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Introduction

Ultraviolet (UV) irradiation can be regarded as one of the most significant envi-
ronmental factors affecting human life. Although UV irradiation has an essential
impact on terrestrial and aquatic ecology and is an essential requirement for the
different life forms, particularly the mid wavelengths, UVB (290–320 nm), can also
exert deleterious effects on health. The mechanisms underlying the influence of UV
radiation on health are not limited to its instrumental role in the development of skin
cancer, but also include the profound effects it has on local and systemic inflamma-
tory responses. Analysing the biological effects of UVB irradiation has shown that
UV exposure can significantly inhibit immunity.

The implications of the immunosuppressive properties of UV irradiation are
manifold because UVB-induced immunosuppression is not only responsible for the
inhibition of protective cell-mediated immunity but also contributes to the initiation
as well as development and perpetuation of several skin disorders [1–6]. These
effects include induction of inflammation and cell death, premature skin aging,
exacerbation of infectious diseases, and induction of skin cancer as well as photo-
sensitive diseases such as cutaneous lupus erythematosus (LE), polymorphous light
eruption, and solar urticaria. Some of these clinical effects of solar irradiation were
already described more than 100 years ago [1].

Therefore, detailed knowledge about the mechanisms underlying UVB-mediated
immunomodulation is of utmost importance. Extensive investigations have been
performed in the field of photoimmunology within the past three decades, and it has
become much clearer by which mechanisms UVB irradiation suppresses immunity
[7–12]. Most of the experiments were performed in mice using the contact hypersen-
sitivity (CHS) or delayed-type hypersensitivity (DTH) model to haptens as well as
photocarcinogenesis experiments [10–12]. These models have provided important
information not only for photoimmunology but also for the field of immunology in
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general. In the following, the effects of UV exposure on the murine and human
immune system with regard to the development of UV-induced skin cancer are
briefly reviewed.

UV-Induced Local Immunosuppression

Application of haptens onto low-dose UVB-exposed human or murine skin leads to
inhibition of the induction of CHS. This effect has also been termed UV-induced
local immunosuppression. The UV-induced changes in epidermal Langerhans’ cell
function, as well as the UV-induced release of soluble immunosuppressive fac-
tors [interleukin (IL)-10, tumor necrosis factor (TNF)-�, IL-1�, cis-urocanic acid],
which influence the local micromilieu, have been proposed to be the major players
contributing to this phenomenon [13–20].

More than two decades ago, the observation had already been made that exposure
to low-dose UVB irradiation is able to suppress CHS responses to topically applied
haptens in certain strains of mice, and following investigations revealed that inher-
ited gene sequences influenced the individual immunological (un)responsiveness
[21]. Mouse strains in which immunosuppression was observed were designated
UVB susceptible (e.g., C3H/HeN; C57BL/6), whereas strains resistant to the adverse
effects of UV irradiation were termed UVB resistant (C3H/HeJ; Balb/c). Additional
investigations indicated that the relevant autosomal loci controlling these pheno-
types can be confined to the alleles lps and tnf [23]. Work supporting the relevance of
the tnf locus was supplied by studies in which inhibition of CHS in UVB-susceptible
animals was prevented application of neutralizing anti-TNF-� antibodies [23]. In
agreement with these results, a reduced capacity to mount a CHS response when
hapten was applied to murine skin following injection of subinflammatory doses of
TNF-� has been demonstrated [22–24].

UV irradiation also induces morphological and functional alterations in epider-
mal Langerhans’ cells, leading to their immobilization or, UV dose dependently,
to cell death. The involvement of TNF-� in the emigration of Langerhans’ cells
from UV-exposed skin into the regional lymph nodes has also been reported [25].
However, the role of TNF-� was questioned by the report that normal Langerhans’
cell migration was observed in TNF receptor 1 (p55)-deficient mice following hap-
ten application onto unirradiated skin. However, the treatment of these mice with
neutralizing anti-TNF-� antibodies still had the effect of reducing Langerhans’ cell
migration [25–27]. These data suggest that TNF receptor 1 may not be crucial for
this process and indirectly implicate the TNF receptor 2 (p75) as being required for
Langerhans’ cell migration. Because of the possible similarities between UVB- and
TNF-�-mediated effects, the same group employed these mouse models to scruti-
nize known TNF-� signals in UV-induced local suppression [28]. UVB irradiation
similarly abrogated CHS responses in both mutant and wild-type mice as well as in
TNF-� receptor 1+2 double-deficient mice, once again precluding TNF-� receptor
1 as an integral factor in the effects caused by UV irradiation in local cutaneous
immunity. In summary, the results obtained from these studies with gene-targeted
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mice put the role of TNF-� signalling into a different perspective and suggest a
rather minor role, if any, of the classic TNF-� pathway in UVB-induced local
immunosuppression, pointing to other substances as key factors in this scenario.

