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Correspondence Analysis

17.1 Introduction

Correspondence analysis is an exploratory multivariate technique for si-
multaneously displaying scores representing the row categories and column
categories of a two-way contingency table as the coordinates of points in
a low-dimensional (two- or possibly three-dimensional) vector space. The
objective is to clarify the relationship between the row and column vari-
ates of the table and to discover a low-dimensional explanation for possible
deviations from independence of those variates. The methodology has its
own nomenclature, and its approach is decidedly geometric, especially for
interpreting the resulting graphical displays.

For two-way contingency tables, correspondence analysis is known as
simple correspondence analysis. For three-way and higher contingency ta-
bles, it is known asmultiple correspondence analysis. Variants of correspon-
dence analysis are dual (or optimal) scaling, reciprocal averaging, perceptual
mapping, and social space analysis. In general, correspondence analysis is
applicable when the variates are discrete with many categories and, hence,
is well-suited for analyzing large contingency tables. It can also be used
for continuous variates, such as age, which can be segmented into a finite
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634 17. Correspondence Analysis

number of ranges, but discretization of a continuous variate usually entails
some loss of information.

17.1.1 Example: Shoplifting in The Netherlands

These data1 were taken from van der Heijden, de Falguerolles, and de
Leeuw (1989). It is a three-way contingency table of 33,101 individuals,
classified by gender and age, who were suspected of stealing specific goods
in The Netherlands in 1978 and 1979. The data were obtained from a survey
of about 350 Dutch stores and big retail shops. Cases in which shoplifting
consisted of more than a single type of good, or in which more than one
person was suspected, were omitted from the study. Age was divided into
nine nonoverlapping categories, and shoplifted items were classified into 13
types of goods.

For this example, we arranged the original 2× 9× 13 three-way contin-
gency table into a (2× 9)× 13 two-way contingency table in which gender
has been introduced as separate sets of nine male and nine female rows of
ages. The ages were coded by groups: < 12 (1 for boys and 10 for girls),
12–14 (2 and 11), 15–17 (3 and 12), 18–20 (4 and 13), 21–29 (5 and 14),
30–39 (6 and 15), 40–49 (7 and 16), 50–64 (8 and 17), and 65+ (9 and 18).
The graphical display from the resulting correspondence analysis is given
in Figure 17.1.

We can make the following observations from Figure 17.1. First, points
representing males and females are well-separated at each age group, sug-
gesting that their shoplifting profiles are quite different. Second, for both
males and females, the age category points are clearly ordered from younger
than 12 years old on the left-hand side to older than 65 on the right-hand
side, with both sets of points doubling back toward the left after 30 years of
age. Third, while there are larger distances between males at the younger
age groups than those at older age groups, suggesting that shoplifting be-
havior changes substantially more for younger than for older males, the
distances between female age groups are largest at both the younger and
older ages (and, hence, more rapidly changing shoplifting behavior), with
smaller distances appearing in the middle age groups (18–49).

The configuration of points in Figure 17.1 also tempts us to identify col-
umn points (which types of goods are shoplifted more than average) with
nearby row points (age groups), possibly leading to the identification of sig-
nificant age × goods interactions. Although interrow distances and inter-
column distances can be compared, row-to-column distances are undefined
and, therefore, are essentially meaningless (see, e.g., Greenacre and Hastie,

1The contingency table can be downloaded from the book’s website.
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FIGURE 17.1. Correspondence map for the shoplifting example. The red
words are the items shoplifted, the points joined by a solid line represent
the progression in male ages (1–9), and the points joined by a dotted line
represent the progression in female ages (10–18).

1987). In other words, row points should not be associated with neighbor-
ing column points (and vice versa). Using row percentages obtained from
the contingency table, we summarize in Table 17.1 the types of goods most
often shoplifted by males and by females at each of the different age groups.
In the light of the above comments, it is perhaps instructive for the reader
to compare Figure 17.1 with Table 17.1.

17.2 Simple Correspondence Analysis

17.2.1 Two-Way Contingency Tables

Categorical data are count data that are collected in a contingency table
N. A two-way (r×s) contingency table with r rows (labelled A1, A2, . . . , Ar)
and s columns (labelled B1, B2, . . . , Bs) has rs cells. The ijth cell has entry
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TABLE 17.1. Types of goods most often shoplifted by males and by females
at each age group, as derived from the two-way contingency table of the
example. Superscripts show the percentages of that type of good stolen for
that age group and gender. Also listed in parentheses for each age group
and gender are those goods that are stolen more than 20% of the time.

Age Males Females

< 12 Toys 26.2 (writing materials 23.5) Writing materials 23.8

12–14 Writing materials 25.1 Jewelry 26.5

15–17 Writing materials 14.8 Clothing 32.3 (jewelry 20.5)
18–20 Clothing 22.8 Clothing 45.4

21–29 Clothing 27.3 Clothing 55.8

30–39 Clothing 25.9 Clothing 57.2

40–49 Clothing 21.7 Clothing 51.7

50–64 Hobbies, tools 22.6 Clothing 39.4

65+ Provisions, tobacco 27.3 Provisions, tobacco 30.1

(hobbies, tools 20.9) (clothing 24.2)

nij , representing the observed frequency in row category Ai and column
category Bj, i = 1, 2, . . . , r, j = 1, 2, . . . , s. The ith marginal row total
is ni+ =

∑s
j=1 nij , i = 1, 2, . . . , r, and the jth marginal column total is

n+j =
∑r

i=1 nij , j = 1, 2, . . . , s. If n =
∑r

i=1

∑s
j=1 nij individuals are

classified by row and column categories, then Table 17.2, which is also called
a correspondence table, shows the cell frequencies, marginal totals, and total
sample size. For interpretation purposes, it is important to distinguish when
the n individuals are randomly selected from some very large population
or when they actually constitute the entire population of interest.

We denote by πij the probability that an individual has the properties Ai

and Bj, i = 1, 2, . . . , r, j = 1, 2, . . . , s. In the event that the row variable A
is independent of the column variable B, we have that πij = πi+π+j , where
πi+ =

∑
j πij and π+j =

∑
i πij , for all i = 1, 2, . . . , r and j = 1, 2, . . . , s.

We are generally interested in assessing whether A and B are indeed inde-
pendent variables. Such a question can alternatively be posed in terms of
homogeneity of the row or column probability distributions; that is, whether
all the rows have the same probability distributions across columns, or,
equivalently, whether all the columns have the same probability distribu-
tions across rows.

17.2.2 Row and Column Dummy Variables

For a two-way (r × s) contingency table, we are interested in the rela-
tionship between the row categories and the column categories. We define
two sets of dummy variates, an r-vector Xi = (Xi1, · · · , Xir)

τ to indi-
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TABLE 17.2. Two-way contingency table, showing observed cell frequen-
cies, row and column marginal totals, and total sample size.

Column Variable
Row Variable B1 B2 · · · Bj · · · Bs Row Total

A1 n11 n12 · · · n1j · · · n1s n1+

A2 n21 n22 · · · n2j · · · n2s n2+

...
...

...
...

...
...

Ai ni1 ni2 · · · nij · · · nis ni+

...
...

...
...

...
...

Ar nr1 nr2 · · · nrj · · · nrs nr+

Column total n+1 n+2 · · · n+j · · · n+s n

cate which of the n observations fall into the ith row, and an s-vector
Yj = (Y1j , · · · , Ysj)τ to indicate which of the n observations fall into the
jth column; that is,

Xij =

{
1, if the jth individual belongs to Ai

0, otherwise

Yij =

{
1, if the ith individual belongs to Bj

0, otherwise

i = 1, 2, . . . , r, j = 1, 2, . . . , s. These indicator vectors can be collected into
two matrices, an (r×n)-matrix X = (xij) and an (s×n)-matrix Y = (yij).
Note that even though both X and Y are defined by the specific distribution
of cell frequencies in the contingency table, it turns out that the summary
information will be the same as if we assume, for convenience, that X and
Y are given by

r×n

X =




1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1


 , (17.1)

s×n

Y =




1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1


 , (17.2)

respectively.

