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Abstract Population density is a key ecological variable, and it has recently been
shown how captures on an array of traps over several closely-spaced time inter-
vals may be modelled to provide estimates of population density (Borchers and
Efford 2007). Specifics of the model depend on the properties of the traps (more
generally ‘detectors’). We provide a concise description of the newly developed
likelihood-based methods and extend them to include ‘proximity detectors’ that
do not restrict the movements of animals after detection. This class of detector
includes passive DNA sampling and camera traps. The probability model for spatial
detection histories comprises a submodel for the distribution of home-range centres
(e.g. 2-D Poisson) and a detection submodel (e.g. halfnormal function of distance
between a range centre and a trap). The model may be fitted by maximising either
the full likelihood or the likelihood conditional on the number of animals observed.
A wide variety of other effects on detection probability may be included in the
likelihood using covariates or mixture models, and differences in density between
sites or between times may also be modelled. We apply the method to data on
stoats Mustela erminea in a New Zealand beech forest identified by microsatellite
DNA from hair samples. The method assumes that multiple individuals may be
recorded at a detector on one occasion. Formal extension to ‘single-catch’ traps
is difficult, but in our simulations the ‘multi-catch’ model yielded nearly unbi-
ased estimates of density for moderate levels of trap saturation (≤ 86% traps
occupied), even when animals were clustered or the traps spanned a gradient in
density.
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1 Introduction

Trapping is a common source of capture–recapture data, but the spatial component
of such data has generally been ignored. By trapping we mean sampling an animal
population with traps set for a known time at known points in the habitat, often
on a grid. Time is usually divided into discrete intervals (‘occasions’), and new
animals may be captured, marked and released on each occasion. By convention,
closed-population encounter histories are coded in binary form: on each occasion
an individual is either captured (1) or not captured (0) (Otis et al. 1978). A spatial
encounter history also records the location of each capture. We are concerned with
the estimation of population density using information in the spatial encounter
history.

Previous methods for estimating population density D with arrays of traps have
used the relation D̂ = N̂/A, where N is the population size and A is the area occu-
pied by the population. This is the method of choice if the biological population
occupies a defined geographic area (e.g. an island) and if every member of the popu-
lation is at risk of capture. More commonly, the individuals at risk of capture in traps
are an ill-defined subset Nc of a larger biological population that extends indefinitely
beyond the trap array. We may estimate Nc empirically from the encounter histories
with conventional closed population methods (Otis et al. 1978; Chao and Huggins
2005), but this quantity bears only a vague relationship to the biological parameters
of interest (N and D). While we may hypothesize the existence of an ‘effective
trapping area’ Ac such that D = Nc/Ac, rigorous general methods for estimating Ac

are lacking (but see White et al. 1982; Jett and Nichols 1987).
A more secure approach is to estimate density directly without recourse to the

quantities Nc and Ac. The feasibility of estimating D directly from trapping data was
demonstrated by Efford (2004) and Efford et al. (2004). Their method relied on a
simulation of the trapping process. Here we describe a likelihood-based approach
that is in some ways more general and flexible. The underlying theory was devel-
oped by Borchers and Efford (2007).

The literature on nonspatial capture–recapture has not been concerned with the
trapping process although it is an important determinant of capture probability. At
the simplest level, increasing the number of traps per home range will increase
capture probability; more subtly, per capita capture probability will decline with
increasing local density if traps are of a type that ‘fill up’, particularly if they are
‘single-catch’ traps. Such patterns result naturally from suitably formulated spatial
trapping models, so long as care is taken to match the model to the process by which
data were collected. The focus in Borchers and Efford (2007) was on traps that do
not fill up, but which stop an animal from advancing to another trap within the same
occasion (we call these ‘multi-catch’ traps). We extend their treatment to allow
for other types of trapping process; in particular, we model ‘proximity detectors’
such as automatic cameras and devices that passively collect DNA samples from
animals without limiting their movement. As an example, we analyse data from
stoats Mustela erminea identified by their microsatellite DNA in hair samples. We
also discuss the extension of likelihood-based methods to single-catch traps. In lieu



Density Estimation by Spatially Explicit Capture–Recapture 257

of a likelihood function for single-catch traps, we use simulation to evaluate the
performance of the multi-catch density estimator applied to data from single-catch
traps.

