
Chapter 7

Mathematics of Neutron Imaging

K.W. Tobin, P.R. Bingham, and J. Gregor

Abstract Imaging with neutrons at macro-world scales (e.g., >10mm) requires
particular understanding of the non-diffracting or refracting interactions that these
electrically neutral particles have with their environment. While image formation
with neutrons shares some commonality with other radiation sources such asX-rays
and gamma rays, neutrons provide complementary interactionmechanisms to these
techniques that can uniquely probe materials and structure. Neutron sources are
also historically fraught with issues regarding low source intensities, challenging
beam configurations and resolution limitations that are all closely linked. In this
chapter we will present a mathematical construct and methods compatible with the
design and characterization of radiography systems for volumetric imaging. We
begin with a review of neutron image formation, provide resolution analysis con-
cepts and methods for both the design and the characterization of radiography
systems, and conclude with a review and discussion of volumetric reconstruction
techniques using analytic or iterative computed tomography algorithms.

Keywords Neutron radiography � Computed tomography � Modeling �
Resolution � Contrast

7.1 Introduction

Neutron imaging has long been known to provide complementary, nondestructive
imaging capabilities to X-ray and gamma-ray imaging methods [3]. Today,
neutron imaging with conventional reactor-based sources enables the interro-
gation of complex, multicomponent systems for many applications, such as
nuclear material nondestructive testing [9], characterizing flight control sur-
faces on aircraft [4], testing heat transfer in porous materials [30], examining
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heat exchanger systems [2, 10], development of hydrogen fuel cells (Chapter 11),

inspection of cultural heritage objects (Chapter 13), and interrogating biologi-

cal systems [28]. Newer, intense sources of neutrons from spallation facilities are

providing the potential to interrogate time and energy-dependent phenomena

as well. Therefore, a mathematical representation of the neutron image forma-

tion process can provide insight into the potential application of time- and
energy-dependent, volumetric radiography to the characterization and quanti-

tation of complex material structures.
The mathematics of neutron imaging is similar to that of other non destruc-

tive methods that use non-refracting or diffracting radiation to interrogate

materials or composites of materials [3]. Figure 7.1 represents the basic elements
of a generic neutron radiography system beginning with a source of neutrons,

beam conditioning and shaping, neutron conversion and detection, and sam-

pling and signal generation.
For the purposes of this discussion, neutron image formation will be treated

as an encoding of the material characteristics of a three-dimensional (3D) object

projected onto a two-dimensional (2D) detection array, typically comprising a
converter followed by an imaging sensor as described in Chapter 5. Material

characteristics of the object are represented by the total macroscopic interaction

cross-section, �T, which is a sum of the absorption and scattering cross-

sections, �T=�a+�s (i.e., ignoring the potential for neutron capture and

fission cross-sections in some materials). The interaction of the neutron beam,
�o, with the 3D object produces a total 2D field at the converter plane, �T, that
can be decomposed into the uncollided flux, �u, and the scattered flux, �s, as
�T=�u+ �s. The uncollided flux arises from neutrons that arrive at the con-

verter plane unperturbed by the imaged object while the scattered flux considers

only neutrons that have been scattered by the object toward the converter plane.
To understand the dependencies of the scattered flux on the image formation

process, we introduce a buildup factor [20, 24] defined as B= �T/�u=1+�s/�u.
Rearranging to solve for �T, we can represent the total flux at the converter

plane as �T = B�u, i.e., a multiplicative build up of the uncollided flux due

to object scattering. This is represented using the well-known neutron
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Fig. 7.1 Basic elements of a neutron radiography-imaging environment. A source of neutron
is typically shaped and collimated, interacts with the material constituents of a 3D object and
is projected onto a 2D imaging array
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attenuation law as �T= �oBexp{�
R

�Tdz}, or with space-, time-, and energy-
dependencies as,

�TðE; �;�T; x; y; tÞ ¼ �oðE; x; y; tÞBðE; �;�s; x; y; tÞe�
R

�TðE;x;y;t;zÞdz (7:1)

where x and y are spatial position in the plane perpendicular to the ray from
source to detector, z represents position along ray from source to detector andE is
the neutron energy. In this relationship, � corresponds to the angular orientation
of the object under test (Fig. 7.1) and is included as a prelude to later discussions
regarding volumetric reconstruction from projections. Also note that the buildup
factor is a value B� 1. It is functionally dependent on the material composition
and geometry presented by the object under test and is therefore difficult to
predict or accommodate under typical radiographic conditions. Buildup can be
significant for materials containing, e.g., H, Si, Ni, Cu, and other highly scattering
metals, and should be considered a source of error in quantitative analysis. For
example, imaging geometries that move the object away from the detection plane
can reduce the number of neutrons scattered into the detector, but this may also
reduce the system resolution due to the characteristics of the beam aperture. The
beam aperture and length is typically characterized by the L/D ratio, where L
denotes the distance from the aperture to the object and D is the diameter of the
aperture. This effect will be detailed further in Section 7.2.