Matrices derived from X and Y reproduce the observed cell frequencies
and their marginal totals. The (r×s)-matrix XYτ reproduces the observed
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cell frequencies of the contingency table,

XYτ =




n11 n12 . . . n1s

n21 n22 . . . n2s
...

...
. . .

...
nr1 nr2 . . . nrs


 = N. (17.3)

The (r × r) matrix XX τ and the (s × s) matrix YYτ are both diagonal,
XX τ having as diagonal entries the r marginal row totals and YYτ having
as diagonal entries the s marginal column totals,

XX τ = diag{n1+, · · · , nr+}, (17.4)

YYτ = diag{n+1, · · · , n+s}. (17.5)

Collecting (17.3), (17.4), and (17.5) together, we can form the (r+s)×(r+s)
block matrix, (

X
Y

)(
X
Y

)τ

=

(
nDr N
Nτ nDc

)
, (17.6)

where
Dr = n−1XX = diag{n1+/n, . . . , nr+/n}, (17.7)

Dc = n−1YYτ = diag{n+1/n, . . . , n+s/n}. (17.8)

The matrix (17.6) is known as a Burt matrix (Burt, 1950) for a two-way con-
tingency table. It is nonnegative definite and symmetric and is the analogue
in the discrete case (after dividing through by n) of the sample covariance
matrix of two sets of continuous variates.

17.2.3 Example: Hair Color and Eye Color

This classic two-way contingency table N with r = 4 and s = 5 (see
Table 17.3) was analyzed by R.A. Fisher (1940) and others. It relates to
data on hair color and eye color of a sample of 5,387 schoolchildren from
Caithness, Scotland. It is given as a (4× 5)-matrix by:

N = XYτ =




326 38 241 110 3
688 116 584 188 4
343 84 909 412 26
98 48 403 681 85


 .

The matrices XX τ and YYτ are given by:

XX τ =




718 0 0 0
0 1580 0 0
0 0 1774 0
0 0 0 1315
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TABLE 17.3. Relationship of Hair Color to Eye Color of Scottish
Schoolchildren.

Hair Color
Eye Color Fair Red Medium Dark Black Totals

Blue 326 38 241 110 3 718
Light 688 116 584 188 4 1,580

Medium 343 84 909 412 26 1,774
Dark 98 48 403 681 85 1,315

Totals 1,455 286 2,137 1,391 118 5,387

YYτ =




1455 0 0 0 0
0 286 0 0 0
0 0 2137 0 0
0 0 0 1391 0
0 0 0 0 118


 ,

respectively. The matrices Dr and Dc are obtained by dividing both XX τ

and YYτ by n = 5, 387:

Dr =




0.1333 0 0 0
0 0.2933 0 0
0 0 0.3293 0
0 0 0 0.2441




Dc =




0.2701 0 0 0 0
0 0.0531 0 0 0
0 0 0.3967 0 0
0 0 0 0.2582 0
0 0 0 0 0.0219


 .

17.2.4 Profiles, Masses, and Centroids

The (r × s)-matrix
P = n−1N (17.9)

converts the contingency table N into a correspondence matrix. See Table
17.4. If the n individuals constitute a random sample, the entry, pij =
nij/n, in the ith row and jth column of P can be characterized as either the
uniformly minimum variance unbiased (UMVU) estimator or the maximum
likelihood (ML) estimator of πij . For the hair-color/eye-color example,

P =




0.0605 0.0071 0.0447 0.0204 0.0006
0.1277 0.0215 0.1084 0.0349 0.0007
0.0637 0.0156 0.1687 0.0765 0.0048
0.0182 0.0089 0.0748 0.1264 0.0158


 .
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TABLE 17.4. Correspondence matrix, showing observed cell relative fre-
quencies P (pij = nij/n), row marginal totals r (pi+ = ni+/n), and column
marginal totals cτ (p+j = n+j/n)

Column Variable
Row Variable B1 B2 · · · Bj · · · Bs Row Total

A1 p11 p12 · · · p1j · · · p1s p1+
A2 p21 p22 · · · p2j · · · p2s p2+
...

...
...

...
...

...
Ai pi1 pi2 · · · pij · · · pis pi+
...

...
...

...
...

...
Ar pr1 pr2 · · · prj · · · prs pr+

Column total p+1 p+2 · · · p+j · · · p+s 1

The row totals and column totals of P are given by the diagonal elements
of Dr and Dc, respectively.

The (r × s)-matrix Pr of row profiles of N (or P) consists of the rows
of N divided by their appropriate row totals (e.g., nij/ni+, which, under
random sampling, can be characterized as either the UMVU or ML estima-
tor of πij/πi+, the conditional probability that an individual has property
Bj given that he or she has property Ai), and can be computed as the
regression coefficient matrix of Y on X ; that is,

Pr = (XX τ )−1XYτ = D−1
r P =




aτ1
...
aτr


 , (17.10)

where

aτi =

(
ni1

ni+
, · · · , nis

ni+

)
(17.11)

is the ith row profile, i = 1, 2, . . . , r. For the hair-color/eye-color example,

Pr =




0.4540 0.0529 0.3357 0.1532 0.0042
0.4354 0.0734 0.3696 0.1190 0.0025
0.1933 0.0474 0.5124 0.2322 0.0147
0.0745 0.0365 0.3065 0.5179 0.0646


 .

Similarly, the (s × r)-matrix Pc of column profiles of N (or P) consists of
the columns of N divided by their appropriate column totals (e.g., nij/n+j ,
which, under random sampling, can be characterized as the UMVU or ML
estimator of πij/π+j , the conditional probability that an individual has
property Ai given that he or she has property Bj), and computed as the



17.2 Simple Correspondence Analysis 641

regression coefficient matrix of X on Y; that is,

Pc = (YYτ )−1YX τ = D
−1
c P

τ =




bτ
1

...
bτ
s


 , (17.12)

where

bτ
j =

(
n1j

n+j
, · · · , nrj

n+j

)
(17.13)

is the jth column profile, j = 1, 2, . . . , s. For the hair-color/eye-color ex-
ample,

Pc =




0.2241 0.4729 0.2357 0.0674
0.1329 0.4056 0.2937 0.1678
0.1128 0.2733 0.4254 0.1886
0.0791 0.1352 0.2962 0.4896
0.0254 0.0339 0.2203 0.7203


 .

The row means of the contingency table N are the row sums of P,

P1s =



X̄1
...
X̄r


 =



n1+/n

...
nr+/n


 =



p1+
...
pr+


 = r, (17.14)

and the column means of N are the column sums of P (or row sums of
Pτ ),

Pτ1r =



Ȳ1
...
Ȳs


 =



n+1/n

...
n+s/n


 =



p+1

...
p+s


 = c, (17.15)

where 1a denotes an a-vector each of whose entries is 1. The vectors r and c
can be formed from the diagonal elements of Dr and Dc, respectively; that
is, Dr = diag{r} and Dc = diag{c}. For the hair-color/eye-color example,

r =




0.1333
0.2933
0.3293
0.2441


 , c =




0.2701
0.0531
0.3967
0.2582
0.0219


 .

