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Preface

Not so long ago, multivariate analysis consisted solely of linear methods
illustrated on small to medium-sized data sets. Moreover, statistical com-
puting meant primarily batch processing (often using boxes of punched
cards) carried out on a mainframe computer at a remote computer facil-
ity. During the 1970s, interactive computing was just beginning to raise its
head, and exploratory data analysis was a new idea. In the decades since
then, we have witnessed a number of remarkable developments in local
computing power and data storage. Huge quantities of data are being col-
lected, stored, and efficiently managed, and interactive statistical software
packages enable sophisticated data analyses to be carried out effortlessly.
These advances enabled new disciplines called data mining and machine
learning to be created and developed by researchers in computer science
and statistics.

As enormous data sets become the norm rather than the exception,
statistics as a scientific discipline is changing to keep up with this de-
velopment. Instead of the traditional heavy reliance on hypothesis testing,
attention is now being focused on information or knowledge discovery. Ac-
cordingly, some of the recent advances in multivariate analysis include tech-
niques from computer science, artificial intelligence, and machine learning
theory. Many of these new techniques are still in their infancy, waiting for
statistical theory to catch up.

The origins of some of these techniques are purely algorithmic, whereas
the more traditional techniques were derived through modeling, optimiza-
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tion, or probabilistic reasoning. As such algorithmic techniques mature, it
becomes necessary to build a solid statistical framework within which to
embed them. In some instances, it may not be at all obvious why a partic-
ular technique (such as a complex algorithm) works as well as it does:

When new ideas are being developed, the most fruitful approach
is often to let rigor rest for a while, and let intuition reign — at
least in the beginning. New methods may require new concepts
and new approaches, in extreme cases even a new language, and
it may then be impossible to describe such ideas precisely in the
old language.

— Inge S. Helland, 2000

It is hoped that this book will be enjoyed by those who wish to under-
stand the current state of multivariate statistical analysis in an age of high-
speed computation and large data sets. This book mixes new algorithmic
techniques for analyzing large multivariate data sets with some of the more
classical multivariate techniques. Yet, even the classical methods are not
given only standard treatments here; many of them are also derived as spe-
cial cases of a common theoretical framework (multivariate reduced-rank
regression) rather than separately through different approaches. Another
major feature of this book is the novel data sets that are used as examples
to illustrate the techniques.

I have included as much statistical theory as I believed is necessary to
understand the development of ideas, plus details of certain computational
algorithms; historical notes on the various topics have also been added
wherever possible (usually in the Bibliographical Notes at the end of each
chapter) to help the reader gain some perspective on the subject matter.
References at the end of the book should be considered as extensive without
being exhaustive.

Some common abbreviations used in this book should be noted: “iid”
means independently and identically distributed; “wrt” means with respect
to; “ift” means if and only if, and “lhs” and “rhs” mean left- and right-hand
side, respectively.

Audience

This book is directed toward advanced undergraduate students, gradu-
ate students, and researchers in statistics, computer science, artificial in-
telligence, psychology, neural and cognitive sciences, business, medicine,
bioinformatics, and engineering. As prerequisites, readers are expected to
have had previous knowledge of probability, statistical theory and methods,
multivariable calculus, and linear/matrix algebra. Because vectors and ma-
trices play such a major role in multivariate analysis, Chapter 3 gives the
matrix notation used in the book and many important advanced concepts
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in matrix theory. Along with a background in classical statistical theory
and methods, it would also be helpful if the reader had some exposure to
Bayesian ideas in statistics.

There are various types of courses for which this book can be used, in-
cluding data mining, machine learning, computational statistics, and for
a traditional course in multivariate analysis. Sections of this book have
been used at Temple University as the basis of lectures in a one-semester
course in applied multivariate analysis to statistics and graduate business
students (where technical derivations are skipped and emphasis is placed
on the examples and computational algorithms) and a two-semester course
in advanced topics in statistics given to graduate students from statistics,
computer science, and engineering. I am grateful for their feedback (includ-
ing spotting typos and inconsistencies).

Although there is enough material in this book for a two-semester course,
a one-semester course in traditional multivariate analysis can be drawn
from the material in Sections 1.1-1.3, 2.1-2.3, 2.5, 2.6, 3.1-3.5,5.1-5.7, 6.1~
6.3, 7.1-7.3, 8.1-8.7, 12.1-12.4, 13.1-13.9, 15.4, and 17.1-17.4; additional
parts of the book can be used as appropriate.

Software

Software for computing the techniques described in this book is publicly
available either through routines in major computer packages or through
download from Internet websites. I have used primarily the R, S-PLUS, and
MATLAB packages in writing this book. In the Software Packages section at
the ends of certain chapters, I have listed the relevant R/S-PLUS routines
for the respective chapter as well as the appropriate toolboxes in MATLAB.
I have also tried to indicate other major packages wherever relevant.

Data Sets

The many data sets that illustrate the multivariate techniques presented
in this book were obtained from a wide variety of sources and disciplines and
will be made available through the book’s website. Disciplines from which
the data were obtained include astronomy, bioinformatics, botany, chemo-
metrics, criminology, food science, forensic science, genetics, geoscience,
medicine, philately, physical anthropology, psychology, soil science, sports,
and steganography. Part of the learning process for the reader is to become
familiar with the classic data sets that are associated with each technique.
In particular, data sets from popular data repositories are used to compare
and contrast methodologies. Examples in the book involve small data sets
(if a particular point or computation needs clarifying) and large data sets
(to see the power of the techniques in question).

FEzercises
At the end of every chapter (except Chapter 1), there is a number of
exercises designed to make the reader (a) relate the problem to the text and
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fill in the technical details omitted in the development of certain techniques,
(b) illustrate the techniques described in the chapter with real data sets
that can be downloaded from Internet websites, and (c) write software to
carry out an algorithm described in the chapter. These exercises are an
integral part of the learning experience. The exercises are not uniform in
level of difficulty; some are much easier than others, and some are taken
from research publications.

Book Website

The book’s website is located at:

http://astro.temple.edu/ alan/MMST

where additional materials and the latest information will be available,
including data sets and R and S-PLUS code for many of the examples in
the book.
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1

Introduction and Preview

1.1 Multivariate Analysis

This book invites the reader to learn about multivariate analysis, its mod-
ern ideas, innovative statistical techniques, and novel computational tools,
as well as exciting new applications.

The need for a fresh approach to multivariate analysis derives from three
recent developments. First, many of our classical methods of multivariate
analysis have been found to yield poor results when faced with the types
of huge, complex data sets that private companies, government agencies,
and scientists are collecting today; second, the questions now being asked
of such data are very different from those asked of the much-smaller data
sets that statisticians were traditionally trained to analyze; and, third, the
computational costs of storing and processing data have crashed over the
past decade, just as we see the enormous improvements in computational
power and equipment. All these rapid developments have now made the
efficient analysis of more complicated data a lot more feasible than ever
before.

Multivariate statistical analysis is the simultaneous statistical analysis
of a collection of random variables. It is partly a straightforward extension

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 1
DOI 10.1007/978-0-387-78189-1_1, © Springer Science+Business Media New York 2013
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of the analysis of a single variable, where we would calculate, for example,
measures of location and variation, check violations of a particular distri-
butional assumption, and detect possible outliers in the data. Multivariate
analysis improves upon separate univariate analyses of each variable in a
study because it incorporates information into the statistical analysis about
the relationships between all the variables.

Much of the early developmental work in multivariate analysis was mo-
tivated by problems from the social and behavioral sciences, especially ed-
ucation and psychology. Thus, factor analysis was devised to provide a
statistical model for explaining psychological theories of human ability and
behavior, including the development of a notion of general intelligence;
principal component analysis was invented to analyze student scores on
a battery of different tests; canonical variate and correlation analysis had
a similar origin, but in this case the relationship of interest was between
student scores on two separate batteries of tests; and multidimensional scal-
ing originated in psychometrics, where it was used to understand people’s
judgments of the similarity of items in a set.

Some multivariate methods were motivated by problems in other scien-
tific areas. Thus, linear discriminant analysis was derived to solve a taxo-
nomic (i.e., classification) problem using multiple botanical measurements;
analysis of variance and its big brother, multivariate analysis of variance,
derived from a need to analyze data from agricultural experiments; and the
origins of regression and correlation go back to problems involving heredity
and the orbits of planets.

Each of these multivariate statistical techniques was created in an era
when small or medium-sized data sets were common and, judged by today’s
standards, computing was carried out on less-than-adequate computational
platforms (desk calculators, followed by mainframe batch computing with
punched cards). Even as computational facilities improved dramatically
(with the introduction of the minicomputer, the hand calculator, and the
personal computer), it was only recently that the floodgates opened and the
amounts of data recorded and stored began to surpass anything previously
available. As a result, the focus of multivariate data analysis is changing
rapidly, driven by a recognition that fast and efficient computation is of
paramount importance to its future.

Statisticians have always been considered as partners for joint research
in all the scientific disciplines. They are now beginning to participate with
researchers from some of the subdisciplines within computer science, such
as pattern recognition, neural networks, symbolic machine learning, com-
putational learning theory, and artificial intelligence, and also with those
working in the new field of bioinformatics; together, new tools are being
devised for handling the massive quantities of data that are routinely col-
lected in business transactions, governmental studies, science and medical
research, and for making law and public policy decisions.
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We are now seeing many innovative multivariate techniques being devised
to solve large-scale data problems. These techniques include nonparamet-
ric density estimation, projection pursuit, neural networks, reduced-rank
regression, nonlinear manifold learning, independent component analysis,
kernel methods and support vector machines, decision trees, and random
forests. Some of these techniques are new, but many of them are not so
new (having been introduced several decades ago but virtually ignored by
the statistical community). It is because of the current focus on large data
sets that these techniques are now regarded as serious alternatives to (and,
in some cases, improvements over) classical multivariate techniques.

This book focuses on the areas of regression, classification, and mani-
fold learning, topics now regarded as the core components of data mining
and machine learning, which we briefly describe in this chapter. It is im-
portant to note here that these areas overlap a great deal in content and
methodology: what is one person’s data-mining problem may be another’s
machine-learning problem.

1.2 Data Mining

1.2.1 From EDA to Data Mining

Although the revolutionary concept of exploratory data analysis (EDA)
(Tukey, 1977) changed the way many statisticians viewed their discipline,
emphasis in EDA centered on quick and dirty methods (using pencil and
paper) for the visualization and examination of small data sets. Enthusi-
asts soon introduced EDA topics into university (and high school) courses
in statistics. To complete the widespread acceptance and utility of John
Tukey’s exploratory procedures and his idiosyncratic nomenclature, EDA
techniques were included in standard statistical software packages. Never-
theless, despite the available computational power, EDA was still perceived
as a collection of small-sample, data-analytic tools.

Today, measurements on a variety of related variables often produce a
data set so large as to be considered unwieldy for practical purposes. Such
data now often range in size from moderate (say 103 to 10* cases) to large
(10° cases or more). For example, billions of transactions each year are
carried out by international finance companies; Internet traffic data are
described as “ferocious” (Cleveland and Sun, 2000); the Human Genome
Project has to deal with gigabytes (230 (~ 10°) bytes) of genetic informa-
tion; astronomy, the space sciences, and the earth sciences have terabytes
(240 (~ 10'2) bytes) and soon, petabytes (259 (~ 10'%) bytes), of data for
processing; and remote-sensing satellite systems, in general, record many
gigabytes of data each hour. Each of these data sets is incredibly large and
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complex, with millions of observations being recorded on huge numbers of
variables.

Furthermore, governmental statistical agencies (e.g., the Federal Statis-
tical Service in the United States, the National Statistical Service in the
United Kingdom, and similar agencies in other countries) are accumulat-
ing greater amounts of detailed economic, labor, demographic, and census
information than at any time in the past. The U.S. census file based solely
on administrative records, for example, has been estimated to be of size
at least 10'2 bytes (Kirkendall, 1997). Other massive data sets (e.g., crime
data, health-care data) are maintained by other governmental agencies.

The availability of massive quantities of data coupled with enormous
increases in computational power for relatively low cost has led to the cre-
ation of a whole new activity called data mining. With massive data sets,
the process of data mining is not unlike a gigantic effort at EDA for “infi-
nite” data sets. For many companies, their data sets of interest are so large
that only the simplest of statistical computations can be carried out. In
such situations, data mining means little more than computing means and
standard deviations of each variable; drawing some bivariate scatterplots
and carrying out simple linear regressions of pairs of variables; and doing
some cross-tabulations. The level of sophistication of a data mining study
depends not just on the statistical software but also on the computer hard-
ware (RAM, hard disk, etc.) and database management system for storing
the data and processing the results.

Even if we are faced with a huge amount of data, if the problem is
simple enough, we can sample and use standard exploratory and confirma-
tory methods. In some instances, especially when dealing with government-
collected data, sampling may be carried out by the agency itself. Census
data, for example, is too big to be useful for most users; so, the U.S. Census
Bureau creates manageable public-use files by drawing a random sample of
individuals from the full data set and either removes or masks identifying
information (Kirkendall, 1997),

In most applications of data mining, there is no a priori reason to sam-
ple. The entire population of data values (at least, those with which we
would be interested) is readily available, and the questions asked of that
data set are usually exploratory in nature and do not involve inference. Be-
cause a data pattern (e.g., outliers, data errors, hidden trends, credit-card
fraud) is a local phenomenon, possibly affecting only a few observations,
sampling, which typically reduces the size of the data set in drastic fashion,
may completely miss the specifics of whatever pattern would be of special
interest.

Data mining differs from classical statistical analysis in that statistical
inference in its hypothesis-testing sense may not be appropriate. Further-
more, most of the questions asked of large data sets are different from the
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classical inference questions asked of much smaller samples of data. This is
not to say that sampling and subsequent modeling and inference have no
role to play when dealing with massive data sets. Sampling, in fact, may be
appropriate in certain circumstances as an accompaniment to any detailed
data exploration activities.

1.2.2  What Is Data Mining?

It is usual to categorize data mining activities as either descriptive or
predictive, depending upon the primary objective:

Descriptive data mining: Search massive data sets and discover the lo-
cations of unexpected structures or relationships, patterns, trends,
clusters, and outliers in the data.

Predictive data mining: Build models and procedures for regression,
classification, pattern recognition, or machine learning tasks, and as-
sess the predictive accuracy of those models and procedures when
applied to fresh data.

The mechanism used to search for patterns or structure in high-dimensional
data might be manual or automated; searching might require interactively
querying a database management system, or it might entail using visual-
ization software to spot anomolies in the data. In machine-learning terms,
descriptive data mining is known as unsupervised learning, whereas predic-
tive data mining is known as supervised learning.

Most of the methods used in data mining are related to methods devel-
oped in statistics and machine learning. Foremost among those methods are
the general topics of regression, classification, clustering, and visualization.
Because of the enormous sizes of the data sets, many applications of data
mining focus on dimensionality-reduction techniques (e.g., variable selec-
tion) and situations in which high-dimensional data are suspected of lying
on lower-dimensional hyperplanes. Recent attention has been directed to
methods of identifying high-dimensional data lying on nonlinear surfaces
or manifolds.

Table 1.1 lists some of the application areas of data mining and exam-
ples of major research themes within those areas. Using the massive data
sets that are routinely collected by each of these disciplines, advances in
dealing with the topics depend crucially upon the availability of effective
data mining techniques and software.

One of the most important issues in data mining is the computational
problem of scalability. Algorithms developed for computing standard ex-
ploratory and confirmatory statistical methods were designed to be fast
and computationally efficient when applied to small and medium-sized data
sets; yet, it has been shown that most of these algorithms are not up to
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the challenge of handling huge data sets. As data sets grow, many exist-
ing algorithms demonstrate a tendency to slow down dramatically (or even
grind to a halt).

In data mining, regardless of size or complexity of the problem (essen-
tially, the numbers of variables and observations), we require algorithms to
have good performance characteristics; that is, they have to be scalable.
There is no globally accepted definition of scalability, but a general idea of
what this property means is the following:

Scalability: The capability of an algorithm to remain efficient and accu-
rate as we increase the complexity of the problem.

The best scenario is that scalability should be linear. So, one goal of data
mining is to create a library of scalable algorithms for the statistical analysis
of large data sets.

Another issue that has to be considered by those working in data mining
is the thorny problem of statistical inference. The twentieth century saw
Fisher, Neyman, Pearson, Wald, Savage, de Finetti, and others provide
a variety of competing — yet related — mathematical frameworks (fre-
quentist, Bayesian, fiducial, decision theoretic, etc.) from which inferential
theories of statistics were built. Extrapolating to a future point in time,
can we expect researchers to provide a version of statistical inference for
analyzing massive data sets?

There are situations in data mining when statistical inference — in its
classical sense — either has no meaning or is of dubious validity: the former
occurs when we have the entire population to search for answers (e.g.,
gene or protein sequences, astronomical recordings), and the latter occurs
when a data set is a “convenience” sample rather than being a random
sample drawn from some large population. When data are collected through
time (e.g., retail transactions, stock-market transactions, patient records,
weather records), sampling also may not make sense; the time-ordering of
the observations is crucial to understanding the phenomenon generating
the data, and to treat the observations as independent when they may be
highly correlated will provide biased results.

Those who now work in data mining recognize that the central compo-
nents of data mining are — in addition to statistical theory and methods
— computing and computational efficiency, automatic data processing, dy-
namic and interactive data visualization techniques, and algorithm devel-
opment. There are a number of software packages whose primary purpose
is to help users carry out various techniques in data mining. The leading
data-mining products include the packages listed (in alphabetical order) in
Table 1.2.
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TABLE 1.1. Application areas of data mining

Marketing: Predict new purchasing trends. Identify “loyal” customers. Predict
what types of customers will respond to direct mailings, telemarketing
calls, advertising campaigns, or promotions. Given customers who have
purchased product A, B, or C, identify those who are likely to purchase
product D and, in general, which products sell together (popularly called
market basket analysis).

Banking: Predict which customers will likely switch from one credit card com-
pany to another. Evaluate loan policies using customer characteristics. Pre-
dict behavioral use of automated teller machines (ATMs).

Financial Markets: Identify relationships between financial indicators. Track
changes in an investment portfolio and predict price turning points. Ana-
lyze volatility patterns in high-frequency stock transactions using volume,
price, and time of each transaction.

Insurance: Identify characteristics of buyers of new policies. Find unusual claim
patterns. Identify “risky” customers.

Healthcare: Identify successful medical treatments and procedures by examin-
ing insurance claims and billing data. Identify people “at risk” for certain
illnesses so that treatment can be started before the condition becomes
serious. Predict doctor visits from patient characteristics. Use healthcare
data to help employers choose between HMOs.

Molecular Biology: Collect, organize, and integrate the enormous quantities
of data on bioinformatics, functional genomics, proteomics, gene expression
monitoring, and microarrays. Analyze amino acid sequences and deoxyri-
bonucleic acid (DNA) microarrays. Use gene expression to characterize
biological function. Predict protein structure and identify related proteins.

Astronomy: Catalogue (as stars, galaxies, etc.) hundreds of millions of objects
in the sky using hundreds of attributes, such as position, size, shape, age,
brightness, and color. Identify patterns and relationships of objects in the
sky.

Forensic Accounting: Identify fraudulent behavior in credit card usage by
looking for transactions that do not fit a particular cardholder’s buying
habits. Identify fraud in insurance and medical claims. Identify instances
of tax evasion. Detect illegal activities that can lead to suspected money
laundering operations. Identify stock market behaviors that indicate pos-
sible insider-trading operations.

Sports: Identify in realtime which players and which designed plays are most
effective at specific points in the game and in relation to combinations of
opposing players. Identify the exact moment when intriguing play patterns
occurred. Discover game patterns hidden behind summary statistics.
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TABLE 1.2. Data mining software packages.

Company Software Package

IBM Corp. Intelligent Miner

Insightful Insightful Miner

NCR Corp. Teradata Warehouse Miner
Oracle Darwin

SAS Institute, Inc. Enterprise Miner

Silicon Graphics, Inc.  MineSet

SPSS, Inc. Clementine

1.2.3  Knowledge Discovery

Data mining has been described (Fayyad, Piatetsky-Shapiro, and Smyth,
1996) as a step in a more general process known as knowledge discovery in
databases (KDD). The “knowledge” acquired by KDD has to be interesting,
non-trivial, non-obvious, previously unknown, and potentially useful.

KDD is a multistep process designed to assist those who need to search
huge data sets for “nuggets of useful information.” In KDD, assistance is
expected to be intelligent and automated, and the process itself is interac-
tive and iterative.

KDD is composed of six primary activities:

1.

selecting the target data set (which data set or which variables and
cases are to be used for data mining);

. data cleaning (removal of noise, identification of potential outliers,

imputing missing data);

preprocessing the data (deciding upon data transformations, tracking
time-dependent information);

deciding which data-mining tasks are appropriate (regression, classi-
fication, clustering, etc.);

analyzing the cleaned data using data-mining software (algorithms for
data reduction, dimensionality reduction, fitting models, prediction,
extracting patterns);

interpreting and assessing the knowledge derived from data-mining
results.

In KDD, and hence in data mining, the descriptive aspect is more important
than the predictive aspect, which forms the main goal of machine learning.
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1.3 Machine Learning

Machine learning evolved out of the subfield of computer science known
as artificial intelligence (AI). Whereas the focus of Al is to make machines
intelligent, able to think rationally like humans and solve problems, ma-
chine learning is concerned with creating computer systems and algorithms
so that machines can “learn” from previous experience. Because intelligence
cannot be attained without the ability to learn, machine learning now plays
a dominant role in Al

1.3.1 How Does a Machine Learn?

A machine learns when it is able to accumulate experience (through
data, programs, etc.) and develop new knowledge so that its performance
on specific tasks improves over time. This idea of learning from experience
is central to the various types of problems encountered in machine learning,
especially problems involving classification (e.g., handwritten digit recogni-
tion, speech recognition, face recognition, text classification). The general
goal of each of these problems is to find a systematic way of classifying a
future example (e.g., a handwriting sample, a spoken word, a face image, a
text fragment). Classification is based upon measurements on that future
example together with knowledge obtained from a learning (or training)
sample of similar examples (where the class of each example is completely
determined and known, and the number of classes is finite and known).

The need to create new methods and terminology for analyzing large
and complex data sets has led to researchers from several disciplines —
statistics, pattern recognition, neural networks, symbolic machine learning,
computational learning theory, and, of course, AI — to work together to
influence the development of machine learning.

Among the techniques that have been used to solve machine-learning
problems, the topics that are of most interest to statisticians — den-
sity estimation, regression, and pattern recognition (including neural net-
works, discriminant analysis, tree-based classifiers, random forests, bag-
ging and boosting, support vector machines, clustering, and dimensionality-
reduction methods) — are now collectively referred to as statistical learning
and constitute many of the topics discussed in this book. Vladimir N. Vap-
nik, one of the founders of statistical learning theory, relates statistics to
learning theory in the following way (Vapnik, 2000, p. x):

The problem of learning is so general that almost any question
that has been discussed in statistical science has its analog in
learning theory. Furthermore, some very important general re-
sults were first found in the framework of learning theory and
then formulated in the terms of statistics.
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The machine-learning community divides learning problems into vari-
ous categories: the two most relevant to statistics are those of supervised
learning and unsupervised learning.

Supervised learning: Problems in which the learning algorithm receives
a set of continuous or categorical input variables and a correct out-
put variable (which is observed or provided by an explicit “teacher”)
and tries to find a function of the input variables to approximate the
known output variable: a continuous output variable yields a regres-
sion problem, whereas a categorical output variable yields a classifi-
cation problem.

Unsupervised learning: Problems in which there is no information avail-
able (i.e., no explicit “teacher”) to define an appropriate output vari-
able; often referred to as “scientific discovery.”

The goal in unsupervised learning differs from that of supervised learn-
ing. In supervised learning, we study relationships between the input and
output variables; in unsupervised learning, we explore particular character-
istics of the input variables only, such as estimating the joint probability
density, searching out clusters, drawing proximity maps, locating outliers,
or imputing missing data.

Sometimes there might not be a “bright-line” distinction between super-
vised and unsupervised learning. For example, the dimensionality-reduction
technique of principal component analysis (PCA) has no explicit output
variable and, thus, appears to be an unsupervised-learning method; how-
ever, as we will see, PCA can be formulated in terms of a multivariate
regression model where the input variables are also used as output vari-
ables, and so PCA can also be regarded as a supervised-learning method.

1.3.2  Prediction Accuracy

One of the most important tasks in statistics is to assess the accuracy of a
predictor (e.g., regression estimator or classifier). The measure of prediction
accuracy typically used is that of prediction error, defined generically as

Prediction error: In aregression problem, the mean of the squared errors
of prediction, where error is the difference between a true output
value and its corresponding predicted output value; in a classification
problem, the probability of misclassifying a case.

The simplest estimate of prediction error is the resubstitution error, which
is computed as follows. In a regression problem, the fitted model is used
to predict each of the (known) output values from the entire data set,
and the resubstitution estimate is then the mean of the squared residuals,
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also known as the residual mean square. In a classification problem, the
classifier predicts the (known) class of each case in the entire data set, a
correct prediction is scored as a 0 and a misclassification is scored as a 1,
and the resubstitution estimate is the proportion of misclassified cases.

Because the resubstitution estimate uses the same data as was used to
derive the predictor, the result is an overly optimistic view of prediction
accuracy. Clearly, it is important to do better.

1.3.3 Generalization

The need to improve upon the resubstitution estimator of prediction ac-
curacy led naturally to the concept of generalization: we want an estimation
procedure to generalize well; that is, to make good predictions when applied
to a data set independent of that used to fit the model. Although this is not
a new idea — it has existed in statistics for a long time (see, e.g., Mosteller
and Tukey, 1977, pp. 37-38) — the machine-learning community embraced
this particular concept (adopting the name from psychology) and made it
a central issue in the theory and applications of machine learning.

Where do we find such an independent data set? One way is to gather
fresh data. However, “when fresh gathering is not feasible, good results can
come from going to a body of data that has been kept in a locked safe
where it has rested untouched and unscanned during all the choices and
optimizations” (Mosteller and Tukey, 1977, p. 38). The data in the “locked
safe” can be viewed as holding back a portion of the current data from
the model-fitting phase and using it instead for assessment purposes. If an
independent set of data is not used, then we will overestimate the model’s
predictive accuracy.

In fact, it is now common practice — assuming the data set is large
enough — to use a random mechanism to separate the data into three
nonoverlapping and independent data sets:

a learning (or training) set L, a data set where “anything goes ... in-
cluding hunches, preliminary testing, looking for patterns, trying large
numbers of different models, and eliminating outliers” (Efron, 1982,
p. 49);

a validation set V, a data set to be used for model selection and assess-
ment of competing models (usually on the basis of predictive ability);

a test set T, a data set to be used for assessing the performance of a
completely specified final model.

The key assumption here is that the three subsets of the data are each
generated by the same underlying distribution. In some instances, learning
data may be taken from historical records.



12 1. Introduction and Preview

As a simple guideline, the learning set should consist of about 50% of
the data, whereas the validation and test sets may each consist of 25%
(although these percentages are not written in stone). In some instances,
we may find it convenient to merge the validation set with the test set,
thus forming a larger test set. For example, we often see publicly available
data sets in Internet databases divided into a learning set and a test set.

1.3.4 Generalization Error

In supervised learning problems, it is important to assess how closely a
particular model (function of the inputs) fits the data (the outputs). As
before, we use prediction error as our measure of prediction accuracy.

In regression problems, there are two different types of prediction error.
For both types, we first fit a model to the learning set £. Then, we use that
fitted model to predict the output values of either £ (given input values
from L) or the test set T (given input values from 7). Prediction error is
the mean (computed only over the appropriate data set) of the squared-
errors of prediction (where error = true output value — predicted output
value). If we average over L, the prediction error is called the regression
learning error (equivalent to the resubstitution estimate computed only
over L), whereas if we average over T, the prediction error is called the
regression test error.

A similar strategy is used in classification problems; only the definition
of prediction error is different. We first build a classifier from L. Next, we
use that classifier to predict the class of each data vector in either £ or
T. For each prediction, we assign the value of 0 to a correct classification
and 1 to a classification error. The prediction error is then defined as the
average of all the Os and 1s over the appropriate data set (i.e., the propor-
tion of misclassified observations). If we average over L, then prediction
error is referred to as the classification learning error (equivalent to the
resubstitution estimate computed only over £), whereas averaging over T
yields the classification test error.

If the learning set £ is moderately sized, we may feel that using only
a portion of the entire data set to fit the model is a waste of good data.
Alternative data-splitting methods for estimating test error are based upon
cross-validation (Stone, 1974) and the bootstrap (Efron, 1979):

V-fold cross-validation: Randomly divide the entire data set into, say, V'
nonoverlapping groups of roughly equal size; remove one of the groups
and fit the model using the combined data from the other V' —1 groups
(which forms the learning set); use the omitted group as the test set,
predict its output values using the fitted model, and compute the
prediction error for the omitted group; repeat this procedure V' times,
each time removing a different group; then, average the resulting V'
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prediction errors to estimate the test error. The number of groups V'
can be any number from 2 to the sample size.

Bootstrap: Select a “bootstrap sample” from the entire data set by draw-
ing a random sample with replacement having the same size as the
parent data set, so that the sample may contain repeated observa-
tions; fit a model using this bootstrap sample and compute its pre-
diction error; repeat this sampling procedure, say, 1000 times, each
time computing a prediction error; then, average all the prediction
errors to estimate the test error.

These are generic descriptions of the two procedures; specific descriptions
are given in various sections of this book. In particular, the definition of
the bootstrap is actually more complicated than that given by this descrip-
tion because it depends on what is assumed about the stochastic model
generating the data. Although both cross-validation and the bootstrap are
computationally intensive techniques, cross-validation uses the entire data
set in a more efficient manner than the division into a learning set and an
independent test set. We also caution that, in some applications, it may
not make sense to use one of these procedures.

The expected prediction error over an independent test set is called infi-
nite test error or generalization error. We estimate generalization error by
the test error. One goal of generalization theory is to choose that regression
model or classifier that gives the smallest generalization error.

1.8.5 Qwverfitting

To minimize generalization error, it is tempting to find a model that will
fit the data in the learning set as accurately as possible. This is not usually
advisable because it may make the selected model too complicated. The
resulting learning error will be very small (because the fitted model has
been optimized for that data set), whereas the test error will be large (a
consequence of overfitting).

Overfitting: Occurs when the model is too large or complicated, or con-
tains too many parameters relative to the size of the learning set. It
usually results in a very small learning error and a large generalization
(test) error.

One can control such temptation by following the principle known as Ock-
ham’s razor, which encourages us to choose simple models while not losing
track of the need for accuracy. Simple models are generally preferred if ei-
ther the learning set is too small to derive a useful estimate of the model
or fitting a more complex model would necessitate using huge amounts of
computational resources.
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We illustrate the idea of overfitting with a simple regression example.
Using 10 equally spaced = values as the learning set, we generate corre-
sponding y values from the function y = 0.5 + 0.25cos(27z) + e, where the
Gaussian noise component e has mean zero and standard deviation 0.06.
We try to approximate the underlying unknown function (the cosinusoid)
by a polynomial in z, where the problem is to decide on the degree of the
polynomial. In the top-left panel of Figure 1.1, we give the cosinusoid and
the 10 generated points; in the top-right panel, a linear regression function
gives a poor fit to the points and shows the result of underfitting by using
too few parameters; in the bottom-left panel, a cubic polynomial is fitted
to the data, showing an improved approximation to the cosinusoid; and in
the bottom-right panel, by increasing the fit to a 9th-degree polynomial,
we ensure that the fitted curve passes through each point exactly. However,
the 9th-degree polynomial actually makes the fit much worse by introduc-
ing unwanted fluctuations and shows the result of overfitting by using too
many parameters.

How would such polynomial fits affect a test set obtained by using the
same x values but different noise values (hence, different y values) in the
above cosinusoid model? In Figure 1.2, we plot the prediction errors for
both the learning set and the test set. The learning error, as expected,
decreases monotonically to zero when we fit a 9th-degree polynomial. This
behavior for the learning error is typical whenever the fitted model ranges
from the very simple to the most complex. The test error decreases to a
4th degree polynomial and then increases, indicating that models with too
many parameters will have poor generalization properties.

Researchers have suggested several methods for reducing the effects of
overfitting. These include methods that employ some form of averaging
of predictions made by a number of different models fit to the learning
set (e.g., the “bagging” and “boosting” algorithms of Chapter 14) and
regularization (where complex models are penalized in favor of simpler
models). Bayesian arguments in favor of a related idea of “model averaging”
have also been proposed (see Hoeting, Madigan, Raftery, and Volinsky,
1999, for an excellent review of the topic).

1.4 Overview of Chapters

This book is divided into 17 chapters. Chapter 2 describes multivari-
ate data, database management systems, and data problems. Chapter 3
reviews basic vector and matrix notation, introduces random vectors and
matrices and their distributions, and derives maximum likelihood estimates
for the multivariate Gaussian mean, including the James—Stein shrinkage
estimator. Chapter 4 provides the elements of nonparametric density esti-
mation. Chapters 5 reviews topics in multiple linear regression, including
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FIGURE 1.1. Ten y-values corresponding to equally spaced x-values were
generated from the cosinusoid y = 0.5 + 0.25cos(27x) + e, where the noise
component e ~ N(0,(0.06)2). Top-left panel: the true cosinusoid is shown
in black with the 10 points in blue; top-right: the red line is the ordinary
least-squares (OLS) linear regression fit to the points; bottom-left: the red
curve is an OLS cubic polynomial fit to the points; bottom-right: the red
curve is a 9th-degree polynomial that passes through every point.
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FIGURE 1.2. Prediction error from the learning set (blue curve) and
test set (red curve) based upon polynomial fits to data generated from a
costnusoid curve with noise.
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model assessment (through cross-validation and the bootstrap), biased re-
gression, shrinkage, and model selection, concepts that will be needed in
later chapters.

In Chapter 6, we discuss multivariate regression for both the fixed-X and
random-X cases. We discuss multivariate analysis of variance and multi-
variate reduced-rank regression (RRR). RRR provides the foundation for
a unified theory of multivariate analysis, which includes as special cases
the classical techniques of principal component analysis, canonical variate
analysis, linear discriminant analysis, factor analysis, and correspondence
analysis. In Chapter 7, we introduce the idea of (linear) dimensionality re-
duction, which includes principal component analysis, canonical variate and
correlation analysis, and projection pursuit. Chapter 8 discusses Fisher’s
linear discriminant analysis. Chapter 9 introduces recursive partitioning
and classification and regression trees. Chapter 10 discusses artificial neu-
ral networks via analogies to neural networks in the brain, artificial intel-
ligence, and expert systems, as well as the related statistical techniques
of projection pursuit regression and generalized additive models. Chapter
11 deals with classification using support vector machines. Chapter 12 de-
scribes the many algorithms for cluster analysis and unsupervised learning.

In Chapter 13, we discuss multidimensional scaling and distance geome-
try, and Chapter 14 introduces committee machines and ensemble methods,
such as bagging, boosting, and random forests. Chapter 15 discusses inde-
pendent component analysis. Chapter 16 looks at nonlinear methods for di-
mensionality reduction, especially the various flavors of nonlinear principal
component analysis, and nonlinear manifold learning. Chapter 17 describes
correspondence analysis.

Bibliographical Notes

Books on data mining include Fayyad, Piatetsky-Shapiro, Smyth, and
Uthurusamy (1996) and Hand, Mannila, and Smyth (2001). There are
annual KDD workshops and conferences and a KDD journal. There is a
KDD section of the ACM: www.acm. org/sigkdd. Books on machine learn-
ing include Bishop (1995), Ripley (1996), Hastie, Tibshirani, and Friedman
(2001), MacKay (2003), and Bishop (2006).



2
Data and Databases

2.1 Introduction

Multivariate data consist of multiple measurements, observations, or re-
sponses obtained on a collection of selected variables. The types of variables
usually encountered often depend upon those who collect the data (the do-
main experts), possibly together with some statistical colleagues; for it is
these people who actively decide which variables are of interest in study-
ing a particular phenomenon. In other circumstances, data are collected
automatically and routinely without a research direction in mind, using
software that records every observation or transaction made regardless of
whether it may be important or not.

Data are raw facts, which can be numerical values (e.g., age, height,
weight), text strings (e.g., a name), curves (e.g., a longitudinal record re-
garded as a single functional entity), or two-dimensional images (e.g., pho-
tograph, map). When data sets are “small” in size, we find it convenient
to store them in spreadsheets or as flat files (large rectangular arrays). We
can then use any statistical software package to import such data for sub-
sequent data analysis, graphics, and inference. As mentioned in Chapter 1,
massive data sets are now sprouting up everywhere. Data of such size need
to be stored and manipulated in special database systems.

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 17
DOI 10.1007/978-0-387-78189-1_2, © Springer Science+Business Media New York 2013
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2.2  Examples

We first describe some examples of the data sets to be encountered in
this book.

2.2.1 FExample: DNA Microarray Data

The DNA (deoxyribonucleic acid) microarray has been described as “one
of the great unintended consequences of the Human Genome Project”
(Baker, 2003). The main impact of this enormous scientific achievement
is to provide us with large and highly structured microarray data sets from
which we can extract valuable genetic information. In particular, we would
like to know whether “gene expression” (the process by which genetic in-
formation encoded in DNA is converted, first, into mRNA (messenger ri-
bonucleic acid), and then into protein or any of several types of RNA) is
any different for cancerous tissue as opposed to healthy tissue.

Microarray technology has enabled the expression levels of a huge num-
ber of genes within a specific cell culture or tissue to be monitored si-
multaneously and efficiently. This is important because differences in gene
expression determine differences in protein abundance, which, in turn, de-
termine different cell functions. Although protein abundance is difficult to
determine, molecular biologists have discovered that gene expression can
be measured indirectly through microarray experiments.

Popular types of microarray technologies include cDNA microarrays (de-
veloped at Stanford University) and high-density, synthetic, oligonucleotide
microarrays (developed by Affymetrix, Inc., under the GENECHIP®) trade-
mark). Both technologies use the idea of hybridizing a “target” (which is
usually either a single-stranded DNA or RNA sequence, extracted from bio-
logical tissue of interest) to a DNA “probe” (all or part of a single-stranded
DNA sequence printed as “spots” onto a two-way grid of dimples in a glass
or plastic microarray slide, where each spot corresponds to a specific gene).

The microarray slide is then exposed to a set of targets. Two biologi-
cal mRNA samples, one obtained from cancerous tissue (the experimental
sample), the other from healthy tissue (the reference sample), are reverse-
transcribed into cDNA (complementary DNA); then, the reference cDNA
is labeled with a green fluorescent dye (e.g., Cy3) and the experimental
c¢DNA is labeled with a red fluorescent dye (e.g., Cy5). Fluorescence mea-
surements are taken of each dye separately at each spot on the array. High
gene expression in the tissue sample yields large quantities of hybridized
c¢DNA, which means a high intensity value. Low intensity values derive
from low gene expression.

The primary goal is to compare the intensity values, R and G, of the
red and green channels, respectively, at each spot on the array. The most
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popular statistic is the intensity log-ratio, M = log(R/G) = log(R)—log(G).
Other such functions include the probe value, PV = log(R — G), and the
average log-intensity, A = %(logR + log G). The logarithm in each case is
taken to base 2 because intensity values are usually integers ranging from
0 to 216 — 1.

Microarray data is a matrix whose rows are genes and whose columns
are samples, although this row-column arrangement may be reversed. The
genes play the role of variables, and the samples are the observations stud-
ied under different conditions. Such “conditions” include different experi-
mental conditions (treatment vs. control samples), different tissue samples
(healthy vs. cancerous tumors), and different time points (which may in-
corporate environmental changes).

For example, Figure 2.1 displays the heatmap for the expression levels
of 92 genes obtained from a microarray study on 62 colon tissue samples,
where the entries range from negative values (green) to positive values
(red).! The tissue samples were derived from 40 different patients: 22 pa-
tients each provided both a normal tissue sample and a tumor tissue sample,
whereas 18 patients each provided only a colon tumor sample. As a result,
we have tumor samples from 40 patients (7'1,...,740) and normal samples
from 22 patients (Normall, ..., Normal22), and this is the way the samples
are labeled.

From the heatmap, we wish to identify expression patterns of interest in
microarray data, focusing in on which genes contribute to those patterns
across the various conditions. Multivariate statistical techniques applied to
microarray data include supervised learning methods for classification and
the unsupervised methods of cluster analysis.

2.2.2  FExample: Mixtures of Polyaromatic Hydrocarbons

This example illustrates a very common problem in chemometrics. The
data (Brereton, 2003, Section 5.1.2) come from a study of polyaromatic
hydrocarbons (PAHs), which are described as follows:?

Polyaromatic hydrocarbons (PAHs) are ubiquitous environmen-
tal contaminants, which have been linked with tumors and ef-
fects on reproduction. PAHs are formed during the burning
of coal, oil, gas, wood, tobacco, rubbish, and other organic

1The data can be found in the file alontop.txt on the book’s website. The 92 genes
are a subset of a larger set of more than 6500 genes whose expression levels were measured
on these 62 tissue samples (Alon et al, 1999).

2This quote is taken from the August 1997 issue of the Update newsletter of the
World Wildlife Fund-UK at its website www.wwf-uk.org/filelibrary/pdf/mu_32.pdf.
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Observed Gene Expression Matrix
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FIGURE 2.1. Gene expression heatmap of 92 genes (columns) and 62
tissue samples (rows) for the colon cancer data. The tissue samples are

divided into 40 colon cancer samples (T1-T40) and 22 normal samples
(Normall-Normal22 ).

substances. They are also present in coal tars, crude oil, and
petroleum products such as creosote and asphalt. There are
some natural sources, such as forest fires and volcanoes, but
PAHs mainly arise from combustion-related or oil-related man-
made sources. A few PAHs are used by industry in medicines
and to make dyes, plastics, and pesticides.

Table 2.1 gives a list of the 10 PAHs that are used in this example.

The data were collected in the following way.® From the 10 PAHs listed
in Table 2.1, 50 complex mixtures of certain concentrations (in mg L) of
those PAHs were formed. From each such mixture, an electronic absorption

3The data, which can be found in the file PAH.txt on the book’s website, can also
be downloaded from the website statmaster.sdu.dk/courses/ST02/data/index.html.
The fifty sample observations were originally divided into two independent sets, each of
25 observations, but were combined here so that we would have more observations than
either set of data for the example.



2.2 Examples 21

TABLE 2.1. Ten polyaromatic hydrocarbon (PAH) compounds.

pyrene (Py), acenaphthene (Ace), anthracene (Anth), acenaphthylene (Acy),
chrysene (Chry), benzanthracene (Benz), fluoranthene (Fluora), fluorene
(Fluore), naphthalene (Nap), phenanthracene (Phen)

spectrum (EAS) was computed. The spectra were then digitized at 5 nm
intervals into r = 27 wavelength channels from 220 nm to 350 nm. The 50
spectra are displayed in Figure 2.2. The scatterplot matrix of the 10 PAHs
is displayed in Figure 2.3. Notice that most of these scatterplots appear as
5 x b arrays of 50 points, where only half the points are visible because of
a replication feature in the experimental design.

Using the resulting digitized values of the spectra, we wish to predict the
individual concentrations of PAHs in the mixture. In chemometrics, this
type of regression problem is referred to as multivariate inverse calibra-
tion: although the concentrations are actually the input variables and the
spectrum values are the output variables in the chemical process, the real
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FIGURE 2.2. Electronic absorption spectroscopy (EAS) spectra of 50
samples of polyaromatic hydrocarbons (PAH), where the spectra are mea-
sured at 25 wavelengths within the range 220-350 nm.
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FIGURE 2.3. Scatterplot matriz of the mizture concentrations of the 10
chemicals in Table 2.1. In each scatterplot, there are 50 points; in most
scatterplots, 25 of the points appear in a 5 X 5 array, and the other 25 are
replications. In the remaining four scatterplots, there are eight distinguish-
able points with different numbers of replications.

goal is to predict the mixture concentrations (which are difficult to mea-
sure directly) from the spectra (which is easy and often non-invasive to
compute), and not vice versa.

2.2.8 FExample: Face Recognition

Until recently, human face recognition was primarily based upon identi-
fying individual facial features such as eyes, nose, mouth, ears, chin, head
outline, glasses, and facial hair, and then putting them together compu-
tationally to construct a face. The most used approach today (and the
one we describe here) is an innovative computerized system called eigen-
faces, which operates directly on an image-based representation of faces
(Turk and Pentland, 1991). Applications of such work include homeland
security, video surveillance, human-computer interaction for entertainment
purposes, robotics, and “smart” cards (e.g., passports, drivers’ licences,
voter registration).

Each face, as a picture image, might be represented by a (¢ x d)-matrix of
intensity values, which are usually quantized to 8-bit gray scale (0-255, with
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FIGURE 2.4. Face images of the same individual under nine different
conditions (1=centerlight, 2=glasses, 3=happy, 4=no glasses, 5=normal,
6=sad, T=sleepy, 8=surprised, 9=wink). From the Yale Face Database.

0 as black and 255 as white). These values are then scaled and converted to
double precision, with values in [0, 1]. The values of ¢ and d depend upon
the degree of resolution needed. The matrix is then “vec’ed” by stacking
the columns of the matrix under one another to form a cd-vector in image
space. For example, if an image is digitized into a (256 x 256)-array of
pixels, that face is now a point in a 65,536-dimensional space. We can view
all possible images of one particular face as a lower-dimensional manifold
(face space) embedded within the high-dimensional image space.

There are a number of repositories of face images. The data for this
example were taken from the Yale Face Database (Belhumeur, Hespanha,
and Kriegman, 1997).* which contains 165 frontal-face grayscale images
covering 15 individuals taken under 11 different conditions of different illu-
mination (centerlight, leftlight, rightlight, normal), expression (happy, sad,
sleepy, surprised, wink), and glasses (with and without). Each image has

4A list of the many face databases that can be accessed on the Internet, including
the Yale Face Database, can be found at the website www.face-rec.org/databases.
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size 320 x 243, which then gets stacked into an r-vector, where r = 77, 760.
Figure 2.4 shows the images of a single individual taken under 9 of those
11 conditions. The problem is one of dimensionality reduction: what is the
fewest number of variables necessary to identify these types of facial im-
ages?

2.3 Databases

A database is a collection of persistent data, where by “persistent” we
mean data that can be removed from the database only by an explicit
request and not through an application’s side effect. The most popular
format for organizing data in a database is in the form of tables (also called
data arrays or data matrices), each table having the form of a rectangular
array arranged into rows and columns, where a row represents the values of
all variables on a single multivariate observation (response, case, or record),
and a column represents the values of a single variable for each observation.

In this book, a typical database table having n multivariate observations
taken on r variables will be represented by an (r x n)-matrix,

r11 T12 0 Tin

rXn ZT21 X222 . T2n

X = : (2.1)
Tr1 Tyr2 - Trp

say, having r rows and n columns. In (2.1), x;; represents the value in the
ith row (1 = 1,2,...,r) and jth column (j = 1,2,...,n) of X. Although
database tables are set up to have the form of X7, with variables as columns
and observations as rows, we will find it convenient in this book to set X
to be the transpose of the database table.

Databases exist for storing information. They are used for any of a num-
ber of different reasons, including statistical analysis, retrieving information
from text-based documents (e.g., libraries, legislative records, case dockets
in litigation proceedings), or obtaining administrative information (e.g.,
personnel, sales, financial, and customer records) needed for managing an
organization. Databases can be of any size. Even small databases can be
very useful if accessed often. Setting up a large and complex database typi-
cally involves a major financial committment on the part of an organization,
and so the database has to remain useful over a long time period. Thus, we
should be able to extend a database as additional records become available
and to correct, delete, and update records as necessary.
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2.3.1 Data Types
Databases usually consist of mixtures of different types of variables:

Indexing: These are usually names, tags, case numbers, or serial numbers
that identify a respondent or group of respondents. Their values may
indicate the location where a particular measurement was taken, or
the month or day of the year that an observation was made.

There are two special types of indexing variables:

1. A primary key is an indexing variable (or set of indexing vari-
ables) that uniquely identifies each observation in a database
(e.g., patient numbers, account numbers).

2. A foreign key is an indexing variable in a database where that
indexing variable is a primary key of a related database.

Binary: This is the simplest type of variable, having only two possible
responses, such as YES or NO, SUCCESS or FAILURE, MALE or
FEMALE, WHITE or NON-WHITE, FOR or AGAINST, SMOKER
or NON-SMOKER, and so on. It is usually coded 0 or 1 for the two
possible responses and is often referred to as a dummy or indicator
variable.

Boolean: A Boolean variable has the two responses TRUE or FALSE but
may also have the value UNKNOWN.

Nominal: This character-string data type is a more general version of a
binary variable and has a fixed number of possible responses that
cannot be usefully ordered. These responses are typically coded al-
phanumerically, and they usually represent disjoint classifications or
categories set up by the investigator. Examples include the geograph-
ical location where data on other variables are collected, brand prefer-
ence in a consumer survey, political party affiliation, and ethnic-racial
identification of respondent.

Ordinal: The possible responses for this character-string data type are
linearly ordered. An example is “excellent, good, fair, poor, bad, aw-
ful” (or “strongly disagree” to “strongly agree”). Another example
is bond ratings for debt issues, recorded as AA+, AA, AA-, A+, A
A-, B+, B, and B-. Such responses may be assigned scores or rank-
ings. They are often coded on a “ranking scale” of 1-5 (or 1-10). The
main problem with these ranking scales is the implicit assumption of
equidistance of the assigned scores. Brand preferences can sometimes
be regarded as ordered.
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Integer: The response is usually a nonnegative whole number and is often
a count.

Continuous: This is a measured variable in which the continuity assump-
tion depends upon a sufficient number of digits (and decimal places)
being recorded. Continuous variables are specified as numeric or dec-
imal in database systems, depending upon the precision required.

We note an important distinction between variables that are fixed and
those that are stochastic:

Fixed: The values of a fixed variable have deliberately been set in advance,
as in a designed experiment, or are considered “causal” to the phe-
nomenon in question; as a result, interest centers only on a specific
group of responses. This category usually refers to indexing variables
but can also include some of the above types.

Stochastic: The values of a stochastic variable can be considered as having
been chosen at random from a potential list (possibly, the real line or
a portion of it) in some stochastic manner. In this sense, the values
obtained are representative of the entire range of possible values of
the variable in question.

We also need to distinguish between input and output variables:

Input variable: Also called a predictor or independent variable, typically
denoted by X, and may be considered to be fixed (or preset or con-
trolled) through a statistically designed experiment, or stochastic if
it can take on values that are observed but not controlled.

Output variable: Also called a response or dependent variable, typically
denoted by Y, and which is stochastic and dependent upon the input
variables.

Most of the methods described in this book are designed to elicit informa-
tion concerning the extent to which the outputs depend upon the inputs.

2.3.2  Trends in Data Storage

As data collections become larger and larger, and areas of research that
were once “data-poor” now become “data-rich,” it is how we store those
data that is of great importance.

For the individual researcher working with a relatively simple database,
data are stored locally on hard disks. We know that hard-disk storage
capacity is doubling annually (Kryder’s Law), and the trend toward tiny,
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TABLE 2.2. Internet websites containing many different databases.

www.ics.uci.edu/pub/machine-learning-databases
lib.stat.cmu.edu/datasets
www.statsci.org/datasets.html
www.amstat.org/publications/jse/jse_data_archive.html
www.physionet.org/physiobank/database
biostat.mc.vanderbilt.edu/twiki/bin/view/Main/DataSets

high-capacity hard drives has outpaced even the rate of increase in number
of transistors that can be placed on an integrated circuit (Moore’s Law).
Gordon E. Moore, Intel co-founder, predicted in 1965 that the number of
transistors that can be placed on an integrated circuit would continue to
increase at a constant rate for at least 10 years. In 1975, Moore predicted
that the rate would double every two years. So far, this assessment has
proved to be accurate, although Moore stated in 2005 that his law, which
may hold for another two decades, cannot be sustained indefinitely.

Because chip speeds are doubling even faster than Moore had anticipated,
we are seeing rapid progress toward the manufacturing of very small, high-
performance storage devices. New types of data storage devices include
three-dimensional holographic storage, where huge quantities (e.g., a ter-
abyte) of data can be stored into a space the size of a sugar cube.

For large institutions, such as health maintenance organizations, educa-
tional establishments, national libraries, and industrial plants, data storage
is a more complicated issue, and the primary storage facility is usually a
remote “data warehouse.” We describe such storage facilities in Section
2.4.5.

2.3.8 Databases on the Internet

In Table 2.2, we list a few Internet websites from which databases of
various sizes can be downloaded. Many of the data sets used as examples
in this book were obtained through these websites.

There are also many databases available on the Internet that specialize
in bioinformatics information, such as biological databases and published
articles. These databases contain an amazingly rich variety of biological
data, including DNA, RNA and protein sequences, gene expression profiles,
protein structures, transcription factors, and biochemical pathways. See
Table 2.3 for examples of such websites.

A recent development in data-mining applications is the processing and
categorization of natural-language text documents (e.g., news items, scien-
tific publications, spam detection). With the rapid growth of the Internet
and e-mail, academics, scientists, and librarians have shown enormous in-
terest in mining the structured or unstructured knowledge present in large



28 2. Data and Databases

collections of text documents. To help those whose research interests lie
in analyzing text information, large databases (having more than 10,000
features) of text documents are now available.

For example, Table 2.4 lists a number of text databases. Two of the most
popular collections of documents come from Reuters, Ltd., which is the
world’s largest text and television news agency; the English-language col-
lections REUTERS-21578 containing 21,578 news items and RCV1 (Reuters
Corpus Volume 1) (Lewis, Yang, Rose, and Li, 2004) containing 806,791
news items are drawn from online databases. The 20 Newsgroups database
(donated by Tom Mitchell) contains 20,000 messages taken from 20 Usenet
newsgroups. The OHSUMED text database (Hersh, Buckley, Leone, and
Hickam, 1994) from Ohio State University contains 348,566 references and
abstracts derived from Medline, an on-line medical information database,
for the period 1987-1991.

Computerized databases of scientific articles (e.g., ARX1V, see Table 2.4)
are assembled to (Shiffrin and Borner, 2004):

[I]dentify and organize research areas according to experts, in-
stitutions, grants, publications, journals, citations, text, and fig-
ures; discover interconnections among these; establish the im-
port of research; reveal the export of research among fields; ex-
amine dynamic changes such as speed of growth and diversifica-
tion; highlight economic factors in information production and
dissemination; find and map scientific and social networks; and
identify the impact of strategic and applied research funding by
government and other agencies.

A common element of text databases is the dimensionality of the data,
which can run well into the thousands. This makes visualization especially
difficult. Furthermore, because text documents are typically noisy, possibly
even having differing formats, some automated preprocessing may be nec-
essary in order to arrive at high-quality, clean data. The availability of text
databases in which preprocessing has already been undertaken is proving
to be an important development in database research.

TABLE 2.3. Internet websites containing microarray databases.

www.broad.mit.edu/tools/data.html
sdmc.lit.org.sg/GEDatasets/Datasets.html
genome-www5.stanford.edu
www.bioconductor.org/packages/1.8/AnnotationData.html
www.ncbi.nlm.nih.gov/geo
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TABLE 2.4. Internet websites containing natural-language text
databases.

arXiv.org

medir.ohsu.edu/pub/ohsumed
kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

2.4 Database Management

After data have been recorded and physically stored in a database, they
need to be accessed by an authorized user who wishes to use the infor-
mation. To access the database, the user has to interact with a database
management system, which provides centralized control of all basic storage,
access, and retrieval activities related to the database, while also minimiz-
ing duplications, redundancies, and inconsistencies in the database.

2.4.1 FElements of Database Systems

A database management system (DBMS) is a software system that man-
ages data and provides controlled access to the database through a personal
computer, an on-line workstation, or a terminal to a mainframe computer or
network of computers. Database systems (consisting of databases, DBMS,
and application programs) are typically used for managing large quantities
of data. If we are working with a small data set with a simple structure,
if the particular application is not complicated, and if multiple concurrent
users (those who wish to access the same data at the same time) are not
an issue, then there is no need to employ a DBMS.

A database system can be regarded as two entities: a server (or backend),
which holds the DBMS, and a set of clients (or frontend), each of which
consists of a hardware and a software component, including application pro-
grams that operate on the DBMS. Application programs typically include
a query language processor, report writers, spreadsheets, natural language
processors, and statistical software packages. If the server and clients com-
municate with each other from different machines through a distributed
processing network (such as the Internet), we refer to the system as having
a “client/server” architecture.

The major breakthrough in database systems was the introduction by
1970 of the relational model. We call a DBMS relational if the data are
perceived by users only as tables, and if users can generate new tables
from old ones. Tables in a relational DBMS (RDBMS) are rectangular ar-
rays defined by their rows of observations (usually called records or tuples)
and columns of variables (usually called attributes or fields); the number
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of tuples is called the cardinality, and the number of attributes is called
the degree of the table. A RDBMS contains operators that enable users to
extract specified rows (restrict) or specified columns (project) from a
table and match up (join) information stored in different tables by check-
ing for common entries in common columns. Also part of a DBMS is a data
dictionary, which is a system database that stores information (metadata)
about the database itself.

2.4.2  Structured Query Language (SQL)

Users communicate with a RDBMS through a declarative query language
(or general interactive enquiry facility), which is typically one of the many
versions of SQL (Structured Query Language), usually pronounced “sequel”
or “ess-cue-ell.” Created by IBM in the early 1970s and adopted as the
industry standard in 1986, there are now many different implementations
of SQL; no two are exactly the same, and each one is regarded as a dialect.
In SQL, we can make a declarative statement that says, “From a given
database, extract data that satisfy certain conditions,” and the DBMS has
to determine how to do it.

SQL has two main sublanguages:

e a data definition language (DDL) is used primarily by database ad-
ministrators to define data structures by creating a database object
(such as a table) and altering or destroying a database object. It does
not operate on data.

e a data manipulation language (DML) is an interactive system that
allows users to retrieve, delete, and update existing data from and
add new data to the database.

There is also a data control language (DCL), a security system used by the
database administrator, which controls the privileges granted to database
users.

Before creating a database consisting of multiple tables, it is advisable to
do the following: give a unique name to each table; specify which columns
each table should contain and identify their data types; to each table, assign
a primary key that uniquely identifies each row of the table; and have at
least one common column in each table in the database.

We can then build a working data set through the DDL by using SQL
create table statements of the following form:

create table <table name> (<table elements>);

where <table name> specifies a name for the table and <table elements>
is a list separated by commas that specifies column names, their data
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types, and any column constraints. The set of data types depends upon the
SQL dialect; they include: char(c) (a column of characters where ¢ gives
the maximum number of characters permitted in the column), integer,
decimal(a,b) (where a is the total number of digits and b is the number
of decimal places), date (in DBMS-approved format), and logical (True
or False). The column constraints include null (that column may have
empty row values) or not null (empty row values are not permitted in
that column), primary keys, and any foreign keys. A semicolon ends the
statement.

The DML includes such commands as select (allows users to retrieve
specific database information), insert (adds new rows into an existing
table), update (modifies information contained within a table), and delete
(removes rows from a table). DML commands can be quite complicated and
may include multiple expressions, clauses, predicates, or subqueries.

For example, the select statement (which supports restrict, project,
and join operations, and is the most commonly used, but also most com-
plicated SQL command) has the basic form

select <columns> from <table name> where <condition>;

where <columns> is a list of columns separated by commas. The select
command is used to gather certain attributes from a particular RDBMS
table, but where the tuples (rows) that are to be retrieved from those
columns are limited to those that satisfy a given conditional Boolean search
expression (i.e., True or False). One or more conditions may be joined
by and or or operators as in set theory (the and always precedes the or
operation). An asterisk may be used in place of the list of columns if all
columns in the database are to be selected.

A primitive form of data analysis is included within the select statement
through the use of five aggregate operators, sum, avg, max, min, and count,
which provide the obvious column statistics over all rows that satisfy any
stated conditions. For example, we can apply the command

select max(<column>) as max, min(<column>) as min from <table
name> where <condition>;

to find the maximum (saved as “max”) and minimum (saved as “min”) of
specified columns. Column statistics that are not aggregates (e.g., medians)
are not available in SQL.

The smaller RDBMSs that are available include AcCESS (from Microsoft
Corp.), MYSQL (open source), and MSQL (Hughes Technologies). These
“lightweight” RDBMSs can support a few hundred simultaneous users and
up to a gigabyte of data. All of the major statistical software packages that
operate in a Windows environment can import data stored in certain of
these smaller RDBMSs, especially Microsoft ACCESS.
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We note that purists strongly object to SQL being thought of as a re-
lational query language because, they argue, it sacrifices many of the fun-
damental principles of the relational model in order to satisfy demands of
practicality and performance. RDBMSs are slow in general and, because
the dialects of SQL are different enough and are often incompatible with
each other, changing RDBMSs can be a nightmarish experience. Even so,
SQL remains the most popular RDBMS query language.

2.4.3 OLTP Databases

A large organization is likely to maintain a DBMS that manages a
domain-specific database for the automatic capture and storage of real-
time business transactions. This type of database is essential for handling
an organization’s day-to-day operations. An on-line transaction processing
(OLTP) system is a DBMS application that is specially designed for very
fast tracking of millions of small, simple transactions each day by a large
number of concurrent users (tellers, cashiers, and clerks, who add, update,
or delete a few records at a time in the database). Examples of OLTP
databases include Internet-based travel reservations and airline seat book-
ings, automated teller machines (ATM) network transactions and point-of-
sale terminals, transfers of electronic funds, stock trading records, credit
card transactions and authorizations, and records of driving license holders.

These OLTP databases are dynamic in nature, changing almost contin-
uously as transactions are automatically recorded by the system minute-
by-minute. It is not unusual for an organization to employ several different
OLTP systems to carry out its various business functions (e.g., point-of-
sale, inventory control, customer invoicing). Although OLTP systems are
optimized for processing huge numbers of short transactions, they are not
configured for carrying out complex ad hoc and data analytic queries.

2.4.4 Integrating Distributed Databases

In certain situations, data may be distributed over many geographically
dispersed sites (nodes) connected by a communications network (usually
some sort of local-area network or wide-area network, depending upon dis-
tances involved). This is especially true for the healthcare industry. A huge
amount of information, for example, on hospital management practices may
be recorded from a number of different hospitals and consist of overlapping
sets of variables and cases, all of which have to be combined (or integrated)
into a single database for analysis.

Distributed databases also commonly occur in multicenter clinical trials
in the pharmaceutical industry, where centers include institutions, hospi-
tals, and clinics, sometimes located in several countries. The number of
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total patients participating in such clinical trials rarely exceeds a few thou-
sand, but there have been large-scale multicenter trials such as the Prostate
Cancer Prevention Trial (Baker, 2001), which is a chemoprevention trial in
which 18,000 men aged 55 years and older were randomized to either daily
finasteride or placebo tablets for 7 years and involved 222 sites in the United
States.

Data integration is the process of merging data that originate from mul-
tiple locations. When data are to be merged from different sources, several
problems may arise:

e The data may be physically resident in computer files each of which
was created using database software from different vendors.

e Different media formats may be used to store the information (e.g.,
audio or video tapes or DVDs, CDs or hard disks, hardcopy question-
naires, data downloaded over the Internet, medical images, scanned
documents).

e The network of computer platforms that contain the data may be
organized using different operating systems.

e The geographical locations of those platforms may be local or remote.

e Parts of the data may be duplicated when collected from different
sources.

e Permission may need to be obtained from each source when deal-
ing with sensitive data or security issues that will involve accessing
personal, medical, business, or government records.

Faced with such potential inconsistencies, the information has to be inte-
grated to become a consistent set of records for analysis.

2.4.5 Data Warehousing

An organization that needs to integrate multiple large OLTP databases
will normally establish a single data warehouse for just that purpose. The
term data warehouse was coined by W.H. Inmon to refer to a read-only,
RDBMS running on a high-performance computer. The warehouse stores
historical, detailed, and “scrubbed” data designed to be retrieved and
queried efficiently and interactively by users through a dialect of SQL.
Although data are not updated in realtime, fresh data can be added as
supplements at regular intervals.

The components of a data warehouse are
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DBMS: The publicly available RDBMSs that are almost mandatory for
data warehousing usage include ORACLE (from Oracle Corp.), SQL
SERVER (from Microsoft Corp.), SYBASE (from Sybase Inc.), POsST-
GRESQL (freeware), INFORMIX (from Informix Software, Inc.), and
DB2 (from IBM Corp.). These “heavyweight” DBMSs can handle
thousands of simultaneous users and can access up to several ter-
abytes of data.

Hardware: It is generally accepted that large-scale data warehouse ap-
plications require either massively parallel-processing (MPP) or sym-
metric multiprocessing (SMP) supercomputers. Which type of hard-
ware is installed depends upon many factors, including the complexity
of the data and queries and the number of users that need to access
the system.

e SMP architectures are often called “shared everything” because
they share memory and resources to service more than a single
CPU, they run a single copy of the operating system, and they
share a single copy of each application. SMP is reputed to be
better for those data warehouses whose capacity ranges between
50GB and 100GB.

e MPP architectures, on the other hand, are called “shared noth-
ing”; they may have hundreds of CPUs in a single computer,
each node of which is a self-contained computer with its own
CPU, disk, and memory, and nodes are connected by a high-
speed bus or switch. The larger the data warehouse (with ca-
pacity at least 200GB) and the more complex the queries, the
more likely the organization will install an MPP server.

Such centralized data depositories typically contain huge quantities of in-
formation taking up hundreds of gigabytes or terabytes of disk space. Small
data warehouses, which store subsets of the central warehouse for use by
specialized groups or departments, are referred to as data marts.

More and more organizations that require a central data storage facility
are setting up their own data warehouses and data marts. For example,
according to Monk (2000), the Foreign Trade Division of the U.S. Census
Bureau processes 5 million records each month from the U.S. Customs
Service on 18,000 import commodities and 9,000 export commodities that
travel between 250 countries and 50 regions within the United States. The
raw import-export data are extracted, “scrubbed,” and loaded into a data
warehouse having one terabyte of storage. Subsets of the data that focus
on specific countries and commodities, together with two years of historical
data, are then sent to a number of data marts for faster and more specific

querying.
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It has been reported that 90 percent of all Fortune 500 companies are cur-
rently (or soon will be) engaged in some form of data warehousing activity.
Corporations such as Federal Express, UPS, JC Penney, Office Depot, 3M,
Ace Hardware, and Sears, Roebuck and Co. have installed data warehouses
that contain multi-terabytes of disk storage, and Wal-Mart and Kmart are
already at the 100 terabyte range. These retailers use their data warehouses
to access comprehensive sales records (extracted from the scanners of cash
registers) and inventory records from thousands of stores worldwide.

Institutions of higher education now have data warehouses for informa-
tion on their personnel, students, payroll, course enrollments and revenues,
libraries, finance and purchasing, financial aid, alumni development, and
campus data. Healthcare facilities have data warehouses for storing uni-
form billing data on hospital admissions and discharges, outpatient care,
long-term care, individual patient records, physician licensing, certification,
background, and specialties, operating and surgical profiles, financial data,
CMS (Centers for Medicare and Medicaid Services) regulations, and nurs-
ing homes, and that might soon include image data.

2.4.6 Decision Support Systems and OLAP

The failure of OLTP systems to deliver analytical support (e.g., statis-
tical querying and data analysis) of RDBMSs caused a major crisis in the
database market until the concept of data warehouses each with its own
decision support system (DSS) emerged. In a client/server computing envi-
ronment, decision support is carried out using on-line analytical processing
(OLAP) software tools.

There are two primary architectures for OLAP systems, ROLAP (re-
lational OLAP) and MOLAP (multidimensional OLAP); in both, multi-
variate data are set up using a multidimensional model rather than the
standard model, which emphasizes data-as-tables. The two systems store
data differently, which in turn affects their performance characteristics and
the amounts of data that can be handled.

ROLAP operates on data stored in a RDBMS. Complex multipass SQL
commands can create various ad hoc multidimensional views of a two-
dimensional data table (which slows down response times). ROLAP
users can access all types of transactional data, which are stored in
100GB to multiple-terabyte data warehouses.

MOLAP operates on data stored in a specialized multidimensional DBMS.
Variables are scaled categorically to allow transactional data to be
pre-aggregated by all category combinations (which speeds up re-
sponse times) and the results stored in the form of a “data cube”
(a large, but sparse, multidimensional contingency table). MOLAP
tools can handle up to 50GB of data stored in a data mart.
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OLAP users typically access multivariate databases without being aware
exactly which system has been implemented. There are other OLAP sys-
tems, including a hybrid version HOLAP.

The data analysis tools provided by a multidimensional OLAP system
include operators that can roll-up (aggregate further, producing marginals),
drill-down (de-aggregate to search for possible irregularities in the aggre-
gates), slice (condition on a single variable), and dice (condition on a par-
ticular category) aggregated data in a multidimensional contingency table.
Summary statistics that cannot be represented as aggregates (e.g., medi-
ans, modes) and graphics that need raw data for display (e.g., scatterplots,
time series plots) are generally omitted from MOLAP menus (Wilkinson,
2005).

2.4.7 Statistical Packages and DBMSs

Some statistical analysis packages (e.g., SAS, SPSS) and MATLAB can
run their complete libraries of statistical routines against their OLAP
database servers.

A major effort is currently under way to provide a common interface
for the S language (i.e., S-PLUS and particularly R) to access the really
big DBMSs so that sophisticated data analysis can be carried out in a
transparent manner (i.e., DBMS and platform independent). Although a
table in a RDBMS is very similar to the concept of data frame in R and
S-PLus, there are many difficulties in building such interfaces.

The R package RODBC (written by Michael Lapsley and Brian Ripley,
and available from CRAN) provides an R interface to DBMSs based upon
the Microsoft ODBC (Open Database Connectivity) standard. RODBC,
which runs on both MS Windows and Unix/Linux, is able to copy an R data
frame to a table in a database (command: sqlSave), read a table from a
DBMS into an R data frame (sqlFetch), submit an SQL query to an ODBC
database (sqlQuery), retrieve the results (sqlGetResults), and update
the table where the rows already exist (sqlUpdate). RODBC works with
ORACLE, MS ACCESS, SYBASE, DB2, MYSQL, PosTGRESQL, and SQL
SERVER on MS Windows platforms and with MYSQL, POSTGRESQL, and
ORACLE under Unix/Linux.

2.5 Data Quality Problems

Errors exist in all kinds of databases. Those that are easy to detect will
most likely be found at the data “cleaning” stage, whereas those errors
that can be quite resistant to detection might only be discovered during
data analysis. Data cleaning usually takes place as the data are received
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and before they are stored in read-only format in a data warehouse. A
consistent and cleaned-up version of the data can then be made available.

2.5.1 Data Inconsistencies

Errors in compiling and editing the resulting database are common and
actually occur with alarming frequency, especially in cases where the data
set is very large. When data from different sources are being connected,
inconsistencies as to a person’s name (especially in cases where a name
can be spelled in several different ways) occur frequently, and matching (or
“disambiguation”) has to take place before such records can be merged.
One popular solution is to employ Soundex (sound-indexing) techniques
for name matching.

To get an idea of how poor data quality can become, consider the prob-
lem of estimating the extent of the undercount from census data collected
for the 1990 U.S. census. Breiman (1994) identified a number of sources
of error, including the following: Matching errors (incorrectly matching
records from two different files of people with differing names, ages, miss-
ing gender or race identifiers, and different addresses), fabrications (the
creation of fictitious people by dishonest interviewers), census day address
errors (incorrectly recording the location of a person’s residence on census
day), unreliable interviews (many of the interviews were rejected as being
unreliable), and incomplete data (a lack of specific information on certain
members in the household). Most of the problems involving data fabri-
cation, incomplete data, and unreliable interviews apparently occurred in
areas that also had the highest estimated undercounts, such as the central
cities and minority areas.

Massive data sets are prone to mistakes, errors, distortions, and, in gen-
eral, poor data quality, just as is any data set, but such defects occur here
on a far grander scale because of the size of the data set itself. When invalid
product codes are entered for a product, they may easily be detected; when
valid product codes, however, are entered for the wrong product, detection
becomes more difficult. Customer codes may be entered inconsistently, es-
pecially those for gender identification (M and F', as opposed to 1 and 2).
Duplication of records entered into the database from multiple sources can
also be a problem. In these days of takeovers and buyouts, and mergers and
acquisitions, what was once a code for a customer may now be a problem if
the entity has since changed its description (e.g., Jenn-Air, Hoover, Norge,
Magic Chef, etc., are all now part of Maytag Corp.). Any inconsistencies
in historical data may also be difficult to correct if those who knew the
answer are no longer with the company.
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2.5.2 OQutliers

Outliers are values in the data that, for one reason or another, do not
appear to fit the pattern of the other data values; visually, they are located
far away from the rest of the data. It is not unusual for outliers to be
present in a data set.

Outliers can occur for many different reasons but should not be confused
with gross errors. Gross errors are cases where “something went wrong”
(Hampel, 2002); they include human errors (e.g., a numerical value recorded
incorrectly) and mechanical errors (e.g., malfunctioning of a measuring
instrument or a laboratory instrument during analysis). The density of
gross errors depends upon the context and the quality of the data. In
medical studies, gross error rates in excess of 10% have been quoted.

Univariate outliers are easy to detect when they indicate impossible (or
“out of bounds”) values. More often, an outlier will be a value that is ex-
treme, either too large or too small. For multivariate data, outlier detection
is more difficult. Low-dimensional visual displays of the data (such as his-
tograms, boxplots, scatterplots) can encourage insight into the data and
provide at the same time a method for manually detecting some of the
more obvious univariate or bivariate outliers.

When we have a large data set, outliers may not be all that rare. Unlike a
data set of 100 or so observations, where we may find two or three outliers,
in a data set of 100,000, we should not be surprised to discover a large
number (in some cases, hundreds, and maybe even thousands) of outliers.
For example, Figure 2.5 shows a scatterplot of the size (in bytes) of each
of 50,000 packets® containing roughly two minutes worth of TCP (transfer
control protocol) packet traffic between Digital Equipment Corporation
servers and the rest of the world on 8th March 1995 plotted against time.
We see clear structure within the scatterplot: the vast majority of points
occur within the 0-512 bytes range, and a number of dense horizontal bands
occur inside this range; these bands show that the vast majority of packets
sent consist of either 0 bytes (37% of the total packets), which are used
only to acknowledge data sent by the other side, or 512 bytes (29% of the
total packets). There are 952 packets each having more than 512 bytes,
of which 137 points are identified as outliers (with values greater than 1.5
times IQR), including 61 points equal to the largest value, 1460 bytes.

To detect true multidimensional outliers, however, becomes a test of
statistical ingenuity. A multivariate observation whose every component
value may appear indistinguishable from the rest may yet be regarded
as an outlier when all components are treated simultaneously. In large

5See www.amstat.org/publications/jse/datasets/packetdata.txt.
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FIGURE 2.5. Time-series plot of 50,000 packets containing roughly two
minutes worth of TCP (transfer control protocol) packets traffic between
Digital Equipment Corporation servers and the rest of the world on 8th
March 1995.

multivariate data sets, some combination of visual display of the data,
manual outlier detection scheme, and automatic outlier detection program
may be necessary: potential outliers could be “flagged” by an automatic
screening device, and then an analyst would manually decide on the fate
of that flagged outlier.

2.5.8 Missing Data

In the vast majority of data sets, there will be missing data values. For
example, human subjects may refuse to answer certain items in a battery
of questions because personal information is requested; some observations
may be accidentally lost; some responses may be regarded as implausible
and rejected; and in a study of financial records of a company, some records
may not be available because of changes in reporting requirements and data
from merged or reorganized organizations.

In R/S-PLUS, missing values are denoted by NA. In large databases, SQL
incorporates the null as a flag or mark to indicate the absence of a data
value, which might mean that the value is missing, unknown, nonexistent
(no observation could be made for that entry), or that no value has yet



40 2. Data and Databases

been assigned. A null is not equivalent to a zero value or to a text string
filled with spaces. Sometimes, missing values are replaced by zeroes, other
times by estimates of what they should be based on the rest of the data.

One popular method deletes those observations that contain missing data
and analyzes only those cases that are observed in their entirety (often
called complete-case analysis or listwise-deletion method). Such a complete-
case analysis may be satisfactory if the proportion of deleted observations
is small relative to the size of the entire data set and if the mechanism that
leads to the missing data is independent of the variables in question —
an assumption referred to by Donald Rubin as missing at random (MAR)
or missing completely at random (MCAR) depending upon the exact na-
ture of the missing-data mechanism (Little and Rubin, 1987). Any deleted
observations may be used to help justify the MCAR assumption.

If the missing data constitute a sizeable proportion of the entire data
set, then complete-case methods will not work. Single imputation has been
used to impute (or “fill in”) an estimated value for each missing obser-
vation and then analyze the amended data set as if there had been no
missing values in the first place. Such procedures include hot-deck impu-
tation, where a missing value is imputed by substituting a value from a
similar but complete record in the same data set; mean imputation, where
the singly imputed value is just the mean of all the completely recorded
values for that variable; and regression imputation, which uses the value
predicted by a regression on the completely recorded data. Because sam-
pling variability due to single imputation cannot be incorporated into the
analysis as an additional source of variation, the standard errors of model
estimates tend to be underestimated.

Since the late 1970s, Rubin and his colleagues have introduced a num-
ber of sophisticated algorithmic methods for dealing with incomplete data
situations. One approach, the EM algorithm (Dempster, Laird, and Rubin,
1977; Little and Rubin, 1987), which alternates between an expectation (E)
step and a maximization (M) step, is used to compute maximum-likelihood
estimates of model parameters, where missing data are modeled as unob-
served latent variables. We shall describe applications of the EM algorithm
in more detail in later chapters of this book. A different approach, multiple
imputation (Rubin, 1987), fills in the missing values m > 1 times, where
the imputed values are generated each time from a distribution that may
be different for each missing value; this creates m different data sets, which
are analyzed separately, and then the m results are combined to estimate
model parameters, standard errors, and confidence intervals.

2.5.4  More Variables than Observations

Many statistical computer packages do not allow the number of input
variables, r, to exceed the number of observations, n, because, then, certain
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matrices, such as the (r x r) covariance matrix, would have less than full
rank, would be singular, and, hence, uninvertible. Yet, we should not be
surprised when r > n. In fact, this situation occurs quite routinely in
certain applications, and in such instances, r can be much greater than n.
Typical examples include:

Satellite images When producing maps, remotely sensed image data are
gathered from many sources, including satellite and aircraft scanners,
where a few observations (usually fewer than 10 spectral bands) are
measured at more than 100,000 wavelengths over a grid of pixels.

Chemometrics For determining concentrations in certain chemical com-
pounds, calibration studies often need to analyze intensity measure-
ments on a very large number (500—1,000 or more) of different spectral
wavelengths using a small number of standard chemical samples.

Gene expression data Current microarray methods for studying human
malignancies, such as tumors, simultaneously monitor expression lev-
els of very large numbers of genes (5,000-10,000 or more) on relatively
small numbers (fewer than 100) of tumor samples.

When r > n, one way of dealing with this problem is to analyze the data
on each variable separately. However, this suggestion does not take account
of correlations between the variables. Researchers have recently provided
new statistical techniques that are not sensitive to the r > n issue. We will
address this situation in various sections of this book.

2.6 The Curse of Dimensionality

The term “curse of dimensionality” (Bellman, 1961) originally described
how difficult it was to perform high-dimensional numerical integration. This
led to the more general use of the term to describe the difficulty of dealing
with statistical problems in high dimensions. Some implications include:

1. We can never have enough data to cover every part of high-dimensional
iput space to learn which part of the space is important to a relationship
and which is not.

To see this, divide the axis of each of r input variables into K uniform in-
tervals (or “bins”), so that the value of an input variable is approximated by
the bin into which it falls. Such a partition divides the entire r-dimensional
input space into K" “hypercubes,” where K is chosen so that each hy-
percube contains at least one point in the input space. Given a specific
hypercube in input space, an output value yg corresponding to a new input
point in the hypercube can be approximated by computing some function
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(e.g., the average value) of the y values that correspond to all the input
points falling in that hypercube. Increasing K reduces the sizes of the hy-
percubes while increasing the precision of the approximation. However, at
the same time, the number of hypercubes increases exponentially. If there
has to be at least one input point in each hypercube, then the number of
such points needed to cover all of r-space must also increase exponentially
as r increases. In practice, we have a limited number of observations, with
the result that the data are very sparsely spread around high-dimensional
space.

2. As the number of dimensions grows larger, almost all the volume
imside a hypercubic region of input space lies closer to the boundary or
surface of the hypercube rather than near the center.

An r-dimensional hypercube [—A, A]" with each edge of length 24 has
volume (2A)". Consider a slightly smaller hypercube with each edge of
length 2(A — ¢€), where € > 0 is small. The difference in volume between
these two hypercubes is (24)" — 2" (A — €)", and, hence, the proportion of
the volume that is contained between the two hypercubes is

(24)" — 27(A — €)"
(24)

e\
:17<172> — 1lasr— oo.

In Figure 2.6, we see a graphical display of this result for A = 1 and number
of dimensions r = 1,2, 10,20, 50. The same phenomenon also occurs with
spherical regions in high-dimensional input space (see Exercise 2.4).
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FIGURE 2.6. Graphs of the proportion of the total volume contained be-
tween two hypercubes, one of edge length 2 and the other of edge length
2 — e for different numbers of dimensions r. As the number of dimensions
increases, almost all the volume becomes closer to the surface of the hyper-
cube.
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Exercises

2.1 In a statistical application of your choice, what does a missing value
mean? What are the traditional methods of imputing missing values in
such an application?

2.2 In sample surveys, such as opinion polls, telephone surveys, and ques-
tionnaire surveys, nonresponse is a common occurrence. How would you
design such a survey so as to minimize nonresponse?

2.3 Discuss the differences between single and multiple imputation for
imputing missing data.
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2.4 The volume of an r-dimensional sphere with radius A is given by
vol.(A) = S, A"/r, where S, = 277/2/T'(r/2) is the surface area of the
unit sphere in r dimensions, I'(x) = fooo t*~le7tdt = (x — D),z > 0, is
the gamma function, I'(x + 1) = 2T'(z), and T'(1/2) = 7'/2. Find the
appropriate spherical volumes for two and three dimensions. Using a similar
limiting argument as in (2) of Section 2.6, show that as the dimensionality
increases, almost all the volume inside the sphere tends to be concentrated
along a “thin shell” closer to the surface of the sphere than to the center.

2.5 Consider a hypercube of dimension r and sides of length 24 and
inscribe in it an r-dimensional sphere of radius A. Find the proportion of
the volume of the hypercube that is inside the hypersphere, and show that
the proportion tends to 0 as the dimensionality r increases. In other words,
show that all the density sits in the corners of the hypercube.

2.6 What are the advantages and disadvantages of database systems, and
when would you find such a system useful for data analysis?

2.7 Find a commercial SQL product and discuss the various options that
are available for the create table statement of that product.

2.8 Find a DBMS and investigate whether that system keeps track of
database statistics. Which statistics does it maintain, how does it do that,
and how does it update those statistics?

2.9 What are the advantages and disadvantages of distributed database
systems?

2.10 (Fairley, Izenman, and Crunk, 2001) You are hired to carry out
a survey of damage to the bricks of the walls of a residential complex
consisting of five buildings, each having 5, 6, or 7 stories. The type of
damage of interest is called spalling and refers to deterioration of the surface
of the brick, usually caused by freeze-thaw weather conditions. Spalling
appears to be high at the top stories and low at the ground. The walls
consist of three-quarter million bricks. You take a photographic survey
of all the walls of the complex and count the number of bricks in the
photographs that are spalled. However, the photographs show that some
portions of the walls are obscured by bushes, trees, pipes, vehicles, etc. So,
the photographs are not a complete record of brick damage in the complex.
Discuss how you would estimate the spall rate (spalls per 1,000 bricks) for
the entire complex. What would you do about the missing data in your
estimation procedure?

2.11 Read about MAR (missing at random) and MCAR (missing com-
pletely at random) and discuss their differences and implications for im-
puting missing data.
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Random Vectors and Matrices

3.1 Introduction

This chapter builds the foundation for the statistical analysis of multivari-
ate data. We first give the notation we use in this book, followed by a quick
review of the rules for manipulating vectors and matrices. Then, we learn
about random vectors and matrices, which are the fundamental building
blocks for multivariate analysis. We then describe the properties of a va-
riety of estimators of an unknown mean vector and unknown covariance
matrix of a multivariate Gaussian distribution.

3.2 Vectors and Matrices

In this section, we briefly review the notation, terminology, and basic
operations and results for vectors and matrices.

3.2.1 Notation

Vectors having J elements will be represented as column vectors (i.e., as
(Jx1)-matrices, which we will refer to as J-vectors for convenience) and will

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 45
DOI 10.1007/978-0-387-78189-1_3, © Springer Science+Business Media New York 2013



46 3. Random Vectors and Matrices

be represented by boldface letters, either uppercase (e.g., X) or lowercase
(e.g., X, a) depending upon the context. Two J-vectors, x = (x1,---,2;)7
and y = (y1,---,ys)7, are orthogonal if x™y = ijl zjy; = 0.

We denote matrices by uppercase boldface letters (e.g., A, ) or by
capital script letters (e.g., X, Y, Z). Thus, the (J x K) matrix A = (A;)
has J rows and K columns and jkth entry Ajp. If J = K, then A is said to
be square. The (J x J) identity matriz 1; has I;; = 1 and I = 0,5 # k,
The null matriz 0 has all entries equal to zero.

3.2.2  Basic Matriz Operations

If A = (Aji) is a (J x K)-matrix, then the transpose of A is the (K x J)-
matrix denoted by A™ = (Ag;). If A = A7, then A is said to be symmetric.

The sum of two (J x K) matrices A and B is A + B = (A, + Bjx),
and its transpose is (A + B)™ = A7 + B” = (A, + By;). The inequality
A +B > A holdsif B> 0 (i.e., Bjy >0, all j and k).

The product of a (J x K )-matrix A and a (K x L)-matrix B is the (J x L)-
matrix (Cj;) = C = AB = (31—, AjxBy). Note that (AB)” = BTA".
Multiplication of a (J x K)-matrix A by a scalar a is the (J x K)-matrix
aA = (aAjk)

A (J x J)-matrix A is orthogonal if AA™ = ATA =1; and is idempotent
if A2 = A. A square matrix P is a projection matriz (or a projector) iff P
is idempotent. If P is both idempotent and orthogonal, then P is called an
orthogonal projector. If P is idempotent, then so is Q = I-P; Q is called
the complementary projector to P.

The trace of a square (J x J) matrix A is denoted by tr(A) = ijl Ajj.
Note that for square matrices A and B, tr(A + B) = tr(A) + tr(B), and
for (J x K)-matrix A and (K x J)-matrix B, tr(AB) = tr(BA).

The determinant of a (J x J)-matrix A = (A;;) is denoted by either |A|
or det(A). The minor M;; of element A;; is the (J —1 x J — 1)-matrix
formed by removing the ith row and jth column from A. The cofactor of
A;j is Cij = (—1)"7|M;;]. One way of defining the determinant of A is
by using Laplace’s formula: |A| = ijl A;;Ci;, where we expand along
the ith row. Note that |[AT| = |A|. If a is a scalar and A is (J x J), then
laA| = a’|A|. A is singular if |A| = 0, and nonsingular otherwise.

Matrix decompositions include the LR decomposition (A = LR, where
L is lower-triangular and R is upper-triangular), the Cholesky decomposi-
tion (A = LL", where L is lower-triangular and A is symmetric positive-
definite), and the QR decomposition (A = QR, where Q is orthogo-
nal and R is upper-triangular). These matrix decompositions are used
as efficient methods of computing |A| by applying the following results:
|AB| = |A| - |B| if both A and B are (J x J); the determinant of a trian-
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gular matrix is the product of its diagonal entries; and for orthogonal Q,

det(Q)] = 1.
> - (é g) (3.1)

Let
be a partitioned matrix, where A and D are both square and nonsingular.
Then, the determinant of 3 can be expressed in two ways:

|| =|A|-[D-CA'B|=|D|-|A-BD!C|. (3.2)

The rank of A, denoted r(A), is the size of the largest submatrix of A
that has a nonzero determinant; it is also the number of linearly indepen-
dent rows or columns of A. Note that r(AB) = r(A) if |B| # 0, and, in
general, 7(AB) < min(r(A), r(B)).

If A is square, (J x J), and nonsingular, then a unique (J x J) inverse
matriz A~ exists such that AA~! = I;. If A is orthogonal, then A~! =
A7, Note that (AB)™! = B~'A~! and |A~!| = |A|7!. A useful result

involving inverses is
(A+BD'C)'=A"1-A"'BD+CA'B)"'CA !, (3.3)

where A and D are (J x J) and (K x K) nonsingular matrices, respectively.
If Ais (J x J) and u and v are J-vectors, then, a special case of this result
" A lu)(vTATY)

1+vTA-lu
which reduces the problem of inverting A +uv” to one of just inverting A.
If A and D are symmetric matrices and A is nonsingular, then,

A B\ ' [(Al'4FE'FT _FE!
B D) ~ —EIFT El )

(A+uv)t=A""1— ( , (3.4)

(3.5)

where E = D — BTA~!'B is nonsingular and F = A~'B.

If Aisa (J x J)-matrix and x is a J-vector, then a quadratic form is
xTAx = E;']:1 Zizl Ajrzjzg. A (J x J)-matrix A is positive-definite if,
for any J-vector x # 0, the quadratic form x” Ax > 0, and is nonnegative-
definite (or positive-semidefinite) if the same quadratic form is nonnegative.

3.2.3  Vectoring and Kronecker Products

The vectoring operation vec(A) denotes the (JK x 1)-column vector
formed by placing the columns of a (J x K)-matrix A under one another
successively.

If a (J x K)-matrix A is such that the jkth element Aj; is itself a
submatrix, then A is termed a block matriz. The Kronecker product of a
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(J x K)-matrix A and an (L x M)-matrix B is the (JL x KM) block

matrix

ABy1 -+ ABu
AoB=(AB)=| s (3.6)
ABr1 -+ ABrum
Strictly speaking, the definition (3.6) is commonly known as the left Kro-
necker product. There is also the right Kronecker product in the literature,
A @B = (A;;B), which, in our notation, is given by B ® A.

The following operations hold for Kronecker products as defined by (3.6):

(AB)C = A (B®C) (3.7)
(A®B)(C®D) = (AC)® (BD) (3.8)
(A+B)®C = (AC)+(B®C) (3.9)
(A®B)” = AT®B7 (3.10)
tr(A®B) = (tr(A))(tr(B)) (3.11)
r(A®@B) = r(A) -r(B) (3.12)

If Ais (J x J) and B is (K x K), then,
A ®B| = |A|XBJY (3.13)

If Ais (J x K) and B is (L x M), then,
AB=(A®I.)(Ix®B) (3.14)

If A and B are square and nonsingular, then,

(AeB)'=A"1'eB™! (3.15)

One of the most useful results that combines vectoring with Kronecker
products is that
vec(ABC) = (A ® C")vec(B). (3.16)

3.2.4 Figenanalysis for Square Matrices

If A is a (J x J)-matrix, then |A — A\ ;| is a polynomial of order J in A.
The equation
|[A—AI;|=0

will have J (possibly complex-valued) roots denoted by A\; = A\;(A), j =
1,2,...,J. The root A; is called the eigenvalue (characteristic root, latent
root) of A, and the set {\;} is called the spectrum of A. Associated with
Aj, there is a J-vector v; = v;(A) (not all of whose entries of zero) such
that

(A — )\jIJ)Vj =0.
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The vector v; is called the eigenvector (characteristic vector, latent vector)
associated with A;. Eigenvalues of positive-definite matrices are all positive,
and eigenvalues of nonnegative-definite matrices are all nonnegative.

The following results for a real and symmetric (J x J)-matrix A are not
difficult to prove. All the eigenvalues of A are real and the eigenvectors can
be chosen to be real and normalized (i.e., have norm one). Eigenvectors v
and vy, associated with distinct eigenvalues (A\; # M) are orthogonal. If
V = (v1,va,...,vy), then

AV = VA, (3.17)

where A = diag{A1, Ao, ..., A\s} is a matrix with the eigenvalues along the
diagonal and zeroes elsewhere, and V7V =1;.

The “outer product” of a J-vector v with itself is the (J x J)-matrix
vv7T, which has rank 1. The spectral theorem expresses the (J x J)-matrix
A as a weighted average of rank-1 matrices,

J
A =VAV™ =) " \v;v], (3.18)
j=1
where I; = Z}]=1 v;vy, and where the weights, A1,..., A;, are the eigen-

values of A. The rank of A is the number of nonzero eigenvalues, the trace
is

J
tr(A) = > A;(A), (3.19)

and the determinant is

Al=T] M. (3.20)

3.2.5 Functions of Matrices

If A is a symmetric (J x J)-matrix and ¢ : R/ — R/ is a function, then

J

BA) =D d(\)v;v], (3.21)

Jj=1

where \; and v; are the jth eigenvalue and corresponding normalized eigen-
vector, respectively, of A. Examples include the following;:

J
Al =VATIVT = Z )\jflvjva-, if A is nonsingular (3.22)
j=1
J
A2 = VARV =30 AT (3.23)

j=1
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J
log(A) =Y "(log(X;))v;v], if Aj #0, all j (3.24)

j=1

Hence, )\;(#(A)) = ¢()\;(A)) and v;(¢(A)) = v;(A). Note that A'/? is
called the square-root of A.

3.2.6  Singular-Value Decomposition
If A is a (J x K)-matrix with J < K, then

N(ATA) =) (AAT), j=1,2,...,J, (3.25)
and zero for j > J. Furthermore, for A\;(AA") # 0,

Vi(ATA) = ()\(AAT)Y2ATV;(AAT) (3.26)
vi(AAT) = ()\(AAT))TV2Av,(ATA) (3.27)
The singular-value decomposition (SVD) of A is given by
J
A=UuV =Y N v, (3.28)
j=1

where U = (uy,...,uy) isa (J x J)-matrix, u; = v;(AA"),j=1,2,...,J,
V = (vy,...,vg) is a (K x K)-matrix, vi = v(ATA), k= 1,2,..., K,
A= N\(AAT), j=1,2,...,J,

U= <\1:U : 0> (3.29)

is a (J x K)-matrix, and W, is an (J x J) diagonal matrix with the non-
negative singular values, o1 > 09 > ... > o5 > 0, of A along the diagonal,
where o; = A2 s the square-root of the jth largest eigenvalue of the
(J x J)-matrix AA™, j=1,2,...,J.

A corollary of the SVD is that if r(A) = ¢, then there exists a (J x t)-
matrix B and a (¢ x K)-matrix C, both of rank ¢, such that A = BC. To

see this, take B = ()\1/2u1, ce )\z/zut) and C = (v],...,v])".

3.2.7 Generalized Inverses

If A is either singular or nonsymmetric (or even not square), we can
define a generalized inverse of A. First, we need the following definition:
a g-inverse of a (J x K)-matrix A is any (K x J)-matrix A~ such that,
for any J-vector y for which Ax=y is a consistent equation, x = A~y is a
solution. It can be shown that A~ exists iff

AA~A = A; (3.30)
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we call such an A~ a reflexive g-inverse. Note that although A~ is not nec-
essarily unique, it has some interesting properties. For example, a general
solution of the consistent equation Ax=y is given by

x=ATy+(ATA - Ix)z, (3.31)
where z is an arbitrary K-vector. Furthermore, setting z=0 shows that the
x with minimum norm (i.e., || x ||?= x"x) that solves Ax=y is given by
x=A"y.

A unique g-inverse can be defined for the (J x K)-matrix A. From the
SVD, A =UUYV", we set

At =VUiUT, (3.32)

where U™ is a diagonal matrix whose diagonal elements are the reciprocals
of the nonzero elements of ¥ = A'/2 and zeroes otherwise. The (K x
J)-matrix AT is the unique Moore—Penrose generalized inverse of A. Tt
satisfies the following four conditions:

AATA=A, ATAAT=AT (AAT) =AAT (ATA) =ATA.
(3.33)
There are less restrictive (nonunique) types of generalized inverses than AT,
such as the reflexive g-inverse above, involving one or two of the above four
conditions.

3.2.8 Matriz Norms

Let A = (Ajx) be a (J x K)-matrix. It would be useful to have a measure
of the size of A, especially for comparing different matrices. The usual
measure of size of a matrix A is the norm, || A ||, of that matrix. There
are many definitions of a matriz norm, all of which satisfy the following
conditions:

LA}=0

2. || A]|=0iff A=0.

3. A+B<[A[+[B]
4 [ A = laf- || Al

where B is a (J x K)-matrix and « is a scalar. Examples of matrix norms
include:

J K 1/p
1. (ijl > k=1 1Ak |p) (p-norm)

2 VEAAT) = (DL, T, 42) " = (S, 0aan) " (Frobe-

nius norm)
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3. V/A(AAT)  (spectral norm, J = K)

1/2
4. (ZJO )\j(AAT)> , for some Jy < J.

Jj=1

3.2.9 Condition Numbers for Matrices

The condition number of a square (K x K)-matrix A is given by
— g1
R(A) = (Al [[A7Y] = —, (3.34)
K

which is the ratio of the largest to the smallest nonzero singular value. In
(3.34), || - |] is the spectral norm and o; is the square-root of the ith largest
eigenvalue of the (K x K)-matrix ATA,i=1,2,..., K. Thus, k > 1. If A
is an orthogonal matrix, all singular values are unity, and so kK = 1. A is
said to be ill-conditioned if its singular values are widely spread out, so that
k(A) is large, whereas A is said to be well-conditioned if k(A) is small.

3.2.10 Eigenvalue Inequalities
We shall find it useful to have the following eigenvalue inequalities.

The Eckart-Young Theorem If A and B are both (J x K)-matrices, and
we plan on using B with reduced rank r(B) = b to approximate A with
full rank 7(A) = min(J, K), then the Eckart—Young (1936) Theorem states
that

M((A = B)(A —B)7) = Aj0(AAT), (3.35)

with equality if

b
B =Y A\ uv, (3.36)
=1

where \; = N(AAT), u; = v;(AA"), and v; = v;(ATA). Because the
above choice of B provides a simultaneous minimization for all eigenvalues
Aj, it follows that the minimum is achieved for different functions of those
eigenvalues, say, the trace or the determinant of (A — B)(A — B)".

The Courant—Fischer Min-Maz Theorem A very useful result is the follow-
ing expression for the jth largest eigenvalue of a (J x J) symmetric matrix
A:

TA
Aj(A) =inf sup

0 3.37
L x:Lx=0 xTx ’ X;é ’ ( )

where inf is an infimum over a ((j — 1) x J)-matrix L with rank at most
j—1, and sup is a supremum over a nonzero J-vector x that satisfies Lx=0.
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Equality in (3.37) is reached if L = (vq,---,v;—1)" and x = v; = v;(A),
the eigenvector associated with the jth largest eigenvalue of A. A corollary
of this result is that the jth smallest eigenvalue of A can be written as

TA
As—jr1(A) =sup inf =%

0. 3.38
L Lx=0 X™x x7 (3.38)

For a proof, see, e.g., Bellman (1970, pp. 115-117). These two results enable
us to write

TA
A(A) < 22X <

A(A), x#0, (3.39)

XTxX

where A1 (A) is the largest eigenvalue and A;(A) is the smallest eigenvalue
of A.

The Hoffman~Wielandt Theorem Suppose A and B are symmetric (J x
J)-matrices. Suppose A and B have eigenvalues {\;(A)} and {\;(B)},
respectively. Hoffman and Wielandt (1953) showed that

J
> ((A) = X;(B))* < tr{(A-B)(A-B)}. (3.40)

j=1
This result is useful for studying the bias in sample eigenvalues. For a
simple proof, see Exercise 3.3.
Poincaré Separation Theorem Let A be a (J x J)-matrix and let U be a
(J x k)-matrix, k < J, such that U"U = I. Then,

A (UTAU) < \j(A), (3.41)

with equality if the columns of U are the first k eigenvectors of A. This
inequality can be proved using (3.37) from the Courant—Fischer Min-Max
Theorem.

3.2.11 Matriz Calculus

Let x = (21, -+, 2K)7 be a K-vector and let

y =y y0)" = (fi(x),-- (%) = £(x) (3.42)

be a J-vector, where f : R5 — R7. Then, the partial derivative of y wrt x
is the JK-vector,

(o o S

- 4
0x Oxry’  0x1 ' Orx’ ' Ork (3.43)
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A more convenient form is the partial derivative of y wrt x”, which yields
the (J x K) Jacobian matriz,

oy oy .. Odu
Ox1 Oxo o K
9 Oy Oy . Oy2
5] 5] 5]
h — w O K (3.44)
aXT . . .
9ys Oys .. Oys
Ox1 Oxo Or Kk

The Jacobian matrix can be interpreted as the first derivative of f(x) wrt x.
It, therefore, provides a method for linearly approximating a multivariate
vector-valued function: f(x) = f(c) + [Jxf(c)](x — c), where c € R¥. The
Jacobian of the transformation y = f(x) is

If y = f(x) is a scalar, then the gradient vector is

Vo= (5?/ 9y ﬂ)T<ay >T(ny)f, (3.46)

COx 0, Oxs’ ' Oxk OxT

while if = is a scalar, then,

dy _ (Oyi 9y Oys\’
or ((‘33[: "oz’ T ox ) (347)
For example, if A is a (J x K)-matrix, then:
o(AX) _
o = A (3.48)
ox"x)
e 2x (3.49)
TA
% = X(A+A")  (J=K). (3.50)

The derivative of a (J x K)-matrix A wrt an r-vector x is the (Jr x K)-
matrix of derivatives of A wrt each element of x:

0A OAT OA™\"
. L) 51
ox (8:01’ ’81,,) (3.51)
It follows that:
d(aA)  0A
= “ox (o a constant) (3.52)
dA+B) _ 0A N 0B (3.53)

ox ox | Ox
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8((1;3) _ ((?)_1:) BiA (Z_S) (3.54)
a(Aaf B) _ (2_1: “ B) . (A © ‘Z_§> (3.55)
0(1;;) _ At (g_fz) AL (3.56)

where A and B are conformable matrices. Note that in (3.54) and (3.56),
x is a scalar.

If y = f(A) is a scalar function of the (J x K)-matrix A = (A;;), define
the following gradient matriz:

Oy 9y oy
5 BaAyn Bgym o 3.3?1;(
Yy 0Aa2; OAzz Az
o 3.57
oA | : 0
9y oy .. Iy
BAJl BAJQ BAJK
For example, if A is a (J x J)-matrix, then,
a(tr(A))
A A | .
TA J (3.58)
o(|A]) 1
—— 7 = |A| - (AT)"". 3.59
L= Al an) (3.59)

Next, we define the Hessian matriz as a square matrix whose elements
are the second-order partial derivatives of a function. Let y = f(x) be a
scalar function of x € R¥. The (K x K)-matrix,

0%y o'y ... _0%y
Bx? Ox10x2 0x10T K
%y %y %y
- -
H,y = o (0dy . 32,7; . Ox20x1 0x3 Ox20x K
* Ox \ 0x Ox0x7™ : : - : ’
82y 32y . 82y
Ordr1  OrkOT2 02,

(3.60)
is called the Hessian of y wrt x. Note that Hyy = V2y = V,Vyy, so that
the Hessian is the Jacobian of the gradient of f. If the second-order partial
derivatives are continuous, the Hessian is a symmetric matrix. The Hessian
enables a quadratic term to be included in the Taylor-series approximation
to a real-valued function:

fx) = f(e) + I f(e)l(x—c) + %(X*C)T[Hf(C)](X*C), c e R (3.61)
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3.3 Random Vectors

If we have r random variables, X1, X5, ..., X,., each defined on the real
line, we can write them as the r-dimensional column vector,

X = (X1, -, X)) (3.62)

which we, henceforth, call a “random r-vector.” The joint distribution func-
tion Fx of the random vector X is given by

FX(X) = FX(I'17"'71'7’) (363)

= P{Xl S .’1}1,...,X7- S J,‘T-} (364)

P{X < x}, (3.65)

for any vector x = (1,22, -, 2,)" of real numbers, where P(A) represents

the probability that the event A will occur. If F'x is absolutely continuous,
then the joint density function fx of X, where

O Fx(x1,...,2,)
T 9y -0z

fx(x) = fx(z1,...,2) (3.66)

will exist almost everywhere. The distribution function Fx can be recovered
from fx using the relationship

Fx<X):/7xT /jﬁl fx<ul,...,u7-) dU1 dur. (367)

Consider a subset, X1, Xo, ..., X}, (k < r), say, of the components of X.
The marginal distribution function of that component subset is given by

Fx(z1,...,25) = Fx(x1,...,25,00,...,00)
= P{X1 <1, Xp <2, X1 € 09,0, Xy < 00},
(3.68)
and the marginal density of that subset is
/ / fx(ui, ... up) dugsy -+ duy. (3.69)
—0o0 —00

For example, if » = 2, the bivariate joint density of X; and X5 is given by
fxy,x, (21, x2), and its marginal densities are

fX1<fU1):[fol,xz(xl,$2)d$2, fX2(1?2)=/§fol,x2(x1,x2)d1:1. (3.70)
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The components of a random r-vector X are said to be mutually statisti-
cally independent if the joint distribution can be factored into the product
of its r marginals,

Fx(x) = HFi(xi), (3.71)

where Fj(x;) is the marginal distribution of X;, ¢ = 1,2,...,r. This im-
plies that a similar factorization of the joint density function holds under
independence,

,
fx(x) =[] fil=), (3.72)

i=1

for any set of r real numbers x1,...,x,.