2 Model

We wish to construct a probability model for encounter histories that include the
location of each detection. Our model comprises one submodel for the distribution
of animals in a region that includes the traps, and another submodel for the capture
process. The capture process submodel gives the probability of catching an indi-
vidual in a particular trap, given the location of its home range. We introduce these
models before proceeding to the likelihood.

2.1 Distribution Submodel

We assume that for the duration of trapping the general location of each individual
in the population may be summarised by the coordinates of a point that we call
the animal’s home range centre. Later we relate probability of detection to radial
distance from this point. The density of the population is equivalent to the intensity
of a spatial point process for the home range centres. In this paper we model the
distribution with a homogeneous spatial Poisson process; more generally, we could
use an inhomogeneous Poisson process (Borchers and Efford 2007).

2.2 Capture Submodel

A spatial model of capture probability must take into account properties of the trap
or detector. We distinguish three types of detector:

• Proximity detector
• Multi-catch trap
• Single-catch trap

We order these by increasing complexity in the probability model, rather than
novelty. Multi-catch traps were treated by Borchers and Efford (2007), while the
likelihood given here for proximity detectors is new.

A proximity detector records the presence of an individual at or near a point, but
leaves it free to visit other detectors on the same occasion. Multiple individuals may
be recorded at a detector on one occasion (see Discussion for one-shot detectors).
Examples are camera traps and passive DNA sampling devices such as sticky hair
traps. The probability that a particular individual i with home range centre X(i) is
recorded at detector k, located at Y(k), is assumed to be a function of the Euclidean
distance dk[X(i)] = |X(i) – Y(k)|, and possibly also of other covariates. Here vector
notation (in bold) is used for location, which might otherwise have been represented
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by Cartesian coordinates (x, y). We assume independence between visits to different
detectors. Each occasion-specific entry in an encounter history from an array of K
proximity detectors is itself a vector of length K whose elements take the value 1 for
detectors at which the individual was recorded at least once and 0 otherwise.

Multi-catch traps differ from proximity detectors in that capture in one trap
precludes capture of the same individual in other traps on the same occasion. As
with proximity detectors, multiple individuals may be recorded at a trap on one
occasion. Mist nets for birds and pitfall traps for lizards are examples of multi-catch
traps used in capture–recapture studies. The probability of capture is modified by
‘competition’ among traps for the chance to capture an individual (multiple traps
within an individual’s home range may reduce its probability of capture in any
particular trap). An additive competing risks hazard formulation is appropriate for
trap-specific capture probability (Borchers and Efford 2007). Each occasion-specific
entry in an encounter history from an array of K multi-catch traps is a single trap
index k where 0 ≤ k ≤ K, and k = 0 indicates no capture.

Single-catch traps are able to catch only one animal at a time, and capture
probability is affected by the presence of other individuals that may ‘compete’ for
traps. The majority of traps used for capture–recapture of small mammals are of
this type. The encounter history has the same form as for multi-catch traps, but
different histories may have the same entry on one occasion only if both are zero.
Capture of an animal disables a trap and immediately reduces the capture probabil-
ities of neighbouring animals. Simulation of the capture process is straightforward
in continuous time, and a capture model may be fitted by inverse prediction (Efford
2004). A likelihood model for single-catch traps is considerably more complicated
than for multi-catch traps, and remains to be developed.

3 Likelihood

The probability associated with each capture history may be treated as the product
of the probability of catching an individual at least once (p.) and the probability of
the observed history given that it includes at least one capture. Each part is condi-
tional on the location of the individual’s home range centre X, but using the distri-
bution submodel we may integrate over possible locations to evaluate the likelihood
without knowing X.

We start by defining a spatial analogue of detection probability a = ∫
p.(X;

�) dX, where � is a vector of detection parameters and a has units of area (the
parallel between a and detection probability becomes clear in the next section). For
a homogeneous Poisson distribution model, the probability of observing exactly n
capture histories is itself Poisson-distributed:

Pr(n) = (Da)n exp(−Da)

n!
. (1)
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The likelihood given n observed capture histories � = (�1,. . .,�n) is then

L(�, D) = Pr(n) ×
n∏

i=1

∫
Pr(ωi |X; �)dX

a
, (2)

where Pr{ωi |X; �}, the probability of the capture history for a given home range
location and model parameters, is defined below. The probability of being caught at
least once over S occasions depends on the distances dk(X) to each of the K traps:

p.(X; �) = 1 −
∏

s

∏

k
{1 − ps(dk(X) ; �)}. (3)

