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Foreword

Demography can be considered the key to understanding much of biology. It is the
demographic processes of birth and death which govern the spread of populations
through environments and the spread of genes through populations. An understand-
ing of demography can yield not only an understanding of population size and pop-
ulation change, it can help us to understand the form and function of life histories;
when organisms mature, when they breed, and when they die. Demographic insights
allow us to see how populations function, how they interact with their changing
environment, and how they adapt.

The analysis of demographic processes in free-living organisms is however no
simple task and involves considerable challenges in observation and analysis. Some
20 years ago, there was a concerted effort to promote inter-disciplinary collaboration
between biologists and statisticians to address these challenges and thereby to fur-
ther our understanding of demographic processes in natural populations. Although
many diverse organisms can be studied in the wild, birds have proved particularly
amenable with large numbers being marked and followed by large networks of ob-
servers. It was no coincidence then that the European Union for Bird Ringing (EUR-
ING) played a leading role in these initiatives, teaming up in the mid-1980s with the
Mathematical Ecology Group of the Biometric Society, and the British Ecological
Society, to bring together experts from diverse fields to address the challenges in
hand. Twenty years on, progress has been considerable and we now have significant
insights into demographic processes thanks to the wide range of quantitative tools
and systematically collected datasets which have been built up over this period.

The biological questions and the methodological challenges are however by no
means settled, indeed the field continues to progress at an ever accelerating pace. In
2003, a group of just under 100 scientists met to discuss and identify the key areas
of development in which ongoing research effort should be focused. As listed in the
Contents section, the group identified five areas defined by biological applications
and five areas defined by statistical approaches including the issue of software with
which to implement state-of-the-art analyses. Experts in each of these areas then
took the lead in assembling authoritative contributions, with one or two overview- or
perspectives- papers prepared by leading figures, and three to five primary research
papers which reported the most significant new findings. A further open-forum was
created for notable contributions which lay outside the ten targeted areas. Authors
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vi Foreword

came together to discuss their contributions at a meeting hosted by the University
of Otago at the beginning of 2007.

This field continues to move rapidly, but we hope this resulting volume will stand
as a definitive compilation on the state-of-the-field at the present time, and that it
will steer the further development of the field over the years ahead. As reflected
in this volume, we anticipate increasing emphasis on integrated approaches which
combine multiple sources of information and an increasing emphasis on Bayesian
approaches. In terms of biological applications, it has traditionally been the field
of wildlife management which has provided the impetus for developing modern ap-
proaches, but increasingly we see the activities of evolutionary biologists and biode-
mographers as a driver of growth in this field. Modeling demographic processes in
marked populations is a truly interdisciplinary endeavour, and we look forward to
continued fruitful dialogue not just between biologists and statisticians but between
these different fields of biology which are conceptually similar and which share the
same need for sound quantitative approaches to demographic analysis.

This volume has been a team effort, and as well as crediting all the work of
the authors themselves and the associate editors listed in the Contents section, we
would like to acknowledge Prof. Richard Barker and his team for their hard work
and kind hospitality in hosting a successful meeting of contributors in Dunedin. All
contributions have benefited from the expert input of at least two referees, and we
would of course like to thank Prof. G.P. Patil, Manjula Jude (Project Manager at
Integra Software Services), Lindy Paul and the team at Springer for facilitating the
publication of this volume.

David L. Thomson
Evan G. Cooch

Michael J. Conroy
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Section X New Software Developments for Modeling Demographic
Processes
Jim Hines

WinBUGS for Population Ecologists: Bayesian Modeling Using Markov
Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
Olivier Gimenez, Simon J. Bonner, Ruth King, Richard A. Parker,
Stephen P. Brooks, Lara E. Jamieson, Vladimir Grosbois, Byron J.T. Morgan
and Len Thomas



xii Contents

Comparison of Fixed Effect, Random Effect, and Hierarchical Bayes
Estimators for Mark Recapture Data Using AD Model Builder . . . . . . . . . 917
Mark N. Maunder, Hans J. Skaug, David A. Fournier, and Simon D. Hoyle

Section XI Open Forum
Charles Francis and Andy Royle

On Adjusting for Missed Visits in the Indexing of Abundance from
“Constant Effort” Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
Vanessa M. Cave, Stephen N. Freeman, Stephen P. Brooks, Ruth King,
and Dawn E. Balmer

Simulation Performance of Bayesian Estimators of Abundance
Employing Age-at-Harvest and Mark-Recovery Data . . . . . . . . . . . . . . . . . . 965
Paul B. Conn, Gary C. White, and Jeffrey L. Laake

A Spatial Model for Estimating Mortality Rates, Abundance and
Movement Probabilities from Fishery Tag-Recovery Data . . . . . . . . . . . . . . 987
J. Paige Eveson, Geoff M. Laslett, and Tom Polacheck

Gaussian Semiparametric Analysis Using Hierarchical
Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
Daniel Fink and Wesley Hochachka

Effect of Senescence on Estimation of Survival Probability When
Age Is Unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
David Fletcher and Murray G. Efford

Weak Identifiability in Models for Mark-Recapture-Recovery Data . . . . . 1055
Olivier Gimenez, Byron J.T. Morgan, and Stephen P. Brooks

Estimating N: A Robust Approach to Capture Heterogeneity . . . . . . . . . . . 1069
Byron J.T. Morgan and Martin S. Ridout

Evaluation of Bias, Precision and Accuracy of Mortality Cause
Proportion Estimators from Ring Recovery Data . . . . . . . . . . . . . . . . . . . . . 1081
Michael Schaub

Standardising Terminology and Notation for the Analysis of
Demographic Processes in Marked Populations . . . . . . . . . . . . . . . . . . . . . . . 1099
David L. Thomson, Michael J. Conroy, David R. Anderson,
Kenneth P. Burnham, Evan G. Cooch, Charles M. Francis,
Jean-Dominique Lebreton, Mark S. Lindberg,
Byron J.T. Morgan, David L. Otis, and Gary C. White



Contents xiii

Estimating the Seasonal Distribution of Migrant Bird Species: Can
Standard Ringing Data Be Used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Kasper Thorup and Paul B. Conn

Evaluation of a Bayesian MCMC Random Effects Inference
Methodology for Capture-Mark-Recapture Data . . . . . . . . . . . . . . . . . . . . . . 1119
Gary C. White, Kenneth P. Burnham, and Richard J. Barker

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129



Contributors

Ray T. Alisauskas
Environment Canada, Prairie and Northern Wildlife Research Centre, 115 Perimeter
Road, Saskatoon, Saskatchewan, Canada S7N 0X4, e-mail: ray.alisauskas@ec.gc.ca

Mathew W. Alldredge
NC Cooperative Fish and Wildlife Research Unit, Department of Zoology, Campus
Box 7617, North Carolina State University, Raleigh, NC 27695, USA

David R. Anderson
U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research
Unit, Colorado State University, Fort Collins, CO 80523, USA,
e-mail: anderson@warnercnr.colostate.edu

Doug P. Armstrong
Wildlife Ecology Group, Institute of Natural Resources, Massey University, Private
Bag 11222, Palmerston North, New Zealand, e-mail: d.p.armstrong@massey.ac.nz

Lise M. Aubry
Max Planck Institute for Demographic Research, Konrad-Zuse Str. 1, D-18057
Rostock, Germany; Laboratoire Evolution et Diversité Biologique, Université P.
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Ciències Naturals, E-08003 Barcelona, Spain

Theodore R. Simons
USGS, NC Cooperative Fish and Wildlife Research Unit, Department of Zoology,
Campus Box 7617, North Carolina State University, Raleigh, NC 27695, USA,
e-mail: tsimons@ncsu.edu

Hans J. Skaug
Department of Mathematics, University of Bergen, 5008 Bergen, Norway

Martin Sköld
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Bayesian Hierarchical Models for Inference
About Population Growth

Richard J. Barker, Matthew R. Schofield, Doug P. Armstrong,
and R. Scott Davidson

Abstract Mark recapture models have long been used for estimating wildlife popu-
lation parameters. Typically, the data are summarized in terms of parameters that are
interpreted in the context of an implicit demographic model for describing popula-
tion dynamics. Usually, this demographic model plays little or no role in the mark-
recapture model. Bayesian hierarchical models (BHM) offer a way to explicitly
include demographic models in an analysis. We argue that such an approach should
have wide appeal to ecologists as it allows inference to focus on ecological models
of interest rather than obtaining a parsimonious depiction of the sampling process.
We discuss the use of BHM’s for modeling mark-recapture data with a focus on
models describing density-dependent growth.

1 Introduction

Ecologists interested in population dynamics of wildlife populations typically work
with two kinds of models: demographic models, in which predicted population
trajectories are obtained conditional on parameter values and statistical models
in which parameter estimates are obtained using data sampled from the study
population.

Demographic models may be matrix- or individual-based and can be determin-
istic or stochastic (Williams et al. 2002). Whether population models are determin-
istic or stochastic they depend on parameters. Formally, we can write our model as
F(Z ; λ) where Z represents the output and λ represents demographic parameters. In
using demographic models our interest lies in predicting future population behavior,
usually in terms of summaries of Z such as extinction rate or equilibrium population
size.

Statistical models are used to summarize data. We can formalize a statistical
model as F(Y ;π ) where Y represents data and π parameters involved in describing
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the sampling process. Note that π might include some or all of the demographic
parameters in λ. Once the data have been collected they are fixed; we use the statis-
tical model to describe the mechanism by which we imagine our data were gener-
ated. We use our data and the model to obtain information about the parameters.
In the model, Y is regarded as random outcome sampled from F(Y ;π ) with the
parameters π fixed at (usually) unknown values.

In the context of the EURING technical meetings, the mark-recapture model is
an important class of statistical model. A strong tradition of the EURING technical
meetings has been the stimulation of the development of mark-recapture analysis,
to the extent that one of the main aims of these meetings has been to establish
mark-recapture as one of the standard methodologies in ecology and conservation
biology (Senar et al. 2004b). The past 20 years have seen the development of models
appropriate for analyzing almost every conceivable type of mark-recapture data, and
the development of powerful software such as MARK (White and Burnham 1999),
MSURGE (Choquet et al. 2004) and POPAN (Arnason and Schwarz 2002). Obvi-
ously, the development of mark-recapture modeling is not an end in itself. The value
of mark-recapture models lies in their application. “I note that although EURING
conferences have focused on estimation issues, it is important to recall that esti-
mation is not a ‘stand-alone’ activity or an inherently useful endeavor and attains
value primarily in the context of larger processes, such as science or management”
(Nichols 2004).

Applications of mark-recapture models have tended to focus on estimation as a
means for summarizing status of populations, for example the MAPS program in
North America (Tautin et al. 1999), or the interpretation of vital rates and factors
influencing these e.g. (Catchpole et al. 1999; Conroy et al. 2002; Reed 2004).

Implicit to a mark-recapture model is a demographic model that describes the
population dynamics of the study population, at least in part. For example, in the
Cormack–Jolly–Seber model (Cormack 1964; Jolly 1965; Seber 1965), the number
of marked survivors alive at occasion i + 1 is a binomial random variable with
index being the number of marked animals in the population immediately after
sample i and probability the survival rate for interval [i, i + 1). The implied demo-
graphic model has tended to play little part in subsequent analysis, although the most
recent EURING conference (Senar et al. 2004a) saw the appearance of a number of
papers that focused on assessment of population dynamics based on mark-recapture
data (e.g., Caswell and Fujiwara 2004; Francies and Saurola 2004; Gauthier and
Lebreton 2004; Brooks et al. 2004).

Caswell and Fujiwara (2004) stressed the potential benefits of explicitly incor-
porating demographic models into a mark-recapture analysis by “. . . making the
estimation of demographic models a goal at the outset of a mark-recapture study”.
A key advantage to integrating demographic and statistical models, of which mark-
recapture models are an example, is that it allows full expression of uncertainties.

Typically, demographic modelers have used fixed values for parameters in their
models. For example, Francis and Saurola (2004) used a deterministic model based
on mean parameter values to construct a deterministic predator-prey model to make
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predictions about tawny owl Strix aluco demographics. While this approach allows
general predictions to be made, it does not provide any measure of prediction
uncertainty associated with the fact that parameters must be estimated. Conditioning
on a set of parameter estimates allows one to consider the implications of this partic-
ular set of parameter values (Caswell and Fujiwara 2004). To assess the influence of
parameter uncertainty Caswell and Fujiwara (2004) discusses use of “perturbation
analysis” based on derivatives of population summaries, or functions of these, such
as sensitivities and elasticities.

An alternative to expression of parameter uncertainty using calculus and sensi-
tivities is to use probability distributions. The use of probability distributions to
describe uncertainty is a defining feature of Bayesian inference. In Bayesian infer-
ence prior probability distributions for parameters are combined with models for
data to construct posterior distributions for parameters and posterior predictive
distributions for predicted values. These posterior distributions express the uncer-
tainty that we have about parameters and associated predictions after the data have
been collected. Instead of focusing on the implications of a particular set of param-
eter estimates for projected population growth, the Bayesian approach allows us to
consider a range of plausible parameter values with the contribution of any particular
combination weighted by its posterior density.

The use of posterior distributions to summarize knowledge about parameters
is convenient if interest is in exploring the demographic consequences of certain
choices of parameter values in demographic simulations. Predictions under the
demographic model can be made by sampling plausible values for parameters
from the posterior distributions generated by the statistical model. Alternatively,
we can combine the demographic and sampling models to obtain a fully integrated
analysis.

A specific advantage of Bayesian inference procedures is that Bayesian models
are naturally hierarchical. Hierarchical models have several levels of variability. In
a Bayesian model we have data which depends on parameters that are themselves
drawn from a distribution that also has parameters. The term hyperparameters is
often used to describe parameters for distributions of parameters. Bayesian hier-
archical models offer a way to formally integrate statistical models for estimating
parameters with simulation models for predicting the likely future behavior of popu-
lations based on sample data. Mark-recapture models are also naturally hierarchical
in that parameters such as survival probability and abundance are often modeled
as random variables by demographers. Moreover, ecologists are often interested
in relationships among parameters, such as density-dependent survival or recruit-
ment, that have major implications for predicted population trajectories. Hierar-
chical mark-recapture models offer a way to model all sources of data as well as to
model relationships among parameters (Link and Barker 2004) in a way that allows
all posterior uncertainty, including uncertainty about predictions, to be expressed
using probability distributions.

In this paper we use a case study of North Island saddlebacks (Philesturnus
rufusater) to illustrate the use of Bayesian hierarchical modeling to predict
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population trajectories based on a density-dependent population model. Our
emphasis is on accounting for parameter uncertainty conditional on the model.
Methodology for multi-model inference in a Bayesian setting has been well covered
elsewhere (Brooks et al. 2004).

2 North Island Saddlebacks of Mokoia Island

The North Island saddleback is a member of the wattlebird family (Callaeidae), a
family of birds endemic to New Zealand. The Callaeidae comprise two or three
(depending on taxonomic fashion) extant species. By the end of the nineteenth
century saddlebacks had become locally extinct from the mainland of New Zealand:
a single remnant population survived on one island off the coast of the North Island
(Armstrong et al. 2005) and a single remnant population survived on one island off
the coast of the South Island. Since the early 1960 s translocations have been used
to re-establish populations including some mainland populations.

Armstrong et al. (2005) used mark-resighting analysis and counts of fledged and
unmarked birds to monitor the outcome of a translocation to Mokoia Island in Lake
Rotorua. Thirty six adult birds were released on the 135-ha island in 1992 following
rat eradication. Mokoia Island is 2.1 km from the nearest shore, a distance believed
to be beyond the flying range of saddlebacks. The translocated population is thus
believed to be closed to emigration.

Armstrong et al. (2005) were interested in predicting future population growth
of the Mokoia Island saddleback population to assess future population viability
and to devise strategies for translocating birds from re-established populations
to places elsewhere. In particular, they were interested in evidence for density-
dependent population dynamics as the presence of density dependence can have
a major stabilizing influence on dynamics. Re-introductions are useful for studying
density dependent growth because founding populations are usually established at
low population densities and with a relatively high level of resource availability.

In their analysis, Armstrong et al. (2005) used a stochastic matrix model to
project the likely future trajectory of the Mokia Island saddleback population. Their
model tracked the number of males and females in the population at the start of
each breeding season and used estimates of survival and fledging rates from anal-
yses of their banding data and from fledgling surveys. Because Armstrong et al.
(2005) conditioned on these parameter estimates, their projection model does not
account for all the uncertainties in the analysis. Also, Armstrong et al. (2005) treated
abundance estimates obtained in their analysis as fixed, using these to assess density-
dependent effects on survival and juvenile production rates. In addition to unmod-
eled uncertainty there is also some sampling correlation unaccounted for between
the abundance and survival probability estimates.

With multiple sources of data and with interest in modeling parameters such as
survival and production rate as a function of population size, this problem is ideally
suited to an approach based on fitting a hierarchical model using Bayesian model
fitting procedures.
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3 Data and Models

3.1 Mark-Resighting Data

The 36 founder birds were color-marked before release. Mark-resighting data were
obtained from 24 surveys carried out between June 1992 and December 1997 at
approximately 3-month intervals: in March, June, September, and December. The
marked population comprised the 36 founding birds and 245 nestlings that were
banded during the five breeding seasons that took place during the study. Nestlings
were banded either in December or March according to when they were born. In
October 1996 an aerial poison drop was used to try and eradicate mice from the
island. An additional mark-resighting survey was carried out in November 1996 to
assess the effect of the poison drop on the saddlebacks. During the mark-resighting
surveys counts of all unmarked birds were also recorded.

To analyze the mark-recapture data we followed Armstrong et al. (2005) and
fitted a simple 2-age model in which juveniles became adults after 9 months. The
logit of the 3-month survival probabilities were modeled as a linear function of
effects due to the age of the bird (juvenile/adult), poison drop, and the number of
breeding pairs. We did not consider a sex-specific model as the analysis of the mark-
resighting data by Armstrong et al. (2005) found negligible support for sex-specific
survival.

To account for unexplained variation in three month survival probabilities over
time we included a normal N (0, σ 2) random effect. Because the intervals were
not exactly 3-months, interval-specific survival probabilities were adjusted for the
length of the interval.

Let y j denote the length of time between survey j and survey j + 1 (3 months =
1.0), β0 the overall mean 3-month survival probability on the logit scale, Z1i = 1
for if individual i is juvenile and 0 if it is adult, Z2 j = 1 if there was a poison drop
in the 3-month interval starting at the time of survey j and zero otherwise, and N j

denotes the number of breeding pairs in the breeding season associated with survey
j , then:

φi j = S
y j

i j

and

logit(Si j ) ∼ N (β0 + β1 Z1i + β2 Z2 j + β3 Z1i Z2 j + β4 ln(N j ), σ
2).

where φi j is the interval specific survival probability and Si j the 3-month survival
probability. Detection probabilities (pi j ; i = 2 . . . 25, j = 1 for juveniles, j =
2 for adults) we modeled as age- and time-specific fixed effects.

For model fitting we used the complete data likelihood (Schofield and Barker
2008) which is proportional to:

[X |d, p, R][d|S, R][S|β, Zσ 2]



8 R.J. Barker et al.

where X denotes the mark-recapture set, d the vector of times of death for each
individual, R a vector indicating when birds were first released, p the detection
probabilities, and S the survival probabilities. We use the notation [Y ] to denote
the probability (density) function of the random variable Y. The completion step
involves the model [d|S] for the times of death for each bird. These are interval-
censored, known up to the sample interval, and also left censored by the end of the
study.

3.2 Production of Young

To assess the number of young produced by breeding pairs, all known nests were
monitored in the first 3 years and a sample of 30–35 pairs from known nests in
the last 2 years. Chicks were banded between 10 and 21 days after hatching and
counted as fledged if observed in the nest at least 14 days after hatching (chicks
fledge at about 28 days).

Pairs from unknown nests were also monitored and the number of fledglings
counted. Because fledglings can die before their parents are detected, these counts
would have underestimated the number of fledglings produced. Data from pairs
that used nestboxes and that were also detected in the post-fledgling survey were
used to estimate the joint probability of the parents being found and the fledglings
surviving until their parents were found. These data were used to adjust the number
of fledglings produced by pairs nesting at unknown sites by modeling f obs

i j , the
observed number of fledged young for pair i from an unknown nest site in year
j, as a binomial random variable with index fi j , the true number of young fledged
by pair j and probability ξ j.

For all pairs, we modeled fi j as a Poisson P(λi j ) random variable with mean
depending on the number of breeding pairs in September of year j (N j ), the
combined age of the pair (Ai j = the number of adults in the pair), the length of
time the pair had been established Pi , and a random pair effect. That is,

ln(λi j ) = α0i + α1 N j + α2 Ai j + α3 Pi

where α0i ∼ N (0, σ 2
f ). Because there was a known lower bound on the numbers

of birds fledged from the fledgling survey we censored the total number of birds
fledged at this lower bound.

To allocate new fledglings as additions to the December or April population we
modeled the number fledged in December as a binomial random variable, with index
given by the total number fledged and with probability πDec assumed to be the same
each year. Information on δ was obtained by modeling the observed number of birds
fledged in December each year conditional on the number observed fledging in
December or April that year. Sex for each individual was modeled as a Bernoulli
random variable with parameter πsex. The sex-ratio of fledged birds was assumed to
be the same as the sex-ratio of marked fledglings.
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3.3 Sightings of Unmarked Birds

Sex- and age-specific counts of unmarked birds in sample j were modeled as bino-
mial random variables with indices given by the sex- and age-specific number of
birds in the population and probability equal to the detection probability in the mark-
resight model for sample j. That is, we assumed that marked and unmarked birds
were seen at the same rate. The binomial indices are unknown, but were determined
by the (model-based) predicted number of unmarked fledglings surviving until the
time of sample j.

4 Model Fitting

The model was fitted to the 4 sets of data jointly using WinBUGS (Spiegelhalter
et al. 2002) and priors as given in Table 1. Except for density dependence, we used
uninformative priors. We restricted density-dependent effects to be negative.

A sample of size 100,000 was drawn from the joint posterior distribution of all
parameters and predicted quantities (see below) after discarding a burn-in sample of
size 10,000.

For the marked subset of the population the interval-censored time of death (i.e.,
time of death is known only up to the period in which the bird died) was predicted
as part of the data completion step. We also predicted the numbers of unmarked
survivors at each sample assuming that all juveniles (marked or unmarked) had the
same survival probability and all adults (marked or unmarked) had the same survival
probability. From the predicted number of marked and unmarked survivors we could
predict the numbers of birds at the time of each sample classified according to age
and sex.

Table 1 Priors used for parameters in the joint model for saddleback mark-recapture and count
data

Parameter Prior

Mark-resight model
β0 Normal N (0, 10,000)
β1 Normal N (0, 10,000)
β2 Normal N (0, 10,000)
β3 Normal N (0, 10,000)
β4 Uniform U (−5, 0)
σ 2 Inverse-gamma I G(0.001, 0.001)
pi j Beta Be(1, 1) (i = 2, . . ., 25; j = 1,2)

Model for number of fledglings
α1 Normal N (0, 10, 000)
α2 Normal N (0, 10, 000)
α3 Normal N (0, 10, 000)
σ 2

f Inverse-gamma I G(0.001, 0.001)
πDec Beta Be(1, 1)
πsex Beta Be(1, 1)



10 R.J. Barker et al.

To assess the likely trajectory of the saddleback population on Mokoia Island
we also predicted the numbers of saddlebacks present in September for 100 years
following the last survey on the island in December 1997. For these projections
we ignored the effect of pair age and year of establishment, effectively assigning
all pairs the average value for pair age and year of establishment. We did this
to facilitate model fitting using WinBUGs which does not allow the reversible-
jump (Green 1995) step needed to properly implement such an individual-based
model.

To assess the likely effect of regular harvesting we also examined the popula-
tion trajectory when varying numbers of birds are removed each year from 1999
onwards. Dimond and Armstrong (2007) suggested that about 30 birds could be
safely removed each year to establish populations elsewhere. The number of males
that were removed each year was modeled as a binomial random variable with index
30 and probability πsex. We also looked at the effects on extinction rate when birds
were removed at 3-yearly intervals.

5 Results

Predicted abundances during the study were in close agreement with those of
Armstrong et al. (2005), although our credibility intervals tend to be wider (Fig. 1).
The saddleback population on Mokoia Island quickly increased from the 14 females
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Fig. 1 Predicted number of adult female saddlebacks on Mokoia Island between September 1992
and September 1997. The error bars indicate the range of the central 95% credible interval. The
estimates (and confidence intervals) of Armstrong et al. (2005) are included for reference
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released in 1992 to around 90–100 females in September 1996, dropped sharply
following the poison drop in October 1996 but then quickly recovered.

The acute effect of the poison operation is evident in the estimates of the survival
effects (Fig. 2). Both adult and juvenile birds died as a result of the poison drop
but the positive interaction between age and the poison effect (β3) suggests that
the poison drop effect was not as strong for juveniles as it was for adults. Juvenile
birds survived at a lower rate than adults, with a 95% credibility interval (CI) of
(0.88, 0.93) for non-poison intervals dropping to (0.36, 0.84) for the poison interval
compared to (0.98, 0.99) for adults during non-poison intervals dropping to (0.63,
0.80) for the poison interval.

Our analysis also agreed with that of Armstrong et al. (2005) in finding strong
evidence that production rates were higher for older birds and on territories estab-
lished in the first three years (Fig. 3), as well as varying between pairs for unex-
plained reasons (95% CI for σ f = 0.03, 0.33)

Our analysis confirmed that of Armstrong et al. (2005) in finding strong evidence
of density dependent juvenile survival and per-capita production of young as well as
evidence supporting density-dependent survival of adult saddlebacks (Fig. 4). This

3 4 5 6 7
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−4 −3 −2 −1 0
0

−6 −5 −4 −3 −2 −1
0

β2 β3

−2 0 2 4 6
0

Fig. 2 Posterior density plots for the logit of expected 3-month survival probability for adult birds
in a non-poison period (β0), the juvenile effect on survival (β1), the effect of the poison drop on
adults (β2) and the interaction between the age effect and the poison effect (β3)
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Fig. 3 Posterior density plots for the effects of α2, the effect of the standardized number of birds
of age 1+ in the pair, and α3, the effect of whether or not the pair were on a territory established in
the first year of the study
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Fig. 4 Posterior density plots for the effect of log population size on juvenile survival rate (β (J )
4 ),

adult survival rate (β (A)
4 ) and per-capita juvenile production rate (α3)
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Fig. 5 Predicted number of adult female saddlebacks on Mokoia Island for the 100 years following
the end of the study in 1997 and September 1997. The lower of the three lines is the 2.5% percentile,
the middle the median and the upper the 97.5% percentile

density-dependence has important consequences for likely future population trajec-
tories. Our analysis suggests that the population would quickly reach an equilibrium
of around 130 females after about 10–15 years (Fig. 5), with the 2.5% value around
70 females and the 97.5% percentile around 400 females. The first 10 years of this
trajectory shows that the projected development of the population follows a similar
trend to that observed between 1992 and 1997 (Fig. 6).

None of our simulated population trajectories dropped below 10 females sugges-
ting that the risk of extinction of the re-established population is small, all other
things being equal. However, extinction occurred in around 5% of simulations when
the population was subjected to a regular harvesting of 30 birds per year increasing
to around 30% if 40 birds were removed (Fig. 7). If only 20 birds were removed
each year the rate of extinction would be near zero. If simulations were based on
parameter estimates (we used the median of the posterior sample) rather than the
full sample then extinction risk was predicted to be near zero if fewer than 40 birds
were removed each year but rapidly increased to near one if 50 birds or more were
removed each year. The bias evident in the predicted extinction risk function arises
because the effects of density dependence may be much weaker or stronger than
indicated by the parameter estimates. If weaker, then even moderate removals will
enhance extinction risk but if stronger then the population could sustain a higher
level of harvesting. Note that if removals are carried out at 3-yearly intervals a much
higher level of harvest could be sustained; our simulations indicated that up to 80
birds could be removed while maintaining extinction risk below 5% (Fig. 8).
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Fig. 6 Predicted number of adult female saddlebacks on Mokoia Island for the 10 years following
the end of the study in 1997 with the estimates from 1992 to 1997 included. The error bars indicate
the range of the central 95% credible interval. For the population projection the lower of the three
lines is the 2.5% percentile, the middle the median and the upper the 97.5% percentile
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Fig. 7 Predicted rate of extinction when varying numbers of birds are removed each year from
1999 onwards (circles and fitted line) compared to rate of extinction predicted conditioning on the
median values from the posterior simulations (asterisks)
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Fig. 8 Predicted rate of extinction when varying numbers of birds are removed every three year
from 1999 onwards (circles and fitted line) compared to rate of extinction predicted conditioning
on the median values from the posterior simulations (asterisks)

6 Discussion

In any modeling or inference problem there are a number of components about
which we are uncertain, including values for the parameters in the model and
often the exact form of the model itself. In addition, we might also be uncertain
about relationships that exist among our parameters or between the parameters and
external covariates. Inferences about population vital rates and subsequent popu-
lation growth, must account for sampling variation in estimates that are based on
sample data (Williams et al. 2002).

The analysis we have outlined for the Mokoia Island saddleback population, in
which all sources of data are modeled simultaneously and population projections are
considered as data-based predictions, is necessary if all uncertainties about param-
eters are to be expressed in population models. Although our analysis confirmed
the essential findings of Armstrong et al. (2005) an important difference is that we
did not condition on point estimates of effects on survival and production rate in
our population projections and we did not treat abundance estimates as known. The
effect of this will be an appropriate increase in uncertainty about the eventual equi-
librium level of the saddleback population and the rate at which it approaches this
value.

Because the banding study was discontinued in 1997, there are no reliable data to
indicate how the saddleback population has fared since 1997, although Armstrong
et al. (2005) reported that a survey of the island carried out in 2002 recorded 177
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birds. As this was the raw count the true population size is likely well in excess of
177 birds. This suggests that our projected equilibrium value of around 130 females,
and with no fewer than 70 females, is a reasonable prediction.

There are a number of ways in which we could improve our analysis. One useful
step would be to base the population predictions on a fully individual-based model.
Although we modeled the fate of marked individuals using an individual model
we did not do so for the unmarked individuals. As noted in the model description
section, implementation of such an individual-based model requires a reversible-
jump step, something presently beyond the capability of WinBUGS. The conse-
quence of ignoring individual effects is that apparent posterior uncertainty is under-
stated. An alternative approach would be to refit the model leaving out the effects of
pair-age and the time that the territory was established and allowing for these to be
accounted for through the random pair effect.

In our analysis we included no model selection. In most applications there is
likely to be uncertainty about which effects to include in the model and how to best
express relationships among variables. The correct way to include this additional
level of uncertainty would be through multi-model inference. Effective multi-model
inference using hierarchical models will almost certainly require algorithms such as
reversible-jump McMC (e.g., Brooks et al. 2004) to generate posterior predictions
that are suitably averaged across the models considered.
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Assessing Density-Dependence: Where Are
We Left?

Jean-Dominique Lebreton

Abstract The history of density dependence started in 1798 with Malthus’ sentence:
population, when unchecked, increases in a geometrical ratio. The famous contro-
versy between Lack, Andrewartha and Birch and others in the 1950s and 1960s
remained largely unsolved: while the impossibility of long term exponential growth
required density-dependence, density-independent environmental variation in vital
rates was often dominant in empirical studies. Fifty years later, where are we left? I
revisit first the representation of density-dependence in dynamical models, whether
deterministic or stochastic, and I emphasize the lack of theory for the simulta-
neous occurrence of density-dependence and environmental variation. I then review
approaches to detect and measure the intensity of density-dependence, in two steps:
based on population size estimates and in demographic parameter analyses. I discuss
then how the question of density-dependence could be efficiently revisited, taking
advantage of progress in our understanding of spatio-temporal dynamics, statistical
procedures, access to individual characteristics, and possibilities of experimental
approaches.

Keywords Population dynamics · Density-dependence · State-space modeling

1 Introduction

The history of density-dependence started with Malthus (1798) famous sentence:
population, when unchecked, increases in a geometrical ratio. Deterministic popu-
lation models with density-dependence (Verhulst 1838; Nicholson and Bailey 1935)
were the major landmarks of a long period that could be called the embryonic

J.-D. Lebreton (B)
CEFE UMR 5175, CNRS, 1919 Route de Mende, 34 293 Montpellier cedex 5, France
e-mail: jean-dominique.lebreton@cefe.cnrs

D.L. Thomson et al. (eds.), Modeling Demographic Processes in Marked Populations,
Environmental and Ecological Statistics 3, DOI 10.1007/978-0-387-78151-8 2,
C© Springer Science+Business Media, LLC 2009

19



20 J.-D. Lebreton

growth of the subject. Then, in the 1950s and 1960s, Lack (1954), Andrewartha
and Birch (1954) and others (Wynne-Edwards 1962) discussed the relative role
of density-dependent and density-independent variation in vital rates, in a contro-
versy that remained largely unsolved: while the impossibility of long term expo-
nential growth required density-dependence, density-independent environmental
variation in vital rates was often dominant in empirical studies. Parallel discus-
sions in the very different context of fishery research (Ricker 1954; Beverton and
Holt 1957) lead also to attribute a prominent role to density-dependence, which
is still at the core of the stock-recruitment relationship paradigm (Haddon 2001,
Chapter 9).

Until recently, the subject of density-dependence seemed then to be avoided or
hardly touched upon in the literature, as if a moratorium had been imposed on
it, although recent discussions (Berryman 2002; Berryman et al. 2003; Berryman
2004) in particular on “local density dependence” (Murdoch 1994; Rodenhouse
et al. 1997) seem to announce a revival. This would be fortunate, as density-
dependence is critical to many different issues in population biology, notably
selection regimes and the diversification of life histories (in particular with r–K
selection; Boyce 1984) in evolutionary biology, and pest and quarry species manage-
ment (in particular with the issue of harvest compensation; Burnham and Anderson
1984) in applied population ecology.

Fifty years after the Lack–Andrewartha–Birch controversy, where are we left? I
attempt here, with unavoidable personal biases, to revisit one major aspect of density-
dependence, namely methods of empirical assessment of density-dependence. The
huge evolution of empirical population models, both statistical (Lebreton et al.
1992; Williams et al. 2002) and dynamical (Tuljapurkar 1990; Caswell 2001),
certainly opens new possibilities of efficiently addressing the empirical asses-
sment of density-dependence as well as many other questions raised by density-
dependence.

As a preliminary step to set up the scene, I revisit first briefly the representation
of density-dependence in dynamical models and I emphasize the need of consid-
ering simultaneously density-dependence and environmental variation (Section 2).
I then review approaches to detect and measure the intensity of density-dependence
based on population size estimates (Section 3). We will see that this apparently easy
task is still frequently the subject of mistakes. I show then how state space models
can be used in density-dependence assessment, despite open statistical questions.
I go on with methods for assessing density-dependence in demographic parameter
analyses (Section 4). The latter two subjects are affected in strikingly different ways
by uncertainty in population size estimates.

I review then (Section 5) the potential of state-space models and discuss how
the biological questions related to density-dependence could then be efficiently
revisited, by taking advantage of progress in our understanding of spatiotemporal
dynamics, statistical procedures, access to individual characteristics, and possibili-
ties of experimental approaches.

I use throughout this paper a simple model to emphasize underlying ideas.
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2 Density-Dependence and Stochasticity in Dynamical Models

By density dependence in a model population, what is usually meant is a
variation in growth rate with population size. A general form of discrete time
density-dependent model is:

Nt+1 = g (Nt ) Nt ,

assuming for simplicity at this stage that Nt is a scalar. For the sake of simplicity
too, I restrict my attention to “direct” density-dependence, i.e., I consider g (N ) as
a monotonous decreasing function of N . Inverse density-dependence is inherent in
the Allee effect (Courchamp et al. 1999). Among many different models, a straight-
forward one is the deterministic (discrete time) Gompertz model (DG) (May et al.
1974; Hassell 1975; Royama 1992, p. 48):

Nt+1 = λN−b
t Nt , (1)

which has the advantage of translating into a linear model for log population size
Xt = Ln (Nt ) as (denoting Ln (λ) as r ):

xt+1 = r + (1 − b) xt (2)

or

zt+1 = xt+1 − xt = r − bxt (3)

In passing, one should note that r = Ln (λ) is the growth rate for N = 1, while
the growth rate for N = 0 is infinite (Royama 1992, p. 50). This slight artifact will
not interfere with our use of this model, as we will always assume N (0) > 1. From
(2), one can easily show that if 0 < b < 2, which we will assume in all what
follows, the model population size converges asymptotically to a stable equilibrium
K = exp (r/b) (Fig. 1).

By density-dependence in a natural population, what is generally meant is a
decrease in individual demographic performance induced by an increase in density,
generally local density (through a number of different potential mechanisms:
increase in time spent in agonistic interactions, in time spent traveling farther away
to collect food, decrease in chances of getting a proper nest site, etc.). However,
animals or plants do not measure their density; hence their demographic perfor-
mance is at most sensitive to some unknown amount of interactions between indi-
viduals or of accessible resource per individual: population size cannot be the
actual determinant of demographic performance. This ambiguity has led to a lot
of confusion around the concepts of regulation (i.e. density-dependence in model
populations) and environment-mediated limitation (i.e. density dependence in
natural populations) (Berryman 2004). Even in extreme cases, demographic traits
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in which one assumes E (εt ) = 0 and var (εt ) = �2 with at this stage no specific
assumption on the autocorrelation spectrum of εt . This model has wide applicability,
even if a more sophisticated functional form for density dependence (Royama 1992,
p. 50 ff) might be often preferable: assuming a linear relationship on an appropriate
scale is a common simplification for a preliminary study of the relationship between
two variables, especially when stochasticity is strong enough to mask details of
a potentially more complex relationship. Because of its simplicity, this model has
indeed been used repeatedly in the literature on density dependence modeling and
assessment (Maelzer 1970; Slade 1977; Dennis and Taper 1994; Dennis et al. 2006).
We will come back to the issue of functional form of density-dependence later.

The SG model can also be written as:

xt+1 − r/b = (1 − b) (xt − r/b) + εt (6)

Thus, if the series εt is not autocorrelated, i.e. is a white noise, and if, as in the DG
model, 0 < b < 2, the log-population size varies around its ergodic expectation
U = r/b according to an autoregressive process (Fig. 1), with a typical decreasing
autocorrelation function directly depending on the value of b. If the series εt is auto-
correlated, the autocorrelation function of the log-population size will be modified,
possibly to a large extent, compared with that of an autoregressive process. In the
absence of density-dependence, the model becomes a random walk model with drift
r (Hamilton 1994, p. 436), a stochastic process which is no more stationary:

xt+1 = r + xt + εt (7)

In all cases, as emphasized by Bulmer (1975), it is clear that the information on
density-dependence is in the autocorrelation spectrum of the population size series:
the empirical assessment of density-dependence pertains to time-series analysis and
raises some tricky issues. We will see that this point has often not been taken seri-
ously enough in the literature.

The lack of relevance of deterministic models to density-dependence in natural
populations extends partly to chaos in discrete time logistic models. Bifurcations
in the deterministic discrete time Ricker model (May 1976) have indeed as coun-
terparts in the stochastic version of the model sharp changes in the autocorrelation
function (Texier 1996). A remaining key property of chaotic behavior is the sensi-
tivity of the trajectory to slight changes in initial values (Hastings et al. 1993), which
bears a relationship to the predictability of such systems.

Another topic concerns the behavior induced by stochastic components in
density-dependent models. A first basic point is that the expected population size in
a density-dependent stochastic model is not given by the population size of its deter-
ministic counterpart because of the nonlinearity inherent in density-dependence
(Dennis and Taper 1994). There is relatively little in the literature on scalar density-
dependent random environment (DDRE) models, in particular in relation to empir-
ical data, with the notable exception of Lande et al. (2003, chapter 1). If demo-
graphic stochasticity is also considered, there is even less (Gosselin and Lebreton
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2000; Gosselin 2001). There is literally nothing on DDRE models for structured
populations, although the effect of random environment on exponential growth
models in the case of structured populations has been thoroughly investigated
(Tuljapurkar 1989; Tuljapurkar 1990). There is thus a clear need for future research
in this area.

3 Detecting and Measuring Density-Dependence from Counts

Population monitoring nearly always incorporates a census or some other kind of
population size estimation. As a consequence, there is a great interest for being
able to test for density dependence based on time series of population size esti-
mates. However, one should realize that when investigating density-dependence, a
population process, based on population size estimates, a result of the many mecha-
nisms inherent in population dynamics, one is seeking information on process based
on pattern. It is thus not surprising that many difficulties arise (Murdoch 1994,
p. 275 ff).

