortest-path betweenness is different from the ranking produced by the in-
degree centrality (which counts how many vote or incoming edges a vertex receives)
and does not reflect the result of the election.

Due to restriction given by the formal definition of some of the centrality mea-
sures, not every centrality can be applied to a given network. For example, the degree
centrality can be applied to any network. On the other hand, the centralities eccen-
tricity and closeness can only be applied to strongly connected, or in the case of
undirected networks to connected, networks. Those restrictions have to be obeyed if
a centrality is applied for the analysis of a given network. Otherwise the computed
results might lead to wrong results.

7.3.2 Metabolite Ranking

In several publications, rankings of metabolites or enzymes based on different cen-
trality measures are given. In general, the produced rankings are incomparable
between different studies due to huge differences in the used data sources and in
the representation of biochemical reactions as metabolic or metabolite networks.

Jeong et al. [49] analyzed 43 metabolic networks from all three domains of life.
The networks were represented as directed bipartite networks, and the metabolites
occurring in all networks were ranked according to in- and out-degree. Without the
removal of currency metabolites, see Section 7.2.2, these currency metabolites, e.g.,
H2O, ADP, inorganic phosphor, and ADP, ranked highest.

The intermediate metabolism for energy generation and small building block
synthesis of E. coli under a fixed growth condition was analyzed by Wagner and
Fell [111]. The network was represented as an undirected metabolite network, and
several metabolites were deleted (CO2, NH3, SO4, thioredoxin, organic phosphate,
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and pyrophosphate) prior to the analysis. Metabolites were ranked on degree and
on the so-called importance number, which is equivalent to the closeness centrality.
The provided ranking of metabolites contains mainly metabolites that are the com-
mon biosynthetic source of all cell materials. The metabolites NAP, ATP, and their
derivates were removed from the listing, otherwise these were ranked highest.

Based on data from the KEGG-LIGAND database, Ma and Zeng [70] recon-
structed the metabolite networks of 80 organisms. These networks were created on
the basis of a manually curated list of reactions. Within each reaction occurring,
current metabolites were removed. The metabolites in each network were ranked
according to the degree centrality. An evaluation of the frequency of the metabo-
lites appearing in the top 20 position according to the degree centrality resulted in a
ranking of metabolites which mainly shows intermediates of the glycolysis, the pen-
tosephosphate pathway and acetyl-CoA, the linking metabolite between glycolysis,
citric acid cycle, and the fatty acid synthesis pathway. Additionally, the amino acids
glutamate and aspartate were ranked high, mirroring their importance as precursors
for other amino acids.

In another paper, Ma and Zeng [69] ranked metabolites occurring in E. coli
according to three variants of the closeness centrality. Among all the three variants
(input closeness, output closeness, and overall closeness), pyruvate is the most cen-
tral metabolite. Eight of the ten top-ranked metabolites occur either in the glycolysis
or the citrate acid cycle.

Arita ranked metabolites occurring in the small-molecule metabolism of E. coli
according to their degree [2]. In the resulting ranking metabolites like CO2, pyruvate,
and acetyl CoA, which were identified as important in earlier studies [49], were ranked
highest. In contrast to other approaches, Arita used carbon atomic traces instead of the
reaction equation to construct a metabolite network. In his approach, for each reaction,
the fate of individual carbon atoms is traced, and the metabolites are connected if at
least one carbon atom is transferred from the substrate to the product metabolite.

Wuchty and Stadler [118] applied three similar centralities (eccentricity, close-
ness, and centroid value) to the metabolic network of E. coli. According to them,
the central metabolites are the crossroads of the networks which are believed to be
evolutionary oldest and a centrality should reflect both the age and the importance of
metabolites to the organism. All three centralities resulted in a similar ranking, and
currency metabolites such as inorganic phosphate, ADP, and the metabolite with the
abbreviation HEXT are ranked highest.

Ranking enzymes to find potential drug targets is another application of centrality
analysis of metabolic networks [42]. Several authors applied centrality-like methods
to correlate the computed ranks of enzymes with information about the viability of
the respective genes [68, 90].

7.3.3 Tools

Numerous software systems are available for the analysis of (biological) networks.
Cytoscape [101], Osprey [13], and VisANT [43] are the three which are often cited.
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Currently, none of theses supports the centrality analysis of biological networks.
Pajek [6], a software system for the analysis of large networks, is able to compute
degree, closeness, and shortest-path betweenness centrality. Two tools which allow
the computation of a larger number of centralities are Visone [12] and CentiBiN
[51]. The latter, CentiBiN, focuses on the computation and exploration of centrali-
ties in biological networks.

7.4 Motifs in Metabolic Networks

7.4.1 Basic Concepts

The increasing availability of complex networks from biological and technical
domains has boosted the development of network analysis methods to obtain a better
understanding of the structure and function of these networks. The analysis methods
deal either with the global and large-scale organization of networks or with prop-
erties of individual vertices. A concept that lies between local and global network
structure with a focus on biological networks has been introduced with network
motifs. Motifs of a network are particular subgraphs representing patterns of local
interconnections between network elements [67, 79, 102]. They have been origi-
nally introduced as patterns which are statistically over-represented, compared to
random networks. For biological networks, whose structure has been shaped during
evolution due to functional constraints, it has been supposed that a positive selec-
tion for these interaction patterns based on their functional or structural properties
has caused their overabundance. Accordingly, network motifs are regarded as basic
building blocks and design patterns of complex networks.

Formally a network motif is defined as a small connected graph G, and the size
is usually given by the number of vertices. A match of a motif G within an analyzed
target graph/network Gt is a graph Gm which is isomorphic to the motif G and is a
subgraph of Gt. See Fig. 7.7 for an example of a motif match within a graph. Note
that a match does not have to be an induced subgraph of Gt. The frequency of a
motif within an analyzed network is typically given by the number of all matches.
These matches can partly overlap, i.e., for a pair of overlapping matches, some of the
graph elements (vertices/edges) are shared and some elements are unique for each
match. The analyzed networks are usually directed, simple and loop free, that is,
there are no multiple edges in the same direction between two vertices and there are
no edges from a vertex to itself. Less commonly studied in network motif analysis
are undirected networks as well as mixed networks that contain both directed and
undirected edges.

There are several motifs that have been detected, and the properties of some
motifs have been studied in more detail, e.g., the feed-forward loop motif [46, 112]
and the bi-fan motif [45]. The feed-forward loop motif was shown to act as a persis-
tence detector by filtering out noise within the process of gene regulation [72, 73].
The structure of some well-studied motifs is illustrated in Fig. 7.8.
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Fig. 7.7 Illustration of a motif match. In (a), a target graph is shown, and in (b), a match of the
feed-forward loop motif (see Fig. 7.8 (a)) within the target graph is highlighted (all graph elements
that are part of the match are displayed black, the remaining elements are displayed grey)

Fig. 7.8 Example of some well-studied network motifs: (a) feed-forward loop motif, (b) bi-fan
motif, (c) single-input motif, and (d) regulatory chain motif

Besides analyzing the functional properties of individual motifs, numerous stud-
ies have been carried out that dealt with various different aspects on network motifs.
In the protein–protein interaction (PPI) network of S. cerevisiae, proteins that are
constituents of particular motifs are more evolutionary conserved than proteins
which do not occur within such motifs [117]. Conserved network motifs have been
used for the prediction of potential interaction partners of proteins in the PPI net-
work of S. cerevisiae [1].

The frequency of motifs, or rather to say the statistical significance of a motif
based on its frequency, characterizes the local structure of networks. This property
has been used by many approaches to compare different networks. Profiles based
on the statistical significance or rather the frequency of motifs have been used to
classify networks from different domains into distinct superfamilies [78]. A network
distance measure based on the frequency distribution of a set of motifs has been
applied for the selection of suitable network generation models that best reflect the
structure of PPI networks [88]. For a similar task, the frequency of particular motifs
has been used for the application of discriminative classification techniques adapted
from machine learning for the selection of a model of network evolution which best
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resembles the structure of the PPI network of fruit fly (Drosophila melanogaster)
[77].

Frequently motif matches overlap with each other and only a minor part is iso-
lated. Higher order structures built by overlapping matches have been characterized
by different concepts like motif clusters [21], motif generalizations [59], and net-
work themes [120], and it is assumed that different levels of network organization
exist.

7.4.2 Motif Statistics

Network motifs have been originally introduced as particular patterns of intercon-
nections that are statistically over-represented [79]. Calculation of the statistical sig-
nificance of network motifs is usually done by comparing the frequency of a motif
in the analyzed target network to the frequency distribution of this motif in random
networks. It is assumed that random networks are free of any selection for particular
interaction patterns and therefore are suitable as null model networks. The over-
representation of particular subgraphs indicates for a selection of these interaction
patterns, which could be caused by functional properties of the motif or design prin-
ciples that shaped the network [3, 79].

A popular algorithm for the generation of random networks is based on local
rewiring of connections. The algorithm replaces two edges (v1, v2) and (v3, v4) by
the edges (v1, v4) and (v3, v2), provided that none of these edges already exist, see
Fig. 7.9. Starting with the target network, this rewiring step is applied a great num-
ber of times to generate a properly randomized version of the target network. An
important property of this algorithm is the conservation of the degree of all vertices
in the randomized versions of the target network. By conserving the degree distribu-
tion, the random networks are assumed to have a similar over-all structure compared

Fig. 7.9 Example of a rewiring step of the randomization algorithm. Two edges (v1, v2) and (v3,
v4) are reconnected in such a way that v1 becomes connected to v4 and v3 to v2
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to the target network but are locally randomized, and therefore are supposed to rep-
resent suitable null model networks for network motif detection.

The statistical significance of a motif is given by the P-value and the Z-score,
which are calculated on the basis of the frequency of the motif in the target net-
work and the frequency distribution of a sufficiently large set of random networks.
Equation 7.4 shows the calculation of the Z-score for a motif mi. Fi

real is the fre-
quency of motif mi in the target network. Fi

rand and σ i
rand are the mean frequency

and the standard deviation of motif in random networks, respectively. For a sound
statistics, at least 1000 random networks should be considered [79]. Motifs of a
network which are statistically significant under-represented compared to random
networks are termed anti-motifs.

Zi = F real
i − F rand

i

σ rand
i

(7.4)

The motif significance profile SP is a vector of Z-scores of a set of motifs
{m1, . . ., mn} that is normalized to the length one [78]; see Equation 7.5 for the
calculation of the normalized Z-score for a motif mi. Motif significance profiles are
used for a comparison of networks independent of their size on the basis of motifs.
Typically all motifs of a particular size are used as motif sets for the profile, e.g., the
significance profile of all 13 (directed) motifs of size three is called the triad signifi-
cance profile (TSP). TSPs have been used for the classification of various networks
from different domains into distinct “superfamilies” [78] and have been applied in
a study described in the following section.

S Pi = Zi√
n∑

j=1
Z2

j

(7.5)

7.4.3 Motifs in Metabolic Networks

The expression dynamics of genes encoding metabolic enzymes was investigated in
a metabolic network of S. cerevisiae. The network for the study of network motifs
was constructed by modeling metabolites as vertices and the conversion of metabo-
lites through enzymatic reactions as edges. Edges are directed from the educts to
the products of a reaction catalyzed by enzymes that are encoded by the studied
genes. The 14 most highly connected metabolites (e.g., ATP, CO2, H, NADP, NH3,
Pi) were excluded from the analysis, see also the discussion in Section 7.2.2. The
expression distance between two genes was defined as one minus the correlation
coefficient. Coexpression of the genes of all motifs with two edges and some motifs
with three edges was analyzed. The matches of these motifs were detected, and
the mean expression distance for each motif was calculated on the basis of the gene
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pairs of the corresponding matches. The mean expression distance was used to order
the motifs, see Fig. 7.10. It was discovered that this ordering is in accordance with
biological knowledge, e.g., a high level of coexpression of genes that follow each
other and are part of a pathway (M1) and of genes that catalyze the same reaction
(M4). In the latter case, these genes include homologous genes which frequently
result from gene duplication. On the other hand, a low level of co-expression of
genes building a futile cycle (M5) was detected as well as for genes that lead to the
same metabolite in convergent branches (M3). The higher co-expression distance of
motif M3 compared to motif M2 implies that co-regulation is stronger on divergent
metabolic pathway than on convergent pathways, i.e., a preference for reactions that
use the same metabolic precursor. The co-expression of genes in motifs with three
edges supports the results obtained for motifs with two edges that co-regulation in
divergent branches prevails co-regulation in convergent branches.

In another study, network motifs have been used for a comparative analysis of
the local structure of metabolic networks [28]. These networks have been derived
from 43 organisms covering the three domains of life (Eukaryota, Archaea, Bacte-
ria). The metabolic networks model the connections of metabolites through reac-
tions, i.e., metabolites are represented as vertices and directed edges are inserted
from each educt to each product of a reaction. The triad significance profile (TSP)
that comprises all 13 motifs of size three has been calculated for each network. All
TSPs showed a similar distribution: the feed-forward loop (FFL) motif, a derivative
of the FFL motif and the motif with three mutual edges between the three ver-
tices are over-represented; three other patterns are anti-motifs that are significantly
under-represented. The correlation coefficient between the TSPs of all 43 metabolic
networks is 0.78 which implies a high similarity of the local organization of the
networks. The comparison of these TSPs to TSPs of neuronal and transcriptional
networks showed clear differences, indicating that these networks have a different
local organization than metabolic networks.

Even though the overall correlation of the triad significance profile of the
metabolic networks is relatively high, a more precise examination of the TSPs
revealed that the taxonomy of the organisms is reflected by the correlation coef-
ficients of the TSPs. For example, when the bacteria are divided into evolutionary
subgroups, the correlation coefficient for the TSPs of the subgroups becomes much
higher. Since this property also holds for the group of Eukaryota and Archaea, the

Fig. 7.10 Ordering of motifs according to mean co-expression distance of the gene pairs (X and
Y) of the matches. Co-expression distance increases from (a) to (e)
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grouping of subgroups based on the correlation of TSPs is in accordance with the
taxonomical grouping of the organisms. Therefore, the taxonomy of the organism is
reflected in the local organization of their metabolic networks measured by the triad
significance profiles.

Furthermore, the distribution of 62 common metabolites (e.g., ATP, H, glycine)
in matches of the motifs of size three has been studied in this work [28]. For each
motif, the fraction of matches completely build with these common metabolites
was divided by the fraction of matches completely build with 62 randomly selected
metabolites to calculate the conservation ratio. This ratio was for all motifs except
for one infrequent motif above 20 or even considerably higher, indicating that the
common metabolites are not randomly distributed in metabolic networks but the
topology of the network affects the distribution of these metabolites. Furthermore, it
was discovered that more cohesive motifs (i.e., motifs which form triangles or which
have mutual edges) have a higher fraction of matches built by common metabolites.

In a study on structural comparison of metabolic networks of single cell organ-
isms, the same over-represented network motifs have been found in the eukaryote
S. cerevisiae and six bacterial species [122]. In contrast, no over-represented motifs
have been detected in the four studied archaeal species.

The motifs found in the networks of S. cerevisiae and the bacterial species are
the feed-forward loop motif and two triangles with two and three mutual edges,
respectively. These motifs are relatively dense and therefore support the finding that
the metabolic networks of these species are more clustered and modular than those
in archaeal species. The further studied topological properties support the conclu-
sion based on motif analysis that the metabolic networks of the archaeal species are
similar to each other but significantly different from those in S. cerevisiae and the
bacterial species.

7.4.4 Tools

Various methods have been developed and implemented to analyze network motifs.
For example, Pajek [6], a multipurpose program for the analysis and visualization
of large networks includes also some motif analysis functionality, and Cytoscape
[101], a software platform for analyzing and visualizing molecular interaction net-
works, offers with the NetMatch plug-in some possibilities for motif analysis,
including consideration of vertex and/or edge labels. Beyond these applications,
specialized tools have been developed for the detection and detailed analysis of net-
work motifs.

Mfinder was the first specialized tool introduced for network motif detection [58,
75]. It is controlled from the command line and calculates the frequency of motifs
along with the P-value and Z-score. A sampling method for a fast approximation of
motif statistics is also included. The results are given as a text file, and the structure
of detected motifs can be viewed in a separate motif dictionary.
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MAVisto combines a motif-search algorithm with different views for the analysis
and visualization of network motifs [74, 98]. It offers graph editor functionality for
network manipulation and a force-directed layout algorithm to automatically gen-
erate readable drawings of the network which preserve the layout of motif matches
if possible. Motif statistics are given by frequency values for different frequency
concepts, P-value and Z-score. Furthermore, the analysis of vertex-labeled and/or
edge-labeled networks is supported by MAVisto.

FANMOD [30, 114] is the newest of the three specialized tools and has a faster
motif-detection algorithm compared to Mfinder and MAVisto, but in contrast to the
other two, it detects only motifs that are induced subgraphs.

For motif detection, an exact method and a sampling method for a fast approxi-
mation of the motif number is available. Motif statistics is given by P-value, Z-score,
and a proportional motif frequency that is relative to all motifs of a particular size.
FANMOD offers a graphical user interface and the results are presented as text-
or HTML files, whereas the latter include a representation of the structure of the
motifs. FANMOD also supports the analysis of vertex labeled and/or edge-labeled
networks.

7.5 Clustering of Metabolic Networks

7.5.1 Clustering

Metabolic networks are believed to be structured hierarchically into modules [35,
41, 71, 91]. Modularization allows to evolve, maintain, and coordinate cellular func-
tions effectively, thus being an important feature of living systems on all levels of
organization [27, 85].

To address the modularity of networks, efforts have been made to develop meth-
ods for the identification of modules using graph theory. Graph theoretical methods
analyze networks based on topology, affording no prior knowledge about biological
function and thus having the potential to give insight into metabolism based on unbi-
ased structural modules [121]. By grouping vertices with respect to their functional
meaning, these techniques are often referred to as network clustering techniques.

Cluster analysis comprises a range of methods for grouping objects of similar
kind into respective subgroups. The analytical goal is to find disjoint subgroups
(clusters) such that elements within the same cluster are similar to each other and
elements in different clusters are dissimilar. By organizing heterogeneous data into
homogeneous subgroups, clustering can help to discover natural groups in datasets,
to identify representatives for homogeneous groups (data reduction) or to find
unusual data objects (outlier detection).

Cluster analysis is used in bioinformatics and has a wide range of applica-
tions, such as data mining, machine learning, and pattern recognition. Due to its
broad applicability, a large number of statistical and computational approaches are
available for clustering. These techniques can be summarized according to [39]
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the following categories: partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. For an overview of the
multivariate statistics used in cluster analysis, the reader is referred to [4, 29, 47].
The focus on this section will be on partitioning and hierarchical methods:

• Partitioning methods A partitioning method divides objects into a number of
non-overlapping clusters such that the partitions optimize a given criterion. In
most of the partitioning methods, an initial partitioning is chosen and, by using
the defined criteria to judge the quality of the clusters, the cluster membership is
changed iteratively until an optimal partitioning is obtained.

• Hierarchical methods A hierarchical method disposes a given dataset into a hier-
archically ordered sequence of partitions. This hierarchy is represented by a hier-
archical clustering tree (dendrogram), with the data samples being located in the
leaves of the dendrogram and similar samples occurring in proximate branches.
The dendrogram can be cut at any level to yield different clusterings (i.e., parti-
tions) of the data. The procedure of a hierarchical clustering algorithm is illus-
trated using the dataset in Fig. 7.10. A dendrogram corresponding to the data
points in Fig. 7.10 is shown in Fig. 7.12. There are two kinds of hierarchical clus-
tering methods: agglomerative (“bottom-up”) and divisive (“top-down”) cluster-
ing. An agglomerative approach begins with each element in a distinct (single-
ton) cluster and successively merges clusters together until one cluster remains.
A divisive method begins with all elements in a single cluster and performs split-
ting until each element is assigned to a separate cluster.

Prerequisite for any clustering is the selection of a distance measure, that is, a met-
ric (or quasi-metric) on the feature space used to quantify the similarity of ele-
ments [47]. Given a set of elements E = {e1, . . ., ek}, the distance between every
pair of elements is computed based on the distance measure, i.e., a distance func-
tion d = d(ei, ej) = dij with dij ≥ 0, dij = dji, and dii = 0. The distance is usu-
ally computed by comparing feature vectors or single features of the elements. The
k × k (for k elements) matrix D = dij is called a distance matrix . A distance matrix
corresponding to the data points in Fig. 7.11 is shown in Fig. 7.12, and a correspond-
ing dendrogram in Fig. 7.13.

Fig. 7.11 Two-dimensional
dataset falling in two clusters
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Fig. 7.12 The distance
matrix corresponding to the
two-dimensional dataset
shown in Fig. 7.11 (distance
measure: Euclidean distance
[48])

For an overview of distance measures using quantitative as well as qualitative
features, the reader is referred to [4]. Note that in graphs measures such edge weights
usually do not correspond with a distance in an Euclidian geometry [23]. Therefore
for network clustering, the similarity between vertices is usually defined by local or
global characteristics of the graph such as degree or betweenness (Fig. 7.13).

7.5.2 Network Clustering

Network clustering deals with clustering data represented as a network. The goal
of network clustering with respect to biochemical networks is to group vertices by
means of their biological meaning. Network clustering techniques can be distin-
guished by the way natural groups (modules) are defined in a network. Network
clustering is related to the field of graph partitioning, which is the study of finding
the optimal partition of a graph with given constraints.

The division of a network into smaller functional units facilitates understand-
ing the modularity and design principles of the network [71], allows to gain new
information on the internal structure of the network and to validate the network

Fig. 7.13 The dendrogram
corresponding to the distance
matrix shown in Fig. 7.12
(clustering algorithm:
UPGMA [104]). The
horizontal line represents the
cut which leads to the
partitioning shown in
Fig. 7.11
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model. Besides giving insight into the functioning of the network, the decomposi-
tion may help to enhance, reconstruct, and simplify the model [27], thus support-
ing the process of network modeling. With respect to metabolic networks, network
decomposition is also necessary for functional analysis of metabolism by path-
way analysis methods such as extreme pathway analysis and elementary modes
analysis as theses techniques are often hampered by the problem of combinatorial
explosion [71].

Various methods of network clustering have been developed and applied to iden-
tify modules in various biological systems, including protein-interaction networks
[92, 103, 105], signal transduction networks [27], metabolic networks [91, 121],
and food webs [36, 65]. In the following, an overview of methods for decomposing
metabolic networks is given: Ravasz et al. [91] proposed a mathematical framework
to reveal the presence of hierarchical modularity and to identify modules based on
the network topology.

By applying an average-linkage clustering algorithm to the topological overlap
matrix of the condensed metabolite graph, the underlying modularity of the network
is uncovered. Using this approach, the authors analyzed the metabolic network of
E. coli, finding that the identified modules (i.e., subsets of metabolites) closely over-
lap with the known metabolic functions. To illustrate this approach, a small exam-
ple adapted from [91] is given in Figs 7.14 and 7.15. According to [71], a potential
drawback of this metabolite-graph-based method is that, from a biological view-
point, a subset of metabolites cannot sufficiently define a module and that only local
connectivity property is considered for the distance calculation.

Considering this drawback, Ma et al. [71] used a reaction/enzyme network rep-
resentation of a metabolic network for decomposition and the global connectivity
structure for distance calculation. Based on the bow-tie structure of metabolic net-
works, they proposed a network clustering technique using neighbor joining, a hier-
archically agglomerative clustering method and a distance measure derived from the
path length between reactions. Having decomposed the core of the giant strongest
component (GSC) by this method, the decomposition of the core part is expanded to
the global network by using a majority rule. Zhao et al. [121] extended this method

Fig. 7.14 Small hypothetical
network (adapted from [91])
(see also color Insert)



194 E. Grafahrend-Belau et al.

Fig. 7.15 The topological overlap matrix (adapted from [91]) corresponding to the network shown
in Fig. 7.13. The topological overlap between each pair of vertices vi and vj is defined according to

[91] as OT (vi , v j ) = Jn(vi ,v j )
[min(d(vi ),d(v j ))] , where Jn(vi, vj) denotes the number of vertices to which both

vi and vj are linked and [min(d(vi), d(vj))] is the smaller of the degrees of vi and vj. The degree of
topological overlap between the vertices is reflected by the color code. The associated hierarchical
tree is obtained by applying an average linkage clustering algorithm to the topological overlap
matrix. The given tree reflects three distinct modules contained in the network of Fig. 7.14 (see
also color Insert)

by applying a distance measure computed by the Floyd algorithm and Ward ′s clus-
tering, a hierarchically agglomerative clustering method.

Opposite to these topology-based network clustering techniques, Ederer et al.
[27] proposed an algorithm to hierarchically divide an ordinary differential equation
(ODE) model of a biological reaction network into non-overlapping functional units.
After performing simulation, the distance between network compounds is computed
by comparing activity vectors, and a linkage method is used to generate a dendro-
gram revealing the internal structure of the reaction network. Using this method, the
authors analyzed two models of different biological background, with the identified
modules being similar to the functional units of the considered systems.

In addition to these hierarchical agglomerative modularization techniques, a vari-
ety of other methods exit in literature: Schuster et al. [99] proposed a decomposition
method based on the metabolite degree of network connectivity. By considering
metabolites above a given connectivity threshold as external and removing them
from the network, the metabolic network is decomposed into connected compo-
nents of internal metabolites. By applying the method to the metabolic network of
Mycoplasma pneumoniae, they showed that the obtained modules are in agreement
with biochemical knowledge.

The degree-based method proposed by Gagneur et al. [35] defines modules on
the basis of the connected components of the subgraph induced by the metabolites
of lowest degree and their reactions. According to Ma and Zeng [71], a potential
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drawback of these degree-based methods is that local properties such as the con-
nection degree may be inappropriate to reveal the global organization structure.
Considering this drawback, Holme et al. [41] developed an algorithm to decom-
pose biochemical networks into subnetworks by successively removing reactions
of high betweenness centrality. In [38], a method is proposed to identify functional
modules in metabolic networks by maximizing the networks ′s modularity using
simulated annealing. An overview of recently published mathematically based top-
down modularization techniques like the identification of Correlated Reaction Sets
or Concentration Pools is given in [87].

Given the variety of network clustering techniques, it has to be considered that
different methods predict different modules with the boundaries between modules
not being sharply separated. Rather than being a limitation of the present network
clustering techniques, this ambiguity is a consequence of the networks hierarchical
modularity [5]. The hierarchical modularity of metabolic networks is characterized
by a natural breakdown of metabolism into several large modules, which are further
partitioned into smaller, but more integrated sub-modules [91]. At present, objective
quantitative criteria to evaluate the decomposing quality of a network are sparse.
References [37] and [121] used the modularity metric in order to identify the opti-
mal partition of a given hierarchical tree. Due to the fact that well-defined modules
occur at different levels of organization (at different levels of the hierarchical den-
drogram), some authors propose to avoid looking at an absolute set of modules at a
specific level, but rather to visualize the hierarchical relationship between modules
of different sizes [5, 40, 91].

The identification of hierarchical modularity in biochemical networks is a key
issue in network biology, and one that is likely to witness much progress in the near
future [5].

7.5.3 Tools

The following websites describe some of the available computational tools for
decomposing metabolic networks discussed in this section: SEPARATOR [99, 100]
and HI [40, 41]. Programs for the identification of Correlated Reaction Sets [87]
are, for example, CellNetAnalyzer [15] and Flux coupling finder [33].

7.6 Visualization of Metabolic Networks and Experimental Data

Massively parallel techniques such as metabolite profiling [32, 93] generate increas-
ing amounts of experimental data, which offer a top-down view of the biochemistry
of an organism. The data interpretation is usually limited by analysis and visual-
ization procedures. The central task of data visualization is to bring the data into a
form that shows it with reasonable precision, while at the same time being readable
and understandable. Analysis of the experimental data is eased by the consideration
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of knowledge about reaction networks, stored in pathway databases such as KEGG
[52] and BRENDA [96].

Visual exploration of metabolic networks and network-integrated data visualiza-
tion are useful techniques for modern biology research.

7.6.1 Static and Dynamic Visualizations

Static visualization of metabolic networks is used not only in biochemical textbooks
and on posters [8, 76, 84] but also in software systems such as BioCarta, ExPASY,
KEGG [52], and MapMan [108, 110]. It is characterized by the following aspects:

1. Diagrams which are created manually long before their use.
2. A predefined view of the data (e.g., the elements shown, the level of detail),

which usually cannot be changed by a user.
3. Restricted navigation (sometimes supported by links to other pictures, but the

result (the new picture) either replaces the current image or is shown in an inde-
pendent new view).

4. No editing of the diagram by the end-user.

In contrast to static visualization, dynamic visualization is characterized by

1. Diagrams which are created automatically by the end-user based on the up-to-
date data at the time the drawing is needed.

2. A flexible view onto the data and annotation of network elements (vertex labels,
links to other resources, and level of detail can be modified using different inter-
action techniques).

3. Navigation methods are supported and it is possible to extend existing drawings
with new parts.

4. Editing is possible and the layout/graphical representations may be changed by
the end-user as needed; also the structure of pathways may be modified by adding
or removing elements.

Static visualizations are often of higher visual quality in comparison to computer-
generated dynamic visualizations, but they are tuned to a specific use case and often
not based on the most up-to-date data. They are not editable, the space for data
annotation and the relative layout of network elements is fixed, and unneeded infor-
mation can’t be easily removed. When several small parts of a large pathway chart
may be investigated or when pre-defined static visualizations of the metabolism are
used (e.g., KEGG system), navigation becomes difficult. Because of these aspects,
dynamic visualization is well suited for the interactive and flexible exploration of
metabolic pathways and the network-integrated visualization of experimental data;
it is the state-of-the-art method to present such information.
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7.6.2 Interaction Times and Techniques for Dynamic Visualization
Systems

Two important aspects of human–computer interaction are the aspect of time in user
interactions and established interaction techniques. Both aspects are essential for
the design or assessment of visualization software.

7.6.2.1 Interaction Times

Dynamic visualizations may be interactively manipulated using a wide variety of
interaction techniques. Depending on the speed of the user interaction, three time-
dependent levels of interaction may be differentiated [14]: roughly 0.1 s, 1 s, and
10 s. Response times of visualization systems need to be tuned to these time con-
stants for the fluent and intuitive interaction between the user and the computer.

The time frame of 0.1 s is called physiological moment. Two similar images
shown in less than 0.1 s after each other result in the perception of a motion. If
a visualization changing user-command is processed in less than 0.1 s, the user
perceives the update of the screen as a direct reaction on the user input, which eases
tweaking visualization parameters.

The next level of interaction is the time frame of about 1 s, the time of an unpre-
pared response. Events that occur in less than about 1 s happen too quickly for a
sensible reaction of a user. By using animations of a maximum length of about 1
s, a smooth and at the same time non-disturbing interaction with a computer pro-
gram is made possible. Progress information about long-lasting calculations should
update at least each second.

The coarsest level of user interaction happens at roughly 10 s, a user’s response
time for a typical unit task, the minimal unit of cognitive work.

These different levels of interaction times influence the design and implemen-
tation of interaction techniques, the most common ones are introduced in the
following.

7.6.2.2 Interaction Levels and Techniques

User interaction may change the parameters of a visualization at three different lev-
els from raw data to the visualization views [14]. The first level is connected to
the data transformation from raw data to the data tables (which then will be visu-
alized). Common interaction techniques at this level are “dynamic queries” (inter-
face elements allow the user to specify value ranges for cases to be highlighted or
hidden), “direct walk” (navigation to different datasets by data linkages), “details
on demand” (expansion of the visualization to show more details of an object),
“attribute walk” (starting with a specific parameter value of an object under inves-
tigation, objects with the same specificity are highlighted), “brushing” (concurrent
visualizations are updated accordingly as the user manipulates a subset of the visu-
alized objects), and “direct manipulation” (enables the direct manipulation of visu-
alization parameters within the display).
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The next level of user interaction happens at the point where the data tables
are mapped to visual structures. At this level, mostly domain-specific interaction
techniques have been developed. Examples are “pivot tables” of spreadsheet appli-
cations and the “data-flow” technique, for the graphical specification of diagrams
which determine the mapping from data to visual properties.

