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Introduction and Preview

1.1 Multivariate Analysis

This book invites the reader to learn about multivariate analysis, its mod-
ern ideas, innovative statistical techniques, and novel computational tools,
as well as exciting new applications.

The need for a fresh approach to multivariate analysis derives from three
recent developments. First, many of our classical methods of multivariate
analysis have been found to yield poor results when faced with the types
of huge, complex data sets that private companies, government agencies,
and scientists are collecting today; second, the questions now being asked
of such data are very different from those asked of the much-smaller data
sets that statisticians were traditionally trained to analyze; and, third, the
computational costs of storing and processing data have crashed over the
past decade, just as we see the enormous improvements in computational
power and equipment. All these rapid developments have now made the
efficient analysis of more complicated data a lot more feasible than ever
before.

Multivariate statistical analysis is the simultaneous statistical analysis
of a collection of random variables. It is partly a straightforward extension
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of the analysis of a single variable, where we would calculate, for example,
measures of location and variation, check violations of a particular distri-
butional assumption, and detect possible outliers in the data. Multivariate
analysis improves upon separate univariate analyses of each variable in a
study because it incorporates information into the statistical analysis about
the relationships between all the variables.

Much of the early developmental work in multivariate analysis was mo-
tivated by problems from the social and behavioral sciences, especially ed-
ucation and psychology. Thus, factor analysis was devised to provide a
statistical model for explaining psychological theories of human ability and
behavior, including the development of a notion of general intelligence;
principal component analysis was invented to analyze student scores on
a battery of different tests; canonical variate and correlation analysis had
a similar origin, but in this case the relationship of interest was between
student scores on two separate batteries of tests; and multidimensional scal-
ing originated in psychometrics, where it was used to understand people’s
judgments of the similarity of items in a set.

Some multivariate methods were motivated by problems in other scien-
tific areas. Thus, linear discriminant analysis was derived to solve a taxo-
nomic (i.e., classification) problem using multiple botanical measurements;
analysis of variance and its big brother, multivariate analysis of variance,
derived from a need to analyze data from agricultural experiments; and the
origins of regression and correlation go back to problems involving heredity
and the orbits of planets.

Each of these multivariate statistical techniques was created in an era
when small or medium-sized data sets were common and, judged by today’s
standards, computing was carried out on less-than-adequate computational
platforms (desk calculators, followed by mainframe batch computing with
punched cards). Even as computational facilities improved dramatically
(with the introduction of the minicomputer, the hand calculator, and the
personal computer), it was only recently that the floodgates opened and the
amounts of data recorded and stored began to surpass anything previously
available. As a result, the focus of multivariate data analysis is changing
rapidly, driven by a recognition that fast and efficient computation is of
paramount importance to its future.

Statisticians have always been considered as partners for joint research
in all the scientific disciplines. They are now beginning to participate with
researchers from some of the subdisciplines within computer science, such
as pattern recognition, neural networks, symbolic machine learning, com-
putational learning theory, and artificial intelligence, and also with those
working in the new field of bioinformatics; together, new tools are being
devised for handling the massive quantities of data that are routinely col-
lected in business transactions, governmental studies, science and medical
research, and for making law and public policy decisions.
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We are now seeing many innovative multivariate techniques being devised
to solve large-scale data problems. These techniques include nonparamet-
ric density estimation, projection pursuit, neural networks, reduced-rank
regression, nonlinear manifold learning, independent component analysis,
kernel methods and support vector machines, decision trees, and random
forests. Some of these techniques are new, but many of them are not so
new (having been introduced several decades ago but virtually ignored by
the statistical community). It is because of the current focus on large data
sets that these techniques are now regarded as serious alternatives to (and,
in some cases, improvements over) classical multivariate techniques.

This book focuses on the areas of regression, classification, and mani-
fold learning, topics now regarded as the core components of data mining
and machine learning, which we briefly describe in this chapter. It is im-
portant to note here that these areas overlap a great deal in content and
methodology: what is one person’s data-mining problem may be another’s
machine-learning problem.