The shortness of time series often precludes any serious testing power, but this
state of affairs is changing with long term programs. Sound procedures, even with
low power, may also be useful in meta-analyses of density-dependence, in which
results from several populations or different pieces of information from the same
population are combined into a single test or statistic. Bias becomes then critical: a
small bias, even if negligible in a single study, is contrasted with a much lower stan-
dard error, with extremely deleterious consequences, if present in all components of
an overall statistic. One may suspect this is the case in Brook and Bradshaw (2006).

We just saw that the information on density dependence based on a series of
population size estimates is contained in the autocorrelation spectrum of the series.
In an ideal world, under the SG model (6), b is linked to the first order autocor-
relation ρ1 (Box and Jenkins 1976, p. 176) as b = 1 − ρ1. In the real world, any
departure from the basic model that modifies the autocorrelation function must be
taken into account. This critical statement has several key consequences:

(1) Naı̈ve methods to estimate b should be avoided. Time series methods are needed
and must be used.

(2) Uncertainty in population size will modify the autocorrelation and have
extremely deleterious effects on the detection of density dependence and must
be taken into account.

(3) Environmental variability must be taken into account, with a particular care if
there is a risk of autocorrelation in the environment, again because it would
modify the autocorrelation function of the series.

(4) Population structure such as age-structure must be taken into account, since it
is equivalent to a delay, with, again, consequences on autocorrelation.

Although these warnings have been made repeatedly in the literature, as early as
the 1970s (Saint-Amant 1970; Ito 1972; Slade 1977), deleterious consequences of
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naı̈ve approaches are not yet fully realized. These four points above are developed
below.

3.1 Some Time Series Difficulties

Under the SG model, a maximum likelihood estimate (MLE) of b can be obtained
(Hamilton 1994, p. 118 ff). A preliminary estimate of b can be derived from that
of the estimated first order autocorrelation ρ̂1 (Box and Jenkins 1976, p. 176) as
b̂ = 1 − ρ̂1. The resulting estimate is always >0, and cannot thus be used to
test for H0 b = 0. Hamilton (1994, p. 123) recommends using maximum likeli-
hood conditional on the first observation x1. This avoids specifying a distribution
for x1, which is then considered as ancillary for the estimation of parameters of
interest (Cox and Hinkley 1974, p. 35). The likelihood reduces to the product of the
normal densities of xi conditional on xi−1. ML estimation amounts then to using
ordinary linear regression of xi w.r.t. xi−1; the MLE of b is derived from that of the
regression slope c, as b̂ = 1 − ĉ, i.e., apart a trivial transformation, the ordinary
regression estimate is the MLE under the SG model: however, this does not imply
the MLE benefits from the usual properties of the regression estimates, and even
not of those of MLEs under standard conditions (Dennis and Taper 1994), for two
reasons:

– First, several assumptions of ordinary regression are not met; e.g. the dependent
variable values in the regression are not independent;

– Second, the model is a non-stationary stochastic process, and ML theory for
dependent observations fails then to provide strong results.

As a consequence, under H0 b = 0, despite E (xt+1/xt ) = r + xt there is no
reason for the expectation of the estimated slope to be equal to 1. One may easily
see, for instance by noticing the full reversibility over time of the model, that the
estimate of slope is biased below 1, and in turn that of b is biased towards positive
values, i.e. detects too often density-dependence. It is only asymptotically that one
will have E

(
b̂
) = 0, because var (xt ) → ∞.

Figure 2 illustrates this bias by presenting simulation results from the random
walk model xt+1 = r + xt + εt with r = 0.1 and

√
var (εt ) = � = 0.1.

The usual regression slope is biased towards 0, pointing to the SG model with
b > 0, i.e. to density dependence. In this case, over 1000 replicates over 20 time
steps, the average slope estimate is 0.9831 ± 0.0477. The situation worsens when
var (xt ) = �2 increases: 1000 simulated slopes under

√
var (εt ) = � = 0.2 lead to

an average estimated slope equal to 0.9208 ± 0.1213. The existence of this bias in
the absence of uncertainty on population size estimates goes still commonly unrec-
ognized even in recent reviews (Freckleton et al. 2006). An approximate expres-
sion of the bias is developed in Appendix, reformulating a result first obtained, to
my knowledge, by Saint-Amant (1970). It is only asymptotically that E

(
b̂
) = 0,

because var (xt ) → ∞ (approximate proof in Appendix). A t-test statistic, denoted
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Fig. 2 Bias of standard regression when testing for density dependence based on the discrete
time Gompertz model for log population size xt+1 = r + (1 − b) xt + εt . The slope of the usual
regression of xt+1 vs xt under H0 b = 0 is biased below 1 for finite sample sizes, implying this
approach will reject H0, i.e. detect density-dependence too often. (1000 simulations under with

r = 0.1 and
√

var
(
εt

) = � = 0.1)

as tb for testing H0 b = 0 is readily derived from the usual t-test statistic for
the slope. As shown in Appendix, tb remains asymptotically biased, and a simple
approximation of this bias is:

E (tb) ≈
√

3

2

√
n − 1

n + 1

1√
1 + n−1

2
r2

�2

Simulations show that the bias corrected t-test statistic, obtained by substituting
r and �2 in the approximate expression of the bias with their estimates (Appendix),
give satisfying results (selection of results in Figs. 3, 4, and 5). In all cases, the
uncorrected test is severely biased, while the bias correction brings the P-level fairly
close to the nominal level, although it will reject slightly too often for r = 0
(Fig. 3). The results seem satisfying enough to make the bias-corrected t-test a
good competitor of the parametric bootstrap procedure proposed by (Dennis and
Taper 1994), while the empirical recommendation of using the reduced major axis
proposed by Saint-Amant (1970) also makes sense given the reversibility of the
process, but would deserve further checks.

Altogether, the review above is mainly useful to emphasize the hidden tricks
of an apparently innocuous statistical exercise. Its real world applicability is obvi-
ously low, as one expects always uncertainty in population size estimates to be
present.
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Fig. 3 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model xt+1 = r + (1 − b) xt +εt , var (εt ) = �2, as a function of the length of the time series,
under a nominal P-level equal to 0.05. The bias-corrected test uses the bias correction in Appendix.
The results shown here are for r = 0. Uncorrected t-test: thin plain line, crosses, � = 0.1; thin dotted
line, crosses, � = 0.2 Bias-corrected t-test: thick plain line, dots, � = 0.1; Thick dotted line, dots,
� = 0.2
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Fig. 4 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model xt+1 = r + (1 − b) xt + εt , var (εt ) = �2, over n = 30 points, as a function of the
growth rate r, under a nominal P-level equal to 0.05. The bias-corrected test uses the bias correction
in Appendix. Uncorrected t-test: thin plain line, crosses, � = 0.1; thin dotted line, crosses, � = 0.2.
Bias-corrected t-test: thick plain line, dots, � = 0.1; thick dotted line, dots, � = 0.2
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Fig. 5 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model xt+1 = r + (1 − b) xt + εt , var (εt ) = �2, over n = 30 points, as a function of
the standard error �, under a nominal P-level equal to 0.05. The bias-corrected test uses the bias
correction in Appendix. Uncorrected t-test: thin plain line, crosses, r = 0.1; thin dotted line, crosses,
r = 0.2. Bias-corrected t-test: thick plain line, dots, r = 0.1; thick dotted line, dots, r = 0.2

3.2 The Effect of Uncertainty in Population Size Estimates

When the SG model

xt+1 = r + (1 − b) xt + εt (8)

is put in relation with data, the estimated population size is linked to Nt with some
measurement error. A straightforward approach is to consider that log-population
size xt = log (Nt ) is estimated without bias, as yt . Then:

yt+1 = xt+1 + ηt+1 (9)

One assumes the random terms xt are independently and identically distributed
(iid), that the random terms ηt are also iid, and that the two series are indepen-
dent of each other. One further assumes they have zero means (E (εt ) = 0 and
E (ηt ) = 0) and constant variances �2 = var (εt ) and v2 = var (ηt ). In accor-
dance with the generally skewed distributions of population sizes, one can reason-
ably assume normal distributions for εt and ηt . A constant bias in population size
estimation on a log scale, corresponding to a constant over- or underestimation, e.g.
for the latter because of incomplete detection, would change little to what follows.
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Rearranging (8) and (9) as a one dimension time-series, as

yt+1 = r + (1 − b) yt+εt+ (b − 1) ηt + ηt+1 (10)

clearly shows that the random component εt + (b − 1) ηt + ηt+1 is necessarily auto-
correlated when the original random terms εt and ηt are not. As a consequence, the
autocorrelation function of the observed data yt can be markedly different from that
of the original autoregressive process. Bulmer (1975) proposed the model formed
of Equations (8) and (9) as a minimal model for density-dependence in presence
of population size uncertainty. He recognized the role of this uncertainty in deter-
mining largely the first order autocorrelation and proposed an ad hoc statistic close
to the difference between the second order and the first order autocorrelation to
test for density-dependence. However, as noted by Lebreton (1989), the state equa-
tion (8) and the observation equation (9), with parameters r, b,�2, v2 constitute a
linear state-space model amenable to the Kalman filter. The Kalman filter theory for
state space models (Harvey 1989) is powerful and will provide deeper and stronger
results than Bulmer’s treatment. Moreover, although this is rarely stated, standard
asymptotic stochastic process results will not be useful in the context of detection
of density dependence. In relation with this remark, there is no need to assume
r = 0, or to centre or detrend population size to come closer to usual time-series
assumptions. In fact over a finite time window t = 1, 2..., T , the population can
well grow, as expressed by the shift parameter r . Stenseth et al. (2003) and Jamieson
and Brooks (2002, 2004) proposed indeed state space models, treated by Bayesian
approaches to test for density-dependence. Kalman filtering has been proposed inde-
pendently by several authors in contexts close to ours (Visser and Molenaar 1988,
Ennola et al. 1998, Besbeas et al. 2002, Ives et al. 2003). Dennis et al. (2006)
developed the likelihood approach for the model above based on Kalman filtering.
The key idea is that the linearity of the state and observation equations and the
assumption of normal distributions for εt and ηt ensure that xt and yt are normally
distributed. It is thus sufficient to derive their expectation and variance to determine
their entire distribution and obtain the likelihood LogL

(
y1, y2, ..., yn/r, b,�2, v2

)
.

The Kalman filter (Harvey 1989) can indeed be viewed as a set of recurrence rela-
tionships for deriving the expectations and variances of xt and yt , and producing in
turn the likelihood of the observations.

In the examples that follow, we used Matlab R© programs for Kalman filtering
(Besbeas et al. 2002) to calculate the likelihood and we minimized the deviance −2
LogL

(
y1, y2, ..., yn/r, b,�2, v2

)
.

Reaching the minimum of the deviance Dev
(
r̂ , b̂, �̂2, v̂2

) =
min [−2 LogL (y1, y2, ..., yn/r, b, �2, v2

)]
provides maximum likelihood

estimates of the parameters r, b,�2, and v2, and of their covariance matrix �. In
turn, one can test in a naı̈ve fashion the null hypothesis H0 b = 0 against H1 b > 0
in two different ways:

1. Based on a Wald test, the statistic zW = (b̂ − 1)
/√

vâr(b̂) assumed to asymp-

totically follow under H0 a distribution N(0,1);



30 J.-D. Lebreton

2. After having fitted the model under the constraint b = 0 (with constrained esti-
mates denoted as r̃ , etc.) based on a Likelihood Ratio Test (LRT), assuming that
under H0, Dev

(
r̃ , 1, �̃2, ṽ2

) − Dev
(
r̂ , b̂, �̂2, v̂2

)
asymptotically follows a χ2

1
distribution.

Equivalently, one can use zL RT = sgn
(
b̂ − 1

)
x
√

Dev
(
r̃ , 1, �̃2, ṽ2

) − Dev
(
r̂ , b̂, �̂2, v̂2

)
and refer it to a distribution N(0,1).

However, even more than in the SG without population size uncertainty, standard
MLEs results do not necessarily apply given the non stationarity of the stochastic
process in the state equation under H0 b = 0. Moreover, Dennis et al. (2006) review
a number of practical and statistical difficulties, such as multiple modes in the like-
lihood, and discuss alternative estimation methods. They emphasize how much the
statistical difficulties met with this relatively simple model have been overlooked in
the literature on state-space models.

As a tentative illustration, Table 1 presents two examples, on the Cormorant
(Brengballe, pers. comm.) and the greater snow goose (Gauthier et al. 2007),
respectively. Both examples were checked for global convergence by using multiple
random initial values for the iterative minimization of the deviance. The snow goose
results seem reliable, in particular with an acceptable order of magnitude for the
population size coefficient of variation (0.06 vs ∼0.12–0.17 in field evaluation and
state space modeling, respectively; Gauthier et al. 2007). They point as expected
to density independence, in a context where, obviously, one expects the naı̈ve test
procedure to be biased in favor of density-dependence. While the Cormorant results
point as expected to density-dependence, with the warning just given, the results
seem more suspicious, with an estimated 0 variance for population size estimation,
and an inadequate functional form for density-dependence. A non linear state-space
model would then be advisable (De Valpine and Hastings 2002). In both cases, the

Table 1 Statistical analysis of density-dependence for number of breeding pairs of Cormorant
Phalacrocorax carbo in Europe (Bregnballe, pers. comm.), and total spring count of Greater snow
goose Chen caerulescens caerulescens (Gauthier et al. 2007). The analysis is based on Kalman
filter likelihood estimation (Dennis et al. 2006) in the stochastic discrete time Gompertz model
proposed by Bulmer (1975). See text for explanations. The statistical results presented are subject
to some unknown biases as commented in the text

Parameter Method and or statistic Cormorant Greater snow Goose

r KF estimate ± se 0.6046 ± 0.0913 0.3273 ± 0.3077
r Regression estimate ± se 0.6161 ± 0.1326 0.5044 ± 0.5255
1-b KF estimate ± se 0.9489 ± 0.0097 0.9784 ± 0.0243
1-b Bulmer’s estimate + 1.0811 1.0861
1-b Regression estimate ± se 0.9478 ± 0.0141 0.9643 ± 0.0414
Test of H0 b=0 One-sided KF Wald test 5.2710 p < 0.01 0.8898 NS√

var (εt ) Process se 0.1000 0.1049√
var (ηt ) Population size uncertainty 0.0000 0.0603

Test of H0 b=0 One-sided KF LRT test 3.3520 p < 0.01 0.6509 NS
Test of H0 b=0 One-sided naive z-test statistic 3.7131 p< 0.01 0.8625 NS
Test of H0 b=0 One-sided Bulmer’s Wald test <0 NS <0 NS

Test of H0 b=0 Bulmer overall statistic R* – 0.0540 NS – 0.0167 NS
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estimation of growth rate was far too high, despite a strong imprecision, and suggest
biases in the estimates. As in the absence of population size uncertainty, a parametric
bootstrap determination of the distribution of b̂ under H0 b = 0 could be easily set
up (Dennis and Taper, 2002) and an exploration of the bias (Appendix) might be
feasible too. Further progress pending, the warnings by Dennis et al. (2006) should
be kept in mind.

Moreover, again, not too much can be expected in terms of inference on process
based on pattern. It is not surprising that uncertainty in counts is extremely dele-
terious, as one is then investigating process based on a blurred pattern. Its effect
is however often misunderstood and underrated. For instance Lande et al. (2003)
neglect uncertainty, on the grounds that they use only precise estimates of popu-
lation size. They fail to recognize that even reasonably precise estimates will be
nevertheless affected by some uncertainty, and this problem jeopardizes a larger
part of their conclusions. The same problem is present throughout the analyses of
Brook and Bradshaw (2006).

3.3 The Effect of Environmental Variability

Negative autocorrelation in environmental variables may be fairly common. It is
well known for Beech mast crop, a major determinant of the dynamics of the
Whytham wood Great Tit population (Perrins 1970). Simultaneous analyses of
density and environmental covariates a thus badly needed, unless one takes the risk
of confusion between density-dependence and environmental variation. Inserting
environmental covariates in such models is also a way of decreasing the residual
variance and of increasing power.

Absence of autocorrelation in environmental covariates is critical to the test
procedures presented above. Hence, we recommend use of relevant covariates with
state equation generalised as xt+1 = r + bxt + czt + εt . Density-dependence and
environmental variation are viewed then as main additive effects, a logical first step
even if some interaction, representing for instance increased density-dependence
under poor environmental conditions, could be modelled in case of need.

An analysis of the Great Tit data based on a density-dependent branching process
with environmental covariates is developed by Lebreton (1990). Similarly, Dennis
and Otten (2000) analyze the effect of density-dependence and rainfall on popula-
tion change in a Fox population. In both cases, however, the authors assume there is
no uncertainty in population size estimates.

Stenseth et al. (2003) provide an example of a state space model considering
simultaneously density-dependence and environmental covariates.

3.4 The Effect of Population Structure

When population parameters differ between various categories of individuals such
as age or developmental stage, models based on a scalar population size become
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inappropriate and one generally resorts to matrix models. When the models above
are used, it is clear that the part of the autocorrelation of total population size over
time is generated by the structure. For instance, if population size becomes excep-
tionally large at some point in time because of a high fecundity in a given year,
it will remain so for several years if survival is rather constant. While there is not
problem in using a population vector in the state equation (Ives et al. 2003, Gauthier
et al. 2007), this links tests of density dependence with more general state space
models of population dynamics. This point is discussed later.

3.5 Conclusion

As a preliminary conclusion at this stage, two points are fairly clear:

(1) The fact that naı̈ve methods, e.g. regression neglecting population size uncer-
tainty (Lande et al. 2003), or ad hoc treatments of uncertainty (McGhee and
Berkson 2007), are still commonly used and remain commonly undetected by
referees is very annoying, and everything must be done to progress on that point.

(2) State space models are quite promising, whether as an efficient way to handle
Bulmer’s minimal model, or in more realistic generalized versions (e.g., with
environmental covariates), or various functional forms (De Valpine and Hast-
ings 2002), even if some statistical difficulties have still to be solved (Dennis et
al. 2006).

4 Detecting and Measuring the Effect of Density-Dependence
on Traits

Investigating a relationship between a demographic trait, such as a survival prob-
ability and population size does not raise all the difficulties just reviewed. This
is because the information on the demographic trait, for instance Capture-Mark-
Reencounter (CMR) (Thomson et al. 2008) data for estimating survival, are in
general independent from the population size estimates, at least if population size is
not estimated from the same capture–recapture experiment. The overall framework
is that of regression, even if, as is now commonly the case for CMR models, the
regression equation is embedded in a probabilistic model (North and Morgan 1979;
Clobert and Lebreton 1985; Lebreton et al. 1992).

If population size could be assumed as known without uncertainty, the usual
constrained model used to relate survival to any covariate in CMR analysis could
then be used with success. Lebreton et al. (1992) provide an example about the
Roe deer Capreolus capreolus. Frederiksen and Bregnballe (2000) and Hénaux
et al. (2007) discuss a thorough analysis of density-dependence in survival of the
Cormorant Phalacrocorax carbo.

However, as discussed in introduction, and in the previous section, uncertainty
in population size estimates is the rule, and moreover, population size is only a
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proxy to a real unknown causal factor for change in demographic performance with
“density”. One has then to handle an “error-in-variable” problem. The effect well
known in usual linear regression is to shrink the slope estimate towards zero. The
usual regression test is thus conservative, i.e. tends to detect not often enough the
alternative hypothesis H1, i.e. density dependence. While the estimate of slope is
biased and should thus be looked at with caution, the bias in the resulting test
just amounts to a decrease in power. The same slope bias towards 0 is present for
more refined regression models: logistic regression, regression embedded in a CMR
model (Crespin et al. 2006).

Barker et al. (2002) adapted a simple bias correction to the regression models
used in CMR. Their elegant solution provides a bias corrected estimate of slope
that also improves the power of the test. One shortcoming is that one has to know
beforehand an estimate of the uncertainty on population size. Moreover, they were
only able to apply their correction to the ordinary least square estimate, which is
less efficient than a weighted least square one would be.

It is clear also that environmental covariates, in particular autocorrelated ones,
can as above have effects confounded with density-dependence; the regression
models embedded in CMR models can easily handle multiple regression and this
does not raise specific difficulty, out of the confounding usually induced by corre-
lation between dependent variables. Barker’s et al. approach would require some
simple adaptations to handle that case.

Nevertheless, it is striking that uncertainty in population size estimates, and the
fact that population size itself is a proxy to some latent variable, are currently
handled in a very different fashion whether one is investigating density-dependence
based on population size estimates or at the level of a demographic trait.

5 Discussion: The Potential of Integrated Modelling

Can one expand on the state space approach proposed above to handle Bulmer’s
minimal model for density-dependence, and obtain a general framework for
assessing density-dependence? Several of our earlier comments encourage doing
so, using state space models as good candidates for this general framework:

(1) Environmental covariates can easily be incorporated into state space models,
expanding in a straightforward fashion over Bulmer’s model (Lebreton 1990;
Dennis and Otten 2000).

(2) State space models can easily be extended to consider in the state equation a
vector of population size (Besbeas et al. 2002; Ives et al. 2003).

(3) State space models can cover more general functional relationships than the log-
linear Gompertz representation of density-dependence. The reasonable price
to pay is that one has to switch from the explicit and straightforward Kalman
filtering to more sophisticated algorithms, such as numerical integration (De
Valpine and Hastings 2002) or Bayesian algorithms for stochastic integration.
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(4) They can simultaneously represent structure and sophisticated functional forms
of density dependence, with density-dependent Leslie matrix models (Allen
1989).

The gap between the treatment of density-dependence based on population size
estimates and that based on demographic traits can even be filled. The critical point
here is the possibility of representing CMR models as state space models (Doris
2005). This approach has been proposed (Gimenez et al. 2007, 2008) to combine
in a same state space model a Leslie matrix and a CMR model, avoiding the
normal approximation used by Besbeas et al. (2002) to assemble in a simple fashion
the CMR likelihood and the population size Kalman filter based likelihood. The
resulting state space model can be quite general, provided again algorithms more
sophisticated than Kalman filtering are used.

It seems then quite feasible to combine in a state space model one part based on
a density-dependent matrix model (Allen 1989), and another part based on a density
dependent CMR model; the dependence in the latter part would be on some of the
component of the state vector from the former part. The uncertainty in population
size would then be handled in the exact same fashion whether one works with popu-
lation size or with a demographic trait.

Another advantage of such an approach would be to bridge the gap between
pattern and process in statistical investigation of density-dependence.

Under the conditions discussed above, state space models seem thus to have
the potential for totally renewing density-dependence assessment, and in turn,
modeling. One key consequence of using state space models in the fashion just
described would be that various pieces of information would be assembled in an
overall diagnostic. This would partly bridge the gap between pattern and process.
Another advantage would be that statistical models and dynamical models would be
intimately linked. In this respect, density-dependent models with a random compo-
nent, for accounting for environmental variation and for the fact that population size
is always a proxy for what is called density-dependence in a biological population,
should become the rule. Further research on the behavior of such models is needed
and a number of statistical difficulties have to be closely examined.

A critical aspect is nevertheless that most density-dependence studies remain
observational. Experimental approaches, even if they are at a shorter term than the
population series considered in long term programs and in the type of modeling
reviewed here, could be combined with the other information to move even farther
away from pattern towards process. Nest box bird species appear as an ideal material
in this respect since their density and numbers can be easily manipulated. Such
experiments would moreover link easily with studies of individuals quality if based
on sites in which capture–recapture study have been used for several years before
the experiment starts.

Altogether, given the complexity of population numerical mechanisms and
the subtleties of statistical models for density-dependence, it seems that purely
biologically-oriented analyses of density-dependence (e.g., Newton 1998), will have
strong shortcomings. Symmetrically, pure statistical analyses would remain too
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strongly pattern oriented, and be at risk of missing important mechanisms. Alto-
gether, it seems that the scene is nearly ready for a renewal of investigations on
a series of questions on density-dependence, whether they concern fundamental
or applied population ecology. To cite again only two contrasted questions, the
role of density on selective pressure, and its relation to the diversification of life
history (Boyce 1984), and the role of potential compensation between harvesting
and underlying natural mortality in exploited populations (Lebreton 2005) remain
quite open and critical.
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Appendix

We consider the random walk model with drift r ,

xt+1 = r + xt + εt (10)

which is a particular case of the density-dependent Gompertz model, linearized by
considering logarithms of population size:

xt+1 = r + (1 − b) xt + εt (11)

Model (11) reduces to model (10) under H0 b = 0. The alternative hypothesis is
H1 b > 0.

Assume data (x1, x2, ..., xn, xn+1) originating from model (10) or (11) have been
observed over times t = 1, 2, ..., n (i.e. t + 1 = 2, 3, ..., n + 1). All probability
calculations are conditional on x1. We denote as x̄n and x̄n+1 the un-shifted and
shifted empirical means, respectively:

x̄n = 1

n

n∑
t=1

x1 and x̄n+1 = 1

n

n∑
t=1

xt+1

related by x̄n+1 = x̄ + 1
n (xn+1 − x1)

The ordinary least square (OLS) estimate of the slope of the regression of xt+1

w.r.t. xt is:

â =

n∑
t=1

(xt+1 − x̄n+1)(xt − x̄n)

n∑
t=1

(xt − x̄n)2

.
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Under the normality assumption for εt , the likelihood of model (11), conditional
on x1, reduces to OLS (Hamilton, 1994, p. 118 ff). Hence b̂ = 1 − â is the MLE
of b, conditional on x1, under model (11).

Under model (11),

xt+1 − x̄n+1 = r + xt + εt − bxt − x̄n − 1

n
(xn+1 − x1)

Hence:

n∑
t=1

(xt+1 − x̄n+1)(xt − x̄n) =
n∑

t=1

(xt − x̄n)2 − b
n∑

t=1

xt (xt − x̄n) +
n∑

t=1

εt (xt − x̄n)

+(r − 1

n
(xn+1 − x1))

n∑
t=1

(xt − x̄n)

in which the last term is equal to 0 by definition of x̄n

Then, using

n∑
t=1

xt (xt − x̄n) =
n∑

t=1

(xt − x̄n)2, b̂ =
−

n∑
t=1

εt (xt − x̄n)

n∑
t=1

(xt − x̄n)2
+ b

Hence,

E
(
b̂
) − b = E

⎛⎜⎜⎝−
n∑

t=1
εt (xt − x̄n)

n∑
t=1

(xt − x̄n)2

⎞⎟⎟⎠ ,

of which a first order approximation is E
(
b̂
) − b ≈

E

(
−

n∑
t=1

εt (xt − x̄n)

)
E

(
n∑

t=1
(xt − x̄n)2

) .

The independence of xt and εt , and E (εt ) = 0, lead then to

E
(
b̂
) − b ≈

E

(
n∑

t=1
εt x̄n

)
E

(
n∑

t=1
(xt − x̄n)2

) = C

D
.
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Based on

C = E

(
n∑

t=1
εt x̄n

)
= 1

n E

(
n∑

t=1
εt

n∑
j=1

x j

)
, E

(
εt x j

) = E
(
ε2

t

) = �2 for j > t

and E
(
εt x j

) = 0 for j ≤ t , one obtains then

C = 1

n

n (n − 1)

2
�2 = (n − 1)

�2

2
.

As a consequence, b̂ is positively biased, with

E
(
b̂
) − b ≈ (n − 1)

2

�2

E

(
n∑

t=1
(xt − x̄n)2

) (12)

This first part is a reformulation in our notation and context of the results by
Saint-Amant (1970).

We will see that under H0 b = 0, E

(
n∑

t=1
(xt − x̄n)2

)
, grows as n

3/2, which

implies the bias asymptotically vanishes. Thus, although the standard properties
of Maximum Likelihood estimates do not necessarily hold because of the non-
stationarity of the random walk model (10), b̂ is asymptotically unbiased.

However, the bias on b̂ has key consequences on the usual statistic for a test of
slope.

The statistic for testing for H0 b = 0, is

tb = b̂√
�̂2
/

n∑
t=1

(xt− x̄n)2

,

or, asymptotically,

tb ≈ b̂

√√√√√ E
n∑

t=1
(xt− x̄n)2

�2
.

Hence, under H0 b = 0, using the approximate expression (12) for E
(
b̂
)
:

E (tb) ≈ n − 1

2

√√√√√ �2

E

(
n∑

t=1
(xt− x̄n)2

)

The calculation of E

(
n∑

t=1
(xt− x̄n)2

)
is a bit more involved.
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First,

E

(
n∑

t=1

(xt − x̄n)2

)
=

n∑
t=1

E
(
x2

t

) − nE
(
x̄2

n

) =
n∑

t=1

(
var (xt ) + E (xt )

2
)

−n
(
var (x̄n) + E (x̄n)2) .

Then, from xt = (t − 1) r + x1 + ε1 + ε2 + . . . + εt−1, one gets the following
intermediate results:

x̄n = n − 1

2
r + x1 + 1

n − 1
((n − 1) ε1 + (n − 2) ε1 . . .+ εn−1)

E (x̄n) = n − 1

2
r + x1 and E (x̄n)2 =

(
n − 1

2
r + x1

)2

= (n − 1)2

4
r2

+ (n − 1) r x1 + x2
1

var (x̄n) = 1

n2

(
n−1∑
t=1

t2

)
�2, in which

(
n−1∑
t=1

t2

)

= (n − 1)n(2n − 1)

6
, denoted as S(n − 1)

E(x1) = (t − 1)r + x1, E(xt )
2 = (

(t − 1)r + x1
)2 = (t − 1)2r2 + 2(t − 1)r x1 + x2

1 ,

var (xt ) = (t − 1) �2, and
n∑

t=1

var (xt ) = n (n − 1)

2
�2

Then

E

(
n∑

t=1

(xt − x̄n)2

)
= n (n − 1)

2
�2 + S (n − 1) r2 + r x1n (n − 1) + nx2

1

− n

n2
S (n − 1) �2

−n

(
(n − 1)2

4
r2 + (n − 1) r x1 + x2

1

)

=
(

3 n2 − 3 n

6
− n

n2

n (n − 1) (2 n − 1)

6

)
�2

+ n (n − 1)

(
2 n − 1

6
− n − 1

4

)
r2

= (n + 1) (n − 1)

6

(
�2 + n − 1

2
r2

)
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In turn,

E (tb) ≈
√

3

2

√
n − 1

n + 1

1√
1 + n−1

2
r2

�2

As, under H0, r can be estimated without bias as r̂ = 1
n (xn+1 − x1) = x̄n+1 − x̄n

and �2 can be estimated as

�̂2 = 1

n − 1

n∑
t=1

(xt+1 − xt − r̂ )2 = 1

n − 1

n∑
t=1

(xt+1 − x̄n+1 − (xt − x̄n))2,

the approximate bias of the t-test can thus be estimated by substituting the estimates
in the formula above.
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The Efficient Semiparametric Regression
Modeling of Capture–Recapture Data: Assessing
the Impact of Climate on Survival of Two
Antarctic Seabird Species

Olivier Gimenez and Christophe Barbraud

Abstract A nonparametric approach has recently been proposed for estimating
survival in capture–recapture models, which uses penalized splines to achieve
flexibility in exploring the relationships with environmental covariates. However,
this method is highly time-consuming because it is implemented through a fully
Bayesian approach using Markov chain Monte Carlo simulations. To cope with this
issue, we developed a two-step approach in which the existing method is used in
conjunction with a multivariate normal approximation to the capture–recapture data
likelihood. The ability of our approach to capture various nonlinearities in demo-
graphic parameters was validated by carrying out a simulation study. Two exam-
ples dealing with Snow petrel and Emperor penguin capture–recapture data sets
were also considered to illustrate our procedure, including the relationship between
survival rate, population size and climatic covariates.

Keywords Auxiliary variables · Bayesian inference · Bivariate smoothing ·
Computational efficiency · Demographic rates · Environmental covariates ·
Interactions · Multivariate normal approximation · Penalized-splines · WinBUGS

1 Introduction

Climate change, specifically global warming, is projected to accelerate in the next
century (IPCC 2001). Consequences of this on the functioning of ecosystems are
at present difficult to predict, and the study of climatic fluctuations on popula-
tions is a major topic in ecology (Hughes 2000; McCarty 2001; Stenseth et al.
2002). Recent investigations show that global warming affects some animal popula-
tions, through changes in their physiology, phenology, distribution and demography
(Hughes 2000; Walther et al. 2002; Root et al. 2003; Walther et al. 2005). The vast
majority of studies assume that the potential effects of both climate and population
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density on demographic parameters are linear. However, there is strong evidence
that environmental factors may affect population dynamics in more complex ways.
For instance, using a global proxy to describe climatic conditions (such as the North
Atlantic Oscillation) may induce nonlinear relationships as a consequence of similar
nonlinear relations between the proxy and local climatic variables (Mysterud et al.
2001). Empirical data that can be used to investigate the effects of climate change
on populations is increasing. Yet, at present there is insufficient modeling method-
ology to investigate nonlinear relationships between environmental covariates and
demographic rates, and to create reliable predictions concerning the impact that the
anticipated changes might have on populations.

In this paper, we focus on a new nonparametric approach which has recently
been developed to model flexible nonlinear relationships between environmental
covariates and demographic rates assessed using capture–recapture/recovery models
(Gimenez et al. 2006a). In the spirit of Generalized Additive Models (Hastie and
Tibshirani 1990), the shape of the relationship is determined by the data without
making any prior assumption regarding its form, using penalized splines (P-splines;
Ruppert et al. 2003). However, the whole approach is implemented in a Bayesian
framework using MCMC algorithms, and our experience shows that the model
fitting process may be highly time-consuming, which can be an obstacle to model
selection and to comparative analyses of the response of several species’ population
dynamics to environmental factors.

Here, we propose to overcome this difficulty by the use of multivariate normal
approximation to the capture–recapture model likelihood in a first step (Lebreton
et al. 1995; Besbeas et al. 2003). This approximation is then used in a second step in
conjunction with a Bayesian approach using MCMC methods in order to implement
the P-splines. This combination allows purpose-built programs (e.g. M-SURGE,
Choquet et al. 2005; or MARK, White and Burnham 1999) to be used for analyzing
capture–recapture data with maximum flexibility and results in a considerable
reduction in the computational burden. To validate the ability of our approach to
capture various nonlinearities in demographic parameters, we carry out a simulation
study. Two examples are also considered to illustrate our approach, including the
relationship between survival rate, population size and climatic covariates. Using
this new approach we reanalyzed two capture–recapture data sets of Antarctic
seabirds, for which previous analyses have investigated (and found) linear rela-
tionships between survival and environmental covariates (Jenouvrier et al. 2005).
For the Snow petrel (Pagodroma nivea), we analyzed the nonlinear relationships
between sex-specific adult survival and the Southern Oscillation Index (SOI). For
the Emperor penguin (Aptenodytes forsteri), we investigated nonlinear relationships
between sex specific adult-survival, sea ice extent and population size.

2 Efficient Nonparametric Regression in Capture–Recapture
Modeling

In this section, we introduce our approach following two steps. First, the data
are analyzed using standard capture–recapture models in a Frequentist framework.
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The survival parameter estimates and the associated estimated variance–covariance
matrix are then used to approximate the likelihood of the model best supported
by the data (Step 1). This allows us to adopt a Bayesian approach using MCMC
algorithms to implement the nonparametric approach using P-splines (Step 2).

2.1 Step 1: Handling the Capture–Recapture Data

We used standard capture-recapture models (Lebreton et al. 1992) to get maxi-
mum likelihood estimates (MLEs) for the probability φi that an individual survives
to occasion i + 1 given that it is alive at time i , and for the probability p j that an
individual is recaptured at time j . All models were fitted using program M-SURGE
(Choquet et al. 2005), but program MARK could have been used instead (White and
Burnham 1999).

Using program U-CARE (Choquet et al. 2003), we assessed the fit of the most
general time-dependent CJS model to determine whether it provided an adequate
description of the data. In both examples (see the Section 2.4), we detected a
trap-dependence effect on capture (Pradel 1993), meaning that capture probability
at occasion j + 1 was different for individuals captured at occasion j than for
individuals not captured at occasion j . Such a trap-dependent effect in long-lived
species is common and partly reflects heterogeneity in the quality of individuals
in a population. For emperor penguins and snow petrels, trap-dependence was
at least partly caused by heterogeneity between individuals in their capacity to
breed at the colony every year and therefore to be captured. Consequently, we
used a multistate capture–recapture model to cope with this departure from the
null hypothesis that the CJS fits the data (Gimenez et al. 2003). We distinguished
two states whether a capture occurred on the prior occasion (say state A) or not
(say state B). In practice, we considered a separate formulation (i.e., the transi-
tion probabilities are split into survival and movement probabilities – see Hestbeck
et al. 1991). The survival probabilities were time-dependent while the capture prob-
abilities in the states A and B were set constant and fixed to 1 and 0 respec-
tively, and the transition probabilities were state- and time-dependent. By using this
formulation, the transition probabilities between states A and A were the capture
probabilities given a capture on the prior occasion, and the transition probabil-
ities between states B and A were the capture probabilities given no capture on
the prior occasion. See Gimenez et al. (2003) for further details. If any lack of fit
remained, we applied a correction to the estimates and their estimated variance–
covariance based on the calculation of the coefficient of overdispersion (Lebreton
et al. 1992).

As is seen above, we conducted modeling in two steps (Lebreton et al. 1992).
We first focused on a model that described the nuisance parameter – i.e., the
capture probabilities – in the most parsimonious way, while survival remained
time-dependent. Then, preserving the most parsimonious structure of the nuisance
parameters, we worked out the survival probabilities using P-splines. Note that
for simplicity, we analyzed males and females separately for both data sets (see
Section 2.4).
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We now turn to the approximation of the capture–recapture likelihood, which
will be denoted L(φ, p). Lebreton et al. (1995) and Besbeas et al. (2003) proposed
to use a multivariate normal to approximate the function L(φ, p). More precisely,
the maximum likelihood estimates of the parameters on the logit scale, θ̂ , and the
associated estimated variance–covariance matrix, �̂, both obtained from fitting an
appropriate capture–recapture model (see above), are used to approximate the log-
likelihood as:

2 log {L (φ, p)} = constant − (
θ̂ − θ

)T
�̂−1 (θ̂ − θ

)
. (1)

Note that Besbeas et al. (2003) showed that it is only necessary to make the approxi-
mation for the parameters of interest, which are the survival probabilities in our case.
Obviously, using a multivariate normal distribution in place of the usual product
of multinomial distributions (where cells are complex nonlinear functions of the
survival and recapture probabilities) results in a much simpler form for the likeli-
hood L(φ, p), which in turn greatly speeds up the Bayesian fitting process using
MCMC algorithms.

Nevertheless, the use of Eq. (1) may be made difficult by numerical issues.
Indeed, some parameters may be estimated close to or on a boundary (0 or 1 as
we are dealing with probabilities), resulting in the impossibility to properly quan-
tify the variability associated to the MLEs using standard methods. Technically, the
dispersion matrix �̂ is ill-conditioned which prevents us from obtaining its inverse
as required in Eq. (1). We circumvent this issue by neglecting the covariances,
and considering the diagonal �̂ matrix of the estimated variances with off-diagonal
terms all zeros. Still, calculating variances for boundary estimates remains prob-
lematic. One option is to use profile-likelihood intervals (Gimenez et al. 2005), the
problem being that this approach does not formally provide a point estimate nor a
standard error. In this paper, we decided to assign a large variance (10,000) to those
para-meters estimated close to or on the boundary, thus affecting relative negligible
weights to the corresponding MLEs (see Eq. (1)). This ad-hoc procedure was used
in the Section 2.4 only.

2.2 Step 2: Semiparametric Modeling of the Survival

2.2.1 Univariate Smoothing

We consider the following regression model for the survival probability φi :

logit (φi ) = log

(
φi

1 − φi

)
= f (xi ) + εi , (2)

where xi is the value of the covariate applying between occasions i and i + 1, f is
a smooth function and εi are i.i.d. random effects N

(
0, σ 2

ε

)
. The function f spec-

ifies a nonparametric flexible relationship between the survival probability and
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the covariate that allows nonlinear environmental trends to be detected. Following
Gimenez et al. (2006a), we used a truncated polynomial basis to handle f:

f (x) = β0 + β1x + . . .+ βP x P +
K∑

k=1

bk (x − κk)P
+, (3)

where x is the covariate, β0, β1, . . . , βP , b1, . . . , bK are regression coefficients to be
estimated, P ≥ 1 is the degree of the spline, (u)p

+ = u p if u ≥ 0 and 0 otherwise, and
κ1 < κ2 < ... < κK are fixed knots. We considered K = min

(
1
4 I, 35

)
knots to

ensure the desired flexibility, and let kk be the sample quantile of x’s corresponding
to probability k

K+1 . To avoid overfitting, we penalized the b’s by assuming that the
coefficients of (x − κk)P

+ are normally distributed random variables with mean 0 and
a certain variance σ 2

b to be estimated. This is the reason why this approach is referred
to as penalized splines (Ruppert et al. 2003). For further details see Gimenez et al.
(2006a) and references therein.