Note that a primary goal of image analysis can be formulated as one of
measuring the interaction cross-section of the materials in the imaged object,
�T(E,x,y,z). Direct measurement of �T, for example, provides indirect informa-
tion regarding other material properties since � = N� = ��NA/M, where � is
the microscopic cross-section,N is the number of atoms per cm2, � is the material
density, NA is Avagadro’s number, and M is the atomic weight [25].

The electronic signal produced by the system is further impacted beyond the
geometry effects of L/D by the response of the converter, optical components,
and sensor (e.g., a charge-coupled device, CCD). Making the practical assump-
tion of a linear shift invariant (LSI) system [14], we can describe the time-,
space-, and energy-dependent 2D electronic image, I, in terms of a convolution
of themodulated (by the object) neutron field at the converter, �T, with a system
impulse response function, h, to give,

IðE; �;�T; x; y; tÞ ¼
Z Z

�TðE; �;�T; �; �; tÞhðx� �; y� �Þd�d�

¼ �TðE; �;�T; x; y; tÞ � hðx; yÞ
(7:2)

In Section 7.2 we will model and analyze the impulse response of a radio-
graphy system to estimate system design resolution and characterize resolution
of an existing radiography system through empirical means. In Section 7.3 we
will describe considerations andmethods required to perform volumetric recon-
struction and estimation of �T using projection data and computed tomogra-
phy based on both analytic and iterative techniques.
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7.2 Neutron Image Formation and Resolution Analysis

In this section, we will describe the image formation characteristics of a neutron

radiography system from both a modeling and an empirical perspective. A

model of resolution is important when designing a system to ensure that realistic

resolution goals can be established and achieved. Once a system is operational,

an empirical methodology is required to verify performance.

7.2.1 Resolution Modeling

For modeling purposes, Fig. 7.2 represents an idealized radiography system

containing the basic elements described earlier in Fig. 7.1. The goal of a resolu-

tion model is to understand the impact of various system components on signal

degradation. For this analysis we will neglect the impact of electron noise and

counting statistics, and focus instead on the effects of the neutron aperture, D,

the optical diffusion response of a scintillator, �, the optical component, and

sampling at the sensor, �s (e.g., by a CCD camera).
The effects of these system elements are fundamentally described through the

system impulse response, h(x), introduced in Eq. (7.2), which will be expressed

as 1D for this discussion. In an LSI system, the response, I(x), is a convolution

of the real-world signal, �T(x) in our case, with an impulse function, h(x), as

I(x)= �T(x)*h(x). The total impulse response can be decomposed into elements

representing the major components of the system. For our case, based on

Fig. 7.2, h(x) = hD(x)*h�(x)*hCCD(x), corresponding to the neutron beam

aperture, scintillator, and CCD sensor, respectively. We model these compo-

nents of the system using idealized functions for the physical neutron beam

aperture, converter optical diffusion, and sensor sampling,
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Fig. 7.2 Representation of a basic radiographic image formation system used to estimate
resolution performance during the design stage. Model accounts for geometry, aperture size,
scintillator resolution, and optical system resolution
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hDðx 00Þ ¼ rect
x 00

D

� �

; h�ðx 0Þ ¼ Gauss
x 0

�

� �

; hCCDðxÞ ¼ rect
x

�s

� �
; (7:3)

where rect( �) is a rectangle function and Gauss( �) is a Gaussian function as
defined in [14].

Note in Eq. (7.3) andFig. 7.2, the introduction of different scales x00, x0, and x.
The aperture in plane x00 is magnified at the scintillator plane, x0, which is in turn
magnified (or de-magnified) in the CCD plane, x. The aperture-to-scintillator
magnification is given byMD=d/L, whereas the scintillator-to-CCD magnifica-
tion is defined as MCCD= (object in scintillator plane/object in CCD sensor
plane). The transformation, x = MCCDx

0 = MDMCCDx
00, results in the follow-

ing analytical model for the impulse response, h, at the CCD imaging plane, x,

hðxÞ ¼ rect
x

MDMCCDD

� �

�Gauss
x

MCCD�

� �

� rect
x

�s

� �
: (7:4)

The normalized modulus of the Fourier transform of the impulse response is
known as the modulation transfer function [7], defined as MTF(u) = |H(u)|/
|H(0)|, where H(u) is the system transfer function calculated by taking the
Fourier transform of the impulse response. The MTF describes the magnitude
of the frequency response of the system and is useful for depicting and quantify-
ing system resolution as discussed in Chapter 6.