Finally, user interaction may influence the transformation from visual structures to
data views. The following techniques (or a subset of these) are commonly used in visu-
alization systems at this level: “direct selection” (selection of a set of objects which
are highlighted for visual investigation or which are the argument of a subsequent user
interaction), “camera movement” (change of observer position in 3D space), “magic
lenses” (data or view transformation for objects, dependent on their x, y position;
several lenses may be placed over each other, resulting in a combination of the indi-
vidual transformation effects), “overview + detail” (an overview of data and a marked
region are shown in one view; a second view shows the objects of the highlighted
region in more detail), and “zoom” (a subset of the data is shown in more detail).

7.6.3 Pathway Layout

A metabolic pathway consists of a number of interconnected biochemical reactions.
Most reactions are catalyzed by reaction-specific enzymes. During the reaction, the
reactants (substrates) are transformed into products. Some enzymes require co-factors
(small molecules or ions); these substances are often treated specially or even left out
in thevisualizationofmetabolicpathways.Manybiochemical reactionsare reversible,
and thus the definition of reactants and products may vary. The preferred direction of a
reaction in the cell environment is indicated by the edge direction in the graph model.

Commonly directed bipartite graphs are used as a graph model. Currently, most
of the information visualization systems use differing drawing styles for pathway
elements. For example, arrows often have different meanings and drawings created
by different visualization systems are thus ambiguous. The SBGN (Systems Biology
Graphical Notation) project works on a standard representation of pathway elements
[61].

Standard graph layout approaches, such as circular, orthogonal, tree layouts, and
force directed [11, 19, 20], individually applied to metabolic pathways of medium
to large size, give only poor results or depending on the structure of the pathway do
not work at all. Thus a number of layout algorithms especially tailored for the layout
of pathways have been developed, the most notable are introduced in the following.
Major improvements in the layout of metabolic pathways are achieved with these
approaches by the consideration of subgraph-topologies, special layout of co-factors
and enzymes, or the consideration of compartmental constraints.

Karp and Paley [54] developed a divide-and-conquer algorithm for the identifi-
cation of subgraph-topologies as linear, circular, and branched (phase 1 of Karp’s
layout approach). The identified subgraphs are subsequently laid out using dif-
ferent layout approaches and placed next to each other for the complete layout.
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The spacing of the graph elements depends on the number of co-substances and
enzymes. Linear subgraph structures are laid out as horizontal or vertical lines or
using a so-called snake layout, which is used in many biochemistry books. A circu-
lar layout is used for circles; for branched subgraphs a tree layout is applied. Karp’s
algorithm also considers co-substances and enzymes, which are processed in the
last phase of the algorithm. This layout algorithm is implemented in the EcoCyc,
BioCyc, and MetaCyc systems which are electronic encyclopedias for biochemical
pathways of various organisms [53, 57].

Becker and Rojas developed a layout algorithm for metabolic pathways which
incorporates a special force-directed layout algorithm and additional layout heuris-
tics [7]. For this layout approach, hyper-edges are simulated by inserting dummy
vertices at the front and back of an edge, which connect to reactants and products
of a reaction. This algorithm starts with a search for the longest cycle in a graph.
If no cycle could be found, a top-to-bottom hierarchic layout [26, 107] from the
yFiles graph library [115] is used to layout the complete graph. If the longest cycle
is the complete graph, a circular layout is applied. The general case is that a cyclic
subgraph has been identified. The remaining vertices that have at least two con-
nections to vertices of the cycle but not to other graph vertices are placed inside
the cycle (inner components). The remaining outer components (strongly connected
subgraphs) are analyzed recursively using the same approach as outlined before.
After that, the identified components are collapsed into “super-vertices”, which are
placed and sized according to the subgraphs they represent. A customized spring-
embedder (force-directed) layout [25, 89] which avoids overlapping of vertices is
applied to the graph, consisting of the main cycle, the inner and outer components.
During this layout, the circle subgraphs are rotated to conform to a preferred radial
angle, determined by the connection to outer components. Finally, the super-vertices
are replaced by the corresponding subgraphs, a process which restores the former
network structure.

An advanced version of the previously described algorithm has been presented
by Wegner and Kummer [113]. In contrast to the original algorithm, this approach
identifies circles, beginning with the smallest ones. It is argued that these small
cycles in the metabolic pathway often represent important recycling processes or
shortcuts and should therefore be favored during layout. Similar to Karp et al. [55],
this algorithm processes a predefined list of co-factors (e.g., ATP, NADP, etc.). In
preparation of the actual layout process, co-factors and vertices which are part of
more than one cycle are divided into several vertices, in a way that each split vertex
has a single connection to one of the former connected vertices. In a post-processing
phase, edge crossings are minimized by splitting vertices which are connected to
edges crossing other edges. By lowering the number of allowed edge crossings,
more vertices will be split, it is thus even possible to create planar graph drawings,
which show no edge crossings at all.

As part of the BioPath project [10], which provides an electronic version of
Michal’s pathways poster and book [76], a layered layout algorithm has been devel-
oped [97]. In the first step of this algorithm, single reactions, reaction enzymes, and
co-factors are placed taking reaction-specific information such as the ordering of
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co-factors and enzymes into account. Each reaction with its co-factors and enzymes
forms a subgraph and is replaced by a reaction vertex. The size of this vertex is
determined by the size of the drawing of the corresponding subgraph. The next step
is the computation of layout constraints. Examples are horizontal and vertical con-
straints, which fix the ordering and relative positioning of some of the vertices (e.g.,
to achieve a circular layout for known metabolic cycles) and constraints for metal
map preserving layouts. After that, a layered layout, extending the Sugiyama algo-
rithm [107], is calculated. In a last step, the reaction vertices are replaced by the
corresponding subgraphs, consisting of reaction enzyme and co-factor vertices. The
method is able to deal with several hierarchical levels of a metabolic network.

Dogrusoz and coauthors developed a layout technique with focuses on hierarchi-
cal graphs, which is the result of the modeling of complicated biological pathways
with compartmental constraints and nested drawings [22]. This layout algorithm is
based on a force-directed layout approach [34]. During initialization, initial vertex
and compartment sizes as well as an initial positioning are calculated. For efficiency
reasons, parts of the graph that are trees are temporarily iteratively removed until no
such vertex is left. The remaining part of the graph is then laid out using a spring
embedder model (which models repulsive forces between all vertices, depending on
the distance, attractive or repulsive forces between connected vertices). The force
calculation takes varying vertex sizes, compartment locations, and relativity forces
on substrates and products into account. After the spring embedder algorithm loop is
finished, the former removed vertices are added back to the graph and laid out using
the spring model, outlined before. The algorithm is implemented in the software sys-
tem PATIKA (Pathway Analysis Tool for Integration and Knowledge Acquisition)
[18].

7.6.4 Network-Integrated Data Visualization

Methods and tools which assist in the interpretation of experimental data are an
important field of development in bioinformatics, and several approaches have been
proposed. Examples are scatter plots of pairs of experiments [17], clustering meth-
ods with visualizations of the results [24, 31, 106], and mapping of gene expres-
sion data onto pathways and their visualization using graphical attributes (e.g., color
codes) to show the level of gene expression [16, 56, 66, 80, 82, 83, 86, 108, 116].

For visualization purposes, many visual features such as object position and size,
object coloring, texture, and shape of a drawing may be modified to reflect the value
of quantitative, ordinal, or nominal data. Metabolite data are mostly of quantitative
nature; expression data are sometimes simplified to an ordinal scale (up-regulated,
unchanged, down-regulated), nominal data can be rarely found. Card [14] discusses
the relative effectiveness of the mentioned visual features for visualization purposes:
Object positions and size (part of diagrams and shape coding) are good techniques
for the visualization of the extend of quantitative, ordinal, and nominal data. Gray-
scale coloring is reported to be good for ordinal, marginal for quantitative, and poor
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for nominal data. For data comparison purposes, differential quantitative and ordi-
nal data are reported to be visualized only marginally effective with a color scale,
but with good effectiveness for nominal data. Object textures are marginal effective
for the visualization of differential quantitative and ordinal data, and good for nom-
inal data. Visualizations using different object shapes have poor effectiveness for
quantitative and ordinal differential data, but are well suited for nominal data. Here
we discuss approaches for the mapping of metabolomics data (e.g., time series data,
data of different plant lines) onto metabolic networks using the techniques heatmap,
shape coding, and diagram charting. Sometimes object shape or texture is changed
to indicate special properties of a part of a network, but they are not commonly used
for the visualization of metabolite data. To compare the mentioned visualization
techniques, an example data table from a study [94] about the influence of oxygen
supply on the metabolism of soybean (Glycine max) seeds is used.

7.6.4.1 Color Coding

Color-coding techniques, sometimes called “heatmaps”, are commonly used to visu-
alize large-scale experimental data. The simplest case is the visualization of a single
value, directly measured or the result of a calculation, such as a ratio of measure-
ments for two different environmental conditions (see left part of Fig. 7.16), or two
time points.

The color of a network element or small geometric objects, placed next to graph
edges or vertices, is determined by a transformation function or a discrete mapping
table. In both cases, commonly two colors (or gray scales) are used to indicate the
minimum and maximum value to be visualized. A third color (mostly white) is used
to indicate the value zero or one, which stands for data which does not change
depending on the experimental factor under investigation.

Examples for static pathway visualization systems which utilize color coding
are KaPPA-View [109] and MapMan [108, 110]. Dynamic network visualization
systems with support for color coding are, for example, SimWiz [95] and VANTED
[50], which was used to generate the diagrams in Figs 7.16 and 7.17.

7.6.4.2 Shape Coding

For shape coding, two different approaches are imaginable: the change of network
elements shapes (e.g., rectangular or circle vertex shape) and the change of network
element shapes size. The use of different vertex shapes to indicate the extent of
related experimental data is rare, usually the shape depends on other aspects, like the
type of a network element (e.g., compound, enzyme, or gene). Systematically this
visualization aspect is addressed in the SBGN (Systems Biology Graphical Nota-
tion) standard [61]. Much more common for the visualization of experimental data
in context of a network is the modification of vertices size or the modification of the
graph edge widths. As in the case of color coding, mapping tables or transformation
functions are used to visualize single experimental values or ratios of the data from
two different conditions (see right part of Fig. 7.16) or of two time points.
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Fig. 7.16 Left: Color-coded visualization of the ratio of experimental data from two different
environmental conditions (reduced oxygen supply condition data divided by data from normal
oxygen supply condition, source of data: [94]). Right: Shape-coded visualization of the same data
(see also color Insert)

7.6.4.3 Diagrams

Diagramsarewidelyused tovisualizecomplexstructuredexperimentaldata.Themost
commonly used diagram types are line or curve, column or bar, area, histogram, pie,
and scatterplot. Proportional relationships at a point in time may be visualized using
pie, column, or bar charts. Multiple pie charts may be used to visualize the proportional
relationship over a number of time points. Trends and functional relations may be
visualized using line-, curve-, area-, column- or bar charts. Ratios or other parameters
may be easily compared using column- or bar charts (see Fig. 7.17).

Although diagram techniques are widely used in scientific publications and for pre-
sentations, they are not that often embedded into pathway visualizations. Among the
first pathway visualization systems that supported the display of line-chart diagrams
directly inside pathway drawings are the PathwayExplorer [80] and VisANT [43, 44]
systems. The flexible use of line- and bar charts and the possibility to visualize the
results of statistic calculations in context of dynamic pathway drawings has been pio-
neered in the DBE-Gravisto system [9]. VANTED, the successor of DBE-Gravisto,
adds among other improvements the possibility to use (multiple) pie charts and to map
and display complex structured datasets on graph vertices and edges [50].
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Fig. 7.17 Network-integrated visualization of data from three different environmental conditions
(decreased, normal, and increased oxygen supply). Stars inside or above diagram bars indicate
statistical significant differences in comparison to normal oxygen supply condition; error bars show
standard deviation of replicate measurements; see Fig. 7.16 for further details
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98. Schreiber F, Schwöbbermeyer H (2005) MAVisto: a tool for the exploration of network
motifs. Bioinformatics 21:3572–3574.

99. Schuster S, Pfeifer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway
structure of metabolism: decomposition into subnetworks and application to Mycoplasma
pneumoniae. Bioinformatics 18:351–361.

100. SEPARATOR http://pinguin.biologie.uni-jena.de/bioinformatik/networks/separator/separator.
html.

101. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res 13:2498–2504.

102. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regu-
lation network of Escherichia coli. Nature Genetics 31:64–68.

103. Snel B, Bork P, Huynen MA (2002) The identification of functional modules from the
genomic association of genes. Proc Natl Acad Sci USA 99:5890–5895.

104. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships.
Univ Kansas Sci Bull 38:1409–1438.

105. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular net-
works. Proc Natl Acad Sci USA 100:12123–12128.

106. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data.
Bioinformatics 18:207–208.

107. Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical
systems. IEEE Trans Syst Man Cybern 11:109–125.
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Chapter 8
Network Stoichiometry

Nanette R. Boyle, Avantika A. Shastri, and John A. Morgan

8.1 Overview

This chapter describes approaches to modeling metabolic pathways that are based
on biochemical reaction stoichiometry. These methods have some advantages over
kinetic models because they do not require the determination of complicated kinetic
expressions and associated kinetic parameters. Although based only upon reaction
stoichiometry and mass balances, the techniques can be quite powerful in exploring
the capabilities of a metabolic network. Stoichiometry-based models enable effi-
cient calculation of theoretical yields on any nutrient [78]. The models may be used
to rationally select genes for addition and/or deletion in the genome which have the
most promise to significantly improve desired product yield. New targets for herbi-
cides can be selected through a mathematical analysis of the sensitivity of inhibiting
specific enzymes on growth fluxes [87]. Perhaps their greatest promise in conjunc-
tion with optimization strategies is the ability to predict metabolic fluxes to specific
products or growth as a function of the environment.

In this chapter, we first present the details of how to create the stoichiometric
matrix, which serves as the basis for all following sections. Next, we cover flux
balance analysis, which is based on constraint-based optimization to make predic-
tions about metabolic fluxes and pathway utilization. Following this, we describe
techniques of elementary mode analysis and extreme pathways that are broadly
aimed at analyzing the stoichiometric matrix. Finally, we conclude with a section
on genome-scale models, which hold great promise in systems biology. In each sec-
tion, we follow the outline of presenting the theory first, followed by applications,
and conclude with specific examples from the literature.
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8.2 Stoichiometric Modeling

8.2.1 Fundamentals of Stoichiometric Modeling

As the name suggests, stoichiometric modeling approaches examine biological
systems primarily by using information contained in biochemical reaction stoi-
chiometry, namely the mole ratios of reactants and products in each reaction. By
convention, the stoichiometric coefficient (sij) for a reactant is negative and that for a
product is positive. Therefore, for a hypothetical biochemical reaction 2A + B → C,
the stoichiometric coefficients of A, B, and C are −2, −1, and 1, respectively. The
first step in stoichiometric modeling is to define the system of interest (such as a
pathway, organelle, cell, or whole organism). This is done by annotating the reac-
tions within the system from genomic data and biochemical literature. Reactions
that connect the system to its external environment (such as transport reactions)
must also be modeled. Reactants (products) that can be uptaken (excreted) by the
system are called external metabolites, while species involved in reactions occur-
ring within the system are known as internal metabolites. Species Ae and Fe in
Fig. 8.1(a) are external metabolites, whereas A, B, C, D, and E and F are internal
metabolites, with reactions 1 and 14 (fluxes v1 and v14) connecting the external and
internal metabolites. The normalized rate of every reaction in the system is called a
flux (v), which has units of moles/cell/time or moles/biomass unit/time.

Once the reaction network is annotated, mass balances are written around each
metabolite. A rigorous mass balance that includes the effect of growth (and therefore
system volume) on the concentration of a metabolite i is written as

dXi

dt
=ri − μX i (8.1)

where Xi is the concentration of metabolite “i” in the system, t is time, ri is the net
rate of production (or consumption for negative ri) of the metabolite, and μ is the
specific growth rate (units of time−1). The term μXi is known as the dilution factor,
as it represents the change in concentration of the metabolite due to cell growth. This
term can typically be ignored because it is much smaller than the rate of production
of the metabolite. In many physiological situations, the dilution factor can justifiably
be omitted [83]. In all the material discussed in this chapter, the dilution factor is
assumed to be zero unless specifically stated. Ignoring the dilution factor, Eq. 8.1
can be rewritten as

dXi

dt
=ri=

∑
j

si jv j (8.2)

where sij is the stoichiometric coefficient of the ith metabolite in the jth reaction, as
described above. As a demonstration, the mass balance on the metabolite B from
Fig. 8.1(a) can be written as
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Fig. 8.1 Formulation of a stoichiometric model. (a) The first step is to collect reaction stoichiom-
etry for the system to be modeled. (b) Next, a mass balance on each intracellular metabolite is
written and then put into matrix-vector form. v is an nx1 vector of fluxes, S is an mxn matrix of
coefficients, where m is the number of metabolites and n is the number of reactions

ri = net rate of formation (or consumption) of B = rate of formation of B – rate of
consumption of B, which is mathematically expressed as

dXB

dt
=v2 − v3 (8.3)

As shown in Fig. 8.1(b), the set of mass balances on the entire set of intracellular
metabolites can then be written compactly in matrix-vector form as

dX

dt
= S · v (8.4)

where S is the m × n stoichiometric matrix such that an element sij is the stoi-
chiometric coefficient of the ith metabolite in the jth reaction, v is n × 1 column
vector of metabolite fluxes, and X is an m × 1 column vector of metabolite con-
centration in the system. The total number of metabolites in the system is m and the
total number of fluxes is n. At a metabolic steady state, or under pseudo-steady-state
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conditions (see Chapter 11), the concentrations of intracellular metabolites do not
change with time. As a result, Eq. 8.4, which is a system of ordinary differential
equations, reduces to a system of linear algebraic equations written in matrix-vector
form as

0 = S · v (8.5)

The system of algebraic equations can be considerably easier than (8.4) to solve
for the flux vector v. In general, the equations can be written to include balances on
extracellular species, or species known to accumulate/deplete at a certain rate within
the system. At steady state, the modified set of equations can be written as

b = S · v (8.6)

where b is an m × 1 column vector, such that bi = 0 if the ith metabolite is an internal
metabolite, bi ≥ 0 for a metabolite that accumulates in the system or is uptaken, and
bi ≤ 0 for a metabolite that is depleted in the system or is exported out. These non-
zero values of bi are equal to the rates of accumulation/depletion/transport of the
respective metabolites and are often measured flux values. Metabolic flux analysis
(MFA) is the approach used to solve stoichiometric models to determine unknown
fluxes [83].

Three situations may be encountered once the stoichiometric matrix is set up:

1. Fully determined system – The matrix S has full rank (rank r = m = n). This
means that the balances written on the m metabolites lead to m linearly indepen-
dent reactions. Further, the number of independent equations equals the number
of unknown fluxes (m = n). Such a system can be solved exactly to estimate the
flux vector v:

v = S−1b (8.7)

The vector b contains information from the measured fluxes, such as uptake or
secretion rates, as stated above.

2. Underdetermined system – If r < n, as is frequently the case, the system of
equations is underdetermined. This means there are not enough independent mass
balances to determine the unknown fluxes. In such cases, the system can have
infinitely many solutions that satisfy the mass balances. The degrees of freedom
equals n − r, and the number of independent mass balances is r. Experimental
flux measurements can be used to set the values of some fluxes, and reduce the
number of unknown fluxes until r = n. The system can then be solved for exactly,
like (8.1) above. Alternately other approaches like linear optimization (Section 3)
or metabolic pathway analysis (Section 4) can be used. Typically in biological
systems, even if the number of metabolites equals or is greater than the number of
unknown fluxes, the system can contain linearly dependent reactions (m ≥ n, but
r < n). Some typical examples that arise in biological systems are
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• Nitrogen assimilation pathways: Two pathways of nitrogen assimilation that
frequently occur in many organisms are via glutamate dehydrogenase (Eq. 8.8)
and the glutamine synthase-glutamate synthase pathway (Eqs 9a,b):

αKG + NADPH + NH3 → GLU + NADP+ (8.8)

αKG + NADPH + GLN → 2GLU + NADP+ (8.9a)

GLU + + NH3 + ATP → GLN + ADP (8.9b)

In many situations, especially when modeling only a section of metabolism,
ATP balances cannot be written since all reactions involving ATP are not mod-
eled. In such cases, Eq. 8.9a + 9b leads to a net reaction equal to Eq. 8.8. Thus
the three equations are linearly dependent.

• Cofactor pairs: Whenever ATP is consumed in a reaction, ADP is formed. The
mass balance equation on ATP is therefore the negative of the mass balance on
ADP, and the two equations are linearly dependent. . The same holds true for
other cofactor pairs like NADP/NADPH and NAD/NADH.

• Transhydrogenases: These enzymes interconvert NADPH ↔ NADH, and
thereby make the mass balances on NADPH and NADH linearly dependent.

• Other examples include the presence of isoenzymes in the model, which cat-
alyze thesamereaction(withorwithout thesamecofactors).Lineardependency
can also arise in more complicated ways by the interaction of a large number of
reactions.

3. Over-determined system – If r > n, we obtain an over-determined system. These
are typically encountered when there are plenty of experimental flux measure-
ments available. The extra information can therefore be used for consistency
checks between measured and experimental values, leading to more accurate
estimation of fluxes. In such situations, the left-handed Moore–Penrose pseudo-
inverse of S can be used to obtain a best fit for the unknown fluxes from the
measured fluxes. These situations are not encountered frequently and will not
be discussed in detail here. The reader is referred to chapter 8 in [83] for more
details.

8.2.2 Applications of Stoichiometric Modeling

Although the stoichiometric description of a metabolic system is relatively simple
compared to kinetic models, it can nevertheless be very useful in several situations.
It can be used to find maximum theoretical yields and estimate the costs of var-
ious metabolic processes ([33, 39], also see examples in [83]). It can help in the
identification of rigid or flexible branch points [82] and comparing flux maps under
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different environmental conditions or mutations [57] to gain insight into metabolic
processes.

Examples of the application of stoichiometric modeling to photosynthetic sys-
tems include the work by Yang et al. [95] who used a stoichiometric model
of central metabolism to investigate carbon and energy metabolism of Chlorella
pyrenoidosa under autotrophic, mixotrophic, and cyclic light (autotrophic) and dark
(heterotrophic) conditions (assuming steady state under both light and dark condi-
tions). The model was divided into two compartments: a chloroplast and a com-
bined cytosol and mitochondrion, with a total of 67 reactions and 61 metabolites
describing glycolysis/gluconeogenesis, Calvin cycle/pentose phosphate cycle, the
TCA cycle, nitrate assimilation, amino acid synthesis, and reactions related to
energy transduction via cofactors such as NAD(P)H and ATP. Measured inputs
to the model included glucose and nitrate uptake rates, biomass composition and
growth rate, and incident light flux. Care was taken to remove singularities (lin-
early dependent reactions) from the metabolic network, so that the system of equa-
tions could be solved. Their analysis showed considerable activity of glycolysis,
TCA cycle, and mitochondrial oxidative phosphorylation even during autotrophic
growth, but very little cytosolic pentose phosphate activity (only sufficient to pro-
duce E4P and R5P as biosynthetic precursors). They evaluated and compared
the energy efficiency of the three trophic conditions described above. Interest-
ingly, they found that the cyclic mode had a higher biomass yield/unit energy
supplied than the pure mixotrophic mode, which has implications for industrial
mixotrophic growth schemes of photosynthetic microbes. Some other studies of
photosynthetic metabolism using stoichiometric models include the study of cofac-
tor limitation during growth and exopolysaccharide production in the cyanobac-
terium Arthospira platensis [16] and PHB production with and without phosphate
limitation in Synechococcus sp. MA19 [53].

Specific shortcomings of the work described in this section include the need to
(sometimes arbitrarily) restrict the network to remove singularities [95] and impose
flux values or flux ratios that are not entirely justified [53]. The general shortcom-
ings of simple stoichiometric analysis include obtaining flux distributions where
certain physiologically irreversible reactions do not operate in the correct direction.
For underdetermined systems, there might not be sufficient external flux measure-
ments that can be made, in order to solve for the fluxes. Other methods of metabolic
network analysis that overcome these limitations are described in the following
sections.

8.3 Flux Balance Analysis

8.3.1 Introduction to Linear Optimization

Flux balance analysis (FBA) is a technique that explores the feasible solution space
of the reaction network using linear optimization. Early examples of the application
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of linear optimization in stoichiometric analysis include the work described in [27,
52, 94]. It was developed in great detail by Palsson and co-workers [69, 90, 91] in the
early 1990s and has been applied extensively to study various organisms including
E. coli [38] human mitochondria [65], Haemophilus influenzae [22], Saccharomyces
cerevisiae [29], and Synechocystis [79].

The concept of FBA can be understood by the general concepts of linear opti-
mization. Linear optimization allows us to obtain a feasible solution to a system of
linear algebraic equations and inequalities, such that it maximizes (or minimizes)
a selected linear function in the solution space. It also enables us to find particular
solutions in underdetermined systems of algebraic equations (case b from section 2).
Illustrating with a very simple 2-dimensional example – consider two variables x1

and x2, and the following problem statement (see Fig. 8.2):

maximize x1 + 2x2 (8.10)

subject to

x1 − x2 − 2 ≤ 0 (8.11)

x1 + x2 − 5 ≤ 0 (8.12)

x1 ≥ 0, x2 ≥ 0 (8.13a,b)

Equation 8.10 is called the objective function, and Eqs 8.11–8.13 are called the
constraints. The optimum point occurs at x1 = 1.5, x2 = 3.5, which satisfies
Eqs. 8.11–8.13 with the maximum value of the objective function (Eq. 8.10) equal
to 8.5.
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Fig. 8.2 Graphical representation of a linear optimization problem (see text). For a reaction net-
work with n free fluxes, the same optimization principle would be performed in an n-dimensional
space
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Some important properties of a linear optimization problem are that the solution
space is convex, and the optimum always occurs at a vertex or boundary of the
feasible region. It must be noted that the optimum solution need not be unique. The
reader may refer to an introductory text on linear programming for mathematical
details [14].

In the context of stoichiometric models, there may be several flux distributions
(values of vector v) that give the same (optimum) objective function value. Appli-
cation of linear optimization allows us to obtain one such flux distribution. For sto-
ichiometric models, the method of Lee et al. aims to enumerate all the alternative
solutions [48]; however, the algorithm is computationally intensive for large reac-
tion networks. Alternatively, the use of metabolic pathway analysis can help to find
all possible alternatives by enumerating elementary modes or extreme pathways and
selecting optimal solutions (see Section 8.4.2).

8.3.2 Formulation of Linear Optimization Problem
for a Metabolic Network

In order to apply linear optimization to a metabolic network, each unknown variable
(in our case, the fluxes vi) must be non-negative (see Eqs 8.13a and 8.13b above).
This is a requirement to apply the theory of linear optimization. Thus, reversible
reactions must be redefined as two reactions, one forward and one reverse reaction,
such that both the fluxes are non-negative. If there are a total of n reactions, the flux
through each reaction (vi) can be represented by an axis in an n-dimensional space.
Since the fluxes are non-negative, the axes meet at zero (i.e., v = 0). The typical
constraints that define the solution space include

1. The mass balance equations on the internal metabolites (Eq. 8.5)
2. Inequality constraints on fluxes setting maximum or minimum values, if

known/equality constraints for values of any known fluxes
3. Uptake rates of substrates or maximum uptake rates (if known)
4. Constraints modeling cellular energetics, biomass formation, and maintenance.

These constraints require careful modeling and are discussed in more detail below.

8.3.2.1 Oxidative Phosphorylation and Photophosphorylation

Along with metabolic reactions, FBA models require the input of reactions
accounting for cellular energetics. For plants, this typically involves the addition
of oxidative phosphorylation in the mitochondria and photophosphorylation in the
chloroplast. Oxidative phosphorylation is the process that transfers electrons from
NADH to O2, the main electron acceptor to produce ATP from protons in the mito-
chondria that get pumped through an ATP synthase [54]. This entire process is often
lumped into one reaction for simplicity of modeling [29, 79]. Although the exact
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H+/ATP ratio for the mitochondria ATP synthase has not yet been agreed upon, it is
assumed to be somewhere between 3 and 4 [2, 29, 85]. Therefore, oxidative phos-
phorylation can be lumped into one equation and modeled as follows:

XH+ + Pi + ADP → ATP
where 3 ≤ X ≤ 4

(8.14)

Photophosphorylation is the process by which light is converted into energy (ATP)
and reducing power (NADPH) in photosynthetic organisms. This process occurs
through two different electron transport chain (ETC) systems, the cyclic and the
non-cyclic. Like oxidative phosphorylation, both the cyclic and non-cyclic are fairly
complicated multiple-step processes that involve several cofactors and proteins
(both membrane and non-membrane bound). To simplify modeling these processes,
in a recent paper on Synechocystis [79], these were modeled as two reactions. The
cyclic ETC was modeled as

1 absorbed photon → 2H+ (8.15)

And the non-cyclic ETC was modeled as

4 photons + NADP+ + H2O → NADPH + 6H+ + 0.5 O2 (8.16)

Despite the use of common electron carriers in both the cyclic and non-cyclic
ETCs (ferredoxin, cytochrome b6f complex, plastoquinone, cytochrome c6, etc.),
researchers have postulated that due to spatial separation in the thylakoid mem-
branes, they do not interact with each other [1]; therefore, the reactions are modeled
as separate, non-interacting processes. The simplified version of the photophospho-
rylation process shown above is just one way to model the process. If a more com-
plete model of this process is the goal, each cofactor (ferredoxin, cytochrome b6f
complex, plastoquinone, cytochrome c6, etc.) should be included in the model. Both
the cyclic and non-cyclic ETCs are coupled to the chloroplast ATP synthase com-
plex, coupling the translocation of protons with the production of ATP from ADP.
Recent studies have shown that the H+/ATP ratio for the chloroplastic ATPase is
14/3 [2], which can then be modeled as [79]

4.67H+ + Pi + ADP → ATP (8.17)

8.3.2.2 Maintenance Energy

In order to fully capture the energetics of the organisms to be modeled, mainte-
nance energy must be included in the model. There are generally two types of
maintenance energy: growth-associated energy, which lumps partially unknown
energy requirements for transport, biosynthesis, and polymerization [83], and
non-growth-associated energy, which is used for cellular maintenance operations
such as DNA repair, cell wall maintenance, and pH control. For microbial systems,
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Table 8.1 Typical growth and non-growth-associated maintenance values used for FBA modeling

Maintenance energy

Growth Non-growth
Organism (mmole ATP/g DW) (mmole ATP/ g DW hr) Source

Streptomyces coelicolor 47.00 3.80 [8]
Escherichia coli 45.70 7.60 [66]
Staphylococcus aureus 40.00 5.00 [32]
Lactobacillus plantarum WCFS1 27.40 0.36 [85]
Saccharomyces cerevisiae 35.36 1.00 [25]
Lactococcus lactis 18.15 1.00 [55]

both types of maintenance energy are typically determined experimentally by mea-
suring the growth rate and biomass yield. The data are then plotted (1/growth rate
versus 1/yield); the slope of the line is growth-associated maintenance energy, and
the intercept is non-growth-associated energy. Although the experiments needed for
this calculation are relatively simple to perform for microorganisms grown in contin-
uous bioreactors at different growth rates, this type of experiment is not applicable
to plant systems. The first challenge in determining maintenance energy in plants is
controlling plant growth rates; the second is that energy and carbon sources are not
coupled in autotrophic growth, so ATP production is not as constrained as in het-
erotrophic growth regimes. Typical maintenance values measured experimentally
are in grams substrate per gram dry weight per hour and are converted into moles
ATP per gram dry weight per hour by determining how many ATPs are produced
per gram substrate. Growth-associated maintenance is typically modeled as part of
the biomass formation equation (see Section 3.2.4) in order to couple it to growth,
while non-growth associated maintenance is modeled in a separate reaction which
is essentially just an ATP drain (ATP + H2O → ADP + Pi). Typical growth and
non-growth-associated maintenance values for FBA modeling in different organ-
isms can be found in Table 8.1; however, because many of these organisms are
prokaryotes, they may not be representative of maintenance energy for a typical
plant cell.