UVB susceptibility and UVB resistance can also be scrutinized to a certain
degree in humans [29]. An association between the immunosuppressive effects of
UVB and the development of skin cancer was suggested by the finding of a sig-
nificantly higher incidence of skin tumors in photosensitive patients. In agreement
with the evidence provided by the murine models, microsatellite markers and single
nucleotide polymorphisms (SNPs) link these phenotypes to the TNF-� locus, point-
ing to a role of TNF-� or other genes contained in this gene cluster are possible
determinants for UVB susceptibility in humans [30]. With the availability of the
full human genome, better marker(s) for UV susceptibility could be identified soon
and will help to clarify these controversially discussed data.

It is well known that exposure to UVB radiation functionally alters Langerhans’
cells in their activity to present major histocompatibility complex (MHC)-dependent
antigens [31–37]. Low-dose exposure of Langerhans’ cells to UVB also leads to
the preferential activation CD4+ cells of the T helper 2 (Th2) subset, but does not
result in the activation T helper 1 (Th1) cells [38,39]. In subsequent investigations it
was reported that UVB irradiation converts Langerhans’ cells from immunogenic to
tolerogenic antigen-presenting cells because of induction of specific clonal anergy
in CD4+ T helper 1 cells [38,39]. As hapten sensitization represents a primary syn-
geneic response and these studies used either allogeneic primary systems or primed
syngeneic systems, an extrapolation of these findings to the in vivo situation for
hapten sensitization may not be feasible, as neither one of these model systems is
an appropriate surrogate for the suppression of a primary immune response.

Langerhans’ cells have the ability to present tumor-associated antigens for both
the induction and the elicitation of protective immunity. It was shown that the sub-
cutaneous injection of tumor antigen-loaded Langerhans’ cells into naı̈ve recipient
mice resulted in the development of strong antitumoral immune responses because
these animals rejected a subsequent challenge with viable tumor cells. UV irradi-
ation of Langerhans’ cells before immunization impaired the induction of antitu-
moral immunity, leading to the rapid growth of the inoculated tumor cells [40]. In
later experiments it was demonstrated that UV-induced keratinocyte-derived IL-10
was able to inhibit the antigen-presenting function of Langerhans’ cells [41, 42].
Together, these findings suggest that the UV-induced alternation of Langerhans’
cell antigen-presenting function is mediated via the production of IL-10 from ker-
atinocytes.

Mechanisms of UV-Induced Systemic Immunosuppression

Irradiation of mice to larger doses of UVB (≥2 kJ/m2) inhibits both CHS responses
following painting of haptens onto sites not exposed to UV and the induction of
DTH responses [10, 11, 19, 20, 40]. As Langerhans’ cells critically involved in local
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immunosuppression were not altered in their number or morphology in non-UVB-
exposed skin areas, these findings suggested effector mechanisms other than those
involved in UV-induced local immunosuppression. Several molecular pathways are
considered to be involved in this so-called UV-induced systemic immunosuppres-
sion including impaired signalling caused by UV-induced mutations of the photore-
ceptor DNA, conformational changes in the photoreceptor urocanic acid, and the
release of a large number of soluble mediators with suppressive properties such as
IL-1�, TNF-�.. , prostaglandin E2 (PGE2), and IL-10 [13–15, 41–49].

In particular, the role of IL-10 in UV-induced immunosuppression and regula-
tion of cutaneous immune responses has been emphasized by a number of research
groups [41, 42, 45, 46]. Intraperitoneal IL-10 administration was found to inhibit
the elicitation phase, but not the induction phase, of CHS responses [48]. On the
other hand, both the induction and the elicitation of DTH immunity are suppressed
by IL-10 treatment, indicating that CHS and DTH responses are related but dis-
tinct immune reactions. Increased concentrations of IL-10 were detected in the
serum of UVB-exposed mice, and application of neutralizing anti-IL-10-antibodies
significantly inhibited the UV-induced suppression of DTH responses to alloanti-
gens, suggesting that IL-10 functions as a main mediator of UV-induced systemic
immunosuppression [10, 12]. These findings are in agreement with the observation
that spleen cells from UVB-treated mice were unable to present antigen to Th1
cells, whereas antigen presentation to Th2 cells was even enhanced [48]. Abro-
gation of both effects was achieved by application of neutralizing anti-IL-10 anti-
bodies. To directly address the role of IL-10 in UV-induced systemic immunosup-
pression, IL-10-deficient mice were utilized [50]. The induction of DTH responses
in IL-10-deficient mice could not be suppressed by UVB irradiation whereas the
induction of CHS responses was suppressed following UVB exposure. These data
clearly demonstrate the in vivo relevance of IL-10 as a key mediator of UV-induced
systemic immunosuppression. Furthermore, since IL-10 is one of the key cytokines
involved in the skewing the immune balance toward Th2-like immunity, such find-
ings support the concept that UV exposure inhibits Th1-type immune responses.