From Eq. 7.4, we can analytically produce MTF(u) through Fourier trans-
formation and simplification to yield,

MTFðuÞ ¼ sinc
dMCCD

L=D
u

� �

�Gauss �MCCDuð Þ � sinc �s uð Þ
�
�
�
�

�
�
�
� ; (7:5)

where sinc(x) = sin(x)/x. Note that this expression has been put into a form
explicitly containing the L/D ratio.

In Eq. (7.5), the sinc ( �) term drives much of the response typically observed
in a radiography system. For example, as L/D!1, this term broadens out in
frequency representing improved resolution. Also, as the object moves closer to
the detection plane, i.e., as d! 0, resolution also improves. These are both
effects that are readily observed in radiography systems.

An example of theMTF is shown on the left-hand-side of Fig. 7.3 for a system
with the model parameters: L/D=150, d=10 cm, �=50 mm, MCCD=0.25. MTF
is a measure of system response versus frequency content of the object being
imaged. In this figure, the X axis represents frequency, with units of cycles per
millimeter often referred to as line pairs per millimeter. The Y axis represents the
transmission of this frequency to the image. In this example, the response to a
sinusoidwith 10 cyc/mmdrops to approximately 55%of the sinusoid’s amplitude.

Applying the Rayleigh criterion of 10%MTF [16] to this example, indicates
that the highest resolvable frequency is 17 cyc/mm. System resolution is defined
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as the period of this frequency. Therefore, resolution is 1/(17 cyc/mm)= 60 mm
at the CCD imaging plane. Due to magnification in the system, the resolution at
the object plane is 231 mm.

Note also for this geometry that the beam aperture (or equivalently the L/D
ratio) is the primary factor impacting resolution. The scintillator screen and the
optical system (defined by the CCD sample rate) produce only minor relative
degradation. On the right-hand side of Fig. 7.3, the MTF is shown for a variety
of L/D ratios, indicating the strong effect this factor has on the resolution of a
neutron radiography system. Of course, the obvious result of this analysis is to
increase the L/D ratio either by moving farther from the beam aperture or by
reducing the size of the aperture. Unfortunately, both of these choices also
result in a rapid reduction in the available neutron flux, requiring further signal-
to-noise analysis to optimize both the geometry and the counting statistics.

7.2.2 System Performance Measurement

Measurement of system performance allows system designers to determine if
the imaging system is performing as expected and to give potential users
information useful in determining whether the imaging system is appropriate
for their application. The key measurements of system performance are resolu-
tion and contrast discrimination. Resolution is a measure of the details that can
be seen within an image while contrast discrimination measures the contrast
required between an object and its background to resolve the object.

Resolution measurement methods can be categorized as direct and indirect.
For direct methods, a series of test objects over a range of sizes near the
resolution limits of the system are used. These test objects take many forms
from line pairs to spheres to radial patterns and provide a direct visual display
of the resolution on the radiographs [7].
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Fig. 7.3 MTFmodeling results for typical radiography system parameters. The left plot shows
the frequency response of constituent system components at a specified L/D ratio, while the
right plot shows the system response for a variety of L/D ratios
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Indirect resolution measurements use the edge response of the system to
provide amore quantitative view of resolution. Thesemeasurements result in an
MTF for the system. MTF can be calculated for radiography systems through
measurement of the response of the system to an edge object. These edges are
tilted to provide appropriate edge sampling by a pixilated imager [37, 32]. Tilted
thin wires can also be used for this method [29]. The MTF is calculated from an
edge image by first locating the edge within the radiograph and binning the edge
response perpendicular to the line over the length of the line to get the edge
response function, Er(x). Taking a derivative of the edge response function
produces the edge spread function, which is then Fourier transformed to produce
F (u), which is used to produce the MTF, where F (u) is given explicitly by,

FðuÞ ¼
Z

E 0r ðxÞ e�iuxdx ; (7:6)

where Er
0(x) = dE (x)/dx represents a suitable discrete derivative process.

Applying these methods to a radiograph will measure the MTF of the imaging
system and verify the expected results based on the calculations from the
previous section.