1.2 Data Mining

1.2.1 From EDA to Data Mining

Although the revolutionary concept of exploratory data analysis (EDA)
(Tukey, 1977) changed the way many statisticians viewed their discipline,
emphasis in EDA centered on quick and dirty methods (using pencil and
paper) for the visualization and examination of small data sets. Enthusi-
asts soon introduced EDA topics into university (and high school) courses
in statistics. To complete the widespread acceptance and utility of John
Tukey’s exploratory procedures and his idiosyncratic nomenclature, EDA
techniques were included in standard statistical software packages. Never-
theless, despite the available computational power, EDA was still perceived
as a collection of small-sample, data-analytic tools.

Today, measurements on a variety of related variables often produce a
data set so large as to be considered unwieldy for practical purposes. Such
data now often range in size from moderate (say 103 to 104 cases) to large
(106 cases or more). For example, billions of transactions each year are
carried out by international finance companies; Internet traffic data are
described as “ferocious” (Cleveland and Sun, 2000); the Human Genome
Project has to deal with gigabytes (230 (∼ 109) bytes) of genetic informa-
tion; astronomy, the space sciences, and the earth sciences have terabytes
(240 (∼ 1012) bytes) and soon, petabytes (250 (∼ 1015) bytes), of data for
processing; and remote-sensing satellite systems, in general, record many
gigabytes of data each hour. Each of these data sets is incredibly large and
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complex, with millions of observations being recorded on huge numbers of
variables.

Furthermore, governmental statistical agencies (e.g., the Federal Statis-
tical Service in the United States, the National Statistical Service in the
United Kingdom, and similar agencies in other countries) are accumulat-
ing greater amounts of detailed economic, labor, demographic, and census
information than at any time in the past. The U.S. census file based solely
on administrative records, for example, has been estimated to be of size
at least 1012 bytes (Kirkendall, 1997). Other massive data sets (e.g., crime
data, health-care data) are maintained by other governmental agencies.

The availability of massive quantities of data coupled with enormous
increases in computational power for relatively low cost has led to the cre-
ation of a whole new activity called data mining. With massive data sets,
the process of data mining is not unlike a gigantic effort at EDA for “infi-
nite” data sets. For many companies, their data sets of interest are so large
that only the simplest of statistical computations can be carried out. In
such situations, data mining means little more than computing means and
standard deviations of each variable; drawing some bivariate scatterplots
and carrying out simple linear regressions of pairs of variables; and doing
some cross-tabulations. The level of sophistication of a data mining study
depends not just on the statistical software but also on the computer hard-
ware (RAM, hard disk, etc.) and database management system for storing
the data and processing the results.

Even if we are faced with a huge amount of data, if the problem is
simple enough, we can sample and use standard exploratory and confirma-
tory methods. In some instances, especially when dealing with government-
collected data, sampling may be carried out by the agency itself. Census
data, for example, is too big to be useful for most users; so, the U.S. Census
Bureau creates manageable public-use files by drawing a random sample of
individuals from the full data set and either removes or masks identifying
information (Kirkendall, 1997),

In most applications of data mining, there is no à priori reason to sam-
ple. The entire population of data values (at least, those with which we
would be interested) is readily available, and the questions asked of that
data set are usually exploratory in nature and do not involve inference. Be-
cause a data pattern (e.g., outliers, data errors, hidden trends, credit-card
fraud) is a local phenomenon, possibly affecting only a few observations,
sampling, which typically reduces the size of the data set in drastic fashion,
may completely miss the specifics of whatever pattern would be of special
interest.

Data mining differs from classical statistical analysis in that statistical
inference in its hypothesis-testing sense may not be appropriate. Further-
more, most of the questions asked of large data sets are different from the
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classical inference questions asked of much smaller samples of data. This is
not to say that sampling and subsequent modeling and inference have no
role to play when dealing with massive data sets. Sampling, in fact, may be
appropriate in certain circumstances as an accompaniment to any detailed
data exploration activities.

1.2.2 What Is Data Mining?

It is usual to categorize data mining activities as either descriptive or
predictive, depending upon the primary objective:

Descriptive data mining: Search massive data sets and discover the lo-
cations of unexpected structures or relationships, patterns, trends,
clusters, and outliers in the data.

Predictive data mining: Build models and procedures for regression,
classification, pattern recognition, or machine learning tasks, and as-
sess the predictive accuracy of those models and procedures when
applied to fresh data.

The mechanism used to search for patterns or structure in high-dimensional
data might be manual or automated; searching might require interactively
querying a database management system, or it might entail using visual-
ization software to spot anomolies in the data. In machine-learning terms,
descriptive data mining is known as unsupervised learning, whereas predic-
tive data mining is known as supervised learning.