2.2.2 Bivariate Smoothing

To incorporate the interaction between two continuous environmental covariates,
we opted for bivariate smoothing using thin-plate splines (Green and Silverman
1994). The main challenge here was to achieve the ideal balance between roughness
and smoothness, which is controlled by a parameter δ usually referred to as the
smoothing parameter. We considered the restricted maximum likelihood (REML)
criterion to choose this amount of smoothing using the data (Searle et al. 1992),
which allows the whole modeling exercise to be easily implemented in a mixed
model framework (Ruppert et al. 2003; Crainiceanu et al. 2005; Gimenez et al.
2006a). Specifically, we consider a nonparametric model for the survival with
respect to environmental covariates as follows:

logit (φi ) = f (xi) + εi (4)

where xi = (
x1

i , x2
i

)T
is the value of the vector of two covariates x1 and x2 for year i,

T denotes transpose, εi are i.i.d N
(
0, σ 2

ε

)
and f is a smooth function. Because they

have good numerical properties, we used radial basis functions to handle f (Ruppert
et al. 2003):

f (x) = Xb + ZKv, (5)

where
{
1, x1

i , x2
i

}
is the ith row of matrix X, {C (‖xi − �1‖) , . . . ,C (‖xi − �K ‖)}

is the ith row of matrix ZK, the �k’s are bi-dimensional vectors of fixed knots, the
function C (‖r‖) = ‖r‖2 log ‖r‖ with ‖r‖ =

√
rTr handles the nonlinear structure of

the survival surface, b = (b1, b2, b3)T and v = (v1, . . . , vK )Tare vectors of fixed and
random regression parameters respectively to be estimated with Cov (v) = σ 2

u �−1
K
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where �K has (k, k’)th element C (‖�k − �k′‖). Using the re-parameterization
u = �

1/2
K v and defining Z = ZK �

−1/2
K , Eq. (5) becomes equivalent to

f (x) = Xb + Zu, (6)

where u is assumed to be normally distributed, independent from �, with Cov (u) =
σ 2

u IK . It can be shown that the optimal amount of smoothing using the REML crite-
rion is given by δ = σ 2

u /σ
2
ε , which turns out to be also the case in the univariate

smoothing (Ruppert et al. 2003). To choose the number and the location of the knots,
we considered K = max {20,min (I/4, 150)} knots as suggested by Ruppert et al.
(2003) and used the space-filling algorithm of Nychka and Saltzman (1998) to select
the location of these knots. This algorithm automatically places knots in regions
with high density of observed values while maximizing the average spacing between
knots of those regions. Finally, to plot the fitness surface, we obtained contours and
perspectives views by generating a 30 × 30 grid of predicted values.

2.2.3 Bayesian Inference

Vague prior distributions were provided for all parameters. Specifically, we chose
uniform distributions on [0,1] for the detection probabilities, normal distributions
with mean 0 and variances 1,000 for the β ’s and normal distributions with mean 0
and variances σ 2

u , σ 2
b and σ 2

ε for the u ’s, b ’s and ε ’s respectively. The priors for the
hyperparameters σ 2

u , σ 2
b and σ 2

ε were chosen as inverse-gamma with both parame-
ters equal to 0.001. We generated two chains of length 100,000, discarding the first
50,000 as burn-in. Convergence was assessed using the Gelman and Rubin statistic
which compares the within to the between variability of chains started at different
and dispersed initial values (Gelman 1996). All covariates were standardized to
improve convergence. The simulations were performed using WinBUGS (Spiegel-
halter et al. 2003). The R (Ihaka and Gentleman 1996) package R2WinBUGS (Sturtz
et al. 2005) was used to call WinBUGS and export results in R. To implement the
space-filling algorithm, we used the R package FIELDS (Fields Development Team
2006).

Whenever needed, we used the Deviance Information Criterion (DIC; Spiegel-
halter et al. 2002) to discriminate between candidate models: the smaller the DIC
value, the better the model. We acknowledge that the DIC is somewhat controversial
in the statistical literature, and should be used with caution (see Spiegelhalter et al.
2002 and Celeux et al. 2006 and the discussion papers following these two papers).
The R and WinBUGS codes are available on request from the first author.

2.3 Simulation Study

We conducted a simulation study to investigate the performance of our approach, in
particular to check that the use of the approximation for the capture–recapture likeli-
hood did not affect the estimation of parameters. Following Gimenez et al. (2006a),
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we considered two scenarios with different forms for the underlying nonlinear
regression function f of Eq. (3). Study 1 used the regression function f (x) = 2.2
if x ≤ −0.06 and f (x) = 2.08 − 2x otherwise to represent a threshold effect.
The x’s were equally spaced on [−1.5; 1.5]. Study 2 used the regression func-

tion f (x) = 1.5g
(

x−0.35
0.15

) − g
(

x−0.6
0.1

)
where g (x) = 1√

2π
exp

(
− x2

2

)
to repre-

sent complex non-linear patterns. The x’s were equally spaced on [0; 1]. For both
studies, we simulated 100 capture–recapture data sets covering 26 sampling occa-
sions, so that 25 survival probabilities had to be estimated. We considered 50,
100 and 250 newly marked individuals per occasion and two levels of variability
with σ 2

ε = 0.02 or σ 2
ε = 0.1. The capture probability was set constant and equal

to 0.7.
For each data set, we applied our approach in two steps, first fitting a capture–

recapture model with time-dependent survival probabilities and constant recapture
probabilities, second using the MLEs and the variance–covariance matrix to approx-
imate the capture–recapture likelihood of this model in order to implement the
P-splines in a Bayesian framework using MCMC algorithms. Details on the prac-
tical implementation can be found in the Section 2. For each x value, we computed
the median along with a 95% confidence interval for the posterior medians of f and
then back-transformed in order to compare the estimated survival curve to its true
counterpart. The results are displayed in Figs. 1 and 2, showing that our two-step
approach does a good job in capturing the nonlinearities in the survival vs. covariate
relationship. For a fixed number of newly released individuals, the greater the vari-
ance the lower the precision (both Figs. 1 and 2, left column – low variability vs.
right column – high variability), the difference being clearer for Study 1. When the
sample size increases, the precision gets better (both Figs. 1 and 2, going down – 50,
100 and 250 newly released individuals), although for high variability the gain was
not substantial (right column in both Figs. 1 and 2). Overall, as noted by Gimenez
et al. (2006a), the relationship in Study 1 was more precisely estimated than that of
Study 2.

2.4 Applications

2.4.1 Snow Petrels

As a first example, we analyzed the data used in Gimenez et al. (2006a) to illus-
trate the full Bayesian implementation of the semiparametric modeling of survival
probabilities. The data were obtained in a 40–year study on individually marked
Snow petrels, nesting at Petrels Island, Terre Adélie, from 1963 to 2000 (see also
Barbraud et al. 2000; Jenouvrier et al. 2005). We considered the Southern Oscil-
lation Index (SOI) as a proxy of the overall climate condition, available from the
Climatic Research Unit (http://www.cru.uea.ac.uk/cru/data/soi.htm). In total, we
considered 563 female and 561 male capture histories (more than in Gimenez et al.
2006a who were limited by the computational burden).
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Fig. 1 Performance of the nonparametric approach for estimating nonlinearities in the survival
probability – Study 1 (see the Section 2.3 for details). We used 100 simulated capture–recapture
data sets with 50, 100 and 250 newly released individuals per occasion (from top to bottom resp.)
and two levels of variability, σ 2

ε = 0.02 or σ 2
ε = 0.1 (from left to right resp.). The solid line is the

true regression function, the dashed line is the median of the 100 estimated posterior medians and
the dotted lines indicate the associated 95% confidence interval
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Fig. 2 Performance of the nonparametric approach for estimating nonlinearities in the survival
probability – Study 2 (see the Section 2.3 for details). We used 100 simulated capture–recapture
data sets with 50, 100 and 250 newly released individuals per occasion (from top to bottom resp.)
and two levels of variability, σ 2

ε = 0.02 or σ 2
ε = 0.1 (from left to right resp.). The solid line is the

true regression function, the dashed line is the median of the 100 estimated posterior medians and
the dotted lines indicate the associated 95% confidence interval
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Step 1. After removing the first capture to remove heterogeneity, the CJS model
still poorly fitted the data for both females and males (females:χ2

167 (349.98) <

0.01; males:χ2
169 (472.20) < 0.01), and a closer inspection of the results revealed

that a large part of the CJS χ2 statistic was explained by a trap-dependence effect
(females: χ2

34 (175.74) < 0.01; males: χ2
34 (248.697) < 0.01). The goodness-of-fit

for the model with trap-dependence was still significant (females:χ2
133 (174.239) <

0.01; males:χ2
135 (223.503) < 0.01) so we used a lack-of-fit coefficient for further

analyses (females: 1.3; males: 1.7). Time-dependent survival probability estimates
and the estimated variance-covariance were then obtained for both sexes using
M-SURGE (Choquet et al. 2005).

Step 2. First, because sex differences in the survival probabilities were found
before, we considered a model with an additive effect of both SEX and SIE factors.
This was achieved by extending the nonparametric approach introduced above to
allow a predictor to enter the model linearly (we will refer to semiparametric
modeling when both linear and nonlinear effects appear in a model). To do so, we
wrote:

logit
(
φl

i

) = β0 + γSEX + β1SOIi +
K∑

k=1

bk (SOIi − κk) + εi , (7)

where φl
i is the survival probability between occasion i and i + 1 for l = males

(SEX = 0) or l = females (SEX = 1). Interestingly, only little adjustments to
the modeling introduced in Section 2.2.1 are needed to specify the model defined
by Eq. (7) (see Gimenez et al. 2006a). We also fitted a model with an interaction
effect between the SEX and the SOI factors. It basically consists of considering
different smooth functions according to the SEX qualitative variable (Coull et al.
2001). Table 1 shows that the model with an additive effect of both covariates is
preferred to the model with interaction.

Finally we considered two further models corresponding to two biological hypo-
theses. First, we were interested in assessing the significance of the SEX effect, so
we fitted a model without the SEX effect, while keeping the nonparametric feature
of the model. This model performs better than the two models having the SEX
effect (Table 1). This was also confirmed by the 95% posterior credible interval
[−0.49;0.15] of the parameter γ which contains 0. Second, we were interested in
testing for the presence of nonlinearities in the survival probability. One way to
answer this question was to fit a model with a linear effect of the SOI covariate

Table 1 Models fitted to the Snow petrel data. DIC is the deviance information criterion, and pD
the number of effective parameters. �DIC is the difference between the DIC of a model and the
DIC for the minimum DIC model. The model best fitting the data is in bold font

Model DIC pD �DIC

Additive effect of SEX and SOI 1129.29 1062.99 604.74
Interaction effect of SEX and SOI 1644.82 1595.38 1120.27
SOI effect only (no SEX effect) 679.27 607.34 154.72
Linear effect of SOI (no SEX effect) 524.55 446.49 0
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upon the survival probability, and to compare with its nonparametric counterpart.
To do so, we used:

logit
(
φi

) = β0 + β1SOIi + εi . (8)

As already noted by Gimenez et al. (2006a), the relationship between the climatic
covariate SOI and the Snow petrel survival seems to be linear (Table 1). The graph-
ical representation of the two latter models tends to confirm this result (Fig. 3)
During negative SOI, characteristic of El Niño episodes, cooler waters in the western
part of the tropical Pacific and southern Australia down to the Ross Sea region seem
to favor enhanced productivity in this oligotrophic area (Wilson and Adamec 2002).
Therefore these oceanographic conditions may increase the food availability for
snow petrels and reduce their mortality risk associated with starvation. However,
the effect of SOI on adult survival is small, with only a 1–2% difference in survival
between negative and positive SOI conditions, which might explain the linear
relationship between survival and SOI. We will go back to the issue of formally
detecting nonlinearities in Section 2.5.

In this section, we have considered an interaction between a discrete variable
SEX and a continuous variable SOI. In the next section, we consider an interaction
between two continuous variables using bivariate smoothing (Ruppert et al. 2003).
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Fig. 3 Annual variations in Snow petrel survival as a function of the standardized SOI using a
nonparametric model. Medians (solid line) with 95% pointwise credible intervals (vertical solid
lines) are shown, along with the estimated linear effect (dotted line)
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2.4.2 Emperor Penguins

As a second example, we analyzed data on the emperor penguin which consist of
data from a long-term study on marked individuals, nesting at Petrels Island, Terre
Adélie, from 1962 to 2002 (see Barbraud and Weimerskirch 2001; Jenouvrier et al.
2005). We considered the Sea Ice Extent (SIE) as the distance from the colony to
the limit of a 15% or higher sea ice concentration, which was obtained at longi-
tude 140◦E using the sea ice data available from the Antarctic CRC and Australian
Antarctic Division Climate Data Sets (http://www.antcrc.utas.edu.au/∼jacka/
seaice C html). We also considered the number of breeding pairs (POPSIZE). In
total, we considered 382 female and 331 male capture histories.

Step 1. After removing the two first captures to remove heterogeneity, the CJS
model still poorly fitted the data for both females and males (females:χ2

85 (182.05)
< 0.01; males:χ2

79 (198.12) < 0.01), and a closer inspection of the results revealed
that a large part of the CJS χ2 statistic was explained by a trap-dependence effect
(females: χ2

27 (112.07) < 0.01; males: χ2
26 (131.85) < 0.01). The goodness-

of-fit for the model with trap-dependence indicated that the fit was satisfac-
tory (females:χ2

58 (69.98) = 0.135; males:χ2
53 (66.28) = 0.104). Time-dependent

survival probabilities estimates and the estimated variance–covariance were then
obtained for both sexes using M-SURGE (Choquet et al. 2005).

Step 2. The results of the bivariate smoothing for male and female Emperor
penguins are given in Fig. 4. Overall, females survive better than males, which
is in agreement with previous studies (Barbraud and Weimerskirch 2001; Jenou-
vrier et al. 2005). Now if we look into the relationship between survival and the
interaction of the SIE and POPSIZE effects, interesting patterns emerge. Strategies
differ by sex. While the survival optimum for both males and females is reached
for average values of SIE, there is a marked difference regarding POPSIZE: females
prefer very high POPSIZE while males survive better with relatively low POPSIZE.
These differences may be interpreted in the light of the contrasting breeding strate-
gies of males and females. After their 3.5 months fast incubating the egg, emaciated
males return to sea for feeding and density dependent processes may affect their
survival chances through competition for food when POPSIZE is high. This should
be particularly accentuated when food resources are scarce, i.e., when sea ice extent
is low. During the entire incubation, females are absent from the colony, feeding
within the pack ice and below the fast ice. Males at the colony face very harsh
climatic conditions and it has been shown that they also form huddles to save energy
(Ancel et al. 1997). Therefore, we hypothesize that when the population is large it
might be easier to find congeners and to form huddles than when the population is
small, which may increase their chances of survival. However, we note that we could
not formally assess sex differences since the two data sets were analyzed separately.
Interestingly, it is relatively easy to get a picture of the precision associated with the
survival surface as a by-product of the use of the MCMC procedure (Fig. 1, right
column). Having a visualization of the precision helps us in determining to what
extent the patterns we detected are supported by the data. In the present example,
the standard deviations are low, except for extreme values of both covariates (Fig. 1,
right column).
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Fig. 4 Bayesian thin-plate spline visualization of the survival surface for the Emperor penguin
as a function of the two external covariates sea-ice extent (SIE) and number of breeding pairs
(POPSIZE). Posterior mean survival probabilities (left column) and associated posterior standard
deviations (right column) are provided for males (top) and females (bottom)

2.5 Discussion

In this paper, we have used a combination of the Frequentist and the Bayesian
approaches to implement semiparametric modeling of survival probabilities as
a function of environmental covariates using capture–recapture data. Instead of
opposing the two frameworks and forcing one to make a choice between the two, we
have utilized the merits of each of the two approaches: the Frequentist approach was
used to handle the capture–recapture data using specialist programs like M-SURGE
(Choquet et al. 2005) or MARK (White and Burnham 1999) which allows flexible
fitting of complex models including age, cohort and/or site effects; the Bayesian
approach was used to avoid making any prior assumption regarding the form of
the relationship between the survival and the covariates, while taking benefit of
the automatic adjustment of the amount of smoothing in the P-splines. Besides,
the combination allows the computational burden to be substantially reduced. For
example, it took about 25 hours to fit the semiparametric model of Eq. (7) to the
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Snow petrel data with the full Bayesian approach (Gimenez et al. 2006a), while only
5 minutes were required to obtain the MLEs with the estimated variance–covariance
matrix and to fit the semiparametric model of Eq. (7) using the multinormal likeli-
hood approximation.

Apart from the gain in time of calculation, the use of a normal approximation
to the capture–recapture data likelihood has another appealing application. We can
think of using the information published in the literature to investigate the impact of
climatic conditions on demographic rates, in the general context of a meta-analysis.
The MLEs and the associated standard errors could indeed be extracted from rele-
vant papers and then used to form a likelihood, which in turn, could be used to
relate the demographic rates to climatic conditions, for which measurements are
often freely available from the Internet. Maximum flexibility in describing those
relationships would be assured by the use of the approach advocated here.

Although the results of the simulations are encouraging, the fact that we did not
detect a sex effect in the Snow petrel analysis is in contradiction with a previous
study (Jenouvrier et al. 2005), although no sex differences were found in earlier
studies (Chastel et al. 1993; Barbraud et al. 2000). Possible explanations are very
small differences in survival and/or a loss of power caused by assuming that the
covariances are all zeros (see Section 2.1). Pending further developments, extensive
simulations are needed to assess the loss of precision when standard errors are used
in place of the whole estimated variance–covariance matrix.

Regarding the Emperor penguin example, our analysis should be considered as
a preliminary step towards a more comprehensive study. We envisage that model
selection will be a crucial issue, as we would like to incorporate additional climatic
variables (e.g., SOI and SEX) to POPSIZE and SIE, making the number of scenarios
numerous. Besides, determining whether nonlinearities are required in the model
still needs to be properly addressed. A Reversible-Jump MCMC procedure is a
promising solution to that aim (Bonner et al. this volume).

Finally, so far we have considered environmental covariates only, i.e., variables
with values changing over time. A semiparametric approach to incorporate indi-
vidual covariates, i.e., variables with values changing at the individual level, has
recently been proposed to assess natural selection on a single quantitative trait (e.g.
body mass: Gimenez et al. 2006b) as well as estimating and visualizing fitness
surfaces (Gimenez et al. submitted) using capture–recapture data. There is high
interest in considering both types of covariates in a model (e.g. Coulson et al. 2001),
and the normal approximation might be useful to reduce the computational burden.
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Gimenez O, Grégoire A, Lenormand T, Submitted. Estimating and visualizing fitness surfaces
using mark-recapture data.

Green PJ, Silverman BW (1994) Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach. Chapman and Hall, New York.

Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London.
Hestbeck JB, Nichols JD, Malecki RA (1991) Estimates of movement and site fidelity using mark-

resight data of wintering Canada geese. Ecology 72:523–533.
Hughes L (2000) Biological consequences of global warming; is the signal already apparent?

Trends in Ecology and Evolution 15:56–61.
Ihaka SP, Gentleman EA (1996) R: a language for data analysis and graphics. Journal of Compu-

tational and Graphical Statistics 5:299–314.
IPCC (2001) Climate change; a synthesis report. A contribution of Working Groups I, II and III to

the third assessment report of the IPCC. Cambridge University Press, Cambridge.
Jenouvrier S, Barbraud C, Weimerskirch H (2005) Long-term contrasted responses to climate of

two Antarctic seabird species. Ecology 86:2889–2903.
Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biolog-

ical hypotheses using marked animals: a unified approach with case-studies. Ecological Mono-
graphs 62:67–118.



58 O. Gimenez and C. Barbraud

Lebreton J-D, Morgan BJT, Pradel R, Freeman SN (1995) A simultaneous survival rate analysis of
dead recovery and live recapture data. Biometrics 51:1418–1428.

McCarty JP (2001) Ecological consequences of recent climate change. Biological Conservation
15: 320–331.

Mysterud ACSN, Yoccoz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of large-scale
climatic variability on wild and domestic herbivores. Nature 410:1096–1099.

Nychka D, Saltzman N (1998) Design of Air-Quality Monitoring Networks in Case Studies in
Environmental Statistics, Lecture Notes in Statistics. Nychka D, Cox L, Piegorsch W (eds.)
Springer Verlag, New York.

Pradel R (1993) Flexibility in survival analysis from recapture data: handling trap-dependence.
Pages 29–37 in J.D. Lebreton and North PM (eds.) Marked Individuals in the Study of Bird
Population. Birkhäuser, Basel.
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Multivariate State Space Modelling
of Bird Migration Count Data

Jonas Knape, Niclas Jonzén, Martin Sköld, and Leonid Sokolov

Abstract We analyse 54 year long time series data on the numbers of common
redstart (Phoenicurus phoenicurus), common whitethroat (Sylvia communis),
garden warbler (Sylvia borin) and lesser whitethroat (Sylvia curruca) trapped in
spring and autumn at Ottenby Bird Observatory, Sweden. The Ottenby time series
could potentially serve as a reference on how much information on population
change is available in count data on migrating birds. To investigate this, we combine
spring and autumn data in a Bayesian state-space model trying to separate demo-
graphic signals and observation noise. The spring data are assumed to be a measure
of the breeding population size, whereas the autumn data measure the popula-
tion size after reproduction. At the demographic level we include seasonal density
dependence and model winter dynamics as a function of precipitation in the Sahel
region, south of the Sahara desert, where these species are known to spend the
winter. Results show that the large fluctuations in the data restrict what conclusions
can be drawn about the dynamics of the species. Annual catches are highly corre-
lated between species and we show that a likely explanation for this is that trap-
ping numbers are strongly dependent on local weather conditions. A comparative
analysis of a related data set from the Courish Spit, Russia, gives rather different
dynamics which may be caused by low information in the two data sets, but also
by distinct populations passing Ottenby and the Courish Spit. This highlights the
difficulty of validating results of the analyses when abundance indices derived by
other methods or from other populations do not agree.

Keywords Trapping data · State space models · Migration · Bird · Seasonal

1 Introduction

Populations of organisms living in seasonal environments are exposed to different
conditions during different parts of the demographic cycle (Fretwell 1972). For
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migratory organisms such as many bird species, the reproductive success may be
mostly influenced by the conditions on the breeding grounds, whereas mortality is
probably highest during migration and wintering (Sillett and Holmes 2002). Thus,
different parts of the seasonal demographic cycle are affected by the conditions at
geographically and environmentally distinct locations. Changes in the environment
on wintering grounds, along the route of migration or on the breeding grounds may
then have different implications for the dynamics of the species (Saether et al. 2004).
Population dynamics of migratory birds is therefore interesting from an ecological
perspective but just because of the long distances they travel, collecting appropriate
data for analysing their dynamics is difficult.

Currently there is no general method for locating the same individuals or popula-
tions at the breeding and wintering grounds and analyses of population dynamics
through the full seasonal cycle are usually restricted to count data or to mark-
recapture data at either wintering or breeding grounds (but see Webster et al. 2002).
Mark-recapture analyses of long distance migrants are often hard due to the possi-
bility of birds returning to sites outside of the study area but can sometimes be used
to estimate, e.g., effects of weather conditions on survival (e.g. Peach et al. 1991).
Traditionally, data from counts at breeding locations such as the North American
Breeding Bird Survey and the Common Bird Census in the United Kingdom have
been used to compute indices of population sizes (e.g. James et al. 1996). Analyses
of this type of data require care since the data often suffer from variation related
to sources at different scales and levels, e.g., differences in skill between observers
and differences in detection probabilities between types of habitats, and of biases
due to biased selections of surveyed habitats (Thomas 1996; Nichols et al. 2008).
Although some recent analyses have tried to take the most serious sources of varia-
tion in breeding bird survey data into account (e.g. Link and Sauer 2002), it would
be helpful if other types of data could be used to confirm conclusions drawn from
analyses of point count data (Dunn and Hussel 1995).

A complementary method for monitoring populations of migratory birds is to use
visual counts or trapping numbers of birds at fixed locations during migration. Many
bird observatories have data from standardised annual or even biannual catches of
passerine birds during the periods of migration. Trapping data from bird obser-
vatories have recently been used to study phenology shifts in relation to climate
change (e.g. Jonzén et al. 2006) and to estimate population trends and dynamics of
passerine birds (e.g. Sokolov et al. 2001; Jonzén et al. 2002; Berthold et al. 2004).
However, because of the high between year variation typically present in such data,
the use of trapping data as indices of population size has been criticised (Svensson
1978). The day-to-day variation in trapping numbers is high and is influenced by
local weather conditions. There are a number of studies analysing daily variation in
migration count data with the aim of retrieving population abundance indices (e.g.
Dunn et al. 1997; Francis and Hussel 1998). Most of these studies regress daily
counts or log counts on sets of weather and time dependent variables and from this
derive annual abundance indices. Here we take a different approach and analyse
seasonal total trapping numbers using state-space modelling techniques. Thus,
instead of accounting for weather effects by estimating adjusted annual indices we
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deal with the problem of noisy data by integrating the noise in seasonal totals as
part of the model.

We analyse trapping numbers from the Ottenby Bird Observatory (Sweden) and
from the Courish Spit (Russia) on common redstart (Phoenicurus phoenicurus),
common whitethroat (Sylvia communis), garden warbler (Sylvia borin) and lesser
whitethroat (Sylvia curruca). These species are thought to spend part of the winter in
the Sahel area south of the Sahara desert. Previous studies of migrants that winter in
the Sahel area have shown that winter survival is dependent on the amount of rainfall
in the Sahel area (Peach et al. 1991; Szep 1995). Particularly, a severe drought in
the Sahel in the late 1960s and early 1970s (Hulme 1992; Nicholson et al. 1998) is
thought to have been the cause of a crash reported for UK populations of common
whitethroat (Baillie and Peach 1992) and Hjort and Lindholm (1978) found a strong
relationship between the water level in Lake Chad and the number of whitethroats
caught at Ottenby the following autumn. With 30 more years of data, we try to
verify the influence of conditions at the wintering grounds on the dynamics of this
species and compare it to the effects on three other Sahel migrants. We do this using
a state-space modelling approach to explicitly deal with the problem of extracting
a dynamical process from data in the presence of sampling error. In order to try to
determine the relevance of the derived abundance indices as measures of population
change we compare an analysis of Ottenby data to an analysis of data from the
Courish Spit and to indices from the Swedish Breeding Bird Survey.

2 Materials and Methods

State-space models (Durbin and Koopman 2001) are becoming a standard tool
among ecologists working on models of population dynamics (Buckland et al. 2004;
Jamieson and Brooks 2004), and have been been extensively used in fisheries stock
assessment (e.g. Millar and Meyer 2000). Sampling error is a common feature
of data from surveys on wild animal populations and a state-space approach to
analysing population dynamics time series data therefore seems natural. For the
Ottenby time series on annual catches, there are reasons to believe that a large
portion of the variation in trapping data on migratory birds is related to varying
external conditions during migration and not to real changes in population sizes
(Svensson 1978). This is further supported by the tendency for high between species
correlations in total annual catches. The high correlations may be caused by the
fact that the species experience similar external conditions during their migration.
Because of these potential problems we model multivariate observation disturbances
within the state space framework.

Since we are interested in comparing the population dynamics between breeding
and wintering seasons we construct a model with two simple dynamical compo-
nents, one for the breeding season and one for the wintering and migration seasons.
Both spring and autumn trapping numbers are inputs for this model which will
henceforth be referred to as a seasonal model. The model will allow us to ask
questions about how strong forces of density dependence are during summer and
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winter respectively (Stenseth et al. 2003) and what effect conditions on the wintering
grounds have on the winter season population dynamics. We further evaluate if
there is any gain in terms of improved parameter estimates and abundance indices
in including both spring and autumn data in the same model and in modelling
correlated observation disturbances. The results from fitting the model are therefore
compared to results from fitting models with uncorrelated observation disturbances
and with models where spring and autumn data are included separately (referred to
as non-seasonal models).

For all models we make the assumption that the disturbance terms in the process
part of the state-space model are independent between species. This assumption may
not be entirely satisfying since species having similar life-histories and geographical
distributions may well have correlated dynamics even when covariates suspected to
influence the dynamics are included in the model. On the other hand, we expect
errors in observations to be large and potentially influence similar species in a
similar manner.

To get an idea about the validity of the population abundance indices that are
derived from the state part of the models as measures of larger scale population
change we compare our results with patterns reported for other European popula-
tions. We also compare population indices estimated from our model with indices
derived with the same analysis of similar data from the bird station at the Courish
Spit and with indices from the Swedish Bird Survey which are computed using
another type of data (see the Data section below). Both the Courish Spit and the
Swedish Breeding Bird Survey may however cover populations distinct from the
ones passing Ottenby and therefore comparisons between these indices are not very
informative unless results agree.

2.1 Data

Ottenby Bird Observatory (56◦12′N, 16◦24′E) is situated at the southernmost point
of Öland, a 137 km long island ca. 10 km off the coast of south-eastern Sweden. The
trapping area in the observatory garden is 1.2 ha and contains most of the higher
vegetation within the nearest 2 km, and therefore attracts migratory birds. Birds
have been caught at Ottenby in funnel traps of Helgoland-type (Bub 1991) since
the first year of trapping in 1946. Since 1960 birds have also been caught in mist
nets and to avoid a potential increase in trapping numbers due to the increase in
the number of traps we only use data between 1960 and 2005. The start of spring
trapping varied considerably between 1952 and 1979, whereas from 1980 onwards,
the spring trapping started on March 15 and ended on June 15. The spring passage
of the species analysed in this paper is mainly in May, which has been well covered
in all years except for 1966 and 1967 when there were no spring trappings. These
years are treated as missing data points. The spring data we use is the total number
of birds caught per year between March 15 and June 15 in the Helgoland traps
and in the mist nets. The autumn trapping season starts on July 25 and ends on
November 15. In some years the season ended before November 15, but very few
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birds of the species studied in this paper are trapped after mid October. By using the
total number of individuals trapped per year between July 25 and October 25 during
1960–2005 we include 99.9% of all trapped individuals of the species studied here.
Both juveniles and adult birds are caught in autumn but there is an over representa-
tion of juveniles for most species. Since age classification were not complete for all
years, both adults and juveniles are included in our data. For more details about the
trapping conditions, see Stervander et al. (2005).

Data from the Courish Spit consist of the number of birds caught in two
traps between 1977 and 2005. The project was carried out by the Biolog-
ical Station Rybachy of the Zoological Institute, Russian Academy of Sciences
(Sokolov et al. 2000). Index values from the Swedish Breeding Bird Survey
(SBBS) (Lindström and Svensson 2005) are available from 1975. These indices
are derived from point counts along routes freely chosen by observers and are
therefore potentially subject to biases such as habitat bias, differences in skill
between observers, etc. (Thomas 1996). Annual Sahel rainfall indices were obtained
from the web-page of the Joint Institute for the Study of the Atmosphere and the
Ocean, http://jisao.washington.edu/data sets/sahel, and are computed as the mean
of monthly rainfall indices from June through October. The annual indices were
standardised for the period 1950–2004.

2.2 Models

A (rather) general definition of a multivariate linear Gaussian state-space model
with covariates can be given as

yt = Zt xt + εt , εt ∼ N (0,Ωt )

xt+1 = Tt xt + Wt c + ηt , ηt ∼ N (0,Σt ) (1)

for t = 1, 2, . . . , n, where all εt and ηt are independent (the parameters of
the N (μ,Σ)-distribution denote the mean vector and variance matrix respectively,
vectors are denoted by bold face and matrices by capital letters). The first state
vector, x1, also needs to be defined to complete the model specification. This can
be done in various ways, and in our models described later in this section the initial
vector is treated as a parameter with an informative prior. An interpretation of the
model is that the vectors yt represent the data which are noisy observations of linear
transformations (Zt ) of hidden state vectors xt which need not be of the same size
as the vectors of observations. The hidden state is a linear normal stochastic process
with autoregression coefficient matrix Tt . The matrix Wt contains covariates for the
transition from t to t + 1 and their (linear) effect on the process is measured by
the regression coefficients in the vector c. Depending on the setting, the elements
of the matrices of the model may either be completely specified or may depend on
unknown parameters.

All our models of the bird observatory data are special cases of the more general
model defined above. To find out if anything is gained by using both spring and
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autumn data in the same model we used both a seasonal and a non-seasonal version
of the state space model. For the non-seasonal model, the data are arranged so that
the vectors yt contain the log of the total seasonal trapping numbers in year t in
either spring or autumn for the four species. The system is modelled on the log
scale in line with common practise in studies on population dynamics. The log
transformation also had the effect of making the data appear more Gaussian. The
non-seasonal model is a simplified version of the model in (1):

yt = xt + εt , εt ∼ N (0,Ω)

xt+1 = a + Bxt + rt c + ηt , ηt ∼ N (0,Σ). (2)

The vectors a and c of length 4 contain parameters ai and ci respectively on position
i . The autoregression coefficient matrix B is diagonal with parameter bi on position
(i, i). All the regression parameters ai , bi and ci are different between species so
that there are no shared parameters between species in the deterministic part of the
model. The hidden state vector xt of length 4 should be interpreted as the logarithm
of population indices for the species in year t . The scalars rt are indices of mean
Sahel rainfall during the wet season (June–October) in year t . The amount of rainfall
here serves as a surrogate for availability of food and water for the populations
during the winter, which in turn might affect winter survival (Peach et al. 1991).
The process disturbance variance matrix Σ was constrained to be diagonal with
entries σ 2

i on the diagonal. We consider two models for the observation disturbance
variance matrix Ω . In the first Ω is allowed to be non-diagonal and all elements
of the matrix are estimated. In the second model Ω is constrained to be diagonal,
meaning that we have a set of four independent models for the species.

Based on the above definition, the process part of the model for species i can be
written as:

xit+1 = ai + bi xit + cirt + ηi t ,

where subscripts i refer to element i of the vectors. Thus the processes are AR(1)-
processes with covariates and since the model is defined for the log of the data, this
can be seen as a Gompertz model for the population dynamics (see e.g. Royama
1992).

The quantities 1 − bi in the Gompertz model can be interpreted as measures
of density dependence in growth. The log-linearity of the process guarantees that
the coefficients bi are invariant to multiplying the population process exp(xi ) by a
constant. More specifically, if

Nt+1 = exp(xt+1) = exp(a + bxt + ηt ) = N b
t exp(a + ηt ),

and the population size is rescaled to an index Mt = k Nt , then

Mt+1 = k Nt+1 = (k Nt )
b exp(a + (1 − b) ln k + ηt ) = Mb

t exp(a′ + ηt ),
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where a′ = a+(1−b) ln k. Hence, the parameter b can be interpreted as a measure of
density dependence regardless of the value of the constant of proportionality implied
by the index interpretation of exp(xi ). The parameter a on the other hand depends
on the constant and is thus of little interest to us. A critical assumption of the model
is that k, the proportionality constant linking the trapping numbers to the “true”
population size is constant through time. In fact, the same interpretations of the
model parameters hold if the assumption is lightened by letting ln k be independent
and identically distributed according to a normal distribution since the terms then
can be seen as a part of the disturbance terms ηt . If however k is not independent
over time or if k depends on population size it might well affect estimates of e.g.
density dependence and abundance indices.

For the seasonal model, both spring and autumn trapping numbers are included
simultaneously. We let ya

t be vectors containing the log of autumn trapping numbers
for the four species and ys

t be vectors containing the log of the spring trapping
numbers. Using sub- and superscripts b and w referring to breeding and winter
season respectively and sub- and superscripts a and s referring to autumn and spring,
the model is defined as:

ya
t = xa

t + εa
t , εa

t ∼ N (0,Ωa) (3)

xa
t = ab + Bbxs

t + ηb
t , ηb

t ∼ N (0,Σb)

ys
t = xs

t + εs
t , εs

t ∼ N (0,Ωs) (4)

xs
t = aw + Bwxa

t−1 + rt−1cw + ηwt , ηwt ∼ N (0,Σw).

In the same way as for the seasonal model, the vectors ab, aw and cw contain
species specific parameters and the matrices Bb and Bw are diagonal with species
specific autoregressive parameters for measuring seasonal density dependence.
Again, two versions of observation disturbance variance matrices are considered,
in the first these are non-diagonal and in the second they are diagonal. The process
disturbance variance matrices are diagonal. This model is also included in the
general definition in (1), but here the index t refers to year.

Similarly to the non-seasonal model, exp(xs
t ) and exp(xa

t ), should be interpreted
as indices of spring and autumn population sizes respectively. However, since it may
well be that different populations or parts of populations pass the observatories in
spring and in autumn respectively, the spring and autumn indices may not share the
same constant of proportionality to the “true” population size. In the same way as
above, the parameters bw and bs are invariant to multiplying the population time
series by a constant.

To try to validate the assumption of correlated observation disturbances we
compared the estimated correlation matrices of the observation disturbances to a
heuristic estimate calculated from the amount of overlap in migration between the
species. The sum of daily catches over the years from 1950 to 2005 for each species
was divided by the total number of catches for the species. The heuristic estimate
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Fig. 1 Autumn phenology curves for whitethroat (solid line) and redstart (dashed line) and the
amount of overlap in migration period (shaded area)

of the correlation was then computed as the area under the overlap of the curves
(Fig. 1). The correlation of the observation disturbances between species i and
species j was estimated as the posterior mean of element (i, j) of the Ω matrix
divided by the square root of the product of the posterior means of the elements
(i, i) and ( j, j) of the same matrix.

2.3 Priors

The model was fitted to data from 1960 to 2005 for Ottenby and from 1977 to
2005 for the Courish Spit. The state vectors of the seasonal model were initialised
by putting normal priors on xs

i1 with means equal to the mean of the log of spring
data between 1950 and 1959 and with prior standard deviations set to 1.5 times the
empirical standard deviations over these periods. Analogous priors were used for
the initial states of the non-seasonal models. Courish Spit data between 1957 and
1976 was used as prior information for the initial state of the model of the Courish
Spit data.

For the other parameters we used vague priors (given below) since there was
no obvious a priori information available. To improve convergence of the Gibbs
sampler (see Section 2.5), the regression was centred around mx = 5, i.e. the model
in (2) was reparametrised as

xt+1 = a′ + B ′(xt − mx 1) + rt c + ηt ,

where 1 is a vector of ones. This parametrisation gives the same interpretation of
B ′ as of B. The components of the regression parameter vectors a′ and c were
then given independent N (0, 100)-prior distributions. When |b′

i | > 1, the model is
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non-stationary and there is no reason to expect extreme non-stationarities of the
population indices. The autoregression parameters b′

i were therefore given slightly
more informative N (0, 10)-priors. The stationarity argument does not translate
directly to the seasonal model in 3, but to simplify comparisons between the models
we used the same priors for the corresponding parameters a′

b, a′
w, b′

b and b′
w.

For the variances of the observation and state disturbances, the information in
the data on separating the two can be low (Dennis et al. 2006). Therefore, if there is
no prior information on the relative size of these it is desirable to give them similar
priors. The variances of the state disturbances, σ 2

i , were given conditionally conju-
gate improper inverse gamma distributions with shape parameter 0 and inverse scale
parameter 0.01, I G(0, 0.01) (Fig. 2). In the models with diagonal observation error
variance matrices, Ω , the elements on the diagonal were also given I G(0, 0.01)-
priors. When the matrices Ω , Ωs and Ωa were allowed to be non-diagonal we gave
them improper inverse Wishart priors with 3 degrees of freedom and scale matrix
0.02I where I is the identity matrix. Since the marginal distribution of the elements
on the diagonal of a matrix having an inverse Wishart distribution with scale matrix
V of size p× p and ν degrees of freedom is an I G((ν− p+1)/2, Vii/2)-distribution,
the marginal prior distributions for the elements on the diagonal then also corre-
spond to I G(0, 0.01)-distributions.

We analysed sensitivity to priors by changing the prior distribution for the
σ 2

i parameters to an improper I G(−0.5, 0.001) distribution and at the same time
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Fig. 2 The pdf (scaled) of the prior distribution of the standard deviations of the observation and
process disturbances (black line) and of the alternative prior used for sensitivity analysis (grey
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distributions on the variances respectively
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changing the parameters of the inverse Wishart distribution to 2.5 degrees of
freedom and scale matrix equal to 0.002I . In this way the priors on the variances
of the process disturbances and on the variances of the observation disturbances
are kept identical. The I G(−0.05, 0.001) distribution on the variances is close to
a uniform distribution on the standard deviations except that it has low support for
small values (Fig. 2). It also lacks the peak of the I G(0, 0.01) probability density
function.