Powers of these diagonal matrices are given by Dα
r = diag{rα} and Dα

c =
diag{cα}, where rα and cα are the column vectors (17.14) and (17.15),
respectively, with each entry raised to the αth power. In this chapter, we
will be interested in situations where α = − 1

2 or −1.
The ith element, pi+ = ni+/n, of the r-vector r is called the ith row

mass and, under random sampling, is an estimate of the unconditional
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probability, πi+, of belonging to Ai. Similarly, the jth element, p+j =
n+j/n, of the s-vector c is called the jth column mass and is an estimate
of the unconditional probability, π+j , of belonging to Bj . In correspondence
analysis, r is called the average column profile and c is called the average
row profile of the contingency table. The vector c is also referred to as the
row centroid because it can be expressed as the weighted average of the
row profiles, namely,

c =

r∑

i=1

pi+ai, (17.16)

where the weights are the row masses. Similarly, the vector r is referred to
as the column centroid because it can be expressed as the weighted average
of the column profiles, namely,

r =

s∑

j=1

p+jbj , (17.17)

where the weights are the column masses. It is not difficult to show that the
relationship between r and c is given by r = PτD−1

c c and c = PτD−1
r r.

17.2.5 Chi-squared Distances

In correspondence analysis, it is important to be able to visualize dis-
tances between different row profiles (i.e., rows of Pr) or between different
column profiles (i.e., rows of Pc). To do this, we use the chi-squared metric
as a measure of distance.

Row Distances

Consider the ith and i′th row profiles, ai and ai′ , respectively. We will
need the fact that ai − ai′ is an s-vector whose jth entry is nij/ni+ −
ni′j/ni′+. The squared distance between ai and ai′ is defined as the quadratic
form,

d2(ai, ai′) ≡ (ai − ai′ )
τD−1

c (ai − ai′ ) (17.18)

=
s∑

j=1

n

n+j

(
nij

ni+
− ni′j

ni′+

)2

. (17.19)

We see from (17.19) that the jth column mass, n+j/n, enters the squared
distance between row profiles ai and ai′ as an inverse element of the jth
term in the sum. It follows that those categories having fewer observations
contribute more to the inter-row profile distances.

Recall that c is the row centroid. The (r × s)-matrix of centered row
profiles Pr − 1rc

τ , where Pr = D−1
r P, has ith row (ai − c)τ , with jth



17.2 Simple Correspondence Analysis 643

entry n−1
i+ (nij − ni+n+j/n), i = 1, 2, . . . , r, j = 1, 2, . . . , s. The squared

χ2-distance between ai and c is, therefore,

d2(ai, c) = (ai − c)τD−1
c (ai − c)

=
1

ni+

s∑

j=1

n

ni+n+j

(
nij −

ni+n+j

n

)2
. (17.20)

Summing (17.20) over all row profiles yields

n

r∑

i=1

pi+d
2(ai, c) =

r∑

i=1

s∑

j=1

(
nij −

ni+n+j

n

)2
/
(ni+n+j

n

)
, (17.21)

which is the Pearson’s chi-squared statistic,

X2 =
∑

i

∑

j

(Oij − Eij)
2

Eij
, (17.22)

where the observed cell frequency Oij and the expected cell frequency Eij

(assuming independence of row and column variates) are given by

Oij = nij , Eij =
ni+n+j

n
, (17.23)

respectively, i = 1, 2, . . . , r, j = 1, 2, . . . , s. Under random sampling, X2

has approximately (large n) the χ2 distribution with (r− 1)(s− 1) degrees
of freedom (see, e.g., Rao, 1965, Section 6d.2).

Column Distances

In a similar manner, we define the squared χ2-distance between the jth
and j′th column profiles, bj and bj′ , respectively, as the quadratic form,

d2(bj ,bj′ ) ≡ (bj − bj′ )
τD−1

r (bj − bj′) (17.24)

=

r∑

i=1

n

ni+

(
nij

n+j
− nij′

n+j′

)2

. (17.25)

The squared χ2-distance between the jth column profile and the column
centroid is, therefore, given by

d2(bj , r) = (bj − r)τD−1
r (bj − r)

=
1

n+j

r∑

i=1

n

ni+n+j

(
nij −

ni+n+j

n

)2
. (17.26)

Summing (17.26) over all column profiles yields

n
s∑

j=1

p+jd
2(bj , r) = X2, (17.27)
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where X2 is given by (17.22).

Thus, the weighted average of the squared χ2-distances of all row profiles
to the row centroid (or of all column profiles to the column centroid), where
the weights are the row masses (column masses), is the quantity X2/n. If
the row and column variates are independent, then X2/n will be small,
in which case every component of X2/n — either the {pi+d2(ai, c)} or
the {p+jd

2(bj , r)} — will be small. On the other hand, if X2/n is large,
that means that at least one of the {pi+d2(ai, c)} or at least one of the
{p+jd

2(bj , r)} will be large. This type of information will be important in
determining where independence in the table fails.

For the hair-color/eye-color example, the matrix E = (Eij) of expected
cell frequencies is given by:

E =




193.93 38.12 284.83 185.40 15.73
426.75 83.88 626.78 407.98 34.61
479.15 94.18 703.74 458.07 38.86
355.17 69.81 521.65 339.55 28.80


 .

Compare this matrix with N = (Oij) above. The matrix of values of (Oij−
Eij)

2/Eij is given by:




89.95 0.00 6.74 30.66 10.30
159.93 12.30 2.92 118.61 27.07
38.69 1.10 59.87 4.63 4.26

186.22 6.82 26.99 343.36 109.63


 .

The sum of all these values is X2 = 1240.05, which should be compared
with 21.03, the tabulated 95th-percentile of the χ2

12 distribution. Clearly,
independence of row and column variates fails for these data.

17.2.6 Total Inertia and Its Decomposition

We see that using dummy variables for representing a two-way contin-
gency table enables us to view the problem as a special case of canonical
variate analysis. The situation is, however, different in that instead of ex-
tracting the correlation structure between two sets of stochastic data vec-
tors, we are dealing with the correlation structure of two sets of dummy
variables.

Let x = (xij), where xij = Xij − X̄i is either 1 − (ni+/n) or −ni+/n.
Similarly, let y = (yij), where yij = Yij − Ȳj is either 1 − (n+j/n) or
−n+j/n. Then, the covariance matrices are

n−1xxτ = n−1X (In − n−1Jn)X τ = Dr − rrτ , (17.28)

n−1yyτ = n−1Y(In − n−1Jn)Yτ = Dc − ccτ , (17.29)
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where Ja = 1a1
τ
a is an (a×a)-matrix of 1s. The matrices xxτ (of rank r−1)

and yyτ (of rank s− 1) are both singular and, hence, their inverses do not
exist. We could sidestep this problem by deleting one of the row dummy
variables and one of the column dummy variables (see Exercise 17.2), but
this would reduce the dimensionality and we would not be able to recover
the points from the missing dimensions.

The standard assumption of contingency table analysis is that the row
and column totals are considered fixed and the cell frequencies in N are al-
lowed to vary within those constraints. Accordingly, we center the elements
of N at the values we expect them to have under independence (instead
of centering the data N at the mean). Thus, (17.9) becomes the relative
frequency matrix,

n−1X (In − n−1Jn)Yτ = P− rcτ = P̃. (17.30)

For the hair-color/eye-color example,

P̃ =




0.0245 −0.0000 −0.0081 −0.0140 −0.0024
0.0485 0.0060 −0.0079 −0.0408 −0.0057
−0.0253 −0.0019 0.0381 −0.0086 −0.0024
−0.0477 −0.0040 −0.0220 0.0634 0.0104


 .

The matrix Ñ = nP̃ is often called the matrix of residuals because its
ijth entry, ñij = Oij − Eij , shows the difference between the observed
cell frequency (Oij) and its expected cell frequency (Eij), assuming inde-
pendence between row and column variates, i = 1, 2, . . . , r, j = 1, 2, . . . , s
(see (17.23)). Note that because Ñ1s = (N− nrcτ )1s = N1s − nrcτ1s =

nr− nr = 0, the rank of Ñ (and, hence, of P̃) is at most s− 1.