3.8.1 Multivariate Moments

Let X be a continuous real-valued random variable with probability den-
sity function fx; that is, fx(x) > 0, for all € R, and f% fx(z)dx = 1.
The ezxpected value of X is defined as

px =E(X) = /xfx(x)dx, (3.73)
and its variance is
0% =var(X) = E{(X — ux)*}. (3.74)

If X is a random r-vector with values in ", then its expected value is the
r-vector

mx = E(X) = (E(X1)7 T 7E(XT))T - (:ulv T 7MT)T7 (3'75)

and the (r x r) covariance matriz of X is given by

Yxx = cov(X,X) (3.76)
= E{X-—px)X—px)"} (3.77)
= B {(Xl il PR XT‘ - ,LLT)(XI — M1, 7X'r’ - ,LLT’)T} (378)
U% g12 -+ Oilr
021 U% o O2r
= . . . ; (3.79)
Or1 Or2 e 0-'%
where
o? = var(X;) = B{(X; — 1;)?} (3.80)
is the variance of X;,i=1,2,...,r, and

o5 = cov(Xy, Xj) = BE{(Xi — pi)(X; — p5)} (3.81)
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is the covariance between X; and X, i,j = 1,2,...,7 (i # j). It is not
difficult to show that

Yxx = BE(XX") - pxpk. (3.82)

The correlation matriz of X is obtained from the covariance matrix X x x
by dividing the ith row by o; and dividing the jth column by o;. It is given
by the (r x r)-matrix,

1 p2 - p1r
p21 1 P p2
Pxx=|". . (3.83)
Pri Pr2 te 1
where
T fiA
ij = pji = 77 : 3.84
Pig = Pi { 1 otherwise (3:84)
is the (pairwise) correlation coefficient of X; with X;, i, = 1,2,...,r.

The correlation coefficient p;; lies between —1 and +1 and is a measure of
association between X; and X;. When p;; = 0, we say that X; and X; are
uncorrelated; when p;; > 0, we say that X; and X are positively correlated,
and when p;; < 0, we say that X; and X; are negatively correlated.

Now, suppose we have two random vectors, X and Y, where X has r
components and Y has s components. Let Z be the random (r + s)-vector,

zZ - (§> . (3.85)

Then, the expected value of Z is the (r + s)-vector,

ne =)= (g ) = (7). (3.0

and the covariance matrix of Z is the partitioned ((r +s) x (r + s))-matrix,

Y2z = BE{(Z—pz)(Z—py)"} (3.87)

cov(X,X) cov(X,Y)
<COV(Y,X) Cov(Y,Y)) (3.88)
- G ). .
where
Yxy =cov(X,Y) =E{X—pux)(Y —py) } =%7x (3.90)

is an (r x s)-matrix.
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If Y is linearly related to X in the sense that
Y = AX + b, (3.91)

where A is a fixed (s x r)-matrix and b is a fixed s-vector, then the mean
vector and covariance matrix of Y are given by

py =Apyx +b, (3.92)

Syy = AN xxA”, (3.93)

respectively.

3.3.2  Multivariate Gaussian Distribution

The multivariate Gaussian distribution is a generalization to two or more
dimensions of the univariate Gaussian (or Normal) distribution, which is
often characterized by its resemblance to the shape of a bell. In fact, in
either of its univariate or multivariate incarnations, it is popularly referred
to as the “bell curve.”

The Gaussian distribution is used extensively in both theoretical and
applied statistics research. The Gaussian distribution often represents the
stochastic part of the mechanism that generates observed data. This as-
sumption is helpful in simplifying the mathematics that allows researchers
to prove asymptotic results. Although it is well-known that real data rarely
obey the dictates of the Gaussian distribution, this deception does provide
us with a useful approximation to reality.

If the real-valued univariate random variable X is said to have the Gaus-
sian (or Normal) distribution with mean p and variance o2 (written as
X ~ N(p,0?)), then its density function is given by the curve

1 L (z—p)?
f($|/vh<7) = W@ 207 (T=1) , x€eR, (394)

where —oo < g < oo and o > 0. The constant multiplier term ¢ =
(2m0?)~1/2 is there to ensure that the exponential function in the formula
integrates to unity over the whole real line.

The random r-vector X is said to have the r-variate Gaussian (or Nor-
mal) distribution with mean r-vector g and positive-definite, symmetric
(r x r) covariance matrix X if its density function is given by the curve

Fx|p, T) = (20) /BT V2o 20 TR o) x e R (3.95)
The square-root, A, of the quadratic form,

A= (x—p) S (x —p), (3.96)
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is referred to as the Mahalanobis distance from x to p. The multivariate
Gaussian density is unimodal, always positive, and integrates to unity. We,
henceforth, write

X ~ N (1, ), (3.97)

when we mean that X has the above r-variate Gaussian (or Normal) dis-
tribution. If X is singular, then, almost surely, X lives on some reduced-
dimensionality hyperplane so that its density function does not exist; in
that case, we say that X has a singular Gaussian (or singular Normal)
distribution.

An important result, due to Cramer and Wold, states that the dis-
tribution of a random r-vector X is completely determined by its one-
dimensional linear projections, a” X, for any given r-vector a. This result
allows us to make a more useful definition of the multivariate Gaussian dis-
tribution: The random r-vector X has the multivariate Gaussian distribu-
tion iff every linear function of X has the univariate Gaussian distribution.

Special Cases

If ¥ = ¢%I,, then the multivariate Gaussian density function reduces to

Flxlp,0) = (2m) 720" 5 T (3.98)
and this is termed a spherical Gaussian density because (x—p)7 (x—p) = a?
is the equation of an r-dimensional sphere centered at p. In general, the
equation (x — u)"E 7} (x — p) = a? is an ellipsoid centered at p, with
3 determining its orientation and shape, and the multivariate Gaussian
density function is constant along these ellipsoids.

When r = 2, the multivariate Gaussian density can be written out ex-
plicitly. Suppose

X = (X1, X2) ~Nao(p, X), (3.99)
where
2
T 011 012 g1 pPO102
= , , Y= = , 3.100
p= (1, p2) (021 022) <p0102 o2 > ( )

02 is the variance of X1, 02 is the variance of X5, and

- COV(Xl,XQ) o J12
g Vvar(X) - var(Xs) 0102

(3.101)

is the correlation between X; and Xs. It follows that

IZ| = (1 - p*oios, (3.102)
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and

I -
e (5 ) (3.103)
0102 a5

The bivariate Gaussian density function of X is, therefore, given by

1
f|p,B) = —————¢73€9, (3.104)
2wo1094/1 —p

where

2 2
1 r1 — r1 — To — To —
o0 {( | ul) 2p< ) u)( 2 u2)+< 2 u2> }
1—p 01 o1 g9 g2
(3.105)
If X; and X5 are uncorrelated, p = 0, and the middle term in the exponent

(3.105) drops out. In that case, the bivariate Gaussian density function
reduces to the product of two univariate Gaussian densities,

L @i—m)? -l (wa—p2)?
f(X|/L1,/J2,0’%,O’§) _ (27‘(’0’10’2)_16 20‘% 1 1 e 20‘% 2 2

f($1|/l1,0%)f($2|/12,0§), (3106)

implying that X; and X, are independent. (see (3.72)).

3.3.8 Conditional Gaussian Distributions

Consider the random (r + s)-vector Z in (3.85) with mean vector p, in
(3.86) and partitioned covariance matrix Xzz in (3.89). Assume that Z
has the multivariate Gaussian distribution. Then, the exponent in (3.95) is
the quadratic form,

1 _
_E(Z - NZ)Tzzlz(Z — Bz)- (3.107)
From (3.5),
A A
s, = s 3.108
z2z ( Az Ag )7 ( )
where

A =33 + S Exv By x Syx Bxk
A = -3 ExySyy.y = Al
Ay =307 o)

and Yyy.x = Zyy — EYXZ)_(lXEXy. As a result, we can write EE} as
follows:

I, —2:Exy I 0 I, 0
0 I, 0 iy ~SyxEyy L)

(3.109)
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Consider the following nonsingular transformation of the random (r + s)-
vector Z:

= (8)- (ol 1)(E) oo

The random vector U has a multivariate Gaussian distribution with mean,

I»,«- 0 Hx )
= _ 3.111
Hu ( -SyxExy L ) ( Ky ( )
and covariance matrix,
[ 3xx 0
Spu = ( 0 Sy > . (3.112)

Hence, the marginal distribution of U; = X is V(v , X xx ), the marginal
distribution of Us =Y — By xE X is NVi(py — Sy xEx My Svy.x),
and U; and U, are independent.

Now, given X = x, pty +Zyx Z '\ (X — py) is a constant. So, because of
independence, the conditional distribution of (Y —py )~y x E 3 (x—px)
is identical to the unconditional distribution of (Y — py) — By x X35 (X —
), which is NV;(0,Zyy.x). Hence, (Y — py) — By x Xk (x — py) ~
N5(0,2yy.x). The resulting conditional distribution of Y given X=x is
an s-variate Gaussian with mean vector and covariance matrix given by

By x = Py + By x B (x — py) (3.113)
Syix = Zyy - ZyxExkExv, (3.114)

respectively. Note that the mean vector is a linear function of x, whereas
the covariance matrix does not depend upon x at all.

3.4 Random Matrices

The (r x s)-matrix

Z1n o Zas
Z=| : : (3.115)

Z’rl T Z'rs
with r rows and s columns is a matrix-valued random variable (henceforth
“random (r x s)-matrix”) if each component Z;; is a random variable,

1=1,2,...,7,7=1,2,...,s. That is, if the joint distribution,

Fy(z) = Fyziyi=1,2...,rj=12..5) (3.116)
= P{ZijSZij,i:1,2,...,T,j:1,2,...,8} (3117)
P{Z < z}, (3.118)
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is defined for all z = (z;;).

The expected value of the random (r x s)-matrix Z is given by

E(Z11) -+ E(Zs) Bir e s
ny—E@) - | = 2 IRNCRETY
E(Zrl) s E(Z'r's) Hr1 -0 Hrs

The covariance matrix of Z is the matrix of all covariances of pairs of ele-
ments of Z and has rs rows and rs columns. It is, therefore, the covariance
matrix of vec(Z),

Y2z = cov{vec(Z)} = E{(vec(Z — py))(vec(Z — py))"}. (3.120)
If we form a new matrix-valued random variable W by setting
W = AZB" + C, (3.121)

where A, B, and C are matrices of constants, then the mean matrix of W
is

wy =Ap,B" + C| (3.122)
and, because
vec(W — pyyr) = vec(A(Z — puz)B") = (A @ B)vec(Z — py), (3.123)
the covariance matrix of vec(W) is

Eww = E{(vec(W — py))(vec(W — py,))"}
(A®B)S,(A®B). (3.124)

3.4.1 Wishart Distribution
Given n independently distributed random r-vectors,
X~ No(p, X)), 1=1,2,...,n (n>r), (3.125)
we say that the random positive-definite and symmetric (r X r)-matrix,
n
W=> X,X], (3.126)
i=1

has the Wishart distribution with n degrees of freedom and associated ma-
trix 3. If p; = 0 for all 4, the Wishart distribution of W is termed central,
otherwise, it is noncentral.
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It can be shown that the joint density function of the r(r + 1)/2 distinct
elements of W is given by

W (Wn, B) = ¢ | BT/ W[E (77D =2t (WS, (3.127)
where
1 . n+1—i
= o2 =D/ATT D [ ———— ). 3.128
Cr.n i E 2 ( )

If W is singular, the density is 0, in which case W is said to have the singu-
lar Wishart distribution. If W has a Wishart density, we find it convenient
to write

W ~ W, (n,X). (3.129)

Many derivations of (3.127) have appeared in the statistical literature. See
Anderson (1984) for references. When r = 1, Wi (n, 0?) is identical to the
o?x? distribution.

The first two moments of W are given by (Izenman, 1972, 1975)

E(W) = nX. (3.130)
cov{vec(W)} = E{(vec(W —nX))(vec(W —nX))"} (3.131)
= n(l=+ I(m))(E ® X), (3.132)

where I, .y is a permuted-identity matriz (Macrae, 1974), which is a (pg x
pq)-matrix partitioned into (px ¢)-submatrices such that the ijth submatrix
has a 1 in its jith position and zeroes elsewhere. For example, when p =
q = 2, the permuted-identity matrix is given by

(3.133)

0
0
1(272) - 1
0

o O O

10
0 0
0 1

The permuted identity matrix I, ) can be expressed as the sum of r?
Kronecker products,

I(r r) — Z Z Hz] & HT (3134)
i=1 j=1

where H;; is an (r x r)-matrix with ijth element equal to 1 and zero
otherwise. Another property of the permuted identity matrix is that

I yvec(A) = vec(AT), (3.135)

which led to it also being called a commutation matriz.
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Properties of the Wishart Distribution

Because of the following properties of the Wishart distribution, it is not
necessary to apply the density form (3.127) to obtain explicit distributional
results.

1. Let W; ~ W,(n;, %), j = 1,2,...,m, be independently distributed

(central or not). Then, 37" W ~ W,.(377_ nj, 2).

2. Suppose W ~ W,(n,X), and let A be a (p x r)-matrix of fixed
constants with rank p. Then, AWA" ~ W, (n, ALA").

3. Suppose W ~ W,.(n, X), and let a be a fixed r-vector. Then, a” Wa ~
2x?, where 02 = a” Xa. The chi-squared distribution is central if the
Wishart distribution is central.

4. Let X = (Xy,--+,X,)7, where X; ~ N,.(0,X), i = 1,2,...,n, are
independently and identically distributed. Let A be a symmetric (n x
n)-matrix with v = rank(A), and let a be a fixed r-vector. Let y =
Xa. Then, XTAX ~ W, (v, X) iff y" Ay ~ 02x2, where 02 = a” Xa.

3.5 ML Estimation for the Gaussian Distribution

Assume that we have a random r-vector X distributed according to a
multivariate Gaussian vector,

X ~ N (p, 2), (3.136)

where the parameters, g and X, of this distribution are both unknown.
To estimate p and 3, we use the method of mazimum likelihood (ML).
ML was formalized by Fisher (1922) and others who have shown that it
possesses very good statistical properties.

Assume that we have n independently and identically distributed (iid)
observations, X, ..., X,. on X. By independence, the joint density of the
{Xi,i = 1,2,...,n} is the product of their individual densities; that is,
[T, fx,(xi|p, £). Consider the observations to be fixed at the values {x;}.
If we now consider this joint density as a function of the parameters, pu and
32, then we have the likelihood function of the parameters given the observed
data {x;},

n

L, SI{x:}) = (2m) /2|8~ 2exp {—% S — )78 (x — )

i=1

(3.137)

Taking logarithms of this expression, we have that the log-likelihood func-
tion is

U(p, X) = log L(p, B[{xi})
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nr n 1« el
= *710g(27f)*§1Og|2|*§;(xifﬂ)2 (xi — p).

(3.138)

It will be convenient to reexpress the summation term in (3.138) as follows:

2 (ki = )" E 7 xi = ) (3.139)

= tr {21 Z(xi — %) (x; — X)T} + X —p) S Hx - ), (3.140)

_ _ n .
where x =n~"' Y"1 | x; is the sample mean.

The ML method estimates the parameters o and ¥ by maximizing the
log-likelihood with respect to (wrt) those parameters, given the data values,
{xi,1 =1,2,...,n}. First, we maximize ¢ wrt u:

af(p,, E) —1/3
— = =nX — ). 3.141
e (3.141)
Setting this derivative equal to zero, the ML estimate of p is the r-vector,
= x. In general, for a random sample X, ..., X,, on X, the ML estimator
of p is
n=X, (3.142)

which we call the sample mean vector.

Deriving the ML estimate for ¥ needs a little more work. If we define
S=>",(x; —X)(x; — X)7, then (3.138) can be written as

1
Up, Z) = =5 log(2m)— 5 log | 5| = tr(87'8)— T (x—p) B (x—p).
(3.143)
The first term on the rhs of (3.143) is a constant and, at the maximum of
¢, the last term is zero. So, we need to find ¥ to maximize —nlog|X| —
tr(X71S).

Set S = EE” and E'Y"'E = H. Then, ¥ = EH 'E” and |¥| =
[S|/|H|, whence, log |X| = log|S| — log |H|. Also, using properties of the
trace, tr(X71S) = tr(X'EE”) = tr(E"X"'E) = tr(H). Putting these
results together, we now need to find H to maximize —n log|S|+nlog |H|—
tr(H).

By the Cholesky decomposition of H, there is a unique lower-triangular
matrix T = (¢;;) with positive diagonal elements such that H = TT".
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Hence, we need to find a lower-triangular T to maximize —nlog|S| +
S 1(nlogt —t2)— ZD] Lj,where we used the facts that |T|> = [[;_, 2

and tr(TT7) = Y7, ¢ + ZD] 7. The solution is to take 7, = n and
ti; = 0 for i # j; that is, T = /nIL.. Thus, we set H = nlI,..

So, the ML estimate of X is given by the (r x r)-matrix £ = n 'EE” =
n~'S. That is, ¥ = L 3"  (x; — X)(x; — X)7. In general, for a random
sample X1q,...,X,, on X, the ML estimator of X is

_1 Z —X)" =n"1S, (3.144)

3

which we call the sample covariance matriz.

3.5.1 Joint Distribution of Sample Mean and
Sample Covariance Matrix
The ML estimator X is an unbiased estimator of the population mean

vector w; that is, -
E{X} = p. (3.145)

On the other hand, because

p(s) = 11

, (3.146)

the ML estimator & in (3.144) is a biased estimator of the population
covariance matrix 3. To remove the bias from the covariance estimator
(3.144), it suffices to divide S by n — 1 instead of by n.

Because X is a linear combination of the X1,..., Xy, each of which are
iid as NV, (u, 3), then, the ML estimator, X, of g has the distribution

X ~ Np(p,n %), (3.147)

To derive the distribution of 2, we suppose for the moment that g = 0.
Let a be a fixed r- Vector and consider Y; = a™X,;, i = 1,2,...,n. Then,
Y; ~ N1(0,02), where 02 = a”Xa, and Y = (Yi,-,Y,)" ~ N,(0,02L,).
Let b =n"'1,, whence, bTb =n"! andlet A =1, —n"'J,, where J,, =
1,17 is a matrix every element of which is unity. Note that A is idempotent
with rank n — 1. From univariate theory, bY = Y ~ N;(0,02/n) and,
YTAY =Y. (Y; — Y)? ~ 02x2%_, are independently distributed for any a.

Now, let X = (Xy,---,X,)". Then, X"b ~ N,.(0,n"'X) and, from
Property 4 of the Wishart distribution,

XTAX ~ W, (n—1,5). (3.148)
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Because Y ~ N,,(0,021,), it follows that b”Y ~ N1 (0,02b7b) and
Y™bb"Y/b"b ~ 027 (3.149)

Furthermore, Abb” = 0; postmultiplying by b yields Ab = 0, so that
the columns of A = (aj,---,a,) and b are mutually orthogonal. Thus,
XTa; = X; — X, i =1,2,...,n, and X"b are statistically independent
of each other. Thus, X"b = X and XTAX = (X"A)(XTA)” = S are
independently distributed.

The case of u # 0 is dealt with by replacing X; by X;—p, i =1,2,...,n.
This does not change S, and X is replaced by X — . Thus, S is independent
of X — p (and, hence, of X), and

S ~n T We(n—1,%). (3.150)

3.5.2  Admussibility

In 1955, Charles Stein rocked the statistical world by showing that the
ML estimator, X, of the unknown mean vector, p, of a multivariate Gaus-
sian distribution was “admissible” in one or two dimensions but was “in-

admissible” in three or higher dimensions (Stein, 1955).

The idea of inadmissibility of an estimator 6 of an unknown vector-valued
parameter @ € © is part of the framework of statistical decision theory and
relates to the quality of that estimator in terms of a given loss function
L(0,0). A loss function gives a quantitative description of the loss incurred
if 0 is estimated by 0. For example, the most popular type of loss function

for assessing an estimator, @ = (61,---,6,)7, of the unknown parameter
vector @ = (01,---,0,)7 is the “squared-error” loss function,
,
L(0.6)=(0—-0)7(60—-0)=> (0, — 0, (3.151)
j=1

Different types of loss functions have been proposed in different situations,
and we will meet several of these throughout this book.

It is usual to compare estimators through their risk functions, which are
the expected values of the respective loss functions; that is,

R(6,0) = E{L(6,0)}. (3.152)

Two different estimators, Ea and éb, of 8 can be compared by viewing the
graphs of R(0,0,) and R(0,0;) over a suitable range of values of some

function of 0, say, || @ ||. An estimator 0, is inadmissible if there exists
another estimator @, for which

R(6,8,) < R(6,8,) for all 6 € © (3.153)
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and
R(6,6,) < R(8,8,) for some 6 € ©; (3.154)

the estimator ga is admissible if no such estimator @b exists. In other words,
an estimator is inadmissible if we can find a better estimator that has a
smaller risk function, whereas an estimator that cannot be improved upon
in this way is called admissible.

3.5.8 James—Stein Estimator of the Mean Vector

Suppose X;,2 = 1,2,...,n, are independently drawn from an r-variate
Gaussian distribution with unknown mean vector g = (u1,- -+, )7, such
that the ML estimator Y = X = n~1 3", X, has the A,.(p, I,.) distribution.
Thus, the components of the unknown mean vector, p, are different, and
the components of Y are mutually independent with unit variances. The
following development can be easily modified if the covariance matrix of Y
were 021, where 0 > 0 is known (Exercise 3.17), or a more general known
covariance matrix V (Exercise 3.18).

The risk function of the estimator Y = (Y7,---,Y,)7 is given by
R(p,Y) =Ep{(Y —p)"(Y —p)} = tr{l.} =1 (3.155)
Stein’s result that the sample mean vector is inadmissible for r > 3 in
the case of squared-error loss was later supplemented by James and Stein
(1961), who exhibited a “better” estimator of the multivariate Gaussian
mean vector g than the sample mean X. Let 8 = (61,---,0,)” be an

arbitrary fixed vector, which is chosen before we look at the data. Typically,
6 is thought to be near p.

The James—Stein estimator, 6(Y) = (01(Y),---,,.(Y))", is given by

T2> (Y —0), (3.156)

5(Y) =6+ <1

where
-

S=|Y-0[>=> (v; -0, (3.157)
j=1
is the sum of the squared deviations of each individual mean Y; from the
constant ¢;, and r > 3. Thus, the James-Stein estimator shrinks Y toward
0 by a factor c =1 — (r —2)/S. Note that for fixed 6, the shrinkage factor
¢ is the same for all components of Y.

The estimator 6(Y) has a smaller risk than that of Y for every p, inde-
pendent of whichever vector 0 is chosen. To see this, consider the risk of
0(Y):

r

R(p,8(Y)) = Ep 4 S0,0Y) = 1) § = Bl 6(Y) — [P} (3.158)
j=1
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Now,

lsv) - ulp = o+ (1-"52) v -0y ul?

s

S{or-m-"Fm -0} e

j=1

Expand the summand to get

2(r—2)

0 =i = 22— v -0 + L2

(Y; — 0;)%. (3.160)

Substituting this expression back into (3.159), rearranging terms, and then
taking expectations, the risk of §(Y) is
R(p,6(Y)) =

T

el 20 =23 (25 05— - Gy

Jj=1

The first term inside the expectation is evaluated using Stein’s Lemmua,
which says that if Y ~ N (0,1) and g is a differentiable function such that
Eo{lg'(Y)|} < oo, then,

Eo{g(Y)(Y = 0)} = Bafg/(V)}. (3.162)
Let
gy = 120 (3.163)
whence,
g () = & - 2 (3.164)

Substituting the last result into (3.162) yields

R(p,4(Y)) =
r—Ep {2(r— 2)i {% - Q(Yjsgej)z } L ;2)2 . (3.165)
that is,
R(u,6(Y)) = r —Ep {%} <r=R(Y). (3.166)

This result holds as long as the expectation exists. For r = 1 and r = 2, the
expectation is infinite. For r > 3, the expectation is finite. The expectation
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in (3.166), which represents the difference between the two risk functions,
R(p,Y) — R(p,0(Y)), is sometimes called the Stein effect.

Thus, instead of using just the jth component, Y}, of Y to estimate the
jth component, p;, of p, the James-Stein estimator, §(Y), combines all
the mutually independent components of Y in estimating p;. This esti-
mator appears to be intuitively unappealing: why should the estimator of
t; depend upon the estimators of jiy, k # j7 The reason why the James—
Stein estimator dominates the usual mean estimator is because we used the
squared-error loss function. This surprising result is commonly referred to
as Stein’s paradox (Efron and Morris, 1977).

The James—Stein estimator (3.156) also happens to be inadmissible for p.
This follows because, for small values of S, the shrinkage factor ¢ becomes
negative, which, in turn, drags the estimator away from 6. We can avoid
such anomolies by replacing the shrinkage factor ¢ by zero if it is negative
(Efron and Morris, 1973):

r—2

i (Y)=6+ <1 — ) (Y —0), (3.167)
+

where (z)4 = max{x,0}. Unfortunately, this so-called positive-part James—

Stein estimator is still not admissible (Brown, 1971).

The James—Stein estimator of p shrinks Y toward some chosen point
6. Shrinking to different points will produce different estimates of . De-
ciding which one is best then becomes a subjective decision. If one has no
information about the location of u, then what should we take for 87 One
possibility is to use 8 = 0, so that the James—Stein estimator shrinks Y
toward the origin. Another possibility is to shrink each component of Y
toward the overall mean ¥ = r~! > i1 Y. Let Y = (Y,---,Y)" be an
r-vector whose every entry is Y. The resulting James-Stein estimator is

MWzY#(Ll%ng—YL (3.168)

where .
S=Y-Y[P=) (Vi -Y) (3.169)

k=1

is the sum of the squared deviations of each individual mean Y} from the
overall mean Y. Note that the constant » — 2 is replaced by r — 3 because
the parameter @ is estimated by Y. This estimator dominates Y if > 4.
Thus, p; is estimated by Y +¢(Y; —Y), j = 1,2,...,7, where the shrinkage
factor is
r—3

ZZ=1(Yk - Y)2
which can be motivated using an empirical Bayes approach (Efron and
Morris, 1975).

c=1 (3.170)
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It is worth emphasizing that the idea of using shrinkage principles to de-
rive a biased estimator with improved statistical properties is not restricted
only to estimating the multivariate Gaussian mean. Throughout this book,
we will see that the general idea of shrinking an estimator proves to be very
beneficial, particularly when we are faced with statistical problems in high
dimensions.
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and then generalized further to the multivariate case by Wishart (1928).
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found in Lehmann (1983), Casella and Berger (1990), Berger (1985), and
Anderson (1984).

Exercises

3.1 Let x = (x1,---,2p)" and y = (Y1, -, Yp)” be any two p-vectors on
RP. Show that (x7y)? < (x"x)(y"y), where the equality is achieved only
if ax + by = 0 for a,b € R. (Hint: Consider (ax + by)” (ax + by), which is
nonnegative.)

3.2 Let f and g be any real functions defined in some set A, and suppose
f? and g¢? are integrable (wrt some measure). Show that

(f f(fc)g(fc)dfc)2 < ([r@ra) ([ o).

Hence, or otherwise, show that if X and Y are random variables, then,
[cov(X,Y)]? < (var(X))(var(Y)). (Hint: Consider the nonnegative integral
of (af +bg)*)

3.3 Prove the Hoffman-Wielandt Theorem. (Hint: Use the spectral de-
composition theorem on A and on B; express tr{(A — B)(A — B)"} in
terms of the decomposition matrices of A and B, and simplify; then, show
that the result is minimized by Y_.(A; — p17)*.)
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3.4 If X ~ N, (u,X), show that the marginal distribution of any subset
of r* elements of X is r*-variate Gaussian.

3.5 Show that X ~ N;.(u, X) if and only if @™ X ~ N (a” i, a” Zar), where

o is a given r-vector.

3.6 If X ~ N;(u,X), and if A is a fixed (s x r)-matrix and b is a
fixed s-vector, show that the random s-vector Y = AX +b ~ N (Ap +
b, AXA").

3.7 Suppose X ~ N, (u,X), where ¥ = diag{c?} is a diagonal matrix.
Show that the elements, Xi, Xs,...,X,, of X are independent and each
X follows a univariate Gaussian distribution, j =1,2,...,r.

3.8 If Z in (3.85) is distributed as an (r + s)-variate Gaussian with mean
(3.86) and partitioned covariance matrix (3.89), show that X and Y are
independently distributed if and only if X xy = 0.

3.9 If Z in (3.85) is distributed as an (r + s)-variate Gaussian with mean
(3.86) and partitioned covariance matrix (3.89), and if ¥ xx is nonsingu-
lar, show that Y — EYXE)_(lxX ~ Ns(py — EYXE)_(lqu, Yyy.x), where
Svy.x = Zyy — nyz)_(lxzxy. The conditional distribution of Y given
X is Ns(py + EYXE;(lx(X —px), Xyy.x). If xx is singular, show that
the above results hold, but with 2;(1)( replaced by the reflexive g-inverse
Xk

3.10 The conditional distribution of Y given X=x can be expressed as
the ratio of the joint distribution of (X,Y) to the marginal distribution
of X: f(y|x) = fx,v(x,¥)/fx(x). Using the definition of the multivariate
Gaussian distribution, find the joint and marginal distributions and com-
pute their ratio to find the conditional distribution of Y given X=x. Find
the conditional distribution for the special case of the bivariate Gaussian
distribution. (Hint: The joint distribution of (U, Us) is given by the prod-
uct of their marginals; transform the variables to X and Y by substituting
x for u; and y — EYXE)_(lXX for usy in that joint distribution.)

3.11 If X ~ ./\/',.(uj7 3;), 5 = 1,2,...,n, are mutually independent and
c1,Ca,...,Cy are real numbers, show that

n n n
Cij NNT Cj/,l,j, chj
j=1 j=1 j=1

3.12 If the s columns of the random matrix Z in (3.115) are independent
random r-vectors with common covariance matrix 3, show that Xz, =
Y ®I,.
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3.13 Let W; ~W,(n;,%), j =1,2,...,m, be independently distributed.
Show that 37"} W; ~ W, (3071, n;, 3). Show that this result holds re-
gardless of whether the distributions are central or noncentral.

3.14 W ~W,(n,X) and A is a (p x r)-matrix of fixed constants with
rank p, show that AWA™ ~ W, (n, AXA").

3.15 Let W ~ W,(n,X) and let a be a fixed r-vector. Show that a” Wa ~
02x2, where 02 = a”Xa. The chi-squared distribution is central if the
Wishart distribution is central.

3.16 (Stein’s Lemma) Let X ~ A(6,02) and let g be a differentiable func-
tion such that E{|¢'(X)|} < oo. Show that E{g(X)(X —0)} = 0?E{¢'(X)}.
(Hint: Use integration by parts with u = ¢(X) and dv = (X —6) exp{—(X —
0)%/20°}.)

3.17 Show that if Y = X ~ N,.(u,02L,), » > 3, then Y is inadmissible
for the loss function L(6,Y) = || @ —Y || /o?, where 02 > 0 is known.

3.18 Show that if Y = X ~ N, (u, V), where V is a known (r x r)
covariance matrix, r > 3, then Y is inadmissible for the loss function
LO,Y) = (Y —0)"VY(Y — ), where p > 3. (Hint: set S = (Y —
0)"V-1Y -0).)

3.19 Assume that X is a random 7-vector with mean g and covariance ma-
trix 3. Let A be an (r x r)-matrix of constants. Show that (a) E{X"AX} =
tr(AX) + p” Ap. Assume now that A is symmetric, and let X ~ N,.(u, X).
Show that (b) var{X"AX} = 2tr(AXAY)+4u"AX Ap. If B is also a sym-
metric (r X r)-matrix, show that (¢) cov{X"AX,X"BX} = 2tr(AYBY) +
4u"AXBu.

3.20 By expressing a correlation matrix R with equal correlations p as
R = (1 — p)I+ pJ, where J is a matrix of ones, find the determinant and
inverse of R.

3.21 Instead of using the Cholesky decomposition to find the ML estimator
of 3 on pp. 65-66, differentiate nlog|H| — tr(H) wrt H, and show that
H = nl, yields a maximum. (Hint: Use (3.58) and (3.59).)
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Nonparametric Density Estimation

4.1 Introduction

Nonparametric techniques consist of sophisticated alternatives to tradi-
tional parametric models for studying multivariate data. What makes these
alternative techniques so appealing to the data analyst is that they make
no specific distributional assumptions and, thus, can be employed as an
initial exploratory look at the data. In this chapter, we discuss methods for
nonparametric estimation of a probability density function.

Suppose we wish to estimate a continuous probability density function p
of a random r-vector variate X, where

P92 0. [ pexjdx—1 (4.1)

Any p that satisfies (4.1) is called a bona fide density. The nonparametric
density estimation (NPDE) problem is to estimate p without specifying
a formal parametric structure. In other words, p is taken to belong to a
large enough family of densities so that it cannot be represented through a
finite number of parameters. It is usual to assume instead that p (and its
derivatives) satisfy some appropriate “smoothness” conditions. However,
there are applications (e.g., X-ray transition tomography) in which dis-

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 75
DOI 10.1007/978-0-387-78189-1_4, © Springer Science+Business Media New York 2013
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continuities in p (in that case, tissue density) are natural (Johnstone and
Silverman, 1990)

Perhaps the earliest nonparametric estimator of a univariate density p
was the histogram. Further breakthroughs — initially, with the kernel,
orthogonal series, and nearest neighbor methods — came from researchers
working in nonparametric discrimination and time series analysis. Indeed,
Parzen (1962), in his seminal work on kernel density estimators, noted the
resemblance between probability density estimation and spectral density
estimation for stationary time series and then went on to say that “the
methods employed here are inspired by the methods used in the treatment
of the latter problem.”

Nonparametric density estimates can be effective in the following situa-
tions. Descriptive features of the density estimate, such as multimodality,
tail behavior, and skewness, are of special interest, and a nonparametric
approach may be more flexible than the traditional parametric methods;
NPDE is used in decision making, such as nonparametric discrimination
and classification analysis, testing for modes, and random variate testing;
and statistical peculiarities of the data often can be readily explained in
presentations to clients through simple graphical displays of estimated den-
sity curves.

4.1.1  Ezample: Coronary Heart Disease

A popular application of nonparametric density estimation is that of
comparing data from two independent samples. In this example, data on a
large number of variables were used to compare 117 coronary heart disease
patients (the “coronary group”) with 117 age-matched healthy men (the
“control group”) (Kasser and Bruce, 1969). These variables included heart
rates recorded at rest and at their maximum after a series of exercises on
a treadmill.

Figure 4.1 shows kernel density estimates of resting heart rate and maxi-
mum heart rate for both groups. The maximum heart rate density estimate
(see right panel) for the coronary group appears to be bimodal, possibly a
mixture of the unimodal control-group density and a contaminating density
having a smaller mean. The opposite conclusions appear to be the case for
resting heart rate (left panel). For each density estimate, we used a smooth-
ing parameter (window width) that reflected sample variation. Both graphs
show a considerable amount of overlap in their density estimates, making
it difficult to distinguish between the groups on the basis of either of these
two variables.

A statistic used to monitor activity of the heart is the change in heart
rate from a resting state to that after exercise; that is, maximum heart
rate minus resting heart rate. As can be seen from Figure 4.1, many of the
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FIGURE 4.1. Gaussian kernel density estimates for comparing a “coro-
nary group” of 117 male heart patients (red curves) with a “control group”
of 117 age-matched healthy men (blue curves) in a coronary heart disease
study. Left panel: resting heart rate. Right panel: maximum heart rate after
a series of exercises on a treadmill. For each density estimate, the window
width was taken to reflect sample variation.

coronary group will have very small values of this difference (one patient
has a difference of 3), whereas the bulk of the control group’s values will
tend to be larger. Indeed, 20% of the coronary group had differences strictly
smaller than the smallest of the differences of the control group, and 14%
of the control group had differences lying strictly between the two largest
differences of the coronary group.

4.2 Statistical Properties of Density Estimators

Like any statistical procedure, nonparametric density estimators are rec-
ommended only if they possess desirable properties. In general, research
emphasis has centered upon developing large-sample properties of non-
parametric density estimators.

4.2.1 Unbiasedness

An estimator p of a probability density function p is unbiased for p if, for
all x € R", E,{p(x)} = p(x). Although unbiased estimators of parametric
densities, such as the Gaussian, Poisson, exponential, and geometric, do ex-
ist, no bona fide density estimator (i.e., satisfying (4.1)) based upon a finite
data set can exist that is unbiased for all continuous densities (Rosenblatt,
1956). Hence, attention has focused on sequences {p,} of nonparametric
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density estimators that are asymptotically unbiased for p; that is, for all
x € R, Ep{pn(x)} — p(x), as the sample size n — oo.

4.2.2  Consistency

A more important property is consistency. The simplest notion of consis-
tency of a density estimator is where p is weakly-pointwise consistent for p if
p(x) = p(x) in probability for every x € R", and is strongly-pointwise con-
sistent for p if convergence holds almost surely. Other types of consistency
depend upon the error criterion.

The Lo Approach. This has always been the most popular approach to
nonparametric density estimation. If p is assumed to be square integrable,
then the performance of p at x € R” is measured by the mean-squared error
(MSE),

MSE(x) = B, {p(x) — p(x)}? = var{p(0)} + bias{p)}),  (4.2)
where

var{p(x)} = Ep[p(x) - E,{p(x)}]* (4.3)

bias{p(0)} = E,{p(x)} - p(x). (4.4)

If MSE(x) — 0 for all x € " as n — o0, then p is said to be a pointwise
consistent estimator of p in quadratic mean.

A more important performance criterion relates to how well the entire
curve p estimates p. One such measure of goodness of fit is found by inte-
grating (4.2) over all values of x, which yields the integrated mean-squared
error (IMSE),

IMSE = /% TEp{ﬁ(x)—p(x)}%x (4.5)

= E, { / Lﬁ(X)}ZdX} 28, (50} + [IpoPax. (40

If we let R(g) = [[g(x)]?dx, then the last term, R(p), on the rhs of (4.6)
is a constant and, hence, can be removed:

IMSE — R(p) = E,{R(p) — 25}. (4.7)
Thus, R(p) — 2p is an unbiased estimator for IMSE — R(p).
Another popular measure is integrated squared error (ISE, or Lo-norm),
ISE = p(x) — p(x)]?dx. (4.8)
§R7‘

Taking expectations over p in (4.8) gives the mean-integrated squared error;
that is, E,(ISE) = MISE = IMSE (Fubini’s theorem). ISE is often preferred
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as a performance criterion (rather than its expected value IMSE) because
ISE determines how closely p approximates p for a given data set, whereas
MISE is concerned with the average over all possible data sets. For bona
fide density estimates, the best possible asymptotic rate of convergence for
MISE is O(n*4/5); by dropping the restriction that p be a bona fide density,
a density estimate can be constructed with MISE better than O(n~1).

The Ly Approach. One problem with the Lo approach to NPDE is that
the criterion pays less attention to the tail behavior of a density, possibly
resulting in peculiarities in the tails of the density estimate. An alterna-
tive Li-theory of NPDE is also available (Devroye and Gyorfi, 1985). The
integrated absolute error (IAE, or total variation or Li-norm) is given by

IAE = /7- [p(x) — p(x)|dx. (4.9)

TAE is always well-defined as a norm on the Li-space, is invariant under
monotone transformations of scale, and lies between 0 and 2.

If IAE — 0 in probability as n — oo, then p is said to be a consistent es-
timator of p; strong consistency of p occurs when convergence holds almost
surely. The TAE distance is related to Kullback—Leibler relative entropy

(KL),
KL = /ﬁ(x) log {ﬁ(—x} dx, (4.10)

p(x)
and Hellinger distance (HD),

spm) = { [ (oo~ poo) "ax}

(Devroye and Gyorfi, 1985, Chapter 8). The expectation of (4.9) over all
densities p yields the mean integrated absolute error, MIAE = E,{IAE}.
Some quite remarkable results can be proved concerning the asymptotic
behavior of IAE and MIAE under little or no assumptions on p. One thing,
however, is clear: The technical labor needed to get L; results is substan-
tially more difficult than that needed to obtain analogous Lo results.

4.2.3 Bona Fide Density Estimators

Some density estimation methods always yield bona fide density esti-
mates, and others generally yield density estimates that contain negative
ordinates (especially in the tails) or have an infinite integral. Negativity
can occur naturally as a result of data sparseness in certain regions or it
can be caused by relaxing the nonnegativity constraint in (4.1) in order
to improve the rate of convergence of an estimator of p. Negativity in a
density estimate can lead to an especially undesirable interpretation if a



80 4. Nonparametric Density Estimation

function of that estimate is needed in a practical situation. For example,
Terrell and Scott (1980) remarked that “a negative hazard rate implies the
spontaneous reviving of the dead.” Moreover, in the quest for faster rates of
convergence for density estimators, some researchers have chosen to relax
the integral constraint in (4.1) rather than the nonnegativity constraint.

There are several ways of alleviating such problems. The density estimate
may be truncated to its positive part and renormalized, or a transformed
version of p (e.g., log p or pt/ 2) may be estimated and then backtransformed
to get a nonnegative estimate of p.

4.3 The Histogram

The histogram has long been used to provide a visual clue to the general
shape of p. We begin with the univariate case, where x € R. Suppose p
has support = [a,b], where a and b are usually taken to contain the
entire collection of observed data. Create a fixed partition of Q0 by using
a grid (or mesh) of L nonoverlapping bins (or cells), Ty = [tn.¢,tn.e+1),
¢=0,1,2,...,L =1, where a = t,, 0 < tp1 <tpz <--- <tpr =>b, and
the bin edges {¢, ¢} are shown depending upon the sample size n. Let I,
denote the indicator function of the ¢th bin and let Ny = Y7 | Ir,(x;) be
the number of sample values that fall into T;, £ =0,1,2,...,L — 1, where

o Ne=n.

Then, the histogram, defined by

L—1 No/n
plz) = Z o 1 It (2), (4.12)
=0 nt+1 — tndt
satisfies (4.1). If we fix hy, = tne41 —tne, £ = 0,1,2,...,L — 1, to be a
common bin width, and if we take ¢, o = 0, then the bins will be Ty =
[0,hn), Ty = [hn,2hs), ..., T—1 = [(L — 1)hy, Lhy,). Then, (4.12) reduces
to

L—1
~ 1
plz) = e ZZ; NIz, (x). (4.13)
So, if x € Ty, then,
p(x) al (4.14)
T) = —. )
P nh.,

As a density estimator, the histogram leaves much to be desired, with de-
fects that include “the fixed nature of the cell structure, the discontinuities
at cell boundaries, and the fact that it is zero outside a certain range”
(Hand, 1982, p. 15).

A much more serious defect relates to the sensitivity of histogram shapes
to the choice of origin. Figure 4.2 displays histograms for the data set
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velocity velocity

FIGURE 4.2. Histograms of the radial velocities of 323 locations in the
area of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta,
1987). In both panels, the bin width is h = 20. In the left panel, the origin
1s 1,400; in the right panel, it is 1,409, the minimum data value.

galaxy, which consists of the radial velocities of 323 locations in the area
of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta, 1987).
The bin width is h = 20 and the origins are 1,400 (left panel) and 1,409
(right panel). We see how different the histograms look when the origin is
changed.

In general, histograms tend not to have symmetric, unimodal, or Gaus-
sian shapes. Indeed, in many large data sets, we often see histograms that
are highly skewed with short left-hand tails, very long right-hand tails, sev-
eral modes (some more prominent than others), and multiple outliers. In
many cases, the modes can be modeled parametrically as components of a
mixture of distributions.

4.3.1 The Histogram as an ML Estimator

Let H(2) be a specified class of real-valued functions defined on 2. Given
a random sample of observations, x1, o, ..., ,, the maximum-likelihood
(ML) problem is to find a p € H() that maximizes the likelihood function

n

L(p) = [ p(x:), (4.15)

i=1

or its logarithm, subject to
/ p(t)dt =1, p(t) >0 for all t € Q. (4.16)
Q

If H(Q) is finite dimensional, then a (not necessarily unique) solution to this
problem exists and is called an ML estimator of p. The uniqueness of the
solution depends upon the specification of H (). If we restrict H to contain
only functions of the form p(z) = ZZL;Ol yeIr,(x), where hZZL;()l ye = 1,
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then the histogram (4.13) is the unique ML estimator of p based on the
observations x1, x2, ..., T,; see Exercise 4.1.

4.8.2  Asymptotics

If n observations are randomly drawn from the probability density p, then
the bin count Ny in interval T can be viewed as a binomial random variable;
that is, Ny ~ Bin(n, py), where p, = fTe p(x)dz. Thus, the probability that
Ny out of the n observations will fall into bin T} is given by

n

Prob{N, € T;} = (N
¢

>p§W(1 —po)" e (4.17)

Hence, E{N,} = np; and var{N,} = npe(1 — p;). Under suitable continuity
conditions for p(z) and assuming that p(z) does not vary much for = € Ty,
there exists & € Ty such that, by the mean-value theorem,

pe= | pladds = hp(éo). (4.18)
T,
where h,, is the width of Ty. Then, from (4.14), we have that, for x € T,
~ b
E{p(e)} = = = p(&) (4.19)
n

and

N var{Ne}  npe(l — pe) De p(&e)
varp@)} = =5 = T S T e (4.20)
because pg(1 — pe) < p.

Now, consider the bin Ty = [0, h,,). By expanding p(y) around p(z) using
a Taylor series, we have that

= [ sy = tupt) 41 (% = 0) @+ 0. az)

The bias of p(z) is E,{p(x)} — p(x), where, from (4.19), E,{p(z)} = po/hn.
By the generalized mean value theorem, there exists &y € Ty such that the
leading term of the integrated squared bias for bin Tj is

[ wiasponrar~pien [ (5-+) ar=Siwier. wa

To
A similar result holds for bin Ty. The total integrated squared bias (ISB)
is obtained by multiplying this result by h,, summing over all bins, and
arguing that the sum converges to an integral. The asymptotic integrated
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squared bias (AISB), which is defined as the leading term in ISB, is given
by

1
AISB = —hZR(p’), (4.23)
where R(g) = [{g(u)}?du. Next, define the integrated variance (IV) as
IV = / var{p(z)}dx = Z/ var{p(z)}dx. (4.24)

Substituting from (4.20), summing over all bins, and setting > ,ps =
[ p(z)dz = 1, we have that

1 1

vV = 7. 4.2

v nh, nhy, zg:pz (4.25)
Now, from (4.18), we have that Ze p7 = hn>_,[p(&)]?hy. The summation
on the rhs approximates h,, [[p(z)]?dz. The asymptotic integrated variance
(AIV) is defined as the leading terms in IV and is given by

1 R(p
AV = — — —=. 4.26

Combining ATV with AISB yields the asymptotic MISE (AMISE),

_ 1 2
AMISE = —— + 12hnR(p). (4.27)

If h,, — 0 and nh,, — oo as n — oo, then IMSE — 0.

Differentiating (4.27) wrt h,,, setting the result equal to zero, and solving,
we have that AIMSE is minimized wrt h,, by the optimal bin width,

o= () (4.28)

where p’ = p/(x) = dp(x)/dz is the first derivative of p wrt =, and R(p’)
is a measure of roughness of the density function p (see Exercise 4.2). If
X ~ N(0,0?), then (4.28) reduces to

hi ~ 3.49080n /3, (4.29)

In Figure 4.3, we graph the histogram of 5,000 observations randomly
drawn from N (0, 1) using bin widths 0.1, 0.2 (optimal using (4.29)), 0.3,
and 0.4.

The asymptotic IMSE corresponding to the optimal choice (4.29) of bin
width is given by

AIMSE* = (3/4)?/3[R(p")])/3n=2/3, (4.30)
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FIGURE 4.3. Histograms of 5,000 observations randomly drawn from
a standard Gaussian distribution. The optimal bin width is 0.2 (top-right
panel). The other three histograms have bin widths of 0.1 (top-left panel),
0.3 (bottom-left panel), and 0.4 (bottom-right panel).

which reduces to AIMSE* a 0.43n=2/3 in the A(0,1) case. This conver-
gence rate of O(n’2/ 3) is substantially slower than most other types of
density estimators, which gives a more technical reason why histograms do
not make good density estimators.

4.3.8  Estimating Bin Waidth

An important aspect of drawing histograms is choice of bin width, which
operates as a smoothing parameter. The two most popular methods for
choosing the most appropriate histogram bin-width for a given data set are
the “plug-in” method and cross-validation.

The obvious estimate of A, in the Gaussian case is given by substituting
the sample standard deviation s in (4.29) in place of the unknown o; that is,
E;“l = 3.5sn"1/3 (“Scott’s rule”). This “plug-in” estimator generally works
well, but for non-Gaussian data, it can lead to overly smoothed histograms
(via too-wide bin widths or, equivalently, too-few bins). Slightly narrower
bin widths can be obtained using the more robust rule ﬁz = 2(IQR)n~"1/3,
where IQR is the interquartile range of the data. The robust rule will yield
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a narrower bin width than the Gaussian rule if s/IQR > 0.57. Although
this robust rule can sometimes yield wider bin widths than the Gaussian
rule, we should not see much difference between the two choices in practice.

The second method uses leave-one-out cross-validation, CV/n, to esti-
mate hf. From (4.8), ISE can be expanded into three terms:

ISE = /[ﬁ(x)]zdx - 2/;5(x)p(:v)d:£ + /[p(x)]zdx (4.31)

The last term, which depends only upon the unknown p, is not affected
by changes in bin-widths h, and so can be ignored. The first term only
depends upon the density estimate p and can be easily computed. Because
the middle integral is the expected height of the histogram, E,{p(X)},
CV/n can be used to estimate this integral. Accordingly, the unbiased cross-
validation (UCV) criterion for a histogram is

UCV(h) = R(p) — z 4 p-i(;)
2 ntl EL: N? (4.32)
= (n—l)h 712(”_1)}1[:1 L .

See Exercise 4.10. The C'V/n estimate, /}\LUC\/, of h is that value of h that
minimizes UCV(h). A biased cross-validation (BCV) criterion for choosing
the bin width of a histogram has also been proposed and studied; for details,
see Scott and Terrell (1987). The BCV bin width, hpcy, is the value of
h that minimizes BCV(h), a similar-looking criterion to (4.32). Both UCV
and BCV criteria yield consistent estimates of h, but convergence is slow
in either case, the relative error being O(n~'/9).

4.3.4  Multivariate Histograms

The univariate results on optimal bin width and asymptotically optimal
IMSE can be extended to the multivariate case.

In this case, we are given a random sample of observations, X1, Xs, . .., Xy,
where x; = (214, %2, -+, )7, from the multivariate density p(x), x € R".
Each axis is partitioned in the form of a grid of uniformly spaced bins. If
the jth axis is partitioned by bins of width h;,, j = 1,2,...,7, the space
R" is partitioned into hyperrectangles, each having volume hi nha.p - Ay p.

Now, suppose N, multivariate observations fall into the fth hyperrect-
angle By, where ), N; = n. Then, our histogram estimate of p(x) is

1
nhl,nhZ,n e

px) =

- > Nilp, (x). (4.33)
r,n Z
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FIGURE 4.4. Bivariate histograms for the coronary heart disease study.
Variables plotted are resting heart rate and mazximum heart rate. Left panel:
control group. Right panel: coronary group.

It can be shown (Scott, 1992, Theorem 3.5) that the asymptotically optimal
bin width, A7 ,, for the fth variable is given by

. 1/(2+r)
Wi = [Rp)) ™ (6 ][ (B 2D (4.34)
j=1
and the asymptotically optimal IMSE is
1/(2+r)
1 T
AIMSE” = 26%/ @) { ] R(py) n=2/ (), (4.35)
j=1
where p; = 9p(x)/0x;.
In the multivariate Gaussian case, N;.(0, £), where ¥ = diag{o?, ..., 02},
(4.35) reduces to
by, =231/ @) /@420 gy =1/ (24, (4.36)

For r = 1, the constant in (4.36) reduces to 2 - 3/371/6 = 3.4908, and as
7 — 00, the constant becomes 27/2 = 3.5449. So, for all r, the constant lies
between 3.4908 and 3.5449. A rule-of-thumb, therefore, for this particular
case is to use hy, ~ 3.50,n =/ (2+7),

Figure 4.4 displays bivariate histograms of both the control group (left
panel) and coronary group (right panel) for the coronary heart disease
study (see Section 4.1.1). In particular, the control-group histogram has a
unimodal and sharply skewed shape, whereas the coronary-group histogram
has a bimodal and more blocky shape. Problems in visualizing important
characteristics of a bivariate histogram, due to its “blocky” and discontin-
uous nature, often make such density estimators difficult to work with in
practice.
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4.4 Maximum Penalized Likelihood

The ML method of Section 4.3.3 fails miserably when the class H of den-
sities over which the likelihood £ is to be maximized is unrestricted. For
that case, the likelihood is maximized by a linear combination of Dirac delta
functions (or “spikes”) at the n sample values, resulting in a value of +o00
for the likelihood. There have been several approaches to ML density esti-
mation in which restrictions are placed on H; these include order-restricted
methods and sieve methods (see, e.g., Izenman, 1991). Here, we restrict the
likelihood £ by penalizing £ for producing density estimates that are “too
rough.”

Let ® be a given nonnegative (roughness) penalty functional defined on
H. The ®-penalized likelihood of p is defined to be

n

L(p) = [ p(zi)e @, (4.37)

i=1

The optimization problem calls for Z(p)7 or its logarithm,

n
L(p) =log, L(p) = Z log, p(z;) — ®(p), (4.38)
i=1
to be maximized subject to

p € H(Q), / p(u)du =1, p(u) >0 for all u € Q. (4.39)
Q

If it exists, a solution, p, of that problem is called a maximum penalized
likelihood (MPL) estimate of p corresponding to the penalty function ® and
class of functions H. For example, ®(p) = affooo [p” (x)]?dz is used in the
IMSL Fortran routine DESPL, where o > 0 is a smoothing parameter. IMSL
recommends a = 10 for N'(0,1) data and using a grid of v = 1(10)100 for
other situations.

Good and Gaskins (1971) observed that the MPL method could, for
certain types of problems, be interpreted as “quasi-Bayesian” because Z(p)
in (4.37) resembles a posterior density for a parametric estimation problem.
Furthermore, the MPL method is closely related to Tikhonov’s method of
regularization used for solving ill-posed inverse problems (O’Sullivan, 1986).

The existence and uniqueness of MPL density estimates have been estab-
lished, and it has been shown that such estimates are intimately related to
spline methods (de Montricher, Tapia, and Thompson, 1975). For example,
if p has finite support Q and if H(f?) is a suitable class of smooth functions
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on €2, then the MPL estimate p exists, is unique, and is a polynomial spline
with join points (or “knots”) only at the sample values.

The case when p has infinite support is more complicated. Good and
Gaskins (1971) proposed penalty functionals designed to estimate the “root-
density,” so that p =32 would be a nonnegative (and bona fide) estimator
of p. The penalty functionals were

®1(p) =4aR(y), a>0, (4.40)

®2(p) = 4aR(y') + BR(Y"), a=0,82=0, (4.41)

where, as before, R(g) = [[g(x)]?dz, for any square-integrable function
g, and the hyperparameters o and 3, with o + 8 > 0 in (4.41), control
the amount of smoothing. The choice of ®; or 5 depends upon how best
to represent the “roughness” of p. Good and Gaskins preferred ®, to @1,
arguing that curvature as well as slope of the density estimate should be
penalized.

If the optimization problem is set up correctly, and we use the penalty
function ®; and a given value of «, then the resulting estimator, 7,, say,
exists, is unique, and is a positive exponential spline with knots only at
the sample values (de Montricher, Tapia, and Thompson, 1975). An expo-
nential spline rather than a polynomial spline is the price to be paid for
requiring nonnegativity of the density estimator. The MPL estimator is
then given by p, = 72. This density estimator is consistent over a number
of norms, including L, and L. Similar statements can be made about the
optimization problem where ®, is the penalty function and « and [ are
given.

Implementation of the MPL method depends upon the quality of the
numerical solutions to the restricted optimization problems. Scott, Tapia,
and Thompson (1980) studied a discrete approximation to the spline so-
lutions of the MPL problems and proved that the resulting discrete MPL
estimator exists, is unique, converges to the spline MPL estimator, and
is a strongly pointwise consistent estimator of p. Fortunately, solutions to
the MPL density-estimation problem can be expressed in terms of kernel
density estimates, where the kernels are weighted according to the other
observations in the sample rather than with a uniform n~! weight as in
(4.42) below.

4.5 Kernel Density Estimation

The most popular density estimation method is the kernel density esti-
mator. Given n iid univariate observations, x1, xs, ..., Z,, drawn from the
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density p, the kernel density estimator,

1 < -z
ﬁh(x):%ZK<x hx) zeR, h>0, (4.42)
=1

of p(z), x € R, is used to obtain a smoother density estimate than the
histogram. In (4.42), K is a kernel function, and the window width h deter-
mines the smoothness of the density estimate. Choice of h is an important
statistical problem: too small a value of h yields a density estimate too
dependent upon the sample values, whereas too large a value of h produces
the opposite effect and oversmooths the density estimate by removing in-
teresting peculiarities. Given a kernel K and window width A, the resulting
kernel density estimate is unique for a specific data set; hence, kernel den-
sity estimates do not depend upon a choice of origin as do histograms.

There are several ways to define a multivariate version of (4.42). In the
following, we use the formulation provided by Scott (1992, Section 6.3.2).
Given the r-vectors x;, Xa, . . ., X, the multivariate kernel density estimator
of p is defined to have the general form,

pu(x) = ﬁ ZK(H*I(X -x;)), xRN, (4.43)

where H is an (r X r) nonsingular matrix that generalizes the window width
h, and K is a multivariate function with mean 0 and integrates to 1. If,
for example, we take H = hA, where h > 0 and |A| = 1, the size and
elliptical shape of the kernel will be determined completely by h and the
matrix AAT, respectively. If A =1, then (4.43) reduces to

n

N 1 X — X; .
ph(x):nhrZK( - ) xR (4.44)

i=1

In (4.44), the choice of kernel function K and window width A control
the performance of p,, as an estimator of p. Because pj, inherits whatever
properties the kernel K possesses, it is important that K has desirable
statistical properties.

4.5.1 Choice of Kernel

The simplest class of kernels consists of multivariate probability density
functions that satisfy

K(x) >0, K(x)dx = 1. (4.45)
Ror

If a kernel K from this class is used in (4.44), then pj, will always be a bona
fide probability density.
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TABLE 4.1. Ezamples of univariate kernel functions with compact sup-
port.

Kernel Function K(x)
Rectangular %I[|z|§1]
Triangular (1 = |z ja<y

Bartlett—Epanechnikov 3(1— 2w <y

Biweight 1o (1 =) I <)
Triweight %(1 - 3172)?’I[Iavlél]
Cosine T COS(%W)][MSH

Popular choices of univariate kernels include the Gaussian kernel with
unbounded support,

K(z) = (2r) Y2 *"/2 e R, (4.46)

and the compactly supported “polynomial” kernels,

i . .
= 3Beta( £ 1,175 =0
(4.47)
Special cases of the polynomial kernel are the rectangular kernel (j = 0,
kio = 1/2), the triangular kernel (i = 1,5 = 1, k11 = 1), the Bartlett—
Epanechnikov kernel (i = 2,5 = 1, ka1 = 3/4), the biweight kernel (i =
2,j = 2, kag = 15/16), the triweight kernel (i = 2,5 = 3, ko3 = 35/32),
and, after a suitable rescaling, the Gaussian kernel (i = 2,j = o). Their
specific forms are listed in Table 4.1 and graphed in Figure 4.5.

K(z) = ri;(1 - |x|i)jf[\x\§1], Kij

It has been known for some time that the Bartlett—Epanechnikov kernel
minimizes the optimal asymptotic IMSE with respect to K. However, IMSE
is, in fact, quite insensitive to the shape of the kernel, so the Gaussian or
rectangular kernels are just as good in practice as the optimal kernel.

Multivariate kernels are usually radially symmetric unimodal densities,
such as the Gaussian,

1 -
K(x) = XX x e R, (4.48)
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FIGURE 4.5. Univariate kernel functions with compact support.
Left panel: rectangular and triangular kernels. Right panel: Bartlett—
Epanechnikov, biweight, and triweight kernels.

and the compactly supported Bartlett—Epanechnikov,

i i 7.rr/2
e T

(4.49)

In certain multivariate situations, it may be convenient to use product ker-
nels of the form,

K(x) = H K(z;), (4.50)

which is a product of univariate kernel functions, where the kernels are the
same for each dimension. If we take H in (4.43) to be the diagonal ma-
trix H = diag{hi,n, -, hrn} = hA with different window widths in each
dimension, where A = diag{h1,n/h, -, hypn/h}, and let K be a product
kernel, then (4.43) reduces to

1 n I Ti— Tis
~ _ K J ] T 4 ]_
Pl =52 ] ( hin > xEr A
=1 | j=1 ’
where x = (x1,---,2,.)7, X; = (Ti1, -, 2ir)7, and b = (hy -+ hpn)V/7 is

the geometric mean of the r» window widths.

4.5.2  Asymptotics

Early work on kernel density estimation emphasized asymptotic results,
which depended upon the particular viewpoint considered.

The L, Approach. Among the remarkable L, results proved for kernel
density estimates, we have that if K satisfies (4.45), then the kernel esti-
mator (4.44) will be a strongly consistent estimator of p iff h, — 0 and
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nh, — 00, as n — oo, without any conditions on p (Devroye, 1983). More-
over, in the univariate case, MIAE is of order O(n~2/%) (Devroye and Pen-
rod, 1984), which is better than the corresponding L; rate for histograms.
Explicit formulas for the minimum MIAE and the asymptotically optimal
smoothing parameters for kernel estimators are available (Hall and Wand,
1988).

The Lo Approach. Under regularity conditions on K and p, it can be
shown that if h,, — 0 as n — oo, then the univariate kernel density estima-
tor is both asymptotically unbiased and asymptotically Gaussian (Parzen,
1962). In the multivariate case, the MISE is asymptotically minimized over
all h satisfying the above conditions by

hy, = a(K)B(p)n =/, (4.52)

where r is the dimensionality, o(K) depends only upon the kernel K, and
B(p) depends only upon the unknown density p (Cacoullos, 1966). This
result shows that the window width should get smaller as the sample size
n gets larger; this reflects a commonsense notion that “local” smoothing
information becomes more important as more data become available. More-
over, MISE — 0 at the rate O(n=*/("+4)). These L, results show clearly
the dimensionality effect, because these convergence rates become slower
as the dimensionality r increases.

In the univariate case, the pointwise variance (4.3) and bias (4.4) of pp, ()
are found by using Taylor-series expansions:

R(E)p(x) _ [p(x)]?

nhy, n

var{p(z)} ~ , (4.53)

RN 1
bias{p(e)} = 5ok h2p" (2); (4.54)

where R(g) = [[g(z)]?dx for any square-integrable function g, and 0% =
[ 2?K(z)dz. See Exercise 4.11. Thus, we can reduce the variance by in-
creasing the size of h, (i.e., by oversmoothing), and bias reduction can
take place if we make h,, small (i.e., by undersmoothing). This is the clas-
sical bias-variance trade-off dilemma, and so, to choose h,,, a compromise
is needed.

Adding the variance term and the square of the bias term and then
integrating wrt = gives us the asymptotic MISE (AMISE) for a univariate
kernel density estimator:

R(K)

1
AMISE(hy) = —— +Za;§h;§R(p”). (4.55)

Minimizing AMISE(h,,) wrt h,, yields the asymptotically optimal window

width,
R(K) \'° _|
B =4 -t /5 4.56

e 120
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so that a(K) = {R(K)/o%}'/° and B(p) = {R(p”)}fl/5 in (4.52). Substi-
tuting the expression for A} into AMISE shows that

AMISE” — g[UKR(K)]4/5[R(p")]l/%*‘*/? (4.57)

See Scott (1992, p. 131).

Consider the special case where K is a product Gaussian kernel (4.50)
and the density p is multivariate Gaussian with diagonal covariance matrix,
diag{c?,...,02} (i.e., the variables are independent). Then, (4.52) reduces
to

4 1/(r+4) _—
hjn = <r+2> o Ui =1,2, (4.58)

In the univariate case, where K is the standard Gaussian kernel and p is a
Gaussian density with variance o2, then

h¥ =1.060n~1/° (4.59)

is the asymptotically optimal window width. In the bivariate case, the
constant in (4.58) is exactly 1. In general, (4/(r + 2))%/(*+4) attains its
minimum as a function of r when r = 11, where its value is 0.924. For
general r, Scott (1992, p. 152) recommends the rule b, = ajnfl/(’”r‘l).

4.5.83  Ezxample: 1872 Hidalgo Postage Stamps of Mezico

This example shows the effect of varying the window width h of a Gaus-
sian kernel density estimate. The data' consist of 485 measurements of the
thickness of the paper on which the 1872 Hidalgo Issue postage stamps of
Mexico were printed (Izenman and Sommer, 1988). This example is partic-
ularly interesting because of the fact that these stamps were deliberately
printed on a mixture of paper types, each having its own thickness charac-
teristics due to poor quality control in paper manufacture.

Today, the thickness of the paper on which this particular stamp image
is printed is a primary factor in determining its price. In almost all cases,
a stamp printed on relatively scarce “thick” paper is worth a great deal
more than the same stamp printed on “medium” or “thin” paper. It is,
therefore, important for stamp dealers and collectors to know how to dif-
ferentiate between thick, medium, and thin paper. Quantitative definitions
of the words thin and thick do not appear in any current stamp catalogue,

1The Hidalgo stamp data can be found in the file Hidalgo1872 on the book’s website.
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FIGURE 4.6. Gaussian kernel density estimates of the 485 measurements
on paper thickness of the 1872 Hidalgo Issue postage stamps of Mezico.
The window widths are (a) h = 0.01; (b) h = 0.005; (¢) h = 0.0036;
(d) h = 0.0025; (e) h = 0.0012; and (f) h = 0.0005. Notice the smooth
appearance of the density estimates and the emergence of more modes as h
is decreased.

and decisions as to the financial worth of such stamps are left to personal
subjective judgment.

Figure 4.6 displays Gaussian kernel density estimates of the Hidalgo
stamp data for six window widths: A = 0.01,0.005,0.0036, 0.0025, 0.0012,
and 0.0005. As & is reduced in magnitude, more structure and detail of the
underlying density become visible and more modes emerge. Clearly, the
estimate in panel (a) is too smooth, and that in panel (f) is too noisy. The
most reasonable density estimate is that which corresponds to a window
width of h = 0.0012 (see panel (e)) and has seven modes. The two biggest
modes occur at thicknesses of 0.072 mm and 0.080 mm; a cluster of three
side modes occur at 0.090 mm, 0.100 mm, and 0.110 mm; and there are
two tail modes at 0.120 mm and 0.130 mm.

Our analysis does not stop there. We have more information regarding
this particular stamp issue. Every stamp from the 1872 Hidalgo Issue was
overprinted with year-of-consignment information: there was an 1872 con-
signment (289 stamps) and an 1873-1874 consignment (196 stamps). We
divided these 485 thickness measurements into two groups according to the
appropriate consignment overprint.

Gaussian kernel density estimates (with common window width h =
0.0015) were computed for the data from each consignment. The resulting
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FIGURE 4.7. Gaussian kernel density estimates from data on the 1872
consignment (n = 289) and 1873-1874 consignment (n = 196) of the 1872
Hidalgo Postage Stamp Issue of Mexico. For both density estimates, a com-
mon window width of h = 0.0015 was used.

density estimates, which are graphed in Figure 4.7, show clearly that the
paper used for printing the stamps in the two consignments had very dif-
ferent thickness characteristics. It appears that a large proportion of the
1872 consignment of stamps was printed on very thick paper, which was
not used for the 1873-1874 consignment.

Because 1872 Hidalgo Issue stamps printed on thick paper command
much higher prices, these results show that one should look at year-of-
consignment as an important factor for valuation purposes.

4.5.4 FEstimating the Window Width

For kernel density estimation, rather than trying an ad hoc sequence of
different window widths until we find one with which we are satisfied, it
would be much more convenient to have an automated method for deter-
mining the optimal window width for any given data set.

For the Ly approach, we see from (4.52) that the optimal window width,
hy, depends explicitly on the unknown density p through the quantity
B(p), and so cannot be computed exactly. The most popular methods for
estimating h} are the so-called “rule-of-thumb” method, cross-validation,
and the “plug-in”method.

Rule-of-Thumb Method An obvious way to estimate the window width is
to insert a parametric estimate p of p into G(p).
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In the univariate case, we can choose a “reference density” for p, find
R(p”), and then estimate the result using a random sample from p. If we
take p to be N(0,0%) and K to be a standard Gaussian kernel, then the
“optimal” rule-of-thumb (ROT) window width for a Gaussian reference
density (see (4.59)) would be hEOT = 1.06sn~1/5, where the sample stan-
dard deviation s is the usual estimate for o. Otherwise, a more robust
estimate of o may be used, such as min{s,IQR/1.34}, where IQR is the
interquartile range, and for Gaussian data, IQR ~ 1.34s (Silverman, 1986,
pp. 45-47).

For example, the Hidalgo postage stamp data has standard deviation
s = 0.015, so that the optimal ROT window width is given by hROT =
(1.06)(0.015)(485) /5 = 0.005; as we see from Figure 4.6(b), thls value
yields an overly smoothed density estimate.

Rule-of-thumb estimators for window widths are generally regarded as
unsatisfactory (with some exceptions). Simulations and case studies with
real data both indicate that window widths produced by this method tend
to be overly large; if that happens, the density estimate will be drastically
oversmoothed and the presence of an important mode may be unknowingly
removed.

Cross-Validation A popular method for determining the optimal window
width is leave-one-out cross-validation (CV/n). In the univariate case, the
basic algorithm removes a single value, say x;, from the sample, computes
the appropriate density estimate at that z; from the remaining n—1 sample

values,
T — T
Ph 71(1'1 == h E K( > (460)

and then chooses h to optimize some given criterion involving all values
of pn,—i(zi), i = 1,2,...,n. A number of different versions of CV/n have
been used for determining h in density estimation, including unbiased and
biased cross-validation.

The unbiased cross-validation choice, hUCV of window width is that h
that minimizes

2 n
UCV (h) = R(py) — — Dh,—i(%s), 4.61
(8) = R@) = = 3 il (161)
where R(g) = [i[g9(2)]*dx. The criterion (4.61), which is derived in exactly

the same manner as the CV-expression for the histogram given in (4.32),
is referred to as an unbiased cross-validation (UCV) criterion because it is
exactly unbiased for a shifted version of MISE; that is,

E,{UCV(h)} = MISE(h) — R(p). (4.62)
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Only very mild tail conditions on K and p are needed to prove that hY¢V
asymptotically minimizes ISE and gives good results even for long-tailed
p; it has also been shown to perform asymptotically as well as the MISE-
optimal (but unattainable) window width A%, and even though convergence
tends to be slow, it cannot be improved upon asymptotically.

Another approach to the problem of choosing A is to minimize AMISE(h)
directly. In the univariate case, AMISE depends upon the unknown R(p"),
which we, therefore, need to estimate. Scott and Terrell (1987) showed that
E,{R(®")} = R®") + R(K")/nh’ + O(h?), so that R(p}.) asymptotically
overestimates R(p”). From this result, they proposed the modified estima-
tor
R(K//)

nh5
which is an asymptotically unbiased estimator of R(p”). See also Hall and
Marron (1987).

If we define K (u) = h™'K(u/h), then, K”(u/h) = h*K]!(u). Differen-
tiating pp(x) (see (4.44)) twice wrt x gives

R(p") = R(p}) - (4.63)

Z K} (x — x;). (4.64)

Squaring (4.64), integrating the result wrt x, and then using a change of
variable gives

I e w—
R = — > > K+ Kj(wi - )
i=1 j=1
- K n? ZZK - ;)
i#j

R(K”) 1

= nh? + n2h5 ZZK}/L/ * K]/.L/(SUZ — IL’j), (465)
i#j

where the convolution of two functions f and g is defined by f x g(u) =
[ f(2)g(u — z)dz. Substituting (4.65) into the expression (4.63) yields

~ 1
R(p}) = —37E g E K} « K} (z; — xj). (4.66)
i#£]

Substituting (4.66) as an estimator of R(p”) into AMISE (4.55) and setting
h = hy, yields a biased cross-validation (BC'V) criterion,

BOV () = }i( ZZK WKJ (@) (467)

n2h
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The BCV estimator of h is that value, hE€V that (locally) minimizes the
BCV(hy,) criterion.

For the Hidalgo stamp data example, the BCV choice of h is 0.0036,
corresponding to Figure 4.6(c) and yielding an overly smoothed density
estimate, whereas the UCV choice of & is 0.0005, corresponding to Figure
4.6(f) and yielding an undersmoothed density estimate.

Even though CV methods are popular, they have been strongly criticized.
In general, we have seen that UCV tends to undersmooth, whereas BCV
tends to oversmooth, especially for skewed distributions. Both methods are
computationally intensive because they involve computing the differences
between all pairs of data values (see (4.67) for BCV, and a similar formula
can be given for UCV); thus, for large quantities of data (i.e., thousands
of observations), these methods tend to becomes impractical. Furthermore,
the UCV and BCV methods have been found to produce multiple local
minima, and the question becomes one of which to choose (a recommended
action in each case is to take the largest local minimum).

These criticisms, plus recent successful work on “plug-in” methods, have
relegated the UCV and BCV methods to “first-generation” status.

Plug-in Methods The “plug-in” idea for estimating A} can be traced back
to Woodroofe (1970), who proposed a two-step procedure:

1. Choose a window width g,, for a “pilot” density estimate p,, (x), and
use this density estimate to compute R(p”) = R(py,, );

2. Plug fl(p”) into (4.56) to obtain the final window width, B;

This idea of estimating R(p”) in two steps via a pilot estimate has since
been modified in a number of different ways, including a fully iterated ver-
sion and a version that uses (4.63) to reduce the bias. Some of these candi-
date ideas proved useful, others less so. For example, in certain situations,
using (4.63) can produce negative values for R(p”).

The most successful of these modifications was proposed by Sheather and
Jones (1991). Estimating R(p”) is different from estimating p, and so we
expect the corresponding window widths, g, and h,, to be different, but
related; that is, we expect the pilot window width g,, = g(hy,). Rather than
use (4.63), we estimate R(p”) by R(ﬁ'g'(hn)). The proposed window width,

hSI

7, is that value of h,, that solves the equation,

1/5
B — { R(K) )} n-1/5 (4.68)

BBy,

The optimal choice for g, is given by

R(p
g(h Rl } /7 (4.69)
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where C'(K) is a constant dependent only upon the kernel K. The un-
known quantities R(p”’) and R(p"’) are estimated by R(p) and R(p}’),
respectively, where the window widths, a and b, are chosen according to
the asymptotic optimality results. At this second step in the computa-
tions, R(p"”) and R(p’") are estimated using the Gaussian reference density
method, as we did for the ROT window width. The resulting convergence
rate of A3 is O(n=5/14).

Applying the Sheather—Jones plug-in (SJPI) method to the Hidalgo stamp
data yields an estimated window width of 0.0012, which corresponds to the
density estimate in Figure 4.6(e). Thus, the plug-in estimator clearly out-
performs any of the competing window-width estimators for the Hidalgo
stamp data.

Plug-in methods are currently being promoted as “second-generation”
methods. This viewpoint is based upon strong evidence of superior per-
formance from asymptotics, simulations, and experience with real data.
Despite this evidence, however, there are some reservations regarding the
superiority of the plug-in method. In particular, Loader (1999) makes the
following points: (1) the success of plug-in methods depends crucially upon
an arbitrary specification of the pilot window width, and if misspecification
occurs, poor density estimates will result; (2) in difficult examples, where
there are many modes in the data, the SJPI method oversmoothes and
completely misses the fine structure, whereas UCV, with its tendency to
undersmooth, gives a good accounting of itself; and (3) the poor perfor-
mance of the UCV method may be due to an inappropriate use of a fixed
window width, and that instead a more data-adaptive window width would
be a better choice.

Ezxample: Eruptions of Old Faithful Geyser

Another example of the different window-width selection methods is dis-
played in Figure 4.8 for the well-known Old Faithful Geyser data.? This
data set, which has been explored at length in the density estimation lit-
erature, consists of the duration, in minutes, of 107 consecutive eruptions
of Old Faithful Geyser (a hot spring that erupts hot water and steam at
intervals ranging from 30 to 90 minutes, in Yellowstone National Park,
Wyoming), 1-8 August 1978 (Weisberg, 1985, pp. 230-235).

We see the bimodality in the data; we also see that UCV provides a
noisier density estimate than does BCV, with SJPI providing some degree
of compromise between them. Compared with a histogram of the data,
SJPI and BCV have substantially reduced the magnitude of the left mode

2The data can be found in the file geyser available on the book’s website.
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FIGURE 4.8. Gaussian kernel density estimators of the Old Faithful
Geyser data. The window widths for the estimates were selected by un-
biased cross-validation (left panel), Sheather—Jones plug-in method (center
panel), and biased cross-validation (right panel).

relative to the right mode, whereas UCV retains that particular feature of
the data.

4.6 Projection Pursuit Density Estimation

Multivariate kernel density estimators tend to be poor performers when
it comes to high-dimensional data because extremely large sample sizes
are needed to match the sort of numerical accuracy that is possible in low
dimensions. In light of this, Friedman and Stuetzle (1982) and Friedman,
Stuetzle, and Schroeder (1984) developed projection pursuit density esti-
mation (PPDE) based upon the general projection pursuit algorithm. The
PPDE method has been shown in simulations to possess excellent proper-
ties, and several striking applications of PPDE to real data have also been
published.

4.6.1 The PPDE Paradigm

When dealing with small samples of high-dimensional data, the PPDE
procedure may be jump-started by restricting attention to the subspace
spanned by the first few significant principal components. A projection
pursuit density estimator of p is then formed using the iterative procedure
given in Table 4.2.

The iterative procedure is repeated as many times as necessary. At the
kth iteration,

k
M) =) H gi(ajx) = p* 1 (x)gi (afx) (4.70)
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TABLE 4.2. Projection pursuit density estimation algorithm.

1. Input: Observed data, £ = {x;,% = 1,2,...,n}. Sphere the data to have
mean 0 and covariance matrix L.

2. Initialize: Choose p'® to be an initial multivariate density estimate of p,
usually taken to be the standard multivariate Gaussian.

3. Doj=1,2...:
e Find the direction a; € " for which the (model) marginal pa; along

a; differs most from the current estimated (data) marginal f)\aj along
a;. Choice of direction a; will not generally be unique.

e Given a;, define a univariate “augmenting function”

gi(ajx) = =

Pa; (a;x)
Pa; (a;x)

e Update the previous estimate so that

/‘(j)(x) — i)‘(j—l)

P (x)g;(ajx).

will be the current multivariate density estimate, where

paj(a;'—x) .
gi@aix) =~—————, j=1,2,... k. 4.71
]( J ) paj(ajx) ( )

The vectors {a;} are unit-length directions in R”, and the augmenting (or
ridge) functions {g;} are used to build up the structure of P9 so that
p®) converges to p in some appropriate sense as k — oo. The number k
of iterations operates as a smoothing parameter, and a stopping rule is

determined by balancing bias against the variance of the estimator.

Friedman, Stuetzle, and Schroeder (1984) suggest graphical inspection
of the augmenting functions (i.e., plotting gj(a;-x) against ajx for j =
1,2,...,k) as a termination criterion for the iterative procedure. Compu-
tation of the augmenting functions {g;(ajx)} is discussed in Huber (1985,
Section 15) and discussants Buja and Stuetzle (especially pp. 487-489),
and Jones and Sibson (1987, Section 3). Given a;, estimate pa;, by first pro-
jecting the sample data along the direction a;, thus obtaining z; = ajx;,
i=1,2,...,n, and then compute a kernel density estimate from the {z;}.
Monte Carlo sampling is used to compute pa;, followed by kernel den-
sity estimation. Alternatives to kernel smoothing include cubic spline func-
tions (Friedman, Stuetzle, and Schroeder, 1984) and the average shifted
histogram (Jee, 1987).
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4.6.2  Projection Indexes

PPDE is driven by a projection index usually of the form

16) = [ Jo(w(:)ds = B, 0), (4.72)

where J is a smooth real-valued functional and z is a one-dimensional
projected version of x. As a functional of p, I(p) should be absolutely con-
tinuous with easily computable first derivatives. “Interesting” projections
should correspond to random or unstructured projections.

Estimates of I(p) should be amenable to fast computation, unaffected by
the overall covariance structure of the data or by outliers or heavy tails. A
very reliable and thorough numerical optimizer is absolutely essential for
finding “substantive” maxima of I(p), because sampling fluctuations tend
to trap ineffective optimizers within a multitude of local maxima (Fried-
man, 1987).

If {z;} are the projected data, then we can estimate (4.72) by

I) = [JGENE ) = 1 Y T0lE0) (4.73)

Thus, if J(p(z)) = p(z), then I(p) = [[p(z)]>dz can be estimated by I(p) =
(1/n) >°1, Dn(z:), where py, is a kernel estimator with window width h An-
other choice is to take J(p(z)) = log, p(z), so that I(p) = [ p(z)log, p(z)dz,
which is (negative) cross-entropy, and (4.73) can be estimated at the kth
iteration by (1/n) Y"1 log, p™*)(2;).

Other projection indexes that have been used for PPDE include a mo-
ment index based upon the sum of squares of the third and fourth sample
cumulants of the projected data (Jones and Sibson, 1987) and the ISE
criterion (Friedman, 1987; Hall, 1989a). The latter approaches, though re-
lated, differed on whether or not to transform the projected data first.
Friedman used ISE between the transformed projected data density and
the uniform density, and Hall’s version used the ISE between the untrans-
formed projected data density and the standard Gaussian. Both Friedman
and Hall used orthogonal series density estimators (Legendre polynomials
and Hermite functions, respectively) to study their projection indexes.

Each of these indexes was designed to search for deviations from “unin-
terestingness,” whose definition depended upon the specific context. Thus,
the Friedman—Tukey index searched for evidence of “clottedness” as well
as departures from a parabolic density; the entropy index searched for de-
partures of the projected data from Gaussian form because the Gaussian
distribution maximizes entropy; and the moment index and ISE criteria
also set up the Gaussian distribution as the least-interesting data feature.
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4.7 Assessing Multimodality

As we have seen, it is not unusual for a data set, large or small, to
have several modes (or local maxima) in its density estimate. Multiple
modes strongly suggest that the underlying probability distribution can be
modeled parametrically as a mixture of several probability distributions
(each usually Gaussian), where initial values of the EM algorithm (see
Section 12.9.1) can be set by centering each mixture component at the
location of a mode and setting the weight attached to that component
according to the relative magnitude of the corresponding mode.

Of course, there is no guarantee that a mixture of unimodal densities will
produce a multimodal density with the same number of modes as there are
densities in the mixture; similarly, there is no guarantee that those indi-
vidual modes will remain at the same locations in such a mixture. Indeed,
the shape of the mixture distribution depends upon both the spacings of
the modes and the relative shapes of the component distributions.

In many practical instances, however, the presence of more than a single
mode does suggest evidence for a mixture; this has led to several tests being
proposed for detecting multimodality in a distribution (see, e.g., Hartigan
and Hartigan, 1985). Given a sample of data and some degree of assurance
in multimodality, the modes can be evaluated in several ways. For example,
Good and Gaskins (1980) used the MPL method of density estimation to-
gether with certain “bump-hunting” surgical techniques, whereas Silverman
(1981, 1983) combined kernel-based density estimation with a hierarchical
bootstrap testing procedure to determine the most probable number of
modes in the underlying density. See Izenman and Sommer (1988) for an
extensive discussion of Silverman’s test and application to the 1872 Hidalgo
postage stamp data. Both methods are nonparametric, data-adaptive, and
computationally intensive.

Bibliographical Notes

There is a huge literature on nonparametric density estimation. Because
of the amount of material published, we cannot list all pertinent articles or
even books on the subject. Furthermore, due to space considerations, there
are many nonparametric density estimation methods, including orthogonal
series estimators and adaptive-kernel estimators, that are not described in
this chapter. For descriptions of these methods, see Izenman (1991) and
the references therein.

The most useful books on the subject are by Scott (1992), Silverman
(1986), and Simonoff (1996). Chapters on nonparametric density estimation
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in books include Bishop (1995, Chapter 2), Ripley (1996, Chapter 6), and
Duda, Hart, and Stork (2001, Chapter 4).

The origin of the histogram has been traced variously back to Galileo’s
star observations of 1632, John Graunt’s mortality tables of 1662, the bar
charts of William Playfair in 1786, and Karl Pearson in 1805 for the name.

There are several surveys on choices of window width, including Jones,
Marron, and Sheather (1996).

Multivariate kernel density estimation was studied by Cacoullos (1966)
and Epanechnikov (1969). Cacoullos (1966) appears to have been the first
to call K in (4.28) a kernel function; previously, K was known as a weight
function. He also was the first to use product kernels.

Exercises

4.1 Consider the class of functions of the form p(z) = Zsz_Ol yelr, (x),
where hZf;ol ye = 1. Given an iid sample, x1, o, ..., z,, from p(x), max-
imize the log-likelihood function, £ = 3" | log, [Zfz_ol yelIr, (z;)], subject
to the condition that h ZeLz_Ol ye = 1. Show that the histogram (4.13) is the
unique ML estimator of p. [Hint: Use Lagrangian multipliers.]

4.2 By minimizing AMISE in (4.27) wrt h,, show that the optimal bin
width, A}, is given by (4.28) and that the AMISE* = AMISE(h}) of the

no

histogram with the optimal bin width is (4.30).

4.3 The average shifted histogram (ASH) (Scott, 1985a) is constructed by
taking m histograms, D1, P2, ..., Pm, say, each of which has the same bin
width h,,, but with different bin origins, 0, h,, /m, 2h,/m, ..., (m—1)h,/m,
respectively, and then averaging those histograms,

m
Pasu(z) =m™! Zﬁk(l’)
k=1

The resulting ASH is piecewise constant over intervals [0, (k 4+ 1)d) of
width § = h,,/m; it has a similar block-like structure as a histogram but is
defined over narrower bins. Derive the integrated variance and integrated
squared-bias of the average shifted histogram. Show that the asymptotic
MISE of the ASH is

2 1 h2 PR 2 3 p
AMISE = S <1 + 2m2) + 12m2R(p H@ <1 —s —5m2) R(").

4.4 The frequency polygon (FP) (Scott, 1985b) connects the center of each
pair of adjacent histogram bin-values with a straight line. If two adjacent
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bin-values are py = Ny/nh,, and ppyr1 = Nyg1/nh,, then the value of the
FP at @ € [(€ — $)hn, (0 + L)hy,) is

prp(z) = <(f+ %) - ;—n> pe+ <;—n - (ﬂ %))ﬁul-

Whereas the histogram is discontinuous, the FP is a continuous density
estimator. Derive the integrated variance and integrated squared-bias of
the frequency polygon. [Hint: For ISB, use a Taylor series expansion of
p(z) to the term involving p”; then, for IV, use var(X +Y) = var(X) +
var(Y') + 2cov(X,Y) for binomial X and Y.] Show that if p” is absolutely
continuous and R(p’") < oo, then the asymptotic MISE is given by

2 49

_ h4R Vi )
i+ aggg e i)

Show that the h,, that minimizes AMISE(h,,) is

15 1/5
h* —9 Y —1/5.
" (49R<p~>> K

AMISE(h,,)

4.5 Write a computer program to compute the FP and the ASH and try
them out on a data set of your choice.

4.6 By considering m shifted histograms, let By, = [kd, (k4 1)d) be the kth
bin of the ASH, where § = h,,/m, and let v be the bin count in By. Note
that the ASH bin count for bin By is the average of the bin counts of the
m shifted histograms, each of width ¢, in bin Bjy. Show that, for x € By
and m large, the ASH can be expressed as a kernel density estimator with
triangular kernel on (—1,1).

4.7 The ASH is not continuous but can be made continuous by linearly
interpolating using the FP approach. Show that this ASH-FP density esti-
mate can be expressed as a kernel estimator.

4.8 Rosenblatt’s density estimator is

Pn(z) =h1 {Fn (x+ g) —F, (x g)] ,

where F, (x) is the empirical cumulative distribution function, z € R. Show
that this estimator is a kernel density estimator. Which type of kernel
corresponds to Rosenblatt’s estimator? Apply this kernel to estimate the
density of the 1872 Hidalgo stamp data. What do you notice about the
smoothness of the resulting density estimate?

4.9 Find the bias and variance of Rosenblatt’s estimator (Exercise 4.8).
From these expressions, find the MISE of that estimator.
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4.10 Verify equation (4.32).
4.11 Verify equations (4.53) and (4.54).

4.12 Generate n observations from the claw density,

4
p(x) = 0.5N(0,1) + ;)N<—1 01)2>,

and estimate that density using a kernel density estimator. Take n =
100, 200, and 300, and repeat 1,000 times at each sample size. Compare
the performances of UCV, BCV, and SJPI window-width estimators for
each simulation. Which window-width estimation method best finds the
claws?

4.13 The galaxy velocity data consist of the radial velocities of 323 loca-
tions in the area of the spiral galaxy NGC7531 in the Southern Hemisphere;
the data can be found on the book’s website. Compare the kernel density
estimates of the galaxy data using UCV, BCV, and SJPI window-width
estimators. Pay special attention to the number of modes in the estimates.
Use Silverman’s test to determine the number of modes (see Silverman,
1981; Izenman and Sommer, 1988).

4.14 The ushighways data consist of the approximate length (in miles)
of all 212 U.S. 3-digit interstate highways (spurs and connectors). The
data were extracted by L. Winner from the Rand McNally 1993 Business
Traveler’s Road Atlas and Guide to Major Cities and can be found on the
book’s website. Compare the kernel density estimates for these data using
UCV, BCV, and SJPI window-width estimators.
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Model Assessment and Selection in
Multiple Regression

5.1 Introduction

Regression, as a scientific method, first appeared around 1885, although the
method of least squares was discovered 80 years earlier. Least squares owes
its origins to astronomy and, specifically, to Legendre’s 1805 pioneering
work on the determination of the orbits of planets in which he introduced
and named the method of least squares. Adrien Marie Legendre estimated
the coefficients of a set of linear equations by minimizing the error sum
of squares. Gauss stated in 1809 that he had been using the method since
1795, but could not prove his claim with documented evidence. Within a
few years, Gauss and Pierre Simon Laplace added a probability component
— a Gaussian curve to describe the error distribution — that was crucial to
the success of the method. Gauss went on to devise an elimination algorithm
to compute least-squares estimates. Once introduced, least squares caught
on immediately in astronomy and geodetics, but it took 80 years for these
ideas to be transported to other disciplines.

The ideas of regression and correlation were developed in the mid-1880s
by Francis Galton in studies of heredity stature, and he applied those ideas
to a comparison of the heights of parents and their children (which led to
his famous phrase of “regression to mediocrity”). Galton (and also Fran-

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 107
DOI 10.1007/978-0-387-78189-1_5, © Springer Science+Business Media New York 2013
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cis Ysidro Edgeworth and Karl Pearson), however, failed to connect least
squares to regression. It was George Udny Yule, in 1897, who showed that
an assumption of a Gaussian error curve in regression could be replaced by
an assumption that the variables were linearly related, and that, as a result,
least squares could be applied to regression. Thus, the wealth of numeri-
cal algorithms already developed by astronomers and geodesists for finding
least-squares solutions could be put to work solving regression equations.

Since then, regression has evolved into many different forms, including
linear and nonlinear regression and parametric and nonparametric regres-
sion. Linear regression models, in particular, are referred to as simple, mul-
tiple, or multivariate depending upon the number of input and output
variables considered. Simple linear regression deals with one input and one
output, multiple regression deals with many inputs and one output, and
multivariate regression deals with many inputs and many outputs.

5.2 The Regression Function and Least Squares

Assume that an output (or dependent, response) variable Y is linearly
related to r input (or independent, predictor) variables Xi,..., X, in the
following way,

Y =6+ BiX;+e, (5.1)

j=1

where e is an unobservable random variable (the error component) with
mean 0 and variance 2. The relationship (5.1) is known as a multiple linear
regression model, where fg, 1, . .., 3, are unknown parameters and o2 > 0
is an unknown error variance. The linearity of the model (5.1) is a result of
its linearity in the parameters Sy, 81, . .., 3. Thus, transformations of the
input variables (such as powers X;-l and products X;X}) can be included
in (5.1) without it losing its characterization as a linear regression model.

The goal is to estimate the true values of B, 31,..., 53, and o2, and
to assess the impact of each input variable on the behavior of Y. In the
likely event that some of the input variables have negligible effects on Y,
we may also wish to reduce the number of input variables to a smaller
number, especially if r is large. In many uses of multiple regression, we are
interested in predicting future values of Y, given future values of the input
variables, and we would like to be able to measure the accuracy of those
predictions.

The way we treat the model (5.1) depends upon our assumptions about
how the input variables X1, ..., X, were generated. We distinguish between
the case when the values of Xq,..., X, are randomly selected according
to some probability distribution (the “random-X” case), a situation that
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occurs with observational data, and the case when the values of X1, ..., X,
are fixed in repeated sampling (the “fixed-X" case), possibly set through
a designed experiment.

5.2.1 Random-X Case

Suppose we have an input vector of random variables X = (X1q,..., X,)”
and a random output variable Y, and suppose that these r + 1 real-valued
random variables are jointly distributed according to P(X,Y’) with means
E(X) = py and E(Y) = py, respectively, and covariance matrices X x x,
Eyy = 0'32/, and Exy.

Consider the problem of predicting Y by a function, f(X), of X. We
measure prediction accuracy by a real-valued loss function L(Y, f(X)), that
gives the loss incurred if YV is predicted by f(X). The expected loss is the
risk function,

R(f) = E{L(Y, f(X))}, (5-2)

which measures the quality of f as a predictor. The Bayes rule is the
function f* which minimizes R(f), and the Bayes risk is R(f*).

For squared-error loss, R(f) becomes the mean squared error criterion
by which we judge f(X) as a predictor of Y. We have that

R(f) = EB{(Y - f(X))*} (5-3)
= Bx[Byx{(Y - f(X))*[X}], (5-4)

where the subscripts indicate the distribution over which the expectation is
taken. Hence, R(f) can be minimized pointwise (at each x). We can write

YV —f(x) = (Y = u(x)) + (u(x) = f(%), (5.5)

where p(x) = Ey|x{Y|X = x} is the mean of the conditional distribution
of Y given X = x and is called the regression function of Y on X. Squaring
both sides of (5.5) and taking conditional expectations, we have that

Evix{(Y = f(x))’ X =x} = Byx{(Y —u(x)*X=x}
+ (u(x) = f(x))%, (5.6)

where the cross-product term vanishes because Ey | x {Y —pu(x)|X = x} = 0.
Therefore, (5.6) is minimized with respect to f by taking

fr(x) = p(x) = Eyx{Y[X = x}, (5.7)
so that the pointwise minimum of (5.6) is given by

Byx{(Y = f*(x)*[X = x} = Eyjx{(Y — u(x))*|X = x}. (5-8)
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Taking expectations of both sides, we have that the Bayes risk is
R(S*) = min R(f) = B{(Y = p(X)’}. (5.9)

Thus, the best predictor of Y at X=x, using minimum mean squared er-
ror to define “best,” is given by u(x), the regression function of Y on X,
evaluated at X=x, which is also the unique Bayes rule.

To be more specific, suppose the relationship (5.1) holds, where we as-
sume that e is uncorrelated with the Xi,..., X,.. The regression function,
which is linear in X, is given by

T
wX)=Bo+ Y BiXi=Po+X B, =778, (5.10)
i=1
where fy is the intercept, 3, = (51,...,8-)7 is an r-vector of regression

coefficients, B = (Bo : BL)" is an (r 4+ 1)-vector, and Z = (1 : X7)7 is
an (r + 1)-vector. We then choose fy and 3, to minimize the quadratic
objective function (5.8). Let

S(8) = B{(Y - 278)?}, (5.11)

and define ,5' = argminﬁ S(B). Differentiating S(8) with respect to 3

yields:
95(8)
B
Setting (5.12) equal to zero for a minimum, we get the OLS estimator of

3:

= —2E(ZY — ZZ73). (5.12)

Bas = [E(ZZ7)]'E(ZY). (5.13)

From (5.13), and setting B, = (B : B7)7, it is not difficult to show
(Exercise 5.1) that
B, = IiZxv, (5.14)
Bo = py —pxP.. (5.15)
In practice, because px, piy, ¥ xx and X xy will be unknown, we estimate
them by ML using data generated by the joint distribution of (X,Y).

Now we estimate the unknown Z?* and ,Eo. Suppose that
D ={(x4,¥i),i=1,2,...,n}, (5.16)

are iid observations from P(X,Y’), where x; = (zi1, -, 2)7 is the ith
observed value of X = (X7, X, -+, X,.)" and y; is the ith observed value
of V,i=1,2,...,n. Let X = (x1,--,%X,)" be an (n x r)-matrix and
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Y=(y1,+,yn)” be an n-vector. Estimates of py and py are given by the
r-vector X = n~! > j=1%; and scalar § = n-t > j=1Yj, respectively. Let
X =(x,--+,X)7 be an (n X r)-matrix and YV = (g,---,y)” be an n-vector.
Let X, = X — X and ). = Y — Y be the mean-centered forms of X and Y,
respectively, and estimate X xx by n !XT X, and X xy by n=tXT V.. The
least-squares estimates of B* and BO are given by

B* - ( JXC)ingyw (5-17)
0o = §—X B, (5.18)
respectively.
5.2.2 Fized-X Case
In the “fixed-X” case, we view the input variables Xi,..., X, as being
fixed in repeated sampling at the values x1, ..., x,, respectively. Thus, the

value of the random variable Y may depend upon input variables whose val-
ues are selected by an experimentalist within the framework of a designed

experiment, or Y may be observed conditional on z1, ..., ..
Suppose the n observations {(x;,v;),i = 1,2,...,n} on (X,Y) satisfy
(5.1), where x; = (21, -+, xi)7, so that
I
yi=Po+ Y Biwi+e, i=1,2,...,n, (5.19)
j=1
where e, e9,...,e, are iid random variables having the same distribution
as e. Equations (5.19) can be written as
yi=zB+e =pxi)+e, i=1,2,...,n, (5.20)
where p(x;) = z7 3 is the regression function, z7 = (1,21, -, %), and

B = (Bo, b1, +,Br). The n equations (5.20) can be written more com-
pactly as

Y=2Z3+e, (5.21)
where Y = (y1,- -+, yn)" is an n-vector, Z = (21, -+, z,)" isan (nx (r+1))-
matrix with ith row z] (i = 1,2,...,n), B is an (r 4+ 1)-vector, and e is a

random n-vector of unobservable errors with E(e) = 0 and var(e) = 01,.
To account for the intercept By, the first column of Z consists only of 1s.

We form the error sum of squares (ESS),

n

ESS(B) =Y el =e"e= (V- ZB) (¥ - 28), (5.22)

i=1
and estimate 3 by minimizing FSS(8) with respect to 3. Differentiating
ESS(B) with respect to 3 yields

OESS(B)
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9?*ESS(B)
0B 0p"
and setting result (5.23) equal to 0 for a minimum yields the normal equa-
tions,

= 2Z7Z, (5.24)

ZTZB=Z"Y. (5.25)

Assuming that the ((r + 1) x (r + 1))-matrix Z7Z is nonsingular (and,
hence, invertible), the unique ordinary least-squares (OLS) estimator of 3
in the model (5.21) is given by

Bos = (272)7127. (5.26)
Note the resemblance of (5.26) to (5.13).

We can write Z = (1,, : X7), where X7 = (z;;) is an (r x n)-matrix, with

a corresponding partition of B as B3 = (fo : : B1)7, where 8, = (61, e BT
Let x = n7'X1, and § = n~'17). As before, let X = (X,---,%) be an

(n x r)-matrix each column of which is %, and let y_ (g, --,9)7, be an
n-vector each element of which is . Then, X. = X — X is an (n X r)-matrix

and Y, =Y — Y is an n-vector. Set B, = (B : B7)7. It is not difficult to
show (Exercise 5.2) that

B. = (ATX)'A[V., (5:27)
Bo = y-xB,. (5.28)
Clearly, the estimates (5.17) and (5.18) are identical to the corresponding

estimates (5.27) and (5.28). Even though the descriptions differ as to how
the input data are generated, the OLS estimates turn out to be the same
for the random-X case and the fized-X case.

For fixed X and assuming that cov(e) = oI, the mean vector and

covariance matrix of B, in (5.26) are given by E(8,,) = 8 and

cov(Bos) = (Z272)' 2 {cov(V)}Z(272)7
= o}(27Z2)7!, (5.29)

respectively.

The OLS regression estimator ,Bols has some very desirable properties
that are characterized by the Gauss-Markov Theorem (Exercise 5.4). If we
are looking for a linear unbiased estimator of 8 with minimum variance,

the Gauss-Markov Theorem states that we need only consider 3.

The components of the n-vector of OLS fitted values are the vertical
projections of the n points onto the LS regression surface (or hyperplane)
Ui = u(x;) = Bo + XZT,E‘}* = z[,@ols, i = 1,2,...,n. See Figure 5.1 for a
geometrical view. The variance of Y; for fixed x; is given by

var(Y; | x;) = 27 {cov(By )}z = 022 (Z7Z) ! (5.30)
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estimate

M = span(x 4,x,)

FIGURE 5.1. A geometrical view of the ordinary least-squares method,
using two input variables, X1 and Xo. The hyperplane spanned by the input
variables is denoted by M, and the OLS fitted value ¥ is the orthogonal
projection of the output value y onto M.

The n-vector of fitted values 37 = (Y1y.-,Un)" is
V=28, =Z2(Z"2)"'2"Y = HY, (5.31)

where the (n x n)-matrix H = Z(Z7Z)~1Z7 is often called the hat matriz
because it puts the “hat” on ). Note that H and I,, —H are both symmetric,
idempotent matrices with H(I, — H) = 0. Furthermore, HZ = Z and
(I, — H)Z = 0. The covariance matrix of y given X = x is given by

cov(Y|x) = H{cov(Y)}H™ = ¢2H. (5.32)

The ijth component h;; of H is the amount of leverage (or impact) that
the observed value y; exerts on the fitted value y;. The hat matrix H is,
therefore, used to identify high-leverage points. In particular, the diagonal
components h;; satisfy 0 < h;; < 1, their sum is the number, r, of input
variables, and the average leverage magnitude is r/n. From this, high-
leverage points have been defined as those points having h;; > 2r/n.

The residuals, € = ) — JA) = (I, — H)Y, are the OLS estimates of the
unobservable errors e. The residual vector can also be written as

e=Y-2B,.=(28+e)—Z(B+(272)'27) = (I, — Hle, (5.33)

whence, assuming again that Z is fixed, it follows that E(e) = 0 and
cov(e) = o%(I, — H). Hence, var(¢;) = o%(1 — hy;), where hy; is the ith
diagonal element of H, i = 1,2,...,n. The residual sum of squares (RSS)
is given by

~

RSS =Y e =e"e=ESS(B,,). (5.34)
=1
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Note that

RSS = ESS(8) + (8 — Bow) 27 Z(8 — Boy)- (5.35)

Dividing RSS by its number of degrees of freedom, n —r — 1, gives us an
unbiased estimate of the error variance o2,

o RSS

52

=" 5.36
n—r—1° ( )

which is known as the residual variance. The OLS estimate of COV(BOIS) is,
therefore, given by R
C/O-v(/@ols) = 32<ZTZ)_1' (537)

Residuals are often rescaled into internally Studentized residuals (which are
more usually called standardized residuals) by dividing them by an estimate
of their standard error,
>
= i=1,2,.

& = s . (5.38)

An externally Studentized residual can also be defined by omitting the ith
case from the regression.

Because the n fitted values j/\ = H)Y and the n residuals € = (I,, — H)Y
have zero covariance and, hence, are uncorrelated, it follows that the re-
gression of ) on € has zero slope. If the multiple regression model is correct,
then a scatterplot of residuals (or Studentized residuals) against fitted val-
ues should show no discernible pattern (i.e., a slope of approximately zero).
Anomolous patterns to look out for include nonlinearity, nonconstant vari-
ance, and possible outliers.

Now, consider the identity y; — ¢ = (v; — ¥i) + (¥i — §). Squaring both
sides, summing over all n observations, and noting that the cross-product
term disappears, we have that the total sum of squares,

Syy = Z(yz —9)P=0 -V -Y), (5.39)

i=1
can be written as Syy = 59,¢4+RSS, where the regression sum of squares,

n

SST@Q = Z(@\Z - gl)2 - ﬂols<ZTZ)laols’ (540)

i=1

and the residual sum of squares,

RSS = Z = (V= 2B (Y~ ZBo.),  (541)
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TABLE 5.1. ANOVA table for a multiple regression model.

Source of Variation df Sum of Squares
Regression on Xq,..., X, r SSreg = BZIS(ZTZ)Bols
Residual n—r—1 RSS= (V- 2B (¥~ ZBo)
Total n—1 Syy ==Y -Y)

form an orthogonal decomposition, which can be summarized by an analysis
of variance (ANOVA) table; see Table 5.1. The squared multiple correlation
coefficient, R*> = S Sreg/Syy, lies between 0 and 1 and is used to measure
the proportion of the total variation in Y that can be explained by a linear
regression on T, ..., Tr.