2.4 Goodness of Fit

Bayesian p-values build on some measure of discrepancy between the model and
data and is the posterior probability that a replicate data set yields a larger value of
this measure. We used the deviance, i.e.

D(y, θ ) = −2 log fY |θ (y)

where fY |θ (y) is the likelihood of the data given the vector θ containing the regres-
sion parameters and the parameters of the variance matrices of the observation and
process errors, as a measure of discrepancy. The likelihood was computed using the
Kalman filter (see e.g. Durbin and Koopman 2001).

Goodness of fit was also checked by analysing the residuals of the models. Resid-
uals in the state space model, ε̂ and η̂, can be defined as the expected value of ε and
η given the data and given the parameters θ equal to their posterior marginal mean.
The residuals were analysed by computing their correlation, autocorrelation and by
qq-plots.

2.5 Fitting the Models

The model was fit by implementing a Gibbs sampler in the program Matlab. In
each iteration of the sampler, all the state vectors xs

t and xa
t were updated simulta-

neously using the Kalman simulation smoother of Durbin and Koopman (2002).
All the regression parameters a, b and c for all species and both seasons were
updated as a block according to their multivariate normal conditional posterior.
The inverse Wishart prior is conditionally conjugate for the observation variance
matrices Ω . When these matrices were allowed to be non-diagonal, they were
therefore updated by simulating a draw from the inverse Wishart posterior. For the
diagonal variance matrices, each diagonal element was updated with a draw from
the inverse gamma conditional posterior. The Gibbs sampler for the non-seasonal
models was constructed in a similar manner but is even more simple since the
regression parameters a, b and c then are the same for each time step of the state
space model.

The sampler was run with a single chain for half a million iterations where the
first 20,000 iterations were discarded as burn. Every 20th value of the output was
then used as a draw from the posterior. Convergence and mixing of the MCMC’s
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were investigated by looking at trace plots and autocorrelation functions of the
thinned chains. Visual inspection revealed no sign of poor mixing and all autocor-
relations of the thinned chains were below 0.15 at lag 5. All chains seemed to have
converged after just a few iterations.

Starting values of the MCMC were chosen at least a small distance away from
the expected region of high posterior density. Specifically, the state vectors were
initialised to 1 for all species, all the regression parameters, a, b and c were initially
set to 2 and all variance matrices were initialised as identity matrices.

Although we have not done so, we believe all our models could be imple-
mented and fit in e.g. the program WinBUGS if the priors on the variance matrices
are changed to proper ones. The non-seasonal model with uncorrelated observa-
tion disturbances is especially simple and parameter estimates can be obtained
using maximum likelihood or REML methods (see e.g. Dennis et al. 2006). These
methods can probably also be used for estimating parameters of at least some of our
more complex models.

3 Results

Unless otherwise stated, the results below refer to the Ottenby data. Tests always
refer to the informal test of whether or not 95% credible intervals contain the value
of the null hypothesis. Estimates of abundance indices from the non-seasonal model
on autumn catches with observation disturbances allowed to be correlated across
species are shown in Fig. 3. A comparison with estimates from spring catches
(Fig. 4) shows that on a coarse (long term) scale, the indices for the two data
sets have similar tendencies with sample correlations 0.8, 0.6, 0.3 and 0.5 for
redstart, whitethroat, garden warbler and lesser whitethroat respectively. (Note that
the sample correlations should be interpreted with care as the indices are autocorre-
lated.) The estimated whitethroat indices show declines in the early 1970 and 1980s
which roughly coincide with droughts in the Sahel area. Declines in numbers of
whitetroats following these droughts have been reported in the UK. A decline by the
time of the first drought was reported for redstarts in the UK (Gibbons et al. 1993)
and the indices derived here decline at about the time of the start of the drought
in the late 1960s but this result is weaker than for the whitethroat indices. Any
trends in the garden warbler and lesser whitethroats indices are less clear although
there was a drop in autumn catches of lesser whitethroats in the early 1970s and
a sudden drop in both spring and autumn catches of garden warblers around 1990.
The regression coefficient for Sahel rainfall, c, is only significantly larger than zero
in the model of whitethroat autumn data (Table 1). Estimates of parameters repre-
senting density dependence, b, all had wide credible intervals that don’t allow us to
make any comparisons between species or seasons (Table 1). However, the credible
intervals of b for whitethroat and garden warbler are well separated from one. Since
b equal to one represents density independence this could be an indication of some
degree of density dependence, but because of the wide credible intervals we avoid
drawing any firm conclusions.
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Fig. 3 Posterior mean abundance indices from the non-seasonal model of Ottenby autumn data
(black lines) with 95% credibilty bands (dotted lines). The circles denote the observed data

1960 1970 1980 1990 2000
0

100

200

300

400

500

600

700

800

T
ot

al
 s

pr
in

g 
co

un
t

Redstart

1960 1970 1980 1990 2000
50

100

150

200

250

300

350

Common whitethroat

1960 1970 1980 1990 2000
0

50

100

150

200

250

300

Year

T
ot

al
 s

pr
in

g 
co

un
t

Garden warbler

1960 1970 1980 1990 2000
0

100

200

300

400

500

600

700

Year

Lesser whitethroat

Fig. 4 Posterior mean abundance indices from Ottenby spring data (black lines) with 95% credi-
bility bands (dotted lines). The circles denote the observed data
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Table 1 Parameter estimates and 95% credibility intervals for the non-seasonal models applied
to autumn and spring data at Ottenby and to autumn data at the Courish Spit. Estimates of the
square root of the elements on the diagonal of the observation disturbance variance matrix Ω are
denoted ωi . Indices refer to redstart, r , whitethroat, w, garden warbler, g, and lesser whitethroat l.
All models in the table have correlated observation disturbances

Parameter Ottenby spring Ottenby autumn Courish spit autumn

p-value 0.62 0.51 0.51

br 0.58 (−0.06, 0.96) 0.63 (0.20, 0.94) 0.24 (−0.45, 0.76)
bw 0.25 (−0.63, 0.82) 0.11 (−0.27, 0.45) 0.35 (−0.17, 0.78)
bg 0.13 (−0.26, 0.51) –0.30 (−0.90, 0.22) 0.02 (−0.52, 0.54)
bl 0.57 (−0.27, 0.98) 0.43 (−0.11, 0.93) 0.65 (0.11, 1.07)

cr 0.08 (−0.05, 0.22) 0.10 (−0.03, 0.24) –0.19 (−0.48, 0.08)
cw 0.07 (−0.05, 0.20) 0.27 (0.15, 0.39) 0.05 (−0.21, 0.32)
cg –0.17 (−0.44, 0.09) –0.01 (−0.26, 0.25) –0.18 (−0.50, 0.12)
cl 0.02 (−0.10, 0.17) 0.13 (−0.01, 0.28) –0.13 (−0.47, 0.19)

σr 0.22 (0.07, 0.40) 0.24 (0.08, 0.41) 0.37 (0.23, 0.58)
σw 0.16 (0.07, 0.28) 0.20 (0.09, 0.29) 0.42 (0.22, 0.62)
σg 0.57 (0.41, 0.75) 0.36 (0.12, 0.55) 0.41 (0.13, 0.66)
σl 0.19 (0.08, 0.32) 0.22 (0.10, 0.34) 0.41 (0.13, 0.66)

ωr 0.39 (0.25, 0.52) 0.32 (0.19, 0.42) 0.41 (0.17, 0.69)
ωw 0.34 (0.24, 0.45) 0.23 (0.13, 0.33) 0.35 (0.14, 0.61)
ωg 0.39 (0.19, 0.62) 0.48 (0.30, 0.68) 0.50 (0.24, 0.78)
ωl 0.42 (0.30, 0.56) 0.34 (0.23, 0.47) 0.45 (0.18, 0.76)

When combining spring and autumn data in the seasonal model, the derived
indices appear more similar to the indices from the non-seasonal model of autumn
data than to the indices from the non-seasonal model of spring data (Fig. 5). This
indicates that the information in the spring data is less than the information in
the autumn data in agreement with a belief that spring ringing figures at Ottenby
are more dependent on local weather than autumn figures (Hjort and Lindholm
1978). Estimates of the regression coefficients on standardised Sahel rainfall, ci ,
are qualitatively similar between the seasonal and the non seasonal models with a
positive effect for whitethroat (Table 2). There is however a stronger indication of
a positive effect of Sahel rainfall for redstart in the seasonal model even though
it is barely significantly larger than zero. As for density dependence the credible
intervals are still very wide and not much can be said about differences between
seasons. The whitethroat estimates of b are however lower in the winter season than
in the breeding season although this is not significant at the 95% level. We therefore
leave it as a hypothesis that whitethroats are more strongly regulated by density
dependence in the period between leaving and arriving at the breeding grounds than
in the period spent at the actual breeding grounds. As an indication of whether or
not the combined model improved abundance indices we summed the lengths of the
95% credible intervals of the log abundance indices xit for each species across time
for spring and autumn indices separately. This was done for both the seasonal and
the non-seasonal models. We then computed the percent reduction of these summed
totals for the seasonal model compared to the non-seasonal models. The total lengths
of the log spring index credible intervals were reduced by 10, 15, 13 and 9 percent
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Fig. 5 Posterior mean abundance indices from the seasonal model of Ottenby data with 95%
credibility bands (dotted lines). Grey lines denote spring indices and black lines denote autumn
indices

for redstart, whitethroat, garden warbler and lesser whitethroat respectively. The
analogous reductions in autumn were 6, 1, 9 and 4 percent. Hence in this sense the
seasonal model performes slightly better than the non-seasonal models. The fact that
the reduction is larger for the spring indices also supports the conclusion above that
the spring data are less informative.

The reduction in total length (both spring and autumn) of log abundance cred-
ible intervals when moving from the seasonal model with independent observation
disturbances to the seasonal model with correlated observation disturbances are
9% for redstart, 4% for whitethroat, 30% for garden warbler and 22% for lesser
whitethroat.

The agreement between SBBS-indices and indices from the non-seasonal model
of spring and autumn data is weak (Fig. 6). Sample correlations between SBBS-
indices and autumn indices from the non seasonal model were 0.4, 0.2, −0.1 and 0.1
for redstart, whitethroat, garden warbler and lesser whitethroat. For indices from the
non-seasonal model of spring data these correlations were 0.5, 0.3, 0.1 and 0.2. For
the redstart, both the SBBS and our indices indicate a decline in the early 1980s but
that is much more marked in the former. For the whitethroat no decline at all at this
point is seen in the SBBS indices. A noticeable feature is that a sudden sharp decline
in whitethroats in 1991 occurs in both autumn data at Ottenby and in the SBBS-
indices and is further consistent with a drop in the British CBC-indices (Gibbons
et al. 1993).
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Table 2 Parameter estimates with 95% credible intervals for the seasonal model with correlated
and uncorrelated∗ observation disturbances applied to data from Ottenby. First indices refer to
breeding season b, winter seasonw, spring observation s and autumn observation a. Second indices
refer to species as in Table 1.

Seasonal model Seasonal model∗ Prior sensitivity

p-value 0.60 0.68 0.66

bbr 0.72 (0.39, 1.13) 0.88 (0.38, 1.50) 0.68 (0.33, 1.13)
bbw 1.05 (0.56, 1.79) 1.33 (0.65, 2.38) 1.08 (0.52, 1.99)
bbg 0.28 (0.01, 0.54) 0.46 (−0.12, 1.50) 0.27 (0.01, 0.53)
bbl 0.62 (0.19, 1.14) 0.57 (−0.39, 1.98) 0.55 (0.15, 1.04)

bwr 0.92 (0.42, 1.49) 0.81 (0.36, 1.41) 0.83 (0.32, 1.48)
bww 0.20 (−0.13, 0.60) 0.22 (−0.04, 0.57) 0.16 (−0.15, 0.55)
bwg −0.03 (−0.73, 0.65) 0.26 (−0.83, 1.89) −0.01 (−0.60, 0.54)
bwl 0.68 (0.10, 1.55) 0.14 (−1.25, 1.67) 0.70 (0.08, 1.76)

cwr 0.13 (0.00, 0.27) 0.09 (−0.02, 0.23) 0.14 (0.00, 0.31)
cww 0.19 (0.09, 0.31) 0.17 (0.07, 0.29) 0.19 (0.08, 0.31)
cwg −0.10 (−0.34, 0.15) −0.12 (−0.37, 0.12) −0.10 (−0.35, 0.16)
cwl 0.10 (−0.03, 0.24) 0.09 (−0.08, 0.25) 0.10 (−0.04, 0.25)

σbr 0.18 (0.07, 0.35) 0.18 (0.06, 0.40) 0.21 (0.04, 0.41)
σbw 0.16 (0.07, 0.25) 0.17 (0.07, 0.29) 0.17 (0.05, 0.27)
σbg 0.40 (0.17, 0.54) 0.31 (0.08, 0.62) 0.43 (0.27, 0.56)
σbl 0.16 (0.07, 0.28) 0.23 (0.07, 0.44) 0.17 (0.05, 0.30)

σwr 0.18 (0.07, 0.35) 0.15 (0.06, 0.33) 0.21 (0.04, 0.41)
σww 0.14 (0.07, 0.24) 0.13 (0.06, 0.22) 0.15 (0.05, 0.26)
σwg 0.61 (0.46, 0.79) 0.49 (0.12, 0.79) 0.63 (0.49, 0.81)
σwl 0.20 (0.09, 0.31) 0.22 (0.07, 0.47) 0.23 (0.08, 0.34)

ωsr 0.38 (0.26, 0.50) 0.39 (0.27, 0.51) 0.37 (0.22, 0.51)
ωsw 0.35 (0.27, 0.45) 0.36 (0.28, 0.46) 0.36 (0.27, 0.46)
ωsg 0.31 (0.13, 0.53) 0.42 (0.09, 0.75) 0.30 (0.10, 0.53)
ωsl 0.41 (0.30, 0.53) 0.38 (0.12, 0.55) 0.40 (0.28, 0.53)

ωar 0.33 (0.21, 0.44) 0.32 (0.15, 0.45) 0.31 (0.16, 0.44)
ωaw 0.23 (0.14, 0.34) 0.18 (0.07, 0.31) 0.22 (0.13, 0.33)
ωag 0.41 (0.24, 0.62) 0.43 (0.10, 0.68) 0.39 (0.21, 0.60)
ωal 0.36 (0.25, 0.47) 0.31 (0.09, 0.49) 0.36 (0.25, 0.49)

Estimated abundance indices for the Courish Spit data show a quite different
picture than the Ottenby estimates (Fig. 7). There is e.g. a decreasing trend in the
lesser whitethroat and a drop in the number of whitethroats in the mid 1990s. No
clear effect of Sahel rainfall is found for the Courish Spit data (Table 1). Credibility
intervals for the parameter estimates are in most cases too wide to allow for compar-
isons with estimates from Ottenby data but, except for the garden warbler, estimates
of state disturbance variances are less precise for the Courish Spit data.

A comparison between the heuristic correlation estimate and the estimate from
fitting the seasonal model with correlated observation disturbances (Table 3) reveals,
especially in autumn, a close agreement between the two. The estimates from the
model are in general higher than the heuristic estimates, but sample correlations
between the off diagonal correlation estimates were 0.99 in autumn and 0.76 in
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Fig. 6 Indices from the Swedish breeding bird survey (solid line) and from the non-seasonal model
of data from Ottenby in spring (dotted line) and autumn (dashed line). The indices are scaled to
have mean equal to one for the given time period

spring. A good estimate of the overlap in trapping season between the species can
thus be computed from just total annual catches.

P-values did not indicate signs of bad fit for any of the models (Tables 1
and 2). Analysis of residuals showed that the model with correlated observation
disturbances in total had somewhat less correlation and autocorrelation of the resid-
uals than the model with independent observation disturbances. Also, the observa-
tion disturbance residuals of the seasonal model show that the fit is worse for spring
than for autumn data (Fig. 8). None of the autocorrelations of the residuals at lag 1
were larger than 0.2 but correlations between residuals for different species were in
some cases larger than expected. This was true for all of the models we considered.

Table 3 Estimates of correlations in observation disturbances from the seasonal model and the
heuristic estimate. Upper right triangles show estimates from spring data and lower left triangles
from autumn data

Model estimate Heuristic estimate

r w g l r w g l

r 1.00 0.60 0.64 0.84 1.00 0.67 0.50 0.84
w 0.51 1.00 0.79 0.83 0.39 1.00 0.77 0.79
g 0.76 0.73 1.00 0.76 0.69 0.62 1.00 0.62
l 0.66 0.84 0.85 1.00 0.57 0.77 0.82 1.00
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Fig. 7 Posterior mean abundance indices from autumn data at the Courish Spit spring (black lines)
with 95% credibility bands (dotted lines). The circles denote the observed data

A reason for this might for example be that the correlations or variances of the
disturbances are not constant through time as we assume in our models.

Residual analysis for the Courish Spit data also show a worse fit than Ottenby
data for at least whitethroat and lesser whitethroat, which are the species that are
caught in lowest numbers. Using the log of total counts is not very appropriate
when counts are small and an overdispersed Poisson model of observations could
have been a better alternative here.

4 Discussion

The linear dynamics derived from our state space model of trapping data is presum-
ably a mix of “true” variation in population abundance, of weather dynamics or
other external forces that influence migration patterns and of trapping probabilities
and possibly also of dynamic changes in migratory routes. The relative influence of
these processes determines the amount of information available in the data and the
relevance of the data as indicators of population size. It is however hard to assess this
amount of information unless there is a close agreement between analyses of various
kinds of data at several locations. Different methods of recording and analysing
data may give rise to different kinds of bias and geographically (or temporally)
separated populations may experience different conditions that cause differences in
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Fig. 8 Qq-plots of observation disturbance residuals for spring (grey circles) and autumn (black
crosses) for the seasonal model with correlated observation disturbances

dynamics. The rough agreement between spring and autumn indices from Ottenby
may thus indicate that there is a relation to changes in abundance but let alone can
not exclude the possibility of e.g. dynamical changes in catching probabilities. The
lack of agreement between indices from Ottenby, the Courish Spit and the SBBS on
the other hand can not be taken as more than an indication that some of the indices
are not very precise as there may well be differences in both breeding and wintering
locations of the populations passing the stations. What can be done using statistical
analyses of ringing figures is to set limitations to what information can be extracted
from the data. This is exemplified by the fact that autoregressive parameters in our
model could not be estimated with any reasonable degree of precision.

The good agreement between the heuristic estimates of correlations in observa-
tions and the matrices estimated from the model (Table 3) indicates that the assump-
tion of correlated observation disturbances and independent population dynamics
is reasonable. The relatively high variance of these disturbances in turn show that
catches are highly dependent on extrinsic factors which has been hypothesised
before (Svensson 1978). Ignoring effects of correlated measurement errors could
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cause the dynamics between species that migrate during the same time period to
appear overly coherent, if for no other reason, simply because the sample size is
overestimated. There is not much sign of such an effect in this analysis but it is
important to be aware of the correlations in the data, not only when analysing popu-
lation dynamics or population sizes but in all analyses relying on ringing figures
(e.g. analyses of phenology). We expect that the high correlation in catches is not a
special feature of the Ottenby and Courish Spit data but rather is common in counts
of populations during migration.

Despite the high variance in observation disturbances, there are still hints that
there is some valuable information in the data, at least for some species. There
is support for a positive effect of Sahel rainfall on between year fluctuations
in abundance indices for whitethroats and weak support for the same effect on
redstarts. Visual inspection of the abundance indices for redstart and whitethroat
show declines following the Sahel droughts and give some support for the possibility
of picking up clear population trends in the data for some species. When the purpose
is to produce visual population trends, the state-space modelling approach could be
used to produce more smoothed estimates than the ones given here. For example, a
local linear trend model (Durbin and Koopman 2001) could be used instead of the
autoregressive model.

Our analyses give some support to the view that spring catches at Ottenby are less
informative about population sizes than autumn catches (Hjort and Lindholm 1978).
The location of Ottenby at the southern tip of Öland may influence the dynamics of
spring and autumn catches differently. In autumn, migrating birds may use Öland
as a lead line on their southward migration whereas no such lead line is available
for birds passing Ottenby in spring (Stervander et al. 2005). This can lead to spring
catches being more dependent on local weather conditions (Hjort and Lindholm
1978).

Due to the high variance in observation disturbances, we believe that ringing
figures from bird stations are not very suitable for picking up even drastic changes in
population abundances. However, long term ringing figures on migrating birds from
bird stations with carefully standardised trapping methods might in some cases be
useful in recovering long term trends and biological information but any conclusions
from such analyses need to be confirmed by independent data.
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Contribution of Capture-Mark-Recapture
Modeling to Studies of Evolution
by Natural Selection

Emmanuelle Cam

Abstract Capture-Mark-Recapture (CMR) modeling is one of the most commonly
used estimation methods in population ecology of wild animals. Until recently,
much of the emphasis of this method was on the estimation of abundance and
survival probability. Despite common interest in estimation of such demographic
parameters, evolutionary ecologists have often been more critical of CMR esti-
mation methods than wildlife biologists, mostly because the available models did
not allow investigators to address what is at the heart of evolutionary ecology.
Evolutionary ecology aims at explaining biological diversity: studies in this area
of research necessarily involve assessment of variation in traits among individuals,
including fitness components. The main limitation of early CMR models was the
inability to handle states among which individuals move in a stochastic manner
throughout life (e.g., breeding activity and number of offspring raised, locations,
physiological states, etc.). Several important advances have enhanced ecologists’
ability to address evolutionary hypotheses using CMR data; namely multistate
models and models with individual covariates.

Recently, methodological advances have allowed investigators to handle random
effects models. This is bringing CMR models close to modern statistical models
(Generalized linear mixed models) whose use is rapidly increasing in quantitative
genetics. In quantitative genetics, the animal model aims at disentangling sources
of phenotypic variation to draw inferences about heritability of any type of trait
(morphological, demographic, behavioral, physiological traits). The animal model
partitions variation in the trait of interest using variance components. Understanding
evolution by natural selection and predicting its pace and direction requires under-
standing of the genetic and environmental influences on a trait. Phenotypic char-
acteristics such as morphological or life-history traits (i.e. demographic parameters
such as number of offspring raised and survival probability) are likely to be influ-
enced by a large number of genes, the genetic basis of which can be quantified
via statistical inferences based on similarities among relatives in a population. The
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extent of evolutionary responses in a quantitative trait is assumed to be proportional
to the force of natural selection and heritability of a trait. Estimating the genetic
basis of quantitative traits can be tricky for wild animal populations in natural
environments: environmental variation often obscures the underlying evolutionary
patterns. However, this genetic basis of traits is at the heart of natural selection,
and recently there has been increased interest in applying the animal model to
natural populations to understand their evolutionary dynamics. Such models have
been applied to estimation of heritability in life history traits, either in the rare study
populations where detection probability is close to 1, or without considering the
probability of detecting animals that are alive and present in the study area (recap-
ture or resighting probability). Applications of the animal model to demographic
parameters (fitness components) such as survival, breeding probability or to lifetime
reproductive success in wild animal populations where detection probability is < 1
require trans-disciplinary efforts; this is necessary to address evolutionary processes
in such populations.

Keywords Capture-mark-recapture · Dispersal · Evolution · Fitness functions ·
Heritability · Life history theory

1 Introduction

Approaches to estimating demographic parameters using capture-mark-recapture
data while accounting for incomplete detection of individuals by investigators
during sampling sessions have tremendously diversified over the past 20 years
(CMR estimation models; reviewed in Williams et al. 2002). Early efforts in devel-
opment of CMR models have been directed mostly to estimation of abundance and
survival probability, but recent advances now allow investigators to estimate other
population vital rates such as breeding and recruitment probability, or movement
probability among units of fragmented populations, temporary emigration, etc. (e.g.,
Spendelow et al. 1995, 2002; Pradel 1996; Pradel and Lebreton 1999; Oro and
Pradel 2000; Schwarz and Arnason 2000, 2001; Schwarz and Stobo 2000; Nichols
et al. 2000; Lindberg et al. 2001; Kendall and Bjorkland 2001; Lebreton et al. 2003;
Reed et al. 2004; Barbraud and Weimerskirch 2005; Cam et al. 2005; Crespin et al.
2006; Hadley et al. 2006; Martin et al. 2006). In other words, CMR models allow
estimation of the main parameters governing demographic processes. In addition,
CMR models are now increasingly used to address community vital rates (e.g.,
species extinction or colonization probability; Nichols et al. 1998 a, b; Williams
et al. 2002), and vital rates specific to large-scale features of species distribution
(e.g., site occupancy models, MacKenzie et al. 2006). Recent technical advances
relevant to the particular field of evolutionary ecology are extensively explained in
Conroy (2008, this volume).

Recent CMR models aimed at estimating demographic parameters have two
important features: (1) an increased variety of population vital rates can be estimated
(provided appropriate sampling design), and (2) an increased degree of stratification
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of populations can be achieved (i.e., classes in which individuals stay permanently
or temporarily, or individual attributes) and stratum-specific vital rates can be esti-
mated. This has partly alleviated an old tension between biologists and statisticians,
the former blaming the latter for designing estimation methods corresponding to
unrealistically simple populations or biological systems, the latter doubting that
appropriate data could ever be collected to match the requirements of complex
models (i.e., appropriate sampling design and large sample sizes in all strata within
populations). Moreover, development of software programs and documentation has
considerably facilitated access to CMR estimation techniques for biologists (some
examples of software used in ecology, in alphabetical order: CAPTURE: White et al.
1978; Rexstad and Burnham 1991, MARK: White and Burnham 1999; Cooch and
White 2007, MSURGE: Choquet et al. 2003, MSSURVIV: Hines 1994, POPAN:
Arnason et al. 1998, SURGE: Clobert and Lebreton 1985; Lebreton and Clobert
1986, SURPH: Smith et al. 1994, SURVIV: White 1983). From the viewpoint of an
evolutionary ecologist, an enormous stride has been made with the development of
multistate models (e.g., Nichols and Kendall 1995). This was a first step towards
accommodation of a pervasive property of the history of individuals in long-lived
species: individuals change state (location, social or physiological state, etc.) in a
stochastic manner.

CMR field techniques have long been popular among biologists (especially in
studies of birds, small and large mammals, or fish). They have been widely used
to estimate demographic parameters, but the corresponding statistical approaches
disentangling sampling processes and demographic ones have not always been
used (Martin et al. 1995). Not all the fields of ecology have taken full advantage
of the potential that new CMR estimation models offer. The Proceedings of the
1994 EURING conference held at Patuxent Wildlife Research Center (Laurel, MD,
U.S.A.) include a paper entitled: “Capture–recapture and evolutionary ecology: a
difficult wedding?” (Clobert 1995; see also Clobert 2002). Despite the regular pres-
ence of researchers involved in evolutionary ecology studies at EURING meetings
and the recent advances in CMR methodology applied to evolutionary studies,
analytical tools that estimate demographic parameters of wild animal populations
while accounting for imperfect detection of individuals do not seem as widely used
in this field as in other fields of ecology, especially wildlife ecology and conserva-
tion biology. This probably partly results from differences in history and educational
practices.

Although mathematics and statistics play an important part in education for
evolutionary ecologists (e.g., Charlesworth 1994; Lynch and Walsh 1998; Caswell
2001), as far as estimation is concerned (e.g., genetic parameters; Lynch and Walsh
1998) analytical tools used typically do not account for the sampling processes that
are specific to studies of wild animal populations, more precisely, incomplete detec-
tion of individuals (Martin et al. 1995). This may not be a problem for traits whose
phenotypic values are independent of detection probability, but the assumption that
the sample of captured or resighted individuals and the sample of undetected indi-
viduals have identical features is unlikely to be met for demographic parameters
like breeding probability after recruitment (e.g., Nichols et al. 1994), age-specific
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recruitment probability (e.g., Viallefont et al. 1995 a, b; Spendelow et al. 2002),
breeding success probability or clutch size (e.g., Yoccoz et al. 2002).

Efforts to carefully design sampling protocols specific to wild animal populations
and to master the corresponding statistical analyses (e.g., Williams et al. 2002) are
probably more common in education programs offered to students in wildlife ecology
and conservation biology than to evolutionary ecologists. There is no international
review available on the topic, but when one scans web sites detailing course sequences
offered in undergraduate and graduate programs organized by evolutionary ecology
departments, classes on CMR modeling hardly ever appear. Such classes appear
in several wildlife ecology programs offered in internationally known universities.
Because it is necessary to have accurate estimates of demographic parameters to
assess the state of populations, design efficient management plans and make deci-
sions, not accounting for sampling “biases” that have long been known (e.g., Cormack
1964; Jolly 1965, 1993; Seber 1965; Lebreton et al. 1992) may be considered more
“irresponsible” in wildlife ecology educational programs (Anderson et al. 2003) than
in others. The quantitative content of university programs for wildlife ecology may
be considered as insufficient by quantitative wildlife ecologists, but there is some
pressure in specialized scientific journals to develop quantitative skills in education
(e.g., Kendall and Gould 2002; Seber and Schwarz 2002; Anderson et al. 2003).

Because wildlife ecologists focus on wild animal populations, they are constantly
faced with the challenge of using or designing appropriate approaches for anal-
ysis. This is not true for evolutionary ecologists. The discipline differs from that of
wildlife ecology in that there are strong historic relationships with some other disci-
plines that tend to utilize experimental study systems and molecular approaches to
address the genetic basis of evolution (e.g., evolutionary biology, molecular evolu-
tion, phylogeography, population, quantitative and developmental genetics, system-
atics, etc.; e.g., Freeman and Herron 2000). Students in evolutionary ecology devote
a large proportion of time to these fields and may not be introduced to the speci-
ficity of the data and analytical tools required to conduct demographic studies in
wild animal populations (e.g., non-detection of marked individuals that are alive and
present in the study area). Nevertheless, comparative methods play an important part
in evolutionary ecology (e.g., life history evolution and evolution of morphological
traits; Promislow et al. 1992; Bennett and Owens 2002; Liker and Székely 2005)
and such studies are unlikely to be possible without using data from wild animal
populations, especially for long-lived species. Several comparative studies have
ignored the distinction between studies that have estimated demographic parameters
while accounting for incomplete detection of individuals, and those that have not,
even in situations where survival probability was the focal trait (e.g., Owens and
Bennett 1994; Liker and Székely 2005). Use of estimates of demographic parame-
ters ignoring incomplete detection of individuals may lead to erroneous conclusions.

Almost 15 years later, the answer to the question: “Capture–recapture and evolu-
tionary ecology: a difficult wedding?” (Clobert 1995) may not be unanimous in the
EURING meeting audience. Despite the slowness of integration of CMR estima-
tion models in evolutionary ecology, the range of questions relevant to evolutionary
ecology addressed in studies that have used appropriate CMR estimation techniques
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is large. In addition, recent advances in development of CMR models may open new
opportunities for evolutionary ecologists to use empirical data from wild animal
populations to address novel questions. In the following Section (2), I will address
the specificity of evolutionary ecology as a discipline. If evolutionary ecology has
generally been viewed as relevant to basic research exclusively, several researchers
are now advocating consideration of the theoretical framework of (micro-) evolution
to address questions about ecological processes and the consequences of human
influence on wild animal populations and their habitat (e.g., Ferrière et al. 2004;
Reznick et al. 2004). In Section 3, I will define natural selection, one of the corner
stones of evolutionary ecology. In this section, I will also describe how the specific
question of the evolution of demographic parameters is usually addressed. Under-
standing how natural selection is addressed in wild animal populations is necessary
to assess the features of existing CMR studies in evolutionary ecology, which I will
do in Section 4. Concerning the evolution of demographic parameters by natural
selection, up to now CMR estimation techniques have been used to address only
part of the prerequisites for natural selection. A central prerequisite, heritability,
has not been addressed. Recent advances in estimation methods used in quantitative
genetics and in methods aiming at estimating demographic parameters from CMR
data have some common features that should be useful to address heritability. In
Section 5, I will describe the method used in quantitative genetics with data from
wild animal populations to address heritability of traits (the animal model), and I
will offer suggestions concerning the type of development needed in CMR estima-
tion models to address heritability in demographic traits.

2 Evolutionary Ecology: Historical Background

There have been numerous attempts to classify the different disciplines of biology “to
deal with the enormous range of phenomena brought together under the heading of
biology” (Mayr 1997, p. 111). According to Mayr (1997), classification of disciplines
according to the type of question asked in research is one of the most logical clas-
sification systems. There are three main questions: “What?”, “How?”, and “Why?”
However, the first question, “What?”, is shared by all biological disciplines. Descrip-
tion (establishment of a “solid factual basis”) is the first step in any branch of biology.
However, “Answers to the ‘What?’ questions alone failed to produce a satisfactory
solution to the problem of how to classify the subdivisions of biology” (Mayr 1997,
p. 115). In addition, it is impossible to conduct any descriptive work without identi-
fying the object to describe. Identification of the objects on which scientific research
focuses in different biological disciplines is possible because there are specific theo-
reticalbodies.Descriptioncannotbeconductedwithout referring toa theoreticalback-
ground because no “factual basis” emerges ex nihilo, independently of the hypotheses
and theories. Consequently, answers to the “What?” question depend on identification
of biological disciplines using other criteria.

Answers to the “How?”, and Why?” questions provide a more efficient basis
for classification of biological disciplines – a distinction that appeared in 1870 in
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debates among biologists. Biology has considerably diversified since then, but a
fundamental distinction between disciplines has survived, even if this classification
system has its problems. The main distinction between these two types of questions
lies in the type of causes invoked to explain biological phenomena. Proximate causes
allow investigators to explain the functioning of biological entities “here” and “now”
(answers to the “How?” question). Conversely, ultimate causes allow investigators
to explain observed phenomena in the light of the history of life and evolutionary
theory (answers to the “Why?” question). “Why?” questions usually relate to adap-
tation or organic diversity (Mayr 1997, p. 118); “ultimate causes attempt to explain
why an organism is the way it is, as a product of evolution”. [. . .]. However, “no
biological phenomenon is fully explained until both proximate and ultimate causes
are illuminated”. “One of the special properties of the living world is that it has these
two sets of causations.” (p. 67).

Mayr (1997) also described ecology as the most heterogeneous and compre-
hensive field of biology, and one that is difficult to assign to one single type of
question (“How?”, or “Why?”): both types of questions are addressed. Ecologists
focusing on ultimate causes are called evolutionary ecologists (Fox et al. 2001).
According to Fox et al. (2001), “Evolutionary ecology and ecology share the goals
of describing variation in natural systems and discovering its functional basis.
Within this common framework, evolutionary biologists emphasize historical and
lineage-dependent processes and hence often incorporate phylogenetic reconstruc-
tions and genetic models in their analyses. Ecologists, while recognizant of histor-
ical processes, tend to explain variation in terms of contemporary effects of biotic
and abiotic environmental factors. Evolutionary ecology spans the two disciplines
and incorporates the full range of techniques and approaches from both”

The apparent difference between the timescales invoked in ecology and evolu-
tionary ecology may lead to the conclusion that the dichotomy is natural. However,
this traditional dichotomy may have become an obstacle to our understanding of
ecological phenomena, and this may have consequences on our ability to design
efficient conservation plans. There is growing evidence that evolutionary responses
to environmental changes can be so fast that researchers are able to witness
them both in the laboratory and in the wild (Ferrière et al. 2004; Frankham and
Kingsolver 2004; Reznick et al. 2004). Hendry and Kinnison (1999) suggested that
rapid microevolution is the norm in contemporary populations confronted with envi-
ronmental change. According to Saccheri and Hanski (2006), “there is a growing
acceptance that the traditional dichotomy between ecological and evolutionary
timescales is a false one”.

3 Evolution by Natural Selection

3.1 Natural Selection

“Evolution may be defined as any net directional change or any cumulative change
in the characteristics of organisms or populations over many generations [. . .]” and
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“may occur as a result of natural selection, genetic drift, or both” (Endler 1986,
p. 5). According to Fairbairn and Reeve (2001, p. 30),

Natural selection is notoriously difficult to define. In the broadest sense, the process of
natural selection has been defined by the following deductive argument:
If there is:

(i) variation in some attribute or trait among biological entities (phenotypic variation),
(ii) a consistent relationship between the trait and fitness (a fitness function), and

(iii) descent with heritability for the trait (i.e., the variation in the trait must have a genetic
component),

Then the trait distribution will change:

(I) within generations more than expected from ontogeny alone, and
(II) across generations “in a predictable way” until an equilibrium is reached.

This definition is true to Darwin’s original description of natural selection, and was adopted
by Endler (1986) in his review of selection in natural populations. However, in addition to
being rather cumbersome, the deductive argument is flawed because conclusion (I) does
not require premise (iii) and holds for any fitness difference caused by differences in
survival (i.e., differences in fecundity alone will not cause within-generation changes in trait
distributions) In constructing a more concise and logically consistent definition of natural
selection, most authors (e.g., Lande and Arnold 1983; Futuyma 1998) prefer to distinguish
the process of natural selection occurring within generations (premise i and ii) from the
evolutionary consequences of that selection (premise iii and conclusion II)

Researchers working in different areas have used different definitions of fitness
(Endler 1986, p. 38). In life history theory, the fitness concept currently relies on
invasibility: the possibility of a rare mutant strategy to replace the strategy played
predominantly in the population (Metz et al. 1992). However, as emphasized by
Brommer et al. (2002), invasibility is not readily measured in natural populations,
and many empirical studies focus on other measures of evolutionary success. When
focusing on selection at the level of individual organisms, fitness “in its most general
sense is success in contributing descendants to the next generation” (Fairbairn and
Reeve 2001, p. 31). The definition of fitness by Endler (1986, p. 39) highlights
the direct relevance of CMR estimation models to evolutionary ecology: “Fitness
is the degree of demographic difference among phenotypes”, or a measure of the
degree of the following condition for natural selection: “a consistent relationship
between [a] trait and mating ability, fertilizing ability, fertility, fecundity, and or
survivorship”. Natural selection is based on demographic processes, and estimation
of demographic parameters is a key point in some approaches to detecting natural
selection (Endler 1986).

3.2 Evolution of Demographic Parameters by Natural Selection

Demographic parameters (i.e., age at maturity, number of offspring produced,
longevity, age-specific reproductive investment and mortality schedule, etc.) are not
only involved in the evolution of morphological, behavioral, or physiological traits
by natural selection, but they are themselves subjected to natural selection (Roff
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1992; Stearns 1992). The field of life history evolution focuses on the evolution of
demographic parameters, a class of traits also called fitness components (Stearns
1992)

Studies of the evolution of demographic parameters do not necessarily address
all the above Premises: some studies do not require Premise (ii) because they do
not involve other classes of traits than fitness components themselves. Such studies
involve two fitness components (or more), and Premise (i) concerns several compo-
nents simultaneously. In life history theory, it is assumed that there are relationships
among traits and that natural selection operates on complexes of traits: “Age-specific
survival and fecundity are not free to independently evolve, but are constrained by
physiological and ecological trade-offs” (Tatar 2001). As emphasized by Clobert
(1995), Viallefont et al. (1995a) and Cooch et al. (2002), reproductive costs and
trade-offs between life history traits are central to the theory of life history evolu-
tion (Reznick et al. 2000). The basis of physiological trade-offs (Stearns 1992) is
the following: because individuals have access to limited resources, resources allo-
cated to one trait are assumed not to be allocated to another (Principle of allocation,
Levins 1968). According to Reznick et al. (2000), “[...] it became convenient to
think of the life history as being similar to a pie divided into slices, each slice being
devoted to a different function, such as growth, maintenance, storage or reproduc-
tion. Because the pie is of fixed size, increasing the size of a given slice neces-
sarily decreases the size of another slice”. For example, individuals that raised two
offspring to independence in a given breeding occasion may not be able to invest
the same amount of energy in their own maintenance functions as individuals that
raised only one offspring, and the former may incur survival costs. Trade-offs may
also have a behavioral basis when reproductive activity is associated with increased
mortality risk because of predators or fights with conspecifics. Last, there are inter-
generational trade-offs linking parental allocation of resources to reproduction and
offspring fitness (e.g., offspring size at birth; Stearns 1992).