The (s × s)-matrix R in (8.76) plays a central role in canonical variate
analysis, and it has an obvious analogue in this development. The corre-
spondences between (8.76) and (17.6) are given by

ΣXX ↔ Dr, ΣY Y ↔ Dc, ΣXY ↔ P̃. (17.31)

Accordingly, we use (17.7), (17.8), and (17.30) to compute the (s × s)-
matrix,

R0 = D−1/2
c P̃τD−1

r P̃D−1/2
c , (17.32)

where D−1
r = diag{r−1} and D

−1/2
c = diag{c−1/2}. The entry in the jth

row and j′th column of R0 is given by

(n+jn+j′)
−1/2

r∑

i=1

1

ni+

(
nij −

ni+n+j

n

)(
nij′ −

ni+n+j′

n

)
(17.33)

and the jth diagonal entry of R0 is obtained by setting j = j′,

1

n+j

r∑

i=1

1

ni+

(
nij −

ni+n+j

n

)2
. (17.34)
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For the hair-color/eye-color example,

R0 =




0.0881 0.0160 −0.0044 −0.0798 −0.0420
0.0160 0.0038 −0.0001 −0.0156 −0.0080
−0.0044 −0.0001 0.0179 −0.0148 −0.0099
−0.0798 −0.0156 −0.0148 0.0923 0.0507
−0.0420 −0.0080 −0.0099 0.0507 0.0281


 .

The trace of R0, which is also the sum of the eigenvalues of R0, is

s∑

j=1

λ2j = tr{R0} =
r∑

i=1

s∑

j=1

1

ni+n+j

(
nij −

ni+n+j

n

)2
=
X2

n
, (17.35)

where X2 is given by (17.22).

If the value of X2 is very large, as it is in the shoplifting example where
X2 = 19, 949.97 on 17 × 12 = 204 degrees of freedom, the hypothesis of
independence of the row and column variates in the contingency table has
to be rejected. It then becomes of interest to determine where the deviations
from independence occur. Understanding which characteristics of the data
are important may be useful for further study.

The quantity X2/n is referred to as the amount of total inertia in the
contingency table. The eigenvalues (or principal inertias) of R0 form a
decomposition of the total inertia. The accumulated contribution of the
first t principal inertias is given by

λ21 + · · ·+ λ2t∑s
j=1 λ

2
j

, (17.36)

which is an analogue of the percentage of total variance explained by the
first t principal components, where we usually take t to be 2 or 3.

For the hair-color/eye-color example, the eigenvalues of R0 (and their
individual percentages of the total, tr(R0) = 0.2302) are 0.1992 (86.6%),
0.0301 (13.1%), 0.0009 (0.4%), 0, and 0. Clearly, the first two eigenvalues
account for almost all of the total inertia.

Table 17.5 lists the 12 principal inertias (eigenvalues of R0) for the
shoplifting example. The total inertia is X2/n = 19, 949.97/33, 101 =
0.6027. We see that the first three eigenvalues account for about 90% of the
total inertia, which suggests that almost all of the deviations from indepen-
dence can be attributed to the first three dimensions. The two-dimensional
plot (see Figure 17.1) accounts for about 78% of the total inertia.

17.2.7 Principal Coordinates for Row and Column Profiles

The matrix R0 in (17.32) can be expressed as

R0 = MτM, (17.37)
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TABLE 17.5. Shoplifting example: Principal inertias (eigenvalues λ2j ),
total inertia, the proportions of total inertia explained by each eigenvalue,
and the cumulative proportions.

Axis Inertia Percentage Cumulative

1 0.3504 58.13 58.13
2 0.1192 19.78 77.91
3 0.0700 11.61 89.52
4 0.0382 6.35 95.86
5 0.0112 1.86 97.72
6 0.0086 1.43 99.14
7 0.0031 0.51 99.66
8 0.0009 0.15 99.81
9 0.0006 0.10 99.91

10 0.0003 0.06 99.97
11 0.0001 0.02 99.99
12 0.0001 0.01 100.00

Total 0.6027

where the (r × s)-matrix

M = D−1/2
r P̃D−1/2

c (17.38)

has ijth entry given by the Pearson residual,

mij = (ni+n+j)
−1/2

(
nij −

ni+n+j

n

)
, (17.39)

i = 1, 2, . . . , r, j = 1, 2, . . . , s. For the hair-color/eye-color example,

M =




0.1292 −0.0003 −0.0354 −0.0754 −0.0437
0.1723 0.0478 −0.0233 −0.1484 −0.0709
−0.0847 −0.0143 0.1054 −0.0293 −0.02811
−0.1859 −0.0356 −0.0708 0.2525 0.1427


 .

Thus, from (17.35), the sum of squares of all rs Pearson residuals in the

contingency table is the total inertia. Note that because rank(P̃) ≤ s− 1,
it follows that M in (17.38) also has rank at most s− 1. The singular value
decomposition of M is, therefore, given by

M = UDλV
τ , (17.40)

where U is an (r × s)-matrix, UτU = Is, whose columns are the eigenvec-
tors, {uj}, corresponding to the s − 1 nonzero eigenvalues of the (r × r)-
matrix

MMτ = D−1/2
r P̃D−1

c P̃τD−1/2
r = R1, (17.41)
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V is an (s × s)-matrix, VτV = Is, whose columns are the eigenvectors,
{vj}, corresponding to the eigenvalues of the (s × s)-matrix MτM = R0,
and Dλ = diag{λ1, · · · , λs} is an (s× s) diagonal matrix with its principal
diagonal having entries the singular values (the positive square-roots of the
nonzero eigenvalues of either R0 or R1).

Combining (17.38) and (17.40), we can write

P̃ = (D1/2
r U)Dλ(V

τD1/2
c ) = ADλB

τ , (17.42)

where

A = D1/2
r U, B = D1/2

c V. (17.43)

For the hair-color/eye-color example,

A =



−0.1195 0.1271 −0.2917 −0.1333 0
−0.2896 0.1496 0.3179 −0.2933 0
0.0248 −0.4651 −0.0624 −0.3293 0
0.3843 0.1885 0.0362 −0.2441 0


 .

B =




−0.3292 0.2707 −0.1154 0.2741 0
−0.0277 0.0148 0.2138 0.0421 −0.0680
−0.0373 −0.4764 −0.0438 0.4071 0.0259
0.3406 0.1547 −0.0891 0.2186 −0.2501
0.0537 0.0362 0.0345 0.0433 0.1210


 .

Note that
AτD−1

r A = Is, BτD−1
c B = Is. (17.44)

The expression (17.42) (and (17.44)) is the generalized singular value de-

composition of P̃ in the metrics D−1
r and D−1

c . The columns of A and B
are called the principal axes of the row and column profiles.

The squared χ2-distance (in the metricD−1
c ) between the (r×s)-matrices

of centered row profiles Pr − 1rc
τ and B is given by

Gτ
P = (Pr − 1rc

τ )D−1
c B

= (D−1
r P̃D−1

c )B

= D−1
r (ADλB

τ )D−1
c B

= D−1
r ADλ, (17.45)

where we have used (17.10), 1r = D−1
r r, (17.41), and (17.43). Similarly, we

can show that the squared χ2-distance (in the metric D−1
r ) between the

(s× r)-matrices of centered column profiles Pc − 1cr
τ and A is given by

Hτ
P = (Pc − 1cr

τ )D−1
r B

= D−1
c BDλ. (17.46)
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Substituting (17.42) for the A and B in (17.44) and (17.45), respectively,
we have that

Gτ
P = D−1/2

r UDλ, Hτ
P = D−1/2

c VDλ. (17.47)

For the hair-color/eye-color example,

Gτ
P =



−0.4003 0.1654 −0.0642 0
−0.4407 0.0885 0.0318 0
0.0336 −0.2450 −0.0056 0
0.7027 0.1339 0.0043 0


 ,

Hτ
P =




−0.5440 0.1738 −0.0125 0
−0.0233 0.0483 0.1181 0
−0.0420 −0.2083 −0.0032 0
0.5887 0.1040 −0.0101 0
1.0944 0.2864 0.0461 0


 .