Neutron radiography systems are naturally extended to perform computed
tomography (CT) for 3D reconstruction. Resolution of the reconstructed results
will depend on the system, data collection, and reconstruction parameters as well
as contrast in the object. Measurement of the empirical resolution of the 3D
results after tomographic (CT) reconstruction can also be obtained from the
determination of the edge response. The American Society for Testing and
Materials (ASTM) has developed a standard test method for measurement of
CT system performance designated E1695. In this standard, a cylindrical phan-
tom is used to determine both spatial resolution and contrast discrimination
measurements on the reconstructed data from a CT system as shown in Fig. 7.4.
The shown example is a result from X-ray CT imaging; however, neutron
tomography systems will produce the same type of data and the ASTM standard
is directly applicable.
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Fig. 7.4 Spatial resolution from CT reconstruction using ASTM E1695 standard
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In the ASTM E1695 standard method, a cylindrical phantom is scanned and
a slice normal to the central axis of the cylinder is reconstructed. A normal slice
through the cylinder contains a circular cross-section of the cylinder. Just as in
the tilted edge method, the MTF is calculated from the line edge response. The
line edge response is found by locating the center of this circle and circularly
integrating the pixels around this center point. In the tilted edge method, the tilt
provides subpixel resolution across the edge. The pixel sampling on the circle
edge will also provide this higher resolution edge response assuming the circle is
of adequate size. Guidelines for the size selection are provided in the standard.

TheMTF characterizes the spatial resolution of the system as described earlier.
The second key performance parameter for CT systems is also included in ASTM
E1965 and is the contrast discrimination function (CDF). The CDF measures the
ability to discriminate an object from its background and is calculated using the
same cylindrical phantom or spherical phantom used for the MTF calculation.

For calculation of the CDF, the region within the reconstructed slice through
the phantom is subdivided into neighborhoods of size N�N as shown on the
left side of Fig. 7.5. For CDF, the mean value for each neighborhood and the
standard deviation of the means are calculated. This process is repeated for
N=1,2,. . ., M, until there are fewer than 25 neighborhoods within the cylinder
slice. Finally, for confidence in discrimination of the object from the
background, the contrast needs to be three times greater than the standard
deviation in the noise. Therefore, the standard deviations are multiplied by 3
and graphed as a function of neighborhood size to produce the CDF.

Since the cylinder is a uniform material, CDF can be interpreted as the
average noise in the reconstructed image for various levels of pixelization. An
example CDF is given on the right side of Fig. 7.5. In this example, the CDF
shows that a contrast of 70% is required to discriminate a single pixel object
from the background, and a contrast of 10% enables discrimination of objects
larger than 3�3 pixels.
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The 3D MTF measurement method has been extended to use a spherical

phantom [6] for two reasons. First, any tilt in the cylinder will produce an

elliptical cross-section and degrade the calculated edge response, whereas any

slice through a sphere will produce the appropriate circular cross-section.

Second, resolution will vary over the reconstruction space for CT systems

depending on the sampling and the reconstruction method used. This spherical

phantom implementation locates the center of the sphere and integrates over

spherical surfaces centered on this point to develop an edge response function

that is an average over all directions on the spherical surface. Again using

Eq. (7.6), the MTF is calculated over all directions.
With the resolution and contrast measurements presented in the graphical

forms as shown in Figs. 7.4 and 7.5, a user can determine whether the imaging

system is suited for a particular measurement.

7.3 Volumetric Imaging

Neutron imaging systems have followed the path of x-ray imaging systems in

the introduction of rotational systems and CT reconstruction algorithms to

perform volumetric imaging. An introduction to neutron tomography was

provided in Chapter 6. This section builds upon the introduction by providing

a mathematical description of CT and the classical methods for reconstruction

of volumetric data.
Given a collection of projection images of an object, a 3D volumetric image

can be reconstructed using either an analytic or an iterative algorithm. The

former is based on some variant of filtered backprojection. The latter is based

on optimization of a criterion function that relates the fit of the volumetric

image with the observed projection data. In this section, we review the mathe-
matics behind these conceptually different approaches and comment on advan-

tages and disadvantages. To simplify the discussion, we apply the following

model of the projection data:

I ¼ I0 exp �
Z

K

mð�Þ d�
� �

; (7:7)

where I0 and I refer to the beam intensity before and after interaction with

the object, K denotes the path of the beam, and m represents the material-

dependent macroscopic cross-sections. To reconstructm, which corresponds to
�T, in the preceding section for neutron radiography, we apply log-normal-

ization to isolate the cross-section (Eq. (7.1), assuming B�1),

Z

K

mð�Þ d� ¼ � log
I

I0
: (7:8)
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We note that in practice, the result of a dark field scan (where the source is

turned off) is often subtracted from both I0 and I to compensate for noise

generated by physical processes that occur inside the imager (CCD).
Different imaging geometries require different reconstruction algorithms.