Here ps is analogous to the detection function in distance sampling (e.g. Buckland
et al. 2001).1 Its parameters � control the overall efficiency of detection and also
its spatial scale, which we expect to increase with home range size. Three suitable
forms for ps are shown in Table 1. These use the independent parameters g0 for
overall efficiency of detection and � for spatial scale.2 The hazard function has an
additional shape parameter b (b > 0); when b is fixed at a large value (e.g. 100) the
hazard function comes to resemble a step function (ps(d) ≈ 0 for d > �). Although
our experience tends to favour the hazard function, we recommend that a function
is selected for each dataset only after comparing the fit of alternatives.

The preceding formulation applies to all three types of detector. Differences arise
in the term Pr{�i |X;�}. This has the general form

Pr{ωi |X; �} =
∏

s

∏

k
pδiks

ks (1 − p·s)
1−δi ·s

, (4)

where pks is the probability of detection at k on occasion s, δiks = 1 if individual i
was detected at k on occasion s and δi ·s = 1 if

∑

k
δiks > 0 and δi ·s = 0 otherwise.

Table 1 Detection functions ps for spatially explicit capture–recapture models. d is the distance
between an animal’s home range centre and a detector. The parameter g0 is common to all functions
and represents the probability of detection at a single detector placed in the centre of the home
range; values of the spatial scale parameter � are not comparable between functions

Detection function Parameters �

Halfnormal ps = g0 exp

(−d2

2σ 2

)

g0, �

Hazard rate ps = g0

[

1 − exp

{

−
(

d/
σ

)−b
}]

g0, �, b

Negative exponential ps = g0 exp

(−d

σ

)

g0, �

1Borchers and Efford (2007) use p1
s for ps.

2Independence may not always be appropriate: intuitively, an animal that spreads its activity over
a larger area will become less trappable at any particular place. An alternative parameterization
would scale g0 by 1/�2, as in the pdf of a bivariate normal distribution.
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For an array of proximity detectors we use

pks = ps(dk(X) ; �). (5)

Multi-catch traps ‘compete’ for animals and a competing risks hazard-rate form is
appropriate:

pks = h(dk(X))

h.(X)
[1 − e−h.(X)], (6)

where h(dk(X)) = − ln{1 − ps(dk(X; �))} and h.(X) = ∑K
k=1 h(dk(X)).

4 Estimation

We estimate D and � by numerically maximising the full likelihood (1) with respect
to the parameters. For maximisation we log-transform D and �, and logit-transform
g0 to keep each within feasible ranges. Each evaluation of the likelihood requires
numerical integration over the plane, once for each observed encounter history �i

and once for the null capture history to calculate a. The speed of the algorithm used
for integration is therefore critical. We have not obtained satisfactory results with
standard algorithms such as the adaptive method of Genz and Malik (1980) used
in some packages; our preferred method at present is to sum function values over
a grid of points. Integration may be limited to a subset of the plane that contains
plausible animal locations X; the estimated density will then apply to that area of
habitat. Asymptotic variances may be estimated from the inverse of the information
matrix. Confidence limits for D̂ may be estimated as exp[ln(D̂) ± zα ŝD], where ŝD

is the estimated SE of D̂ on the log scale and z� is the appropriate normal deviate,
or by profile likelihood. Software is available (Efford 2007).

An alternative procedure is to maximise the conditional likelihood (the product
over capture histories in (1)) to get estimates �̂ and hence a(�̂) , and to estimate
D̂ = n/â. This is advantageous when there are individual covariates zi as we can
then use the Horvitz-Thompson-like estimator D̂ = ∑n

i=1 â(zi )−1, which does not
require the pdf of covariates to be modelled (Borchers and Efford 2007). Similar
methods are used in conventional capture–recapture to estimate population size N
from individual detection probabilities pi (N̂ = ∑n

i=1 p̂−1
i ) (Huggins 1989).