8.3.2.3 Biomass Formation Equation

Modeling the metabolism of an organism using FBA requires knowledge of the
biochemical composition of the cell, which is then used to construct a biomass for-
mation equation from the four main macromolecules that make up biomass: protein,
lipid, DNA, and RNA. Ideally, data on both the percent dry weight of each of these
components in the cell and the relative composition of monomers in the macro-
molecules should be included in the model. For protein, this requires measuring
the mole ratio of each amino acid in the cell, which can then be used to create a
protein formation equation that represents an average protein. The formation of a
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macromolecule must also include the polymerization energy needed to convert the
monomer. Formation equations are also generated for lipids (chain length, mole
ratio of each type of lipid), carbohydrates (which sugars and mole ratios), and
nucleotides, RNA and DNA (mole ratio of each nucleotide is typically available
from genome databases), in the same manner described above. Another important
molecule in the cell that can readily be measured [3] is chlorophyll, which should
also be included in the model. Finally, the growth-associated maintenance should
be added to the biomass formation equation. Combining all of these components
should give rise to a biomass formation equation in the following form:

α1 protein + α2 carbohydrate + α3 lipid + α4 DNA + α5 RNA +
α6 chlorophyll + β ATP → γ biomass + β ADP + products

(8.18)

where the αi are the calculated mole ratios of each macromolecule in the cell; β

is the growth-associated maintenance energy coefficient; and γ is a given mass of
biomass (grams, kilograms, etc.). It is important to note that biomass composition is
known to change with changing environmental conditions [61] and must therefore
be determined for each growth condition in order to have an accurate model.

8.3.2.4 Choice of Objective Function

The final step for the formulation of the mathematical model for FBA is to select an
appropriate objective function. The most widely used objective functions for mod-
eling wild-type microbial cells with FBA are maximize biomass [9, 20, 21, 50],
maximize production of ATP [61, 65], or maximize the production of a particular
product of interest [61, 89]. Although maximization of biomass is a widely used
objective function, it does not always produce fluxes that agree with experimen-
tal data for mutants and other slow-growing organisms [77, 80]. Even in wild-type
organisms, the assumption of optimality can be incorrect, for example, it was shown
in Bacillus subtilis that several mutants had improved biomass productivity [28]. It
is theorized that this is due to the resources the cell invests in being able to adapt
quickly to changing environmental conditions instead of optimizing growth. There-
fore, it is imperative that the type of organism and its growth patterns be considered
fully before selecting an objective function because it determines the outcome of
the model and how well it agrees with experimental data. The effect of objective
function on the outcome of a simulation was examined by Schuetz et al. for the
central metabolic network in E. coli [76]. Using 11 objective functions, 8 adjustable
constraints and 6 environmental conditions, the authors found only 2 sets of objec-
tives that agreed with experimental results without the need for additional artificial
constraints. In reality, multiple objective functions may be required to best capture
the organisms’ goals, although this would likely require optimization methods more
complex than linear programming (e.g., quadratic programming).
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8.3.3 Applications of FBA

8.3.3.1 Synechocystis Metabolism

Flux balance analysis was used to study the central metabolic pathways in a model
cyanobacterium, Synechocystis sp. PCC 6803, to predict flux distributions for opti-
mal growth under autotrophic, heterotrophic (growth on glucose), and mixotrophic
(growth on light and glucose) conditions [79]. The central metabolic network was
reconstructed from genomic data, and it consisted of 70 reactions (after splitting of
reversible reactions) and balances on 36 metabolites. The processes of photophos-
phorylation and ATP formation were modeled as described in Section 3.2.1. The
extracellular reactants and products were glucose, CO2, O2, and light energy. Car-
bon and energy in form of ATP and NAD(P)H are two of the main components
required for growth. However, in contrast to heterotrophic organisms where sugars
such as glucose provide both the carbon skeletons as well as NADPH and the ATP by
catabolism, photoautotrophic metabolism has distinct sources of carbon (CO2) and
energy (light). While the uptake rate of the carbon source as a constraint for growth
is a natural choice for heterotrophic metabolism, the selection of a basis for pho-
toautotrophic metabolism could be based on either carbon or light limitation. The
authors approached the problem by using a two-step optimization process. They first
maximized the biomass production rate, to obtain a certain biomass yield on carbon
(Yb). A second optimization was then performed by adding the maximal value of Yb

as constraint and minimizing the utilization of light energy. Thus, it was possible
to obtain a flux distribution that maximized biomass production, while utilizing the
minimum required light input. The flux distribution pattern (topology) was calcu-
lated for the autotrophic and heterotrophic cases from which several useful obser-
vations could be made. The predicted photosynthetic quotient, which is the ratio
moles of oxygen produced compared to the moles of carbon dioxide assimilated,
of 1.46 was found to fall in a physiological range for several photosynthetic organ-
isms. Further, it was found that both the cyclic and non-cyclic electron transport
chains were needed to meet the desired ATP/NADPH ratio for optimum autotrophic
growth. As expected, for mixotrophic metabolism, it was found that as the sup-
plied light energy increased, the biomass yield on glucose increased. Further, the
utilization of the oxidative pentose phosphate reactions and the anapleurotic PEP
carboxylase changed as a function of input light energy (Fig. 8.3). The effect of
gene knockouts on optimal growth of Synechocystis by the FBA model revealed that
the malic enzyme and the NADH-dependent glyceraldehyde phosphate dehydroge-
nase are essential for heterotrophic growth, while the NADPH-dependent glycer-
aldehyde phosphate dehydrogenase was essential for autotrophic growth. They also
found glyoxylate shunt activity under heterotrophic conditions. All these predictions
were consistent with experimental evidence in literature. Interestingly, although
Synechocystis has an incomplete TCA cycle, the addition of the missing αKG
dehydrogenase did not lead to a significant increase in biomass yield under any
condition.
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Fig. 8.3 Variation of mixotrophic growth yields and fluxes as a function of light flux utilization.
The left y-axis is flux (mol/100 mol glucose uptake), and the right y-axis scale is biomass
yield/mol C contained in glucose. Reproduced from [79] with permission of the American
Chemical Society

8.3.3.2 Application of FBA to Metabolic Engineering

Models of metabolism are integral to rational metabolic engineering of organisms
to produce specific chemicals of interest. One such tool that has been developed is
OptStrain [58], which is a software tool designed to aide in metabolic engineering
by designing the optimal strain to produce the metabolite of interest by determining
the best microbial host, substrate choice, and genes that need to be added/deleted to
achieve optimal production. While designing the host, the program seeks to minimize
the number of non-native pathways as well. For the addition of non-native reactions,
the software program searches a universal database of approximately 4000 enzymatic
reactions which is based on reactions listed in the KEGG database [40] and automat-
ically updated. OptStrain automatically adds the selected genes to the stoichiometric
matrix of the chosen host and updates the constraints to reflect the choice of substrate.
The in silico mutant is then subjected to further optimization using another metabolic
engineering tool, OptKnock [10], which is integrated into OptStrain. OptKnock [10]
is another software tool, which is designed to couple the production of a metabolite
to growth and suggest gene knockouts to achieve the best product yield. OptKnock
uses a bilevel optimization procedure to do this; the engineering objective (maxi-
mize product) is maximized simultaneously with the cellular objective (maximize
biomass, maximize ATP, etc.). While performing this optimization, OptKnock sys-
tematically evaluates all the reactions in the network and removes metabolic reactions
that uncouple cellular growth from chemical production. The software then provides
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a list of enzymes that can be removed to increase the production of the metabolite.
In an example of the utility of OptStrain, it was used to design the optimal micro-
bial host for vanillin production. The program selected E. coli grown on glucose with
three additional enzymes (formaldehyde dehydrogenase, vanillate monooxygenase,
and vanillin dehydrogenase). After the addition of the three non-native enzymes,
OptKnock suggested several knockout strategies, but the highest yield was for the
knockout of four native enzymes (acetate kinase, pyruvate kinase, PTS transport, and
fructose-6-phosphate aldolase). The calculated yield for this mutant was 0.57 g/g
glucose, which is 90% of the theoretical yield. Although this has not yet been experi-
mentally validated, a previous study produced vanillin in E. coli by the addition of the
three non-native enzymes listed above; however, the yield was reported to be much
lower than theoretical, 0.15g/gglucose [49].Rationalmetabolicengineering isgreatly
aided by the development of tools such as OptKnock and OptStrain due to the ability to
run models and check the feasibility of genetic manipulations before any experiment
is performed. These tools are especially useful in the area of secondary metabolite
production because interactions with primary metabolism and competition for inter-
mediary metabolites may be less apparent. A recent review by Kim et al. [43] provides
more examples of the use of FBA for metabolic engineering and highlights some of
the constraints discussed below.

8.3.4 Regulatory Constraints

Although maximization of biomass works well for wild-type microbial strains, arti-
ficially created mutants typically do not exhibit optimal metabolic states because
these mutants are not subjected to the same evolutionary pressure as wild-type
strains. In order to accurately model suboptimal metabolism in these strains, two
variations of FBA have been developed: (1) minimization of metabolic adjustment
(MOMA) and (2) regulatory on/off minimization (ROOM). MOMA is a method to
determine the flux distribution for a mutant that minimizes the difference between
the mutant and the wild-type solution [77]. This is based on the assumption that
a mutant will undergo a minimal redistribution of fluxes to remain as close to the
wild-type flux distribution as possible. Mathematically, this difference is measured
by the Euclidean distance between the two solutions in the solution space (Fig. 8.4)
and is minimized by quadratic programming. MOMA is able to more accurately
predict essential genes in metabolic networks than FBA. In a study performed on
E. coli [77], MOMA predicted that the loss of triosphosphate isomerase, fructose-
1,6-bisphosphate aldolase, or phosphofructokinase was lethal, which agrees with
published literature, while FBA did not identify these genes as essential. The flux
distributions for mutants using MOMA were also found to agree more closely with
experimentally determined fluxes than FBA for the E. coli pyruvate kinase knock-
out, and the correlation coefficients between the calculated and experimental fluxes
was found to be 0.59 for MOMA compared to –0.064 for FBA. This illustrates
that the assumption of a metabolic optimum state being reached in mutants is not
appropriate. A second method to address non-optimality in mutants is regulatory
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Fig. 8.4 Optimization principle underlying FBA and MOMA. The wild-type solution space is
shown in green (Φ), and the mutant solution space is superimposed in yellow (Φ j). The solution
to the FBA problem is the point that maximizes the objective function (red line). The MOMA
solution, calculated using quadratic programming, is the point in Φ j that minimizes the distance to
the FBA optimum. Figure is reprinted from Shlomi et al. [80], Copyright (2005) National Academy
of Sciences, USA

on/off minimization (ROOM). In contrast to MOMA, ROOM seeks to minimize
the number of significant flux changes with respect to the wild-type strain [80].
MOMA, by how it is defined, favors many small changes in fluxes instead of a few
larger changes in fluxes. However, this may not accurately capture in vivo condi-
tions because large modifications in fluxes can result in the redistribution of car-
bon through alternative pathways, which has been shown to occur in mutant strains
[24]. The basic assumption for ROOM is that the cell minimizes genetic regulatory
changes to minimize the adaptation costs because protein synthesis is so energeti-
cally costly to the cell. The mathematical formulation of ROOM is similar to FBA,
except that constraints are applied to distinguish significant changes in fluxes and
minimize them. The allowable changes in the fluxes for the initial study was ±3% of
the wild type, anything more than this was defined as significant and subject to min-
imization. ROOM was tested against both FBA and MOMA to determine its ability
to predict accurate fluxes. It was found in eight of nine knockouts studied, ROOM
performed as well or better than its counterparts; in the case of the pyurvate kinase
knockout, ROOM was able to predict fluxes with 13%, 1%, and 4% higher correla-
tions than MOMA for continuous growth on low glucose (dilution rate = 0.08 h−1),
medium glucose (dilution rate = 0.40 h−1), and ammonia-limited growth, respec-
tively . Due to the inherent differences in these two methods, it has been suggested
that MOMA more accurately predicts fluxes for transient post-perturbation states
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because these are usually characterized by large changes in expression patterns,
while ROOM is more accurate for adapted strains [80].

Transcriptional regulation has also been coupled to FBA models using regula-
tory flux balance analysis (rFBA) [17, 70]. rFBA requires knowledge of transcrip-
tional regulation in the cell under the conditions to be modeled. The regulation of the
genes in the model are experimentally determined and then converted to Boolean
logic statements. For example, it is known that the presence of glucose (GLC)
represses the transcription of the lac operon, which controls the genes for the uti-
lization of lactose (LAC) as a metabolite – causing the diauxic growth of E. coli when
grown on media containing both substrates. This regulatory function can be written
in Boolean logic as

lac = IF(LAC)AND NOT(GLC)

Or simply stated, the lac operon is only transcribed when lactose is present in the media
and glucose is not. These statements are then coupled to the FBA model by saying that
the flux through a given enzyme is zero for a given time interval if that enzyme is not
transcribed. A time delay is also added, so if a gene is turned on under a given set
of conditions, it takes a certain amount of time before that enzyme can participate in
metabolic reactions. Dynamic conditions, such as depleting substrate concentrations
in the media, can be modeled using rFBA using small time intervals and a pseudo-
steady-state assumption. This can be done because the turnover rate of metabolic
reactions is much faster than that for transcription; so, for small-enough time intervals,
the cell can be assumed to be at metabolic steady state. To predict dynamic growth,
each time interval is calculated separately with different starting conditions to account
for the changing environment. For more on dynamic FBA models, see Section 8.3.6.
Using this dynamic modeling approach, rFBA was used to model the diauxic growth
of E. coli on glucose and lactose and compared to two other models: kinetic model and
FBA. FBA doesn’t account for transcriptional regulation, and therefore inaccurately
predicts the simultaneous utilization of both substrates, resulting in a faster depletion
of substrate and a much higher growth rate. In contrast, rFBA was able to accurately
predict the utilization of glucose first, followed by lactose as well as the growth rate,
comparable to the full kinetic model [70]. This is significant because rFBA requires far
fewer parameters to predict this dynamic growth than kinetic models, while still being
able to calculate the growth accurately. Due the ability to predict dynamic behavior
in changing conditions, rFBA has the potential to be useful for modeling circadian
rhythms in plants because it has the ability to capture the transition from night to day
and day to night.

8.3.5 Thermodynamic Considerations for FBA

One of the limitations of the FBA methods discussed so far is that thermody-
namic constraints are accounted for only via explicit constraints on directionality
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of physiologically irreversible reactions. It is therefore possible to arrive at flux dis-
tributions which contain loops such that there is no net reaction. This allows material
to circulate infinitely in the loop and violates the laws of thermodynamics, although
it satisfies the law of mass conservation. In this section, we describe two approaches
that attempt to eliminate flux distributions that violate thermodynamics. The first
of these approaches involves the calculation of the in vivo free energy change in
every single reaction of the network and use the data to ensure thermodynamic fea-
sibility of the network. The second approach eliminates infeasible loops without the
explicit use of data on free energy (or chemical potential) changes, and it directly
examines the structural properties of the network instead. This type of approach
is often used in conjunction with extreme pathway or elementary modes analysis
(see Section 8.4).

The first approach by Henry et al. [34, 35] is based on calculations of free energy
change of each reaction within the cell in which they utilize a group contribu-
tion method [35] developed by Mavrovouniotis [53] to estimate the standard free
energy change (ΔG0) for every reaction in a genome-scale E. coli model. They
integrated this thermodynamic data with regular FBA; for every reaction essen-
tial for optimal E. coli growth, metabolite concentrations that ensured a negative
free energy change (ΔG) (thermodynamically feasible) were allowed. This method,
named thermodynamics-based metabolic flux analysis (TMFA), imposes simultane-
ous mass balance and thermodynamic constraints. As opposed to the work described
in [4, 64] where the thermodynamic constraints are non-linear, this work is formu-
lated as a mixed integer linear program. In addition to the usual constraints of an
FBA formulation described in Section 8.3, the following are added as thermody-
namic constraints:

0 ≤ vi ≤ zivmax (8.19)

ΔGi − K + K zi < 0 (8.20)

ΔGi = ΔG0
i + RT

∑
si j lnc j (8.21)

where Eq. 8.19 ensures that zi is equal to zero if vi is zero, and zi is equal to one
if vi is non-zero. vmax is a physiologically reasonable limit on the maximum flux
value. K is a very large number so that Eq. 8.20 is always satisfied when zi equals
zero. ΔGi is calculated from Eq. 8.21, using the estimated values of the standard
free energy change (ΔGi

0) for the ith reaction, cj is concentration (or activity) of
the jth metabolite, and sij is the stoichiometric coefficient as described before. The
unknown parameters to optimize are vi, cj, and zi, and the objective function max-
imizes biomass production. Using this framework, Mavrovouniotis evaluated reac-
tions that must carry zero flux for optimum growth (“blocked reactions”). They
found 606 blocked reactions, compared to only 576 blocked reactions when no ther-
modynamic constraints were used. These extra 30 reactions are therefore part of
infeasible loops. The biggest impediment in using this approach is the estimation of
ΔGi

0 for all reactions. Even using group contribution methods, it is not possible to
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evaluate ΔGi
0 for every reaction of interest. Also, there are errors and uncertainty

associated with the estimations of metabolite activities [34]. Further, ΔGi is depen-
dent on factors such pH and ionic strength, which if not captured correctly can affect
the results.

A different approach was taken by Beard et al. [4, 5] where thermodynamic con-
straints were added to the stoichiometric network, by calculating whether or not a
chemical potential can exist across a reaction (loop), without explicitly using values
for chemical potentials. The constraints are obtained using the theory of oriented
matroids. In simplified terms, a matroid is a mathematical entity that consists of a
finite set of elements (such as rows of a matrix) and subsets called circuits, which
satisfy certain properties (such as linear independence) [31]. In this work, the ele-
ments of the oriented matroid are the sign patterns of a flux vector (i.e., whether
each flux in a given vector is positive, negative, or zero) that belongs to the row
space of the stoichiometric matrix. The thermodynamic constraint on a flux vector J
(that satisfies mass balance) is that its sign pattern must be an element of the matroid
described above. The detailed mathematical description can be found in [4]. A lim-
itation of this method is that the algorithm used scales exponentially with increase
in network complexity.

Price et al. [64] analyzed a genome-scale stoichiometric model (476 intracellular
reactions and 411 intracellular metabolites) of Helicobacter pylori using non-linear
thermodynamic constraints to eliminate infeasible loops. They too did not make
explicit use of chemical potential values. Instead, the thermodynamic constraints
were expressed in the form of a “Loop Law” which states that the net flux through
a loop must be zero, since there is no thermodynamic driving force [5, 62] and is
expressed mathematically as

∑
loop

Δui = 0 (8.22)

viΔui ≤ 0 (8.23)

where Δui is the change in chemical potential in the ith reaction, and Eq. 8.22
ensures that the net change in chemical potential in looped pathway is zero. Eq. 8.23
ensures that the net free energy change of each reaction is zero. If a flux vi is positive,
the chemical potential change must be negative, and vice versa. Equations 8.22 and
8.23 together ensure that net flux in a loop equals zero. Since constraint 23 is non-
linear, the feasible space becomes non-convex and much harder to solve than with all
linear constraints (e.g., FBA). In order to explore this feasible space, they first used
extreme pathway analysis to list the Type III extreme pathways (see Section 8.4).
These are the stoichiometrically feasible pathways, which violate thermodynamics,
because they are loops. Four such non-trivial loops were found for the network. For
some reactions, the loop law stated above could be expressed as two linear con-
straints. This was done as follows: for each reaction ri of a loop, FBA was used
to maximize (vmax) and minimize (vmin) each flux through the other reactions of
the loop, while setting the flux through ri equal to zero, which helped to identify
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reactions that could not carry any flux unless the loop operated. For these reactions,
a linear constraint could be written, setting flux through it to zero. Thus, they were
able to eliminate two loops by this process. For the other two loops, the values of
vmax and vmin values obtained by FBA were used to further constrain the non-convex
space. Monte Carlo methods were then used to uniformly sample a convex feasible
flux space that enclosed the non-convex space. Roughly one in a thousand points
(flux distributions) had to be discarded for violation the loop law. This was done
by the method described in [4]. The remaining set of sampled points is the set of
feasible flux distributions for the H. pylori network (candidate states). Imposition
of loop law had a marked effect on the flux through reactions involved in the loops
but only a small number of non-loop reactions were affected. They showed that
genome-scale metabolic networks can have loops which violate thermodynamics,
and it is possible to remove these systematically by imposing the loop law. Their
method of using FBA to reduce certain loop law constraints to linear constraints
and place bounds on vmax and vmin of certain reactions was a significant contributor
in reduction of the problem complexity. The model used in this work was based on
the most recent network reconstruction, including several irreversible reactions. A
major hindrance to perform the same analysis on a network in the absence of any a
priori irreversibility constraints is the efficient calculation of all possible loops (Type
III extreme pathways) [64].

Kümmel et al. [47] describe a systematic computational method to assign reac-
tion directions in a newly reconstructed metabolic network. Demonstrating the tech-
nique on the E. coli iJR904 model, they first assigned reaction directions based
on available free energy change data for typical intracellular concentrations. Then,
cycles were identified by an analysis of the null space of the stoichiometric matrix.
Futile cycles converting high-energy cofactors into their low-energy forms were
identified (e.g., net reaction ATP → ADP), and the direction of the cycle was con-
strained such that the high-energy form of the cofactor could not be formed from
the operation of the cycle (e.g., net reaction of ADP → ATP is disallowed). These
cycles are similar to Type II extreme pathways described in Section 8.4. Although
the methodology was not exhaustive in identifying all cycles like the methods of
Beard et al. [5], it enabled the assignment of directions to 130 reactions (out of 920
total reactions) using a very short computation time. This corresponds to about 70%
of all irreversible reactions that are required to disable thermodynamically infeasible
energy production.

8.3.6 Dynamic FBA

All the FBA methods described so far are methods for pseudo-steady-state analysis.
However, a lot of physiologically as well as industrially important phenomena occur
under non-steady-state conditions. Several efforts have been made to utilize the sto-
ichiometric framework for dynamic situations. In all these works, once the sub-
strate is taken up by the cell, it is assumed that the intracellular dynamics responds
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immediately to adjust to a new pseudo-steady-state condition. The simplest concep-
tual approach was adopted by Varma and Palsson to describe batch and fed batch
growth of E. coli on glucose [92]. They divided the experiment into small time steps
and used the FBA model to predict extracellular concentrations at every time step.
They could successfully predict the secretion and re-utilization of acetate in batch
aerobic growth and the secretion profiles of acetate, ethanol, and formate for anaero-
bic batch growth. The rFBA approach described in Section 8.3.4 is also an example
of dynamic flux balance analysis which combines FBA to known transcriptional reg-
ulatory phenomena [17, 70]. An alternative optimization framework was shown to
match experimental data better for diauxic growth of E. coli on glucose and acetate
[50] compared to [92]. Yeast fermentations in batch reactors [68] and fed-batch reac-
tors [36, 37] have also been studied by dynamic FBA. In these studies, the inves-
tigators combine unstructured kinetic models and FBA by modeling the dynamics
of substrate uptake by a kinetic model. Additionally, effects of product inhibition
can also be modeled. The FBA model predicts internal fluxes at every time instant,
as well as the fluxes to excreted products, which can affect uptake dynamics via
the kinetic model. Unsteady-state mass balances (differential equations) on reactor
volume, biomass, and external metabolite concentrations along with the FBA model
are used as constraints to obtain operating parameters that maximize product yields.
An objective function (such as maximization of biomass) is also chosen for the inner
FBA model. Different approaches are available for solving the bi-level optimization
problem [36, 50, 68] – a non-linear problem that is considerably harder to solve than
simple FBA formulations.

8.4 Metabolic Pathway Analysis

The previous section described various approaches to find a flux distribution based
on optimizing user-defined criteria. In this section, we describe metabolic pathway
analysis which is another widely used approach to explore the feasible flux space.
In this methodology, the properties of a metabolic network are explored without the
need of any optimality criteria. Also, compared to FBA which provides only one
flux distribution, all permissible flux distributions and pathways can be analyzed by
these methods. Extreme pathway analysis (EP) [71] and elementary mode analysis
(EM) [72, 74] are two similar methods to study the properties of metabolic networks,
each having their own advantages and disadvantages [45]. They are both developed
from the theory of convex analysis [67] and extend the idea of “extreme currents”
in stoichiometric networks developed by Clarke [15]. Both methods involve the cal-
culation of a basic set of (feasible) pathways which enable the description of all
feasible flux distributions by a suitable linear combination of the basic pathways.

To calculate EMs, one starts with building a stoichiometric matrix, as described
in Section 8.2. Although it is necessary to know which reactions are irreversible, the
reversible reactions are not split into a forward and reverse reaction. Further, for this
discussion, an exchange flux is defined as a reaction that transports a metabolite into
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or out of the system (fluxes v1 and v14 in Fig. 8.1a). An elementary mode is defined
as a vector e of fluxes (v1, v2, ...vn) such that the three following conditions are met:

S·e = 0 (pseudo-steady-state condition with no accumulation of internal
metabolites)

vi ≥ 0 for all irreversible reactions – this ensures thermodynamic feasibility of
the pathway

Non-decomposability – there exists no other vector e1 such that e1 is a subset
of e and also satisfies conditions 1 and 2. Thus, if any (non-zero) flux vi is
removed from the elementary mode e, the mode will no longer carry a bal-
anced flux through it (violation of condition 1). This condition is also known
as genetic independence, since this implies that different sets of enzymes
(and hence genes) required for the operation of each elementary mode.

Elementary modes enumerate all possible pathways from a substrate A to a prod-
uct B using a minimum set of enzymes. The intermediates in the pathways are
formed and consumed in a balanced manner such that there is no accumulation of
the intermediates. For a given system, EMs are uniquely determined (up to a scal-
ing factor). All feasible flux distributions can be expressed as a linear combination
of these EMs (v = λ1e1 + λ2e2 + ... + λn1en such that λi ≥ 0). The λi are not
necessarily unique, implying that different combinations of the elementary modes
can lead to the same flux distribution. The λi must be non-negative for any EM that
contains even one irreversible reaction in order to ensure that no flux proceeds in a
forbidden direction. The detailed algorithm for computing the EMs is described in
[73], which is implemented in the freely available software METATOOL [93] and
FluxAnalyzer [46].

Extreme pathways are a subset of the elementary modes. They satisfy condi-
tions 1–3 stated above, in addition to possessing the following properties:

1. Each reversible internal reaction is split into a forward and a reverse reaction.
Thus all reaction fluxes can only be non-negative. This is similar to the splitting
performed for FBA analysis in Section 8.3.1.

2. Mathematically, EPs form a convex basis of the reaction network. This means
that they are a set of “systemically independent” pathways, such that all other
(mathematically) permissible metabolic pathways are obtained by a non-negative
linear combination of the EPs.

In a graphical representation, with each flux forming an axis, the mass balance equa-
tions (similar to constraints described for FBA in Section 8.2) can be plotted to
obtain the permissible flux space or flux cone. The EPs are equations (pathways)
that form the edges of this flux cone. We shall not enter into detailed comparison
of the two methods, which can be found in literature [44, 45, 56]. It is sufficient to
note that the techniques are conceptually very similar, and allow a very similar anal-
ysis with the networks. Free software for calculation of extreme pathways is also
available [7]. Extreme pathways can be classified into three types [71] as shown
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Fig. 8.5 Types of extreme pathways. Type III extreme pathways are those that have exchange
fluxes across the system boundaries. Type II extreme pathways have only cofactors that cross
system boundaries. These cofactors can thus be thought of as being accumulated or depleted in
the cell. Type III extreme pathways do not contain any exchange fluxes, and thus correspond to
internal cycles. Reproduced from [62] with permission from the Biophysical Society

in Fig. 8.5. Type I denotes the class of pathways that have non-zero values for net
exchange fluxes. Thus, the overall stoichiometry of the pathway converts a substrate
into a product. Type II pathways are cycles that only lead to net conversion of cofac-
tors. These therefore include futile cycles that dissipate ATP. Type III pathways are
cycles that lead to no net conversion of any metabolite.

The calculation of elementary modes is combinatorial in nature and therefore
increases nonlinearly with increasing network size. For example, in a biochemical
network of E. coli consisting of 89 metabolites and 110 reactions, about 5 × 105 ele-
mentary modes were found [81]. An increase in the number of elementary modes leads
to longer computational times as well as a non-trivial process of sorting and interpret-
ing the elementary modes. However, extreme pathways have been used successfully
to study several large metabolic networks, including genome-scale networks [63].

8.4.1 Applications of Metabolic Pathway Analysis

One of the powers of metabolic pathway analysis is that it can be used to enumerate
and subsequently rank the modes (or pathways) according to the yield of desired
product. Thus, all alternative pathways (or modes) for the same yield can be iden-
tified. The techniques have been applied to a wide variety of systems, and a few
are listed here. Carlson and Srienc [12] enumerated the elementary modes for an
E. coli central metabolism model and identified four modes which gave maximum
biomass yield. From analysis of these modes, they predicted five gene knockouts
that would eliminate flux through suboptimal modes. Knockout mutants of all five
genes were created, and the prediction was experimentally verified as the mutant
strain of E. coli growing on glucose had a higher biomass yield [88]. In another
example, extreme pathways and elementary modes have been used in conjunction
with FBA to identify alternative optimal pathways [51] and study the genome-scale
metabolic network of Lactobacillus plantarum [85]. Elementary modes have also
been used to study of nucleotide salvage pathways in red blood cells [75].
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8.4.2 Application of Elementary Modes Analysis in Plant Systems

This section describes two applications of elementary modes analysis in plant sys-
tems. Both studies used elementary modes in combination with other modeling or
experimental approaches, in order to verify results or test hypotheses.

Poolman et al. used elementary modes analysis to study photosynthetic
metabolism in the chloroplast [60]. The analysis of elementary modes helped to
answer questions raised during the authors’ previous work on the same system
using kinetic modeling [62, 63]. Their model of the chloroplast metabolism had a
total of 23 reactions covering the pentose phosphate pathway, the Calvin cycle, and
starch synthesis (Fig. 8.6). The external metabolites (which were allowed to accu-
mulate) were starch, CO2, NADPH, ATP, and cytosolic metabolites (the exported
PGA, GAP, and DHAP). Three exchange reactions transported the triose phos-
phates out of the chloroplast. The model simulates the dynamics of starch synthesis,
degradation, and triose phosphate export out of the stroma in the presence of the
light reactions (i.e., when Rubisco is active). It is known that the reaction catalyzed
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Fig. 8.6 Reactions of the Calvin cycle and oxidative pentose phosphate pathway as con-
sidered by Poolman et al. Bidirectional arrows indicate reversible reactions and unidirec-
tional arrows, irreversible reactions. The light reactions, assumed to catalyze ADP + Pi to ATP,
and processes consuming E4P, Ru5P, or G6P are omitted for clarity. Metabolite abbrevia-
tions: PGA, 3-phosphoglycerate; BPGA, glycerate 1,3-bisphosphate; GAP, glyceraldehyde 3-
phosphate; DHAP, dihydroxyacetone phosphate; FBP, fructose 1,6-bisphosphate; F6P, fructose 6-
phosphate; E4P, erythrose 4-phosphate; SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose
7-phosphate; R5P, ribose 5-phosphate; X5P, xylulose 5-phosphate; Ru5P, ribulose 5-phosphate;
RuBP, ribulose 1,5-bisphosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate. Repro-
duced from [60] with permission from Blackwell Publishing
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by ADPG-pyrophosphorylase (lumped with starch synthesis as E16 in Fig. 8.6) is
activated by PGA and deactivated by stromal phosphate concentration. The kinetic
model showed that the flux to starch synthesis (E16) showed the same qualitative
response to stromal phosphate concentration irrespective of whether the kinetics of
ADPG-pyrophosphorylase was sensitive to PGA and stromal phosphate concentra-
tion. Further, as the stromal phosphate concentration rose, starch degradation also
set in (flux E15 is negative). Thus, under these circumstances, the net export of
triose phosphate exceeds the net carbon fixed by Rubisco (with the extra supplied
from starch degradation). The authors then wished to evaluate if this was a valid
mode of starch degradation during the night also (i.e., absence of light reactions and
Rubisco). Setting the Rubisco flux to zero and running the kinetic model resulted
in all fluxes going to zero. Since this result from the kinetic model could well be
due to a poor choice of kinetic equations or parameters, they performed elementary
modes analysis on the system. In the absence of the Rubisco, they found that no
mode could solely degrade starch into triose phosphate (using the reactions of the
Calvin cycle). Thus, they confirmed that the result was a structural feature of the
network and not due to a poor kinetic model. It must be noted that triose phosphate
export from starch breakdown in the dark with concomitant CO2 release was pos-
sible when the unique reactions of the pentose phosphate pathway (E19 and E20)
were active.