We consider both parallel and divergent beam collimation of the neutron

beam as shown in Fig. 7.6. We assume that the entire object is visible in each

projection image and that it is placed on a turntable to allow for a circular orbit-

type scan. Generalization to a helical scan is possible but beyond the scope of

the present exposition.

7.3.1 Filtered Backprojection

For 2D parallel beam data, the Fourier-slice theorem says that the Fourier trans-
form of a 1D projection equals a comparably angled slice through the 2DFourier
space of the object being imaged [23]. Let p (�,s) denote the log-normalized
projection data and let P (�,w) be the Fourier transform thereof. Mathematically,

pð�; sÞ ¼
Z1

�1

mðs cos �� u sin �; s sin �þ u cos �Þ du

Pð�;wÞ ¼
Z1

�1

pð�; sÞ exp �i 2pwsf g ds

(7:9)

Merging these expressions, while introducing the variable substitutions
x = s cos� � u sin� and y = s sin�+ u cos�, leads to,

Pð�;wÞ ¼
Z Z 1

�1
mðx; yÞ exp �i2pwðx cos �þ y sin �Þf gdx dy

¼Mðw cos �;w sin �Þ
(7:10)
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Fig. 7.6 Parallel beam (left) and fan beam (right) sampling geometries. Cone beam sampling
extends the fan beam geometry axially
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where M denotes the Fourier transform of m. While it would be tempting to
superimpose appropriately rotated 1D Fourier transforms of a collection of
projections and then obtain m through 2D Fourier inversion of the thus
approximated version of M, the interpolation needed to map the radial data
into the required Cartesian format would likely introduce artifacts in the
resulting image.

Filtered backprojection is a better approach. The mathematical derivation
can be summarized as follows [35]. When rewriting the inverse Fourier trans-
form of M using polar coordinates, the resulting Jacobian introduces an abso-
lute value-based frequency multiplier. That is,

mðx; yÞ ¼
Z Z 1

�1
Mðu; vÞ exp i 2p ðuxþ vyÞf gdu dv

¼
Z p

0

Z 1

�1
wj jMðw cos �;w sin �Þexp i2p ðx cos �þ y sin �Þf g dw

	 


d�

(7:11)

We can apply the Fourier-slice theorem to replace M (w cos �, w sin �) by
P (�,w). For simpler notation, we can furthermore express the inverse Fourier
transform of |w|P (�,w) as a convolution of p (�,s) with a kernel that implements
the ramp-filter corresponding to |w|. The result is the well-known algorithm,

mðx; yÞ ¼
Z p

0

~pð�; x cos �þ y sin �Þ d�

~pð�; sÞ ¼ pð� ; sÞ � hRAMP ðsÞ
(7:12)

where the ramp-filter is often band-limited to suppress high-frequency noise
and sampling based aliasing.

The extension to a 2D fan-beam geometry is not difficult. Essentially, geo-
metric weighting is introduced to compensate for the divergent nature of the
projection rays. The algorithm for equiangular sampling seen in connection
with a curved ring-detector is very similar to that associated with the equidistant
sampling geometry of a linear detector. The latter algorithm is given by,

mðx; y; zÞ ¼ 1

2

Z2p

0

g2ð�; x; yÞ~pð�; gð�; x; yÞðx cos �þ y sin �ÞÞ d�

gð�; x; yÞ ¼L= Lþ x sin �� y cos �ð Þ

~pð�; sÞ ¼L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ s2

p
� pð�; sÞ � hRAMP ðsÞ

(7:13)

where L refers to the distance from the neutron beam aperture to the isocenter
of the object (c.f. Fig. 7.6). The detector is assumed to be located at the isocenter
for mathematical simplicity (i.e., d=0). Notice that the backprojection takes
place over 2p instead of just p as used for the parallel beam geometry. Also note
that L!1 leads to the parallel beam algorithm.
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The extension to 3D parallel beam data is evenmore straightforward. In fact,

the reconstruction algorithm is identical to the one above for 2D parallel beam
data except for the increase in dimensionality.

The extension to a 3D cone-beam geometry based on a flat-panel detector is
more involved. Tuy [40] established a sufficient condition for reconstruction
that says that every image plane must contain at least one source point. While

this is satisfied for helical scanning and other trajectories, it is not satisfied for a
circular-orbit scan, which is considered here. This leads to an approximate
algorithm of which Feldkamp’s without a doubt is the most widely used.