So far, no assumptions have been made about the probability distribution
of the errors. If ¢; ~ N(0,02), i =1,2,...,n, it follows that

12\3015 ~ r+1 <ﬂ7 UQ(ZTZ)_l) ) (542)
RSS=(n—r—105%~a*x%2_, |, (5.43)

and ,@015 and o2 are independently distributed. From the ANOVA table,
we can determine whether there is a linear relationship between Y and the
Xs. We compute the F-statistic,

SSreg/T

b= RSS/(n—r—1)"

(5.44)

and compare the resulting F-value with an appropriate percentage point of
the F, ,_,_1 distribution. A small value for F' implies that the data did not
provide sufficient evidence to reject 3 = 0, whereas a large value indicates
that at least one 3; is not zero. Under normality, if 5; = 0, the statistic

t; = (5.45)

5’ Ujj ’
where v;; is the jth diagonal entry of (Z7Z)~!, follows the Student’s ¢
distribution with n — r — 1 degrees of freedom, j = 1,2,...,r + 1. A large

value of |t;| is evidence that ; # 0, whereas a small, near-zero value of |¢;]
is evidence that 3; = 0. For large n, t; reduces to a Gaussian-distributed
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random variable, and the cutoff value for |¢;| is usually taken to be 2.0. For
0 < a < 1, it follows that a (1 — ) x 100% confidence region for 3 is given
by the set of 3-vectors such that

(T + 1)_1(//3\015 - /8)T<ZTZ)<Z§OIS - /8) < a2P17(-X—§-1,n—r—1 . (546)

Geometrically, the confidence region (5.46) is an (r 4 1)-dimensional ellip-

soid with center [Ai and orientation controlled by the matrix Z7Z.

ols

5.2.3 FEzxample: Bodyfat Data

These data were used to produce predictive equations for lean body
weight, a measure of health.! Measurements were made on n = 252 men
in order to relate the percentage of bodyfat determined by underwater
weighing (bodyfat), which is inconvenient and costly to obtain, to a num-
ber of body circumference measurements, recorded using only a scale and
measuring tape.

The r = 13 input variables are age in years (age), weight in lbs (weight),
height in inches (height), neck circumference in cms (neck), chest circum-
ference in cms (chest), abdomen 2 circumference in cms (abdomen), hip cir-
cumference in cms (hip), thigh circumference in cms (thigh), knee circum-
ference in cms (knee), ankle circumference in cms (ankle), extended biceps
circumference in cms (biceps), forearm circumference in cms (forearm),
and wrist circumference in cms (wrist).

The pairwise correlations of the input variables are given in Table 5.2.
We see 13 correlations greater than 0.8 and two greater than 0.9. One
observation (#39) appears to be an outlier in all variables except age,
height, forearm, and wrist. Using these 13 body measurements, we wish
to derive accurate predictive measurements of bodyfat.

To study the relationship between bodyfat and the 13 input variables,
we formulate the regression equation as follows:

bodyfat = [y + fi(age) + [2(weight) + f3(height) + S4(neck)
+ fs(chest) + fB(abdomen) + f7(hip) + fs(thigh)
+ B9 (knee) + f1o(ankle) + S11(biceps)
+ Piz(forearm) + f3(wrist) + e, (5.47)
where e is a random variable with mean zero and constant variance 2. The

results of the multiple regression are given in Table 5.3 and summarized in
Figure 5.2 by the ordered absolute values of the t-ratios of the 13 estimated

1The data and literature references can be downloaded from the StatLib-Datasets
Archive, 1ib.stat.cmu.edu/datasets/, under the filename bodyfat.
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TABLE 5.2. Correlations between all pairs of input variables for the body-
fat data. For these data, r = 13, n = 252.

age weight height neck chest abdomen
weight  —-0.013
height  -0.245 0.487
neck 0.114 0.831 0.321
chest 0.176 0.894 0.227  0.785
abdomen 0.230 0.888 0.190 0.754 0.916

hip  —-0.050 0.941 0.372 0.735 0.829 0.874
thigh  -0.200 0.869 0.339 0.696 0.730 0.767
knee 0.018 0.853 0.501 0.672 0.719 0.737
ankle -0.105 0.614 0.393 0.478 0.483 0.453
biceps -0.041 0.800 0.319 0.731 0.728 0.685
forearm  —0.085 0.630 0.322 0.624 0.580 0.503
wrist 0.214 0.730 0.398 0.745 0.660 0.620
hip thigh knee ankle biceps forearm

thigh 0.896
knee 0.823 0.799
ankle 0.558 0.540 0.612
biceps 0.739 0.761 0.679 0.485
forearm 0.545 0.567 0.556 0.419 0.678
wrist 0.630 0.559 0.665 0.566 0.632 0.586

regression coefficients. We see a few large values in the residual analysis:
12 standardized residuals have absolute values greater than 2.0, and two of
them (observations 39 and 224) have absolute values greater than 2.6. We
estimate the error variance o2 by the residual variance, 52 = 18.572 on 238
degrees of freedom. If the errors are Gaussian distributed (an assumption
that is supported by the residual analysis), the ¢ statistics for abdomen,
wrist, forearm, neck, and age are significant.

5.3 Prediction Accuracy and Model Assessment

Prediction is the art of making accurate guesses about new response
values that are independent of the current data. Good predictive ability is
often recognized as the most useful way of assessing the fit of a model to
data. Thus, the two aims of prediction and model assessment (or validation)
are closely related to each other.

For prediction in regression, we use the learning data,
L£={(x;,v:),i=1,2,...,n}, (5.48)

to regress Y on X, and then predict a new Y-value, y"°V, by applying the
fitted model to a brand-new X-value, X"V, from the test set 7. The result-
ing prediction is compared with the actual response value. The predictive
ability of the regression model is assessed by its prediction (or generaliza-
tion) error, an overall measure of the quality of the prediction, usually
taken to be mean squared error. The definition of prediction error depends
upon whether we consider X as fixed or as random (Breiman, 1996a).
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TABLE 5.3. OLS estimation of coefficients for the regression model using
the bodyfat data with r = 13, n = 252. The multiple R? is 0.749, the
residual sum of squares is 4420.1, and the F-statistic is 54.5 on 13 and
238 degrees of freedom. A multiple regression using only those variables
having |t| > 2 (i.e., abdomen, wrist, forearm, neck, and age) has residual
sum of squares 4724.9, R?> = 0.731, and an F-statistic of 133.85 on 5 and

246 degrees of freedom.
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Coefficient Estimate Std.Error {-value

(Intercept)  -21.3532 22.1862  -0.9625

age 0.0646 0.0322 2.0058

weight -0.0964 0.0618  -1.5584

height -0.0439 0.1787  -0.2459

neck -0.4755 0.2356  -2.0184

chest -0.0172 0.1032 -0.1665

abdomen 0.9550 0.0902  10.5917

hip -0.1886 0.1448  -1.3025

thigh 0.2483 0.1462 1.6991

knee 0.0139 0.2477 0.0563

ankle 0.1779 0.2226 0.7991

biceps 0.1823 0.1725 1.0568

forearm 0.4557 0.1993 2.2867

wrist -1.6545 0.5332 -3.1032
abdomen
wrist
forearm
neck
age
thigh
weight
hip
biceps
ankle
height
chest
knee

0 2 4 6 8 10

Absolute Value of t-ratio

FIGURE 5.2. Multiple regression results for the bodyfat data. The variable
names are given on the vertical axzis (listed in descending order of their
absolute t-ratios) and the absolute value of the t-ratio for each variable on

the horizontal axis.
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5.3.1 Random-X Case

In the random-X case, the learning data £ are iid observations from the
joint distribution of (X,Y). The observed responses Y;, i = 1,2,...,n, are
assumed to have been generated by the regression model,

Y=00+X"B+e=puX)+e, (5.49)

where pu(X) = E(Y|X) = Bo+X" 3 is the true regression function, E(e|X) =
0, and var(e|X) = E{Y — E(Y|X)}? = ¢2. From T, we draw a new obser-
vation, (x"V, y"*V), where we assume y"®V is unknown, from the same
distribution as (X,Y’), but independent of the learning set £. We assess

the fitted model by predicting "% from x"°V.

If the estimated OLS regression function at X = x is

fi(x) = Bo +x"B,, (5.50)

new new)

then the predicted value of y at x"*V is given by ji(x . The prediction
error (PER) in this case is defined as the mean squared error in predicting
ynew uslng ﬂ(xnew)7

PEg =n-E{Y™" — i(X"")}* = no? + M Ep, (5.51)
where the expectation is taken only over (X%, Y"V) and

MER = n-B{u(X"V) - a(X"")}? (5.52)
= n(Bo— o)’ + (BB, mE{XX}(B-B,) (5.53)

is the model error (i.e., the mean squared error of [i(x"°V) as a predictor

of pu(x"V), a quantity also called the “expected bias-squared”).

5.3.2 Fized-X Case

In the fixed-X case, the r-vectors {x;}, whose transposes are the rows of
the design matrix X, are fixed by the experimental conditions, so that only
Y is random. We assume that the true model generating the observations
{yi} on Y is

yi = Bo+x; B+ e = p(xi) + e, (5.54)

where pu(x;) = 8o + x] 3 is the regression function evaluated at x; and the
errors e;,i = 1,2,...,n, are iid with mean 0 and variance o?. We assume
that the test data in 7 are generated by using “future-fixed” {x""} points
(Breiman, 1992), which may either be the same fixed design points {x;} as
in the learning data £ or they may be future values of x that are considered
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by the experimenter to be known and fixed (i.e., new design points). For
convenience in this discussion, we assume the former situation holds. Thus,
we assume that 7 = {(x;,y*"),i =1,2,...,n}, where

yi " = n(xi) + €Y, (5.55)
and the {e?*V} are independent of the {e;} but have the same distribution.
We further assume that the X7 X matrix for the {x;} is known.

The predicted value of y**V at a future-fixed x is given by
fi(x) = By + x7 B, (5.56)

where ,?3'* is the OLS estimate of the regression coefficients. The prediction
error in the fixed-X case is defined as

n

PEp =E {Z(Yglew - ﬁ(xi))2} =no’+ MEFp, (5.57)
i=1

where the expectation is taken only over the {¥V;**"V} and

(n(xi) = fi(xi))* (5.58)

NE

MFEr =
0—Bo)?+(B-B) (X X)(B-B,) (559

is the model error due to the lack of fit to the true model. Compare (5.59)
with (5.53).

<.
I

= n

—~~

5.4 Estimating Prediction Error

In the random-X case, when the entire data set D is large enough, we can
use the partition into learning, validation, and test sets to do a thorough
job of estimating the regression function, predicting future outcomes, and
validating the model. However, in cases where such a division may not be
practical, we have to use alternative methods.

5.4.1 Apparent Error Rate

As before, let [i(x"°™) be the predicted value of Y at X = x"*%, and let
L(y, u(x)) = (y — u(x))? be the loss incurred by predicting y by pu(x). The
prediction error PE is given by (5.51) in the random-X case and (5.57)
in the fixed-X case. Given observations {(x;,v:),7 = 1,2,...,n}, we can
estimate PE by

Z(yi — fi(xi))? = USEy (5.60)

PE(i, D) = =
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which we call the apparent error rate (or resubstitution error rate) for D.
This estimate of PE is computed by fitting the OLS regression function to
the idiosyncracies of the original sample D and then applying that func-
tion to see how well it predicts those same members of D. The apparent
error rate is a misleadingly optimistic value because it estimates the pre-
dictive ability of the fitted model from the same data that was used to fit
that model. Consequently, we expect that RSS/n will be too optimistic an

estimate of PE with PE(pi, D) < PE.

Rather than use the apparent error rate for estimating prediction error,
we use resampling methods (cross-validation and the bootstrap). Which
resampling methodology we use depends upon whether the fixed-X or the
random-X model is more appropriate. For the random-X case, we can use
cross-validation or the “unconditional bootstrap,” and in the fixed-X case,
we can use the “conditional bootstrap.” Cross-validation is not appropriate
for estimating prediction error in the fixed-X case.

5.4.2  Cross-Validation

Amongst the methods available for estimating prediction error (and
model error) for the random-X case, the most popular is cross-validation
(Stone, 1974), of which there are several versions.

Suppose D is a random sample drawn from the joint probability distri-
bution of (X,Y") in (r + 1)-dimensional space. If n = 2m, we can randomly
split D into two equal subsets, treating one subset as the learning set L
and the other as the test set T, where D = LUT and LNT = 0. Let
T ={(x},9)),i=1,2,...,m}. An estimate of PER obtained from the test

set is
m

— 1
PE = — L x)?, 5.61
o (0 ) (5.61)
where (x}) = Bo + x,’fﬁ*. The learning set and the test set are then
switched and the resulting two estimates of PER are averaged to yield a

final estimate.

To generalize the above precedure, assume that n = Vm, where V > 2 is
a small integer, such as 5 or 10. We split the data set D randomly into V' dis-
joint subsets T,,v = 1,2, ...,V of equal size, where D = U;/:l To, ToN Ty =
0, v # v'. We next create V different versions of the data set, each version
of which has a learning set consisting of V' —1 of the subsets (i.e., (V —1)m
observations) and a test set of the one remaining subset (of m observa-
tions). In other words, we drop the 7, cases and consider the remaining
learning set of £, = D — 7T, cases. Using only the L, cases, we obtain the
OLS regression function fi_,(x). We then evaluate this regression function
at the 7, test-set cases, yielding the values [i_,(x;), x; € T,,. We compute
the prediction error from the vth test set 7, repeating the procedure V'
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times, while cycling through each of the test sets, 71,73, ..., Ty. This pro-
cedure is called V-fold cross-validation (CV/V'). Combining these results
gives us a CV/V-estimate of PE,

.

__ 1 R

PEcviv = DT> (i iw(xi) (5.62)
v=1(x;,y:)€To

Then, subtract 62 from PE to get ]\7127], where &2 is the residual variance
obtained from the full data set.

The most computationally intensive version of cross-validation occurs
when m = 1 (so that V' = n). In this case, each learning set £, has size
n—1, and the test set 7, has size one. At the ith stage, the ith case (x;,y;) is
omitted from the ith learning set, and the OLS regression function fi_;(x) is
computed from that learning set and evaluated at x;. This type of balanced
split is referred to as the leave-one-out rule (CV/n or LOO). The prediction
error is then estimated by

n

PBovin= = 3 (i~ ilxi)) (5.63)

i=1

As before, we obtain ME by subtracting 52 from PE.

As well as issues of computational complexity, the difference between
taking V' =5 or 10 and taking V = n is one of “bias versus variance.” The
leave-one-out rule yields an estimate of PER that has low bias but high
variance (arising from the high degree of similarity between the leave-one-
out learning sets), whereas the 5-fold or 10-fold rule yields an estimate
of PEgR with higher bias but lower mean squared error (and also lower
variance). Furthermore, 10—fold (and even 5-fold) cross-validation appears
to be better at model assessment than is leave-one-out cross-validation.

5.4.3 Bootstrap

For estimating prediction error in regression models, we can also use the
bootstrap technique (Efron, 1979). In general, the specific version of the
bootstrap to be applied has to depend upon what we actually assume about
the stochastic model that may have generated the data. In regression mod-
els, it again boils down to whether we are in the random-X case (using the
“unconditional” bootstrap) or the fixed-X case (“conditional” bootstrap).

Unconditional Bootstrap

The unconditional bootstrap is used for the random-X case. We first
sample n times with replacement from the original sample, D, to get a
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random-X bootstrap sample, which we denote by
D}k%b: (x ;kbayz ),i=1,2,...,n}. (5.64)

Next, we regress Y on xi0 i =1, 2 ,n, and obtain an OLS regression
function i3 (x). If we then apply i3 to the original sample, D, the resulting
estimate of PFE is given by

n

PE(D) = = > (i — A (x0))” (5.65)

i=1

Averaging PE (1132, D) over all B bootstrap samples yields the simple boot-
strap estimator of PE,

B n
s 1 o
PE(iiy, D) = B > D (i — AR ()’ (5.66)
b=1 b=1 i=1

Mm

— 1
PER(D) = %

which is not a particularly good estimate of PE because there are obser-
vations common to the bootstrap samples {D3’} (that determined {7i:’})
and the original sample D, and so an estimate of PE such as (5.66) will
also be overly optimistic.

As another estimator of PE, an apparent error rate for D}k%b is computed
by applying 113 to Diy:

n

D 1o~k * 1 * ~x% *
PE(jiy, Dif) = — > (u}* — fig ()", (5.67)

i=1
Averaging (5.67) over all B bootstrap samples yields

B

PE(Dy) = 4 S PR}, DY) = ZZ )R (5.68)

b=1 M=
This estimate of PFE has the same disadvantages as the apparent error rate
for D.

We can improve on these estimates of PE by estimating the bias in
using RSS/n (the apparent error rate for D) as an estimate of PE and
then correcting RSS/n by subtracting its estimated bias. An estimate of
that bias for D}}b is the bth optimism,

optly = PE(ii}t, D) — PE(uit, D). (5.69)
Averaging gﬁl}{ over all B bootstrap samples yields an overall estimate,

B

— 1 —— — —

opts = 5 " opth = PE(D) — PE(Dj), (5.70)
b=1
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of the average optimism, opt = E{PE(u,D) — ﬁ(ﬁ, D)}, which is gener-
ally positive. The bootstrap estimator of PER is given by the sum of the
apparent error rate for D and the bias in that apparent error,

PER = "= + opty 6.7

and MFE is estimated by MEr = PEg — 2. In simulations, PEp (which
is computationally more expensive than cross-validation) appears to have
low bias and is slightly better for model assessment than is 10-fold cross-
validation.

Recall that PE r(D) in (5.66) underestimates PER because there are ob-
servations common to the bootstrap samples {D}b (operating as learning
sets) and to the original data set D (operating as the test set). In fact, the
chance that the ith observation (x;,y;) from D is selected at least once to
be in the bth bootstrap sample D3 is

P((X;,Y;) eDy) = 1(1%>n

— 1—e1~0632, (5.72)

as n — oo. Thus, on average, about 37% of the observations in D are
left out of each bootstrap sample, which contains about 0.632n distinct
observations. One unfortunate consequence of this result is that if n is
close to r, this will lead to numerical difficulties in computing ﬁ}f—f, because
in such cases it is likely that X7 X will be singular or nearly singular when
computed from a bootstrap sample.

We now use (5.72) to improve upon opty (and also PER) by including
in the computation the prediction errors for the ith observation (x;,y;)
only from those bootstrap samples that do not contain that observation,
i=1,2,...,n

Let PEI(%U be the expected bootstrap prediction error at those points
(xi,y:) € D that are not included in the B bootstrap samples. We esti-
mate PES) as follows. Define n;, to be the number of times that the ith
observation (x;,y;) appears in the bth bootstrap sample, and set I;; = 1 if
ny, = 0 and zero otherwise. Then, we estimate PEI(%D by

PE\) = ZPEZ, (5.73)

where
S Zb Lip(yi — ﬂb(XZ))z )

PE; = o (5.74)
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Efron and Tibshirani (1997) called FE‘S) the leave-one-out bootstrap es-
timator because of its similarity to the leave-one-out cross-validation esti-
mator. Another way of writing (5.74) is

= — Z — 1p(x4))7, (5.75)

" bec;

where C} is the set of indices of the bootstrap samples that do not contain
(xi,9i), and B; = |C;] is the number of such bootstrap samples. These
observations are often referred to as out-of-bootstrap (OOB) observations.
Efron (1983) showed that ]/DEg) is biased upwards compared to I/JECV/,“
which is nearly unbiased.

Based upon (5.72), the 0.632 bootstrap estimator of optimism is given by

opt W) — 0.632(PE'Y — PE(1i, D). (5.76)
Replacing optR in (5.71) by opt(0 632) 4 n (5.76) yields the 0.632 bootstrap

estimator of prediction error,

——(0.632 —
PEE;z - PE(1,D) + Opt;‘; 952)
RSS —
= 0368 —= +0.632- PEY). (5.77)

Although the 0.632 bootstrap estimator is an improvement over the appar-
ent error rate, it still underestimates PERr (Efron, 1983).

Ezxample: Bodyfat Data (Continued)

Cross-validation and the unconditional bootstrap were used to estimate
the prediction error for the bodyfat data. The results are summarized in
Tables 5.4 and 5.5.

From Table 5.4, we see that the estimates obtained from C'V/5, CV/10,
CV/n, and the bootstrap (with B = 500) are reasonably close to each
other. The apparent error rate, RSS/n = 4420.064/252 = 17.5399, un-
derestimates the leave-one-out cross-validation estimate of the prediction
error by more than 12%. Dividing RSS by its degrees of freedom to give
an unbiased estimate of o2 yields RSS/238 = 18.5717, still well below the
other estimates.

B=10 For a simple bootstrap illustration, let B = 10. The bootstrap
computations are detailed in Table 5.5. The simple bootstrap estimate,
PER(D) = 18.4692, is the average of the first column and is much too small.
The average of the third column, o/p\tR = 18.4692 —15.9535 = 2.5157, is the
difference between the average of the first column and the average of the
second column and yields a measure of how optimistic the apparent error
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TABLE 5.4. Estimated prediction errors for the bodyfat data when the
multiple regression model is fit. Listed are the apparent error rate (RSS/n)
and the error rates from using 5-fold (CV/5), 10-fold (CV/10), leave-one-
out cross-validation (CV/n), and the unconditional bootstrap and 0.632
bootstrap using B = 500. The subscript “R” indicates that the bootstrap
computations are made for the random-X case. These results show the very
optimistic value of the apparent error rate.

— — — — ——(0.632)
RSS/TL PEcv/5 PECV/lO PECV/n PER PER

17.5399  20.2578 20.7327 20.2948  19.6891 19.9637

rate is in estimating the prediction error. Finally, ﬁR = RSS/n—l—o/IRR =
17.5399 + 2.5157 = 20.0556.

B=500 When we use B = 500 bootstrap samples, we obtain f/’ER(D) =
18.7683 and ]/DE(D*R) = 16.6191, so that o/p\tR = 18.7683 — 16.6191 =
2.1492, whence, ]/DER = 17.5399+ 2.1492 = 19.6891. We see a small differ-

ence between the bootstrap estimates of PE using B = 10 and B = 500
bootstrap samples.

Conditional Bootstrap

The conditional bootstrap for the fixed- X case operates by sampling with
replacement from the residuals obtained from fitting the regression model
to the non-stochastic inputs x1,xs, ..., %, (Efron, 1979).

We first fit the model (5.21) and obtain the OLS regression coefficients
By. = (Z7Z)"1Z7Y, the estimated regression function 7i(x) = z7 8,
(where z = (1,x7)7), the residuals €1, €3, ..., €,, and the residual variance
2. When applying the conditional bootstrap, we assume that the errors
of the model are iid and homoscedastic. For an extensive discussion of the
effect of error variance heterogeneity on the conditional bootstrap, see Wu
(1986).

Because E(RSS/n) = (1 — p/n)o?, where p = r + 1 is the number of
parameters, RSS/n is biased downwards as an estimator of o2, and the
residuals tend to be smaller than the errors of the model. Some statisticians
advocate rescaling the residuals upwards by multiplying each of them by
the factor (n/(n — p))'/2; Efron and Tibshirani (1993, p. 112) feel that the
scaling issue becomes important only when p > n/4.

Suppose we consider BOIS to be the true value of the regression parameter.
For the bth bootstrap sample, we sample with replacement from the resid-
uals to get the bootstrapped residuals, €%, e5%, ... €, and then compute
a new set of responses

yltt =) +et, i=1,2,...,n. (5.78)

7
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TABLE 5.5. Unconditional bootstrap estimates of prediction error for the
bodyfat data, where B = 10 bootstrap samples are taken. Each row of the
table represents a bootstrap sample b, and the multiple regression model is fit
to that sample. For each b, the first column is the simple bootstrap estimate
of prediction error, the second column is the bootstrap apparent error rate,
and the third column is the difference between the first two columns. The
average optimism, in this case 2.5157, is the difference between the average
of the first column and the average of the second column.

b PE(w,D) PE(ii,Dif)  opth
1 18.5198 15.8261 2.6937
2 18.2555 13.5946 4.6609
3 17.9683 18.2385 -0.2702
4 18.9317 14.5406 4.3911
5 18.6249 15.7998 2.8251
6 18.0191 15.1146 2.9045
7 18.5381 17.7595 0.7786
8 18.9265 13.8298 5.0967
9 18.6881 18.8233 -0.1352
10 18.2201 16.0080 2.2121
ave 18.4692 15.9535 2.5157

The bth fized-X bootstrap sample is now given by
D = {(xs,y), i=1,2,...,n}. (5.79)
We regress y** on x to get a bootstrapped estimator,
B*b —(272)"1zTy, (5.80)

of the regression coefficients, where Y** = (y1%, ... y*")". Under this boot-
strap sampling scheme, \/ﬁ(,@*b — ,/8\015) is approximately distributed as
Vn(B,.—B) (Freedman, 1981). The bootstrap regression function is ik (x)
=773 (where z = (1,x7)7). Straightforward analogues of the estimates
for the fixed-X case, similar to those for the unconditional case, can now

be computed.

5.5 Instability of LS Estimates

If X, has less than full rank, then A7 &, will be singular, and the OLS
estimate of B will not be unique. Singularity occurs when the matrix X,
is ill-conditioned, or the columns of X, are collinear, or when there are
more variables than observations (i.e., 7 > n). If the assumptions for the
regression model do not hold (e.g., due to ill-conditioned data, collinearity,
correlated errors), then we have to look for alternative solutions.
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Data are ill-conditioned for a given problem whenever the quantities to
be computed for that problem are sensitive to small changes in the data.
When that is the case, computational results, especially those obtained
using matrix inversion routines, are likely to be numerically unstable. As a
result, major errors (due to rounding and cancellations) tend to accumulate
and severely skew the calculations. In some regression situations, the matrix
X (or its mean-centered version X.) may be rank-deficient or almost so
because of too many highly correlated variables, which exhibit collinearity.
Exact collinearity rarely occurs, but problems involving variables that are
almost collinear (“near collinearity”) are not unusual.

In linear regression models, ill-conditioning and collinearity problems co-
incide. Near collinearity in linear regression problems is of major concern to
statisticians and econometricians, especially when an overly large number of
input variables is included in the initial model (the so-called kitchen-sink
approach to modeling). Among the effects of near collinearity are overly
large (positive or negative) estimated coefficient values whose signs may be
reversed if negligible changes are made to the data. The standard errors
of the estimated regression coefficients may also be dramatically inflated,
thereby masking the presence of what would otherwise be significant re-
gression coefficients.

There are several measures of ill-conditioning of a square matrix M, the
most popular of which is the condition number, k(IM); see Section 3.2.9. In
regression, M = X7 X. Each variable may be scaled to have equal length
(e.g., replacing x;; by xi;/s;, where s; is the sample standard deviation of
the ith variable). The condition number of X™ X’ (or X) reduces to the ratio
of the largest to the smallest nonzero singular value, k = 01/0,, of X. If
K is large, X is said to be ill-conditioned. When exact collinearity occurs,
K = 00.

As an alternative to k, we can compute the set of collinearity indices,

k(X)) =/ VIF, , k=1,2,..r (5.81)

where
VIF, = (1- Ri)*l, (5.82)

is the kth variance inflation factor, and R} is the squared multiple cor-
relation coefficient of the kth column of X on the other r — 1 columns
of X, k =1,2,...,r. Large values of VIF}, (typically, VIF}, > 10) imply
that R? is close to unity, which in turn suggests near collinearity may be
present. The collinearity indices have value at least one and are invariant
under scale changes of the columns of X'. For example, the bodyfat data has
some very large VI F values: each of the variables weight, chest, abdomen,
and hip has a VIF value in the range 10-50. The high VI F values for those
particular four variables appear to reflect their high pairwise correlations.
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5.6 Biased Regression Methods

Because the OLS estimates depend upon (27 Z)~!, we would experience
numerical complications in computing Bols if Z7Z were singular or nearly
singular. If Z is ill-conditioned, small changes to the elements of Z lead to
large changes in (27 Z) ™1, the estimator 3,), becomes computationally un-
stable, and the individual component estimates may either have the wrong
sign or be too large in magnitude. So, even though the regression model
may be a good fit to the learning data, it will not generalize sufficiently
well to the test data.

One way out of this situation is to abandon the requirement of an unbi-
ased estimator of B and, instead, consider the possibility of using a biased
estimator of B. There are several such estimators that are superior (in
terms of MSE) to ,2\3015 when Z is ill-conditioned or when Z7Z is singular
(or nearly singular). Biased regression methods have primarily been used in
chemometrics (e.g., food research, environmental pollution studies). In such
applications, it is not unusual to see the number of input variables greatly
exceed the number of observations, so that the OLS regression estimator
does not exist.

We assume only that the X's and the Y have been centered, so that we
have no need for a constant term in the regression. Thus, X is an (n x r)-
matrix with centered columns and ) is a centered m-vector. Each of the
biased estimators described in this section can be written in the form

B=>"F)A; vV, (5.83)
J

where f();) is the jth “shrinkage” factor, v; is the eigenvector associated
with the jth largest eigenvalue A\; of S = X" X, and s = X7). We show
that for a t-component PCR, the shrinkage factor is f(\;) = 1 if j < ¢,
and 0 otherwise; for a ¢t-component PLSR, f();) is a polynomial of degree
t; and for RR with ridge parameter & > 0, f(\;) = fu(Aj) = A/ (N + k).

5.6.1 FEzxample: PET Yarns and NIR Spectra

These data? were obtained from a calibration study (Swierenga, de Wei-
jer, van Wijk, and Buydens, 1999) of polyethylene terephthalate (PET)
yarns, which are used for textile (e.g., clothing materials) and industrial

2The datafile PET.txt can be downloaded from the book’s website. It was originally
provided by Erik Swierenga and is available as an R data set as part of The pls Package.
See www.maths.lth.se/help/R/.R/library/pls/html/NIR.html.
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FIGURE 5.3. Raman NIR spectra of a sample of 21 polyethylene tereph-
thalate (PET) yarns. The 21 spectra are each measured at 268 frequencies.
Note that the horizontal azis is variable number, not frequency.

purposes (e.g., tires, seat belts, and ropes). PET yarns are produced by a
process of melt-spinning, whose settings largely determine the final semi-
crystalline structure of the yarn (i.e., its physical structure), which, in turn,
determines its thermo-mechanical properties. As a result, parameters that
characterize the physical structure of PET yarns are important quality
parameters for the end use of the yarn.

Raman near-infrared (NIR) spectroscopy has recently become an impor-
tant tool in the pharmaceutical and semiconductor industries for investi-
gating structural information on polymers; in particular, it is used to reveal
information on the chemical nature, conformational order, state of the or-
der, and orientation of polymers. Thus, Raman spectra are used to predict
the physical structure parameters of polymers.

In this example, we study the relationship between the overall density of
a PET yarn to its NIR spectrum. The data consist of a sample of n = 21
PET yarns having known mechanical and structural properties. For each
PET yarn, the Y-variable is the density (measured in kg/m?) of the yarn,
and the r = 268 X-variables (measured at 268 frequencies in the range
598-1900 cm 1) are selected from the NIR spectrum of that yarn. This
example is quite representative of data sets in the chemometrics literature,
in that » > n. The 21 NIR spectra are displayed graphically in Figure 5.3;
the spectra appear to have very similar characteristics, although there are
noticeable differences in some curves.
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5.6.2  Principal Components Regression

An obvious way of dealing with a matrix X7 X that is singular (or nearly
singular) is to substitute a generalized inverse G in place of (X7X)~!.
Suppose X7 X has known rank ¢ (1 < ¢ < r), so that the smallest r — ¢
eigenvalues of X7 X are all zero. Then, the spectral decomposition of X7 X
can be written as XX = VAV, where A = diag{\1, ..., \;} is a diagonal
matrix of the first ¢ eigenvalues of X™ X with diagonal elements ordered in
magnitude from largest to smallest, and V = (vi,...,vy) is an (r X t)-
matrix whose columns are the eigenvectors associated with the eigenvalues
in A. The unique rank-t Moore—Penrose inverse G of X" X is, therefore,
given by

¢
G=X"X)F=VAT'VT =3 Alvv], (5.84)
j=1
and the generalized-inverse regression (GIR) estimator is
t
alt T — T
Bl =GaTy =3 A lvvis, (5.85)
j=1
where s = X7). The GIR fitted values are then given by
5O _ v3®) —1yT
Veir = XBgiy = XV(AT VTs). (5.86)

Marquardt (1970) showed that ,£A3gir minimizes the error sum of squares,
ESS(B), in (5.22) within the t-dimensional linear subspace spanned by V.
It follows that Bgir is a constrained least-squares estimator of 3 and so is
said to be conditionally unbiased. If X™X actually has a rank greater than
t and we incorrectly use G in (5.85) to define the estimator of 3, then 3;;2
is a biased estimator of 3.

The rows of the (n x ¢)-matrix Z; = X'V are the scores of the first ¢
principal components of X (see Chapter 7). Regressing ) on Z; is a tech-
nique usually referred to as principal components regression (PCR) (Massy,
1965). This regression method is popularly used in chemometrics, where,
for example, we may be interested in calibrating the fat concentration in n
chemical samples to highly collinear absorbance measurements recorded at
r fixed wavelength channels of an X-spectrum (Martens and Naes, 1989,
sec. 3.4). In such situations, the number of variables r will likely be much
greater than the number of observations n. PCR can be used to reduce
the dimensionality of the regression by dropping those dimensions that
contribute to the collinearity problem. PCR has also been used for map-
ping quantitative trait loci in statistical genetics, where Y represents a
quantitative trait value (e.g., blood pressure, yield) and X consists of the
genotypes of a mouse or plant, etc., at each of r molecular markers (Hwang
and Nettleton, 2003).
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The estimated regression coefficients for the ¢ principal components are
given by the t-vector,

BY. = (Z7Z,) 'Z]Y = A"V, (5.87)

per

where we have used V7V = I;. Note that because of the orthogonality of
the columns of V, the elements of (5.87) do not change as ¢ increases. Thus,

(5.85) and (5.87) are related by Bl =

gir V,Bl()tc)r, and the corresponding fitted
values are given by

YO =27,80 = xV(A~VTs) = apl) = Y1 (5.88)

PCY gir glr ’

So, the fitted values obtained by GIR and PCR are identical.

It is usual to transform the PCR coefficients (5.87) into coefficients of

the original input variables. Given ,/B\I(Dtc)r = (B\pcr,l, e ,chm)T, we compute
the r-vectors, R R
ﬂ;cr,j :BPCTJ-VJ'? ] = 1727"~7t' (589)
Then, the first k partial sums of the {B;cr,j} give the k-component PCR
coefficients of the original input variables; that is,
k ~
Byl = Z re = VBEL, 1<k <t (5.90)

Note that ,Bp(ctr) - lgols'

In practice, the rank of XX and, hence, the number of components is
an unknown metaparameter to be determined from the data. If we extract
principal components from the correlation matrix, Kaiser’s rule (Kaiser,
1960) suggests we retain only those principal components whose eigenvalues
are greater than one. Another way of determining ¢ is by cross-validation
(Wold, 1978).

A caveat: Although PCR aims to relate Y and the {X} in the presence
of severe collinearity, there is also the potential for PCR to fail dramatically.
The principal components, Z1, ..., Z; (1 <t < r), which are used as inputs
to a multiple regression, are chosen to correspond to the ¢ highest-variance
directions of X = (Xy,--+, X,)” while dropping the remaining r — ¢ (low-
variance) directions. Because the extraction of the principal components
is accomplished without any reference to the output variable Y, we have
no reason to expect Y to be highly correlated with any of the principal
components, in particular those having the largest eigenvalues. Indeed, Y
may actually have its highest correlation with one of the last few principal
components (Jolliffe, 1982) or even only the last one (Hadi and Ling, 1998)
which is always dropped from the regression equation.
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Ezample: The PET Yarn Data (Continued)

Each variable (Y and all the Xs) from the PET yarn data was centered.
The (21 x 268)-matrix X yields at most ¢ = min{20,268} = 20 principal
components. The 20 nonzero eigenvalues from the correlation matrix in
descending order of magnitude are

11.86 883 6.75 161 076 054 040 0.25 024 0.19
0.14 0.11 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.02

There are four eigenvalues larger than one. The first component accounts for
52.5% of total variance, the first two components account for 81.6% of total
variance, the first three components account for 98.6% of total variance,
and the first four components account for 99.5% of total variance.

Figure 5.4 displays the PCR coefficients for ¢ = 1,3,4,20 components.
This figure shows that a single component yields regression estimates with
almost no structure. By three components, the final structure is certainly
visible, and the graph appears to settle down when we use four compo-
nents. After four components, all that is added to the graph of the coeffi-
cient estimates is noise, which reinforces the information gained from the
eigenvalues.

5.6.3 Partial Least-Squares Regression

In partial least-squares regression (PLSR), the derived variables (usually
referred to as latent variables, components, or factors) are specifically con-
structed to retain most of the information in the X variables that helps
predict Y, while at the same time reducing the dimensionality of the regres-
sion. Whereas PCR constructs its latent variables using only data on the
input variables, PLSR uses data on both the input and output variables.
Chemometricians have adopted the name PLSR1 to refer to PLSR using a
single output variable and PLSR2 to refer to PLSR using multiple output
variables.

PLSR is typically obtained using an algorithm rather than as the re-
sult of an optimization procedure. The are several such algorithms. The
most popular one is sequential, starting with an empty set and adding a
single latent variable at each subsequent step of the process. The result
is a sequence of prediction models, My, ..., My, where M, predicts the
output variable Y through a linear function of the first k latent variables.
The “best” of these PLSR models is that model that minimizes a cross-
validation estimate of prediction error. (How well cross-validation actually
selects the best model is as yet unknown, however.)
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FIGURE 5.4. Principal component regression estimates for the PET yarn
data. There are 268 coefficients. The numbers of PCR components aret = 1
(upper-left panel), t = 3 (upper-right panel), t = 4 (lower-left panel), t = 20
(lower-right panel). The horizontal axis is coefficient number.

The PLSR algorithm in Table 5.6 (Wold, Martens, and Wold, 1983)
uses only a series of simple linear regression routines. We build the latent
variables, Z1, ..., Z;, in a stepwise fashion. At the kth step, Zj is a weighted
average of the X-residuals from the previous step, where the weights are
proportional to covariances of the X-residuals from the previous step with
the Y-residuals from the previous step. The resulting PLSR function is a
linear combination of the Z1,..., Z;.

Empirical studies (Frank and Friedman, 1993) show that PLSR gives
slightly better overall performance than does PCR, that fewer components
are needed in PLSR than in PCR to provide a similar fit to the data, and
that as the problem becomes increasingly more ill-conditioned, both biased
methods yield substantial improvements in predictive ability over OLS. De
Jong (1995) also showed that, in an R? sense and using ¢ components, the
PLSR fitted values are closer to the OLS fitted values than are the PCR
fitted values.

The PLSR estimator, Béﬁ)sr, where t is the number of components, is
a shrinkage estimator. This is a difficult result to prove. De Jong (1995)

showed that, for 1 < k <, || Z\?gfer is a strictly nondecreasing function of
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TABLE 5.6. PLSR algorithm (Wold, Martens, and Wold, 1983).

1. Standardize each n-vector x; of data on X; so that it has mean 0 and

0) _

standard deviation 1, and set x;" = x;, j = 1,2,...,r. Center the n-vector

Y of data on Y so that it has mean 0, and set ,')/(O) = ). Set 5}(0) =yl,.
2. For k=1,2,...,t
e Forj=1,2 ..., r, regress YE=D on xg.k
coefficient

Yo get the OLS regression

Br15 = cov (0, V) van(x ),

where, for any n-vectors x and y, cov(x,y) = x"y and var(x) = x"x.

Compute Ekflijgkfm.

e Compute the weighted average z), = Z; 1 wk_lngk_lijgkfm as a
predictor of YV, where wi_1,; var(x(k 1)) Thus,
Zr < Zcov(xgk_l),y(kfm) -xék_l).
j=1
o Regress Y*~Y on z; to get the OLS regression coefficient
é\k = cov(zy, y<k71))/var(zk)
and the residual vector y“” = y(’H) — 5kzk.
e Set j}(k> = j}(kim +§kzk.
e For j = 1,2,...,r, regress xg.k*l) on zj to get the OLS regression
coefficient
¢k3 = cov(zk, ))/var (z1)

and residual vector x(-k> = x<-k71) - ¢ijk.
e Stop when Z | var( x( ))=0.

3. The PLSR function fitted with ¢ components is, therefore, given by

Sir =yl, + Zekzk




136 5. Model Assessment and Selection in Multiple Regression

k, which implies that every PLSR iterate improves upon OLS; that is,
(1 (2 At 3
1B < 1BEN < -+ < 1B = 1Bl (5.91)

Goutis (1996) used a geometric argument to give a direct proof that, for
every 1 <k <t, ||ﬂ(k) || < |Bosl|; and Phatak and de Hoog (2002) derived

an explicit expressiglr?rrelating the PLSR estimator to the OLS estimator.
The shrinkage behavior of individual PLSR coefficients turns out to be quite
“peculiar”: Frank and Friedman (1993) noted from empirical evidence and
certain heuristics that whereas PLSR shrunk some OLS coefficients, it also
expanded others. This shrinkage behavior was further studied by Butler

and Denham (2000) and Lingjaerde and Christophersen (2000).

The orthogonal loadings algorithm uses a sequence of multiple regres-
sions to arrive at the same PLSR solution as Wold’s algorithm (Helland,
1988). The code for the S-PLus PLSR algorithm is given in Brown (1993,
Appendix E). The PLSR algorithm in Table 5.6 is an extension of the NI-
PALS algorithm (Wold, 1975). See also the SIMPLS algorithm (de Jong,
1993).

Ezample: The PET Yarn Data (Continued)

Each variable in the PET yarn data was centered. The PLSR estimates of
all 268 regression coefficients in the vector ,Bffl)sr for the PET yarn data are
displayed in Figure 5.5. for t = 1,3, 4,20 components. The 20-component
PLSR estimate is the minimum-length LS estimator of the regression coef-
ficient vector 3.

We see from Figure 5.5 that using only one PLSR component results
in a set of regression estimates with little visible structure. Most of the
variability in the regression coefficients occurs in the first 150 coefficients.
The final shape of the coefficient estimates can already be discerned by 3
components, and a useful representation is given by 4 components. As addi-
tional components are added to the model, more and more high-frequency
noise is added to the PLSR estimates.

5.6.4 Ridge Regression

Hoerl and Kennard (1970a) proposed that potential instability in the
OLS estimator, Bols = (X7X)"1X7Y, of B could be tracked by adding a
small constant value k to the diagonal entries of the matrix XX before
taking its inverse. The result is the ridge regression estimator (or ridge
rule),

Boo(k) = (X7X +KL) T XY = W(k)B,, (5.92)
where
W(k) = (XX + kL) X7 X, (5.93)
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FIGURE 5.5. Partial least-squares regression estimates for the PET yarn
data. There are 268 coefficients. The numbers of PLSR components are
t =1 (upper-left panel), t = 3 (upper-right panel), t = 4 (lower-left panel),
t =20 (lower-right panel). The horizontal axis is coefficient number.

Thus, we have a class of estimators (5.92), indexed by a parameter k. When
k>0, B,.(k) is a biased estimator of 3. In the special case X™ X =1, (the

orthonormal design case), (5.92) reduces to 8,,.(k) = (1+ k)~'8,),. When
k=0, (5.92) reduces to the OLS estimator.

Properties

The ridge regression estimator (5.92) can be characterized in three differ-
ent ways — as an estimator with restricted length that minimizes the error
sum of squares, as a shrinkage estimator that shrinks the least-squares es-
timator toward the origin, and, given suitable priors, as a Bayes estimator.

1. A ridge regression estimator is the solution of a penalized least-squares
problem. Specifically, it is the r-vector 8 that minimizes the error sum of
squares,

ESS(B) = (Y- &B)" (Y - XB), (5.94)

subject to ||B|* < ¢, (5.95)
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OLS estimate

Ridge
estimate

FIGURE 5.6. The ridge regression estimator, [Airr(k), as the solution of a
penalized least-squares problem. The ellipses show the contours of the error
sum-of-squares function, and the circle shows the boundary of the penalty
function, 32+ B2 < c, where c is the radius of the circle. The ridge estimator
is the point at which the innermost elliptical contour touches the circular
penalty.

where ||B||? = 878 and ¢ > 0 is an arbitrary constant. To see this, form
the function

P(B) = (Y -xB) (Y —-AB) - A3"8, (5.96)
where A > 0 is a Lagrangian multiplier (or ridge parameter) that regularizes
the stability of a ridge regression estimator, and 873 is a penalty function.
Differentiate ¢ with repect to 3, set the result equal to zero, and at the
minimum, set 8 = B,,(A\) to get

o~

(XTX 4+ AL)B,,(\) = X7V (5.97)

The result is obtained by solving this last equation for [Airr()\) and then
setting £k = A. Note that the restriction 873 < ¢ on 3 is a hypersphere
centered at the origin with bounded squared radius ¢, where the value of ¢
determines the value of k. Figure 5.6 shows the two-parameter case.

2. A ridge regression estimator is a shrinkage estimator that shrinks
the OLS estimator toward zero. The singular value decomposition of the
(n x r)-matrix X is given by X = UAY2V" where A = diag[)\;], UU" =
UU=1,VV =V'V =1, and XX = VAV". The {);} are the
ordered eigenvalues of X7X. Let P = XV = UA'Y?2 5o that P"P = A.
Then, we can write (5.92) as follows:

Bu(k) = (XX kL) 'ATY
= (VAV™ +EVVT)"'VAY2U™Y
= V(A+kL)'AY2UTY
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= V(A +KL)'PTY. (5.98)

Now, if we let & = V73 (so that 3 = V), then, the canonical form of the
multiple regression model is

Y=XB+e=Pa-+e, (5.99)
whence the OLS estimator of ac is @15 = (PTP)'P7Y = A~ 1V7s, where
s=X"). Set

an(k) = V7B,(k)
= (A+EL)'PTY

= (A+EL) 'Aag. (5.100)
The jth component in the r-vector @, (k) is, therefore, given by
~ Aj ~ ~
arr,j(k) = <)\J j_ k‘) Qols,j = fk(Aj)aols,ja (5101)

say, where 0 < fr(X;) < 1,7 =1,2,...,r. For k > 0, @ (k) < Qols,j,
so that @y, j(k) shrinks Qs ; toward zero. Also, iy (k) can be written as
arr’j(k) = wj - 0+ (1 — wj)aols,j, with weight 0 < w; = k/()\] + k) <1,
whence it follows that the smaller the value of A; (for a given k& > 0), the
larger the value of w;, and, hence, the greater is the shrinkage toward zero.
Thus, ridge regression shrinks low-variance directions (small \;) more than
it does high-variance directions (large A;).

Note that these conclusions hold for the canonical form of the regression
model with a as the coefficient vector. We can transform back by setting
B (k) = Vau, (k). However, B3,,(k) may not shrink every component of
,@015. Indeed, for some j, the jth component, B,«,,j(k), of ﬁrr(k) may actually
have the opposite sign from the corresponding component, Eolw», of ,2\3

or that |Be; (k)| > |Bois.;|- What we can say, however, is that

ols»

~ r s 2
2 _ 1A 2 _ J ~2
1B (R)I* = [|Gue (R)]* = (Aﬁk) Qols, 5 (5.102)

j=1

which is a monotonically decreasing function of k. Thus, ||8,, (k)| < [Bosll;
so that 3,,.(k) is a shrinkage estimator.

3. A ridge regression estimator is a Bayes estimator when 3 is given
a suitable multivariate Gaussian prior. Suppose YV = X3 + e, where now
e ~ N, (0, ¢%1,)) and o? is known. In other words, Y ~ N, (X3, o1,).
The likelihood is

LWB.) x ew{-gz0- 207 -8

x exp {%ﬂw — By ATX(8 B)} . (5.103)
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which has the form N, (,B, o?(X7X)1). Next, assume that the components
of B are each independently distributed as Gaussian with mean 0 and
known variance aé, so that 8 ~ N,.(0, U%IT) with prior density

m(8) x exp {g;?} . (5.104)
B

The posterior density of 8 is proportional to the likelihood times the prior,
that is,

p(BIY,0) = L(V|B,0)w(B) (5.105)
X  exp {—% [(ﬂ —B)XTX(B-B)+ kﬂfﬁ} } , (5.106)

where k£ = 02/0[23. Now, for the first term in the exponent, set 3 — ,B =

(B — B(k)) + (B(k) — B), and, for the second term, 8 = (8 — B(k)) + B(k).
Multiplying out both expressions and gathering like terms, we find that the
posterior density of B is given by

pB1.0) xexp{ - 503 [(8 - B (¥ + 418 - B(R)] | 5107

In other words, the posterior density of B is multivariate Gaussian with
mean vector (and posterior mode) B(k) and covariance matrix o?(X7X +
kL)Y, where k = 02/02. Note that if Ug is very large, the prior den-
sity becomes vague, and a ridge regression estimator approaches the OLS
estimator.

The Bias-Variance Trade-off

Consider the mean squared error of the ridge regression estimator,
= VAR(k) + BIAS?(k), (5.109)

where the first term on the right-hand side is the variance and the second
term is the bias-squared. The variance term is

VAR(E) = tr{o®(XTX + kL) " A"X(XTX +kI,)" '}
= o*tr{(A+ kL) 'A(A+ kL)"')
T )\
= o2y . 5.110
The bias is

E(B.(k)—B) = B{(X7X+kL)'X7Y -8}
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= {(XTX +kL)'ATX - 1,8
= {(VAV™ +kI,)"'VAV™ - I,}Va
= V{A+kL) A -1}a, (5.111)

whence the bias-squared term is

= o {AA+EL) ' LA +EL) A - L)}

- RZZW. (5.112)

j=1
Thus, the mean squared error for a ridge estimator (5.92) is given by

"L o2\ + ka2
MSE(k) =Y W , (5.113)

Jj=1

where \; is the jth largest eigenvalue of X7 X, «; is the jth element of
a (the orthogonally transformed 3), and o2 is the error variance, j =
1,2,...,r.

When k = 0, the squared-bias term is zero. The variance term decreases
monotonically as k increases from zero, whereas the squared-bias term in-
creases. For large values of k, the squared-bias term dominates the mean
squared error. For these reasons, k has often been called the bias parameter.

Estimating the Ridge Parameter

We can use very small values of k& to study how the OLS estimates
would behave if the input data were mildly perturbed. If we observe large
fluctuations in ridge estimates for very small k, such instability would reflect
the presence of collinearity in the input variables. The main problem of
ridge regression is to decide upon the best value of k. Choice of k is supposed
to balance the “variance vs. bias” components of the mean squared error
when estimating B by (5.92); the larger the value of k, the larger the bias,
but the smaller the variance. In applications, k is determined from the data
in X.

Hoerl and Kennard recommend use of the ridge trace, a graphical dis-
play of all components of the vector 3,,(k) plotted on the same scatterplot
against a range of values of k. The ridge trace is often touted as a diagnos-
tic tool that exhibits the degree of stability of the regression coefficients.
Because k controls the amount of bias in the ridge estimate, the value of k
is estimated (albeit subjectively) by the smallest value at which the trace
stabilizes for all coefficients. Thisted (1976, 1980) argues that choosing an
estimate of k to reflect stability of the ridge trace does not necessarily yield
a meaningful reduction in mean squared error.
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The ridge trace is also used as a variable-selection procedure. If an es-
timated regression coefficient changes sign in the graph of its ridge trace,
this is taken to mean that the OLS estimator of that coefficient has an in-
correct sign, so that that variable should not be included in the regression
model. Such a variable-selection rule has been criticized as being “danger-
ous” (Thisted, 1976) because it eliminates variables without taking into
account their virtues as predictors. Thisted argues that it is possible for a
variable to be a poor predictor but have a small, stable ridge trace, and,
vice versa, to have a very unstable ridge trace but be an important variable
for the regression model.

In an alternative version of the ridge trace, Hastie, Tibshirani, and Fried-
man (2001, Section 3.4.3) choose instead to plot the components of 3,,(k)
against what they call the effective degrees of freedom,

(k) = (W) = 3 ﬁ (5.114)

where the matrix W (k) in (5.93) shrinks the OLS estimator.

The ridge parameter k can also be estimated using cross-validation tech-
niques. A prescription for determining a V-fold cross-validatory choice of
the ridge parameter k is given in Table 5.7.

Ezample: The PET Yarn Data (Continued)

As before, all variables in the PET yarn data are centered. The ridge
trace for the first 60 RR coefficients is displayed in Figure 5.7. We see
that several of the coefficient estimates change sign as k increases. The
ridge trace (not shown here) for all 268 curves indicates that the ridge
parameter k stabilizes for the centered PET yarn data at about the value
0.9.

Figure 5.8 shows the 268 ridge regression coefficient estimates for selected
values of the ridge parameter k. The values of k are, from the top panel, k =
0.00001, 0.01, 0.1, and 1.0. We see that the smaller the value of k, the more
noisy the estimates, whereas the larger the value of k, the less noisy the
estimates. If k = 0 (which is not possible in this application, where r >> n),
then we would have the minimum-length LS estimate. The computations
for this example were carried out using the data augmentation algorithm
(see Exercise 5.8).

5.7 Variable Selection

It is very easy to include too many input variables in a regression equa-
tion. When that happens, too many parameters will be estimated, the
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TABLE 5.7. V-fold cross-validatory choice of ridge parameter k.

1. Standardize each X; so that it has mean 0 and standard deviation 1, j =
1,2,...,7.

2. Partition the data into V learning and test sets corresponding to one of
the versions of cross-validation (V' =5, 10, or n).

3. Choose ki1, ka2, ..., kn to be N (possibly equally spaced) values of k.
4. Fori=1,2,...,N,and forv=1,2,...,V,
e Use the vth learning set to compute the ridge regression coefficients
B_,(ki), say.
e Obtain an estimate of prediction error, ﬁv(k}i), say, by applying
B_, (ki) to the corresponding vth test set.
5. Fori=1,2,...,N,
e Average the V prediction error estimates to get an overall estimate
of prediction error, PEcy,v (ki) =V ™' 3" PE,(ki), say.
e Plot the value of I/DECV/V(ki) against k;.

6. Choose that value of k£ that minimizes prediction error. In other words, the
V-fold cross-validatory choice of k is given by

—

kC’V/V = argH;inPEcv/v(ki).

regression function will have an inflated variance, and overfitting will take
place. At the other extreme, if too few variables are included, the variance
will be reduced, but the regression function will have increased bias, it
will give a poor explanation of the data, and underfitting will occur. Some
compromise between these extremes is, therefore, desirable. The notion of
what makes a variable “important” is still not well understood, but one
interpretation (Breiman, 2001b) is that a variable is important if dropping
it seriously affects prediction accuracy.

The driving force behind variable selection is a desire for a parsimonious
regression model (one that is simpler and more easily interpretable than
is the model with the entire set of variables) combined with a need for
greater accuracy in prediction. Selecting variables in regression models is a
complicated problem, and there are many conflicting views on which type
of variable selection procedure is best. In this section, we discuss several of
these procedures.
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FIGURE 5.7. Ridge trace of the first 60 ridge estimates of the 268 regres-
sion coefficients for the centered PET yarn data. Fach curve represents a
ridge regression coefficient estimate for varying values of k.

5.7.1 Stepwise Methods

There are two main types of stepwise procedures in regression: backwards
elimination, forwards selection, and a hybrid version that incorporates ideas
from both main types.

Backwards elimination (BE) begins with the full set of variables. At each
step, we drop that variable whose F-ratio,
(RSSo — RSS1)/(dfo — df1)
RSSy/df1 ’

F= (5.115)
is smallest, where RSSy is the residual sum of squares (with dfy degrees of
freedom) for the reduced model, and RSS; is the residual sum of squares
(with df; degrees of freedom) for the larger model, where the “reduced”
model is a submodel of the “larger” model. Then, we refit the reduced model
and iterate again. Here, dfy — dfy = 1 and df; = n — k — 1, where k is the
number of variables in the larger model.

Because of the relationship between the ¢ and F' distribution (t2 = Fy ),
this procedure is equivalent to dropping that variable with the smallest
ratio of the least-squares regression coefficient estimate to its respective
estimated standard error. For large samples, this ratio behaves like a stan-
dard Gaussian deviate Z. A regression coefficient is, therefore, declared



5.7 Variable Selection 145

6 6
3 3
S
S -
Q <
Qo0 ©o
o 1}
1] 4
4
3 3
6 i 6
0 50 100 150 200 250 0 50 100 150 200 250
6 6
3 3
- <
o | -~ |
1 0 n 0
x X
3 3
6 i 6
0 50 100 150 200 250 0 50 100 150 200 250

FIGURE 5.8. Ridge regression estimates of the 268 regression coefficients
for the centered PET yarn data. The values of the ridge parameter k are
k=0.00001 (top-left panel), 0.01 (top-right panel), 0.1 (lower-left panel),
1.0 (lower-right panel). The horizontal azis is coefficient number.

significant at the 5% level if the absolute value of its Z-ratio is larger than
2.0, and nonsignificant otherwise. Those variables having nonsignificant co-
efficients (using either the F' or Z definition) are dropped from the model.
We stop when all variables retained in the model are larger than some pre-
determined value Fyelete, usually taken as the 10% point of the Fiy p_p—1
distribution.

Forwards selection (FS) begins with an empty set of variables. At each
step, we select from the variable list that variable with the largest F' value
(5.115) with dfp — dfy = 1 and dfs = n — k — 2, where k is the number of
variables in the smaller model, add that variable to the regression model,
and then refit the enlarged model. We stop selecting variables for the model
when the F' value for each variable not currently in the model is smaller
than some predetermined value Fepnter, which is typically taken to be equal
to 2 or 4 or the 25% point of the Fi ,,_j_2 distribution.

A hybrid stepwise procedure alternates backwards and forwards in its
model selection and stops when all variables have either been retained for
inclusion or removed.
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For the bodyfat data, when we use Fenter = Felote = 4.0, only four input
variables (abdomen, weight, wrist, and forearm) appear in the final model
using any of the above stepwise procedures. If we set Fonter = Faelete = 2.0,
three further variables, neck, age, and thigh, are retained for the equation,
although neck and thigh each have ¢-values smaller than 2.0.

Criticisms of Stepwise Methods. Stepwise procedures have been severely
criticized for the following reasons: (1) Stepwise methods ignore multiple
testing problems when the input variables are highly correlated. (2) The
maximum (or minimum) of a set of correlated F' statistics is not an F’ statis-
tic. Hence, the decision rules used in stepwise regression to add or drop an
input variable can be misleading. We should be very cautious in evaluat-
ing the significance (or not) of a regression coefficient when the associated
variable is a candidate for inclusion or exclusion in a stepwise regression
procedure. (3) There is no guarantee that the subsets obtained from either
forwards selection or backwards elimination stepwise procedures will con-
tain the same variables or even be the “best” subset. (4) When there are
more variables than observations (r > n), backwards elimination is typi-
cally not a feasible procedure. (5) A stepwise procedure produces a single
answer (a very specific subset) to the variable selection problem, although
several different subsets may be equally good for regression purposes.

5.7.2 All Possible Subsets

An alternative method of variable selection involves examining all possi-
ble subsets of a given size and evaluating their powers of prediction. Thus, if
we start out with r variables, each variable can be in or out of the subset;
this implies that there are 2" — 1 different possible subsets that have to
be examined (ignoring the empty subset). This number of candidate sub-
sets quickly becomes very large even for moderate r (e.g., with 20 variables,
there are more than a million subsets). Branch-and-bound algorithms (e.g.,
Furnival and Wilson, 1974) reduce this number to a more manageable size
by eliminating large numbers of candidate models from consideration.

Let k € {0,1,2,...,r} be the number of variables in a given regression
submodel P with |P| = p = k+1 parameters (k variables and an intercept).
There are (;) different subsets each having k variables. Using a variable
selection criterion, each of those subsets may be compared and ranked.

Most subset selection procedures choose the best submodel by minimiz-
ing a selection criterion of the form,

: (5.116)

where X is a penalty coefficient, 52 is the residual variance from the full
model RT, and RSSp is the residual sum of squares for submodel P. In
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the neural networks literature, RSSp/n is called the learning (or training)
error; we saw it before as the apparent error rate or resubstitution error
rate. The term Apa?2 /n is called the complexity term. Special cases of (5.116)
are Akaike Information Criterion (AIC) (Akaike, 1973) and Mallows Cp
(Mallows, 1973, 1995), both of which have A = 2, and the Bayesian Infor-
mation Criterion (BIC) (Akaike, 1978; Schwarz, 1978) with A = logn. The
best submodel found using minimum-BIC' will have fewer variables than
by using minimum-Cp. Asymptotically, AIC and Cp are equivalent but
have different properties than BIC.

The most popular of these criteria is Cp = RSSp/5? — (n — 2p). To
compare submodels, we draw a scatterplot of C'p values against p. (Usually,
we only plot the smallest few Cp values for each p.) Certain regions of the
Cp-plot deserve special mention. For the full model,

Crt = |RT|=71+1, (5.117)

“good” subsets (those with small bias) will have Cp = p, and those subsets
with large bias will have C'p values greater than p. Furthermore, any subset
with Cp <7+ 1 also has F' < 2 (a criterion used in stepwise regression for
adding or eliminating a variable) and so is a candidate for a good subset.
Analytical and empirical results suggest that Cp (and related criteria) tend
to overfit when the full model has very high dimensionality.

The Cp plot for the bodyfat data is given in Figure 5.9, where we have
plotted those subsets with the five smallest C'p values for each value of p.
There are 27 subsets with Cp < p. The overall lowest Cp = 5.9 is obtained
from a 7-variable subset with variables age, weight, neck, abdomen, thigh,
forearm, and wrist.

5.7.83  Forwards-Stagewise Regression

Forwards Stagewise is closely related to forwards selection, but is a much
less greedy algorithm. Both algorithms start out with all coefficient es-
timates set to zero. At the first step, they both add the same variable
to the regression model. As new variables are sequentially added to the
model, forwards selection recomputes all coefficient estimates by refitting
the expanded model, while Forward Stagewise adds new variables to the
model without adjusting the coefficient estimates of those variables already
present.

Let X = (z;5) be an (n x r)-matrix and Y = (y1,---,yn)”. We as-
sume that the input variables have been standardized to have mean zero,
S x;; =0, and length one, Y"1, x?j =1,5=1,2,...,r, and that the
output variable has mean zero, ZLI y; = 0. The “current” estimate of
the regression function u = X3 is given by pu = XB, where the jth col-
umn, X; = (215, -+, Tn;)7, of X = (X1, -, X,) represents n observations
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FIGURE 5.9. Subset selection for the bodyfat data. The smallest five val-
ues of Cp are plotted against the number of parameters p in the subset
model P.

on the jth input X;. The vector of “current” correlations of X with the
“current” residual vector r = Y — [ is given by ¢ = (¢1,---,¢.)" = X"r.
The Forwards-Stagewise algorithm is as follows:

1. Initialize [Ai =0,sothat g=0and r = ).

2. Find the input vector, &, , say, most highly correlated with r, where
J1 = argmax; |¢;|.

3. Update le — le + 0;,, where J;, = €-sign(¢;,) and € is a small
constant that controls the step-length.

4. Update ot <~ 1+ 6;, X}, and r <—r — 6;, X},

5. Repeat steps 2 and 3 many times until ¢ = 0. This is the OLS solution.

Forwards Stagewise is most efficiently computed using a simple modi-
fication of the least-angle regression (LAR) algorithm (see Section 5.7.4).
Let A denote the “active’ set of indices of the set {1,2,...,r}. Unlike LAR,
Forwards Stagewise can drop one or more indices of A at each step. Thus,
the number of steps taken by Forwards Stagewise to arrive at the OLS
solution can be far greater than that for LAR, possibly even thousands of
steps, which has contributed to its lack of use.

For the bodyfat data, Forwards Stagewise took the following sequence
of steps: variables 6, 3, 1, 13, 4, 12, and 7 were added successively to the
model; variables 3 and 1 were dropped; then variable 3 was added back,
but in the next step was dropped again. Then, variables 11, 8, and 2 were
added, but variable 13 was dropped. Variables 1, 10, 3, 13, 5, and 9 were
next added. Then, variable 4 was dropped, then added back, then dropped
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again, and added back again; and variable 1 was dropped, added, dropped
again, and then finally added back in. Thus, 29 modified LAR steps were
needed to reach the OLS solution.

5.7.4 Least-Angle Regression

The least-angle regression (LAR) algorithm (Efron, Hastie, Johnstone,
and Tibshirani, 2004) is a new variable-selection procedure for linear mod-
els. It builds up a regression model sequentially by piecewise-linear steps,
adding a single input variable to the model at each step. When r < n, the
LAR algorithm is as computationally efficient as OLS and it is especially
useful for situations in which r > n. Simple modifications of the LAR al-
gorithm enable implementations of the Forwards-Stagewise algorithm and
the Lasso (Section 5.8.1) to be computed efficiently. Other model-selection
algorithms (e.g., the Dantzig selector: Candes and Tao, 2007; the elastic
net: Zou and Hastie, 2005) can also be computed efficiently by modifying
the LAR algorithm.

The LAR Algorithm

1. Initialize ,2\3 = 0, so that g = 0 and r = ). Start with the “active” set
A an empty subset of indices of the set {1,2,...,r}.

2. Find the input vector, &, , say, most highly correlated with r, where
J1 = argmax; |¢;|; the new active set is A < AU {41}, and X, is added
to the regression model.

3. Move le toward sign(c;, ) (see Step 3 of the Forwards-Stagewise al-
gorithm) until some other input vector, X, , say, has the same correlation
with r as does A&}, ; the new active set is A < AU {j2}, and X}, is added
to the regression model.

4. Update r and move (le,sz) toward the joint OLS direction for the
regression of r on (X, , &j,) (i.e., equiangular between X;, and X,), until
a third input vector, &},, say, is as correlated with r as are the first two
variables; the new active set is A < AU {j3}, and X, is added to the
regression model.

5. After k LAR steps, A = {j1,72,.-.,Jx}, 4 is the current LAR esti-
mate (where exactly k estimated coefficients, Ejl,@z, ey Ejk, are nNonzero
and X;,,X,,,..., X, define the linear regression model), and the current
vector of correlations is € = X7 (Y — [i4).

6. Continue until all » input variables have been added to the regression
model and € = 0. This is the OLS solution.

The total number of LAR steps is min(r,n — 1). Because the input vari-
ables are each mean-centered, LAR terminates in n — 1 steps if r > n — 1.
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A Cp-type statistic that estimates prediction error is available as a stop-
ping rule to choose between possible LAR models. See the R package lars.
Because of its propensity to overfit in high-dimensional problems, however,
there is some doubt as to how reliable C'p can be in selecting a parsimonious
model.

5.7.5  Criticisms of Variable Selection Methods

There have been many criticisms leveled at variable selection methods
in general. These include (1) inferential methods applied to a regression
model assume that the variables are selected a priori. Variable selection
procedures, however, use the data to add or delete variables and, hence,
change the model. As such, they violate the inferential model and should
be considered only as “heuristic data analysis tools” (Breiman, Friedman,
Olshen, and Stone, 1984, p. 227). (2) When variable selection is data-driven,
then the OLS estimates of the regression coefficients based upon the same
data will be biased (even for large sample sizes) on the order 1-2 standard
errors (Miller, 2002). (3) If the (learning) data are changed a small amount,
this may drastically change the variables chosen for the optimal regression
subset, rendering variable selection procedures very “unstable” (Breiman,
1996).

5.8 Regularized Regression

Both ridge regression and variable selection have their advantages and
disadvantages. It would, therefore, be useful if we could construct a hybrid
of these two ideas that would combine the best properties of each method
— subset selection, shrinkage to improve prediction accuracy, and stability
in the face of data perturbations.

Consider the general form of the penalized least-squares criterion, which
can be written as

¢(B) = (Y = XB) (Y — XB) + Ap(B), (5.118)

for a given penalty function p(:) and regularization parameter \. regular-
ization parameter \ effects a compromise between how well the regression
function fits the data and a size constraint on the coefficient vector. A large
value of A means that the size constraint dominates, whereas a small value
of \ allows the OLS estimator to dominate.

We can define a family (indexed by ¢ > 0) of penalized least-squares
estimators in which the penalty function,

pqe(B) = Z 18517, (5.119)
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FIGURE 5.10. Two-dimensional contours of the symmetric penalty func-
tion pe(B) = 51|+ |B2|? =1 for ¢ =0.2,0.5,1,2,5. The case ¢ = 1 (blue
diamond) yields the lasso and ¢ = 2 (red circle) yields ridge regression.

bounds the /,-norm of the parameters in the model as

doIBilt<e (5.120)
i

(Frank and Friedman, 1993). The two-dimensional contours of this sym-
metric penalty function for different values of g are given in Figure 5.10.

If we substitute the penalty function p,(8) in (5.119) in place of p(8) in
(5.118), we can write the criterion as ¢4(3), ¢ > 0. Then, ¢,(8) is a smooth,
convex function when ¢ > 1, and is convex for ¢ = 1, so that we can use
classical optimization methods to minimize ¢,(8). By contrast, ¢,(/3) is not
convex when ¢ < 1, and so its minimization is more complicated, especially
when r is large.

Ridge regression corresponds to ¢ = 2, and its corresponding penalty
function is a circular disk (r = 2) or sphere (r = 3), or, for general r, a
rotationally invariant hypersphere centered at the origin. The ridge regres-
sion estimator is that point on the elliptical contours of ESS(3), centered
at ,2\3, which first touches the hypersphere j BJZ < ¢. The tuning parameter

¢ controls the size of the hypersphere and, hence, how much we shrink B
toward the origin.

If g # 2, the penalty is no longer rotationally invariant. The most inter-
esting case is ¢ < 2, where the penalty function collapses toward the coordi-
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nate axes, so that not only does it shrink the coefficients toward zero, but it
also sets some of them to be exactly zero, thus combining elements of ridge
regression and variable selection. When q is set very close to 0, the penalty
function places all its mass along the coordinate axes, and the contours
of the elliptical region of ESS(8) touch an undetermined number of axes
(so that the resulting regression function has an unknown number of zero
coefficients); the result is variable selection. The case ¢ = 1 produces the
lasso method having a diamond-shaped penalty function with the corners
of the diamond on the coordinate axes. If ¢ = 0, the penalty counts the
number of nonzero coefficients, which corresponds to all-possible-subsets
variable selection.

5.8.1 The Lasso

The Lasso (least absolute shrinkage and selection operator) is a con-
strained OLS minimization problem in which

ESS(8) = (¥ — XB)"(Y — XB) (5.121)

is minimized for B = (3;) subject to the diamond-shaped condition that
25:1 |8 < ¢ (Tibshirani, 1996b). The regularization form of the problem
is to find 3 to minimize

O(B) = (¥ = XB) (Y = XB) + A 15l. (5.122)

j=1

This problem can be solved using complicated quadratic programming
methods subject to linear inequality constraints.

The Lasso has a number of desirable features that have made it a popular
regression algorithm. Just like ridge regression, the Lasso is a shrinkage
estimator of B, where the OLS regression coefficients are shrunk toward
the origin, the value of ¢ controlling the amount of shrinkage. At the same
time, it also behaves as a variable-selection technique: for a given value of ¢,
only a subset of the coefficient estimates, §;, will have nonzero values, and
reducing the value of ¢ reduces the size of that subset. The coefficient values
will be exactly zero when one of the elliptical contours of the function

ESS(B8) = RSS + (8 — Bow) XX (B — Boys), (5.123)

~

where RSS = ESS(B) is a constant, touches a corner of the diamond-
shaped penalty function.

The entire Lasso sequence of paths (or profiles) displays the coefficient
estimates plotted against the upper bound ¢ = 3~ [f;| (or normalized at

each step by dividing ¢ by max}, |Bj|) as ¢ increases from 0 to the point
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at which the OLS solution is obtained. These profiles can be generated
by a slight modification of the LAR algorithm. We start with the LAR
algorithm; then, if a nonzero estimated coefficient becomes 0 (e.g., changes
its sign), stop and remove that variable from A and from the calculation of
the next equiangular direction. No new variable is added to the model at
that step. The LAR algorithm recomputes the best direction and continues
on its way. All additions and subtractions of variables are made “one-at-a-
time,” so that the number of steps for the LAR-Lasso algorithm can exceed
that of the LAR algorithm.

The Lasso and Forwards Stagewise can both be computed through the
LAR algorithm. Their respective sequences of paths can either be identical
(in certain situations) or very different. In general, the Forwards Stagewise
paths will be smoother than those of the Lasso because Forwards Stagewise
can be characterized as a monotone (i.e., more restricted) version of the
Lasso (Hastie, Taylor, Tibshirani, and Walther, 2007).

The LAR algorithm is efficient, involving of the order O(r® + nr?) com-
putations when r < n, equivalent to an OLS fit on r input variables. The
LAR-Lasso algorithm, in which we may need to drop a variable (costing
at most an additional O(r?) computational operations for each variable
dropped), generates the Lasso solution without difficulty.

In Figure 5.11, we display all 13 Lasso paths for the bodyfat data, both
for the coefficients (left panel) and for the standardized coefficients (right
panel). Variables are added to the regression model in the following order:
6 (abdomen), 3 (height), 1 (age), 13 (wrist), 4 (neck), 12 (forearm), 7
(hip), 11 (biceps), 8 (thigh), 2 (weight), 10 (ankle), 5 (chest), and 9
(knee). None of the coefficient paths cross zero and so no variables are
dropped from the regression model at any stage of the Lasso process. Fig-
ure 5.11 was computed by the LAR-Lasso algorithm; the LAR algorithm
yielded the same paths.

A hybrid penalized LS regression method called the elastic net (Zou and
Hastie, 2005) uses as p(f) in (5.118) a linear combination of the ridge
regression ¢ penalty function and the Lasso /1 penalty function.

5.8.2 The Garotte

A different type of penalized least-squares estimator is due to Breiman
(1995). Let 3,5 be the OLS estimator and let W = diag{w} be a diagonal
matrix with nonnegative weights w = (w;) along the diagonal. The problem
is to find the weights w that minimize

¢(W) = (y - XWaOIS)T(y - XW/@ols) (5'124)
subject to one of the following two constraints,

l.w>0,1Tw=3"_ w; <c (nonnegative garotte)
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FIGURE 5.11. Lasso paths for the bodyfat data. The paths are plots of the
coefficients {5;} (left panel) and the standardized coefficients, {B; || X; |2}
(right panel) plotted against 3_; |B;|/ max}_;|B;]. The variables are added

to the regression model in the order: 6, 3, 1, 13, 4, 12, 7, 11, 8, 2, 10, 5,
9.

2. wiw =7 wi <c (garotte).

Either version of the garotte seeks to find some desirable scaling of the
regression coefficients. As ¢ is decreased, more of the w; become 0 (thus
eliminating those particular variables from the regression function), while
the nonzero Bols,j shrink toward 0. Note that both versions of the garotte,
which depend upon the existence of the OLS estimator, B fail in situa-

tions where r > n.

ols»

Comparisons Extensive simulations comparing prediction accuracy under
a wide variety of conditions and models (see, e.g., Breiman, 1995, 1996;
Tibshirani, 1996b; Ojelund, Brown, Madsen, and Thyregod, 2002) show
that the Lasso, which tends to choose too many variables, almost always
contains the correct model; the nonnegative garotte tends to select smaller
models than the Lasso; and all-possible-subsets, while more likely to choose
the correct model than the Lasso, selects models that contain the correct
model far less often than the Lasso. Simulations also show that ridge re-
gression is very stable and is more accurate when there are many small
coefficients, but does not do well when faced with a mixture of large and
small coefficients; the nonnegative garotte is relatively stable and is more
accurate when there are a few nonzero coefficients; the lasso performs well
when there are a small-to-medium number of moderate-sized coefficients
(while its estimates tend to have large biases); and all-possible-subsets, al-
though very unstable, performs well only when there are a few nonzero
coefficients.
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Bibliographical Notes

There is a huge literature on multiple linear regression, and it is the area
of statistics about which most is known. See, for example, Weisberg (1985)
and Draper and Smith (1981, 1998). An excellent book on variable selection
is Miller (2002).

The material on prediction error is based upon the work of Breiman
(1992, 1995), Breiman and Spector (1992), and Efron (1983, 1986). The use
of cross-validation for model selection purposes was introduced by Stone
(1974) and Geisser (1975). (It is amusing to read that one discussant of
Stone’s article likened cross-validation to witcheraft!) Based upon a con-
viction that “prediction is generally more relevant for inference than param-
eter estimation,” Geisser (1974, 1975) called the cross-validation technique
the predictive sample-reuse method.

Book-length accounts of the bootstrap include Efron (1982), Hall (1992),
Efron and Tibshirani (1993), and Chernick (1999). The names “uncon-
ditional” and “conditional” bootstrap were taken from Breiman (1992).
Freedman (1981) distinguishes the two regression models for bootstrapping
by calling the fixed-X case the “regression model” and the random-X case
the “correlation model.” An account of regression problems with collinear
data from an econometric point of view is given by Belsley, Kuh, and Welsch
(1980).

The ridge regression estimator first appeared in 1962 in an article in a
chemical engineering journal by A.E. Hoerl. This was followed by Hoerl
and Kennard (1970a,b). For the Bayesian characterization of the ridge es-
timator, see Lindley and Smith (1972), Chipman (1964), and Goldstein and
Smith (1974).

In many texts, it is common to recommend standardizing (centering and
scaling) the input variables prior to carrying out ridge regression. Such
recommendations are not accepted by everyone, however. Thisted (1976),
for example, states that “no argument has ever been advanced, nor does a
single theorem in the ridge literature require, that X" X be in ‘correlation
form’.” He goes on to argue that “because ridge rules are not invariant with
respect to changes in origin of the predictor variables, it is important to
recognize that origins are not arbitrary and that centering, taken as a rule
of thumb always to be followed, can lead to misleading results and poor

mean square error behavior.”

Some notes on terminology and notation origins ... The penalized least-
squares regression with penalty function (5.119) is widely referred to as
bridge regression with the origin of the name ascribed to Frank and Fried-
man (1993). Although this name never appears in that reference, it appar-
ently was first used by Friedman in a talk (Tibshirani, personal communi-
cation). ... Mallows (1973) states that the use of the letter C' in Cp was
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specifically chosen to honor Cuthbert Daniel, who helped Mallows develop
the idea behind Cp at the end of 1963. ... In an interview (Findley and
Parzen, 1995), Akaike explains how AIC was named. Akaike had previ-
ously used the notation IC' (for information criterion) in a 1974 article,
and for another article had asked his assistant to compute some values of
the IC'. His assistant knew that if she called the quantity “IC,” Fortran
would assume that it was integer-valued, which it was not. So, she put an
A in front of IC to turn it into a noninteger-valued quantity. Akaike ap-
parently thought that calling it AIC was a “good idea” because it could
then be used as the first of a sequence of information criteria, AIC, BIC,
etc.

Exercises

5.1 From the solution (5.13) to the least-squares problem in the random-
X case, use formula (3.5) for inverting a partitioned matrix and (3.82) to
show that (5.14) and (5.15) follow.

5.2 From the solution (5.26) to the least-squares problem in the fixed-X
case, use the matrix-inversion formula (3.5) to show that (5.27) and (5.28)
follow.

5.3 Show that cov((a” —d"Z7)Y,d" Z7Y) = 0 for the multiple regression
model, where a is an n-vector and d is an (r + 1)-vector.

5.4 (Gauss—Markov Theorem) Assume that ,Bols is any solution of the
normal equations (5.25) and that Z is a matrix of fixed constants. Make
no assumption that Z7Z has full rank. Call ¢"3 estimable if we can find a
vector a such that E(a”™)) = ¢”3. If ¢"3 is estimable, show that ¢" 3, is
linear in Y and is unbiased for ¢’ 3. Using Exercise 5.3 or otherwise, show
also that ¢™(3,), has minimum variance among all linear (in }’) unbiased

estimators of ¢” 3.

5.5 Suppose Z"Z is nonsingular and that the solution of the normal
equations is B, = (Z7Z)"1Z7Y. Show that the Gauss-Markov Theorem
holds.

5.6 Let G be a generalized inverse of Z7Z and let a solution of the
normal equations be given by the generalized-inverse regression estimator,
B* = GZ7)Y. Show that the Gauss—Markov Theorem holds.

5.7 Show that a generalized ridge regression estimator,
Bou(k) = (X7X + k) X7y,

can be obtained as a solution of minimizing E'SS(3) subject to the elliptical
restriction that 87Q3 < c.
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5.8 (Marquardt, 1970) Consider the following operation of data aug-
mentation. Center and scale all input and output variables. Augment the
(n x r)-matrix X with r additional rows of the form Hy = VkI,., where k
is given, and denote the resulting ((n+r) X r)-matrix by X*. Augment the
n-vector ) using r Os, and denote the resulting (n + r)-vector by Y*. Show
that the ridge estimator can be obtained by applying OLS to the regression
of Y* on A*. Thus, one can carry out ridge regression using standard OLS
regression software and obtain the correct ridge estimator. However, much
of the rest of the regression output will be inappropriate for the original
data (X,)).

5.9 In the PET yarn example, the variables were all centered, but not
scaled. Standardize the input variables (the spectrum values) by centering
and dividing each input variable by its standard deviation, and center the
output variable (density). For the standardized data, recompute: (1) the
PCR coefficient estimates, (2) the PLSR coefficient estimates, and (3) the
RR coefficient estimates for various values of k (including & > 1), and
redraw the ridge trace. What effect does standardizing have on the results
that is not provided by centering alone? How would the results be affected
by neither centering nor standardizing the variables?

5.10 Consider data on the composition of a liquid detergent. The datafile
detergent can be downloaded from the book’s website. There are five Y
output variables, representing four compounds in an aqueous solution (the
fifth Y variable is the amount of water in the solution), and they sum
to unity. The X input variables consist of mid-infrared spectrum values
recorded as the absorbances at » = 1168 equally spaced frequencies in the
range 3100-759 cm~!. The data consist of n = 12 sample preparations of
the detergent. Graph the 12 absorbance spectra and apply PCR, PLSR,
and RR to the data using each of the first four Y variables in separate
regressions.

5.11 (Mallows, 1973) Consider the Cp statistic. Let P* be a subset with
p+1 parameters that contains P. Show that Cp-—Cp is distributed as 2—2,
where t; is the Student’s ¢ variable having 1 degree of freedom. Show also
that if the additional variable is unimportant, then the difference C'p« —Cp
has mean and variance approximately equal to 1 and 2, respectively.

5.12 What is the relationship between R? and Cp?

5.13 If the regression model is correct, show that Cp can be used as an
estimate of |P|, the number of parameters in the model.

5.14 For the OLS estimator ﬁ in the linear regrssion model Y = X8 + e,
where e has mean zero, show that FSS(8) = RSS+ (8 — B.) X" X (8 —
Bo1s), where RSS = ESS(3).
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5.15 Consider the matrix X. Center and scale each column of X so that
X7 X is the correlation matrix. Regress the kth column of X on the other
7 — 1 columns of X in a multiple regression. Compute the residual sum of
squares, RSSk, k =1,2,...,r, for each column. Near collinearity exhibits
irself when at least one of the RSSy, RSSs, ..., RSS, is small. Show that
RSS), is the square-root of the kth diagonal element of (X7X)~!, which
is referred to as the reciprocal square-root of VIFj}. Show that VIFy =
(1- Ri)_l, where Rz is the squared multiple correlation coefficient of the
kth column of X regressed on the other r — 1 columns of X, k=1,2,... 7.

5.16 Suppose the error component e of the linear regression model has
mean 0, but now has var(e) = 02V, where V is a known (n x n) positive-
definite symmetric matrix and 0? > 0 may not be necessarily known. Let
Bgis denote the generalized least-squares (GLS) estimator:

~

Bgis = afgrrgn Y-28)V(Y-28).

Show that N
ﬂg]s — (Zvalz)flvafly

has expectation 8 and covariance matrix

var(f?gls) =o%(Z27TViz)Th

5.17 What would be the consequences of incorrectly using the ordinary
least-squares estimator B, = (Z7Z) 127, of B when var(e) = 02V?

ols

5.18 The Boston housing data can be downloaded from the STATLIB
website 1ib.stat.cmu.edu/datasets/boston_corrected.txt. There are
506 observations on census tracts in the Boston Standard Metropolitan
Statistical Area (SMSA) in 1970. The response variable is the logarithm of
the median value of owner-occupied homes in thousands of dollars; there
are 13 input variables (plus information on location of each observation).
Compute the OLS estimates and compare them with those obtained from
the following variable-selection algorithms: Forwards Selection (stepwise),
Cp, the Lasso, LARS, and Forwards Stagewise.

5.19 Repeat comparisons between variable-selection algorithms in Exer-
cise 5.18 for The Insurance Company Benchmark data set. The data gives
information on customers of an insurance company and contains 86 vari-
ables on product-usage data and socio-demographic data derived from zip
area codes. There are 5,822 customers in the learning set and another 4,000
in the test set. The data were collected to answer the following question:
Can you predict who would be interested in buying a caravan insurance
policy and give an explanation why? The data can be downloaded from
kdd.ics.uci.edu/databases/tic/tic.html.
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Multivariate Regression

6.1 Introduction

Multivariate linear regression is a natural extension of multiple linear re-
gression in that both techniques try to interpret possible linear relation-
ships between certain input and output variables. Multiple regression is
concerned with studying to what extent the behavior of a single output
variable Y is influenced by a set of r input variables X = (X1, -+, X,)".
Multivariate regression has s output variables Y = (Y7,---,Ys)", each
of whose behavior may be influenced by exactly the same set of inputs
X=(Xy, -, X)".

So, not only are the components of X correlated with each other, but in
multivariate regression, the components of Y are also correlated with each
other (and with the components of X). In this chapter, we are interested
in estimating the regression relationship between Y and X, taking into
account the various dependencies between the r-vector X and the s-vector
Y and the dependencies within X and within Y.

We describe two different multivariate regression scenarios, analogous to
the fixed-X and random-X scenarios of multiple regression. In particular,
we consider restricted versions of the multivariate regression problem based
upon constraining the relationship between Y and X in some way. Such

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 159
DOI 10.1007/978-0-387-78189-1_6, © Springer Science+Business Media New York 2013
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constraints may be linear or nonlinear in form, and they may be known
or unknown to the researcher prior to statistical analysis. Our approach is
guided by the well-known principle that major theoretical, computational,
and practical advantages may result if one is able to express a wide variety
of statistical problems in terms of a common focus, especially when that
focus is regression analysis.

With this in mind, we describe the multivariate reduced-rank regression
model (RRR) (Izenman, 1975), which is an enhancement of the classical
multivariate regression model and has recently received research attention
in the statistics and econometrics literature. The following reasons explain
the popularity of this model: RRR provides a unified approach to many of
the diverse classical multivariate statistical techniques; it lends itself quite
naturally to analyzing a wide variety of statistical problems involving re-
duction of dimensionality and the search for structure in multivariate data;
and it is relatively simple to program because the regression estimates de-
pend only upon the covariance matrix of (X7, Y")" and the eigendecompo-
sition of a certain symmetric matrix that generalizes the multiple squared
correlation coefficient R? from multiple regression.

6.2 The Fixed-X Case

Let Y = (Y1, --,Y5)” be a random s-vector-valued output variate with
mean vector py and covariance matrix Myy, and let X = (Xq, -+, X,.)7
be a fixed (nonstochastic) r-vector-valued input variate. The components
of the output vector Y will typically be continuous responses, and the
components of the input vector X may be indicator or “dummy” variables
that are set up by the researcher to identify known groupings of the data
associated with distinct subpopulations or experimental conditions.

Let {(X7,Y7])",7=1,2,...,n} be n replications of (X", Y")". Suppose

when X is fixed at x;, we observe Y; =y; j =1,2,...,n. The data are
given by
={(x J,yj) ,i=1,2,...,n}. (6.1)
We define matrices X and ) by
TXn SXn
X:(X17"'7xn), y:(y17"'7yn)' (62)

Form the following vectors and matrices:

rx1 n sx1 n
x=n"'Yx;, y=n">y, (6.3)
j=1 j=1
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The centered versions of X and ) are defined, respectively, by

XN sXn

Xc:Xf')Ea yc:y*:j) (65)

6.2.1 Classical Multivariate Regression Model
Suppose each Y depends linearly on the same set of {X}} so that
}/}:/Lj+0j1X1+"‘+9err+6, j:1,2,...,8, (66)

where e is an error variate. Using the data D in (6.1), which are assumed
to follow (6.6), the multivariate linear regression model is given by

sXn sXn SXTr rXn sXn

Y=p +06 X + &, (6.7)

where p is an (s x n)-matrix of unknown constants, ® = (6;) is an (s x r)-
matrix of unknown regression coefficients, and & = (£1,&,-+,&y) is the
(s x n) error matrix whose columns are each random s-vectors with mean
0 and the same unknown nonsingular (s x s) error covariance matriz Xeg,
and pairs of column vectors, (£5,&), 7 # k, are uncorrelated with each
other. When the Xs are considered to be fixed in repeated sampling (e.g.,
in designed experiments), the so-called design matriz X consists of known
constants and possibly also observed values of covariates, ©® is a full-rank
matrix of unknown fized effects, and pu = py17,, where py is an unknown

n’
s-vector of constants and 1,, is an n-vector of 1s.

Consider the problem of estimating arbitrary linear combinations of the
{0jk},
tr(A®) =Y > Ajbjk, (6.8)
i k

where A = (A;x) is an arbitrary matrix of constants. There are two equiv-
alent ways to proceed. On the one hand, we can write

p+OX =0 X", (6.9)

where @* = (py : ©) and X* = (1,, : X7)7, and then estimate ®*. The
other way is to remove u from the equation by centering X and ) and
then estimate © directly. It is the latter procedure we give here. The reader
should verify that both procedures lead to the same results (see Exercise

6.7).
LS Estimation

If we set =) — ®X, the model (6.7) reduces to

SXMn  gxr rXn sXn
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Applying the “vec” operation to equation (6.10), we get

snXx1 SN Xsr srx1 snXx1

vee(Ve)=(I; ® X7 )vec(®) + vec(E) . (6.11)

We see that the relationship (6.11) is just a multiple linear regression.
The error variate vec(€) has mean vector 0 and (sn x sn) block-diagonal
covariance matrix,

cov(vec(€)) = E{(vec(&))(vec(E))™} = Bee @ 1. (6.12)

Assuming that X.&7 is nonsingular and using Exercise 5.16, the generalized
least-squares estimator of vec(®) is given by

~

vec(®) = (6.13)
(I ® Xe)(Bege @ In)_l(Is & XCT))_l(IS R Xe)(Bege ® In)_lvec(yc)
= (I, ® (XcXg)lec)Vec(yc), (6.14)

using results on Kronecker products of matrices. By “un-vec’ing” (6.14), it
follows that N
O = VAT (X.XT) (6.15)
p=Y-0Xx, (6.16)
so that gy =y — ox.
Thus, under the above conditions and if X, X[ is nonsingular, then the
minimum-variance linear unbiased estimator of tr(A®) is given by tr(A©O).
This is the multivariate form of the Gauss-Markov theorem.

We can interpret the estimator © in an important way. Suppose we
transpose the regression equation (6.10) so that

nxs nXr rxs nxs

Z=W B + E, (6.17)

where Z = V7, W = X7, 8= 07, and E = £7. The ith row vector, V.(;,
of V. corresponds to the ith column vector, z;, of Z and represents all the
n (mean-centered) observations on the ith output variable Ve;; = Vij — Vi,
j = 1,2,...,n. Thus, the n-vector z; can be modeled by the multiple
regression equation,

nx1 nxr X1 nx1

z;, = W ,@i + €;, (618)
where 3, is the ¢th column of 3, and e; is the 7th column of E. The OLS
estimate of 3; is

B, =(WW) "Wz, (6.19)

Transforming back, we get that the least-squares estimator of 6; (i.e., the
ith row of @) is

0) = Ve X (XeXD) 7T (6.20)
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which is the ith row of ©.

Thus, simultaneous (unrestricted) least-squares estimation applied to all
the s equations of the multivariate regression model yields the same results
as does equation-by-equation least-squares. As a result, nothing is gained by
estimating the equations jointly, even though the output variables Y may
be correlated.

In other words, even though the variables in Y may be correlated, per-
haps even heavily correlated, the LS estimator, @, of ® does not contain
any reference to that correlation. Indeed, the result says that in order to
estimate the matrix of regression coefficients ® in a multivariate regression,
all we need to do is (1) run s multiple regressions, each using a different
Y variable, on all the X variables, (2) compute the vector of regression
coefficient estimates, @(i), 1 = 1,2,...,s, from each multiple regression,
and then (3) arrange those estimates together into a matrix, which will be
©. To those who encounter this result for the first time, it can be quite
surprising!

In its basic classical formulation, therefore, we see that multivariate re-
gression is a procedure that has no true multivariate content. That is, there
is no reason to create specialized software to carry out a multivariate regres-
sion of Y on x when the same result can more easily be obtained by using
existing multiple regression routines. This is one reason why many books
on multivariate analysis do not contain a separate chapter on multivariate
regression and also why the topics of multiple regression and multivariate
regression are so often confused with each other.

Covariance Matriz of e

Using the “vec” operation and Kronecker products, it is not difficult to
obtain the covariance matrix for ©. Substituting (6.10) for ). into (6.15),
we have that

O = (OX, + E)XT(XXT) P =0+ EXT (X X)L (6.21)

Using the fact that X is a fixed matrix and that £ has mean zero, we have
that vec(®) has mean vec(®). Now, from (6.21),

vee(® — @) = vec(EXT (XXT)7Y) = (I, ® (X X7) LX) vec(E),
whence,

cov(vec(®)) = E{(vec(® — O))(vec(® — @))7}
= (L@ (X&) 1) (Bee @ L) (L @ X7 (X X]) )
= Yee® (XA (6.22)

by using the multiplicative properties of Kronecker products.
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So far, we have obtained the LS estimators of the multivariate linear
regression model without imposing any distributional assumptions on the
errors. If we now assume that the errors in the model are distributed as iid
Gaussian random vectors,

Ej i’i‘(’iNs((),ESS), j:1727"'7n7 (623)
then,
vec(®) ~ Nys(vee(©®), Bee @ (X.XT)7H). (6.24)

Furthermore, the distribution of the least-squares estimator (6.20) is
/é(z) ~ M(g(l),UZQ(XCXZ)il), (625)
where o7 is the ith diagonal entry of Xgg, i = 1,2,...,s. Compare with

(5.42).

If X, has less than full rank, then the (rxr)-matrix X, X7 will be singular.
In this case, we can replace the (X.X7)~! term either by a generalized
inverse (X.X7)~ or by a ridge-regression-like term such as (X. X7 + kL)1,
where k is a positive constant; see Section 5.6.4.

Fitted Values and Multivariate Residuals

The (s x n) matrix Y of fitted values is given by
V=[+0X=Y+0(x-X), (6.26)
or
V. =0X, =YX (XX 'Xx. = V.H, (6.27)
where the (n x n) matrix H = X7 (X, X7) "X, is the hat-matriz.

The (s x n) residual matriz & is the difference between the observed and
fitted values of ), namely,

E=Y-V=Y-0X=Y.~ V=Y. —H),  (628)
and, using (6.27), can also be written as

é\ - yc - @Xc
= (OX.+E)— (O +EXT (XX HA.
~ £, —H). (6.29)

-~

It follows immediately that E(vec(€)) = 0. A straightforward calculation
shows that

~

cov(vec(€)) = Bge @ (I, — H). (6.30)
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The (s x s) matrix version of the residual sum of squares is
S. =EE" = (V. — OX,) (V. — OX,) = V.(I, — H)Y!. (6.31)
It is not difficult to show that S, = £(I,, — H)E™. Let &(;) be the jth row
of £. Then, the jkth element of S, can be written as
(Se)jk = €y (In —H)ER,
whence,
E{(Sc)jr} = E{tr((In —H)EREG)}
= tI‘(In — H) . (Egg)jk
= (n—r)(Bee)jn-
We can now state the statistical properties of an estimate of the error
covariance matrix. The residual covariance matrix,

1
n—

Yee =

€y 2
- S (6.32)

1s statistically independent of © and has a Wishart distribution with n —r
degrees of freedom and expectation Xgg. We see that the residual covariance
matrix Xeg is an unbiased estimator for the error covariance matrix Xeg.

The covariance matrix of © can, therefore, be estimated by
cov(vece(©)) = See @ (X XT) 7L, (6.33)

where Sg¢ is given by (6.32).

Confidence Intervals

We can now construct confidence intervals for arbitrary linear combina-
tions of vec(®). Let ~ be an arbitrary sr-vector and consider 47 vec(®).
Assuming the error vectors are s-variate Gaussian as in (6.23), the inde-
pendence of (6.15) and (6.32) means that the pivotal quantity

_ A’yT(Vec((:) - 9))
{77 (Bee ® (XeXT) 1)y }/2

has the Student’s t¢-distribution with n — r degrees of freedom. Thus, a
(1 —a) x 100% confidence interval for v7vec(®) can be given by

(6.34)

v vec(®) £ 1272 (v (Bee @ (XXT) )y}, (6.35)

T

where tz/j is the (1 — «/2) x 100%-point of the ¢,_,-distribution.
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FIGURE 6.1. Three-variable Boz—Behnken design for the Norwegian Pa-
per Quality experiment. The three variables, X1, Xo, and X3, each have
values —1,0, or 1. There are 13 design points consisting of the midpoints
of each of the 12 edges of a three-dimensional cube and a point at the center
of the cube. Source: NIST/SEMATECH e-Handbook of Statistical Methods,
www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm.

6.2.2  FEzxample: Norwegian Paper Quality

These data' were obtained from a controlled experiment carried out in
the paper-making factory of Norske Skog located in Skogn, Norway (Aldrin,
2000), which is the world’s second-largest producer of publication paper.
There are s = 13 response variables, Y7,..., Y13, which measure different
characteristics of paper.

The purpose of the experiment was to uncover how these response vari-
ables were influenced by three predictor variables, X1, Xo, X3, each of which
is controlled exactly with values —1,0, or 1 according to a 3-variable Box—
Behnken design (Box and Behnken, 1960). See Figure 6.1. The 13-point
design can be represented as the midpoints of each of the 12 edges of a
three-dimensional cube and a point (0,0,0) at the center of the cube. At
each of 11 design points, the response variables were measured twice; at the
design point (0,1,1), the response variables were measured only once; at
the center point, the response variables were measured six times. To allow
for interactions and nonlinear effects, the standard model for such designs
includes an additional six predictor variables defined as X4 = X?, X5 =
X2, Xe = X2, X7 = X1X2,Xs = X1X3,X9 = X5X3, so that 7 = 9.
The data set, therefore, consists of 29 observations measured on each of
r+ s =94 13 = 22 variables.

IThe data, which originally appeared in Aldrin (1996), can be found in the file
norwaypaperl.txt on the book’s website or can be downloaded from the STATLIB website
lib.stat.cmu.edu/datasets.
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TABLE 6.1. Norwegian paper quality data. This is the (13 x 9)-matriz of
estimated regression coefficients, ©. The number of X -variables is r = 9,

the number of Y -variables is s = 13, and the number of observations is
n = 29.

0.752  -0.449 -0.365 0.105 -0.291 0.545 0.111 0.390 0.217
-0.844 0.350 0.369 -0.039 0.226  -0.567 -0.141 -0.537 -0.324
0.286  -0.670 -0.572 0.044 -0.283 0.534 0.065 0.408 -0.163
0.497 -0.491 -0.666 0.142  -0.391 0.450 0.068 0.195 0.020
0.515 0.143 -0.570 -0.182 -0.372 0.420 -0.158 0.792 0.602
-0.717 0.039  -0.215 0.346  -0.362 0.055 0.139 0.462 0.125
0.878 0.0561 -0.269 -0.324 -0.015 0.228  -0.243 0.126 0.255
-0.564 0.194 -0.357 -0.002 -0.427 0.046 0.236  -0.446 0.257
0.287 0.497 -0.600 -0.382 -0.011 0.837 0.143 0.380 -0.121
-0.654  -0.145 0.111 0.221  -0.354 -0.524 0.057 -0.682 0.336
0.174 -0.714 0.329 0.146 0.143 -0.144 0.086 -0.826 -0.731
-0.526 0.283 0.541  -0.832 0.428 0.339 0.214 0.125 0.173
0.505 0.052 0.428 -0.704 0.561 0.557 -0.231 -0.245 -0.181

Regressing Y = (Y7, --,Y13)" on X = (X4, -+, Xy)", using formulas
(6.15) and (6.16), yields the estimated mean vector fi,

A= (32.393,31.678,7.034,7.826,14.734,12.455,9.996, 18.502,
22.414,17.817,21.405, 90.166, 23.547)", (6.36)

and the (13x9)-matrix of estimated regression coefficients (:), which is given
in Table 6.1. Each row of Table 6.1 can also be obtained by regressing the
Y variable corresponding to that row on all nine X variables; see Ex. 6.8.

6.2.3 Separate and Multivariate Ridge Regressions

As we have seen, multivariate OLS regression reduces to a collection of
s separate multiple OLS regressions. We can improve substantially upon
OLS while still pursuing an equation-by-equation regression strategy by
applying a biased regression procedure, such as ridge regression, separately
to each output variable.

Let the n-vector Ve(j) = (¥j,1,-++,¥;n)7 be the jth row of Y. Using
the penalized least-squares formulation of uniresponse ridge regression (see
Section 5.8), let

05(B) = Veg) — XeB) Vo) — XeB) + N8B, j=1,2,...,5 (6.37)

where we allow the possibility for different ridge parameters, {\;}, for each
equation. Separate ridge-regression estimators are the solutions to

~

BA) = argngnqﬁj(ﬂ), j=1,2,...,s, (6.38)
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and the separate ridge parameters can be estimated using leave-one-out
cross-validation,

n

/):j = argm}%n {Z@” - @7_1’()\))2} ., J=1,2,...,s, (6.39)

i=1

where 75, _;(A) is the predicted value (using ridge regression with ridge pa-
rameter \) of the ith case of the jth response variable when the entire ith
case is deleted from the learning set (Breiman and Friedman, 1997). Varia-
tions on this idea have been used to predict the outcome on election night
in every British general election (and British elections to the European
parliament) since 1974 (Brown, Firth, and Payne, 1999).

Although ridge regression can be predictively more accurate than is OLS
in the case of a single output variable, this equation-by-equation strategy
is unsatisfactory because it circumvents the issue that the output variables
are correlated and that the combined ridge estimators do not yield a proper
Bayes procedure.

Several extensions of (5.92) for the multivariate case have since been
proposed that recognize the true multivariate nature of the problem. From
(6.14), we have that

vee(O®) = (I, ® X.X7) NI, © X.)vee(Ve). (6.40)

A multivariate analogue of (5.92) can be based upon (6.40) by introducing
a positive-definite (s x s) ridge matriz K so that

vec((:)(K)) = (I, @ XX7) +(K®L)) HI, @ X)vec().) (6.41)

is a multivariate ridge regression estimator of vec(®) (Brown and Zidek,
1980, 1982). The application of (6.41) to predicting British elections uses
a diagonal K. Even if X X7 is almost singular, (6.41) is still computable.
Note that (6.41) reduces to (6.40) if K = 0. If K is chosen from the data,
then the multivariate ridge estimator (6.41) becomes adaptive. A more
complicated version of (6.41) was proposed by Haitovsky (1987).

6.2.4 Linear Constraints on the Regression Coefficients

It is sometimes necessary to consider a more restricted model than the
classical multivariate regression model. In certain practical situations, we
might need the elements of the regression coefficient matrix ® in the clas-
sical model ), = OX, + £ to satisty a set of known linear constraints.

A variety of applications can be based upon the general set of linear

constraints on @,
mXs SXr rXu mXu

K © L=r, (6.42)



6.2 The Fixed-X Case 169

where the matrix K (m < s) and the matrix L (v < r) are full-rank
matrices of known constants, and T' is a matrix of parameters (known or
unknown). We often take I' = 0.

In (6.42), the matrix K is used to set up relationships between the dif-
ferent columns of @ (e.g., treatments), whereas L generates possible rela-
tionships between the different responses. In many problems of this kind,

it is common to take L = (I, : 0)7, where 0 is a (u x (r — u))-matrix of
zeroes. There are also situations in which L can be made more specific.
The use of L is peculiar to the multiresponse problem and does not have
any analogue in the uniresponse situation.

Variable Selection

For example, suppose we wish to study whether a specific subset of the r
input variables has little or no effect on the behavior of the output variables.
Suppose we arrange the rows of &, so that

XN nXxXry ., mXrg

o= (X5 © X5 )T, (6.43)

where X1 has r; rows and X2 has ro = r—ry rows. Suppose we believe that
the variables included in X9 do not belong in the regression. Corresponding

to the partition of X, we set @ = (0, : ®,), so that

SXn SXTrp riXn SXTry rogXn sX

V=01 X + Oy Xop + € . (6.44)

To study whether the input variables included in X2 can be eliminated

from the model, we set K = I, and L = (0 : I7, )", where 0 is a (u x r7)-
matrix of zeroes and I, x,, is an (2 X u)-matrix of ones along the “diagonal”

and zeroes elsewhere, so that KOL = &5 = 0.