The elementary modes analysis also led to several other interesting observa-
tions. For example, sedoheptulose 1, 7-bisphosphatase (SBPase, E9) is regulated
by thioredoxin such that it is inactivated in the absence of light. All modes of sugar
phosphate export (triose phosphates, E4P, and R5P) in the dark were found to be
concomitant with NADPH and CO2 production (a consequence of using the oxida-
tive pentose phosphate reactions, E19). Addition of SBPase activity in the dark led
to the creation of a new mode which could completely oxidize starch to CO2, the sto-
ichiometry of the net reaction being STARCH + 12 NADP → 6 CO2 + 12 NADPH.
This new mode is hypothesized to have implications in the de-coupling of sugar
phosphate export and NADPH production in the dark.

A criticism of this analysis is that the model of chloroplast metabolism did
not include the glycolytic enzymes which are known to be present in chloroplasts
[42, 59, 84]. In the presence of these enzymes (phosphofructokinase, glyceraldehyde
3-phosphate dehydrogenase, and phosphoglycerate kinase), it is possible for starch
to be converted to triose phosphate in the absence of Rubisco. Since they modeled
the Calvin cycle/pentose phosphate in isolation from the glycolytic/gluconeogenic
enzymes, the scope of the results must be treated with regards to the limitation of
the model. Addition of the glycolytic enzymes could lead to new modes which use
a combination of reactions that are traditionally assigned to glycolysis or the pen-
tose phosphate pathway. The power of stoichiometric models allows us to model
highly interactive metabolism in which many cycles and pathways share several
intermediates and must not be treated in isolation, for a comprehensive understand-
ing of metabolic processes.

In a second example of the use of elementary mode analysis, Schwender et al.
validated results from 13C and 14C labeling experiments in developing embryos of
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Brassica napus which convert sucrose into fatty acids [76]. The experimentally
observed yield of fatty acid (oil) on sucrose was much lower than expected if all
the acetyl CoA were derived solely from glycolysis, indicating the presence of a
more efficient carbon utilization pathway. They found that the developing embryo
could simultaneously utilize Rubisco to fix CO2 and break down sucrose via glycol-
ysis, to form acetyl CoA, the metabolic precursor of fatty acids. Further, based on
the 13C labeling pattern in PGA, it was found that the complete Calvin cycle (regen-
eration of PGA) was not active. Elementary modes analysis of the system confirmed
the existence of elementary modes which converted hexose phosphates into pentose
phosphates via non-oxidative reactions of the pentose phosphate pathway, followed
by CO2 fixation into PGA by Rubisco, and conversion of PGA into acetyl CoA, with
the release of CO2 (Fig. 8.7(C)). It is this released CO2 that can be fixed by Rubisco,
thereby improving the oil yield. Other elementary modes involving Rubisco and the
oxidative pentose phosphate reactions (which release CO2) could not explain the
observed CO2 to oil ratio.

Modes involving the complete Calvin cycle could not explain the isotopic label-
ing patterns. Only the set of elementary modes shown in Fig. 8.7(C) could explain
all the data.

8.5 Genome-Scale Networks

8.5.1 Model Reconstruction

Reconstruction of a genome-scale metabolic network requires the collection of data
from a variety of sources and is laborious due to the iterative nature of creating a
high-quality, accurate network. Despite the development of software to facilitate
reconstruction [18, 41], automatically created models still require manual cura-
tion [8] to fill in gaps. The first step in any reconstruction effort (Fig. 8.8) is to
search the genomic database of the plant species to be modeled; of course, this
requires the genome to be fully sequenced and annotated. The initial effort of net-
work reconstruction requires a complete list of metabolic reactions known to be
present in the cell to be collected. This first draft of the network should include (for
each reaction) enzyme, stoichiometry, cofactors needed and, if possible, direction
and localization. In eukaryotic organisms, it is also important to include transport
and carrier enzymes to account for the movement of metabolites across intracellular
membranes. Accounting for compartmentation in the cell is a key aspect of mod-
eling higher eukaryotes, such as plants, because the distribution of flux between
compartments is one of the more interesting results from such models. Despite the
availability of many sequenced genomes, none have been fully annotated. Even the
genome of the most widely studied organism, E. coli, is constantly being updated
and annotated as new information becomes available. Due to the lack of complete
annotation, reconstruction of a genome-scale model requires additional information
to be incorporated with information garnered from the genomic database, in order
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and ATP balance due to ambivalent enzyme functions present in the model (e.g., transal-
dolase can replace sedoheptulose bisphosphate aldolase/sedoheptulose bisphosphatase). NADH
is balanced in all cases. Modes with negative ATP or NADPH balance require cofactor sup-
ply from photosynthetic light reactions. Numbers refer to enzymes: hexokinase (1); glucose-6-
phosphate dehydrogenase, 6-phosphoglucono-lactonase, 6-phosphogluconate dehydrogenase (2);
phosphofructokinase, fructose-1,6-bisphosphate aldolase (3); phosphoribulokinase, ribulose-1,5-
bisphosphate carboxylase/oxygenase (4); NADH-glyceraldehyde-3-phosphate dehydrogenase,
NADPH-glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase (5); phosphoglyc-
erate mutase, enolase, pyruvate kinase (6); pyruvate dehydrogenase complex (7); synthesis of
stearic acid by fatty acid synthethase complex (8); transketolase, transaldolase, ribose-5-phosphate
isomerase, ribulose-5-phosphate epimerase (PPP). Metabolites: Ac-CoA, acetyl coenzyme-A; HP,
hexose phosphates (glucose 6-phosphate, fructose 6-phosphate); PP, pentose phosphates (ribulose
5-phosphate, ribose 5-phosphate, xylulose 5-phosphate); TP, triose phosphates (dihydroxy ace-
tone phosphate, glyceraldehyde 3-phosphate). Figure obtained from [76] with permission from the
Nature Publishing Group

to have a complete model of metabolism. Additional information and assumptions
will have to be made in order to fill in gaps in known pathways and add missing
pathways. Gaps in the metabolic pathway, such as missing enzymes, pathways,
and transporters can be filled in with information found in biochemistry books,
archival journal articles, and pathway databases [13, 40]. Another common prob-
lem in genome-scale metabolic networks is the presence of dead-end metabolites.
Dead-end metabolites arise from two sources: (1) a byproduct of a given reaction
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Fig. 8.8 Genome-scale metabolic network reconstruction. Genome-scale metabolic models typi-
cally require the use of several sources to capture the entire network including genomic database,
pathway databases, journal articles, biochemistry textbooks, and signal peptide prediction soft-
ware. The picture of the pathway was taken from MetaCyc (http://www.metacyc.com); the signal
peptide prediction picture was taken from TargetP (http://www.cbs.dtu.dk/services/TargetP/), and
the figure itself is an adaptation of Fig. 1 of [29]

is not used anywhere else in the network and therefore accumulates in the cell or
(2) a particular metabolite is needed as a reactant in a reaction, but is not synthe-
sized in any reaction in the network. To avoid having accumulation in the cell, either
a synthesis or degradation reaction must be added to the network. Another impor-
tant aspect of genome-scale modeling is the definition of a quantitative biomass
equation. Development of the biomass equation requires experimental determina-
tion of the macromolecular content and composition of the cell (DNA, RNA, lipid,
carbohydrate, and protein). The next step in network reconstruction for eukaryotic
organisms is to determine the localization of each enzyme to the compartments to
be modeled. Localization in the cell is determined by signal peptides (SP), which
are located on the N-terminal end of the protein; the composition of the SP deter-
mines where the protein is targeted to. Free online software, such as TargetP [23],
can be used to predict the presence of SPs and to determine the localization of the
enzyme to a particular compartment (secretory pathway, chloroplast, mitochondria,
or other).
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Once a first draft of the network is collected, the iterative process of network
refinement and completion begins (Fig. 8.8). The assembled list of reactions can
then be used to construct the stoichiometric matrix. The model is then tested by
using a modeling technique, such as FBA, to check (1) if the model runs and (2) if
the mass balance closes. FBA has been used in several genome-scale models [6, 8,
22, 29, 34] because it requires no additional data or information and can quickly
predict the flux distribution in the cell once the network has been reconstructed.
Typically, the test of the first draft of the genome-scale model does not match exper-
imental results (such as biomass yield per mole substrate); this can be corrected
by rigorous investigation of flux distributions to determine where gaps or dead-end
metabolites occur and/or to identify imbalances in the network (such as protons or
maintenance). This process of iterative refinement of the network continues until the
results produced by the model matches experimental data (yield, growth rate, sub-
strate uptake, and product excretion rates). Although model reconstruction is itera-
tive, even with a complete network, the model results may not correlate well with
experiments. This, in part, may be due to invalid assumptions, over-simplification
of the network, or an inappropriate choice for an objective function. It is imperative
that throughout the process of model reconstruction, each of these is reevaluated to
ensure agreement with the organism being modeled.

8.5.2 Application of Genome-Scale Models

Despite the large number of genome sequences available, only a handful of genome-
scale metabolic models have been completed to date (Table 8.2). Some of these
organisms are industrially important, such as E. coli, L. lactis, S. cerevisiae, S.
coelicolor, and L. plantarum, and these models can be used to optimize the pro-
ductivity of natural products. Others are human pathogens, such as H. influenzae,

Table 8. 2 List of organisms with genome-scale metabolic models. If multiple versions exist, only
the most recent version is listed. The naming convention for genome-scale models is as follows:
“i” represents the in silico strain, the initials represent he principal author for the reconstruction,
and the number is the number of genes included in the reconstruction

Organism Version Reference

Haemophilus influenzae N/A [22]
Lactococcus lactis iAO385 [55]
Helicobacter pylori iIT341 [86]
Saccharomyces cerevisiae iND750 [19]
Escherichia coli iAF1260 [26]
Staphylococcus aureus N315 iSB619 [6]
Lactobacillus plantarum WCFS1 iBT721 [85]
Streptomyces coelicolor A3(2) iIB711 [8]
Bacillus subtillus iYO844 [54]
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H. pylori, and S. aureus, and the completion of their genome-scale models opens
up a new way to select antibiotic targets by selecting enzymes found to be essen-
tial from the model. In much the same way, completion of genome-scale models
in plant species can have similar applications. Genome-scale metabolic models
represent the most complete model of cellular metabolism available. A genome-
scale model of crop plants, like corn, soybean, or wheat, could be used to identify
metabolic engineering targets to optimize growth or product (e.g., fruit, seed) yield.
New pathways could also be introduced and optimized in plants for the produc-
tion of chemicals. Similar to the example above of human pathogens, genome-scale
models of undesirable plants could be used to identify essential genes which can
be the target for new species-specific herbicides (same would be true for broad
spectrum herbicides). Although purely stoichiometric genome-scale models have
great potential to aide in metabolic engineering efforts, the addition of regulatory
information will greatly enhance the model. Finally, genome-scale models serve
as a starting point for the integration of systems biology data into a mathematical
model.

8.6 Future Directions for Stoichiometric Modeling in Plants

As shown in this chapter, the stoichiometric modeling of metabolic networks is
expanding to larger networks and more complex organisms. However, as the systems
become more complex, the predictive value of the models by themselves is limited.
The modeling approaches’ strongest application is in combination with experimen-
tal methods such as metabolic flux analysis and kinetic modeling (see Chapters 9
and 11). For example, one could use the stoichiometric framework to map sys-
tems biology data (e.g., transcriptome, proteome, metabolome, and fluxome) with
genome-scale models [11].

With the completion of genome sequencing of Arabidopsis and several major
agronomically important crops, it begs the question of whether a genome model
of a higher plant is possible and what would be gained? For stoichiometric anal-
ysis, this model would serve as the basis for unifying the analysis of large sets
of metabolomic, transcriptomic, and proteomic data. The effort to complete the
genome-scale models would be an enormous undertaking, but the benefits realized
in understanding plant metabolic physiology as large interacting networks of tran-
scripts, enzymes, and metabolites clearly justify such an effort. A logical starting
point is to first model individual cell types of higher plants. For example, one could
envision a model of a single photosynthetic cell as the basis for modeling an “aver-
age” leaf. An appropriate analogue to the leaf cell could be to model a single-celled
algae, such as Chlamydomonas reinhardtii, which has a completed genome. Simi-
lar models could be constructed for root cells. The next step would be to average
over these individual cell models to represent a tissue. Finally, the tissues could be
connected with transport reactions, in a similar fashion to how individual organs are
modeled in physiological compartmental pharmacokinetic studies [30].
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Chapter 9
Isotopic Steady-State Flux Analysis

Jörg Schwender

9.1 Introduction

Metabolic flux analysis (MFA) provides an integrated view of the function of
biochemical pathways within a cell and is an important methodology in systems
biology and metabolic engineering [102]. Originally developed to study microbial
metabolism, it has also been applied to plants [67, 74, 83, 85, 88, 106]. A key con-
cept in MFA is the biochemical reaction stoichiometry, which is used to mathemati-
cally describe a cellular reaction network at metabolic steady state. For example, the
theoretical capability of metabolic network can be explored by exhaustive enumera-
tion of all possible distinct routes in a metabolic network [96, 101; see also Chapter
8]. With additional consideration of some physiological data and boundaries for
fluxes (e.g., maximal uptake rates), flux balance analysis [35, Chapter 8] allows
prediction of metabolic states (flux distributions) which are optimal with respect to
cellular objectives such as growth speed or product yield. While this methodology
has proven valuable in devising strategies for metabolic engineering of microorgan-
isms [58], it often cannot exactly predict the reaction rates of particular reactions,
since a variety of different intracellular flux states may describe the cells physiolog-
ical behavior equally well. Without intracellular flux measurements by isotopic trac-
ers, this methodology has the limitations of a “black-box” analysis. Another way to
study the intracellular flux distribution is to apply dynamic simulation of metabolic
networks, based on kinetic rate expressions of enzyme reactions. Since this approach
requires both the stoichiometries and an enormous amount of data about in vivo
reaction mechanisms, kinetic parameters, and regulatory properties [129], it is often
not practicable. Therefore, as a valuable addition to purely stoichiometric analysis
or dynamic modeling, 13C-metabolic flux analysis (13C-MFA) allows measurements
of the intracellular flux distribution under a particular physiological condition or in
consequence of transgenic alteration. In addition, while pure stoichiometric mod-
els rely on the comprehensive balance of cofactors, 13C-tracer techniques typically
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allow intracellular fluxes to be determined without cofactor balances. This is useful
since often processes like ATP consumption by futile cycles, ATP yield of the res-
piratory system, the specificity of some enzymes toward NADH or NADPH, or the
presence of transhydrogenases cannot be exactly defined [21].

This chapter is intended to give an overview of the insights that can be gained
by use of 13C-MFA in plants and to give details on the method that help to design,
perform, and analyze the experiments.

9.1.1 Some History on the Use of Isotopic Tracers

Isotopic tracer techniques have contributed greatly to the elucidation of pathways
in plant central metabolism (see, e.g., [1, 11, 12, 14, 17, 22, 24, 118]). While the
most prominent parts of central metabolism in plants were described in the 1950s
and 1960s, some intricate details were not recognized until several decades later,
and this may be due in part to the high complexity of plant central metabolism, with
metabolic pathways organized in different subcellular compartments. For example,
acetyl-CoA, a membrane impermeable metabolite, is involved in metabolic pro-
cesses in multiple subcellular compartments [39]. Mainly due to evidence from
tracer experiments and the presence in plastids of acetyl-CoA synthethase, an
enzyme that transforms acetate into acetyl-CoA, it has been widely believed that
free acetate is a direct precursor of plastidic acetyl-CoA, in particular for fatty acid
synthesis in leaves [84, 89]. However, by use of labeled CO2 as a tracer, Bao et al.
[16] could show that in leaves, the flow of photosynthetically fixed carbon into
fatty acids is not via the free acetate pool, but via plastidic pyruvate dehydrogenase,
which transforms pyruvate into acetyl-CoA. The central metabolite acetyl-CoA was
also believed to be the general precursor of isoprenoids in plants via the acetate
mevalonate pathway. Only by the end of the 1990s, by use of stable isotopic tracers,
was it shown that plastids have their own pathway to generate biosynthetic isoprene
units via a pathway starting from pyruvate and glyceraldehyde 3-phosphate [66]. In
both examples, the use of isotopic tracers made major contributions to the detailed
elucidation of plant metabolic pathways.

In addition to the elucidation of pathways, the in vivo function of segments of
central metabolism was quantified with the help of isotopic tracers. By feeding
13C-labeled glucose to wheat endosperm tissue and to intact plants, Keeling et al.
[56] studied redistribution of label between the C-1 and C-6 positions of hexose
units in starch and sucrose isolated from the endosperm. Randomization of label
between C-1 and C-6 of hexoses is caused by a cyclic process of breakdown of
hexoses to trioses, interconversion of the trioses and re-synthesis of hexoses. The
authors found that the same degree of label redistribution was consistently found in
hexose units derived from both starch and sucrose. This can only be explained by
attributing triose/ hexose cycling mainly to the cytosolic compartment. The data also
speak for the uptake of hexoses by the amyloplasts and against uptake of trioses.
In similar, using different plant cell cultures, Hatzfeld and Stitt [47] measured
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randomization of 14C-label between the C-1 and C-6 positions in hexose units in
starch and sucrose. In similar it was concluded here that the primary route to plas-
tidic starch synthesis involved the import of hexose phosphates and not triose phos-
phates into the amyloplasts. In this study, labeling signatures were also detected
that could be ascribed to the operation of the oxidative pentose phosphate path-
way (OPPP). Similar studies of central metabolism in heterotrophic tissues used
13C-labeled glucose and 13C-NMR analysis of positional enrichment in free sug-
ars, sucrose and starch, metabolism [130, 62]. Fernie et al. [40] studied the effect
of elevated levels of fructose 2,6-bisphosphate (F2,6P2) in heterotrophically grown
tobacco cells on pyrophosphate:fructose 6-phosphate 1-phosphotransferase, an
enzyme in glycolysis. Feeding [1-13C]glucose, the label redistribution into different
carbon positions of free soluble sugars indicated that in the presence of F2,6P2, there
is a higher in vivo flux through the enzyme in direction of the formation of hexose
phosphates.

A larger segment of plant central metabolism was first studied by Salon et al.
[92]. In this study, germinating lettuce embryos were fed five different 14C-labeled
tracers, and in each case, the specific 14C-activity was determined in glutamate and
aspartate. Key fluxes associated with the TCA cycle and the glyoxylate cycle were
resolved. Radioactive tracers such as acetate, palmitate, or hexanoate were fed in
low concentrations so that the assumption could be made that the tracers had no sig-
nificant mass contribution to metabolism, i.e., that they did not disturb the metabolic
steady state. In contrast to the use of trace amounts of 14C, the 13C-labeled tracers
used in steady-state flux studies are typically the main sources of carbon in the cul-
ture medium. Growing, excised maize root tips were intensively studied by steady-
state flux analysis using 13C-glucose as a substrate [3, 4, 6, 30, 34], and in this way,
Dieuaide-Noubhani et al. [30] first resolved a large compartmentalized model with
20 fluxes. With the measurement of 13 positional enrichments in 5 metabolites and
the measurement of 5 biosynthetic fluxes, a system of 26 stoichiometric equations
was solved.

9.1.2 Insights Gained from Steady-State Flux Studies in Plants

A number of 13C-MFA studies on plant central metabolism have been published
and will be reviewed in short here. Typically, tissues isolated from plants, develop-
ing embryos, or plant cell cultures are kept under constant culture conditions and
grow heterotrophically on a 13C-labeled substrate (glucose or sucrose). Using mod-
els of central metabolism, typically around 30 fluxes can be estimated based on the
labeling experiments. For example, tomato suspension cells were grown in batch
culture and intracellular fluxes were compared for different growth phases [87].
Arabidopsis thaliana cell cultures were studied under different oxygen availability
to measure changes in flux and metabolite levels [141]. Besides cell cultures, maize
root tips detached from germinating seeds were extensively studied [3, 4, 6, 30] and
may be taken as a model for fast-growing non-photosynthetic tissues. Furthermore,
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developing seeds (embryos) of rapeseed [55, 103, 104, 105, 107], soybean [54, 111],
sunflower [5], or developing maize kernels [37, 110] have been isolated and cul-
tured and studied mainly with the aim of understanding the processes of carbon
partitioning and storage synthesis in seeds. The study of Catharanthus roseus hairy
root culture [113] has implications for the production of secondary metabolites by
cell cultures. As an example for a prokaryotic photosynthetic organism, cultures
of Synechocystis have been compared for heterotrophical and photo-mixotrophical
conditions [143].

In difference to flux balance analysis and related approaches (Chapter 8), the
use of tracers in 13C-MFA allows to quantify the in vivo function of parallel or
cyclic pathways in central metabolism. Referring to the validation of flux models
discussed in later sections of this chapter, it is often advisable that major biological
conclusions arising from flux studies should be validated by independent experi-
mental approaches, if possible. For example, estimations of flux through RubisCO in
developing rapeseed embryos by 13C-tracer techniques were corroborated by mass
balances of carbon uptake and net CO2 release [105].

9.1.2.1 Alternative Pathways

One example of quantification of in vivo function of alternative pathways is the
bypass of pyruvate kinase (PK) [79] via the reaction sequence phosphoenol pyruvate
(PEP) carboxylase, malate dehydrogenase, and malic enzyme. Flux studies in sev-
eral seed models revealed significant fluxes through the bypass. Plastidic as well as
cytosolic PK can be bypassed by respective plastidic or cytosolic isoforms of malic
enzyme. Accordingly, 13C-MFA showed that mitochondrial malic enzyme provides
14%, 20%, and 40% of mitochondrial pyruvate in developing soybean, sunflower,
and Brassica. napus embryos, respectively [5, 107, 111]. The plastidic bypass could
not be detected in B. napus embryos [107] but may account for up to 20% of the
plastidic pyruvate in soybean embryos [54, 111]. In developing sunflower embryos,
the bypass of plastidic PK accounts for less than 10% of total carbon flux into fatty
acids [5]. This low contribution is in contrast to the dominant role of the bypass
suggested by in vitro tracer experiments. By incubating plastids isolated from devel-
oping sunflower seeds with 14C-malate and other isotope-labeled tracers, malic acid
was identified as the preferred precursor of fatty acid synthesis [80]. This difference
may be a consequence of the plastids being studied away from the cellular environ-
ment and demonstrates the value of in vivo flux analysis as being a method to study
flux in a non-invasive way on an unperturbed cell culture.

The GABA shunt [124] is a reaction sequence that can be understood as a
bypass to the mitochondrial conversion of 2-ketoglutarate (KG) to succinate, which
is part of the tricarboxylic acid (TCA) cycle. First, Glu can be derived from KG
by transamination and then be converted to GABA by cytosolic glutamate decar-
boxylase. GABA in turn is transformed in the mitochondria to succinate by GABA
transaminase and succinic semialdehyde dehydrogenase [38]. The potential of the
GABA shunt to bypass the TCA cycle in plants has been demonstrated with mutants
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deficient in the mitochondrial conversion of KG to succinate [119]. Different addi-
tional observations suggest that the GABA shunt could carry substantial carbon
flux under many different conditions, i.e., the GABA shunt could be understood
as part of the TCA cycle in plants [38]. In fact, substantial flux from glutamate via
γ-aminobutyrate (GABA) into the TCA cycle has been reported in developing soy-
bean embryos [54, 111]. With glutamine being used as sole nitrogen source in the
embryo cultures, the GABA shunt provides an alternative route for the entry of glu-
tamate into the tricarboxylic acid cycle in addition to entry as 2-oxoglutarate after
deamination or transamination.

During storage deposition, oilseeds receive sugars from the mother plant, and in
B. napus a big part of the carbon input is converted into storage lipids (triacylglyc-
erols). As a classical paradigm for fatty acid synthesis in seeds, the conversion of
sugars to pyruvate was assumed to take place via glycolysis and the oxidative pen-
tose phosphate pathway (OPPP), while in developing B. napus embryos the capacity
for photosynthetic CO2 fixation had been recognized as well [45, 59, 91]. With B.
napus embryos cultured under low light levels, in vivo operation of an alternative
to glycolysis could be demonstrated [105]. Glycolysis is bypassed by the enzymes
of the non-oxidative PPP, phosphoribulokinase, and ribulose 1,5 bisphosphate car-
boxylase/oxygenase (RubisCO). Labeling experiments using 13CO2 as a tracer and
measurement of the amount of CO2 released by the embryos per mole fatty acid
produced showed that >40% of the 3-phosphoglycerate (3PGA) is produced by the
RubisCO bypass. Due to reduction in net CO2 release during conversion of sugars
to fatty acids, the carbon economy is substantially improved as compared to non-
green seeds [105]. Elementary flux modes analysis of a reaction network comprising
hexose catabolism and fatty acid synthesis confirmed that only the operation of the
RubisCO bypass together with contribution of photosynthetic NADPH can explain
both the results of both the 13C-labeling and carbon-balancing approaches.

9.1.2.2 Futile Cycles

The above-mentioned in vivo functionality of different metabolic bypass routes as
revealed by 13C-MFA demonstrates the plasticity of plant metabolism. In addition
to the observation of various bypass reactions, 13C-MFA has also quantified futile
substrate cycles. By cyclic interconversion of substrates under consumption of ATP,
a substantial part of cellular ATP can be lost to these cycles. In particular, cyclic
synthesis and degradation of sucrose and hexose phosphates has been observed,
although its biological significance is not yet clearly understood [3, 4, 30, 44, 104].
Sucrose cycling was supposed to consume 69% and up to 80% of the ATP produced
by mitochondrial respiration in maize root tips and tomato cell cultures, respectively
[30, 87]. Later, by different experimental techniques, Alonso et al. [3] attributed
most of the formerly described ATP cycling in maize root tips to cyclic intercon-
version of glucose and glucose 6-phosphate. Subsequently, by re-evaluation of the
maize root flux models, Kruger et al. [64] showed that these very high values would
be overestimates if separate subcellular pools of glucose that are differently labeled
are extracted and modeled as one pool. The controversy on the quantification of
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sucrose cycling demonstrates one of the possible pitfalls in 13C-MFA. However,
even with possible overestimation in some cases, it appears that futile cycles are a
common feature in plants.

9.1.2.3 Estimate for Cofactor Supplies to Biosynthetic Reactions

Furthermore, 13C-MFA leads to estimates of the contribution of cofactor (NADPH,
ATP) generating pathways to the cofactor requirements of biosynthetic processes
[5, 104, 107]. Although cofactor balances are typically not included in 13C-MFA
(see Section 9.4), the fluxes through particular pathways allow cofactor demands
and supplies to be assessed without describing and analyzing the cofactor mass bal-
ances comprehensively for the whole cell. For example, the OPPP is likely a major
source of NADPH for fatty acid synthesis in lipid-storing seeds [84]. If one could
observe in different lipid-producing systems that the OPPP delivers just the right
amount of reductant needed for fatty acid synthesis, one could argue that the flux
capacity of the OPPP likely limits lipid synthesis. However, the flux through the
OPPP in B. napus developing embryos accounts for at most half of the demand
of NADPH for fatty acid synthesis [104]. In addition to the OPPP, the photosyn-
thetic electron transport could account for the difference in reductant requirement
[105]. In case of soybean embryos studied under different conditions [54, 111],
similar flux-based calculations1 show that the plastidic OPPP flux provides between
200% and 400% of the demands for fatty acid synthesis, while for non-green sun-
flower embryos [5] this number is 240%. In consequence, for soybean and sun-
flower, the OPPP over-satisfies the NADPH demands of fatty acid synthesis and
it can therefore be concluded that it provides reductant for other biosynthetic pro-
cesses as well. Comparing cofactor balances for storage oil synthesis in different
seeds gives no support for the idea that oil synthesis is limited by the OPPP, i.e.,
that increase in OPPP flux would force more carbon to enter the lipid biosynthesis
pathway.

9.1.2.4 Robustness

The insight into the organization of central metabolism given by 13C-MFA should
allow for rational design of metabolism to achieve changes in the amounts of end
products. From metabolic engineering of microbial cells, it is known that cells reg-
ularly resist genetic manipulations intended to redirect flux. Branch-point rigid-
ity, resulting mainly from feedback control of enzymes, stabilizes flux ratios at
metabolic branch points [116]. Also, changes in levels of single enzymes usually
have limited effect on flux due to the frequently encountered distribution of flux

1Flux values from the cited publications were used: NADPH production is calculated as 2× the
plastidic OPPP flux. NADPH demand is calculated as (8/9)× the flux of acetyl-CoA into fatty
acids, assuming the condensation of 9 acetate units into stearic acid requires 8 NADPH + 8 NADH.
It is also assumed, as in B. napus embryos, that one reduction step in fatty acid chain elongation
has high affinity for NADPH, while the other preferentially uses NADH. [104].
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control over most of the enzymes of a pathway. This kind of resistance of flux to
fluctuations in enzyme and metabolite levels has also been described as stochas-
tic robustness of metabolic networks [15, 93, 115], i.e., the capacity to maintain a
flux status against small perturbations. Recent plant flux studies address the ques-
tion of robustness in central metabolism for cell cultures [87, 141] and cultivated
maize kernels [110]. It was shown that net fluxes through glycolysis, the tricar-
boxylic acid (TCA) cycle, and the OPPP do not change substantially relative to
each other in response to physiological perturbations [87, 141] or different genetic
backgrounds affecting starch content in kernels [110]. While for A. thaliana cell
cultures, increased oxygen availability leads to increased fluxes with little change of
fluxes relative to each other, the levels of several amino acids, sugars, and organic
acids changed differently [141].

9.1.2.5 Flux Analysis for CO2 Autotrophy

While 13C-MFA has been useful to gain insight into cellular metabolism in great
detail, it is currently not advanced enough to analyze plant metabolism on the
whole organism scale. Plants are organized into different organs, tissues, and cell
types, and their metabolism has marked diurnal and circadian oscillations. There-
fore, a whole-plant steady-state labeling approach does not appear to be very
promising. Typically, multi-carbon tracers like glucose are used in 13C-MFA, and
informative labeling signatures in metabolites result from positional differences in
13C-enrichment (positional labeling) or tracing of contiguous 13C nuclei through
the network (bond labeling) [106, 83]. However, the principal carbon source of
an intact green plant is atmospheric CO2. At steady state, feeding 13CO2 (in mix-
ture with 12CO2) will result in perfectly randomized carbon isotope distributions
in metabolites. One way to achieve informative labeling pattern from labeling
with 13CO2 was explored by Schaefer et al. [95]. They exposed soybean leaves
to 13CO2, resulting in bond-labeled sucrose being transported into the developing
seeds. Analysis of labeled bonds in sugars and fatty acids by 13C-NMR allowed
estimates on the contribution of the involvement of the OPPP in central metabolism.
A similar concept is based on formation of highly labeled internal carbohydrate
pools [86]. During a short 13CO2 pulse to whole plants, highly 13C enriched
starch reserves are formed and stored in leaves. Later, during growth for several
days in ambient air, hexose units derived from the highly 13C-enriched transitory
starch are mixed in central metabolism with newly produced unlabeled photo-
synthetic intermediates [86]. The approach resulted in bond labeling in metabolic
end products that can be interpreted with respect to metabolic history in central
metabolism.

13CO2 can also be used in transient labeling, where the labeling in metabo-
lites is time resolved. Transient (isotopic in-stationary) labeling was pioneered by
Calvin and Benson to analyze the biochemical steps of primary fixation of CO2 in
microalgae [23]. An analytical and computational framework for transient labeling
with 13CO2 was recently presented by Shastri et al. [108]. Prokaryotic photosyn-
thetic microalgae are cultured in a chemostat, and after, the 13C pulse cells are to
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be sampled over a period of about 10 min. Sampled cells are extracted after fast
quenching of metabolic activity. By GC/MS analysis of metabolite extracts the time-
resolved labeling in free amino acids can be obtained. Theoretically, the approach
resolves central carbon metabolism in similar detail to 13C-MFA studies at steady
state in other microbes. Another concept based on 13CO2 pulse labeling with whole
plants, kinetic metabolic phenotyping, has been developed by Huege et al. [53]. The
method follows the labeling kinetics in different plant parts based on estimation of
13C half life in free metabolites. How far this approach can be developed in the
direction of tissue specific resolution of flux is an open question.