Trade-offs also play a central part in one of the evolutionary theories of senes-
cence: antagonistic pleiotropy (Williams et al. 2006). Antagonistic pleiotropy
assumes that “improvements early in life are purchased at a cost to later-age fitness
components” (Williams et al. 2006). Several hypotheses have been put forward
concerning the mechanisms responsible for pleiotropy (Tatar 2001), but one of
them is based on physiological trade-offs: “For instance, the allocation of lipid to
current egg production may preclude its use in cell or mitochondria cell membrane
turnover. Natural selection favors genotypes that maximize fitness within such sets
of constraints” (Tatar 2001, p. 131). Studies of antagonistic pleiotropy may address
covariation between age at maturity and at last reproduction. Here, Premise (ii) isn’t
relevant.

However, traits other than fitness components may be taken into account in
studies of life history evolution, even if the evolution of such traits isn’t the central
topic of these studies. For instance, variation in fitness components such as fecundity
(e.g., number of eggs in fish) may be intrinsically linked to variation in morpholog-
ical traits such as body size (n.b.: here fecundity describes the actual reproductive
performance; see Caswell 2001, p. 10, for an alternative definition from human
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demography). Consequently, studies of the evolution of demographic parameters
by natural selection may address Premise (ii): a consistent relationship between a
(non-demographic) trait (e.g., morphology) and fitness. However, in studies of life
history evolution involving morphological traits, the latter are usually addressed as
part of a trio including two fitness components. In the above example (fecundity and
body size), in species with delayed maturity, changes in age at maturity may result
in changes in body size, which in turn may result in changes in fecundity (Roff
2001). In other words, body size is involved in the trade-off between development
time (age at maturity) and fecundity.

4 Features of Existing CMR Studies in Evolutionary Ecology

CMR estimation models have been used in evolutionary ecology studies addressing
evolution of “non-demographic traits”. For that class of traits (i.e., morphological,
physiological, behavioral traits) CMR estimation methods have been used to address
Premise (ii), i.e., to estimate fitness components and assess fitness functions (e.g.,
Gimenez et al. 2006). Apart from estimation of fitness components, CMR estima-
tion models may be considered to address other Premises for natural selection and
Deductions I and II. For morphological, behavioral or physiological traits, the ques-
tion of whether samples are representative in studies addressing Premises (i) and (iii)
in the above definition of natural selection, or Deductions I and II, should probably
receive attention. If detected and undetected individuals have different character-
istics with respect to the trait of interest (e.g., if there is a relationship between
size or color and detection probability), then use of CMR estimation models may be
necessary to assess the distribution of trait values in populations (in this case closed-
population models may be useful to estimate the frequency of trait values). In most
studies, the observed distribution of phenotypic trait values in samples is assumed
to reflect the distribution of trait values in populations in an exhaustive and consis-
tent manner (i.e., samples are assumed to be representative of (sub-) populations).
In addition, multitrait animal models (see Section “Multitrait Models”) or random
coefficients animal models (Schaeffer 2004) can be used to address fitness func-
tions based on breeding values (a possible approach to Premise (ii)) and heritability
(Premise (iii)) of traits changing over life (e.g., body size in some mammal or snake
species, egg size in some bird species). In this case, repeated data from individuals
are needed. For continuous traits, this may raise the issue of missing individual
covariates when individuals are not recaptured or resighted (Bonner and Schwarz
2004), an area where methodological development is needed. In most studies, data
are assumed to be missing at random (e.g., missing data in growth curves).

Concerning the evolution of demographic parameters themselves, Premise
(i) (phenotypic variation and covariation between parameters) has been addressed
using CMR estimation models, as well as Premise (ii) when morphological or phys-
iological traits are assumed to be involved in the trade-offs between demographic
parameters. I am not aware of studies that have addressed Premise (iii) using CMR
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estimation models (Premise (iii) is the third condition for evolution of demographic
parameters by natural selection: heritability). Interestingly, CMR estimation models
required to address Deduction I (within-generation selection) have been developed
(Burnham and Rexstad 1993; Pledger and Schwarz 2002; Royle and Link 2002;
Royle 2007), but I am not aware of studies that have addressed the evolutionary
consequences of selection (Deduction II) for demographic parameters using CMR
estimation techniques.

Despite the relatively “limited” scope of the evolutionary ecology studies that
have used appropriate CMR estimation models (several aspects of natural selection
have not been addressed), such studies have required considerable efforts from biol-
ogists and statisticians: details of the technical advances are reviewed in Conroy
(2008, this volume). In this section, I will focus on some evolutionary ecology
studies that have accounted for incomplete detection of animals to estimate demo-
graphic parameters. This is not an exhaustive review; my goal is to provide examples
illustrating the diversity of topics addressed.

4.1 Life History Evolution

4.1.1 Trade-offs Between Life History Traits

Trade-offs are one of the topics that have been addressed in the largest proportion of
CMR studies in evolutionary ecology (e.g., Nichols et al. 1994; Nichols and Kendall
1995; Viallefont et al. 1995a, b; Cam et al. 1998; Yoccoz et al. 2002; Barbraud
and Weimerskirch 2005). In a large number cases, the studied species exhibited a
small range of reproductive investment levels (e.g., non-breeding versus a single
egg produced in birds or a single young in mammals, or only two or three young
raised; McElligott et al. 2002; Barbraud and Weimerskich 2005). In such long-term
observational studies that have retrospectively used data collected over long periods
of time, trade-offs have been addressed using few discrete categories of reproductive
investment, as opposed to continuous trade-off functions (Reekie et al. 2002). Tech-
nical development in CMR estimation methodology in the 1990’s has considerably
broadened the scope of studies aimed at detecting trade-offs. First, in iteroparous
species, the proportion of individuals breeding more than once is larger than 0,
which implies that individuals may change breeding state (i.e., breeding activity
or success; Nichols et al. 1994) over time and raise a different number of offspring
to independence on different breeding occasions. For this reason, development of
multistate models has played a central part in studies of trade-offs (Arnason 1973;
Brownie et al. 1993; Nichols and Kendall 1995; Williams et al. 2002; Conroy 2008
this volume). Several versions of multistate models have been designed to esti-
mate state-specific transition probabilities in situations where there are unobserv-
able states or where individuals are sometimes misclassified (e.g., when individuals
are erroneously considered as nonbreeders in a given sampling occasion; Kendall
and Nichols 2002; Kendall et al. 2003; Kendall 2004; Nichols et al. 2004). These
tools allow investigators to accommodate situations that are common in empirical



Contribution of Capture-Mark-Recapture Modeling to Studies 93

studies (i.e., state uncertainty). In addition, development of models allowing use of
different sources of data provides a means of improving estimates of local survival
probability by estimating permanent emigration (Burnham 1993). Indeed, unless an
additional source of data is available, estimates of local survival incorporate perma-
nent emigration out of the study area. The ability to disentangle the factors influ-
encing “true” local survival and those influencing dispersal is important for studies
of trade-offs between survival and other life history traits. Unfortunately, studies in
evolutionary ecology mostly use live captures/resightings of marked animals, partly
because study systems focusing on hunted species may be considered as “artificial”.
However, there may be situations where selective hunting may correspond to care-
fully designed experimental systems that have played a major role in development
of theory in evolutionary ecology (e.g., Mertz 1975).

Before multistate models became standard, other approaches were possible
(reviewed in Viallefont et al. 1995a); for example one may compare survival prob-
ability in individuals assumed to have identical reproductive history (e.g., first time
breeders with no prior experience). That is, groups of individuals are defined on the
basis of the number of offspring raised in the first breeding occasion, and group-
specific survival probabilities over the first year of reproductive life are compared.
Alternatively, experiments may be conducted by randomly assigning “identical”
individuals (i.e., same age, same year, same environmental condition, same prior
reproductive history etc.) to treatments (increased/decreased clutch or brood size).
The underlying assumptions are that no important factor influencing survival prob-
ability has been missed (left uncontrolled), and that the controlled factors correctly
reflect the factors involved in natura in the studied process (the factors have been
correctly identified). In some instances, recapture probability in the year following
the first breeding attempt has been compared to subsequent recapture probability
to address possible experience-related reproductive costs in terms of future repro-
duction, assuming that recapture probability reflects breeding probability to some
extent (Viallefont et al. 1995b). Last, temporary emigration has also been used as
an indicator of breeding probability (e.g., Kendall and Nichols 1995; Schmidt et al.
2002; Frétey et al. 2004).

Progressively, more complex definitions of state have been used to address the
question of trade-offs more thoroughly. More complex multistate models incorpo-
rating individual covariates have also been developed. Indeed, because individuals
vary in their ability to obtain resources, or because they live in environments with
different resource availability (Stearns 1992), reproductive costs may not be iden-
tical in every individual; i.e., some individuals may be able to invest more in repro-
duction without incurring as large costs as others, depending on their state. Here,
state may correspond to different things depending on the organism studied (e.g.,
body size, parasite load, immunological state, social dominance, experience, etc.).
State is assumed to reflect a hierarchy among individuals in their ability to acquire
resources or to use them, or simply a baseline efficiency of functions (e.g., mainte-
nance, reproduction, etc.). Detection of reproductive costs from observational data
requires comparison of fitness between individuals having different condition or
social rank but identical reproductive investment (reproductive activity and success).
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Using states combining information from reproduction and other individual charac-
teristics (e.g., experience), multistate models allow investigators to address trade-
offs in heterogeneous populations. Development of models including individual
covariates (e.g., body mass or size; Bonner and Schwarz 2004) has played a large
part in emergence of studies addressing state-specific reproductive costs and repro-
ductive tactics (e.g., Barbraud and Weimerskirch 2005).

Moreover, temporal environmental variation (i.e., variation in resource avail-
ability or density of conspecifics) may lead to time-specific variation in reproductive
costs within categories of individuals in the same state in different years (Orzack
and Tuljapurkar 2001). Assuming that individuals are able to assess resource avail-
ability in time, individuals may adjust the amount of energy allocated to functions
according to their state; i.e., there may be individual optimization (Van-Noordwijk
and de Jong 1986; Pettifor et al. 1988, 2001; Tinbergen and Both 1999). If individual
optimization occurs, only experimental approaches (e.g., Yoccoz et al. 2002) may
allow detection of trade-offs. The difficulty in designing appropriate experiments to
address trade-offs has been discussed in Cooch et al. (2002, p. 35): “Trade-offs
within an individual must be true (Tuomi et al. 1983; Emlen 1984); if an indi-
vidual is forced to expend greater energy on one activity, then this necessarily
reduces the amount of energy available for another activity. However, this does
not necessarily mean that trade-offs occur among individuals. This is important,
since natural selection operates on the additive genetic covariance among individ-
uals, not correlations within individuals”. If trade-offs are necessarily based on
physiological or behavioral mechanisms operating at the individual level (trade-
offs “within” individuals), addressing relationships between fitness components by
comparing different individuals assigned to different experimental treatments (or
naturally exhibiting different levels of reproductive investment) is addressing rela-
tionships between components expressed “among” individuals (trade-offs “among”
individuals). Comparing different individuals should allow inferences about within-
individual trade-offs if investigators can be sure that individuals are strictly identical
with respect to all traits except the ones involved in the trade-off itself, but failure to
fulfill this condition is thought to be a major reason for failure to detect trade-offs.

The process of individual optimization is assumed to lead individuals to make
decisions according to their current state. State may change over time, but there may
also be permanent differences among individuals. CMR studies have contributed
to identification of permanent differences among individuals. For example, several
studies have provided evidence of permanent differences in fitness components (e.g.,
survival probability) among individuals according to morphological traits reflecting
relative body conditions (e.g., Barbraud and Weimerskirch 2005; Blums et al. 2005).
Similarly, long-lasting cohort effects have been identified (e.g., Cam et al. 2005),
as well as a permanent influence of conditions during development on several life
history traits (e.g., Cam et al. 2003). Blums et al. (2005) have used relative time
of nesting to account for individual differences in “quality”. Experimental studies
have provided contrasting results concerning the hypothesis of individual optimiza-
tion in wild animal populations (e.g., Tinbergen and Sanz 2002; Török et al. 2004).
However, in all cases tests of this hypothesis require high levels of stratification of
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the data according to state (which may be assigned to individuals in the framework
of an experiment) and year or environmental conditions (biotic and abiotic).

Last, some of the physiological and behavioral mechanisms underlying intra-
and inter-generational trade-offs between life history traits have been investigated
using CMR estimation models. For instance, in an experimental study, Reed et al.
(2006) have addressed the relationship between survival probability and manip-
ulated testosterone level in free-living dark-eyed juncos (Junco hyemalis caroli-
nensis). Testosterone-treated males increased levels of activity and home range
size and had elevated levels of stress hormones. They exhibited increased ability
to attract females (increased ability to produce extra-pair offspring), but produced
smaller offspring with lower postfledging survival. In addition testosterone-treated
adult males had increased detectability and susceptibility to predation, which led to
lower adult survival.

4.1.2 Level at Which Natural Selection Operates and Estimation
of Demographic Parameters

Obviously, modern CMR estimation models allow evolutionary ecologists to
address a large range of questions directly relevant to fitness functions, selec-
tion, and adaptation. However, the ultimate goal of evolutionary ecologists is to
address differences in demographic parameters at the level at which natural selec-
tion operates, which is often identified as the individual level (Endler 1986). Mayr
(1997) identified a reason why evolutionary ecologists constantly press statisticians
to develop complex CMR models allowing investigators to stratify populations
according to large numbers of criteria (e.g., multistate models, models with time-
varying individual covariates; Pollock 2002). This is an irresolute tension between
the conceptual foundations of evolutionary ecology and population ecology which
was extensively discussed in Cooch et al. (2002). The community of researchers
involved in development and use of CMR estimation models is mostly composed of
researchers focusing on wildlife ecology and conservation biology, or of statisticians
who often develop models to answer questions from these same fields of ecology.
Historically, these fields have been dominated by concepts from population ecology,
which “can be tracked back to a school of mathematical demographers interested
in the growth of populations and the factors controlling it” (Mayr 1997, p. 211).
However, the population concept specific to population ecology is different from
that of evolutionary ecology. “The population concept adopted by most mathemat-
ical population ecologists was basically typological, in that it neglected the genetic
variation among the individuals of a population. Their ‘populations’ were not popu-
lations in any genetic or evolutionary sense but were what mathematicians refer to
as sets. The crucial aspect of the population concept to have emerged in evolutionary
biology, by contrast, is the genetic uniqueness of the composing individuals. This
kind of ‘population thinking’ is in sharp contrast with the typological thinking of
essentialism. In ecology, the genetic uniqueness of the individuals of a population is
usually ignored” (Mayr 1997, p. 211).
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Ideally, evolutionary ecologists would like to apply this concept of genetic
“uniqueness” of individuals to demographic parameters as well. This is because “the
ultimate context for estimation is the degree to which selection and the fitness differ-
ences upon which selection operates translates into evolutionary change” (Cooch
et al. 2002). Indeed, the individual level is assumed to be the relevant level of selec-
tion in many studies (Endler 1986). However, as Nichols (2002, pp. 49–50) pointed
out, “[. . .] the larger the number of strata, the fewer individuals in each stratum,
and the more difficult it will be to estimate stratum-specific survival probability.
[. . .] increasing stratification will yield a single individual in each stratum, with
the corresponding estimation problem analogous to that of being asked to estimate
the probability of heads from a single flip of a loaded coin. [. . .] some form of
aggregation is necessary for the conduct of science. [. . .]. If we view an individual
organism’s fate or behaviour at any point in space and time as a unique event not
capable of informing us about the likelihood of the event for other individuals or
points in space and time, then generalization and prediction become impossible.
The task of the biologist then involves simply recording and describing these unique
events and possibly developing a posteriori stories to explain them. Although such
descriptive work might be interesting, it is not consistent with most definitions of
science”.

Stratification in large numbers of discrete categories and limited sample size makes
statistical inference impossible. However, evolutionary ecologists are familiar with an
approach assuming that phenotypic traits of individuals in a population are charac-
terized by a distribution. The distribution is assessed using random individual effects
models, also called frailty models in human demography (Vaupel and Yashin 1985a,
b; Service et al. 2000; Cam et al. 2002a; Link et al. 2002a, b; Service 2004; Wintrebert
et al. 2004; Fox et al. 2006). Mixed models (Fahrmeir and Tutz 1994) are extensively
used in quantitative genetics to address the genetic basis of phenotypic values of quan-
titative traits in populations (i.e., as opposed to “qualitative traits” such as gender);
more precisely to assess their variance in populations (Lynch and Walsh 1998). Mixed
models are commonly used in human demography to address senescence (e.g., Yashin
et al. 2001; Service 2000, 2004), and they are also used in studies of behavior (e.g.,
Hernández-Lloreda et al. 2003). The motivations for the use of mixed models in these
different fields have common points: (i) incorporation in statistical models of terms
accounting for heterogeneity among individuals in the focal trait, (ii) the possibility for
dependence of individuals for trait values (e.g., incorporation of a particular variance–
covariance matrix for random effects), and (iii) assessment of the influence of specific
covariates (fixedeffects)on the traitwhileaccountingforspecificvariance–covariance
structures for random effects.

The Process of Natural Selection: Within-Generation Mortality Selection

Several long term studies have provided evidence that wild animal populations
are demographically heterogeneous (e.g., Fox et al. 2006): it has been suggested
that populations are composed of groups of individuals with a permanent hier-
archy in fitness components among individuals. Whenever measurable individual
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characteristics can be used to account for individual heterogeneity in a satisfac-
tory manner, individual covariates may be used (e.g., Blums et al. 2005). However,
studies of survival in humans have provided evidence that measurable covariates
are not always sufficient to account for heterogeneity among individuals (Hougaard
1991). In this case the hierarchy among individuals can be accounted for in discrete
time survival models by incorporating an individual random effect with mean 0 and
a variance term accounting for the distribution of individual survival probability
around the mean (Cam et al. 2002a, Link et al. 2002a, b). The mean survival prob-
ability may depend on fixed effects such as age, sex, year, birth cohort, etc. These
models assume that there are differences in underlying, or latent survival among
individuals (Cooch et al. 2002). The same approach can be used to model under-
lying differences in breeding probability or breeding success probability among
individuals.

Under the good genes hypothesis, some individuals are assumed to have a higher
breeding success probability than others, or higher survival probability, or both
(e.g., Curio 1983; Cam et al. 2002a; Link et al. 2002a, b). This is likely to have
consequences for studies of senescence or any class of age effect on demographic
parameters (Curio 1983; Vaupel and Yashin 1985a, b). In heterogeneous popula-
tions, one might expect an age-related change in the composition of the population.
The selection hypothesis accounts for the progressive concentration of individuals
with higher intrinsic survival probability in older age classes (Endler 1986), and if
there is a positive correlation between breeding success probability and survival at
the individual level, the progressive concentration of individuals with higher success
probability in older age classes (Cam et al. 2002a; Barbraud and Weimerskirch
2005; Beauplet et al. 2006). This within-generation phenotypic selection process
corresponds to Deduction I in the definition of natural selection (see Section 3.1).
Within-generation phenotypic selection is not a sufficient condition for natural
selection, but this process may explain some within-generation changes in survival
or reproductive parameters detectable in heterogeneous populations (e.g., Forslund
and Pärt 1995; Service 2004). More generally, assessment of phenotypic variation
in fitness components among individuals within populations (e.g., Fox et al. 2006)
is at the heart of studies of life history evolution by natural selection and is relevant
to studies of the evolution of traits other than age-specific life histories (Mazer and
Damuth 2001).

Senescence has been detected in a fair number of wild animal populations using
CMR estimation models (e.g., Nichols et al. 1997; Festa-Bianchet et al. 1999;
Bryant and Reznick 2004; Gaillard et al. 2004), and is common in captive birds
and mammals (Ricklefs 2000; Ricklefs and Scheuerlin 2001). Senescence has moti-
vated an enormous number of studies in humans, probably because of the econom-
ical and sociological implications of the phenomenon. In addition, senescence is
one of the most challenging paradoxes from a fundamental perspective: “Senes-
cence is an intriguing problem for evolutionary theory: can natural selection favour
an age-specific decline in fitness?” (Bennett and Owens 2002). Not all authors
agree on the occurrence of senescence in wild vertebrates. According to Williams
(1992) “Both birds and mammals have life cycles that should make them similarly
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vulnerable to the evolution of senescence, but there is little evidence that senescence
effects birds at all. Where data on avian age structures are most abundant, it usually
appears that mortality rates of young adults prevails through life. This conspicuously
violates expectation from theory” [of Hamilton 1966]. However, as emphasized
by van de Pol and Verhulst (2006); “Phenotypic traits can change as a result of
within-individual changes (phenotypic plasticity) and between-individual changes,
as selection may favour some individuals over others. When quantifying how popu-
lation values of phenotypic traits change over time or differ between groups of indi-
viduals, it is therefore important to realize that both within–and between–individual
process might be underlying causal mechanisms”. Individual heterogeneity may
mask senescence and patterns of change in life history traits over life, or may hamper
quantification of the rate of change in fitness components with age (Service 2004;
van de Pol and Verhulst 2006).

Development of frailty CMR models

Until now, estimating individual variation in life history traits without using observ-
able covariates, and estimating age-specific variation in life history traits (e.g.,
survival probability) while accounting for individual heterogeneity in underlying
survival probability were difficult because methods were not designed to handle
incomplete detection of individuals. The very first CMR estimation models devel-
oped to address heterogeneity in survival probability were developed in the 1970s.
The development of models accounting for individual heterogeneity in parameters
was motivated by the issue of heterogeneity in detection probability among indi-
viduals. The importance of such heterogeneity in wild animal populations has long
been acknowledged (e.g., Carothers 1973; Gilbert 1973; Pollock et al. 1990; Norris
and Pollock 1996; Pledger and Efford 1998; Pollock 2002; Link 2004): for example,
failure to account for such heterogeneity may result in biased estimates of survival
probability in open population models or of population size in both closed and open
populations models. Efforts to account for heterogeneity in detection probability
have triggered development of models accounting for individual heterogeneity in
other parameters (e.g., survival; Burnham and Rexstad 1993; Pradel et al. 1995;
Burnham and White 2002; Pledger and Schwarz 2002; Royle 2007).

Recently developed CMR estimation models allow consideration of hetero-
geneity in survival via random individual effects (Royle 2007). The state-space
formulation of the Cormack–Jolly–Seber model proposed by Royle (2007) offers
flexible means of extending the model to account for the specificity of different
study systems and sampling schemes, and address different biological hypotheses.
Briefly, the model accounts for the individual state on a given sampling occasion
(e.g., dead or alive), and is specified using two distinct models: one for the process
of interest (i.e., the survival process over a given time interval, partly unobservable),
and one for the observations (i.e., whether the individual was captured/resighted on
a given occasion). The observation process depends on recapture/resighting prob-
ability, and is conditional on the latent survival process (i.e., survival probability).
Survival probability can be modelled as a function of covariates such as year, age,
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environmental covariates, individual measurable characteristics (e.g., body size
etc.), and an individual random effect if one has reasons to suspect additional
heterogeneity in survival probability (e.g. Royle 2007). With this innovation, frailty
(Yashin et al. 2001) CMR models can be developed. Parameters in this class
of models can be estimated using a Bayesian approach (e.g., using WinBUGS;
Spiegelhalter et al. 1996). In addition, it is theoretically possible to design a state-
space formulation of the multistate Arnason-Schwarz model (Arnason 1973; Dupuis
1995) with frailty, by using an additional (partially unobservable) transition process
conditional on survival (i.e., a process accounting for the probability of being in a
given stratum in a given occasion, and transition probability among strata in consec-
utive sampling occasions).

4.1.3 Individual Fitness and Population Growth Rate

On a related topic, Link et al. (2002a) used correlated latent survival, breeding and
probability of raising 1 or 2 offspring to independence to estimate individual fitness.
As emphasized above, estimation of fitness is at the heart of studies of evolutionary
change by natural selection. Many empirical studies of selection have used fitness
components to address fitness functions, but there is increased interest in developing
estimates of “total fitness” (not components only; e.g. Coulson et al. 2006). Ideally,
one may want to estimate an “individual growth rate” measuring the capacity of a
given phenotype to be propagated into future generations. Because the growth rate
of a genotype depends on the timing of production of viable offspring during life
(Brommer et al. 2002), McGraw and Caswell (1996) suggested using an individual-
specific Leslie matrix to estimate fitness. Link et al. (2002b) assessed the perfor-
mance of the growth rate estimated using individual-specific Leslie matrices as an
estimator of individual fitness. They defined latent fitness as the “latent individual
growth rate”, which corresponds to the latent survival characterizing the individual,
as well as the individual breeding probability, and probability of producing a given
number of offspring. They concluded that individual capture–recapture history data
(i.e., one realization of the stochastic process defined by latent life history traits,
McGraw and Caswell 1996) result in realized fitness that isn’t consistent with latent
fitness, and advocated a model-based approach to estimating fitness.

Interestingly, the distribution of individual demographic parameters (i.e., latent
parameters) in populations has received much attention in another field, namely,
applied population dynamics and conservation biology. Indeed, Conner and White
(1999), Kendall and Fox (2001, 2003), and Fox and Kendall (2002) have provided
evidence that certain forms of demographic heterogeneity substantially influence
population persistence, a question that is particularly relevant to small popula-
tions. Development of CMR estimation models allowing investigators to estimate
the distribution of individual life history traits and the possible covariation among
latent traits may help develop an empirical basis for investigations of population
persistence.
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4.2 Evolution of Morphological and Behavioral Traits

CMR studies have also contributed to investigations of covariation between morpho-
logical or behavioral traits and fitness components. Just like for life history evolu-
tion, most CMR studies have addressed fitness functions and have drawn inferences
about the possible consequences of these functions in terms of natural selection.
However, I am not aware of studies that have addressed fitness functions of physi-
ological traits using CMR estimation models, apart from the study by Reed et al.
(2006, see above) whose aim was to investigate the physiological mechanisms
underlying trade-offs between life history traits in juncos. The fitness costs incurred
by testosterone-treated males suggest that high-testosterone phenotypes have selec-
tive disadvantages in natura. The body of studies listed below may seem eclectic
compared to studies of life history evolution for two reasons. First, whether a trait is
under selective pressures, or not, strongly depends on the study system and the type
of organism concerned. Second, there are only a few studies that have used CMR
models and have focused on some classes of fitness functions (e.g., fitness functions
of behavioral traits).

4.2.1 Morphology

Several studies of birds have used CMR estimation models with individual covari-
ates to address selection on body size (wing length), mass, condition in juveniles
(e.g., lesser snow goose, Cooch et al. 2002) or adults (tufted duck Aythya fuligula,
common pochard Aythya ferina, and Northern shoveler Anas clypeata, Blums et al.
2005), or both (serins Serinus serinus Conroy et al. 2002). Body condition can
be viewed “as the size of the individual’s energy reserves relative to its body
size” (Blums et al. 2005). As migration is demanding in terms of energy, Blums
et al. (2005) predicted a positive relationship between survival probability and body
condition, but they also considered the possibility for costs associated with very
high mass, as did Conroy et al. (2002). Specifically, they considered non-monotonic
functions of body condition for survival probability. Both Cooch (2002) and Conroy
et al. (2002) found evidence that the relationship between body mass and survival
probability varied according to other covariates. Cooch (2002) found evidence of
a positive relationship between survival probability and body mass in late-hatched
young only. Conroy et al. (2002) found evidence of a negative influence of body
mass in years with low density of competitors (siskins; Carduelis spinus). That
is, in serins the shape of the fitness function varied with environmental conditions
(biotic conditions). In lesser snow geese the fitness function differed according to
the value of another trait (hatching date), which suggests that selection on body
mass cannot be understood without considering the covariance between several
traits (e.g., Lande and Arnold 1983; Houle 1991; Pigliucci 2006). The ability to
use models including several covariates, both individual and time-specific envi-
ronmental covariates proved important. Similarly, Wikelski and Trillmich (1997)
addressed sex-specific relationships between survival probability, fertility, and body
size in Iguanas (Amblyrhynchus cristatus; see also Laurie and Brown 1990) and
suggested that balanced selective forces shaped body size in this species: sexual
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selection favoring large sizes in males in a lek-mating species, but natural selec-
tion penalizing large individuals in years with lower resource availability. CMR
estimation models have also been used to address micro-evolutionary processes in
morphological traits in taxa that are not often mentioned in EURING meetings.
For example, Kingsolver and Smith (1995) have addressed wing pattern traits in a
butterfly species (Pontia occidentalis). They found evidence of a negative influence
of mean grey level of the dorsal wing and of ventral hind wings on daily survival.
They suggested that this relationship resulted from the influence of color on ther-
moregulation ability.

Fitness functions based on estimates of survival probability have also been used
to address the balance between sexual and natural selection in the wild. For example,
Gregoire et al. (2004) have addressed the relationship between bill color in Euro-
pean blackbirds (Turdus merula) and survival probability. Theory of sexual selection
assumes that there are advantages associated with exaggerated sexual characters
in males, more precisely a larger breeding success probability (Andersson 1994).
However, there may also be costs associated with secondary sexual traits, such
as energetic costs of producing ornaments, increased detectability by predators or
intra-specific competition (survival costs). Gregoire et al. (2004) found evidence of
stabilizing selection on bill color using models with individual covariates. However,
there are several non-exclusive hypotheses concerning the relationship between
ornament expression and survival probability. Ornamental traits are assumed to have
evolved through mate choice: in birds, individuals with the most showy feathers for
example are assumed to be “higher-quality” individuals because they can afford
to display costly adornments. In long-lived species, re-mating with the same mate
has been shown to have advantages; loss of the mate through mortality may be
very costly. Ornaments are assumed to serve as viability indicators: individuals
may benefit from choosing a “higher-quality” mate with high survival ability. In
this view, one may expect a positive relationship between survival probability and
ornament size. Jones et al. (2002) have addressed the relationship between sexu-
ally selected feather ornaments and survival probability in crested auklets (Aethia
cristatella), but have not found evidence of such a relationship. Here again, ultra-
structural models were used.

For quantitative traits (as defined in Conner and Hartl 2004, p. 97), the shape
of the relationship between fitness and trait values provides insight into the type
of phenotypic selection (Conner and Hartl 2004). Directional selection is charac-
terized by a linear fitness function, stabilizing selection by a quadratic function
where fitness is highest at some intermediate value of the phenotype, and disruptive
selection by a quadratic function where fitness is lowest at some intermediate value
of the phenotype. However, as emphasized by Gimenez et al. (2006), the shape
of the fitness function estimated using empirical data may not be quadratic, and
more complicated forms of selection can occur (Conner and Hartl 2004). There
is an analogy between the need for development of relevant fitness functions to
address natural selection and the need for development of relevant forms for repro-
ductive or survival functions in optimal control solutions of problems in popula-
tion dynamics (Runge and Johnson 2002). Gimenez et al. (2006) have developed a
nonparametric approach to fitting cubic splines within a CMR framework to address
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the relationship between body mass and survival in sociable weavers (Philetairus
socius). Model parameters were estimated using a Bayesian approach in WinBUGS
(Spiegelhalter et al. 1996). They found evidence that the fitness function is not
symmetric, which suggests that body mass may not be under stabilizing selection.
The technical development in Gimenez et al. (2006) reflects development in quan-
titative genetics where cubic splines and locally weighted least squares are used to
assess the shape of fitness functions (Conner and Hartl 2004).

4.2.2 Behavior

Very few CMR studies have addressed fitness functions of behavioral traits other
than those involved in dispersal and breeding activities. The studies I am aware of
have investigated the influence of discrete behavioral traits on fitness components.
For example, Webb (2006) addressed the consequences of tail autotomy in gekos
(Oedura lesueurii) on survival probability. Some animals autotomize their tails,
which is thought to facilitate escape from predators. Tail autotomy may increase the
likelihood of surviving a predator’s attack, however, this may have costs including:
reduced growth, loss of energy reserves, decreased mating success, loss of social
status, and decreased probability of survival during subsequent encounters with
predators. Results did not provide evidence that spontaneous tail autotomy influ-
ences survival of juvenile geckos.

In a completely different framework, Cam et al. (2002b) have addressed fitness
functions of behavior before recruitment: age-specific survival and recruitment
probability, and breeding success probability in the first breeding occasion and
subsequent occasions. Squatters are individuals present on nesting sites they don’t
own, containing chicks, when the owners are absent (e.g., during foraging trips
at sea). Squatters may be aggressive and even kill the chicks, exhibit territorial
behavior and coordination behavior with another squatter of the opposite sex. It
has been suggested that squatting is part of behavioral maturation and territory
acquisition and may influence age-specific recruitment probability. Results provided
evidence that squatters have a higher age-specific local survival and recruitment
probability than non-squatters in age-classes where squatting is represented, and a
higher breeding success probability than non-squatters at the same age (Cam et al.
2002b). In addition, the relationship between initial breeding success probability and
subsequent success probability was addressed using random intercept models (i.e.,
frailty models): individuals with high initial breeding success probability consis-
tently have higher subsequent success probability. Consequently, it may be relevant
to use squatting status before recruitment as a measurable covariate to account for
permanent differences among individuals over life (i.e., as an observable criterion
to classify individuals in “quality” classes).

4.3 Coevolution

Few CMR studies have addressed the evolution of morphological and life history
traits within the framework of coevolution. Although morphology and life histories
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have been treated above, studies of coevolution are rare and are worth identifying
separately. For example, Benkman et al. (2005) addressed bill size and survival
probability in red crossbills (Loxia curvirostra). Their hypothesis to explain the
difference in mean bill size between two populations was local infestation by
the scaly-leg mite (Knemidokoptes jamaicensis) which favored local selection of
smaller-bill birds. Indeed, large-billed males were more likely to exhibit symptoms
of ectoparasitic mites. The authors found evidence that infestation by mites was
associated with lower survival probability and caused directional selection against
larger-billed individuals. In a recent review of dispersal and parasitism, Boulinier
et al. (2001) deplored the weakness of the empirical basis in this area of research.

Concerning life history evolution, Dugger and Blums (2001) addressed brood
parasitism in ducks using several fitness components – breeding success, recruit-
ment in offspring, and adult survival probability. They conducted an experimental
study by adding eggs and ducklings to clutches and broods, and also analyzed a
larger observational data set. Their objective was to compare fitness components of
parasitized and nonparasitized female common pochard (Aythya ferina) and tufted
ducks (Aythya fuligula). They found that addition of small numbers of eggs to host
nests (i.e., simulated parasitism) did not influence host clutch size, host hatching
success, or nest success for either species. Parasitism by large numbers of eggs did
not influence nest success in pochards, but it did in tufted ducks nests (numbers of
eggs = 6 or more). Recruitment probability did not differ between parasitized and
nonparasitized nests for either species, and parasitism had no negative effect on adult
survival. Dugger and Blums (2001) concluded that moderate levels of parasitism do
not have a negative influence on host fitness in these species.

4.4 Evolution of Sex-Ratio

A topic that has received much attention in studies of human populations is evolu-
tion of sex-ratio and its variation, either at birth or in the adult segment of the
population (i.e., secondary sex-ratio). This topic has also received much attention
in studies of animals (e.g., Nager et al. 1999, Weimerskirch et al. 2005), but in
many cases without accounting for incomplete detection of individuals. Sex ratio
theory is based on the idea that if the fitness benefits of producing males or females
vary with environmental or social conditions, parents should adjust the sex ratio
of offspring in a way that maximizes their own fitness. For example, if maternal
condition influences survival probability in male and female offspring, the mother
should produce offspring whose sex ratio maximizes the mother’s fitness.

Empirical tests of hypotheses about adjustment of offspring sex ratio according
to environmental and social conditions are scarce. Uller et al. (2004) addressed
the influence of pre-natal sex-ratio on offspring survival and adult reproductive
parameters in common lizards (Lacerta vivipara). In viviparous animals, sex ratio
in-utero may influence the characteristics of offspring through exposure to sex-
specific steroids in-utero and hormonal interactions between offspring. Evidence
from studies in mammals suggests that both sexes are negatively affected by
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opposite-sexed siblings. Uller et al. (2004) provided evidence of a long-lasting
influence of early conditions on fitness components, more precisely of an influ-
ence of pre-natal sex ratio on female fecundity, but not on survival probability. Age
at maturity was also influenced by pre-natal sex-ratio. Prenatal sex-ratio may be
maladaptive: females from male-biased clutches have lower fecundity and mature
earlier than females from female-biased clutches. The fitness return for the mother
may not be compromised because negative effects on the underrepresented sex
could be counteracted by positive effects on the overrepresented sex. Thus, evolu-
tionary consequences of pre-natal sex ratio on secondary sex ratio are still poorly
understood.

4.5 Movement Among Locations and Habitat Selection Studies

Development of multistate models (Arnason 1973; Hestbeck et al. 1991; Brownie
et al. 1993) also gave an enormous stride to studies of movement, migration and
dispersal using data from wild marked animals (Bennetts et al. 2001; Kendall and
Nichols 2004). This is one of the topics that have received attention in a large
proportion of CMR studies relevant to evolutionary ecology. In a paper focusing on
use of multistate models in evolutionary ecology, Nichols and Kendall (1995) laid
the foundations of many subsequent studies of movement in subdivided populations
(e.g., Spendelow et al. 1995; Senar et al. 2002; Blums et al. 2003, Skvarla et al.
2004). They basically explained in detail the relationship between model parame-
terization and classical hypotheses put forward in the literature on dispersal. One
class of hypotheses considered corresponds to models of gene flow in systems of
subdivided populations (e.g., influence of distance among locations on movement
probability; Skvarla et al. 2004). In evolutionary ecology, because CMR studies
mostly focus on vertebrates (i.e., mobile animals dispersing actively), movement
among locations has mostly been addressed within the framework of habitat selec-
tion theory (e.g., Fretwell and Lucas 1970).

In long-lived species, it is natural to assume that individuals have to make deci-
sions concerning breeding sites several times during life. When the individual’s
perspective is considered, the evolution of dispersal can be addressed within the
framework of “habitat selection”, whose broad scope encompasses both the decision
of leaving a site and the choice of a new one (Ronce et al. 2001). Environmental
conditions are likely to vary over space and time; for this reason, fixed dispersal
strategies are unlikely to be favoured by natural selection (e.g., Ronce et al. 2001).
Dispersal can be viewed as a decision making problem (i.e., “to stay or to leave?”;.
e.g., Danchin et al. 1998; Doligez et al. 1999; Brown et al. 2000; Serrano et al.
2001). It has been hypothesized that decisions are state-specific (i.e., depend on
the individual state, such as condition, previous breeding success, breeding habitat,
other environmental factors; e.g., Danchin et al. 1998). Recent syntheses about
dispersal highlighted the growing attention to questions of individual plasticity and
condition-dependant dispersal (Danchin et al. 2001; Ims and Hjermann 2001; Ronce
et al. 2001; Serrano et al. 2001; Serrano and Tella 2003).
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A key question is how individuals make decisions concerning fidelity to the
previous breeding site, or if they decide to move, selection of a new one. One of
the main predictions of the “ideal free habitat selection theory” (Fretwell and Lucas
1970) is that natural selection should favour dispersal tactics where moving leads to
increased realized fitness (i.e., habitat selection should be shaped by fitness maxi-
mization; Holt and Barfield 2001). Densities in the various locations are expected to
change as well as realized fitness in each habitat, and eventually realized fitness
is equilibrated. This is why studies based on this theoretical framework do not
always address “realized” fitness functions: fitness is not assumed to vary according
to behavioral decisions in a systematic manner. The form of the function depends
on the state of the study system (e.g., a sub-divided population), whether it is at
evolutionary equilibrium, whether fitness is density-dependent, etc. Because of the
numerous assumptions this theory relies on (e.g., individuals have perfect knowl-
edge of their environment, there is no cost of moving, etc.; Holt and Barfield 2001),
the scenario leading to the “ideal free distribution” of individuals in space developed
by Fretwell and Lucas (1970) is unlikely to be observed in the wild (Nichols and
Kendall 1995). However, the seminal idea that habitat selection is shaped by fitness
maximization leads to some specific predictions that have been tested in several
CMR studies of habitat selection. The hypothesis that fitness maximization shapes
habitat selection tactics leads to the question of how individuals can assess fitness
prospects in different potential locations (Danchin et al. 1998).

For example, it has been hypothesized that individuals use their own breeding
success and the success of conspecifics as cues to assess expected location-specific
fitness (Danchin et al. 1998; Doligez et al. 1999; Brown et al. 2000; Serrano et al.
2001), and that the decision regarding the location where they will breed in year
t + 1 is made based on evidence from year t. Serrano et al. (2005) suggested that
colony size also contributes to determine fitness prospects. Several CMR studies
have addressed breeding habitat selection and movement within this framework
(e.g., Doligez et al. 2002, 2004; Cam et al. 2004a; Serrano et al. 2003, 2005). In
a different vein, Brown et al. (2005) have addressed how intrinsic individual char-
acteristics (more precisely, steroid hormone level and its influence on competitive
ability) influenced movement probability among colonies and colony choice in cliff
swallows (Petrochelidon pyrrhonota).