5 Extensions

5.1 Modelling Additional Variation in Detection

Our core model accounts for variation in capture probability due to the varying
number and location of traps in each animal’s home range. This confers a robust-
ness that is lacking in conventional closed-population analyses of trapping data.
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Other sources of variation that are addressed in conventional analyses (e.g. Otis
et al. 1978; Chao and Huggins 2005) may readily be included (Borchers and Efford
2007). Capture probability p in conventional models is replaced in the spatial model
by a vector of at least two parameters, g0 and �. Each conventional source of vari-
ation in p (i.e. time, response to capture, and individual heterogeneity; Otis et al.
1978) may affect either or both of g0 and �. For example, we can fit a model for a
change after first capture in either the efficiency of detection (Mb(g0)) or its spatial
scale (Mb(�)). Individual heterogeneity may be incorporated via mixture models
for either parameter (e.g. 2-class finite mixture Mh2(g0) cf. Pledger 2000). In addi-
tion, the spatial model allows for novel sources of variation, such as dependence of
capture on the type of trap or on other trap-level covariates describing the habitat at
the trap site. Modelling and estimation of additional sources of variation in detection
probability requires additional parameters and adjustments to the expression for pks

(Eqs. (5) and (6)). We do not describe these in detail because they follow directly
from current practice (Otis et al. 1978; Chao and Huggins 2005).

5.2 Variation Across Space or Time

The purpose of a capture–recapture study will often be to compare density at
different places, or at different times. For convenience, we use the word ‘session’
for each sampled population, whether populations are separated by space, time or
an attribute such as sex. Our ‘sessions’ have been termed ‘groups’ in other capture–
recapture contexts (e.g. Williams et al. 2002, p. 426), and are loosely equivalent
to primary sessions in the open-population robust design of Pollock (1982). Even
when a separate density is to be estimated for each session, if data are sparse it may
be efficient to estimate a common detection function across all sessions. In general,
session effects may be treated as constant (pooled across sessions), as fixed effects
(e.g. session-specific levels or a trend across sessions) or as random effects (yet to be
implemented). Thus the utility of the method is greatly extended by a multi-session
model. Alternative models may be compared by standard methods (e.g., Akaike’s
Information Criterion or likelihood ratio tests).

Sessions are assumed to be demographically closed (no births, deaths, immi-
gration or emigration), and each encounter history spans only one session. If the
same individual is caught in two sessions it is artificially assigned a new identity in
the second session. Under these independence assumptions it is appropriate to use
a combined multi-session likelihood (the product of within-session likelihoods) to
model variation between sessions.

Session-specific parameter values (levels of D and the elements of �) may be
treated as functions of session-level covariates, including time. For each evaluation
of the combined likelihood we substitute the current values of D and � into the
within-session likelihood (1), and sum the resulting log-likelihoods across sessions.
The combined likelihood is maximised over all parameters, including those of the
functions controlling the session-specific D and �.
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6 Example: Stoats Identified by DNA Microsatellites

Stoats Mustela erminea introduced to New Zealand have deleterious effects on
populations of native birds, and their ecology and population management are there-
fore a prime concern for conservation. Capture–recapture with traps is onerous
and not always successful because of low capture rates. An alternative to trapping
is to register the presence of individuals from DNA in hair or dung. For stoats,
a convenient sampling device is a tube with a transverse adhesive-coated rubber
band that retains hairs from stoats that pass through (Duckworth et al. 2005). Here
we analyse data from a pilot study in Nothofagus fusca forest in the Matakitaki
Valley, South Island, New Zealand (172◦30’E, 42◦00’S). Hair sampling tubes (K =
94) were placed on a 3 × 3 km grid with 500 m spacing between rows and 250 m
spacing along rows. Tubes were baited with rabbit meat and checked daily for
7 days, starting 15 December 2001. Stoat hair samples were identified to individual
using DNA microsatellites amplified by PCR from follicular tissue.3 Six loci were
amplified and the mean number of alleles was 7.3 per locus, allowing identification
of individuals even in samples for which not all loci could be amplified (27%).