Profile Analysis

The constraints (6.42) can be used to handle a variety of experimen-
tal design problems. Such problems include profile analysis, where scores
on a battery of tests (e.g., different treatments) are recorded on several
independent groups of subjects and compared with each other. Typically,
profile analysis is carried out on multivariate data obtained from longitu-
dinal studies or clinical trials, where the components of each data vector
are ordered by time.

The simplest form of profile analysis deals with a one-way layout in which
there are r groups of subjects, where the jth group consists of n; subjects
selected randomly to receive one of r treatments, and n; +no+---+n, = n.
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The scores, which are assumed to be expressed in comparable units, on the
s tests by the ith subject are given by the ith column in the (s x n)-matrix
Y= (Y1, --,Y,). We assume the model,

Yi=p+p,+&, i=1,2,...n, (6.45)

where Y; is a random s-vector, p is an s-vector of constants that represents
an overall mean vector, (fy, -+, p,,) = OX is an (s X n)-matrix of fixed
constants, and &; is a random s-vector with mean 0 and covariance matrix
Yeg, 1 =1,2,...,n. For convenience, we assume u = 0.

The design matrix X is constructed using n dummy variables as columns,
where the jth row value of the ith column equals 1 if the ith subject is in
the jth group, and 0 otherwise:

1 -~ 1.0 -+ 0 -+ 0 --- 0
rxn o -~ 01 -~ 1 -+ 0 --- 0
X=1 . . . . - (6.46)
0 0 0 0 1 1

911 to 917’
e=| : Co (6.47)
951 e 857‘

The treatment-mean profile for the jth group is defined as the s-vector

sx1

Oj:(Hlj,~~~,95j)T, j:1,2,...,7’. (648)

The profile of the jth group is displayed as a graph of the points (k, 0x;),
k =1,2,...,s; we connect successive points, (k,60x;) and (k + 1,0k41;),
k=1,2,...,s — 1, by straight lines. All group profiles are plotted on the
same graph for visual comparison.

The population profiles of the r groups are said to be similar if the line
segments joining successive points of each group’s profile are parallel to
the corresponding line segments of the profiles of all the other groups. In
other words, the population profiles of the different groups are identical but
with a constant difference between each pair of profiles. Figure 6.2 displays
an example of parallel treatment-mean profiles of three groups (r = 3) at
five different timepoints (s = 5). Restricting the profiles to be similar is
equivalent to asserting that there is no interaction between treatments and
groups.
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FIGURE 6.2. Profile plots of population treatment means at five time-
points (s = 5) on each of three hypothetical groups (r = 3), where the
group profiles are parallel to each other.

This similarity of the r profiles can be expressed as a set of linear con-
straints on ©. To do this, we set the matrix K to be

1 -1 0 --- 0
(s—1)xs 0 1 -1 --- 0
K = . . . . (6.49)
0 0 0 -1
and the matrix L to be
1 0 0 0
1) — 1 0 0
TX(r—
L = 0 1 1 0 ’ (6.50)
0 o0 -+ -1

so that K1, =0 and L"1,. = 0. Setting KOL = 0 gives constraints on ©
that reduce to
911 — 012 051 - 952
: o= : . (6.51)
el,r—l - 917* 08,7’—1 - 037’

Thus, the r treatment mean profiles are to be piecewise-parallel to each
other. Alternative K and L for this problem are
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K=(I,,'-1,), L=(I,_1:-1,)7, (6.52)
where 1, is an s-vector of ones.

We can constrain the population treatment mean profiles further, so that
not only are they parallel, but also we could require them to be “coinciden-
tal” (i.e., identical). To do this, take K = 17 and L as in (6.52), whence,
KOL = 0 translates to 1708, = 1705 = --- = 170,., which is the condition
needed for coincidental profiles.

Constrained Estimation

Consider the problem of finding ®* that solves the following constrained
minimization problem:

O =arg min tr{(V. — OX,)" (V. - OX.)}. (6.53)

KOeL=I

Let A = (\;;) be a matrix of Lagrangian coefficients. The normal equations
are:

O* X, X7 + K'AL™ = V.X7 (6.54)
KO*L =T. (6.55)

From (6.54), we get
0" =0 —K AL (X.X7)"", (6.56)

where © is given by (6.15). Substituting (6.56) into (6.55) gives
KK'AL™ (X, X7)"'L = KOL - T. (6.57)
Solving this last expression for A gives
A = (KK")"Y(KOL — I')(L" (X.x7)"'L)"!, (6.58)

assuming the appropriate inverses exist. Substituting (6.58) into (6.56)
yields

0" = O—-K'(KK") {(KOL-I)(L™(X.X7)'L)'L7(X.x7)~". (6.59)

Check that premultiplying (6.59) by K and postmultiplying by L leads to
KO*L =T as required by the constraint in (6.55).

It is common practice in profile analysis to plot the points (k, g,jj), k=
1,2,...,s, corresponding to the jth group, and connect them by straight
lines. The treatment-mean profiles for all » groups are usually plotted on
the same graph for easy visual comparison.
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Multivariate Analysis of Variance (MANOVA)

We now set up the multivariate analysis of variance (MANOVA ) table for
the constrained model. The matrix version of the residual sum of squares,
S?, under the constrained model is given by

S: = (V.- 0" X)(V.— O X)T
= (Vo= OX.) + (- 0")X) (V. — OX.) + (0 — ©°)X,)"
= V.- OX)(V.—OX) + (0 - O)X.X(© -0, (6.60)

where the first term on the rhs of (6.60) is the matrix version of the residual
sum of squares, S., for the unconstrained model, and the second term is
the additional source of variation, S;, = S. — S}, due to dropping the

constraints. The cross-product terms disappear because (ycf@Xc)XCT =0.
Note that S, is given by (6.31). Furthermore, the matrix version of the
regression sum of squares, S;.q, for the unconstrained model is given by

Sieg = OXXO7
= (0" + (0 -O0)XX (O + (0 -0
O X XTO + (O - O)AXT (O - 0%,  (6.61)

where the cross-product terms disappear. The first term on the rhs of (6.61)

is Sy, the matrix version of the regression sum of squares for the con-
strained model, and the second term is, again, Sy,.

We can collect these results in a MANOVA table — see Table 6.2 — in
which both the constrained and unconstrained regression models are set out
so that their sums of squares and degrees of freedom add up appropriately.

Using (6.58), we can write Sj;, more explicitly as follows:

S, = K"(KK") " (KOL — I')(L" (X,x7)"'L) " (KOL — I')" (KK") K.

(6.62)

Substituting (6.15) into (6.62), expanding, and taking expectations, we get
E(S,) = D(KOL -TI) (L™ (X.x7) L)/ (KOL -T)"D"

+F-E(EGET)-F7, (6.63)

where D = K™(KK")~ !, F = DK, and
G = A7 (X)) LT (LX) ) (A AT (6.64)

Notice that F2 = F = F7 and G2 = G = G7, so that F and G are
both projections. Now, the jkth entry in the (s x s)-matrix EGE™ in (6.63)
is the quadratic form E(j)GE(Tk) = > w20 Guw€julro, where £y = (Eju)
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TABLE 6.2. MANOVA table for the constrained and unconstrained mul-
tivariate regression models, where u = rank(K).

Source of Variation df Sum of Squares
Constrained model r—u Steg = @*XCXCT@*T

Due to dropping constraints u Sp = ((:) — @*)XCXCT(@ — @*)T
Unconstrained model r Sreg = @XCXCT@)T
Residual n—r—1 Se=.—0OX)V.—OX.)"
Total n—1 AZNA

is the jth row of £. So, its expected value is given by E(EWGEFT) =
YuGuu(ZBee)jr = (Bge)jr - tr(G). Thus, E(EGET) = udge, because
tr(G) = tr(I,) = u.

General Linear Hypothesis
From Table 6.2, we can test the general linear hypothesis,
Ho: KOL =T wvs. H;:KOL #T. (6.65)

Under Ho, E{Sp/u} = FXceF7. Furthermore, E{S./(n —r — 1)} = Zg¢.
A formal significance test of Hg vs. H1 can, therefore, be realized through
a function (e.g., determinant, trace, or largest eigenvalue) of the quantity
FS,F™(FS.F7)~!, where we use the fact that F is a projection matrix.
Related test statistics have been proposed in the literature, including the
following functions of Sy and S.:

1. Hotelling-Lawley trace statistic: tr{S,S; '}
2. Roy’s largest 1oot: Amax{SnS; '}

3. Wilks’s lambda (likelihood ratio criterion): |Sc|/|Sh + Sel

Under Hp and appropriate distributional assumptions, Hotelling-Lawley’s
trace statistic and Roy’s largest root should both be small, whereas Wilk’s
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lambda should be large (i.e., close to 1) under Hg. In other words, we would
reject Ho in favor of H; if the trace statistic or largest root were large and
if Wilk’s lambda were small (i.e., close to 0). Properties of these statistics
are given in Anderson (1984, Chapter 8).

We can also compute an appropriate confidence region for KOL — I'
by using the statistic KOL — I'. A formal significance test can be con-
structed from the resulting confidence region; if the confidence region does
not contain 0, we say that the evidence from the data favors #; rather
than Hg.

6.3 The Random-X Case

In this section, we treat the case where

rx1 sx1

X = (Xh e '7X7“)T7 Y = (Yh T 7YS)T7 (6'66)

are jointly distributed, with X having mean vector py and Y having mean
vector py-, and with joint covariance matrix,

Yxx Xxv
. 6.67
( Yyx Xyy > (6:67)

For convenience in exposition, we assume s < r. Although X is presumed to
be the larger of the two sets of variates, this reflects purely a mathematical
convenience, and similar expressions as appear here can be obtained in the
case in which » < s. The variables X and Y are assumed to be continuous
but may also include transformations (e.g., logs, square-roots, reciprocals),
powers (e.g., squares, cubes), products, or ratios of the input variables.
Notice that we have not assumed that the joint distribution of (6.66) is
Gaussian.

6.3.1 Classical Multivariate Regression Model
Suppose Y is related to X by the following multivariate linear model:

sx1l gx1 sxr rxl1 sx1

Y= +060 X+ &, (6.68)

where p and the regression coefficient matriz ® are the unknown param-
eters and & is the unobservable error component of the model with mean
E(€) = 0 and unknown (s x s) error covariance matriz cov(E) = Jgg, and
& is distributed independently of X. Our first goal is to obtain suitable
expressions for p, ©, and Xg¢¢e that are optimal in a least-squares sense.
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We are interested in finding the s-vector g and (s x r)-matrix © that
minimize the (s X s)-matrix,

Wi ©) =E{(Y —p— OX)(Y —p—OX)7},  (6.69)
where the expectation is taken over the joint distribution of (X7, Y™)7. Set

Y.=Y —py and X, = X — py, and assume that ¥ x x is nonsingular.
Expanding the rhs of (6.69), we get that

W(p,®) = E{Y.YT - Y.X'0 - OX.YT + 0X.X 07}
+ (= py +Opx)(p— py +Opy)”
= (Syy - SyxIyxZxy)
+ (Byx BN - OB By xSy - 08Y3)
+ (1= py +Opx) (1 — py + Oux)’

> Zyy - Tyx Sk Exv, (6.70)

with equality when
n=py —Ouy (6.71)
0 =3%yxE . (6.72)

The minimum achieved is Xyy — Xy XE;(1X2 xv. The p and ©® given by
(6.71) and (6.72), respectively, minimize (6.69) and also minimize the trace,
determinant, and jth largest eigenvalue of (6.69).

The (s xr)-matrix © is called the (full-rank) regression coefficient matriz
of Y on X, and
Y = py +Byx B (X - py) (6.73)

is the (full-rank) linear regression function of Y on X, where “full rank”
refers to the rank of ®. At the minimum, the error variate is

E=Y —py —ZyxE (X —py) =Y. — By x 24 X (6.74)

From (6.74), we see that E(£) = 0, Xge = Zyy — ZYXE;(}XZX)/, and
E(EXT)=0

6.3.2 Multivariate Reduced-Rank Regression

In Section 6.2.4, we described how to place constraints on ® when X is
considered fixed. An alternative way of constraining a multivariate regres-
sion model is through a rank condition on the matrix of regression coeffi-
cients. The resulting model is called the multivariate reduced-rank regres-
sion (RRR) model (Izenman, 1972, 1975). In this section, we describe the
RRR scenario in which X and Y are jointly distributed (i.e., the random-X
case). The reader is encouraged to develop the RRR model for the fixed-X
case (see Exercises 6.4, 6.5, and 6.6).
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Most applications of reduced-rank regression have been directed toward
problems in time series (time domain and frequency domain) and econo-
metrics. This development has led to the introduction of the related topic
of cointegration into the econometric literature.

The Reduced-Rank Regression Model

Consider the multivariate linear regression model given by

sx1l sx1 sxXr rxl sx1

Y=/ +C X + &, (6.75)

where p and C are unknown regression parameters, and the unobservable
error variate, £, of the model has mean E(£) = 0 and covariance matrix
cov(€) = E{EE™} = Xgg, and is distributed independently of X. The dif-
ference between this model and that of (6.68) is that we allow the possibility
that the rank of the regression coefficient matrix C is deficient; that is,

rank(C) =t < min(r, s). (6.76)

The “reduced-rank” condition (6.76) on the regression coefficient matrix
C brings a true multivariate feature into the model. The rank condition
implies that there may be a number of linear constraints on the set of re-
gression coefficients in the model. Unlike the model studied in Section 6.2.4,
however, the value of ¢ and, hence, the number and nature of those con-
straints may not be known prior to statistical analysis. The name reduced-
rank regression was introduced to distinguish the case 1 < ¢t < s from
full-rank regression, where t = s.

When C has reduced-rank ¢, then, there exist two (nonunique) full-rank
matrices, an (s x t) matrix A and a (¢ X r) matrix B, such that C =
AB. The nonuniqueness occurs because we can always find a nonsingular
(t x t)-matrix T such that C = (AT)(T~'B) = DE, which gives a different
decomposition of C. The model (6.75) can now be written as

sx1l gx1 sXt txr rx1 sx1

Y= +A B X+ & . (6.77)

Given a sample, (X7,Y7)7,...,(X7,Y’")" of observations on (X7, Y7")7,
our goal is to estimate the parameters p, A, and B (and, hence, C) in
some optimal manner.

Such a setup can be motivated within a time-series context (Brillinger,
1969). Suppose we wish to send a message based upon the r components
of a vector X so that the message received, Y, will be composed of s
components. Suppose, further, that such a message can only be transmitted
using ¢ channels (¢ < s). We would, therefore, first need to encode X into
a t-vector £ = BX, where B is a (¢t X r)-matrix, and then on receipt of the
coded message to decode it using an (s x t)-matrix A to form the s-vector
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A¢g, which, it would be hoped, would be as “close” as possible to the desired
Y.

One of the primary aspects of reduced-rank regression is to assess the
unknown value of the metaparameter ¢, which we call the effective dimen-
stonality of the multivariate regression (Izenman, 1980).

Minimizing a Weighted Sum-of-Squares Criterion

We, therefore, wish to find an s-vector p, an (s x t)-matrix A, and a
(t x r)-matrix B to minimize a weighted sum-of-squares criterion,

W(t) = E{(Y — p— ABX)"T(Y — p — ABX)}, (6.78)

where T is a positive-definite symmetric (s X s)-matrix of weights and the
expectation is taken over the joint distribution of (X7,Y7)7. In practice,
we try out different forms of T'.

We minimize W (t) in two steps. As before, let X, and Y. denote the
centered versions of X and Y, respectively. The first step makes no rank
condition on C. The minimizing criterion becomes:

w(t) > E{(Y.—-CX.) I'(Y.—CX,)}
E{Y'TY. - Y/TCX, - XC'TY, + X.C'TCX.,}
tr{(Xyy — I3 x Iy, EXY)
+(CBRE - By E A ERE - By =
(6.79)
where X% = Xxx, X}y = /2%y, T2, Xy = SxyI'Y2, and

C* =T'/2C. Next, we assume that C has rank ¢. From the Eckart-Young
Theorem (see Section 3.2.10), the last expression is minimized by setting

t
CEYE =D A Avw, (6.80)
j=1

where v; is the eigenvector associated with the jth largest eigenvalue \; of
the matrix
B S hy = D28y kB Sxy T2 (6.81)

and
wi =\ PR Py v = A PR E T (6.82)

Thus, the minimizing C with reduced-rank ¢ is given by

ct) =p-1/2 Zvv /25y x 3 (6.83)
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The matrix C*) in (6.83) is called the reduced-rank regression coefficient
matriz with rank ¢t and weight matrix T'.

It follows that W (¢) in (6.78) is minimized by taking p, A, and B to be
the following functions of ¢,

= Hy — AmB(t)NXy (6.84)
AD = 1Y%y, (6.85)
BY = Vvir'?zmy 3k, (6.86)
respectively, where V; = (vi1,...,v¢) is an (s x t)-matrix, where the jth

column, v;, is the eigenvector associated with the jth largest eigenvalue \;
of the (s X s) symmetric matrix

/25y x B Sy T2 (6.87)

A stronger result (Rao, 1979) uses the Poincaré Separation Theorem (see
Section 3.2.10) to show that if T' = 2,1, then all the eigenvalues of the
matrix

I'Y2(Y — p— ABX)(Y — p— ABX)'T/2 (6.88)
are simultaneously minimized by the above u(¥), A®) and B(*). Hence, any
function of those eigenvalues, which is increasing in each argument (e.g.,
trace or determinant), is also minimized by that choice.

The minimum value of the criterion W (t) is given by

Wan(t) = B {(Y. - COX)(Y. - CVX,)'T}

t
tr4 Byy T = T2 [ Njvv] | D721
j=1

= ftr (EYY*EYXE;(IXEXY)FJF Z /\jVjV;—
Jj=t+1

s
tr {(Eyy — Zyxz)_(lxzxy)r} + Z )\j
j=t+1

r{Syy T} =) A . (6.89)

j=1

When t = s, we have that ZJ 1v;v; = I, whence C® in (6.83) reduces

to the full-rank regression coefficient matrix ® = C). Furthermore, for
any ¢ and positive-definite matrix I', the matrices C¥) and © are related

by the expression C*) = P;f)@, where

Py =112 Z v;vi | 02 (6.90)
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is an idempotent, but not symmetric (unless I' = I;), (s X s)-matrix.
Special Cases of RRR

We have seen how the RRR model can be used to generalize the classical
multivariate regression model by relaxing the implicit constraint on the
rank of C. More importantly, by carefully choosing the input vector X, the
output vector Y, and the matrix I' of weights, RRR can be used to play
an important role as a unifying treatment of several classical multivariate
procedures that were developed separately from each other.

The primary uses of RRR in the exploratory analysis of multivariate data
include the following special cases:

o If weset X =Y (and r = s) by making the output variables identical
to the input variables, and set I' = I, then we have Harold Hotelling’s
principal component analysis (see Section 7.2) and exploratory factor
analysis (see Section 15.4).

o If weset I' = E;;-, then we have Hotelling’s canonical variate and
correlation analysis (see Section 7.3).

e Using the canonical variate analysis setup for RRR, if we set Y to be
a vector of binary variables whose component values (0 or 1) indicate
the group or class to which an observation belongs, then we have
R.A. Fisher’s linear discriminant analysis (see Section 8.5).

e A nonlinear generalization of RRR provides a flexible model for ar-
tificial neural networks (see Section 10.7).

e Using the canonical variate analysis setup for RRR, if we set X and
Y each to be a vector of binary variables whose component values (0
or 1) indicate the row and column of a two-way contingency table to
which an observation belongs, then we have correspondence analysis
(see Section 17.2).

These special cases of multivariate reduced-rank regression show that the
RRR model can be used as a general model for many different types of
multivariate statistical analysis. Extensions of this model in other directions
(e.g., to multiresponse generalized linear models, wavelets, functional data)
are currently undergoing development.

Sample Estimates

The mean vectors and covariance matrix of X and Y are typically un-
known and have to be estimated before we can draw any useful inferences
on the regression problem. Accordingly, we assume that a random sam-
ple of n independent observations, (X7,Y7)",j = 1,2,...,n, with values
D ={(x},y})7,j = 1,2,...,n},is obtained on the (r+s)-vector (X7, Y7)".
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First, using D, we estimate py and py by
n n
ﬁX:i:n_lsz, ﬁyzy:n_lz:yj, (6.91)
j=1 j=1

respectively. We set

rx1 _ sx1 _ .
Xej=Xj =X, Yei=Yi Y, J=L2,...n, (692)
and let
rXn sxn
X = (X(;17".7XC’H)7 Ve = (yc17"'7yc7l)' (693)

Then, we estimate the components of the covariance matrix (6.67) by

Sxx =n tXA] (6.94)
Syx =n VAT =y (6.95)
Svy =n VYL (6.96)

All estimates of the unknowns in the multivariate regression models are
based upon the appropriate elements of (6.94), (6.95), and (6.96).

Thus, A® in (6.85) and B® in (6.86) are estimated by

A = Y2y, (6.97)
BY = VITY2Sy 33, (6.98)

respectively, where N
Vi=(V1,...,V¢) (6.99)

is an (s x t)-matrix, the jth column, v, of which is the eigenvector asso-
ciated with the jth largest eigenvalue \; of the (s X s) symmetric matrix

28y xS Sxy T2, (6.100)
j =1,2,...,s The reduced-rank regression coefficient matrix C*) in (6.83)
is estimated by
-~ t A~ A~
CH =112 [ 9,97 | TV?Eyx B¢k, (6.101)
j=1

and the full-rank regression coefficient matrix ® is estimated by
0 =C¥=3%,x3:\. (6.102)

The sample estimators (6.97), (6.98), (6.100), (6.101), and (6.102) are iden-
tical to the estimators that appear in the reduced-rank regression solution
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and full-rank regression solution when X is fixed (Exercise 6.4). It fol-
lows that the matrix of fitted values and the matrix of residuals for the
random-X case are identical to those for the fixed-X case. Although the
two formulations of the regression model are different, they yield identical
sample estimates.

In many applications, it is not unusual to find that the matrix s XX
and/or the matrix Xyy are singular, or at least difficult to invert. This
happens, for example, when r,s > n. We could replace their inverses by
generalized inverses, but, based upon practical experience with the methods
described in Section 6.3.4, we suggest the following alternative solution.

__We borrow an idea from ridge regression, where we replace s xx and
3yy in the RRR computations by a slight perturbation of their diagonal
entries,

SE = n XA +RLY, S = D7 + L), (6.103)

respectively, where k& > 0. The estimates (6.103) of X x x and Xyy are now
invertible. The matrix (6.100) is then replaced by

| VR SUNS SN ST nve (6.104)

where ig@;l is the inverse of igg(, and its eigenvalues and eigenvectors

are denoted by

AW S =128 (6.105)

The estimated reduced-rank regression coefficient matrix C® is replaced
by

t
CO®k) =12 | S 9T p12s, s E, (6.106)
j=1

and the full-rank regression coefficient matrix O is replaced by
W = B (k) = Sy, SET, (6.107)

How to choose k will be discussed in Section 6.3.4.

Asymptotic Distribution of Estimates

Because of the form of the LS estimates of matrices involved in the RRR
solution, exact distribution results are not available. Fortunately, asymp-
totic results are available in some generality.

The asymptotic distribution of C® is Gaussian with mean zero; that is,

Vi vee(CH — C) B N0, BD), as n — oo, (6.108)
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where convergence is in distribution. This result has been proved by sev-
eral authors for the fixed-X case with Gaussian assumptions on the error
variate. The most general result (Anderson, 1999), which applies to both
fixed-X and random-X cases without any assumption of Gaussian errors,
expresses the asymptotic covariance matrix, ¥ in the form

T = (Bee @ BYy) — (MY @ ND), (6.109)

where
M = B — AW (A(t)ngglA(t))—lA(t)T (6.110)
N® = 3L —BOTBHODBHOT)"1B®), (6.111)

Thus, ¥®) consists of the full-rank covariance matrix, Teg @ E;(IX, with
an adjustment by the matrix M® @ N® for reduced-rank ¢. Anderson
also notes that ¥(*) is invariant wrt any decomposition C¥) = A(OB®) =
(ADT)(T-'B®), where T is an arbitrary nonsingular matrix. Such gen-
eral results allow asymptotic confidence regions to be constructed in situ-
ations when the errors are non-Gaussian.

6.3.3  Fxample: Chemical Composition of Tobacco

This is a small worked example designed to show the computations of
RRR. The data? are taken from a study on the chemical composition of
tobacco leaf samples (Anderson and Bancroft, 1952, p. 205). There are n =
25 observations on r = 6 input variables, percent nitrogen (X;), percent
chlorine (X3), percent potassium (X3), percent phosphorus (Xy4), percent
calcium (X5), and percent magnesium (Xg), and s = 3 output variables,
rate of cigarette burn in inches per 1,000 seconds (Y7), percent sugar in the
leaf (Y3), and percent nicotine in the leaf (Y3). The covariance matrices are
as follows:

0.0763 —0.0150 —0.0005 —0.0010  0.0682  0.0211

—0.0150  0.3671 —0.0145  0.0015  0.0330  0.0091

Sy = —0.0005 —0.0145  0.0659 —0.0017 —0.0595 —0.0198
—0.0010  0.0015 -0.0017  0.0011 0.0002  0.0006

0.0682  0.0330 —0.0595  0.0002  0.1552  0.0380

0.0211 0.0091 —-0.0198  0.0006  0.0380  0.0160

R 0.0279 —0.1098  0.0189
Yyy = —0.1098  4.2277 —0.7565
0.0189 —0.7565  0.2747

2These data are available in the file tobacco.txt, which can be downloaded from the
book’s website.
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0.0104 —-0.4004  0.1112

—0.0631 0.5355 —0.0859
Sy = 0.0209  0.1002 —-0.0396 | _ S
—0.0018  0.0164 —0.0008 X

—0.0080 —0.3904  0.1417

—0.0066 —0.1364  0.0486

We run these data through a reduced-rank regression using the weight
matrix I' = I. First, we compute (6.100):

R 0.019 —0.101  0.013
SyxEExy = | —0.101  3.090 -0.760 |,
0.013 —0.760  0.221

which has eigenvalues Xl = 3.2821, /):2 = 0.0378, and //\\3 = 0.0102, and
matrix of eigenvectors

- 0.031 —0.470 0.882
V = (V1,V2,93) = | —0.970  0.198 0.140
0241  0.860 0.450

For the rank-1 solution, V1 is the first column of V for the rank-2 solution,
V2 is the first two columns of V and the full-rank solution is V3 -V.

The matrices A = A®) =V and B = B®) = VEYXEXX are given by:

R 0.031 —0.470 0.882
A= —-0.970 0.198 0.140
0.241 0.860 0.450

R 4.324 —1.359 —1.481 -—13.729 —-0.453 3.867
B=| —-0411 0.099  0.365 2457  0.306 1.230 |,
—0.302 —0.081 0.578 1.048 0.375 0.034

respectively. The matrix AW is the first column of K and A® is the first
two columns of A. Similarly, the matrix B® is the first row of B and
B® is the first two rows of B. Estimates of the RRR coefficient matrices,
CH = AOB® ¢ =1,2,3, are given by

R 0.134 —0.042 —0.046 —0.427 —0.014  0.120
CW = —4195 1.318 1.436 13.318 0.439 —3.751 |,
1.042 —0.327 —0.357 —3.308 —0.109  0.932

R 0.328 —0.089 —0.218 —1.582 —0.158 —0.459
C® = —4276 1.338 1509 13.806 0.500 —3.507 |,
0.688 —0.242 —0.043 —1.195 0.154  1.989

R 0.062 —0.160 0.292 —0.658 0.173 —0.428
CO® =@ = —4.319 1.326 1590 13.953 0.553 —3.502
0.552 —0.279 0.218 —0.723 0.323  2.005
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and the vectors 1Y), t = 1,2, 3, by

1.750 3.474 1.411
pM =1 14688 |, p® =1 13961 |, p® = 13.633
2.640 —0.512 —1.565

6.3.4 Assessing the Effective Dimensionality

The most difficult part of the reduced-rank regression procedure is to
assess the value of the metaparameter, ¢, of the multivariate regression.
In order to determine ¢ for a given multivariate sample, we recognize that
such data will introduce noise into the relationship and, hence, will tend to
obscure the actual structure of the matrix C, so that rank determination
for any particular problem will be made more dificult.

We, therefore, distinguish between the “true” or “mathematical” rank
of C, which will always be full (because it will be based upon a sample
estimate of C) and the “practical” or “statistical” rank of C — the one
of real interest — which will typically be unknown. We refer to ¢ as the
“effective dimensionality” of the multivariate regression.

The problem of determining the value of ¢ is a selection problem. From
the integers 1 through s (assuming without loss of generality that s < r),
we are to choose the smallest integer such that the reduced-rank regression
of Y on X with that integer as rank will be close (in some sense) to the
corresponding full-rank regression.

From (6.89), Wi,in(t) denotes the minimum value of (6.78) for a fixed
value of ¢t. The reduction in Wy,,(t) obtained by increasing the rank from
t =to to t = t1, where tg < ty, is given by

Wmin (tO) mm tl Z /\ (6112)

j=to+1

Note that (6.112) depends upon I' only through the eigenvalues, {\;}, of
the matrix (6.87). As a result, the rank of C can be assessed through
some monotone function of the sequence of ordered sample eigenvalues
{;\j,j =1,2,...,s}, in which 5\]- is compared with suitable reference values
for each j, or by using the sum of some monotone function of the smallest
s — to sample eigenvalues. For example, Bartlett’s likelihood-ratio statistic
for testing whether the last s — o eigenvalues are zero is proportional to

> imtor log(1+ ;).

An obvious disadvantage of relying solely on such formal testing pro-
cedures is that any routine application of them might fail to take into
account the possible need for a preliminary screening of the data. Robust-
ness of sample estimates of the eigenvalues and hence of the various tests
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TABLE 6.3. Algorithm for using the rank trace to assess the effective
dimensionality of a multivariate regression.

1. Define C© =0 and f]éog) = g)yy.

2. Carry out a sequence of s reduced-rank regressions for specific values of ¢.
Fort=1,2,... s,

e compute C® and ﬁ(gtg, and set C®) = @ and fl(gsg) = ﬁgg.
e compute

« <« (t
AGw _18-CY s _ I Zee—53 |

EE a O
7 | See — Syy ||

where || A ||= (tr(AAT))Y/? = (Z Z a”> is the classical Eu-

clidean norm.
3. Make a scatterplot of the s points
(ACY, ASH), t=0,1,2,...,s,
and join up successive points on the plot. This is called the rank trace for

the multivariate reduced-rank regression of Y on X.

4. Assess the rank of C as the smallest rank for which both coordinates from
step (3) are approximately zero.

when outliers or distributional peculiarities are present in the data can be
a serious statistical obstacle to overcome.

Rank Trace

Suppose t* is the true rank of C. The basic idea behind the rank trace
(Izenman, 1980) is that for 1 < ¢ < t*, the entries in both the esti-
mated regression coefficient matrix and the residual covariance matrix will
“change” quite significantly each time we increase the rank in our sequence
of reduced-rank regressions; as soon as the true rank is reached, these ma-
trices will then cease to change significantly and will stabilize.

Let ¢ be an estimate of t. We expect the estimated rank-t regression

coefficient matrix, (Al(t) , to be very close to the estimated full-rank regres-.
sion coefficient matrix @ when ¢ = t*. Similarly, we can expect the rank-t

residual covariance matrix, E(gg, to be very close to the full-rank residual
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covariance matrix, 255, when 7 = ¢*. The steps in the computation of the
rank trace and the estimation of ¢ are detailed in Table 6.3.

Thus, the first point (corresponding to ¢ = 0) is always plotted at (1,1)
and the last point (corresponding to t = s) is always plotted at (0,0).
The horizontal coordinate, Aa(t), gives a quantitative representation of
the difference between a reduced-rank regression coefficient matrix and
its full-rank analogue, whereas the vertical coordinate, Aig, shows the
proportionate reduction in the residual variance matrix in using a simple
full-rank model rather than the computationally more elaborate reduced-
rank model. The reason for including a special point for ¢ = 0 is that
without such a point, it would be impossible to assess the statistical rank
of C at t = 1. In this formulation, ¢ = 0 corresponds to the completely
random model Y = p + &.

Assessing the effective dimensionality of the multivariate regression by
using step (4) in Table 6.3 involves a certain amount of subjective judgment,
but from experience with many of these types of plots, the choice should not
be too difficult. Because of the nature of C(*), the sequence of values for the
horizontal coordinate is not guaranteed to decrease monotonically from 1 to
0. It does appear, however, that in many of the applications of this method,
and especially when we take I' = I as the weight matrix, the plotted points
appear within the unit square, but below the (1,1)—(0,0) diagonal line,
indicating that the residual covariance matrices typically stabilize faster
than do the regression coefficient matrices.

__For example, the estimated RRR coefficient matrices, 6<1>, 6(2), and
C®), for the tobacco data (see Section 6.3.3) do not appear to have stabi-
lized at any specific rank ¢ < 3. In Figure 6.3, we display the rank trace for
the tobacco data with weight matrix the identity. Note that dC' is short-
hand for AC® and dE is shorthand for Ai‘g. The rank-trace plot shows
that a RRR solution with rank 1 is best, with no discernible difference
between that solution and the full-rank solution. In this simple example,
this conclusion agrees with the dominant magnitude of the largest sample
eigenvalue, )\1, of EYXEXX Exy, which accounts for 98.6% of the trace of
that matrix.

In certain applications, and when the weight matrix I' is more com-
plicated than I; (e.g., ' = 2;%,), the rank trace often displays a dif-
ferent shape; for example, we may see points plotted outside the unit
square or a non-monotonic pattern within the unit square. In such sit-
uations, we fix a posmve constant k and replace the sample covariance
matrices, Syy and Zyy by Zg?;( = n YHX.XT + kI.} and ngg, =

n~H{Y.VT + KL}, respectively, as in (6.103). Then, we compute CO (k)
as in (6.106) and gg‘;(k) from the residuals. Using these adjusted esti-

mates, we plot Aa(t)(k) against Aig(k) This gives us a rank trace for a
specific value of k. Start with k& = 0; if the rank trace has monotonic shape,
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FIGURE 6.3. Rank trace for the tobacco data.

stop, and estimate the value of ¢ as in Table 6.3. If the rank trace does
not have monotonic shape, increase the value of k slightly and draw the
resulting rank trace; if that rank trace is monotonic, stop, and estimate ¢.

Cross-Validation

An alternative method for assessing the value of t is the use of cross-
validation. For each rank ¢, compute a sequence of estimates of prediction
error using any of CV /5, CV/10, or CV/n. Then, identify the smallest rank
such that, for larger ranks, the prediction error has stabilized and does not
decrease significantly; this is similar to saying that at ¢, there is an elbow
in the plot of prediction error vs. rank.

6.3.5 Fxample: Miztures of Polyaromatic Hydrocarbons

This example refers to the data on the polyaromatic hydrocarbons (PAHs)
and digitized spectra that were described in Section 2.2.2. The 50 spectra
are displayed in Figure 2.2 and the scatterplot matrix of the 10 PAHs is
displayed in Figure 2.3.

We use these data to carry out a reduced-rank regression of the PAH
mixture concentrations (the Y variables) on the values of the digitized
spectra (the X variables), where we treat the X variables as random. For
this example, we take I' = I5. Because of the high correlations between
neighboring spectrum values, collinearities in the X variables may make
the (27 x 27)-matrix X x x difficult to invert. So, we replace X x x and Xyy
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in the RRR computations by f)()gf and igg), respectively, as in (6.103).
These covariance matrix estimates and the RRR estimates now depend
upon the constant k > 0.

The rank trace for I' = Iy and k = 0 is plotted in Figure 6.4 (top-left
panel). We see the rank trace is monotone within the unit square and so
we estimate ¢ as t = 5. In the other panels, we show rank-trace plots for
T = 2;;, the weight matrix for canonical variate analysis (CVA). In the
top-right panel, the rank-trace plot for & = 0 (i.e., no regularization) is
not monotonic; so, we increase the value of k slightly away from k = 0.
The bottom-left and bottom-right panels show the rank-trace plot for k =
0.000001 and for k£ = 0.001, respectively. At k = 0.000001, the rank trace
is monotone but not smooth, whereas at £k = 0.001, the rank trace is a
smooth, monotone sequence of points. The most appropriate estimate for
t if we apply the weight matrix I' = E;,%/ ist= 5, which agrees with our
estimate for T' = 1.

Applying CV to the PAH data yields the CV prediction errors (PEs) as
a function of the rank ¢, and these are given in Table 6.4 and Figure 6.5. As
a method for estimating the true rank, ¢, of C, the CV PEs appear to level
off at t = 5, which agrees with the rank assessments from the rank-trace
plots.

6.4 Software Packages

A good source for SAS programs and discussion of SAS output for multi-
variate regression and MANOVA is Khattree and Naik (1999). It should be
noted that although there is an RRR method implemented in the SAS pro-
cedure PROC PLS, it is not the same as and has no connection to the RRR
method discussed in this book. The examples in this chapter were computed
using the R program MULTANL+RRR (written by Charles Miller), which
can be downloaded from the book’s website. An S-PLUS package rrr.s
(written by Magne Aldrin) for carrying out RRR can be downloaded from
the STATLIB website at 1ib.stat/cmu.edu/S/.

Bibliographical Notes

In textbooks, multivariate regression is usually discussed within the con-
text of the multivariate general linear model or multivariate analysis of vari-
ance (MANOVA), where the emphasis is most often placed on the fixed-X
case.

The reduced-rank regression model has its origins in the work of Ander-
son (1951), Rao (1965), and Brillinger (1969). The deliberately alliterative
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FIGURE 6.4. Rank trace for reduced-rank regression on the PAH data.
There are r = 27 wavelengths, s = 10 PAHs, and n = 50 mixtures. Top-
left panel: T' = Is. Other panels have T' = 2;%, and k = 0 (top-right);
k =0.000001 (bottom-left); k = 0.001 (bottom-right).
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TABLE 6.4. CV prediction errors for reduced-rank regression of the PAH
data.

Rank CV/5 CV/10 CV/n
1 0.254 0.242 0.248
2 0.186 0.171 0.166
3 0.143 0.124 0.117
4 0.102 0.086  0.082
5 0.077 0.060  0.054
6 0.070 0.054  0.047
7 0.070 0.054  0.047
8 0.070 0.053  0.047
9 0.068 0.052  0.046

10  0.064 0.047  0.040

name “reduced-rank regression” was coined by Izenman (1972). Since then,
the amount of research into the theory of reduced-rank regression models
has steadily increased, leading to the monographs by van der Leeden (1990)
and Reinsel and Velu (1998).

Because many authors mistakenly omit the hyphen in the name “reduced-
rank regression,” we give reasons why it should be included. The terms
“reduced-rank” and “full-rank” are compound adjectives describing the type
of regression and, therefore, must take a hyphen. Further, without hyphens
the methodology is apt to be confused with the topic of “rank regression,”
which deals with multivariate regression of rank data (see, e.g., Davis and
McKean, 1993). Of course, we could also study reduced-rank regression of
rank data.

Exercises

6.1 Using the result in the fixed-X case that the covariance matrix of
the matrix of residuals £ is cov(vec(&)) = ege @ (I, — H), find expres-
sions for the means, variances, and covariances of the elements of the
rows and columns of the matrix £. Simplify your results when Xg¢e =
diag{o?,---,02}.

6.2 If ¥xx and Xyy are nonsingular and T' = E;,%/, show that the

1/2
Y

eigenvalues of R = E;%,/ZEYXE;(}X YxyXyy~ lie between 0 and 1.

6.3 Let X’ =P +AX and Y = ®+AY, where A and A are nonsingular.
Show that the minimizing criterion (6.79) with T' = X33 is invariant under
these nonsingular transformations.

6.4 Develop a theory of reduced-rank regression for the “fixed-X” case.
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FIGURE 6.5. Prediction errors for PAH example (n = 50, r = 27, s =
10) plotted against rank of the regression coefficient matriz. The PEs were
computed using cross-validation: CV/5 (red dots), CV/10 (blue dots), and
CV/n (purple dots). The results show a leveling-off of the PE at rankt = 5.

6.5 Use the results from Exercise 6.1 to develop a theory of residual diag-
nostics from a multivariate reduced-rank regression (RRR) for the “fixed-
X7 case. In particular, derive the distribution theory for RRR residuals
and the distribution of quadratic forms in RRR residuals. How could you
use this theory to detect multivariate outliers?

6.6 Consider the likelihood-ratio test statistic for the dimensionality of
a multivariate regression. Let the null hypothesis be that the true rank is

at most ¢ with the alternative that the regression is full-rank. Let Qg) =
eWe® and Q. = ee” denote the residual sum of squares matrices for a
rank-t reduced-rank regression and a full-rank regression, respectively. Let

A(Lt}c = det{Qgt)}/det{Qe}. Show that

S
—2log, AS:??, =-n Z log, (1 — A;),
j=t+1

where )\ is the jth largest eigenvalue of R=3 I/QEYXEXXEXyE 1/2.
(Asymptotically, under the null hypothesis, —2log, A(L;% X(s—t)('f—t)')

6.7 Show that the two procedures described in Section 6.2.1 lead to the
same results in estimating tr(A®). The two procedures are (1) write p +

OX = @*X*, where ® = (u, : ©) and X* = (1, : X")7, and then
estimate ©®*; (2) remove p by centering X and ), and then estimate ©
directly.
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6.8 Using the data from the Norwegian paper quality example (Section
6.2.2), show that Table 6.1 can also be derived by regressing each of the 13
Y's on all the 9 Xs.

6.9 In the classical multivariate regression model (Section 6.2.1), show
that Se = Ve(I, —H)Y7, where H = X7 (X.X7) ! X.. Hence, or otherwise,
show that S, = £(I,, —H)ET.

6.10 Write a computer program to carry out a multivariate ridge regres-
sion, and then apply it to the Norwegian paper quality data. Compare the
results with those obtained from separate univariate ridge regressions.

6.11 The data for this exercise is Table 60.1 in Andrews and Herzberg
(1985, pp. 357-360), which can be downloaded from the STATLIB website
lib.stat.cmu.edu/datasets/Andrews/. The data consist of 8 measure-
ments on each of 4 variates on 13 different types of root-stocks of apple
trees. The 4 variates are: trunk girth in mm (Y7) and extension growth in
cm (Y2) at 4 years after planting, and trunk girth in mm (Y3) and weight of
tree above ground in 1b (Yy) at 15 years after planting. So, there are s = 4
measurements on each of n = 8 x 13 = 104 trees. Rescaling each variable
might be appropriate. The design matrix X is a (13 x 104)-matrix of Os and
1s depending upon which tree is derived from which root-stock. Regress the
(4 x 104)-matrix Y on X and estimate the (4 x 13) regression coefficient
matrix ©. Estimate the (4 x 4) error covariance matrix 3gg. Estimate
the standard errors for these regression coefficient estimates. Compute the
(unconstrained) MANOVA table for these data.

6.12 Extend the MANOVA analysis to a two-way layout of vector obser-
vations Y = (Y;;), where ¢ denotes the row and j denotes the column. The
two-way model with one observation in each cell is defined by

YlJ:“+“z+“J+glj7 i:1727"'717 j:1727"'7‘]7

where we assume that 7, p;. = >, p.; = 0, and the &; are random s-
vectors with mean 0. Write down the design matrix X and the matrix of
regression coefficients @. Write down the partition of Y;; — Y, where Y is
the average of all I.J observations, in terms of the ith row effect Y;. — Y, the
jth column effect Y.j —Y, and the residual effect Y;; -Y,. ,Y_j +Y, where
Y. is the average over all columns for the ith row, and Y.j is the average
over all rows for the jth column. Derive the corresponding partition in terms
of sums-of-squares and determine their respective degrees of freedom. Write
down the corresponding two-way MANOVA table.

6.13 Generalize Exercise 6.12 to the case of m observations Y, in each
cell (k= 1,2,...,m), where an interaction term p,; satisfying >, pu;; =
Zj t;; = 0 is added to the model. The error term now becomes &;jx. The
ith row effect is Y;.. — Y, the jth column effect is Y.;. — Y, the interaction
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effect is Yij. -Y;. — Y.j. +7Y, and the residual is Yo — Yij.. Derive the
two-way MANOVA table for this case.

6.14 Write a program to carry out a constrained multivariate regression
including the MANOVA Table 6.2.

6.15 Run a RRR on the Norwegian paper quality data. Plot the rank trace
using I' = I; as the weight matrix. Estimate the effective dimensionality of

the multivariate regression. Compare the estimate with one obtained using
CV.

6.16 Using the results (6.109), (6.110), and (6.111), show that the asymp-
totic covariance of the regression coefficient matrix vec(C®)) reduces to
Yee ® E)_(lx when t = s (i.e., full rank).
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Linear Dimensionality Reduction

7.1 Introduction

When faced with situations involving high-dimensional data, it is natural
to consider the possibility of projecting those data onto a lower-dimensional
subspace without losing important information regarding some character-
istic of the original variables. One way of accomplishing this reduction of
dimensionality is through variable selection, also called feature selection (see
Section 5.7). Another way is by creating a reduced set of linear or nonlin-
ear transformations of the input variables. The creation of such composite
variables (or features) by projection methods is often referred to as feature
extraction. Usually, we wish to find those low-dimensional projections of
the input data that enjoy some sort of optimality properties.

Early examples of projection methods were linear methods such as prin-
cipal component analysis (PCA) (Hotelling, 1933) and canonical variate
and correlation analysis (CVA or CCA) (Hotelling, 1936), and these have
become two of the most popular dimensionality-reducing techniques in use
today. Both PCA and CVA are, at heart, eigenvalue-eigenvector problems.
Furthermore, both can be viewed as special cases of multivariate reduced-
rank regression. This latter connection to regression is fortuitous. Whereas
PCA and CVA were once regarded as isolated statistical tools, their now

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 195
DOI 10.1007/978-0-387-78189-1_7, © Springer Science+Business Media New York 2013
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being part of such a well-traveled tool as regression means that we should

be able to carry out feature selection and extraction, as well as outlier
detection within an integrated framework.

7.2 Principal Component Analysis

Principal component analysis (PCA) (Hotelling, 1933) was introduced
as a technique for deriving a reduced set of orthogonal linear projections
of a single collection of correlated variables, X = (X1, -+, X,)7, where the
projections are ordered by decreasing variances. Variance is a second-order
property of a random variable and is an important measurement of the
amount of information in that variable. PCA has also been referred to as a
method for “decorrelating” X; as a result, the technique has been indepen-
dently rediscovered by many different fields, with alternative names such
as Karhunen—Loeve transform and empirical orthogonal functions, which
are used in communications theory and atmospheric sciences, respectively.

PCA is used primarily as a dimensionality-reduction technique. In this
role, PCA is used, for example, in lossy data compression, pattern recogni-
tion, and image analysis. We have already seen in Section 5.7.2 how PCA
is used in chemometrics to construct derived variables in biased regres-
sion situations, when the number of input variables is too large for useful
analysis.

In addition to reducing dimensionality, PCA can be used to discover im-
portant features of the data. Discovery in PCA takes the form of graphical
displays of the principal component scores. The first few principal compo-
nent scores can reveal whether most of the data actually live on a linear
subspace of " and can be used to identify outliers, distributional pecu-
liarities, and clusters of points. The last few principal component scores
show those linear projections of X that have smallest variance; any princi-
pal component with zero or near-zero variance is virtually constant, and,
hence, can be used to detect collinearity, as well as outliers that pop up
and alter the perceived dimensionality of the data.

7.2.1 Ezxample: The Nutritional Value of Food

Nutritional data from 961 food items are listed alphabetically in this data
set.! The nutritional components of each food item are given by the follow-
ing seven variables: fat (grams), food energy (calories), carbohydrates

1The data are given in the file food.txt, which can be downloaded from the book’s
website or from http://www.ntwrks.com/ “mikev/chartl.html.
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TABLE 7.1. Coefficients of the six principal components of the covariance
matriz of the transformed food nutrition data.

Food Component PC1 PC2 PC3 PC4 PC5 PC6
Fat 0.557 0.099 0.275 0.130 0.455 0.617

Food energy 0.536 0.357 —0.137 0.075 0.273  -0.697
Carbohydrates —0.025 0.672 -0.568 -0.286 —-0.157 0.344
Protein 0.235 -0.374 —0.639 0.599 -0.154 0.119
Cholesterol 0.253 -0.521 -0.326 -0.717 0.210 -0.003
Saturated fat 0.531 -0.019 0.261 -0.150 -0.791 0.022
Variance 2.649 1.330 1.020 0.680 0.267 0.055

% Total Variance 44.1 22.2 17.0 11.3 4.4 0.9

(grams), protein (grams), cholesterol (milligrams), weight (grams),
and saturated fat (grams). Food items are listed according to very dis-
parate serving sizes, which include teaspoon, tablespoon, cup, loaf, slice,
cake, cracker, package, piece, pie, biscuit, muffin, spear, pat, wedge, stalk,
cookie, and pastry. To equalize out the different types of servings for each
food, we first divide each variable by weight of the food item (which leaves
us with 6 variables), and then, because of wide variations in the different
variables, each variable is standardized by subtracting its mean and divid-
ing the result by its standard deviation. The resulting data are X = (Xj;).

A PCA of the transformed data yields six principal components or-
dered by decreasing variances. The first three principal components, PC1,
PC2, and PC3, which account for more than 83% of the total variance,
have coefficients given in Table 7.1. Notice that PC1 puts little weight on
carbohydrates, and PC2 puts little weight on fat and saturated fat.

The scatterplot of the first two principal components is given in Fig-
ure 7.1. The scatterplot appears to show a number of interesting features.
Notice the almost straight-line edge to the plotted points at the upper left-
hand corner. We also can identify various groups of points in this display,
where the food items in each group have been ordered by magnitude of
that nutritional component, starting at the largest value:

1. Cholesterol: 318 (raw egg yolk), 189 (chicken liver), 62 (beef liver), 312
(fried egg), 313 (hard-cooked egg), 314 (poached egg), 315 (scrambled
egg), and 317 (raw whole egg).

2. Protein: 357 (dry gelatin), 778 (raw seaweed), 952 and 953 (yeast),
and 578-580 (parmesan cheese).

3. Saturated fat: 124-129 (butter), 441 and 442 (lard), 212 (bitter choco-
late), 224-226 (coconut), 326 and 327 (cooking fat), and 166-168
(cheddar cheese).
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FIGURE 7.1. Scatterplot of the first two principal components of the
food nutrition data. A number next to a point identifies the food item cor-
responding to that point. Multiple food items may be plotted at the same
point.

4. Fat and food energy: 326 and 327 (cooking fat), 441 and 442 (lard),
603 and 604 (peanut oil), 549-550 (olive oil), 248 and 249 (corn oil),
764 and 765 (safflower oil), 810-813 (soybean cottonsead oil), 841 and
842 (sunflower oil), 124-129 (salted butter), and 488-492 (margarine).

5. Carbohydrates: 837-840 (white sugar), 393 (hard candy), 836 (brown
sugar), 553 (onion powder), 339 (fondant), 834 (Kellogg Sugar Frosted
Flakes), 843 (sunflower seeds), 844 (Super Sugar Crisp Cereal), 427
(jelly beans), 141 (carob flour), and 221 (coca powder).

Most of these points are identified in the scatterplot, but some are covered
too well to be displayed clearly. We see that food item 318 (raw egg yolk) is
an outlier along an imaginary cholesterol axis and 124-129 (butter) and 441
and 442 (lard) are outliers along an imaginary saturated-fat axis. Similarly,
in scatterplots of PC1 and PC3, and of PC2 and PC3 (not shown here),
we see that food items 357 (dry gelatin) and 779 (raw seaweed) are outliers
along an imaginary protein axis.
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7.2.2  Population Principal Components

Assume that the random r-vector
X = (X1, Xp)" (7.1)

has mean py and (r x 1) covariance matrix 3 x x. PCA seeks to replace the
set of r (unordered and correlated) input variables, X1, Xa,...,X,, by a
(potentially smaller) set of ¢ (ordered and uncorrelated) linear projections,
&1,...,& (t <), of the input variables,

fj:b;X:bj1X1+”'+bj,«X,«, j=12,...,t, (72)

where we minimize the loss of information due to replacement.

In PCA, “information” is interpreted as the “total variation” of the orig-
inal input variables,

> var(X;) = tr(Sxx). (7.3)

From the spectral decomposition theorem (Section 3.2.4), we can write
Yxx =UAU", U'U=1L, (7.4)

where the diagonal matrix A has diagonal elements the eigenvalues, {A;},
of X xx, and the columns of U are the eigenvectors of ¥ xx. Thus, the
total variation is tr(Xxx) = tr(A) = 377_; A;.
The jth coefficient vector, b; = (b1, --,by;)7, is chosen so that:
e The first ¢ linear projections &;, 7 = 1,2,...,t, of X are ranked in
importance through their variances {var{¢;}}, which are listed in
decreasing order of magnitude: var{&;} > var{&} > ... > var{&}.

e ¢; is uncorrelated with all &, k < j.

The linear projections (7.2) are then known as the first ¢t principal compo-
nents of X.

There are two popular derivations of the set of principal components of
X: PCA can be derived using a least-squares optimality criterion, or it can
be derived as a variance-maximizing technique. In the next two subsections,
we discuss these two definitions.

7.2.3  Least-Squares Optimality of PCA

Let
B = (bla"’abt)Ta (75)

be a (t x r)-matrix of weights (¢ < r). The linear projections (7.2) can be
written as a t-vector,
£ =BX, (7.6)
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where € = (&1, -+, &)7. We want to find an r-vector g and an (r x ¢)-matrix
A such that the projections & have the property that X ~ pu+ A€ in some
least-squares sense. We use the least-squares error criterion,

E{X-p—- A (X-p—-AQ}, (7.7)

as our measure of how well we can reconstruct X by the linear projection
.

We can write the criterion (7.7) in a more transparent manner by sub-
stituting BX for €. The criterion is now a function of an (r x t)-matrix A
and a (t x r)-matrix B (both of full rank ¢), and an r-vector p. The goal
is to choose A, B, and p to minimize

E{(X — p— ABX)"(X — p — ABX)}. (7.8)

For example, when ¢t = 1, we can write (7.8) as the least-squares problem,

T

o B j:1(Xj — p; — anbiX)?%, (7.9)

where pp = (g1, -, pr)", A =a; = (a11, -+, a,1)7, and B = b7.

The criterion (7.8) is just (6.80) with Y = X, s = r, and I" = I,.. Hence,
(7.8) is minimized by the reduced-rank regression solution,

AD = (vq, -+, v;) = BOT, (7.10)

p® =1, —AOBO)py ., (7.11)

where v; = v;(Xxx) is the eigenvector associated with the jth largest
eigenvalue, \;, of ¥ xx. Thus, our best rank-t approximation to the original
X is given by

X® = p® 4+ COX = py + COX — py), (7.12)

where

ct = AOB® = Zvj (7.13)

is the reduced-rank regression coefficient matrix with rank ¢ for the princi-
pal components case. From (6.91), the minimum value of (7.8) is given by
Z] 41 Aj, the sum of the smallest r — ¢ eigenvalues of X xx.

It may be helpful to think of these results in the following way. Let V =
(v1,--+,Vvy) be the (r x r)-matrix whose columns are the complete set of r
ordered eigenvectors of X x x. We have shown that the most accurate rank-¢
least-squares reconstruction of X can be obtained by using the composition
of two linear maps L’ o L. The first map L : " — R takes the first
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t columns of V to form t linear projections of X, and then the second
map L' : R — R uses those same ¢ columns of V to carry out a linear
reconstruction of X from those projections.

The first t principal components (also known as the Karhunen—Loéve
transform) are given by the linear projections, &1, ..., &, where

G=viX, j=12,...,t (7.14)
The covariance between &; and &; is

cov(&;, &) = COV(VZXC,V;XC) =v;XxxV; = \Vviv; =0;);, (7.15)
where 6;; is the Kronecker delta, which equals 1 if ¢ = j and zero otherwise.
Thus, A1, the largest eigenvalue of X x x, is var{&1}; A2, the second-largest
eigenvalue of X x x, is var{&2 }; and so on, while all pairs of derived variables

are uncorrelated, cov(§;, &) =0, i # j.

A goodness-of-fit measure of how well the first ¢ principal components
represent the r original variables in the lower-dimensional space is given by
the ratio

Atp1+ -+ Ar

7.16
A+t A (7.16)

which is the proportion of the total variation in the input variables that
is explained by the last r — t principal components. If the first ¢ principal
components explain a large proportion of the total variation in X, then the
ratio (7.16) should be small.

Actually, more is true. Not only do u®, A® and B® minimize the
scalar criterion (7.8), but also they simultaneously minimize all the eigen-
values of the (r X r)-matrix

¥ = B{(X — p— ABX)(X — u — ABX)"}, (7.17)

thereby also minimizing any function of those eigenvalues, such as their
sum (trace of (7.17) and, hence, (7.8)) and their product (determinant of
(7.17)). To see this, write (7.17) in the form E{(y —a—bx)(y —a—bx)"},
where y = X, x = ABX, b =1, a = p. From (6.70), we have that

v > Byy - EX,ABXEZEX,ABXEABX,X
— Syx-D, (7.18)

where
D=XxxB"A"(ABXxxB"A") 'ABZyx. (7.19)

Note that the (r x r)-matrix D has rank at most ¢ (< r). We wish to
find g, A, and B to minimize the jth largest eigenvalue of D. From the
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Courant-Fischer Min-Max theorem (see Section 3.2.10),

. o’ EXX —-Dao
N(Exx —-D) = min max ¥
Lirank(L)<j—1 OQ:LO=0 a"o

. aTEXXa

>  min max e —
L :L&=0,Da=0 oo

. aTEXXa

= min max _
L o:(L/D)ax=0 a’o

. aTZXon

>  min max _
LD o:(L|D)x=0 a’

= Api(Bxx), (7.20)
because rank((L|D)) < j — 1 + ¢. Thus,
A (BD) > N (Bxx). (7.21)

By plugging in the above p®, A® and B® into the expression for ¥(*),
it follows immediately that the minimum value of A; (\Il(t)) is actually given
by At (Exx).

7.2.4 PCA as a Variance-Mazimization Technique

In the original derivation of principal components (Hotelling, 1933). the
coefficient vectors,

b; = (bj1,bj2,...,bje)", j=1,2,... .1t (7.22)

in (7.5) were chosen in a sequential manner so that the variances of the
derived variables (var{¢;} = b7Xxxb;) are arranged in descending order
subject to the normalizations bib; = 1, j = 1,2,....¢, and that they
are uncorrelated with previously chosen derived variables (cov(;, &) =
b ¥ xxb; =0,

The first principal component, &, is obtained by choosing the r coef-
ficients, by, for the linear projection &;, so that the variance of & is a
maximum. A unique choice of {{;} is obtained through the normalization
constraint b7b; =1, for all j = 1,2,...,¢. Form the function

f(b1) =b{Xxxb1 + A1 (1 —blby), (7.23)

where \; is a Lagrangian multiplier. Differentiating f(b;) with respect to
b; and setting the result equal to zero for a maximum yields

9f(bi1)
Ob;

= 2(Sxx — MIL)by = 0. (7.24)
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This is a set of r simultaneous equations. If b; # 0, then A\; must be chosen
to satisfy the determinantal equation

Zxx — ML =0. (7.25)

Thus, A1 has to be the largest eigenvalue of X x x, and by the eigenvector,
v1, associated with Aj.

The second principal component, &, is then obtained by choosing a sec-
ond set of coefficients, by, for the next linear projection, &, so that the
variance of & is largest among all linear projections of X that are also
uncorrelated with &; above. The variance of & is var(£2) = b2 X x xbs, and
this has to be maximized subject to the normalization constraint bibs =1
and orthogonality constraint b]bs = 0. Form the function

f(b2) =bIX¥xxbs + A2(1 — bibs) + ub]bg, (7.26)

where A2 and p are the Lagrangian multipliers. Differentiating f(bs) with
respect to by and setting the result equal to zero for a maximum yields

9f(b1)
Ob

Premultiplying this derivative by b] and using the orthogonality and nor-
malization constraints, we have that 2b] X x xbs + ¢ = 0. Premultiplying
the equation (Xxx — A1L.)b; = 0 by b] yields bl¥ xxb; = 0, whence
= 0. Thus, Ay has to satisfy (X xx — A\2I,)by = 0. This means that Az is
the second largest eigenvalue of ¥ x x, and the coefficient vector bs for the
second principal component is the eigenvector, vs, associated with As.

= 2(2){){ - )\21r)b2 + puby = 0. (727)

In this sequential manner, we obtain the remaining sets of coefficients for
the principal components &£3,&y, .. ., &, where the ¢th principal component
&, is obtained by choosing the set of coefficients, b;, for the linear projection
&; so that & has the largest variance among all linear projections of X that
are also uncorrelated with &1,&s,...,&_1. The coefficients of these linear
projections are given by the ordered sequence of eigenvectors {v;}, where
v; is associated with the jth largest eigenvalue, \;, of 3 x x.

7.2.5  Sample Principal Components
We estimate the principal components of X using a random sample

{Xi, i = 1,2,...,n} with observed values D = {x;,i = 1,2,...,n}. We
estimate py by

n
Dy :)’c:nflzxi. (7.28)
i=1
Let xo; = %, — X, ¢ = 1,2,...,n, and set X. = (Xc1, "+, Xen) t0o be an

(r x n)-matrix. We estimate X x x by the sample covariance matrix,

Sxx =n'S=n"tXA7. (7.29)
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The ordered eigenvalues of EADXX are denoted by Xl > Xz > ... > Xr >0,
and the eigenvector associated with the jth largest sample eigenvalue \; is
the jth sample eigenvector v;, j =1,2,...,r.

We estimate A®) and B® by
AW = (Fy,.--,%,) =B, (7.30)

where V; is the jth sample eigenvector of EADXX, j=12,...,t(t<r). The
best rank-t reconstruction of X = x is given by

20 = %+ 60 (x — %), (731)
where .
cl — AOB® — ZVJ-VJT (7.32)
j=1

is the reduced-rank regression coefficient matrix corresponding to the prin-
cipal components case.

The jth sample PC score of X = x is given by

& =VIxe, j=12,...1, (7.33)

where x, = x — X. The variance, \;, of the jth principal component is
estimated by the sample variance Xj, j=1,2,...,t. A sample estimate of
the measure (7.16) of how well the first ¢ principal components represent
the r original variables is given by the statistic

Xt+1+"'+/):r

i - (7.34)
A+ A

which is the proportion of the total sample variation that is explained by
the last r — ¢t sample principal components.

It is hoped that the sample variances of the first few sample PCs will be
large, whereas the rest will be small enough for the corresponding set of
sample PCs to be omitted. A variable that does not change much (relative
to other variables) in independent measurements may be treated approxi-
mately as a constant, and so omitting such low-variance sample PCs and
putting all attention on high-variance sample PCs is, therefore, a conve-
nient way of reducing the dimensionality of the data set.

The exact distribution of the eigenvalues of the random matrix X X7 ~
Wi (n,1,.), where X = (Xq,---,X,,), was discovered independently and
simultaneously in 1939 by Fisher, Girshick, Hsu, and Roy and in 1951 by
Mood and has the form,

T

P A = e [T w2 TG = M), (7.35)

Jj=1 J<k



7.2 Principal Component Analysis 205

where \y > Ay > -+ > \,. are the ordered eigenvalues of XYX7, w(z) =
"~ ""le~? is the weight function for the Laguerre family of orthogonal
polynomials, and ¢, , is a normalizing constant dependent upon r and n.
For a proof, see, for example, Anderson (1984, Section 13.3). The second
product in (7.35) involving the pairwise differences of eigenvalues is the
Jacobian term, also known as the Vandermonde determinant (Johnstone,
2006). In the case when the population eigenvalues are not all equal, the
exact distribution of the sample eigenvalues is known (James, 1960) but is
extremely complicated.

When the dimensionality, r, is very large, maybe even larger than the
sample size n, then the exact distribution result (7.35) does not hold. In
such situations, random-matrixz theory has proved to be very useful in pro-
viding asymptotic results; see, e.g., Johnstone (2001, 2006). As before, sup-
pose XX ~ W, (n,I,.). The empirical distribution function computes the
proportion of sample eigenvalues that is smaller than a given value of k,

G (k) = %#{Xj < k). (7.36)

It can be shown that if /n — v € (0,00), then, G, (k) — G(k) a.s., where
the limiting distribution G(k) has density g(k) = G'(k), and

VO Rk
2mvk

g(k) = ;b= (1) (7.37)
This so-called Quarter-Circle Law is due to Marcenko and Pastur (1967);
it also holds in more general situations.

In Figure 7.2, we display the density g(k) for v = 1/4 and v = 1. The
larger is r/n, the more spread out is the limiting density. When r = n/4,
the density is concentrated on the interval [%, %], and when r = n, the
density is spread out over the interval [0, 4].

7.2.6 How Many Principal Components to Retain?

Probably the main question asked while carrying out a PCA is how many
principal components to retain. Because the criterion for a good projection
in PCA is a high variance for that projection, we should only retain those
principal components with large variances. The question, therefore, boils
down to one involving the magnitudes of the eigenvalues of X xx: how
small can an eigenvalue be while still regarding the corresponding principal
component as significant?

Scree Plot: The sample eigenvalues from a PCA are ordered from largest
to smallest. It is usual to plot the ordered sample eigenvalues against their
order number; such a display is called a “scree plot” (Cattell, 1966), after
the break between a mountainside and a collection of boulders usually found
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1.2

gamma = 1/4

0.0

FIGURE 7.2. Density g(k) of eigenvalues of a Wishart matrixz in the
limiting case when r/n — v € (0,00). The two curves correspond to the
values v = 1/4 and v = 1. The larger r/n, the more spread out are the
etgenvalues.

at its base. If the largest few sample eigenvalues dominate in magnitude,
with the remaining sample eigenvalues very small, then the scree plot will
exhibit an “elbow” in the plot corresponding to the division into “large”
and “small” values of the sample eigenvalues. The order number at which
the elbow occurs can be used to determine how many principal components
to retain. It is usually recommended to retain those PCs up to the elbow
and also the first PC following the elbow. A related popular criterion for
use when an elbow may not be present in the scree plot is to use a cutoff
point of 90% of total variance.

What would a scree plot look like for the eigenvalues of the covariance
matrix of Gaussian data? We display two scenarios, where the only differ-
ence is the sample size. Generate an (r X n)-matrix Z all of whose entries
are iid A(0,1), let D be an (r x r) diagonal matrix, and set X = DZ.
Let iXX =n"'XX" be an (r x r) covariance matrix. Let » = 30 and set
D? = Diag(12,11,10,9,8,7,3,3,3,---,3). Then, XX™ ~ W,(n,D?). The
scree plot of the eigenvalues of > xx in the case that n = 300 is given in
the left panel of Figure 7.3, where there is an elbow at 7. Now, suppose
n = 30. Then, the scree plot of the eigenvalues is given in the right panel
of Figure 7.3 and shows no discernible elbow. This example suggests that
the relationship between n and r can determine whether or not the scree
plot is useful in determining how many PCs to retain.

In the food nutrition example, the eigenvalues of the covariance matrix
of the transformed data are given in Table 7.1. The scree plot of these
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FIGURE 7.3. Scree plots of the ordered eigenvalues of EA)XX =n XX,
where X = DZ, D is a diagonal (r X r)-matriz, and the elements of the
(r x n)-matriz Z are each independent Gaussian deviates. In this simula-
tion, r = 30 and D? = Diag(12,11,10,9,8,7,3,3,3,---,3). The left panel
corresponds to n. = 300 and has an elbow at 7, and the right panel corre-
sponds to n = 30 and shows no elbow.

eigenvalues, which is given in the left panel of Figure 7.4, shows no elbow.
This may be explained by the fact that the leading PC explains only a 44%
share of the total variance, there is no really dominant group of eigenvalues,
and it takes four PCs to pass 90% of total variance.

PC Rank Trace: The problem of deciding how many principal compo-
nents to retain is equivalent to obtaining a useful estimate of the rank of
the regression coefficient matrix C in the principal components case. So, if
we can obtain a good estimate of the rank, we should have a solution to
this problem.

We saw in Chapter 6 that the rank trace plots the loss of information
when approximating the full-rank regression by a sequence of reduced-rank
regressions having increasing ranks. When the true rank of the regression,
to, say, is reached, the points in the rank trace plot following that rank
(i.e., ranks to+1,...,r) should cease to change significantly from both the
point for ¢tg and the full-rank point (rank r).

In the principal components case, the expressions for the points in the
rank trace simplify greatly and are very simple to compute. It is not difficult
to show (see Exercise 7.6) that

1/2
~ t
AC® = (1 — —) , (7.38)

22,4}
AEé@z(M) : (7.39)
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FIGURE 7.4. Food nutrition example. Left panel: Scree plot. Right panel:
PC rank-trace plot with values of t placed next to the plotted point. The scree
plot for the sample covariance matrix of the transformed data does not offer
any advice on the number of principal components to retain, whereas the
rank trace plot suggests retaining 4 or 5 principal components. The modified
version of Kaiser’s rule recommends retaining three PCs.

t=0,1,2,...,7. Comparing (7.39) with (7.34), we see that we are again
looking at the smallest » — ¢ sample eigenvalues (although this time they
are each squared). A plot of (7.39) against (7.38) is called a PC rank trace
plot (Izenman, 1980). All the information regarding the dimensionality of
the regression is, therefore, contained in the residual covariance matrices
and not in the regression coefficients. Furthermore, the + 1 plotted points
decrease monotonically from (1,1) to (0,0). We assess the rank ¢ of C by
t, the smallest integer value between 1 and r at which an “elbow” can be
detected in the PC rank trace plot.

In Figure 7.4, the right panel shows the PC rank trace plot for the sample
covariance matrix of the food nutrition data. We assess the rank from the
rank-trace plot as t = 4 or 5.

Kaiser’s Rule: When dealing with the PCA of a sample correlation ma-
trix, Kaiser (1960) suggested (in the context of exploratory factor analysis)
that only those principal components be retained whose eigenvalues exceed
unity. This decision guideline is based upon the argument that because the
total variation of all r standardized variables is equal to r, it follows that
a principal component should account for at least the average variation of
a single standardized variable. This rule is popular but controversial; there
is evidence that the cutoff value of 1 is too high. A modified rule retains
all PCs whose eigenvalues of the sample correlation matrix exceed 0.7.

For the food nutrition data, the eigenvalues of the sample correlation ma-
trix are 2.6486, 1.3301, 1.0201, 0.6801, 0.2665, and 0.00546. Three of these
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eigenvalues are greater than 0.7, and so the modified version of Kaiser’s
rule says that we should retain the first three principal components.

7.2.7  Graphical Displays

For diagnostic and data analytic purposes, it is usual to plot the first
sample PC scores against the second sample PC scores,

(@17@2)7 i:1327"'an7 (740)

where @j = V]T-xci and x;; = x; — X, 1 = 1,2,...,n, 7 = 1,2. A more
general graphical tool for displaying the sample PC scores associated with
the largest few sample eigenvalues (variances) is the scatterplot matrix, in
which all possible pairs of variables are plotted in two dimensions.

See Figure 7.1 for a graphical display of the first two PCs of the food
nutrition data and Figure 7.6 for a graphical display of the first three PCs
of the pendigits data.

A three-dimensional scatterplot of the first three sample PC scores is also
strongly recommended, especially if a “brush and spin” feature is available.

7.2.8 Ezxample: Face Recognition Using Eigenfaces

In this example, we apply PCA to a single face photographed under
n = 11 illumination and expression conditions; see Figure 2.4. Recall from
Section 2.3.3 that each face, as a picture image, starts out as a (320 x 243)-
matrix of intensity values, which are quantized to 8-bit grayscale (0-255,
with 0 as black and 255 as white), and then translated into a stacked vector
of length r = 77, 760.

From a PCA of the n r-vectors, x1, .. ., X,, of stacked images, we compute
the first ¢ PC scores, Agt), e ,Aﬁf), where Egt) = ﬁ(t)xci = (Eﬂ, e ,Eit)T is
a t-vector, 1 <t < r. It is usual to plot the points (@1,@2), 1=1,2,...,n,
and annotate the scatterplot with face identifiers. Faces corresponding to
the same individual should project to points very close to each other in
the scatterplot, whereas faces corresponding to different individuals should
project to more distant points. Also, faces of the same individual with very
similar poses should be plotted close to each other, whereas different poses
should be plotted far away from each other.

The best rank-t reconstruction of the ith original face is obtained by
computing ﬁgt) =x+ a(t)(xi —X),4=1,2,...,n, where x is the “average”
face given by (7.28) and C® is given by (7.32). The average of all the faces
can be seen in the left panel of Figure 7.5. If the r-vectors ﬁgt), e ,ﬁ%)
are unstacked and displayed as images, they each have the appearance of

a “ghostly” face. The reconstructed face image improves as we increase
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FIGURE 7.5. The cumulative effect of the nine principal components,
adding one PC at a time, for eigenface 6 (“sad”). The sad face starts to
appear by the fifth PC. The average eigenface is given in the left panel.

t. Each face image in the data set can be represented exactly as a linear
combination of all r such ghostly faces or eigenfaces, or approximately as a
linear combination of the first ¢ eigenfaces, which are ordered by decreasing
eigenvalues.

In the right panel of Figure 7.5, we see the effect of increasing the number
of principal components on the reconstruction of face 6 (“sad”). The first
eigenface is fuzzy but recognizable as a face. Adding PCs increases the
sharpness of the image, and the “sad” face starts to emerge at eigenface 5.

7.2.9 Invariance and Scaling

A shortcoming of PCA is that the principal components are not invariant
under rescalings of the initial variables. In other words, a PCA is sensitive
to the units of measurement of the different input variables. Standardizing
(centering and then scaling) the X-variables,

Z « (diag{Exx}) 74X — fiy), (7.41)

is equivalent to carrying out PCA using the correlation (rather than the
covariance) matrix. When using the correlation matrix, the total variation
of the standardized variables is r, the trace of the correlation matrix. The
lack of scale invariance implies that a PCA using the correlation matrix may
be very different from a similar analysis using the corresponding covariance
matrix, and no simple relationship exists between the two sets of results.
In the initial formulation and application of PCA, we note that Hotelling
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(1933), who was dealing with a battery of test scores, extracted principal
components from the correlation matrix of the data.

Standardization in the PCA context has its advantages. In some fields,
standardization is customary. In heterogeneous situations, where the units
of measurement of the input variables are not commensurate or the ranges
of values of the variables differ considerably, standardization is especially
relevant. If the variables have heterogeneous variances, it is a good idea to
standardize the variables before carrying out PCA because the variables
with the greatest variances will tend to overwhelm the leading principal
components with the remaining variables contributing very little.

On statistical inference grounds, standardization is usually regarded as
a nuisance because it complicates the distributional theory. Indeed, the
asymptotic distribution theory for the eigenvalues and eigenvectors of a
sample correlation matrix turns out to be extremely difficult to derive.
Furthermore, certain simplifications, such as pretending that the sample
correlation matrix has the same distributional properties as the sample
covariance matrix, tend not to work and, hence, lead to incorrect inference
results for principal components.

7.2.10 FExample: Pen-Based Handwritten Digit Recognition

These data? were obtained from 44 writers, each of whom handwrote 250
examples of the digits 0,1,2,...,9 in a random order (Alimoglu, 1995).
The digits were written inside boxes of 500 x 500 pixel resolution on a
pressure-sensitive tablet with an integrated LCD screen. The subjects were
monitored only during the first entry screens. Each screen contained five
boxes with the digits to be written displayed above. Subjects were told
to write only inside these boxes. If they made a mistake or were unhappy
with their writing, they were instructed to clear the contents of a box by
using an on-screen button. Unknown to the writers, the first 10 digits were
ignored as writers became familiar with the input device.

The raw data on each of n = 10,992 handwritten digits consisted of a
sequence, (x¢,y:), t = 1,2,...,T, of tablet coordinates of the pen at fixed
time intervals of 100 milliseconds, where x; and y; were integers in the
range 0-500. These data were then normalized to make the representations
invariant to translation and scale distortions. The new coordinates were
such that the coordinate that had the maximum range varied between 0
and 100. Usually x; stays in this range, because most integers are taller than
they are wide. Finally, from the normalized trajectory of each handwritten

2These data are available in the file pendigits on the book’s website. The description
was obtained from www.ics.uci.edu/"learn/databases/pendigits.
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digit, 8 regularly spaced measurements, (x¢,y:), were chosen by spatial
resampling, which gave a total of » = 16 input variables.

A PCA of the correlation matrix (i.e., the covariance matrix of normal-
ized variables) reveals that the variances of the first five principal compo-
nent (PC) scores are larger than unity: 4.717, 3.229, 2.577, 1.230, 1.063;
thus, the first five PCs together explain about 80% of the total variation, 16,
in the data. A reduction in dimensionality from 16 to 5, therefore, retains
a substantial amount of the total variation. Scatterplots of the first three
PC scores, which explain about 66% of the total variation, are displayed in
Figure 7.6, where the points are colored by type of digit.

From these three 2D scatterplots, we can make the following observa-
tions: the majority of handwritten examples of each digit cluster together,
although there is a great deal of overlapping of clusters; each scatterplot
has a distinctive shape, with strong suggestions of circular or torus-like
appearance; and there appears to be many outlying points. A 3D-rotating
scatterplot of the first three principal components reveals a hollow, hemi-
spherical point configuration with crab-like arms.

7.2.11 Functional PCA

In some situations, we may need to analyze data consisting of functions
or curves. Although such functional data are often time-dependent, we do
not assume that time itself plays a special role. In fact, functional data from
different and independent individuals may be recorded at different sets of
time points, and in each of those instances, the data may not be equally
spaced. In such cases, it is advantageous to view an individual’s functional
observations as a continuously defined record observed at a set of discrete
points, so that a single data point is the entire function (rather than each
observed data value). In other cases, we may be able to view independent
replications of the entire curve.

Given a set of sample curves from a number of individuals, where each
curve represents repeated measurements on the same individual, we may
wish to characterize the main features of those curves. One method of doing
this is through a functional version of PCA (see, e.g., Ramsay and Silver-
man, 1997, Chapters 6 and 7). Because we are observing curves rather than
individual values, the vector-valued observations X4,...,X,, are replaced
by the univariate functions X (¢),..., X, (t), where ¢ may indicate time,
but in general is to be thought of as a continuous index varying within a
closed interval [0, 7.

In functional PCA, each sample curve is considered to be an indepen-
dent realization of a univariate stochastic process X (¢) (having possibly
cyclical or periodic form) with smooth mean function E{X (¢)} = u(¢) and
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FIGURE 7.6. Scatterplots of the first three principal components (PCs)
of the correlation matrix from the pendigits data, where r = 16 and n =
10,992. The top-left panel displays the scatterplot of the first three principal
component scores. The top-right panel shows the first and second PCs, the
bottom-right panel shows the first and third PCs, and the bottom-left panel
shows the second and third PCs. The 10 digits are shown by the following
colors: green (0), brown (1), light blue (2), light magenta (3), purple (4),
blue (5), light red (6), light green (7), orange (8), and light cyan (9).

covariance function
cov{X (s), X (t)} = o(s,1). (7.42)

By a spectral decomposition of the covariance function, we can express o as
an orthogonal expansion (in the ¢5 sense) in terms of its eigenvalues {\;}
and associated eigenfunctions {V;(t)}, so that

7(s.t) = S AV ($)V;(0) (7.43)

where the eigenvalues quickly tend to zero and the first few eigenfunctions
are slowly varying. The covariance function o is positive-definite and, hence,
we can take the eigenvalues to be nonnegative and ordered: A\; > g >

- > 0. The goal is to determine the primary components of functional
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variation in o(s,t), where the eigenvalues indicate the amount of total
variance attributed to each component.

A random curve can then be expressed as

X(t) = p(t) + Z &Vi(t), (7.44)
where the coefficient
& = [1X 0 - )V, )i (7.45)

is a scalar random variable (called the jth functional PC score) with E{§;} =
0, var{&;} = Aj, 3°;Aj < oo, and cov{§;, &} = 0, j # k. The eigenfunc-
tions {V;(¢)} (called PC functions) satisfy

/ WV (6)]2dt = 1, / V(O Ve(t)dt = 0, # k, (7.46)

where the integrals are taken over [0,7], which may be periodic. The ex-
pansion (7.44) is the well-known Karhunen—Loéve expansion of X (t). Thus,
X (t) — p(t) may be thought of as a finite sum of orthogonal curves each
having uncorrelated random amplitudes.

Although a scientific phenomenon may be viewed as functional, in reality
we typically only have a finite amount of knowledge about that phenomenon
through sampling. Consequently, estimates of the mean curve p(t) and
the covariance function o are based upon a collection of n sample curves,
Xi(t), ..., Xn(t), where X;(t) = pu(t) + 32, &;V;(t) is the ith individual
curve. The kth point on the ith curve is denoted by X, = X;(t).

We briefly mention possible estimation procedures and refer the inter-
ested reader to the excellent books by Ramsay and Silverman on this topic.
One approach to analyzing such data is, first, to smooth each individual
sample curve (e.g., using spline methods or local-linear smoothers), and
then apply functional PCA assuming that the smooth curves are the com-
pletely observed curves. This gives a set of eigenvalues {);} and (smooth)
eigenfunctions {\7](75)} extracted from the sample covariance matrix of the
smoothed data. The first and second estimated eigenfunctions are then
graphed with a view to examining the extent and location of individual
curve variation.

Other approaches to functional PCA have been developed, including the
use of roughness penalties and regularization, which optimize the selection
of smoothing parameter and choice of the number of PCs simultaneously
rather than separately in two stages.
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7.2.12 What Can Be Gained from Using PCA?

The short answer is that it depends on what we are trying to accomplish
and the nature of the application in question. PCA is a linear technique
built for several purposes: it enables us, first, to decorrelate the original
variables in the study, regardless of whether r < m or m < r; second,
to carry out data compression, where we pay decreasing attention to the
numerical accuracy by which we encode the sequence of principal compo-
nents; third, to reconstruct the original input data using a reduced number
of variables according to a least-squares criterion; and fourth, to identify
potential clusters in the data.

In certain applications, PCA can be misleading. PCA is heavily influ-
enced when there are outliers in the data (e.g., in computer vision, images
can be corrupted by noisy pixels), and such considerations have led to the
construction of robust PCA. In other situations, the linearity of PCA may
be an obstacle to successful data reduction and compression, and so in
Chapter 16, we consider nonlinear versions of PCA.

7.3 Canonical Variate and Correlation Analysis

Canonical variate and correlation analysis (CVA or CCA) (Hotelling,
1936) is a method for studying linear relationships between two vector
variates, which we denote by X = (Xy,---,X,)" and Y = (Y3, ---,Y,)".
As such, it has been used to solve theoretical and applied problems in
econometrics, business (primarily, finance and marketing), psychometrics,
geography, education, ecology, and atmospheric sciences (e.g., weather pre-
diction).

Hotelling applied CVA to the relationship between a set of two read-
ing test scores (X; = reading speed, Xo = reading power) and a set of
two arithmetic test scores (Y7 = arithmetic speed, Y3 = arithmetic power)
obtained from 140 fourth-grade children, so that r = s = 2.

7.3.1 Canonical Variates and Canonical Correlations

( > ) (7.47)

is a collection of r 4 s variables partitioned into two disjoint subcollections,
where X and Y are jointly distributed with mean vector and covariance

matrix given by
X 125'¢ )
E = , 7.48
{< Y >} ( Ky (748)

We assume that
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X — py X—px \ Yxx Xxy
. - 7.49
{(Y—py)<Y—uy Yyx Xyy )’ (7.49)

respectively, where ¥ xx and Xyy are both assumed to be nonsingular.

CVA seeks to replace the two sets of correlated variables, X and Y, by
t pairs of new variables,

(&,wi), i=1,2,...,t, t <min(r,s), (7.50)

where
§ =8 X =91 X1 + g2 Xo + -+ grj X
(7.51)
wj =h7Y = hy; Y1 4+ ho;Ya + - + hy;Ys

j = 1,2,...,t, are linear projections of X and Y, respectively. The jth
pair of coefficient vectors, g; = (g1j,---.9r;)" and h; = (h1j, -, hyy)7,
are chosen so that
o the pairs {(§;,w;)} are ranked in importance through their correla-
tions,

g;Xxvh;
8] Xxxg;)!/2(h; Byyh;)t/2’

p; = corr{&,w;} = ( j=1,2,...,1t,

(7.52)
which are listed in descending order of magnitude: p; > p2 > -+ > p;.

e &; is uncorrelated with all previously derived &:
cov{{;, &kt = gj Xxxgr =0, k<. (7.53)
e w; is uncorrelated with all previously derived wy:

cov{wj,wk} = h;zyyhk = 0, k< j (754)

The pairs (7.50) are known as the first t pairs of canonical variates of X
and Y and their correlations (7.52) as the t largest canonical correlations.

The CVA technique ensures that every bit of correlation is wrung out
of the original X and Y variables and deposited in an orderly fashion
into pairs of new variables, (§;,w;), 7 = 1,2,...,t, which have a special
correlation structure. If the notion of correlation is regarded as the primary
determinant of information in the system of variables, then CVA is a major
tool for reducing the dimensionality of the original two sets of variables.

7.3.2  Erample: COMBO-17 Galaxy Photometric
Catalogue

The data for this example consist of a subset of a public catalogue of a
large number of astronomical objects (e.g., stars, galaxies, quasars) with
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TABLE 7.2. Variables used to analyze 3,438 galaxies from the Chandra
Deep Field South area of the sky. The variables are divided into r = 23
X -variables and s = 6 Y -variables.

X-variables
UjMag, BjMag, VjMag, usMag, gsMag, rsMag,
UbMag, BbMag, VbMag, S280Mag,
W420F_E, W462F_E, W485F_D, W518F_E, W571F_S,
W604F_E, W646F_D, W696F_E, W753F_E, W815F_S,
W856F_D, W914F_D, W914F_E

Y -variables
Rmag, ApD_Rmag, mu_max, MC_z, MC_z_ml, chi2red

brightness measurements in 17 passbands covering the range 350-930 nm
(Wolf, Meisenheimer, Kleinheinrich, Borch, Dye, Gray, Wisotski, Bell, Rix,
Cimatti, Hasinger, and Szokoly, 2004).3 All objects in the catalogue are
found in the Chandra Deep Field South, one of the most popularly studied
areas of the sky. Figure 7.7 shows a high-resolution composite image of
the Chandran Deep Field South, based upon images obtained in 2003 with
the Wide Field Imager on the ground-based 2.2-m MPG/ESO telescope
located at the European Southern Observatory (ESO) on La Silla, Chile.
The image displays more than 100,000 galaxies, several thousand stars, and
hundreds of quasars. COMBO-17 (“Classifying Objects by Medium-Band
Observations in 17 filters”) is an international collaboration project whose
mission is to study the evolution of galaxies.

This particular subset of the data set consists of the n = 3,438 objects
in the Chandra Deep Field South that are classified as “Galaxies” and for
which there are no missing values for any of the 65 variables (24 observa-
tions were omitted because of missing data). We also omitted five redundant
variables and all error variables in the data set; the 29 remaining variables
were then divided into a group of r = 23 X-variables and a group of s =6
Y -variables, which are listed in Table 7.2.

Of the Y-variables, Rmag is the total R-band magnitude (magnitudes are
inverted logarithmic measures of brightness), ApD_Rmag is the aperture
difference of Rmag, mu_max is the central surface brightness in Rmag,
MC_z is the mean redshift in the distribution p(z), MC_z_ml is the peak

3The complete catalogue of 63,501 astronomical objects can be obtained from
the website vizier.u-strasbg.fr/viz-bin/VizieR-4 or from the COMBO-17 website
www.mpia.de/COMBO/combo_index.html. The data set used in this example is a subset
and can be downloaded from astrostatistics.psu.edu/datasets/COMB017.html. The
author thanks Donald Richards for very helpful discussions on this data set.
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FIGURE 7.7. High-resolution three-color composite image of the
Chandra Deep Field South, obtained in January 2003 with the Wide
Field Imager camera on the 2.2m MPG/ESO telescope at the Euro-
pean Southern Observatory (ESO), La Silla, Chile. This image is based
upon a total exposure time of mearly 50 hours and displays more than
100,000 galazies, several thousand stars, and hundreds of quasars. Source:
www.eso.org/public/outreach/press-rel/pr-2003/phot-02-03.html.

of the redshift distribution p(z), and chi2red is the reduced x2-value of the
best-fitting template.

Of the X-variables, UjMag, BjMag, VjMag, usMag, gsMag, rsMag, Ub-
Mag, BbMag, VbMag, and S280Mag are all absolute magnitudes of the
galaxy in 10 bands. The first nine of these magnitudes are very highly cor-
related with each other, with all pairwise correlations greater than 0.93.
They are based upon the measured magnitudes and the redshifts and rep-
resent the intrinsic luminosities of the galaxies. The other variables are the
observed brightnesses in 13 bands in sequence from 420 nm in the ultra-
violet to 915 nm in the far red; these variables are also highly correlated
with each other, with correlations decreasing as distance between bands
increases.

The pairwise plots of all six pairs of canonical variates of the COMBO-17
data are displayed in Figure 7.8. The canonical correlations are, in decreas-
ing order of magnitude, 0.942, 0.538, 0.077, 0.037, 0.030, and 0.020; two of
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FIGURE 7.8. Pairwise canonical variate plots of COMBO-17 galaxy data.
There are n =3,438 galaxies withr = 23 and s = 6 variables. Top-left panel:
First pair of canonical variates (CVs), canonical correlation (CC) = 0.942.
Top-center panel: Second pair of CVs, CC = 0.538. Top-right panel: Third
pair of CVs, CC = 0.077. Bottom-left panel: Fourth pair of C'Vs, CC =
0.087. Bottom-center panel: Fifth pair of CVs, CC = 0.030. Bottom-right
panel: Sizth pair of CVs, CC = 0.020. For the jth CV plot, &; is plotted
on the horizontal azis, and w; is plotted on the vertical axis.

these correlations are large, whereas the rest are very small. We also see
many outliers in these plots. For example, galaxy Nr = 3605 is prominent
in all six plots, and galaxies Nr = 3033, 3277, and 6423 are prominent in
at least three plots.

7.8.8  Least-Squares Optimality of C'VA

Let the (¢ x r)-matrix G and the (¢ x s)-matrix H, with 1 < ¢ < min(r, ),
be such that X and Y are linearly projected into new vector variates,

£ =GX, w=HY, (7.55)
respectively. Consider the problem of finding v, G, and H so that
HY ~ v+ GX (7.56)

in some least-squares sense. More precisely, we wish to find v, G, and H
to minimize the (¢ x t)-matrix,

E{(HY — v - GX)(HY — v - GX)"}, (7.57)

where we assume that the covariance matrix of w is X, = HXyyH™ = 1,.
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Fix the matrix H and minimize the error criterion (7.57) first with respect
to v and G. We set w, =w — p, = w — Guy, and write w — v — GX as
+ (Hpy —v —Guy) — GX,, where X, = X — p. Then,
glinE{(w —v-GX)(w-v—-GX)"}
> mlnE{( - GX,)(we. — GX.)"}

= tr{zww - EwXE;(%Xsz}
+ mmtr{(Gzﬁ(/i — xS PGEYE — 2 x2 YD)

> tr{zww - EwXEXXEXw}
= tr{HZyyH —HEyx 2 A SxyH™}

t
=t— Y NHSyxZSxyH), (7.58)
j=1
where the first inequality becomes an equality iff v = Huy — Gy, and the
second inequality becomes an equality iff G = 3, XE;X =HXy XE)_(lx.
Now set U™ = HE%,/}Q,, so that U™U = I;. Then, by the Poincaré Sepa-
ration Theorem (see Section 3.2.10), (7.58) becomes

t

t
t—> XN(URU) > t—> N\(R
Jj=1 j=1

where
R=3,)/"Syx 7 Sxy 2,7 (7.59)

with equality only when the columns of U are the eigenvectors associated
with the first ¢ eigenvalues of R.

To summarize: The v, G, and H that minimize (7.57) are given by

v =HOpy, - GOpy, (7.60)
v] Au]
co_ [ | mmmn o[ 2 s e
vi Asuf
vi
HO = | : | =7/ (7.62)
vi

respectively, where u; is the eigenvector associated with the jth largest
eigenvalue )\? of

R* = 2’y 550 By x5, (7.63)
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and v; is the eigenvector associated with the jth largest eigenvalue /\? of
Rin (7.59),5=1,2,...,t.

Let g7 = (91j,---»grj) and h7 = (hyj, ..., hg;) be the jth rows of G(*)
and H® | respectively, j = 1,2,...,t. The r-vector g; and the s-vector
h; are generally assumed to have unit length; that is, gfg; = h7h; = 1,

j =1,2,...,t. The jth pair of canonical variates scores, (&, w;), is given
by
§=g;X, w;=hjY, (7.64)
where s U
g = DA Sy 20 v = A5 Py, (7.65)
—-1/2
h; = 37y %v;, (7.66)
j=1,2,...,t. The covariance matrix of the canonical variates scores,
¢ =agx, w®=H"Y, (7.67)
is given by
cov{6®,w®} = cov{(£7,w®7)T} = (ﬁ ?) L)
t
where
X0 ... 0
0 A ... 0
A= . o 1, (7.69)
0 0 ... X2

and the correlation matrix is
T T\T I A1/2
corr{¢", w"} = corr{(¢"7, w77} = <Af/2 I, ) - (170)

If we set p; = Aj, j = 1,2,...,t, then, (7.68) shows us that
o corr{&;, &} = 0jk, Gk =1,2,.. ¢,

o corr{{;,wp} = pidjr, jk=1,2,...,t,

o corr{wj,wi} =k, J,k=1,2,...,1,

where §;1 is the Kronecker delta (i.e., 6;; = 1,0, = 0,7 # k).

We can, therefore, view the coefficients, {g;;} and {h;;}, of the linear
combinations (7.51) as being chosen in the following sequential manner.
The first pair (£1,w1) has the largest possible correlation p; among all
such linear combinations of X and Y. The second pair, (£2,ws), has the
largest possible correlation py among all linear combinations of X and Y
in which & is uncorrelated with & and ws is uncorrelated with w;. The
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Jth pair, (§;,w;), has the largest possible correlation p; among all linear
combinations of X and Y in which &; is uncorrelated with &, &2,...,&—1
and w; is uncorrelated with wj,wa,...,w;—1. See Exercise 7.1. It follows
that

1>p1>pa>p3>-->p > 0. (7.71)

The pairs of canonical variates, (§;,w;), j = 1,2,...,t, are usually ar-
ranged in computer output in the form of two groups, &,&s,...,& and
wi,wa, .. .,ws. The correlation, p;, between &; and w; is called the canoni-
cal correlation coefficient associated with the jth pair of canonical variates,
i=1,2,....

7.3.4  Relationship of CVA to RRR

Compare the expressions (7.60), (7.61), and (7.62) with those of the
reduced-rank regression solutions, (6.86), (6.87), and (6.88).

When T' = 373, the matrices B® in (6.88) and G®) in (7.61) are
identical. Furthermore, the matrices A®*) in (6.87) and H® in (7.62) are
related by

HOAOH® —H®, AOHOAWG = A®), (7.72)

Thus, A® is a g-inverse of HY), and vice versa. That is,
HY = A, (7.73)
Thus, in a least-squares sense,
AD"Y ~ AW, ® L BOX, (7.74)
When t = s, two further relations hold,
(A(S)H(S))T = AGHO), (H(S)A(S))T —H®AG (7.75)

Hence, in the full-rank case only, H(®) = A(®)* the unique Moore Penrose
generalized inverse of A(*) (see Section 3.2.7). Also, v(®) = A+ (s),
Computationally, the CVA solution, v, G®) and H®) | can be obtained
directly from the RRR solution, u*), A® and B(*) (and, of course, vice
versa).

This relationship allows us to carry out a CVA using reduced-rank regres-
sion (RRR) routines. Moreover, the number ¢ of pairs of canonical variates
with nonzero canonical correlations is equal to the rank ¢ of the regres-
sion coefficient matrix C. This is a very important point. We have shown
that the pairs of canonical variates can be computed using a multivariate
RRR routine. Instead of having an isolated methodology for dealing with
two sets of correlated variables (as Hotelling developed), we can incorpo-
rate canonical variate analysis as an integral part of multivariate regression
methodology.
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The reduced-rank regression coefficient matrix corresponding to CVA is
given by

1/2
C(CE)VA =Xy / ZV] YY 2YXEXX> (7.76)

where v; is the eigenvector associated with the jth largest eigenvalue A; of
R.

Because the (s x s)-matrix R plays such a major role in CVA, the fol-
lowing special cases may aid in its interpretation.

e When s = 1, R reduces to the squared multiple correlation coefficient
(also called the population coefficient of determination) of Y with the
best linear predictor of Y using X1, Xo,..., X,

ol I o
R=px..x, = 25— = (7.77)
s X o2

where 0%, is the variance of Y and o xy is the r-vector of covariances

of Y with X.
e When r = s = 1, R is the squared correlation coefficient between Y
and X,
o2
R=p"= 32, (7.78)
%oy

where 0% and o2 are the variances of X and Y, respectively, and
oxy is the covariance between X and Y.

The jth canonical correlation coeflicient, p;, can, therefore, be inter-
preted as the multiple correlation coeflicient of either §; with Y or w; with
X. Using a multiple regression analogy, we can interpret p; either as that
proportion of the variance of §; that is attributable to its linear regression
on Y or as that proportion of the variance of w; that is attributable to its
linear regression on X.

7.3.5 CVA as a Correlation-Mazximization Technique

Hotelling’s approach to CVA maximized correlations between linear com-
binations of X and of Y. Consider, again, the arbitrary linear projections
£ =g"™X and w = h™Y, where, for the sake of convenience and with no
loss of generality, we assume that E(X) = py = 0 and E(Y) = py = 0.
Then, both ¢ and w have zero means. We further assume that they both
have unit variances; that is, g"73yxg =1 and h"3yyh = 1.

The first step is to find the vectors g and h such that the random variables
¢ and w have maximal correlation,

corr(§,w) = g"Xxvh, (7.79)
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among all such linear functions of X and Y. To find g and h to maximize
(7.79), we set

1 1
f(g.h) =g Bxvh - SA(g"Exxg — 1) — gu(h"Eyyh — 1), (7.80)

where A and p are Lagrangian multipliers. Differentiate f(g, h) with respect
to g and h, and then set both partial derivatives equal to zero:

of

— =Xxyh-—- X =0 7.81

g XY XXg ) ( )

af

2 -3 — uXyyh=0. 7.82

oh YX8 — plyy (7.82)
Multiplying (7.81) on the left by g™ and (7.82) on the left by h™, we obtain

g’ ¥xyh—Ag"¥xxg =0, (7.83)

h'¥yxg — ph™Eyyh =0, (7.84)
respectively, whence, the correlation between ¢ and w satisfies

g ¥xyh=X\=p. (7.85)

Rearranging terms in (7.83), and then substituting A for u into (7.84), we
get that

—Axxg+XZxyh = 0, (786)
nygf)\zyyh = 0. (787)

Premultiplying (7.86) by Ty x X, then substituting (7.87) into the re-
sult, and rearranging terms gives

(EyxZ5Exy — MEyy)h = 0. (7.88)
which is equivalent to
(Z Sy x B Bxy 5517 — A2I)h = 0. (7.89)

For there to be a nontrivial solution to this equation, the following deter-
minant has to be zero:

12 Sy x B Exy 5517 — AL = 0. (7.90)

It can be shown that the determinant in (7.90) is a polynomial in A? of
degree s, having s real roots, A > A2 > ... > A2 > 0, say, which are the
ordered eigenvalues of

—1/2 - —1/2
R=3,1/"Sy xS Sxy 5y (7.91)
with associated eigenvectors vi,va,...,vs. The maximal correlation be-

tween £ and w would, therefore, be achieved if we took A = A1, the largest
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eigenvalue of R. The resultant choice of coefficients g and h of ¢ and w,
respectively, are given by the vectors

g1 =S Sxy 2y v, hy =501 vy (7.92)
compare with (7.65) and (7.66). In other words, the first pair of canonical
variates is given by (&1,w1), where & = g7 X and w; = h]Y, and their
correlation is corr(§,w1) = g7 X xyhy = A,

Given (§1,w1), let £ = g"X and w = h™Y denote a second pair of ar-
bitrary linear projections with unit variances. We require (§,w) to have
maximal correlation among all such linear combinations of X and Y, re-
spectively, which are also uncorrelated with (§1,w1). This last condition
translates into g"Xxxg1 = h™Xyyh; = 0. Furthermore, by (7.86) and
(7.87), we require

corr(§,wi) =g Vxyh; = \g"Exxg1 =0, (7.93)
corr(w, &) =h™3y xg1 = A h™Xyyh; =0. (7.94)
We choose g and h to maximize (7.79) subject to the above conditions. Set
1 1
f(g.;h) = g'¥xyh-— §>\(gTszg -1)- §M(hTEYYh -1)
+ng"X¥xxg1 +vh"Eyvyhy, (7.95)

where A, u,n, and v are Lagrangian multipliers. Differentiate f(g,h) with
respect to g and h, and then set both partial derivatives equal to zero:

of

g Yxvh-AExxg+nExxg: =0, (7.96)
of
8_h =3Yyxg— puXyyh+vEyyh; =0. (797)

Multiplying (7.96) on the left by g7 and (7.97) on the left by h™, and
taking note of (7.93) and (7.94), these equations reduce to (7.86) and (7.87),
respectively. We, therefore, take the second pair of canonical variates to be
(2, w2), where

g = S Sxy 2y ve, hy = 301 v, (7.98)

and their correlation is corr(&s,ws) = g7 X xyha = A,

We continue this sequential procedure, deriving eigenvalues and eigen-
vectors, until no further solutions can be found. This gives us sets of co-
efficients for the pairs of canonical variates, (£1,w1), (§2,w2), ..., (&, wk),
k = min(r, s), where the ith pair of canonical variates (;,w;) is obtained
by choosing the coefficients g; and h; such that (§;,w;) has the largest cor-
relation among all pairs of linear combinations of X and Y that are also
uncorrelated with all previously derived pairs, (§;,w;),j =1,2,...,i— 1.
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7.3.6  Sample Estimates

Given a set of data, (x],y7)7, ¢ = 1,2,...,n, observed on (X7, Y")7,
i1=1,2,...,n, we estimate G and H by

VT ]
GO =| : |/ Sk = ¢ |28 (7.99)
vy Ay
vi
HO = [ | =)/ (7.100)
vi

respectively, where U, is the eigenvector associated with the jth largest
eigenvalue )\? of the (r x r) symmetric matrix

R* = /S5 8k (7.101)
j =1,2,...,t, and v, is the eigenvector associated with the jth largest
eigenvalue A2 of the (s x s) symmetric matrix

R = S,/ xS 4SS/ (7.102)

j =1,2,...,t. The jth row of £ = G®X and the jth row of @ = HOY
together form the jth pair of sample canonical variates (§;,0;),

& =g/X, & =h7Y, (7.103)
with values (or canonical variate scores) of
§j=8x; Wy=hly, i=12...,n, (7.104)

where

~

gl = VIS Sy xSk = Lal Y (7.105)

is the jth row of G = G® and

bl =vis,y/? (7.106)
is the jth row of H=H®. The sample canonical correlation coefficient for
the jth pair of sample canonical variates, (§;,W;), is given by
- g S xyh,
Gi=N = SZXY i qa 4 (7.107)
(8] Xxx8;)"/?(h] Xyyh;)!/?

It is usually hoped that the first ¢ pairs of sample canonical variates will
be the most important, exhibiting a major proportion of the correlation
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present in the data, whereas the remainder can be neglected without losing
too much information concerning the correlational structure of the data.
Thus, only those pairs of canonical variates with high canonical correlations
should be retained for further analysis.

An estimator of the rank-t regression coefficient matrix corresponding to
the canonical variates case is given by

cW =3s/2 ZAAT NETAs S35 Sl (7.108)

where V; is the eigenvector associated with the jth largest eigenvalue of

R, j=1,2,...;s. When X and Y are jointly Gaussian, the asymptotic
distribution of C® in (7.108) is available (Izenman, 1975).

The exact distribution of the sample canonical correlations when X and
Y are jointly Gaussian and some of the population canonical correlations
are nonzero is extremely complicated, having the form of a hypergeometric
function of two matrix arguments (Constantine, 1963; James, 1964). In the
null case, when X and Y are independent and all the population canonical
correlations are zero, the exact density of the squares of the nonzero sample
canonical correlations is given by

S

p(x1,. .. 1) = Cr.s,n r[[w(%‘j)]l/2 H(JL‘J — k), (7.109)

Jj=1 i<k

where the ©1,> a9 > .-+ > x, are the ordered eigenvalues of R, w(x) =
2775711 — 2)"7 77571 is the weight function corresponding to the Jacobi
family of orthogonal polynomials, and ¢, s, is a normalization constant
depending upon r, s, and n. For details, see, for example, Anderson (1984,
Section 13.4). The second product in (7.109) is the Jacobian, also known as
the Vandermonde determinant (Johnstone, 2006). Asymptotic distribution
results are also available when the first ¢ canonical correlations are positive,
smaller than unity, and distinct.

7.3.7 Invariance

Unlike principal component analysis, canonical correlations are invari-
ant under simultaneous nonsingular linear transformation of the random
vectors X and Y. Suppose we consider linear transformations of X and Y:

X —-DX, Y= FY, (7.110)

where the (r X r)-matrix D and the (s x s)-matrix F are nonsingular. Then,
the canonical correlations of DX and FY are identical to those of X and
Y. See Exercise 7.11. A consequence of this result is that a CVA using the
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covariance matrix will yield the same canonical correlations as a CVA using
the corresponding correlation matrix.