Developed for industrial x-ray cone-beam CT, the Feldkamp algorithm [13]
can be viewed as a generalization of the fan-beam algorithm. The central slice of

a cone-beam volume is reconstructed in exactly the same manner as it would
have been, had it been reconstructed from single-slice fan-beam data. Slices
further out in the cone, however, correspond to tilted fans and are thus handled

differently. While the mathematical details are too extensive for inclusion here,
the end result is the following algorithm,

mðx; y; zÞ ¼ 1

2

Z2p

0

g2ð�; x; yÞ~pð�; gð�; x; yÞ½x cos �þ y sin �; z�Þ d�

gð�; x; yÞ ¼L= Lþ x sin �� y cos �ð Þ

~pð�; ½s; t�Þ ¼L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ s2 þ t2

p
� pð�; ½s; t�Þ � hRAMP ðsÞ

(7:14)

Notice that z=0 leads to the fan-beam algorithm. Also note that filtering is
not applied in the axial dimension.

We mentioned that the fan-beam backprojection equation indicates that the
source trajectory data must cover 2p. However, by introducing a weight func-
tion that effectively limits each projection ray to be considered just once, Parker

[34] showed that it is possible to stop when p+	 has been covered where 	
denotes the fan angle. The idea, which is heuristic, can be extended to apply to
cone-beam data as well.

Filtered backprojection algorithms, whether exact or approximate, are based on
continuous mathematics. When implemented for practical use, all integrals

are replaced by Riemann sums and nonintegral projection data lookup indices are
handled using some form of interpolation. The filtering can take place in either the
spatial domain or the frequency domain.When based on fast fourier transforms, the

latter canbedoneveryefficiently. In thatcase,backprojectionalongwith interpolation
dominates the computational cost. Still, given recent advances in computer technol-
ogy, it is possible to reconstruct even large images in a very short amount of time.

The image quality depends on taking enough projections and having good
count statistics to work with. Not taking enough projections invariably leads to

streak artifacts. Indeed, they are almost always present to some degree. Poor
count statistics results in a low-contrast, grainy image. Under normal imaging
conditions, however, good images are produced.
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7.3.2 Iterative Reconstruction

Henceforth, let vectors x and b refer to the image representing the macroscopic
cross-sections and the log-normalized projection data, and let matrix A denote
the discretization of the projection integral connecting the two. Reconstruction
can then be viewed as a matter of solvingAx=b. Numerous applicable iterative
algorithms exist ranging from Gauss–Seidel, Jacobi, and other stationary
methods to conjugate gradient (CG) and other Krylov subspace methods.

Stationary methods can be derived using matrix splitting [36]. For example,
A=M�N leads to the iteration scheme,

xðkþ1Þ ¼M�1NxðkÞ þ M�1b (7:15)

where x(0) is given. Convergence to the desired solution is guaranteed if
�(M–1N) < 1 where � denotes the spectral radius of the matrix involved. Let
matrices D, L, and U represent the diagonal, strictly lower triangular, and
strictly upper triangular portions ofA. ThenGauss–Seidel is the result of setting
M=D�L and N=U. Likewise, Jacobi follows from setting M=D and
N=L+U. Both methods converge if A is strictly diagonally dominant.

Krylov subspace methods monotonically minimize the residual error using
orthogonality conditions [36]. They are nonstationary in the sense that the
computations involve information that changes each iteration. The prototypi-
cal example is CG, which is based on the assumption that matrix A is sym-
metric, positive-definite. The iterative update scheme is given by

� ¼ jrðkÞj2=dðkÞj2A
xðkþ1Þ ¼ xðkÞ þ � dðkÞ

rðkþ1Þ ¼ b� Axðkþ1Þ

� ¼ jrðkþ1Þj2=jrðkÞj2

dðkþ1Þ ¼ rðkÞ þ � dðkÞ

(7:16)

where x(0) is given, d(0)=r
(0) = b� Ax

(0), |r|2 = r
T
r, and |d|A

2= d
T
Ad.

Whether a stationary method or a Krylov subspace method is used, the
search for x is terminated either when the residual norm associated with the
current iterate is deemed to be small enough, or when a fixed number of
iterations have been executed.

In most imaging applications, the linear system is under-or overdetermined
and a least squares problem must be solved instead. Let this be denoted by

x� ¼ argminjAx� bj2 ; (7:17)

where |Ax�b|2 = (Ax�b)T(Ax�b). By taking the derivative of the squared
residual norm with respect to x and equating the result to zero, we obtain the

7 Mathematics of Neutron Imaging 121



normal equations which form a linear system that can be solved by any of the
above-mentioned methods, namely,

ATAx ¼ ATb (7:18)

Other methods include SIRT, which is a stationary method for solving a
weighted least squares problem that has been widely used in medicine and
biology [15;18]) and LSQR, which is a CG-like method with better numerical
properties [33].