9.2 Overview of 13C-Metabolic Flux Analysis

In microbes and plants the steady-state labeling approach of 13C-MFA [106, 133]
is usually applied to a network of central “core” metabolism, describing the large
fluxes with many redundant connections, substrate cycles, and variability in flux
directionality [93]. In general, only 13C-labeling signatures in metabolites of con-
verging reactions yield information about fluxes [125] (Fig. 9.1). Reactions that split
or join carbon backbones may produce differences in labeling signatures that mix
at converging reactions (Fig. 9.1A). In a similar was, if the cell culture under study
uses co-substrates, then isotopic dilution effects can be used to derive intracellular
flux [25, 103, 107] (Fig. 9.1B).
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Fig. 9.1 Hypothetical metabolic network and determination of intracellular fluxes by the use of
carbon-isotopic tracers under steady state. (A) Carbon-1 of the substrate S1 is labeled and traced
through the network. Via reactions 2 and 4 metabolite M3 is formed by loss of carbon-1, while
by formation of M3 via reaction 3, carbon 3 of the substrate is lost (carbon loss could be a decar-
boxylation). Therefore, the labeled carbon in S1 reaches M3 only via reaction 3, and the label of
molecules in metabolite M3 will be dependent on the flux ratio v3/v4. (B) In this example, all carbon
positions of substrate S1 are labeled and the carbon transitions within the network do not cause any
differential labeling pattern in M3. However, due to additional uptake of an unlabeled co-substrate
S2, isotopic dilution will allow the determination of v3/v4
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9.2.1 Steady-State vs. Dynamic Labeling Approaches

While modification of carbon backbones in central metabolism delivers informa-
tive labeling pattern, reactions of peripheral biosynthetic pathways and secondary
metabolism typically introduce chemical modifications to the formerly established
carbon structure. The 13C-labeling signature in a whole class of compounds may be
the same and therefore not informative for determining the rate of interconversion
between them. Therefore, for secondary metabolism, typically transient labeling
techniques are used (e.g., [20, 49, 70, 72, 77]; see Chapter 10). Transient label-
ing involves measuring isotopic enrichment multiple times after application of an
isotopic tracer, and it also requires the quantification of metabolic pool size. Tran-
sient labeling flux analysis also helps to refine the in vivo structure of such net-
works [20]. For example, promiscuous substrate specificity of enzymes in secondary
metabolism observed in vitro may suggest more metabolic connections than are
actually active in vivo – hence, there is some debate in the literature on the exis-
tence of “metabolic grids” in secondary metabolism [31].

9.2.2 Isotopomer Concept

A central concept in 13C-MFA is the description of labeling states of metabolites by
using isotopomer fractions (isotope isomers). 13C-isotopomers describe all possible
12C/13C isotope isomers of a molecule, usually with a binary notation where 13C
can be represented by “1” and 12C by “0”. For example, Ser#110 describes a serine
molecule that is 13C in carbon positions one and two, and 12C in position three. For
a metabolite with n carbon atoms, 2n isotopomers can be distinguished. The relative
abundance of isotopomers is given in percent (isotopomer fractions) so that the sum
of all isotopomer species is always 100%. The probably first use of the isotopmer
concept in modeling of central metabolism can be found in Malloy et al. [69].

9.2.3 Steady-State Isotopic Labeling Experiment

General considerations for 13C-MFA experiments with microbes have been outlined
before, e.g., by Wiechert [134]. Using the isotopic steady-state approach, a typical
13C-MFA experiment can be described by the following steps (Fig. 9.2):

1. Cells are grown under constant physiological conditions in presence of a
13C-labeled carbon source. Physiological parameters, including substrate uptake
rates, synthesis rates of biomass compounds, and growth rate, are measured.

2. After the cells are harvested, metabolites and biomass compounds are extracted.
Free metabolites are fractionated and/or biomass polymers are hydrolyzed into
their building blocks (Chapter 5).
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Fig. 9.2 Procedure of a steady-state 13C-labeling experiment and flux parameter fitting. Cells are
grown heterotrophically on a carbon source containing unlabeled (open circles) and 13C-labeled
molecule species (closed circles). For more details see text

3. Labeling signatures are measured in the different metabolites and monomers by
NMR or MS (Label measurements, Chapter 5).

4. The labeling signatures are translated into intracellular fluxes (see Section 9.5).
At the center of this process is a network model that simulates steady-state label
signatures. Flux values are determined for which the model can best explain the
experimentally observed labeling signatures.

5. For flux values determined in this way, statistical errors are computed based on
the standard errors in the label and physiological measurements.

This procedure leads to a static view of the intracellular fluxes that relates to the
metabolic state for the physiological condition in the experiment. The validity of
this picture depends on several basic conditions that should be met [126, 134, 136]:

1. The cells approximate metabolic and isotopic steady state. As a precondition, the
labeling experiment must be conducted under well-defined constant physiologi-
cal conditions (see Section 9.3).

2. If the study aims at describing metabolism of a certain plant organ or tissue,
the physiological condition of the cell culture should be defined appropriately to
avoid perturbations of metabolism caused by such factors as osmotic stress or
the use of labeled precursors that are not major carbon sources in planta.
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3. All reactions in the metabolic network that carry significant flux are represented
in the flux model, and the fate of each carbon atom is formulated in complete
detail (see Section 9.4).

4. Also, it has to be assumed that each metabolite represented in the model is in
reality one homogeneous intracellular pool of molecules. This may be problem-
atic considering the complex subcellular compartmentation of plant cells (see
Section 9.5). Also, substrate channeling has been found in plants [46] and would
lead to errors if not properly accounted for in the model [60, 126].

5. There are only insignificant isotope discrimination effects in metabolism. The
modeling approach assumes that enzyme reactions do have no preference or
bias against any of the possible 12C/13C molecule isomers. In a study using A.
thaliana cell cultures, possible effects of 13C-labeled substrates on metabolism
were studied; it was concluded that fluxes through central metabolism are not
perturbed by the presence of 13C isotope [63].

9.3 13C-Labeling Experiments and Steady-State Assumption

In living cells, different processes take place on very different time scales. While
changes in protein levels can occur over hours, allosteric control of enzymes should
be faster than 1 s, and changes in enzyme-catalyzed reaction rates due to change in
substrate levels should occur within about 10−4 s [117]. If a system is observed on
a certain time scale, the dynamics of much slower processes can be neglected. This
means that such slow processes can be assumed to be in “quasi-steady state” [48].

For the experimental observation of steady-state levels of cellular compounds –
as, e.g., in metabolomics – cells can be harvested and immediately extracted. Then
the levels of metabolites can be assumed to represent steady-state cellular concen-
trations at the moment of harvest. However, for experimental observation of flux in
steady-state 13C-flux analysis, cellular conversion rates have to be in quasi-steady
state for hours or longer. This is because, after feeding the labeled precursor, the
labeling experiment must continue long enough for metabolic pools to turn over
multiple times until the 13C-labeling signatures in metabolites become time invari-
ant (isotopic steady state). For metabolism to be kept continuously in steady state,
strict control of the environment (extracellular nutrient concentrations, pH, etc.) is
a precondition. For microorganisms, this is typically accomplished in chemostat
culture where cells grow continuously under constant conditions and cell density.
However, the validity of the steady-state assumption should always be critically
assessed. For example, substantial cell-cycle-dependent variations of flux have been
reported in yeast [26]. Therefore, flux maps derived from continuously grown cells
will represent an average over potentially very different metabolic states.

In plant cell or tissue cultures, isotopic steady state may be reached within hours
for central metabolites [83]. By in vivo NMR studies, it has been found that for
developing linseed embryos kept in a liquid growth medium, isotopic steady state of
key central metabolites is reached within less than 3 h, while large pools like sucrose
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and free hexoses need up to 18 h for complete isotopic equilibrium [123]. For
tomato cells growing on 13C-glucose in batch cultures, Rontein et al. [87] described
metabolic fluxes in the exponential phase, the arrest of cell division phase and the
pre-stationary phase. They observed distinct metabolic (and isotopic) steady states
during culture. They assessed steady state and the possible presence of “memory
effects” of isotope label in metabolic pools. Turnover times2 for all measured free
metabolites were determined to be less than 1 h. During 5 h, five turnovers will take
place meaning that 97% of the molecules of a pool will be renewed. In conclusion,
no “memory” of the labeling state 5 h ago will be present. Since cells were sampled
in intervals of 24 h or longer, the samples taken at different time points are likely to
represent distinct steady states. The turnover time suggests that the distribution of
isotopic label in the network may be a faster process than the changes in the fluxes,
suggesting that for the three samplings three distinct steady states were observed
characterizing the different phases in batch culture. The authors also assessed limi-
tations to the validity of the steady-state assumption in their experiment. In partic-
ular, turnover of polymers can add inaccuracy. The authors showed that about 20%
of the free glutamate comes from protein, i.e., Glu that had been labeled long before
it was stored in protein and was later freed by protein degradation.

While Rontein et al. measured label in free metabolites during batch culture,
many studies are based on label information from protein and other biomass
compounds. In batch culture, where cells make a transition through different phys-
iological states, the labeling information of different metabolic states will contin-
uously accumulate in biomass. This kind of non-stationary state has recently been
addressed by a modified methodological MFA-framework for bacterial fed-batch
fermentation [10]. During culture, cells are sampled repeatedly and metabolic non-
steady state is resolved into time profiles of metabolic fluxes [10].

In studies on developing seeds [5, 37, 54, 55, 103, 104, 105, 107, 110, 111],
metabolic steady state is typically assumed for the duration of the whole culture of
up to 2 weeks. For developing embryos of Brassica napus in liquid culture [107],
the labeling pattern of free amino acids after 3 d in culture was compared with
the labeling pattern in protein-bound amino acids after 2 weeks of culture, and no
significant difference could be found (supplemental text of [107]). This suggests
that the labeling state of amino acids accumulated in storage protein continuously
accumulated with approximately the same labeling signature.

9.4 Definition of the Biochemical Network

A critical step in the MFA is the development of a biochemical reaction net-
work. Figure 9.3 summarizes the main features of reaction networks of central
metabolism, representative for several studies on developing seeds [5, 54, 104, 111].

2Ratio of pool size to total flux into the pool, i.e., the time needed for the molar amount of
molecules present in the pool to enter (and exit) the pool.
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mitochondria, and plastid, respectively. Biosynthetic pathways (dashed arrows) into proteinogenic
amino acids and other products are lumped into single carbon transitions. Metabolites shown in
grey typically need not be explicitly represented in the model due to lumping of reactions (see
text)

Abbr. mito: mitochondrion. Enzymes: Aco: aconitase; Aldo: fructose 1,6-bisphosphate aldolase;
AAT: alanine transaminase; CS: citrate synthase; Eno: enolase; FBPase: fructose 1,6-
bisphosphatase; FK: fructokinase; Fm: fumarase; GAPDH: glyceraldehyde 3-phosphate dehy-
drogenase; GDC: glutamate decarboxylase; Glc6PDH: glucose 6-phosphate dehydrogenase; GPI:
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Such networks typically contain the central “core” metabolism, describing the large
fluxes with many cycles, redundant connections, and variability in flux directional-
ity. Typically, only carbon transitions are modeled, since cofactor balances do not
need to be included, which is advantageous if exact knowledge on the cofactor usage
is limited [98]. Reactions that split and join carbon backbones of metabolites often
result in 13C-labeling signatures that are informative with respect to cyclic, parallel,
and reversible fluxes [133]. In particular, only labeling information in metabolites
of converging fluxes yields information about fluxes while nodes with only one
influx store labeling information identical to the preceding metabolite pool [125].
This means that usually all carbon transitions in linear pathways can be lumped
into one reaction. Biosynthetic reactions, e.g., of amino acids or fatty acids are typ-
ically unified into unidirectional single reactions. For reversible reactions, lumping
of metabolite pools can be justified if fast interconversion between metabolites is
found [125]. For example, in a B. napus embryo flux model, the different hexose
phosphates, pentose phosphates, triose phosphates, and C4 acids (malate, oxaloac-
etate, fumarate, succinate) were each modeled as single pools, in each case based
on observations of labeling pattern that suggested high interconversion [104, 107].
Altogether, lumping of metabolite pools can speed up computational performance.
The remaining essential carbon transitions in the network must be formulated in
detail. While most of the reactions shown in Fig. 9.3 are well documented in bio-
chemical text books, some enzymes can catalyze a variety of similar reactions,
which is sometimes not realized in 13C-MFA simulations. The reactions of the non-
oxidative pentose phosphate pathway are usually formulated by three reversible
reactions, two transketolase and one transaldolase reaction (Fig. 9.3). However, it

�

Fig. 9.3 glucose 6-phosphate isomerase; GS: glutamate synthase; HK: hexokinase; ICDH:
isocitrate dehydrogenase; Inv: invertase; KDH: ketoglutarate dehydrogenase; MDH: malate
dehydrogenase; ME malic enzyme; PDH: pyruvate dehydrogenase; PEPC: phosphoenol pyruvate
carboxylase; PFK: phospho fructokinase; PGM: phosphoglycerate mutase; PGK: phosphoglyc-
erate kinase; PK: pyruvate kinase; PRK: phosphoribulokinase; 6PGlcnDH: 6-phosphogluconate
dehydrogenase; Riso: ribose 5-phosphate isomerase; RuBisCO: ribulose 1,5-bisphosphate car-
boxylase/oxygenase; SAldo: sedoheptulose 1,7-bisphosphate aldolase; ScDH: succinate dehy-
drogenase; ScK: succinate thiokinase; ShBPase: sedoheptulose bisphosphatase; SSD: succinate
semialdehyde dehydrogenase; SuSy: sucrose synthase; TK: transketolase; UGPase: UDP-glucose
pyrophosphorylase; Xepi: xylulose 5-phosphate epimerase; TPI: triose phosphate isomerase; XAT:
diverse aminotransferase activities. Metabolites: AcCoA: Acetyl-CoA; Cit: citrate; DHAP: dihy-
droxy acetone phosphate; E4P: erythrose 4-phosphate; Fru1,6P2: fructose 1,6-bisphosphate; Fru:
fructose; Fru6P: fructose 6-phosphate; Fum: fumarate; GABA: γ-aminobutyric acid; GAP: glycer-
aldehyde 3-phosphate; Glc: glucose; Glc1P: glucose 1-phosphate; Glc6P: glucose 6-phosphate;
ICit: isocitrate; KG: ketoglutarate; Mal: malate; OAA: oxaloacetate; PEP: phosphoenol pyru-
vate; 13DPG: 1,3-bisphosphoglycerate; 2PGA: 2-phosphoglycerate; 3PGA: 3-phosphoglycerate;
6PGlcn: 6-phosphogluconate; Pyr: pyruvate; R5P: ribose 5-phosphate; Ru1,5P2: ribulose 1,5-
bisphosphate; Ru5P: ribulose 5-phosphate; Sh1,7P2: sedoheptulose 1,7-bisphosphate; Sh7P: sedo-
heptulose 7-phosphate; SSA: succinate semialdehyde; Suc: Sucrose; Succ: succinate; SucCoA:
Succinyl-CoA; UDPGlc: UDG-glucose; Xu5P: xylulose 5-phosphate
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has been shown that due to the enzyme mechanisms and substrate affinities of the
two enzymes, actually six additional reactions can take place, which have neutral
reaction stoichiometry but impact redistribution of 13C-label [126]. Including the
additional reactions into the network model can make a significant difference in the
overall flux distributions finally obtained for the network [60, 126].

The network shown in Fig. 9.3 is certainly a simplification of what would be
considered to be the major fluxes in a plant cell. For example, amino acid degra-
dation pathways are mostly not considered in flux studies on microbes or plants,
an assumption that may be adequate if growing cells are studied, but one that is
generally not rigorously verified.

9.4.1 Reaction Reversibility

While biochemical reactions always proceed in two directions, the reaction rate in
one direction is often very small. In this case, a reaction can be considered irre-
versible (unidirectional) for modeling purposes. If in a 13C-network, a reaction is
considered to be reversible (bi-directional), then two reactions have to be modeled,
one as forward and one as reverse flux, and the net conversion could be in either
direction [133]. The definition of reaction directionality is important for the valid-
ity of the flux values resulting from flux modeling. An incorrect choice of reaction
directionality in a single reaction may not allow the model network to assume a flux
distribution that is fully consistent with the experimental data – i.e., a flux distribu-
tion that reflects the real in vivo fluxes. Also, the presence of reversible intercon-
versions typically has a large impact on the labeling signatures that are measured in
metabolites. The flux model must therefore properly account for reversible reactions
in order to avoid misinterpretation of the data. This problem has been described and
discussed in particular for the pentose phosphate pathway [60, 106, 126].

Although the reaction reversibility is important for the validity of the modeling
results, it is often of most interest for the investigator to know the net flux rates, i.e.,
the difference between forward and reverse flux. Therefore, forward and reverse
reaction rates are typically expressed as net and exchange fluxes (Fig. 9.4).

S
ub
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te
s

P
ro

du
ct

s

vnet vXCH

vf

vr

Fig. 9.4 Quantification of flux reversibility of a biochemical reaction in 13C-MFA. As shown, the
forward and reverse flux (vf, vr) can be expressed by net and exchange fluxes (vnet, vXCH). Redrawn
from Schmidt et al. [99] with permission from Elsevier
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9.4.2 Reaction Directionality and Thermodynamics

Detailed description and discussion of the thermodynamics of biochemical reac-
tions can be found, e.g., in Heinrich and Schuster (1996) [48]. In the following, it
is shown how the Gibbs free energy and metabolite concentrations relate to reac-
tion directionality and reversibility, while later more practical approaches for their
definition are discussed.

The in vivo feasibility and reversibility of a generic reaction “A + B ↔ C + D”
is dependent on its thermodynamic potential, or free energy (ΔG). For the reaction
to proceed in the forward direction, ΔG has to be negative. A reaction is said to be
reversible if ΔG is small (see below, [48]). ΔG is given by the sum of the standard
Gibbs free energy (ΔG0’) and a term that accounts for the in vivo concentrations of
the reactants ([A], [B], [C], and [D]):

ΔG = ΔG0′ + RT ln

(
[C][D]

[A][B]

)
; with ΔG0′ = −RT ln

(
[C]eq[D]eq

[A]eq[B]eq

)
(9.1)

with the temperature T in Kelvin and R = 8.314 J K−1 mol−1. While the term for
ΔG0’ is defined by the concentrations of the reactants at equilibrium ([A]eq, etc.)3

and therefore is characteristic for a reaction, the in vivo concentrations of the reac-
tants may differ between organisms or change with the physiological condition. This
means that for a particular reaction, the value of ΔG and with it the directionality
and reversibility cannot be generally defined.

Importantly for flux analysis, ΔG can be related to the ratio of forward and
reverse fluxes of a reaction. This was analyzed in detail by Wiechert [135]. In
short, considering that an enzyme-catalyzed reaction typically can be broken down
into several distinct binding and transformation steps, the ratio of forward (vf) and
reverse fluxes (vr) cannot be exactly given but within the limits of the following
inequality [135]:

νf

νr
≤ e

−ΔG

RT (9.2)

According to Eq. (9.2), for ΔG = −5.7 kJ/mol, vf/vr would be 10 or less. This means
that for −5.7 kJ/mol ≤ ΔG < 0, the forward and reverse fluxes are expected to be
of the same order of magnitude.

3Considering for Eq. (9.1) that the in vivo concentrations of the reactants are close to the equilib-
rium concentrations, then ΔG would be small. Therefore, saying that ΔG is small or that a reaction
is close to equilibrium refers to reversibility of the reaction.
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9.4.3 Definition of Reaction Reversibility in Metabolic Networks

The generic reaction network in Fig. 9.3 shows typical definitions of reaction
reversibilities for flux studies in microbes and plants, although such definitions
sometimes differ between studies, e.g., for isocitrate dehydrogenase [107]. In the
following, an overview is given on how reaction directionality can be defined in
spite of lack of accurate knowledge of the necessary data. As stated above, in order
to define reversibility of a reaction in a rigorous way, one needs to consider the stan-
dard Gibbs free energy and the steady-state concentrations of all reactants and prod-
ucts. Since metabolite concentrations are involved, a reaction could be reversible in
one organism or cell type while irreversible in another. Recent approaches consider
metabolome data for the definition of thermodynamic constraints in flux balance
analysis [52, 65]. Therefore, it should be possible to derive reaction reversibility
in such a way. However, coverage of all metabolites of a network by quantitative
metabolome data would be necessary, and in particular in plants and other eukary-
otes, data on subcellular concentration of metabolites would have to be generated.

Without such exact data, some rough rules or guidelines can be formulated based
on ΔG0. An enzyme-catalyzed reaction is likely to be in vivo unidirectional if it
is highly exergonic under standard conditions (large negative value for ΔG0’). The
same applies if only a part of an enzyme-catalyzed reaction – such as transfer of γ -
phosphate from ATP to a substrate – is known to be highly exergonic. Also, hydrol-
ysis reactions may be mostly irreversible because the reactant H2O is present at a
very high concentration. Following the rules given by Ma and Zeng [68] and in large
agreement with Fig. 9.3, the following types of reactions are likely to be irreversible
in vivo:

1. Reactions that include transfer of γ -phosphate from ATP to a substrate (e.g.,
hexokinase)

2. Reactions that are coupled to hydrolysis of phosphate esters or thioesters of
coenzyme-A (e.g., fructose bisphosphatase, citrate synthase)

3. Other hydrolysis reactions (e.g., invertase, inorganic pyrophosphatase)
4. Reactions that include production of CO2 (e.g., 6-phosphogluconate dehydroge-

nase).

In contrast, with increasing similarity between substrates, group-transfer reac-
tions (e.g., by transketolase, transaldolase, or transaminase reactions) or isomer-
izations (e.g., glucose 6-phosphate isomerase, triose phosphate isomerase) tend to
be reversible in vivo.

9.4.4 Measurement of Label Signatures

In 13C-MFA, the labeling signatures in metabolites store information that is trans-
lated into intracellular fluxes. Different methods are available to extract and analyze
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different metabolites (see Chapter 5). Measurement of label in protein-derived
amino acids by NMR or GC/MS has proven to be the method of choice in mul-
tiple plant flux studies [5, 103, 104, 105, 107, 111, 113], since the amino acids
store the labeling information of their various respective central metabolite precur-
sors (Fig. 9.3) [122]. However, some of the amino acids cannot be recovered by
acidic hydrolysis of protein. Cysteine and tryptophan are lost, while glutamine and
asparagine are deaminated to glutamate and aspartate, respectively. Typically label-
ing signatures in 16 amino acids can be analyzed in protein hydrolysate by GC/MS
or 2D-NMR (see Chapter 5) and provide information about the label in the biosyn-
thetic precursors. Ideally all isotopomers of the amino acids would be quantified,
but in case of both NMR and MS, less than 10 % of the total isotopomer informa-
tion is accessible (Table 9.1). However, if the labeling information measured by MS
and NMR is combined [143, 144], the amount of accessible isotopomer information
increases (Table 9.1). The amount of isotopomer information extracted from one
metabolite can also be increased by using tandem MS, since this technique allows

Table 9.1 Number of labeling states resolved by GC/MS or 2D-NMR of protein hydrolysates.
The total number of 13C-isotopomers that define the labeling state of amino acids is given with
the percentage of those that can be quantified. In short, for each amino acid, the MS and NMR
signals were mapped to isotopomers as illustrated in Fig. 9.6. The algebraic rank of such mapping
matrices equals the number of isotopomers or groups of isotopomers that can be determined from
the label measurements. GC/MS refers to 150 signals in 32 fragments of t-butyl-dimethylsilyl
(TBDMS) derivatives of 15 amino acids. NMR refers to data retrieved by 2-D HSQC NMR of
protein hydrolysates [111]

Total # of
amino acid

MS: % of
iso-

2D-NMR:
% of iso-

combined:
% of iso-

Amino acid Precursor Isotopomers topomers topomers topomers

Ala Pyrc 8 75% 63% 100%
Arg KG 64 0% 8% 8%
Asp/Asn OAAc 16 69% 44% 94%
Glu/Gln KGc 32 31% 22% 53%
Gly 3PGA 4 100% 75% 100%
His R5Pp 64 17% 16% 33%
Ile OAAp, Pyrp 64 8% 17% 25%
Leu Pyrp, AcCoAp 64 9% 17% 27%
Lys OAA, Pyr 64 17% 17% 34%
Met OAAp 32 16% 6% 22%
Phe E4Pp, PEPp 512 2% 2% 4%
Pro KG 32 28% 16% 44%
Ser 3PGAp 8 100% 75% 100%
Thr OAAp 16 63% 38% 94%
Tyr E4Pp, PEPp 512 4% 2% 6%
Val Pyrp 32 28% 25% 53%

Total: 1524
(100%) 9% 8% 15%
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to deal with problems arising from overlaps of fragments in the MS spectra [57, 81,
90] (see also Chapter 5).

9.4.5 Subcellular Compartments

Besides protein-derived amino acids, the label in abundant free sugars and amino
acids is often measured in plants [3, 4, 30, 87]. Recently, sensitive techniques have
been developed allowing access to carbon labeling in low abundance intracellular
metabolites in microbes [57, 61, 75, 128]. In plants, central metabolites like organic
acids and sugar phosphates are typically present and metabolized in different sub-
cellular compartments. In a 13C-MFA experiment such subcellular pools may be
labeled different, but a cell extract will contain a mixture of such differently labeled
subcellular pools, which is a problem for 13C-MFA in plants [64] and other eukary-
otes (see Section 9.2.1). Therefore, the applicability of analysis of low abundance
intracellular metabolites to plants has yet to be determined. Instead, to attain com-
partment specific labeling information, one may take advantage of the subcellular
localization of certain biosynthetic pathways. For example, there is evidence that
in higher plants the biosyntheses of His and of the branched-chain amino acids
are exclusively plastidic [76, 109]. This means that His, Val, and Leu as well as
Ile store labeling information for the plastidic pools of pentose phosphate, pyru-
vate, and oxaloacetate, respectively. Also, there is evidence that the key enzymes in
aromatic amino acid synthesis in plants are exclusively plastid localized [50], and
therefore, the label of plastidic PEP and erythrose 4-phosphate is found in the car-
bon chains of Phe and Tyr. In the case of serine, more care is needed to interpret
labeling since different biosynthetic origins are possible. Serine can be formed from
3-phosphoglyceric acid by the plastidic phosphorylated serine biosynthetic pathway
[51]. Also, in photorespiration, Ser formation from Gly takes place by a mitochon-
drial enzyme complex of serine hydroxymethyl transferase (SHMT) and glycine
decarboxylase [33]. In the absence of photorespiration in developing cultured B.
napus embryos [103], serine can be assumed to be formed primarily from plastidic
PGA. However, SHMT may be present in different subcellular compartments, [71]
and the labeling signature in Ser in B. napus embryos indicates reversible intercon-
version of Ser and Gly (Schwender, unpublished results).

Some amino acids can be formed in multiple compartments but the protein-
derived amino acids may still store compartment-specific label. For example, as a
result of the transaminase activities in different compartments, the amino acids Ala,
Asp, and Glu can be interconverted with the central metabolites pyruvate, oxaloac-
etate, and α-ketoglutarate, respectively [100, 140]. In B. napus developing embryos,
highly reversible transamination is evident by 15N-labeling experiments [107] as
well as enzyme profiles that show high abundance of Ala- and Asp-aminotransferase
[55]. Therefore, it is very likely that in different compartments, Ala, Asp, and Glu
are isotopically equilibrated with their respective organic acids. If it is further con-
sidered that B. napus storage protein is formed by cytosolic translation, then the
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labeling signatures in protein-derived Asp, Glu, and Ala will represent cytosolic
pyruvate, OAA, and KG, respectively.

Another metabolite that stores compartment-specific label is starch. In higher
plants, starch is synthesized inside the plastids from ADP-glucose. However, while
ADP-glucose pyrophosphorylase, the enzyme producing ADP-glucose, is localized
to the plastid compartment in B. napus embryos [27], the enzyme was localized to
the cytosol in graminaceous endosperm [18]. Therefore, labeling in starch glucosyl
units will represent different subcellular pools of hexose in the two systems. Fur-
thermore, labeling in sugar monomers of protein glucans, obtained by hydrolysis
of storage proteins or released from cell wall polymers, has been used to determine
labeling in cytosolic pools of hexose phosphates [2, 111, 114]. In addition, fatty
acids store compartment-specific labeling information. In plants, fatty acid synthe-
sis is predominantly localized in plastids [29, 78]. Plastidic fatty acid synthesis pro-
duces fatty acids of 16 and 18 carbon chain length, whereas the elongation of C18:1
to longer chain length takes place by a cytosolic fatty acid elongation system [32,
132]. Thus, labeling in the carboxyl-terminal acetate units of C18 and C22 fatty
acids represent plastidic and cytosolic acetyl-CoA pools, respectively [103, 107].

9.4.6 Choice of Substrate Label and Optimal Experimental Design

Glucose is the most frequently used 13C-labeled substrate in 13C-MFA. It can be pur-
chased in many different 13C-labeled forms. Among those, [U-13C6]glucose (labeled
at all six carbons) and [1-13C]glucose are the most inexpensive and have been used
in most studies in microbes and plants. Other much more expensive forms like [2-
13C]glucose, [6-13C]glucose, or [1,2-13C2]glucose have been used less frequently in
flux studies (e.g., [104]).

The accuracy by which the value of a certain flux can be determined depends in
big parts on the particular substrate label. Microbial and plant studies have given
some general ideas about which fluxes can be measured with good accuracy for a
given substrate label. By using [U-13C6]glucose in a mixture with unlabeled glu-
cose as a substrate, good resolution of key fluxes in lower glycolysis and the TCA
cycle has been found [28] (see Figure 9.3, reactions PEPC, PK, ME, CS). The same
fluxes are determined with much less accuracy if [1-13C]glucose is used, while this
substrate is better suited to resolve the split between glycolysis and the OPPP (see
Figure 9.3, net flux of reactions Glc6PDH, GPI) [28]. Also, [2-13C]glucose or [1,2-
13C2]glucose have been used to determine OPPP flux [104]. In developing seeds,
sugar catabolism via glycolysis or the OPPP can be bypassed by flux via RubisCO
[105]. It has been found that for different choices of labeled sugars, RubisCO flux
is poorly resolved. Better experimental designs have to be developed according to
optimal design strategies [67].

A satisfactory choice of substrate label may be possible using the principles
of optimal design [73]. Prior to performing a labeling experiment, i.e., prior to
obtaining real labeling data, a given flux model can be used to study the impact of
substrate label on flux identifiability. By using the model simulation with arbitrary
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flux values, label measurements can be predicted for different substrate labels. Sta-
tistical measures of the fluxes are obtained in the form of a flux covariance matrix,
which is then condensed into one parameter (relating to the volume of the mul-
tidimensional confidence interval). This optimality parameter is compared for the
different substrates [73]. The difference in statistical performance tends to be highly
dependent on the choice of substrate label but rather independent of the choice of
fluxes for the simulation [73]. With this approach, mixtures of [U-13C6]glucose,
[1-13C]glucose, and unlabeled glucose have been found to perform better than
[U-13C6]glucose or [1-13C]glucose alone [13]. In addition to judging the overall sta-
tistical quality of the fluxes, substrate label can be optimized for the determination
of fluxes of particular interest [13, 67, 73].

The resolution of flux between subcellular compartments is of particular impor-
tance for plant flux studies (see Fig. 9.3). Here, the use of different substrate labels
has been helpful as well. For the analysis of cultured developing embryos of Bras-
sica napus, the substrates glucose, alanine, and glutamine were used at the same
time [107]. In separate experiments, each of the substrates was replaced by the uni-
formly 13C-labeled form. All three experiments were analyzed in a combined sim-
ulation. The experiment with [U-13C]Ala contributed most of the flux information
for plastidic and cytosolic lower glycolysis. [U-13C]Gln was key to resolve fluxes
associated with the TCA cycle and the origin of cytosolic acetyl-CoA [107].

9.5 Estimation of Fluxes from Labeling Data

There are several different approaches for interpreting 13C-labeling signatures, as
summarized in Table 9.2 and discussed below (see Sections 9.5.1 and 9.5.2). Of con-
sideration for the choice of method is, for example, whether a comprehensive flux map
is of interest or only a specific metabolic branch point is to be studied. Also it should be
considered whether one experimental condition is to be studied in detail, or whether
many genotypes or conditions have to be compared. Furthermore, the availability of
software packages for non-experts in computational/mathematical aspects may be
important (see Section 9.5.5). Currently, 13C-MFA in plants is often based on global
isotopomer balancing following the protocol outlined in Section 9.2.1.