Furthermore, theories of habitat selection have been invoked to address life
history traits other than movement probability per se. Indeed, because the quality
of the breeding habitat is likely to influence individual fitness, natural selection
may favor habitat selection tactics involving decisions about “when to breed”. It
has been suggested that the two decisions “where to breed” and “when to breed”
are “two sides of the same coin” (Ens et al. 1995). Habitat selection tactics and
age-specific recruitment probability have been addressed in several studies based on
CMR data (e.g., Oro and Pradel 2000; Frederiksen and Bregnballe 2001). The evolu-
tion of dispersal has also been addressed outside the framework of habitat selection
theory. More specifically, it is sometimes assumed that parents produce offspring
with fixed dispersal strategies (e.g., philopatric versus dispersing offspring). Within
this framework, Hamilton and May (1997) have suggested that in species with
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senescent decline in survival, whether parents should produce philopatric versus
resident offspring should depend on their age. Few CMR studies have addressed
hypotheses about age-specific variation in reproductive investment or reproductive
performance, and dispersal (e.g, natal dispersal and senescence; Ronce et al. 1998).

Last, dispersal evolution theories or habitat selection theories make assump-
tions about whether dispersal is costly (e.g., there may be mortality costs associ-
ated with movement, costs of settling because of competition with conspecifics,
or costs associated with reproduction in unfamiliar environments). Massot et al.
(1994) have studied settlement ability using experimentally translocated common
lizards (Lacerta vivipara). They compared individuals that survived after the intro-
duction with those of non-manipulated populations. Results provided evidence that
translocated individuals had a lower survival probability after being transferred to
their new habitat, except juveniles. Adults may thus incur costs associated with
unfamiliarity with the new habitat. Selected individuals had particular features in
terms of body mass and size. In addition, surviving transplanted males have the
same characteristics as transients or immigrants in natural populations (body mass
and size); they may thus have been transients or immigrants in their own population
of origin. However, this did not hold in females.

5 Development of CMR Estimation Models to Address the
Genetic Basis of life History Traits in Wild Animal Populations

A condition for natural selection is heritability in the focal trait (Premise (iii),
Section 4.1.). Until now, evolutionary ecologists have used CMR estimation models
to address the relationship between demographic parameters themselves (i.e.,
covariation in life history traits) or between demographic parameters and morpho-
logical traits (i.e., fitness functions), which has permitted them to gain insights into
Premise (ii) for natural selection. However, studies of Premise (iii) have concerned
either “non-demographic” traits (morphological, physiological, behavioral traits),
or demographic traits estimated without accounting for imperfect detection of indi-
viduals by investigators. As far as the evolution of demographic parameters them-
selves is concerned, the genetic basis of these traits has not been addressed using
CMR estimation techniques. Here I suggest that recent methodological develop-
ment concerning both quantitative genetics models of estimation of additive genetic
variance of traits and CMR models of estimation of demographic parameters theo-
retically allows integration of the two fields.

5.1 Features of Current Knowledge of Heritability of Demographic
Parameters in Wild Animal Populations

Without using CMR estimation models, several studies have provided evidence
that life history traits (fitness components such as age of first breeding, lifetime
reproductive success, clutch size or litter size for example) exhibit low heritability
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compared to other traits (morphological, physiological or behavioral traits), but the
studies in question have also provided evidence that such heritability levels cannot
be ignored, and that they vary among species for the same trait and among popula-
tions of a single species (Stearns 1992; Matos et al. 1997; Kruuk et al. 2000; Réale
and Festa-Bianchet 2000; Réale et al. 2003; Sheldon et al. 2003; Charmantier et al.
2006a, b; Pigliucci 2006). Comparison of results obtained using different statis-
tical techniques to address heritability and additive genetic variance of traits (more
precisely parent-offspring regression versus the animal model; Section 5.2.2) have
provided evidence that the question of heritability of life-history traits should be
re-addressed using the most modern techniques (e.g., Kruuk et al. 2001). Moreover,
several researchers have pointed out that despite the success of quantitative genetics
theory in domesticated animal and plant breeding, very few studies of natural popu-
lations have provided evidence of micro-evolutionary changes in heritable traits in
response to selection in the presence of directional selection (Kruuk 2004). Two
hypotheses have been put forward to explain this: (1) the approaches to estimation
of the amount of genetic variation transmitted from parents to offspring we have
used so far lead to biased estimates of variation or of the strength of selection (more
precisely they overestimate the additive genetic variance or the directional selection
differential, (see below)), and (2) the genetic basis of different traits should not be
addressed separately (Lande and Arnold 1983; Houle 1991). Researchers in quan-
titative genetics have developed approaches to estimating genetic parameters that
may partly solve these problems (Lynch and Walsh 1998).

Importantly, the problem of imperfect detection of individuals by investigators
has been overlooked. Until now, in wild animal populations, quantitative genetics
studies focusing on demographic parameters have been conducted using observed
values of life-history traits (e.g. Sheldon et al. 2003), which is reasonable only in
situations where detection probability of marked individuals alive and present in
the study area is close to 1. Such situations have long been known to be rare in
wild animal populations (Lebreton et al. 1992; Clobert 1995; Martin et al. 1995).
In the vast majority of populations, estimation of survival or dispersal probability,
age-specific recruitment probability (one definition of which is the probability of
making a transition between state “pre-breeder” and state “breeder” at a given
age), and adult breeding probability (in species exhibiting intermittent breeding),
all require use of estimation models explicitly incorporating detection probability.
Unless this probability is equal to 1, the age at which the first breeding event was
recorded cannot be assumed to be a reliable measure of age of recruitment, and the
age at which the last breeding event was observed cannot be assumed to be a reliable
measure of age of last reproduction, observed breeding events cannot be assumed
to account for all the breeding attempts in an individual’s life, and individuals not
recaptured or not resighted in a given year cannot be assumed to be dead that year.
In addition, estimation of breeding success probability in a given breeding occasion,
the probability of laying a clutch of a given size, or giving birth to a litter of a given
size, may require CMR estimation models accounting for state-specific detection
probability (i.e., multistate models, Nichols et al. 1994; Nichols and Kendall 1995;
Williams et al. 2002). Besides, even if heritability of survival probability per se is
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not of interest, in several classes of CMR models for open populations, several of
the aforementioned demographic parameters are conditional on survival probability
over one or several time intervals between sampling occasions. Therefore, the issue
of estimation of survival probability in situations where detection probability is <1
cannot be ignored.

5.2 Mixed CMR Models to Address Heritability
of Demographic Parameters

Lynch and Walsh (1998, p. 50) summarized the problem of analysis of the genetic
basis of quantitative traits as follows: “inferences concerning the genetic basis
of quantitative traits can be extracted from phenotypic measures of resemblance
between relatives”. Obviously, to use CMR statistical techniques to estimate para-
meters relevant to quantitative genetics, CMR data from marked relatives are
needed. Long-term monitoring programs of marked individuals in wild animal
populations have often led to such data. The principles of quantitative genetics are
general; they have been widely used in animal and plant breeding and are valid
in wild organism populations as well. However, “because the systems of mating
and evolutionary forces found in natural populations are generally quite different
than the controlled programs imposed on domesticated species, study of the inher-
itance of quantitative traits in natural populations presents a number of challenges”
(Lynch and Walsh 1998, p. 5). The distinctive feature of the data sets from wild
animal populations is that they correspond to complex pedigrees; there is a variety of
degrees of relatedness between individuals. In domesticated animals, investigators
design experiments to address the genetic basis of phenotype. In wild animal popu-
lations fathers of individuals often cannot be identified unless molecular approaches
are used (Thomas et al. 2002), especially in species without paternal care or species
where extra-pair paternity is common. Most long-term monitoring programs are
purely observational if the target species is protected or is (locally) of conservation
concern. Consequently, specific sources of phenotypic variation in populations have
seldom been addressed using experimental approaches. Experiments have some-
times been conducted (e.g., cross-fostering, Wiggins 1989), but designs specifically
relevant to quantitative genetics are rare and such experiments are usually short
term.

One of the main obstacles encountered by researchers using CMR estimation
methods to address heritability in demographic parameters is obtaining “one” esti-
mate (“one measurement”) of the focal trait per individual (even the mean value
over the lifetime). Early efforts to assess heritability in quantitative traits (morpho-
logical traits or life history traits) have relied on estimation of the slope of parent-
offspring regression (Lynch and Walsh 1998), which requires one measurement of
the trait in parents (or one parent) and one measurement in offspring. This was done
either by estimating the mean value of the trait over the parent’s lifetime and the
mean value of the offspring trait over its lifetime, or by taking one single measure-
ment of the parent and the offspring. Approaches to estimation of demographic
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parameters almost inevitably involve some degree of aggregation of data (Cooch
et al. 2002; Nichols 2002), and it is not possible to estimate quantities like “the
individual survival probability” using data from a single individual. Development
of models with individual covariates (Skalski et al. 1993) allows investigators to
achieve high levels of stratification of populations (Cooch et al. 2002) and to estimate
individual-specific demographic parameters (e.g., an “individual survival proba-
bility”), provided relevant measurable covariates are available. However, the distribu-
tion of the focal trait (the individual survival probability) in the population may not be
accounted for in a satisfactory manner by the relationship between survival probability
and a measurable individual covariate (e.g., body size, laying date in birds, etc.).

Recent developments in CMR estimation methods share a common feature with
the most recent techniques to estimate heritability (Fry 1992; Lynch and Walsh 1998;
Kruuk 2004; Schaeffer 2004), namely, use of mixed models (including both fixed
and random effects). More specifically, the feature shared by the animal model in
quantitative genetics and some CMR estimation models is that part of the varia-
tion in the focal trait is accounted for by random effects. As emphasized in Section
4.1.2, in human demography, random effects have long been used to account for
individual heterogeneity in mortality risk. Mixed effects models may not provide
investigators with “one estimate of survival probability per individual”, but they
provide an estimated distribution of the demographic parameter in the population,
that is, an estimated variance of the focal trait among individuals (after accounting
for relevant fixed effects: sex, age, location, etc.). Similarly, according to Kruuk
(2004) “One of the major recent changes in the study of quantitative genetics of
natural populations has been the use of mixed models, in particular the form of mixed
models known as the ‘animal model’, for the estimation of variance components.”

The following section is largely inspired by Lynch and Walsh (1998), and
Conner and Hartl (2004): it is intended for readers without background in quan-
titative genetics. This material is needed to understand the points shared by
recently developed CMR and quantitative genetics estimation techniques. All the
topics addressed here are extensively covered in two quantitative genetics “bibles”
(Falconer and Mackay 1996; Lynch and Walsh 1998).

5.2.1 A Very Short Introduction to Quantitative Genetics Theory

The phenotypic value of an individual (the measurement of a given quantitative
trait for an individual: morphological, demographic, physiological, or behavioral
trait), z, is determined by the individual genotype and the environment. Quantitative
genetics “focuses on the phenotype, usually without knowing the genotype under-
lying the traits” (Conner and Hartl 2004, p. 3). The traits “are encoded by a large
number of genetic loci, and for practical reasons, the individual loci are generally
unobservable” (Lynch and Walsh 1998, p. 4). The phenotypic value is assumed to
be the sum of the total effects of all loci on the trait, G, the genotypic value and an
environmental deviation E. That is,

z = G + E (1)
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The genotypic value is the phenotype produced by a given genotype averaged across
environments. The environmental deviation is the difference between the pheno-
typic and the genotypic values caused by the environment (temperature, prey avail-
ability, rainfall etc., Conner and Hartl 2004, p. 101). The mean and the variance(
�2

p

)
characterizing the distribution of individual phenotypic values are properties of

populations; there is a distribution of individual genotypic values and of individual
environmental deviations. The distribution of environmental deviations is generally
assumed to be normal with mean = 0. One central goal of quantitative genetics is
partitioning the phenotypic variance �2

p into genetic and non-genetic components:

�2
p = �2

G + �2
E (2)

where �2
G is the genotypic variance and �2

E is the environmental variance.
The evolutionary response of a trait to selection is a function of the intensity of

selection and the fraction of the phenotypic variance attributable to certain genetic
effects (Lynch and Walsh 1998). More specifically, one draws a distinction between
additive genetic effects (the effects of each allele in the genotype adds to determine
the total effect on the phenotype) and interactions between alleles at the same locus,
dominance, or at different loci, epistasis. Hence, the genotypic variance �2

G can be
partitioned into �2

A, the additive genetic variance, �2
D the dominance variance, and

�2
E P I , the epistatic variance (or interaction). That is,

�2
G = �2

A+�2
G +�2

E P I (3)

The additive genetic variance is the most important for sexually reproducing species
because only the additive effects of genes are transmitted directly from parents to
offspring; information on other sources of genetic variation (e.g., linkage disequi-
librium, polyploidy, etc.) can be found in Lynch and Walsh (1998).

The directional selection differential, S, is the within-generation difference
between the mean phenotype after an episode of selection (but before reproduction)
and the mean before selection. Because of direct transmission of additive effects,
�2

A is most important in determining changes in mean phenotypic values across
generations in sexual species. It is also the easiest of the genetic components of
variance to estimate using resemblance between relatives: resemblance is caused
primarily by additive variation (Lynch and Walsh 1998). Change in mean pheno-
typic values across generations is the definition of phenotypic evolution (Deduction
II). The degree to which the mean phenotype after selection μs deviates from the
mean before selection μ0 depends on survival probability and reproduction (fitness)
of individuals with different phenotypes. Under specific assumptions concerning
the (un-) importance of genotype × environment covariance and interaction, if the
regression of the offspring phenotype on that of its average parent is linear with
slope β, a change in the parental mean phenotype induces an expected change in the
mean phenotype across generations equal to:

�μ = μ0 − μs = β∗S. (4)
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where μ0 is the mean phenotype of the offspring of the selected parents. This
equation is the breeder’s equation. “It combines information on the forces of selec-
tion (S) with that on inheritance (�) to yield a predictive equation for evolutionary
change across generations. If � is zero, no matter how large S is, the response to
selection across generations is zero” (Lynch and Walsh 1998, p. 47).

In sexually reproducing species, genotypes are not passed on from parents to
offspring, but are created anew in each offspring by combining an allele from each
parent at each locus. “The breeding value can be defined as the effect of an indi-
vidual’s genes on the value of the trait in its offspring; this effect is caused by
the additive effects of genes – it is sometimes called ‘additive genotype’ and has
variance” �2

A (Conner and Hartl 2004, p. 111). Heritability is the proportion of the
phenotypic variance that is due to genetic causes. Broad-sense heritability is defined
as follows:

H2 = �2
G

�2
P

(5)

However, because the genotypic value includes genetic components (e.g., epistatis)
that do not contribute to resemblance between relatives as much as the additive
genetic component, we usually define the narrow-sense heritability:

h2 = �2
A

�2
P

(6)

In parent-offspring regression, h2 can be estimated using the slope of the
regression.

5.2.2 The Classical Parent-Offspring Regression and the Animal Model

Parent-offspring regressions involve measurements from individuals with specific
degrees of relatedness. This commonly used technique to estimate heritability has
advantages that are not restricted to practical considerations (such data are usually
available and the computations are done using classical least squares regression):
parent-offspring regression is not affected by dominance or linkage (loci close
together on the chromosome are said to be genetically linked, which makes recom-
bination between loci during meiosis rarer; see Lynch and Walsh 1998 for details,
p. 537). However, in monitoring programs of wild animal populations, information
from individuals with different degrees of relatedness is available. The so called
animal model allows investigators to make full use of the available information.
The fact remains that the degree of relatedness of the individuals included in the
analysis must be known, and the corresponding information is used in a model
where phenotypic values are expressed as a function of fitness, breeding values,
environmental effects, etc.

In addition, in parent-offspring regression, measurements from individuals were
either averaged over life, or a single observation was retained for analysis. For some
traits, lack of variation over life may be a reasonable assumption (e.g., body size
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after sexual maturity in species whose growth takes place before reproduction),
but not for all traits (e.g., clutch size in birds) or all species (e.g., body size in
snakes). Last, genotype × environment covariance and interactions are assumed to
be negligible, as well as permanent maternal effects if data from the sole mother are
available (permanent maternal effects occur when the phenotype of the offspring is
influenced by the phenotype of the mother, which may be caused either by genetic
or environmental effects; Mousseau and Fox 1998). One of the advantages of the
animal model is to allow investigators to take such effects into account explicitly in
analyses of phenotypes to address variance components and heritability. Studies that
have used both parent-offspring regression and the animal model with the same data
set to address heritability have often provided evidence of discrepancies in results
(e.g., Kruuk et al. 2001), which may result from the fact that variance components
accounting for a larger number of sources of variation in phenotypic values can be
included in analyses with the animal model compared to parent-offspring regression
(Kruuk 2004).

5.2.3 Estimation of Heritability and Breeding Values: The Animal Model

General Formulation of the Animal Model

For the sake of simplicity, here I will assume that phenotypic values of a trait (morpho-
logical, physiological, behavioral, or demographic) are normally distributed, as in
the case in many quantitative genetics applications (when focusing on traits such as
body mass, size, or laying dates in birds for example; e.g., Kruuk et al. 2000; Wilson
et al. 2005). However, the statistical theory for estimation of variance components and
prediction of random effects in mixed models exists for variables with other distribu-
tions (e.g., Bernoulli, Poisson; Fahrmeir and Tutz 1994; Matos et al. 1997; Lynch and
Walsh 1998, p. 745, 779), which may be more useful for addressing heritability in
traits such as survival probability or breeding success probability. Besides, estimation
per se is beyond the scope of this paper: several approaches have been developed in
quantitative genetics (namely, REML and Bayesian methods based on Markov Chain
Monte Carlo simulations; Blasco 2001), which are well suited for complex pedigrees
with unbalanced data, as is usually the case in long-term monitoring programs of wild
marked animal populations. These methods can be implemented within the frame-
work of CMR estimation models (e.g., Dupuis 1995; Dupuis et al. 2002; Vounatsou
and Smith 1995; Royle and Link 2002; Brooks et al. 2002, 2004; King and Brooks
2002, 2004; Link and Barker 2004; Otis and White 2004; Royle 2007; Royle and
Kéry 2007). However, to estimate heritability in fitness components, more flexible
mixed CMR models than existing models are needed.

In the general case (i.e., where the phenotype is determined by genetic and envi-
ronmental effects plus interactions between them), the phenotype of the kth indi-
vidual of the ith genotype exposed to the jth environmental effect can be described
as a linear function of four components (Lynch and Walsh 1998).

zi jk = Gi + Ii j + E j + ei jk (7)
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where Gi is the genotypic value, which may be a function of the population mean
phenotype (e.g., z may depend on age, year of birth, gender for example, which can
be accounted for using additional fixed effects, and year using either fixed or random
effects, depending on the study). Gi includes the additive genetic effects (breeding
value) and possible genetic components such as dominance and epistasis (different
gene effects on the phenotype). E is the environmental effect on the phenotype, I
is the genotype × environment interaction effect on the phenotype, and e is the
residual deviation.

Accordingly, the total phenotypic variance of a population can be written as:

�2
P = �2

G + �2
I + 2�G,E + �2

E + �2
e (8)

where �G,E is the genotype × environment covariance. �2
I is the genotype × envi-

ronment interaction, which corresponds to the variation in the phenotypic response
of specific genotypes to different environments. �G,E is the physical association
of specific genotypes with environments: if the genotypes are randomly distributed
with respect to environment, �G,E is zero. �2

G may be further decomposed according
to additive genetic variance

(
�2

A

)
and types of gene effects on the phenotype (see

above). A source of environmental variation of particular interest in evolutionary
ecology is maternal effects (for additional information, see Lynch and Walsh 1998).

A distinctive feature of the animal model is that random effects are used to
account for the additive genetic variance (breeding values), and that information on
the degree of relatedness of the individuals included in the analysis is used to esti-
mate �2

A. Other random effects may be used to account for other components of the
genotypic value (e.g., genotype × environment covariation), and also to account for
sources of variation in the phenotypic values other than genetic effects (e.g., envi-
ronmental effects). The general formulation of the animal model is the following.
Consider a n × 1 column vector y with n observed phenotypic values. The model
assumes that y can be described as a linear model with a p × 1 vector of p levels of
fixed effects (β), a q × 1 vector of q levels of random effects (u), and an n × 1 vector
of random, residual terms (e). The first element of vector β is generally the popu-
lation mean. Importantly, the elements of the vector u are usually genetic effects,
including additive genetic effects (i.e., breeding values). The residual deviations are
assumed to be independent of random genetic effects.

y = Xβ + Zu + e (9)

X and Z are design matrices whose elements are equal to 0 or 1 depending on
whether the effect influences the individual’s phenotype. The expectation of y is:

E

⎛⎝y
u
e

⎞⎠ =
⎛⎝Xβ

0
0

⎞⎠ (10)
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and the variance–covariance structure of y is:

V

(
u
e

)
=
(

G 0
0 R

)
(11)

G is the variance–covariance matrix for random effects other than residual terms,
and R is the variance–covariance matrix of residuals. The square matrices G and
R are assumed to be non-singular and positive definite. V is usually expressed as
follows:

V = V(y) = ZGZ′ + R (12)

In many applications, residual terms are assumed to be independently and iden-
tically distributed with mean 0 and variance �2

e . Therefore, R = I �2
e . In situations

where the phenotype is assumed to be completely influenced by fixed effects (e.g.,
age), and observations are independent (e.g., there is only one observation per indi-
vidual), V is equal to R. However, the distinctive feature of genetic analysis is that V
is generally not diagonal. By definition, individuals with some degree of relatedness
share part of their genes and the main objective of quantitative genetics analysis
is to address the genetic basis of phenotype using resemblance between relatives.
Hence, it is hypothesized that the phenotypic values of relatives are not independent
and that part of the dependence is caused by additive genetic effects: addressing this
hypothesis is central to quantitative genetics.

Incorporation of Dependency Among Relatives in CMR Models

The matrix G describes the covariance among random effects. Assuming that the
only random effects (u) in the model are the additive genetic effects, G corresponds
to the covariance in additive genetic effects among relatives. It can be shown that
the covariance between two relatives i and j is given by 2�i j �

2
A, where �i j is the

coefficient of coancestry (Falconer and Mackay 1996, Lynch and Walsh 1998). It
is the probability that an allele drawn at random from individual i will be iden-
tical by descent to an allele drawn at random from individual j. For example, this
probability is 0.25 for parent and offspring, so that the additive genetic covariance
between them is 0.5 �2

A (Kruuk 2004). The matrix including (twice the) coefficients
of coancestry must be built before the analysis (it is often called the Numerator Rela-
tionship Matrix, A), according to the specific data set in hand and the corresponding
pedigree. Several pieces of software or routines have been designed to build it (e.g.,
Kruuk 2004, Saxton 2004, Kinghorn and Kinghorn 2007). This matrix is used to
specify the variance–covariance structure of u: G. R and G have to be modified
according to the design of the study and the question addressed. For example, their
structure may account for repeated measures from the same individual through an
additional random effect reflecting permanent environmental effects on all obser-
vations from the same individual, and through non-independence of residual terms
(Kruuk 2004). Similarly, maternal effects or common environmental effects can be
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accounted for by an additional random effect on all offspring of a given mother, or
on all individuals sharing the same environment during development, respectively.

Recently developed CMR models designed to estimate demographic parame-
ters allow consideration of both fixed and random effects. Importantly, develop-
ment of individual-level models to accommodate individual covariates (Skalski
et al. 1993; Royle 2008) required specification of the likelihood for each indi-
vidual capture–recapture history; this is also required to accommodate individual
random effects (Royle 2007). Incorporation of a user-defined design matrix and
variance–covariance matrix for random effects is what remains to be made possible
to address the genetic basis of demographic parameters estimated using CMR esti-
mation models accounting for incomplete detection of individuals. It is important to
note that in quantitative genetics, the assumption of non-independence among indi-
viduals is central: the main objective of analyses is assessment of the contribution
of common genetic material to resemblance among relatives. Therefore, develop-
ment of flexible tools to specify the variance-covariance matrix of random effects
will probably greatly influence the success of the efforts to address heritability in
demographic parameters.

Multitrait Models

The animal model has been used in quantitative genetics to conduct multivariate
analyses of life history traits (Charmantier et al. 2006a). The “multivariate breeder’s
equation” (Pigliucci 2006) allows consideration of pleiotropic effects such as antag-
onistic pleiotropy invoked in evolutionary theories of aging (e.g., Tatar 2001). In
theory, the state-space formulation of the Arnason–Schwarz model for example
allows simultaneous estimation of several life history traits. Several individual
random effects can be used (Yashin et al. 2002; Cam et al. 2004b) to address the
correlation in latent life history traits.

Other Methodological Challenges

In addition to the technical difficulties associated with the specification of a user-
defined variance–covariance matrix for random effects in CMR estimation models,
two other issues will require additional efforts. First if estimation is done within the
Bayesian framework, according to some researchers, how to conduct model selec-
tion is unclear for models with random effects (e.g., Spiegelhalter et al. 2002). Some
computer-intensive methods (Reversible Jump Markov chain Monte Carlo simula-
tions; Green 1995) have been proposed to explore variable dimension statistical
models, but may be difficult to implement in a flexible manner in standard software
programs (Brooks et al. 2002). In addition, there has been a strong emphasis on
evaluation of the fit of models using information criteria to perform model selection
(e.g., Lebreton et al. 1992; White 2002; Choquet et al. 2003; Pradel et al. 2003).
Here again, how to assess the fit of models is not straightforward.



116 E. Cam

Breeding Values and Selection Studies

As emphasized above, studies involving CMR models to estimate demographic
parameters have addressed the question of the evolution of morphological or physi-
ological traits using fitness functions: the relationship between the phenotypic value
of a (morphological, physiological, behavioral) trait and fitness components. Kruuk
(2004) pointed out that one may find evidence of such a relationship even in situations
where there is no relationship between the genetic basis of the trait and fitness. This
may occur when there is an environment-induced covariance between the trait and
fitness (variation in environmental conditions are associated with joint variation in
trait values and fitness). To detect such a phenomenon, the animal model may be
used to predict individual breeding values (i.e., prediction of an individual random
effect accounting for �2

A, the variance of the additive genotype). Comparisons between
two ways of assessing selection gradients provide insight into the above covariance:
fitness functions obtained using breeding values, and using phenotypic values.

5.3 Concluding Remarks

As emphasized by Lynch and Walsh (1998), evolutionary biology has considerably
been influenced by quantitative genetics, but the need for statistical tools (more
specifically, mixed models) to analyze complex pedigrees in wild animal popu-
lations is currently one of the motivations for statisticians developing methods to
estimate relevant quantities in quantitative genetics. The material introduced above
suffers from the simplifying assumptions early quantitative genetics suffered from,
but the current machinery of the field and of statistics can handle more complex
situations likely to be relevant to wild animal populations, such as genotype × envi-
ronment interactions, maternal, or family effects (e.g., Massot and Clobert 2000). In
addition, multivariate phenotypes and pleiotropic effects can be addressed, and a few
studies conducted using empirical data from wild animal populations where detec-
tion probability of individuals is high have provided evidence of additive genetic
variation in life history traits, and of evolutionary trade-offs and opposing direc-
tional selection on traits (e.g., Charmantier et al. 2006a).

One should keep in mind, however, that if fitness functions (common in CMR
evolutionary ecology studies) are not sufficient to address evolutionary change in
traits, quantitative genetics has its limitations as well. Pigliucci (2006, p. 5) recently
pointed out that heritability is a “local measure, meaning that it can, and often
does, change with changes in the population’s gene frequencies and environments
encountered. [. . .] Evolution de facto changes gene frequencies. [. . .] Heritabilities
do not provide a useful measure of the long-term capability of traits to respond
to selection”. Quantitative genetics is successful at making short-term predictions,
mostly qualitative predictions, but in its current state evolutionary biology theory is
unable to predict long-term evolutionary change in traits.

In addition, there is a long tradition of experimentation in quantitative genetics,
which uses creation of “artificial sets of offspring derived from carefully designed
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crosses among parents sampled at random from a natural population” (Pigliucci
2006, p. 9). Experimentations of that type may be possible in some wild animal
populations, but long-term studies (e.g., ≈ 30 years) resulting in complex pedi-
grees haven’t been designed that way. This implies that some inferences (about
maternal effects for example) may not be possible with data from wild animal
populations. In addition, complex pedigrees may lead to situations where there
are small sample sizes to estimate some variance components (Quinn et al. 2006).
However, Pigliucci (2006, p. 9) also questioned whether an artificially created set of
genotypes should be used to draw inference about genetic parameters in the natural
population, because “it is vanishingly unlikely that the individuals in the population
in question would ever cross in even approximately the same pattern as required
by statistics tests and laboratory experiments”. In other words, the corresponding
estimated genetic parameters may not be thought of as the parameters in the natural
population.

Nevertheless, limitations of the inferences that can be drawn from quantitative
genetics parameter estimates should not overshadow the weakness of our knowledge
of heritability of life history traits and of their genetic basis in wild animal popula-
tions. As emphasized above, the emergence of new statistical tools calls for studies
of the genetic basis of these traits (Kruuk 2004). In addition, the rare studies where
detection probability is likely to be high (although not formally estimated) and that
have used animal models with values of life history traits directly observed (e.g., the
mute swan, Cygnus olor, population in Abbotsbury, Dorset, U.K.) have provided
stimulating results (Charmantier et al. 2006a, b). Last, Houle (1992) pointed out
that many previous inferences about the potential for evolution of life history traits
compared to other traits have been drawn using narrow-sense heritability, h2 (see
above). Lower heritability of life history traits compared to others has been inter-
preted as evidence of lower genetic variation in demographic parameters than in
other traits. However, Houle (1992) argued that heritability is not appropriate for
comparative studies of genetic variation in traits and proposed a dimensionless
criterion for this purpose. This also calls for new studies of the genetic basis of
life history traits in wild animal populations.

6 Additional Topics

“Evolutionary ecologists consider both historical and contemporary influences on
patterns of variation and study variation at all levels, from within-individual vari-
ation (e.g., ontogenetic, behavioral) to variation among communities or major
taxonomic groups” (Fox et al. 2001, Preface). The enormous range of ques-
tions potentially relevant to evolutionary ecology is reflected in the explosion of
studies that have used CMR estimation models, and of the scope of such models.
In this paper, for the sake of conciseness and homogeneity, several important
topics and CMR models have not been addressed. One of the reasons for this
choice is that overall, studies relevant to evolutionary ecology that have used these
approaches are still rare. However, as for models developed earlier, evolutionary
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ecologists may only grab these tools once they are widely used elsewhere and are
sufficiently developed and flexible to allow them to address novel questions rele-
vant to current evolutionary theory, concepts and methods. There is no conceptual
reason why such models should not be used by evolutionary ecologists in the near
future.

(i) CMR approaches to estimation of vital rates specific to ecological communi-
ties (e.g., Nichols et al. 1998a, b; Dupuis and Joachim 2006; Kéry and Royle
2008, this volume). These approaches use the species ID as the individual
mark in population modelling. A few studies have opened the way to ques-
tions undoubtedly anchored in evolutionary ecology. For example, Doherty
et al. (2003) have addressed the relationship between sexual selection and local
extinction probability in bird communities. As Stenseth and Saetre (2003, p.
5576) emphasized: “community ecology and evolutionary ecology have in the
past, to a large extent, been moving along separate paths. [. . .]. However, CMR
estimation methods have already been used to draw inferences about varia-
tion in species diversity at long evolutionary time scales (Nichols and Pollock
1983). Stenseth and Saetre (203, p. 5577) also emphasized that “Doherty et al.
(2003) provide an excellent demonstration of the potential power of using
long-term ecological monitoring data to address key problems in community
ecology and evolution”

(ii) Occupancy estimation models (MacKenzie et al. 2006). This recent book by
MacKenzie and colleagues focuses on estimation methods to address “occu-
pancy in ecological investigations”, either occupancy of sampling units by one
species, or by several. In other words, these methods are relevant not only to
ecological communities (see above), but also to all the studies using “presence–
absence data” over space and time for a given species. The number of questions
relevant to evolutionary ecology that can be addressed using these methods
is very large (e.g., metapopulation dynamics, changes in geographical range,
epidemiology). This is an area of active research to develop models to estimate
spatio-temporal variation in occupancy probability, but to date mostly method-
ological work as been done (e.g., MacKenzie and Kendall 2002; MacKenzie
et al. 2002, 2004; MacKenzie and Bailey 2004; MacKenzie and Nichols 2004;
Royle et al. 2005).

(iii) Noninvasive genetic sampling. Despite the intensive use of molecular markers in
evolutionary ecology (e.g., Conner and Hartl 2004), capture–recapture analysis
of DNA-based data has received little attention in this field. Recent development
in capture–recapture theory designed for molecular markers may open the way
to new studies (Lukacs and Burnham 2005; Petit and Valière 2006).
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Brommer JE, Merillä J, Kokko H (2002) Reproductive timing and individual fitness. Ecology
Letters 5: 802–810.

Brooks SP, Catchpole EA, Morgan BJT, Harris M (2002) Bayesian methods for analysing ringing
data. Journal of Applied Statistics 29 (Special Issue): 187–206.

Brooks SP, King R, Morgan BJT (2004) A Bayesian approach to combining animal abundance and
demographic data. Animal Biodiversity and Conservation 27: 515–529.

Brown CR, Bromberger M, Danchin E (2000) The effect of conspecific reproductive success on
colony choice in cliff swallows. Journal of Animal Ecology 69: 133–142.

Brown CR, Bromberger M, Brown, Raouf SA, Smith LC, Wingfield JC (2005) Steroid hormone
levels are related to choice of colony size in cliff swallows. Ecology 86: 2904–2915.

Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB (1993) Capture–recapture studies for
multiple strata including non–Markovian transitions. Biometrics 49: 1173–1187.



120 E. Cam

Bryant MJ, Reznick D (2004) Comparative studies of senescence in natural populations of guppies.
American Naturalist 163: 55–68.

Burnham KP (1993) A theory for combined analysis of ring recovery and recapture data. In:
Lebreton J-D, North PM (eds) The use of marked individuals in the study of bird population
dynamics, Birkhauser, Basel, pp 199–213.

Burnham KP, Rexstad EA (1993 ) Modeling heterogeneity in survival rates of banded waterfowl.
Biometrics 49: 1194–1208.

Burnham KP, White GC (2002) Evaluation of some random effects methodology applicable to bird
ringing data. Journal Applied Statistics 29 (Special Issue): 245–264.

Cam E, Hines JE, Monnat J-Y, Nichols JD, Danchin E (1998) Are nonbreeders prudent parents?
The Kittiwake model. Ecology 79: 2917–2930.

Cam E, Link WA, Cooch EG, Monnat J-Y, Danchin E (2002a) Individual covariation in life history
traits: seeing the trees despite the forest. American Naturalist 159: 96–105.

Cam E, Cadiou B, Hines JE, Monnat J-Y (2002b) Influence of behavioural tactics on recruitment
and reproductive trajectory in the kittiwake. Journal of Applied Statistics 29 (Special Issue):
163–186.

Cam E, Monnat J-Y, Hines JE (2003) Long-term consequences of early conditions in the kittiwake.
Journal of Animal Ecology 72: 411–424.

Cam E, Oro D, Pradel R, Jimenez J (2004a) Assessment of hypotheses about dispersal in a
long-lived seabird using multistate capture-recapture models. Journal of Animal Ecology 73:
723–736.

Cam E, Monnat J-Y, Royle JA (2004b) Dispersal and individual quality in a long-lived species.
Oikos 106: 386–398.

Cam E, Cooch EG, Monnat J-Y (2005) Earlier recruitment or earlier death? On the assumption of
homogeneous survival in recruitment studies. Ecological Monographs 75: 419–434.

Carothers AD (1973) Capture–Recapture methods applied to a population with known parameters.
Journal of Animal Ecology 42: 125–146

Caswell H (2001) Matrix population models. Construction, analysis, and interpretation. Sinauer
Associates, Sunderland, Massachusetts.

Charmantier A, Perrins C, McCleery RH, Cheldon BC (2006a) Quantitative genetics of age
at reproduction in wild swans: support for antagonistic pleiotropy models of senescence.
Proceedings of the National Academy of Sciences of the U.S.A. 103: 6587–6592.

Charmantier A, Perrins C, McCleery RH, Cheldon BC (2006b) Evolutionary response to selec-
tion on clutch size in a long-term study of the mute swan. American Naturalist 167:
453–565.

Charlesworth B (1994) Evolution in age-structured populations. Cambridge University Press,
Cambridge.

Choquet R, Reboulet AM, Pradel R, Gimenez O, Lebreton J-D (2003) U-Care user’s guide,
Mimeographed document, CEFE/CNRS, Montpellier, France. Available at: ftp://ftp.cefe.cnrs-
mop.fr/biom/Soft-CR/

Clobert J, Lebreton JD (1985) Dependance de facteurs du milieu dans les estimations de
survie par capture–recapture. Biometrics 41: 1031–1037. SURGE is available at :http://ftp.
cefe.cnrs.fr/biom/Archives/

Clobert J (1995) Capture–recapture and evolutionary ecology: a difficult wedding? Journal of
Applied Statistics 22: 989–1008.

Clobert J (2002) Capture–recapture and evolutionary ecology: further comments. Journal of
Applied Statistics 29 (Special Issue): 53–56.

Conner MM, White GC (1999) Effects of individual heterogeneity in estimating the persistence of
small populations. Natural Resource Modeling 12: 109–127.

Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Inc. Publishers,
Sunderland, Massachusetts.

Conroy MJ, Senar JC, Domènech J (2002) Analysis of individual- and time-specific covariate
effects on survival of Serinus serinusin north-east Spain. Journal of applied Statistics 29
(Special Issue): 125–142.



Contribution of Capture-Mark-Recapture Modeling to Studies 121

Conroy MJ (2008) Some contributions of capture–recapture to evolutionary ecology and popu-
lation modeling. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic
Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New
York, Vol. 3, pp. 131–156.

Cooch EG, Lank DB, Rockwell RF, Cooke F (1999) Body size and age of recruitment in snow
geese Anser c. caerulescens. Bird Study (supplement) 46: 112–119.

Cooch EG, Cam E, Link WA (2002) Occam’s shadow: levels of analysis in evolutionary ecology –
where to next? Journal of Applied Statistics 29 (Special Issue): 19–48.

Cooch EG, White GW (2007) Using MARK – a gentle introduction. Available at ttp://
www.phidot.org/software/

Cormack RM (1964) Estimates of survival from the sighting of marked animals. Biometrics 51:
429–438.

Coulson T, Benton TG, Lunberg P, Dall SRX, Kendall BE, Gaillard J–M (2006) Estimating indi-
vidual contributions to population growth: evolutionary fitness in ecological time. Proceedings
of the Royal Society London B: 273: 547–555.

Crespin L, Harris MP, Lebreton J-D, Frederiksen M, Wanless S (2006) Recruitment to a seabird
population depends on environmental factors and on population size. Journal of Animal
Ecology 75: 228–238.

Curio E (1983) Why do young birds reproduce less well? Ibis 125: 400–404.
Danchin E, Boulinier T, Massot M (1998) Conspecific reproductive success and breeding habitat

selection: implications for the evolution of coloniality. Ecology 79: 2415–2428.
Danchin E, Heg D, Doligez B (2001) Public information and breeding habitat selection. In:

Clobert J, Danchin E, Dhondt A, Nichols JD (eds), Dispersal, Oxford University Press, Oxford
UK pp 243–258.

Doligez B, Danchin E, Clobert J, Gustafsson L (1999) The use of conspecific reproductive success
for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher.
Journal of Animal Ecology 68: 1193–1206.

Doligez B, Clobert J, Pettifor RA, Rowcliffe M, Gustafsson L, Perrins CM, McCleery RH (2002)
Costs of reproduction: assessing responses to brood size manipulation on life-history and
behavioural traits using multi-state capture-recapture models. Journal of Applied Statistics
29 (Special Issue): 407–423.
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Réale D, Festa-Bianchet M (2000) Quantitative genetics of life-history traits in a long-lived wild
mammal. Heredity 85: 593–603.
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Royle JA, Kéry M (2007) Analysis of multinomial models with unknown index using data augmen-
tation. Journal of Computational and Graphical Statistics 16: 67–85.

Runge MC, Johnson FA (2002) The importance of functional form in optimal control solutions of
problems in population dynamics. Ecology 83:1357–1371.

Saccheri I, Hanski I (2006) Natural selection and population dynamics. Trends in Ecology and
Evolution 21: 341–346.