Most of the methods used in data mining are related to methods devel-
oped in statistics and machine learning. Foremost among those methods are
the general topics of regression, classification, clustering, and visualization.
Because of the enormous sizes of the data sets, many applications of data
mining focus on dimensionality-reduction techniques (e.g., variable selec-
tion) and situations in which high-dimensional data are suspected of lying
on lower-dimensional hyperplanes. Recent attention has been directed to
methods of identifying high-dimensional data lying on nonlinear surfaces
or manifolds.

Table 1.1 lists some of the application areas of data mining and exam-
ples of major research themes within those areas. Using the massive data
sets that are routinely collected by each of these disciplines, advances in
dealing with the topics depend crucially upon the availability of effective
data mining techniques and software.

One of the most important issues in data mining is the computational
problem of scalability. Algorithms developed for computing standard ex-
ploratory and confirmatory statistical methods were designed to be fast
and computationally efficient when applied to small and medium-sized data
sets; yet, it has been shown that most of these algorithms are not up to
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the challenge of handling huge data sets. As data sets grow, many exist-
ing algorithms demonstrate a tendency to slow down dramatically (or even
grind to a halt).

In data mining, regardless of size or complexity of the problem (essen-
tially, the numbers of variables and observations), we require algorithms to
have good performance characteristics; that is, they have to be scalable.
There is no globally accepted definition of scalability, but a general idea of
what this property means is the following:

Scalability: The capability of an algorithm to remain efficient and accu-
rate as we increase the complexity of the problem.

The best scenario is that scalability should be linear. So, one goal of data
mining is to create a library of scalable algorithms for the statistical analysis
of large data sets.

Another issue that has to be considered by those working in data mining
is the thorny problem of statistical inference. The twentieth century saw
Fisher, Neyman, Pearson, Wald, Savage, de Finetti, and others provide
a variety of competing — yet related — mathematical frameworks (fre-
quentist, Bayesian, fiducial, decision theoretic, etc.) from which inferential
theories of statistics were built. Extrapolating to a future point in time,
can we expect researchers to provide a version of statistical inference for
analyzing massive data sets?

There are situations in data mining when statistical inference — in its
classical sense — either has no meaning or is of dubious validity: the former
occurs when we have the entire population to search for answers (e.g.,
gene or protein sequences, astronomical recordings), and the latter occurs
when a data set is a “convenience” sample rather than being a random
sample drawn from some large population. When data are collected through
time (e.g., retail transactions, stock-market transactions, patient records,
weather records), sampling also may not make sense; the time-ordering of
the observations is crucial to understanding the phenomenon generating
the data, and to treat the observations as independent when they may be
highly correlated will provide biased results.

Those who now work in data mining recognize that the central compo-
nents of data mining are — in addition to statistical theory and methods
— computing and computational efficiency, automatic data processing, dy-
namic and interactive data visualization techniques, and algorithm devel-
opment. There are a number of software packages whose primary purpose
is to help users carry out various techniques in data mining. The leading
data-mining products include the packages listed (in alphabetical order) in
Table 1.2.
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TABLE 1.1. Application areas of data mining

Marketing: Predict new purchasing trends. Identify “loyal” customers. Predict
what types of customers will respond to direct mailings, telemarketing
calls, advertising campaigns, or promotions. Given customers who have
purchased product A, B, or C, identify those who are likely to purchase
product D and, in general, which products sell together (popularly called
market basket analysis).

Banking: Predict which customers will likely switch from one credit card com-
pany to another. Evaluate loan policies using customer characteristics. Pre-
dict behavioral use of automated teller machines (ATMs).

Financial Markets: Identify relationships between financial indicators. Track
changes in an investment portfolio and predict price turning points. Ana-
lyze volatility patterns in high-frequency stock transactions using volume,
price, and time of each transaction.

Insurance: Identify characteristics of buyers of new policies. Find unusual claim
patterns. Identify “risky” customers.

Healthcare: Identify successful medical treatments and procedures by examin-
ing insurance claims and billing data. Identify people “at risk” for certain
illnesses so that treatment can be started before the condition becomes
serious. Predict doctor visits from patient characteristics. Use healthcare
data to help employers choose between HMOs.