To investigate the role of IL-10 during the development of UV-induced skin
tumor development (photocarcinogenesis), groups of IL-10-deficient and wild-type
mice were chronically UVB irradiated. Importantly, IL-10-deficient mice failed to
develop UV-induced skin tumors compared to controls, indicating that IL-10 plays a
key role during photocarcinogenesis [51]. Additionally, it was found that basal cell
carcinomas are able to produce IL-10 and perhaps this IL-10 production contributes
to cancer progression.

The concept of a Th2 shift in systemic immunosuppression is further sup-
ported by the observation that immunosuppression is blocked in mice treated with
neutralizing anti-IL-4 antibodies [52]. Although UVB radiation does not directly
induce the release of this key Th2-cytokine, the IL-4 effects might be mediated
indirectly via the UVB-induced release of PGE2 by keratinocytes. Accordingly,
this concept was substantiated by the observation that cyclooxygenase-2 inhibitors
blocked IL-4 production following UV treatment, which alludes to the activation of
a cytokine cascade (prostaglandin E2 → IL-4 → IL-10) following UVB exposure
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that finally results in systemic immunosuppression [52]. Recent observations in
humans revealed that UVB radiation stimulates the immigration of neutrophils into
the skin, which could give rise to type 2 T-cell responses in UVB-exposed skin via
secretion of IL-4 [53]. Hence, there is substantial evidence that exposure to UVB
radiation generates a shift toward a Th2 immune response in vivo, thus explaining
the fact that mostly Th1-mediated cellular immune reactions are impaired by UVB
radiation.

UV-Induced Antigen-Specific Immunotolerance

Another of the many consequences of UV irradiation for the immune system is
that it also interferes with cell-mediated immunity to allergens by inducing antigen-
specific tolerance [11, 21]. Mice having received an initial immunization through
UVB-exposed skin do not mount an immune response following resensitization
with the same antigen at a later time point [21]. These very same mice showed
no compromised immune responses upon sensitization against a different unrelated
antigen, suggesting that UVB radiation leads to an antigen-specific rather than a
general suppression of the immune system. Subsequent investigations revealed that
the induction of antigen-specific tolerogenic suppressor/regulatory T cells was the
root of the observed immunosuppression and that this also occurred in the model of
systemic immunosuppression.

There is also evidence that UVB radiation can impair CHS responses because of
antigen-specific tolerance in humans. In about 10% of the human subjects tested,
tolerance was induced [29]. This was antigen specific, as they reacted with pro-
nounced CHS responses upon subsequent sensitization with a nonrelated antigen.
Even higher percentages of human volunteers developing tolerance when the anti-
gen was initially applied onto skin areas exposed to erythemogenic UVB doses were
reported in a further study [54]. These variations may result from the different UV
irradiation protocols used. Nevertheless, both reports demonstrate the existence of
a subtype of humans who develop tolerance when the sensitizing antigen is first
applied onto UVB-exposed skin.

Erythemogenic UVB not only causes the emigration and subsequent deple-
tion of Langerhans’ cells in the skin but also results in the infiltration of CD1a+

HLA-DR+ CD36+ macrophages in the skin [54]. These macrophages are then able
to activate autoreactive T cells [55, 56], specifically CD4+ “suppressor-inducer”
cells, which in turn induce the maturation of suppressor T cells [57, 58]. Addition-
ally, these macrophages, which also express CD11b+, can release the immunosup-
pressive cytokine IL-10 at considerable concentrations, probably representing the
major source for epidermal IL-10 protein in human UV-exposed skin [59]. This
finding is of particular relevance in light of the fact that IL-10 seems to play a
major role in UVB-induced immunosuppression. In vitro studies have shown that
upon UVB exposure the macrophages infiltrating the epidermis can also induce
CD4+ T lymphocytes, which lack the expression of the IL-2 receptor alpha chain
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[60]. The downregulation of the IL-2 receptor alpha chain seems to be connected
with effects caused by transforming growth factor-�, another immunosuppressive
mediator.