Table 2 Spatial encounter histories of 20 stoats identified by DNA microsatellites in hair samples
collected daily on 7 parallel lines of sampling stations A–G; spacing 500 m between lines and
250 m along lines. Matakitaki, South Island, New Zealand, 15–21 December 2001. ‘–’ indicates
the stoat was not detected. There were no multiple records (>1 stoat per trap or >1 trap per stoat
on any occasion)

Occasion

Animal 1 2 3 4 5 6 7

1 A9 – – – – – –
2 A12 A12 – – – – –
3 – – C6 B5 – – –
4 – – G3 – F3 – –
5 – – – F2 E2 – F1
6 – – – – – E8 –
7 – – F5 – – G7 –
8 F6 – – – – – –
9 – A4 – – – – –
10 – C5 – – – – –
11 – D4 – – – – –
12 – – D7 – – – –
13 – – E5 – – E4 –
14 – – F1 – – G3 –
15 – – F9 – – – –
16 – – G13 – F13 G13 –
17 – – – G9 – – –
18 – – – – – F1 –
19 – – – – – G9 –
20 – – – – – – G8

3We do not address here the problems of identification due to ‘allelic dropout’ and other difficulties
when the samples contain only small amounts of DNA that is potentially degraded.
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The dataset included 20 individuals of which 7 were ‘recaptured’ a total of 10
times (Table 2). The largest detected movement (707 m) was small relative to the
usual home range size of stoats (the average home-range diameter of stoats in New
Zealand is at least 1.3 km; data from King and Murphy 2005, Table 5.5), and indi-
viduals appeared to be localised within the grid (Fig. 1). No stoat was detected in
more than one tube on the same day, although both the field methodology and the
analysis allow for this.

We fitted a homogeneous Poisson density by maximising the full likelihood. For
numerical integration we evaluated the function at 1024 evenly-distributed points in
a rectangular area extending 1000 m beyond the grid. Modelling of even a single-
session dataset such as this requires multiple choices: among forms for the detection
function ps, and among models for variation in the parameters of ps in relation
to previous capture and random individual variation. We did not collect data on
occasion-, trap- or individual covariates (we note that sex determined from DNA
would be a potentially useful covariate of g0 and � in this sexually dimorphic
species).

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C D E F G

Fig. 1 Map of detections of individual stoats in red beech forest, Matakitaki Valley, South Island,
New Zealand, 15–21 December 2001. Sampling stations (crosses) were on seven lines A–G;
stations spaced 500 m between lines and 250 m along lines, with three additional detectors as
shown. The first station on each line was on a forest-pasture edge. Lines are drawn between loca-
tions of the same individual on different occasions; locations are shifted slightly from the actual
location for clarity



264 M.G. Efford et al.

P
s

0 200 400 600 800
d (m)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Halfnormal
Hazard, b = 100
Negative exponential

Fig. 2 Detection functions ps(d) fitted to stoat data from proximity detectors in the Matakitaki
Valley, New Zealand, where d is the distance between an animal’s home range centre and a detector.
Density estimates (Table 3) were stable despite the considerable variation in the fitted detection
functions

Strictly territorial animals may have a ‘hard’ edge to their range that is best repre-
sented by a step function (ps(d) = 0 for d > range radius), but zero values for ps can
cause problems when maximising the likelihood. Instead, we used the hazard func-
tion to emulate a step function by setting b = 100. Density estimates and confidence
intervals were not noticeably affected by the form used for ps (halfnormal, hazard or
negative exponential; Fig. 2), and asymptotic intervals resembled profile likelihood
intervals (Table 3). We also fitted models with additional parameters allowing for a
response to previous capture (Mb(g0), np = 4) or random individual variation using
a 2-class finite mixture (Mh2(g0), Mh2(�), np = 6), but these barely increased the
maximised log likelihood (�LL < 0.05) and were clearly inferior by AIC.

7 Single-Catch Traps

Single-catch traps are used very widely in studies of small mammals, and biolo-
gists will ask whether such data may be analysed with the methods described here.
Competition for single-catch traps breaches the model assumption that animals are
caught independently. We expect any resulting bias to be small when trap saturation
(the proportion of traps occupied) is low. Trap saturation will be higher when popu-
lation density is high, the intervals between trap checks are longer, traps are highly
attractive or the animals are inherently very trappable.