Molecular Biology: Collect, organize, and integrate the enormous quantities
of data on bioinformatics, functional genomics, proteomics, gene expression
monitoring, and microarrays. Analyze amino acid sequences and deoxyri-
bonucleic acid (DNA) microarrays. Use gene expression to characterize
biological function. Predict protein structure and identify related proteins.

Astronomy: Catalogue (as stars, galaxies, etc.) hundreds of millions of objects
in the sky using hundreds of attributes, such as position, size, shape, age,
brightness, and color. Identify patterns and relationships of objects in the
sky.

Forensic Accounting: Identify fraudulent behavior in credit card usage by
looking for transactions that do not fit a particular cardholder’s buying
habits. Identify fraud in insurance and medical claims. Identify instances
of tax evasion. Detect illegal activities that can lead to suspected money
laundering operations. Identify stock market behaviors that indicate pos-
sible insider-trading operations.

Sports: Identify in realtime which players and which designed plays are most
effective at specific points in the game and in relation to combinations of
opposing players. Identify the exact moment when intriguing play patterns
occurred. Discover game patterns hidden behind summary statistics.
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TABLE 1.2. Data mining software packages.

Company Software Package

IBM Corp. Intelligent Miner

Insightful Insightful Miner

NCR Corp. Teradata Warehouse Miner

Oracle Darwin

SAS Institute, Inc. Enterprise Miner

Silicon Graphics, Inc. MineSet

SPSS, Inc. Clementine

1.2.3 Knowledge Discovery

Data mining has been described (Fayyad, Piatetsky-Shapiro, and Smyth,
1996) as a step in a more general process known as knowledge discovery in
databases (KDD). The “knowledge” acquired by KDD has to be interesting,
non-trivial, non-obvious, previously unknown, and potentially useful.

KDD is a multistep process designed to assist those who need to search
huge data sets for “nuggets of useful information.” In KDD, assistance is
expected to be intelligent and automated, and the process itself is interac-
tive and iterative.

KDD is composed of six primary activities:

1. selecting the target data set (which data set or which variables and
cases are to be used for data mining);

2. data cleaning (removal of noise, identification of potential outliers,
imputing missing data);

3. preprocessing the data (deciding upon data transformations, tracking
time-dependent information);

4. deciding which data-mining tasks are appropriate (regression, classi-
fication, clustering, etc.);

5. analyzing the cleaned data using data-mining software (algorithms for
data reduction, dimensionality reduction, fitting models, prediction,
extracting patterns);

6. interpreting and assessing the knowledge derived from data-mining
results.

In KDD, and hence in data mining, the descriptive aspect is more important
than the predictive aspect, which forms the main goal of machine learning.
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1.3 Machine Learning

Machine learning evolved out of the subfield of computer science known
as artificial intelligence (AI). Whereas the focus of AI is to make machines
intelligent, able to think rationally like humans and solve problems, ma-
chine learning is concerned with creating computer systems and algorithms
so that machines can “learn” from previous experience. Because intelligence
cannot be attained without the ability to learn, machine learning now plays
a dominant role in AI.

1.3.1 How Does a Machine Learn?

A machine learns when it is able to accumulate experience (through
data, programs, etc.) and develop new knowledge so that its performance
on specific tasks improves over time. This idea of learning from experience
is central to the various types of problems encountered in machine learning,
especially problems involving classification (e.g., handwritten digit recogni-
tion, speech recognition, face recognition, text classification). The general
goal of each of these problems is to find a systematic way of classifying a
future example (e.g., a handwriting sample, a spoken word, a face image, a
text fragment). Classification is based upon measurements on that future
example together with knowledge obtained from a learning (or training)
sample of similar examples (where the class of each example is completely
determined and known, and the number of classes is finite and known).

The need to create new methods and terminology for analyzing large
and complex data sets has led to researchers from several disciplines —
statistics, pattern recognition, neural networks, symbolic machine learning,
computational learning theory, and, of course, AI — to work together to
influence the development of machine learning.

Among the techniques that have been used to solve machine-learning
problems, the topics that are of most interest to statisticians — den-
sity estimation, regression, and pattern recognition (including neural net-
works, discriminant analysis, tree-based classifiers, random forests, bag-
ging and boosting, support vector machines, clustering, and dimensionality-
reduction methods) — are now collectively referred to as statistical learning
and constitute many of the topics discussed in this book. Vladimir N. Vap-
nik, one of the founders of statistical learning theory, relates statistics to
learning theory in the following way (Vapnik, 2000, p. x):

The problem of learning is so general that almost any question
that has been discussed in statistical science has its analog in
learning theory. Furthermore, some very important general re-
sults were first found in the framework of learning theory and
then formulated in the terms of statistics.
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The machine-learning community divides learning problems into vari-
ous categories: the two most relevant to statistics are those of supervised
learning and unsupervised learning.