The columns of Gτ
P and Hτ

P are called the principal coordinates of the row
and column profiles, respectively (hence the subscript P ). The matrices
Gτ

P and Hτ
P are related to each other. It can be shown (see Exercise 17.5)

that
Gτ

P = D−1
r PHτ

PD
−1
λ , Hτ

P = D−1
c PτGτ

PD
−1
λ . (17.48)

Similar results can also be obtained directly from the canonical variate
analysis developed in Chapter 7 and the correspondences given in (17.31).
From (7.61) and (7.62) we compute the (s× r)-matrix GS and the (s× s)-
matrix HS, where

GS = UτD−1/2
r , HS = VτD−1/2

c . (17.49)

Note that GSDrG
τ
S = Ir and HSDcH

τ
S = Is. The columns of Gτ

S and Hτ
S

in (17.49) are known as the standard coordinates of the row and column
profiles, respectively (hence the subscript S). Instead of defining the row
and column coordinates as (17.49), however, they are generally scaled as
in (17.47).

17.2.8 Graphical Displays

In correspondence analysis, one has the choice between analyzing only
the row profiles, or analyzing only the column profiles, or analyzing both
the row and column profiles together. The graphical displays formed from
plotting the row and column coordinates in Table 17.6 are scatterplots that
can be of two types:

Symmetric map: Both row and column coordinates are expressed as
principal coordinates.
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TABLE 17.6. The t-dimensional formulas for row and column coordinates
are the columns of the first t rows of the following matrices, where t is two
or three.

Problem Row Coordinates Column Coordinates

Row Profiles GP = DλU
τD

−1/2
r HS = VτD

−1/2
c

Column Profiles GS = UτD
−1/2
r HP = DλV

τD
−1/2
c

Both Profiles GP = DλU
τD

−1/2
r HP = DλV

τD
−1/2
c

Asymmetric map: The row (or column) coordinates are expressed as
principal coordinates while the other is expressed as standard coor-
dinates.

Most users of correspondence analysis prefer to view a symmetric map of
both the row and column principal coordinates (17.47) in a two- (or three-)
dimensional scatterplot. First, we make a scatterplot of each of the r rows
of the first two (or three) columns ofGτ

P . Then, on the same scatterplot, we
overlay a plot of each of the s rows of the first two (or three) columns ofHτ

P .
In Figure 17.2, we have drawn the symmetric correspondence map for the
eye-color/hair-color example. If the three-dimensional points are plotted
on a dynamic scatterplot, then the display can be rotated in all three
dimensions for better viewing. These merged displays provide interpretable
views of different features in the data.

There will be r + s points in these scatterplots, which are called cor-
respondence maps. For clearer interpretation, different symbols should be
used for the row points and column points. It is also useful (unless the
plot would look overly cluttered) to identify each point in the plot by a
tag showing its corresponding category name. If the row (or column) cat-
egories are ordered in some way, such as time-order by year or successive
age ranges (as in the shoplifting example), then it is visually helpful to
connect those category points in the plot with each other to indicate such
order-dependence.

In general, points in the scatterplot that appear “close” to each other
tend to correspond to categories that are closely related. More specifically,

• if row points are close, then those rows have similar conditional dis-
tributions across columns;

• if column points are close, then those columns have similar conditional
distributions across rows;
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FIGURE 17.2. Correspondence map for the hair-color/eye-color ex-
ample. The points exhibit a U -shaped plot with the first principal coor-
dinate (horizontal axis) displaying gradations along the fair-red-medium-
dark-black hair scale and the light-blue-medium-dark eyes scale, and the
second principal coordinate (vertical axis) displaying a difference between
medium-color hair and eyes and the other hair and eye colors.

• if a row point is close to a column point, then that configuration
suggests a particular deviation from independence.

In general, we should not try to compare the positions of row points with
the positions of column points and say, for example, that if a particular row
point is very close to a particular column point then the corresponding row
and column categories are related to each other. (A dissenting view that
supports identifying row points with neighboring column points is given by
van der Heijden et al, 1989.)

17.3 Square Asymmetric Contingency Tables

An important special case of two-way contingency tables consists of
square tables, where r = s and the rows have the same categories as the
columns. Examples of square tables include:

• Individuals who are naturally paired, such as husbands and wives or
fathers and sons, are classified by occupational or social status.
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• Experiments conducted on naturally paired items, such as vision
grades of left eye and right eye.

• Two investigators or event judges independently rate each subject in
a study using the same Likert-type scale.

• Individuals in a sample are categorized by region of residence at two
distinct points in time.

• To study accuracy of a classification rule, the rows give the classes
to which the data were assigned by the rule, the columns define the
true classes (possibly determined from reference data), the cell entries
show how much the classified data and the reference data agree, and
the diagonal cells show the numbers of correct classifications.

If a square table N is symmetric with respect to the r2 cell frequen-
cies (i.e., Nτ = N), then the correspondence map will display coincident
pairs of row and column points. In each of the examples listed above, how-
ever, the square tables are asymmetric in the sense that Nτ 6= N. Unlike
rectangular contingency tables, analyzing asymmetric square tables using
correspondence analysis has not been very successful. The reason is similar
to that for models that try to analyze square tables for symmetry: the data
along the principal diagonal tend to have too great an influence on the
results.

An innovative way of analyzing square asymmetric tables was proposed
by Gower (1977) and Constantine and Gower (1978). Consider a square
asymmetric contingency table N that yields the correspondence table P,
also square and asymmetric. Gower showed that P can be decomposed,
prior to analysis, into two orthogonal component tables,

P = M+Q, (17.50)

where

M =
1

2
(P+Pτ ), Q =

1

2
(P−Pτ ). (17.51)

In (17.51), M is a symmetric table (Mτ = M) and Q is a skew-symmetric
table (Qτ = −Q). Because of the orthogonality of the decomposition (see
Exercise 17.4), separate analyses of M and Q can be carried out. See van
der Heijden et al. (1989). If r is even, the singular vectors of Q occur in
pairs corresponding to pairs of equal singular values (principal inertias). If
r is odd, the last singular value of Q equals zero.

Greenacre (2000) used the decomposition (17.50) to obtain separate cor-
respondence maps of M and Q. Greenacre showed that these maps could
be obtained from a single application of simple correspondence analysis to
the (2r × 2r) block matrix,

N∗ =

(
N Nτ

Nτ N

)
, (17.52)
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with correspondence matrix,

P∗ =
1

4

(
P Pτ

Pτ P

)
, (17.53)

and row and column totals,

w∗ =
1

2

(
w
w

)
, (17.54)

where w = (r + c)/2. Whereas the usual correspondence analysis is to

analyze P̃ = P− rcτ in the metrics D−1
r and D−1

c , in this case, we analyze
P−wwτ in the metrics D−1

w and D−1
w . Thus, (17.50) becomes P−wwτ =

M−wwτ +Q. We should expect the total inertia attributed to P−wwτ

to be larger than the usual total inertia (e.g., (17.35)) because wwτ is not
the rank-1 matrix closest to P. The extent of the difference will depend
upon how different are r and c from each other.