UV-Induced Regulatory T Cells

UV-induced skin tumors from UV-suppressed mice grow progressively when trans-
ferred into mice immunosuppressed by UV but typically regress when transplanted
into immunocompetent mice [61–63]. Furthermore, the transfer of T lymphocytes
from UVB-irradiated mice into normal recipients also results in the failure to reject
UVB-induced tumors [64, 65]. Analogous results were obtained using the hapten
model of sensitization [66, 67] in which injection of T lymphocytes from lymph
nodes or spleens obtained from UVB-irradiated and hapten-sensitized mice sup-
press CHS responses in the recipients. In correlation with the studies previously
mentioned, the recipients were still able to generate a normal CHS response to
an irrelevant hapten [66, 67]. Taken together, these findings argue that UV-induced
tolerance is mediated via induction of hapten-specific suppressor T cells. Because
of the poor characterization of the molecular mechanisms and the phenotypes of
the cells inducing this active immunosuppression, the term T suppressor cells was
almost banned and the entire concept of suppression drawn into question [68, 69].
Yet the persistent hunt for T suppressor cells by investigators not only in the field of
photoimmunology finally resulted in the discovery of these regulatory T cells, thus
retrospectively justifying both the search and the concept of T suppressor/regulatory
cells [68].

Tolerance can be induced by the transfer of lymphocytes in both local and sys-
temic suppression. However, different subsets of T cells seem to be responsible
for the immunosuppressive effects. Systemic UVB-induced suppression is medi-
ated by antigen-specific CD3+, CD4+, and CD8− suppressor cells [45]. The results
of a study initiated by Elmets et al. [66] revealed that in the local UV-induced
immunosuppression, treatment of cells from UVB-irradiated animals with anti-
bodies directed against Lyt-1 (CD4) completely abrogated their ability to transfer
suppression, while treatment of cells with antibodies directed against Lyt-2 (CD8)
partially inhibited suppression [66]. Accordingly, Schwarz et al. reported that in the
UV low-dose model suppression was prevented when the transferred T lymphocytes
were depleted of CD8+ cells [70]. It is important to note that T suppressor cells in
this particular experimental design only influence the induction but not the elici-
tation of CHS, as introduction of UVB-induced T suppressor cells into previously
sensitized mice does not affect the CHS response in recipients [71]. This observation
might indicate that effector T cells dominate T suppressor cells.

A number of studies have been conducted to further characterize this cell type.
Both human and murine CD4+ T cells subjected to chronic activation with CD3
in the presence of IL-10 induce CD4+ T-cell clones with low proliferative capacity,
low levels of IL-2, and no IL-4 that are yet able to produce high levels of IL-10 [72].
Studies in SCID mice demonstrated that these antigen-specific T-cell clones are able
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to suppress the proliferation of CD4+ T cells in response to antigen and can be used
to prevent T-cell-mediated colitis. This particular subset of CD4+ T cells was des-
ignated T regulatory cells. Another subset of CD4+ regulatory T cells is character-
ized by the constitutive expression of the �-chain of the IL-2 receptor (CD25) [73].
Interestingly, CD4+ CD25+ regulatory T cells constitute approximately 10% of all
murine peripheral CD4+ T cells. The results of these and other studies have inspired
much new research investigating the role of suppressor/regulatory T cells, currently
making this area of research one of the most intensively studied subjects in general
immunology. Whether the cells are termed regulatory or suppressor is more a matter
of semantics, but because of this new breakthrough the concept of T suppressor cells
has been redeemed and is now accepted in the immunological community [74].

The first successful cloning of regulatory T cells from UVB-irradiated mice was
achieved by Shreedhar et al. [75]. Mice were sensitized with fluorescein isothio-
cyanate (FITC) following UVB treatment. The T cells cloned from these mice were
phenotypically analyzed as CD4+, CD8−, TCR-�/�+, MHC-restricted T cells spe-
cific for the FITC antigen. They secreted IL-10, but not IL-4 or interferon-�, whereas
cells from nonirradiated control animals produced high amounts of interferon-� and
little IL-4 and IL-10 [75]. The cytokine pattern of the UVB-induced cells was related
but not identical to that of T regulatory 1 (Tr1) cells. Thus the authors designated
these cells T regulatory 2 type cells. In vitro experiments established that these
cells have the ability to block antigen-presenting cell functions, including IL-12 pro-
duction. Even more importantly, injection of these T cells into untreated recipients
suppressed the induction of CHS against FITC.

