Molecular Events in Skin Cancer
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Skin cancer represents the most frequent cancer in humans and includes different
entities, based on the cell types and tissues affected. Next to epithelial tumors, such
as keratinocyte-derived basal cell carcinomas (BCC) and squamous cell carcino-
mas (SCC), and neuroendocrine Merkel cell carcinoma (MCC), skin malignancies
also include neuroectodermal malignant melanoma (MM), as well as tumors of
skin-associated tissues, lipomas, angiosarcomas, tumors of connective tissue, and
cutaneous lymphomas. Ultraviolet (UV) radiation is an important risk factor for
epithelial tumors and MM, because most of the tumor lesions occur in sun-exposed
skin areas and contain UV signature mutations [1, 2]. However, some tumors are
located in sun-protected body areas, indicating other factors involved in carcino-
genesis. These factors include immunosuppression, chemical carcinogens, ionizing
radiation, and physical factors such as fair complexion [3]. At least for SCC, human
papillomavirus (HPV) may also be involved in pathogenesis [4]. In addition, predis-
position to skin cancer is mediated by genetic factors including both germinal and
somatic mutations.

The role of germinal (inherited) mutations is well known for patients with
xeroderma pigmentosum (XP), an autosomal recessive disorder affecting DNA
repair [5]. Several polymorphisms of genes involved in DNA repair were described
to be associated with the development of skin cancer. An increased risk of skin
cancer at younger ages, including MM, SCC, and BCC, is seen in patients with
mutations in XPD [6].

In patients with the nevoid basal cell carcinoma syndrome (NBCCS, Gorlin
syndrome), as well as in many cases of sporadic BCC, tumorigenesis is associated
with abrogation of the sonic hedgehog pathway (SHH) [7]. Germinal mutations
detected in NBCCS include both loss-of-function mutations of the PTCH gene
encoding a suppressor of the hedgehog pathway and activating mutations of the
gene SMOH encoding a signal transducer of the SHH pathway [8, 9].

Susceptibility genes for the development of MM were identified in genetic stud-
ies of families with a high incidence of melanoma. These genes were represented
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by CDKN2A encoding the cyclin-dependent kinase inhibitor p16™K4 and tumor
suppressor p144RF as well as CDK4 and CDK6 encoding cyclin-dependent kinases
4 and 6 [10]. Variants of melanocortin-1 receptor (MC1R) are also associated with
increased risk of both MM and BCC [11,12]. MCIR is involved in regulation of skin
pigmentation. The MCI1R gene is highly polymorphic, and variant alleles, mainly
those associated with red hair colour, were described to be associated with fair pig-
mentation, more frequent development of nevi, and increased melanoma risk [11].

The development of MM and SCC is generally considered a multistep process
that requires additional genetic changes (somatic mutations) affecting cell prolifera-
tion, induction of apoptosis, angiogenesis, and invasion of the basal membrane [13].
For MM, mutations in N-ras and BRAF were reported to lead from benign precur-
sors to dysplastic nevi and superficial melanoma [14]. The progression to nodular
melanomas, which invade into the dermis and are capable of metastasis, is asso-
ciated with additional mutations, reflected by cytogenetic changes such as gains
of chromosomes 7q and 8q and losses of chromosomes 1p, 3, 6q, and 10q. Loss
of chromosomes 3 and 10q results in abrogation of growth suppression. Loss of
heterozygosity (LOH) of 10q affects expression of phosphatase PTEN, a negative
regulator of PI3K pathway, promoting proliferation and cell survival [15]. c-myc
overexpression, as a result of gain of chromosome 8, also induces cell prolifera-
tion [16]. Gain of 7q corresponds to increased expression of c-MET, a tyrosine-
kinase receptor for HGF, which after stimulation induces cell growth and disruption
of cell adhesion by downregulation of E-cadherin and desmoglein 1 [17].

Early molecular events in the development of SCC include mutations of p53.
Most of these represent UV signature mutations underlining the importance of
cumulative UV exposure as a risk factor. p53 mutations have been detected in
patches of both normal skin and in precancerous lesions (actinic keratosis, AK).
The progression towards invasive SCC is associated with additional cytogenetic
changes. In AKs, gains of chromosomes 7, 9, and 18 have been detected [18]; in
SCC, cytogenetic changes were reported for several other chromosomes. Losses of
chromosomal regions mainly relate to 3p, 4q, and 18, whereas gains were most
frequently observed for 3q, 17q, 4p, Xq, 14q, 8q, and 9q [19].

Cell culture studies using the HaCaT in vitro skin cancer progression model pro-
vided some clues of the genes that might be affected by these changes. HaCaT
cells are spontaneously immortalized keratinocytes with UV-specific p53 mutations
and some chromosomal aberrations, such as loss of 3p and 9p and gain of 3q [20].
These cells are not tumorigenic in immunocompetent mice but require additional
mutations for tumorigenic conversion, such as Ha-ras expression [21]. Gain of 11q,
which correlates with amplification of the cyclin D1 locus and overexpression of the
protein, was shown recently to be an essential early step in skin carcinogenesis [22].
The shift from benign to malignant phenotype was found to be associated with
the expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte-
macrophage colony-stimulating factor (GM-CSF), as well as loss of chromosome
15 [23-25]. The latter results in a loss of thrombospodin (TSP-1), a matrix protein
with antiangiogenetic properties, and thus would promote vascularization of tumor
tissue. Furthermore, the metastatic potential of HaCaT cells, as determined by in



Molecular Events in Skin Cancer 191

vivo passages of the cells, is associated with increased Ha-ras oncogene expression,
gains of parts of 11q, and loss of chromosome 2p [26]. The relevant genes of 2p
and 11q are still not identified, but gain of 11q may correspond to upregulation of
matrix metalloproteinase 1 (MMP1), located on 11q22.3, as recently identified by
microarray expression profiling [27].
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