The dimensionality of N∗ is 2r− 1, of which r − 1 dimensions belong to
M and the remaining r dimensions to Q. The correspondence map of M
displays pairs of coincident row and column points (so that it suffices to
plot only one set of points). We can, therefore, detect deviations of N from
symmetry by concentrating on the correspondence map of Q.

Thus, there will be two separate correspondence maps for N, one map for
the symmetric component M and the other map for the skew-symmetric
component Q. Each map consists of a single set of points. Greenacre rec-
ommends that both correspondence maps be scaled equally for comparing
the relative sizes of the principal inertias.

17.3.1 Example: Occupational Mobility in England

This 14 × 14 contingency table (see Table 17.7) of the occupations of a
sample of 775 males and their fathers in England was originally studied
by Pearson (1904). Figure 17.3 shows the two-dimensional correspondence
map of Table 17.7. The total inertia of the contingency table is 1.2974, of
which 50.97% is accounted for by the map.

The above decomposition of P into a symmetric component M and a
skew-symmetric component Q is accomplished by using (17.52). The re-
sulting total inertia increases by 0.3016 to 1.5990 due to the different type
of centering involved. The total symmetric inertia is 1.1484, and the total
skew-symmetric inertia is 0.4506. In Table 17.8, we list the 27 principal
inertias, of which 13 correspond to the symmetric correspondence analysis
and 14 (= 7 pairs) to the skew-symmetric correspondence analysis. Also
listed in Table 17.8 are the percentages of the two sets of principal inertias
relative to the total symmetric and skew-symmetric inertias. The first pair
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TABLE 17.7. Occupations of fathers and their sons in England (Pearson,
1904). The occupational categories are A army; B art; C teaching, clerical
work, civil service; D crafts; E divinity; F agriculture; G landownership;
H law; I literature; J commerce; K medicine; L navy; M politics and
court; N scholarship and science. Uppercase letters represent occupations
of the father and lowercase letters represent occupations of the son. The
Pearson chi-squared test for independence gives X2 = 874.9 on 169 degrees
of freedom, so that an hypothesis of independence is rejected.

Sons
Fathers a b c d e f g h i j k l m n Totals

A 28 0 4 0 0 0 1 3 3 0 3 1 5 2 50
B 2 51 1 1 2 0 0 1 2 0 0 0 1 1 62
C 6 5 7 0 9 1 3 6 4 2 1 1 2 7 54
D 0 12 0 6 5 0 0 1 7 1 2 0 0 10 44
E 5 5 2 1 54 0 0 6 9 4 12 3 1 13 115
F 0 2 3 0 3 0 0 1 4 1 4 2 1 5 26
G 17 1 4 0 14 0 6 11 4 1 3 3 17 7 88
H 3 5 6 0 6 0 2 18 13 1 1 1 8 5 69
I 0 1 1 0 4 0 0 1 4 0 2 1 1 4 19
J 12 16 4 1 15 0 0 5 13 11 6 1 7 15 106
K 0 4 2 0 1 0 0 0 3 0 20 0 5 6 41
L 1 3 1 0 0 0 1 0 1 1 1 6 2 1 18
M 5 0 2 0 3 0 1 8 1 2 2 3 23 1 51
N 5 3 0 2 6 0 1 3 1 0 0 1 1 9 32

Totals 84 108 37 11 122 1 15 64 69 24 57 23 74 86 775

of symmetric principal inertias (1 and 2) accounts for 33.85% + 20.20% =
54.05% of the total symmetric inertia, suggesting that higher dimensions
contain additional significant information. The first pair of skew-symmetric
principal inertias (3 and 4) accounts for 35.15% + 35.15% = 70.30% of the
total skew-symmetric inertia (compared with only 9.90% + 9.90%= 19.80%
of the total inertia). The symmetric dimensions are, therefore, 1, 2, 5–9,
12, 13, 16, 21, 24, and 27, and the remainder, which occur in pairs, are the
skew-symmetric dimensions.

Figure 17.4 shows the correspondence maps of dimensions 1 and 2, and
3 and 4, respectively. The top panel of Figure 17.4 shows the symmetric
portion of the table. The points representing the arts (B) and crafts (D)
occupations are clearly separated from the other points, but these two
points are also not close to each other. One can also argue that these two
points account for much of the difference in inertias between the symmetric
and skew-symmetric analyses because the variation in points is not that
different without points B and D. Points that are close together in this
map reflect the fact that there is a lot of movement from father to son
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FIGURE 17.3. Correspondence map for the occupational mobility exam-
ple. The horizontal axis represents the first principal coordinate and the
vertical axis the second principal coordinate. On the left of the map, there
is a steady progression in occupations from A to E (and from a to k). The
two occupations of B and D (and b and d), representing arts and crafts,
stand out from the rest.

between those occupations, whereas points that are far apart from each
other indicate relatively little movement. If we ignore points B and D,
there appears to be a progression in the occupations, from the topmost
points down through several clusters of points, such as

• army (A), and politics and court (M)

• teaching, clerical work, civil service (C), landownership (G), law (H),
and navy (L)

• agriculture (F ), literature (I), commerce (J), and scholarship and
science (N)

• divinity (E) and medicine (K)

These clusters suggest that occupational mobility from father to son is
typically confined to movements within the various clusters only and not
between clusters.
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TABLE 17.8. Occupational mobility example: Principal inertias (eigen-
values λ2j ), total inertia, the percentages and cumulative percentages of total
inertia explained by each eigenvalue, and the percentages corresponding to
the symmetric (S) and skew-symmetric (SS) correspondence analyses. The
total symmetric inertia is 1.1484, and the total skew-symmetric inertia is
0.4506.

Principal Principal %
Axis Inertia Inertia Cumulative %-S %-SS

1 0.3887 24.31 24.31 33.85
2 0.2320 14.51 38.82 20.20
3 0.1584 9.90 48.72 35.15
4 0.1584 9.90 58.62 35.15
5 0.1439 9.00 67.62 12.53
6 0.1238 7.74 75.36 10.78
7 0.0818 5.12 80.48 7.12
8 0.0707 4.42 84.91 6.16
9 0.0498 3.12 88.02 4.34
10 0.0418 2.62 90.64 9.28
11 0.0418 2.62 93.25 9.28
12 0.0229 1.43 94.68 1.99
13 0.0220 1.38 96.06 1.92
14 0.0129 0.81 96.87 2.86
15 0.0129 0.81 97.67 2.86
16 0.0104 0.65 98.32 0.91
17 0.0076 0.47 98.80 1.69
18 0.0076 0.47 99.27 1.69
19 0.0031 0.19 99.46 0.69
20 0.0031 0.19 99.66 0.69
21 0.0017 0.10 99.76 0.15
22 0.0011 0.07 99.83 0.24
23 0.0011 0.07 99.90 0.24
24 0.0006 0.04 99.94 0.00
25 0.0004 0.02 99.97 0.00
26 0.0004 0.02 99.99 0.00
27 0.0001 0.01 100.00 0.00

Total 1.5990
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FIGURE 17.4. Correspondence analysis of the symmetric component (top
panel) and skew-symmetric component (bottom panel) for the occupational
mobility example.
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The bottom panel of Figure 17.4 shows the deviations from symme-
try. Asymmetry between any two points can be envisioned by a triangle
constructed with vertices at those two points and the origin; the greater
the area of that triangle, the greater the degree of asymmetry between
the points. Points that yield triangles with no area (i.e., points on a line
through the origin) have no asymmetric relationship. Points that are close
to the origin indicate small asymmetries. In this map, there are no points
clustered around the origin, suggesting some asymmetry between all occu-
pations. Indeed, all the points in this map lie on one side of a line drawn
through the origin, indicating that circular triads are absent in the data.
The more drastic asymmetries are those points furthest from the origin, lit-
erature (I) and scholarship and science (N) at one extreme and agriculture
(F ) at the other. The greatest deviation from symmetry is from a father’s
occupation of literature (I) to a son’s occupation in agriculture (F ).