7.8.8 How Many Pairs of Canonical Variates to Retain?

Because the question of how many pairs of canonical variates to retain is
equivalent to determining the rank ¢ of the regression coefficient matrix C®)
in a reduced-rank regression for CVA, we approach this problem as a rank-
determination problem. Although X and Y are treated symmetrically in
CVA, the RRR formulation turns CVA into a supervised learning technique.
Prediction error can be used as a measure of how good X is in predicting
Y using cross-validation. In the case of the rank trace, no reductions of the
expressions for the coordinates of the plotted points can be obtained for
the CV case as we were able to do for the PC case. The CV rank trace can
have points plotted on the exterior to the unit square, and the sequence of
points may not be monotonically decreasing; we can, however, introduce
a regularization parameter into the rank-trace computations to keep the
plotted points within the unit square.

7.4 Projection Pursuit

Projection pursuit (PP) was motivated by the desire to discover “inter-
esting” low-dimensional (typically, one- or two-dimensional) linear projec-
tions of high-dimensional data (Friedman and Tukey, 1974). The Gaussian
distribution, which has always occupied a central place in statistical the-
ory and application, turns out to be “least interesting” when dealing with
low-dimensional projections of multivariate data. This is due to the fact
that each of the marginals of a multivariate Gaussian distribution is Gaus-
sian and that most low-dimensional projections of high-dimensional data
look approximately Gaussian-distributed (Diaconis and Freedman, 1984).
We should, therefore, not expect to see unusual patterns or structure in
low-dimensional projections of highly multivariate data.

PP was originally driven by the desire to expose specific non-Gaussian
features (variously referred to as “local concentration,” “clusters of distinct
groups,” “clumpiness,” or “clottedness”) of the data. An exhaustive search
for such features is clearly impossible, and so the search was automated.
Indexes of interestingness were created and optimized numerically in an
attempt to imitate how users instinctively (by eye) choose interesting pro-
jections. This formulation was later replaced by a search for projections

that are as far from Gaussianity as possible.

The general strategy behind PP consists of the following two-step pro-
cess:
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1. Set up a projection index Z to judge the merit of a particular one-
or two-dimensional (or sometimes three-dimensional) projection of a
given set of multivariate data.

2. Use an optimization algorithm to find the global and local extrema of
that projection index over all m-dimensional projections of the data
(m=1,2o0r3).

For a given m, the optimization step determines the most informative m-
dimensional projection of the data. A graphical display of the projections
is the output of choice in practice.

7.4.1 Projection Indexes

Huber (1985) argues that projection indexes should be chosen to possess
certain computational and analytical properties, especially that of affine
invariance (location and scale invariance). Examples of affine invariant in-
dexes include absolute cumulants (e.g., skewness and kurtosis), and Shan-
non negative entropy (negentropy), both of which are nonnegative in gen-
eral, but are equal to zero if the underlying distribution is Gaussian. If,
however, the data are centered and sphered (having mean zero and covari-
ance matrix the identity), then there is no reason to require affine invari-
ance of the projection index because every projection of the sphered data
inherits its properties (i.e., also has mean zero and covariance matrix the
identity).

A special case of PP occurs when the projection index is the variance,
var(Y) = w3 x xw, of the unit-length projection ¥ = w”X. In this case,
maximizing the variance with respect to w reduces PP to PCA, and the
resulting projections are the leading principal components of X. Bolton
and Krzanowski (1999) show that maximizing the variance is equivalent to
minimizing the corresponding Gaussian log-likelihood; in other words, the
projection is most interesting (in a variance sense) when X is least likely
to be Gaussian.

Cumulant-Based Index

The absolute value of kurtosis, |x4(Y")|, of the one-dimensional projection
Y = w”X has been widely used as a measure of non-Gaussianity of Y. It
has value zero for a Gaussian variable and is positive for a non-Gaussian
variable. An unbiased estimate of k4(Y) is given by the so-called k-statistic
k4 (see, e.g., Kendall and Stuart, 1969, p. 280). Although x4(Y") is affine
invariant and fast to compute, it is not robust, and outliers can have a
pretty drastic effect on estimates of |k4(Y)].
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In fact, maximizing or minimizing the kurtosis, x4(Y), of projected data
Y with respect to direction w has been advocated as a way of detecting
multivariate outliers (Gnanadesikan and Kettenring, 1972; Penia and Prieto,
2001). A maximal value of kurtosis would result from a small, concentrated
amount of outlier contamination, whereas a minimal value of kurtosis would
be due to a large amount of contamination.

Polynomial-Based Indezes

Let Y = w™X denote a continuous random variable having probabil-
ity density function py (y). Polynomial-based projection indexes take the
general form of weighted versions of integrated squared error,

7(v) = / [6() — by (9)]Pw(y)dy, (7.111)

where w(y) is a given weight function on . Examples of w(y) include
w(y) = 1/¢(y), 1, and ¢(y), where ¢(y) is the standard Gaussian density
with zero mean and unit variance.

Now, Y is standard Gaussian with density ¢(y) iff U = 2@(Y) — 1 is

uniformly distributed on the interval [—1,1], where ®(Y) = ffoo o(y)dy
(see Exercise 7.12). Hence, the integrated squared error between the density
of U, py(u), say, and the uniform density,

1

IF(Y):/ [pU(u)—%]Qdu:/ oo (u)]2du — 1 | (7.112)

—1 —1

can be used as a projection index (Friedman, 1987). The idea is that the
further py(w) is from the uniform density, the further ¥ would be from
Gaussianity. It turns out that this index, if transformed back to the orig-
inal scale, can be reexpressed as (7.111) with w(y) = 1/¢(y), assuming
py (y)/]o(y)]*/? is square-integrable. For heavy-tailed py (y), Zr(Y) can be
infinite, and so will not be very useful as a projection index. It can be
shown that Zp(Y") can be approximated by

Ip(Y) ~ ['%g)]Q + [“4538/)]2 : (7.113)

which is the moment-based projection index of Jones and Sibson (1987).

Interestingly enough, it turns out that outliers in projected data are not
unusual. In simulation experiments using a moment-based index similar
to (7.113) (see Friedman and Johnstone’s discussions of Jones and Sibson,
1987), outliers were observed to appear repeatedly in projections of even
well-behaved multivariate Gaussian data. Furthermore, there is no obvious
way to robustify (7.113).
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Another possibility is to take w(y) = 1 in Z(Y) (Hall, 1989). It is not
difficult to show that Hall’s index, Zy(Y'), can be approximated by

(V) oc (B{o(Y)} — E{¢(2)})*, (7.114)

where Z is standard Gaussian and E{¢(Z)} = (27'/2)~'. Hall’s index (and
its two-dimensional analogue) appears to identify projections of the data
that have a “hole” in their center (Cook, Buja, Cabrera, and Hurley, 1995).

Taking w(y) = ¢(y) in Z(Y) puts more weight around the center of
the distribution, rather than at the tails (Cook, Buja, and Cabrera, 1993).
It can be shown that Zepc(Y') can also be approximated by (7.114). We
shall see a generalized form of (7.114) again when we discuss independent
component analysis.

Two-dimensional projection indexes are generally built by simple exten-
sions of their one-dimensional versions. Suppose X has been centered and
sphered as before. Let Y = (Y7,Y2)™ be a bivariate projection of X, where
Y) = wiX and Y = wiX. We want to find w; and wy so that Y7 and Y5 are
uncorrelated (i.e., w]wy = 0) and that the joint distribution, py (y1,y2), of
(Yl7 Yg) has some interesting structure. Furthermore, we require the pro-
jections to have equal variances (i.e., wiw; = wlwy = 1). In this case,
the bivariate Gaussian density, ¢(y1,y2), is deemed the least-interesting
two-dimensional structure.

Shannon Negentropy

The entropy of a random variable, which was introduced by Claude
E. Shannon in 1948, has become a valuable concept in information the-
ory. The entropy of the random variable Y gives us a notion of how much
information is contained in Y. Essentially, entropy is largest when Y has
greatest variance (i.e., when Y is most unpredictable). If ¥ is a contin-
uous random variable with probability density function py (y), then the
(differential) entropy H(Y') of Y is defined by

H(Y) = —/py(y) log py (y)dy. (7.115)

Amongst all random variables having equal variance, the largest value of
H(Y') occurs when Y has a Gaussian distribution (Rao, 1965, p. 132). Small
values of H(Y") occur when the distribution of Y is concentrated on specific
values. Huber (1985) had the idea of using differential entropy as a measure
of non-Gaussianity and, hence, as a projection index.

If we normalize H(Y") so that it has the value zero for a Gaussian variable
and otherwise is always nonnegative, we arrive at negentropy defined by

J(Y) =H(Z) - H(Y), (7.116)
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where Z is a Gaussian random variable having the same variance as Y. If
Z ~ N(0,1), it is easy to show that #(Z) = $[1 + log 2] ~ 1.419. Jones
and Sibson (1987) derive an efficient projection index based upon J(Y).

7.4.2  Optimizing the Projection Index

Given a projection index, the next step is to optimize that index, if pos-
sible using an algorithm with high speed and low memory requirements.
Researchers have preferred different types of optimizing algorithms, includ-
ing steepest ascent and genetic algorithms. In fact, projection indexes are
notorious for getting trapped in numerous local maxima. Getting trapped
repeatedly in suboptimal local maxima can delay convergence to the global
maximum. It is important, therefore, to use a numerical optimizer that has
the ability to avoid such local maxima.

7.5 Visualizing Projections Using Dynamic
Graphics

Graphical methods are vital tools for exploring multivariate data. Most
statistical graphics methods in common use today can be classified as static
graphics, such as scatterplots, scatterplot matrices, and displays of projec-
tion pursuit results. Additional details from static displays can be visualized
by using a range of colors or different shapes, characters, or symbols for
various levels or characteristics of the data.

Innovative and more informative dynamic graphics were devised by John
W. Tukey during the early 1970s for visually searching for low-dimensional
structure within multivariate data. Such searches were enhanced by the
development of custom-designed computer hardware and software (PRIM-
9) to carry out the operations of picturing (“an ability to look at data
from several different directions in multidimensional space”), rotation (“at
a minimum, the ability to turn the data so that it can be viewed from any
direction that is chosen”), isolation (“the ability to select any subsample
of the data points for consideration”), and masking (“the ability to select
suitable subregions of the multidimensional space for consideration”) in up
to 9 dimensions (Fisherkeller, Friedman, and Tukey, 1974).

The graphical data analysis concepts embedded in PRIM-9 have been
upgraded and enhanced by the XGoB1/GGOBI data visualization system
(Swayne, Cook, and Buja, 1998; Cook, Buja, Cabrera, and Hurley, 1995).
Examples of the types of dynamic graphics included in the XGoBr/GGOBI
system are

e The grand tour (Asimov, 1985) of data recorded on an r-dimensional
set of variables, X, seeks to generate a continuous sequence of low-
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dimensional projections of the X-data, where projections are visual-
ized in one, two, or three dimensions and are designed to be repre-
sentative of all possible projections of the data.

e The correlation tour of data recorded on two nonoverlapping sets of
variables, an r-dimensional set X and an s-dimensional set Y, seeks
to generate a continuous sequence of one-dimensional projections of
the X-data and of the Y-data in order to display the amount of
correlation in those projections.

The grand tour can be regarded as a dynamic version of PCA and the cor-
relation tour as a dynamic version of CVA. The main problem is the huge
number of potentially interesting projections. Some guidance is, therefore,
needed. For both tours, “interesting” projections can be automatically se-
lected by optimizing one of the objective functions associated with projec-
tion pursuit methods. The objective functions discussed above are included
in a menu of indexes in the XGoB1/GGOBI system.

7.6 Software Packages

PCA isincluded in R, S-PLus, SAS, SPSS, MATLAB, and MINITAB. CVA
(or CCA) is usually confused with linear discriminant analysis (see, e.g.,
Venables and Ripley, 2002, p. 332), which is a special case of CVA (see
Chapter 8). CVA — in the sense of this chapter — is not included in most
major software packages.

PCA and CVA are included as special cases of multivariate reduced-rank
regression in the RRR+MULTANL package, which can be downloaded from
the book’s website. Versions of this package are available for use with R,
S-PLuUs, and MATLAB.

Bibliographical Notes

Classical descriptions of PCA and CVA can be found in any text on
multivariate analysis; in particular, we recommend Anderson (1984, Chap-
ters 11 and 12) and Seber (1984, Chapter 5) for theoretical treatments and
Gnanadesikan (1977, Chapters 2 and 3) and Lattin, Carroll, and Green
(2003, Chapters 4 and 9) for applied viewpoints. Detailed treatments of
PCA can be found in Jackson (2003) and Jolliffe (1986). The relationships
between multivariate reduced-rank regression and PCA and CVA can be
found in Izenman (1975).

The original concept of projection pursuit was formulated by Kruskal
(1969, 1972), but it was Friedman and Tukey (1974) who gave it the catchy
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name. The development of PP was based upon the experience (and frus-
trations) of working with an interactive computer graphics program called
PRIM-9 (Fisherkeller, Friedman, and Tukey, 1974), which was the first pro-
gram to use operations such as picturing, rotation, isolation, and masking
for visually exploring multivariate data in up to 9 dimensions. The high-
point of PRIM-9 was a 25-minute movie taken in 1974 of Tukey analyzing
high-dimensional particle physics data. Friedman and Stuetzle (2002) give
an historical account of the origins and development of PRIM-9 and PP.
The XGoBI/GGOBI computer graphics programs are the improved and
enhanced descendants of PRIM-9. PP has recently been rediscovered by
researchers in independent component analysis (see Chapter 15).

Exercises

7.1 Generate a random sample of size n = 100 from a three-dimensional
(r = 3) Gaussian distribution, where one of the variables has very high
variance (relative to the other two). Carry out PCA on these data using
the covariance matrix and the correlation matrix. In each case, find the
eigenvalues and eigenvectors, draw the scree plot, compute the PC scores,
and plot all pairwise PC scores in a matrix plot. Compare results.

7.2 Carry out a RRR on the data from Exercise 7.1 using the PCA for-
mulation (i.e., Y = X, I' = I,.). Compute the rank trace and determine
the number of principal components to retain. Compare results with those
of Exercise 7.1.

7.3 In the file turtles.txt, there are three variables, length, width, and
height, of the carapaces of 48 painted turtles, 24 female and 24 male. Take
logarithms of all three variables. Estimate the mean vector and covariance
matrix of the male turtles and of the female turtles separately. Find the
eigenvalues and eigenvectors of each estimated covariance matrix and carry
out a PCA of each data set. Find an expression for the volume of a turtle
carapace for males and for females. (Hint: use the fact that the variables
are logarithms of the original measurements.) Compare volumes of male
and female carapaces.

7.4 1In the pen-based handwritten digit recognition (pendigits) exam-
ple of Section 7.2.1, compute the variance of each of the 16 variables and
show that they are very similar. Then, carry out PCA using the covari-
ance matrix. How many PCs explain 80% and 90% of the total variation
in the data? Display the first three PCs using pairwise scatterplots as in
Figure 7.1. Do you see any differences between a covariance-based and a
correlation-based PCA for this example?
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7.5 For the pendigits data, draw the scree plot and the rank trace plot.
How many PCs would you retain based upon each plot? Do you get the
same answer from both plots?

7.6 For the principal components case, show that the points in the PC
rank trace are given by (7.38) and (7.39).

7.7 The file SwissBankNotes. txt consists of six variables measured on 200
old Swiss 1,000-franc bank notes. The first 100 are genuine and the second
100 are counterfeit. The six variables are length of the bank note, height
of the bank note, measured on the left, height of the bank note, measured
on the right, distance of inner frame to the lower border, distance of inner
frame to the upper border, and length of the diagonal. Carry out a PCA
of the 100 genuine bank notes, of the 100 counterfeit bank notes, and of all
200 bank notes combined. Do you notice any differences in the results?

7.8 In Section 5.5, condition number and condition indices were discussed
as a means of detecting and identifying ill-conditioned data and collinearity
in regression problems. How would such measures help in PCA or CVA?
Compute these various statistics for the pendigits data.

7.9 Carry out a PCA of Fisher’s iris data. These data consist of 50
observations on each of three species of iris: Iris setosa, Iris versicolor, and
Iris virginica. The four measured variables are sepal length, sepal width,
petal length, and petal width. Ignore the species labels. Compute the PC
scores and plot all pairwise sets of PC scores in a matrix plot. Explain your
results, taking into consideration the species labels.

7.10 Consider an (r x r) correlation matrix with the same correlation,
p, say, in the off-diagonal entries. Find the eigenvalues and eigenvectors of
this matrix when r = 2, 3,4. Generalize your results to any r variables. As
examples, set p =0.1,0.3,0.5,0.7,0.9.

7.11 Show that the set of canonical variates is invariant under simultaneous
nonsingular linear transformations of the random vectors X and Y.

7.12 Let r = s = 2 and suppose the equicorrelation model holds for X
and Y. Then, Zxx = Syy = < [1) ’1’ ) and Sxy = ( Z Z > Find the
canonical correlations and the canonical variates. Generalize your results
to general 7 and s. Find the matrix R and the RRR solutions for ¢t =1, 2.

7.13 For the COMBO-17 galaxy data, compute a rank-2 multivariate RRR
of Y on X in which T = 2;%, for the CV situation. Compute the multi-
variate residuals from the regression, plot them in any way you regard as
interesting, and try to find the outliers mentioned in the example.
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7.14 Show that Y is standard Gaussian with density ¢(y) iff U = 2@(Y)—1
is uniformly distributed on the interval [—1, 1], where ®(Y') = ffoo o(y)dy.

7.15 Draw the density of the eigenvalues of a Wishart matrix, X X7 ~
Wi (n,1,), where r/n — v € (0,00), for v equal to 0.2, 0.5, 1, 4, 9, 16.
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Linear Discriminant Analysis

8.1 Introduction

Suppose we are given a learning set £ of multivariate observations (i.e.,
input values in R"), and suppose each observation is known to have come
from one of K predefined classes having similar characteristics. These classes
may be identified, for example, as species of plants, levels of credit wor-
thiness of customers, presence or absence of a specific medical condition,
different types of tumors, views on Internet censorship, or whether an e-
mail message is spam or non-spam. To distinguish the known classes from
each other, we associate a unique class label (or output value) with each
class; the observations are then described as labeled observations.

In each of these situations, there are two main goals:
Discrimination: Use the information in a learning set of labeled observa-

tions to construct a classifier (or classification rule) that will separate
the predefined classes as much as possible.

Classification: Given a set of measurements on a new unlabeled observa-
tion, use the classifier to predict the class of that observation.

A classifier is a combination of the input variables. In the machine learn-
ing literature, discrimination and classification are described as supervised

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 237
DOI 10.1007/978-0-387-78189-1_8, © Springer Science+Business Media New York 2013
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learning techniques; together, they are also referred to as tasks of class
prediction.

Whether these goals are at all achievable depends upon the information
provided by the input variables. When there are two classes (i.e., K = 2),
we need only one classifier, and when there are more than two classes, we
need at least two (and at most K — 1) classifiers to differentiate between
the classes and to predict the class of a future observation.

Consider the following medical diagnosis example. If a patient enters the
emergency room with severe stomach pains and symptoms consistent with
both food poisoning and appendicitis, a decision has to be made as to which
illness is more likely for that patient; only then can the patient be treated.
For this example, the problem is that the appropriate treatment for one
cause of illness is the opposite treatment for the other: appendicitis requires
surgery, whereas food poisoning does not, and an incorrect diagnosis could
lead to a fatal result. In light of the results from the clinical tests, the
physician has to decide upon a course of treatment to maximize the like-
lihood of success. If the combination of test results points in a particular
direction, surgery is recommended; otherwise, the physician recommends
a non-surgical treatment. A classifier is constructed from past experience
based upon the test results of previously treated patients (the learning
set). The more reliable the classifier, the greater the chance for a successful
diagnostic outcome for a future patient.

Similarly, a credit card company or a bank uses loan histories of past cus-
tomers to decide whether a new customer would be a good or bad credit
risk; a post office uses handwriting samples of a large number of individ-
uals to design an automated method for distinguishing between different
handwritten digits and letters; molecular biologists use gene expression
data to distinguish between known classes of tumors; political scientists
use frequencies of word usage to identify the authorship of different politi-
cal tracts; and a person who uses e-mail would certainly like to have a filter
that recognizes whether a message is spam or not.

In this chapter, we focus upon the most basic type of classifier: a linear
combination of the input variables. This problem has been of interest to
statisticians since R.A. Fisher introduced the linear discriminant function
(Fisher, 1936).

8.1.1 FExample: Wisconsin Diagnostic Breast Cancer Data

Breast cancer is the second largest cause of cancer deaths among women.
Three methods of diagnosing breast cancer are currently available: mam-
mography; fine needle aspirate (FNA) with visual interpretation; and sur-
gical biopsy. Although biopsies are the most accurate in distinguishing
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TABLE 8.1. Ten variables for the Wisconsin breast cancer study.

radius Radius of an individual nucleus

texture Variance of gray levels inside the boundary of the nucleus
peri Distance around the perimeter of the nucleus

area Area of the nucleus

smooth Smoothness of the contour of a nucleus as measured by the
local variation of radial segments

comp A measure of the compactness of a cell nucleus using the
formula (peri)?/area

scav Severity of concavities or indentations in a cell nucleus using a
size measurement that emphasizes small indentations

ncav Number of concave points or indentations in a cell nucleus

symt Symmetry of a cell nucleus

fracd Fractal dimension (of the boundary) of a cell

malignant lumps from benign ones, they are invasive, time consuming, and
costly.

A computer imaging system has recently been developed at the Uni-
versity of Wisconsin-Madison (Street, Wolberg, and Mangasarian, 1993;
Mangasarian, Street, and Wolberg, 1995) with the goal of developing a
procedure that diagnoses FNAs with very high accuracy. A small-gauge
needle is used to extract a fluid sample (i.e., FNA) from a patient’s breast
lump or mass (detected by self-examination and/or mammography); the
FNA is placed on a glass slide and stained to highlight the nuclei of the
constituent cells; an image from the FNA is transferred to a workstation
by a video camera mounted on a microscope; and the exact boundaries of
the nuclei are determined.

Ten variables of the nucleus of each cell are computed from fluid samples.
They are listed in Table 8.1. The variables are constructed so that larger
values would typically indicate a higher likelihood of malignancy. For each
image consisting of 10-40 nuclei, the mean value (mv), extreme value (i.e.,
largest or worst value, biggest size, most irregular shape) (ev), and standard
deviation (sd) of each of these cellular features are computed, resulting in
a total of 30 real-valued variables. The 30 variables are

(1) radius.mv, (2) texture.mv, (3) peri.mv, (4) area.nv, (5) smooth.mv,
(6) comp.mv, (7) scav.mv, (8) ncav.mv, (9) symt.mv, (10) fracd.mv, (11)
radius.sd, (12) texture.sd, (13) peri.sd, (14) area.sd, (15) smooth.sd,
(16) comp.sd, (17) scav.sd, (18) ncav.sd, (19) symt.sd, (20) fracd.sd,
(21) radius.ev, (22) texture.ev, (23) peri.ev, (24) area.ev, (25)
smooth.ev, (26) comp.ev, (27) scav.ev, (28) ncav.ev, (29) symt.ev, (30)
fracd.ev.
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Because all 30 variables consist of nonnegative measurements with skewed
histograms, we took natural logarithms of each variable before analyzing
the data. Data values of zero were replaced by the value 0.001 prior to
transforming. When we refer to variables in this example, we mean the
transformed variables.

The data set! consists of 569 cases (images), of which 212 were diagnosed
as malignant (confirmed by biopsy) and 357 as benign (confirmed by biopsy
or by subsequent periodic medical examinations). Many pairs of the 30
variables are highly correlated; for example, 19 correlations are between 0.8
and 0.9, and 25 correlations are greater than 0.9 (six of which are greater
than 0.99). The problem is how best to separate the malignant from the
benign lumps (without performing surgery); a secondary problem is how
to do this using as few variables as possible.

To discriminate between the benign and malignant lumps, a linear dis-
criminant function (LDF) can be derived by estimating the coefficients for
an optimal linear combination of the 30 input variables. From the resulting
LDF, we compute a score for each of the 569 tumors, and we then separate
the scores by group.

Histograms of the scores on the LDF for the benign (group 0) and ma-
lignant (group 1) tumors are displayed in the left panel of Figure 8.1, and
kernel density estimates of the scores of the two groups (group 0 is the
left curve and group 1 is the right curve) are displayed in the right panel.
We can see a certain amount of overlap in the distribution of the LDF of
the two groups, showing that perfect discrimination between benign and
malignant tumors cannot be attained using the LDF with these data.

8.2 C(lasses and Features

We assume that the population P is partitioned into K unordered classes,
groups, or subpopulations, which we denote by I, Ils, . .., IIx. Each item
in P is classified into one (and only one) of those classes. Measurements on
a sample of items are to be used to help assign future unclassified items to
one of the designated classes. The random r-vector X, given by

X = (X1, -, X)), (8.1)

represents the r measurements on an item (i.e., X € R"). The variables
X1, Xo,..., X, are likely to be chosen because of their suspected ability

'The original data can be found in the file wdbc at the book’s web-
site and in the file breast-cancer-wisconsin/wdbc.data at the website
http://www.ics.uci.edu/pub/machine-learning-databases/.
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FIGURE 8.1. Left panel: Histograms of the scores on the (first) linear
discriminant function of the wdbc data set. Upper panel shows the histogram
for the benign images (group 0) and the lower panel shows the histogram
for the malignant images (group 1). Right panel: Kernel density estimates
of the two sets of scores on the (first) linear discriminant function (LD1).

to distinguish between the K classes. The variables in (8.1) are called dis-
criminating or feature variables, and the vector X is the feature vector.

It may sometimes be appropriate to include in an analysis the additional
classes of IIp and Ilp to signify that decisions could not be made due to
either an element of doubt (D) in the assignment or indications that certain
items constitute outliers (O) and could not possibly belong to any of the
designated classes.

8.3 Binary Classification

Consider, first, the binary classification problem (K = 2) where we wish
to discriminate between two classes II; and Ily, such as the “malignant”
and “benign” tumors in the breast cancer example.

8.3.1 Bayes’s Rule Classifier

Let
PXelly)=m, i=1,2, (8.2)
be the prior probabilities that a randomly selected observation X = x

belongs to either I or Ils. Suppose also that the conditional multivariate
probability density of X for the ith class is

P(X =x|X €Il;) = fi(x), i=12. (8.3)

We note that there is no requirement that the {f;(-)} be continuous; they
could be discrete or be finite mixture distributions or even have singu-
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lar covariance matrices. From (8.2) and (8.3), Bayes’s theorem yields the
posterior probability,

Ji(x)m;

p(I|x) = P(X € I|X =x) = fi(x)m + f2(x)7r2’

(8.4)

that the observed x belongs to II;, i = 1, 2.
For a given x, a reasonable classification strategy is to assign x to

that class with the higher posterior probability. This strategy is called the
Bayes’s rule classifier. In other words, we assign x to Il if

p(ILi[x)
p(Ilzx)

and we assign x to IIy otherwise. The ratio p(II;|x)/p(Ilz|x) is referred to
as the “odds-ratio” that II; rather than Ily is the correct class given the
information in x. Substituting (8.4) into (8.5), the Bayes’s rule classifier
assigns x to Il if

> 1, (8.5)

filx) _ 2 ’
fa(x) © m
and to Iy otherwise. On the boundary {x € R"|f1(x)/f2(x) = ma/m1}, we

randomize (e.g., by tossing a fair coin) between assigning x to either II; or
1I,.

(8.6)

8.3.2  Gaussian Linear Discriminant Analysis

We now make the Bayes’s rule classifier more specific by following Fisher’s
(1936) assumption that both multivariate probability densities in (8.3) are
multivariate Gaussian (see Section 3.3.2) having arbitrary mean vectors and
a common covariance matrix. That is, we take f1(-) to be a V,.(u,, X1) den-
sity and fa(+) to be a N;(py, X2) density, and we make the homogeneity
assumption that 31 = 35 = Y xx.

The ratio of the two densities is given by

fi(x) _ exp{-g(x — ) Bk (x — p)}
f2(x) eXP{_%<X_N2)TE)_(1X(X_N2)}

; (8.7)

where the normalization factors (27)~"/2|X x x|~ /2 in both numerator and
denominator cancel due to the equal covariance matrices of both classes.
Taking logarithms (a monotonically increasing function) of (8.7), we have
that

g S = ()" 50— ) ) (89

2
= ( — 1) Bk (x — @), (8.9)
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where o = (pq + po)/2. The second term in the right-hand side of (8.8)
can be written as

(1 — 1) SN (1 + 1) = pTE XN my — p3E o (8.10)

It follows that

fix)m }
L(x)=1lo =by+b"x 8.11
() = tog, { 110974 1y (8.11)
is a linear function of x, where
b= 34 iy — ) (8.12)
1, S
bo = *g{ﬂllexﬂl - szxlxﬂz} + log, (w2 /m1). (8.13)

Thus, we assign x to II; if the logarithm of the ratio of the two posterior
probabilities is greater than zero; that is,

if L(x) > 0, assign x to II;. (8.14)

Otherwise, we assign x to IIs. Note that on the boundary {x € R"|L(x) =
0}, the resulting equation is linear in x and, therefore, defines a hyperplane
that divides the two classes. The rule (8.14) is generally referred to as
Gaussian linear discriminant analysis (LDA).

The part of the function L(x) in (8.11) that depends upon x,
U=b"x = (pt; — )" DX, (8.15)

is known as Fisher’s linear discriminant function (LDF). Fisher actually
derived the LDF using a nonparametric argument that involved no distri-
butional assumptions. He looked for that linear combination, a” X, of the
feature vector X that separated the two classes as much as possible. In
particular, he showed that a o E}lx(ul — py) maximized the squared dif-
ference of the two class means of a” X relative to the within-class variation
of that difference (see Exercise 8.3).

Total Misclassification Probability

The LDF partitions the feature space R" into disjoint classification re-
gions Ry and R,. If x falls into region Ry, it is classified as belonging to 11,
whereas if x falls into region Rg, it is classified into II;. We now calculate
the probability of misclassifying x.

Misclassification occurs either if x is assigned to I, but actually belongs
to Iy, or if x is assigned to II;, but actually belongs to II5. Define

A% = (py — ) B3 (1 — g) (8.16)
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to be the squared Mahalanobis distance between II; and Il. From (8.15),

E(UIX € ) = b7p1, = (1 — 1) Sxke s (8.17)
and
VaI‘(UlX S Hz) =b"Xxxb = AQ, (818)
for i = 1,2. The total misclassification probability is, therefore,
P(A)=P(X € Ry|X € II})m; + P(X € Ry|X € TIo)mo, (8.19)
where
PXeRy)X€ell;) = PLIX)<0Xell)
A 1 T2
= P(Z<5Z10geﬂ'—1)
A 1 )
= & <5 — Zlogeﬂ_—l) (820)
and
PXeR|X€ell;) = P(LIX)>0Xell)
A 1 T2
= P(Z>—— —log,—
( - 2 A OBe 7'('1)
A 1 T2
= & ——+ —log,.— . 21
(-5 +50e2) (8.21)

In calculating these probabilities, we use the fact that L(X) = by + U, and
then standardize U by setting

g U-EUXell)

var(U|X € IL;)

~N(0,1).

In (8.20) and (8.21), ®(-) is the cumulative standard Gaussian distribution
function. If 71 = my = 1/2, then

PXeRIXell;) =P(X e R|X elly) = P(—A/2),

and, hence, P(A) =20 (—A/2).

A graph of P(A) against A shows a downward-sloping curve, as one
would expect; it has the value 1 when A = 0 (i.e., the two populations
are identical) and tends to zero as A increases. In other words, the greater
the distance between the two population means, the less likely one is to
misclassify x.

Sampling Scenarios

Usually, the 2r + r(r + 1)/2 distinct parameters in g, po, and Exx will
be unknown, but can be estimated from learning data on X. Assume, then,
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we have a random sample, {X1;,7 = 1,2,...,n1} (with values {x1;,j =
1,2,...,n1}), taken from II; and an independent random sample, {Xs;,j =
1,2,...,no} (with values {x2;,7 = 1,2,...,n2}), taken from II5.

The following different scenarios are possible when sampling from popu-
lation P:

1. Conditional sampling, where a sample of fixed size n = ny + ny is
randomly selected from P, and at a fixed x there are n;(x) observations
from Il;, ¢ = 1,2. This sampling scenario often appears in bioassays.

2. Mizture sampling, where a sample of fixed size n = nj+mns is randomly
selected from P so that n; and ny are randomly selected. This is quite
common in discrimination studies.

3. Separate sampling, where a sample of fixed size n; is randomly selected
fromII;, i = 1,2, and n = nqy+ns. Overall, this is the most popular scenario.

In all three cases, ML estimates of by and b can be obtained (Anderson,
1982).

Sample Estimates

The ML estimates of p,;, © = 1,2, and X xx are

ﬁi:ii:nflzxiﬁ i=1,2, (8.22)
j=1
i:XX :TlilsXx, (823)
respectively, where

Sxx = Sng + S()?)Xy (8'24)

and "
ST = D0k —x)(xiy — %), =12, (8.25)

j=1

where n = nq + no. If we wish to compute an unbiased estimator of X x x,
we can divide Sx x in (8.24) by its degrees of freedom n — 2 = ny + ng — 2
(rather than by n) to make X xx.

The prior probabilities, m; and ms, may be known or can be closely
approximated in certain situations from past experience. If m; and 7o are
unknown, they can be estimated by

=0 i=1,2, (8.26)
respectively. Substituting these estimates into L(x) in (8.11) yields

L(x) =by + b'x, (8.27)
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where

o~ ~

b =34 (%1 —%2) (8.28)

1
2
are the ML estimates of b and by, respectively. The classification rule as-

signs x to Il if E(X) > 0, and assigns x to Ils otherwise.

The second term of E(x),

by = ——{X]E 5% — x5 L %) + loge% - loge% (8.29)

~

b'x = (%1 — %) B x, (8.30)

estimates Fisher’s LDF. For large samples (n; — oo, ¢ = 1,2), the distri-
bution of b is Gaussian (Wald, 1944). This result allows us to study the
separation of two given training samples, as well as the assumptions of
normality and covariance matrix homogeneity, by drawing a histogram or
normal probability plot of the LDF evaluated for every observation in the
training samples. Nonparametric density estimates of the LDF scores for
each class are especially useful in this regard; see, for example, Figure 8.1.

Ezample: Wisconsin Breast Cancer Data (Continued)

For the Wisconsin Diagnostic Breast Cancer Data, we estimate the priors
m and w2 by T = n1/n = 357/569 = 0.6274 and Ty = ny/n = 212/569 =
0.3726, respectively. The coefficients of the LDF are estimated by first
computing X1, X2, and the pooled covariance matrix X x x, and then using
(8.28). The results are given in Table 8.2.

The leave-one-out cross-validation (CV/n) procedure drops one obser-
vation from the data set, reestimates the LDF from the remaining n — 1
observations, and then classifies the omitted observation; the procedure is
repeated 569 times for each observation in the data set. The confusion table
for classifying the 569 observations is given in Table 8.3. In this table, the
row totals are the true classifications, and the column totals are the pre-
dicted classifications using Fisher’s LDF and leave-one-out cross-validation.

From Table 8.3, we see that LDA leads to too many malignant tumors
being misdiagnosed as “benign”: of the 212 malignant tumors, 192 are
correctly classified and 20 are not; and of the 357 benign tumors, 353 are
correctly classified and 4 are not. The misclassification rate for Fisher’s
LDF in this example is, therefore, estimated by CV/n as 24/569 = 0.042,
or 4.2%.

For comparison, the apparent error rate (i.e., the error rate obtained by
classifying each observation using the LDF, then dividing the number of
misclassified observations by n) is given by 19/569 = 0.033, or 3.3%, which
is clearly an overly optimistic estimate of the LDF misclassification rate.
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TABLE 8.2. Estimated coefficients of Fisher’s linear discriminant func-
tion for the Wisconsin diagnostic breast cancer data. All variables are log-
arithms of the original variables.

Variable Coeff. Variable  Coeff. Variable  Coeff.
radius.mv  —30.586 radius.sd —2.630 radius.ev 6.283
texture.mv —0.317 texture.sd —0.602 texture.ev 2.313
peri.mv 35.215 peri.sd 0.262 peri.ev  -3.176
area.mv —2.250 area.sd —3.176 area.ev  —1.913
smooth.mv 0.327 smooth.sd 0.139 smooth.ev 1.540
comp.mv -2.165 comp.sd —0.398 comp.ev 0.528
scav.mv 1.371 scav.sd 0.047 scav.ev —1.161
ncav.mv 0.509 ncav.sd 0.953 ncav.ev —0.947
symt .mv -1.223 symt.sd —0.530 symt.ev 2911

fracd.mv -3.585 fracd.sd -0.521 fracd.ev 4.168

8.3.83 LDA via Multiple Regression

The above results on LDA can also be obtained using multiple regression.
We create an indicator variable Y showing which observations fall into
which class, and then regress that Y on the feature vector X. Let

. y1 ifx elly
Y= { Y2 ifx e Hg (831)
be the class labels and let
Y =(nl}, iy2l},) (8.32)

be the (1 x n) row vector whose components are the values of Y for all n
observations. Let

X= (X X) (8.33)
be an (r X n)-matrix, where X} = (X11, -, X1,n, ) is the (r X n1)-matrix of
observations from IIy and Xy = (Xa21, -, X2,n,) is the (7 X ng)-matrix of

observations from II5.

TABLE 8.3. Confusion table for the Wisconsin Diagnostic Breast Cancer
Data. Row totals are the true classifications and column totals are predicted
classifications using leave-one-out cross-validation.

Predicted  Predicted
benign malignant Row total
True benign 353 4 357
True malignant 20 192 212
Column total 373 196 569
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Let B
X.=X-X=4XH, (8.34)
Ve=Y—-Y=VH,, (8.35)

where H,, = I,, — n=1J,, is the “centering matrix” and J, = 1,17 is an
(n X m)-matrix of ones.

If we regress the row vector ). on the matrix X, the OLS estimator of
the multiple regression coefficient vector 3 is given by

BT = VX (X X])7 (8.36)

We have the following cross-product matrices:

X XT =Sxx + kdd", (8.37)
VeXI =k(y1 — y2)d’, (8.38)
VeVI = k(yr — y2)?, (8.39)
where
d=n'X11,, —n;'Al,, =% — X2, (8.40)
Sxx = MH,, X7 + X,H,, X7, (8.41)

and k = ning/n. See (8.23). Thus,

~

B" = k(y1 —y2)d"(Sxx +kdd”)™!
= Ky —y2)d" S (I + kdd"S )7L (8.42)

From the matrix result (3.4), setting A = I,, u = kd, and v™ = dTS)_(lx,
we have that

Ta—1
(I, + kdd"Syy) ™! = I.— M ,
1+ kd7Syd
whence,
-~ Elyr —y2) \ a_
B <n<27+T2 Sk, (8.43)

where EXX =Sxx/(n—2) and

ning , _ S

T? = kA3 d = (%1 — %2)TE L (X1 — %) (8.44)

is Hotelling’s T? statistic, which is used for testing the hypothesis that
Ky = My. Assuming multivariate normality,

n—r—1
——— | T? ~ Fppr 4
e (545)
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when this hypothesis is correct (see, e.g., Anderson, 1984, Section 5.3.4).

Note that D? = dTi}IXd is proportional to an estimate of A? (see
(8.16)). From (8.28) and (8.43), it follows that

~

Box L (% — %) =b. (8.46)

where the proportionality constant is nina(y1 — y2)/n(ny + ny — 2 + T?).
This fact was first noted by Fisher (1936). Thus, we can obtain Fisher’s
estimated LDF (8.28) (up to a constant of proportionality) through multiple
regression using an indicator response variable.

How should we choose the values y; and y,? Four different choices are
given in Table 8.4. In choosing the values of y; and y2, researchers were
initially concerned about ease of computation. The only part of 3 in (8.43)
that depends upon y; and y- is y1 — y2. Thus, Fisher wanted y1 — yo = 1
and Y = 0; Bishop wanted k(y; — y2) = n; Ripley wanted Y = 0 and
the total sum of squares n1y? + noys = n; and Lattin, Carroll, and Green
wanted V. X7 = d”. With the public availability of high-speed computers,
more simplistic choices are used, including (y1,y2) = (1,0) or (1, —1). For-
tunately, it does not matter which values of (y1,y2) we pick: these different
choices of (y1,y2) yield Bs that are proportional to each other.

Ezample: Wisconsin Diagnostic Breast Cancer Data (Continued)

When we regress Y (1 if the patient’s tumor is malignant and 0 otherwise)
on each of the 30 (log-transformed) variables one at a time, all but four of
the coefficients are declared to be significant. (A coefficient is “significant”
at the 5% level if its absolute ¢-ratio is greater than the value 2.0 and is
nonsignificant otherwise.)

At the other extreme, regressing Y on all 30 variables results in only
eight significant coefficients. Table 8.5 gives the multiple regression of Y on
the 30 (log-transformed) variables. The estimated coefficients in this table
are proportional to those given in Table 8.2 for the LDF. The ordered
magnitudes of the ratio of estimated coefficient to its estimated standard
error for all 30 variables is displayed in Figure 8.2.

Such conflicting behavior is probably due to high pairwise correlations
among the variables: 19 correlations are between 0.8 and 0.9, and 25 cor-
relations are greater than 0.9 (six of which are greater than 0.99).

8.3.4  Variable Selection

High-dimensional data often contain pairs of highly correlated variables,
which introduce collinearity into discrimination and classification problems.
So, variable selection becomes a priority. The connection between Fisher’s
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TABLE 8.4. Proposed values of (y1,yz2) for LDA via multiple regression.

Author(s) (y1,y2)

Fisher (1936) (n2/n, —n1/n)
Bishop (1995, p. 109) (n/n1, —n/n2)
Ripley (1996, p. 102) +(—(n2/n1)Y?2, (n1/n2)"/?)
Lattin et al (2003, p. 437) (1/n1,—1/n2)

LDF and multiple regression provides us with a vehicle for selecting im-
portant discriminating variables. Thus, the variable selection techniques of
FS and BE stepwise procedures, Cp, LARS, and Lasso can all be used in
the discrimination context as well as in regression; see Exercise 8.10.

8.3.5 Logistic Discrimination

We see from (8.11) and the fact that p(Ilz|x) = 1 — p(II;]x) at X = x,
that the posterior probability density satisfies

p(IL %)

logit p(I; [x) = log, (W

) = Po + B7x, (8.47)

which has the form of a logistic regression model. The logistic approach to
discrimination assumes that the log-likelihood ratio (8.11) can be modeled
as a linear function of x. Inverting the relationship (8.47), we have that

eL(x)
p(H1|X) = 1+ el (848)
II = L 8.49
p(Il2[x) = 1+ el (8.49)
where

L(x) =P+ B"x. (8.50)

We can write (8.48) as
I = L =o(L 8.51
»( 1|X)—m—0( (x)). (8.51)

say, where o(u) = 1/(1+e ") in (8.51) is a sigmoid function (“S-shaped”)
(see Figure 8.3), taking values of u € R onto (0, 1).

Maximum-Likelihood Estimates

In light of (8.50), we now write p(II1]x) as p1(x, 5o, 3), and similarly for
p2(x, Bo, B). Thus, instead of first estimating p,, p,, and X xx as we did
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TABLE 8.5. Multiple regression results for linear discriminant analysis on
the Wisconsin diagnostic breast cancer data. All variables are logarithms of
the original variables. Y is taken to be 1 if the patient’s tumor is malig-
nant and 0 if benign. Listed are the estimated regression coefficients, their
respective estimated standard errors, and the Z-ratio of those two values.
The multiple R? is 0.777 and the F-statistic is 62.43 on 30 and 538 degrees
of freedom.

Coeftf. S.E. Ratio

(Intercept) —14.348 3.628 —-3.955
radius.mv —6.168  2.940 —2.098
texture.mv —-0.064 0.217 -0.294
peri.mv 7.102  2.385 2.978
area.mv -0.454 1.654 —0.274
smooth.mv 0.066 0.233 0.284
comp . mv -0.437 0.162 -2.690
scav.mv 0.277 0.104 2.669
ncav.mv 0.103  0.094 1.096
symt .mv -0.247  0.167 -1.473
fracd.mv —0.723 0.353 —2.047
radius.sd —-0.530 0.277 -1.915
texture.sd -0.122  0.080 —1.527
peri.sd 0.053 0.131 0.405
area.sd 0.691 0.271 2.555
smooth.sd 0.028 0.074 0.377
comp.sd  —-0.080 0.100 —0.800
scav.sd 0.010  0.096 0.100
ncav.sd 0.192  0.098 1.970
symt.sd  -0.107 0.085 —1.255
fracd.sd —-0.105 0.069 -1.516
radius.ev 1.267 1.922 0.659
texture.ev 0.467 0.283 1.647
peri.ev -0.641 0.800 -0.801
area.ev -0.386 1.012 -0.381
smooth.ev 0.311  0.259 1.200
comp.ev 0.106 0.173 0.617
scav.ev -0.234 0.135 -1.730
ncav.ev -0.191 0.126 —-1.517
symt.ev 0.587  0.209 2.816
fracd.ev 0.841 0.255 3.292
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fracd.ev
peri.mv
symt.ev
comp.mv
scav.mv
area.sd
radius.mv
fracd.mv
ncav.sd
radius.sd
scav.ev
texture.ev
texture.sd
ncav.ev
fracd.sd
symt.mv
symt.sd
smooth.ev
ncav.mv
peri.ev
comp.sd
radius.ev
comp.ev
peri.sd
area.ev
smooth.sd
texture.mv
smooth.mv
area.mv
scav.sd

[ T T T
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FIGURE 8.2. Multiple regression results for linear discriminant analysis
on the Wisconsin diagnostic breast cancer data. All input variables are
logarithms of the original variables. Listed are the variable names on the
vertical axis and the absolute value of the t-ratio for each variable on the
horizontal axis. The variables are listed in descending order of their absolute
t-ratios.

in (8.24) and (8.25) in order to estimate By and the coefficient vector 3, we
can estimate Sy and B directly through (8.47).

We define a response variable Y that identifies the population to which

X = x belongs,
_ 1 ifxelly
Y= { 0 otherwise. (8.52)
The values of Y are the class labels. Conditional on X, the Bernoulli random
variable Y has P(Y = 1) = m; and P(Y = 0) = 1 — m; = ma. Thus, we
are interested in modeling binary data, and the usual way we do this is
through logistic regression.

Given n observations, (x;,v;),i =1,2,...,n, on (X,Y), the conditional
likelihood for (8o, 3) can be written as
L(B0,8) = [ [ (p1(xi. Bo, B))¥ (1 — pr(xs, o, B) ', (8.53)
i=1

whence, the conditional log-likelihood is

(B0, B) = Y _{yilog.pi(xi, B0, B) + (1 = yi)log, (1 — pi(xi, B, B))}

i=1
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FIGURE 8.3. Graph of o(u) = 1/(14+e™ "), the logistic sigmoid activation
function. For |u| small, o(u) is very close to linear.

{wi(B0+B7x:) — log, (1 + PPy} (8:54)

n
=1

7

ML estimates, (BO, B), of (Bp,3) are obtained by maximizing ¢(8y, 3) with
respect to By and (3. The maximization algorithm boils down to an iterative
version of a weighted least-squares procedure in which the weights and the
responses are updated at each iteration step. The details of the iteratively
reweighted least-squares algorithm are given below.

The maximum-likelihood estimates (50, ,5) can be plugged into (8.50) to
give another estimate of the LDF,

L(x) = o+ B "x. (8.55)
The classification rule,
if Z(x) > 0, assign x to Iy, (8.56)

otherwise, assign x to Ily, is referred to as logistic discriminant analysis. We
note that maximizing (8.54) will not, in general, yield the same estimates
for By and B as we found in (8.28) and (8.29) for Fisher’s LDF.

An equivalent classification procedure is to use L(x) in (8.55) to estimate
the probability p(II;|x) in (8.48). Substituting L(x) into (8.48) yields the
estimate
L(x)

B(IT|x) = (8.57)

14 el

so that x is assigned to IIy if p(Il; |x) is greater than some cutoff value, say
0.5, and x is assigned to Il otherwise.
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Iteratively Reweighted Least-Squares Algorithm

It will be convenient (temporarily) to redefine the r-vectors x; and 3 as
the following (r+ 1)-vectors: x; < (1,x])7, and 8 < (80, 87)". Thus, Sy +
B7x; can be written more compactly as 37x;. We also write p;(x;, 5o, 3)
as p1(xi, 3) and ¢(Bo, B) as £(B).

Differentiating (8.54) and setting the derivatives equal to zero yields the
score equations:

n

= xi{yi—pi(xi.8)} = 0. (8.58)

i=1

; oLB)
(p) = 95
These are 7 + 1 nonlinear equations in the r 4+ 1 logistic parameters 3.
From (8.58), we see that n; = 2?21 p1(x;,8) and, hence, also that ny =
Z?:1 p2(xi, B).

The nonlinear equations (8.58) are solved using an algorithm known as
iteratively reweighted least-squares (IRLS). The second derivatives of £(3)
are given by the ((r + 1) x (r + 1)) Hessian matrix:

B = 8ﬂ8ﬂ szx p1(x5, B)(1 — pi(xi, B)). (8.59)

The IRLS algorithm is based upon using the Newton Raphson iterative
approach to finding ML estimates. Starting values of B8(%) = 0 are recom-
mended. Then, the (k4 1)st step in the algorithm replaces the kth iterate

BH) by
B = ") — (6(8)7Hi(B), (8.60)

where the derivatives are evaluated at ,B(k).

Using matrix notation, we set
X = (Xh' o 7Xn)7 y = (yl,' o 7yn)T7

to be an ((r+ 1) x n) data matrix and n-vector, respectively, and let W =
diag{w;} be an (n x n) diagonal weight-matrix with ith diagonal element

w; :pl(xiaB)<1 _pl(xiaﬁ))a 1= 1a27"'7n

The score vector of first derivatives (8.58) and the Hessian matrix (8.59)
can be written as

{(B)=X(Y —p1), {(B)=—-AWXT, (8.61)

respectively, where p; is the n-vector
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P1 = (pl(xla;é)a'"7p1(xn7/é))7' (862)
Then, (8.60) can be written as:
B = B+ (AWXT) X (y — p)
= (AWAT) T AWTBD £ Wy~ )}
= (AWXT) 1AWz, (8.63)
where B
z=X"8" + Wiy —p)) (8.64)

is an n-vector. The ith element of z is given by

yifp1(X¢,B(k)) _ '
p1(xi, BR) (1 — p1(xi, BH)

The update (8.63) has the form of a generalized least-squares estimator (see
Exercise 5.17) with W as the diagonal matrix of weights, z as the response
vector, and X as the data matrix. Note that p; = pgk), z =z, and
W = W& have to be updated at every step in the algorithm because they
each depend upon B%*). Furthermore, the update formula (8.63) assumes
that the ((r + 1) x (r + 1))-matrix XYWXT can be inverted, a condition

that will be violated in applications where n < r + 1.

z=x] 8% 4 (8.65)

Despite the fact that convergence of the IRLS algorithm to the maxi-
mum of ¢(3) cannot be guaranteed, the algorithm does converge for most
practical situations. We refer the reader to Thisted (1988, Section 4.5.6)
for a detailed discussion of IRLS and its properties. The algorithm is used
extensively in fitting generalized linear models (see, e.g., McCullagh and
Nelder, 1989, Section 2.5).

Ezxzample: Wisconsin Diagnostic Breast Cancer Data (Continued)

Carrying out a logistic regression on all 30 transformed variables in the
Wisconsin diagnostic breast cancer study results in huge values for both
the estimated regression coefficients and their estimated standard errors.
This, in turn, yields tiny values for all 30 t-ratios. This situation is caused
by the high collinearity present in the data.

To reduce the number of variables, we apply BE stepwise regression to
these data. Table 8.6 lists the parameter estimates and their estimated
standard errors for a final model consisting of nine variables. Most of the
pairwise correlations between these nine variables are quite moderate, with
the only correlations greater than 0.8 being those of 26 (ncav.mv) with 29
(scav.ev) and 6 (comp.mv).
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TABLE 8.6. BE stepwise logistic regression results for the Wisconsin di-
agnostic breast cancer data.

Coeff. S.E. Ratio

(Intercept) —66.251 19.504 —3.397
smooth.mv 15.179 7.469 2.032
comp.mv  —14.774 4.890 -3.022
ncav.mv 10.476 3.377 3.102
texture.sd —6.963 2.304 -3.022
area.sd 12.943 3.070 4.216
fracd.sd —5.476 1.754 -3.122
texture.ev 23.224 5.753 4.036
scav.ev 4.986 1.568 3.180
fracd.ev 17.166 5.912 2.904

8.3.6  Gaussian LDA or Logistic Discrimination?

Theoretical and empirical comparisons have been carried out between
Gaussian LDA and logistic discriminant analysis. Some of the differences
are the following:

1.

The conditional log-likelihood (8.54) is valid under general exponen-
tial family assumptions on f(-) (which includes the multivariate Gaus-
sian model with common covariance matrix). This suggests that lo-

gistic discrimination is more robust to nonnormality than Gaussian
LDA.

Simulation studies have shown that when the Gaussian distributional
assumptions or the common covariance matrix assumption are not
satisfied, logistic discrimination performs much better.

Sensitivity to gross outliers can be a problem for Gaussian LDA,
whereas outliers are reduced in importance in logistic discrimination,
which essentially fits a sigmoidal function (rather than a linear func-
tion).

. Logistic discriminant analysis is asymptotically less efficient than is

Gaussian LDA because the latter is based upon full ML rather than
conditional ML.

At the point when we would expect good discrimination to take place,
logistic discrimination requires a much larger sample size than does
Gaussian LDA to attain the same (asymptotic) error rate distribution
(Efron, 1975), and this result extends to LDA using an exponential
family with plug-in estimates.
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8.3.7 Quadratic Discriminant Analysis

How is the classification rule (8.14) affected if the covariance matrices
of the two Gaussian populations are not equal to each other? That is, if
3y # 3. In this case, (8.8) becomes

filx)
IOgefg(x) =
o — 5 (e — ) DT (6 ) — (6 1) S5 (x — )} (866)
= a- %XT(Efl =3 x4 (U2 - 3%y X, (8.67)

where ¢g and ¢; are constants that depend only upon the parameters p,
e, X1, and Xo. The log-likelihood ratio (8.67) has the form of a quadratic
function of x. In this case, set

Q(x) = fo + B x + x"Qx, (8.68)
where 1
Q= 75(2;1 -3 (8.69)
B=3"p -2, (8.70)
_ 1 |21| T —1 T —1
Bo = -3 1Oge® FRIB] ey — p33g g p —logo(ma/m). (8.71)

Note that Q is an (r x ) symmetric matrix. The classification rule is to
assign x to IIy if (8.67) is greater than log, (w2 /7 ); that is,

it Q(x) > 0, assign x to IIy, (8.72)

and assign x to Ils otherwise.

The function Q(x) of x is called a quadratic discriminant function (QDF)
and the classification rule (8.72) is referred to as quadratic discriminant
analysis (QDA). The boundary {x € R"|Q(x) = 0} that divides the two
classes is a quadratic function of x.

An approximation to the boundaries obtained by QDA can be obtained
using an LDA approach that enlists the aid of the linear terms, squared
terms, and all pairwise products of the feature variables. For example, if
we have two feature variables X; and X5, then “quadratic LDA” would use
X1, X2, X2, X2, and X; X5 in the linear discriminant function with r = 5.

Mazimum-Likelihood Estimates

If the r(r + 3) distinct parameters in p;, py, X1, and Xy are all un-
known, and 7; and 7y are also unknown (1 additional parameter), they
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can be estimated using learning samples as above, with the exception of
the covariance matrices, where the ML estimate of X; is

~

Ei = ni_l Z(Xij - ii)<xij - )_(Z‘)T, 1= 1, 2. (873)
J=1

Substituting the obvious estimates into Q(x) in (8.68) gives us

Q(x) = By + B7x + x"Ox, (8.74)
where
5 L a1 o1
Q=L -8, (8.75)
B=37"% - 5% (8.76)
> ~ n2 ni
Bo=—¢1 — logeg + loge? , (8.77)

and where ¢ is the estimated version of the first term in (8.67).

Because the classifier @(x) depends upon the inverses of both 21 and
3y, it follows that if either ny or ng is smaller than r, then ¥; (i =1 or 2,
as appropriate) will be singular and QDA will fail.

8.4 Examples of Binary Misclassification Rates

In this section, we compare the two-class discriminant analysis methods
LDA and QDA on a number of well-known data sets.? These data sets,
which are listed in Table 8.7, are

BUPA liver disorders These data are the results of blood tests consid-
ered to be sensitive to liver disorders arising from excessive alchohol
consumption. The first five variables are all blood tests: mcv (mean
corpuscular volume), alkphos (alkaline phosphotase), sgpt (alamine
aminotransferase), sgot (aspartate aminotransferase), and gammagt
(gamma-glutamyl transpeptidase); the sixth variable is drinks (num-
ber of half-pint equivalents of alchoholic beverages drunk per day).
All patients are males: 145 subjects in class 1 and 200 in class 2.

Tonosphere These are radar data collected by a system of 16 high-frequency
phased-array antennas in Goose Bay, Labrador, with a total transmit-
ted power of the order 6.4 kilowatts. The targets were free electrons

2These data sets can be found in the files bupa, ionosphere, sonar, and spambase on
the book’s website. More details can be found in the UCI Machine Learning Repository
at archive.ics.uci.edu/ml/datasets.html.



8.4 Examples of Binary Misclassification Rates 259

in the ionosphere. The two classes are “Good” for radar returns that
show evidence of some type of structure in the ionosphere and “Bad”
for those that do not and whose signals pass through the ionosphere.
The received electromagnetic signals are complex-valued and were
processed using an autocorrelation function whose arguments are the
time of a pulse and the pulse number. There were 17 pulse numbers,
which are described by two measurements per pulse number. One
variable (#2) was removed from the data set because its value for all
observations was zero.

Sonar Sonar signals are bounced off a metal cylinder (representing a mine)
or a roughly cylindrical rock at various aspect angles and under
various conditions. There are 111 observations obtained by bounc-
ing sonar off a metal cylinder and 97 obtained from the rock. The
transmitted sonar signal is a frequency-modulated chirp, rising in
frequency. The data set contains signals ontained from a variety of
aspect angles, spanning 90 degrees for the cylinder and 180 degrees
for the rock. Each observation is a set of 60 numbers in the range
0-1, where each number represents the energy within a particular
frequency band, integrated over a certain period of time.

Spambase This data set derives from a collection of spam e-mails (un-
solicited commercial e-mail, which came from a postmaster and in-
dividuals who had filed spam) and non-spam e-mails (which came
from filed work and personal e-mails). Most of the variables indicate
whether a particular word or character was frequently occurring in the
e-mail: 48 variables have the form “word_freq_-WORD),” that gives the
percentage of the words in the e-mail which match WORD; 6 vari-
ables have the form “word_freq . CHAR,” that gives the percentage
of characters in the e-mail which match CHAR; and 3 “run-length”
variables, measuring the average length, length of longest, and sum of
length of uninterupted sequences of consecutive capital letters. There
are 1813 spam (39.4%) and 2788 non-spam observations in the data
set.

Table 8.7 lists the CV misclassification rates for LDA and QDA for each
data set. These two-class data sets have quite varied CV misclassifica-
tion rates and, in three out of the five data sets (the exceptions are the
ionosphere and sonar data sets), LDA is a better classifier than QDA.

Figure 8.4 displays the kernel density estimates of the class-conditional
scores of the linear discriminant function (LD1) for the binary classification
data sets spambase, ionosphere, sonar, and bupa. These data sets are ar-
ranged in order of LDA misclassification rates, from smallest to largest. The
less overlap between the two density estimates, the smaller the misclassifi-
cation rate; the greater the overlap between the two density estimates, the
larger the misclassification rate.



260 8. Linear Discriminant Analysis

TABLE 8.7. Summary of data sets with two classes. Listed are the sample
size (n), number of variables (r), and number of classes (K ). Also listed
for each data set are leave-one-out cross-validation (CV/n) misclassifica-
tion rates for linear discriminant analysis (LDA) and quadratic discrimi-
nant analysis (QDA). The data sets are listed in increasing order of LDA
misclassification rates.

Data Set n r K LDA QDA

Breast cancer (wdbc) 569 30 2 0.042 0.062
Spambase 4601 57 2 0.113 0.170
Tonosphere 351 33 2 0.137 0.128

Sonar 208 60 2 0.245 0.240

BUPA liver disorders 345 6 2 0.301 0.406

8.5 Multiclass LDA

Assume now that the population of interest is divided into K > 2
nonoverlapping (disjoint) classes. For example, in a database made pub-
licly available by the U.S. Postal Service, each item is a (16 x 16) pixel
image of a digit extracted from a real-life zip code that is handwritten onto
an envelope. The database consists of thousands of these handwritten dig-
its, each of which is viewed as a point in an input space of 256 dimensions.
The classification problem is to assign each digit to one of the 10 classes
0,1,2,...,9.

We could carry out (12( ) different two-class linear discriminant analyses,
where we set up a sequence of “one class versus the rest” classification
scenarios. Such a solution does not work because it would produce regions
that do not belong to any of the K classes considered (see Exercise 8.14).

Instead, the two-class methodology carries over in a straightforward way
to the multiclass situation. Specifically, we wish to partition the sample
space into K nonoverlapping regions Ri, Rs, ..., R, such that an obser-
vation x is assigned to class II; if x € R;. The partition is to be determined
so that the total misclassification rate is a minimum.

Text Categorization

A note of caution is in order here: not all multiclass classification prob-
lems fit this description. Text categorization is an important example. At
the simplest level of information processing, we save and categorize files,
e-mail messages, and URLs; in more complicated activities, we assign news
items, computer FAQs, security information, author identification, junk
mail identification, and so on, to predefined categories. For example, about
810,000 documents of newswire stories in the Reuters Business Briefing
database RCV1 (Lewis, Yang, Rose, and Li, 2004) are assigned by topic
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FIGURE 8.4. Kernel density estimates of the class-conditional scores
for the linear discriminant function (LD1) for the following two-class data
sets: spambase (upper-left panel). ionosphere (upper-right panel). sonar
(lower-left panel). bupa (lower-right panel). The amount of overlap in the
density estimates is directly related to the estimated misclassification rate
between the data in the two groups.

into 103 categories. The classification problem is to assign each document
to a topic based solely upon the textual content of that document (repre-
sented as a vector of words). Because documents can be assigned to more
than one topic, text categorization does not fit the standard description of
a classification problem.

8.5.1 Bayes’s Rule Classifier

Let

P(XEHi):ﬂ',‘, 1=1,2,..., K, (878)
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be the prior probabilities of a randomly selected observation X belonging
to each of the different classes in the population, and let

P(X:X|XEHZ‘) :fi(X), 1=1,2,..., K, (879)

be the multivariate probability density for each class. The resulting poste-
rior probability that an observed x belongs to the ith class is given by

fix)ms
K )
Zk:1 Fe(x)mk
The Bayes’s rule classifier for K classes assigns x to that class with the

highest posterior probability. Because the denominator of (8.80) is the same
for all II;,7 = 1,2, ..., K, we assign x to II; if

filo)mi = max f;(x)m;. (8.81)

p(I;|x) =P(X e I;|X =x) = i=1,2,...,K. (8.80)

If the maximum in (8.81) does not uniquely define a class assignment for
a given x, then use a random assignment to break the tie between the
appropriate classes.

Thus, x gets assigned to II; if fi(x)m > f;j(x)m;, for all j # i, or,
equivalently, if log, (f;(x)m;) > log,(f;(x)m;), for all j # i. The Bayes’s
rule classifier can be defined in an equivalent form by pairwise comparisons
of posterior probabilities. We define the “log-odds” that x is assigned to
II; rather than to II; as follows:

Lij(x) = log, {p (L) } = log, { filx)m: } . (8.82)

p(IL;[x) fi(x)m;
Then, we assign x to II; if L;;(x) > 0 for all j # i. We define classification
regions, Ry, Ra, ..., Ri, as those areas of R” such that
R, = {XG%qLij(X)>O,j:1,2,...,K,j#i},
i=1,2,.... K. (8.83)

This argument can be made more specific by assuming for the ith class
II; that f;(-) is the N, (u;, X;) density, where p,; is an r-vector and X; is
an (r x r) covariance matrix, i = 1,2,..., K. We further assume that the
covariance matrices for the K classes are identical, 37 = --- = Xk, and
equal to a common covariance matrix X x x.

Under these multivariate Gaussian assumptions, the log-odds of assigning
x to II; (as opposed to II;) is a linear function of x,

Lij (X) = bOij + bz—jX, (884)

where
by = (p; — ;) Sx'x (8.85)
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1 . o
boij = =5 {mi St — S x k) log, (mi/mj). (8.86)

Because L;j(x) is linear in x, the regions { R; } in (8.83) partition r-dimensional
space by means of hyperplanes.

Maximum-Likelihood Estimates

Typically, the mean vectors and common covariance matrix will all be
unknown. In that case, we estimate the Kr+r(r+1)/2 distinct parameters
by taking learning samples from each of the K classes. Thus, from the ith
class, we take n; observations, x;;, j = 1,2,...,n;, on the r-vector (8.1),
that are then collected into the data matrix,

TXN;

Xi :(Xi1,~-~,Xi7ni), 221,2,,K (887)

Let n = Zfil n; be the total number of observations. The K data matrices
(8.87) are then arranged into a single data matrix X which has the form

rXn rXni . . TXNK
(X - Xk)
- (X117"'7X1,TL17'"7XK17"'7XK,7LK)' (888)

The mean of each variable for the ith class is given by the r-vector,

ng
X =n; 'Xily, =n;' Y xi; i=1,2,.. K, (8.89)

j=1

and these K vectors are arranged into the matrix of means,

rXn
X = (X1, X1, R, XK. (8.90)
—_——— —_——
ni nNK
Let

XN _ . .

X.=X-X=(XH, : 1 XcH,,), (8.91)
where H,,; is the (n; x nj;) “centering matrix,” j = 1,2,..., K. Then, we
compute

rXr K n
SXX: XLXCT == Z Z(Xij - )_(i)(xij - )_(i)T. (892)
i=1 j=1

Now, consider the following standard decomposition,

Xij — X = (X5 — X;) + (X — %), (8.93)
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TABLE 8.8. Multivariate decomposition of the total covariance matriz for

K classes 111,11o, ..., I, when a random learning sample of n; observa-
tions is drawn from I1I;, i =1,2,... K.

Source of Variation df Sum of Squares Matrix

Between classes K—-1 Sp= Zfi1 ni(X — X)(Xi —X)7

1. K n; = = \T
Within classes n—K Sw= Z¢:1 j:1(xii —Xi)(xij — Xq)
K i v < \7
Total n—1 Swi= ., Z?Zl(xij — %) (x5 — X)

for the jth observation within the ith class, where

K T,

X=n"'X1,=n""Y > xi= (21, 7) (8.94)

i=1 j=1

is the overall mean vector ignoring class identifiers. Postmultiplying each
side of (8.93) by their respective transposes, multiplying out the right-hand
side, then summing over all n observations, and noting that the cross-

product term vanishes, we arrive at the well-known multivariate analysis
of variance (MANOVA) identity,

Stot = S + Sw, (8.95)

where Sp, Sw, and Sy are given in Table 8.8.

Thus, the total covariance matrix of the observations, S¢os, having n — 1
degrees of freedom and calculated by ignoring class identity, is partitioned
into a part representing the between-class covariance matriz, Sp, having
K — 1 degrees of freedom, and another part representing the pooled within-
class covariance matriz, Sy (= Sxx), having n — K degrees of freedom.
An unbiased estimator of the common covariance matrix, X x x, of the K
classes is, therefore, given by

Sxx =(n—K) 'Sy = (n— K) 'Sxx. (8.96)

If we let fi(x) = fi(x,n,;), where n; is an r-vector of unknown parame-
ters, and assume that the {7;} are known, the posterior probabilities (8.80)
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are estimated by

AL |x) = Kfi(x’ ’7")1” . i=1,2,... K, (8.97)
> =1 fi(6my)m;
where 7); is an estimate of n,. The classification rule, therefore, assigns x
file )mi = max f;(x,0;)m; . (8.98)
which is often referred to as the plug-in classifier.

If the {fi(-)} are multivariate Gaussian densities and n, = (p;, Xxx),
then, the sample version of L;;(x) is given by

Zij(X) = 301‘]‘ + EZjX, (899)
where R R
bij = (x; — %X;)"E%x (8.100)
n e e Ny n;
boij = —§{xi YxXi —X] Y vxX;}+log, {E} —log, {?} , (8.101)
and where we have estimated the prior 7; by the proportionality estimate,
mi =mn;/n,i=1,2,..., K. The classification rule reduces to:
Assign x to II; if Lij(x) >0, j=1,2,...,K, j#1. (8.102)

In other words, we assign x to that class II; with the largest value of Ew (x).

In the event that the covariance matrices cannot be assumed to be equal,
estimates of the mean vectors are obtained using (8.89), and the ith class
covariance matrix, ;, is estimated by its maximum-likelihood estimate,

~

EL:’I’L:1 Z(Xij _)_(i)(xij —)_(i)T, 1= 1,2,...7[(. (8103)
J=1

There are Kr+ Kr(r+1)/2 distinct parameters that have to be estimated,
and, if r is large, this is a huge increase over carrying out LDA. The resulting
quadratic discriminant analysis (QDA) is similar to that of the two-class
case if we make our decisions based upon comparisons of log, f;(x), ¢ =
1,2,..., K — 1, with log, fx(x), say.

8.5.2  Multiclass Logistic Discrimination

The logistic discrimination method extends to the case of more than two
classes. Setting u; = log { fi(x)m;}, we can express (8.80) in the form

et

p(ILi[x) = —¢——
D p—1 €

oi, (8.104)
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say. In the statistical literature, (8.104) is known as a multiple logistic
model, whereas in the neural network literature, it is known as a normalized
exponential (or softmax) activation function. Because we can write

1

= 8.105
14 e wi’ ( )

0j
where w; = u; flog{zk;éi e“r}, 0, is a generalization of the logistic sigmoid
activation function (see Figure 8.3).
Suppose we arbitrarily designate the last class (Ilx) to be a reference
class and assume Gaussian distributions with common covariance matrices.
Then, we define

LZ(X) =u; — ug = bo; + b] x, (8106)
where
b; = (1 — 1) Sxk (8.107)
1 _ o
boi = _§{N1'TEX1XIM — pE Sy g} +log {mi/mi}. (8.108)

If we divide the numerator and denominator of (8.104) by €% and use
(8.106), the posterior probabilities can be written as

eLi(x)
p(IL]x) = — L i=1,2,...,K—1, (8109
(b 14 Y elr®) (8.109)
1
p(llklx) = yre (8.110)

1+ >, elr®

If we write f;(x) = fi(x,m;), where 0, is an r-vector of unknown param-
eters, then we estimate n; by 7); and fi(x) by fi(x) = f;(x,7,). As before,
we assign x to that class that maximizes f;(x,m,), ¢ = 1,2,..., K. This
classification rule is known as multiple logistic discrimination.

8.5.83 LDA via Reduced-Rank Regression

We now generalize to the multiclass case the idea for the two-class case
(K = 2), in which we showed that the LDF can be obtained (up to a pro-
portionality constant) by using multiple regression with a single indicator
variable as the response variable.

In the multiclass case, we take the response variables to be a set of
distinct indicator variables whose number is one fewer than the number of
classes. If we know which observations fall into the first K — 1 classes, then
the remaining observations automatically fall into the Kth class, and so we
do not need an additional indicator variable to document that fact. The
observations in the Kth class are instead each specified by a zero variable.
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Some have used the Kth class (which could actually be any class, not just
the last one) as a reference class to which all other classes may be compared.

As in the two-class case, the indicator variables are taken to be response
variables. We now show that multiclass LDA is a special case of canonical
variate analysis, which, as we saw in Chapter 7, is itself a special case of
multivariate reduced-rank regression. It is for this reason that many authors
refer to LDA as canonical variate analysis.

Identifying Classes Using Indicator Variables

In the following development, we set K = s + 1, where s is to be the
number of output variables. Each observation in (8.88) is associated with its
corresponding class by defining an indicator response s-vector Y;;, which
has a 1 in the 7th position if the jth observation r-vector, X;;, comes from
I1;, and zeroes in all other positions, j =1,2,...,n;,i=1,2,...,s+ 1. In
other words, if Y;; = (Yijx), then, Yj;r = 1if k = ¢ and Y = 0 otherwise.

For the ith class II;, we have the matrix,

0 --- 0
SXM; N °
Vi =ity ¥im) = [ 1 - 1|, (8.111)
0 --- 0
in which all n; columns are identical, i = 1,2, ..., s+ 1. Thus, the indicator
response matriz Y is given by
sXn sxXni . . SXMNgy1
(Y ot Vsyr)
= (V1153 Yimasee s Ystlls- o Ystlnas)
1 1 -0 - 00 --- 0
= : : : S (8.112)
O --- 0 --- 1 ---10 ---0

Each column of Y has a single 1 with the exception of the last set of 141
columns, whose every entry is equal to zero.

The s-vector of row means of ) is given by
y=n"'Y1, = (n1/n, -, ns/n)". (8.113)

The ith component of y estimates the prior probability, m;, that a randomly
selected observation belongs to II;; that is, m; = n;/n, i = 1,2,...,s, and
Tst1 = Nsp1/n. Let

Y=(.--,) (8.114)
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denote the matrix whose columns are n copies of the s-vector (8.113), and
let

sXn

Yo=Y —-Y=JVH,, (8.115)

where H,, is the (n X n) centering matrix. Then, the entries of ). are either
1 — (ni/n) or —n;/n. The cross-product matrix,

SXS
Syy= Y.V =diag{ni,...,ns} —nyy”’, (8.116)
has ith diagonal entry n;(1 —n;/n) and off-diagonal entry —n;n; /n for the
ith row and /th column, ¢ # 4, 7,7’ = 1,2,...,s. We invert Syy to get
Sy =diag{ny !, ..., ng Yt +n T, (8.117)

where J5 = 1,17 is an (s x s)-matrix of 1s.

Generating Canonical Variates

We now have all the ingredients to carry out a canonical variate anal-
ysis of X and ). The central computation involves the eigenvalues and

associated eigenvectors (Xj, v;),i=1,2,...,s, of the matrix,
SZ<\S
R =S,1/2Sy xSty SxySyi/2, (8.118)
where
sSXTr _ _ _ _
Sxy= XYV = (ni (X1 — X),-+,ns(Xs — X)) = S} - (8.119)

We recall the following fact from Section 7.3. The jth largest eigenvalue,

A}, and associated eigenvector, v}, of the matrix

X7
R*= S /°SxySyLSy xS (8.120)
are related to those of R by IR
A=A (8.121)
Vi =Sy Syx SV, (8.122)

j=1,2,...,min(r,s). Notice that R* depends upon ). through the pro-

jection matrix
nxn

Py =Y!Syy D (8.123)

onto the columns of V.. So, for any set of vectors that spans )., R* will
be unchanged.
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We rescale v by setting

v, = Sy (8.124)

J
= A SEASxy Sy, (8.125)

j=1,2,...,min(r,s). From (8.122) and (8.125), we have that the (r x r)-
matrix Sp in Table 8.5 can be more easily expressed as

TXT

Sp= Sxys;%/Syx. (8.126)

Writing out the jth eigenequation f{Vj = /):jVj, premultiplying both sides
by S}%zsxys;;ﬂ, and then using (8.126), we obtain

SEv; = Aj(Sp + Sw)v;. (8.127)

which shows that ~; is the eigenvector associated with the jth largest

eigenvalue Xj of the (r x r)-matrix (S + Sw )~ 'Sp. Rearranging (8.127),
we have that

SBY; = HiSw;, (8.128)
where N
A
pj=—2—, j=1,2,...,min(r,s) . (8.129)
1— )

In other words, the eigenvalues and eigenvectors of R are equivalent to
the eigenvalues and eigenvectors of S(,VlSB (or of its symmetric version
SQVI/ZSBSQVI/Z). In general, the (s x r)-matrix Sy/Sp has min(r,s) =
min(r, K — 1) nonzero eigenvalues. If K < r, then Sp will not have full
rank, resulting in r — s = r — K + 1 zero eigenvalues.

From (7.72) and (7.73), we set

g = VISyy/ SyxSik. (8.130)
hl = vIsyy/% (8.131)

j =1,2,...,t. Then, from (7.69), we calculate the jth pair of canonical
variates (&;,@;), where

§§ = BjXe=7jXe (8.132)
@; = hjy.=77SxvSyyye (8.133)
j=1,2,...,t. In (8.132) and (8.133), x, = x — X and y. =y — ¥, where

x is an observed r-vector, and y is an indicator response s-vector. The
coefficient vector

v =G ve)” (8.134)
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is the jth discriminant vector, j = 1,2,..., min(r, s).
The first LDF evaluated at x. is given by

& = 7%, (8.135)

and has the property that, among all such linear combinations of the xs,
it alone can discriminate best between the K classes. The second LDF is
given by R

& = yIx. (8.136)

and is the best discriminator between the K classes among all such linear
combinations of the xs that are uncorrelated with 51 The jth LDF,

~

& =%, (8.137)

is the best discriminator between the K classes among all those linear
combinations of x, that are also uncorrelated with fl, EQ, .. ,Ej 1.

There are at most min(r, K — 1) such linear discriminant functions. One
problem is to determine the smallest number ¢t < min(r, s) of linear discrim-
inant functions that discriminates most efficiently between the K classes.
In practice, it is usual to take t = 2, so that only & and & are used in
deciding whether sufficient discrimination has been obtained.

Graphical Display

Consider the kth observation x;; (in II;) and its associated indicator
response vector y;i. We evaluate &; at x = x;, and @; at y = y;. Set

€Y = AT(xin — %), (8.138)
J(Z:) = YjSxvSyy(yir — ), (8.139)
k=1,2,...,n;,i=1,2,...,5+ 1. Then, we form the row vectors
T 1 1 +1 +1
& o= (@, 80 ),"'@Lf% (8.140)
- ~( ~(1 ~(r+1 (r+1
Wi = @, B0 B 2y, (8.141)

of jth discriminant scores, 7 = 1,2,...,min(r, s). From (8.117) and (8.119),
we have that

SxySyy = (%1 — Kag1, Ko — Xap1), (8.142)
whence, from (8.138) and (8.139),

€ =T(xin —%), &) =~](x —%), (8.143)
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are the kth components of the jth pair of canonical variates evaluated for
Hi. But,

ng

X —X=n; " Z(Xik - X), (8.144)
k=1
so that .
o5 =n Y0 =0, k=12, n. (8.145)
a=1

In other words, the canonical variates evaluated at the indicator response
variables are the class averages of the canonical variates for the discrim-

inating variables. The {5.;)} are called discriminant coordinates and the
space generated by these coordinates is called the discriminant space. To
visualize graphically whether the discriminant coordinates emphasize dif-
ferences in class means, it is customary to plot the n points

EWEN k=1,2,...,n;, i=1,2,...,5+]1, (8.146)

on a scatterplot and, taking note of (8.145), we also plot a point represent-
ing the respective mean of each class,

@D a0, k=1,2,...n i=1,2,...,5+1, (8.147)

superimposed on the same scatterplot.

8.6 Example: Gilgaied Soil

These data?® were collected in a study of gilgaied soil at Meandarra,
Queensland, Australia (Horton, Russell, and Moore, 1968). Three micro-
topographic classes based upon relative contours were classified as follows:
top (> 60 cm); slope (30-60 cm); and depression (< 30 cm). The area was
divided into four blocks, and soil samples were taken randomly within each
microtopographic class at depths of 0-10, 10-30, 30-60, and 60-90 cm. See
Table 8.9.

Chemical analyses on nine variables were carried out for each soil sam-
ple in the four blocks of the (3 positions x 4 depths) 12 groups, yielding
a total of 48 soil samples. The variables are pH; total nitogen (N); bulk-
density (BD); total phosphorus (P); exchangeable + soluble calcium (Ca);
exchangeable + soluble magnesium (Mg); exchangeable + soluble potassium
(K); exchangeable + soluble sodium (Na); and conductivity of the saturation
extract (cond).

3These data can be found in the file gilgaied.soil on the book’s website.
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TABLE 8.9. Group numbers by depth and microtopographic position
(T.P.) of gilgaied soil.

Soil Depth
T.P. 0-10cm 1030 cm  30-60 cm  60-90 cm
Top A B C D
Slope E F G H
Depression I J K L

The first two LDF scores are computed using (8.143) and plotted in
Figure 8.5. Also plotted on the same graph are the projected class averages
(i.e., the letters A-L) of the 12 classes. We see that the projected class
averages are plotted in roughly the same two-way position as given in Table
8.9 (with curvature). There is quite a bit of overlap of class points in this
2D discriminant space. In fact, the apparent error rate is 7/48 = 0.146, and
the leave-one-out CV misclassification rate is 31/48 = 0.646. The curvature
in the plot suggests that QDA may be more appropriate than LDA, but
with only four observations in each class, QDA would fail. Another possible
explanation is that the soil depths are not uniformly spaced; see Exercise
8.1.

8.7 Examples of Multiclass Misclassification Rates

In this section, we summarize how well LDA and QDA perform when
applied to a wide variety of well-known multiclass data sets.* These data
sets, which are listed in Table 8.10, are

Diabetes These data resulted from a study conducted at the Stanford
Clinical Research Center of the relationship between chemical sub-
clinical and overt nonketotic diabetes in non-obese adult subjects.
The three primary variables are glucose area (a measure of glucose
intolerance), insulin area (a measurement of insulin response to
oral glucose), and SSPG (steady-state plasma glucose, a measure of
insulin resistance). In addition, the relative weight and fasting
plasma glucose were measured for each individual in the study. The
three clinical classifications are overt diabetic (Class 1, 33 individu-
als), chemical diabetic (Class 2, 36), and normal (Class 3, 76).

4These data sets can be found at the book’s website. The data and descriptions
are taken from the UCI website, with the exception of diabetes, which originated from
Andrews and Herzberg (1985, Table 36.1, pp. 215-219) and can be found in the Andrews
subdirectory at the StatLib website, and primate scapulae, details of which can be
found in Section 12.3.6.
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FIGURE 8.5. LDA plot of the gilgaied soil data. There are 12 classes, A—
L, and each class has four points. The projected class means are overplotted
as letters and appear in roughly the same two-way position as given in Table
8.9, albeit with some curvature.

E-coli These data were obtained in a study of protein localization sites for

336 examples of E. coli. The variables are mvg (McGeoch’s method for
signal sequence recognition), gvh (von Heijne’s method for signal se-
quence recognition), 1ip (von Heijne’s Signal Peptidase II consensus
sequence score), chg (presence of charge on N-terminus of predicted
lipoproteins), aac (score of discriminant analysis of the amino-acid
content of outer membrane and periplasmic proteins), alml (score
of the ALOM membrane spanning region prediction program), and
alm2 (score of the ALOM program after excluding putative cleav-
able signal regions from the sequence). There are 8 localization sites
(classes): cp (cytoplasm, 143 examples), im (inner membrane without
signal sequence, 77), pp (perisplasm, 52), imU (inner membrane, un-
cleavable signal sequence, 35), om (outer membrane, 20), omL (outer
membrane lipoprotein, 5), imL (inner membrane lipoprotein, 2), and
imS (inner membrane, cleavable signal sequence, 2).

Forensic glass These data were collected for forensic purposes to deter-

mine whether a sample of glass is a type of “float” glass or not.
There are 6 types of glass used in this data set: building windows
float processed (70 examples), building windows non—float processed
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(76), vehicle windows float processed (17), containers (13), tableware
(9), and headlamps (29). The variables are RI (refractive index), Na
(sodium), Mg (magnesium), Al (aluminum), Si (silicon), K (potas-
sium), Ca (calcium), Ba (barium), and Fe (iron).

Iris These are Edgar Anderson’s iris data made famous by R.A. Fisher.
There are 150 observations made on three classes of the iris flower.
The classes are Iris setosa, Iris versicolour, and Iris virginica, with
50 observations on each class. Four measurements (in cm) are made
on each iris: sepal length, sepal width, petal length, and petal
width.

Letter recognition The 26 capital letters of the English alphabet were
converted into black-and-white rectangular pixel displays by using
20 different fonts, and each letter with these 20 fonts was randomly
distorted to produce a file of 20,000 unique observations. Each ob-
servation was converted into 16 primitive numerical variables, which
were then scaled to fit into a range of integer values of 0-15. The
number of observations for each letter ranged from 734 to 813.

Pendigits These data were obtained from 44 writers, each of whom hand-
wrote 250 examples of the digits 0,1,2,...,9 in a random order. See
Section 7.2.1 for a detailed description.

Primate scapulae These data consist of measurements of indices and an-
gles on the scapulae (shoulder bones) of five genera of adult primates
representing Hominoidae: gibbons (Hylobates), orangutangs (Pongo),
chimpanzees (Pan), gorillas (Gorilla), and man (Homo). The vari-
ables are 5 indices (AD.BD, AD.CD, EA.CD, Dx.CD, and SH.ACR) and 2
angles (EAD, (). Of the 105 measurements on each variable, 16 were
from Hylobates, 15 from Pongo, 20 from Pan, 14 from Gorilla, and
40 from Homeo.

Shuttle These space-shuttle data contain 43,500 observations on 8 uniden-
tified variables, and the observations are divided into 7 classes: Rad
Flow (1), Fpv Close (2), Fpv Open (3), High (4), Bypass (5), Bpv
Close (6), and Bpv Open (7). Class 1 contains about 78% of the data.

Vehicle This data set was collected by the Turing Institute, Glasgow,
Scotland, in a study of how to distinguish 3D objects from a 2D im-
age. The classes in this data set are the silhouettes of four types of
Corgi model vehicles, an Opel Manta car (240 images), a Saab 9000
car (240), a double-decker bus (240), and a Chevrolet van (226), as
viewed by a camera from many different angles and elevations. The
variables are scaled variance, skewness, and kurtosis about the ma-
jor/minor axes, and heuristic measures such as hollows ratio, circular-
ity, elongatedness, rectangularity, and compactness of the silhouettes.
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Wine These data are the results of a chemical analysis of 178 wines
grown over the decade 1970-1979 in the same region of Italy, but
derived from three different cultivars (Barolo, Grignolino, Barbera).
The Barbera wines were predominately from a period that was much
later than that of the Barolo and Grignolino wines. The analysis
determined the quantities of 13 constituents found in each of the
three types of wines: Alcohol, MalicAcid, Ash, AlcAsh (Alcalinity of
Ash), Mg (Magnesium), Phenols (Total Phenols), Flav (Flavanoids),
NonFlavPhenols (Non-Flavanoid Phenols), Proa (Proanthocyanins),
Color (Color Intensity), Hue, 0D (OD280/0D315 of Diluted Wines),
and Proline. There are 59 Barolo wines, 71 Grignolino wines, and
48 Barbera wines.

Yeast These data were obtained in a study of protein localization sites
for 1,484 examples of yeast. The variables are mcg, gvh, alm (see E-
coli), mit (score of discriminant analysis of the amino-acid content of
the N-terminal region, 20 residues long, of mitochondrial and non-
mitochondrial proteins), erl (presence of HDEL substring, thought
to act as a signal for retention in the endoplasmic reticulum lumen),
pox (peroxisomal targeting signal in the C-terminus), vac (score of
discriminant analysis of the amino-acid content of vacuolar and ex-
tracellular proteins), and nuc (score of discriminant analysis of nu-
clear localization signals of nuclear and non-nuclear proteins). There
are 10 localization sites (classes): cyt (cytosolic or cytoskeletal, 463
examples), nuc (nuclear, 429), mit (mitochondrial, 244), me3 (mem-
brane protein, no N-terminal signal, 163), me2 (membrane protein,
uncleaved signal, 51), mel (membrane protein, cleaved signal, 44),
exc (extracellular, 37), vac (vacuolar, 30), pox (peroxisomal, 20), and
erl (endoplasmic reticulum lumen, 5).

Table 8.10 lists the leave-one-out CV misclassification rates for LDA and
QDA for each data set. The prior 7; was estimated using the proportion-
ality estimate, m; = n;/n, i = 1,2,..., K. These multiclass data sets have
quite varied CV misclassification rates. For the diabetes, glass, letter
recognition, pendigits, vehicle, and wine data sets, the QDA misclas-
sification rate is smaller than the LDA rate, whereas the reverse happens for
the iris and primate scapulae data sets. Note that if any data set has a
class with fewer observations than r, then that class’s estimated covariance
matrix is singular, and QDA fails.

In Figure 8.6, we display the LDA plots corresponding to the six data
sets iris, primate.scapulae, shuttle, pendigits, vehicle, and glass.
They are arranged according to their estimated misclassification rates, as
listed in Table 8.10.

We will be comparing these methods with other classification methods
using the same data sets in later chapters.
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FIGURE 8.6. LDA plots of Fisher’s iris data, primate.scapulae data,
shuttle data, pendigits data, vehicle data, and glass data.
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TABLE 8.10. Summary of multiclass data sets. Listed are the sample size
(n), number of variables (r), and number of classes (K ). Also listed for each
data set are leave-one-out cross-validation (CV/n) misclassification rates
for linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA). The data sets are ordered by size of the LDA misclassification rate.
For each data set, the proportionality estimate was used for the priors. If
a class has fewer than r members, QDA will fail.

Data Set n r K LDA QDA
Wine 178 13 3 0.011 0.006
Iris 150 4 3 0.020 0.027
Primate scapulae 105 7 5 0.029 0.057
Shuttle 43,500 8 7 0.056
Diabetes 145 5 3 0.110 0.097
Pendigits 10,992 16 10 0.124 0.017
E-coli 336 7 8 0.128
Vehicle 846 18 4 0221 0.144
Letter recognition 20,000 16 26 0.298 0.114
Glass 214 9 6 0.350 0.140
Yeast 1,484 8 10 0411

8.8 Software Packages

All the major statistical software packages contain routines for carrying
out LDA and QDA. Misclassification rates are computed in these pack-
ages by a number of methods, including the apparent error rate and cross-
validation. Logistic regression is usually included within the regression
methods in the packages. LDA is included as a special case of multivari-
ate reduced-rank regression in the RRR+MULTANL package, which can be
downloaded from the book’s website.

Bibliographical Notes

Since Fisher (1936), LDA has seen applications in many different ar-
eas. Theoretical accounts of linear discriminant analysis may be found in
Anderson (1984, Chapter 6) and Seber (1984, Chapter 6). More recent ac-
counts are given in Ripley (1996, Chapter 3), Johnson and Wichern (1998,
Chapter 11), Hastie, Tibshirani, and Friedman (2001, Chapter 4), Rencher
(2002, Chapters 8, 9), and Bishop (2006, Chapter 4). A Bayesian approach
is outlined in Press (1989, Chapter 7) and a nonparametric (kernel) ap-
proach in Hand (1982). The idea of using a regression model to carry out
LDA can be found in Fisher (1936).
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Exercises

8.1 How would you use the information in Table 8.9 to carry out a two-way
LDA on the gilgaied soil data? Would your results change if you took into
account the fact that the soil depths are not equally spaced?

8.2 Consider the wine data. Compute a LDA, draw a 2D-scatterplot of the
first two LDF coordinates, and color-code the points by wine type. What
do you notice?

8.3 Suppose X ~ N, (uqy,Exx) and Xy ~ N,.(py, Xxx) are indepen-
dently distributed. Consider the statistic

{E(a”X;) — E(a™X3)}?
var(a™X; — a”Xs)

as a function of a. Show that a oc £ (p; — p,) maximizes the statistic
by using a Lagrange multiplier approach.

8.4 Consider the following alternative to QDA. Suppose you start with two
variables, X7 and X5. Now, expand the data set by adding squares, X35 =
X12 and Xy = X%, and cross-product, X5 = X;X5. These five variables
are to be used as input to an LDA procedure. Derive the LDA boundaries
from this procedure and compare them to the QDA procedure. Generalize
to r > 2. Try this alternative procedure out on a data set of your choice.

8.5 Consider the diabetes data. Draw a scatterplot matrix of all five
variables with different colors or symbols representing the three classes of
diabetes. Do these pairwise plots suggest multivariate Gaussian distribu-
tions for each class with equal covariance matrices? Carry out an LDA and
draw the 2D-scatterplot of the first two discriminating functions. Using the
leave-one-out CV procedure, find the confusion table and identify those ob-
servations that are incorrectly classified based upon the LDA classification
rule. Do the same for the QDA procedure.

8.6 Try the following transformation on the iris data. Set X5 = X1/X>
and Xg = X3/X4. Then, X; is a measure of sepal shape and Xg is a measure
of petal shape. Take logarithms of X5 and of Xg. Plot the transformed data,
and carry out an LDA on X5 and X alone. Estimate the misclassification
rate for the transformed data. Do the same for the QDA procedure.

8.7 Carry out a stepwise logistic regression of the spambase data. Which
variables are chosen to be in the final subset?

8.8 Consider The Insurance Company Benchmark data, which can be
downloaded from kdd.ics.uci.edu/databases/tic. There are 86 vari-
ables on product-usage data and socio-demographic data derived from zip
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area codes of customers of an insurance company. There is a learning set
ticdata2000.txt of 5,822 customers and a test set ticeval2000.txt
of 4,000 customers. Customers in the learning set are classified into two
classes, depending upon whether they bought a caravan insurance policy.
The problem is to predict who in the test set would be interested in buy-
ing a caravan insurance policy. Use any of the classification methods on
the learning data and then apply them to the test data. Compare your
predictions for the test set with those given in the file tictgts2000.txt
and estimate the test set error rate. Which variables are most useful in
predicting the purchase of a caravan insurance policy?

8.9 These data (covertype) were obtained from the U.S. Forest Service
and are concerned with seven different types of forest cover. The data can
be downloaded from kdd.ics.uci.edu/databases/covertype. There are
581,012 observations (each a 30 x 30 meter cell) on 54 input variables (10
quantitative variables, 4 binary wilderness areas, and 40 binary soil type
variables). Divide these data randomly into a learning set and a test set.
Use any of the methods of this chapter on the learning set to predict the
forest cover type for the test set. Estimate the test set error rate.

8.10 Consider the Wisconsin diagnostic breast cancer data. Regress Y on
each of the 30 variables, one at a time. How many coefficients are signifi-
cant? Which are they? (A coeflicient is declared to be “significantly different
from zero” at the 5% level if its absolute t-ratio is greater than the value 2
and is nonsignificant otherwise.) Now, regress Y on all 30 variables. How
many coefficients are significant? Which are they? Next, run the BE and
FS stepwise procedures, and the LAR and LARS-Lasso algorithms on these
data, and compare the variable subsets you obtain from these methods.

8.11 Consider the E-coli data. Draw a scatterplot matrix of the vari-
ables. What do you notice? Do they look Gaussian? Carry out an LDA of
the e-coli data by using the reduced-rank regression approach. Find the
estimated coefficients of the first two linear discriminant functions. Com-
pute the LD scores and plot them in a scatterplot.

8.12 Consider the yeast data. Draw a scatterplot matrix of the data and,
if possible, draw 3D plots of various subsets of the variables and rotate the
plot (“brush and spin” in S-PLUs). What do you notice about the data?
Do they look Gaussian? Carry out an LDA of the yeast data by using the
reduced-rank regression approach. Find the estimated coefficients of the
first two linear discriminant functions. Compute the LD scores and plot
them in a scatterplot.

8.13 Consider the primate.scapulae data. Carry out five linear discrim-
inant analyses (one for each primate species), where each analysis is of the
“one class versus the rest” type. Find the spatial zone (known as an am-
biguous region) that does not correspond to any LDA assignment of a class
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of primate (out of the five considered). Are the results consistent with the
multiclass classification results?

8.14 Suppose LDA boundaries are found for the primate.scapulae data
by carrying out a sequence of (g) = 10 LDA problems, each involving a
distinct pair of primate species (Hylobates versus Pongo, Gorilla versus
Homo, etc.). Find the ambiguous region that does not correspond to any
LDA assignment of a class of primate (out of the five considered). Suppose
we classify each primate in the data set by taking a vote based upon those
boundaries. Estimate the resulting misclassification rate and compare it
with the rate from the multiclass classification procedure.
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Recursive Partitioning and

Tree-Based Methods

9.1 Introduction

An algorithm known as recursive partitioning is the key to the nonpara-
metric statistical method of classification and regression trees (CART)
(Breiman, Friedman, Olshen, and Stone, 1984). Recursive partitioning is
the step-by-step process by which a decision tree is constructed by either
splitting or not splitting each node on the tree into two daughter nodes. An
attractive feature of the CART methodology (or the related C4.5 method-
ology; Quinlan, 1993) is that because the algorithm asks a sequence of
hierarchical Boolean questions (e.g., is X; < 0;7, where 6; is a threshold
value), it is relatively simple to understand and interpret the results.

As we described in previous chapters, classification and regression are
both supervised learning techniques, but they differ in the way their out-
put variables are defined. For binary classification problems, the output
variable, Y, is binary-valued, whereas for regression problems, Y is a con-
tinuous variable. Such a formulation is particularly useful when assessing
how well a classification or regression methodology does in predicting Y
from a given set of input variables X, Xo,..., X,.

In the CART methodology, the input space, R", is partitioned into a
number of nonoverlapping rectangular (r = 2) or cuboid (r > 2) regions,

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 281
DOI 10.1007/978-0-387-78189-1_9, © Springer Science+Business Media New York 2013
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each of which is viewed as homogeneous for the purpose of predicting Y.
Each region, which has sides parallel to the axes of input space, is assigned
a class (in a classification problem) or a constant value (in a regression
problem). Such a partition corresponds to a classification or regression tree
(as appropriate).

Tree-based methods, such as CART and C4.5, have been used exten-
sively in a wide variety of fields. They have been found especially useful in
biomedical and genetic research, marketing, political science, speech recog-
nition, and other applied sciences.

9.2 C(lassification Trees

A classification tree is the result of asking an ordered sequence of ques-
tions, and the type of question asked at each step in the sequence depends
upon the answers to the previous questions of the sequence. The sequence
terminates in a prediction of the class.

The unique starting point of a classification tree is called the root node
and consists of the entire learning set £ at the top of the tree. A node is a
subset of the set of variables, and it can be a terminal or nonterminal node.
A nonterminal (or parent) node is a node that splits into two daughter nodes
(a binary split). Such a binary split is determined by a Boolean condition
on the value of a single variable, where the condition is either satisfied
(“yes™) or not satisfied (“no”) by the observed value of that variable. All
observations in £ that have reached a particular (parent) node and satisfy
the condition for that variable drop down to one of the two daughter nodes;
the remaining observations at that (parent) node that do not satisfy the
condition drop down to the other daughter node.

A node that does not split is called a terminal node and is assigned a
class label. Each observation in £ falls into one of the terminal nodes. When
an observation of unknown class is “dropped down” the tree and ends up
at a terminal node, it is assigned the class corresponding to the class label
attached to that node. There may be more than one terminal node with the
same class label. A single-split tree with only two terminal nodes is called
a stump. The set of all terminal nodes is called a partition of the data.

Consider a simple example of recursive partitioning involving two input
variables, X; and X5. Suppose the tree diagram is given in the top panel of
Figure 9.1. The possible stages of this tree are as follows: (1) Is Xp < 617
If the answer is yes, follow the left branch; if no, follow the right branch.
(2) If the answer to (1) is yes, then we ask the next question: Is X; <
02?7 An answer of yes yields terminal node 71 with corresponding region
Ry = {X1 < 03, X2 < 61}; an answer of no yields terminal node 75 with
corresponding region Ry = {X1 > 02, X5 < 601}. (3) If the answer to (1) is
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Rs
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X 2 R3 R4
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R1 RZ

92 94
X1

FIGURE 9.1. Example of recursive partitioning with two input variables
X1 and Xs. Top panel shows a decision tree with five terminal nodes, 71 —7s,
and four splits. Bottom panel shows the partitioning of R? into five regions,
Ry — R, corresponding to the five terminal nodes.
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no, we ask the next question: Is Xo < 657 If the answer to (3) is yes, then
we ask the next question: Is X; < 647 An answer of yes yields terminal
node 73 with corresponding region Ry = {X; < 04,01 < X2 < 65}; if
no, follow the right branch to terminal node 74 with corresponding region
Ry = {X1 > 04,01 < X2 < 03}. (4) If the answer to (3) is no, we arrive
at terminal node 75 with corresponding region Rs = {X2 > 65}. We have
assumed that 6, < 8, and 6; < 65. The resulting 5-region partition of R?
is given in the bottom panel of Figure 9.1. For a classification tree, each
terminal node and corresponding region is assigned a class label.

9.2.1 Example: Cleveland Heart-Disease Data

These data' were obtained from a heart-disease study conducted by the
Cleveland Clinic Foundation (Robert Detrano, principal investigator). For
the study, the response variable is diag (diagnosis of heart disease: buff =
healthy, sick = heart disease). There were 303 patients in the study, 164
of them healthy and 139 with heart disease.

The 13 input variables are age (age in years), gender (male, fem), cp
(chest-pain type: angina=typical angina, abnang=atypical angina, notang
=non-anginal pain, asympt=asymptomatic), trestbps (resting blood pres-
sure), chol (serum cholesterol in mg/dl), fbs (fasting blood sugar < 120
mg/dl: true, false), restecg (resting electrocardiographic results: norm
=normal, abn=having ST-T wave abnormality, hyp=showing probable or
definite left ventricular hypertrophy by Estes’s criteria), thatach (maxi-
mum heart rate achieved), exang (exercise-induced angina: true, false),
oldpeak (ST depression induced by exercise relative to rest), slope (the
slope of the peak exercise ST segment: up, flat, down), ca (number of ma-
jor vessels (0-3) colored by flouroscopy), and thal (no description given:
norm=normal, fix=fixed defect, rev=reversable defect). Of the 303 pa-
tients in the original data set, seven had missing data, and so we reduced
the number of patients to 296 (160 healthy, 136 with heart disease).

The classification tree is displayed in Figure 9.2 (where we used the
entropy measure as the impurity function for splitting). The root node
with 296 patients is split according to whether thal = norm (163 patients)
or thal = fix or rev (133 patients). The node with the 163 patients, which
consists of 127 healthy patients and 36 patients with heart disease, is then
split by whether ca < 0.5 (114 patients), or ca > 0.5 (49 patients). The
node with 114 patients is declared a terminal node for buff because of the
102-12 majority in favor of buff. The node with 49 patients, which consists

1The data can be downloaded from file cleveland.data in the UCI repository
archive.ics.uci.edu/ml/datasets/Heart+Disease.
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of 25 healthy patients and 24 with heart disease, is split by whether cp =
abnang, angina, notang (29 patients) or cp = asympt (20 patients). The
node with 29 patients, which consists of 22 healthy patients and 7 with
heart disease, is split by whether age < 65.5 (7 patients) or age < 65.5
(22 patients). The node with 7 patients is declared a terminal node for
buff because of the 7-0 majority in favor of buff, and the node with 22
patients, which consists of 15 healthy patients and 7 with heart disease, is
split by whether age < 55.5 (13 patients) or age < 55.5 (9 patients). The
node with 13 patients is declared a terminal node for buff because of the
12-1 majority in favor of buff, and the node with 9 patients is declared a
terminal node for sick because of the 6-3 majority in favor of sick. And
SO on.

Thus, we see that there are four paths (sequence of splits) through this
tree for a patient to be declared healthy (buff) and five other paths for
a patient to be diagnosed with heart disease (sick). In fact, there are
10 splits (and 11 terminal nodes) in this tree. The variables used in the
tree construction are thal, ca, cp, age, oldpeak, thatach, and exang.
The resubstitution (or apparent) error rate (i.e., the error rate obtained
directly from the classification tree) is 37/296 = 0.125 (12 sick patients
who are classified as buff and 25 buff patients who are classified as sick).

9.2.2  Tree-Growing Procedure

In order to grow a classification tree, we need to answer four basic ques-
tions: (1) How do we choose the Boolean conditions for splitting at each
node? (2) Which criterion should we use to split a parent node into its two
daughter nodes? (3) How do we decide when a node becomes a terminal
node (i.e., stop splitting)? (4) How do we assign a class to a terminal node?

9.2.3 Splitting Strategies

At each node, the tree-growing algorithm has to decide on which vari-
able it is “best” to split. We need to consider every possible split over all
variables present at that node, then enumerate all possible splits, evaluate
each one, and decide which is best in some sense.

For a description of splitting rules, we need to make a distinction between
ordinal (or continuous) and nominal (or categorical) variables.
Ordinal or Continuous Variable

For a continuous or ordinal variable, the number of possible splits at a
given node is one fewer than the number of its distinctly observed values.
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buff
160/136

=160.5 Ccp=i
thatach¥ 160.5

buff
17/3

sick
5/8

buff
39/7

sick
3/4 710

buff sick
12/1 3/6

FIGURE 9.2. Classification tree for the Cleveland heart-disease data,
where the entropy measure has been used as the tmpurity function. The
nodes (internal and terminal) are classified as buff (terminal nodes are
colored green) or sick (terminal nodes are colored pink) according to the
magjority diagnosis of patients falling into that node. The splitting variables
are displayed along the branches.