Saxton AM (2004) Genetic analysis of complex traits using SAS. SAS Institute Inc. Cary, North
Carolina, U.S.A.

Schaeffer LR (2004) Application of random regression models in animal breeding. Livestock
Production Science 86: 35–45.

Schmidt BR, Schaub M, Anholt BR (2002) Why you should use capture–recapture methods when
estimating survival and breeding probabilities: on bias, temporary emigration, overdispersion
and common toads. Amphibia-Reptilia 23: 375–388

Schwarz CJ, Arnason AN (2000) Estimation of age-specific breeding probabilities from capture–
recapture data. Biometrics 56: 59–61.

Schwarz CJ, Stobo WT (2000) Estimation of juvenile survival, adult survival, and age-specific
pupping probabilities for the female grey seal (Halichoerus gryprus) on Sable Island from
capture–recapture data. Canadian Journal of Fisheries and Aquatic Sciences 57: 247–253.

Schwarz CJ, Arnason AN (2001) Comment on Schwarz and Arnason: estimation of age-specific
breeding probabilities from capture–recapture data – authors reply. Biometrics 57: 976.

Seber GAF (1965) A note on the multiple recapture census. Biometrika 52: 249–259.
Seber GAF, Schwarz CJ (2002) Capture–recapture: before and after EURING 2000. Journal of

Applied Statistics 29 (Special Issue): 5–18.
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Abstract Capture–recapture (CR) is one of the most commonly used methods
in quantitative ecology. Until recently, much of the emphasis of CR was on the
estimation of abundance and vital rates, especially survival rates. Here, I discuss
several important advances that have enhanced ecologists’ ability to address ques-
tions in evolutionary ecology. Generalizations of CR methodology to include group
and covariate effects have allowed direct, empirical modeling of the influence of
extrinsic and intrinsic factors on demographic rates. Advances in sampling design
and software now allow CR modeling to address questions such as dispersal and
natal fidelity, tradeoffs between reproductive effort and survival, senescence, and
variability in demographic rates in relation to individual traits, among others.
Furthermore, complex ecological and evolutionary questions seem to be especially
amenable to a paradigm of multiple alternative (vs. single null) hypotheses, which
is consistent both with information-theoretic and Bayesian approaches to inference.

Previous CR approaches have emphasized the estimation of averages of demo-
graphic parameters for individuals grouped into classes (age, sex, size or other
attributes), but evolutionary questions tend to emphasize individual variability,
with fitness “parameters” best characterized by frequency distributions. Bayesian
approaches are particularly appropriate for modeling individual, temporal, spatial,
and other components of variation via random effects models. Finally, Bayesian
methods and conditional/hierarchical modeling allow for ready construction of
complex models of life history from a variety of data sources. I present selected
examples to illustrate each of these major points.
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1 Introduction

Capture–recapture (CR), in which animals are captured, marked with a tag or
other device, and recaptured at some future time, is one of the most common
techniques used in ecological studies. CR may be employed simply to estimate
population size or vital rates, or more interestingly, to investigate a wide array
of questions about variability (over space, time, and among individuals) in these
parameters (Williams et al. 2002).

The rich nature of CR data now makes it possible, given appropriate experi-
mental designs and sufficient data, to address a wide range of evolutionary ques-
tions, including

• Modeling of factors influencing demographic rates.
• Analysis of individual heterogeneity in fitness.
• Metapopulation dynamics.
• Alternative reproductive strategies, including survival/reproduction tradeoffs,

breeding propensity and age at first reproduction, senescence, and fidelity to
breeding areas.

By definition, because CR allows an investigator to follow individual animals or
groups of animals through time, it apparently provides a rich source of informa-
tion on individual behavior and fates. It also is possible to determine the “state” of
animals at various points in time, where “state” can refer to any attribute about the
individual, such as the age, physical condition, breeding status, or the location of
the animal in space.

However, this richness is balanced by the fact that CR data are based on recap-
tures, so if animals are marked and released, but no animals are ever encountered, no
information is provided to the study. Also, unless care is taken in modeling, there
will be confounding between the parameters of biological interest, and nuisance
parameters related to the sampling process. Finally, statistical models must balance
the desire of evolutionary biologists to exploit the rich information in CR studies
(seemingly calling for complex models), with the fact that in most studies, data are
relatively limited (calling for simpler models).

2 Historical Advances

2.1 Separation of Encounter from Survival and Other
Parameters – The CJS Model

As noted earlier, CR studies fundamentally depend upon recaptures. However, in
order to model recaptures, we must also model the events that lead to animals not
being recaptured. It is obvious what events lead to a recapture: for instance, if an
animal is marked and released at time t, in order to be recaptured at t+1, it must
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Fig. 1 Events leading to capture histories under the Cormack–Jolly–Seber model

(1) survive the interval [t, t+1], and (2) be recaptured at time t+1. By contrast, there
are three ways in a simple CR study that an animal can fail to be recaptured at
t+1: (1) it died between t and t+1, (2) it left the study area between t and t+1, and
(3) it was alive and present on the study area, but was not recaptured at t+1 (Fig. 1).
Failure to separate these events in the parameterization of a statistical model leads
to biases in estimates, and confounding of inferences. For example, the “traditional”
approach of return analysis, still used by some ecologists, which considers the
proportion of animals marked and released that are recaptured or resighted in a natal
area, is at best a crude index, and confounds fidelity with mortality and nuisance
sampling parameters. Because these factors likely vary over time and space, there
is no assurance that the return rate is even a relative index to fidelity, survival, or
other biological parameter. Unfortunately, there is still a tendency among ecologists
and evolutionary biologists to ignore sampling intensity; Clobert (1995) lamented
that fewer than 10% of evolutionary studies until that time considered sampling
intensities (capture probabilities). This percentage has doubtless increased in the
intervening period, but it is interesting to note that of 45 citations of Clobert (1995),
only 6 do not involve either Clobert as a coauthor, or one of the other regular atten-
dees at EURING (e.g., Barker, Cam, Lebreton, Hines, Nichols, Schwarz, to name a
few). This by no means proves that evolutionary ecologists are ignoring sampling
intensities, but perhaps does suggest that use of CMR or methods in evolutionary
studies is still confined to a relatively small group of scientists.

Fortunately, a statistical tool has existed for 40 years that allows at least for valid
separation of sampling intensity from the biological processes of interest. Indepen-
dently developed by Cormack (1964), Jolly (1965), and Seber (1965), the Cormack–
Jolly–Seber (CJS) model has been an important mainstay of empirical population
analysis. The CJS model separates the biological and sampling events by defining
two parameters:

• φi , the probability that an animal alive at sampling occasion i is alive and on the
study area at sampling occasion i+1,

• pi+1, the probability that a marked animal that is present at i+1 is recaptured.
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Note that the first of these parameters still combines the event of “surviving”
with that of “remaining on the study area”, and for that reason is sometimes termed
apparent survival; I will return to this point later. Note too that the second param-
eter, recapture, is only defined at the second and subsequent capture occasions. The
reason for this is that CJS models only the fate of marked animals, and at the first
capture period, no animals are marked.

The importance of separating sampling probabilities ( p) from the parameters of
the process of interest (in this case, φ), is made clear by way of a simple example.
Suppose that one marks and releases 1,000 animals and subsequently observes 250
in a recapture sample. Under the CJS model, the expected value of this outcome
is 1,000 × φ × p, and thus 250 is consistent with any combination of φ and p
where this quantity equals 250, for instance, φ = 0.5 and p = 0.5, or φ = 0.25 and
p = 1.0. Because there are an infinite number of such combinations, the observation
“250 recaptures out of 1,000 releases” provides no information on the parameter of
interest (φ), unless p can be estimated and “removed” as a nuisance parameter.

Besides the important fact that CJS allowed for separate estimation of survival
(or at least, apparent survival) from sampling intensity, several other advances have
occurred more recently. Notable among these were the development of flexible
approaches for modeling the effects of group factors (such as sex and geographic
area), time effects, and age dependencies, as part of an expanded CJS approach (e.g.,
Lebreton et al. 1992). However, the basic CJS model remained somewhat limited in
its ability to allow modeling of continuous factors, whether these be temporal (e.g.,
environmental) or individual effects. Secondly, survival and permanent emigration
remained confounded in the CJS apparent survival parameter. Both of these issues
were addressed by more recent advances, discussed in the second section.

2.2 Use of Multiple Alternative Hypotheses
and Information Theory

As noted earlier, and observed by others (e.g., Cooch et al. 2002) there is a tension
between the desire of evolutionary biologists to extract detailed information from
CR data, and that of statisticians to work toward models no more complicated than
are supported by data. In particular, evolutionary biologists are often interested in
the variation of traits among individuals, so that models that reduce this variation
to a single parameter are not of much interest. However, science is also presumably
guided by parsimony (Occam’s Razor – but see Cooch et al. 2002), and by the
periodic feedback of information from observational or experimental studies. Thus,
CR modeling is best viewed as collaboration between the biological and statistical
sciences. Fortunately, important advances in both fields are helpful for this problem.

Paralleling the development of CR modeling in the 1960s–1980s, but obviously
of broader scientific relevance, were two trends: one in scientific philosophy, the
other in statistical inference. The first of these was not new, dating at least to Cham-
berlin (1897), who advocated an approach based on multiple working hypotheses.
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Under this approach, rather than seeking to prove (or falsify) individual hypotheses,
scientists would entertain multiple, plausible explanations, each with a connection
to an underlying body of theory. Science would proceed by the collection of data,
just as in single-hypothesis testing, but the emphasis is on accumulating weights
of evidence across the alternatives, rather than in rejecting or supporting single
hypotheses.

More recently, a similar paradigm has emerged in statistics, wherein emphasis is
on inference across multiple alternative (but plausible) models, rather than in statis-
tical null hypothesis testing. This paradigm is supported by important developments
in information theory, including the development of Akaike’s Information Criterion
(AIC; Akaike 1973) and the synthesis by Burnham and Anderson (2002) on multi-
model inference and model selection. Link and Barker (2006) recently suggested an
alternative based on a weighted Bayesian Information Criterion (BIC), and others
(e.g., King and Brooks 2001) have advocated reversible jump Markov chain Monte
Carlo (MCMC), also under the Bayesian paradigm. Regardless of the approach,
emphasis now can be on parameter estimation, prediction, and weights of evidence
under alternative models, rather than on artificially constructed null hypotheses.
Below, I cite examples where this general approach has been effectively applied
to addressing ecological and evolutionary questions using CR.

2.3 Experimental Approaches

Although this paper emphasizes statistical modeling for observational studies,
experimentation, when feasible, will often provide stronger inferences. Under exper-
imentation, subjects (individuals, populations, or other units) are assigned, ideally
at random, to treatments corresponding to the environmental or other factors under
study. Properly designed studies can provide inferences about causation that are
stronger than those provided by observational studies (William et al. 2002). Of
course, experiments can and often should take advantage of statistical modeling
tools such as CR, including the advances outlined below. Recent examples of studies
to address evolutionary questions that have combined observational and experi-
mental approaches with statistical modeling (including CR) include Yoccoz et al.
(2002) and Keyser (2003).

3 Recent Advances

Here I focus on more recent advances that have greatly enhanced the power of CR
modeling to address ecological and evolutionary questions. My coverage is by no
means exhaustive, and is somewhat biased toward studies in avian and mammalian
population dynamics. Nonetheless, these, and the examples cited, should give
readers a good sense of the power of CR for addressing important questions.
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3.1 Modeling of Environmental and Individual Covariates

The basic CJS model, and extensions up through the early 1990s, permitted the
modeling of many group and temporal effects on survival and other parameters.
However, certain types of variation, including temporal and individual variation in
parameters, could only be crudely modeled. Under modifications of the basic CJS
model (Pollock et al. 1990), in fact, there are only 2 alternative expressions for time
variation in apparent survival, φ:

• Survival is time varying but otherwise unstructured, so that k−1 survival param-
eters are estimated for k capture occasions.

• Survival is constant over all time periods, so that a single survival parameter is
estimated.

Neither of these models of survival variation is likely to be of interest to evolu-
tionary biologists. Indeed, the second of these must be false a priori, since it implies
no variation in this fitness parameter over time; it would only be selected as the
appropriate statistical model if the observational evidence is insufficient to allow
time-specific estimation. Almost always, we are interested not in whether survival
(or other parameters) vary over time but how and why they vary. In particular, is
there an environmental, biotic, or other factor that drives (or at least is correlated
with) temporal variation in survival or other parameters of interest? Are there indi-
vidual traits that mediate this variation? One approach to investigate this question
would be to estimate parameters under a time-specific model (the general CJS
model), and then plot (or conduct a formal regression analysis) these estimates
against temporal variation in a potential predictor variable. However, this approach
is inefficient, and potentially biased. The preferred approach is to reparameterize the
likelihood in terms of the hypothesized relationship. This is more efficient statis-
tically, and also allows direct comparison of alternative biological models (e.g.,
using AIC).

For example, suppose that one is interested in modeling the relationship between
annual survival φt and a covariate predictor Xt (for example, winter temperature).
A model that specifies this relationship is

φ = exp (β0 + βXt )[
1 + exp (β0 + βXt )

]
equivalently

In

[
φt

(1 − φt )

]
= β0 + βXt

where the logit transform is used to assure that predicted survival stays on the
interval (0,1). If we now introduce this into the CJS model we see that the observa-
tion “captured at occasion 1, next recaptured at occasion 2” is modeled as
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Pr({11}) = φ1 p2.

However, the covariate model now replaces φ1 in the likelihood so that we have

Pr({11}) = exp(β0 + βXt )[
1 + exp(β0 + βXt )

] p2.

This is repeated for each of the φi in the model, with the effect that instead of
having k−1 survival probabilities to estimate, we have only the two parameters β0

and β. We have also effectively inserted an interesting model between the general
CJS model (φt , t = 1, ..., k − 1) and the “null” model (φt = φ, t = 1, ..., k − 1),
which can also be obtained from the above expression simply by specifying that
β=0, yielding

Pr({11}) = exp(β0)[
1 + exp(β0)

] p2 = φp2.

Our “interesting model” can be generalized to allow for multiple predictors and
curvilinear relationships by

In

[
φt

(1 − φt )

]
= β0 + β ′ Xt

where X and β are vectors of predictors and parameters, respectively. For example,

In

[
φt

(1 − φt )

]
= β0 + β1 Xt + β2 X2

t

specifies a quadratic (on the logit scale) relationship between survival and the
factor Xt .

An early, and simple, time-specific covariate analysis was conducted on Euro-
pean dippers (Cinclus cinclus) by Lebreton et al. (1992). Here, interest focused on
the impact of flood events on annual survival. Lebreton et al. (1992) created a time-
specific indicator variable (Xt =1 for flood years, and Xt =0 for non flood years) and
incorporated this relationship into the CJS likelihood. They found a negative rela-
tionship between flood events and survival, with predicted survival 0.469 in flood
years and 0.607 in non-flood years. The Lebreton et al. (1992) model, although a
simple approach effectively equivalent to grouping the data into two groups of years
and estimating survival for each group, is readily extendable to continuous temporal
covariates, such as temperature, or biotic variables such as density of conspecifics or
competitors (thus allowing direct estimation of density dependence or competition).

The above approach, however, does not really take into account the fact that many
environmental or other factors vary at levels of resolution different than the individ-
uals (the actual units of observation in the study). In the above, for instance, factors
varying over time (e.g., flood effects) are treated as fixed effects, and essentially the
study is replicated across these effects. There are at least 2 problems with this: first,
it is a form of “pseudoreplication” (Hurlbert 1984), second, it does not properly deal
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with the random, hierarchical nature of the “year” effects. Later, I will return to this
example, using a hierarchical modeling approach that more appropriately accounts
for these random year effects.

Modeling of individual covariate effects is based on a similar approach, but the
statistical implementation is a bit different. Here, survival is modeled at the level of
an individual animal i, with attributes Xi that are (potentially) unique to that animal.
Thus the fundamental model is

In

[
φi

(1 − φi )

]
= β0 + β ′ Xi

for each of the i = 1, . . .., n animals in the study. Typically, implementation of indi-
vidual covariate models is based on modeling capture histories as multiple Bernoulli
trials, rather than as multinomials (as in CJS) (Skalski et al. 1993, Smith et al. 1994).

I illustrate covariate analysis with a study of Serin finches (Serinus serinus),
ringed in Spain during 1985–2000 (Conroy et al. 2002). We ringed birds during
two periods (October–March, April–September) in order to estimate survival over
6-month periods. In addition to a series of time-, age-, and sex-specific CJS models,
we modeled survival in relation to both temporal (minimum temperature, days
< 0 ◦C, and presence of siskins [Carduelis spinus], a competitor, during winter,
and rain and maximum temperature during summer) and individual (g body mass
and mm wing length, standardized within age–sex group) covariates, measured at
the first capture of individuals. Overall, we found weak support (as judged by AIC)

Fig. 2 Predictive model of the relationship between body mass and 6-month survival for Serins
in northeastern Spain. Prediction with below-average (top), average (middle), and above-average
number of competing Siskins present
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Fig. 2 (continued)

for the temporal covariates but stronger support for individual covariates. I focus
here on the estimated (via AIC averaging across alternative models based on AIC
weight) quadratic relationship between body mass and 6-month survival (Fig. 2).
Interestingly, this body mass-survival relationship seemed to be influenced by the
presence of Siskins, with high numbers of this competitor essentially reversing the
predictive relationship. Our interpretation of these results was that they (1) provide
support for a theoretical view of a fitness tradeoff between starvation and predation
risk, since lighter-than-average birds had best predicted survival, but (2) this tradeoff
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disappears in favor of a strategy toward maximizing mass, when the competitor is
present in large numbers.

Blums et al. (2005) used a similar approach to identify individual traits corre-
lated with fitness components, finding quadratic relationships between standardized
body size and clutch initiation date as traits varying among individuals, and indi-
vidual survival probability. Analyses such as these, particularly when buttressed by
evidence that individual traits such as body size, coloration, or breeding propensity
are heritable, can provide powerful, additional evidence for evolutionary studies.

3.2 Modeling of Heterogeneity via Random Effects

The identification of individual traits correlated with fitness is, as seen above, a
powerful tool in evolutionary studies. However, even in the absence of correlated
traits, it can be important to characterize the manner in which individual animals
vary with respect to survival or other fitness components, or how these components
vary over time. An alternative approach is via random effects models, in which
the emphasis is on estimation of parameters of an underlying stochastic model that
specifies the nature of variation in the component among individuals, or over space,
time, or other dimension (e.g., Royle and Link 2002). Many times, interest will focus
more on how variable fitness components are, rather than average fitness (Fig. 3a).
Alternatively, it may be possible to identify groups within the population having
two or more heritable traits, and to identify “fitness profiles” for each (Fig. 3b).
Obviously, as illustrated by this last case, there is no bright line between “fixed”
(identifiable group or covariate trait) and “random” effects, and which approach is
used will depend upon the nature of the hypotheses and data (see also Cam et al.
(2002) and references therein). Finally, the above discussion emphasizes random
effect modeling where the goal is inference about parameters of interest to ecology
and evolution, such as components of variation in fitness. Random effects models
can also be useful for modeling “nuisance” variation that often occurs in ecolog-
ical studies, such as spatial or temporal dependencies, although such variation may
itself be of primary interest. Finally, while much of evolutionary ecology is focused
on individual variation, modeling variation among demes, populations, or larger
aggregations of animals is also of great importance. Proper modeling at all these
levels should take into account previous cautions about pseudoreplication, and in
most cases should incorporate hierarchical modeling.

3.3 Modeling of Movement and State Transition

As noted earlier, the basic CJS model, while properly separating sampling inten-
sity from demographic processes, cannot distinguish between the event that an
animal died between two sampling occasions, and the event that it emigrated from
the study area (Fig. 4). If emigration is permanent, there is of course no possi-
bility of future recapture, and this event is treated identically to mortality in CJS.
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Fig. 3 Random effects models for a fitness component, e.g., survival probability. (Top) Survival as
a random process from a beta(3, 2.5) distribution (left) and from a beta (12,10) distribution (right),
providing distributions with identical mean survival but very different variances. (Bottom) Survival
distribution for 2 heritable traits, with higher probability mass under trait B, providing evidence in
favor of selection for that trait

Permanent emigration is confounded with survival, however, temporary emigration
is confounded with recapture, and more complex modeling, such as that provided
under the Robust Design (below), is required to separate these effects.

The problem of emigration is a serious one for CR studies, particularly for
mobile species such as birds, for which it is virtually impossible to establish a
spatial recapture design that would assure that all animals are subject to recapture.
Burnham (1993) developed an approach for combined analysis of ring recovery
and CR data that, under certain assumptions, allows for separating demographic
survival from permanent emigration (confounded under CJS models) and thus
enables the estimation of fidelity rates. Barker (1997) expanded this idea to joint
modeling of recaptures, resightings, and dead recoveries of marked animals. The
Burnham–Barker models depend on the critical assumption that, unlike recap-
tures, recoveries can potentially occur throughout the range of the species. Blums
et al. (2002) applied this model successfully for estimating breeding site fidelity
in European ducks, and it has been applied as well to fidelity in North American
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Fig. 4 Problem of apparent survival under conventional CJS model. Animals alive at time 1 may
be alive and present on the study area at time 2; alive but absent from the study area; or dead.
Capture histories (10) of dead, alive and present but not captured, and alive but absent animals are
indistinguishable

ducks and geese (Alisauskas and Lindberg 2002; Doherty et al. 2002; Zimpfer and
Conroy 2006).

A more general approach involves the use of multi-state (multi-stratum) models,
in which animals are captured, released, and recaptured in two or more “states”.
Again, “state” refers to any attribute about the individual, such as the age, phys-
ical condition, breeding status, or spatial location. These data are summarized in
a manner analogous to the capture history format already seen, but where numer-
ical or other codes now signify the state at each capture. For instance, “20310223”
signifies an animal that was released in state 2 at occasion 1, recaptured in state 3 at
occasion 3, state 1 at 4, state 2 at 6 and 7, state 3 at 8, and not captured at occasions
2 or 5. Multi-state models require definition of many new parameters, notably state-
specific transition and recapture probabilities. Transition probabilities are particu-
larly interesting and allow for complex modeling of many attributes. State transition
can potentially occur among any of the states, and is reversible (i.e., animals can
return to states that they previously occupied). For the 3-state example, this results
in a matrix of transition probabilities (φrs

t – the probability that an animal alive and
in state r at sampling period t is alive and in state s at period t+1)

⎡⎢⎣φ11 φ12 φ31

φ21 φ22 φ23

φ31 φ32 φ33

⎤⎥⎦ .

These transition models generally are Markovian, meaning that transition
depends only on the state of the animal at t, and not at previous times (Arnason
1972, 1973; Brownie et al. 1993; Schwarz et al. 1993; Williams et al. 2002) but
have been extended to non-Markovian (memory) transitions as well (Hestbeck et
al. 1991; Brownie et al. 1993; Williams et al. 2002). Also, while in general certain
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kinds of transition, such as growth, are reversible (an animal can move from state r to
state s and back to state r), others, such as stage development, are not (e.g., once an
animal transitions to an adult stage it cannot transition back to neonate). Finally, not
all state transitions are stochastic: some (such as age-transition) are deterministic,
so that transition occurs on a fixed schedule (e.g., for some organisms, 1 year after
birth animals transition with certainty to an adult or breeding state). These cases can
easily be accommodated by the general state transition model, so that, for instance⎡⎢⎣φ11 φ12 φ13

0 0 1

0 0 φ33

⎤⎥⎦
signifies that animals in state 2 transition to state 3 with certainty, those in state
3 never transition to states 1 or 2, but remain in state 3 with probability φ33.

Multi-state CR models allow separate estimation of state-specific transition and
recapture probabilities, under assumptions analogous to those of ordinary CJS
models. Under certain assumptions, the transition probability φrs

t has additional
biological significance. In order to transition from state r to state s over [t, t+1], the
animal must of course survive the interval. Under the assumption that survival over
the interval [t, t+1] is dependent only on the state at time t, φrs

t can be re-written as

φrs
t = St

r �rs
t ,

where Sr
t is survival dependent on the originating state r, and �rs

t is the probability
of moving from state r to state s, conditioned on survival. Under the assumption that
there are j=1,..,k mutually exclusive states to which the animal can transition if it

survives, state-specific survival Sr
t , can be computed as Sr

t =
k∑

s=1
φrs

t . For instance,

in the 3-state example, S1
t = φ11

t + φ12
t + φ13

t . Finally, marked animals that survive
the interval [t, t+1] and transition to one of the states, may or may not be recaptured,
and recapture probabilities may depend upon the state the animal is in at the next
capture period. Thus, for instance, the probability that an animal that is marked and
released in state 2 at time t, transitions to and is captured in state 3 and t+1, would be

φ23
t p3

t+1.

Figure 5 shows how multi-state modeling works for a simple example involving
only 2 states, and should be compared to the much simpler modeling of fates under
ordinary CJS (Fig. 1).

Multi-state modeling has been effectively used to model fidelity to breeding
areas and other types of movement questions (e.g., Lindberg et al. 1998). I illus-
trate multi-state CR modeling with a metapopulation example from Senar et al.
(2002). Citril finches (Serinus citrinella) were ringed in two habitats in the pre-
Pyrenees of northeast Spain, separated by approximately 5 km. One of these habitats
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Fig. 5 Multistate CR model, with captures in two strata (1, 2), and state-specific transition
(φ(i1), φ(i2), i=1, 2) or death (1 − φ(i1) − φ(i2), i = 1, 2) to the second occasion, where animals
still alive and present in one of the states are captured with state-specific recapture probability
p(i), i=1, 2

(La Bofia, “B”), has relatively xeric conditions, resulting in low productivity of pine
seeds that are food for the finches, resulting in birds with poor body condition and
lower reproductive output. The other habitat (La Vansa, “V”), is more mesic, with
higher productivity of pine seeds, better body condition, and higher reproductive
output. Senar et al. (2002) captured and ringed birds in both habitats between 1991
and 1999 to estimate habitat-specific survival and probability of movement between
habitats. A model containing age and habitat effects for both survival and move-
ment provided over one-half of the total weight of evidence, as judged by AIC;
other models containing area effects for movement but not for survival constituted
most of the remainder. Model-averaged estimates (Fig. 6) indicate that survival was
higher in the better habitats. Additionally, they suggest asymmetry of movement,

Fig. 6 Asymmetric survival (φa, φ j ) and movement ψa, ψ j probabilities for adult and juvenile,
respectively, Citril Finches captured and released in two environmentally different locations in the
pre-Pyrenees of northeast Spain
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with higher rates of movement from Bofia to Vansa than reverse. The authors inter-
preted these results both as supporting microgeographic adaptation in finches, as
well as supporting a “source-pool” model of movement in favor of alternatives.
Finally, the results are especially interesting, in light of evidence that morphological
differences in finches appear to be correlated with genetic differences between the
2 sites (Senar et al. 2006).

In another example of multi-state modeling, Senar and Conroy (2004) used multi-
state models to estimate transition and survival rates of Serins that either exhibited
or did not exhibit the symptoms of avian pox. In this study, state transition rates had
interpretation in terms of infection and recovery rates, and estimates provided infor-
mation for modeling the spread of diseases in wild populations. Senar and Conroy
(2004) also found evidence that symptomatic and asymptomatic birds had different
recapture rates, which strongly suggests that studies of disease prevalence need to
take into account the unequal probabilities of encountering these different states in
samples.

Finally, evolutionary biologists are often interested in addressing questions about
life history strategies, such as fitness tradeoffs under alternative reproductive strate-
gies (e.g., Brown and Brown 1998; Cam et al. 2003). Multi-state models have
been effective tools for addressing these types of hypotheses, by casting repro-
duction status (or other life history attributes) as states among which animals can
stochastically move. For many organisms, reproductive effort affects behavior, and
consequently the probability that animals are reencountered in a CR study. Because
sampling is often restricted to sites where breeding animals are known to occur this
potentially creates situations where certain classes of animals (e.g., non-breeders)
are virtually undetectable. Under certain designs (e.g., variations of the Robust
Design, discussed below) multi-state models can be used to allow modeling of
transition between an observable state (breeding) and an unobservable one (non-
breeding). Bailey et al. (1995) applied such an approach to pond-breeding amphib-
ians, and were able to address questions such as whether breeding activity has fitness
effects on survival. Likewise, Cam and Monnat (2000) applied MSM to test for
the influences of age and habitat quality on both survival and breeding individual
heterogeneity in kittiwakes (Rissa tridactlya). Cam and Monnat (2000) were able
not only to estimate reproductive state, but to model the interaction between age and
correlation between fitness components. Tradeoffs between dispersal and reproduc-
tive effort have also been investigated by several authors using multi-state models
(e.g., Grosbois and Tavecchia 2003; Lebreton et al. 2003; Danchin and Cam 2002).
Other examples of multi-state models applied to questions of reproductive strategy
and fitness tradeoffs include Yoccoz et al. (2002); Reed et al. (2003); Orell and
Belda 2002; Cam et al. (2004), and Rivalan et al. (2005).

3.4 Modeling the Components of Population Growth

Several important classes of problems revolve around the question of the relative
contribution of different sources to population growth. Specifically, many questions
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of theoretical and applied population ecology relate to the relative contribution of
age-specific reproduction and survival rates. Estimates of relative contributions will
allow prediction about the relative consequences of hypothetical changes in each
type of parameter on population growth, and in turn, can be helpful in directing
conservation actions.

Estimation of components of population growth has been greatly facilitated by a
novel approach to CR modeling, based on viewing capture histories in reverse time
order (Pollock et al. 1974; Pradel 1996; Nichols et al. 1994; Nichols and Kendall
1995; Nichols et al. 2000; Nichols and Hines 2002). In this approach, analysis is
conditioned on the last capture of animals, and modeling is with respect to events
that led to the animal’s capture history. If we consider just two capture occasions, the
capture histories of these animals are all of “1” type. For open populations, a marked
animal that is recaptured at occasion 2 obviously must have been in the population
at a previous time, and survived from occasion 1 to occasion 2, and could not have
been a new recruit into the population. Those animals either may have been captured
(11) or not captured (01) at occasion 1. Animals that were not in the population at
1 but are captured at 2, and so are recruits, also will have history “01”, and so
based on only a single recapture sample these outcomes cannot be distinguished
(Fig. 7). This is much like the situation in forward time, in which for the history
“10” we cannot distinguish the outcomes “died or emigrated” from “survived but
not recaptured” (Fig. 4).

With several (3 or more) capture occasions, reverse-time modeling can be used
to estimate the parameter γi+1, the probability that a member of the population Ni+1

is a survivor from the previous period, i. This in turn can be used to estimate the two
demographic components (survival, recruitment) of growth, λi = Ni+1/Ni , as the
weighted average of abundance

E(λi ) = γi+1 Ni+1 + (1 − γi+1)Ni+1

Ni
.

Fig. 7 Reverse-time CJS model showing modeling of survival and recruitment components leading
to population growth



Application of Capture–Recapture to Addressing Questions 147

The parameter γi+1 also can be used to provide an estimate of the proportional
change in growth rate from a proportional change in one of the components, a
quantity similar to elasticity (Caswell 2001). For example if survival was increased
by an amount α between i and i + 1, (1+α)Si , then we can obtain the corresponding
proportional change in growth as αγi+1. Likewise, for a proportional change α in
recruitment, the corresponding proportional change in growth would be α(1−γi+1).
Reverse-time modeling also can be combined with multi-state modeling to allow
for estimation of the relative contributions to growth from individual states, such as
animals in different behavioral or physiological conditions, or occupying different
habitat patches.

The Robust Design (RD; Pollock 1982; Williams et al. 2002; Runge et al. 2006)
is another advance useful in this type of analysis. The RD is a two-stage CR design
involving primary sampling periods between which the population is assumed to be
demographically open, and secondary periods over which the population is assumed
closed (Fig. 8). The RD was originally developed to allow for robust modeling of
capture probabilities (best done in a closed model) with estimation of survival,
recruitment, and other demographic parameters. Originally the RD was used in
conjunction with closed CR models to estimate abundance based on the secondary
periods; open (CJS) models to estimate survival; and a combination of estimates
to estimate recruitment. More recently, the RD has been used in conjunction with
multiple-age CR to allow separate estimation of in situ reproduction from immigra-
tion, and with reverse-time modeling to allow estimation of components of recruit-
ment from multiple sites, breeding propensity, and other parameters.

A study by Nichols et al. (2000) nicely illustrates the combination of reverse-time
modeling with the RD. Meadow voles (Microtus pennsylvanicus) were captured and
released in grids in two areas during primary trapping periods every 2 months during
1991–1993. During each primary period, trapping occurred on 2–6 consecutive

Fig. 8 Pollock’s robust design, with combination of primary sampling periods between which
population is assumed demographically open, and secondary periods over which population is
assumed closed
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days. Thus, the data were analyzed according to the RD, with monthly primary
periods and daily secondary periods. Estimates of growth rate (λi ) and proportion
of growth contributed by survival and movement and recruitment for each area
(γi ) were estimated using reverse-time modeling. These estimates can be used for
making two kinds of inference about population growth. First, as mentioned earlier,
the estimates of γi (for the moment, not referenced to area) can be used to address
questions in evolutionary biology or resource management, such as “how much
change in population growth rate can be expected by a specified change in survival
or recruitment?” This can be illustrated with the specific case of period 9 growth
by examining the estimates λ̂9 = 0.59, estimating growth between primary periods
9 and 10, and γ̂10 = 0.70, the estimated proportion of the population at period 10
derived from survival. To address the question “what would population growth rate
have been, if survival had increased by 5%” we would use these estimates to obtain

λ̂∗
9 = λ̂9 [1 + αγ̂10] = 0.59(1 + 0.035) = 0.61,

that is, population growth rate would have increased from 0.59 to 0.61 with a 5%
increase in survival. By comparison, the change in growth due to a 5% change in
recruitment would have been

λ̂∗
9 = λ̂9 [1 + α(1 − γ̂10)] = 0.59(1 + 0.015) = 0.599.

Fig. 9 Contribution of Area 1 survival, Area 1 recruitment, and survival and recruitment from
Area 2, to population growth in Area 1, for meadow voles captured and recaptured in Maryland,
USA. “Recruitment” in Area 1 includes in situ recruitment, plus immigration from outside the
study system
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Because of the use of multi-state modeling and the RD, a richer analysis
is possible, allowing for inferences on the time- and area-specific variation in
the proportion of population growth for each area derived from three sources:
(1) survival from animals alive on the area at time t, (2) recruitment (which includes
both in situ reproduction, as well as immigration from areas outside the study
system) for this area, and (3) survival and movement from other areas. This is
illustrated from the vantage point of Area 1 in Fig. 9, from which at least 2 major
conclusions can be drawn. First, the relative contribution of area 1 survival and
recruitment to area 1 population growth is much larger than the movement into area
1 from other areas. Second, these relative contributions vary over time, raising the
possibility that site-specific factors are interacting with temporal factors, such as
environmental conditions.

4 Other Advances

The rapid advance in CR modeling has been greatly aided by several other devel-
opments, some of which arose directly as a result of efforts in CR modeling, and
others which were developed more-or-less for other reasons.

4.1 Bayesian Modeling of Random and Hierarchical Effects

As noted earlier, many important ecological questions require modeling of the
components of individual, spatial, and temporal heterogeneity, and random effects
models can be especially useful. In other cases, data structures, ecological questions,
or both, dictate hierarchical relationships among model parameters. For example,
individual variation in survival probability may be expressed by

φi , i = 1, . . . , N

where there are N individuals in the population under study. Rather than estimating
each of the individual effects (which, in any case, would be impossible), they may
instead be modeled hierarchically, for instance, as random variables drawn from a
beta distribution

φi ∼ Beta(α, β)

with parameters α and β. In this example, a complex relationship (individual
variation in survival rates) is summarized in a very parsimonious way, with just
2 parameters. Link and Barker (2004) provide a very useful overview of hierarchical
modeling in the context of demographic studies.

Both types of problems, while sometimes tractable by conventional, maximum
likelihood approaches, are often much easier to analyze in a Bayesian framework.
In Bayesian analysis, parameters (such as p of the binomial distribution) are thought
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of as “random outcomes” (i.e., are not fixed, but are uncertain). This is in contrast
to “classical” (frequentist) analysis in which parameters are thought of as unknown
constants. The difference largely revolves around differing philosophical viewpoints
about the nature of observations. Frequentists interpret study results in terms of
repeatability, and talk about things like “the number of times the confidence interval
is predicted to include the parameter p in 100 future experiments.” Bayesians wish
to make probability statement about parameters, based on the current study, while
potentially incorporating knowledge about the parameter from previous studies or
other sources (prior information). Formally, inference about the parameter θ is based
on a posterior distribution. By Bayes’ Theorem

P(θ |x)P(x) = P(x |θ )P(θ )

where x is the sample data and P(θ ) is the prior distribution of θ ; P(x |θ ) is the
probability of the data, under the assumed statistical model and value for θ , and is
related to the familiar statistical likelihood. For a given sample, P(x) is a constant,
and so the above formulation reduces to

P(θ |x) ∝ P(x |θ )P(θ ).

In other words, the posterior distribution of θ is proportional to the likelihood
times the prior distribution. Given the posterior distribution, one obtains inference
on θ by the usual approach of averaging, computing variances, quantiles, etc. For
some combinations of priors and posteriors the resulting posterior is analytically
tractable, i.e., one can compute these statistics directly from the data in a single step,
much like maximum likelihood estimation. In many others, the statistical likelihood
and priors cannot be put together to form a solvable posterior. MCMC gets around
this problem by generating samples from a distribution that should, given certain
conditions are met, converge on the posterior distribution. There are various ways
of doing this; the method employed in MCMC is known as Metropolis–Hastings.
Basically, the procedure “proposes” values of θ , which are used to compute a value
for the likelihood times the prior. This latter value is then evaluated via an accep-
tance criterion which is compared to a random uniform deviate, and if accepted, the
proposed value is kept in the sample. Given sufficient numbers of MCMC samples
the algorithm converges on values for θ that are essentially indistinguishable from
random samples from the posterior. Finally, these samples (after convergence or
“burn-in”) are then used to compute means, variances, quantiles, and other statis-
tics. Papers such as Brooks et al. (2000), Link et al. (2002), Royle and Link (2002),
Fonnesbeck and Conroy (2004) and Conroy et al. (2005) provide further discussion
and examples of Bayesian analysis of CR and tag-recovery data.

Current versions of Program MARK (White and Burnham 1999) now allow
MCMC analysis of simple hierarchical models, which can be particularly useful
for properly dealing with random effects in model parameters (Burnham and
White 2002). I used the MCMC procedure in MARK to re-analyze the dipper
example (Lebreton et al. 1992), modeling variation in survival over the flood and
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non-flood years via a logit-normal distribution (i.e., a hyperdistribution) of the
random time effects . After appropriate back-transformation, the new analysis indi-
cates a mean survival of 0.609 (0.555–0.660 95% CI) during non-flood years, and
0.473 (0.418–0.528 95% CI), which is similar to the results of the earlier, simple
analysis, but now properly accounts for random, inter-year variability in survival
during flood and non-flood years in the calculation of confidence intervals.

4.2 Integrated Parameter Modeling

Ecologists frequently collect several different types of data to address similar or even
identical ecological questions. For example, it is not uncommon for physical recap-
tures, radiotelemetry, and resighting of marked animals to be simultaneously used
to estimate survival. CR and other data may be used in conjunction with abundance
surveys, so that one potentially is both predicting abundance (via a demographic
model) and observing abundance independently. It makes sense both ecologically
and statistically to use multiple data sources in an integrated fashion in modeling.
In some cases (e.g., Burnham 1993; Powell et al. 2000; Kendall et al. 2006) it is
possible to include the different types of data in a common statistical likelihood,
in other cases the resulting likelihood would be intractable for analysis. Thus, inte-
grated modeling is a natural realm for the application of the Bayesian methods just
discussed (see for example Fonnesbeck and Conroy 2004).

4.3 Innovative Marking and Recapture

Most ecologists think of CR data as arising from a traditional “capture-mark-
recapture” study, in which animals are physically captured, marked, and released,
and then potentially recaptured at some future occasions. Perhaps the majority of
CR studies fall into this category, but increasingly, novel methods are being used for
capture, recapture, or both. These approaches may eliminate the need for physical
recapture, or even initial marking, with obvious benefits in terms of the removal
of concerns of affecting animal behavior, expense, trap mortality, etc. Additionally,
some “marking” approaches permit the acquisition of additional information about
animals that would otherwise not be obtained.