The reconstructed image should not contain any negative values, as they
have no physical interpretation. Their absence is only guaranteed if the least
squares problem is constrained accordingly. This leads to,

x� ¼ argminjAx� bj2subject to x � 0 : (7:19)

Note that depending on the neutron imaging system, a highly scattering
object can cause neutron detection in detectors just outside the shadow of the
object under test. These additional neutrons can result in negative attenuation
values. Therefore, modifications to the typical constraints may be required
along these edges.

A number of methods exist for solving constrained quadratic optimization
problems, one example being to embed the least squares algorithm in a pro-
jected gradient framework [5, 19]. Computationally, an outer algorithmic layer
iteratively (i) uses an inexact line search based on safeguarded quadratic inter-
polation to determine the set of free variables, i.e., those that are strictly positive
and (ii) invokes the least squares algorithm to compute a feasible solution in
that subspace. Control is passed back from the least squares solver to the outer
algorithmic layer either at convergence or when a variable is about to violate the
nonnegativity constraint.

Computational steering can be introduced through the addition of a penalty
term [26]. For example, suppose that the image is known to consist of regions of
uniform macroscopic cross-sections. In that case, it might be advantageous to
discourage neighboring voxels from taking on different values except near
region boundaries. This could be achieved by applying an edge-preserving
Markov random field that has smoothing properties [8]. Other structural con-
straints are possible. Generally speaking, the resulting optimization problem
can be written as

x� ¼ argminjAx� bj2 þ �RðxÞ subject to x � 0 (7:20)

where R(x) denotes the penalty term and � is a free parameter that controls the
influence exerted thereby on the solution. From a computational point of view,
linear penalty terms are preferable as they can be handled by straightforward
row-expansion of A and b.
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Bayesian reconstruction forms an alternative to algebraic methods. Com-
monly used in the field of medical imaging, this iterative approach is statistical
by nature. The image formation is described probabilistically, thereby making
reconstruction a matter of model parameter estimation. Specifically, let
p(x,b|�) denote the data likelihood for x, the unobservable image data, and b,

the observable projection data, given �, the associated model parameters. As
above,Ax=b, only nowA is amatrix of detection probabilities. The goal is then
to solve the penalized maximum likelihood problem

�� ¼ argmax log pðx; bj�Þ þ �Rð�Þ : (7:21)

where R, strictly speaking, is a log-prior; although in practice a heuristic
smoothing term is often used.

Methods for maximum likelihood estimation include gradient descent, con-
jugate gradient, and similar algorithms. These typically require first and/or
second derivatives of the likelihood function to be evaluated. This is not the
case for the two-step EM algorithm [11]. First, an E-step is carried out to
compute the expectation of the data log-likelihood given the observed data
and the current parameter estimate. Then, an M-step is used to re-estimate the
model parameters by means of maximization of the expectation. The result is
the following iteration scheme

�kþ1 ¼ argmaxE½log pðx; bj�Þjb;�ðkÞ� þ �Rð�Þ (7:22)

In some applications, e.g., maximum likelihood estimation for independent
Poisson events, theM-step is trivial as it has a closed-form solution. This allows
the E-step and the M-step to be combined. For other applications, the M-step
has to be implemented as an iterative computation of its own. This may also be
the case for penalized maximum likelihood estimation, as the penalty term may
preclude true maximization from taking place. The M-step is then turned into
an iterative parameter update computation that ensures a nondecrease of the
likelihood [21].

There are several advantages associated with taking an iterative approach to
image reconstruction. For one, it is possible to quite accurately model the system
geometry including nonuniformities in the sampling pattern as well as sensitivity
variations across the detector. As pointed out above, it is also possible to steer the
computation away from structurally undesirable images. Poor count statistics
tend not to be a problem either, as the objective of both algebraic and statistical
reconstruction methods is to find a solution that best fits the data. That is, there
is no built-in assumption of data consistency across projections. Iterative
approaches also allow reconstruction with few projections and irregular projec-
tion patterns and enable the inclusion of more accurate physics models up to full
Monte Carlo models. This flexibility comes at a high cost with respect to both
implementation complexity and computational cost at run-time. However, if
these can be overcome, the payoff is a high-quality image.