In the Cleveland heart-disease data, we have six continuous or ordinal
variables: age (40 possible splits), treatbps (48 possible splits), chol (151
possible splits), thatach (91 possible splits), ca (3 possible splits), and
oldpeak (39 possible splits). The total number of possible splits from these
continuous variables is, therefore, 372.

Nominal or Categorical Variable

Suppose that a particular categorical variable is defined by M distinct
categories, £1,...,0p;. The set S of possible splits at that node for that
variable is the set of all subsets of {¢1,...,¢y}. Denote by 71, and 75 the
left daughter-node and right daughter-node, respectively, emanating from
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a (parent) node 7. If we let M = 4, then there are 2M — 2 = 14 possible
splits (ignoring splits where one of the daughter-nodes is empty). However,
half of those splits are redundant; for example, the split 7, = {¢1} and
Tr = {l2,03,04} is the reverse of the split 7, = {{a, 05,04} and 7 = {{1}.
So, the set S of seven distinct splits is given by the following table:

TL R

b Aol 0y

by Ay, 03,0

ES 61762364

64 61762363
b, by L3, 0
bl Lol
b, 0y ol

In general, there are 2~1 — 1 distinct splits in S for an M-categorical
variable.

In the Cleveland heart-disease data, there are seven categorical variables:
gender (1 possible split), cp (7 possible splits), fbs (1 possible split),
restecg (3 possible splits), exang (1 possible split), slope (3 possible
splits), and thal (3 possible splits). The total number of possible splits
from these categorical variables is, therefore, 19.

Total Number of Possible Splits

We now add the number of possible splits from categorical variables (19)
to the total number of possible splits from continuous variables (372) to get
391 possible splits over all 13 variables at the root node. In other words,
there are 391 possible splits of the root node into two daughter nodes. So,
which split is “best”?

Node Impurity Functions

To choose the best split over all variables, we first need to choose the
best split for a given variable. Accordingly, we define a measure of goodness
of a split.

Let IIy,...,IIx be the K > 2 classes. For node 7, we define the node
impurity function i(T) as

i(r) = o(p(Ll7),-- -, p(K|T)), (9-1)

where p(k|T) is an estimate of P(X € II;|7), the conditional probability
that an observation X is in II; given that it falls into node 7. In (9.1),
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we require ¢ to be a symmetric function, defined on the set of all K-

tuples of probabilities (p1, - -, px) with unit sum, minimized at the points
(1,0,---,0), (0,1,0,---,0), ..., (0,0,---,0,1) and maximized at the point
(%,---, 7). In the two-class case (K = 2), these conditions reduce to a

symmetric ¢(p) maximized at the point p = 1/2 with ¢(0) = ¢(1) = 0.
One such function ¢ is the entropy function,

K

i(r) ==Y p(k|7) log p(k|7), (9-2)

k=1

which is a discrete version of (7.115). When there are two classes, the
entropy function reduces to

i(1) = —plogp — (1 — p)log(1 — p), (9.3)

where we set p = p(1|7). Several other ¢-functions have also been suggested,
including the Gini diversity inder,

i(r) =Y plklr)p(K|r) =1 =3 {p(kI)}*. (9-4)
k

k#k!

In the two-class case, the Gini index reduces to

i(1) =2p(1 - p). (9.5)

This function can be motivated by considering which quadratic polynomial
satisfies the above conditions for the two-class case.

In Figure 9.3, the entropy function and the Gini index are graphed for
the two-class case. For practical purposes, there is not much difference
between these two types of node impurity functions. The usual default in
tree-growing software is the Gini index.

Choosing the Best Split for a Variable

Suppose, at node 7, we apply split s so that a proportion py of the
observations drops down to the left daughter-node 77, and the remaining
proportion pr drops down to the right daughter-node 75.

For example, suppose we have a data set in which the response variable
Y has two possible values, 0 and 1. Suppose that one of the possible splits
of the input variable X; is X; < cvs. X; > ¢, where c is some value of X;.
We can write down the 2 x 2 table in Table 9.1.

Consider, first, the parent node 7. We use the entropy function (9.3) as
our impurity measure. Estimate py, by ny1/ny4 and pg by nyo/nyy, and
then the estimated impurity function is

i(r) = — <£> log, <£) - (E> log, <w) . (9.6)
USSE Nt USSE Nt
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FIGURE 9.3. Node impurity functions for the two-class case. The entropy

function (rescaled) is the red curve, the Gini index is the green curve, and
the resubstitution estimate of the misclassification rate is the blue curve.

Note that i(7) is completely independent of the type of proposed split.
Now, for the daughter nodes, 71, and 7r. For X; < ¢, we estimate py by
ni1/n14+ and pr by nia/ni+, and for X; > ¢, we estimate pr, by no1/nos
and pr by n2a/noy. We then compute

. ni nii ni2 n12
() = —|—)lo — )= —]1lo (—) 9.7
() (n1+> b <"1+) (n1+> b N1y 57)
i) = = (22 o () - (22 1o (222). o)
na4 not na+ not
The goodness of split s at node T is given by the reduction in impurity
gained by splitting the parent node 7 into its daughter nodes, 7 and 7z,

Ai(s,7) = i(r) — pri(tr) — pri(TR). (9.9)

The best split for the single variable X; is the one that has the largest
value of Ai(s,7) over all s € §;, the set of possible distinct splits for X.

Ezample: Cleveland Heart-Disease Data (Continued)

Consider the first variable age as a possible splitting variable at the root
node. There are 41 different values for age, and so there are 40 possible

TABLE 9.1. Two-by-two table for a split on the variable X;, where the
response variable has value 1 or 0.

1 0 Row Total
X]' <c ni1 niz ni4
X;>c N21 N2z N2+

Column Total ny1  ng2 N+
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TABLE 9.2. Two-by-two table for the split on the variable age in the
Cleveland heart disease data: the left branch would be age < 65 and the
right branch would be age > 65.

Buff Sick Row Total

age < 65 143 120 263
age > 65 17 16 33
Column Total 160 136 296

splits. We set up the 2x 2 table, Table 9.2, in which age is split, for example,
at 65.

Using the two-class entropy function as the impurity measure, we com-
pute (9.7) and (9.8), respectively, for the two possible daughter nodes:

i(tr) = —(143/263)log,(143/263) — (120/263) log,(120/263), (9.10)
i(tr) = —(17/33)log.(17/33) — (16/33)log,(16/33), (9.11)

whence, i(77) = 0.6893 and i(7r) = 0.6927. Furthermore, from (9.6),

i(r) = —(160/296) log, (160/296) — (136,/296) log, (136/296) = 0.6899.
(9.12)
Using (9.9), the goodness of this split is given by:

Ai(s,7) = 0.6899 — (263/296)(0.6893) — (33/296)(0.6927) = 0.000162.

(9.13)
If we repeat these computations for all 40 possible splits for the variable
age, we arrive at Figure 9.4. In the left panel, we plot i(7z) (blue curve)
and i(7g) (red curve) against each of the 40 splits; for comparison, we have
the constant value of i(7) = 0.6899. Note the large drop in the plot of i(7r)
at the split age > 70. In the right panel, we plot Ai(s,7) against each of
the 40 splits s. The largest value of Ai(s,7) is 0.04305, which corresponds
to the split age < 54.

Recursive Partitioning

In order to grow a tree, we start with the root node, which consists of the
learning set £. Using the “goodness-of-split” criterion for a single variable,
the tree algorithm finds the best split at the root node for each of the
variables, X1 to X,.. The best split s at the root node is then defined as the
one that has the largest value of (9.9) over all r single-variable best splits
at that node.

In the case of the Cleveland heart-disease data, the best split at the root
node (and corresponding value of Ai(s, 7)) for each of the 13 variables is
listed in Table 9.3. The largest value is 0.147 corresponding to the variable
thal. So, for these data, the best split at the root node is to split the
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FIGURE 9.4. Choosing the best split for the age variable in the Cleveland
heart-disease study. The impurity measure is the entropy function. Left
panel: Plots of i(1r,) (blue curve), and i(Tr) (red curve) against age at
split. Note the sharp dip in the i(Tr) plot at the split age > 70. Right
panel: Plot of the goodness of split s, Ai(s,T), against age at split. The
peak of this curve corresponds to the split age < 54.

variable thal according to norm vs. (fix, rev); that is, first separate the 163
normal patients from the 133 patients who have (either fixed or reversible)
defects for the variable thal.

We next split each of the daughter nodes of the root node in the same way.
We repeat the above computations for the left daughter node, except that
we consider only those 163 patients having thal = norm, and then consider
the right daughter node, except we consider only those 133 patients having
thal = fix or rev. When those splits are completed, we continue to split
each of the subsequent nodes. This sequential splitting process of building
a tree layer-by-layer is called recursive partitioning. If every parent node
splits into two daughter nodes, the result is called a binary tree. If the
binary tree is grown until none of the nodes can be split any further, we
say the tree is saturated. It is very easy in a high-dimensional classification
problem to let the tree get overwhelmingly large, especially if the tree is
allowed to grow until saturation.

TABLE 9.3. Determination of the best split at the root node for the Cleve-
land heart-disease data. The impurity measure is the entropy function. Fach
input variable is listed together with its mazimum value of Ai(s,T) over all
possible splits of that variable.

age gender cp trestbps chol fbs restecg
0.043 0.042 0.133 0.011 0.011  0.00001 0.015
thatach  exang  oldpeak slope ca thal

0.093 0.093 0.087 0.077 0.124 0.147




292 9. Recursive Partitioning and Tree-Based Methods

One way to counter this type of situation is to restrict the growth of the
tree. This was the philosophy of early tree-growers. For example, we can
declare a node to be terminal if it fails to be larger than a certain critical
size; that is, if n(7) < Nmin, where n(7) is the number of observations
in node 7 and np, is some previously declared minimum size of a node.
Because a terminal node cannot be split into daughter nodes, it acts as
a brake on tree growth; the larger the value of nyi,, the more severe the
brake. Another early action was to stop a node from splitting if the largest
goodness-of-split value at that node is smaller than a certain predetermined
limit. These stopping rules, however, do not turn out to be such good ideas.
A better approach (Breiman et al., 1984) is to let the tree grow to saturation
and then “prune” it back; see Section 9.2.6.

How do we associate a class with a terminal node? Suppose at terminal
node 7 there are n(7) observations, of which nj(7) are from class I,
k =1,2,..., K. Then, the class which corresponds to the largest of the
{nr(7)} is assigned to 7. This is called the plurality rule. This rule can be
derived from the Bayes’s rule classifier of Section 8.5.1, where we assign
the node 7 to class II; if p(i|7) = maxy p(k|T); if we estimate the prior
probability m by ng(7)/n(7), k =1,2,..., K, then this boils down to the
plurality rule.

9.2.4 Example: Pima Indians Diabetes Study

This Indian population lives near Phoenix, Arizona. All patients listed
in this data set? are females at least 21 years old of Pima Indian heritage.
There are two classes: diabetic, if the patient shows signs of diabetes
according to World Health Organization criteria (i.e., if the 2-hour post-
load plasma glucose was at least 200 mg/dl at any survey examination, or
if found during routine medical care), and normal. In the original data,
there were 500 normal subjects and 268 diabetic subjects.

There are eight input variables: npregnant (number of times pregnant),
bmi (body mass index, (weight in kg)/(height in m)?), glucose (plasma
glucose concentration at 2 hours in an oral glucose tolerance test), pedigree
(diabetes pedigree function), diastolic.bp (diastolic blood pressure, mm
Hg), skinfold.thickness (triceps skin fold thickness, mm), insulin (2-
hour serum insulin, pU/ml), and age (age in years). We removed any
subject with a nonsense value of zero for the variables glucose, bmi,
diastolic.bp, skinfold.thickness; this reduced the data set to 532 pa-
tients (from 768), with 355 normal subjects and 177 diabetic subjects.

2These data are available on the book’s website (file pima) and are also available from
the UCI website archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.



9.2 Classification Trees 293

diabetic
71/118

glucose>x]57.5

normal

diabetic
198/16 12/64

diabetic
2/18

pedigree0.285

pedigree>g0.285

normal diabetic
20/7 2/6

normal diabetic normal
7/3_ 5/20 12/3

normal diabetic
10/3 3/5

FIGURE 9.5. A classification tree for the Pima Indians diabetes data,
where the impurity measure is the Gini index. The terminal nodes are col-
ored green for normal and pink for diabetic. The splitting variables are
given on the branches of each split, and the number in each node is given as
number of normal /number of diabetic, with the node classification given
by the majority rule. Nodes were not split further unless they contained at
least 10 subjects.

We also did not use the variable insulin because it had so many zeros
(374 in the original data).

A classification tree was grown for the Pima Indians diabetes data using
Gini’s impurity measure (9.5). The classification tree appears in Figure
9.5, where nodes are declared to be terminal if they contain fewer than
10 patients. We see 14 splits and 15 terminal nodes; a patient is declared
to be normal at 8 terminal nodes and diabetic at 7 terminal nodes. The
assignment of each terminal node into “normal” or “diabetic” depends
upon the majority rule at that node; the numbers of normal and diabetic
patients in the learning set that fall into each terminal node are displayed
at that node.
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9.2.5 FEstimating the Misclassification Rate

Next, we compute an estimate of the within-node misclassification rate.
The resubstitution estimate of the misclassification rate R(7) of an obser-
vation in node 7 is

r(r)=1- mgxp(k‘h'), (9.14)

which, for the two-class case, reduces to
r(7) =1 —max(p,1 — p) = min(p, 1 — p). (9.15)

The resubstitution estimate (9.15) in the two-class case is graphed in Fig-
ure 9.3 (the blue curve). If p < 1/2, the resubstitution estimate increases
linearly in p, and if p > 1/2, it decreases linearly in p. Because of its poor
properties (e.g., nondifferentiability), (9.15) is not used much in practice.

Let T be the tree classifier and let T = {71, 72,...,71} denote the set
of all terminal nodes of T'. We can now estimate the true misclassification

rate,
L

R(T) = ZR(T)P(T) = R()P(r) (9.16)

TeT =1

for T', where P(7) is the probability that an observation falls into node 7.
If we estimate P(7y) by the proportion p(7¢) of all observations that fall
into node 7y, then, the resubstitution estimate of R(T) is

L L

R(T) =Y r(r)p(me) = 3 R7“(2), (0.17)

{=1 {=1

where R"¢(7¢) = r(7¢)p(72)-
Of the 532 subjects in the Pima Indians diabetes study, the classification
tree in Figure 9.5 misclassifies 29 of the 355 normal subjects as diabetic,

whereas of the 177 diabetic patients, 46 are misclassified as normal. So,
the resubstitution estimate is R™(T) = 75/532 = 0.141.

The resubstitution estimate R"¢(T'), however, leaves much to be desired
as an estimate of R(T). First, bigger trees (i.e., more splitting) have smaller
values of R™¢(T); that is, R"®(T") < R"(T), where T" is formed by splitting
a terminal node of T'. For example, if a tree is allowed to grow until every
terminal node contains only a single observation, then that node is classified
by the class of that observation and R"¢(T") = 0. Second, using only the
resubstitution estimate tends to generate trees that are too big for the given
data. Third, the resubstitution estimate R"°(T) is a much-too-optimistic
estimate of R(T'). More realistic estimates of R(T) are given below.
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9.2.6 Pruning the Tree

The Breiman et al. (1984) philosophy of growing trees is to grow the tree
“large” and then prune off branches (from the bottom up) until the tree is
the “right size.” A pruned tree is a subtree of the original large tree. How
to prune a tree, then, is the crucial part of the process. Because there are
many different ways to prune a large tree, we decide which is the “best” of
those subtrees by using an estimate of R(T').

The pruning algorithm is as follows:

1. Grow a large tree, say, Tiax, where we keep splitting until the nodes
each contain fewer than n.,;, observations;

2. Compute an estimate of R(7) at each node 7 € Tiyax;

3. Prune Ty.x upwards toward its root node so that at each stage of
pruning, the estimate of R(T') is minimized.

Instead of using the resubstitution measure R"¢(T") as our estimate of
R(T), we modify it for tree pruning by adopting a regularization approach.
Let a > 0 be a complexity parameter. For any node 7 € T', set

R.(7) = R™(7) + a. (9.18)

From (9.18), we define a cost-complexity pruning measure for a tree as
follows:

L
Ro(T) = Ra(m) = R™(T) + a|T], (9.19)
(=1

where |f | = L is the number of terminal nodes in the subtree T' of Tiax.
Think of o|T| as a penalty term for tree size, so that R.(T") penalizes
R™(T) for generating too large a tree. For each «, we then choose that
subtree T'(a) of Tinax that minimizes R, (T):

R.(T(a)) = r%in R, (T). (9.20)

If T () satisfies (9.20), then it is called a minimizing subtree (or an optimally-
pruned subtree) of Tax. For any «, there may be more than one minimizing
subtree of Tiax-

The value of o determines the tree size. When « is very small, the penalty
term will be small, and so the size of the minimizing subtree T'(«), which
will essentially be determined by R"¢(T(«)), will be large. For example,
suppose we set & = 0 and grow the tree T« so large that each terminal
node contains only a single observation; then, each terminal node takes on
the class of its solitary observation, every observation is classified correctly,
and R™(Tmax) = 0. So, Timax minimizes Ro(7T'). As we increase «, the
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minimizing subtrees T'(«v) will have fewer and fewer terminal nodes. When
« is very large, we will have pruned the entire tree Ti,ax, leaving only the
root node.

Note that although « is defined on the interval [0,00), the number of
subtrees of T is finite. Suppose that, for @ = a;, the minimizing subtree
is Th = T(a1). As we increase the value of «, Ty continues to be the
minimizing subtree until a certain point, say, &« = s, is reached, and a
new subtree, Th = T'(a2), becomes the minimizing subtree. As we increase
« further, the subtree T5 continues to be the minimizing subtree until a
value of « is reached, o = a3, say, when a new subtree T5 = T'(«3) becomes
the minimizing subtree. This argument is repeated a finite number of times
to produce a sequence of minimizing subtrees 17,75, T3, . . ..

How do we get from Thax to 717 Suppose the node 7 in the tree Tiyax
has daughter nodes 77, and 7g, both of which are terminal nodes. Then,

R"™(1) > R™(1) + R"(7R) (9.21)

(Breiman et al., 1984, Proposition 4.2). For example, in the classification
tree for the Pima Indians diabetes study (Figure 9.5), the lowest subtree
has a root node with 13 normals and 8 diabetics, whereas its left daughter
node has 10 normals and 3 diabetics and its right daughter node has 3
normals and 5 diabetics. Thus, R™(7) = 8/532 > R"°(1z) + R™(Tr) =
(3+43)/532 = 6/532. If equality occurs in (9.21) at node 7, then prune the
terminal nodes 77, and 7 from the tree. Continue this pruning strategy
until no further pruning of this type is possible. The resulting tree is T7.

Next, we find 75. Let 7 be any nonterminal node of Ty, let 7% be the
subtree whose root node is 7, and let Ty = {7{,73,...,77_} be the set of
terminal nodes of T%-. Let

L.
RT,)= Y R(r)=Y_ R*(r). (9.22)
€T, =1

Then, R™(7) > R"*(T:) (Breiman et al., 1984, Proposition 3.8). For exam-
ple, from Figure 9.5, let 7 be the nonterminal node on the right-hand side
of the tree near the center of the tree having 18 normals and 26 diabetics,
and let T'; be the subtree with 7 as its root node. Then, R™¢(7) = 18/532 >
R™(T;) = (3+3+3+2)/532=11/532. Now, set

Ro(T;) = R(T;) + o| Ty | (0.23)

As long as R, (7) > Ro(T;), the subtree T, has a smaller cost-complexity
than its root node 7, and, therefore, it pays to retain 7T’.. For the previous
example, we retain T as long as RL°(7) = 18/532 + a > 11/532 + 4o =
Rre(T5), or o < 7/(3 - 532) = 0.0044.
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Substituting (9.18) and (9.23) into this condition and solving for a yields

_ R - BT

(6% —
71

(9.24)

So, the right-hand side of (9.24), which is positive, computes the reduction

in R™ (due to going from a single node to the subtree with that node as

root) relative to the increase in the number of terminal nodes. For 7 € T1,

define

B R'fe(,r) . RT’e(TI’T)
|77 —1

g(7) -7 ¢ T(a), (9-25)
where Ti ; is the same as T,. Then, ¢1(7) can be regarded as a critical
value for a: as long as ¢1(7) > a1, we do not prune the nonterminal nodes
TeT.
We define the weakest-link node 71 as the node in T} that satisfies
T1) = mi . 2

91(71) = min g, (7) (9.26)
As « increases, 71 is the first node for which R, (7) = R4 (T:), so that 71
is preferred to T . Set az = ¢1(71) and define the subtree T = T'(a2) of
Ty by pruning away the subtree T (so that 71 becomes a terminal node)
from T7.

To find T3, we find the weakest-link node 7o € Ty through the critical
value

_ R’I"S(T) _ R’I”E(TZ’T)

o1 . TET(), 7¢T(az), (9.27)

92(7)

where T5 - is that part of T which is contained in 7T5. We set

a3 = g2(T2) = min ga(7), (9.28)
TET,
and define the subtree T3 of T5 by pruning away the subtree T;Z (so that 7o
becomes a terminal node) from T». And so on for a finite number of steps.
As we noted above, there may be several minimizing subtrees for each
a. How do we choose between them? For a given value of o, we call T'(«)
the smallest minimizing subtree if it is a minimizing subtree (i.e., satifies
(9.20)) and satisfies the following condition:

it Ry(T) = Ro(T(x)),then T > T'(«). (9.29)

In (9.29), T > T'(c) means that T'(«) is a subtree of T" and, hence, has fewer
terminal nodes than T'. This condition says that, in the event of any ties,
T(«) is taken to be the smallest tree out of all those trees that minimize
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R,,. Breiman et al. (1984, Proposition 3.7) showed that for every «, there
exists a unique smallest minimizing subtree.

The above construction gives us a finite increasing sequence of complexity
parameters,
D= <o <as <agz<---<apy, (9.30)

which corresponds to a finite sequence of nested subtrees of Tax,
Twax =To =Ty = To = T5 > -+ =T, (9.31)

where T, = T(«g) is the unique smallest minimizing subtree for o €
[ak, agt1), and Ty is the root-node subtree. We start with 77 and in-
crease a until o = o determines the weakest-link node 71; we then prune
the subtree T;l with that node as root. This gives us T5. We repeat this
procedure by finding o« = a3 and the weakest-link node 7> in 75 and prune
the subtree 7~ with that node as root. This gives us T5. This pruning
process is repeated until we arrive at Thy.

Ezxample: Pima Indians Diabetes Study (Continued)

The sequence of seven pruned classification trees, T}, corresponding to
their critical values, oy, are listed in Table 9.4. The tree displayed in Figure
9.5 has 14 splits (and, hence, 15 terminal nodes).

Any value of o < 0.0038 will produce a tree with 15 terminal nodes.
When o = 0.0038, the classification tree is pruned to have 11 splits (and 12
terminal nodes), which will remain the same for all 0.0038 < « < 0.0047.
Increasing « to 0.0047 prunes the tree to 9 splits (and 10 terminal nodes).
And so on, until « is increased above 0.0883 when the tree consists only of
the root node.

9.2.7 Choosing the Best Pruned Subtree

Thus far, we have constructed a finite sequence of decreasing-size subtrees
Ty,T5,T3,..., Ty by pruning more and more nodes from Ti,.x. When do
we stop pruning? Which subtree of the sequence do we choose as the “best”
pruned subtree?

Choice of the best subtree depends upon having a good estimate of the
misclassification rate R(T})) corresponding to the subtree Tj. Breiman et
al. (1984) offered two estimation methods: use an independent test sample
or use cross-validation. When the data set is very large, use of an inde-
pendent test set is straightforward and computationally efficient, and is,
generally, the preferred estimation method. For smaller data sets, cross-
validation is preferred.
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TABLE 9.4. Pruned classification trees for the Pima Indians diabetes
study. The impurity function is the Gini index. By increasing the complezity
parameter o, seven classification trees, Ty, k = 1,2,...,6, are derived,
where the tree details are listed so that Ty > Tiy1; i.e., largest tree to
smallest tree. Also listed for each tree are the mumber of terminal nodes
(1Tk|), resubstitution error (R"¢), and 10-fold cross-validation (CV) error
(RCV/10). The 4 values on the C'V error are the C'V standard errors (@)
The CV error estimate and its estimated standard error produce random
values according to the random CV-partition of the data.

ar |Tk| R’I‘E(Tk) RCV/IO (Tk)

15 0.141  0.258 £+ 0.019

0.0038 12 0.152  0.233 £+ 0.018
0.0047 10 0.162  0.233 £ 0.018
0.0069 6 0.190 0.235 £+ 0.018
0.0085 4 0.207  0.256 £+ 0.019
0.0188 2 0.244  0.256 4+ 0.019
0.0883 1 0.333  0.333 £+ 0.020

N OO W NS

Independent Test Set

Randomly assign the observations in the data set D into a learning set
L and a test set 7, where D = LUT and £LN7T = (). Suppose there are nr
observations in the test set and that they are drawn independently from
the same underlying distribution as the observations in £. Grow the tree
Thax from the learning set only, prune it from the bottom up to give the
sequence of subtrees Ty >~ To = T35 = --- = Ty, and assign a class to each
terminal node.

Take each of the ny test-set observations and drop it down the subtree
T}. Each observation in 7 is then classified into one of the different classes.
Because the true class of each observation in 7 is known, we estimate R(T})
by R'(T}), which is (9.19) with « = 0; that is, R*(Ty) = R"*(T%), the
resubstitution estimate computed using the independent test set. When
the costs of misclassification are identical for each class, R**(T}) is the
proportion of all test set observations that are misclassified by T%. These
estimates are then used to select the best-pruned subtree T, by the rule

R™(T,) = min R"™(Ty), (9.32)

and R'(T,) is its estimated misclassification rate.

We estimate the standard error of R*(T') as follows. When we drop the
test set T down a tree T, the chance that we misclassify any one of those
observations is p* = R(T). Thus, we have a binomial sampling situation
with n7 Bernoulli trials and probability of success p*. If p = R'(T) is
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the proportion of misclassified observations in 7, then, p is unbiased for p*
and the variance of p is p*(1 — p*)/ny. The standard error of R*(T) is,
therefore, estimated by

ts ts 1/2

Se(re(r)) = { 0=

Cross-Validation

In V-fold cross-validation (CV/V'), we randomly divide the data D into
V roughly equal-size, disjoint subsets, D = UL/:l D,, where D, N D, = 0,
v # v, and V is usually taken to be 5 or 10. We next create V different
data sets from the {D,} by taking £, = D — D, as the vth learning set
and T, = D, as the vth test set, v =1,2,..., V. If the {D,} each have the
same number of observations, then each learning set will have (%) x 100
percent of the original data set.

Grow the vth “auxilliary” tree TISQX using the vth learning set £, v =
1,2,...,V. Fix the value of the complexity parameter a. Let T(") () be the
best pruned subtree of Té{Qx, v=1,2,..., V. Now, drop each observation in
the vth test set 7, down the tree T(")(a), v = 1,2,..., V. Let ng’) (o) denote
the number of jth class observations in 7, that are classified as being from
the ith class, 4,5 = 1,2,..., K, v =1,2,...,V. Because D = nglﬂ, is a
disjoint sum, the total number of jth class observations that are classified

as being from the ith class is n;;(a) = 21‘1;1 ng)(a), i,j=12,... K. If
we set n; to be the number of observations in D that belong to the jth

class, j =1,2,..., K, and assume that misclassification costs are equal for
all classes, then, for a given «,

REVIV(T(a)) =nt Z Z nj(a) (9.34)

i=1 j=1

is the estimated misclassification rate over D, where T'(«) is a minimizing
subtree of Thax.

The final step in this process is to find the right-sized subtree. Breiman et
al. (1984, p. 77) recommend evaluating (9.34) at the sequence of values o) =
@k 1, where o is the geometric midpoint of the interval [ag, az41) in
which T'(«) = Tk Set

REVIV(Ty,) = REVIV(T (o). (9.35)
Then, select the best-pruned subtree T, by the rule:

REVIV(T,) = min REVIV(Ty), (9.36)
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and use REV/V(T,) as its estimated misclassification rate.

Deriving an estimated standard error of the cross-validated estimate of
the misclassification rate is more complicated than using a test set. The
usual way of sidestepping issues of non-independence of the summands
in (9.29) is to ignore them and pretend instead that independence holds.
Actually, this approximation appears to work well in practice. See Breiman
et al. (1984, Section 11.5) for details.

It is usual to take V' = 10 for 10-fold CV. The leave-one-out CV method
(i.e., V.= n) is not recommended because the resulting auxilliary trees will
be almost identical to the tree constructed from the full data set, and so
nothing would be gained from this procedure.

The One-SE Rule

To overcome possible instability in selecting the best-pruned subtree,
Breiman et al. (1984, Section 3.4.3) propose an alternative rule.

Let R(T.) = ming R(Ty) denote the estimated misclassification rate,
calculated from either a test set (i.e., R*(T%)) or cross-validation (i.e.,
RCEV/V(T,)). Then, we choose the smallest tree T, that satisfies the “1-SE
rule,” namely,

R(T..) < R(T.) + SE(R(T.)). (9.37)

This rule appears to produce a better subtree than using T, because it re-
sponds to the variability (through the standard error) of the cross-validation
estimates.

Ezample: Pima Indians Diabetes Study (Continued)

For example, we apply the 1-SE rule to the Pima Indians diabetes study.
From Table 9.4, the 1-SE rule yields a minimum of CV error + SE = 0.233
+ 0.018 = 0.251, which leads to the choice of a classification tree with 9
splits (10 terminal nodes) based upon cross-validation. The corresponding
pruned classification tree is displayed in Figure 9.6.

A diagnosis of diabetes is given to those subjects who have one of the
following symptoms:

1. plasma glucose level at least 157.5;

2. plasma glucose level between 127.5 and 157.5, bmi at least 30.2, and
age at least 42.5 years;

3. plasma glucose level between 127.5 and 157.6, bmi at least 30.2, age
less than 42.5 years, and a pedigree at least 0.285;

4. plasma glucose level between 96.5 and 127.5, age at least 28.5 years,
a pedigree at least 0.62, and bmi at least 26.5.
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glucose>>427.5

diabetic
71/118

157.5

age</28.5 glucose
glucose><157.5

normal

diabetic
198/16 12/64

pdigree %=0.285

normal  diabetic normal  diabetic
713 5120 1213 18/26

FIGURE 9.6. A pruned classification tree for the Pima Indians diabetes
data, with 9 splits and 10 terminal nodes, where the impurity measure is
the Gini index. The terminal nodes are colored green for normal and pink
for diabetic.

This tree has a resubstitution error rate of 86/532 = 0.162 and 10-fold CV
misclassification rate of 0.233 £+ 0.018.

9.2.8 FExample: Vehicle Silhouettes

Consider the vehicle data® of Section 8.7, which were collected to study
how well 3D objects could be distinguished by their 2D silhouette images.
There are four classes of objects, each of which was a CORGI model vehi-
cle: an Opel Manta car (opel, 212 images), a Saab 9000 car (saab, 217
images), a double-decker bus (bus, 218 images), and a Chevrolet van (van,
199 images), giving a total of 846 images. Each object was viewed by a cam-
era from many different angles and elevations. The variables are scaled
variance, skewness, and kurtosis about the major/minor axes, and

3These data can be found in the UCI Machine Learning Repository website
archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes).
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size of tree
1 2 3 5 6 7 11 13 15 23 27 30 32 33 35 38
| | | | | | | | | |

X-val Relative Error

Inf 011 0.037 0.011 0.0071 0.0052 0.0036 0.0013
cp

FIGURE 9.7. Plot of 10-fold CV results of different size classification
trees for the vehicle data. The cp-value is o divided by the resubstitution
error rate estimate, R"™¢(Ty) = 628/846 = 0.742, for the root tree, and the
vertical axis is the corresponding CV error rate also divided by R"(Tp).
The vertical lines indicate = two SE for each CV error estimate. The rec-
ommended tree size has cp equal to the smallest tree with the minimum CV
error; in this case, 11 terminal nodes.

heuristic measures such as hollows ratio, circularity, elongatedness,
rectangularity, and compactness of the silhouettes.

Based upon the One-SE rule, and the resulting complexity-parameter
plot in Figure 9.7, the most appropriate classification tree has 10 splits with
11 terminal nodes, with a resubstitution error rate of 0.3535 x 0.74232 =
0.262, and CV error rate of 0.299 + 0.0157. In Figure 9.8, we have displayed
the pruned classification tree with 10 splits and 11 terminal nodes.

9.3 Regression Trees

Suppose £ = {(xi,yi),? = 1,2,...,n}, where the y; are measurements
made on a continuous response variable Y, and the x; are measurements
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saab
147/148/87/0,

van
§5/69/131/199

opel

bus van
138/136/1/0 911218610 23/5/106

ogel saab
1271930000 11/43/1/0

opel
17111013

opel bus
16030 21171200 11720000

saab van
1211900 27/0/18

FIGURE 9.8. A pruned classification tree for the vehicle data. There
are 12 input variables, 846 observations, and four classes of vehicle models:
opel (pink), saab (yellow), bus (green), and van (blue), whose numbers at
each node are given by a/b/c/d, respectively, There are 10 splits and 11
terminal nodes in this tree. The resubstitution error rate is 0.262.

on an input r-vector X. We assume that Y is related to X as in multiple
regression (see Chapter 5), and we wish to use a tree-based method to
predict Y from X.

Regression trees are constructed in a similar way as are classification
trees, and the method is generally referred to as recursive-partitioning re-
gression. In a classification tree, the class of a terminal node is defined as
that class that commands a plurality (a majority in the two-class case) of
all the observations in that node, where ties are decided at random. In a
regression tree, the output variable is set to have the constant value Y (7)
at terminal node 7. Hence, the tree can be represented as an r-dimensional
histogram estimate of the regression surface, where r is the number of input
variables, X1, Xo,..., X,.
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9.3.1 The Terminal-Node Value

How do we find y(7)? Recall (from Chapter 5) that the resubstitution
estimate of prediction error is

RT@

BI’—‘

Z - 3% (9.38)

where g; = [i(x;) is the estimated value of the predictor at x;. For 7; to be
constant at each node, the predictor has to have the form

L
ﬂ(X) = Z xe'r Zy XGTg]7 (939)

where Ixcr,] is equal to one if x € 7, and zero otherwise. For x; € 77, R"([i)
is minimized by taking 7; = y(7/) as the constant value y(7¢), where g(7¢)
is the average of the {y;} for all observations assigned to node 7¢; that is,

(9.40)

x1 €Ty

where n(7) is the total number of observations in node 7,. Changing no-
tation slightly to reflect the tree structure, the resubstitution estimate is

L
R"™(T Z > (i =Y R™(m), (9.41)
Z 1 x;€Te (=1
where )
R"™(me) = ~ > (Wi = 9(m))* = p(re)s*(ma), (9.42)

s2(1y) is the (biased) sample variance of all the y; values in node 7y,
and p(7¢) = n(1¢)/n is the proportion of observations in node 7y. Hence,

R(T) = Y0, p(re)s? (7).

9.3.2  Splitting Strategy

How do we determine the type of split at any given node of the tree?
We take as our splitting strategy at node 7 € T the split that provides the
biggest reduction in the value of R"*(T"). The reduction in R"¢(7) due to a
split into 77, and Tp is given by

AR"(1) = R™(7) — R"™(11) — R"(TRr); (9.43)
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the best split at 7 is then the one that maximizes AR (7). The result
of employing such a splitting strategy is that the best split will divide up
observations according to whether Y has a small or large value; in general,
where splits occur, we see either §(rz) < §(7) < §(7r) or its reverse with
y(7r) and g(7r) interchanged.

We note that finding 77, and 7 to maximize AR"(7) is equivalent to
minimizing R"*(71,) + R"°(7r). From (9.42), this boils down to finding 7,
and 7 to solve

min {p(r.)s%(2) + p(7r)s*(TR)}, (9.44)

TL TR

where p(71,) and p(7g) are the proportions of observations in 7 that split
to 71, and TR, respectively.

9.3.3  Pruning the Tree

The method for pruning a regression tree incorporates the same ideas as
is used to prune a classification tree.

As before, we first grow a large tree, Tihax, by splitting nodes repeatedly
until each node contains fewer than a given number of observations; that
is, until n(7) < nyip for each 7 € T, where we typically set nyin = 5.

Next, we set up an error-complexity measure,
Ro(T) = R™(T) + /T, (9.45)

where o > 0 is a complexity parameter. Use R, (T) as the criterion for
deciding when and how to split, just as we did in pruning classification
trees. The result is a sequence of subtrees,

Tmax:TO>T1>T2>T3>"'>TM, (946)
and an associated sequence of complexity parameters,
0=y <o <a <asz<---<aum, (9.47)

such that for a € [, agy1), Tk is the smallest minimizing subtree of Thyax.

9.3.4 Selecting the Best Pruned Subtree
We estimate R(T};) by using an independent test set or by cross-validation.

The details follow those in Section 9.2.6.
For an independent test set, 7, an estimate of R(T}) is given by

. 1 -
R™(Ty) = o E (yi — e (x:))?, (9.48)
T (xi,y:)€T
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where ny is the number of observations in the test set and fir(x) is the
estimated prediction function associated with subtree T}.

For a V-fold cross-validated estimate of R(T}), we first construct the
minimal error-complexity subtrees 7'( )(a), v=12,...,V, parameterized

by a. Set aj, = \/o0g1 and let A(U)( ) denote the estimated prediction
function associated with the subtree T()(a} ). The V-fold CV estimate of
R(T},) is given by

\4
REVIV(T) =n™' )" (yi — 1L (x))2. (9.49)
v=1 (xi,y:) €T

We usually select V' = 10 for a 10-fold CV estimate in which we split the
learning set into 10 subsets, use 9 of those 10 subsets to grow and prune
the tree, and then use the omitted subset to test the results of the tree.

Given the sequence of subtrees {T}}, we select the smallest subtree T.
for which
R(T..) < R(T.) + SE(R(T.)), (9.50)

where ITB( T.) = min R(Tk) is the estimated prediction error calculated

using using either an independent test set (i.e., R*(7T)) or cross-validation
(i.e., REVIV(T.)).

9.3.5 Fxample: 1992 Major League Baseball Salaries

As an example of a regression tree, we use data on the salaries of Major
League Baseball (MLB) players for 1992 (Watnik, 1998).* The data consist
of n = 337 MLB players who played at least one game in both the 1991
and 1992 seasons, excluding pitchers. The interesting aspect of these data
is that a player’s “value” is judged by his performance measures, which
in turn could be used to determine his salary the next year or possibly to
enable him to change his employer.

The output variable is the 1992 salaries (in thousands of dollars) of these
players, and the input variables are the following performance measures
from 1991: BA (batting average), OBP (on-base percentage), Runs (number
of runs scored), Hits (number of hits), 2B (number of doubles), 3B (number
of triples), HR (number of home runs), RBI (number of runs batted in), BB
(number of bases on balls or walks), SO (number of strikeouts), SB (number
of stolen bases), and E (number of errors made). Also included as input

4These data can be found at the website of the Journal of Statistics Education,
www.amstat.org/publications/jse/jse_data_archive.html. Sources for these data are
CNN/Sports Illustrated, Sacramento Bee (15th October 1991), The New York Times
(19th November 1992), and the Society for American Baseball Research.
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FIGURE 9.9. Plot of 10-fold CV results of different size regression trees
for 1992 baseball salary data. The cp-value is o divided by the resubstitution
estimate, R"¢(Ty), for the root tree, and the vertical azis is the CV error
also divided by R™(Ty). The vertical lines indicate £ two SE for each CV
error estimate. The recommended amount of pruning is to set cp equal to
the smallest tree with the minimum CV error; in this case, 11 terminal
nodes.

variables are the following four indicator variables: FAE (indicator of free-
agent eligibility), FA (indicator of free agent in 1991/92), AE (indicator of
arbitration eligibility), A (indicator of arbitration in 1991/92). These four
variables indicated how free each player was to move to other teams. A
player’s BA is the ratio of number of hits to the total number of “at-bats”
for that player (whether resulting in a hit or an out). The OBP is the ratio
of number of hits plus the number of walks to the number of hits plus the
number of walks plus the number of outs. For reference, a BA above 0.3
is very good, and an OBP above 0.4 is excellent. An RBI occurs when a
runner scores as a direct result of a player’s at-bat.

The plot of the CV results for this example is given in Figure 9.9, where
the minimum value of the CV error occurs for a tree size of 10 terminal
nodes. The pruned regression tree with 10 splits and 11 terminal nodes
corresponding to the minimum 1-SE rule is given in Figure 9.10. We see
from the terminal node on the right-hand side of the tree that the 14 play-
ers who score at least 46.5 runs have at least 94.5 RBIs, and are eligible
for free-agency to earn the highest average salary ($3,897,214). The low-
est average salary ($232,898), which is made by 108 players, is located at
the terminal node on the left-hand side of the tree. We also see that per-
forming well on at least one measure produces substantial differences in
average salary. The resubstitution estimate (9.41) of prediction error for
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FIGURE 9.10. Pruned regression tree for 1992 baseball salary data. The
label of each node indicates the mean salary, in thousands of dollars, for
the number n of players who fall into that node.

this regression tree is R™¢(T') = $341, 841, the cross-validation estimate of
prediction error is $549,217, and the cross-validation standard deviation is
$74,928. By comparison, regressing Salary on the 15 input variables in a
multiple regression yields a residual sum of squares of $155,032,181 and a
residual mean square of $482,966 based upon 321 df.

9.4 Extensions and Adjustments

9.4.1 Multivariate Responses

Some work has been carried out on constructing classification trees for
multivariate responses, especially where each response is binary (Zhang,
1998). In such cases, the measure of within-node homogeneity at node 7
for a single binary variable is generalized to a scalar-valued function of a
matrix argument. Examples include —log|V .|, where V., is the within-
node sample covariance matrix of the s binary responses at node 7, and
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a node-based quadratic form in V, the covariance matrix derived from
the root node. The cost-complexity of tree T is then defined as R, (T) in
(9.19), where R"¢(T) is a within-node homogeneity measure summed over
all terminal nodes. When dealing with multivariate responses, it is clear
from an applied point of view that the amount of data available for tree
construction has to be very large.

9.4.2  Survival Trees

Tree-based methods for analyzing censored survival data have become
very useful tools in biomedical research, where they can identify prognostic
factors for predicting survival (see, e.g., Intrator and Kooperberg, 1995).
The resulting trees are called survival trees (or conditional inference trees).
Survival data usually take the form of time-to-death but can be more gen-
eral than that, such as time to a particular event to occur. Censored survival
data occur when patients live past the conclusion of the study, leave the
study prematurely, or die during the period of the study from a disease not
connected to the one being studied, and survival analysis has to take such
conditions into account in the inference process.

When using tree-based methods to analyze censored survival data, it is
necessary to choose a criterion for making splitting decisions. There are
several splitting criteria, which can be divided into two types depending
upon whether one prefers to use a “within-node homogeneity” measure or
a “between-node heterogeneity” measure. Most applications of the former
method (see, e.g., Davis and Anderson, 1989) are parametrically based;
they typically incorporate a version of minus the log-likelihood loss func-
tion, where the versions differ in the loss function used and, thus, how they
represent the model for the observed data likelihood within the nodes.

The first application of recursive partitioning to the analysis of censored
survival data (Gordon and Olshen, 1985) used a more nonparametric ap-
proach, basing their tree-construction on within-node Kaplan-Meier esti-
mates of the survival distribution, and then comparing those curve esti-
mates to within-node Kaplan-Meier estimates of truly homogeneous nodes.
An example of the latter method (Segal, 1988) computes the within-node
Kaplan-Meier curves for the censored survival data corresponding to each of
the two daughter nodes of a possible split and then applies the two-sample
log-rank statistic to the Kaplan-Meier curves to measure the goodness of
that split; the largest value of the log-rank statistic over all possible splits
determines which split is best.

Data that fall into a particular terminal node tend to have similar ex-
periences of survival (based upon a measure of within-node homogeneity).
Survival trees can be used to partition patients into groups having similar
survival results and, hence, identify common characteristics within these
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groups. At each terminal node of a survival tree, we compute a Kaplan-
Meier estimate of the survival curve using the survival information for all
patients who are members of that node and then compare the survival
curves from different terminal nodes.

9.4.3 MARS

Recursive partitioning used in constructing regression trees has been gen-
eralized to a flexible class of nonparametric regression models called mul-
tivariate adaptive regression splines (MARS) (Friedman, 1991).

In the MARS approach, Y is related to X via the model Y = p(X) + €,
where the error term e has mean zero. The regression function, u(X), is
taken to be a weighted sum of L basis functions,

L
u(X) = Bo+ Y _ BeBo(X). (9.51)

=1
The /th basis function,

M,
By(X) = [ bemXeem)): (9.52)
m=1

is the product of M, univariate spline functions {¢,(X)}, where My is a
finite number and ¢(¢, m) is an index depending upon the ¢th basis function
and the mth spline function. Thus, for each ¢, By(X) can consist of a single
spline function or a product of two or more spline functions, and no input
variable can appear more than once in the product. These spline functions
(for ¢ odd) are often taken to be linear of the form,

¢€m(X) = (X - tém)-'m ¢€+1,m(X) = (tém - X)-i-v (953)

where tg,,, is a knot of ¢, (X) occurring at one of the observed values of
Xotmy» m=1,2,..., My, £ =1,2,...,L. In (9.53), (z)4 = max(0,z). If,
at X = x, By(x) = I[xer,), and, at Y =y, B, = y(7¢), then the regression
function (9.51) is equivalent to the regression-tree predictor (9.39). Thus,
whereas regression trees fit a constant at each terminal node, MARS fits
more complicated piecewise linear basis functions.

Basis function are first introduced into the model (9.51) in a forwards-
stepwise manner. The process starts by entering the intercept By (i.e.,
By(X) = 1) into the model, and then at each step adding one pair of
terms of the form (9.53) (i.e., choosing an input variable and a knot) by
minimizing an error sum of squares criterion,

n

ESS(L) = Z(yi - ML(Xi))27 (9.54)

i=1
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where, for a given L, py(x;) is (9.51) evaluated at X = x;. Suppose the
forwards-stepwise procedure terminates at M terms. This model is then
“pruned back” by using a backwards-stepwise procedure to prevent possibly
overfitting the data. At each step in the backwards-stepwise procedure, we
remove one term from the model. This yields M different nested models.
To choose between these M models, MARS uses a version of generalized
cross-validation (GCV),

n-! ZLl(yi — fim(%i))*

(-2

where [i,,(x) is the fitted value of u(x) based upon m terms, the numerator
is the apparent error rate (or resubstitution error rate), and C(m) is a
complexity cost function that represents the effective number of parameters
in the model (Craven and Wahba, 1979). The best choice of model has
m* = argmin,, GCV(m) terms.

GCV(m) = , m=1,2,..., M, (9.55)

9.4.4 Missing Data

In some classification and regression problems, there may be missing
values in the test set. Fortunately, there are a number of ways of dealing
with missing data when using tree-based methods.

One obvious way is to drop a future observation with a missing data
value (or values) down the tree constructed using only complete-data ob-
servations and see how far it goes. If the variable with the missing value
is not involved in the construction of the tree, then the observation will
drop to its appropriate terminal node, and we can then classify the obser-
vation or predict its Y value. If, on the other hand, the observation cannot
drop any further than a particular internal node 7 (because the next split
at 7 involves the variable with the missing value), we can either stop the
observation at 7 (Clark and Pregibon, 1992, Section 9.4.1) or force all the
observations with a missing value for that variable to drop down to the
same daughter node (Zhang and Singer, 1999, Section 4.8).

A method of surrogate splits has been proposed (Breiman et al., 1984,
Section 5.3) to deal with missing data. The idea of a surrogate split at a
given node 7 is that we use a variable that best predicts the desired split
as a substitute variable on which to split at node 7. If the best-splitting
variable for a future observation at 7 has a missing value at that split,
we use a surrogate split at 7 to force that observation further down the
tree, assuming, of course, that the variable defining the surrogate split has
complete data.



9.5 Software Packages 313

If the missing data occur for a nominal input variable with L levels, then
we could introduce an additional level of “missing” or “NA” so that the
variable now has L + 1 levels (Kass, 1980).

9.5 Software Packages

The original CART software is commercially available from Salford Sys-
tems. S-PLUS and R commands (such as rpart) for classification and re-
gression trees are discussed in Venables and Ripley (2002, Chapter 9). For
the rpart library manual, which we used for the examples in this chapter,
see Therneau and Atkinson (1997). Alternative software packages for car-
rying out tree-based classification and regression are available; they have
been implemented in SAS DATA MINING, SPSS CLASSIFICATION TREES,
STATISTICA, and SYSTAT, version 7. These versions differ in several aspects,
including the impurity measure (typical default is the entropy function),
splitting criterion, and the stopping rule.

The original MARS software is also commercially available from Salford
Systems. The mars command in the mda library (Venables and Ripley, 2002,
Section 8.8) in S-PLUS and R is available for fitting MARS models.

Bibliographical Notes

This chapter follows the pioneering development of CART (Classification
and Regression Trees) by Breiman, Friedman, Olshen, and Stone (1984).
Other treatments of the same material can be found in Clark and Pregibon
(1992, Chapter 9), Ripley (1996, Chapter 7), Zhang and Singer (1999), and
Hastie, Tibshirani, and Friedman (2001, Section 9.2).

Regression trees were introduced by Morgan and Sonquist (1963) using
a computer program they named Automatic Interaction Detection (AID).
Versions of AID followed: THAID in 1973 and CHAID in 1980; CHAID is
used in several computer packages that carry out tree-based methods. Com-
ments and references on the historical development of tree-based methods
are given in Ripley (1996, Section 7.4). An excellent discussion of survival
trees is given by Zhang and Singer (1999). For discussions of MARS, see
Hastie, Tibshirani, and Friedman (2001, Section 9.4) and Zhang and Singer
(1999, Chapter 9).

Exercises

9.1 The development of classification trees in this chapter assumes that
misclassifying any observation has a cost independent of the classes in-
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volved. In many circumstances, this may be unrealistic. For example, a
civilized society usually considers convicting an innocent person to be more
egregious than finding a guilty person to be not guilty. Define the misclas-
sification cost c(i]j) as the cost of misclassifying an observation from the
jth class into the ith class. Assume that c¢(i|j) is nonnegative for i # j
and zero when 7 = j. Rewrite Sections 9.2.4, 9.2.5, and 9.2.6, taking into
account the costs of misclassification.

9.2 The discussion of the way to choose the best split for a classification
tree in Section 9.2 used the entropy function as the impurity measure. Use
the Gini index as an impurity measure on the Cleveland heart-disease data
and determine the best split for the age variable (see Table 9.2); draw the
graphs of i(7;) and i(7g) for the age variable and the goodness of split (see
Figure 9.3). Determine the best split for all the variables in the data set
(see Table 9.3).

9.3 The full Pima Indians data (768 subjects) has a large number of
missing data. In the data set, missing values are designated by zero values.
How could you use those subjects having missing values for one or more
variables to enhance the classification results discussed in the text?

9.4 Consider the following two examples. Both examples start out with
a root node with 800 subjects of which 400 have a given disease and the
other 400 do not. The first example splits the root node as follows: the left
node has 300 with the disease and 100 without, and the right node has
100 with the disease and 300 without. The second example splits the root
node as follows: the left node has 200 with the disease and 400 without,
and the right node has 200 with the disease and 0 without. Compute the
resubstitution error rate for both examples and show they are equal. Which
example do you view as more useful for the future growth of the tree?

9.5 Construct the appropriate-size classification tree for the BUPA liver
disorders data (see Section 8.4).

9.6 Construct the appropriate-size classification tree for the spambase
data (see Section 8.4).

9.7 Construct the appropriate-size classification tree for the forensic
glass data (see Section 8.7).

9.8 Construct the appropriate-size classification tree for the vehicle data
(see Section 8.7).

9.9 Construct the appropriate-size classification tree for the wine data
(see Section 8.7).



10
Artificial Neural Networks

10.1 Introduction

The learning technique of artificial neural networks (ANNs, or just neural
networks or NNs) is the focus of this chapter. The development of ANNs
evolved in periodic “waves” of research activity. ANNs were influenced by
the fortunes of the fields of artificial intelligence and expert systems, which
sought to answer questions such as: What makes the human brain such a
formidable machine in processing cognitive thought? What is the nature of
this thing called “intelligence”? And, how do humans solve problems?

These questions of “mind” and “intelligence” form the essence of cog-
nitive science, a discipline that focuses on the study of interpretation and
learning. “Interpretation” deals with the thought process resulting from
exposure to the senses of some type of input (e.g., music, poem, speech, sci-
entific manuscript, computer program, architectural blueprint), and “learn-
ing” deals with questions of how to learn from knowledge accumulated by
studying examples having certain characteristics.

There are many different theories and models for how the mind and
brain work. One such theory, called connectionism, analogues of neurons
and their connections — together with the concepts of neuron firing, ac-
tivation functions, and the ability to modify those connections — to form

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 315
DOI 10.1007/978-0-387-78189-1_10, © Springer Science+Business Media New York 2013
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algorithms for artificial neural networks. This formulation introduces a rela-
tionship between the three notions of mind, brain, and computation, where
information is processed by the brain through massively parallel computa-
tions (i.e., huge numbers of instructions processed simultaneously), unlike
standard serial computations, which carry out one instruction at a time in
sequential fashion.

Sophisticated types of ANNs have been used to model human intelli-
gence, especially the ability to learn a language. These efforts include pre-
diction of past tenses of regular and irregular English verbs (Rumelhart
and McClelland, 1986b; Pinsker and Prince, 1988) and synthesis of the
pronounciation of English text (Sejnowski and Rosenberg, 1987). A study
involving ANNs of how the brain transforms a string of letter shapes into
the meaning of a word (Hinton, Plaut, and Shallice, 1993) was instrumen-
tal in understanding the capabilities of the human brain, shedding light on
specific types of impairments of the neural circuitry (e.g., surface and deep
dyslexia), and in training ANNs to simulate brain damage resulting from
injury or disease.

As an overly simplified model of the neuron activity in the brain, “artifi-
cial” neural networks were originally designed to mimic brain activity. Now,
ANNSs are treated more abstractly, as a network of highly interconnected
nonlinear computing elements. The largest group of users of ANNs try to re-
solve problems involving machine learning, especially pattern classification
and prediction. For example, problems of speech recognition, handwritten
character recognition, face recognition, and robotics are important appli-
cations of ANNs. The common features to all of these types of problems
are high-dimensional data and large sample sizes.

10.2 The Brain as a Neural Network

To understand how an artificial neural system can be developed, we first
provide a brief description of the structure of the brain.

The largest part of the brain is the cerebral cortez, which consists of a
vast network of interconnected cells called neurons. Neurons are elementary
nerve cells that form the building blocks of the nervous system. In the
human brain, for example, there are about 10 billion neurons of more than
a hundred different types, as defined by their size and shape and by the
kinds of neurochemicals they produce. A schematic diagram of a biological
neuron is displayed in Figure 10.1.

The cell body (or soma) of a typical neuron contains its nucleus and
two types of processes (or projections): dendrites and azons. The neuron
receives signals from other neurons via its many dendrites, which operate
as input devices. Each neuron has a single axon, a long fiber that operates
as an output device; the end of the axon branches into strands, and each
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FIGURE 10.1. Schematic view of a biological neuron.

strand terminates in a synapse. Each synapse may either connect to a
synapse on a dendrite or cell body of another neuron or terminate into
muscle tissue. Because a neuron maintains, on average, about a thousand
synaptic connections with other neurons (whereas some may have 10-20
thousand such connections), the entire collection of neurons in the brain
yields an incredibly rich network of neural connections.

Neurons send signals to each other via an electrochemical process. All
neurons are electrically charged due to ion concentrations inside and out-
side the cell. Under appropriate conditions, an activated neuron fires an
electrical pulse (called an action potential or spike) of fixed amplitude and
duration. The action potential travels down the axon to its endings. Each
ending is swollen to form a synaptic knob, in which neurotransmitters (glu-
tamic acid, glu) are stored. Neurons do not join with each other, even
though they may be connected; there is a tiny gap (called the synaptic
cleft) between the axon of the sending (or presynaptic) neuron and a den-
drite of the receiving (or postsynaptic) neuron.

To send a signal to another neuron, the presynaptic neuron releases neu-
rotransmitters across the gap to a cluster of receptor molecules on the
dendrites of the postsynaptic neuron; these receptors act like electrical
switches. When a neurotransmitter binds to one of these receptors (called
an AMPA receptor), it opens up a channel into the postsynaptic neuron.
Although that channel remains open for a split second, electrically charged
sodium ions flood the channel, producing a local electrical disturbance (i.e.,
a depolarization), and start a chain reaction in which neighboring channels
open up. This, in turn, sends an action potential shooting along the surface
of the postsynaptic neuron toward the next neuron.

There is at least one other type of postsynaptic channel, called an NMDA
glutamic acid receptor. This receptor is unusual in that it will not open un-
less it receives two simultaneous signals, one of which is either an electrical
discarge from the postsynaptic neuron or a depolarization of its AMPA
synapses, and the other is emitted by the axon from a presynaptic neuron.
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When both signals arrive together, calcium ions also enter the dendrite,
strengthen the synapse, and provide a mechanism for both short-term and
long-term changes in the synapse. A high level of calcium released into the
NMDA receptor induces long-term potentiation (LTP), a form of long-term
memory (lasting minutes to hours, in vitro, and hours to days and months
in vivo, after which decay sets in). LTP enlarges synapses and makes them
stronger, and, over time, can also change brain structure.

Note that the postsynaptic neuron may or may not fire as a result of
receiving the pulse. Then, the axon shuts down for a certain amount of
time (a refractory period) before it can fire again. To prepare the synapse
for the next action potential, the synaptic cleft is cleared by active transport
by returning the neurotransmitter to the synaptic knob of the presynaptic
neuron.

Firing tends to occur randomly, but the actual rate of firing depends upon
many factors. One of those factors is the status of the total input signal;
this is derived from the relative strengths of the two types of synapses,
namely, the inhibitory synapses, which prevent the neuron from firing, and
the excitatory synapses, which push the neuron closer to firing. Depending
upon whether or not the total input signal received at the synapses of a
neuron exceeds some threshold limit, the neuron may fire, be in a resting
state, or be in an electrically neutral state.

The brain “learns” by changing the strengths of the connections between
neurons or by adding or removing such connections. Learning itself is ac-
complished sequentially from increasing amounts of experience.

10.3 The McCulloch-Pitts Neuron

The idea of an “artificial” neural network is usually traced back to the
“computing machine” model of McCullogh and Pitts (1943), who con-
structed a simplified abstraction of the process of neuron activity in the
human brain.

The McCulloch-Pitts neuron consists of multiple inputs (the dendrites)
and a single output (the axon). The inputs are denoted by X7, Xo,..., X,
and each has a value of either 0 (“off”) or 1 (“on”). The signal at each input
connection depends upon whether the synapse in question is excitatory or
inhibitory. If any one of the synapses is inhibitory and transmits the value
1, the neuron is prevented from firing (i.e., the output is 0). If no inhibitory
synapse is present, the inputs are summed to produce the total excitation
U= Zj X, and then U is compared with a threshold value 0: if U > 0, the
output Y is 1 and the neuron fires (i.e., transmits a new signal); otherwise,
Y is 0 and the neuron does not fire.
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FIGURE 10.2. McCulloch—Pitts neuron with r binary inputs,
X1, Xo, ..., X, one binary output, Y, and threshold 6.

An equivalent formulation is to say that the value of Y is determined
by the indicator function Ijy_g>g). Note that if 6 > r, the number of
inputs, the neuron will never fire. Also, if # = 0 and there are no inhibitory
synapses, the output will always have the constant value 1.

Geometrically, the input space is an r-dimensional unit hypercube, and
each of the 2" vertices of the hypercube is associated with a specific Y-value
(either 0 or 1). For a given value of 0, the McCulloch-Pitts neuron divides
the hypercube into two half-spaces according to the hyperplane j X;=0;
those vertices with Y = 1 lie on one side of the hyperplane, whereas those
with Y = 0 lie on the other side.

The McCulloch-Pitts neuron is usually referred to as a threshold logic
unit (TLU) and is displayed in Figure 10.2. It is designed to compute
simple logical functions of r arguments, where Y = 1 is translated as the
logical value “true” and Y = 0 as “false.” For example, the logical functions
AND and OR for three inputs are displayed in Figure 10.3. For the logical
function AND, the neuron will fire only if all three inputs have the value
1, whereas, for the logical function OR, the neuron will fire only if at least
one of the three inputs have the value 1. The AND and OR functions form
a basis set of logical functions. All other logical functions can be computed
by building up large networks consisting of several layers of McCulloch—

Xl Xl
U U
X2 Y X2 —> Y
X3 XS
AND OR

FIGURE 10.3. McCulloch—Pitts neuron for the AND and OR logical
functions with r = 3 binary inputs and thresholds 8 = 3 and 6 = 1, respec-
tively.
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Pitts neurons. At the time, it appeared that networks of TLUs could be
used to create an intelligent machine.

Although this model of a neuron was studied by many people, it is not
really a good approximation of how a biological system learns. There are
no adjustable parameters or weights in the network, which means that
different problems can only be solved by repeatedly changing the input
structure or the threshold value. Such manipulations are more complicated
than adopting a flexible weighting system for the network.

10.4 Hebbian Learning Theory

At the time of the introduction of the McCulloch—Pitts neuron, little
was known about how the “strength” of signals sent between neurons in
the brain are changed by activity and, therefore, how learning takes place.

The next advance occurred when Donald O. Hebb, in his 1949 book The
Organization of Behavior, summarized everything then known about how
the central nervous system affects behavior and vice versa. He started out
by assuming that all the neurons one needs in life are present at birth, that
initial neural connections are randomly distributed, and that as we get older
our neural connections multiply and become stronger. He also believed
that one’s perceptions, thoughts, emotions, memory, and sensations are
strongly influenced by life experiences, and that such experiences leave
behind a “memory trace” — via sets of interconnected neurons — which
helps determine future behavior.

Using results derived from published neurophysiological experiments in-
volving animals and humans, and from his own life observations, Hebb gave
a detailed presentation of biological neurons. In particular, he formulated
two new theories as to how the brain works. Building upon the ideas of San-
tiago Ramon y Cajal, the 1906 Nobel Laureate, Hebb’s first theory focused
on the nature of synaptic change and is referred to as the Hebb learning
rule (Hebb, 1949, p. 62):

When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells so
that A’s efficiency, as one of the cells firing B, is increased.

In other words, the strength of a synaptic connection between two neurons
depends upon their associated firing history: the more often the two neurons
fire together, the stronger their connection (and, by implication, the less
often, the weaker their connection). The Hebb rule is time-dependent (there
is an implicit ordering of events when neuron A helps to fire neuron B)
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and governs only what happens locally at the synapse. Any synapse that
behaves according to the Hebb rule is known as a Hebb synapse.

The Hebb rule of neural excitation was later expanded (Milner, 1957)
by adding the following rule of neural inhibition: if neuron A repeatedly or
persistently sends a signal to neuron B, but B does not fire, this reduces the
chance that future signals from A will entice B to fire. This inhibitory rule is
necessary because otherwise the system of synaptic connections throughout
the cerebral cortex would grow without limit as soon as one such connection
is activated. Hebb had previously (in his 1932 M.A. thesis) incorporated
the inhibitory rule into his theory but did not include it in his book.

His second theory is probably the more important idea. It was derived
from a discovery by Lorente de N6 in 1944 that the brain contained closed
circuits of neurons. Hebb then speculated that memory resides in the cere-
bral cortex in the form of overlapping clusters of thousands of highly in-
terconnected neurons, which he called cell assemblies. The clusters overlap
because a neuron, which has branch-like links to other neurons, can be a
member of many different cell assemblies.

In Hebb’s theory, a cell assembly is organized with reference to a par-
ticular sensory input and briefly acts as a closed neural circuit; sensations,
thoughts, perceptions, etc., are considered different from each other if dif-
ferent cell assemblies are involved in the activity; and the cell assembly also
retains a memory of its defining activity even after the triggering event has
ceased (e.g., the memory of stubbing one’s toe can remain well after the
pain has subsided). Cell assemblies are thought to play an essential role
in the learning process. Hebb also defined a phase sequence as a combi-
nation of cell assemblies that are simultaneously excited when repeatedly
presented with the same sequence of stimuli.

Hebb’s 1949 book was an international success; it was considered by some
as ground-breaking and sensational and a starting point to build a theory
of the brain. Yet it took several years before these contributions were fully
recognized in the fledgling field of behavioral neuroscience. Subsequently,
in the fields of psychology and neuroscience, it inspired a huge amount of
research into theories of brain function and behavior. Some of Hebb’s work
was speculative and has since been overturned by scientific experiment and
discovery. But much of it is still relevant today.

10.5 Single-Layer Perceptrons

Hebb’s pioneering work on the brain led to a second wave of interest
in ANNs. Frank Rosenblatt, a psychologist, had read Hebb (1949) but
was not convinced that most neural connections were random and that
cell assemblies could self-generate within a purely homogeneous mass of
neurons. He believed that he could improve upon Hebb’s work and, toward
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FIGURE 10.4. Rosenblatt’s single-layer perceptron with r inputs, connec-
tion weights {5;}, and binary output Y. The left panel shows the perceptron
with threshold 0, and the right panel shows the equivalent perceptron with
bias element By = —0 and Xg = 1.

that end, he constructed a “minimally constrained” system that he called
a “perceptron” (Rosenblatt, 1958, 1962).

A perceptron is essentially a McCulloch—Pitts neuron, but now input X;
comes equipped with a real-valued connection weight 5;,i =1,2,...,r. The
inputs, X1, Xo,..., X, can each be binary or real-valued. Positive weights
(8; > 0) reflect excitatory synapses, and negative weights (3; < 0) reflect
inhibitory synapses. The magnitude of a weight shows the strength of the
connection.

The perceptron, which is more flexible than the McCulloch—Pitts neuron
for mimicking neural connections, is displayed in Figure 10.4. A weighted
sum of input values, U = Zj B X, is computed, and the output is ¥ =1
only if U > 6, where 0 is the threshold value; otherwise, Y = 0. Note that
we can convert a threshold 6 to 0 by introducing a bias element Sy = —0,
so that U — 0§ = By + U, and then comparing U = Z;:o B;X; to 0, where
Xo=1.1f U >0, then Y = 1; otherwise, Y = 0.

We call a function Y € {0, 1} perceptron-computable if, for a given value
of 6, there exists a hyperplane that divides the input space into two half-
spaces, R; and Ry, where R; corresponds to points having ¥ = 1 and
Ry to points having Y = 0. If the points in R; can be separated without
error from those in Ry by a hyperplane, we say that the two sets of points
are linearly separable. This binary partition of input space (obtained by
comparing U to the threshold value ) enables a perceptron to predict
class membership.

10.5.1 Feedforward Single-Layer Networks

One way of representing a network of neural interconnections is as a
directed acyclic graph (DAG). A graph is a set of vertices or nodes (rep-
resenting basic computing elements) and a set of edges (representing the
connections between the nodes), where we assume that both sets are of
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finite size. In a directed graph (or digraph), the edges are assigned an orien-
tation so that numerical information flows along each edge in a particular
direction. In a feedforward network, information flows in one direction only,
from input nodes to output nodes. An acyclic graph is one in which no loops
or feedback are allowed.

The simplest type of DAG organizes the network nodes into two separate
groups: r input nodes, X1,...,X,, and s oulput nodes, Y1,...,Ys. Input
nodes are also referred to as source nodes, input units, or input variables.
No computation is carried out at these nodes. The input nodes take on
values introduced by some feature external to the network. The output
nodes are variously known as sink nodes, neurons, output units, or output
variables. These input and output nodes can be real-valued or discrete-
valued (usually, binary). Real-valued output nodes are typically scaled so
that their values lie in the unit interval [0,1]. Binary input and output
nodes are used in the design of switching circuits; real input nodes with
binary output nodes are used primarily in classification applications; and
real input and output nodes are used mostly in optimization and control
applications.

Despite appearances, this particular type of network is commonly called
a single-layer network because only the output nodes involve significant
amounts of computation; the input nodes, which are said to constitute a
“zeroth” layer of fixed functions, involve no computation, and, hence, do
not count as a layer of learnable nodes.

Every connection X; — Y; between the input nodes and the output
nodes carries a connection weight, 5, which identifies the “strength” of
that connection. These weights may be positive, negative, or zero; positive
weights represent excitory signals, negative weights represent inhibitory
signals, and zero weights represent connections that do not exist in the
network.

The architecture (or topology) of the network consists of the nodes, the
directed edges (with the direction of signal flow indicated by an arrow along
each edge), and the connection weights.

10.5.2 Activation Functions

In the following, X = (X1, -+, X,)" represents a random r-vector of
inputs and x = (1, -, ,)" is a specific value of X. Given X, each output
node computes an activation value using a linear combination of the inputs
to it plus a constant; that is, for the /th output node or neuron, we compute
the value of the ¢th linear activation function,

Ur = Bor + Z BjeXj = Por + X7 By, (10.1)
j=1
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FIGURE 10.5. Rosenblatt’s single-layer perceptron with r inputs, bias
element By, connection weights {B;}, activation function f, and binary
output Y. The left panel shows the perceptron with a separate computing
unit for f, and the right panel shows the equivalent perceptron with a single
computing unit divided into two functional parts: the addition function is
written on the left and the activation function f applied to the result U of
the addition is written on the right.

where Bg¢ is a constant (or bias) related to the threshold for the neuron
to fire, and B, = (B1¢,- -, Bre)” is an r-vector of connection weights, £ =
1,2,...,s.

In matrix notation, we can rewrite the collection of s linear activation
functions (10.1) as

U = 3, + BX, (10.2)

where U = (Uy,---,Us)7, By = (Bo1,- -+, Bos)” is an s-vector of biases, and
B = (34, -,8,)7 is an (s X r)-matrix of connection weights. The activa-
tion values are then each filtered through a nonlinear threshold activation
function f(Uy) to form the value of the £th output node, £ =1,2,...,s. In
matrix notation,

f(U) = £(8, + BX), (10.3)

where f = (f,---, f)7 is an s-vector function each of whose elements is the
function f, and £(U) = (f(U1),---, f(Us))7. The simplest form of f is the
identity function, f(u) = u. See Figure 10.5.

A partial list of activation functions is given in Table 10.1. The most
interesting of these functions are the sigmoidal (“S-shaped”) functions,
such as the logistic and hyperbolic tangent; see Figure 8.2 for a graph of
the logistic sigmoidal activation function. A sigmoidal function is a function
o(+) that has the following properties: o(u) — 0 as 4 — —oo and o(u) — 1
as u — +00. A sigmoidal function o(-) is symmetric if o(u) + o(—u) = 1
and asymmetric if o(u) + o(—u) = 0. The logistic function is symmetric,
whereas the tanh function is asymmetric. Note that if f(u) = (1 +e"%)" !,
then its derivative wrt u is df (u)/du = e *(1 + e %)"2 = f(u)(1 — f(u)).
The hyperbolic tangent function, f(u) = tanh(u), is a linear transformation
of the logistic function (see Exercise 10.1). There is empirical evidence that
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TABLE 10.1. Ezamples of activation functions.

Activation Function f(u) Range of Values
Identity, linear U e
Hard-limiter sign(u) {-1,+1}
Heaviside, step, threshold Iy {0, 1}
Gaussian radial basis function (271)_1/26_“2/2 R
Cumulative Gaussian (sigmoid) \/2/_7Tfou e =24z (0,1)
Logistic (sigmoid) (14e™ ™)™t (0,1)
Hyperbolic tangent (sigmoid) (e —e™™)/(e" +e™") (—1,+1)

ANN algorithms that use the tanh function converge faster than those that
use the logistic function.

10.5.3 Rosenblatt’s Single-Unit Perceptron

In binary classification problems, each of n input vectors x1,...,x, is
to be classified as a member of one of two classes, II; or II5. For this type
of application, a single-layer feedforward neural network consists of only a
single output node or unit (i.e., s =1).

A single-unit perceptron (Rosenblatt, 1958, 1962) is a single-layer feedfor-
ward network with a single output node that computes a linear combination
of the input variables (e.g., So + x73) and delivers its sign,

sign{ By + x" B}, (10.4)

as output, where sign(u) = —1 if u < 0, and +1 if w > 0. The activation
function used here is the “hard-limiter” function. The output node is gener-
ally known as a linear threshold unit. Rosenblatt’s perceptron is essentially
the threshold logic unit of McCullogh and Pitts (1943) with weights.

A generalized version of the single-unit perceptron can be written as

f(Bo+x7B) (10.5)

where f(-) is an activation function, which is usually taken to be sigmoidal.
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10.5.4 The Perceptron Learning Rule

For convenience in this subsection, we make the following notational
changes: B < (Bp,87)" and x «+ (1,x7)7, where both x and 8 are now
(r + 1)-vectors. Then, we can write 5y + x" 3 as x” 3.

In the binary classification case, the single output variable Y takes on
values y = £1 depending upon whether the neuron fires (y = +1 if x € II;)
or does not fire (y = —1 if x € II3). Thus, the neuron will fire if x”"3 > 0
and will not fire if x™3 < 0.

Suppose Xi,...,X, are independent observations on X, and that they
are drawn from the two classes II; and II;. Suppose, further, that these
observations are linearly separable. That is, there exists a vector 8" of
connection weights such that the observation vectors that belong to class
II; fall on one side of the hyperplane x™3* = 0, whereas the observation
vectors from class Il fall on the other side of the hyperplane.

As our update rule, we use a gradient-descent algorithm, which operates
sequentially on each input vector. Such an algorithm is referred to as on-
line learning, whereby the learning mechanism adapts quickly to correct
classification errors as they occur. The input vectors are examined one at a
time and classified to one of the two classes. The true class is then revealed,
and the classification procedure is updated accordingly.

The algorithm proceeds by relabeling the {x;}, one at a time, so that
at the hth iteration we are dealing with x5, h = 1,2,.... Set xo = 0. The
algorithm computes a sequence {3,,} of connection weights using as initial
value B, = 0. The update rule is the following:

1. If, at the hth iteration of the algorithm, the current version, 3,
correctly classifies x5, we do not change 3; in the next iteration;
that is, set 3, = B if either x}3;, > 0 and x;, € Iy, or x7,3;, <0
and xj, € Ils.

2. If, on the other hand, the current version, 3, misclassifies x5, then
we update the connection weight vector as follows: if xj 3, > 0 but
xp € g, then set B, = B), — nxp; if x},8;, < 0 but x; € II, then
set By,1 = By + nxXp, where n > 0 is the learning-rate parameter
whose value is taken to be independent of the iteration number h.

This algorithm is popularly known as the perceptron learning rule. Because
the value of 7 is irrelevant (we can always rescale x; and 3,,), we set n = 1
without loss of generality.

10.5.5 Perceptron Convergence Theorem

From the update rule, it follows that 3, ., = Z?Zl x;. Assume that we
have linear separability of the two classes. Suppose also that a solution
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vector 3% exists. Define

A= min x73*, B= 2. 10.
Jnin %75, Jmax || x; || (10.6)

Transposing 3, and postmultiplying the result though by 8" yields
h
BhB" =) x[B" > hA. (10.7)
i=1

From the Cauchy-Schwarz inequality,

(BB <1 BL 17187 17 - (10.8)
Substituting (10.7) into (10.8) yields
h?A?
I B I? > 03 (10.9)
" 18712

Thus, the squared-norm of the weight vector grows at least quadratically
with the number, h, of iterations.

Next, consider again the update rule, 8, ,; = B;, + Xy, at the kth itera-
tion, where x, € Iy, k =1,2,..., h. Then,

I Bra 17 =1 Be I1” + Il x [1* +2xE By (10.10)

Because x;, has been incorrectly classified, x} 3, < 0. It follows that,

1B I <1 B 1P+ 1l xx 1%, (10.11)

whence,
I Brsr 1P =1 B 17 < [l = |12, (10.12)

Summing (10.12) over k =1,2,..., h yields

h
I Brga I < Z | xx | < hB. (10.13)
k=1

Hence, the squared-norm of the weight vector grows at most linearly with
the number, h, of iterations.

For large values of h, the inequalities (10.9) and (10.13) contradict each
other. Thus, h cannot grow without bound. We need to find an hp.x such
that (10.9) and (10.13) both hold with equalities. In other words, hmax has
to satisfy

h2. A2
max’ B, (10.14)
18" |17 i
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whence,

BB |?
e (10.15)

We have shown the following result. Set n =1 and 3, = 0. Then:

For a binary classification problem with linearly separable classes,
if a solution vector 3% exists, the algorithm will find that solu-
tion in a finite number, hmax, of iterations.

This is the perceptron convergence theorem. At the time, it was regarded
as a very appealing result.

There are two difficulties implicit in this result. First, the existence of a
solution vector 3 turns out to be crucial for the result to hold; this was
made clear by Minsky and Papert (1969), who showed that there are many
problems for which no perceptron solution exists.

The second difficulty derives from the fact that, even though the al-
gorithm converges, computing hpax is impossible because it depends upon
the solution vector 8%, which is unknown. If the algorithm stops, we clearly
have a solution. If the two classes are not linearly separable, then the al-
gorithm will not terminate. In fact, after some large (unknown) number
of iterations, the algorithm will start cycling with unknown period length.
In general, if we do not know whether or not linear separability holds, we
cannot reliably determine when to stop running the algorithm. If we stop
the algorithm prematurely, the resulting perceptron weight vector may not
generalize well for test data.

One suggested approach to this problem is to adopt a specific stopping
rule whereby the algorithm is stopped after a fixed number of iterations;
another approach is to make the learning-rate parameter 77 depend upon the
iteration number (i.e., ny,) so that as the iterations proceed, the adjustments
decrease in size.

10.5.6  Limitations of the Perceptron

Despite high initial expectations, perceptrons were found to have very
limited capabilities. It was shown (Minsky and Papert, 1969) that a per-
ceptron can learn to distinguish two classes only if the classes are linearly
separable. This is not always possible as can be seen from the XOR func-
tion, which is not perceptron-computable because its input space is not
linearly separable (see Exercise 10.6).

As a result, during the 1970s, research in this area was abandoned by
almost everyone in that community. An additional factor to explain the
absence of work on neural networks is that hardware to support neural
computation did not become available until the 1980s.
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10.6  Artificial Intelligence and Expert Systems

The downfall of the perceptron led to the introduction of artificial intelli-
gence (Al) and rule-based expert systems as the main areas of research into
machine intelligence. Al was viewed, first, as the study of how a human
brain (or any natural intelligence) functions, and, second, as the study
of how to construct an artificial intelligence (i.e., a machine that could
solve problems requiring “cognition” when performed by humans). In early
AT systems, problems were solved in a sequential, step-by-step fashion,
by manipulating a dictionary of symbolic representations of the available
knowledge on a particular subject of interest. An Al system had to store
information specific to a domain of interest, use that information to solve
a broad range of problems in that domain, and acquire new information
from experience by solving problems in that domain.

A typical AT application was of the following type. Suppose we would
like to predict the intuitive decisions made by an experienced loan officer of
a bank based only on the answers given to questions on a loan application.
One might first ask the loan officer to explain the value (e.g., on a 5-point
scale) he or she places on the answers to each question. The points scored
by an applicant on each question could be totalled and compared with
some given threshold; the loan officer’s decision on the loan could then be
predicted based upon whether or not the applicant’s total score surpassed
the threshold.

This approach to predicting the decisions of a loan officer ignores possi-
ble nonlinearities in the decision-making process. For example, if the loan
applicant scores high on a few specific questions, the loan officer may ignore
the responses to all other questions in making a positive decision, whereas
if a particular question scores low, this by itself may be sufficient to render
the application unsuccessful, even though all other variables score high.
Listing all the rules the loan officer can possibly use in the decision process
constitutes a rule-based expert system.

Expert systems are knowledge-based systems, where “knowledge” repre-
sents a repository of data, well-known facts, specialized information, and
heuristics, which experts in a field (e.g., medicine) would agree upon. Such
expert systems are interactive computer programs that provide users (e.g.,
physicians) with computer-based consultative advice.

The earliest example of a rule-based expert system was DENDRAL, a
system for identifying chemical structures from mass spectrograms. This
was followed in the mid-1970s by MYCIN, which was designed to aid physi-
cians in the diagnosis and treatment of meningitis and bacterial infections.
MycCIN was made up of a “knowledge base” and an “inference engine”; the
knowledge base contained information specific to the area of medical diag-
nosis, and the inference engine would recommend treatments to physicians
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who consulted the knowledge base. A generic version, known as EMYCIN
(“empty” MYCIN), was then built using only the inference engine and shell,
not the knowledge base. (Although never regarded by mathematicians as
an Al or expert system as such, the symbolic mathematics system MAC-
SYMA also emerged from the early AI world.) In the 1980s, expert systems
were popularly regarded as the future of Al

During this time, there were also ambitious attempts at AT&T Bell Lab-
oratories to create an expert system to help users carry out statistical anal-
yses of data. One such expert system was REX (Pregibon and Gale, 1984),
which was written in the LiSP language and provided rule-based guidance
for simple linear regression problems. REX (short for Regression EXpert)
acted as an interface between the user and a statistical software package
through a flexible interactive dialogue, which only requested help when it
encountered problems with the data. REX did not survive long for many
reasons, including apathy due to constantly changing computational envi-
ronments (Pregibon, 1991).

Despite all this activity, expert systems never lived up to their hype; they
proved to be expensive, were successful only in specialized situations, and
were not able to learn from their own experiences. In short, expert systems
never truly possessed “cognition,” which was the primary goal of Al.

The failure of Al and expert systems to come to grips with these aspects
of “cognition” has been attributed to the fact that traditional computers
and the human brain function very differently from each other. It was
argued that Al was not providing the right environment for the emergence
of a truly intelligent machine because it was not delivering a realistic model
of the structure of the brain. Whereas human brains consisted of massively
parallel systems of neurons, Al digital computers were serial machines;
overall, the latter were incredibly slow by comparison. If one wanted to
understand “cognition” (so the argument went), one should build a model
based upon a detailed study of the architecture of the brain.

10.7 Multilayer Perceptrons

The most recent wave of research into ANNs arrived in the mid-1980s
and has continued until the present time. Earlier suggestions of Minsky
and Papert (1969) — that the limitations of the perceptron could be over-
come by “layering” the perceptrons and applying nonlinear transformations
prior to combining the transformed weighted inputs — were not adopted
at that time due to computational limitations. Minsky and Papert’s sug-
gestions turned out to be more meaningful when high-speed computers
became readily available and with the discovery of the “backpropagation”
algorithm.
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mput layer — hidden layer — outpul layer

FIGURE 10.6. Multilayer perceptron with a single hidden layer, r = 3
mput nodes, s = 2 output nodes, and t = 2 nodes in the hidden layer. The
as and Bs are weights attached to the connections between nodes, and f
and g are activation functions.

A multilayer feedforward neural network (perceptron) is a multivariate
statistical technique that maps the input variables, X = (Xy,---, X,)7,
nonlinearly to the output variables, Y = (Y7,---,Ys)7. Between the in-
puts and outputs there are also “hidden” variables arranged in layers. The
hidden and output variables are traditionally called nodes, neurons, or pro-
cessing units. A typical ANN is given in Figure 10.6, which has two com-
putational layers (i.e., the hidden layer and the output layer), » = 3 input
nodes, s = 2 output nodes, and ¢ = 2 nodes in the hidden layer.

ANNSs can be used to model regression or classification problems. In a
multiple regression situation, there is only one (s = 1) output variable YV’
and node, whereas in a multivariate regression situation, there are s output
variables, Y1, ..., Y;, and nodes. In a binary classification situation, there is
only one (s = 1) output variable Y with value 0 or 1, whereas in a multiclass
classification problem with K classes, there are s = K — 1 output variables,
Y1,...,Ys, and nodes, with each Y-variable taking on the value 0 or 1.

10.7.1 Network Architecture

Multilayer perceptrons have the following architecture: r input nodes
X1,...,X,; one or more layers of “hidden” nodes; and s output nodes
Y1,...,Ys. It is usual to call each layer of hidden nodes a “hidden layer”;
these nodes are not part of either the input or output of the network. If
there is a single hidden layer, then the network can be described as being
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a “two-layer network” (the output layer being the second computational
layer); in general, if there are L hidden layers, the network is described as
being an (L + 1)-layer network.

A fully connected network has all r input nodes connected to the nodes
in the first hidden layer, all nodes in the first hidden layer connected to
all nodes in the second hidden layer, ..., and all nodes in the last (Lth)
hidden layer connected to all s output nodes. If some of the connections are
missing, we have a partially connected network. We can always represent
a partially connected network as a fully connected network by setting the
weights of the missing connections to zero.

Given the values of the input variables, each hidden node computes an
activation value by taking a weighted average of its input values and adding
a constant. Similarly, each output node computes an activation value from a
weighted average of the inputs to it from the hidden nodes plus a constant.
The activation values are then each filtered through an activation function
to form the output value of the neuron.

10.7.2 A Single Hidden Layer

Suppose we have a two-layer network with r input nodes (X,,, m =
1,2,...,r), asingle layer (L = 1) of t hidden nodes (Z;, j =1,2,...,t), and
soutput nodes (Y, k =1,2,...,s). Let §,,; be the weight of the connection
X — Z; with bias By; and let v, be the weight of the connection Z; — Y}
with bias agi. See Figure 10.6 for a schematic diagram of a single hidden
layer network with r =3, s =2, and t = 2.

Let X = (Xy,---, X)) and Z = (Zy,- -+, Z;)". Let U; = Bo; + X7 3, and
Vi = agr + Z7 .. Then,

Z; = fi(Uy), j=12,...,t, (10.16)

we(X) = a(Vi), k=1,2,...,s, (10.17)

where 3; = (B1j,--+,Br;)" and oy = (a1x, -+, )" Putting these equa-
tions together, the value of the kth output node can be expressed as

Yi = pi(X) + e, (10.18)

where

t T
pe(X) = g | a0+ > il (ﬁo;‘ + 5ijm> , (10.19)
j=1 m=1
k=1,2,...,s, and the f;(-), j =1,2,...,t, and the gi(-), k =1,2,...,s,
are activation functions for the hidden and output layers of nodes, respec-
tively.
The activation functions, {f;(-)}, are usually taken to be nonlinear con-
tinuous functions with sigmoidal shape (e.g., logistic or tanh functions).
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The functions {gx(-)} are often taken to be linear (in regression problems)
or sigmoidal (in classification problems). The error term, €, can be taken
as Gaussian with mean zero and variance O’,%.

Let s = 1, so that we have a single output node. Suppose also that all
hidden nodes in the single hidden layer have the same sigmoidal activation
function o(-). We further take the output activation function g(-) to be
linear. Then, (10.18) reduces to Y = u(X) + ¢, where

w(X) =g + Z o0 ([30]' + Z 5ijm> , (10.20)
j=1 m=1

and the network is equivalent to a single-layer perceptron. If, alternatively,
both f(:) and g(-) are linear, then (10.19) is just a linear combination of
the inputs.

Note that sigmoidal functions play an important role in network design.
They are quite flexible as activation functions and can approximate dif-
ferent types of other functions. For example, a sigmoidal function, o(u),
is very close to linear when w is close to zero. Thus, we can substitute
a sigmoidal function for a linear function at any hidden node while, at
the same time, making the weights and bias that feed into that node very
small; to compensate for the resulting scaling problem, the weights cor-
responding to connections emanating from that hidden node to the out-
put node(s) are usually made much larger. Sigmoidal functions, which are
smooth, monotonic functions, are especially useful for approximating dis-
continuous threshold functions (e.g., Ij,>0)) when evaluating the gradient
for a loss function of a multilayer perceptron.

We also mention the skip-level connection, which refers to a direct con-
nection from input node to output node, without first passing through a
hidden node. Skip-level connections can be included in the model either ex-
plicitly or through an implicit arrangement of connection weights — from
input node to hidden node and then from hidden node to output node —
which approximates the skip-level connection.

10.7.3 ANNs Can Approximate Continuous Functions

An important result used to motivate the use of neural networks is given
by Kolmogorov’s universal approximation theorem, which states that:

Any continuous function defined on a compact subset of R" can
be uniformly approzimated (in an appropriate metric) by a func-
tion of the form (10.20).

In other words, we can approximate a continuous function by a two-layer
network incorporating a single hidden layer, with a large number of hid-
den nodes of continuous sigmoidal nonlinearities, linear output units, and
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suitable connection weights. Furthermore, the closer the approximation de-
sired, the larger the number of hidden nodes required.

Consider, for example, the Fourier series representation of the real-valued
function F,

F(x) = Z{ak cos(kx) + by sin(kx)}, = € R. (10.21)
k=0

where the {ay,br} are Fourier coefficients. The function F' can be approx-
imated by a neural network (see Exercise 10.14), which produces the ap-
proximation,

F(z) = Z a; B sin(x + Boj ). (10.22)

=0

The weights {3;} yield the amplitudes of the sine functions. and the con-
stants {fo;} yield the phases; if, for example, we set fo; = m/2, then
sin(xz + Bo;) = cos(z), and so we do not need to include explicit cosine
terms in the network. The weights {«;} are the amplitudes of the individ-
ual Fourier terms.

The universal approximation theorem is an existence theorem: it shows,
theoretically, that one can approximate an arbitrary continuous function
by a single hidden-layer network. Unfortunately, it does not specify how
to find that approximation; that is, how to determine the weights and
the number, ¢, of nodes in the hidden layer (a problem known as network
complezity). Tt also assumes that we know the continuous function being
approximated and that the available set of hidden nodes is of unlimited size.
Furthermore, the theorem is not an optimality result: it does not show that
a single hidden layer is the best-possible multilayer network for carrying
out the approximation.

10.7.4 More than One Hidden Layer

We can express (10.19) in matrix notation as follows:
pu(X) = g(ap + Af(3, + BX)), (10.23)

where B = (f;;) is a (¢ x r)-matrix of weights between the input nodes
and the hidden layer, A = (o k) is an (s x t)-matrix of weights be-
tween the hidden layer and the output layer, B, = (So1,---,80t)”, and
oy = (a1, -+, a0s)7; also, £ = (f1,--+, ft)” and g = (g1,---,9gs)" are the
vectors of nonlinear activation functions. In (10.23), the notation h(U)
represents the vector (hy(Uy), -+, he(Us))7, where h = (hy,---,hy)7 is a
vector of functions and U = (Uy,Us,---,Us)" is a random vector. Note,
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however, that pu(X) = (u1(X), -, 1s(X))7. Clearly, this representation
permits straightforward extensions to more than one hidden layer.

An important special case of (10.23) occurs when the {f;} and the {gx}
are each taken to be identity functions. In that case, (10.23) reduces to
the multivariate reduced-rank regression model, u(X) = p+ ABX, where
p = ap+AB,. We could use the (sxr) weight-matrix C = AB for a single-
layer network (i.e., no hidden layer) and the results would be identical.
The results change only when we use nonlinear activation functions at the
hidden nodes.

Thus, a neural network with r input nodes, a single hidden layer with
t nodes, s output nodes, and sigmoidal activation functions at the hidden
nodes can be viewed as a nonlinear generalization of multivariate reduced-
rank regression.

10.7.5 Optimality Criteria

Let the (st + rt + t + s)-vector w consist of the parameters of a fully
connected network — the connection weights (elements of the matrices A
and B) and the biases (the vectors ag and B). Suppose y; = (yi ) is
the value of the “target” output s-vector and y; = (¥i ) is the value of
the fitted output s-vector, where ;= pr(x;) = pr(x;, w) is the fitted
value at the kth output node corresponding to the value x; of the ith input
vector, k € IC, i =1,2,...,n. To estimate w in either binary classification
(where outputs are either 0 or 1) or multivariate regression problems (where
outputs are real-valued), it is customary to minimize the error sum of
squares (ESS):

ESS(w) = Z lyi —yi I, (10.24)
i=1
with respect to the elements of w, where
lyi—¥yillP= (yi—¥)(yi —¥:) = Z(yi,k —Tik) (10.25)
ke

and IC is the set of output nodes. In binary classification problems, there
is a single output node.

For multiclass classification problems, where each observation belongs to
one of K > 2 possible classes, there are usually K output nodes, one for
each class. In this case, an error criterion is minus the logarithm of the
conditional-likelihood function,

e’Ui,k

B(w) = - Z Z Yi,k 108 Yik, Yik = W, (10.26)
i=1 ke ek

where y; , = 1 if x; € II}, and zero otherwise, and v; 1, = o 1 + 2z] , is the
value of Vj, for the ith input vector x;. This criterion is equivalent to the
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Kullback-Leibler deviance (or cross-entropy), and ¥, j, which is known as
the softmax function, is the multiclass generalization of the logistic function.

Because the fitted value, ¥; %, is a nonlinear function of w, it follows
that both the ESS and E criteria are nonlinear functions of w. The w
that minimizes FSS(w) or E(w) is not available in explicit form and,
therefore, has to be found using a nonlinear optimization algorithm. The
most popular numerical method for estimating the network parameters is
the “backpropagation”-of-errors algorithm.

10.7.6  The Backpropagation-of-Errors Algorithm

The backpropagation algorithm (Werbos, 1974) efficiently computes the
first derivatives of an error function wrt the network weights {au;} and
{Bjm}. These derivatives are then used to estimate the weights by mini-
mizing the error function through an iterative gradient-descent method.

To simplify the description of the algorithm, we treat the network as a
single-hidden-layer network. All the details we present here can be general-
ized to a network having more than one hidden node. We denote by M the
set of r input nodes, J the set of ¢ hidden nodes, and K the set of s output
nodes, so that m € M indexes an input node, j € J indexes a hidden
node, and k € K indexes an output node. In other words, m — j — k. As
before, the input r-vectors are indexed by i =1,2,...,n.

We start at the kth output node. Denote the error signal at that node
by
€ik = Yik —Yik, k€K, (10.27)

and the error sum of squares (usually referred to as the error function) at
that node by

1 1 - .
Ei - 5 Z elz,k = § Z(yi,k - yi,k)2a 1= 17 2a sy T (1028)
ke ke

The optimizing criterion is the error sum of squares (ESS) for the entire
data set; that is, the error function (10.28) averaged over all data in the

learning set:
1 — I —
ESS=-) Ei=— 2. 10.29
- Z:; o Z:; l;cez,k (10.29)

The learning problem is to minimize ESS wrt the connection weights,
{ai,x;} and {Bi jm}. Because each derivative of ESS wrt those weights is
a sum over the learning set of data of the derivatives of F;, i = 1,2,...,n,
it suffices to minimize each E; separately.

In the following description of the backpropagation algorithm, it may be
helpful to refer to Figure 10.7.
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FIGURE 10.7. Schematic diagram of the backpropagation of errors al-
gorithm for a single-hidden-layer ANN. The top diagram relates the input
nodes to the jth hidden node, and the bottom diagram relates the hidden
nodes to the kth output node. To simplify notation, all reference to the ith
input vector has been dropped.

For the ith input vector, let

Uik = Z gz = oo + 2z o, k€K, (10.30)
jeT
be a weighted sum of inputs from the set of hidden units to the kth output
node, where

zi = (%1, -5 2it)", o = (g1, ., 00e)7, (10.31)
and z; o = 1. Then, the corresponding output is
Uik = gr(vik), k€K, (10.32)

where g (+) is an output activation function, which we assume is differen-
tiable.

The backpropagation algorithm is an iterative gradient-descent-based
algorithm. Using randomly chosen initial values for the weights, we search
for that direction that makes the error function smaller.

Consider the weights a; ; from the jth hidden node to the kth output
node. Let a; = (@, --,a],)" = () to be the ts-vector of all the

hidden-layer-to-output-layer weights at the ith iteration. Then, the update
rule is
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where 5 5
E; E;
Ao; = — L= — L) = (A . 10.34
s = —nget = (i) = (Bas) (10:34)

Similar update equations hold also for a; . In (10.34), the learning pa-
rameter 7 specifies how large each step should be in the iterative process.
If n is too large, the iterations will move rapidly toward a local minimum,
but may possibly overshoot it, whereas if 7 is too small, the iterations may
take a long time to get anywhere near a local minimum.

Using the chain rule for differentiation, we have that

OE;  0E; 0Oeir Ouix Ovip
Oair;  Oeig . ik . Ov; . 0a kj
ik (=1) - gr(vik) - zij
= —eirgp(iro + 2] k)2 j. (10.35)

This can also be expressed as

oL,
= —0; k27, 10.36
8ai,jh 1kz sJ ( )
where 5 .
L; Yik /
Oip = —— 2208 — o, i 10.37
N ayi,k avi,k} € akgk:(v uk) ( )

is the sensitivity (or local gradient) of the ith observation at the kth output
node. The expression for ¢; j, is the product of two terms associated with the
kth node: the error signal e, 1, and the derivative, g;,(v; 1), of the activation
function. The gradient-descent update to oy x; is given by

oF;
Qip1kj = Qikj — Uaa—_; = i kg + 10 kZi (10.38)
1,k]

where 7 is the learning rate parameter of the backpropagation algorithm.

The next part of the backpropagation algorithm is to derive an update
rule for the connection from the mth input node to the jth hidden node.
At the ith iteration, let

wij= Y BijmTim =Bijo+x]Bij j€JT, (10.39)
meM

be the weighted sum of inputs to the jth hidden node, where

Xi = (g, @) By = Bigis, Bige) (10.40)
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and z; 9 = 1. The corresponding output is

zij = fi(uij), (10.41)

where f;(-) is the activation function, which we assume is differentiable,
at the jth hidden node. Let B, = (81, --,8i,)" = (Bijm) be the ith
iteration of the (r+1)t-vector of all the input-layer-to-hidden-layer weights.
Then, the update rule is

Biy1 =Bi+AB;, (10.42)
where 0B o
AB; = *"agf = <7785,» ;m> = (ABijm)- (10.43)

Again, similar update formulas hold for the bias terms j; jo. Using the
chain rule, we have that

8E,‘ 8El 82’,‘7]' 8’&1‘,]‘

= . . 10.44
OBik;  Ozij Ouij OBk ( )
The first term on the rhs is
8EZ _ Z € - aei’k
821‘,]‘ ek v 821‘,]‘
Z . Oe; . Ov; g
— g ek W
ek 8vi,k 821‘,]‘
= =) e gilvy) - ik
kek
= =) 8k, (10.45)
ke

whence, from (10.44),

oF;
0Bi,kj

=— Z eikgi(@iko + 2] 0 k) ki f7(Bijo + X7 By j)%im. (10.46)
kek

Putting (10.37) and (10.45) together, we have that

Sij = filuis) Y Gineing. (10.47)
ke

This expression for d; ; is the product of two terms: the first term, f}(u; ;),
is the derivative of the activation function f;(-) evaluated at the jth hidden
node; the second term is a weighted sum of the d; ; (which requires knowl-
edge of the error e; ;, at the kth output node) over all output nodes, where
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the kth weight, a; 1;, is the connection weight of the jth hidden node to
the kth output node. Thus, d; ; at the jth hidden node depends upon the
{6;x} from all the output nodes.

The gradient-descent update to f3; jm, is given by

0F;
Bix1,jm = Bijm — Nmm— = Bi,jm + 10, Ti,m, (10.48)
aﬁi,jm

where 7 is the learning rate parameter of the backpropagation algorithm.

The backpropagation algorithm is defined by (10.38) and (10.48). These
update formulas identify two stages of computation in this algorithm: a
“feedforward pass” stage and a “backpropagation pass’ stage. After an
initialization step in which all connection weights are assigned values, we
have the following stages in the algorithm:

Feedforward pass Inputs enter the node from the left and emerge from
the right of the node; the output from the node is computed as (10.30)
and (10.31), and the results are passed, from left to right, through
the layers of the network.

Backpropagation pass The network is run in reverse order, layer by
layer, starting at the output layer:

1. The error (10.27) is computed at the kth output node and then
multiplied by the derivative of the activation function to give the
sensitivity d; , at that output node (10.37); the weights, {c; x;},
feeding into the output nodes are updated by using (10.38).

2. We use (10.47) to compute the sensitivity d; ; at the jth hidden
node; and, then, we use (10.48) to update the weights, {5 jm },
feeding into the hidden nodes.

This iterative process is repeated until some suitable stopping time.

10.7.7 Convergence and Stopping

There is no proof that the backpropagation algorithm always converges.
In fact, experience has shown that the algorithm is a slow learner, the
estimates may be unstable, there may exist many local minima, and con-
vergence is not assured in practice. There have been many explanations of
why this should happen.

One possible reason is that the backpropagation algorithm is a first-order
approximation to the method of steepest-descent and, hence, is a version
of stochastic approzimation. As the algorithm tries to find the minimum
along fairly flat regions of the surface of the error criterion, it takes many
iterations to reduce the error criterion significantly; in other, highly curved
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regions, the algorithm may miss the minimum entirely. Another possible
reason (Hwang and Ding, 1997) is that, for any ANN;, instability and con-
vergence problems may be partly caused by the “unidentifiability” of the
parameter vector w; for example, certain elements of w can be permuted
without changing the value of (X)) in (10.20).

Because of the slow progression of the backpropagation algorithm, which
is both frustrating and expensive, overfitting the network has been (accord-
ing to ANN folklore) accidentally avoided by stopping the algorithm prior
to convergence (usually referred to as early stopping). Other researchers
prefer to continue running the algorithm until the weights stabilize (e.g.,
the normed difference between successive iterates is smaller than some ac-
ceptable bound) or until the error criterion is at (or close to) a minimum.
Another practical strategy is to increase the value of 1 to produce faster
convergence, but that action could also result in oscillations.

10.8 Network Design Considerations

When fitting an ANN, the user is faced with a number of algorithmic
details that need to be resolved as part of the design of the network. In
this section, we discuss a collection of problems often referred to as network
complexity.

10.8.1 Learning Modes

The most popular methods of running the backpropagation algorithm
are the “on-line,” “stochastic,” and “batch” learning modes.

In on-line mode, each observation (x;,¥;), i = 1,2,...,n, is run through
the network in sequential fashion, one at a time, and adjustments are made
to the estimates of the connection weights each time. The iteration steps
(10.38) and (10.48) give an on-line update of the weights. Thus, (x1,¥1) is
run through the network first. The feedforward and backpropagation stages
of the algorithm are immediately carried out, yielding updated initial val-
ues of the connection weights. Next, we run (x2,y2) through the network,
whence the feedforward and backpropagation stages are again carried out,
resulting in further updated values of the connection weights. This pro-
cedure is repeated once and only once for every observation in the entire
learning set, until the last observation (X,,¥,) is run through the network
and the connection weights are updated. The process then stops.

A variation on on-line learning is stochastic learning, where an observa-
tion is chosen at random from the learning set, run through the network,
and the parameter values are updated using (10.38) and (10.48). As in on-
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line learning, each observation is run through the network once and only
once, but in random order.

In batch mode, all n observations in the learning set (referred to as an
epoch) are run through the network in any order. After all the observations
are entered, the weights are updated by summing the derivatives over the
entire learning set; that is, for the ith epoch, the updates are

n
Qit1,jk = Q4 jk+1N Z 5h,kzh7j, (10.49)
h=1
6i+1,jm = @'Jm +n Z 5h,jxh’m, (10.50)
h=1
h =1,2,.... This entire process is repeated, epoch by epoch, until £SS

becomes smaller than some preset value.

On-line learning tends to be preferred to batch learning: on-line learning
is generally faster, particularly when there are many similar data values
(redundancy) in the learning set; it can adapt better to nonstandard con-
ditions of the data (e.g., nonstationarity); and it can more easily escape
from local minima. Moreover, batch learning in very high-dimensional sit-
uations can cause computational difficulties (e.g., memory problems, cost
considerations), especially when it comes to deriving the matrices A and
B in (10.23).

10.8.2  Input Scaling

Inputs are often measured in widely differing scales, which may affect
the relative contribution of each input to the resulting analysis. This is a
common concern in data analysis. The same problem occurs when fitting an
ANN. In general, it is a good idea, prior to fitting an ANN to data, to scale
each input variable. A number of ways have been suggested to accomplish
this objective, including (1) scale the data to the interval [0, 1]; (2) scale
the data to [—1, 1] or to [—2,2]; or (3) standardize each input variable to
have zero mean and unit standard deviation.

ANN theory does not require the input data to lie in [0, 1]; in fact, scaling
to [0, 1] may not be a good choice and that it is better to center the input
data around zero. This implies that options (2) and (3) should be preferred
to option (1). These latter two scaling options may enable an ANN to be
run more efficiently and may help to avoid getting bogged down in local
extrema.

If a weight-decay penalty is to be incorporated as part of the optimization
process (see Section 10.8.5), then it makes sense to scale or standardize each
input variable. When the data are split into learning and test sets, then
the same scaling or standardization transformation applied to the learning
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set should also be applied to the test set. Note that the standardization
transformation can only be used for stochastic or batch learning; it cannot
be used for on-line learning, where the data are presented to the network
one observation at a time.

10.8.3 How Many Hidden Nodes and Layers?

One of the main problems in designing a network is to determine how
many hidden nodes and layers to include in the network; this, in turn,
determines how many parameters are needed to model the data. The cen-
tral principle here is that of Ockham’s razor: keep the model as simple as
possible while maintaining its ability to generalize well.

One way of choosing the number of hidden nodes is by employing cross-
validation (CV). However, the presence of multiple local minima at each
iteration, which result in quite different performances, can confuse the issue
of deciding which solution should be used for each round of CV. Most
applications of ANN determine the number of hidden nodes and layers
either from the context of the problem or by trial-and-error.