Supervised learning: Problems in which the learning algorithm receives
a set of continuous or categorical input variables and a correct out-
put variable (which is observed or provided by an explicit “teacher”)
and tries to find a function of the input variables to approximate the
known output variable: a continuous output variable yields a regres-
sion problem, whereas a categorical output variable yields a classifi-
cation problem.

Unsupervised learning: Problems in which there is no information avail-
able (i.e., no explicit “teacher”) to define an appropriate output vari-
able; often referred to as “scientific discovery.”

The goal in unsupervised learning differs from that of supervised learn-
ing. In supervised learning, we study relationships between the input and
output variables; in unsupervised learning, we explore particular character-
istics of the input variables only, such as estimating the joint probability
density, searching out clusters, drawing proximity maps, locating outliers,
or imputing missing data.

Sometimes there might not be a “bright-line” distinction between super-
vised and unsupervised learning. For example, the dimensionality-reduction
technique of principal component analysis (PCA) has no explicit output
variable and, thus, appears to be an unsupervised-learning method; how-
ever, as we will see, PCA can be formulated in terms of a multivariate
regression model where the input variables are also used as output vari-
ables, and so PCA can also be regarded as a supervised-learning method.

1.3.2 Prediction Accuracy

One of the most important tasks in statistics is to assess the accuracy of a
predictor (e.g., regression estimator or classifier). The measure of prediction
accuracy typically used is that of prediction error, defined generically as

Prediction error: In a regression problem, the mean of the squared errors
of prediction, where error is the difference between a true output
value and its corresponding predicted output value; in a classification
problem, the probability of misclassifying a case.

The simplest estimate of prediction error is the resubstitution error, which
is computed as follows. In a regression problem, the fitted model is used
to predict each of the (known) output values from the entire data set,
and the resubstitution estimate is then the mean of the squared residuals,
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also known as the residual mean square. In a classification problem, the
classifier predicts the (known) class of each case in the entire data set, a
correct prediction is scored as a 0 and a misclassification is scored as a 1,
and the resubstitution estimate is the proportion of misclassified cases.

Because the resubstitution estimate uses the same data as was used to
derive the predictor, the result is an overly optimistic view of prediction
accuracy. Clearly, it is important to do better.

1.3.3 Generalization

The need to improve upon the resubstitution estimator of prediction ac-
curacy led naturally to the concept of generalization: we want an estimation
procedure to generalize well; that is, to make good predictions when applied
to a data set independent of that used to fit the model. Although this is not
a new idea — it has existed in statistics for a long time (see, e.g., Mosteller
and Tukey, 1977, pp. 37–38) — the machine-learning community embraced
this particular concept (adopting the name from psychology) and made it
a central issue in the theory and applications of machine learning.

Where do we find such an independent data set? One way is to gather
fresh data. However, “when fresh gathering is not feasible, good results can
come from going to a body of data that has been kept in a locked safe
where it has rested untouched and unscanned during all the choices and
optimizations” (Mosteller and Tukey, 1977, p. 38). The data in the “locked
safe” can be viewed as holding back a portion of the current data from
the model-fitting phase and using it instead for assessment purposes. If an
independent set of data is not used, then we will overestimate the model’s
predictive accuracy.

In fact, it is now common practice — assuming the data set is large
enough — to use a random mechanism to separate the data into three
nonoverlapping and independent data sets:

a learning (or training) set L, a data set where “anything goes . . . in-
cluding hunches, preliminary testing, looking for patterns, trying large
numbers of different models, and eliminating outliers” (Efron, 1982,
p. 49);

a validation set V , a data set to be used for model selection and assess-
ment of competing models (usually on the basis of predictive ability);

a test set T , a data set to be used for assessing the performance of a
completely specified final model.