9.5.1 Direct Interpretation of Labeling Signatures

9.5.1.1 Model-Independent Comparison of Labeling Signatures (Fluxome
Profiling)

By growing an organism on a 13C-tracer, the labeling signature in metabolites
depend on the cellular flux distribution, and therefore, changes in intracellular flux
can be indicated simply by comparing labeling data from different experiments.
Labeling profiles, e.g., from amino acids analyzed by GC/MS, can be compared
by multivariate statistics [7, 147, 148]. This approach does not produce flux esti-
mates but allows comparison of labeling patterns and identification of particular
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metabolites that are labeled differently depending on the physiological condition or
genotype [147].Theapproach isnot restricted to 13C-labeledsubstrates, andsubstrates
such as 2H-labeled glucose can be used to highlight particular metabolic processes
[147]. The fluxome profiling approach has also been applied to plants, comparing
metabolic phenotypes for cultured maize kernels of 18 different genotypes grown
on uniformly 13C-labeled glucose or sucrose [110]. It requires less experimental
and computational effort than the methods described below and is therefore suitable
for fast screening of many different conditions for metabolic phenotypes.

9.5.1.2 Carbon and Isotopomer Balancing of Biochemical Reactions

As mentioned in Section 9.2, labeling signatures resulting from reactions that split
or join the carbon backbones of metabolites are important for the quantification of
flux by 13C-tracers. Figure 9.5 shows the formation of the serine backbone by two
different pathways. Serine may be formed by hydroxymethyl transferase (SHMT)
in a reaction joining two molecules or from 3-phosphoglycerate (PGA) without
changes in the carbon chain. If positional 13C-enrichment is considered, then the
13C-enrichment in C-1 of serine, for example, results from the enrichments in C-1
of glycine and in C-1 of PGA, weighted according to the ratio of the fluxes v1 and v2

(Fig. 9.5a, c). If isotopomer fractions are considered, a biochemical joining reaction
can be described by probabilistic relations as shown in Fig. 9.5b, c. For example,
the fractional abundance of the isotopomer Ser#101 formed by SHMT equals the
product of the fractional abundances of Gly#10 and C1#1.

On the basis of the equations presented in Fig. 9.5c for serine formation,
metabolic flux ratio (METAFoR) analysis (Table 9.2) has been developed to cal-
culate flux ratios at isolated metabolic branch points [94]. Flux ratios in central
metabolism can be defined based on the isotopomer definition (Fig. 9.5b) or based
on formalisms that describe NMR labeling signatures or MS labeling signatures [41,
94]. For example, after growing E. coli in the presence of uniformly 13C-labeled
glucose, flux ratios at 10 central metabolites were derived [94]. In general, to cal-
culate flux ratios 13C-labeling information is required for the node metabolite and
for the metabolites that are converted into the node. Most commonly, the flux ratio
equations have to be manually derived while a framework for their automatic gen-
eration was published recently [82]. In contrast to global isotopomer balancing, in
METAFoR, flux ratios can be determined without a completely defined network
topology and without measurements of physiological data such as substrate uptake
rates, secretion rates, or biomass composition (Table 9.2).

9.5.2 Network Scale Label Balancing

9.5.2.1 Network Simulation by Positional 13C-Enrichment

Based on the principle outlined in Section 9.5.1 for one reaction, positional labeling
can be balanced for networks of central metabolism (Table 9.2). Dieuaide-Noubhani
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b) Isotopomer balances:

Gly + C1 Ser PGA

a) Positional label:

x
x
x
x
x
x
x
x

v1 v2

C–1C–1C–1

c) Equations:

Ser#101 = v1(Gly#10 ⋅ C1#1) + v2PGA#101

SerC1 = v1GlyC1 + v2PGAC1

Fig. 9.5 Depiction of the carbon position and isotopomer balances for the synthesis of serine
by serine hydroxymethyl transferase (rate v1) and from 3-phosphoglycerate (PGA) with rate v2.
(a) For positional enrichments, one relation exists for each carbon (grey shapes, unspecified carbon
isotope). (b) For isotopomer balancing, eight relations are to be considered. The bimolecular join-
ing reaction is predicted by multiplicative terms, i.e., such joining reactions introduce non-linear
structures, which necessitates an iterative computation process for the steady-state labeling in iso-
topomer networks [138]. (c) Example equations for the calculation of positional enrichments or
isotopomer abundance dependent of flux values. C1, 5,10-methylenetetrahydrofolate; open shapes,
12C; black shapes, 13C

et al. [30] resolved a compartmentalized model of fast-growing maize root tips.
By the use of positional 13C-labeled glucose as a tracer, the values for 20 fluxes
were obtained by solving a system of linear equations using the measured positional
enrichments in five metabolites and the values of five measured biosynthetic fluxes
and uptake rates.

9.5.2.2 Isotopomer Network Simulation

While the labeling balances for positional labeling can be solved in a straightfor-
ward way (calculate fluxes from labeling data and physiological measurements),
isotopomer network simulation always uses a more complex process. In an iterative
fitting process, the best fit between predicted and experimental labeling signatures is
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Fig. 9.6 Isotopomer network simulation and prediction of labeling measurements. (A) Dependent
on the values for the free fluxes and label in the precursors, the steady-state abundances of all
isotopomers in the network are computed. Model predicted isotopomer abundances are then used
to predict labeling measurements. (B) Mapping of isotopomer species of the 3-carbon molecule
alanine to signal intensities in MS or NMR. Open circles, 12C; closed circles, 13C; s, singlet; d, d1,
d2 doublet; dd doublet of doublets

determined (see Section 9.5.3). Thus, for a typical biochemical network, hundreds
of isotopomer equations have to be generated. Handling of the many equations is
best done with dedicated software packages such as 13CFLUX [139]. Since the iso-
topomer formalism comprehensively describes the labeling state in a network, one
isotopomer model can be used to consider any kind of 13C-labeled substrate (posi-
tional labeled, bond labeled, substrate mixtures), and all experimentally producible
MS or NMR label signatures can be predicted (Fig. 9.6).

9.5.2.3 Cumomer Simulation: Computational Speedup

In order to compute steady-state isotopomer abundances, isotopomer balance equa-
tions have to be solved by iterative numerical algorithms [97, 138]. This procedure is
computationally demanding and suffers from computational instability [138]. With
a data transformation of the isotopomer fractions into cumomers (cumulated iso-
topomer), Wiechert et al. (1999) introduced an elegant way to solve the respective
equation systems of cumomer balances analytically and much quicker with typi-
cally about 1 s computation time [138]. Thus, cumomers are merely a computer-
internal data representation that can be interconverted with isotopomer fractions
without loss of information. For example, the software packages 13CFLUX [139]
and NMR2Flux [111] use the cumomer approach.

9.5.2.4 Alternative Descriptions of Labeling States Used in Network
Flux Analysis

Besides the isotopomer formalism and the cumomer simulation, alternative concepts
for representation and simulation of labeling states have been developed. All of them
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represent ways to reduce the number of labeling states that have to be simulated. The
bondomer concept (bond isomer) [112, 127] is based on the usage of uniformly 13C-
labeled tracers (in mixture with unlabeled molecules). In NMR, directly neighboring
13C-nuclei are usually clearly visible in the fine structure of the spectrum as 13C/13C
coupling (Chapter 5). Bondomer simulation traces C–C bonds from the labeled sub-
strates through the network. A C–C bond can have two states, either “unbroken” or
“newly formed” in a biochemical reaction. Unbroken bonds retain neighboring 13C
nuclei while biosynthetically new bonds are most frequently formed between 12C
and 13C atoms.4 Based on the simulated bondomer labeling states, NMR labeling
data can be predicted. One advantage of the bondomer concept is the reduced com-
putational complexity relative to the isotopomer concept. While for a molecule with
n carbon atoms the network simulation has to balance 2n isotopomer species, bon-
domer simulation has only to balance half the number of molecule species (2n−1)
[112, 127]. As a disadvantage, the bondomer concept is limited to the use of uniform
13C-labeled tracers.

Another description that is closely related to isotopomers and bondomers is
the concept of “X-groups” [110]. Here uniformly labeled substrates (e.g., [U-
13C]glucose) are highly diluted with the unlabeled substrate (1:30) [110]. This not
only reduces signal intensity in the NMR spectrum but also simplifies the iso-
topomer computation, since for the formation of a new carbon bond the probability
of two 13C atoms meeting can be neglected, and related isotopomer species will
not be present and therefore need not to be considered in the mathematical formal-
ism. For example, of the 64 isotopomers that describe the labeling in the six carbon
compound glucose, 42 isotopomers can be excluded from network simulation [110].

In a typical isotopomer network simulation, the steady-state abundance of hun-
dreds of isotopomer fractions is computed, comprehensively predicting the labeling
state of the network. Afterward, this information can be used to predict NMR or
MS measurements (see Fig. 9.6). Typically, the number of predicted label measure-
ments is much smaller than the hundreds of isotopomers simulated in the network,
and a reduction of the complexity of the calculations would reduce computation
time. As mentioned in Section 9.4, the complexity of network simulation can usu-
ally be reduced by lumping metabolite pools. In addition, approaches have been
developed that further reduce the number of simulated labeling states and therefore
computation time [9, 43, 131]. In an approach by Antoniewicz et al. [9], network
simulation is performed with a relatively small number of elementary metabolic
units (EMU), which are identified by tracing molecule species back through the
network, starting with those detected by label measurements and ending up in the
labeled substrates [9]. In another approach, graph-based topological analysis and
decomposition of isotope labeling networks (ILN) allow a reduction in the size
of the network (and thus fewer cumomer equations) in a similar way [131]. Both
approaches can be applied to any metabolic network, and they have been reported

4By probabilistic relations, a small fraction of the newly formed carbon bonds will also result in
new 13C–13C pairs, which is accounted for in the bondomer approach.
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to reduce computational times by three orders of magnitude, which opens the door
for simulation of computationally expensive non-stationary labeling experiments
[146]. In addition, EMU models allow simulation of the label redistribution of mul-
tiple isotopes of multiple elements, e.g., 2H, 13C, 15N, and 18O. Here, it should be
noted that the number of isotopomer species increases exponentially with the num-
ber of labeled positions in a molecule. While glucose (6 carbons) has 26 (64) carbon
isotopomers, it has 224 isotopomers if C, H, and O isotopes are considered. It has
been shown that a network simulation with 2H-, 13C-, and 18O-label requiring 106

isotopomers can be simulated with less than 500 EMU species [9].

9.5.3 Finding Flux Values that Best Explain the Labeling Data

Due to the mathematical structure of isotopomer simulations, the direct computation
of fluxes from labeling signatures is not possible. Conversely, labeling signatures
can be computed from fluxes, i.e., central to the flux analysis process (Fig. 9.2) is
an algorithm that simulates labeling signatures (NMR or MS data) based on esti-
mated flux values. The flux values that explain the labeling data have to be found
by a search algorithm. The determination of flux values requires some basic under-
standing of the search algorithms and can be computationally demanding. Also,
the error statistics for the flux values cannot be obtained in a straightforward way
(see Section 9.5.4). The principle of the “non-linear inverse problem” in 13C-MFA
is depicted in Fig. 9.7, simplified for the relation between one flux and one mea-
surement. By varying the flux values in the metabolic model, a network flux state
is sought that best explains all labeling measurements. For this purpose, different
classical optimization algorithms are commonly applied, typically gradient-based
search algorithms (e.g., [137, 142]), stochastic global optimization like simulated
annealing (e.g., [111]), or combinations of these methods ([145, 150]). In general,
these algorithms iteratively improve the quality of an initial guess for the fluxes until
a stopping criterion is reached. In each iterative step, the quality of the flux values
is judged by computing the following value (see also Fig. 9.7.):

X2 =
∑

j

(
mexp

j − mpred
j

)2

σ 2
j

(9.3)5

where mj
pred and mj

exp are the predicted and measured value for the jth labeling mea-
surement, respectively, with standard deviation σ j. The formula sums the squares of
differences between the predicted and measured labeling data – weighted by the
standard errors in the measurements. The summands are also called residuals. Label
measurements with large standard deviation have less weight in the sum and so the
optimization will tolerate larger deviations for measurements with larger statistical

5In some cases, the formula also includes scaling factors for the measurement data.
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for the flux vi, the optimization process finds different values for the label measurement (dashed
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uncertainty. The optimization algorithm minimizes the χ2 (chi-square) value by
changing the values for the free fluxes in the system (within boundaries set in the
model) and predicting the labeling signatures (Fig. 9.6). Gradient-based optimiza-
tions move only “down-hill” and can get stuck in local minima, thus missing to
find the global optimum (global minimal χ2). Therefore, especially for gradient-
based algorithms, multiple optimization runs with random start points should be
performed to increase confidence in the optimization outcome.

The reliability of the final flux values can be assessed by considering the follow-
ing questions:

1. With random start points, does the optimization consistently find the same opti-
mal flux values? Depending on the experimental data and the modeling config-
uration (e.g., the choice of precursor labeling), multiple optimization runs may
result in different solutions with the same χ2 value (degenerate optima). In par-
ticular, there could be high variability in some fluxes, while others are consis-
tently estimated with the same value.

2. Are important fluxes given by different pieces of data (redundant data)? In an
extreme case, the value for a particular flux could be dependent on the value of
only one measurement. This kind of relationship is described in the measurement
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sensitivity matrix, which can be obtained for example in the data outputs of
the 13CFLUX software (see Section 9.5.5). Figure 9.7b depicts the sensitivity
(δmj

opt/δvi
opt) between one measurement and one flux as the slope at a particular

point of the system function. If the value of the slope is very low, there is low
sensitivity of the measurement value to a change of the flux value, i.e., the flux
value is not well defined by the measurement. The sensitivity matrix contains
these values for all pairs of free fluxes and measurements.6 As derived from the
sensitivity matrix and the measurement statistics, the contribution matrix shows
how many redundant measurements contribute to each flux [8].

3. Are the fluxes statistically well determined? In 13C-MFA studies, the estimation
of confidence intervals is very important in order to know how much precision
there is in the flux values (see Section 9.5.4). If the confidence interval for a
flux is of similar magnitude to the flux value itself, then there is low statistical
confidence in the value.

4. Can the difference between model prediction (best fit) and measurement data be
attributed to random noise in the data only? If it is assumed in Eq. (9.4) that the
σ -values represent normal distribution of statistical noise in the measurement
data, the final minimal χ2 (chi-square) value can be used for a statistical test
for goodness of fit. For this purpose, the degree of freedom in the model has to
be known. If there are k signals in the labeling data that could assume values
freely and independent from each other (independent measurements) and if in
the model l fluxes can be varied independently (free fluxes), then the model has
n = k−l degrees of freedom. Now the theoretically allowed sum of errors χ2

n,1−α

can be taken from a chi-square distribution table (n is the degrees of freedom;
1−α is the confidence level of the test) [28, 137]. If the iteratively determined
sum of errors (χ2) exceeds that value, then the deviations between predicted
and labeling data could be caused by inconsistencies in the assumed metabolic
network or gross measurement errors. Inspection of the individual residuals
(Sumands in Eq. 9.4) may reveal that some label measurements have outstand-
ingly high deviation from the model. These “gross-error” measurements can be
removed and the iterative fitting repeated in order to test if the modeling result
can be obtained without the removed measurement and if the χ2 sum will then
be acceptable.

9.5.4 Statistical Analysis of Flux Results

For interpretation of the flux values obtained from 13C-MFA, the numbers should
always be given with statistical uncertainty. This is often done by computation of
a standard deviation (also known as symmetrical 68% confidence interval). How-
ever, particularly for exchange fluxes, the real statistical uncertainty is mostly better

6Another property of the sensitivity matrix: its numerical rank indicates the number of independent
fluxes that can be derived from the labeling data.
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approximated by calculation of unsymmetrical confidence intervals [137]. The sta-
tistical uncertainty in the flux is derived from the statistical errors in the labeling
measurements and the physiological measurements. This can be done in different
ways (see below). In many flux studies, the importance of the statistical analysis for
the interpretation of the results has been emphasized. The mathematical approaches
introduced below are in part recent developments.

9.5.4.1 Measurement Statistical Errors

In the first place, the statistical reliability of the measurements has to be estab-
lished, taking care to distinguish instrumental and experimental errors. Repetition
of an entire labeling experiment should usually be less accurate than repeated mea-
surement of a sample on the instrument. Errors in label measurements have been
determined or estimated in different ways. In NMR experiments, where a relatively
large sample size is needed and experimental repetition is cumbersome, the statis-
tical errors may be estimated by using the larger of (a) the signal-to-noise ratio of
the NMR spectrum or (b) the difference between intensities from duplicate spectra
[111]. In GC/MS analysis, true experimental repetition is more easily done because
of the much smaller sample size needed for GC/MS analysis, i.e., a labeling experi-
ment can be repeated several times.

9.5.4.2 Linearized Statistics

The errors in the measurements can be translated into errors in the flux measure-
ments by using the concept of linearized statistics. The contribution of the standard
error in a measurement to the error in the flux can be derived from the local deriva-
tive (sensitivity) shown in Fig. 9.7b. [28, 136]. This approach suffers from signif-
icant inaccuracies in particular for the estimation of large exchange fluxes. This
problem has been in part reduced by the use of [0, 1]-rescaled exchange fluxes in
the statistical model, as described in detail by Wiechert et al. [137].

9.5.4.3 Monte Carlo Statistics

As a different approach, Monte Carlo stochastic simulation has been used to exam-
ine how the elucidated fluxes change when uncertainty in the form of normally
distributed noise is added to the data [43, 111, 113, 142, 150]. This means that the
original experimental data are re-sampled many times based on the standard devia-
tions, and the flux parameter fitting procedure is repeated each time. This approach
should be more accurate than the use of linearized statistics, but it has the disadvan-
tage of being computationally more demanding. Also, its accuracy is limited by the
number of times the data are re-sampled.
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9.5.4.4 True Confidence Intervals

A more recent approach [8] derives the flux statistics as confidence intervals based
on the χ2 value used in flux parameter fitting (Eq. 9.4; see Fig. 9.7c). For a selected
flux, the originally optimized value is increased step by step and each time the
other free fluxes are re-optimized by minimization of χ2 (the usual optimization
procedure to find the optimum flux values). With deviation of the selected flux
from its original optimum, the re-optimized χ2 value will increase continuously.
If the increase of the χ2 value reaches a limit (given by a χ2

1,1−α distribution), the
selected flux has reached the threshold of the upper confidence interval. Similarly,
the lower bound of the confidence interval is derived by decreasing the selected flux.
Antoniewicz and co-workers [8] showed that this method can produce confidence
intervals that are identical to exactly known intervals.

9.5.5 Software Tools for 13C-MFA

13CFLUX is a software package developed by the research group of W. Wiechert
(University of Siegen, Germany) [139]. The software runs under Linux environ-
ments (PC). For academic use, the software is freely available from the authors
upon request. The user has to define a model as a collection of data sheets following
a specific format. The model files allow the configuration of any metabolic network
along with free definition of network stoichiometry and carbon transitions, input
label, extracellular flux measurements, and different types of NMR or MS data. Data
extraction and processing, such as correction of MS data for naturally occurring iso-
topes, has to be done by the user. From the model text files, flux parameter fitting or
statistical analysis can be performed. The generated data have to be collected from
textual outputs of the software. The software does not require programming skills
but is not particularly user-friendly (limited documentation, simple user interface,
limited error messages).

Currently, a new version of 13CFLUX is under development. A feature of the
new software (April 2008; W. Wiechert, personal communication) will be very fast
simulation of large networks based on the reduction of network size as described in
[131]. This will allow increased accuracy in the calculation of confidence intervals
and the analysis of labeling experiments in high throughput. The software package
will also support instationary flux analysis [75]. Model definition will be in exten-
sible markup language (XML) format, allowing the model files to be read by other
systems biology software packages.

FiatFlux [149] is an open source software package running under the MatLab©
environment. FiatFlux is more user-friendly than 13CFLUX but does not have the
capability for global isotopomer balancing of metabolic networks. It consists of two
independently running modules: flux ratio analysis (RATIO) and 13C-constrained
flux analysis (NETTO). The RATIO software package is preconfigured for the
analysis of protein-bound amino acids by GC/MS of t-butyl dimethylsilyl (TBS)
derivatives. It can extract labeling information from raw MS data and automatically
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derives multiple flux ratios, including relevant statistics. The glucose input label can
be defined as molar abundance of [1-13C]glucose or [U-13C6]glucose.

NMR2Flux [111] is a software dedicated to flux analysis with NMR data. The
user creates data sheets as input files that define the network stoichiometry and
carbon transitions, input label, extracellular flux measurements, and NMR data. The
program can then find optimal flux solutions by simulated annealing. To change
model configurations, the software has to be modified by re-programming.

9.6 Concluding Remarks

In this chapter, the use of steady-state MFA with use of stable isotope tracers
has been outlined with a focus on its application to plants. Isotopic tracers have
been used from the pioneering days of research in plant metabolism to the more
recent 13C-MFA studies that give quantitative insights into the in vivo function of
metabolic networks. Following a general overview on the major steps involved in
a 13C-MFA experiment, the steady-state condition, as well as some issues of net-
work construction, experimental design, and flux estimation, was reviewed in some
detail. It should be kept in mind that the validity of the results of flux analysis experi-
ments is limited by the incompleteness of information available to build the network
models.

In recent years, the number of published 13C-MFA studies in plants increased
substantially. Among the challenges for the further development in plant 13C-MFA
methods are the currently limited ability to resolve fluxes in-between subcellular
compartments, the consideration of substrate channeling in network models, and the
reconstruction of flux models by more exact data. Another challenge is the integra-
tion of flux data with data from metabolite profiling, enzyme profiling, and transcript
or proteome analysis.
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65. Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-
embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:2006.0034.

66. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids
in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett
400:271–274.



280 J. Schwender

67. Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state
flux measurements in plant systems using the metabolic network of Brassica napus embryos.
Phytochemistry 68:2211–2221.

68. Ma H, Zeng AP (2003) Reconstruction of metabolic networks from genome data and analy-
sis of their global structure for various organisms. Bioinformatics 19:270–277.

69. Malloy CR, Sherry AD, Jeffrey FMH. (1988) Evaluation of carbon flux and substrate selec-
tion through alternate pathways involving the citric acid cycle of the heart by 13C NMR
spectroscopy. J Biol Chem 263:6964–6971.

70. Matsuda F, Wakasa K, Miyagawa H (2007) Metabolic flux analysis in plants using dynamic
labeling technique: Application to tryptophan biosynthesis in cultured rice cells. Phytochem-
istry 68:2290–2301.

71. McClung CR, Hsu M, Painter JE, Gagne JM, Karlsberg SD, Salome PA (2000) Integrated
temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidop-
sis genes encoding serine hydroxymethyltransferase. Plant Physiol 123:381–392.

72. McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD (2000)
Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis
pathway in tobacco. Plant Physiol 124:153–162.
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Chapter 10
Application of Dynamic Flux Analysis in Plant
Metabolic Networks

Amy J.M. Colón, John A. Morgan, Natalia Dudareva, and David Rhodes

10.1 Introduction

Metabolic networks are composed of metabolic pathways that consist of biochemi-
cal reaction steps. The functionality of pathways within a network is determined by
metabolic fluxes, defined as the amount of converted metabolite per unit of time, per
cell (or per unit mass of tissue), through each biochemical step within a metabolic
pathway. The flux through a pathway depends on the kinetic properties of enzymes,
as well as on their cellular levels and activities, which are regulated by gene expres-
sion, posttranscriptional, translational, and/or posttranslational modifications, and
enzyme stability. Metabolic flux analysis (MFA) is a tool that has traditionally been
used in microbial systems to assess the effects of environmental and targeted genetic
changes on in vivo rates of metabolites synthesis. MFA can be used to gauge the
degree of success of specific genetic interventions aimed at diverting metabolic flux
to desirable products. The techniques of MFA have therefore become important
tools in metabolic engineering and systems biology. To fully understand how a cell
functions, analysis needs to include not only a description of its molecular parts,
which can be obtained from molecular biology methods, but also a description of
flux distributions within the complex and dynamic metabolic networks [26]. As will
be discussed in the next section, MFA via computer modeling of metabolism can
provide information about the proximity of certain compounds to one another, the
contribution of a pathway or part of a pathway to end products, the existence of
storage pools, and regulation and reversibility of reactions.

The established steady-state metabolic flux analysis methods used in microbial
systems are difficult to apply to higher plant metabolic systems due to large, slowly
turning-over metabolite pools, a high degree of compartmentation, and duplicate
pathways located in different organelles (see Chapter 9). Furthermore, steady-state
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methods cannot be readily applied to analysis of fluxes in tissues that are undergo-
ing marked diurnal variations in metabolic activities. Flux analysis methods appli-
cable over relatively short time periods (i.e., hours and minutes) are required to
obtain snapshots of metabolic processes in these systems. Dynamic flux analy-
sis is a suitable strategy, and essentially this entails supplying a labeled precursor
of known isotopic abundance, to the tissue or cells, and monitoring the labeling
patterns of intermediates and end product over time. However, a disadvantage of
dynamic flux analysis when compared to steady-state methods is that dynamic flux
analysis requires multiple samples and measurements of intracellular metabolite
concentrations.

NH3 Glu Asp Thr
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Pro

A B C D
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k3
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Fig. 10.1 Metabolic pathway of ammonia assimilation in yeast (Candida utilis) investigated by
Sims and Folkes [28]. NH3 is assimilated into glutamate (Glu) in the reaction catalyzed by NADP+-
glutamate dehydrogenase (k1); it is also incorporated into the amide group of glutamine (Gln-
amide) in the reaction catalyzed by glutamine synthetase (k2). Note that the rate of formation
of Gln-amide must be the same as the rate of formation of the amino nitrogen moiety of Gln
(Gln-amino) from Glu (k2). Glu has numerous metabolic fates, only three of which are shown
here: transamination to alanine (Ala) (k4), transamination to aspartate (Asp) (k5), and conversion
to proline (Pro) via negligible pools of glutamyl-5-phosphate, glutamic-5-semialdehyde, and Δ1-
pyrroline-5-carboxylate (k6). Asp is further metabolized to threonine (Thr) (via negligible pools
of intermediates) (k7) and is incorporated into the amino moiety of asparagine (Asn-amino), at
the same rate as Gln-amide serves as the amide donor for asparagine in the reaction catalyzed by
asparagine synthetase (k3). Other metabolic fates of amino acids include incorporation into amino
acid residues of protein (not shown). If NH3 is supplied in labeled form (A), then Glu and Gln-
amide will behave as primary products (B); Gln-amino, Asn-amide, Ala, Asp, and Pro will behave
as secondary products (C); and Thr and Asn-amino will behave as tertiary products
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A classic early example of dynamic flux analysis was its use in yeast to deter-
mine fluxes via the amino acid synthesis network in an exponentially growing yeast
culture, pulsed with (15NH4)2HPO4 for 30 min, taking samples at 5, 15, and 30 min
after transfer. The culture was then chased with unlabeled (NH4)2HPO4 for 30 min-
utes, again taking samples at 5, 15, and 30 min after the transfer [28]. This labeling
study over a time course revealed that glutamic acid and glutamine-amide are the
only amino acids that derive their nitrogen directly from ammonia (Fig. 10.1). All
of the other amino acids apparently derive their amino N from glutamic acid or
glutamine-amide. This was the first study of its kind, and it laid the foundation for
dynamic labeling studies. Even though this study was conducted in yeast, we will
show in this chapter that the basic principles described by Sims and Folks [28] can
be applied to dynamic flux analysis in plant systems.

MFA by dynamic isotopic labeling is a powerful tool for pathway discovery as
well as the study of pathway regulation as has been demonstrated in the study of
choline synthesis in tobacco [14], the phenylpropanoid pathway in potato tubers
[10, 11], and the benzenoid/phenyl-propanoid network in petunia [4, 16]. In this
chapter, we will present examples of the use of dynamic flux analysis in plants,
discuss different labeling strategies, and finally discuss some of the advantages and
disadvantages of this approach compared to a steady-state approach.

10.2 Dynamic Flux Analysis for the Determination
of Precursor–Product Relationships in Plants

The essence of dynamic flux analysis is the quantification of the labeling patterns of
intermediates and end products of a metabolic pathway in a time course, following
the supply (pulse) or removal (chase) of a labeled precursor of known stable isotope
abundance or specific radioactivity. Metabolic pool sizes must also be experimen-
tally determined. Ideally, the system should be in metabolic steady state; that is, the
rate of synthesis of each compound should be equal to its combined rates of utiliza-
tion, thus maintaining constant metabolic pool sizes with respect to time. Isotopic
labeling of the intermediates and end products can be determined by mass spec-
trometry (MS) or nuclear magnetic resonance (NMR) spectrometry in the case of
stable isotopes, or by scintillation counting of purified intermediates/end products
in the case of radioisotopes. Various mathematical and/or computational tools must
then be applied to the data to derive metabolic fluxes. We will discuss different
approaches to this in subsequent sections.

10.2.1 An Early Example of Dynamic Flux Analysis

As mentioned earlier, Sims and Folkes [28] were the first to use dynamic flux anal-
ysis in an elegant study of the time course of labeling of free amino acids and pro-
tein amino acids in an exponentially growing culture of yeast, pulsed with 15NH4

+

for 30 min, and then chased with unlabeled NH4
+ for a further 30 min. In this
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study, they describe differential equations and their solutions for calculating the iso-
tope abundance of intermediates in the amino acid biosynthesis pathways, when
the organism is growing exponentially. In this approach, unknown rate values were
progressively adjusted until a close fit of simulated to measured data was achieved.
This approach is most suitably applied to a fairly uncharacterized pathway where
little is known about precursor–product relationships. Their model system consists
of branching reaction chains along which materials and isotope pass from one com-
ponent to the next (Fig. 10.2).

The base equations used by Sims and Folkes assume that the isotopic abundance
of any component in the system will depend on its own rate of synthesis as well
as the rates of synthesis of each of the components upstream of it in the reaction
network. Using a series of differential equations, they derived kinetic equations that
describe the labeling patterns of each intermediate as a function of time, pool sizes,
and rates of synthesis. A constraint of these equations is that the rate of synthesis
must equal the rate of utilization; for example in Fig. 10.2, B3 must equal B4 (the
combined utilization fluxes from compound B), and thus the pool sizes of interme-
diates remain constant with time.

The kinetic equations that describe the labeling patterns of compounds B, C, and
D (during the pulse phase) in the hypothetical network shown in Fig. 10.2 are as
follows:

B ′ = A′ (1 − e−bt
)

A D C B 

A’ = A1 D’ = D1C’ = C1B’ = B1

B2  C2 D2
B3 C3 D3

B4 C4 D4 

B4 – C3 C4 – D3 

Isotope abundance
at t = 0h (atom %)

Pool Sizes
(nmol·g FW–1) 

Rates
(nmol·h–1·g FW–1) 

Turnover 
con-stants (h–1)

A’ = A1 = 90%

B’ = B1 = 0%

C’ = C1 = 0%

D’ = D1 = 0%

B2 = 500

C2 = 500

D2 = 500

B3 = B4 = 5000

C3 = C4 = 2000

D3 = D4 = 1000

b = 10

c = 4

d = 2

Fig. 10.2 A simplified reaction network similar to that described by Sims and Folkes [28], where
A is the isotopically labeled precursor (15NH4

+) and B, C, and D are metabolites (amino acids), as
indicated in Fig. 10.1. Important parameters for simulating the labeling patterns of intermediates in
this metabolic scheme are isotopic abundances at zero time, pool sizes of intermediates, and their
rates of synthesis and utilization. If the rate of synthesis of an intermediate is equal to its combined
rate of utilization, then the pool of an intermediate will remain constant with time (t), and the
labeling of the pool will become a function of the pool’s turnover constant (rate of synthesis/pool
size) (see text for further details)
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C ′ = A′
(

c
(
1 − e−bt

)− b
(
1 − e−ct

)
c − b

)

D′ = A′
(

cd (c − d)
(
1 − e−bt

)− bd (b − d)
(
1 − e−ct

)+ bc (b − c)
(
1 − e−dt

)
(c − d) (b − d) (b − c)

)

where

A′ = isotope abundance of precursor (atm%)
B′ = isotope abundance of pool B (atm%)
C′ = isotope abundance of pool C (atm%)
D′ = isotope abundance of pool D (atm%)
b = turnover constant of pool B (h−1) [rate of synthesis·pool size−1])
c = turnover constant of pool C (h−1) [rate of synthesis·pool size−1])
d = turnover constant of pool D (h−1) [rate of synthesis·pool size−1])
e = exponential function
t = time (h)

In this series of equations, the isotopic abundance of compound B (B′) during
the pulse phase is only dependent on the isotopic abundance of its precursor A (A′)
and its own pool size and rate of synthesis. A convenient expression of both pool
size and rate of synthesis (which must equal rate of utilization in a metabolic steady
state) is the turnover constant for the pool. Thus, the labeling of compound B (B′)
is dependent on the isotopic abundance of A (A′) and the turnover constant for pool
B (b). The isotopic abundance of compound C (C′) is dependent on A′, b, and c.
The isotopic abundance of compound D is dependent on A′, b, c, and d. As can be
seen, for every compound further along in the reaction chain, the kinetic equation
becomes increasingly complex. Different kinetic equations must be used for the
chase phase (not shown), but these utilize the same turnover constants [28].