10.8.4 Initializing the Weights

As with any numerical and iterative method, the backpropagation algo-
rithm requires a choice of starting values to estimate the parameters (i.e.,
connection weights and biases) of the network. In general, we initialize the
network by using small (close to zero), random-generated (uniformly dis-
tributed with small variance) starting values for the parameter estimates.

10.8.5 Qwerfitting and Network Pruning

Building a neural network can easily yield a model with a huge number of
parameters. If we try to estimate all those parameters optimally by waiting
for the algorithm to converge, this can lead to severe overfitting. We would
like to reduce (as much as possible) the size of the network while retaining
(as much as possible) its good performance characteristics.

Setting parameters to zero. One way to counter overfitting is to set some
connection weights to zero, a method known as network pruning or, more
delightfully, optimal brain surgery, because of the notion that ANNs try to
approximate brain activity (Hassibi, Stork, Wolff, and Wanatabe, 1994).
If, however, a parameter (connection weight) in the model is set to zero
and the inputs are close to being collinear, then the standard errors for
the remaining estimated parameters could be significantly affected; thus, it
is not generally recommended to set more than one connection weight to
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zero (Ripley, 1996, p. 169), a strategy that defeats the objective of reducing
network size.

Shrinking parameters toward zero. Another approach is to “shrink” the
magnitudes of network parameters toward zero by incorporating regular-
ization into the criterion. In such a formulation, we minimize

ESS)\(w) = ESS(w) 4+ Ap(w), (10.51)

where A > 0 is a regularization parameter and p(-) is the penalty function.
The term Ap(w) is known as the complexity term. The regularization pa-
rameter A\ measures the relative importance of ESS(w) to p(w), and is
usually estimated by cross-validation.

There are two popular assignments of penalty functions in this ANN
context. The simplest regularizer is weight-decay, whose penalty is defined
by

pw) =wl®= Y wi (10.52)
4

where wy is equal to a,,, or Bi;, as appropriate, and the summation is taken
over all weight connections in the network (Hinton, 1987). In this case, A
is referred to as the weight-decay parameter. A more elaborate penalty
function is the weight-elimination penalty, given by

plw) = Ze: % (10.53)

where W is a preassigned free parameter (Weigend, Rumelhart, and Huber-
man, 1991), such as W =|| w ||. If, for some ¢, |wy| < W, the contribution
of that connection weight to (10.53) is deemed negligible and the connection
may be eliminated; if |wy| > W, then that connection weight contributes
a significant amount to (10.53) and, hence, should be retained in the net-
work. When using penalty function (10.52) or (10.53), it is usual to start
with A = 0, which allows the network weights to be unconstrained, and
then adjust that solution by increasing the value of A in small increments.

Reducing dimensionality of input data. The user can also apply princi-
pal component analysis to the input data, thereby reducing the number
of inputs, and then estimate the parameters of the resulting reduced-size
ANN.

10.9 Example: Detecting Hidden Messages in
Digital Images

Steganography (“covered writing,” from the Greek) is “the art and science
of communicating in a way which hides the existence of the communica-
tion” (Kahn, 1996). It is a method for hiding messages in different types
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FIGURE 10.8. Flow chart for the steganography example.

of media, such as webpage HTML text, Microsoft Word documents, exe-
cutable and dynamic link library files, digital audio files, and digital image
files (bmp, gif, jpg). Reasons for hiding messages include the need for
copyright protection of digital media (audio, image, and video), for Inter-
net security and privacy, and to provide “stealth” military and intelligence
communication.

There are many ways in which information can be hidden in digital me-
dia, including least significant bit (Isb) embedding, digital watermarking,
and wavelet decomposition algorithms. A major disadvantage to Isb inser-
tion is that it is vulnerable to slight image manipulation, such as cropping
and compression. See Petitcolas, Anderson, and Kuhn (1999) for a survey.

In this example, 1,000 color jpeg images consisting of a mixture of vari-
ous science fiction environments (including indoors, outdoors, outer space),
characters, and images with special effects, were obtained from the Star
Trek website.! These color images were converted into grayscale bitmap
images to remove any existing digital watermarks or other hidden identi-
fiers and cropped to a central 640 x 480 pixel area. These grayscale bitmap
images were then duplicated to form two sets of the same 1,000 images. One
set of grayscale images was decompressed to produce 1,000 “cover images.”
The second set was used to hide messages of random strings of characters
of sufficient length (2-3 KB). Using the software package JSTEG V4,2 1,000

IThe Star Trek website is www.startrek.com. The author thanks Joseph Jupin for
use of the data that formed the basis for his 2004 report Steganography at the website
astro.temple.edu/~ joejupin/Steganography.pdf.

2Derek Upham’s JSTEG V4 is available at ftp.funet.fi/pub/crypt/steganography.
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“stego images” were formed. A flow chart of the steganographic process is
given in Figure 10.8.

The next step is to extract from the 1,000 cover images and the 1,000
stego images a common set of variables. To identify images that contain a
hidden message, we use a methodology based upon the wavelet decompo-
sition of digital images (Farid, 2001). First, we compute a multiresolution
analysis of each set of 1,000 images using quadrature mirror filters. For
each such set, this creates orthonormal basis functions that partition the
frequency space into m resolution levels and three orientations — horizon-
tal, vertical, and diagonal. At each resolution level, separable low-pass and
high-pass filters are applied along the image axes, which generate low-pass,
vertical, horizontal, and diagonal subbands. Additional resolution levels are
created by recursively filtering the low-pass subband.

Hiding messages in a digital image often leads to a significant change in
the statistical properties of the wavelet decomposition of that image. Given
an image decomposition, we compute two sets of statistical moments: (1)
the mean, variance, skewness, and kurtosis of the subband coefficients at
each of the three orientations and at resolution levels 1,2,...,m — 1; (2)
the same statistics, but computed from the residuals of the optimal linear
predictor of coefficient magnitudes and the true coefficient magnitudes for
each of the three orientation subbands at each level. This creates a total
of 24(m — 1) variables for each image decomposition. In our example, a
four-level (m = 4), three-orientation decomposition scheme results in a 72-
dimensional vector of the moment statistics of estimated coefficients and
residuals for each image.

From each set of 1,000 images, 500 images are randomly selected, but no
duplicate images are taken. The resulting 1,000 images constitute our data
set. The problem is to distinguish the stego images from the cover images.

We randomly divided the data from the 1,000 images into a learning set
(650) and a test set (350). The learning set consists of 322 stego images
and 328 cover images, and the test set consists of 178 stego images and
172 cover images. The learning set was standardized and an ANN was fit
with a single hidden layer, varying the decay parameter A between 0.0001
and 0.9, and varying the number of nodes in the hidden layer from 1 to 10.
Each of these fitted models was used to predict the two classes (cover or
stego) for the data in the test set, which had previously been standardized
using the same scaling obtained from the learning set.

This fitting and prediction strategy is repeated 10 times using randomly
generated starting values for each combination of A and number of hidden
nodes; the misclassification rates were averaged for each such combination.
Figure 10.9 shows parallel boxplots of the individual results for A = 0.01
(left panel) and 0.5 (right panel). Notice the high variability for A = 0.01
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FIGURE 10.9. Steganography example: parallel bozxplots for the misclas-
sification rate of the test set for a neural network with a single hidden layer
and number of hidden mnodes as displayed, and decay parameter A = 0.01
(left panel) and 0.5 (right panel). A randomly generated start was used to
fit each such model, and this was repeated 10 times for each number of
hidden nodes.

compared with A = 0.5. The smallest average misclassification rate for the
test set is 0.0463, which is obtained for A = 0.5 and seven hidden nodes.

10.10 Examples of Fitting Neural Networks

In Table 10.2, we list the estimated misclassification rates of neural net-
work models applied to data sets detailed in Chapter 8. The misclassifi-
cation rates are estimated here by randomly dividing each data set into
two subsets, a learning set (2/3) and a test set (1/3). With certain excep-
tions, each learning set was first standardized by subtracting the mean of
each input variable and then dividing the result by the standard deviation
of that variable. The same standardization was also applied to the input
variables in the test set. The exceptions to this standardization are those
data sets whose values fall in [0, 1] (E-coli, Yeast), [—1, 1] (Ionosphere), or
[0,100] (Pendigits), where no transformations are made.

For each learning set, we set up a neural network model with a single
hidden layer of between 0 and 10 nodes and decay parameter A ranging
from 0.00001 to 0.1. A set of initial weights is randomly generated to fit
the ANN model to the learning set, the fitted ANN model is then applied
to the test set, and the misclassification rate computed. This is repeated
10 times, and the resulting misclassification rates are averaged to produce
the “TestSetER” in Table 10.2.
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TABLE 10.2. Summary of artificial neural network (ANN) models with
a single hidden layer fitted to data sets for binary and multiclass classifica-
tion. Listed are the sample size (n), number of variables (r), and number of
classes (K ). Also listed for each data set is the number of observations in
the learning set (2/3) and in the test set (1/3) and the test-set error (mis-
classification) rate computed from the average of 10 random initial starts.
Each learning set was standardized, and the same standardization was used
for the test set (with the exception of Ionosphere, where the input values fall
into [—1,1], and E-coli, Yeast, and Pendigits, whose values fall in [0,1]).
The data sets are listed in increasing order of LDA misclassification rates
(see Tables 8.5 and 8.7).

Data Set n r K  Learn Test  TestSetER
Breast cancer (logs) 569 30 2 379 190 0.0174
Spambase 4,601 57 2 3,067 1,534 0.0669
Tonosphere 351 33 2 234 117 0.0863
Sonar 208 60 2 138 70 0.1571
BUPA liver disorders 345 6 2 230 115 0.3183
Wine 178 13 3 118 60 0.0167
Iris 150 4 3 100 50 0.0420
Primate scapulae 105 7 5 70 35 0.0114
Shuttle 58,000 8 7 43,500 14,500 0.0002
Diabetes 145 5 3 95 50 0.0020
Pendigits 10,992 16 10 7,328 3,664 0.0251
E-coli 336 7 8 224 112 0.1161
Vehicle 846 18 4 564 282 0.1897
Letter recognition 20,000 16 26 13,000 7,000 0.0987
Glass 214 9 6 143 71 0.2056
Yeast 1,484 8 10 989 495 0.4026

We see that a single hidden-layer ANN model fits some data sets better
than others. Comparing Table 10.2 with Tables 8.5 and 8.7 (ANN misclas-
sification rates are computed using an independent test set, whereas LDA
and QDA used 10-fold CV), a single-hidden-layer ANN model fares better
than LDA for the spambase, ionosphere, sonar, primate scapulae, shut-
tle, diabetes, pendigits, e-coli, vehicle, glass, and yeast data, whereas LDA
comes out ahead for the breast cancer, BUPA liver, wine, and iris data. The
misclassification rate for the letter-recognition data is significantly reduced
if there are a large number of hidden nodes (20 or more).

10.11 Related Statistical Methods

Alternative approaches to statistical curve-fitting, such as projection-
pursuit regression and generalized additive models, try to address a more
general functional form than linearity. Although these methods are closely
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related in appearance to the ANN model, their computations are carried
out in completely different ways.

10.11.1 Projection-Pursuit Regression

Consider the input r-vector X and a single output variable Y (i.e., s = 1).
Suppose the model is
Y = pu(X) +e, (10.54)

where p(X) = E{Y|X} is the regression function, and the errors e are
independent of X and have E(¢) = 0 and var(e) = o2. The goal is to
estimate p(X). For example, suppose r = 2 and pu(X) = X;X5; we can
write p(X) = (X1 + X32)? — $(X1 — X2)?, which is the sum of squares of
the projections X7 3; = (X1, X2)(1,1)” and X783, = (X1, X2)(1,—1)". So,
a regression surface can be approximated by a sum of nonlinear functions,
{f;}, of projections X" 3.

This idea is implemented in projection-pursuit regression (PPR) (Fried-
man and Stuetzle, 1981), where the regression function is taken to be

t
p(X) =0+ > fi(Bo; + X7B;), (10.55)

Jj=1

where ao, {Bo;}, {B; = (B1j,- -+, Br;)"}, and the {f;(:)} are the unknown
parameters of the model. This is the sum of ¢ nonlinearly transformed linear
projections of the r input variables, where ¢ is a user-chosen parameter, and
has the same form as a two-layer feedforward perceptron for a single output
variable (see (10.20)). Parallel to the discussion in Section 10.5.3, it has
been shown that any smooth function of X can be well-approximated by
(10.55), where the approximation improves as t gets large enough (Diaconis
and Shahshahani, 1984). It is worth noting that as we increase t, it becomes
more and more difficult to interpret the fitted functions and coefficients in

the PPR solution.

The linear combinations, So; + X"8;, j = 1,2,...,t, are linear pro-
jections of the inputs X onto ¢ different hyperplanes, and the activation
functions f;(-), j = 1,2,...,t, are (possibly, different) smooth but un-
known functions; we assume that the {f;(-)} are each normalized to have
zero mean and unit variance. These ¢ nonlinearly transformed projections
are then linearly combined to produce p(X) in (10.55). The components
fi(Boj +X7B;), j = 1,2,...,t, are often referred to as ridge functions in
r dimensions; the name derives from the fact that, in two-dimensional in-
put space (i.e., = 2), a peaked f;(-) produces output with a ridge in the
graph.

When there is more than one output variable, the output can be repre-
sented as a multiresponse s-vector, Y = (Y1,---,Y;)". Then, each com-
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ponent of the regression function, u(X) = (pu1(X),- -, us(X))7, where
1k (X) = E{Y;|X}, can be written in the form,

t
1wk (X) = agr + Z o,k fi(Boj + XT,GJ-), k=1,2,...,s, (10.56)

Jj=1

where the f;(-), j = 1,2,...,t, are taken to be a common set of arbi-
trarily smooth functions having zero mean and unit variance. Models such
as (10.56) are referred to as SMART (smooth multiple additive regression
technique) (Friedman, 1984).

Leta = (a07a17 v '7at)T andﬂj - (Bojvﬂljv T 767’j)77j =12,...,1 be
each of unit length. Given data, {(x;, ), = 1,2,...,n}, the (¢(r+2)+1)-
vector w = (a7, {B]}5_;)" of parameters of the PPR single-output model
(10.55) can be estimated by minimizing the error sum-of-squares,

2
n

ESS(w) =Y i —ao— > a;fi(Bo; +xIB,) ¢ (10.57)

i=1 j=1

for nonlinear activation functions {f;(-)}, which are also determined from
the data.

The function ESS(w) is minimized in stages, and the parameters are esti-
mated in sequential fashion: first, the {«;} are fitted by linear least-squares;
next, the {f;(-)} are found using one-dimensional scatterplot smoothers,
and finally, the {f;} are fitted by nonlinear least-squares (e.g., Gauss—
Newton). Scatterplot smoothers used to estimate the PPR functions { f;(-)}
include supersmoother (or variable span smoother) (Friedman and Stuetzle,
1981), Hermitian polynomials (Hwang, Li, Maechler, Martin, and Schimert,
1992), and smoothing splines (Roosen and Hastie, 1994). These steps to
minimizing (10.57) are then iterated until some stopping criterion is satis-
fied. Stopping too early produces an increased bias for the estimate, and
waiting too long produces an enlarged variance. Typically, the process is
stopped when successive iterative values of the residual sum of squares,
RSS(@), become small and stable. In certain examples, the amount of
computation involved in finding a PPR solution could be quite large and
expensive.

10.11.2 Generalized Additive Models

An additive model in X = (X3,---,X,)7 is a regression model that is
additive in the inputs. Specifically, we assume that Y = p(X) + €, where
the regression function, u(X) = E{Y|X}, has the form,

n(X) = ao + Z fi(X5), (10.58)
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and the error € is independent of X. If f;(X;) = 8;Xj, then the additive
model reduces to the standard multiple regression model. The key aspect of
an additive model is that interactions between input variables (e.g., X; X;)
are not allowed as part of the model. If simple interactions are thought to
be important, we can introduce into an additive model additional terms
constructed as the products X;X;, fi;(X;X;), or fi(X;) - f;(X;), where
ﬁ() and fj() are the functions obtained from fitting the additive model.

The {f;(-)} are typically taken to be nonlinear transformations of the
input variables. For example, we could transform the input variables by
using logarithmic, square-root, reciprocal, or power transformations, where
the choice would depend upon what we know or suspect about each input
variable. In general, it is more useful if we take the {f;(-)} to be a set of
smooth, but otherwise unspecified, functions, which are centered so that
E{fj(Xj)} = O, ] = ]., 2, R N

To estimate p(X), the strategy is to estimate each f;(-) separately. Esti-
mation is based upon a backfitting algorithm (Friedman and Stuetzle, 1981).
The key is the identity, E{Y —ao — >, _; fe(Xk)[X;} = f;(X;). Given ob-
servations {(x;,v;),7 = 1,2,...,n} on (X,Y), we estimate ag by g = ¥
and use the most current function estimates {ﬁ, k # j} to update ]/”; by a
curve obtained by smoothing the “partial residuals,” y; —@o—> 4, ﬁ(mki),
against x;;, ¢ = 1,2,...,n. This update procedure is applied by cycling
through the {X;} until convergence of the smoothed partial residuals.
The smoothing step uses a scatterplot smoother such as a cubic regres-
sion spline, which is a set of piecewise cubic polynomials joined together
at a sequence of knots and which satisfy certain continuity conditions at
the knots. There are many other possible smoothing techniques, including
kernel estimates and spline smoothers. In practice, the choice of smoother
used depends upon the degree of “smoothness” desired.

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986) ex-
tend both the class of additive models (10.58) and the class of general-
ized linear models (McCullagh and Nelder, 1989). The generalized additive
model is usually written in the form,

h(p) = oo + Z fi(X5), (10.59)

where p = pu(X) and h(u) is a specified link function. Maximum-likelihood
estimates of the parameter ag and the functions fi, fa, ..., f are obtained
in a nonparametric fashion by maximizing a penalized log-likelihood func-
tion using a local scoring procedure (a version of the IRLS algorithm de-
scribed in Section 9.3.5, where we fit a weighted additive model rather
than a weighted linear regression), which is equivalent to a version of the
Newton-Raphson algorithm.
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A popular example of h(u) is the so-called logistic link function, h(n) =
log{u/(1—p)}, which is used to model binary output. If we apply the logistic
link function to (10.59), then the GAM can be inverted and re-expressed
as follows:

wX) =g a0+ (X)) |, (10.60)

where g(x) = (1 +e~®)~!. In this particular form, we see that the GAM
is closely related to a neural network with logistic (sigmoid) activation
function (see Exercise 10.6).

10.12 Bayesian Learning for ANN Models

Bayesian treatments of neural networks have been quite successful. As
usual, (x1,¥1),- .., (Xn,yn) is the learning set of data. We assume the in-
puts, X1,...,X,, are given and so are omitted from any probability cal-
culation, and the outputs, D = {y1,...,yn}, constitute the data to be
modeled. For this exposition, we assume a single output variable Y; the
results generalize to multiple output variables Y in a straightforward way.

An ANN model is specified by its network architecture A (i.e., the num-
ber of layers, number of nodes within each layer, and the activation func-
tions) and the vector of all network parameters w (i.e., all connection
weights and biases). Let @ be the total number of elements in the vector w.
We assume that the architecture A is given and, hence, does not enter the
probability calculations; if different architectures are to be compared, then
the influence of A would have to be taken into account in the calculations.
In some Bayesian models, A is included as part of the definition of w.

Denote the likelihood function of the parameters given the data by
p(D|w) and let p(w) denote the prior distribution of the parameters in
the model. The likelihood function gives us an idea of the extent to which
the observed data D can be predicted using the parameters w. Note that
it is a function of the parameters, not the data. The likelihood function
of the parameters conditional upon the data is the probability of the data
given the parameters, but where the data D are fixed and the parameters
w are variable. The prior distribution displays whatever knowledge and
information we have about the parameters in the model before we observe
the data.

The complexity of the model is governed by the use of a hyperprior, a
joint distribution on the parameters of the prior distribution; the param-
eters of the hyperprior distribution are called hyperparameters. Much of
Bayesian inference in ANNs uses vague (non-informative) priors for the
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hyperparameters; such hyperpriors represent our lack of specific knowledge
about any prior parameters needed to describe the model.

From Bayes’s theorem, the posterior distribution of the parameters given
the data is given by

p(D|w)p(w)
p(w|D) = ———————, 10.61
where p(D) = [p(D|w’)p(w’)dw’ operates as a normalization factor to

ensure that [p(w|D)dw = 1. Note that p(D) should be interpreted as
p(D|A), not as the probability of obtaining that particular set of data D.
Usually, the best we can hope for is that inference based upon the posterior
is robust (i.e., fairly insensitive) to the choice of prior.

In this section, we give brief descriptions of two popular techniques for
estimating the parameters w in an ANN: Laplace’s method for deriving
mazimum a posteriori (MAP) estimates (MacKay, 1991) and Markov chain
Monte Carlo (MCMC) methods (Neal, 1996). Exact analytical Bayesian
computations are infeasible for neural networks, and so approximations
offer the only way of obtaining a solution in practice.

10.12.1 Laplace’s Method

Predictions can be obtained by calculating the maximum (i.e., mode) of
the posterior distribution (MAP estimation). As such, it is the Bayesian
equivalent of maximum likelihood. In our discussion of this technique, we
consider models for regression and classification networks separately.

Regression Networks

Suppose the output Y = y corresponding to input X = x is generated by
a Gaussian distribution with mean y(x,w) and known variance 0. Then,
assuming that D = {y;} is a random sample of values of Y, the likelihood
function, Lp(w), of the parameters given the data is given by

e—HED(UJ)

Lp(w) =p(D|w) = , (10.62)

cp (k)
where

%Z:: y(xi, w))? (10.63)

is the error sum-of-squares, k = 1/0? is a (known) hyperparameter,

cp(k) = / e "EP @)D = (27 /k)"/? (10.64)
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is the normalization factor, and [dD = [dy; - - - dys,.

We take the prior distribution over the parameters to be the Gaussian
density,

eiAEQ(w)
p(w) = W, (10.65)
where
1 1 &
Eg(w) = 3 |lw 2 = 5;0@, (10.66)

wq is equal to ok, Bij, aok, or Bo; as appropriate, A is a hyperparameter
(which we assume to be known), and cg(\) = (27r/A)9/? is the normaliza-
tion factor. We note that other types of priors for ANN modeling have been
used; these include the Laplacian prior (i.e., (10.65) with Eq(w) = > |w,])
and entropy-based priors (Buntine and Weigend, 1991).

Multiplying (10.62) by (10.65) and using (10.61), we get the posterior
distribution of the parameters,

o~ S(W)
p(w|D) = SO’ (10.67)
where
S(w) = kEp(w)+ AEg(w)
= HZ y(xi,w))? +)\§:w§ (10.68)
a=1
and the normalization factor, cs(\, k) = [e~ @) dw, is an integration that

cannot be evaluated explicitly. To ﬁnd the maximum of the posterior distri-
bution, we can minimize — log, p(w|D) wrt w. Because cg is independent
of w, it suffices to minimize S(w). The value of w that maximizes the pos-
terior probability p(w|D) (or, equivalently, minimizes S(w)) is regarded as
the most probable value of w and is denoted by the MAP estimate wyp.
It can be found by an appropriate gradient-based optimization algorithm.
The network corresponding to the parameter values wyp is referred to as
the most-probable regression network.

From (10.68), we see that S(w) is a constant (x) times the error sum-of-
squares of learning-set predictions plus a complexity term composed of a
weight-decay penalty and regularization parameter A. Because S(w) has a
form very similar to (10.51) and (10.52), the MAP approach can be used to
determine A in the weight-decay penalty for network pruning. Some simple
arguments lead to a suggested range of 0.001 to 0.1 for exploratory values of
A (Ripley, 1996, Section 5.5). It is for this reason that MAP estimation has
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been characterized as “a form of maximum penalized likelihood estimation”
(Neal, 1996, p. 6) rather than as a Bayesian method.

Rather than having to work with the form of the posterior density just de-
rived, we can make the following useful approximation, known as Laplace’s
method or approzimation (Laplace, 1774/1986). Suppose that wyp is the
location of a mode of p(w|D). Consider the following Taylor-series expan-
sion of S(w) around wyp:

S(w) = S(wwmp) + %(w —wmpr) A(w — wwmp), (10.69)

where A = 025 (w)/0w?|w=wyp, is the (Q x Q) Hessian matrix (assumed
to be positive-definite) of second-order derivatives evaluated at w = wyp.
Substituting (10.69) into the numerator of (10.67), we can approximate
p(w|D) by

p(w|D) = ) pawAsw (10.70)

p = % 5y ) .
where Aw = w — wypp and the denominator (i.e., the normalizing factor)
is equal to

cs(\) = (2m) /2| A7/ 2e 7S (War), (10.71)

Thus, we can approximate p(w|D) by
Blw|D) = (2m) Q2| A|l/2e— AW AN (10.72)

which is the multivariate Gaussian density, Ng(wmp, A™1), with mean
vector wyp and covariance matrix A~!. This approximation is reinforced
by an asymptotic result that a posterior density converges (as n — 00) to
a Gaussian density whose variance collapses to zero (Walker, 1969). Note
that the Gaussian approximation p(w|D) is different from p(wnmp|D), the
posterior density corresponding to the most-probable network.

For any new input vector x, we can now write down an expression for the
predictive distribution of a new output Y from a regression network using
the learning data D:

plylx, D) = / p(y]x, w)p(w|D)dw, (10.73)

where p(w|D) is the posterior density of the parameters derived above.
This integral cannot be computed because of all the nonlinearities involved
in the network.

To overcome this impass, we use the Gaussian approximation (10.72) to
the posterior and assume that p(y|x, D) is a univariate Gaussian density
with mean y(x,w) and variance 1/v. Then, (10.73) is approximated by

plylx, D) /e—%(y—y(x"*’))z—%Aw’AAwdw. (10.74)
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We next assume that y(x,w) can be approximated by a Taylor-series ex-
pansion around wyp,

y(x,w) =~ y(x,wmp) + 8" Aw, (10.75)

where g = Jy/0w|w,, is the gradient. Set ymp = y(x, wyp). Substitut-
ing (10.75) into (10.74) and evaluating the resulting integral, we find that
p(y|x, D) can be approximated by the Gaussian density,

1

oz € T (10.76)
o,
)

ﬁ(y|xv D) -

with mean yyp and variance 02 = % + g7 A lg (see Exercise 10.10). This
result can be used to derive approximate confidence bounds on the most-
probable output ymp.

So far, we have assumed the hyperparameters x and A\ are known. But, in
practice, this is a highly unlikely scenario. In a fully hierarchical-Bayesian
approach to this problem, we would incorporate the hyperparameters into
the model and then integrate over all parameters and hyperparameters.
However, such integrations are not possible analytically, and so another
approach has to be taken.

To deal with unknown s and A\ within a Bayesian framework, two dif-
ferent approaches to this problem have been proposed: (1) integrating out
the hyperparameters analytically and then using numerical methods to es-
timate the most-probable parameter values (Buntine and Weigend, 1991);
(2) estimating the hyperparameter values by maximizing something called
“evidence” (MacKay, 1992a). These two approaches have attracted a cer-
tain amount of controversy (see, e.g., Wolpert, 1993; MacKay, 1994).

Analytically integrating out the hyperparameters. The first method in-
volves supplying prior densities for the hyperparameters, then integrating
them out (a method called marginalization), and finally applying numerical
methods to determine wyp. Thus, we can write

p@lD) = [ [ plw,sAD)drdx

//p(w|n, A, D)p(k, A\|D)drdA. (10.77)

Now, we use Bayes’s theorem for each term in the integrand: p(w|x, A, D) =
p(D|w, &, \p(w|k, ) /p(D|k, A) = p(D|w, k)p(w|\)/p(D]k, ), because the
likelihood does not depend upon A and the prior does not depend upon
w; similarly, p(r, A|D) = p(D|r, \)p(, A) /p(D) = p(D|r, N)p(k)p(A) /p(D),
where we have assumed that the two hyperparameters, x and A, are dis-
tributed independently of each other. We take these (improper) priors to
be defined over (0,00) as p(k) = 1/k and p(A) = 1/A. The integral (10.77)
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reduces to
1
plD) = 5 [ [ POl RplelNpiepdnar. (1078)

This integral can be divided up into the product of two integrals and re-
expressed as (10.61). Here,

p(w) / p(@|N)p(\)dA

~AEq(w) |
_ / e

CQ()\) A
= w’Q/z//\Q/Z’le”\EQ(“’)d)\. (10.79)

Using the value of a gamma integral (see, e.g., Casella and Berger, 1990,
p. 100), we have that (10.79) reduces to

__ Q2
Similarly, we obtain
= w, K)p(k)dk = 7F(n/2)
p(DIw)—/p(DI s K)p(r)d B (@) (10.81)

Multiplying (10.80) and (10.81) to get the posterior density, taking the
negative logarithm of the result, and simplifying, we get

—log, p(w|D) = g log, Ep(w) + % log, Eg(w) + constant, (10.82)

where the constant does not depend upon w. We differentiate (10.82) wrt
w?

d d d
< {~log, pw|D)} = h {Ep(@)} + A {Eg(w)),  (108)
to find its minimum, where
k=n/2Ep(w), A=Q/2Eg(w). (10.84)

This result is next used in a nonlinear optimization algorithm in which
the values of kK and A are sequentially updated to find the most-probable
parameters wyp, and then a multivariate Gaussian approximation to the
posterior density is obtained centered around wyip.

Mazimizing the evidence. Another method for dealing with unknown s
and A is to maximize the “evidence” of the model, p(D|x, A), which can be
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expressed as
p(D|k,A) = /p(D|w,/1,)\)p(w|m,)\)dw
= /p(D|w,/1)p(w|)\)dw

— (ep(W)eg) ! [ e
cs(ky A)

= ety (10.85)

where S(w) is given by (10.68). As usual, it is easier to maximize the
logarithm of (10.85),

1
log.p(Dlr,A) = —rEp(wmp) — AEq(wmp) — 5 log, |A
n Q Q
+ 5 log, (k) + B log,(\) — 5 log.(27).  (10.86)

We maximize this expression in two steps: first, fix « and differentiate
(10.86) wrt A, set the result to zero, and solve for a maximum; next, fix A
and differentiate (10.86) wrt x, set the result equal to zero, and solve for
a maximum. These manipulations yield the following formulas (MacKay,

1992b):
v

N= —n 10.87
QEQ(L«JMP) ( )

* n—-
K = ==, 10.88
QED(LUMP) ( )

where

< Ui

q
=S T (10.89)

=1t A

and the {n,} are the eigenvalues of A~

Thus, we set initial values for k* and A* by sampling from their respec-
tive prior densities and determine wyp by applying a suitable nonlinear
optimization algorithm to S(w); during the progress of these iterations,
the values of k* and A* are sequentially updated using (10.87)—(10.89): an
initial \§ gives a 7o using (10.89), which yields A} from (10.86) and 7 from
(10.88); the new Aj is fed back into (10.89) to provide a new 7, which, in
turn, gives A5 and k3, and so on. These steps in the algorithm should be
repeated a large number of times each time using different initial values for
the parameter vector w.

We note that this computational technique of dealing with hyperparame-
ters is equivalent to the empirical Bayes (Carlin and Louis, 2000, Chapter 3)
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or type II mazimum-likelihood (ML-II) approach to prior selection (Berger,
1985, Section 3.5.4).

Multiple modes. A major problem in practice, however, is that it is not
generally realistic to assume that the posterior density has only a single
mode. From experience of fitting Bayesian models to nonlinear networks,
we find it more reasonable to assume that there will be multiple local
maxima of the posterior density (see, e.g., Ripley, 1994a, p. 452, who, in
a particular example, found at least 22 distinct local modes). As usual in
such situations, one should try to identify as many of the distinct local
maxima as possible by running the optimization algorithm using a large
number of randomly chosen starting points for the parameters.

A potentially better modeling strategy for multiple modes is to use an
approximation to the posterior based upon a mixture of multivariate Gaus-
sian densities, where the component densities are assumed to have minimal
overlap; each component density is centered at a different local mode of the
posterior p(w|D), and the inverse of its covariance matrix is matched to
the Hessian of the logarithm of the posterior density at the mode (MacKay,
1992a). Although some work has been carried out on Gaussian mixture
models for neural networks (see, e.g., Buntine and Weigend, 1991; Ripley,
1994b), more research is needed on this topic.

Classification Networks

If the problem involves classifying data into one of two classes, I1; or Ils,
then the output variable Y is binary, taking on the value 1 (for II;) or 0
(for II5). The network output y(x,w) = p(Y = 1|x,w) is the conditional
probability that the particular input vector X = x is a member of II;.

The probability that Y; =1 is

The likelihood function of the parameters w (given the data D) is

n
p(Dlw) = [[p(Yi = 1jx;,w) = e P, (10.91)
=1

where
Ip(w) = — Z{yi log, y(x;,w) + (1 — yi)log, (1 — y(x;,w))}  (10.92)

is the negative log-likelihood function. Again, the network’s architecture
A is assumed to be given. Note that, compared to (10.62) for regression
networks, (10.91) has neither a hyperparameter x nor a denominator ¢p ().
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For a prior on the parameters, we use the Gaussian density (10.65), which
is proportional to e *Fe(W),

Assuming the {Y;} are iid copies of Y, the posterior density (10.61) is

py— 1
p(w|D) = OV (10.93)
where
S(w) =lp(w) + AEg(w), (10.94)

A is, again, the regularization parameter (also known as a weight-decay
reqularizer), and cg(A) is the normalization factor. Finding w to maximize
the posterior distribution is equivalent to minimizing S(w). The value of
w that maximizes the posterior distribution is denoted by wyp.

We can now find the probability that the input vector, X = x, is a
member of class IT; (i.e., Y = 1). MacKay (1992b) suggests that if f(-) is
one of the activation functions in Table 10.1 and u = u(x,w), then,

P =1xD) = [ oY = tu)plulx, D)du
/f p(ulx, D)d (10.95)

provides a better estimate of the class probability than y(x, wmp). To eval-
uate this integral, MacKay first expands v in a Taylor series,

u(x,w) ~ u(x, wup) + g(x)" Aw, (10.96)

where g(x) = Ju(x,w)/0wl|w,, and Aw = w — wyp. Thus,
pux.D) = [ plubxw)pw|D)de
= /§(u —ump — 8(X)"Aw)p(w|D)dw,  (10.97)

where upp = u(x,wmp) and § is the Dirac delta-function. This result
implies that if we use Laplace’s method and approximate the posterior
density p(w|D) in (10.93) by the multivariate Gaussian density,

Plw|D) o e~ 7AWTALW (10.98)
where A is the (local) Hessian matrix, then, u is Gaussian,
p(ulx, D) o e (umump)?/20% (10.99)
with mean upp and variance

v =g(x)"A tg(x). (10.100)
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When f is sigmoidal and p(u|x, D) is Gaussian, the integral (10.95) does not
have an analytic solution. MacKay (1992b) suggests the following simple
approximation for (10.95):

p(Y =1|x,D) = f(a(v)ump), (10.101)

where a(v) = (1 + (7%2/8))~'/2. Note that the probability (10.101) is not
the same as y(x, wnp).

10.12.2 Markov Chain Monte Carlo Methods

As we have seen, the main computational difficulty in applying Bayesian
methods involves the evaluation of complicated high-dimensional integrals.
For example, the predictive distribution of the output value Y = y* of a new
test case (x*,y*), given the learning data, £ = {(x;,v;),i =1,2,...,n}, is
given by

ply*|x*, £) = / p(y* %", w)p(w] L) dow. (10.102)

If we were to estimate y* in a regression model using squared-error as our
loss function, then, the best predictor is the expectation of the predictive
distribution (10.102),

E{Y"|x",L} = /p(x*,w)p(w|£)dw. (10.103)

Problems of approximating the posterior density or its expectation have
been summarized well by Neal (1996, Section 1.2).

A recent popular and highly successful addition to the Bayesian’s toolkit
is a method known as Markov chain Monte Carlo (MCMC), which is actu-
ally a collection of related computational techniques designed for simulating
from nonstandard multivariate distributions (see, e.g., Gilks, Richardson,
and Spiegelhalter, 1996; Robert and Casella, 1999). It was proposed as a
method for estimating the predictive distributions of regression and classi-
fication network parameters and their expectations by Neal (1996).

The essential idea behind MCMC is to approximate the desired inte-
gration by simulating from the joint probability distribution of all the
model parameters and hyperparameters. Thus, we, first, use a Monte Carlo
method to draw a sample of B values, w™®, ... w®) from the predictive
density (10.99), where w now includes all weights, biases, and hyperparam-
eters; then, we approximate the expectation (10.103) by

B
1
V=5 > p(x",w®). (10.104)
b=1

When the predictive density is complicated, as it is in nonlinear neural
network applications, then the sequence of generated values, {w(b)}, has to
be viewed as a dependent sequence.
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One way of generating such a dependent sequence is by using an er-
godic Markov chain with stationary distribution P = p(x,w). A Markov
chain is defined on a sequence of states, w(®), by an initial distribution for
the startup state, w(9), of the chain and a set of transition probabilities,
{Q(w®]w® M)}, for a future state, w®, to succeed the current state,
w1 The distribution P is called stationary (or invariant) if it remains
the same for all states in the sequence that follow the bth state. If a sta-
tionary distribution P exists and is unique, then the Markov chain is called
ergodic and its stationary distribution P is known as the equilibrium dis-
tribution. If we can find an ergodic Markov chain that has equilibrium
distribution P, then it does not matter from which initial state we start
the chain, convergence of the sequence will always be to P. In such a case,
we can estimate (10.103) wrt P by using (10.104).

Because the members of the sequence {w(b)} are dependent, we need a
much larger value of B than if the sequence consisted of independent values.
At the beginning, the iterates will look like the starting values, w(®), and
then, after a long time, the Markov chain will settle down. To take this into
account, the first By iterates are considered as the “burn-in” period; these
values are discarded as not resembling the equilibrium distribution P, and
only the subsequent B — By values are regarded as essentially independent
observations from P to be used for predictive purposes.

The two most popular methods for MCMC are Gibbs sampling and the
Metropolis algorithm. Both (and variations of those themes) have been
used extensively in mathematical physics, chemistry, biology, statistics, and
image restoration.

The Gibbs sampler (Geman and Geman, 1984) can be applied when
sampling from any distribution defined by a vector, w = (w1, -,wQ)7,
Q@ > 2, of parameters. Considering these parameters as random variables,
we assume that all one-dimensional conditional distributions of the form
plwgl{wist # ¢}),q = 1,2,...,Q, are available to be sampled. The entire
set of these conditional distributions is (under mild conditions) sufficient
to determine the joint distribution and all its margins. Given a vector of
starting values w(9), we define a Markov chain by generating w® from
w1 according to the algorithm in Table 10.3, where we use notation
from Besag, Green, Higdon, and Mengersen (1995). This process generates
a sequence (or trajectory) of the chain, w© w® w® o and, as b
gets larger and larger (after a long enough “burn-in” period), the vector
w(®) becomes approximately distributed as the desired P.

The Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller, 1953) introduces a candidate or proposal density, f, whose form
depends upon the current state; one generates a candidate state, w*, from
f, and then decides whether or not to “accept” that candidate state. If
the candidate state is accepted, it becomes the next state in the Markov
chain; otherwise, it remains at the current state. See Table 10.4. The iter-
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TABLE 10.3. The Gibbs sampler.

1. Let w%o), e ,wg)) be starting values. Define
w_q={wj,j #q} ={wi,wa,...,Wg—1,Wgt1,--.,wQ}
2. Forb=1,2,...:

(b)

draw wy” ~ pe(welw™, ), ¢=1,2,...,Q.

3. Continue the 2nd step until the joint distribution of w%b), . ,wg) stabilizes.

ative process moves from the current state, w®~1 | to the next state, w(®,
corresponding to a higher-density region of p(w|L£), whereas it rejects a per-
centage of those steps that move to lower-density regions of p(w|L). Note
that the candidate densities may change from step to step; typically, the
candidate density f is selected to be a member of a family of distributions,
such as Gaussian densities centered at w(®—1).

Unfortunately, neither the Gibbs sampler nor the Metropolis algorithm
are recommended for sampling from the posterior distribution of a neural
network model. Because of the huge numbers of parameters involved and
the nonlinearity of the model, such MCMC procedures are either compu-
tationally infeasible or are very slow for this type of application.

TABLE 10.4. The Metropolis algorithm.

1. Let w® be starting values. Let p(w|L) be the joint posterior density of w.
2. Forb=1,2,...:
(i) Draw a candidate state, w™, from a proposal density f, which depends
upon the current state; ie., w* ~ f(-,w® D),
(ii) Compute the ratio 7 = p(w*|L)/p(w®~V|L).
(iii) (a) If r > 1, accept the candidate state and set w® = w*.

(b) Otherwise, accept the candidate state with probability r or reject

it with probability 1 — 7. If the candidate state is rejected, set
w® — 1)

3. Continue the 2nd step until the joint distribution of w® stabilizes.
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To overcome these difficulties, Neal (1996, Chapter 3) successfully im-
plemented a combination procedure based upon the hybrid Monte Carlo
algorithm of Duane, Kennedy, Pendleton, and Roweth (1987). Neal’s pro-
cedure separates the hyperparameters from the network parameters (i.e.,
weights and biases) and alternates their updates: the Gibbs sampler is used
for updating the hyperparameters, and the hybrid Monte Carlo algorithm,
an elaborate version of the Metropolis algorithm, is used to update the
network parameters.

10.13 Software Packages

S-PLus and R (Venables and Ripley, 2002, Sections 8.8-8.10) have com-
mands to carry out neural networks (nnet), projection pursuit regres-
sion (ppr), and generalized additive models (gam). MATLAB has a Neural
Network Toolbox with tools for designing, implementing, visualizing, and
simulating neural networks. WEKA (Waikato Environment for Knowledge
Analysis) is a collection of open-source machine-learning algorithms for
data-mining tasks, including neural network modeling, from the University
of Waikato, Hamilton, New Zealand (Witten and Frank, 2005). WEKA is
downloadable from www.cs.waikato.ac.nz/ml/weka.

Gibbs sampling can be used to simulate from almost any probability
model through BUGS (Bayesian inference Using Gibbs Sampling), WIN-
BUGS, and OPENBUGS software, which is downloadable from

www.mrc-bsu.cam.ac.uk/bugs/.
OPENBUGS can be run from R in Windows.
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used as an MCMC method by Geman and Geman (1984) in the context of
image restoration. Its introduction to the statistical community is due to
Gelfand and Smith (1990), who broadened its appeal considerably.

The field of neural networks is now regarded by many as part of a larger
field known as softcomputing (due to L.A. Zadeh), which includes such
topics as fuzzy logic (e.g., computing with words), evolutionary computing
(e.g., genetic algorithms), probabilistic computing (e.g., Bayesian learning,
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Exercises

10.1 Let ¢(z) = a tanh(bz) be the hyperbolic tangent activation function,
where a and b are constants. Show that ¢(z) = 2av)(bx) — a, where ¢(z) =
(1 +e7®)~!is the logistic activation function.

10.2 Show that the logistic function is symmetric, whereas the tanh func-
tion is asymmetric.

10.3 Show that the Gaussian cumulative distribution function, ®(z) =
(2m)~1/2 I . e~ /2duy, is a sigmoidal function.

10.4 Show that ¥(x) = (2/7) tan"!(z) is a sigmoidal function.

10.5 For r = 3 inputs, draw the hyperplane in the unit cube corresponding
to the McCulloch—Pitts neuron for the logical OR function.

10.6 (The XOR Problem.) Consider four points, (X1, X32), at the corners
of the unit square: (0,0),(0,1),(1,0), (1,1). Suppose that (0,0) and (1,1)
are in class 1, whereas (0,1) and (1,0) are in class 2. The XOR problem is
to construct a network that classifies the four points correctly. By setting
Y =1 to points in class 1 and Y = 0 to points in class 2 (or vice versa), show
algebraically that a straight line cannot separate the two classes of points
and, hence, that a perceptron with no hidden nodes is not an appropriate
network for this problem.

10.7 (The XOR Problem, cont.) Consider a fully connected network with
two input nodes (X1, X3), two hidden nodes (Z1, Z3), and a single output
node (Y). Let 811 = (12 = 1 be the connection weights from X; to Z;
and Zs, respectively; let 5p1 = 1.5 be the bias at hidden node 1; let Go; =
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B22 = 1 be the connection weights from X5 to Z; and Zs, respectively; and
let Bgo = 0.5 be the bias at hidden node 2. Next, let 1 = —2 and as = 1
be the connection weights from Z; to Y and from Zs to Y, respectively,
with bias ag = 0.5. Draw the network graph. Find the linear boundaries as
defined by the two hidden nodes; in the unit square, draw the boundaries
and identify which class, 0 or 1, corresponds to each region of the unit
square. Show that this network solves the XOR problem. Find another
solution to this problem using different weights and biases.

10.8 Write a computer program to carry out the backpropagation algo-
rithm as detailed in Section 10.7.6 for the squared-error loss function, and
then apply it to a classification data set of your choice.

10.9 Study the correspondences between a single hidden layer neural net-
work (10.18) and a generalized additive model (10.54).

10.10 Prove that

/e—%z’BzH{de _ (QW)Q/2|B|—1/26§11TB*111.

10.11 Prove (10.74). (Hint: Use Exercise 10.10 with z = Aw, B = A +
vgg”, and h = —v(y — ymp)g. Then, multiply numerator and denominator
by g"(I+vA~lgg™)g, and simplify.)

10.12 Use the logistic function as the sigmoid activation function g(-) and
a linear function f(-) to derive the computational expressions for the back-
propagation algorithm. Discuss the properties of this particular algorithm.

10.13 Use the cross-entropy loss function to derive the appropriate com-
putational expressions for the backpropagation algorithm. Program the re-
sulting algorithm, use it with a data set of your choice, and compare its
output with that obtained from the squared-error loss function.

10.14 Construct a network diagram based upon the sine function that will
approximate the function F'(z) in (10.21) by F(x) in (10.22).

10.15 Suppose we construct a neural network with no hidden layer, just
input and output nodes. Let X; be the jth input, j = 1,2,...,r, and let
Y = f(Bo + X"B) denote the output, where f(u) = (1 +e %) !, X =
(X1,--, X)), and B = (By,---,B-)7 is an r-vector of weights. Show that
the decision boundary of this network is linear. If there are two input
variables (i.e., r = 2), draw the corresponding decision boundary.

10.16 Fit a neural network to the gilgaied soil data set from Section
8.6. How could the two-way format of the data be taken into account in a
neural network model?
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10.17 Fit a neural network to the Cleveland heart-disease data from
Section 9.2.1. Compare results with that given by using a classification
tree.

10.18 Fit a neural network to the Pima Indians diabetic data set pima from
Section 9.2.4. Compare results with that given by using a classification tree.

10.19 Fit a regression neural network to the 1992 Major League Baseball
Salaries data from Section 9.3.5. Compare results with that given by using
a regression tree.

10.20 Write a computer program to implement projection pursuit regres-
sion and use it to fit the 1992 Major League Baseball Salaries data.

10.21 Consider a regression neural network in which the outputs are iden-
tical to the inputs. Generate input data from a suitable multivariate Gaus-
sian distribution and use that same data as outputs. Fit a neural networks
model to these data and comment on your results. What is the relationship
between this network analysis and principal component analysis?

10.22 In the discussion of Bayesian neural networks (Section 10.12), the
binary classification problem was addressed. Redo the section on Bayesian
classification networks using Laplace’s approximation method so that now
there are more than two classes.

10.23 Take any classification data set and divide it up into a learning
set and an independent test set. Change the value of one observation on
one input variable in the learning set so that that value is now a univari-
ate outlier. Fit separate single-hidden-layer neural networks to the original
learning-set data and to the learning-set data with the outlier. Comment
on the effect of the outlier on the fit and on its effect on classifying the
test set. Shrink the value of that outlier toward its original value and eval-
uate when the effect of the outlier on the fit vanishes. How far away must
the outlier move from its original value so that significant changes to the
network coefficient estimates occur?
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Support Vector Machines

11.1 Introduction

Fisher’s linear discriminant function (LDF) and related classifiers for binary
and multiclass learning problems have performed well for many years and
for many data sets. Recently, a brand-new learning methodology, support
vector machines (SVMs), has emerged (Boser, Guyon, and Vapnik, 1992),
which has matched the performance of the LDF and, in many instances,
has proved to be superior to it.

Development and implementation of algorithms for SVMs are currently
of great interest to theoretical researchers and applied scientists in machine
learning, data mining, and bioinformatics. Huge numbers of research arti-
cles, tutorials, and textbooks have been published on the topic, and annual
workshops, new research journals, courses, and websites are now devoted
to the subject. SVMs have been successfully applied to classification prob-
lems as diverse as handwritten digit recognition, text categorization, cancer
classification using microarray expression data, protein secondary-structure
prediction, and cloud classification using satellite-radiance profiles.

SVMs, which are available in both linear and nonlinear versions, involve
optimization of a convex loss function under given constraints and so are
unaffected by problems of local minima. This gives SVMs quite a strong

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 369
DOI 10.1007/978-0-387-78189-1_11, © Springer Science+Business Media New York 2013
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competitive advantage over methods such as neural networks and decision
trees. SVMs are computed using well-documented, general-purpose, math-
ematical programming algorithms, and their performance in many situa-
tions has been quite remarkable. Even in the face of massive data sets,
extremely fast and efficient software is being designed to compute SVMs
for classification.

By means of the new technology of kernel methods, SVMs have been
very successful in building highly nonlinear classifiers. The kernel method
enables us to construct linear classifiers in high-dimensional feature spaces
that are nonlinearly related to input space and to carry out those com-
putations in input space using very few parameters. SVMs have also been
successful in dealing with situations in which there are many more variables
than observations.

Although these advantages hold in general, we have to recognize that
there will always be applications in which SVMs can get beaten in perfor-
mance by a hand-crafted classification method.

In this chapter, we describe the linear and nonlinear SVM as solutions
of the binary classification problem. The nonlinear SVM incorporates non-
linear transformations of the input vectors and uses the kernel trick to
simplify computations. We describe a variety of kernels, including string
kernels for text categorization problems. Although the SVM methodology
was built specifically for binary classification, we discuss attempts to ex-
tend that methodology to multiclass classification. Finally, although the
SVM methodology was originally designed to solve classification problems,
we discuss how the SVM methodology has been defined for regression sit-
uations.

11.2 Linear Support Vector Machines

Assume we have available a learning set of data,
‘C:{(thi):i:l,Qa"',n}v (111)

on the pair (X,Y), where X € R" and Y € {—1,+1}. The binary classifi-
cation problem is to use L to construct a function f: R" — R so that

C(x) =sign(f(x)), xe R, (11.2)

is a classifier. The separating function f then classifies each new point x in
a test set 7 into one of two classes, 111 or II_, depending upon whether
C(x) is +1 (if f(x) > 0) or —1 (if f(x) < 0), respectively. The goal is
to have f assign all “positive” points in 7 (i.e., those with Y = y, where
y = +1) to I1; and all “negative” points in T (i.e., those with Y = y, where
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y = —1) to II_. In practice, we recognize that 100% correct classification
may not be possible.

11.2.1 The Linearly Separable Case

First, consider the simplest situation: suppose the positive and negative
data points from the learning set £ can be separated by a hyperplane,

{x: f(x) = 6o +x"B =0}, (11.3)

where 3 is the weight vector with Euclidean norm || 8 ||, and f§y is the
bias. (Note: b = —fy is the threshold.) If this hyperplane can separate the
learning set into the two given classes without error, the hyperplane is
termed a separating hyperplane. Clearly, there is an infinite number of such
separating hyperplanes. How do we determine which one is the best?

Consider any separating hyperplane. Let d_ be the shortest distance from
the separating hyperplane to the nearest negative data point, and let d
be the shortest distance from the same hyperplane to the nearest positive
data point. Then, the margin of the separating hyperplane is defined as
d =d_ +d. If, in addition, the distance between the hyperplane and its
closest observation is maximized, we say that the hyperplane is an optimal
separating hyperplane (also known as a mazimal margin classifier).

If the learning data from the two classes are linearly separable, there
exists By and B such that

Bo+x1B>+1, if y; = +1, (11.4)

Bo+xIB<—1, if y; = —1. (11.5)

If there are data vectors in £ such that equality holds in (11.4), then these
data vectors lie on the hyperplane Hy1: (8o — 1) + x™ 3 = 0; similarly, if
there are data vectors in £ such that equality holds in (11.5), then these
data vectors lie on the hyperplane H_1: (8o + 1) + x"3 = 0. Points in £
that lie on either one of the hyperplanes H_; or H, 1, are said to be support
vectors. See Figure 11.1. The support vectors typically consist of a small
percentage of the total number of sample points.

If x_; lies on the hyperplane H_;, and if x;; lies on the hyperplane
H+17 then,
Bo+x"18=—-1, Bo+x,8=+1 (11.6)
The difference of these two equations is x ;3 — x” {3 = 2, and their sum
is By = f%{x:_lﬁ +x7,8}. The perpendicular distances of the hyperplane
Bo + x" B = 0 from the points x_; and x ;1 are

4 - |50+X11,3| _ 1 de — |BO+XTH,6| _ 1
- I8 s I8 (WealN

(11.7)
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margin

Hyy

FIGURE 11.1. Support vector machines: the linearly separable case. The
red points correspond to data points with y; = —1, and the blue points cor-
respond to data points with y; = +1. The separating hyperplane is the line
Bo+x"3 = 0. The support vectors are those points lying on the hyperplanes
H_; and Hyq. The margin of the separating hyperplane is d =2/ 3 ||.

respectively (see Exercise 11.1). So, the margin of the separating hyperplane
isd =2/ B |
The inequalities (11.4) and (11.5) can be combined into a single set of
inequalities,
yi(Bo+x7B) > +1, i=1,2,...,n. (11.8)

The quantity y;(5o+x7 ) is called the margin of (x;,y;) with respect to the
hyperplane (11.3), i =1,2,...,n. From (11.6), we see that x; is a support
vector with respect to the hyperplane (11.3) if its margin equals one; that
is, if

yi(Bo +xB) = 1. (11.9)
The support vectors in Figure 11.1 are those points lying on the hyper-
planes H_; and Hy;. The empirical distribution of the margins of all the
observations in L is called the margin distribution of a hyperplane with re-
spect to L. The minimum of the empirical margin distribution is the margin
of the hyperplane with respect to L.

The problem is to find the optimal separating hyperplane; namely, find
the hyperplane that maximizes the margin, 2/ || 8 ||, subject to the condi-
tions (11.8). Equivalently, we wish to find 8y and 3 to

1
minimize 5 | 8112, (11.10)

subject to  yi(Bo+x[B)>1, i=1,2,...,n. (11.11)
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This is a convex optimization problem: minimize a quadratic function sub-
ject to linear inequality constraints. Convexity ensures that we have a global
minimum wthout local minima. The resulting optimal separating hyper-
plane is called the mazimal (or hard) margin solution.

We solve this problem using Lagrangian multipliers. Because the con-
straints are y;(8o + xI3) —1 > 0,4 = 1,2,...,n, we multiply the con-
straints by positive Lagrangian multipliers and subtract each such product
from the objective function (11.10) to form the primal functional,

Fo(o,8,0) =5 1817 =S astu(bo +x1) ~ 1}, (1112)
i=1

where
a=(a, o) =20 (11.13)

is the n-vector of (nonnegative) Lagrangian coefficients. We need to mini-
mize F' with respect to the primal variables 5y and B, and then maximize
the resulting minimum-F with respect to the dual variables a.

The Karush—Kuhn—Tucker conditions give necessary and sufficient con-
ditions for a solution to a constrained optimization problem. For our primal
problem, 5y, B, and a have to satisfy:

OF "
% = =Y i =0, (11.14)
0 i=1
F n
%ﬂ’ﬁ’a) = B-Y awxi =0, (11.15)
i=1
yi(Bo+x;8) -1 > 0, (11.16)
a; > 0, (11.17)
ai{yi(Bo+x(B) -1} = 0, (11.18)
for i = 1,2,...,n. The condition (11.18) is known as the Karush—Kuhn—

Tucker complementarity condition.
Solving equations (11.14) and (11.15) yields

n
Yoy = 0, (11.19)
i=1

n
B = Zaiyixi. (11.20)
=1

Substituting (11.19) and (11.20) into (11.12) yields the minimum value of
FP(607 /6.7 a)a namGIY7

Fol@) = 318" 17 =S aulus(f +x78°) 1)

i=1
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- ZZCM a;yiy; (X7 x;) ZZaZaJylyj X7 X;) + Zaz

1=1 j=1 1=1 j=1 =1
n 1 n o n B
= Z;ai ~3 Zl Zlaiajyiyj(xi X;), (11.21)
1= =1 7=

where we used (11.18) in the second line. Note that the primal variables
have been removed from the problem. The expression (11.21) is usually
referred to as the dual functional of the optimization problem.

We next find the Lagrangian multipliers by maximizing the dual func-
tional (11.21) subject to the constraints (11.17) and (11.19). The con-
strained maximization problem (the “Wolfe dual”) can be written in matrix
notation as follows. Find a to

1

mazimize Fpla)=1 o — EaTHa (11.22)
subject to a >0, a"y =0, (11.23)
where y = (y1,---,yn)” and H = (H;;) is a square (n x n)-matrix with

H;; = yy;(x]x,). If & solves this optimization problem, then,
R n
= Z QiYiXi (11.24)
i=1

yields the optimal weight vector. If @; > 0, then, from (11.18), v;(58§ +
x73") =1, and so x; is a support vector; for all observations that are not
support vectors, @; = 0. Let sv C {1,2,...,n} be the subset of indices that
identify the support vectors (and also the nonzero Lagrangian multipliers).
Then, the optimal 3 is given by (11.24), where the sum is taken only over
the support vectors; that is,

B=>" awx. (11.25)

1€ESV

In other words, ,B is a linear function only of the support vectors {x;,i €
sv}. In most applications, the number of support vectors will be small
relative to the size of L, yielding a sparse solution. In this case, the sup-
port vectors carry all the information necessary to determine the optimal
hyperplane.

The primal and dual optimization problems yield the same solution, al-
though the dual problem is simpler to compute and, as we shall see, is
simpler to generalize to nonlinear classifiers. Finding the solution involves
standard convex quadratic-programming methods, and so any local mini-
mum also turns out to be a global minimum.

Although the optimal bias BO is not determined explicitly by the opti-
mization solution, we can estimate it using the primal constraints. In other
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words, the estimated bias of the optimal hyperplane is given by

Bo = ~3{xB+xT,BY, (11.26)

where x_1 is any support vector lying on the hyperplane H_; and x4 is
any support vector lying on the hyperplane H ;.

It follows that the optimal hyperplane can be written as

Jx) = Bo+x"B
= Eo + Z ;Y (X7x;). (11.27)
1ES5V

Clearly, only support vectors are relevant in computing the optimal sepa-
rating hyperplane; observations that are not support vectors play no role
in determining the hyperplane and are, thus, irrelevant for solving the op-
timization problem. Thus, the classification rule applied to the observed
value X = x is given by

C(x) = sign{ f(x)}. (11.28)
If j € sv, then, from (11.27),

yjf(X] = yJBO Z Qiyiy; ( X x;) = 1. (11.29)

1€ESV

Hence, from (11.25), the squared-norm of the weight vector ,2\3 of the optimal
hyperplane is

IBIP = D) @dpy,(x]x;)

1€5V JESV

= Z ajY; Z @iy (X] X;)

JEsv i€sv

= > a1 -yh)

JESsV

= > a;. (11.30)

JESsV
The third line used (11.29) and the fourth line used (11.19). It follows from
(11.30) that the optimal hyperplane has maximum margin 2/ || 3 ||, where

~1/2

=1 > a . (11.31)

JjEsv

Q)
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11.2.2  The Linearly Nonseparable Case

In real applications, it is unlikely that there will be such a clear linear
separation between data drawn from two classes. More likely, there will
be some overlap. We can generally expect some data from one class to
infiltrate the region of space perceived to belong to the other class, and
vice versa. The overlap will cause problems for any classification rule, and,
depending upon the extent of the overlap, we should expect that some of
the overlapping points will be misclassified.

The nonseparable case occurs if either the two classes are separable, but
not linearly so, or that no clear separability exists between the two classes,
linearly or nonlinearly. One reason for overlapping classes is the high noise
level (i.e., large variance) of one or both classes. As a result, one or more
of the constraints will be violated.

The way we cope with overlapping data is to create a more flexible for-
mulation of the problem, which leads to a soft-margin solution. To do this,
we introduce the concept of a nonnegative slack variable, &;, for each data
point, (x;,¥;), in the learning set, i = 1,2,...,n. See Figure 11.2 for a
two-dimensional example. Let

£= (&, .6) >0 (11.32)
The constraints (11.11) now become y;(Bo+xIB)+& > Lfori=1,2,...,n.

Data points that obey these constraints have & = 0. The classifier now has
to find the optimal hyperplane that controls both the margin, 2/|| 3 ||, and
some computationally simple function of the slack variables, such as

9:(6) = 3¢, (11.33)

subject to certain constraints. The usual values of o are 1 (“l-norm”) or
2 (“2-norm”). Here, we discuss the case of o = 1; for o = 2, see Exercise
11.3.

The 1-norm soft-margin optimization problem is to find By, B, and &€ to

A BTN
minimize 5 IWeAl —l—C;@, (11.34)
subject to & >0, y;(Bo+xIB)>1-&, i=1,2,...,n, (11.35)
where C' > 0 is a regularization parameter. C' takes the form of a tuning

constant that controls the size of the slack variables and balances the two
terms in the minimizing function.

Form the primal functional, Fp = Fp(Bo, 3, €, a,n), where

Fp = % | B ||2 +C’Z§i—z ai{yi(ﬁo""XZﬂ)_(l—fz‘)}—Zm{i, (11.36)

i=1 i=1 i=1
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margin

Hi

FIGURE 11.2. Support vector machines: the linearly nonseparable case.
The red points correspond to data points with y; = —1, and the blue points
correspond to data points with y; = +1. The separating hyperplane is the
line By + x73 = 0. The support vectors are those points lying on the hy-
perplanes H_1 and Hyq. The slack variables & and &4 are associated with
the red points that violate the constraint of hyperplane H_1, and points
marked by £2,&3, and &5 are associated with the blue points that violate
the constraint of hyperplane Hi1. Points that satisfy the constraints of the
appropriate hyperplane have & = 0.

with a = (a1, -, )" > 0and n = (N1, --,n,)” > 0. Fix a and n, and
differentiate Fp with respect to 5y, G,and &:

OFp "

— = - Y5, 11.37
e ; y (11.37)
OFp i

—_— = — QY X, ].].38
3 B ; y (11.38)
F

885 = C—a;i—mn, i=12,...,n. (11.39)

Setting these derivatives equal to zero and solving yields
n n
Zaﬂ/z‘ =0, 8" = Zaiyixi7 a; =C—n;. (11.40)
i=1 i=1
Substituting (11.40) into (11.36) gives the dual functional,

n 1 n n
Fofe) =Y o~ L3 Yoty ()
=1

i=1 j=1
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which, remarkably, is the same as (11.21) for the linearly separable case.
From the constraints C'—a; —n; = 0 and n; > 0, we have that 0 < a; < C.
In addition, we have the Karush—Kuhn-Tucker conditions:

yilBo+xIB)—(1—-&) > 0 (11.42)

& > 0, (11.43)

a; > 0, (11.44)

ni > 0, (11.45)

aifyi(Bo +xiB) —(1=&)} = 0, (11.46)

Cila, —C) = 0, (11.47)

for i = 1,2,...,n. From (11.47), a slack variable, &;, can be nonzero only

if @; = C. The Karush-Kuhn—Tucker complementarity conditions, (11.46)
and (11.47), can be used to find the optimal bias f.

We can write the dual maximization problem in matrix notation as fol-
lows. Find « to

1
maximize Fp(a)=1,o0— EaTHa (11.48)
subject to o'y =0, 0 <a < (C1,. (11.49)

The only difference between this optimization problem and that for the
linearly separable case, (11.22) and (11.23), is that, here, the Lagrangian
coefficients «;, 1 = 1,2,...,n, are each bounded above by C; this upper
bound restricts the influence of each observation in determining the solu-
tion. This type of constraint is referred to as a box constraint because a
is constrained by the box of side C' in the positive orthant. From (11.49),
we see that the feasible region for the solution to this convex optimiza-
tion problem is the intersection of the hyperplane o’y = 0 with the box
constraint 0 < a < C1,. If C = oo, then the problem reduces to the
hard-margin separable case.

If & solves this optimization problem, then,
B=>"aiyx; (11.50)
1€ SV

yields the optimal weight vector, where the set sv of support vectors con-
tains those observations in £ which satisfy the constraint (11.42).

11.3 Nonlinear Support Vector Machines

So far, we have discussed methods for constructing a linear SVM clas-
sifier. But what if a linear classifier is not appropriate for the data set in
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question? Can we extend the idea of linear SVM to the nonlinear case? The
key to constructing a nonlinear SVM is to observe that the observations
in £ only enter the dual optimization problem through the inner products
(x4, %) = xIX4, 1,7 =1,2,...,n.

11.3.1 Nonlinear Transformations

Suppose we transform each observation, x; € R”, in £ using some non-
linear mapping ® : " — H, where H is an Ny-dimensional feature space.
The nonlinear map ® is generally called the feature map and the space
H is called the feature space. The space H may be very high-dimensional,
possibly even infinite dimensional. We will generally assume that H is a
Hilbert space of real-valued functions on R with inner product (-,-) and
norm || - ||.

Let
B(x;) = (p1(xi), -, dNy, (X)) €EH, i=1,2,...,n. (11.51)

The transformed data are then {®(x;),y;}, where y; € {—1,+1} identifies
the two classes. If we substitute ®(x;) for x; in the development of the
linear SVM, then data would only enter the optimization problem by way
of the inner products (®(x;), ®(x;)) = ®(x;)" ®(x;). The difficulty when
using nonlinear transformations in this way is in computing such inner
products in high-dimensional space H.

11.8.2 The “Kernel Trick”

The idea behind nonlinear SVM is to find an optimal separating hyper-
plane (with or without slack variables, as appropriate) in high-dimensional
feature space H just as we did for the linear SVM in input space. Of
course, we would expect the dimensionality of H to be a huge impediment
to constructing an optimal separating hyperplane (and classification rule)
because of the curse of dimensionality. The fact that this does not become
a problem in practice is due to the “kernel trick,” which was first applied
to SVMs by Cortes and Vapnik (1995).

The so-called kernel trick is a wonderful idea that is widely used in algo-
rithms for computing inner products of the form (®(x;), ®(x;)) in feature
space H. The trick is that instead of computing these inner products in
H, which would be computationally expensive because of its high dimen-
sionality, we compute them using a nonlinear kernel function, K (x;,x;) =
(®(x4), ®(x5)), in input space, which helps speed up the computations.
Then, we just compute a linear SVM, but where the computations are
carried out in some other space.
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11.3.3 Kernels and Their Properties

A kernel K is a function K : R x R — R such that, for all x,y € R,

K(x,y) = (2(x), 2(y))- (11.52)

The kernel function is designed to compute inner-products in H by using
only the original input data. Thus, wherever we see the inner product
(®(x), ®(y)), we substitute the kernel function K (x,y). The choice of K
implicitly determines both ® and #H. The big advantage to using kernels as
inner products is that if we are given a kernel function K, then we do not
need to know the explicit form of ®.

We require that the kernel function be symmetric, K(x,y) = K(y, x),
and satisfy an inequality, [K (x,y)]? < K(x,x)K(y,y), derived from the
Cauchy—Schwarz inequality. If K (x,x) = 1 for all x € R", this implies that
|®(x)|l% = 1. A kernel K is said to have the reproducing property if, for
any f € H,

(FO), K(x,4)) = f(x). (11.53)
If K has this property, we say it is a reproducing kernel. K is also called
the representer of evaluation. In particular, if f(-) = K(-,x), then,

<K(X7')7K(Y7')> :K(X7y)' (1154)

Let x1,...,X, be any set of n points in %". Then, the (n X n)-matrix
K = (Kjj), where K;; = K(x;,%;), 4,j = 1,2,...,n, is called the Gram
(or kernel) matrix of K with respect to xi,...,x,. If the Gram matrix K
satisfies u”Ku > 0, for any n-vector u, then it is said to be nonnegative-
definite with nonnegative eigenvalues, in which case we say that K is a
nonnegative-definite kernel' (or Mercer kernel).

If K is a specific Mercer kernel on R x R”, we can always construct a
unique Hilbert space H, say, of real-valued functions for which K is its
reproducing kernel. We call Hx a (real) reproducing kernel Hilbert space
(rkhs). We write the inner-product and norm of Hy by (-, )3, (or just
(-,+) when K is understood) and || - ||, respectively.

11.8.4 Ezxamples of Kernels

An example of a kernel is the inhomogeneous polynomial kernel of degree
d,
K(x,y)=((x,y) + )%, xy€e®R, (11.55)

n the machine-learning literature, nonnegative-definite matrices and kernels are
usually referred to as positive-semidefinite (or sometimes even positive-definite) matrices
and kernels, respectively.
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TABLE 11.1. Kernel functions, K(x,y), where o > 0 is a scale param-
eter, a,b,c > 0, and d is an integer. The Euclidean norm is ||x||* = x7x.

Kernel K(x,y)
Polynomial of degree d ((x,y) + ¢)*
Gaussian radial basis function exp {— % 2}
Laplacian exp { - “"%ﬁ'” }
Thin-plate spline (@) : log, { @ }
Sigmoid tanh(a(x,y) +b)

where ¢ and d are parameters. The homogeneous form of the kernel occurs
when ¢ =0 in (11.55). If d = 1 and ¢ = 0, the feature map reduces to the
identity. Usually, we take ¢ > 0. A simple nonlinear map is given by the
caser =2 and d =2. If x = (21,22)" and y = (y1,92)", then,

K(Xa y) = (<Xa y> + 0)2 - (‘lel + T2Y2 + 0)2 = <(D(X)a (I)(y»a

where ®(x) = (22,2%,v2z122,v2c21,V272,¢)7 and similarly for ®(y).
In this example, the function ®(x) consists of six features (H = RY), all
monomials having degree at most 2. For this kernel, we see that ¢ controls
the magnitudes of the constant term and the first-degree term.

In general, there will be dim(#H) = (Tzd) different features, consisting of
all monomials having degree at most d. The dimensionality of H can rapidly
become very large: for example, in visual recognition problems, data may
consist of 16 x 16 pixel images (so that each image is turned into a vector
of dimension r = 256); if d = 2, then dim(H) = 33, 153, whereas if d = 4,
we have dim(H) = 186, 043, 585.

Other popular kernels, such as the Gaussian radial basis function (RBF),
the Laplacian kernel, the thin-plate spline kernel, and the sigmoid kernel,
are given in Table 11.1. Strictly speaking, the sigmoid kernel is not a kernel
(it satisfies Mercer’s conditions only for certain values of a and b), but it
has become very popular in that role in certain situations (e.g., two-layer
neural networks).

The Gaussian RBF, Laplacian, and thin-plate spline kernels are exam-
ples of translation-invariant (or stationary) kernels having the general form



382 11. Support Vector Machines

K(x,y) = k(x—y), where k : " — R. The polynomial kernel is an exam-
ple of a nonstationary kernel. A stationary kernel K (x,y) is isotropic if it
depends only upon the distance § = ||x —y||, i.e., if K(x,y) = k(d), scaled
to have k(0) = 1.

It is not always obvious which kernel to choose in any given application.
Prior knowledge or a search through the literature can be helpful. If no such
information is available, the best approach is to try either a Gaussian RBF,
which has only a single parameter (o) to be determined, or a polynomial
kernel of low degree (d = 1 or 2). If necessary, more complicated kernels
can then be applied to compare results.

String Kernels for Text Categorization

Text categorization is the assignment of natural-language text (or hyper-
text) documents into a given number of predefined categories based upon
the content of those documents (see Section 2.3.3). Although manual cat-
egorization of text documents is currently the norm (e.g., using folders to
save files, e-mail messages, URLs, etc.), some text categorization is auto-
mated (e.g., filters for spam or junk mail to help users cope with the sheer
volume of daily e-mail messages). To reduce costs of text categorization
tasks, we should expect a greater degree of automation to be present in the
future.

In text-categorization problems, string kernels have been proposed based
upon ideas derived from bioinformatics (see, e.g., Lodhi, Saunders, Shawe-
Taylor, Cristianini, and Watkins, 2002).

Let A be a finite alphabet. A “string”
5= 5182 5| (11.56)

is a finite sequence of elements of A, including the empty sequence, where
|s| denotes the length of s. We call u a subsequence of s (written u = s(i))
if there are indices i = (i1, 2, -+ ,4)y|), With 1 < iy < -+ <)y < [s], such
that u; = s;;, j = 1,2,...,|ul. If the indices i are contiguous, we say that
u is a substring of s. The length of w in s is

() = djy — i1 + 1, (11.57)

which is the number of elements of s overlaid by the subsequence u. For
example, let s be the string “cat” (s1 = ¢, 82 = a,s3 = t, |s| = 3), and
consider all possible 2-symbol sequences, “ca,” “ct,” and “at,” derived from
s. For the string u = ca, we have that u; = ¢ = s1,us = a = s3, whence,
u = s(i), where i = (i1,42) = (1,2). Thus, ¢(i) = 2. Similarly, for the
subsequence u = ct, u1 = ¢ = s1,u2 = t = s3, whence, i = (i1,12) = (1, 3),
and £(i) = 3. Also, the subsequence u = at has u; = a = so,us = t = s3,
whence, i = (2,3), and ¢(i) = 2.
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If D = A™ is the set of all finite strings of length at most m from A,
then, the feature space for a string kernel is R”. The feature map ®,,
operating on a string s € A™, is characterized in terms of a given string
u € A™. To deal with noncontiguous subsequences, define A € (0,1) as
the drop-off rate (or decay factor); we use A to weight the interior gaps
in the subsequences. The degree of importance we put into a contiguous
subsequence is reflected in how small we take the value of A\. The value
D, (s) is computed as follows: identify all subsequences (indexed by i) of
s that are identical to wu; for each such subsequence, raise A to the power
£(i); and then sum the results over all subsequences. Because A < 1, larger
values of £(i) carry less weight than smaller values of ¢(i). We write

Ou(s)= > N ueaAm (11.58)

iu=s(i)

In our example above, ®c,(cat) = A2, ®¢(cat) = A3, and ®,¢(cat) = N2

Two documents are considered to be “similar” if they have many sub-
sequences in common: the more subsequences they have in common, the
more similar they are deemed to be. Note that the degree of contiguity
present in a subsequence determines the weight of that substring in the
comparison; the closer the subsequence is to a contiguous substring, the
more it should contribute to the comparison.

Let s and ¢ be two strings. The kernel associated with the feature maps
corresponding to s and t is given by the sum of inner products for all
common substrings of length m,

Kn(sit) = D (uls), ®ult))

u€eD

= > 3 S o, (11.59)

u€D iru=s(i) jru=s(j)

The kernel (11.59) is called a string kernel (or a gap-weighted subsequences
kernel). For the example, let t be the string “car” (t; = ¢, ta = a,t3 =1,
[t| = 3). Note that the strings “cat” and “car” are both substrings of
the string “cart.” The three 2-symbol substrings of ¢ are “ca,” “cr,” and
“ar.” For these substrings, we have that ®.,(car) = A2, & (car) = A3,
and ®,,(car) = A\2. The inner product (11.59) is given by K(cat,car) =
(®ea(cat), Pea(car)) = A4

The feature maps in feature space are usually normalized to remove any
bias introduced by document length. This is equivalent to normalizing the
kernel (11.59),

K (s,t)
\/Km(s,s)Km(t,t)

K (s, t) = . (11.60)
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For our example, K»(cat, cat) = (®ca(cat), Pca(cat))+(Pet (cat), er(cat))+
(@, (cat), Pap(cat)) = A6 + 2X\*%, and, similarly, K(car,car) = A6 + 2\%,
whence, Kj(cat,car) = /(A6 +2X\%) = 1/(A\? + 2).

The parameters of the string kernel (11.59) are m and A. The choices of
m =5 and A = 0.5 have been found to perform well on segments of certain
data sets (e.g., on subsets of the Reuters-21578 data) but do not fare as
well when applied to the full data set.

11.8.5 Optimizing in Feature Space

Let K be a kernel. Suppose, first, that the observations in £ are linearly
separable in the feature space corresponding to the kernel K. Then, the
dual optimization problem is to find e (and bias Sy) to

mazximize Fp(a) =10 — EaTHa (11.61)

subject to a>0, a"y =0, (11.62)
where Yy = (yla e 7yn)T’ H= (Hlj)a and

Hij = yiyjK<xian) = yiyjKija Z,] = 1, 2, ey (1163)

Because K is a kernel, the Gram matrix K = (K;;) is nonnegative-definite,
and so is the matrix H with elements (11.63). Hence, the functional Fpp ()
is convex (see Exercise 11.11). So, there is a unique solution to this con-
strained optimization problem. If & (and Bo) solve this problem, then, the

o~

SVM decision rule for X = x is sign{ f(x)}, where

Fx)=Bo+ Z iy K (x,%;) (11.64)

1€ 8V

is the optimal separating hyperplane in the feature space corresponding to
the kernel K.

In the nonseparable case, using the kernel K, the dual problem of the
1-norm soft-margin optimization problem is to find « to

1
maximize Fpla)=1,a— EaTHa (11.65)
subjectto 0<a<Cl,, "y =0, (11.66)

where y and H are as above. For an optimal solution, the Karush—Kuhn—
Tucker conditions, (11.42)—(11.47), must hold for the primal problem. So, a
solution, o, to this problem has to satisfy all those conditions. Fortunately,
it suffices to check a simpler set of conditions: we have to check that a
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satisfies (11.66) and that (11.47) holds for all points where 0 < a; < C' and
& = 0, and also for all points where o; = C' and &; > 0.

11.8.6  Grid Search for Parameters

We need to determine two parameters when using a Gaussian RBF ker-
nel, namely, the cost, C, of violating the constraints and the kernel param-
eter v = 1/02. The parameter C' in the box constraint can be chosen by
searching a wide range of values of C' using either CV (usually, 10-fold) on
L or an independent validation set of observations. In practice, it is usual
to start the search by trying several different values of C', such as 10, 100,
1,000, 10,000, and so on. An initial grid of values of v can be selected by
trying out a crude set of possible values, say, 0.00001, 0.0001, 0.001, 0.01,
0.1, and 1.0.

When there appears to be a minimum CV misclassification rate within
an interval of the two-way grid, we make the grid search finer within that
interval. Armed with a two-way grid of values of (C,~), we apply CV to
estimate the generalization error for each cell in that grid. The (C,~) that
has the smallest CV misclassification rate is selected as the solution to the
SVM classification problem.

11.8.7 Ezxample: E-mail or Spam?

This example (spambase) was described in Section 8.4, where we applied
LDA and QDA to a collection of 4,601 messages, comprising 1,813 spam
e-mails and 2,788 non-spam e-mails. There are 57 variables (attributes)
and each message is labeled as one of the two classes email or spam.

Here we apply nonlinear SVM (R package libsvm) using a Gaussian
RBF kernel to the 4,601 messages. The SVM solution depends upon the
cost C' of violating the constraints and the variance, 0%, of the Gaussian
RBF kernel. After applying a trial-and-error method, we used the following
grid of values for C and v = 1/02:

C = 10, 80, 100, 200, 500, 1,000,
~ = 0.00001(0.00001)0.0001(0.0001)0.002(0.001)0.01(0.01)0.04.

In Figure 11.3, we plot the values of the 10-fold CV misclassification rate
against the values of v listed above, where each curve (connected set of
points) represents a different value of C'. For each C, we see that the CV /10
misclassification curves have similar shapes: a minimum value for v very
close to zero, and for values of v away from zero, the curve trends upwards.
In this initial search, we find a minimum CV/10 misclassification rate of
8.06% at (C,~) = (500,0.0002) and (1,000, 0.0002). We see that the general
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FIGURE 11.3. SVM cross-validation misclassification rate curves for the
spambase data. Initial grid search for the minimum 10-fold C'V misclassi-
fication rate using 0.00001 < ~ < 0.04. The curves correspond to C' = 10
(dark blue), 80 (brown), 100 (green), 200 (orange), 500 (light blue), and
1,000 (red). Within this intial grid search, the minimum CV/10 misclassi-
fication rate is 8.06%, which occurs at (C,~) = (500, 0.0002) and (1,000,
0.0002).

level of the misclassification rate tends to decrease as C' increases and -y
decreases together.

A detailed investigation of C' > 1000 and +y close to zero reveals a mini-
mum CV/10 misclassification rate of 6.91% at C' = 11,000 and v = 0.00001,
corresponding to the following 10 CV estimates of the true classification
rate:

0.9043, 0.9478, 0.9304, 0.9261, 0.9109,
0.9413, 0.9326, 0.9500. 0.9326, 0.9328.

This solution has 931 support vectors (482 e-mails, 449 spam), which means
that a large percentage (79.8%) of the messages (82.7% of the e-mails and
75.2% of the spam) are not support points. Of the 4,601 messages, 2,697
e-mails and 1,676 spam are correctly classified (228 misclassified), yielding
an apparent error rate of 4.96%.

This example turns out to be more computationally intensive than are
the other binary-classification examples discussed in this chapter. Although
the value of v has very little effect on the speed of computing the 10-
fold CV error rate, the speed of computation does depend upon C: as we
increase the value of C, the speed of computation slows down considerably.
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TABLE 11.2. Summary of support vector machine (SVM) application to
data sets for binary classification. Listed are the sample size (n), number of
variables (r), and number of classes (K ). Also listed for each data set is the
10-fold cross-validation (CV/10) misclassification rates corresponding to
the best choice of (C,~y) for the SVM. The data sets are listed in increasing
order of LDA misclassification rates (see Table 8.5).

Data Set n r K SVM-CV/10
Breast cancer (logs) 569 30 2 0.0158

Spambase 4601 57 2 0.0691

Tonosphere 351 33 2 0.0427

Sonar 208 60 2 0.1010

BUPA liver disorders 345 6 2 0.2522

Also worth noting is that for fixed ~, increasing C reduces the number
of support vectors and the apparent error rate. We cannot make similar
general statements about fixed C' and increasing -; however, for fixed C,
we generally see that the number of support vectors tends to increase (but
not always) with increasing .

The nonlinear SVM is clearly a better classifier for this example than
is LDA or QDA, whose leave-one-out CV misclassification rate is around
11% for LDA and 17% for QDA, but the amount of computational work
involved in the grid search for the SVM solution is much greater and, hence,
a lot more expensive.

11.8.8 Binary Classification Examples

We apply the SVM algorithm to the binary classification examples of
Section 8.4: the log-transformed breast cancer data, the ionosphere data,
the BUPA liver disorders data, the sonar data, and the spambase data.
Except for spambase, computations for these examples were very fast.

In Table 11.2, we list the minimum 10-fold CV misclassification rate for
each data set. Comparing these results to those of LDA (see Table 8.5,
where we used leave-one-out CV), we see that SVM produces remarkable
decreases in misclassification rates: the breast cancer rate decreased from
11.3% to 1.58%, the spambase rate decreased from 11.3% to 6.91%, the
ionosphere rate decreased from 13.7% to 4.27%, the sonar rate decreased
from 24.5% to 10.1%, and the BUPA liver disorders rate decreased from
30.1% to 25.22%.

11.3.9 SVM as a Regularization Method

The SVM classifier can also be regarded as the solution to a particular
regularization problem. Let f € H g, the reproducing kernel Hilbert space
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FIGURE 11.4. Hinge loss function (1 —yf(x))+ fory=—1 and y = +1.

(rkhs) associated with the kernel K, with || f [|3,, the squared-norm of f
in HK.
Consider the classification error, y; — f(x;), where y; € {—1,41}. Then,

lyi — f(x)] =yl —yifx)| =11 —vif(xi)], i=1,2,...,n. (11.67)

Let ()4 = max{z,0}. The quantity (1 — v;f(x;))+, which could be zero
if all x; are correctly classified, is called the hinge loss function and is
displayed in Figure 11.4. The hinge loss plays a vital role in SVM method-
ology; indeed, it has been shown to be Bayes consistent for classification
in the sense that minimizing the loss function yields the Bayes rule (Lin,
2002). The hinge loss is also related to the misclassification loss function
Iy, cxiy<0] = 1y fx)<0]- When f(x;) = +£1, the hinge loss is twice the
misclassification loss; otherwise, the ratio of the two losses depends upon
the sign of y; f(x;).

We wish to find a function f € Hx to minimize a penalized version of
the hinge loss. Specifically, we wish to find f € Hx to

n

1
minimize > A= yif i)t + A F s (11.68)

i=1

where A > 0. In (11.68), the first term, n=' >°" (1 — v; f(x;))+, measures
the distance of the data from separability, and the second term, A || f H%K,
penalizes overfitting. The tuning parameter \ balances the trade-off be-
tween estimating f (the first term) and how well f can be approximated
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(the second term). After the minimizing f has been found, the SVM clas-
sifier is C'(x) = sign{f(x)}, x € R".
The optimizing criterion (11.68) is nondifferentiable due to the shape

of the hinge-loss function. Fortunately, we can rewrite the problem in a
slightly different form and thereby solve it.

We start from the fact that every f € H can be written uniquely as the
sum of two terms:
FO=MO+ 6 =D K (xi,) + (), (11.69)

i=1

where fll € H g is the projection of f onto the subspace Hx of H and
f* is in the subspace perpendicular to H; that is, (f*(-), K (x;,-))n = 0,
i=1,2,...,n. We can write f(x;) via the reproducing property as follows:

Fx) = (FO), K (x4,)) = (f10), K (xi,)) + (f1(), K(x4,7)). (11.70)

Because the second term on the rhs is zero, then,

Zaz (x4, %), (11.71)

independent of f1, where we used (11.69) and (K (x;,), K(Xj,))#, =
K(x;,%;). Now, from (11.69),

I = IIZ¢%¢K(><iw)+J‘L [
= IIZ% (i) Mg + 1S i

[ Zaz (xis) 30,0 (11.72)

Y

with equality iff f+ = 0, in which case any f € H that minimizes (11.68)
admits a representation of the form (11.71). This important result is known
as the representer theorem (Kimeldorf and Wahba, 1971); it says that the
minimizing f (which would live in an infinite-dimensional rkhs if, for exam-
ple, the kernel is a Gaussian RBF) can be written as a linear combination
of a reproducing kernel evaluated at each of the n data points.

From (11.72), we have that || f [|3,.= >, >, aia; K (xi,x5) = || B |?,
where 8 = Y7 | a;®(x;). If the space Hy consists of linear functions of

the form f(x) = B0 + ®(x)"3 with || f |3, = || B ||, then the problem of
finding f in (11.68) is equivalent to one of finding Sy and 3 to

n

minimize %Z(l —i(Bo+®(x:)"B))+ + A B?. (11.73)

i=1
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Then, (11.68), which is nondifferentiable due to the hinge loss function, can
be reformulated in terms of solving the 1-norm soft-margin optimization
problem (11.34)—(11.35).

11.4 Multiclass Support Vector Machines

Often, data are derived from more than two classes. In the multiclass
situation, X € R" is a random r-vector chosen for classification purposes
and Y € {1,2,..., K} is a class label, where K is the number of classes.
Because SVM classifiers are formulated for only two classes, we need to
know if (and how) the SVM methodology can be extended to distinguish
between K > 2 classes. There have been several attempts to define such a
multiclass SVM strategy.

11.4.1 Multiclass SVM as a Series of Binary Problems

The standard SVM strategy for a multiclass classification problem (over
K classes) has been to reduce it to a series of binary problems. There are
different approaches to this strategy:

One-versus-rest: Divide the K-class problem into K binary classifica-
tion subproblems of the type “kth class” vs. “not kth class, 7 k =
1,2,..., K. Corresponding to the kth subproblem, a classifier fx is
constructed in which the kth class is coded as positive and the union
of the other classes is coded as negative. A new x is then assigned to
the class with the largest value of fr(x), k =1,2,..., K, where fj(x)
is the optimal SVM solution for the binary problem of the kth class
versus the rest.

One-versus-one: Divide the K-class problem into (12( ) comparisons of all

pairs of classes. A classifier fjk is constructed by coding the jth class
as positive and the kth class as negative, j, k = 1,2,..., K, j # k.
Then, for a new x, aggregate the votes for each class and assign x to
the class having the most votes.

Even though these strategies are widely used in practice to resolve mul-
ticlass SVM classification problems, one has to be cautious about their
use.

In Table 11.3, we report the CV /10 misclassification rates for one-versus-
one multiclass SVM applied to the same data sets from Section 8.7. Also
listed in Table 11.3 are the values of (C,~) that yield the minimum mis-
classification rate for each data set. It is instructive to compare these rates
with those in Table 8.7, where we used LDA and QDA. We see that for
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TABLE 11.3. Summary of support vector machine (SVM) “one-versus-
one” classification results for data sets with more than two classes. Listed
are the sample size (n), number of variables (r), and number of classes
(K ). Also listed for each data set is the 10-fold cross-validation (CV/10)
misclassification rates corresponding to the best choice of (C,~). The data
sets are listed in increasing order of LDA misclassification rates (Table

8.7).

Data Set n r K SVM-CV/10 C 0

Wine 178 13 3 0.0169 10°  8x10°®

Iris 150 4 3 0.0200 100 0.002

Primate scapulae 105 7 5 0.0286 100 0.0002
Shuttle 43,500 8 7 0.0019 10 0.0001

Diabetes 145 5 3 0.0414 100  0.000009
Pendigits 10,992 16 10 0.0031 10 0.0001

E-coli 336 7 8 0.1280 10 1.0

Vehicle 846 18 4 0.1501 600 0.00005

Letter recognition 20,000 16 26 0.0183 50 0.04
Glass 214 9 6 0.0093 10 0.001

Yeast 1,484 8 10 0.3935 10 7.0

the shuttle, diabetes, pendigits, vehicle, letter recognition, glass, and yeast
data sets, the SVM method performs better than does the LDA method;
for the iris, primate scapulae, and e-coli data sets, the SVM and LDA meth-
ods perform about the same; and LDA performs better than does SVM for
the wine data set. Thus, neither one-versus-one SVM nor LDA performs
uniformly best for all of these data sets.

The one-versus-rest approach is popular for carrying out text catego-
rization tasks, where each document may belong to more than one class.
Although it enjoys the optimality property of the SVM method for each
binary subproblem, it can yield a different classifier than the Bayes opti-
mal classifier for the multiclass case. Furthermore, the classification success
of the one-versus-rest approach depends upon the extent of the class-size
imbalance of each subproblem and whether one class dominates all other
classes when determining the most-probable class for each new x.

The one-versus-one approach, which uses only those observations be-
longing to the classes involved in each pairwise comparison, suffers from
the problem of having to use smaller samples to train each classifier, which
may, in turn, increase the variance of the solution.

11.4.2 A True Multiclass SVM

To construct a true multiclass SVM classifier, we need to consider all K
classes, II1, s, . .., Il g, simultaneously, and the classifier has to reduce to
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the binary SVM classifier if K = 2. Here we describe the construction due
to Lee, Lin, and Wahba (2004).

Let vi,..., vk be a sequence of K-vectors, where v has a 1 in the kth
position and whose elements sum to zero, k = 1,2,..., K; that is, let
_ (4 1 o\’
Vi - ) K — 1a ) K—1
1 1 1 4
v = PR e — —
? K—1"7 K—1
B 1 1 ) T
VK = K — 17 K —1 ) ’ .

Note that if K = 2, then vi = (1, —1)" and v = (—1,1)7. Every x; can be
labeled as one of these K vectors; that is, x; has label y; = vy, if x; € I,
i=1,2,....nk=12,... K.

Next, we generalize the separating function f(x) to a K-vector of sepa-
rating functions,

f(x) = (f1(®),---, fr (X)), (11.74)

where
fe(x) = Bok + hi(x), hp € Hk, k=1,2,..., K. (11.75)

In (11.75), Hx is a reproducing-kernel Hilbert space (rkhs) spanned by the
{K(xi,-),i = 1,2,...,n}. For example, in the linear case, hi(x) = X" 3,
for some vector of coefficients 3;,. We also assume, for uniqueness, that

D fr(x) =0. (11.76)
k=1

Let L(y;) be a K-vector with 0 in the kth position if x; € I, and 1 in all
other positions; this vector represents the equal costs of misclassifying x;
(and allows for an unequal misclassification cost structure if appropriate).
If K = 2 and x; € IIj, then L(y;) = (0,1)7, while if x; € Il, then
L(YZ) = (1’0)7'

The multiclass generalization of the optimization problem (11.68) is,
therefore, to find functions f(x) = (f1(x),---, fx(x))" satisfying (11.76)
which

n

minimize L(£,) = - S Ly (Fx) v +5 3 A I, (1177

i=1 k=1

where (F(x;) — i)+ = ((f1(xs) — wi1) s -+ (fx(Xi) — yir)4)™ and Y =
(yl? o 'ayn) is a (K X n)—matrix.
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By setting K = 2, we can see that (11.77) is a generalization of (11.68).
If x; € 11, then y, = v; = (1,—1)7, and

[Ly)]"(f(xi) —yi)+ = (0, 1)((fi(x:) — D), (f2(xi) +1)4)7
= (folxi) + 1)+
= (1-fi(x)+, (11.78)

while if x; € Iy, then y; = vo = (—1,1), and

[Ly)]"(F(xi) — yi)+ = (f(xi) + 1) (11.79)

So, the first term (with f) in (11.68) is identical to the first term (with f)
in (11.77) when K = 2. If we set K = 2 in the second term of (11.77), we

have that
2

Do b P=l A 1P+l =k 1P= 2 Ba |, (11.80)
k=1
so that the second terms of (11.68) and (11.77) are identical.
As in (11.69), the function hy € Hi can be decomposed into two parts:

hi(-) = ZBZkK(Xfa )+ B (), (11.81)
=1

where the {8} are constants and hi-(-) is an element in the rkhs or-
thogonal to Hx. Substituting (11.76) into (11.77), then using (11.81), and
rearranging terms, we have that

K—1 K—1 n K1
() == Bor— DD BuK(xi) = > hi (). (11.82)
k=1 k=1 i=1 k=1

Because K (-, ) is a reproducing kernel,
(hi, K(xi,)) = hi(xi), i=1,2,...,n, (11.83)
and so,

fe(xi) = Bok + he(xi)
Bok + (hi, K (x4, -))
= 5016Jr <ZBU€K(X53')Jrhé_(')vK(Xi?'»

(=1

Bok + Z Ber K (x4, %;). (11.84)

(=1
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Note that, for k =1,2,..., K — 1,

I 12 = 1) BeE (xe, ) + b () |
(=1
= 33 BuBuK (xex)+ | WEC) P (1185)
(=1 i1=1
and, for k = K,

K—-1 n
Ihe() 117 =1 YD Bk (xi,-) | + | Z hE(C) 2. (11.86)

k=1 i=1

Thus, to minimize (11.86), we set hy-(-) = 0 for all k.

From (11.84), the zero-sum constraint (11.76) becomes

Bo+ > BeK(xe,-) =0, (11.87)

{=1

where fp = K1 Zkl,(:l Bor and By = K1 Zi(:l Ber. At the n data points,
{xi,i=1,2,...,n}, (11.87) in matrix notation is given by

(Z ﬁ%) 1, +K (Z ﬁ.k> =0, (11.88)

k=1 k=1

where K = (K (x;,x;)) is an (nxn) Gram matrix and 8., = (B1x," -, Bur)"-
Let 3%, = Box — Bo and B}, = Bir, — Bi. Using (11.87), we see that the cen-

tered version of (11.84) is fi(xi) = B + Yopey BinK (%0, %) = fr(xs).
Then,

K K K K
ST 1= BLKB, — KB KB <Y B KB, = | () |3
k=1 k=1 k=1

k=1
S i (11.89)
where 8 = (B1,--+,8,)7; if KB = 0, the inequality becomes an equality
and so Zi{:l Box = 0. Thus,

n K K n
0= K2BTKB = || S0 A ) 1P = 11 505 Bk (i) |2
i=1 k=1 k=1 i=1
(11.90)
whence, Zszl S B K (xi,x) = 0, for all x. Thus,

> {ﬁ% + Zn:ﬁikK(Xi,X)} =0, (11.91)

k=1 i=1
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for every x. So, minimizing (11.77) under the zero-sum constraint (11.76)
only at the n data points is equivalent to minimizing (11.77) under the
same constraint for every x.

We next construct a Lagrangian formulation of the optimization problem
(11.77) using the following notation. Let &, = (1, -, &k )™ be a K-vector
of slack variables corresponding to (f(x;) — yi)+, ¢ = 1,2,...,n, and let
(Eqy- € x) = (&,--+,&,)7 be the (n x K)-matrix whose kth column
is &€, and whose ith row is &,. Let (Ly,---,Lx) = (L(y1), -+, L(yn))”
be the (n x K)-matrix whose kth column is Lj and whose ith row is
L(y:) = (La, -, Lik). Let (y1,--,¥y.x) = (Y1, +,¥n)" denote the
(n x K)-matrix whose kth column is y., and whose ith row is y;.

The primal problem is to find {for}, {B.;}, and {&€,} to
K K
minimize Z | A o> Z,@_TkKﬂ_k (11.92)
k=1 k=1
subject to

Bokln + KB —yr < €4 k=1,2,...,K, (11.93)
€, > 0, k=1,2,....K, (11.94)

(Sl

Form the primal functional Fp = Fp({for},{B..},{€:}), where

0. (11.95)

K K
Fp = ZLﬁﬁ.k‘*‘?ZﬂTkKﬂk
k=1 k=1

K
+ Z afrk(ﬂok]-n +KB -y — £k)
k=1
K K K
> Vbt ((Z Bok> 1, +K (Z ﬂ.k>> . (11.96)
k=1 k=1 k=1
In (11.96), a.x = (a1g, -, ank)” and 7y, are n-vectors of nonnegative

Lagrange multipliers for the inequality constraints (11.93) and (11.94), re-
spectively, and § is an n-vector of unconstrained Lagrange multipliers for
the equality constraint (11.95).

Differentiating (11.96) with respect to Sk, 8.5, and &, yields

oFp

= (op+06)71,, 11.97
B (cr +96) (11.97)
OFp  _ n\KB , + Ka. + K6, (11.98)

9B
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O0Fp

— = Ly —ar—;, 11.99
ar > 0, (11.100)
v, = 0. (11.101)

The Karush—Kuhn—Tucker complementarity conditions are

ar(Borln + KBy —yr —&4)" = 0, k=12,... K, (11.102)
Y€, = 0, k=1,2,...,K, (11.103)

where, from (11.99), v, = Ly — ... Note that (11.102) and (11.103) are
outer products of two column vectors, meaning that each of the n? elemen-
twise products of those vectors are zero.

From (11.99) and (11.101), we have that 0 < v, < Lg, k=1.2...., K.
Suppose, for some i, 0 < a;; < L;x; then, ;. > 0, and, from (11.103),
&k = 0, whence, from (11.102), yir = Bok + > pq BeeK (X0, %;5).

Setting the derivatives equal to zero for k = 1,2,..., K yields § = —& =
—K! Zle oy, from (11.97), whence, (a.x—&)™1,, = 0, and, from (11.98),
B = —(nA\) "o — @), assuming that K is positive-definite. If K is not
positive-definite, then 3., is not uniquely determined. Because (11.97),
(11.98), and (11.99) are each zero, we construct the dual functional Fp by
using them to remove a number of the terms of Fp.

The resulting dual problem is to find {a.x} to

K K
o 1 . _ -
minimize Fp = 3 Z(ak -a) Ko, —a) + n)\Za_ky.k (11.104)
k=1 k=1
subject to 0 < ayji <Ly, k=1,2,...,K, (11.105)

(p—a)1, =0, k=1,2,...,K. (11.106)
From the solution, {@.;}, to this quadratic programming problem, we set
B =—m\"Ya,—a), (11.107)

where & = K15 @y
The multiclass classification solution for a new x is given by

Cr(x) = argmgx{ﬁ(x)}, (11.108)

where

Jex) = Bor + > BunK (x¢,%), k=1,2,..., K. (11.109)
=1
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Suppose the row vector &; = (@1, -, Q;x) = 0 for (x;,y;); then, from
(11.107), ﬁz = (B\ﬂ, e ,Bm) = 0. It follows that the term EikK(xi,x) =
0, k = 1,2,..., K. Thus, any term involving (x;,y;) does not appear in
(11.109); in other words, it does not matter whether (x;,y;) is or is not
included in the learning set £ because it has no effect on the solution. This
result leads us to a definition of support vectors: an observation (x;,y;) is
called a support vector if Bz = (Bil, e ,BiK) # 0. As in the binary SVM
solution, it is in our computational best interests for there to be relatively
few support vectors for any given application.

The one issue remaining is the choice of tuning parameter A (and any
other parameters involved in the computation of the kernel). A generalized
approxzimate cross-validation (GACV) method is derived in Lee, Lin, and
Wahba (2004) based upon an approximation to the leave-one-out cross-
validation technique used for penalized-likelihood methods. The basic idea
behind GACYV is the following. Write (11.77) as

n

LEY) =0 gy, f(x:) + (), (11.110)

i=1
where g(ys, £(x:)) = [L(y)]" (F(xi) —yi)+ and Jx(f) = (A/2) 320, || Ay ||
Let f\ = argming I, (f,Y) and let f)(\_l) denote the f that yields the mini-

mum of I (f, ) by omitting the ith observation (x;,y;) from the first term
in (11.110). If we write

9y £ (x0) = gy, B(x)) + [9(yi, £ (%)) — gy, Ba(xi))], (11.111)

then the A that minimizes n=* Y " g(yi,f)(\_z) (x;)) is found by using a
suitable approximation of D(A) = n= ' Y"1 [g(y3, fi_l)(x,»))—g(yi, £1(x:))],
computed over a grid of values of .

This solution of the multiclass SVM problem has been found to be suc-
cessful in simulations and in analyzing real data. Comparisons of various
multiclass classification methods, such as multiclass SVM, “all-versus-rest,”
LDA, and QDA, over a number of data sets show that no one classifica-
tion method appears to be superior for all situations studied; performance
appears to depend upon the idiosyncracies of the data to be analyzed.

11.5 Support Vector Regression

The SVM was designed for classification. Can we extend (or generalize)
the idea to regression? How would the main concepts used in SVM — con-
vex optimization, optimal separating hyperplane, support vectors, margin,
sparseness of the solution, slack variables, and the use of kernels — trans-
late to the regression situation? It turns out that all of these concepts find
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their analogues in regression analysis and they add a different view to the
topic than the views we saw in Chapter 5.

11.5.1 e-Insensitive Loss Functions

In SVM classification, the margin is used to determine the amount of
separation between two nonoverlapping classes of points: the bigger the
margin, the more confident we are that the optimal separating hyperplane
is a superior classifier. In regression, we are not interested in separating
points but in providing a function of the input vectors that would track the
points closely. Thus, a regression analogue for the margin entails forming a
“band” or “tube” around the true regression function that would contain
most of the points. Points not contained within the tube would be described
through slack variables. In formulating these ideas, we first need to define
an appropriate loss function.

We define a loss function that ignores errors associated with points falling
within a certain distance (e.g., € > 0) of the true linear regression function,

p(x) = Bo +x7B. (11.112)

In other words, if the point (X,Y) = (x,y) is such that |y — pu(x)| < €, then
the loss is taken to be zero; if, on the other hand, |y — pu(x)| > €, then we
take the loss to be |y — p(x)| —e.

With this strategy in mind, we can define the following two types of loss
function:

o Li(y, u(x)) = max{0, ly — pu(x)| — €},
o L(y, p(x)) = max{0, (y — pu(x))* — €}.

The first loss function, L{, is called the linear e-insensitive loss function,
and the second, L§, is the quadratic e-insensitive loss function. The two
loss functions, linear (red curve) and quadratic (blue curve), are graphed
in Figure 11.5. We see that the linear loss function ignores all errors falling
within +e of the true regression function p(x) while dampening in a linear
fashion errors that fall outside those limits.

11.5.2  Optimization for Linear e-Insensitive Loss

We define slack variables & and f; in the following way. If the point
(xi,v:) lies above the e-tube, then & = y; — pu(x;) — € > 0, whereas if the
point (x;,y;) lies below the e-tube, then & = p(x;) — e —y; > 0. For
points that fall outside the e-tube, the values of the slack variables depend
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Quadratic

Linear

Epsilon-Insensitive Loss Function

u

FIGURE 11.5. The linear e-insensitive loss function (red curve) and the
quadratic e-insensitive loss function (blue curve) for support vector regres-
sion. Plotted are L;(u) = max{0, |u|'—¢e} vs. u, i = 1,2, where u = y—pu(x).
For the linear loss function, the “flat” part of the curve has width 2e.

upon the shape of the loss function; for points inside the e-tube, the slack
variables have value zero.

For linear e-insensitive loss, the primal optimization problem is to find

607 ﬂv 5/ = (537 e 7541)7—7 and £ = (517 T 7£n)7— to

R SRS
minimize §||,8|| +C’;(§i+§g) (11.113)

subject to vy — (Bo +x[8) < e+ &,
£>0,6>0, i=1,2,...,n.
The constant C' > 0 exists to balance the flatness of the function p against
our tolerance of deviations larger than e. Notice that because € is found

only in the constraints, the solution to this optimization problem has to
incorporate a band around the regression function.