With high trap saturation we would intuitively expect density estimates from
single-catch trap data analysed with multi-catch models to be biased downwards.
We conducted simulations to test this prediction for a scenario in which 100 traps
on a square grid with spacing c were operated for 5 occasions. Notional home
range centres were placed at expected density D in a rectangular area extending
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4c beyond the traps. Three distributions were compared. In the first (‘Poisson’),
centres were placed at random uniformly and independently across the area. For
the second distribution (‘clustered’), centres followed a Neyman-Scott distribution
in which the foci of clusters were from a spatial Poisson process with intensity
D/�, and � range centres were located around each focus according to a bivariate
normal distribution with scale �c; the clustering parameters were set to � = 5 and
�c = c. For the third distribution (‘inhomogeneous Poisson’), centres were placed
independently, but with a linear gradient in expected density from east to west, from
zero at –4c from the western-most traps to 2D at +4c from the eastern-most traps
(the gradient over the traps themselves was from 0.47D to 1.53D). Detection was
simulated with a halfnormal function (g0 = 0.2, � = c) using the algorithm in Efford
(2004, Appendix) to allow for competition between traps for animals and between
animals for traps. Simulated average densities spanned the range 0.0625�–2– 2�–2;
100 replicate simulations were performed for each level of density. For estimation,
a halfnormal detection function was fitted by maximising the conditional likelihood
for multi-catch traps (see Eqs.(2), (3), (4), (6)). Trap saturation was measured by the
proportion of traps occupied at the end of each occasion. Relative bias is estimated
byRB(ν̂) = ν̂−ν

ν
, where � represents any of the parameters D, g0 and �.

Our simulations detected no bias in D̂ for a Poisson distribution, even when
86% of traps were occupied (Table 4). Clustering of home range centres caused no

Table 4 Simulation of bias in density and detection parameters estimated by spatially explicit
capture recapture when data are from single-catch traps and the fitted model assumes multi-catch
traps. Simulations used one of three alternative distributions for animal range centers. Results are
mean ± SE over 100 replicates. Density is expressed in terms of � (1.0 �–2 × 16 is equal to
6.25 ha–1 when � = 10 m, and 0.0625 ha–1 when � = 100 m). Trap saturation is the proportion of
occupied traps at the end of each occasion

D (�–2 × 16) Trap saturation R B(D̂) R B(ĝ0) R B(σ̂ )

a. Poisson distribution
1 0.049 ± 0.002 0.018 ± 0.031 –0.002 ± 0.032 0.017 ± 0.019
2 0.098 ± 0.002 –0.029 ± 0.022 –0.007 ± 0.025 0.010 ± 0.011
4 0.198 ± 0.003 –0.027 ± 0.017 –0.071 ± 0.016 –0.011 ± 0.007
8 0.353 ± 0.004 0.012 ± 0.012 –0.208 ± 0.010 0.002 ± 0.006
16 0.601 ± 0.004 –0.017 ± 0.009 –0.357 ± 0.006 –0.003 ± 0.005
32 0.860 ± 0.002 –0.013 ± 0.007 –0.573 ± 0.005 –0.012 ± 0.004

b. Clustered distribution of animals (Neyman–Scott distribution, � = 5 and �c = �)
1 0.044 ± 0.003 –0.034 ± 0.055 –0.067 ± 0.042 0.029 ± 0.019
2 0.090 ± 0.003 –0.028 ± 0.033 –0.118 ± 0.025 0.008 ± 0.012
4 0.169 ± 0.005 –0.047 ± 0.027 –0.160 ± 0.014 –0.003 ± 0.008
8 0.332 ± 0.007 –0.026 ± 0.021 –0.239 ± 0.010 0.000 ± 0.005
16 0.567 ± 0.006 –0.021 ± 0.012 –0.404 ± 0.006 0.004 ± 0.004
32 0.843 ± 0.004 –0.010 ± 0.010 –0.587 ± 0.005 –0.005 ± 0.004

c. Inhomogenous Poisson distribution of animals (east–west density gradient)
1 0.051 ± 0.002 –0.012 ± 0.031 0.064 ± 0.038 0.007 ± 0.016
2 0.097 ± 0.002 –0.014 ± 0.025 –0.037 ± 0.022 –0.003 ± 0.010
4 0.188 ± 0.003 –0.021 ± 0.016 –0.096 ± 0.015 –0.002 ± 0.007
8 0.355 ± 0.004 0.003 ± 0.012 –0.222 ± 0.009 0.008 ± 0.005
16 0.585 ± 0.004 –0.008 ± 0.009 –0.388 ± 0.006 –0.002 ± 0.004
32 0.824 ± 0.002 –0.052 ± 0.007 –0.586 ± 0.004 0.000 ± 0.001
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detectable bias inD̂ at any level of trap saturation (Table 4b). The simulated gradient
in density had a detectable effect only at the highest level of trap saturation, when the
density estimates showed a 5% negative bias (Table 4c). These results are surprising.
We note that σ̂ also remains unbiased at high levels of trap saturation, whereas ĝ0

becomes negatively biased. We infer that competition for traps causes a spatially
homogeneous reduction in capture probability under the conditions of these simu-
lations, and that this is adequately modelled by a multi-catch likelihood with lower
g0. We tentatively conclude that the associated estimator for D may be sufficiently
robust to use for single-catch traps without further development. Extreme trap satu-
ration should be avoided by increasing the density of traps or the frequency of trap
checking, if only because the additional captures will increase precision.