The key assumption here is that the three subsets of the data are each
generated by the same underlying distribution. In some instances, learning
data may be taken from historical records.
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As a simple guideline, the learning set should consist of about 50% of
the data, whereas the validation and test sets may each consist of 25%
(although these percentages are not written in stone). In some instances,
we may find it convenient to merge the validation set with the test set,
thus forming a larger test set. For example, we often see publicly available
data sets in Internet databases divided into a learning set and a test set.

1.3.4 Generalization Error

In supervised learning problems, it is important to assess how closely a
particular model (function of the inputs) fits the data (the outputs). As
before, we use prediction error as our measure of prediction accuracy.

In regression problems, there are two different types of prediction error.
For both types, we first fit a model to the learning set L. Then, we use that
fitted model to predict the output values of either L (given input values
from L) or the test set T (given input values from T ). Prediction error is
the mean (computed only over the appropriate data set) of the squared-
errors of prediction (where error = true output value – predicted output
value). If we average over L, the prediction error is called the regression
learning error (equivalent to the resubstitution estimate computed only
over L), whereas if we average over T , the prediction error is called the
regression test error.

A similar strategy is used in classification problems; only the definition
of prediction error is different. We first build a classifier from L. Next, we
use that classifier to predict the class of each data vector in either L or
T . For each prediction, we assign the value of 0 to a correct classification
and 1 to a classification error. The prediction error is then defined as the
average of all the 0s and 1s over the appropriate data set (i.e., the propor-
tion of misclassified observations). If we average over L, then prediction
error is referred to as the classification learning error (equivalent to the
resubstitution estimate computed only over L), whereas averaging over T
yields the classification test error.

If the learning set L is moderately sized, we may feel that using only
a portion of the entire data set to fit the model is a waste of good data.
Alternative data-splitting methods for estimating test error are based upon
cross-validation (Stone, 1974) and the bootstrap (Efron, 1979):

V -fold cross-validation: Randomly divide the entire data set into, say, V
nonoverlapping groups of roughly equal size; remove one of the groups
and fit the model using the combined data from the other V −1 groups
(which forms the learning set); use the omitted group as the test set,
predict its output values using the fitted model, and compute the
prediction error for the omitted group; repeat this procedure V times,
each time removing a different group; then, average the resulting V
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prediction errors to estimate the test error. The number of groups V
can be any number from 2 to the sample size.

Bootstrap: Select a “bootstrap sample” from the entire data set by draw-
ing a random sample with replacement having the same size as the
parent data set, so that the sample may contain repeated observa-
tions; fit a model using this bootstrap sample and compute its pre-
diction error; repeat this sampling procedure, say, 1000 times, each
time computing a prediction error; then, average all the prediction
errors to estimate the test error.

These are generic descriptions of the two procedures; specific descriptions
are given in various sections of this book. In particular, the definition of
the bootstrap is actually more complicated than that given by this descrip-
tion because it depends on what is assumed about the stochastic model
generating the data. Although both cross-validation and the bootstrap are
computationally intensive techniques, cross-validation uses the entire data
set in a more efficient manner than the division into a learning set and an
independent test set. We also caution that, in some applications, it may
not make sense to use one of these procedures.

The expected prediction error over an independent test set is called infi-
nite test error or generalization error. We estimate generalization error by
the test error. One goal of generalization theory is to choose that regression
model or classifier that gives the smallest generalization error.

1.3.5 Overfitting

To minimize generalization error, it is tempting to find a model that will
fit the data in the learning set as accurately as possible. This is not usually
advisable because it may make the selected model too complicated. The
resulting learning error will be very small (because the fitted model has
been optimized for that data set), whereas the test error will be large (a
consequence of overfitting).

Overfitting: Occurs when the model is too large or complicated, or con-
tains too many parameters relative to the size of the learning set. It
usually results in a very small learning error and a large generalization
(test) error.

One can control such temptation by following the principle known as Ock-
ham’s razor, which encourages us to choose simple models while not losing
track of the need for accuracy. Simple models are generally preferred if ei-
ther the learning set is too small to derive a useful estimate of the model
or fitting a more complex model would necessitate using huge amounts of
computational resources.
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We illustrate the idea of overfitting with a simple regression example.
Using 10 equally spaced x values as the learning set, we generate corre-
sponding y values from the function y = 0.5 + 0.25cos(2πx) + e, where the
Gaussian noise component e has mean zero and standard deviation 0.06.
We try to approximate the underlying unknown function (the cosinusoid)
by a polynomial in x, where the problem is to decide on the degree of the
polynomial. In the top-left panel of Figure 1.1, we give the cosinusoid and
the 10 generated points; in the top-right panel, a linear regression function
gives a poor fit to the points and shows the result of underfitting by using
too few parameters; in the bottom-left panel, a cubic polynomial is fitted
to the data, showing an improved approximation to the cosinusoid; and in
the bottom-right panel, by increasing the fit to a 9th-degree polynomial,
we ensure that the fitted curve passes through each point exactly. However,
the 9th-degree polynomial actually makes the fit much worse by introduc-
ing unwanted fluctuations and shows the result of overfitting by using too
many parameters.