Form the primal Lagrangian,
1 n

T +0;<5i +€) - Z{y — (Bo+x]B) — e~ &}
=Y bd(Bo+x7B) —yi —e— &}
=Y el =Y dig, (11.115)
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where a;,b;,c;, and d;, i = 1,2,...,n, are the Lagrange multipliers. This,
in turn, implies that a;, b;, ¢;, d;, i = 1,2,...,n, are all nonnegative. The
derivatives are

OF
8—6103 Zi:ai,zi:bi (11.116)

OFp
98 = ﬂ‘i’zi:aixi*;bixi (11.117)
OFp

= C+b—d; 11.118
2% + ( )
OFp
il A — . —c 11.11
ae C+a;—c ( 9)

Setting these derivatives equal to zero for a stationary solution yields:

B => (b —ai)xi, (11.120)

> (b —a;) =0, (11.121)
3
C+b;—d;=0, C+a;—c;=0, i=1,2,...,n. (11.122)
The expression (11.120) is known as the support vector expansion because
B can be written as a linear combination of the input vectors {x;}. Setting
B = 3" in the true regression equation (11.112) gives us

1 (x) :60+Z(bi — a;)(x7x;). (11.123)

Substituting 3" into the primal Lagrangian and using (11.120) and (11.121)
gives us the dual problem: find a = (ay,---,a,)", b = (b1, -+, b,)" to

mazximize Fp = (b—a)’y—eb+a)’l,
1
— §(b—a)TK(b—a) (11.124)
subject to 0<ab<Cl,, (b—a)™1,=0, (11.125)

where K = ((x;,x;)) for linear SVM. The Karush-Kuhn-Tucker comple-
mentarity conditions state that the products of the dual variables and the
constraints are all zero:

ai(Bo+xB—yi—€e—&)=0, i=12,...,n, (11.126)
bi(yi —Bo—x[B—e—&)=0, i=12,...,n,  (11.127)

&& =0, ab; =0, i=1,2,...,n, (11.128)
(a; —C); =0, (b —0O)i=0, i=1,2,....,n. (11.129)
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In practice, the value of € is usually taken to be around 0.1.

The solution to this optimization problem produces a linear function of
x accompanied by a band or tube of +¢ around the function. Points that
do not fall inside the tube are the support vectors.

11.5.3 FExtensions

The optimization problem using quadratic e-insensitive loss can be solved
in a similar manner; see Exercise 11.2.

If we formulate this problem using nonlinear transformations of the input
vectors, x — ®(x), to a feature space defined by the kernel K(x,y), then
the stationary solution (11.120) is replaced by

BT = (bi — ai)®(xs), (11.130)
i=1
the inner product (x;,x;) = x[x; in (11.120) is replaced by the more
general kernel function,
K(X“Xj) = <¢(X1),(I)(XJ)> = (I)(Xiy—@()(j), (11131)

the matrix K = (K(x;,x;)) replaces the matrix K in (11.124), and the
SVM regression function (11.122) at X = x becomes

pr(x) = Bo + Z(bz —a;)K(x,%;); (11.132)

see Exercise 11.4. Note that 8" in (11.130) does not have an explicit rep-
resentation as it has in (11.120).

11.6  Optimization Algorithms for SVMs

When a data set is small, general-purpose linear programming (LP) or
quadratic programming (QP) optimizers work quite well to solve SVM
problems; QP optimizers can solve problems having about a thousand
points, whereas LP optimizers can deal with hundreds of thousands of
points. With larger data sets, however, a more sophisticated approach is
required.

The main problem when computing SVMs for very large data sets is
that storing the entire kernel in main memory dramatically slows down
computation. Alternative algorithms, constructed for the specific task of
overcoming such computational inefficiencies, are now available in certain
SVM software.
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We give only brief descriptions of some of these algorithms. The simplest
procedure for solving a convex optimization problem is that of gradient
ascent:

Gradient Ascent: Start with an initial estimate of the a-coefficient vec-
tor and then successively update o one a-coefficient at a time using
the steepest ascent algorithm.

A problem with this approach is that the solution for a = (ay,- -+, )"
has to satisfy the linear constraint @™y = > | a;y; = 0. Carrying out a
non-trivial one-at-a-time update of each a-component (while holding the
remaining as constant at their current values) will violate this constraint,
and the solution at each iteration will fall outside the feasible region. The
minimum number of as that can be changed at each iteration is two.

More complicated (but also more efficient) numerical techniques for large
learning data sets are now available in many SVM software packages. Ex-
amples of such advanced techniques include “chunking,” decomposition,
and sequential minimal optimization. Each method builds upon certain
common elements: (1) choose a subset of the learning set £, (2) monitor
closely the KKT optimality conditions to discover which points not in the
subset violate the conditions, and (3) apply a suitable optimizing strategy.
These strategies are

Chunking: Start with an arbitrary subset (called the “working set” or
“chunk”) of size 100-500 of the learning set L; use a general LP or
QP optimizer to train an SVM on that subset and keep only the
support vectors; apply the resulting classifier to all the remaining
data in £ and sort the misclassified points by how badly they violate
the KKT conditions; add to the support vectors found previously a
predetermined number of those points that most violate the KKT
conditions; iterate until all points satisfy the KKT conditions. The
general optimizer and the point selection process make this algorithm
slow and inefficient.

Decomposition: Similar to chunking, except that at each iteration, the
size of the subset is always the same; adding new points to the subset
means that an equal number of old points must be removed.

Sequential Minimal Optimization (SMO): An extreme version of the
decomposition algorithm, whereby the subset consists of only two
points at each iteration (see above comments related to the gradient
ascent algorithm). These two as are found at each iteration by using
a heuristic argument and then updated so that the constraint a”y =
Z?zl a;y; = 0 is satisfied and the solution is found within the feasible
region.
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TABLE 11.4. Some implementations of SVM.

Package Implementation
SvMlight http://svmlight.joachims.org/
LIBSVM http://csie.ntu.edu.tw/"cjlin/libsvm/
SVMTorch IT  http://www.idiap.ch/machine-learning.php
SVMsequel http://www.isi.edu/ hdaume/SVMsequel/
TinySVM http://chasen.org/~taku/TinySVM/

A big advantage of SMO (Platt, 1999) is that the algorithm has an ana-
lytical solution and so does not need to refer to a general QP optimizer; it
also does not need to store the entire kernel matrix in memory. Although
more iterations are needed, SMO is much faster than the other algorithms.
The SMO algorithm has been improved in many ways for use with massive
data sets.

11.7 Software Packages

There are several software packages for computing SVMs. Many are avail-
able for downloading over the Internet. See Table 11.4 for a partial list. Most
of these SVM packages use similar data-input formats and command lines.

The most popular SVM package is SVM'"* by Thorsten Joachims; it is
very fast and can carry out classification and regression using a variety of
kernels and is used for text classification. It is often used as the basis for
other SVM software packages.

The C++-based package LIBSVM by C.-C. Chang and C.-J. Lin, which
carries out classification and regression, is based upon SMO and SVM'9ht,
and has interfaces to MATLAB, python, perl, ruby, S-Plus (function svm
in library 1ibsvm), and R (function svm in library e1071); see Venables
and Ripley (2002, pp. 344-346). SVMTorch 1T is an extremely fast C++
program for classification and regression that can handle more than 20,000
observations and more than 100 input variables. SVMsequel is a very fast
program that handles classification problems, a variety of kernels (including
string kernels), and enormous data sets. TinySVM, which supports C++,
perl, ruby, python, and Java interfaces, is based upon S\/M“ght7 carries out
classification and regression, and can deal with very large data sets.



404 11. Support Vector Machines

Bibliographical Notes

There are several excellent references on support vector machines. Our
primary references include the books by Vapnik (1998, 2000), Cristianini
and Shawe-Taylor (2000), Shawe-Taylor and Cristianini (2004, Chapter 7),
Schélkopf and Smola (2002), and Hastie, Tibshirani, and Friedman (2001,
Section 4.5 and Chapter 12) and the review articles by Burges (1998),
Schélkopf and Smola (2003), and Moguerza and Munoz (2006). An excellent
book on convex optimization is Boyd and Vandenberghe (2004).

Most of the theoretical work on kernel functions goes back to about
the beginning of the 1900s. The idea of using kernel functions as inner
products was introduced into machine learning by Aizerman, Braverman,
and Rozoener (1964). Kernels were then put to work in SVM methodology
by Boser, Guyon, and Vapnik (1992), who borrowed the “kernel” name
from the theory of integral operators.

Our description of string kernels for text categorization is based upon
Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins (2002). See also
Shawe-Taylor and Cristianini (2004, Chapter 11). For applications of SVM
to text categorization, see the book by Joachims (2002) and Cristianini and
Shawe-Taylor (2000, Section 8.1).

Exercises

11.1 (a) Show that the perpendicular distance of the point (h, k) to the
line f(z,y) = ax +by + ¢ =01is £ (ah + bk + ¢)/Va? + b2, where the sign
chosen is that of c.

(b) Let u(x) = Bo +x"B = 0 denote a hyperplane, where 5y € R and
B € R", and let x; € R” be a point in the space. By minimizing || x —xy, ||?
subject to p(x) = 0, show that the perpendicular distance from the point
to the hyperplane is |u(xk)|/ || B ||-

11.2 In the support vector regression problem using a quadratic e-insensitive
loss function, formulate and solve the resulting optimization problem.

11.3 The “2-norm soft margin” optimization problem for SVM classi-
fication: Consider the regularization problem of minimizing 1 || 8 |2
+C Y1 &2 subject to the constraints y;(8p +x78) > 1 —¢&;, and £ > 0,
fori=1,2,...,n.

(a) Show that the same optimal solution to this problem is reached if we
remove the constraints & > 0,7 =1,2,...,n, on the slack variables. (Hint:
What is the effect on the objective functional if this constraint is violated?)
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(b) Form the primal Lagrangian Fp, which will be a function of 8y, 3,
£, and the Lagrangian multipliers a. Differentiate Fp wrt 8y, 8, and &, set
the results equal to zero, and solve for a stationary solution.

(¢) Substitute the results from (b) into the primal Lagrangian to obtain
the dual objective functional Fp. Write out the dual problem (objective
functional and constraints) in matrix notation. Maximize the dual wrt a.
Use the Karush-Kuhn—Tucker complementary conditions «; {y; (8o +x]3)—
(1-¢&)y=0fori=1,2,...,n.

(d) If a* is the solution to the dual problem, find B and its norm, which
gives the width of the margin.

11.4 For the support vector regression problem in a feature space defined
by a general kernel function K representing the inner product of pairs of
nonlinearly transformed input vectors, formulate and solve the resulting
optimization problem using (a) a linear e-insensitive loss function and (b)
a quadratic e-insensitive loss function.

11.5 In the support vector regression problem, let ¢ = 0. Consider the
quadratic (2-norm) primal optimization problem,

minimize X | 8% + >0, &

subject to y; —x]B3 =&, i=1,2,...,n.
Form the Lagrangian, differentiate wrt 3 and §;, ¢ = 1,2,...,n, and set the
results equal to zero for a stationary solution. Substitute these values into
the primal functional to get the dual problem. Use K to represent the Gram
matrix with entries either K;; = x7x; or K;; = K(x;,x;). Differentiate the
dual functional wrt the Lagrange multipliers «, and set the result equal

to zero. Show that this solution is related to ridge regression (see Section
5.7.4).

11.6 Let x,y € R2. Consider the polynomial kernel function, K(x,y) =
(x,y)?, so that r = 2 and d = 2. Find two different maps ® : R? — H for
H = R3.

11.7 Let z € R and define the (2m + 1)-dimensional ®-mapping,

P(z) = (2*1/2, Cos z,+ -+, cosmz,sinz, - - -, sinmz)".

Using this mapping, show that the kernel K (z,y) = (®(z), ®(y)), =,y € R,
reduces to the Dirichlet kernel given by
sin((m + 3)6)
K(z,y) = — 227
@Y = )

where § == — y.

11.8 Show that the homogeneous polynomial kernel, K(x,y) = (x,y)?,
satisfies Mercer’s condition (11.54).



406 11. Support Vector Machines

11.9 If Ky and K> are kernels and ¢, co > 0 are real numbers, show that
the following functions are kernels:

(a) clKl(X7y) + CQKQ(X7y);
(b) K1<X’ y)KQ(X?Y);
(¢) exp{K1(x,¥)}.

int: In each case, you have to show that the function is nonnegative-
Hint: I h have to show that the function i ti
definite.)

11.10 Prove that in finite-dimensional input space, a symmetric function
K(x,y) is a kernel function iff K = (K(x;,x;)) is a nonnegative-definite
matrix with nonnegative eigenvalues. (Hint: Use the symmetry and the
spectral theorem for K to show that K is a kernel. Then, show that for
a negative eigenvalue, the squared-norm of any point z € H is negative,
which is impossible.)

11.11 Show that the functional Fp(a) in (11.41) is convex; i.e., show that,
for € (0,1) and o, 3 € R,

Fp(6oc+ (1—6)8) < 0Fp(a) + (1 — 0)Fp(8).

11.12 Apply nonlinear-SVM to a binary classification data set of your
choice. Make up a two-way table of values of (C,v) and for each cell in
that table compute the CV/10 misclassification rate. Find the pair (C,~)
with the smallest CV/10 misclassification rate. Compare this rate with
results obtained using LDA and that using a classification tree.
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Cluster Analysis

12.1 Introduction

Cluster analysis, which is the most well-known example of unsupervised
learning, is a very popular tool for analyzing unstructured multivariate
data. Within the data-mining community, cluster analysis is also known
as data segmentation, and within the machine-learning community, it is
also known as class discovery. The methodology consists of various algo-
rithms each of which seeks to organize a given data set into homogeneous
subgroups, or “clusters.” There is no guarantee that more than one such
group can be found; however, in any practical application, the underlying
hypothesis is that the data form a heterogeneous set that should separate
into natural groups familiar to the domain experts.

Clustering is a statistical tool for those who need to arrange large quan-
tities of multivariate data into natural groups. For example, marketers use
demographics and consumer profiles in an attempt to segment the market-
place into small, homogeneous groups so that promotional campaigns may
be carried out more efficiently; biologists divide organisms into hierarchical
orders in order to describe the notion of biological diversity; financial man-
agers categorize corporations into different types based upon relevant finan-
cial characteristics; archaeologists group artifacts (e.g., broaches) found in

A.J. Izenman, Modern Multivariate Statistical Techniques, Springer Texts in Statistics, 407
DOI 10.1007/978-0-387-78189-1_12, © Springer Science+Business Media New York 2013
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graves in order to understand movements of ancient peoples; physicians use
medical records to cluster patients for treatment diagnosis; and audiologists
use repeated utterances of specific words by different speakers to provide a
basis for speaker recognition. There are many other similar examples,

Cluster analysis resembles methods for classifying items; yet the two
data analytic methods are philosophically different from each other. First,
in classification, it is known a priori how many classes or groups are present
in the data and which items are members of which class or group; in cluster
analysis, the number of classes is unknown and so is the membership of
items into classes. Second, in classification, the objective is to classify new
items (possibly in the form of a test set) into one of the given classes based
upon experience obtained using a learning set of data; clustering falls more
into the framework of exploratory data analysis, where no prior information
is available regarding the class structure of the data. Third, classification
deals almost exclusively with classifying observations, whereas clustering
can be applied to clustering observations or variables or both observations
and variables simultaneously, depending upon the context.

Methods for clustering items (either observations or variables) depend
upon how similar (or dissimilar) the items are to each other. Similar items
are treated as a homogeneous class or group, whereas dissimilar items form
additional classes or groups. Much of the output of a cluster analysis is
visual, with the results displayed as scatterplots, trees, dendrograms, sil-
houette plots, and heatmaps.

12.1.1 What Is a Cluster?

This is a difficult question to answer mainly because there is no univer-
sally accepted definition of exactly what constitutes a cluster. As a result,
the various clustering methods usually do not produce identical or even
similar solutions.

A cluster is generally thought of as a group of items (objects, points) in
which each item is “close” (in some appropriate sense) to a central item of
a cluster and that members of different clusters are “far away” from each
other. In a sense, then, clusters can be viewed as “high-density regions” of
some multidimensional space (Hartigan, 1975). Such a notion seems fine
on the surface if clusters are to be thought of as convex elliptical regions.

However, it is not difficult to conceive of situations in which natural clus-
terings of items do not follow this pattern. When the dimension of a space is
large enough, these multidimensional items, plotted as points in that space,
may congregate in clusters that curve and twist around each other; even if
the various swarms of points are non-overlapping (which is unlikely), the
oddly shaped configurations of points may be almost impossible to detect
and identify using current techniques.
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12.1.2  Example: Old Faithful Geyser Eruptions

The data for this example! is a set of 107 bivariate observations, that
were taken from a study of the eruptions of Old Faithful Geyser in Yel-
lowstone National Park, Wyoming (Weisberg, 1985, p. 231). A geyser is a
hot spring which occasionally becomes unstable and erupts hot water and
steam into the air. Old Faithful Geyser is the most famous of all geysers
and is an extremely popular tourist attraction. The variables measured are
duration of eruption (X;) and waiting time until the next eruption (X3z),
both recorded in minutes, for all eruptions of Old Faithful Geyser between
6 a.m. and midnight, 1-8 August 1978. Prior to clustering, one could argue
that there are two or three possible clusters in the data.

Because the two variables are measured on very different scales (the
standard deviations of X; and X5 being approximately 1 and 13, respec-
tively), the derived clusters (using any clustering algorithm) are completely
determined by X5, the interval between eruptions; the observations are di-
vided into clusters by straight-line boundaries parallel to the horizontal
axis. Without standardizing both variables, we cannot obtain a realistic
partitioning of the data. So, for this example, we standardize the variables
prior to clustering.

The results of this clustering study, where we set the number of clusters
to be two or three for each method, are displayed in Figure 12.1. The most
interesting result is that “perfect” clustering (according to our intuition)
for both two and three clusters is accomplished only by the single-linkage,
hierarchical agglomerative method (see first row of Figure 12.1). If we use
the single-linkage results as the gold standard, we see that average-linkage
and complete-linkage methods (second row), which produced the same re-
sults for two and three clusters, had one incorrect allocation for two clusters
and three incorrect allocations for three clusters. Although both of the non-
hierarchical clustering methods, pam and K-means (third row), had perfect
clustering for two clusters, they performed poorly for three clusters, where
they both had 45 incorrect allocations.

12.2  Clustering Tasks

There are numerous ways of clustering a data set of n independent mea-
surements on each of r correlated variables.

Clustering Observations: When we speak about “clustering,” we usu-
ally think of clustering the n observations into groups, where the

1The data can be found in the file geyser on the book’s website.
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FIGURE 12.1. Clustering results for Old Faithful Geyser data. The scat-
terplots in the left column panels are solutions for K = 2 classes, with red
and blue as the two cluster colors. The scatterplots in the right column pan-
els are solutions for K = 3 classes, with red, green, and blue as the three
cluster colors. The first row is the single-linkage (SL) solutions, the second
row is both average-linkage (AL) and complete-linkage (CL) solutions, the
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number, K, of groups is unknown and has to be determined from the
data. When analyzing microarray data, the observations may be, for
example, tissue samples, disease types, or experimental conditions,
and so this task is often referred to as “clustering samples.”

Clustering Variables: We may wish to partition the p variables into K
distinct groups, where the number K is unknown and has to be de-
termined from the data. A group may be determined by using only
one variable; however, most clusters will be formed using several vari-
ables. These clusters should be far enough apart (in some sense) that
groupings are easily identifiable. Each cluster of variables may later
be replaced by a single variable representative of that cluster. When
analyzing microarray data, the variables are genes, and so we refer
to this task as “gene clustering.”

Two-Way Clustering: Instead of clustering the variables or the observa-
tions separately, it might in certain circumstances be more appropri-
ate to cluster them both simultaneously. Two-way clustering is known
by different names, such as “block clustering,” “direct clustering,”
“biclustering,” or “co-clustering.” This goal is especially appropriate
in microarray studies, where it is desired to cluster genes and tis-
sue samples at the same time to show which subset of genes is most
closely related to which subset of disease types.

NOTE: Because many of the clustering algorithms can be applied to ob-
servations or variables (or both simultaneously), it will often be convenient
in this chapter to use the generic word “item” when a distinction between
observation or variable is unnecessary.

12.3 Hierarchical Clustering

There are two types of hierarchical clustering methods: agglomorative
and divisive. Agglomerative clustering algorithms, often called “bottom-
up” methods, start with each item being its own cluster; then, clusters are
successively merged, until only a single cluster remains. Divisive clustering
algorithms, often called “top-down” methods, do the opposite: they start
with all items as members of a single cluster; then, that cluster is split into
two separate clusters, and so on for every successive cluster, until each item
is its own cluster. Most attention in the clustering literature has been on
agglomerative methods; however, arguments have been made that divisive
methods can provide more sophisticated and robust clusterings.
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12.3.1 Dendrogram

The end result of all hierarchical clustering methods is a dendrogram
(i.e., hierarchical tree diagram), where the k-cluster solution is obtained
by merging some of the clusters from the (k + 1)-cluster solution. The
dendrogram may be drawn horizontal or vertical, depending upon user
choice or software decision; both types give the same information. In this
discussion, we assume a vertical dendrogram.

The dendrogram allows the user to read off the “height” of the linkage
criterion at which items or clusters or both are combined together to form
a new, larger cluster. Items that are similar to each other are combined at
low heights, whereas items that are more dissimilar are combined higher
up the dendrogram. Thus, it is the difference in heights that defines how
close items are to each other. The greater the distance between heights at
which clusters are combined, the more readily we can identify substantial
structure in the data.

A partition of the data into a specified number of groups can be obtained
by “cutting” the dendrogram at an appropriate height. If we draw a hor-
izontal line on the dendrogram at a given height, then the number, K, of
vertical lines cut by that horizontal line identifies a K-cluster solution; the
intersection of the horizontal line and one of those K vertical lines then
represents a cluster, and the items located at the end of all branches below
that intersection constitute the members of the cluster.

Unlike the vertical distances, which are crucial in defining a solution, the
horizontal distances between items are irrelevant; the software that draws
a dendrogram is generally written so that the dendrogram can be easily
interpreted. For large data sets, however, this goal becomes impossible.

12.3.2  Dissimuilarity

The basic tool for hierarchical clustering is a measure of the dissimilarity
or proximity (i.e., distance) of one item relative to another item. Which
definition of distance is used in any given application is often a matter of
subjective choice. Let x;,x; be any two points in ". Dissimilarities usually
satisfy the following three properties:

1. d(x;,%x;) > 0;
2. d(xi,%x;) = 0;
3. d(Xj,Xi) = d(Xi,Xj).

Such dissimilarities are termed metric or ultrametric according to whether
they satisfy a fourth property. A metric dissimilarity satisfies

4a. d(Xi,Xj) < d<Xiaxk) + d<xk?xj)’
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and an ultrametric dissimilarity satisfies
4b. d(x;,x;) < max{d(x;,Xx),d(x;,xx)}.

Ultrametric dissimilarities can be displayed graphically by a dendrogram.
There are several ways to define a dissimilarity, the most popular being
Fuclidean distance and Manhattan city-block distance.
Let x; = (241, -+, 2)7 and x; = (251, -+, %j,)" denote two points in
R". Then, these dissimilarity measures are defined as follows:

Euclidean: d(x;,x;) = [(x; — x;)7(xi — X )]1/2 [Zk (@i — xjk)g]l/Q.
Manhattan: d(x;,%;) = > r_; |Tik — Tjk]-
Minkowski: dp, (xi,%x;) = [>5_ [Tk — xjk|7”]1/m.

In some applications, squared-FEuclidean distance is used. Minkowski dis-
tance includes as special cases Euclidean distance (m = 2) and Manhattan
distance (m = 1).

These dissimilarity measures are all computed using raw data, not stan-
dardized data. Standardization is usually recommended when the variabil-
ity of the variables is quite different: a larger variability will have a more
pronounced affect upon the clustering procedure than will a variable with
relatively low variability.

Another dissimilarity measure uses correlation between observations as
a basis for clustering:

1-correlation: d(x;,x;) =1—p;; =1 — si;/8:5j,

where —1 < p;; < 1is the correlation between the pair of observations x;
and x;. Here, s;; = Zk (@i, — Ti) (zjr — Tj), 80 = [Dpey (T — 7)?]2,
sj = [Zkzl(xjk - Zj) 1}2, and xz =r" Zk:l ok, £ = 1,7. A relatively
large absolute value of p;; suggests that x; and x; are “close” to each other,
whereas a small correlation (p;; ~ 0) suggests they are “far away” from
each other. Thus, 1 — p;; is taken as a measure of “dissimilarity” between
x; and x;.

It is important to notice that for each of these dissimilarity measures, the
summations and averaging are computed over variables, not observations.

Given n observations, xi,...,x, € R, the starting point of any hi-
erarchical clustering procedure is to compute the pairwise dissimilarities
between observations and then arrange them into a symmetric, (n X n)
prozimity matriz, D = (d;;), where d;; = d(x;,%;), with zeroes along the
diagonal. If we are using correlation, the proximity matrix D = (d;;) is a
symmetric, (r X r)-matrix with ¢jth dissimilarity d;; = 1 — p;;.



414 12. Cluster Analysis

12.3.3  Agglomerative Nesting (agnes)

Table 12.1 lists the algorithm for agglomerative hierarchical clustering.
The most popular of these clustering methods are referred to as single-
linkage (or nearest-neighbor), complete-linkage (or farthest-neighbor), and
a compromise between these two, average-linkage methods. Each of these
clustering methods is defined by the way in which two clusters (which may
be single items) are combined or “joined” to form a new, larger cluster.
Single linkage uses a minimum-distance metric between clusters, complete
linkage uses a greatest-distance metric, and average linkage computes the
average distance between all pairs of items within the two different clusters,
one item from each cluster. There is also a weighted version of average link-
age, where the weights reflect the (possibly disparate) sizes of the clusters
in question.

No one of these algorithms is uniformly best for all clustering prob-
lems. Whereas the dendrograms from single-linkage and complete-linkage
methods are invariant under monotone transformations of the pairwise dis-
similarities, this property does not hold for the average-linkage method.
Single-linkage often leads to long “chains” of clusters, joined by singleton
points near each other, a result that does not have much appeal in practice,
whereas complete-linkage tends to produce many small, compact clusters.
Average linkage is dependent upon the size of the clusters, whereas sin-
gle and complete linkage, which depend only upon the smallest or largest
dissimilarity, respectively, do not.

12.3.4 A Worked Example

To understand agglomerative hierarchical clustering, we give a detailed
analysis of a small example. Consider the following n = 8 bivariate points:

2
X5 = (57 7)77X6 - (479)T7x7 - (278)T7X8 = (37 10)7'

A scatterplot of these points is given in Figure 12.2 (top-left panel). Using
Euclidean distance, the upper-triangular portion of the symmetric, (8 x 8)-
matrix DM is as follows:

1 2 3 4 5 6 7 8
1 0 1.414 2.000 4.472 5.657 6.708 5.099 7.280
2 0 1.414 3.162 4.243 5.385 4.000 6.083
3 0 4.000 4.472 5.000 3.162 5.385
4 0 2.000 4.123 4.243 5.385
5 0 2236 3.162 3.606
6
7
8

0 2236 1.414
0 2.236
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TABLE 12.1. Algorithm for agglomerative hierarchical clustering.

1. Input: Items £ = {x;,¢ = 1,2,...,n}, n = initial number of clusters, each
cluster of which contains one item.

2. Compute D = (d;;), the (n x n)-matrix of dissimilarities between the n
clusters, where d;; = d(xi,%;), 1,7 =1,2,...,n.

3. Find the smallest dissimilarity, say, d7s, in D = D). Merge clusters I and
J to form a new cluster 1.J.

4. Compute dissimilarities, d; x, between the new cluster IJ and all other

clusters K # IJ. These dissimilarities depend upon which linkage method
is used. For all clusters K # I, J, we have the following linkage options:

Single linkage: d;;x = min{dr, x,dsk}.

Complete linkage: djjx = max{dr x,ds K}

Average linkage: drsx =) ;7> pex dik/(N1sNK),

where N7j and Nk are the numbers of items in clusters /.J and K, respec-
tively.

5. Form anew ((n—1)x (n—1))-matrix, D® | by deleting rows and columns I
and J and adding a new row and column /J with dissimilarities computed
from step 4.

6. Repeat steps 3, 4, and 5 a total of n — 1 times. At the ith step, D@ is a
symmetric ((n—i+1) X (n—i+1))-matrix, ¢ = 1,2,...,n. At the last step
(i =n), D™ =0, and all items are merged together into a single cluster.
7. Output: List of which clusters are merged at each step, the value (or height)

of the dissimilarity of each merge, and a dendrogram to summarize the
clustering procedure.

Single Linkage. The smallest dissimilarity is dio = dag = dgs = 1.414.
We choose to merge xo and x3 to form the new cluster “23.” We next
compute new dissimilarities, dao3 x = min{dak,dsk } for K =1,4,5,6,7,8.
The (7 x 7)-matrix D) is given by the following:

1 23 4 5 6 7 8

1 0 1414 4.472 5.657 6.708 5.099 7.280
23 0 3.162 4.243 5.000 3.162 5.385
4 0 2.000 4.123 4.243 5.385
5 0 2236 3.162 3.606
6 0 2236 1.414
7 0 2.236
8 0

The smallest dissimilarity is dy 23 = dsg = 1.414. We choose to merge x;
with the “23” cluster, producing a new cluster “123.” We next compute
new dissimilarities, di23, x = min{di x,ds3 x} for K = 4,5,6,7,8. The
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(6 x 6)-matrix D®) is as follows:

123 4 5 6 7 8
123 0 3.162 4.243 5.000 3.162 5.385

4 0 2.000 4.123 4.243 5.385
5 0 2236 3.162 3.606
6 0 2236 1.414
7 0 2.236
8 0
The smallest dissimilarity is dgs = 1.414, and so we merge xg and Xg

to form the new cluster “68.” We compute new dissimilarities, des x =
min{dsf,dsx } for K = 123,4,5,7. This gives us the (5 x 5)-matrix D),

123 4 5 68 7

123 0 3.162 4.243 5.000 3.162
4 0 2.000 4.123 4.243

5 0 2236 3.162
68 0 2236
7 0

The smallest dissimilarity is d45 = 2.0, and so we merge x4 and x5 to form
the new cluster “45.” We compute new dissimilarities, ds5 x = min{dys, dsx }
for K = 123,68, 7. This gives the (4 x 4)-matrix D(®),

123 45 68 7

123 0 3.162 5.000 3.162
45 0 2.236 4.243
68 0 2236
7 0

The smallest dissimilarity is dss 68 = des,7 = 2.236. We choose to merge
the cluster “68” with x7; to produce the new cluster “678.” The new dis-
similarities, dg7s, x = min{des k,d7x} for K = 123,45, yield the matrix
D®),

123 45 678

123 0 3.162 3.162
45 0 2236
678 0

The smallest dissimilarity is das 678 = 2.236, so the next merge is the cluster
“45” with the cluster “678.” The matrix D(7) is

123 45678
123 0 3.162
45678 0

The last merge is cluster “123” with cluster “45678,” and the merging
dissimilarity is di23 45678 = 3.162. The dendrogram is displayed in the top-
right panel of Figure 12.2.

Complete Linkage. Complete linkage uses the same idea as single linkage,
but instead of taking the smallest dissimilarity as the distance measure
between clusters, we take the largest such dissimilarity. From D™ given
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FIGURE 12.2. Agglomerative hierarchical clustering for worked exam-
ple using Euclidean distance. Top-left panel: Scatterplot of eight bivariate
points. Other panels show dendrograms showing hierarchical clusters and
value of Fuclidean distance at merge points. Top-right panel: Single linkage.
Bottom-left panel: Complete linkage. Bottom-right panel: Average linkage.

previously, we merge x5 and x3 to form the “23” cluster at height 1.414,
as before. Using Euclidean distance (but omitting square-roots in the pre-
sentation), the upper-triangular portion of the (7 x 7)-matrix D) is as
follows:

1 23 4 5 6 7 8

1 0 2.0 4472 5.657 6.708 5.099 7.280
23 0 4.000 4.472 5.385 4.000 6.083
4 0 2000 4.123 4.243 5.385
5 0 2236 3.162 3.606
6 0 2236 1.414
7 0 2236
8 0

The smallest dissimilarity is dgg = 1.414. We merge x4 and xg to form a
new cluster “68.” We compute new dissimilarities, dgs, x = max{dsx, dsk }
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for K =1,23,4,5,7. This gives us a (6 x 6)-matrix D®),

1 23 4 5 68 7

1 0 2.000 4.472 5.657 7.280 5.099
23 0 4.000 4.472 6.083 4.000
4 0 2.000 4.123 4.243
5 0 2236 3.162
68 0 2.236
7 0

The smallest dissimilarity is di 23 = d4s = 2.0. We choose to merge the
cluster “23” with x; to form a new cluster “123.” We compute new dissim-
ilarities, diog, xk = max{di2 k,dsk} for K =4,5,68,7. This gives us a new
(5 x 5)-matrix D™,

123 4 5 68 7

123 0 4.472 5.657 7.280 5.099
4 0 2.000 5.385 4.243

5 0 3.606 3.162
68 0 2236
7 0

The smallest dissimilarity is d4ys = 2.0. We merge x4 and x5 to form a
new cluster “45.” We compute dissimilarities, ds5 x = max{dax,dsx} for
K = 123,68, 7. This gives us a new (4 x 4)-matrix D®)

123 45 68 7

123 0 5.657 7.280 5.099
45 0 5.385 4.243
68 0 2236
7 0

The smallest dissimilarity is dgg 7 = 2.236. We merge cluster “68” with x7 to
form the new cluster “678.” New dissimilarities dgrs, x = max{des,x,d7x }
are computed for K = 123,45 to give the new (3 x 3)-matrix D),

123 45 678

123 0 5.657 7.280
45 0 5.385
678 0

The last steps merge the clusters “45” and “678” with a merging value of
dss,678 = 5.385, and then the clusters “123” and “45678” with a merging
value of d123.45678 = 7.280. The dendrogram is displayed in the bottom-left
panel of Figure 12.2.

Average Linkage. For average linkage, the distance between two clusters
is found by computing the average dissimilarity of each item in the first
cluster to each item in the second cluster.

We start with the matrix D). The smallest dissimilarity is dys = V2 =
1.414, and so we merge x; and X3 to form cluster “12.” We compute dis-
similarities between the cluster “12” and all other points using the aver-
age distance, di2 xk = (dix + d2x)/2, for K = 3,4,5,6,7,8. For example,
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dizz = (diz +d23)/2 = (V4 ++/2)/2 = 1.707. The matrix D) is given by
12 3 4 5 6 7 8

12 0 1.707 3.817 4.950 6.047 4.550 6.681
3 0 4.000 4.472 5.000 3.162 5.385
4 0 2.000 4.123 4,243 5.385
5 0 2236 3.162 3.606
6 0 2236 1.414
7 0 2.236
8 0

The smallest dissimilarity is dgg = 1.414, and so we merge xg and xg to form
the new cluster “68.” We compute dissimilarities between the cluster “68”
and all other points and clusters using the average distance, dgg,12 = (di+
d26 + dlS + dgg)/4 = 6.364, and dGS,K - (dﬁK + dsK)/Q, for K = 3,4, 5, 7.
The matrix D®) is

12 3 4 5 68 7

12 0 1.707 3.817 4.950 6.364 4.550
3 0 4.000 4.472 5.193 3.162
4 0 2.000 4.754 4,243
5 0 2921 3.162
68 0 2.236
7 0

The smallest dissimilarity is di2 3 = 1.707, and so we merge x3 and the
cluster “12” to form the new cluster “123.” We compute dissimilarities
between the cluster “123” and all other points using the average distance,
di2368 = (dig + dig + dog + dog + dszs + d3g)/6 = 5.974 and di23 x =
(dik + dox + dsi)/3, for K = 4,5,7. This gives the matrix D®:.

123 4 5 68 7

123 0 3.878 4.791 5.974 4.087
4 0 2.000 4.754 4.243

5 0 2921 3.162
68 0 2.236
7 0

The smallest dissimilarity is d45 = 2.0, and so we merge x4 and x5 to form
the new cluster “45.” We compute dissimilarities between the cluster “45”
and the other clusters as before. This gives the matrix D®):

123 45 68 7

123 0 4.334 5974 4.087
45 0 3.837 3.702
68 0 2.236
7 0

The smallest dissimilarity is dgs,7 = 2.236, and so we merge x7 and the
cluster “68” to form the new cluster “678.” This gives the matrix D(®):

123 45 678

123 0 4.334 5.345
45 0 3.792
678 0
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The smallest dissimilarity is das 678 = 3.782, and so we merge the two
clusters “45” and “678” to form a new cluster “45678.” We merge the
last two clusters and compute their dissimilarity di23 45678 = 4.940. The
dendrogram is displayed in the bottom-right panel of Figure 12.2.

12.3.5 Divisive Analysis (diana)

The most-used divisive hierarchical clustering procedure is that proposed
by MacNaughton-Smith, Williams, Dale, and Mockett (1964).

The idea is that at each step, the items are divided into a “splinter”
group (say, cluster A) and the “remainder” (say, cluster B). The splinter
group is initiated by extracting that item that has the largest average
dissimilarity from all other items in the data set; that item is set up as
cluster A. Given this separation of the data into A and B, we next compute,
for each item in cluster B, the following two quantities: (1) the average
dissimilarity between that item and all other items in cluster B, and (2)
the average dissimilarity between that item and all items in cluster A. Then,
we compute the difference (1)—(2) for each item in B. If all differences are
negative, we stop the algorithm. If any of these differences are positive
(indicating that the item in B is closer on average to cluster A than to the
other items in cluster B), we take the item in B with the largest positive
difference, move it to A, and repeat the procedure. This algorithm provides
a binary split of the data into two clusters A and B. This same procedure
can then be used to obtain binary splits of each of the clusters A and B
separately.

The dendrogram corresponding to divisive hierarchical clustering of the
worked example is displayed in Figure 12.3. Compare the result with that
of the various agglomerative hierarchical clustering options in Figure 12.2.
The major difference we see is that x4 is now included in the cluster with
items x1, X2, and x3, rather than in the other cluster.

12.3.6  Ezxample: Primate Scapular Shapes

This example is a small part of a much larger study (Ashton, Oxnard, and
Spence, 1965) on measurements of the scapulae (shoulder bones) from 30
genera covering most of the primate order. The data? used in this example
consist of measurements on the scapulae of five genera of adult primates

2The author thanks Charles Oxnard and Rebecca German for providing him with
these data. The data can be found in the file primate.scapulae on the book’s website.
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FIGURE 12.3. Divisive hierarchical clustering for the worked example
using Euclidean distance.

representing Hominoidea; that is, gibbons (Hylobates), orangutans (Pongo),
chimpanzees (Pan), gorillas (Gorilla), and man (Homo).

The measurements consist of indices and angles that are related to scapu-
lar shape, but not to functional meaning. Other studies showed that gender
differences for such measurements were not statistically significant, and so
no attempt was made by the authors of the study to divide the specimens
by gender. Interest centered upon determining the extent to which these
scapular shape measurements could be useful in classifying living primates.

There are eight variables in this data set, of which the first five (AD.BD,
AD.CD, EA.CD, Dx.CD, and SH.ACR) are indices and the last three (EAD, 3,
and 7) are angles. Of the 105 measurements on each variable, 16 were taken
on Hylobates scapulae, 15 on Pongo scapulae, 20 on Pan scapulae, 14 on
Gorilla scapulae, and 40 on Homo scapulae. The angle v was not available
for Homo and, thus, was not used in this example.

Agglomerative and divisive hierarchical methods were employed for clus-
tering the scapulae data using all five indices and two of the angles (EAD and
B). Figure 12.4 shows dendrograms from the single-linkage, average-linkage,
and complete-linkage agglomerative hierarchical methods and the dendro-
gram from the divisive hierarchical method. Although five clusters can be
identified for each dendrogram, the single-linkage dendrogram, which shows
long, stringy clusters, has a very different shape than do the other three
dendrograms.

We can see that certain primates are separated from the others. In par-
ticular, primates 6, 18, 20, 55, and 102 stand out in the agglomerative
dendrograms, and primate 3 also stands out in the single-linkage dendro-
gram.
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FIGURE 12.4. Dendrograms from hierarchical clustering of the primate
scapulae data. Upper-left panel: single linkage. Upper-right panel: average
linkage. Lower-left panel: complete linkage. Lower-right panel: divisive.

When an isolated observation appears high enough up in a dendrogram,
it becomes a cluster of size one and, hence, plays the role of an outlier in the
data. In fact, single linkage for five clusters produces three clusters each of
size one (primates 3, 20, and 102), and average linkage produces one cluster
of size one (primate 20). We see from Figure 12.4 that single-linkage and
average-linkage clustering algorithms tend to have more isolated observa-
tions than do either the complete-linkage or divisive clustering algorithms.

12.4 Nonhierarchical or Partitioning Methods

Nonhierarchical clustering methods (also known as partitioning methods)
simply split the data items into a predetermined number K of groups or
clusters, where there is no hierarchical relationship between the K-cluster
solution and the (K + 1)-cluster solution; that is, the K-cluster solution
is not the initial step for the (K + 1)-cluster solution. Given K, we seek
to partition the data into K clusters so that the items within each cluster
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are similar to each other, whereas items from different clusters are quite
dissimilar.

One sledgehammer method of nonhierarchical clustering would conceiv-
ably involve as a first step the total enumeration of all possible groupings of
the items. Then, using some optimizing criterion, the grouping that is cho-
sen as “best” would be that partition that optimized the criterion. Clearly,
for large data sets (e.g., microarray data used for gene clustering), such a
method would rapidly become infeasible, requiring incredible amounts of
computer time and storage. As a result, all available clustering techniques
are iterative and work on only a very limited amount of enumeration. Thus,
nonhierarchical clustering methods, which do not need to store large prox-
imity matrices, are computationally more efficient than are hierarchical
methods.

This category of clustering methods includes all of the partitioning meth-
ods, (e.g., K-means, partitioning around medoids) and mode-searching (or
bump-hunting) methods using parametric mixtures or nonparametric den-
sity estimates.

12.4.1 K-Means Clustering (kmeans )

The popular K-means algorithm (MacQueen, 1967) is listed in Table
12.2. Because it is extremely efficient, it is often used for large-scale cluster-
ing projects. Note that the K-means algorithm needs access to the original
data.

The K-means algorithm starts either (1) by assigning items to one of K
predetermined clusters and then computing the K cluster centroids, or (2)
by pre-specifying the K cluster centroids. The pre-specified centroids may
be randomly selected items or may be obtained by cutting a dendrogram at
an appropriate height. Then, in an iterative fashion, the algorithm seeks to
minimize ESS by reassigning items to clusters. The procedure stops when
no further reassignment reduces the value of ESS.

The solution (a configuration of items into K clusters) will typically
not be unique; the algorithm will only find a local minimum of ESS. It
is recommended that the algorithm be run using different initial random
assignments of the items to K clusters (or by randomly selecting K initial
centroids) in order to find the lowest minimum of ESS and, hence, the best
clustering solution based upon K clusters.

For the worked example, the K-means clustering solutions for K = 2,3,4
are listed in Table 12.3. For K = 2, ESS=23.5; for K = 3, ESS=8.67;
and for K = 4, ESS=5.67. Note that, in general, we expect ESS to be
a monotonically decreasing function of K, unless the solution for a given
value of K turns out to be a local minimum.
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TABLE 12.2. Algorithm for K-means clustering.

1. Input: Items £ = {x;,7 = 1,2,...,n}, K = number of clusters.
2. Do one of the following:

e Form an initial random assignment of the items into K clusters and,
for cluster k, compute its current centroid, Xx, £k =1,2,..., K.

e Pre-specify K cluster centroids, Xx, k =1,2,..., K.

3. Compute the squared-Euclidean distance of each item to its current cluster

centroid: X«
ESS =) > (i — %) (x; — %),

k=1 c(i)=k
where Xy, is the kth cluster centroid and ¢(i) is the cluster containing x;.

4. Reassign each item to its nearest cluster centroid so that ESS is reduced
in magnitude. Update the cluster centroids after each reassignment.

5. Repeat steps 3 and 4 until no further reassignment of items takes place.

12.4.2  Partitioning Around Medoids (pam)

This clustering method (Vinod, 1969) is a modification of the K-medoids
clustering algorithm. Although similar to K-means clustering, this algo-
rithm searches for K “representative objects” (or medoids) — rather than
the centroids — among the items in the data set, and a dissimilarity-based
distance is used instead of squared-Euclidean distance. Because it min-
imizes a sum of dissimilarities instead of a sum of (squared) Euclidean
distances, the method is more robust to data anomolies such as outliers
and missing values.

This algorithm starts with the proximity matrix D = (d;;), where d;; =
d(x;,%;), either given or computed from the data set, and an initial con-
figuration of the items into K clusters. Using D, we find that item (called
a representative object or medoid) within each cluster that minimizes the
total dissimilarity to all other items within its cluster. In the K-medoids
algorithm, the centroids of steps 2, 3, and 4 in the K-means algorithm
(Table 12.2) are replaced by medoids, and the objective function ESS is re-
placed by ESSeq. See Table 12.4 (steps 1, 2, 3, and 4a) for the K-medoids
algorithm.

The partitioning around medoids (pam) modification of the K-medoids
algorithm (Kaufman and Rousseeuw, 1990, Section 2.4) introduces a swap-
ping strategy by which the medoid of each cluster is replaced by another
item in that cluster, but only if such a swap reduces the value of the objec-
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TABLE 12.3. K-means clustering solutions (K = 2,3,4) for the worked
example.

K k Indexes Centroid Within-Cluster SS

2 1 1234 (3.5, 85) 135
2 56,78 (2.25, 4.25) 10.0
3 1 123  (1.33,4.0) 2.67
2 45 (5.0, 6.0) 2.0
3 678 (3.0, 9.0) 4.0
4 1 123  (1.33,4.0) 2.67
2 45 (5.0, 6.0) 2.0
3 68 (3.5, 9.5) 1.0
4 7 (2.0, 8.0) 0.0

tive function. The pam algorithm is listed in Table 12.4 (steps 1, 2, 3, and
4b).

A disadvantage of both the K-medoids and the pam algorithms is that,
although they run well on small data sets, they are not efficient enough to
use for clustering large data sets.

12.4.3 Fuzzy Analysis (fanny)

The idea behind fuzzy clustering is that items to be clustered can be
assigned probabilities of belonging to each of the K clusters (Kaufman and
Rousseeuw, 1990, Section 4.4). Let u;;, denote the strength of membership of
the ith item for the kth cluster. For the ith item, we require that the {u;;}
behave like probabilities; that is, u;x; > 0, for all s and k= 1,2,..., K, and
Zszl u;r = 1 for each ¢. This contrasts with the partitioning methods of
kmeans or pam, where each item is assigned to one and only one cluster.

Given a proximity matrix D = (d;;) and number of clusters K, the un-
known membership strengths, {u;x}, are found by minimizing the objective
function,

K 2.2
Z Zz Zj uikujkdij

1 237, ujy,

The objective function is minimized subject to the nonnegativity and unit
sum restrictions by using an iterative algorithm.

(12.1)

For the worked example, the solution (after 90 iterations) is given in
Table 12.5, where the most likely cluster memberships are as follows: cluster
1: items 1, 2, 3; cluster 2: items 4, 5; cluster 3: items 6, 7, 8. The minimum
of the objective function is 3.428.
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TABLE 12.4. Algorithms for K-medoid and partitioning-around-medoids
clustering.

1. Input: proximity matrix D = (d;;); K = number of clusters.
2. Form an initial assignment of the items into K clusters.

3. Locate the medoid for each cluster. The medoid of the kth cluster is defined
as that item in the kth cluster that minimizes the total dissimilarity to all
other items within that cluster, £k =1,2,... K.

4a. For K-medoids clustering:

e For the kth cluster, reassign the i;th item to its nearest cluster medoid
so that the objective function,

K
ESSmea = 3 Y diiy,

k=1 c(i)=k
is reduced in magnitude, where c(i) is the cluster containing the ith
item.

e Repeat step 3 and the reassignment step until no further reassignment
of items takes place.

4b. For partitioning-around-medoids clustering:

e For each cluster, swap the medoid with the non-medoid item that
gives the largest reduction in ESSyeq.

e Repeat the swapping process over all clusters until no further reduc-
tion in ESSieq takes place.

12.4.4 Silhouette Plot

A useful feature of partitioning methods based upon the proximity matrix
D (e.g., kmeans, pam, and fanny) is that the resulting partition of the data
can be graphically displayed in the form of a silhouette plot (Rousseeuw,
1987).

Suppose we are given a particular clustering, Cx, of the data into K
clusters. Let ¢(i) denote the cluster containing the ith item. Let a; be the
average dissimilarity of that ith item to all other members of the same
cluster ¢(i). Also, let ¢ be some cluster other than c(i), and let d(i,c) be
the average dissimilarity of the ith item to all members of ¢. Compute d(i, c)
for all clusters ¢ other than c(i). Let b; = min..(;) d(i,c). If b; = d(i, C),
then, cluster C' is called the neighbor of data point ¢ and is regarded as the
second-best cluster for the ith item.
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TABLE 12.5. Fuzzy clustering for the worked example with K = 3. The
boldfaced entries show the most probable cluster memberships for each item.

Cluster k
1 2 3
0.799 0.117 0.083
0.828 0.107  0.065
0.735 0.146 0.119
0.116 0.790 0.094
0.102 0.715 0.183
0.072  0.146 0.782
0.196 0.239 0.565
0.064  0.097 0.839

0~ O U W N .

The ith silhouette value (or width) is given by

b,‘ — a;

$3i(Cx) = six = (12.2)

max{a;,b;}’
so that —1 < s;x < 1. Large positive values of s;x (i.e., a; =~ 0) indicate
that the ith item is well-clustered, large negative values of s;x (i.e., b; ~ 0)
indicate poor clustering, and s;x ~ 0 (i.e., a; ~ b;) indicates that the ith
item lies between two clusters. If max;{s;x} < 0.25, this indicates either
that there are no definable clusters in the data or that, even if there are,
the clustering procedure has not found it. Negative silhouette widths tend
to attract attention: the items corresponding to these negative values are
considered to be borderline allocations; they are neither well-clustered nor
are they assigned by the clustering process to an alternative cluster.

A silhouette plot is a bar plot of all the {s;x} after they are ranked in
decreasing order, where the length of the ith bar is s;x. For the worked
example, where we used the pam clustering method with K = 3 clusters,
the silhouette plot is displayed in Figure 12.5.

The average silhouette width, Sk, is the average of all the {s;x}. For
the worked example with K = 3, the overall average silhouette width is
53 = 0.51. (For K = 2, 35 = 0.44, and for K =4, 54 = 0.41.) The statistic
Sk has been found to be a very useful indicator of the merit of the clustering
Cx. The average silhouette width has also been used to choose the value
of K by finding K to maximize 5.

As a clustering diagnostic, Kaufman and Rousseeuw defined the silhou-
ette coefficient, SC = maxg {5k}, and gave subjective interpretations of
its value:
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FIGURE 12.5. Silhouette plot for the worked example using the partition-
ing around medoids (pam) clustering method with K = 3 clusters.

SC Interpretation
0.71-1.00 A strong structure has been found
0.51-0.70 A reasonable structure has been found
0.26-0.50  The structure is weak and could be artificial
< 0.25 No substantial structure has been found

12.4.5 Ezample: Landsat Satellite Image Data

Since 1972, Landsat satellites orbiting the Earth have used a combina-
tion of scanning geometry, satellite orbit, and Earth rotation to collect
high-resolution multispectral digital information for detecting and moni-
toring different types of land surface cover characteristics. The Landsat
data in this example were generated from a Landsat Multispectral Scanner
(MSS) image database used in the European STATLOG Project for assessing
machine-learning methods.? The following description of the data is taken
from the STATLOG website:

One frame of Landsat MSS imagery consists of four digital im-
ages of the same scene in different spectral bands. Two of these
are in the visible region (corresponding approximately to green
and red regions of the visible spectrum) and two are in the
(near) infrared. Each pixel is an 8-bit word, with 0 correspond-

3These data, which are available in the file satimage at the book’s website, can also
be downloaded from http://www.niaad.liacc.up.pt/old/statlog/. For information on
the Landsat satellites, see http://edc.usgs.gov/guides/landsat_mss.html.
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TABLE 12.6. Comparison of results of different clustering algorithms ap-
plied to the Landsat image data. The data consist of six groups of 4,435 ob-
servations measured on 36 variables. Prior to clustering, all variables were
standardized. The siz derived clusters are designated A—F. The agglomera-
tive hierarchical clustering methods are single-linkage (SL), average-linkage
(AL), and complete-linkage (CL), and the nonhierarchical methods are K -
means and partitioning around mediods (pam). Each column in this ta-
ble gives the cluster sizes distributed among the six clusters, ordered from
largest cluster (A) to smallest cluster (F).

Cluster SL AL CL K-Means pam
A 4,428 2,203 1,717 1,420 999
B 2 1,764 1,348 1,134 937
c 1 370 885 763 790
D 1 57 266 694 708
E 1 23 162 242 613
F 1 18 57 182 388

ing to black and 255 to white. The spatial resolution of a pixel is
about 80mx80m. Each image contains 2,340x 3,380 such pixels.
The data set is a (tiny) sub-area of a scene, consisting of 82x100
pixels. Each line of the data corresponds to a 3x3 square neigh-
borhood of pixels completely contained within the 82x 100 sub-
area. Each line contains the pixel values in the four spectral
bands of each of the 9 pixels in the 3x3 neighborhood.

The 36 variables are arranged in groups of four spectral bands (1, 2, 3,
4) covering each pixel of the 3x3 neighborhood (top-left (TL), top-center
(TC), top-right (TR); center-left (CL), center-center (CC), center-right (CR);
bottom-left (BL), bottom-center (BC), bottom-right (BR)). The center pixel
(CC) of each of 4,435 neighborhoods is classified into one of six classes: 1.
red soil (1,072), 2. cotton crop (479), 3. gray soil (961), 4. damp gray soil
(415), 5. soil with vegetation stubble (470), and 7. very damp gray soil
(1,038). There is no class 6. Although we do not use these classifications
in the clustering algorithms, we can compare our results with the true
classifications.

The results of five clustering methods (we specified six clusters for each
method) are given in Table 12.6. We see that of the agglomerative hierarchi-
cal clustering methods, single-linkage (SL) puts almost all the observations
into a single cluster, whereas average-linkage (AL) and complete-linkage
(CL) are somewhat better at distributing the observations among the six
clusters. K-means is better still, but pam is closest to the true configuration
of the data. The pam silhouette plot for six clusters is given in Figure 12.6
and the average silhouette width is 0.32.
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FIGURE 12.6. Silhouette plot for the Landsat image example using the
partitioning around medoids (pam) clustering method with K = 6 clusters.

The largest four eigenvalues of the (36 x 36) correlation matrix of the
Landsat data are 18.68, 14.08, 1.61, and 0.91, respectively. Kaiser’s rule says
that we should retain only those PCs whose eigenvalues are greater than
unity; in this case, we retain the first three PCs. In Figure 12.7, we display
a scatterplot of the first two PC scores of the Landsat data. The six clusters
of points (corresponding to Table 12.6) found using the pam algorithm are
each identified by their color. The scatterplot of the PC scores appears to
be wedge-shaped, with three primary “rods.” The “bottom” rod is divided
into three distinct bands, consisting of clusters A (dark blue), C' (red),
and B (green); the “middle” rod is similarly divided up into three distinct
bands of clusters D (orange), E (light blue), and some B (green); and the
“top” rod only consists of cluster F' (brown). There are also many points
in the scatterplot that fall between the rods.

The picture becomes more interpretable if we look at a 3D scatterplot
of the first three PC scores (not shown here), especially if we use a rota-
tion/spin operation as is available in S—PLUS or R. Rotating the 3D plot
shows a tripod-like structure, with the top of the tripod being cluster B
and the three rods being the three legs of the tripod. We can compute a
confusion table, Table 12.7, which details how many neighborhoods from
each class are allocated to the various clusters. From Table 12.7, we see
that one leg consists of clusters of primarily different types of gray soil
(4, C, and B); the second leg consists of clusters of primarily red soil (D
and E); and the third leg consists of a cluster of cotton crop (F'). Image
neighborhoods classified by Landsat as soil with vegetation stubble appear
mostly within clusters B and F.
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FIGURE 12.7. Scatterplot of first two principal components of the Land-
sat image data, with points colored to identify the clusters found in the data.
The six derived clusters are A. dark blue; B. green; C. red; D. orange; E.
light blue; F. brown.

12.5  Self-Organizing Maps (SOMs)

The self-organizing map (SOM) algorithm (Kohonen, 1982) has its roots
in artificial neural networks and has also been likened to methods such as
multidimensional scaling (MDS; see Chapter 14) and K-means clustering.
It is also referred to as a Kohonen self-organizing feature map. The original
motivation for SOMs was expressed in terms of an artificial neural network

TABLE 12.7. The confusion table showing results of the pam clustering
algorithm applied to the Landsat image data. The siz derived clusters are
designated A—F'. The entry in the ith row and jth column shows the number
of neighborhoods classified by Landsat into the ith image-type and allocated
to the jth cluster.

Class A B C D E F  Total
1 22 0 11 651 388 0 1,072
2 0 1 10 8 72 388 479
3 883 1 63 14 0 0 961
4 78 18 307 4 7 0 415
5

0 249 48 31 142 470
7 15 668 351 0 4 0 1,038
Total 999 937 790 708 613 388 4,435

o
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Rectangular SOM grid

Hexagonal SOM grid

FIGURE 12.8. Displays of 10 x 15 rectangular and hexagonal SOM grids.

for modeling the human brain, and much of the literature still uses the
image of neurons in describing the building blocks of a SOM.

SOMs have been applied to clustering problems in fields as diverse as
geographical information systems, bioinformatics, medical research, physi-
cal anthropology, natural language processing, document retrieval systems,
and ecology. Its primary use is in reducing high-dimensional data to a lower-
dimensional nonlinear manifold, usually two or three dimensions, and in
displaying graphically the results of such data reduction. In a SOM, the
aim is to map the projected data to discrete interconnected nodes, where
each node represents a grouping or cluster of relatively homogeneous points.

12.5.1 The SOM Algorithm

Two versions of the SOM algorithm are available: an “on-line” version,
in which items are presented to the algorithm in sequential fashion (one
at a time, possibly in random order), and a “batch” version, in which all
the data are presented together at one time. Both algorithms are due to
Kohonen.

The end product of the SOM algorithm (after a large number of iteration
steps) is a graphical image called a SOM plot. The SOM plot is displayed in
output space and consists of a grid (or network) of a large number of inter-
connected nodes (or artificial neurons). In two dimensions, the nodes are
typically arranged as a square, rectangular, or hexagonal grid. See Figure
12.8. For visualization reasons, an hexagonal grid is preferred.

In a two-dimensional rectangular grid, for example, the set of rows is
K1 ={1,2,..., K1} and the set of columns is o = {1,2,..., K5}, where
K (the height) and Ko (the width) are chosen by the user. Then, a node is
defined by its coordinates, ({1, ¢2) € K1 x Ka. The total number of nodes,
K = K1 K>, is usually chosen by trial and error, initially much larger than
the suspected number of clusters in the data. After an initial SOM analysis,
one can reconfigure the SOM by reducing the number of row and column
nodes. It will be convenient to map the collection of nodes into an ordered
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sequence, so that the node (¢1,¢3) € K1 x Ky is relabeled as the index
k=l —1)Ky+{ly € K, where L ={1,2,...,K}.

The SOM algorithm has much in common with K-means clustering. In
K-means clustering, items assigned to a particular cluster are averaged to
obtain a “cluster centroid” (or “representative” of that cluster), which is
subsequently updated. With this in mind, we associate with the kth node
in a SOM plot a representative in input space, my € R", k € K. Represen-
tatives have also been called synaptic weight vectors, prototypes, codebook
vectors, reference vectors, and model vectors. It is usual to initialize the
process by setting the components of my, k € K, to be random numbers.

12.5.2  On-line Versions

At the first step of the on-line SOM algorithm, we set up the map size
(i.e., select K7 and K>3) and initialize all representatives {my} so that they
each consist of random values.

At each subsequent step of the algorithm, an item x is randomly selected
from the data set and standardized. In this way, no component variable
has undue influence on the results just because it has a large variance or
absolute value. We then present x (which is now standardized) to the SOM
algorithm.

We compute the Euclidean distance between x and each representative
and find that node whose representative yields the smallest distance to x.
If

k' = argmkin{H x—my |}, (12.3)

where || - || denotes Euclidean norm, then the representative my- is declared
the “winner,” and k* is referred to as the best-matching unit (BMU) or
winning node for the input vector x.

Next, we look at those nodes that are “neighbors” of the winning node.
A node k¥ € K is defined to be a grid neighbor of the node k € K if the
Euclidean distance between my and my is smaller than a given threshold
c. The set of nodes, N.(k*), which are grid neighbors of the winning node
k*, is called the neighborhood set for that node. We then update the rep-
resentatives corresponding to each grid neighbor of the winning node k*
(including k* itself) so that each myg, k € N.(k*), is closer to x; the simplest
way of doing this is to use the uniformly weighted update formula,

my — my +a(x —my), keN(kY), (12.4)
where 0 < a < 1 is a learning-rate factor. For k ¢ N.(k*), we set o = 0, so

that my, k ¢ N.(k*), remains unchanged. This process, which is repeated
a large number of times, runs through the collection of input vectors one at
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a time. A useful “rule of thumb” is to run the algorithm steps for at least
500 times the number of nodes (Kohonen, 2001, p. 112).

A “distance-weighted” version of (12.4) is probably the more popular
strategy,
my < my +ahk(x—mk), k ENCUC*), (12.5)

where the neighborhood function h depends upon how close the neighboring
representatives are to my«. Those representatives that are neighbors of my
are adjusted, but not by as much as is mg-; the further a neighbor is from
my-, the less of an adjustment is made. The h-function takes the value
one when the distance is zero and becomes progressively smaller as the
distances become larger. For k ¢ N.(k*), we set hy = 0. The most-popular
h-function is the multivariate Gaussian kernel function,

_H myg — My«

2
hr = exp { 252 } Tken. k) (12.6)

where o > 0 is the neighborhood radius.

Values of ¢, a, and o are provided by the user but may change during the
sequential process. In the on-line process, ¢ is shrunk during the first 1,000
or so observations from, say, an initial value of C' (chosen by the user) to 1. If
we take the threshold value ¢ to be so small that each neighborhood contains
only a single point, then we lose the dependencies between representatives,
which would be independently updated, and the SOM algorithm reduces to
an on-line version of K-means clustering, where K is the total number of
nodes. The value of o decreases from a large initial value of just less than 1
to a value slightly greater than zero over the same observation span. Three
forms of the learning rate, a(t), as a function of the iteration number ¢ are
used:

linear: a(t) = ap(1 —t/T);
power: a(t) = ap(0.005/ag)t/T;
inverse: a(t) = ag/(1+ 100¢/T),

where « is the initial learning rate and 7" is the total number of iterations.
In Figure 12.9, the functions «(t) are drawn for the linear, power, and
inverse forms, where we have taken o = 0.5 and T' = 100. Like «, o in
(12.6) is also taken to decrease monotonically.

12.5.3 Batch Version

The batch SOM algorithm is significantly faster than the on-line version.
As before, we first make an initial choice of representatives {my}. For
the kth node, we list all those items x; whose my- € N.(k). Then, we
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FIGURE 12.9. Graphs of the on-line SOM learning-rate a(t) as a func-
tion of the iteration number t for the linear, power, and inverse forms,
where the initial learning rate ag = 0.5 and the total number of iterations
is T = 100.

update my by averaging the items obtained from the previous step of the
algorithm, where we might use a weighted average, with weights {hx+}
given by (12.6). Finally, repeat the process a few times.

In a batch SOM display, the nodes are drawn as circles, and the data
points that are mapped to a node are then randomly plotted within the cir-
cle corresponding to that particular node; see Figure 12.10, which presents
a SOM display of the Landsat data. This can be a very useful graphical dis-
play for showing the interrelated structure of the (often high-dimensional)
representatives in a 2D plot, together with the input points that are mapped
to each representative.

If each data point has a unique identifier, such as a gene description,
then it is not difficult to determine the identities of the data points that are
captured by each node. In many clustering problems, however, individual
points do not have unique identifiers; so, instead, class membership can be
used as a plotting symbol in the SOM plot, as in Figure 12.10. From a
SOM plot, cluster patterns should be visible.

12.5.4  Unified-Distance Matriz

A different type of visualization of the cluster structure of a SOM is
a U-matriz, where U stands for “unified distance” (Ultsch and Siemon,
1990). Each entry in a U-matrix is the Euclidean distance (in input space)
between neighboring representatives. For example, if we have a map with
one row of five nodes with representatives {mj, ms, ms, my, ms}, then the
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FIGURE 12.10. A 6x 6 hexagonal batch-SOM plot of the Landsat satellite
image data. The circles correspond to nodes, and the projected points are
plotted randomly within the appropriate circle to which they were deemed
closest. The siz classes of vegetation are used as plotting symbols (1=red,
2=blue, 3=turquoise, J=purple, 5=yellow, T=black).

U-matrix is a (1 x 9)-vector,
U= (u17u127u27u237u37u347u47u457u5)7 (127)

where u;; = || m; — m; || is the Euclidean distance between neighbor-
ing representatives, and w; is a representative-specific value; for example,
us = (ua3 + usq)/2 is the average distance from that representative to all
neighboring representatives. A small value in a U-matrix indicates that the
SOM nodes are close together in input space, whereas a large value indi-
cates that the SOM nodes, even though they are neighbors in output space,
are quite far apart in input space. Thus, the U-matrix provides a useful
guide to the underlying probability density function of X projected onto
two dimensions.

Rather than displaying these U-matrix values as a 3D landscape (with
low valleys showing clusters and high ridges showing separations between
clusters), it is usual instead to discretize the distance values and then color-
code them in a 2D colormap, where the colors show the gradations in values.
In the SOM TooLBOX for MATLAB, for example, large distances in the U-
matrix are colored as yellow and red and indicate a cluster border, whereas
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U-matrix

0219

FIGURE 12.11. The U-matriz from the batch SOM with hexagonal grids
for the Landsat satellite image data.

small distances are colored as blue and indicate items in the same cluster.
Figure 12.11 displays the U-matrix with an hexagonal grid for the Landsat
image data, where a number of clusters are visible.

An hierarchical SOM (HSOM) is a tree of maps (U-matrices), where the
“lower” maps on the tree act as a preprocessing stage to the “higher” maps.
As we climb up the hierarchy, the information becomes more abstract.
HSOMSs have been successfully used in the development of bibliographic
information retrieval tools. For example, a “document map” has been cre-
ated for organizing astronomical text documents (Lesteven, Poingot, and
Murtagh, 2001). Using more than 10,300 articles published in several lead-
ing astronomy journals, the authors selected 269 keywords, each of which
appeared in at least five different articles. By clicking on an individual
node in the map, information about the articles located at that node can
be retrieved. From this information, the user can then access article content
(title, authors, abstract, and the on-line full paper).

12.5.5 Component Planes

An additional useful visualization tool is a colormap of the various com-
ponent planes. In general, the “components” are the individual input vari-
ables that make up each item x.

Figure 12.12 shows the 36 component planes for the Landsat data. Be-
cause these data have an easily visualized physical structure, the compo-
nent planes are arranged into four groups of nine images (corresponding
to the four spectral bands and the nine positions). The component planes
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FIGURE 12.12. Colormaps of the 36 component planes from the batch-
SOM algorithm with hexagonal grids for the Landsat image data. The com-
ponent planes are arranged into four groups (corresponding to the four spec-
tral bands, 1, 2, 3, and 4), each group having nine component planes (cor-
responding to the nine positions (TL, TC, TR; CL, CC, CR; BL, BC, BR,
where T is top position, C is center, B is bottom, L is left, C is center, R
is right) in the 8x 8 pizel neighborhoods.
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show that the variable values differ substantially between the four spectral
bands. Within each set of 3x3 pixel neighborhoods, the component planes
show some differences, but those differences are not as significant as be-
tween spectral bands. In this example, the component planes have given us
a good view of the differences in measurement of each of the four spectral
bands.

The U-matrix and component planes derived from SOMs have been ap-
plied to the visualization of gene clusters derived from microarray data (see,
e.g., Tomayo, Slonim, Mesirov, Zhu, Kitareewan, Dmitrovsky, Lander, and
Golub, 1999). In particular, if the genes are expressed at different points in
time or at different temperatures, then the component planes, which can be
thought of as “slices” of the U-matrix, show the cluster structure obtained
at each timepoint or temperature.

12.6  Clustering Variables

We can use the same clustering methods for variables as we used for
clustering observations, the main difference being the measure of distance
between variables. For clustering variables, we generally use a distance met-
ric based upon the correlation matrix for the r variables. The correlations
provide a reasonable measure of “closeness” between pairs of variables.
Those pairs of variables with relatively large correlations can be thought
of as being “close” to each other; those pairs for which the corresponding
correlations are small are considered to be “far away” from each other.

If we standardize each of the r variables across the n observations to
have zero mean and unit variance, then it is not difficult to show that

n

Z(xji - xki)Z =1- Pik € [032]3 (128)

i=1

1
2(n—1)

where pj;; is the sample correlation between variables X; and Xj. This
shows us that using squared Euclidean distance, >, (xj;—xy;)?, is equivalent
to using 1—pji as a dissimilarity measure. Either distance metric enables us
to utilize any of the hierarchical or nonhierarchical/partitioning clustering
methods discussed above, and the graphical output can be a dendrogram
or a silhouette plot as appropriate.

12.6.1 Gene Clustering

The most popular use of variable clustering has been in clustering the
thousands or tens of thousands of genes measured using a microarray ex-
periment. Concern over the enormous volume of biological information in
an organism’s genome has led to the idea of grouping together those genes
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with similar expression patterns. This type of clustering is referred to as
gene clustering, where, in addition to the usual hierarchical and partition-
ing methods, some specialized methods have been developed.

In gene clustering, the (r x n) data matrix X = (x;;) contains the gene-
expression data derived from a microarray experiment, where ¢ indexes the
row (gene), j indexes the column (tissue sample), and x;; is, for example,
the intensity log-ratio of the abundance of the ith gene in the experimental
sample relative to some reference sample; in other words, x;; is a measure-
ment of how strongly the ith gene is expressed in the jth sample. Because
x;; is the log of a ratio, it follows that those ratios with values between 0
and 1 will yield negative x;;, whereas those ratios greater than 1 will yield
positive x;;. For typical microarray experiments, r > n, so that the matrix
X will be “vertically long and skinny.”

12.6.2  Principal-Component Gene Shaving

Suppose our goal is to discover a gene cluster that has high variability
across samples. Let Sy denote the set of (row) indices of a cluster of k
genes. Consider the jth tissue sample (i.e., jth column of X) and compute
the average gene-expression over the k£ genes for that sample,

1 .
Tis, =7 > wi, =120 (12.9)
1ESK

Compute the average of (12.9) over all n tissue samples,

n n
Ts, = %Z@’Sk = % SNy (12.10)
j=1

j=14ie8
The empirical variance of Zs, is defined by

n

i 1 _ _
var{Zs, } = n Z(wj,sk - ﬂvsk)2. (12.11)

j=1

Given all possible clusters of size k, we can search for that cluster Sy with
the highest var{zs, }. Unfortunately, such a search procedure is computa-
tionally infeasible because it entails evaluating (;) different subsets, which
gets big very quickly for r large, as would be common in gene clustering.

Gene shaving (Hastie, Tibshirani, Eisen, Alzadeh, Levy, Staudt, Chan,
Botstein, and Brown, 2000) has been proposed as a method for clustering
genes, where the primary goal is to identify small subsets (i.e., clusters) of
highly correlated (“coherent”) genes that vary as much as possible between
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samples. This method differs from those described previously in that genes
are allowed to be included as members of more than one cluster.

Consider a linear combination of the jth column gene expressions,

T
Zj = aij = E ;X475 (1212)

i=1
where x; = (215, -+, 2;)7, a = (a1,---,a,)7, the {a;} are positive, neg-
ative, or zero weights, and 2221 a? = 1. For example, for given k, we

could set a; = il/\/E for i € Sk, and zero otherwise. We wish to find the
coefficients {a;} such that the variance of Z; is maximized.

The solution is given by the first principal component (PC1) of the r rows
of X. The min(r — 1, n) principal components of X are referred to as eigen-
genes. The individual genes may be ordered according to the magnitude
(from largest to smallest in absolute value) of their respective coefficients
in the first eigen-gene PC1; we expect that many of the coefficients in PC1
will be close to zero. We could threshold those “near-zero” coefficients (i.e.,
set the coefficient value equal to zero if it is smaller than a prespecified
limit), thereby removing those particular genes from the cluster, but, from
experience with simulations, we can do better.

As a selection process for weeding out unimportant genes, we instead
compute the inner product (or correlation) of each gene with PC1 and
“shave off” (i.e., remove) those genes (rows of X) with the 100a% smallest
absolute inner products (e.g., & = 0.1). This shaving process decreases the
size of the set of available genes, say to k1 genes. From the reduced subset
of k1 rows, we recompute the first principal component, which, in turn, is
shaved to a subset of, say, ko rows. This iteration is repeated until a finite
sequence of nested gene clusters, S, D Si; D Sk, D -+ D Si, is obtained,
where Sj denotes the set of indices of a cluster of k genes.

The next step is to decide on k and Si. For a given value of k, define the
following ANOVA-type decomposition of the total variance,

1 - B
Vr = Z Z(%j —Zs,)" = Vg + Vv, (12.13)
i€Sy j=1
where
VB = li(iﬂs —Zs,)* (12.14)
n - 7,9k k ) N

Il
-

J

-

1
Vi = -~
n

H > (i — xj,sk)Q] (12.15)

1 1€Sk

J
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are the between-variance and within-variance, respectively. A natural statis-
tic is /
Vi Ve /Vw
R*(Sp) = = x 100% = —2——
(5) Vr T 14+ VeV
which is the percentage of the total variance explained by the gene cluster
Sk. The larger the value of R?, the more coherent the gene cluster.

x 100%, (12.16)

Hastie et al. now determine the cluster size k by a permutation argument
applied to the R2-value in (12.16). The “significance” of the R?-value is
judged by comparing it with its expectation computed under a suitable ref-
erence null distribution; in this case, the reference distribution assumes the
rows and columns of X are independent. Randomly permute the elements
of each row of X to get X*. Do this B times to get X**. b =1,2,...,B.
Apply the shaving algorithm to X*, that gives S;’, and then compute
R%(S:%),b=1,2,...,B.

The gap statistic (Tibshirani, Walther, and Hastie, 2001) is defined as

Gap(k) = R*(S) — B2(Sp), (12.17)

where R%(S;) is the average of all the { R*(S;?),b = 1,2,..., B}. We choose
that value, /k;, of k (and, hence, Sg) which results in the maximum gap; that
is, k= arg maxy, Gap(k). A useful graphical technique is to plot the gap
curve, which is a plot of Gap(k) against cluster size k. Set k=kWD,

After determining the number, E(l), of genes and their identities, we
look for a second gene cluster. Before we do that, we need to remove the
effects of the first cluster of genes. Hastie et al. apply an orthogonaliza-
tion trick: first, compute the first supergene, x(1) = (37:51),-~-,37:$Ll))T, a

row vector of average genes corresponding to the first cluster SE(U’ where

:‘cg-l) = D icse :cij/E(l), j = 1,2,...,r; second, orthogonalize X by re-

(1)

gressing each row of X on the supergene x(') and replacing the rows of X
by the residuals from each such regression. This gives us the matrix Aj.
Rerun the shaving algorithm on &} and then use the gap statistic to ob-
tain k), the second gene cluster S}z » and the second supergene %) This
process is applied repeatedly a total of ¢ times, where ¢ is prespecified, by
modifying X and X at each step; at the kth step, X is orthogonal to all the
previously obtained supergenes x(), ¢ =1,2, ...,k — 1.

One of the main steps in the gene-shaving process is the use of the gap
statistic to determine the cluster size k. Hastie et al. report good results
for the gap statistic when the clusters are well-separated. However, there is
evidence that the gap statistic tends to overestimate the number of clusters
(Dudoit and Fridlyand, 2002; Simon et al., 2003, p. 151).

After identifying each gene cluster, the rows of X can be reordered to
display those gene clusters more explicitly. The tissue samples (columns of
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X)) can also be reordered according to either the average gene expression
of each column of X or some external covariate reflecting additional infor-
mation, such as tissue type or cancer class. A supervised version of gene
shaving (Hastie et al., 2000) has been developed, which, for example, is able
to identify gene clusters that are closely associated with patient survival
times.

12.6.3 Example: Colon Cancer Data

We apply PC gene-shaving to the colon cancer microarray data described
in Section 2.2.1. The microarray data consist of expression levels of 92 genes
obtained from a microarray study on 62 colon tissue samples. The gene-
expression heatmap for the colon cancer data is displayed in Figure 2.1.

Figure 12.13 shows the gap curves for the first four clusters derived using
the gene-shaving algorithm. For each cluster, the value of k at which the gap
curve attains its maximum is chosen to be the estimated size of the cluster.
The estimated cluster sizes for the first four clusters are 41, 15, 6, and 19,
respectively. The four heatmaps for those gene clusters are displayed in
Figure 12.14, where the samples are ordered by the values of the column
averages; each panel gives the values of the total variance Vi, the between-
variance Vg, the ratio Vi /Viy, and R? = Vi /Vr x 100%, the percentage
of the total variance explained by that cluster. The largest R? value was
that of the third cluster at 64.8%.

The four clusters in Figure 12.14 display different patterns of gene ex-
pression. The first cluster has an interesting feature in that the genes split
into two equal-sized subgroups: for a given tissue sample, when the “up-
per” subgroup of genes are strongly upregulated (red color), the “lower”
subgroup are strongly downregulated (green color), and vice versa. Fur-
thermore, the red/green split depends upon whether the sample is a tumor
sample or a normal sample. The second and third clusters of genes have
the same overall appearance: in both, the tumor samples (mostly located
on the right of the heatmap) tend to be upregulated, whereas normal sam-
ples (mostly located on the left of the heatmap) tend to be downregulated.
The reds and greens of the fourth cluster are somewhat more randomly
sprinkled around the heatmap, although there are pockets of adjacent cells
(e.g., the top few rows and a portion of the right-hand side) that seem to
share similar expression patterns.

12.7 Block Clustering

So far, our focus has been on clustering observations (cases, samples) or
variables separately. Now, we consider the problem of clustering observa-
tions and variables simultaneously.
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GeneShave Gap Curve Graphs
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FIGURE 12.13. Gap curves for the first four clusters of colon cancer
data. The gap estimate of cluster size is that value of k for which the gap
curve is a mazimum. The estimated cluster sizes are first cluster (top-left
panel), 41; second cluster (top-right panel), 15; third cluster (bottom-left
panel), 6; and fourth cluster (bottom-right panel), 19.

The simplest way to do this is to apply a hierarchical clustering method
to rows and columns separately. Figure 12.15 displays the heatmap of
the colon cancer data, where rows and columns have been rearranged
through separate hierarchical clustering algorithms. We see a partition of
the heatmap into blocks of mainly reds or greens. The rearrangement of
rows (colon tissue samples) does not correspond to the known division into
tumor samples and normal samples.

Block clustering, also known as direct clustering (Hartigan, 1972), pro-
duces a simultaneous reordering of the rows and columns of the (r x n)
data matrix X = (x;;) so that the data matrix is partitioned into K sub-
matrices or “data clusters.” As an example, Hartigan (1974) clustered the
voting records of 126 nations on 50 selected issues at the United Nations,
where each vote was coded as 1 (= yes), 2 (= abstain), 3 (= no), 5 (=
absent), or 0 (= unknown), and the “absents” are treated as missing data.
To motivate the two-way clustering, a natural problem was whether “blocs”
of countries exist that vote alike on “blocs” of questions that arise from
the same issue.
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FIGURE 12.14. Heatmaps for the first four gene clusters for the colon

cancer data, where each cluster size is determined by the maximum of that
gap curve. The genes are the rows and the samples are the columns. The

samples are ordered by the values of the column averages.
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FIGURE 12.15. Separate hierarchical clustering of rows (colon tissue
samples) and columns (genes) of the colon cancer data.

In block clustering, each entry in the data matrix appears in one and only
one data cluster, and each data cluster corresponds to a particular “row
cluster” and a particular “column cluster.” The block-clustering algorithm
given in Table 12.8 partitions the rows and columns of X’ into homogeneous,
disjoint blocks (i.e., where the elements of each block can be closely approx-
imated by the same value) so that the row clusters and column clusters are
hierarchically arranged to form row and column dendrograms, respectively.

12.8 Two-Way Clustering of Microarray Data

For clustering gene expression data, it can be argued that creating dis-
joint blocks of genes and samples may be an over-simplification of the sit-
uation. Biological systems are notoriously complicated, and interrelations
between these systems may result from some genes possessing multiple
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TABLE 12.8. Hartigan’s block-clustering algorithm.

1. Start with all data in a single block (i.e., K = 1).

2. Let B, Ba, ..., Bk denote a partition of the rows and columns of X" into
K blocks (or data clusters), where By = (R, Ck) consists of a set, Ry, of
rr rows and a set, C, of ¢, columns of X', k=1,2,... K.

3. Within the kth block By, compute Zj, the average of all the z;; within
that block. Approximate X by the matrix X = (551-]-), where the Ec\z-]- = T

s K _
are constant within block Bjy. Compute ESS = Zk:l Z(i,j)eBk (T35 —T5)2,
the total within-block variance.

4. At the hth step, there will be h blocks, B1, B2, ..., Bk, ..., Br. Suppose we
destroy By, by splitting it into two subblocks, Bj, and B}, either by splitting
the rows or the columns. Consider a row-split of the block By = (R, Ck).
Suppose Ry contains a previous row-split of a different block By = (R, Ce)
into B, = (R},C;) and By = (RY,C}). Then, the only row-split allowable
for By, is a fized split given by R}, = R} and R, = R} . Similarly for column
splits. A free split is a split in which no such restrictions are specified.

5. The reduction in ESS due to row-splitting By, into B;, and By, is given by
AESS = cxri[#(Bi) — 2(By)]” + exri[2(BY) — 2(By))’,

where Z(B) denotes the average of X over the block B.

6. At each step, compute AESS for each (row or column) split of all existing
blocks. Choose that split that maximizes AESS.

7. Stop when any further splitting leads to AESS becoming too small or when
the number of blocks K becomes too large.

functions. Hence, it may be more realistic to accept the idea that certain
clusters should naturally overlap each other. Furthermore, similarities be-
tween related genes and between related samples may be more complex
due to gene-sample interaction effects.

12.8.1 DBiclustering

With this in mind, the biclustering approach (Cheng and Church, 2000)
seeks to divide the (r x n)-matrix X = (z;;) of gene-expression data into a
pre-specified number of “biclusters,” which do not have to be disjoint. Each
bicluster corresponds to a subset of the genes and a subset of the samples
that possess a high degree of similarity. So, certain rows and columns of
X will appear in several biclusters. The basic idea is to determine in a
sequential fashion one bicluster at a time.



448 12. Cluster Analysis

A bicluster is defined as a submatrix, X(Z, J), of X', where Z is a subset
of nz rows and J is a subset of ns columns in A'. Consider the expression
level z;5, 1 € Z,j € J. If we model the bicluster by an additive two-way
analysis of variance (ANOVA) model, then we can write

vy R pt+oa+f, i€l jed, (12.18)

where (1 is the overall mean effect, o; represents the effect of the ith row, 3;
the effect of the jth column, and, for uniqueness, we assume that ), a; =
Zje] B; = 0. Least-squares estimates of u, oy, and ; are given by

n=1=x., Q; =T; —I., ﬁj =x,;—T., (12.19)
where
T =n; Z Tij, T5=ng Zx” (12.20)
JjeT €T
z.=(ngng) ' YD ;. (12.21)
i€l jeJ

The least-squares residual at x;; is defined as
é\ij = Xij —ﬁ—&i _B\j =Xy — T — X5+, 1€l,5€J. (12.22)

Let
RSS(T,J) =% &, (12.23)

i€Z jeT

be the residual sum of squares for the bicluster. The objective function is

RSS(L,J)

ning

H(Z,J) = (12.24)
which is proportional to the residual mean square RM S(Z, J) for the bi-
cluster; that is, RM S = [nzns/(nz — 1)(ngy — 1)]H. The aim is to find a
row set Z and a column set J such that H(Z,J) has a small value.

A bicluster is constructed by sequentially deleting one or multiple rows or
columns at a time from X', where the choice is determined at each step so as
to achieve the largest decrease in the value of H. Deleting rows or columns
will reduce the value of H. A similar result allows one to add some rows or
columns without increasing H. Like all greedy algorithms, this algorithm
needs a threshold value; it is usual to fix a maximum-acceptable threshold
0 > 0 for the value of H while running the algorithm.

As each bicluster is found, the elements of X' corresponding to that bi-
cluster are replaced by random numbers (so that no recognizable pattern
from that bicluster is retained that could be correlated with future biclus-
ters), and the next bicluster is sought. The random numbers are sampled
from a uniform density over a range appropriate for the given application.
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12.8.2 Plaid Models

Plaid models (Lazzeroni and Owen, 2002) form a family of models for car-
rying out two-way clustering, in which sums of “layers” of two-way ANOVA
models are fitted to gene-expression data. As such, it generalizes the bi-
clustering approach. Each “layer” is formed by a subset of the rows and
columns and can be viewed as a two-way clustering of the elements of the
data matrix, except that genes can be members of different layers or of
none of them. Hence, overlapping clusters (i.e., layers) are allowed.

There are several different types of plaid models, some more detailed
than others. Consider the following simple model,
K
Tij R o+ > [k Pik k- (12.25)
k=1
In this model, g represents the expression level for the background layer,
pix represents the expression level in the kth layer, and p;; and s, are two
indicator variables, each of whose value is either 1 or 0 depending upon ¢,
J, and k. Thus, p;r = 1 (or 0) indicates the presence (or absence) of the ith
gene in the kth gene-layer, whereas kj; = 1 (or 0) indicates the presence
(or absence) of the jth sample in the kth sample-layer. The expression level
1 is said to be upregulated if py, > 0 and downregulated if puy, < 0.

Requiring each gene and each sample to be in exactly one cluster would
mean that ), pir = 1 for every i, and ), rj, = 1 for every j, respectively.
To allow overlapping levels, these constraints would have to be relaxed: for
example, we could set Zk pik > 2 for some i, or Zk kjr > 2 for some j. We
would also need to recognize that there may be genes or samples that do
not belong naturally to any layer; for such genes, >, pix = 0, and for such
samples, Y, Kjr = 0. In general, we do not need to impose any restrictions
on the {pir} and {K;i}.

A more general ANOVA-type model is given by

K
Tij = o + Z(Mk + ik, + Bik) pik Kk, (12.26)
k=1
where o, and 5, measure the effects of the ith row (genes) and jth column
(samples), respectively, in the kth layer. To avoid overparameterization, we
require ; pixik = y_; KBk = 0, k = 1,2,..., K. The description of
model (12.26) as a “plaid” model derives from the visual appearance of the
fitted heatmap of p + cix + Bk, where we see the row-stripes of the {p; }
and the column-stripes of the {k;x}.
Let 0; = p + i + Bjr, K =1,2,..., K. Then, we can write the plaid
model (12.26) as
K
Tij =~ 91‘]‘0 + Z‘%‘jkﬂik’%h (1227)
k=1
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To estimate the parameters {6;;,} in (12.27), we minimize the criterion,

Z Z (‘TU - 6130 - Z ez]kpzk’ijk> y (12.28)

1131

with respect to {61}, {pir}, {Kjr}, where pir, ki € {0,1}. Given the num-
ber of layers K, this optimization problem quickly becomes computation-
ally infeasible (each gene and each sample can be in or out of each layer, and
so there are (2" — 1)(2" — 1) possible combinations of genes and samples).

To overcome this problem, the minimization of () is turned into an iter-
ative process, where we add one layer at a time. Suppose we have already
fitted K — 1 layers, and we need to identify the Kth layer by minimizing
Q. If we let

Zij = Lij — ZJO Z eml@pzk‘ﬁjk (1229)

denote the “residual” remaining after the first K — 1 layers, then we can
write () as

1 s n
@ = 3 >z~ bixpixkix)® (12.30)

i=1 j—l
- _ZZ 2y — (K + qir + Bk )paxcryi)* . (12.31)
i=1 j=1

We wish to minimize @) subject to the identifying conditions
I n
> aikpin = Bixkix = 0. (12.32)
i=1 j=1

From (12.31) and (12.32), we set up the usual Lagrangian multipliers, dif-
ferentiate wrt px, aix, and Sk, set the derivatives equal to zero, and
solve. The results give:
g = 2idey PUPKRIK (12.33)
K (> p?K)(Zj “?K)

>0 (zij — prpirc kiR )R K

aj = (12.34)
K Pz‘K<Zj K“?K)
Z(Zzg - ,quiKﬂjK)PiK
B = L . (12.35)
I Kk (3 Pirc)

(s

Given the values of p; Kfl) and /{(i;l) from the (s — 1)st iteration, we use

(12.33)—(12.35) to update H(SK at the sth iteration. Note that updating
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o only requires data for the ith gene, and updating B;K only requires
data for the jth sample; hence, the resulting iterations are very fast.

Given values for 0;;x, the update formulas for p;x and x;x are found by
differentiating (12.31) wrt p;x and k;x, setting the results equal to zero,
and solving. This gives:

>, il Rk

Pi = (12.36)
Zj Q?jK”?K
> #ibiik pir
kY, = SLNURE (12.37)
K Zz 91'2ij121<

So, set the initial values of all the ps and the ks to be in (0,1) (say, make
them all equal to 0.5). Then, given values of 01(;}( and Hgi;l), we use (12.36)

to update pi“;() Similarly, given values of 91(;}( and pg“;;l), we use (12.37) to
update ngé& The trick is to keep p and x away from 0 and 1 early in the
iteration process, but to force p and x toward 0 and 1 late in the process.
At convergence, the estimated parameters for the kth layer are denoted by
Lk, Qik, and B, k=1,2,..., K.

The absolute values of the row effects, |fix + @;x|, and the column effects,
|fk + Ejk|, for the kth layer (k =1,2,..., K) can each be ordered to show
which genes and samples are most affected by the biological conditions of
that layer. Within the kth layer, genes are upregulated if iy + Q. > 0,
whereas genes with [ + @ < 0 are said to be downregulated. The “size”
or “importance” of the kth layer is indicated by the value of

r

n
U/% = Z Z Pfj’fjkez‘zjkv (12.38)
i=1

Jj=1

and this quantity is used in a permulation argument by Lazzeroni and
Owen to choose the number of layers K.

12.8.3 Ezample: Leukemia (ALL/AML) Data

The data for this example* are obtained from a study of two types of
acute leukemias — acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (Golub et al, 1999). The leukemia data, which consist
of gene expression levels for 7,219 probes from 6,817 human genes, were

4The leukemia data can be found in the file ALL_AML_Merge . txt on the book’s website.
The data are available in the BIoCONDUCTOR R package golubEsets, and the preprocess-
ing code is in the BIOCONDUCTOR R package multtest, both of which can be downloaded
from the website http://www.bioconductor.org.
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derived using Affymetrix high-density oligonucleotide arrays. There are 72
mRNA samples made up of 47 ALL samples (38 B-cell and 9 T-cell) and 25
AML samples extracted from bone marrow (BM) or from peripheral blood
(PB).

The leukemia data were preprocessed following the methods of Golub et
al. (see Dudoit, Fridlyand, and Speed, 2002): (1) a floor and ceiling of 100
and 16,000, respectively, were set for the expression levels; (2) any gene that
has low variability (i.e., any gene with either max / min < 5 or max — min <
500) over all tissue samples was excluded; (3) the remaining expression
levels were transformed using a logarithmic (base-10) transformation; (4)
the preprocessed leukemia data were standardized by centering (mean 0)
and scaling (variance 1) each of the mRNA samples across rows (genes).
This left a data array, X = (z4), consisting of 3,571 rows (genes) by 72
columns (mRNA samples), where z4; denotes the expression level for the
gth gene in the ith mRNA sample.

We applied the plaid model to the leukemia data. Our strategy consisted
of (1) four shuffles in the stopping rule; (2) a common sign for x4 + a; and
for v+ 8; within each layer; and (3) any row (or column) is released from
a layer if being part of a layer failed to reduce its sum of squares by at
least 0.51. The algorithm stopped after finding 11 layers, each containing
a; and B; components. After the 11th layer, the algorithm failed to find a
layer that retained any rows under the release criterion.

Table 12.9 shows the composition of each of the 11 layers. We see that
layer 4 is completely composed of AML samples, layer 5 consists of only
ALL B-cell samples, and layers 3 and 11 contain only ALL samples. All
other layers are mixed ALL and AML samples. Only 55 of the 72 samples
are contained in the 11 layers, so that 17 samples were not included in any
layer. The biggest percentage omission is for the ALL T-cell samples with
5 out of 9 samples not included; 9 of the 38 ALL B-cell samples and 3 of
the 25 AML samples are omitted.

Table 12.10 gives the estimated column effects, fix + Bjk, in the first
8 layers; notice that the signs of each column effect are the same within
each layer. We see a pattern of similar mRNA samples appearing in the
odd layers 1, 3, 5, 7, and 11, and in the even layers 2, 4, 6, and 8. These
odd-even patterns, however, are switched in layers 9 and 10.

While we see from Table 12.9 that the number of samples in the different
layers is about the same, the number of genes decreases from more than
200 in the first few layers to a much smaller number in each of the last few
layers. About half of the genes in each of the first two layers are the same,
whereas a third of the genes in layer 3 are present in layer 4 and vice versa.
The amount of gene overlap in the other layers is negligible.
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TABLE 12.9. Plaid analysis of the leukemia data. Composition of each
layer by the number of genes (rows) and number of samples (columns), and
the number of ALL B-cells, ALL T-cells, and AML samples in each layer.

Layer Genes Samples ALL-B ALL-T AML

1 230 14 12 0 2
2 222 16 9 1 6
3 265 13 12 1 0
4 238 19 0 0 19
5 61 14 14 0 0
6 13 16 3 2 11
7 15 13 11 0 2
8 3 17 6 2 9
9 11 17 5 1 11
10 5 14 13 0 1
11 10 10 9 1

12.9 Clustering Based Upon Mixture Models

So far, our treatment of clustering has been algorithmic; instead of cre-
ating clustering methods based upon a statistical model with stochastic
elements (so that the the full force of the traditional statistical inference
framework could be applied), we have used nonstochastic methods whose
computational solution in each case is an iterative algorithm. In this sec-
tion, we adopt a mixture model approach to clustering. The EM algorithm,
which is a general optimization routine for the treatment of incomplete
data, has been found to be especially valuable for fitting mixture models,
particularly in problems from machine learning, computer vision, vector
quantization, image restoration, and market segmentation.

Suppose D = {x;,i = 1,2,...,n} denotes the complete set of data,
assuming no missing values. The complete-data likelihood is given by

L(4|D) = p(Dlep), (12.39)

where p(Dl) is the joint density of D, and %) is an unknown parameter
vector. Now, suppose some components of D are missing. We can write

D= {Dob37 Dmis}a (12.40)

where D,y is the observed part of D, and D,,;s is the missing part of D.
If the probability that a particular variable is unobserved depends only
upon Dyps and not on D,,;s, then the observed-data likelihood is obtained
by integrating D,,;s out of the complete-data likelihood,

Eobs(wlpobs) = /p(DobsaDmis|¢) dszs (1241)
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TABLE 12.10. Plaid analysis of the leukemia data. Estimated column
effects (it + B;) for the first 8 layers. Samples whose estimated effects do
not appear in a column are not included in that layer.

ot
[}
-3
[0

Sample 1 2 3 4

ALLT
ALLB
ALLB
ALLT

-1.04 1.15 -0.63

0.66 0.84
ALLB 0.81 1.37
ALLB 1.09 0.74 1.58
ALLB 13 -0.86 1.10 ~0.68

ALLT 14 0.61

ALLB 15 -1.19 1.07 -0.82 -0.96

ALLB 16 0.63

ALLB 19 -0.51

ALLB 20 -1.24 1.39 -0.99

ALLB 21 -0.81 1.47

ALLB 22 0.65

ALLT 23 0.49
ALLB 24 0.96

ALLB 27 1.54 0.70 1.54
AML 28 -0.65 0.47 0.67
AML 29 -0.77 -0.85

00 | O] Ut x| W

AML 31 -0.54 0.70
AML 32 -0.70 0.71

AML 33 0.86 -1.13 0.78 0.60
AML 34 0.69 -0.70 0.84

AML 35 1.06 -0.62

AML 36 -0.96 0.69

AML 37 -0.92 0.88 0.39
AML 38 0.67 —0.84 0.93
ALLB 39 0.72 0.96
ALLB 40 0.86

ALLB 41  -1.09 1.08 -0.63 -0.78

ALLB 43 -1.25

ALLB 44  -0.72 -0.43 -0.63

ALLB 45 -0.74 -0.41 -0.75

ALLB 46 -0.80 -0.47 -0.89

ALLB 47 0.63 —-0.60

ALLB 48 -0.74 1.25 -0.78 -0.69

ALLB 49 1.29 1.07
AML 50 -0.85 0.93 1.31
AML 51 -0.85 0.97

AML 53 -0.94 0.77 0.85
ALLB 56 0.85 0.63

AML 58 1.04 -0.78 0.77 0.68
ALLB 59 -0.36 -0.67

AML 64 1.06 -0.82 0.76

AML 66 —-1.04 -0.71
ALLB 68 -1.26 1.19 -0.74 -1.01
ALLB 69 -1.04 0.90 -0.76 -0.83
ALLB 70 —0.53
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TABLE 12.11. The EM algorithm.

1. Input: ;,Z(m = initial guess for the parameter vector .

2. Let D = {Dobs, Dmis } represent the “complete” data, where Dops and Dinis
are the portions of D which are observed and missing, respectively.

3. For m =0,1,2,..., iterate between the following two steps:
e F-step: Compute
QW | %) = E{UID) | Dune, B}

as a function of .
e M-step: Find (™)) = arg max QW | D).

4. Stop when convergence of the log-likelihood is attained.

The MLE for @ based upon the observed data D, is the 1) that maximizes
Lobs (1| Dops ). Unfortunately, a direct attack on this problem usually fails.

The EM algorithm is tailor-made for this type of problem. It is a two-
step iterative process, incorporating an expectation step (E-step) with a
maximization step (M-step); see Table 12.11 for the algorithmic details.
The E-step computes the conditional expectation of the complete-data log-
likelihood given the observed data and the current parameter estimate, and
the M-step updates the parameter estimate by maximizing the conditional
expectation from the E-step.

Because p(Dpmis|Dobs, ¥) = P(Dobss Dmis|®)/p(Dobs|tP), the observed-
data log-likelihood is

£(¢|Dob5) = logp(Dops |’l/J)
(3| D) — log p(Dis| Dobs, 1), (12.42)

where ¢(¢|D) is the complete-data log-likelihood, which may be easy to
compute, and log p(Dyis|Dovs, ¥) is the part of the complete-data log-
likelihood due to the missing data. Taking expectations of (12.42) wrt
the conditional density p(Dpis|Dobs, "), where 1) is a current value of

1, yields
U(1|Dobs) = Q(p|Y") — H(p|y"), (12.43)

where
Q(’lpld"/) = /g(d"D)p(Dmis'Dobsv1/),)dDmis
E{{(%|D)|Dops, '}, (12.44)
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and

H(tplyp')

/ log p(szs |Dobsa ¢)p(szs |Dobsa ¢/)dszs
= E{lng(Dmis|DobS7w)|Dobs,¢/}~ (1245)

If we now set
p(szs |Dobsa ¢)

MPmis) = Do D ) (1240)
then,
Hply') - HW'|W') = E{logh(Dimis)|Dobs, %'}
S E{h(DmislpobSawl)}_l
= 0, (12.47)

where we used the inequality logz < o — 1. Thus, H(¢|¢') < H(¢'|¢).

From (12.43), the difference in £(¢|Dops) at the mth and (m + 1)st iter-
ations is

g(w(m+1)|pobs) - g(w(m)|pobs)
> Q! V|p ™) — Q™ ™)) > 0, (12.48)

where we used (12.44) and the fact that the EM algorithm finds 4™+ to
make Qv+ |p™)) > Q(yp™|p™)). Thus, the log-likelihood function
increases at each iteration (more accurately, it does not decrease). From
this result, it can be shown that (under reasonably mild regularity con-
ditions) convergence of the log-likelihood, at least to a local maximum,
is ensured by this iterative process (Wu, 1983). Note, however, that local
convergence of the log-likelihood does not automatically imply local con-
vergence of the parameter estimates, although the latter convergence holds
under additional regularity conditions.

The EM algorithm possesses reliable convergence properties and low cost
per iteration, does not require much storage space, and is easy to program.
Yet, it can be extremely slow to converge if there are many missing data
and if the size of the data set is large. (We note that some effort has been
made to speed up the EM algorithm.) Furthermore, because convergence
is guaranteed only to a local maximum, and because likelihood surfaces
often possess many local maxima, it is usually necessary to run the EM
algorithm using different random starts to try to find a global maximum
of the likelihood function.

12.9.1  The EM Algorithm for Finite Mixtures

One of the first applications of the EM algorithm was to the finite mix-
tures problem. A density function p is a mixture of K component densities,
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D1y DKy A p(x|{mi}, {O0k}) = Zle TPk (X|0), where {7} are the mix-
ing weights (0 <7, <1,k=1,2,..., K, Zle 7 = 1) and @y, is a vector

of parameters for py, which corresponds to the class I, k =1,2,..., K.
Let Dops = {X1,0b37 co 7Xn,obs}7 and define D,,;s = {X1,7rzi37 co 7Xn,mis}7
where
Ximis = (Til,miss**» TiK,mis) (12.49)
and
1 i x50 €
Tik,mis = { 0 otherwise (12.50)

i=1,2,...,n, k=1,2,..., K. Thus, X; mis is a K-vector that indicates
whether the ith observation, x; ovs, is a member of IIj. Use X; s to aug-
ment x; o,s to produce a “complete” data vector,

X; = (XT XT . )7—7 1= 1727. Lo, N. (1251)

i,0bs7 X, mis

This idea of creating “missing data” for this problem as indicators of the
unknown class labels was a key innovation of Dempster, Laird, and Rubin
(1977).

Assume now that X; s is a realized value of the random vector X; ;s =
(Xit,mis, -+ » Xik.mis)" viewed as a single draw from a K -class multinomial
distribution with probabilities mp, = P{X; ops € I}, k = 1,2,..., K. That
is,

iid

Ximis 4 Multg(1,7), i=1,2,....n, (12.52)
where 7 = (71, ...,7x)7. Hence,
K
X 0bs| Xi,mis ~ H e (Xi 0| 01|75 (12.53)

Let ¥ = {{mx},{0k}} represent all unknown parameters. The complete-
data log-likelihood is

1/’|D Z Z Lik,mis log{ﬂ—kpk (Xz obs|0k)} (1254)

1=1 k=1
where D = {x1,...,%x,}. The E-step computes Q(i/)|1,AZJ(m)) by replacing
each dummy variable x; mis in (12.54) by its conditional expectation,

/x\(7rz) - E{Xik,mis|Xi,obs>;Z)(m)}a (1255)

ik,mis

where 17)(’”) is the current estimate of 9. In other words, at the mth iter-
ation, @k mis is estimated by the posterior probability that X; 55 € Ili;
from Section 8.5.1, this is
~ ~(m)
s A pe(ionslBy) (12.56)
ik,mis K ~(m) ~(m) ’
217y pi(x, obs|0 )
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The M-step then takes the probabilities of class membership provided by
the E-step, inserts them into (12.50) in place of % mis, and updates the
parameter values from the E-step by maximizing (12.54) wrt {my}, {0x}.
The M-step for the mixture proportions {m} is given by

R — ot ZAE,TWS, ~1,2,..., K. (12.57)

The M-step for the parameter vector ¢» depends upon the context. The
E-step and M-step are iterated as many times as it is necessary to achieve
convergence of the log-likelihood. The ML determination of the class of
the ith observation is then the class corresponding to the largest value of
Zikomis, k=1,2,..., K.

Consider, for example, a mixture of the two univariate Gaussian densities
#(x|01) and ¢(]62), where the parameter vectors are 61 = (u1,0%)” and
0, = (MQ,U%)T, and the mixture proportions are 7y = 1 — 7 and 7y = 7.
We also drop the subscript k. The E-step (12.56) reduces to

7™ (w015 [05™)
~ i Li,o0bs
= 2 , (12.58)

(1 — 7O 3(1.05s |8™) + 70 (7,005 |0™)

where 7(™) = 1 Yo 50\57:;)% By maximizing (12.54) while fixing @ mis
_ ~(m)
- i;:,bmis’

the M-step yields the estimates

~(m+1) Z?ﬁl(l - ‘&:\En;’b)zs)wiﬁbs
Hy - Z (1 _ ,\(m) ) ’ (1259)
_ a(m) ) ~(m+1)y2
(82)(m+1) — Z (1 SUZ mzs)(ml,ObS Hq ) (12.60)
1 S (=30 ’
1=1 1,M18
noogm g
~(m+1) _ Zz_l z,m(z;)lvobé, (1261)
Z?:l a’,\i,mis
n  ~(m) ~(