17.4 Multiple Correspondence Analysis

Multiple correspondence analysis is intended to be a generalization of
simple correspondence analysis, in the sense that it is designed to deal with
the graphical representation of contingency tables that have more than two
categorical variables. The fact that as currently conceived it is not a true
generalization (in the sense that simple correspondence analysis is not a
special case) has not, however, detracted from its usefulness. Accordingly,
there is much research currently taking place on this topic.

17.4.1 The Multivariate Indicator Matrix

As we did in Section 17.2.2, we can define a dummy (or indicator) variable
for each of the Q categorical variables that make up the table. Suppose that
the qth variable has Jq categories and that J =

∑Q
q=1 Jq is the total number

of categories over all variables. Suppose further that there are n individuals
in the study (who may be some part — a sample — or all of a population).
Let Z = (Zij) be a (J × n)-matrix, where

Zij =

{
1, if the jth individual belongs to the ith category
0, otherwise,

(17.55)

i = 1, 2, . . . , J , j = 1, 2, . . . , n. We assume that there is no row of Z that
contains all 0s. Each column of Z sums to Q and all Jn entries sum to
nQ. The matrix Z is often called a multivariate indicator matrix. One
interpretation of the concept of multiple correspondence analysis is that of
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carrying out a simple correspondence analysis of the multivariate indicator
matrix Z.

We can partition the J rows of Z into blocks by variable so that

Z =




Z1
...

ZQ


 , (17.56)

where Zq is a (Jq×n)-matrix corresponding to the qth categorical variable
having Jq categories, q = 1, 2, . . . , Q. The following properties of Z are
given in Greenacre (1984). In Zq, there are 1

τ
Jq
Zq1n = n 1s, q = 1, 2, . . . , Q.

Following (17.15), the row masses of Zq are defined by the Jq-vector,

cZq ≡ (nQ)−1Zq1n. (17.57)

Because the row masses of Zq sum to 1τ
Jq
cZq = (nQ)−1n = Q−1, each of the

Q categorical variables has the same total mass. As a result, the row masses
over all Q variables sum to 1. The row centroid is a weighted average of
the Jq rows of Zq, where the weights are the row masses,

(cZq )
τZq

(cZq )
τ1Jq

=
(nQ)−11τ

nZ
τ
qZq

Q−1
= n−11τ

n, (17.58)

because Zτ
qZq = In. Thus, the qth block of Jq row profiles has a row centroid

(17.58) that does not depend upon q. Those Jq row profiles are dispersed
within a subspace having at most Jq−1 dimensions. All J row profiles are,
therefore, dispersed within a subspace having at most

∑
q(Jq − 1) = J −Q

dimensions.

17.4.2 The Burt Matrix

A second interpretation of the idea of multiple correspondence analysis
is based upon analyzing the (J × J)-matrix

B = ZZτ =




Z1Z
τ
1 Z1Z

τ
2 · · · Z1ZQ

Z2Z
τ
1 Z2Z

τ
2 · · · Z2Z

τ
Q

...
...

...
ZQZ

τ
1 ZQZ

τ
2 · · · ZQZ

τ
Q


 , (17.59)

which is called a Burt matrix. See (17.6) for a Burt matrix with Q = 2.
B is a symmetric matrix with block structure. The qth diagonal block
submatrix, ZqZ

τ
q = nDq, say, is a diagonal matrix of the row totals of Zq

(q = 1, 2, . . . , Q), where Dq is the diagonal matrix of row or column masses
for the qth variable. The off-diagonal (u, v)-block submatrix, ZuZ

τ
v = Nuv,

say, (u 6= v), is a two-way contingency table between the uth variable and
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the vth variable (u, v = 1, 2, . . . , Q). Because the total of all entries in each
submatrix ZiZ

τ
j in B is n, the total of all entries of B is b = nQ2. The

Burt matrix (17.59) is the analogue in the discrete case of the covariance
matrix of Q continuous variables.

17.4.3 Equivalence and an Implication

The two primary approaches to multiple correspondence analysis turn
out to be equivalent to one another (Greenacre, 1984). From the symmetry
of B, a simple correspondence analysis of B produces the same sets of
row and column coordinates, so that one of the two sets can be ignored.
Furthermore, the standard coordinates of the rows of B are identical to
the standard coordinates of the rows of Z, and the principal coordinates
obtained by analyzing B are directly related to those obtained by analyzing
Z because the principal inertias of B are the squares of those of Z.

This equivalence between the two approaches has the following implica-
tion. Although the multivariate indicator matrix Z incorporates informa-
tion from all Q categorical variables, its multiple correspondence analysis
provides no more information than an analysis of all pairs of categorical
variables. In other words, multiple correspondence analysis of either Z or B
offers no insight into three- or higher-way interactions that may be present
in the contingency table.

17.4.4 Example: Satisfaction with Housing Conditions

This data set was studied by Madsen (1976) in a study of housing condi-
tions in selected areas of Copenhagen, Denmark. A total of n = 1, 681 res-
idents living in rented homes built during 1960–1968 were surveyed about
their satisfaction (categorized as low (ls), medium (ms), high (hs)), the
amount of contact with other residents (low (lc), high (hc)), and their
feeling of influence on apartment management (low (li), medium (mi),
high (hi)). The rental units were categorized as tower blocks (tb), apart-
ments (ap), atrium houses (ah), and terraced houses (th). The purpose of
the study was to assess whether there was any association between degrees
of contact, influence, and satisfaction and the type of housing.

The Burt table is given in Table 17.9. The χ2-statistics for the off-
diagonal two-way contingency tables are X2

12 = 16.660, X2
13 = 39.121,

X2
14 = 60.286, X2

23 = 17.586, X2
24 = 106.175, and X2

34 = 5.140, where “1”
= Housing, “2” = Influence, “3” = Contact, and “4” = Satisfaction. As-
suming these two-way tables are independent of each other, we conclude
that both housing and influence appear not to be related to either contact
or satisfaction. The sum of these χ2-values is X2 = 244.968.
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TABLE 17.9. Burt table of data on satisfaction with housing conditions
in Copenhagen, Denmark (Madsen, 1976). The variables are type of hous-
ing (tower blocks: tb; apartments: ap; atrium houses: ah; terraced houses:
th), influence on apartment management (low: li; medium: mi; high: hi),
contact with other residents (low: lc; high: hc), and satisfaction (low: ls;
medium: ms; high: hs). For this table, Q=4, J1 = 4, J2 = 3, J3 = 2, J4 = 3,
J = 12, and n = 1681.

Housing Influence Contact Satisfaction
tb ap ah th li mi hi lc hc ls ms hs

tb 400 0 0 0 140 172 88 219 181 99 101 200
ap 0 765 0 0 268 297 200 317 448 271 192 302
ah 0 0 239 0 95 84 60 82 157 64 79 96
th 0 0 0 227 124 106 47 95 182 133 74 70
li 140 268 95 124 627 0 0 234 393 282 170 175
mi 172 297 84 106 0 659 0 279 380 206 189 264
hi 88 200 60 47 0 0 395 200 195 79 87 229
lc 219 317 82 95 234 279 200 713 0 262 178 273
hc 181 448 157 182 393 380 195 0 968 305 268 395
ls 99 271 64 133 282 206 79 262 305 567 0 0
ms 101 192 79 74 170 189 87 178 268 0 446 0
hs 200 302 96 70 175 264 229 273 395 0 0 668

The two-dimensional multiple correspondence map is given in Figure
17.5. The first axis orders from right to left the low, medium, and high
categories of the influence and satisfaction variables, whereas the reverse
ordering occurs for the contact variable. The second axis separates the high
levels from the low levels of influence, contact, and satisfaction, and also
separates th and tb from ah, and ap is positioned at the center of the map.