Sims and Folkes systematically adjusted the turnover constants until a satisfac-
tory fit to the experimental data was obtained for all measured compounds. Since
the turnover constant of a pool is the rate of synthesis divided by pool size, and
since the pool size is experimentally determined, then in essence, this gives rise
to the best estimate of synthesis rate (flux). This is similar to the strategy described
more recently in Stephanopoulos et al. [29], where iterative adjustments in fluxes are
employed until a satisfactory fit between experimentally determined and computed
isotopic labeling is achieved.

An alternative approach to simulating the labeling behavior of intermediates in
the pathway described by Sims and Folkes [28] is to use a simple iterative com-
puter model described at www.hort.purdue.edu/cfpesp/models/models.htm. This
approach is easily applied to fully characterized networks. The output from this
approach is virtually identical to that calculated from the kinetic equations of Sims
and Folkes:
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z = Mx/2000

For t = 0 To Mx Step z

B1 = (B1 ∗ B2 + A1 ∗ z ∗ B3)/( B2 + z ∗ B3)

B2 = B2 + z ∗ B3

B1 = (B1 ∗ B2 - B1 ∗ z ∗ B4)/( B2 - z ∗ B4)

B2 = B2 - z ∗ B4

C1 = (C1 ∗ C2 + B1 ∗ z ∗ C3)/( C2 + z ∗ C3)

C2 = C2 + z ∗ C3

C1 = (C1 ∗ C2 - C1 ∗ z ∗ C4)/( C2 - z ∗ C4)

C2 = C2 - z ∗ C4

D1 = (D1 ∗ D2 + C1 ∗ z ∗ D3)/( D2 + z ∗ D3)

D2 = D2 + z ∗ D3

D1 = (D1 ∗ D2 - D1 ∗ z ∗ D4)/( D2 - z ∗ D4)

D2 = D2 - z ∗ D4

[subroutine to plot A1, B1, C1, and/or D1 as a function of t] Next t
where

A1 = isotope abundance of precursor (atm%) [supplied]
B1 = isotope abundance of pool B (atm%)
C1 = isotope abundance of pool C (atm%)
D1 = isotope abundance of pool D (atm%)
B2 = pool size of pool B (nmol·gfw−1)
C2 = pool size of pool C (nmol·gfw−1)
D2 = pool size of pool D (nmol·gfw−1)
B3 = rate of synthesis of pool B (nmol·h−1·gfw−1)
C3 = rate of synthesis of pool C (nmol·h−1·gfw−1)
D3 = rate of synthesis of pool D (nmol·h−1·gfw−1)
B4 = combined rate of utilization of pool B (nmol·h−1·gfw−1)
C4 = combined rate of utilization of pool C (nmol·h−1·gfw−1)
D4 = combined rate of utilization of pool D (nmol·h−1·gfw−1)

t = time (h)
z = iteration interval (in this case 1/2000th of total time, Mx = scale of X-axis
= 1 h)

Or in more general terms,

fx=
fx Cx+

k∑
i=1

f in
i vin

i dt −
l∑

j=1
f out

j vout
j dt

Cx+
k∑

i=1
vin

i dt −
l∑

j=1
vout

j dt

Cx = Cx +
k∑

i=1

vin
i dt −

l∑
j=1

vout
j dt
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where x represents the metabolic pool with fractional enrichment fx and pool size
Cx, and where k represents the input fluxes and l the output fluxes. As an iterative
computation, dt would be a small iteration interval.

Through each iteration, or short-time interval (z), material of known isotope
abundance is drawn into each pool, mixed, and withdrawn from each pool at spec-
ified rates, and new isotope abundance and pool size are calculated and used in the
subsequent iteration.

An advantage of the iterative model over the Sims and Folkes kinetic equations
is that it can be used in cases where a metabolic steady state is not maintained, i.e.,
where rates of synthesis and utilization are not equal, and where pools are allowed
to expand and deplete with time. The iterative model can be readily applied to con-
sider multiple pools of intermediates with different turnover rates (to be discussed
subsequently). Another advantage of the iterative computer modeling approach is
that the complex kinetic equations of Sims and Folkes can be replaced with just
four short lines of code for each metabolic pool in the reaction network, and chase
kinetics can be readily simulated by adding a single line of code.

Often data from a labeling study will reveal a discrepancy between experimental
data and what is known about the metabolite sequence in a pathway. For example,
labeling data from the Sims and Folkes study revealed some inconsistency in iso-
topic abundance of aspartic acid, lysine, and histidine and their corresponding pro-
tein amino acid residues. Data suggested that only part of the free aspartate amino
acid pool is available as an intermediate in protein synthesis because a portion of it
is spatially separated in a storage pool, perhaps localized in the vacuole. The stor-
age pool may operate as part of a cellular regulatory mechanism. It was necessary
to invoke a storage pool in addition to the metabolically active pool of these amino
acids, in order to achieve a good fit for labeling in both free and protein-bound
amino acids with a single turnover constant.

The effects of a storage pool on labeling patterns can easily be visualized using
the iterative computer model approach (Fig. 10.3). According to the graphical plot
of isotopic abundances and pool sizes over a 120-min pulse-chase time course, it
appears as though D is more heavily labeled than the bulk pool of C (the sum
of C(met) and C(stor)) because of isotope dilution of the metabolic pool of C
(C(met)) with its storage pool (C(stor)), which remains mostly unlabeled. From
this observation, one would be tempted to assume that D would precede C in the
reaction network. Moreover, during the chase phase (Fig. 10.3), label does not
flow out of the bulk pool of C as rapidly as the pool of D, again suggesting that
it does not precede D in the metabolic pathway. Thus, substantial care should be
given to interpreting the labeling time courses in terms of precursor–product rela-
tionships. The precise labeling patterns of intermediates are critically dependent
on relative sizes of the metabolic and storage pools and the flux rates between
them.

The Sims and Folkes approach has been used as a framework to determine iso-
topic abundance of plant metabolites and quantify flux, as has been successfully
performed in a number of plant systems including analysis of 15N-labeling of amino
acids in Lemna minor [21], tomato [19], and cowpea [13] cell cultures supplied
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Fig. 10.3 A hypothetical reaction network including both a metabolic (C (met)) and storage
(C(stor)) pool for compound C. The labeling kinetics of the network and pool sizes of intermediates
when pulsed with 90% labeled precursor A, then chased with 1% labeled A at 61 minutes, are
shown. For pool C, the average labeling of the two pools of C = ((C1∗C2) + (C5∗C6))/(C2 +
C6), and the total pool size of C = (C2 + C6) are shown. Hypothetical network created with
Microsoft Visual Basic (see also Color Insert)

with 15NH4
+. It was further extended to consider 13C-labeling of amino acids in

Lemna (Colón and Rhodes, unpublished data), potato [23], and cultured rice [12]
and Arabidopsis [3] cells; deuterium labeling of benzenoid intermediates in petunia
flowers supplied with deuterium-ring-labeled phenylalanine (2H5-Phe) [4, 16]; and
radioisotope labeling of various metabolic pathways in excised leaf discs of tobacco
[14]. We will discuss a few of these examples in subsequent sections.

10.2.2 Dynamic Flux Analysis in Plant Systems: Examples
with 15NH4

+

In our first plant example, the kinetic equations developed by Sims and Folkes
were modified for use in the computer simulation of isotopic abundance of amino
acids in the simple plant Lemna minor (duckweed) [21]. In this simulation program,



10 Application of Dynamic Flux Analysis in Plant Metabolic Networks 293

the fluxes via each amino acid moiety were estimated using the iterative approach
described earlier. The output of the program was in graphical form where curve
fitting was performed, and best fit was visually determined. Through the use of
the iterative computer simulation, the authors were able to test a series of mod-
els to determine the main pathway of ammonia assimilation in Lemna. The kinetic
experiments in conjunction with 15N-ammonia labeling revealed that at least two
intracellular compartments are involved. The chloroplastic compartment contained
a glutamine synthetase-glutamate synthase (GS-GOGAT) cycle, and the cytosolic
compartment contained a second site of glutamine synthesis. Glutamine-amide N
was the first labeled product of ammonia assimilation. Unlike in yeast, glutamate
behaved as a product of glutamine-amide rather than as the primary product of
ammonia assimilation.

Another example using the concept outlined above was a study comparing the
assimilation of 15N into amino acids of water stressed and non-stressed tomato
cell cultures [19]. Here, the specific objective was to quantify the amount of N
incorporated into each of the amino acids, and to assess the flux changes associ-
ated with adaptation to water deficits resulting in a massive accumulation of pro-
line in the tomato cell cultures. Labeling studies with 15NH4

+ revealed that this
proline accumulation was due to (i) an increase in proline synthesis from its pre-
cursor glutamate, (ii) a decreased utilization of proline and other amino acids in
protein synthesis, and (iii) an overall decrease in the specific growth rate of the cell
culture.

A similar study was conducted on heat-shocked cowpea cell cultures [13]. Here,
a large accumulation of γ-aminobutyrate (GABA) was observed in response to heat
shock. Labeling with 15NH4

+ revealed that the increase in GABA level was due
to a marked and rapid increase in biosynthesis rate from glutamate. These results
suggested activation of glutamate decarboxylase in response to heat shock. This
enzyme was later shown to be activated by Ca2+-calmodulin in plants [8].

The use of N(O,S)-heptaflourobutyryl isobutyl derivatives (HFBI) of amino
acids, combined with GC-MS [9, 13, 19], greatly simplified the process and
sensitivity of 15N determination of specific nitrogen moieties of amino acids in
comparison to earlier methods involving the isolation of each amino acid, con-
version of the amino or amide moiety to ammonia, ammonia steam distillation,
and conversion to nitrogen gas for 15N analysis by MS [21, 28]. While the amide
groups of glutamine and asparagine are lost during HFBI derivatization, the use of
N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) derivatives [20]
preserves these acid labile moieties. Monitoring of the molecular ions of the MTB-
STFA amide derivatives therefore permits determination of the relative abundances
of unlabeled, single 15N-labeled and double 15N-labeled asparagine and glutamine
species. These ratios can be very informative about the occurrence of multiple
metabolic pools [20]. Because the amino group of glutamine and asparagine can
be specifically determined by HFBI derivatization, the amide 15N abundances can
be computed from the relative abundances of unlabeled, single 15N-labeled and
double 15N-labeled asparagine and glutamine MTBSTFA species, and amino 15N
abundance [20].
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10.3 Examples of Dynamic Flux Analysis of Whole Plant Organs

10.3.1 Choosing an Appropriate Labeled Substrate

In the above examples, we have only considered 15N studies in plant cell cultures,
but the approach of Sims and Folkes can be applied to 13C metabolism of whole
plant organs as well, in spite of some challenges that may arise. For example, label-
ing experiments with 13C can result in multiply labeled C atoms in a single com-
pound. The number of combinations of positionally labeled carbons is described
by the concept of isotopomers (isomers of isotopically labeled compounds). Label-
ing with 13C can result in up to 2n isotopomers, where n is the number of C atoms
present in a compound (for a more detailed discussion on C isotopomers see Chap-
ter 9 and [17, 33, 35]). Consideration of all isotopomers involves complex math-
ematical equations. A new approach that dramatically reduces the computational
difficulty of the analysis of labeling by single or multiple isotopic tracers is an ele-
mentary metabolite units (EMU) based method [2]. The EMU framework is a mod-
eling approach that consists of algorithms that can identify the minimum amount of
information needed to simulate isotopic labeling in a metabolic network. An EMU
is defined as a distinct subset of a compound’s atoms that can exist in a limited vari-
ety of mass states, depending on their isotopic compositions [34]. This approach
has been shown to decrease the required computational times to determine fluxes by
orders of magnitude in bacterial and animal systems.

In spite of some of the challenges that occur with 13C-labeling, it can provide
a wealth of new information about the C metabolism of a plant. Several labeling
methods have been developed over the years in order to better understand precursor–
product relationships in plant metabolic networks [25]. One method uses two chem-
ically different substrates, one labeled and the other unlabeled. This method pro-
vides information about the contribution of each substrate to the flux into a certain
metabolite of interest. However, this technique can only analyze metabolites that
have two distinct routes of synthesis. Another method is the use of positionally
labeled substrate(s), which informs about the metabolic fate of the different atomic
positions of the substrate molecule. It can also identify fluxes at branch points and
those involved in bi-directional reactions. A third method is bond-labeling, which
is a technique where a substrate is provided that only a fraction of its molecules
are uniformly labeled but the remainder are unlabeled. This technique can give a
direct measure of exchange flux. Other labeling possibilities include the combina-
tion of these three main methods to achieve a more specific goal. For example,
positional and bond-labeling methods can be combined to simultaneously analyze
the positional redistribution of label and the isotopomer distribution, which reflects
the cleavage of labeled bonds [25].

A study by Roessner-Tunali et al. [23] used the combined methods of 13C iso-
tope labeling and GC-MS as a fast and accurate way to compare kinetic aspects of
intracellular metabolism. They used this method to evaluate the exchange of carbon
between individual metabolite pools in two transgenic potato lines that have sig-
nificant variations in primary metabolism in their tubers. Their key findings were
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that there is starch turnover in tubers and that there is increased carbon partitioning
toward several amino acids because of low sucrose content in the transgenics. Using
time-dependent labeling experiments and differential equation models, they were
able to determine the patterns of the relative unidirectional exchange rates through
the major pathways of primary metabolism in both wild type and transgenic potato
lines.

The biosynthetic flux of tryptophan in cultured rice cells was determined by
dynamic flux analysis, where [1-13C]-serine was supplied over a 24-h time course
[12]. The metabolic flux value for Trp synthesis from Ser was estimated by fitting
a two-step pathway model describing the labeling dynamics of the pathway to the
observed labeling data of wild type rice cell cultures. This method was also applied
to determine the Trp biosynthetic flux value in a transgenic line of the rice cells
expressing a feedback-insensitive version of the anthranilate synthase α-subunit
gene (OASA1D). In these experiments, a constant pool size was assumed for Ser and
Trp in the rice cells over the experimental period. The flux value for Trp biosynthe-
sis was estimated to be 6.0 ± 1.1 nmol·g FW−1·h−1 in the wild type rice cells. The
flux was increased 6-fold in the OASA1D transgenic line and resulted in a 45-fold
increase in the cellular level of Trp.

10.3.2 Dynamic Flux Analysis of C Metabolism in Plants:
An Example in Lemna minor

As an example of how positionally labeled precursors are used to generate iso-
topic labeling data over a time course, positionally labeled 13C-Ala (1-13C1, 2-13C1,
3-13C1, and U-13C3-alanine) was supplied to Lemna minor at 2 mM concentrations
over a 24-h period. Stable isotope labeling and pool sizes of all free amino acids
were measured with respect to time by GC-MS using HFBI derivatives.

As can be seen in Fig. 10.4, if the main pathway of synthesis of 2-oxoglutarate, as
the carbon skeleton of glutamate (Glu), is via the partial TCA cycle (bold arrows),
then label from 1-13C1-alanine should not appear in Glu because it is lost in pyruvate
decarboxylation to acetyl-CoA (Fig. 10.5). Label from 2-13C1-alanine should appear
in the 5-position of Glu. Label for 3-13C1-alanine should appear in the 4-position of
Glu, and label from U-13C3-alanine should appear in the 4 and 5 positions of Glu
(Fig. 10.5).

The HFBI derivatives of glutamate (Glu) conveniently give fragment ions con-
taining carbons 2–5 (m/z 280 and 298), or 2–4 only (m/z 252) (Fig. 10.6), and thus
comparison of the 13C-labeling patterns of these fragment ions can give important
positional labeling information. Actual labeling data for the 252 + 5, 280 + 5, and
298 + 5 fragment ion clusters (expressed as percent Glu species with 0, 1, 2, 3, 4,
and 5 labeled atoms) from the time courses of labeling with the four forms of 13C-
alanine are shown in Fig. 10.7. Note that the labeling patterns are mostly consistent
with expectations of the flux map shown in Fig. 10.4.
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Fig. 10.4 Intermediates of glycolysis and tricarboxylic acid (TCA) cycle relevant to a consider-
ation of labeling patterns of intermediates when supplied with 13C-alanine (Ala) in different posi-
tions. Ala can be transaminated to pyruvate (PYR), which is then decarboxylated to acetyl-CoA
(AcCoA). The combination of AcCoA and oxaloacetate (OAA) yields citrate (Cit), which is further
metabolized to isocitrate (Isocit) and 2-oxoglutarate (2-OG). 2-OG can then serve as carbon skele-
ton for glutamate (Glu) either by transamination or via the GS-GOGAT cycle. If there is substantial
flux to Glu (bold arrows), with little recycling of 2-OG to OAA via succinyl-CoA (SCoA), succi-
nate (Suc), fumarate (Fum), and malate (Mal) (dashed arrows), then the supply of OAA must be
sustained by anaplerotic synthesis of OAA via the catalytic action of phosphoenolpyruvate (PEP)
carboxylase
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Fig. 10.5 Expected
positional labeling of Glu
when the metabolic scheme
shown in Fig. 10.4 is supplied
with Ala labeled in different
positions, and when there is
no recycling of 2-OG to
OAA. Labeling patterns will
be more complex if recycling
of 2-OG to OAA occurs (see
[29])



10 Application of Dynamic Flux Analysis in Plant Metabolic Networks 297

CH

CH2

CH2

C=O

C=O

O

O

C4H9

C4H9

NC

O

C3F7

H

1

2

3

4

5

N-HFBI-Glu, M = 455

M – 101 = 354

M –101 –56 = 298

M –101 –72 = 280

M –101 –100 = 252

Fig. 10.6
N-Heptafluorobutyryl
isobutyl derivative of
glutamate (HFBI-Glu). The
molecular weight (M) of the
derivative is 455. In electron
ionization GC-MS, it
fragments as indicated by the
arrows to give ions at m/z
354, 298, 280, and 252.
Notably, the ions at m/z 298
and 280 include carbons 2–5
of Glu, whereas the ion at m/z
252 includes only carbons
2–4 of Glu

Moreover, glutamine and GABA were labeled in an almost identical fashion to
Glu (not shown), whereas Asp and Asn remained essentially unlabeled regardless
of source of 13C-alanine (not shown). The latter is consistent with relatively little
flux from 2-oxoglutarate to malate (dashed line of Fig. 10.4), and with synthesis
of oxaloacetate primarily via PEP carboxylase. This example shows how labeling
studies with different positionally labeled substrates can potentially give indepen-
dent measures of citric acid cycle fluxes, including the anaplerotic flux to oxaloac-
etate. The combination of the obtained labeling data with the pool size data lays the
framework for dynamic flux analysis with the aid of interactive computer simulation
models [see 4, 16, 32].

10.3.3 Dynamic Flux Analysis with Radiolabeling

Radiolabeling can have certain advantages over stable isotope labeling in plant
metabolic labeling studies. The higher sensitivity of radiolabeling is preferable for
naturally small precursor pools to avoid perturbation of the network dynamics that
may otherwise occur when the labeling is performed with a high concentration of
stable isotope that can cause unnatural swelling of the metabolite pools, forcing
increased flux through the reaction network resulting in perturbation of the enzyme
kinetics of a network of interest. Matsuda et al. [10] took this into consideration
during their feeding experiments with 2H5-Phe in potato. This study used the com-
bined methods of stable isotope labeling, radiolabeling, and MFA to determine
the effects of β-1,3-glucooligosaccharide elicitor on the phenylpropanoid pathway
in potato. Radiolabeling with L-14C(U)tyrosine and 1-14C tyramine revealed that
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Fig. 10.7 Observed labeling of various fragment ions of HFBI-Glu at different times after sup-
plying positionally labeled 13C-Ala to Lemna minor, over a 24-h time course. Shown are the time
course of labeling of the m/z 252 + 5 fragment ion (Panels 1–3), the m/z 280 + 5 fragment ion
(Panels 4–7), and the m/z 298 + 5 fragment ion (Panels 8–12) of Glu when Lemna was supplied
with 1-13C1-Ala (panels 4,8), 2-13C1-Ala (panels 1,5,9), 3-13C1-Ala (Panels 2,6,10), or U-13C3-
Ala (Panels 3,7,11). All fragment ion clusters were analyzed for percent unlabeled species (�),
and species with 1 (�), 2 (•), 3 (©), 4 (�) or 5 (Δ) labeled atoms. The labeling of the m/z 252 +
5 fragment ion of Glu when Lemna was supplied with 1-13C1-Ala was not determined (ND)

octopamine is synthesized from L-tyrosine via tyramine then incorporated into N-p-
coumaroyloctopamine (p-CO). Flux analysis also revealed that p-CO has increased
synthesis in elicitor treated potatoes compared to control.

McNeil et al. [14] used 31P and 14C radiotracer labeling over a time course,
in combination with computer modeling, to analyze choline synthesis in tobacco.
The aim of the computer modeling was to identify the major route of biosynthetic
flux toward choline (Cho) production. This served as an important foundation for
understanding the metabolic constraints on Cho biosynthesis and the challenges
associated with metabolic engineering of new metabolic fate of Cho. The major
findings were that the primary route of Cho synthesis in tobacco is at the phospho-
base level with the first methylation step of phospho-ethanolamine to phospho-
monomethylethanolamine, and that free Cho can arise from phosphatidylcholine as
well as phospho-choline. These results could not have been attained through graph-
ical analysis of the labeling data alone, but required pool size data and computer-
assisted metabolic flux analysis.
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10.3.4 Dynamic Flux Analysis of Benzenoid Intermediates
in Petunia hybrida

Dynamic flux analysis along with other analysis tools can be used toward the ulti-
mate goal of mathematical modeling of metabolism. The goals of this modeling are
to compare metabolic fluxes between species or transgenic and wild type lines, to
predict the metabolic effects of environmental or genetic perturbations, and to quan-
tify flux control among different enzymes [15]. The accuracy of metabolic pathway
models is limited by the amount of experimental data available.

Mathematical modeling of metabolism has already been applied to plant photo-
synthesis and central carbon metabolism, but these approaches have great potential
to be applied to plant secondary metabolism as well [15].

Dynamic flux analysis has been used in recent years to elucidate the early steps of
the benzenoid/phenylpropanoid network in petunia flowers. In a first attempt, the iter-
ative computer modeling of metabolite pool size and isotopic abundance data resulted
in generation of a metabolic flux map of the network (Fig. 10.8). Metabolic flux maps
contain useful information about the contribution of various pathways to the overall
metabolic processes of substrate use and product formation. Comparison of flux maps
obtained from genetic perturbations of a species or under different environmental con-
ditions can assess the impact of these changes on a network or can provide information
about the importance of particular pathways or reactions in a network [29].

Metabolic fluxes of the benzenoid network in petunia flowers were determined
using nearly the same approach as Sims and Folkes in the determination of amino
acid synthesis rates. Here, however, the system was supplied with 2H5-Phe, and the
flux values (v) were systematically adjusted until a satisfactory fit of computer sim-
ulated to the experimentally obtained pool size and labeling data was achieved for
all measured compounds in the benzenoid network. Analysis of the petunia ben-
zenoid network fluxes revealed that both the CoA-dependent-β-oxidative and CoA-
independent-non-β-oxidative pathways contribute to the formation of benzenoid
compounds in petunia flowers, and uncovered that in addition to benzaldehyde, ben-
zylbenzoate is an intermediate between L-Phe and benzoic acid [4].

This approach was further refined and used to compare the change in flux of wild
type petunia flowers to a transgenic line, where the gene that encodes the enzyme
responsible for the synthesis of benzylbenzoate from benzoyl CoA and benzylalco-
hol (BPBT) was down-regulated [16]. Data were again obtained by isotopic labeling
with 2H5-Phe over a time course, followed by dynamic flux analysis. The compari-
son of the flux maps revealed that the knockout of BPBT resulted in a redistribution
of flux, with increased flux through the non-β-oxidative pathway in the transgenic
line compared to the wild type. However, this increase in flux through the non-
oxidative pathway was not sufficient to compensate for the loss of flux through the
β-oxidative pathway, resulting in an overall decrease in the endogenous benzoic acid
pool and a decrease in the emission of the major scent compound methylbenzoate.

In the above applications, the isotopic labeling of phenylacetaldehyde (PhAld)
was consistent with synthesis directly from Phe via negligible pools of intermediates
[4, 16]. It was previously believed that biosynthesis of PhAld from Phe was a
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Fig. 10.8 A flux map of the benzenoid and phenylpropanoid network in petunia petal tissue from
Boatright et al. [4]. Abbreviations used: 2H5-L-phenylalanine, 2H5-L-Phe; chorismate, Chor; pheny-
lacetaldehyde, PhAld; phenylethanol, PhEth; phenyllactic acid, PhLac; phenylpyruvate, PhPyr;
trans-cinnamic acid, CA; 4-coumarate plus caffeate, Caff; isoeugenol, IEug; eugenol, Eug; benzoyl-
CoA, BCoA; benzylbenzoate, BB [benzoic acid moiety = BBa; benzyl alcohol moiety = BBb];
benzyl alcohol, BAlc; benzaldehyde, Bald; benzoic acid, BA; unidentified non-volatile benzoic acid
conjugates, C1 and C2; phenylethylbenzoate, PEB [benzoic acid moiety = PEBa; phenylethanol
moiety = PEBb]; and methylbenzoate, MB.

multi-step process via several intermediates, since in yeast its biosynthesis proceeds
from Phe to phenylpyruvate via transamination followed by decarboxylation [5, 31].
However, the isolation of PhAld synthase and its biochemical characterization con-
firmed the modeling conclusions, and it showed that, indeed, PhAld is synthesized
in petunia from Phe by a novel single enzyme, catalyzing both decarboxylation and
amine oxidation reactions [7].

10.4 Advantages and Disadvantages of Dynamic Flux Analysis

Most of the metabolic flux analysis in microbial systems to date has used steady-
state isotopic labeling. Steady-state models reflect structural characteristics of a sys-
tem because they provide information about time invariant fluxes estimated from
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steady-state experiments. Isotopic steady state is achieved (1) when the label is
allowed to distribute through the metabolic network long enough to reach a sta-
tionary distribution in the different metabolite pools and (2) when the rate of incor-
poration of label into a metabolic intermediate equals its rate of outflow [25]. Here,
we must make the distinction between isotopic steady state (defined above) and
metabolic steady state. Metabolic steady states are readily achieved when metabo-
lite pool sizes stay constant over the course of the labeling experiment; thus, there is
no expansion or contraction of the metabolite pool. Metabolic steady state is readily
achieved in yeast and bacterial cell cultures; however, it is quite difficult or may be
impossible to achieve in whole plant systems that undergo developmental, diurnal,
and seasonal oscillations.

In a classic study by Dieuaide-Noubhani et al. [6], positionally labeled 13C glu-
cose was supplied to 3-mm-excised tips of 3-day-old maize primary roots that were
starved of carbohydrates. NMR was used to determine 13C enrichment of various
end products, and modeling of the labeling data was used to identify and quan-
tify the major fluxes involved in central carbon metabolism of maize root tips and
their response to stress. The significant findings of this study were that the pentose-
phosphate pathway (PPP) is active in maize root tips and consumes 32% of the
hexose phosphates entering the triose phosphates, with the remaining 68% being
consumed in glycolysis. This was the first time that the PPP was identified in maize
roots, which provided new insight about the relationship between glycolysis and the
citric acid cycle in glucose-metabolizing tissue. However, one method used in this
study was to pre-starve the root tips, in order to more rapidly obtain steady state,
which may have induced metabolic perturbations.

This example represents the major limitation of the steady-state approach applied
to plant systems. It performs best on metabolites that have rapid turnover, but many
plant tissues have carbohydrate and protein pools that are slowly and continuously
turning over, resulting in isotopic dilution of intermediates [24]. An alternative
approach is the use of transient/dynamic isotopic labeling. Steady-state labeling
usually only requires a single measurement of abundances, but dynamic labeling
requires repeated sampling of the fractional enrichment in metabolites over a time
course. Measurements are taken repeatedly during the curvilinear or dynamic phase
of the experiment before an isotopic steady state is achieved [15, 27]. A benefit of
the dynamic stable isotope MFA is the improved quality of flux estimates; also bet-
ter estimates of the size of “immeasurable” pools can be made using this approach
compared to isotopic steady state.

The fundamentally important case of photo-autotrophic metabolism can only
be studied by dynamic labeling methods [27] (Fig. 10.9); otherwise, metabolites
become uniformly labeled leading to an uninformative steady state [18]. For exam-
ple, supplying a plant with labeled 13CO2 will eventually result in uniform labeling
of carbons for all metabolites, and the isotopomer compositions achieved will be
a simple function of isotope abundance of the supplied 13CO2 (Fig. 10.9). Mea-
surements during the transient phase, before isotopic steady state is achieved, can
be extremely informative; the labeling patterns are influenced by uptake rate and
isotopic abundance of the labeled substrate, intracellular fluxes, and the pool sizes
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Fig. 10.9 Simulation of the time course of labeling of the Calvin cycle intermediate sedoheptulose-
7-phosphate (SH7P) when a photosynthetic tissue is supplied with 13CO2 of 95% 13C abundance
(i.e., C = 0.95), using the rates and pool size assumptions, is shown. The simulated time course
of absolute pool sizes of SH7P species with 0, 1, 2, 3, 4, 5, 6, or 7 labeled atoms and the sum of
all these species are shown in the lower left panel. In the lower right panel, the model-simulated
output at 4 h is compared with the theoretical steady-state percentages of SH7P species with up to
7 labeled atoms calculated assuming uniform labeling as follows: (see also Color Insert)

%0 labeled atoms=100∗(1-C)7

%1 labeled atoms=100∗7∗C∗(1-C)6

%2 labeled atoms=100∗21∗C2∗(1-C)5

%3 labeled atoms=100∗35∗C3∗(1-C)4

%4 labeled atoms=100∗35∗C4∗(1-C)3

%5 labeled atoms=100∗21∗C5∗(1-C)2

%6 labeled atoms=100∗7∗C6∗(1-C)
%7 labeled atoms=100∗C7

of the intracellular intermediates (Fig. 10.9). But when compared to steady state,
transient labeling experiments require more measurements to obtain precise flux
estimates, including multiple measurements of isotopic abundance and metabolite
pool sizes over a time course.

One of the major drawbacks of transient MFA when compared to steady state is
the difficulty and often inability to obtain constant pool sizes, thus forcing the use
of much more complicated equations to quantify flux values. Metabolite pool sizes
will change in response to environmental changes such as light intensity, removal
of tissue from the plant, floating tissue on liquid media, and especially uptake of a
large amount of supplied stable isotope precursor. This variation in metabolite pool
size may perturb the system and result in artificial flux estimates. This problem can
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be overcome with radioisotope labeling with a substrate of high specific activity,
which will provide adequate labeling using less substrate (see Section 10.3.3).

A drawback of all MFA studies is that they are valid only based on one concen-
tration of labeled substrate and may not accurately represent in vivo fluxes. Thus, if
possible, care should be taken to minimize the perturbation of the intracellular con-
centration of labeled substrate. Metabolic flux maps generated with this approach
provide a snapshot of flux distributions and precursor–product relationships. How-
ever, they do not contribute any knowledge about the kinetic properties of enzymes
involved in the network. Kinetic modeling of metabolism is required to formulate
a predictive model. Since kinetic modeling incorporates kinetic equations for each
reaction involved in a network, the model of the system will have some predictive
value with respect to alteration of Vmax, Km, or regulatory properties of enzymes of
the network (for more discussion on kinetic modeling see Chapter 11; [1, 22, 30]).