7 Mathematics of Neutron Imaging 123



7.3.3 Computer Platforms

Many platforms exist that can provide the compute power needed in order for
a volumetric image to be reconstructed in a reasonable amount of time. A
relatively small cluster of multi-core PCs may suffice to solve even a rather
large problem in a matter of minutes [18]. From a programming point of view
this is conceptually straightforward as it merely involves writing multi-
threaded code for a distributed memory environment. In recent years, com-
modity graphics processing units (GPUs) have seen a rapid increase in both
capability and programmability to the point that they are now being used for
general purpose computing and thus also tomographic image reconstruction
[31]. Papers often report order-of-magnitude performance gains over opti-
mized CPU applications. However, GPU programming is not for the novice.
Also, floating-point arithmetic may not follow IEEE standards, which could
be a problem. Field-programmable gate-arrays (FPGAs) provide a different
but equally powerful platform from a data throughput point of view. How-
ever, FPGAs are notoriously difficult to program, especially since floating-
point arithmetic may not be supported to the extent needed. Finally, we
mention the cell processor, which conceptually is somewhat similar to a
multi-core CPU only orders-of-magnitude faster. High-level programming is
possible, e.g., in C, but some thought must be devoted to memory handling as
the processing units only have a limited amount of memory available. None-
theless, the cell may represent the fastest platform currently on the market for
volumetric imaging [22].

7.4 Conclusions and Application

The ability to model, design, and measure the resolving power of a radiography
system is critically important to the experimental design required to achieve
relevantmeasurement characteristics of complex, material structures. The focus
of this chapter has been on methods to design and characterize radiography
systems according to experimental goals for volumetric measurements (i.e., CT
recording and reconstructionmethods). This focus has been primarily related to
spatial resolution and the estimation of macroscopic material interaction cross-
sections.

New or modified radiography facilities that generate cold neutrons [38]
provide wavelength tunable monochromaters [39] or provide time-of-flight
(TOF) measurements [27], facilitating the radiographic capture of images that
take I(�,�T,x,y,z) to I(E,�,�T,t,x,y,z). The ability to better characterize
the energy–time–space dependencies of materials, �T(E,t,x,y,z), will produce
better material resolution.

As an example of how to adapt this discussion to higher resolution measure-
ments, consider the example MTF shown in Fig. 7.7. Using Eq. (7.5), we have
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hypothesized a radiography system with L/D = 750, corresponding to a beam
aperture of 5 mm at a distance of 3.75 m from the object—a seemingly achiev-
able design. For a scintillator material with an optical diffusion parameter of
�=10 mm, the resolution of such a systemwould be 14 mmat the sensor, moving
from the macro-analysis scale to the microscopy scale. Reducing the beam
aperture from 25 mm (our earlier example) to 5 mm will increase system
resolution by a factor of 4, yet it is likely that neutron-counting statistics and
background noise will result in measurement challenges that are difficult to
overcome.

Overcoming low neutron counts may be achievable by encoding the beam
aperture, i.e., implementing an array of 5�5 mm (or smaller) apertures that
constitute a significant total area (e.g., >25�25 mm). In such a case, the MTF
of Eq. (7.5) could be replaced by a new geometric transfer function,HCA( �) that
describes a coded aperture [17], e.g.,

MTFðuÞ ¼ HCA
dMCCD

L=D
u

� �

� Gaussð�MCCDuÞ � sin c �s uð Þ
�
�
�
�

�
�
�
� (7:23)

The point is that these analysis tools can be adapted to new, more stringent
resolution requirements by applying creative ideas and methods.

For another example, the steady-state flux of a conventional reactor cannot
readily interrogate time-dependent phenomena as deeply as the high-intensity
and energy-dependent beams available at a spallation neutron source. Using a
spallation source, the potential exists to develop new time-synchronized,
energy-resolved methods to better resolve subtle material differences. This is
potentially achievable by taking advantage of the Bragg edges in materials [27]
or of the fact that absorption cross-sections, �a at low neutron energies
are typically proportional to 1/

p
E. Using prior knowledge of the material

characteristics under test should facilitate the collection of a series of
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energy-windowed images, I�E(�,�T,x,y,z), whose linear combinations, e.g.,
using principle component or linear discriminant analysis [12], may provide
improved contrast (i.e., CDF) between materials.

Finally, any of these methods that compartmentalize the total neutron beam
into small spatial- or energy-dependent units will make volumetric recovery of
material characteristics more challenging due to reduced signal-to-noise and the
corresponding artifacts that conventional CT methods produce in low-signal
environments. In these situations, the iterative reconstruction methods intro-
duced in Section 7.3.2 become more relevant to achieving adequate signal
recovery and reconstruction.
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