8 Discussion

Many general benefits accrue from the estimation of density in a likelihood-based
framework (Borchers and Efford 2007). Attention is shifted from the artificial
parameters Nc and Ac to the ecologically significant parameter D. The model may be
applied to any configuration of detectors, and is not restricted to compact arrays such
as trapping grids (Efford et al. 2005). Differences between individuals in capture
probability due to spatial location can be modelled with these methods and so do not
result in unmodelled heterogeneity, the bane of conventional population estimation
(there may of course be other sources of unmodelled heterogeneity). Hypotheses for
variation in density over time or space may be evaluated using nested models and
likelihood ratio tests. The fitted model describes the detection process and may be
used in simulations to evaluate the effect of altering the study design, for example
by changing the number and placement of traps.

To these general benefits we now add the ability to adapt the analysis for specific
types of detector, for greater realism in modelling the detection process. In the case
of proximity detectors, the model embraces the possibility of detecting an individual
at multiple points on one occasion. Our results support the tentative use of a multi-
catch model with data from single-catch traps if the goal is unbiased estimation
of density. However, estimates of the detection parameter g0 by this method are
highly biased by trap saturation, and the method of simulation and inverse prediction
(Efford 2004) should be used to fit the full process model to data from single-catch
traps if it is intended to use the process estimates in simulations.

Our stoat example establishes the feasibility of applying spatially explicit
capture-recapture methods to quite small data sets. Precision increases with the
number of recaptures (Efford et al. 2004; M. G. Efford unpubl.), and it is generally
desirable to obtain at least 20 recaptures. There was a promising robustness to the
choice of detection function. Robustness of density estimates to the shape of the
fitted detection function (step function vs halfnormal) was also found in simulations
using inverse prediction (Efford 2004). Passive DNA sampling (e.g. Woods et al.
1999; Mills et al. 2000; Boulanger and McLellan 2001; Boulanger et al. 2004)
and camera traps (e.g. Karanth and Nichols 1998; Trolle and Kéry 2003; Soisalo
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and Cavalcanti 2006) are used increasingly for mobile and difficult-to-trap animals
such as carnivores. We expect our likelihood for proximity detectors to be widely
applicable, assuming reliable identification of individuals.

The three detector types introduced so far do not exhaust the possibilities. A
‘one-shot’ proximity detector would become disabled once it detected an animal,
but would not prevent the animal from finding another detector. Examples are a
camera that does not reset itself, or hair sampling for DNA by some method that
blocks collection of more than one sample per site per occasion (this might be
desirable if sample mixing degrades the accuracy of identification). While there
is no competition among detectors for animals, there is a sense in which animals
‘compete’ for access to ‘one-shot’ detectors. Equation (6) may possibly be adapted
to allow for this by recasting it in terms of a trap-specific hazard rate.

A more difficult issue arises if the laboratory protocol is to reject all mixed DNA
samples because individuals cannot be distinguished with confidence. Censoring
mixed samples effectively creates a new type of detector (one which works only
if fewer than two animals use it). At present we lack a satisfactory model for pks

with this detector, as with single-catch traps. Field methods should be adapted to
minimise the frequency of mixed samples (e.g. by frequent checking of devices).
For analysis, we advise the use of simulation-based methods (e.g. Efford 2004)
or cautious application of the proximity detector or multi-catch likelihoods; simu-
lations should be used to check that the bias in the estimates is small relative to
sampling error.

Other types of single-catch and multi-catch detector may remove animals perma-
nently from the population. Used alone, these are not useful for fitting movement-
based models such as we describe, because in the absence of recaptures we have no
information on the scale of movements. However, such detectors may in principle
be used in composite arrays with other detectors described here.
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