10.5 Summary and Conclusions

In this chapter, we have illustrated the use of various types of labeling strategies
to conduct dynamic flux analysis in plants with several examples, and also have
discussed the major advantages and disadvantages of this approach compared to
a steady-state approach. The examples presented herein clearly demonstrate that
often it is necessary to employ a time course in conjunction with isotopic labeling to
obtain information about the transient nature of plant networks, since a steady-state
labeling approach does not recognize the dynamic contribution of individual path-
ways, which can change over plant development, but rather averages their effects.
The dynamic flux analysis approach is ideal to determine precursor–product rela-
tionships in plant networks that undergo oscillations. In spite of the increased experi-
mental and computational efforts in the transient flux analysis approach, this method
will allow us in the future to model complex metabolic networks in plant tissues,
where it is often impossible to achieve steady-state status due to the slow turnover
of many intermediates and end products.
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Chapter 11
Kinetic Properties of Metabolic Networks

Jörg Schwender

11.1 Introduction

As seen in Chapters 8–10, models of cell metabolism based on steady-state
stoichiometric network simulation have been applied successfully to study plant
metabolism. However, such models deliver static views of metabolism and do,
therefore, not capture the dynamic behavior of metabolic networks. In addition to
reaction stoichiometry, kinetic simulation of metabolic networks considers the con-
centration of metabolites and enzymes, as well as the kinetic properties of enzymes.
Kinetic models can be characterized and interrogated, for example, to predict the
effect of changes in enzyme activities, in order to identify possible targets for the
re-design of metabolism, which is of central importance for biotechnology.

Overviews of published kinetic models of plant metabolism have been given by
Morgan and Rhodes [19] or Rios-Estepa and Lange [30]. Many studies on dynamic
simulation of metabolism in plants have been focused on photosynthetic carbon fix-
ation [2, 6, 22, 23, 25, 48]. This certainly owes to the fact that photosynthesis is a
process that has been described very well in its dynamics in literature. Under realis-
tic field conditions, physiological factors like light or temperature can change very
quickly and the biochemical apparatus has to be able to adjust instantly. From here,
the importance of dynamic modeling of the carbon fixation process in photosynthe-
sis becomes clear.

11.2 Example Model

In this chapter, a kinetic model published by Uys et al. [44] will be used to discuss
the various basic aspects of kinetic modeling. The model can be found online as part
of a model database (Fig. 11.1, http://jjj.biochem.sun.ac.za) [20], where interactive
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Fig. 11.1 Screenshot of the online sugar cane kinetic model of Uys et al. [44]. In the left win-
dow, parameter can be changed. The time-course simulation (Sim) or the steady state of the model
can be determined and evaluated (State). Results can be downloaded into text format or Microsoft
EXCEL© spreadsheet format. Metabolic control analysis (MCA) is not functional in this particu-
lar model. ([20], http://jjj.biochem.sun.ac.za/database/uys/index.html)

simulation and analysis over the Internet are possible, while most models can also
be accessed in PySCeS or Systems Biology Markup Language (SBML) format.

The authors used this model in order to study the process of carbon partition-
ing in maturing sucrose-storing internode tissue of sugar cane. In the model, glu-
cose and fructose are taken up and can be transformed into three different products
(Fig. 11.2): Sucrose can be exported into the vacuole, triose phosphate is assumed
to be consumed by respiration, and UDP-glucuronic acid (UDPGA) is considered
to be used in cell wall synthesis. An additional feature that is represented in the
model is the cyclic synthesis and degradation of sucrose (sucrose cycling), which
has been experimentally observed in this and in other plant tissues. Sucrose cycling
can consume a significant fraction of the cellular energy by net hydrolysis of ATP.

The sugar cane model of Uys et al. [44] is based on a previous model by
the same group [31]. Several features are added in the recent version. First, iso-
forms for sucrose synthase and fructokinase are implemented. The isoforms are

(see also Color Insert)
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Fig. 11.2 Kinetic model of sucrose metabolism in sugar cane, redrawn from Uys et al. [44].
Dynamically simulated metabolites are bold on grey background. Enzyme names are in italic.
UDPGlc, Glc6P, and Fru6P are unified as hexose phosphate (HexP) pool (see text). Other metabo-
lites have fixed concentration. Metabolites: Fru, fructose; FBP, fructose 1,6-bisphosphate; Glc, glu-
cose; HexP, hexose phosphates; Pi, phosphate; PPi, pyrophosphate; S6P, sucrose 6-phosphate; Suc,
sucrose; TrP, triose phosphate; UDPGlc, UDP glucose; UDPGA, UDP-glucuronic acid. Enzymes:
Aldo, aldolase; FRK, fructokinase; Fruup, fructose uptake; Glcup, glucose uptake; HKFru, hexoki-
nase acting on fructose; HKGlc, hexokinase acting on glucose; NI, neutral invertase; PFK, phospho-
fructokinase; PFP, pyrophosphate-dependent PFK; SPase, sucrose 6-phosphate phosphatase; SPS,
sucrose phosphate synthase; Susy, sucrose synthase; UDPGDH, UDP glucose dehydrogenase;
VAC, transport of sucrose into vacuole. Apo: Apoplast; a,b,c = isoforms

distinguished by differences in kinetic parameters. Second, for the conversion
of fructose 6-phosphate to fructose 1,6-bisphosphate, a pyrophosphate-dependent
phospho-fructokinase (PFP) is considered in addition to the already present ATP-
phospho-fructokinase (PFK, Fig. 11.2). Third, the recent model includes an outflow
of hexose phosphates into cell wall synthesis via UDP-glucuronic acid. Further-
more, based on biochemical data, the paper by Uys et al. [44] considers different
model variants (distinguished by different maximal enzyme activities, vmax), in order
to simulate eight stages of internode maturation. In the following, some features of
this extended sugar cane model are presented, in order to convey some important
issues of kinetic modeling.

11.2.1 Defining the Model

The size of the kinetic model is basically marked by six metabolites that are con-
sidered variable, i.e., their concentration is simulated dynamically (Fig. 11.2, see
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Fig. 11.3 Differential equation system for the sugar cane model [44]. v: vector of rate equa-
tions; N: stoichiometric matrix. Output generated with JWS online simulation tool (http://jjj.
biochem.sun.ac.za/database/uys). For abbreviations, see legend of Fig. 11.2

also Fig. 11.3). For seven co-substrates like ATP or NADH, the concentration is set
constant according to estimates obtained from literature. In consequence, e.g., phys-
iological effects that change the ATP/ADP ratio are neglected. Five other metabo-
lites are external species and simulated as fixed concentration (Fig. 11.2). The sink
metabolites Sucvac, UDPGA, and TrP actually do not need to be specified since they
are end products of unidirectional reactions. Another simplifying assumption for
the model is that the metabolite species glucose 6-phosphate, fructose 6-phosphate,
glucose 1-phosphate, and UDP glucose are assumed to be always in chemical equi-
librium by fast inter-conversion. Three of the metabolites are shown in Fig. 11.2
unified into what the authors describe as a “hexose phosphate (HexP) equilibrium
block.” While the concentration of HexP is simulated dynamically, the individual
hexose phosphates are coupled to the virtual HexP pool by fixed ratios via equi-
librium constants. The assumption of rapid equilibrium between hexose phosphates
was justified by experimental data on the respective hexose phosphates in differ-
ent plant tissues. Without this assumption, three enzymes, namely UDP-glucose
pyrophosphorylase, phosphoglucomutase, and phosphoglucoisomerase, would have
to be simulated by kinetic rate equations.

11.2.2 Structural Properties of the Stoichiometry

During the construction of a kinetic metabolic model, it is useful to determine the
basic functional modes of the system, i.e., to find out if the basic metabolic conver-
sions that are to be simulated are feasible at all. For this purpose, elementary flux
mode (EFM) analysis of the sugar cane model was performed on the sugar cane net-
work, using METATOOL [33], as it has been done similarly with the previous sugar



11 Kinetic Properties of Metabolic Networks 311

cane model [31]. EFM analysis is used to describe all distinct feasible metabolic
conversions possible within a certain network (see Chapter 8). EFMs relate to mini-
mal sets of enzymes that are able to perform a certain metabolic conversion at steady
state. First, to exclude trivial flux modes, enzyme isoforms were unified to one sin-
gle reaction (the three sucrose synthase isoforms and two fructokinase isoforms).
As a result 14 EFMs were obtained (Table 11.1). All conversions of interest are fea-
sible, always by several alternative modes (i.e., enzyme sets and different substrates
involved).

Four modes represent the conversion of extracellular glucose or fructose to triose
phosphate. Another four modes result in export of sucrose into the vacuole. Two
modes describe the conversion of glucose or fructose to UDP-glucuronic acid, des-
tined to cell wall synthesis. Three modes represent sucrose cycling, i.e., the cyclic
synthesis and degradation of sucrose (Table 11.1).

Structural analysis can also reveal so-called conservation relations between
metabolites. One typical example is the group of metabolites ATP and ADP. If for
each mol of ATP that is used as a substrate within the network, one mol ADP is pro-
duced somewhere else, and if none of the two can enter or exit the system, then the
sum of concentrations of the two metabolites always remains constant. Such con-
servation relations restrict concentration range of the respective conserved moieties
(metabolites) and therefore limit the dynamic behavior of the system. In the case
of the sugar cane model, no conservation relations can be found since ATP, ADP,

Table 11.1 Elementary flux mode analysis of the sugar cane model [44]. Isoenzymes have been
removed since they have identical reaction stoichiometry. For abbreviations, see Fig. 11.2

Net reaction Function

1: ATP + Pi = ADP + PPi Net hydrolysis of ATP by cyclic
PFP and PFK

2: ATP + UTP = ADP + UDP + PPi Sucrose cycling
3: GLCapo + ATP + 2 NAD = ADP + UDPGA +

2 NADH
UDPGA into fiber formation

4: ATP = ADP + Pi Sucrose cycling
5: FRUapo + ATP + 2 NAD = ADP + UDPGA +

2 NADH
UDPGA into fiber formation

6: 2 ATP + UTP = 2 ADP + UDP + Pi + PPi Sucrose cycling
7: GLCapo + ATP + PPi = ADP + Pi + 2 TrP TrP into respiration
8: FRUapo + ATP + PPi = ADP + Pi + 2 TrP TrP into respiration
9: GLCapo + 2 ATP = 2 ADP + 2 TrP TrP into respiration
10: FRUapo + 2 ATP = 2 ADP + 2 TrP TrP into respiration
11: FRUapo + GLCapo + ATP + UTP = ADP + UDP +

PPi + SUCvac

Suc into the vacuole

12: 2 GLCapo + 2 ATP + UTP = 2 ADP + UDP + Pi +
PPi + SUCvac

Suc into the vacuole

13: 2 FRUapo + ATP + UTP = ADP + UDP + PPi +
SUCvac

Suc into the vacuole

14: 2 FRUapo + 2 ATP + UTP = 2 ADP + UDP + Pi +
PPi + SUCvac

Suc into the vacuole
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and other cofactors are defined by fixed concentrations, and for the purpose of the
network stoichiometry, those are external metabolites.

11.2.3 Kinetic Rate Equations

Figure 11.3 shows the kinetic model in a standard mathematical structure (d(s)/dt =
Nv). The dynamics of 6 metabolites is considered (d(s)/dt), and the 17 columns
in v store the kinetic rate equations. The stoichiometric matrix N holds the network
structure with each row describing the mass balance for 1 of the 6 metabolites. How-
ever, most of the complexity of the model is contained in the rate equations. While
in steady-state analysis the vector v would be a variable, it contains here rate 17
Michaelis–Menten-like rate equations that require detailed knowledge on different
enzyme reaction mechanisms. As an example, Eq. (11.1) shows the rate equation for
neutral invertase (NI) with sucrose as substrate in the sugar cane model. The equa-
tion models an irreversible Michaelis–Menten mechanism. The enzyme is inhibited
by its products fructose (competitive inhibition) and glucose (uncompetitive inhi-
bition, see Chapter 4). Four kinetic parameters have to be specified, three affinity
constants (KmSuc, KiGlc, KiFru) as well as the maximal rate of the enzyme (VmaxNI).

vNI = Vmax NI

1 + [Glccyt]
/

KiGlc
× [Suc]

KmSuc
(
1 + [Frucyt]

/
KiFru

)+ [Suc]
(11.1)

The four kinetic parameters were derived from in vitro kinetic studies of enzymes
purified from sugar cane and carrot (see refs in [31]). Generally, in vitro kinetic
studies are performed with purified enzymes, but it should be mentioned that
Chapter 4 discusses the validity of “apparent kinetic constants” determined in
raw extracts. For the derivation of kinetic rate equations, an introduction into
reaction mechanisms and related Michaelis–Menten-like rate equations is given
in Chapter 4. Also an interactive web tool is available to derive rate equations
(http://www.biokin.com/king-altman/index.html) based on an algorithm by King
and Altman [15].

Altogether 38 Km values, 16 Ki values, and 6 equilibrium constants (Keq) had to
be specified in the model. This large number of constants certainly represents one
general obstacle for the definition of useful kinetic models, since it can be assumed
that the behavior of a kinetic model depends on the values for the kinetic parameters
and it may be hard to obtain reliable estimates for all of them. In general, values for
kinetic parameters may have limited in vivo relevance [41] since they are usually
determined by in vitro assays (see Chapter 4). For example, the parameter values
may differ with the exact chemical assay condition (pH, inorganic ions, etc.). More-
over, in vivo complexes of enzymes with other proteins may have kinetic properties
that differ from the in vitro properties. In addition, not all important allosteric inter-
actions may be discovered by in vitro studies. In order to specify all parameters
needed in a model, the parameter values may be derived from different sources, i.e.,
literature values that were obtained from different organisms may be used. Hereby
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it is often assumed that the values of such parameters are similar in closely related
organisms. As an exemption, the Vmax values should be experimentally determined
in the particular system that is modeled. The maximum rate (Vmax) is related to the
amount of enzyme present in the tissue/cell type that is under study.

Alternative to the definition of rate equations by the often complex Michaelis–
Menten-like kinetics, other definitions of rate equations have been introduced, like
the power law formalism in Biochemical Systems Theory [32] or lin-log kinetics
[46]. These approaches have both benefits and limitations, which is discussed in
detail elsewhere (see [10], [47]). Here, only some general aspects shall be men-
tioned. In difference to Michaelis–Menten, both approaches have a uniform mathe-
matical formalism which simplifies the construction of kinetic models. As a simpli-
fying assumption, both formalisms imply that substrates, activators, and inhibitors
act independently on the reaction rate. In both cases, fewer parameters have to
be defined per enzyme. Both approaches are approximations of Michaelis–Menten
kinetics that are defined relative to a fixed operating point (steady state). Therefore,
it has to be considered that with deviation of enzyme levels (vmax) or metabolite
levels from the operating point, the results of these approximations become increas-
ingly inaccurate relative to the Michaelis–Menten kinetics [10].

11.2.4 Model Validation

After a kinetic model has been constructed on the basis of enzyme biochemical data,
the model has to be validated by independent experimental data. This means that the
model has to be checked if it agrees qualitatively and quantitatively with experimen-
tal observations. Often it is tested if the model reproduces measured steady-state
fluxes and metabolite concentrations. However, first of all, since a biological sys-
tem should be able to stabilize a metabolic state, the presence of a stable steady
state in the model is imperative. Stability means that after a disturbance in the level
of a metabolite, the model should return to its steady state. This is demonstrated
in Fig. 11.4 where first a steady state was determined, then the fructose concentra-
tion (FRUcyt) was raised 10 times at t = 0. After 500 min, it can be seen that the
system has returned to its original state. While this simulation could demonstrate
how a steady state is stabilized, the time scale of the simulation appears to be unre-
alistically long. In a real experiment, the dynamic changes like those seen in Fig.
11.4 should occur much faster. For example, after a step increase in glucose concen-
tration in yeast cell culture, cellular metabolite levels stabilize within a few minutes
[42]. However, although there might be a problem in the time scale of the sugar cane
model, it appears that the same dynamic behavior can be simulated at different time
domains. For example, scaling all Vmax values by a factor 10 results in a 10 times
faster transition to the same steady-state concentrations, with all steady-state fluxes
being exactly 10 times higher (results not shown). This behavior can be explained by
the algebraic structure of the differential equation system, in particular by detailed
inspection of the 17 rate equations [31, 44]. This reveals that if in the rate equations
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Fig. 11.4 Time-course simulation of the sugar cane model with parameters set for internode 3
[44] with concentrations (upper panel) and key fluxes (lower panel). At time zero, the metabo-
lite concentrations were at steady state except for Frucyt, which was set to 10 times its steady-
state value. For abbreviations, see Fig. 11.2. Values obtained from the JWS online interactive tool
(http://jjj.biochem.sun.ac.za/database/uys)

all Vmax values are multiplied by a scaling factor r, the differential equation system
(Fig. 11.3) can be written with r factored out of V as: ds/dt = NrV. This means
that r can also be seen as a scaling factor for all steady-state fluxes (NrV = 0) or
for the time differential (ds/(rdt) = NV). It follows that the dynamics of the model
can be studied disregarding the actual time units. In consequence, apart from an
unrealistic time scale, a kinetic model can be useful if the often problematic conver-
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sion of experimental data from a “per fresh weight” basis to real concentration units
is omitted.

The online simulation tool also allows testing the stability of a steady state by
inspection of the eigenvalues of the Jacobian matrix. The Jacobian matrix is a deriva-
tive of the differential equation system relative to an operating point (steady state)
and describes the local dynamic behavior of a kinetic model [12]. The eigenvalues
indicate if after a small perturbation (deviation in one of the variables) the system
returns to its current state or if the perturbation amplifies itself and the system does
not return. In the case of the sugar cane model of Uys et al., all eigenvalues of the
Jacobian matrix have negative real parts, which is a condition for the existence of a
stable steady state [12]. Further details on the interpretation of the Jacobian matrix
and eigenvalues can be taken from [12].

In addition, the steady state of the model is similar to ratios of measured
metabolic fluxes (relative fluxes into vacuolar sucrose, glycolysis and cell wall syn-
thesis). The model also predicts that close to 22% of synthesized sucrose is degraded
by invertase (sucrose cycling), as experimentally observed [31].

Besides existence of steady state and reproduction of fluxes, the validity of a
dynamic model furthermore depends on reproduction of measurements of metabo-
lite concentrations. For the sugar cane model, data on the concentration of several
metabolites in internodes were available and in part reproduced by the model [31].
However, metabolite measurements are a particular problem in plants (as well as
other eucaryotes). While by conventional extraction of plant tissue all subcellular
and extracellular compartments are sampled at the same time, many metabolites are
present in different subcellular compartments at different concentrations. For the
analysis of the metabolite levels in different cell compartments in plant tissue, a
non-aqueous fractionation technique [3, 8] is available, but its use has not yet been
reported very often. Relative large amounts of tissue are necessary, and the method
cannot resolve all subcellular compartments.

For the sugar cane tissue model, metabolite levels were first determined by tis-
sue extraction and expressed on a fresh weight basis. Then it was assumed that
1 g FW has 0.7 ml volume, from which 10% is cytoplasmic and 90% vacuolar vol-
ume. Accordingly, the metabolites assumed to be cytosolic (e.g., hexose phosphates)
could be converted to cytosolic concentrations [31].

11.2.5 Model Predictions

If a kinetic model has been validated, the response to changing environmental con-
ditions can be studied or different modifications of the model can be simulated. To
predict the effect of transgenic alteration, the level of an enzyme can be altered, and
the changes in fluxes and metabolite levels can be predicted as shown in Fig. 11.5 for
the invertase reaction. With increase in VmaxNI, flux through the enzyme increases
in a non-linear manner. Please note that considering the enzyme isolated from the
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network at constant substrate concentration, the reaction rate increases linearly with
Vmax (Eq. 11.1). In the network an increase in VmaxNI causes a change in flux as well
as in steady state metabolite levels. This demonstrates the intrinsic non-linear and
non-intuitive behavior of metabolic networks.

The model behavior can also be systematically optimized toward a goal such as
maximal partitioning of carbon into vacuolar sucrose. Optimizing algorithms have
been reviewed, e.g., by Mendes and Kell [16].

11.3 Metabolic Control Analysis

Metabolic control analysis (MCA) [11, 14] is a mathematical framework that allows
to compare the influence of different enzymes on fluxes and metabolite concen-
trations in a pathway. The framework was first described for linear pathways and
later generalized to networks. Basic quantities derived in MCA are (1) control coef-
ficients, which describe the sensitivity of pathway flux or the concentration of a
metabolite in the pathway to a small change in the level of an enzyme and (2) elastic-
ity coefficients, which describe the sensitivity of the local reaction rate of an enzyme
to a small change in a metabolite. For the comprehensive description of the mathe-
matical framework of MCA, the reader may refer to several textbooks [4, 12, 40].
One important insight resulting from MCA is that control over flux tends to be dis-
tributed among all enzymes of a pathway [4, 17]. This means that the biochemical
architecture of pathways rarely allows achieving large changes in pathway flux by
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alteration of only one enzyme. Nevertheless, MCA can help to identify the steps that
have most control over flux as the most promising targets for genetic alteration.

The MCA approach strictly relates to infinitesimal small changes (perturba-
tions) of one parameter at a fixed reference state (steady state). For the example
in Fig. 11.5, a (infinitesimal) small increase in the activity of invertase (V 0

max) in
the network will cause a certain increase in flux through the enzyme (J ) at steady
state, which is quantified as a flux control coefficient (FCC):

C J
V 0

max
=

dJ 0

J 0

dV 0
max

V 0
max

= dJ 0

dV 0
max

V 0
max

J 0
(11.2)

The equation relates the slope in the reference state (dJ0/dV0
max) to the reference

state itself (J0/V0
max, Fig. 11.5). A consequence of this scaled definition is that FCCs

assume dimensionless values between 0 and 1, which corresponds to the enzyme
having no control and full flux control, respectively1. Also, the FCCs of a pathway
can be related to each other by the summation theorem, which states that the sum of
the FCCs of all enzymes in a pathway equals one [11, 14].

Kinetic models of plant systems have been used frequently to determine control
and elasticity coefficients [6, 23, 24, 25, 44, 48]. For the sugar cane model, FCCs for
invertase flux (CNI) and sucrose export (CVAC) (Fig. 11.2) were determined for all 17
enzymes relative to the steady states of all internodes. Since newly formed sucrose
may be either exported into the vacuole or degraded (sucrose cycling), the authors
describe the difference CNI–CVAC as “futile cycling control coefficient” (FCCC)
[31]. This analysis showed that the enzymes HKGlc and NI have the largest posi-
tive control over sucrose cycling, while Glcup, Fruup, and VAC have most negative
control. According to these predictions, the maximal activity of Fruup, for example,
was increased up to 5-fold with the effect that the model partitioned less carbon into
sucrose cycling and more into the vacuole. However, as characteristic for large-scale
increase of enzyme activity, the 5-fold increase in Fruup resulted in less then 2-fold
increase in sucrose flux into the vacuole (VAC).

11.3.1 Experimental MCA

Besides determination of control coefficients with mathematical models, there is
also a related experimental MCA approach. For an overview of experimental deter-
mination of control coefficients and elasticities in plants, the review by ap Rees and
Hill is recommended [29].

The control of photosynthetic carbon fixation has been extensively studied using
transgenic plants [26]. Another example for experimental MCA in plants can be
found for the study of starch synthesis in potato tubers. Summarizing multiple

1As opposed to linear pathways, in networks, FCCs can also be negative.
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studies, flux control coefficients were estimated based on transgenic changes in 13
enzymes and 2 plastidial transporters involved in starch synthesis in potato tubers
[7]. Hereby, flux was inferred via final starch content in mature tubers or via short-
time incorporation of 14C-glucose in tuber tissue. As a result, dominant control over
starch synthesis was assigned to the plastidial ATP/ADP translocator and the ADP-
glucose pyrophosphorylase [7]. Accordingly, over-expression of these proteins rep-
resents some of the successful approaches reported in literature to increase starch
content in potato tubers [36, 43]. In addition to experimental MCA based on trans-
genic modulation of enzyme activity, specific inhibitors have also been used as well
to reduce apparent enzyme activity and to determine control coefficients [27, 28].

11.3.2 Adaptation of MCA for Large Deviations

A general problem for the experimental MCA approach is that control coeffi-
cients are mathematically derived considering infinitesimal changes [11, 14], while
experimental determination of FCCs must rather consider large-scale changes, e.g.,
changes in enzyme level in transgenics. Small and Kacser [34, 35] introduced an
approach that allows to estimate control coefficients based on large-scale perturba-
tions. The deviation index was defined by Small and Kacser [34] in analogy to the
FCC. Referring to Fig. 11.5 where a large-scale increase in Vmax is considered, the
deviation index is written as follows:

D J ′
V ′

max
=

ΔJ
J ′

ΔVmax
V ′

max

= ΔJ

ΔVmax

V ′
max

J ′ (11.3)

Note that D is referenced to the second state (V′
max, J′) in Fig. 11.5, while C in Eq.

(11.2) is related to the reference state (V0
max, J0). If some simplifying assumptions

on the enzyme kinetics are applied, then FCC and deviation index are mathematical
identical. In short, the simplifying assumptions relate to a linearization of the rate
equations and to the enzyme being largely unsaturated by substrate [34]. The authors
show by experimental case studies that the experimentally determined deviation
index often closely approximates the FCC. Accordingly, in case of the numerical
example in Fig. 11.5, D and C can be calculated from the simulations, and one can
see that both values come close to each other:

C J 0

V 0
max

= 0.61 D J ′
V ′

max
= 0.63

In consequence, the sugar cane model suggests that with a roughly 2-fold increase
in enzyme activity (ΔVmax), the experimentally determined deviation index should
well approximate the real FCC.
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11.3.3 The Top-Down Approach of MCA

From a practical point of view, experimental MCA appears to be tedious since the con-
trol coefficients relate to single enzymes. This means that single enzymes have to be
manipulated one at a time, e.g., by a transgenic approach. To mention here is the con-
cept of top-down MCA [1] which allows to determine control coefficients for groups
of reactions via the elasticities of metabolites that connect the groups. For example,
in the study by Ramli et al. [27], the synthesis of complex lipids in cell cultures was
divided into two blocks: the plastidial fatty acid synthesis and the incorporation of
fatty acids into complex lipids. The two blocks are connected by the metabolite pool
of acyl-CoAs. Via experimental determination of elasticity coefficients, the group flux
control coefficients of the two groups could be determined [27].

11.3.4 Network Rigidity

Metabolic networks regularly resist attempts to alter flux due to regulatory proper-
ties apparently in place to support and stabilize the “usual” metabolic performance
of a cell [38]. This network rigidity can often be attributed to rigidity of particular
nodes in the network. For more flux to be diverted toward a desired product, the
ratio of fluxes emanating from such a principal node has to change [38, 39]. Mecha-
nisms of allosteric regulation may cause a rigid node to tightly control the emanating
fluxes relative to each other. Strongly rigid nodes involve activation of an enzyme
in a branch by a product of the competing branch [38]. Depending on the biochem-
ical architecture, e.g., the glucose 6-phosphate node may behave rigid in Bacillus
subtilis [5] while in Corynebacterium glutamicum the same branch point is flexible
[45]. In the latter case, the in vivo activity of glucose 6-phosphate dehydrogenase
appears to be mainly controlled by the concentration ratio of NADP and NADPH,
indicating negative feedback inhibition of the oxidative pentose phosphate pathway
by its product NADPH [18]. Such feedback inhibition in one branch allows flexible
adaptation of the flux to the demands of the product.

Nodal flexibility can be studied by applying, in separate experiments, perturba-
tions to different branches of a node. Hereby, different kinds of flux perturbations
can be combined, e.g., change of substrates in medium, genetic mutants, and specific
inhibitors [9]. Flux control coefficients can then be determined based on flux mea-
surements made under the different conditions [9]. For a node with three branches,
nine resulting group flux control coefficients characterize the sensitivity of each flux
to changes in an enzyme in each of the branches [37, 9].

11.4 Software for Dynamic Simulation

Kinetic models of biochemical networks can be simulated and analyzed by using
mathematical programming languages like MatLab© (http://mathworks.com),
which has been used, e.g., by Zhu et al. [48]. In addition, several more dedicated
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software packages are available that allow dynamic analysis of biochemical net-
works and include features like stability analysis or control analysis. For example,
PySCeS is a console-based application (http://pysces.sourceforge.net) [21] to be
used under the programming language Python (http://www.python.org). COPASI
(http://www.copasi.org) [13] can easily be used under a graphical user interface.
Both applications are available under open source license and available for different
operating systems.
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Fig. 3.6 Schematics of (A) time-of-flight, (B) quadrupole, and (C) ion trap mass analyzers

Fig. 3.7 Schemata of tandem MS/MS. (A) Triple quadrupole mass spectrometer (QqQ) and (B)
quadrupole time-of-flight mass spectrometer (QqTOF)



Fig. 3.9 HPLC-Chip and its integrated components related to the components of conventional LC
(picture provided in courtesy of Agilent Technologies, Inc.)

Fig. 3.10 Schematic workflow of a metabolomics approach from tissue harvest to data interpreta-
tion using complementary analytical instrumentation for greater comprehensiveness of metabolite
detection and quantification
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Fig. 6.2 Selected transcript–metabolite correlation visualizations. Heat map surface of selected
transcript–metabolite correlations was drawn, and correlation coefficients were calculated. Each
dot indicates a given r value resulted from a Spearman correlation analysis in a false color scale.
Asc met, ascorbate metabolism; CHO met, carbohydrate metabolism; CW, cell wall; sugars-ol,
sugar alcohols; sugars-P, sugar phosphates; f.a., fatty acids; TFs, transcription factors [63]

Fig. 7.14 Small hypothetical network (adapted from [92])



Fig. 7.15 The topological overlap matrix (adapted from [92]) corresponding to the network shown
in Fig. 7.13. The topological overlap between each pair of vertices vi and v j is defined according

to [92] as OT (vi , v j ) = Jn(vi ,v j )
[min(d(vi),d(vj))] , where Jn (vi , v j ) denotes the number of vertices to which

both vi and v j are linked and [min(d(vi ), d(v j ))] is the smaller of the degrees of vi and v j . The
degree of topological overlap between the vertices is reflected by the color code. The associated
hierarchical tree is obtained by applying an average linkage clustering algorithm to the topological
overlap matrix. The given tree reflects three distinct modules contained in the network of Fig. 7.14



Fig. 7.16 Left: Color-coded visualization of the ratio of experimental data from two different envi-
ronmental conditions (reduced oxygen supply condition data divided by data from normal oxygen
supply condition, source of data: [95]). Right: Shape-coded visualization of the same data



Fig. 10.3 A hypothetical reaction network including both a metabolic (C (met)) and storage
(C(stor)) pool for compound C. The labeling kinetics of the network and pool sizes of interme-
diates when pulsed with 90% labeled precursor A, then chased with 1% labeled A at 61 minutes,
are shown. For pool C, the average labeling of the two pools of C = ((C1∗C2) + (C5∗C6))/ (C2
+ C6), and the total pool size of C = (C2 + C6) are shown. Hypothetical network created with
Microsoft Visual Basic



Fig. 10.9 Simulation of the time course of labeling of the Calvin cycle intermediate sedoheptulose-
7-phosphate (SH7P) when a photosynthetic tissue is supplied with 13CO2 of 95∗ 13C abundance
(i.e., C = 0.95), using the rates and pool size assumptions, is shown. The simulated time course
of absolute pool sizes of SH7P species with 0, 1, 2, 3, 4, 5, 6, or 7 labeled atoms and the sum of
all these species are shown in the lower left panel. In the lower right panel, the model-simulated
output at 4 h is compared with the theoretical steady-state percentages of SH7P species with up to
7 labeled atoms calculated assuming uniform labeling as follows:



Fig. 11.1 Screenshot of the online sugar cane kinetic model of Uys et al. [44]. In the left win-
dow, parameter can be changed. The time-course simulation (Sim) or the steady state of the model
can be determined and evaluated (State). Results can be downloaded into text format or Microsoft
EXCEL c© spreadsheet format. Metabolic control analysis (MCA) is not functional in this particu-
lar model. ([20], http://jjj.biochem.sun.ac.za/database/uys/index.html)
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