Although many studies previously described regulatory T cells to be of the CD8
type, the aforementioned studies and many more provide increasing evidence that
the majority belong to the CD4 type. In this respect, the role of CD4+ CD25+ reg-
ulatory T cells in eliciting UVB-induced tolerance remains to be determined. First
clues as to the importance of CD4+ T cells in generating UVB-induced immuno-
suppression were recently found using MHC class II knockout mice. These animals
are resistant to the immunosuppressive effects of UVB radiation, indicating that
UVB-induced immunosuppression is caused by preferential activation of CD4+

regulatory T cells as a result of deficient priming or expansion of effector CD8+

T cells [76].
UV-induced regulatory T cells also express the B7 family molecule cytotoxic T

lymphocyte activation molecule-4 (CTLA-4; CD152) on their surface. CTLA-4 is
functionally relevant for immunosuppression as inhibition of CTLA-4 by a neutral-
izing antibody inhibits the induction of tolerance and immunosuppression following
the transfer of T cells [77]. In vitro stimulation of UV-induced regulatory T cells
induced the release of IL-2, interferon-�, and high amounts of IL-10 but no IL-4, a
cytokine secretion pattern reminiscent of that of regulatory T cells. Release of IL-10
appears to be functionally relevant because transfer of suppression was inhibited
when recipients received neutralizing anti-IL-10-antibodies.

There is evidence for a distinctive heterogeneity of (UV-induced) regulatory cells
based on the observation that UVB-induced NKT cells are involved in the suppres-
sion of tumor immune responses [78]. NKT cells express intermediate amounts of
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T-cell receptor molecules and coexpress surface antigens normally found on natu-
ral killer cells (NK1.1, DX5, and Ly49a). Moodycliffe et al. supplied compelling
data that UVB-induced regulatory T cells may actually belong to the NKT type and
that these cells can suppress both DTH and antitumoral immunity. It remains to be
determined to what extent these cells, which have also been detected in UV-exposed
humans, play a role in the etiology of tumor progression of UVB-induced skin can-
cers [79].

Antigen-presenting cells are crucial for the induction of antigen-specific T-
cell activation. Besides the interaction of the T-cell receptor and MHC class I/II
molecules (“signal 1”), costimulatory molecules (“signal 2”) also have to partici-
pate in this cell–cell communication for efficient T-cell priming. Among the cos-
timulatory molecules, the B7 family plays a pivotal role, as in this group of recep-
tor/coreceptor pairs, stimulatory as well as inhibitory signal pathways exist. The
two oldest “family members” are B7.1 (CD80) and B7.2 (CD86), which bind to
CD28 as well as CTLA-4 (CD152). A functional blockade of CD80/CD86 signal-
ing induced by transgenic overexpression of soluble CTLA-4Ig resulted in reduced
UV-induced skin tumor development [80]. Additionally, CD80/CD86 inhibition led
to impaired UV-induced skewing of immunity toward Th2, as evidenced by the
increased interferon (IFN)-� production of T cells from UV-treated K14-CTLA-
4Ig transgenic mice. Since CD80/CD86 can bind to both coreceptors CD28 and
CTLA-4, mice deficient for either CD80 or CD86 were chronically UV irradiated to
induce skin tumor development. Although CD80−/− mice developed UV-induced
skin tumors to a similar extent compared to wild-type mice, CD86−/− mice devel-
oped skin tumors significantly earlier. Interestingly, dendritic cells from CD86−/−

mice induced markedly less T-cell proliferation compared to controls, suggesting
that once again antigen-presenting cells might play a critical role for antitumoral
immunity [81].

Besides CD86-mediated signalling, the CD80/CD86-CTLA-4 pathway also reg-
ulates the development of UV-induced carcinogenesis, as mice treated with neu-
tralizing anti-CTLA-4 antibodies after each UV treatment showed strongly reduced
photocarcinogenesis [81]. Furthermore, anti-CTLA-4 antibody treatment induced
strong long-lasting protective antitumoral immunity, as indicated by the rejection
of a challenge with viable UV tumor cells. Importantly, anti-CTLA-4 antibodies
impaired the suppressor function of UV-induced CD4+CD25+ regulatory T cells,
suggesting another therapeutic beneficial effect of interfering with CD80/CD86-
CTLA-4 signaling. Indeed, a humanized anti-CTLA-4 antibody has been already
successfully used to treat melanoma patients [82]. Together, these findings indi-
cate the importance of CD80/CD86-CD28/CTLA-4 pathways for UV-induced skin
cancer development and further suggest that interfering with CD80/CD86-CTLA-4
signaling might be beneficial for the treatment of patients with cutaneous malignan-
cies.
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