How would such polynomial fits affect a test set obtained by using the
same x values but different noise values (hence, different y values) in the
above cosinusoid model? In Figure 1.2, we plot the prediction errors for
both the learning set and the test set. The learning error, as expected,
decreases monotonically to zero when we fit a 9th-degree polynomial. This
behavior for the learning error is typical whenever the fitted model ranges
from the very simple to the most complex. The test error decreases to a
4th degree polynomial and then increases, indicating that models with too
many parameters will have poor generalization properties.

Researchers have suggested several methods for reducing the effects of
overfitting. These include methods that employ some form of averaging
of predictions made by a number of different models fit to the learning
set (e.g., the “bagging” and “boosting” algorithms of Chapter 14) and
regularization (where complex models are penalized in favor of simpler
models). Bayesian arguments in favor of a related idea of “model averaging”
have also been proposed (see Hoeting, Madigan, Raftery, and Volinsky,
1999, for an excellent review of the topic).

1.4 Overview of Chapters

This book is divided into 17 chapters. Chapter 2 describes multivari-
ate data, database management systems, and data problems. Chapter 3
reviews basic vector and matrix notation, introduces random vectors and
matrices and their distributions, and derives maximum likelihood estimates
for the multivariate Gaussian mean, including the James–Stein shrinkage
estimator. Chapter 4 provides the elements of nonparametric density esti-
mation. Chapters 5 reviews topics in multiple linear regression, including
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FIGURE 1.1. Ten y-values corresponding to equally spaced x-values were
generated from the cosinusoid y = 0.5 + 0.25cos(2πx) + e, where the noise
component e ∼ N (0, (0.06)2). Top-left panel: the true cosinusoid is shown
in black with the 10 points in blue; top-right: the red line is the ordinary
least-squares (OLS) linear regression fit to the points; bottom-left: the red
curve is an OLS cubic polynomial fit to the points; bottom-right: the red
curve is a 9th-degree polynomial that passes through every point.
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FIGURE 1.2. Prediction error from the learning set (blue curve) and
test set (red curve) based upon polynomial fits to data generated from a
cosinusoid curve with noise.
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model assessment (through cross-validation and the bootstrap), biased re-
gression, shrinkage, and model selection, concepts that will be needed in
later chapters.

In Chapter 6, we discuss multivariate regression for both the fixed-X and
random-X cases. We discuss multivariate analysis of variance and multi-
variate reduced-rank regression (RRR). RRR provides the foundation for
a unified theory of multivariate analysis, which includes as special cases
the classical techniques of principal component analysis, canonical variate
analysis, linear discriminant analysis, factor analysis, and correspondence
analysis. In Chapter 7, we introduce the idea of (linear) dimensionality re-
duction, which includes principal component analysis, canonical variate and
correlation analysis, and projection pursuit. Chapter 8 discusses Fisher’s
linear discriminant analysis. Chapter 9 introduces recursive partitioning
and classification and regression trees. Chapter 10 discusses artificial neu-
ral networks via analogies to neural networks in the brain, artificial intel-
ligence, and expert systems, as well as the related statistical techniques
of projection pursuit regression and generalized additive models. Chapter
11 deals with classification using support vector machines. Chapter 12 de-
scribes the many algorithms for cluster analysis and unsupervised learning.

In Chapter 13, we discuss multidimensional scaling and distance geome-
try, and Chapter 14 introduces committee machines and ensemble methods,
such as bagging, boosting, and random forests. Chapter 15 discusses inde-
pendent component analysis. Chapter 16 looks at nonlinear methods for di-
mensionality reduction, especially the various flavors of nonlinear principal
component analysis, and nonlinear manifold learning. Chapter 17 describes
correspondence analysis.
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