Certain points are close to each other and indicate associations. Thus,
high influence on management is related to residents being highly satisfied,
whereas high contact with other residents produces medium satisfaction.
Residents of atrium houses tend to have high contact with other residents
and enjoy medium satisfaction, apartment residents have medium influence
on management, residents of tower blocks tend to have low contact with
other residents, and residents of terraced housing appear to have both low
influence and low satisfaction.

17.4.5 A Weighted Least-Squares Approach

There are Q(Q − 1)/2 distinct two-way contingency tables above the
diagonal of B; the tables below the diagonal are transposes of those above.
Although we could carry out a simple correspondence analysis for every
one of those Q(Q − 1)/2 tables, such extensive and exhaustive analyses
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FIGURE 17.5. Correspondence map for the housing conditions example.
The factors in the study were: type of housing (tower blocks, tb; apartments,
ap; atrium houses, ah; terraced houses, th), influence on apartment man-
agement (low, li; medium, mi; high, hi), contact with other residents (low,
lc; high, hc), and satisfaction (low, ls; medium, ms; high, hs).

would violate the principles of parsimony, efficiency, and dimensionality
reduction.

With this in mind, we mention an alternative approach by Greenacre
(1988), who proposed a matrix approximation method that (a) simultane-
ously fits all the Q(Q − 1)/2 tables in the upper-triangle of B, and (b)
reduces to simple correspondence analysis of N = N12 when Q = 2. The
idea is to approximate B by another matrix B̂, say, having reduced rank
that minimized the weighted least-squares criterion

n−1tr{D−1/2(B− B̂)D−1(B− B̂)τD−1/2}, (17.60)

where D = QDr is Q times the diagonal matrix, Dr, of row (or column)
masses of B and is defined so that all its elements sum to 1 (cf. Exercise
17.3). Greenacre suggested the use of an alternating least-squares algorithm

as a means of obtaining B̂ but could not guarantee that the minimum of
(17.60) would be achieved by that procedure.
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17.5 Software Packages

Many of the popular statistical software packages contain simple and
multiple correspondence analysis routines. R has the ca package; see Charn-
omordic and Holmes (2001) and the details in Greenacre (2007, Appendix
C). Minitab has a correspondence analysis routine that appears to be
matched to the output in Greenacre (1984). There is also a program CodonW,
written by John Peden and available at codonw.sourceforge.net, which
provides correspondence analysis of codon and amino acid usage.
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Exercises

17.1 The 4 × 4 contingency table in Table 17.10 was originally analyzed
by Stuart (1953) and has since been studied by many statisticians. It con-
tains frequency data on eye tests, specifically, the right-eye grade and the
corresponding left-eye grade in unaided distance vision for 7,477 women,
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TABLE 17.10. Right-eye grade and left-eye grade of 7,477 women with
respect to unaided distance vision (Stuart, 1953). The Pearson chi-squared
test for independence gives X2 = 8, 096.877 on 9 degrees of freedom, so
that an hypothesis of independence is rejected.

Left-Eye Grade
Right-Eye Grade Best Second Third Worst Totals

Best 1,520 266 124 66 1,976
Second 234 1,512 432 78 2,256
Third 117 362 1,772 205 2,456
Worst 36 82 179 492 789

Totals 1,907 2,222 2,507 841 7,477

aged 30–39, employed in Royal Ordinance factories in Britain, where each
eye was graded in one of four categories from best to worst. Carry out a
correspondence analysis for this square contingency table and interpret the
results.

17.2 Suppose we omit the last row of X and last row of Y, so that X has
r − 1 rows and n columns and Y has s − 1 rows and n columns. Suppose
we center X and Y at their means.

(a) Show that

(XcX τ
c )

−1 = diag
[
n−1
1+, n

−1
2+, . . . , n

−1
r−1,+

]
+ n−1

r+Jr−1,

(YcYτ
c )

−1 = diag
[
n−1
+1, n

−1
+2, . . . , n

−1
+,s−1

]
+ n−1

+sJs−1.

(b) Show that the entry in the jth row and ith column of the full-rank

regression coefficient matrix, Θ̂ = YcX τ
c (XcX τ

c )
−1, is

θji =
nij

ni+
− nrj

nr+
, i = 1, 2, . . . , r − 1, j = 1, 2, . . . , s− 1,

which is just the difference between the ith and rth row proportions
for the jth column of the contingency table. Similarly, show that the
entry in the ith row and jth column of XcYτ

c (YcYτ
c )

−1 is

nij

n+j
− nis

n+s
, i = 1, 2, . . . , r − 1, j = 1, 2, . . . , s− 1.

(c) From these two matrices, show that the trace of R̂ is given by

r∑

i=1

s∑

j=1

1

ni+n+j

(
nij −

ni+nrj

nr+

)(
nij −

nisn+j

n+s

)
,

and, under independence of A and B, that tr{R̂} reduces to X2 in
(17.22).
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TABLE 17.11. Number of children in a family versus yearly income (in
units of 1,000 Kroner) for n = 25263 Swedish families (Cramér, 1946).
The Pearson chi-squared test for independence gives X2 = 568.57 on 12
degrees of freedom, so that an independence hypothesis is rejected.

Number of Yearly Income (1000s Kroner)
Children 0–1 1–2 2–3 3+ Total

0 2,161 3,577 2,184 1,636 9,558
1 2,755 5,081 2,222 1,052 11,110
2 936 1,753 640 306 3,635
3 225 419 96 38 778

≥ 4 39 98 31 14 182

Total 6,116 10,928 5,173 3,046 25,263

(d) Show that the s − 1 eigenvalues of R̂ are identical to the nonzero
eigenvalues of R0 (or R1).

17.3 (Greenacre, 2000). Another way of deriving the results of simple

correspondence analysis is to find an (r× s)-matrix P̂ having reduced-rank
t < min(r, s) that approximatesP by minimizing the weighted least-squares
criterion,

tr{D−1/2
r (P− P̂)D−1

c (P− P̂)τD−1/2
r }.

Using the Eckart–Young Theorem, find the matrix P̂ that yields the best
reduced-rank approximation of P in the above sense. Show that the best
“rank-1” approximation to P is the trivial solution P̂ = rcτ .

17.4 Let M = [mij ] and Q = [qij ] be defined as in (17.51) and let N =
M+Q. Consider tr{(vec N)(vec N)τ}. Show that the cross-product term
tr{(vec M)(vec Q)τ} = 0, whence, we have the identity,

∑

i

∑

j

n2
ij =

∑

i

∑

j

m2
ij +

∑

i

∑

j

q2ij .

17.5 Show that Gτ
P and Hτ

P are related to each other by proving that
Gτ

P = D−1
r PHτ

PD
−1
λ and Hτ

P = D−1
c PτGτ

PD
−1
λ .

17.6 The 5× 4 contingency table in Table 17.11 is due to Cramér (1946,
p. 444); see also Diaconis and Efron (1985). It contains a sample of fre-
quency data from a Swedish census of March 1936 in which 25,263 married
couples residing in country districts, who had been married for at most five
years, each listed the number of children in their family and their yearly
income (in units of 1,000 Kroner). Carry out a correspondence analysis for
this table and interpret the results.
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17.7 Construct four different contingency tables, each with five rows and
three columns, with the restriction that each of the column totals in each
table equals 50. Compute the weights in the chi-squared statistic for each
table. Compute the inertia for each table and arrange the four tables by in-
creasing inertia. Plot the row profiles for each table as points in a triangular
scatterplot. What is the relationship between inertia and these plots?
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