For purposes here, we may consider marking methods to be either active or
passive. Active methods require the physical capture of animals at an initial occa-
sion, but may or may not require physical recapture. These methods obviously
include conventional CR, where reencounters are by physical recapture, but also
designs in which reencounters are via re-sighting of color tags or other visible
markers, radiotelemetry, or other passive methods (e.g., Barker 1997). These types
of data can be analyzed by themselves to estimate parameters, or potentially
combined with conventional CR data. The key here is recognizing that the different
types of reencounters involve different physical processes, and thereby should
be modeled by different parameters (Williams et al. 2002). In some instances
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(e.g., radiotelemetry) reencounters are potentially continuous through time, both
providing rich sources of data for addressing detailed questions, as well as chal-
lenges in deciding on the appropriate level of detail to use in analysis.

By contrast, passive markers do not require the initial capture of animals, in
that they are based on unique markers that individual animals exhibit and can be
detected remotely. For example, camera trapping and CR modeling have been used
to estimate abundance of tigers (Panthera tigris), relying on the unique signature of
striping that each individual tiger possesses (Karanth and Nichols 1998). Genetic
markers also are increasingly being used to estimate abundance and other parame-
ters, based on samples of hair, scat, or other tissues not necessarily obtained through
physical capture. These methods have the obvious advantage of avoidance of capture
and handling of individual animals, which may affect animals’ behavior or fitness in
ways that could cause the sampled (i.e., captured and marked) population to differ
from the population of interest (Williams et al. 2002).

4.4 Computer Software

Early CR analysis involved relatively simple data structures and models, and in
many cases, solutions by hand or desk calculator were feasible. Today’s CR analyses
involve complex data structures and modeling, and generally require the use of high-
speed computers. Fortunately, both computer and software technologies have seen
rapid advances in the last two decades, and all the analyses described here (and
many more) can be performed on desktop computers of moderate capacity. Modern
CR software has greatly facilitated the task of handling data and analyses. Ideally,
CR software should permit

• Management of data and analyses in a common framework.
• Handling of model data types and structures.
• Rapid construction of and evaluation of alternative models, including goodness

of fit.
• Model selection and multiple-model inference using information criteria.

Program MARK (White and Burnham 1999) provides all these capabilities and
more, and is freely available. Other programs that provide some or all of these
features are MSSURGE (Choquet et al. 2004), POPAN (Arnason and Schwarz
1999), SURGE (Pradel and Lebreton 1991), SURPH (Smith et al. 1994), and U-
CARE (Choquet et al. 2003).

5 Summary

This review, though selective, demonstrates that modern CR methods are a powerful
tool for exploring evolutionary hypotheses. This modeling framework is now suffi-
ciently general to allow for models that are motivated by underlying theory, in
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comparison to historical CR modeling, which was constrained to address a few
relatively narrow questions. Successful empirical modeling depends, of course, on
appropriate sampling or experimental designs. Again, novel designs, in conjunction
with appropriate statistical models, have now greatly expanded the nature of ques-
tions that can be addressed by CR. Thus, today’s CR methodology allows, in
addition to estimation of abundance and demographic parameters, investigation of
factors influencing variation in these parameters, analyses of evolutionary trade-
offs (e.g., survival versus reproductive effort, timing of reproduction), investigation
of metapopulation dynamics, and exploration of the sensitivity of populations to
perturbations.

A key to the successful application of CR analysis to the study evolutionary ques-
tions is the proper separation of the processes leading to the observations. This sepa-
ration is at the root of all CR analysis, going back to the relatively simple CJS model,
in which it was recognized that recapture events require animals to both survive over
some interval of time, and be captured at a subsequent sampling occasion. Separa-
tion of these events into constituent parameters allows for inferences that are not
confounded by the sampling process, and that can lead to unambiguous inferences
about the processes of interest (survival, reproduction, fidelity, etc.). A second key
is the direct incorporation of biological hypotheses as part of the statistical likeli-
hood. This, in turn, allows the analysis within a scientific framework that admits
to plausible, a priori alternative explanations for any ecological phenomenon, and
incorporates these as alternative models, each to be challenged by the data.
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Estimating Reproductive Costs with Multi-State
Mark-Recapture Models, Multiple Observable
States, and Temporary Emigration

Jay Rotella

Abstract Multi-state mark-recapture models have seen increased use in recent
years for studies of reproductive costs. When individuals in both breeding and
non-breeding states can be observed, multi-state models can be used to directly
estimate reproductive costs by comparing state-specific estimates of survival and
breeding probabilities. The method assumes that each state that an animal occupies
is observable, an assumption that is violated if some animals are absent for one
or more breeding seasons and are thus, unobservable due to temporary emigration.
Previous research on the case of a single observable state and a single unobserv-
able state has shown that non-random (Markovian) temporary emigration can, if not
accounted for, bias estimates of survival. Here, simulation is used to study effects
of non-random (Markovian) temporary emigration on estimates of survival and
breeding probabilities for the case of two observable states and one unobservable
state. Results clearly show that temporary emigration can cause estimates of survival
and breeding probability to be biased if the unobservable state is ignored. Bias was
either positive or negative depending on circumstances, and was sometimes severe
(percent relative bias was as high as 67% for estimates of breeding probability).
Accordingly, the strengths and limitations of including an unobservable state in
analyses are also considered. For some situations, simply including an unobservable
state will be an adequate solution. But, for those studies particularly interested in
temporal variation in costs of reproduction, it will be necessary to collect other
information to avoid problems of parameter constraints. Additional information
can consist of data from sub-sampling during primary sampling occasions, radio
telemetry, or ring recoveries.

1 Introduction

An organism’s lifetime reproductive output determines its fitness. To maximize
output, individuals must optimize their life-history decisions because producing
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and caring for offspring in one year may decrease energy available for subsequent
reproductive opportunities and reduce longevity. Thus, organisms are expected
to have to balance current reproduction against future survival and reproduction
(Williams 1966). The trade-off between current reproductive effort and future repro-
ductive value is known as the cost of reproduction. The trade-off is expressed
through decreased survival, future probability of reproduction, and/or offspring
quality and is hypothesized to be an important factor shaping life-history strategy
for many species (Roff 1992; Stearns 1992). Accordingly, evolutionary ecolo-
gists have devoted a great deal of effort to empirically measuring reproductive
costs.

In testing for reproductive costs, it is common to be interested in whether
breeding at time t negatively affects an individual’s probability of surviving from
time t to time t+1 or its probability of breeding at time t+1, although delayed costs
can certainly be of interest as well (Nichols et al. 1994; Clobert 1995). To estimate
possible effects, survival and breeding probabilities are often compared between
breeders and non-breeders. As shown by Nichols et al. (1994), mark-recapture
methods provide a useful approach for comparing these probabilities and allow
one to deal with possible differences in the probabilities of individually marked
breeders and non-breeders appearing in samples. In particular, one can use a multi-
state modeling approach (Darroch 1961; Arnason 1972, 1973; Brownie et al. 1993;
Schwarz et al. 1993) to estimate reproductive costs while accounting for possible
time- and age-specific variation in sampling probabilities across K successive poten-
tial breeding periods (Nichols et al. 1994). When applying multistate modeling to
questions of costs of reproduction when breeders and non-breeders can be observed,
it is common to define each observed individual as being in either the breeder or
non-breeder state for each sampling occasion (breeding period), and to estimate and
compare state-specific probabilities of survival (probability of being alive at time
t+1 given being alive and in a particular state at time t) and breeding (probability
of being in the breeder state at time t+1 given being in a particular state at time t
and conditional on being alive at time t+1). Transitions between the breeder and
non-breeder state are typically treated as a first-order Markov process (state at time
t+1 depends only on state at time t) (Brownie et al. 1993).

Since Nichols et al. (1994) first described the multistate modeling approach for
studying reproductive costs, the details and benefits of the approach have been
further discussed (Clobert 1995; Nichols and Kendall 1995; Viallefont et al. 1995;
Boulinier et al. 1997; Doligez et al. 2002; Lebreton and Pradel 2002; Williams et al.
2002; Sandercock 2006), and the multistate modeling approach has been used to
assess costs of reproduction in numerous studies of diverse taxa (e.g., Viallefont
et al. 1995; Cam et al. 1998; Sandercock et al. 2000; McElligot et al. 2002; Yoccoz
et al. 2002; Rivalan et al. 2005; Barbraud and Weimerskirch 2005; Tavecchia et al.
2005; Beauplet et al. 2006; Hadley et al. 2007). Although there are certainly other
approaches to studying costs of reproduction (e.g., Reznick 1985; 1992; Golet et al.
2005), results from multistate modeling can provide rigorous empirical estimates
of potential costs of reproduction under certain circumstances and have contributed
much to our understanding of life history evolution.



Estimating Reproductive Costs 159

As discussed by Nichols et al. (1994), multistate modeling is especially appli-
cable to studies directed at phenotypic correlations, but the approach can also be
used in some field, experimental-manipulation studies and may be useful for dealing
with possible genotypic variation in capture or observation probabilities in genetic
field studies. However, it is important to note that multistate models based on live
encounter data yield survival estimates that are commonly referred to as “apparent
survival” rates in the mark-recapture literature because they combine the probability
of survival and the probability of not permanently emigrating from the study area,
i.e., apparent survival differs from true survival to an extent that depends on the level
of permanent emigration. This has potentially important implications if breeders and
non-breeders have different rates of permanent emigration: differences in apparent
survival between animals in different breeding states could be due to variation in
site fidelity and not true survival. Accordingly, the multistate modeling approach to
estimating costs of reproduction is most appropriate for species in which site fidelity
is high or for which permanent emigration occurs at similar rates for breeders and
non-breeders.

When using multistate modeling to compare survival and breeding probabilities
for breeders and non-breeders, one assumes that each state that an animal occupies
is observable (for details of all assumptions, see Nichols et al. 1994; Williams et al.
2002). As reviewed by Kendall (2004), this assumption fails if some members of
the population are unavailable for capture or detection when sampling occurs, i.e.,
heterogeneity in detection probability exists such that some individuals are in an
unobservable state (probability of detection is zero). Failure of this assumption can
lead to biased estimates.

In multistate modeling of reproductive costs, some individuals may temporarily
emigrate and be absent for one or more breeding seasons. For example, in some
species, both breeders and non-breeders may be present and observable on breeding
sites, but some non-breeders may use non-breeding habitat and be unobservable
(for an overview of the widespread nature of temporary emigration see Schaub et al.
2004). Estimates obtained from multistate modeling that ignores temporary emigra-
tion can be biased in the presence of some forms of temporary emigration (Kendall
et al. 1997; Fujiwara and Caswell 2002; Kendall and Nichols 2002; Schaub et al.
2004), and consequently, estimates of costs of reproduction will also be biased. In
particular, it is well known that survival estimates can be biased if the probability of
temporary emigration depends on an individual’s state during the previous occasion,
i.e., is non-random or Markovian (Kendall et al. 1997).

The existence of an unobservable state can be accommodated by incorporating it
into multistate models. For the simplest case where individuals occur in either one
observable state or one unobservable state (e.g., only breeders present on study sites;
all non-breeders in an unobservable state; Reed et al. 2003), the effects of Markovian
temporary emigration on parameter estimates have been well studied, methods for
incorporating the unobservable state in mark-recapture modeling have been devel-
oped, parameter redundancies are quite well understood, suggestions for obtaining
useful additional information have been provided, and comprehensive guidelines exist
(e.g., Lebreton et al. 1999; Pradel and Lebreton 1999; Fujiwara and Caswell 2002;
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Kendall and Nichols 2002; Schaub et al. 2004; Choquet et al. 2004; Kendall 2004). Of
particular note, Schaub et al. (2004) used simulation and computer algebra to compre-
hensively evaluate the performance of the traditional Cormack–Jolly–Seber model
(Cormack 1964; Jolly 1965; Seber 1965) and a multistate model that included one
observable state and one unobservable state when Markovian temporary emigration
occurred. Schaub et al. (2004) found that estimates of survival from the Cormack–
Jolly–Seber model were biased in the presence of Markovian temporary emigra-
tion, whereas estimates from the multistate model were not. They concluded that
when survival and recapture probabilities are high the multistate model works well
when Markovian temporary emigration occurs and individual states can be well
described with one observable and one unobservable state.

However, for situations with multiple observable states and at least one unob-
servable state, the complexity is much greater due to the increased number of states,
possible transitions between the various states, and the increased number of parame-
ters. For example, Kéry et al. (2005), in an investigation of parameter identifiability
for a variety of multistate model for perennial plants with two observable states and
one unobservable state, found that most models had identifiable parameters and that
some models allowed for estimation of state-specific survival rates, including that of
the unobservable state. However, they also found that several models contained no
identifiable parameters, which highlights the additional complexity that arises when
working with an unobservable state and multiple observable states. At this time,
it is difficult to know how well information from the single-observable-state situa-
tion applies to the multiple-observable-state situation (Kendall 2004). Of particular
relevance to studies of costs of reproduction, information from studies of single-
observable states provides no information about how temporary emigration may bias
estimates of transitions between observable states, which include breeding probabil-
ities for breeders and for non-breeders. Consequently, it is not clear how one should
proceed with multistate analyses of breeders and non-breeders if temporary emigra-
tion is suspected. If one includes the unobservable state, then additional constraints
such as time constancy must be placed on demographic parameters (Kendall and
Nichols 2002; Kendall 2004; Schaub et al. 2004) unless additional information
about detection probability is available (Kendall 2004).

As clearly articulated by Kendall (2004:100), “To be forced to assume a priori
that parameters are equal over time or group is unsatisfactory. In fact, testing that
hypothesis might be of interest.” Alternatively, one can choose to ignore the tempo-
rary emigration and risk having some level of bias in the resulting estimates. Anal-
ysis choices have been recently considered for a situation with multiple observable
states and a single unobservable state in orchids (Kéry et al. 2005). However, to
date, I am aware of only two papers that have discussed these choices with respect
to estimates of reproductive costs based on multistate analyses of breeders and non-
breeders. Beauplet et al. (2006) chose to incorporate an unobservable state at the cost
of additional parameter constraints and numerical convergence issues. In contrast,
Hadley et al. (2007) chose to ignore the unobservable state in their primary analyses
after preliminary analyses provided evidence that temporary emigration was not
having important effects on estimates of reproductive costs for their situation. Until
better information becomes available on how best to proceed in such situations,
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researchers will continue to face difficult decisions when designing studies of repro-
ductive costs and analyzing resulting data.

Given the rapid increase in the use of multistate modeling to study reproductive
costs in recent years and the possibility that temporary emigration has been, or will
be, an issue in at least some multistate studies, the objectives of this paper are to
stimulate thinking about how to handle temporary emigration in multistate modeling
of reproductive costs by (1) using simulated data to illustrate how temporary emigra-
tion, if ignored, can cause important levels of bias in estimates of survival, breeding
probability, and reproductive costs, (2) using simulated data to show that the inclu-
sion of an unobservable state into multistate models imposes modeling constraints
that can limit one’s ability to fully estimate reproductive costs, and (3) reviewing
suggestions for additional information that can be collected to improve future
multistate comparisons of survival and breeding probabilities in breeders and non-
breeders. The results have implications that reach beyond multistate modeling of
reproductive costs as they are also relevant to a variety of other studies containing
multiple observable states or sites and at least one unobservable state or site (e.g.,
dispersal among sites when some sites are not monitored, Lebreton et al. 2003;
demography of perennial plants with observable vegetative and flowering states and
unobservable below-ground rhizomes, Kéry et al. 2005).

2 Methods

To assess the effects of Markovian temporary emigration on estimates of survival
and breeding probabilities for breeders and non-breeders, I conducted simulations
using M-SURGE (Choquet et al. 2004) and an expected-values approach for a
variety of multistate modeling scenarios that might be encountered. Choquet et al.
(2005) and Devineau et al. (2006) provide details regarding the process for gener-
ating expected data using M-SURGE. Devineau et al. (2006) provide additional
details about the expected-values approach, its benefits, and how it relates to Monte
Carlo simulation. For the simulations done here, all analyses considered one group
with three states: breeders (B), non-breeders in an observable state (N), and non-
breeders in an unobservable state (U). Individuals in state N and U were assigned
the same reference parameters except that detection probability (p) was zero for
those in state U. Because it is a fairly common real-world scenario, I created data
for a situation where only breeders could be captured but in which field-readable
markers could be observed on breeders and non-breeders.

For the multistate model with states B, N, and U, the transition matrix and asso-
ciated vectors of survival and capture probabilities were⎡⎣ψ B B 1 − ψ B B − ψ BU ψ BU

ψN B 1 − ψN B − ψNU ψNU

ψU B 1 − ψU B − ψUU ψUU

⎤⎦
t

⎡⎣SB

SN

SN

⎤⎦
t

⎡⎣ pB

pN

0

⎤⎦
t

,

where ψrs
t is the probability that an individual which is still alive and present in the

study population at the end of period t will move from state r to state s; Sr
t is the
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probability that an individual in state r survives and remains in the study population
through period t, where non-breeders are assigned the same survival rate on a given
occasion regardless of whether they are in state N or U; and pr

t is the probability that
a marked individual alive in state r at time t is captured or observed (zero for those
in state U). The matrix and vector subscript t denotes that time dependence was
possible: in the actual modeling, parameters were held constant for some scenarios
and allowed to vary with time in others (see below).

The key steps in the process used here were to (1) define a set of reference param-
eter values, (2) obtain the expected data (i.e., expected values for encounter histo-
ries) using the Arnason–Schwarz model (Arnason 1972, 1973; Schwarz et al. 1993),
(3) obtain maximum-likelihood estimates of parameters for models of interest (see
below); and (4) derive relevant measures of bias and precision. Expected data were
generated based on (1) the reference values (see below), (2) the number of breeders
released on the first occasion (n = 10,000), and (3) the population growth rate for
the number of breeders between successive occasions. I released a large number of
breeders to minimize possible rounding errors that may have been associated with
working with fractional numbers of animals that result from using expected data in
the encounter histories (trials with even larger numbers of released individuals indi-
cated that the number used was adequate to avoid rounding errors; smaller numbers
may have sufficed). The population growth rate for breeders was set to one between
all successive occasions. Thus, as breeders died or transitioned to other states, an
adequate number of breeders was injected into the population to maintain 10,000
breeders on each occasion, and all new individuals were captured and released.
Thus, there was a staggered entry of newly marked individuals in state B, and
there were resightings of individuals in states B and N. The reference parameters
determined the actual survival, transition, and detection rates for animals in each
state on each occasion (see below).

For multistate modeling, it may not be possible to estimate all parameters because
some may be aliased and not separately identifiable, and the parameter redundancy
is not always intuitive (Gimenez et al. 2003, 2004). Therefore, parameter redun-
dancy was evaluated for each model considered here using the numerical version
of the Catchpole, Morgan, and Freeman approach as implemented in M SURGE
and described by Choquet et al. (2005). After checking that all parameters were
identifiable for a given model, parameter estimates were compared to the reference
parameter values and, where applicable, between competing models applied to a
given dataset. Absolute bias was computed as the difference between a given param-
eter estimate and the true underlying reference parameter value, and percent relative
bias was the absolute bias divided by the reference parameter value and multiplied
by 100. Percent coefficient of variation was calculated for each parameter as the
estimated standard error divided by the parameter estimate and multiplied by 100.

The scenarios that were simulated were not meant to encompass the extremely
broad range of sampling scenarios that might be encountered in actual studies.
Rather, they were chosen to illustrate some estimation problems that can arise if
Markovian temporary emigration is not dealt with properly and to motivate future
work on the problem. The situations were limited to scenarios where only breeders
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were captured and where breeders were always resighted at a higher rate than were
non-breeders. However, within these constraints, and as explained in more detail
below, I did bracket conditions such that reproductive costs to survival, future fecun-
dity, or both were large, small, or absent and for which recapture rates were high or
low. The actual parameter values used were arbitrarily chosen. As detailed below, I
considered scenarios in which parameters were constant over time or time-varying.

2.1 Simulations to Evaluate Effects of Ignoring Markovian
Temporary Emigration when Estimating Reproductive Costs

Based on published information regarding factors affecting bias in survival rates
estimated with multistate models of one observable and one unobservable state in
the presence of temporary emigration (e.g., Kendall 2004; Schaub et al. 2004),
I chose to consider simulations with (1) Markovian temporary emigration, (2) high
versus low capture probabilities (pB = 0.9 or 0.3; pN = pB − 0.2), (3) high versus
low survival rates (SB = 0.9 to 0.2, SN = 0 .9 or 0.3), (4) presence or absence of
reproductive costs to survival rate (SB = SN × 0.667 or SB= SN ), and (5) presence
or absence of reproductive costs to breeding probability (ψ B B = ψN B× 0.445 or
ψ B B = ψN B) (Table 1). In all scenarios, the temporary emigration rate was higher
for breeders (ψ BU = 0.4) than for non-breeders (ψNU = 0.1), which could occur
if (1) breeders have a propensity to move to an alternate habitat for replenishing
body reserves in the year after a breeding attempt such that ψ BU > ψNU , but
(2) non-breeders can also gain benefits from being present on breeding sites, e.g., for
evaluating site quality, such that ψ BU and ψNU < 1. In all simulations, parameters
were constant across time and age, and data were generated for eight occasions.

For each scenario, two models were run. First, the true generating model (a
model that included state U) was used to estimate parameters from the expected
data. Results from the generating model were checked to ensure that the model
converged on the reference parameters and that all parameters were estimable.
Second, a simplified version of the generating model (included states B and N
but ignored state U and held parameters constant across time and age) was used
and the resulting estimates were evaluated for absolute bias and precision (percent
coefficient of variation), with emphasis on the estimates of SB, SN , ψ B B, and ψN B ,
i.e., those used to estimate costs of reproduction.

2.2 Simulation of Time-Varying Reproductive Costs in the Presence
of Markovian Temporary Emigration

When no additional information about movements, capture probabilities, or survival
rates is available, parameter estimation for a model that includes states B, N, and U
is only possible if at least one of the following constraints is applied: the order
of Markovian transition probabilities is reduced to make them random, partial
determinism is imposed on transition probabilities (e.g., probabilities of transition
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from non-breeder to breeder are assumed to be 0 before a certain minimum age
and all animals are assumed to begin breeding by a certain age), or parameters are
constrained to be constant over time or to follow a temporal trend (Kendall and
Nichols 2002; Kendall 2004). For some species Markovian temporary emigration
is expected and partial determinism in transitions is not. For example, breeders in
year t may be more likely to be absent from the breeding site in year t+1 than are
non-breeders in year t, but the organisms do not follow a set temporal pattern of
breeding and non-breeding. In such cases, one is only left the option of making
some parameters constant.

To illustrate some of the potential problems with this solution, I generated
expected data for the following scenario. Survival and breeding probabilities
varied by state and environmental conditions (SB = 0.8 [good year] or 0.6 [bad
year], SN = 0.8 [all years], ψBB = 0.6 [good year] or 0.3 [bad year], and ψNB=
0.7 [good year] or 0.5 [bad year]). Temporary emigration was Markovian in
bad years (ψBU= 0.1 [good year] or 0.5 [bad year], and ψNU= 0.1 [good year]
or 0.3 [bad year]). The simulated study encompassed six breeding seasons, and
conditions for survival and breeding probabilities were good, bad, good, bad,
and good, respectively. Capture probabilities varied by occasion around different
state-specific means (values of pB had a mean of 0.7 and were drawn from a
uniform distribution bounded between 0.6 and 0.8, whereas values of pN had a
mean of 0.5 and were drawn from a uniform distribution bounded between 0.4
and 0.6). This scenario was chosen to illustrate performance limitations of the
multistate model with multiple observable states and a single unobservable state
for a mildly challenging situation. Specifically, survival and detection rates were
moderate to high, and temporary emigration was Markovian in only some years;
under such circumstances, the multistate model as applied to a one observable and
one unobservable state performs quite well (Schaub et al. 2004).

A single model was used to estimate parameters from the simulated data (SB,
SN, pB, and pN allowed to vary by time; ψBB and ψNB constant through time). This
model assumes that researchers were aware that parameters might vary by time but
were not aware of the true underlying pattern of good and bad years and the effects
of those changing conditions on parameters. Results from the model were evaluated
for absolute bias and percent coefficient of variation, again with emphasis on the
estimates of SB, SN, ψBB, and ψNB.

3 Results

3.1 Effects of Ignoring Markovian Temporary Emigration
when Estimating Reproductive Costs

For time-constant reference parameters and Markovian temporary emigration,
parameters in the models evaluated were separately identifiable, and estimates
obtained from the generating model converged on reference parameters for all but
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one of the scenarios simulated (Table 1). However, convergence was typically not
achieved unless repeated random initial values were used, and local minima were
apparent in the output, especially when reference values of pB and pN were low.
When a model that ignored temporary emigration (i.e., a model that included states
B and N but not U) was employed, the resulting estimates of survival and breeding
probabilities typically had low coefficients of variation (%CV ≤7% for 24 of 30
estimates) (Table 1). However, the level of bias varied quite substantially depending
on the simulation scenario and ranged from strongly negative to strongly positive.
When costs of reproduction to breeding probability were present, bias was low for
survival estimates and higher for estimates of breeding probability (average % rela-
tive bias = −4.4, 0.2, −28.2, and −34.2 for estimates of SB, SN, ψBB, and ψNB,
respectively), any bias tended to be negative, and absolute bias was always greatest
for estimates ofψ NB. In contrast, when costs of reproduction to breeding probability
were absent, bias tended to increase (average % relative bias = 11.4, 22.2, 90.3, and
25.7 for estimates of SB, SN, ψBB, and ψNB, respectively), was always positive, and
was always highest for estimates of ψBB.

Given the bias in estimates of SB, SN, ψBB, and ψNB, estimates of reproductive
costs were also typically biased: sometimes at low levels and sometimes severely so
(Table 2). Estimates of reproductive costs to survival were typically over-estimated,
whereas estimated costs to breeding probability were always negatively biased.
Absolute bias was always greater for estimates of costs to breeding probability. Of
particular note, when true ψBB was equal to ψNB, estimates indicated that ψBB was
greater than ψNB by 0.22–0.33 (absolute difference between the rates).

3.2 Difficulties of Estimating Time-Varying Reproductive Costs
in Presence of Markovian Temporary Emigration

Results from the simulation with full time-varying parameters, which could be sepa-
rately identified for the data and model evaluated, illustrate some of the limitations
that can arise when one is forced to impose time constraints on some parameters.
Even for a scenario with moderately high values for survival rate (>0.6) and capture
probability (>0.4), random and low values of temporary emigration in good years
(0.1), and Markovian temporary emigration only in bad years, the time-varying
multistate model that considered states B, N, and U was not able to fully characterize
several key features of the reference parameters. As this is but one possible scenario
out of a broad set of circumstances that could be considered, the results are kept
brief and only a few highlights are mentioned.

First, the time constraints that were imposed on breeding probabilities, made it
impossible to identify the large changes in breeding probabilities between good and
bad years, which simply emphasizes a known problem when considering an unob-
servable state in models with time-varying parameters. Second, in one of the good
years (reference values: SB = SN), time-varying estimates of survival rate were higher
for breeders than for non-breeders (estimated difference = 0.04). The model did
perform reasonably well in some respects, however. Time-invariant estimates were
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quite accurate for ψBB (estimate = 0.46, true average = 0.48) and ψNB (estimate =
0.62, true average = 0.62) and accurately estimated the average cost of reproduction
to breeding probability over the study as being 0.14. Finally, the model typically
produced estimates of survival rates with low bias (range in absolute bias: SB =
−0.01 to −0.02; SN = −0.07 to +0.02) such that estimates of costs of reproduction
to survival had low bias in all but one year.

4 Discussion

For the special application of multistate modeling that was investigated here, i.e.,
comparing survival and breeding probabilities between breeders and non-breeders,
the results obtained make it clear that estimated costs of reproduction, especially
costs of reproduction to breeding probability, can be badly biased when temporary
emigration occurs but is not properly accounted for. For some scenarios evaluated,
estimates of costs of reproduction were only slightly biased. However, for other
situations, biased estimates of costs of reproduction to both survival and breeding
probability could lead to misleading conclusions. For example, when reproduc-
tive costs to breeding probability were absent, and Markovian temporary emigra-
tion was present but ignored, estimates of breeding probability were biased high
for both breeders and non-breeders, and the bias was greater for breeders. Thus,
it appeared that breeding probability was higher for breeders than non-breeders.
Such a result is of great interest in studies of life-history evolution as it relates to
important questions regarding effects of heterogeneity in individual quality (e.g.,
Cam et al. 1998; Wintrebert et al. 2005). It would be useful to have similar
evaluations regarding permanent emigration to aid decision-making for investiga-
tions in which breeders, non-breeders, or both might permanently leave the study
area.

Given the importance of studying reproductive costs and the potential for biased
results if temporary emigration is not properly incorporated into analyses, it is
important to consider the available analysis options. In some situations, researchers
might choose to use multistate models without an unobservable state because tempo-
rary emigration is thought to be a non-issue in their study. In such cases, it would
be helpful if authors would provide justification for ignoring possible temporary
emigration in analyses based on the biology, the sampling situation, and any avail-
able supporting data. It may be less clear how best to proceed in some studies
because (1) less may be known about possible levels of temporary emigration and
whether or not it may be Markovian and (2) there is currently no specific goodness-
of-fit test for detecting temporary emigration. For such studies, it might be useful to
compare results obtained from analyses conducted with and without an observable
state and to then consider how best to proceed (e.g., Hadley et al. 2007). For still
others, it may be known that temporary emigration occurs and an unobservable state
may be incorporated in analyses (e.g., Beauplet et al. 2006).
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When an unobservable state is included in analyses, several options are avail-
able. The simplest approach is to include the unobservable state in the model (with
zero capture probability) using recently described methods (Lebreton et al. 1999;
Pradel and Lebreton 1999; Kendall and Nichols 2002; Kendall 2004; Schaub et al.
2004) and readily available software (White and Burnham 1999; Choquet et al.
2004). When an unobservable state is considered, numerical and statistical problems
inherent to multistate models are increased, and it will be important to use recently
developed software to help ensure convergence (Lebreton and Pradel 2002; Choquet
et al. 2004). As was found in the simulation work reported on here, convergence was
not always easy to achieve even when working with the generating model or a close
approximation and knowing the values of reference parameters. With the multistate
approach, parameter identifiability will be a problem for some models and datasets
and be important to evaluate (Gimenez et al. 2003, 2004; Kéry et al. 2005).

When deciding whether to address temporary emigration by simply including
an unobservable state, researchers should also carefully consider whether or not
the parameter redundancy problems and limitations of the approach will prevent
them from asking key questions of interest. As thoroughly explained by Kendall
(2004) and shown here with a simple simulation with time-varying reference param-
eters, the approach will be inadequate if hypotheses of interest involve time-varying
reproductive costs and other solutions to handling parameter redundancy (such as
partial determinism in state transitions) are inappropriate. As recently discussed by
Tavecchia et al. (2005), there are excellent reasons to be interested in time variation
in reproductive costs because trade-offs may vary in stochastic environments, thus
affecting optimal reproductive strategies.

The results presented here further emphasize previous recommendations to prop-
erly evaluate the magnitude and nature of temporary emigration in mark-recapture
studies (e.g., Kendall et al. 1997; Fujiwara and Caswell 2002; Kendall and Nichols
2002; Kendall 2004; Schaub et al. 2004). Also, as had been shown previously for the
case of a single observable and a single unobservable state (Schaub et al. 2004), it
is possible to obtain relatively unbiased estimates of survival even when Markovian
temporary emigration occurs if capture probabilities and survival rates are high.

Kendall (2004) and White et al. (2006) provide excellent reviews of options for
gaining greater flexibility in multistate modeling in the presence of an unobservable
state. The key idea is that various types of additional information can be used to
make additional parameters estimable. If sub-sampling is done within each breeding
season, the robust design (Pollock 1982) can be used, which allows estimation of
time-varying probabilities (Kendall 2004). This approach still requires the assump-
tion that the survival probability for individuals in the unobservable state is equal
to that for one of the observable states. For the case of breeder and non-breeder
states, it may be reasonable in some situations to assume that unobservable individ-
uals are non-breeders and therefore, have the same survival rate as do observable
non-breeders. However, in other studies such an assumption may be unreasonable
or a question of biological interest. In such cases, further additional information
will be needed. Simply put, it will be necessary to sample unobservable individuals
through radio telemetry, ring recoveries, or combinations of approaches. Examples
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of innovative approaches for estimating temporary emigration and combining
sources of information now exist (e.g., Lindberg et al. 2001; Bailey et al. 2004;
Barker et al. 2005) and should be valuable to future studies of reproductive costs.

An excellent set of analysis options and software now exist for estimating
temporary emigration. With thoughtful study design and analysis, future compar-
isons of survival and breeding probabilities for breeders and non-breeders should
provide valuable information regarding reproductive costs regardless of Markovian
temporary emigration. In fact, estimates of temporary emigration rates may provide
insights into the strategies used to avoid incurring reproductive costs. In planning
future studies or choosing among analysis options, simulations, which can now be
readily conducted in software such as M-SURGE (Choquet et al. 2004) and MARK
(White and Burnham 1999), should prove useful (Schaub et al. 2004; Devineau et al.
2006).
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Estimating Latent Time of Maturation and
Survival Costs of Reproduction in Continuous
Time from Capture–Recapture Data

Torbjørn Ergon, Nigel G. Yoccoz, and James D. Nichols

Abstract In many species, age or time of maturation and survival costs of
reproduction may vary substantially within and among populations. We present a
capture-mark-recapture model to estimate the latent individual trait distribution of
time of maturation (or other irreversible transitions) as well as survival differences
associated with the two states (representing costs of reproduction). Maturation can
take place at any point in continuous time, and mortality hazard rates for each repro-
ductive state may vary according to continuous functions over time. Although we
explicitly model individual heterogeneity in age/time of maturation, we make the
simplifying assumption that death hazard rates do not vary among individuals within
groups of animals. However, the estimates of the maturation distribution are fairly
robust against individual heterogeneity in survival as long as there is no individual
level correlation between mortality hazards and latent time of maturation. We apply
the model to biweekly capture–recapture data of overwintering field voles (Microtus
agrestis) in cyclically fluctuating populations to estimate time of maturation and
survival costs of reproduction. Results show that onset of seasonal reproduction is
particularly late and survival costs of reproduction are particularly large in declining
populations.

Keywords Capture-mark-recapture · Latent traits · Life-history theory ·
Maximum likelihood · Multi-state/multi-strata · Continuous time · Hazard rates ·
Heterogeneity · Maturation · Cost of reproduction · Disease infection dynamics

1 Introduction

Age and timing of reproduction are important components of fitness and population
dynamics. Causes and consequences of variation in age at first reproduction have
for long been central topics in ecological and evolutionary theory (e.g., Cole 1954;
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Stearns 1992; Gaillard et al. 2005), but also timing of reproduction within seasons
is of prime interest. In multivoltine species, such as many small mammals, early
onset of seasonal reproduction enables more generations to be completed within
the season (Fairbairn 1977; Lambin and Yoccoz 2001; Ergon 2007), and reproduc-
tive success and viability of offspring in univoltine birds and mammals are often
strongly related to the date of reproduction within the season (Lack 1996; Clutton-
Brock et al. 1987; Hochachka 1990; Winkler and Allan 1996). The latter is particu-
larly relevant for match-mismatch theory and changing phenologies due to climate
change (Visser et al. 1998; Visser and Holleman 2001; Stenseth et al. 2002; Both
et al. 2006).

It is of general interest to characterize the full distribution of age or time of repro-
duction in a population, and not just the mean value. The variances of trait values
are central for evolutionary theory, and life-history traits such as age and timing of
reproduction may evolve in response to differential selection of different parts of the
trait distributions. Furthermore, to study response to selection or trade-offs between
different life-history traits, it is the latent trait values that are of interest (i.e., the
propensities existing at birth, e.g. Link et al. 2002). The distribution of latent matu-
ration times is the distribution that potentially could be observed if, hypothetically,
all individuals survived until maturation. In contrast, the realized distribution applies
only to the subset of the population that survives until maturation, and is hence
filtered by mortality. In a sense, the latent distribution is the true trait distribution
that is independent of survival. For example, a group of individuals in a given envi-
ronment may be characterized with a latent distribution for time of maturation, but
the individual trait value is not observable for all members of the group because
some individuals may die before they mature. Because individuals with a late latent
maturation time will have a higher probability of dying before maturation (unless
individuals with a late latent maturation also survive better), the distribution of the
realized maturation times will be biased downwards compared to the distribution of
the latent trait values – the higher the mortality rate is, the stronger this bias will be.
This type of ‘right censoring’ is commonplace in, e.g., medicine where some study
subjects may die or be removed from the study before an effect is observed (e.g. Cox
1972). In such cases, statistical modeling must take into account that observations
of reproductive events might be censored due to the death of individuals; we might
know that a given individual has not reproduced up to a given age or time, but
death prevented recording the actual age or time of reproduction. Common models
incorporating such censoring or competing risks (e.g. Pintilie 2006) are however
not readily applicable for wildlife studies due to the usual inability in such studies
to detect all breeding and non-breeding individuals alive in the population, and it is
not possible to know the exact time that an individual matured or was censored out
of the population due to natural mortality. When detection probability is less than
one, we do not even know if an animal was censored.

As with other important life history characteristics, such as survival rate, capture–
recapture modeling provides a natural means of estimating quantities of interest in
the presence of probabilities of capture or detection less than one. Our goal in this
paper is to include both processes relating to capture probability and censoring due
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to natural mortality in order to provide unbiased and efficient estimates of the latent
distribution of age or time at reproduction. As animals may have different survival
rates before and after reproduction, we can also use the modeling to estimate costs of
reproduction even when reproduction takes place at unknown points in continuous
time. The model can also be applied to estimate the latent timing of other irreversible
state transitions and the survival costs associated with these transitions. It may for
example be applied in capture–recapture studies of disease or parasitism dynamics
to obtain unbiased estimates of the underlying infection rates and survival costs of
infection (see Discussion).

Although we explicitly model individual heterogeneity in the latent time of state
transition, we make the simplifying assumption that mortality hazard rates do not
vary among individuals belonging to a given group. The implications of this assump-
tion are investigated in a simulation study. Finally, we apply the model to a case
study on life-history correlations in a cyclic population of field voles.

2 The Model

We primarily consider a study design in which there are many sampling occa-
sions within a reproductive season and where state transition can take place at
any point in continuous time, not just at given points between sampling occasions.
For example, a population of individually marked animals may be monitored with
repeated sampling occasions from winter, when no individuals are reproducing,
through spring until most individuals have either initiated reproduction or died (see
the Case Study below). In principle, the data could also cover several years as long
as latent time of state transition can be described with a probability distribution.

The aim of the modeling is to characterize the distribution of latent times of state
transition in a population. This distribution may, for example, be represented by a
normal distribution function with a population mean and variance describing indi-
vidual heterogeneity in the population. The distribution can also be made discrete,
for example at yearly intervals, to estimate the latent age at first time reproduction
in long-lived species (e.g. Cam et al. 2005). An alternative perspective is to focus
on the transition hazard rates that correspond to the distribution of latent times of
state transition. In capture–recapture studies of disease or parasitism dynamics, our
modeling will then yield estimates of infection rates and lethality that are not biased
by background mortality (see Discussion).

The basic structure of our model is based on a special case of a multi-state
capture–recapture model (Arnason 1972, 1973; Hestbeck et al. 1991; Brownie et al.
1993; Schwarz et al. 1993) in which there are only two states and transitions are
allowed in only one direction, from the immature to mature state. Such models
have been much used to address questions in evolutionary ecology and in other
applications where animals can change state or location (see Cam (2008), Conroy
(2008) and Rotella (2008) of this volume). In these multi-state models, transition
probabilities are defined as the joint probability of surviving and moving from one
state to another over a time interval, Φ = Pr(‘Survive’ ∩ ‘Move’). These transition
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probabilities can be partitioned into survival probabilities and movement probabili-
ties conditional on survival, Φ = Pr(‘Survive’)×Pr(‘Move’|‘Survive’). To facilitate
estimation, it is usually assumed that movement takes place at a given point in time
within the intervals, usually at the very end of the intervals so that the survival
probabilities are independent of the terminal state of the interval (Hestbeck et al.
1991; Brownie et al. 1993). While this assumption may be reasonable in some appli-
cations, it is clearly not in others. Joe and Pollock (2002) relaxed this assumption
by treating the time of movement within intervals as a random variable with a given
distribution, g(t). Thus, denoting survival rate before movement in interval i as S A

i
and survival rate after movement as SB

i , they obtained

Φi =
∫ 1

0
(S A

i )tψi (SB
i )(1−t)g(t)dt

where ψi is the probability of movement given survival (Joe and Pollock 2002,
Eq. 1). Note that the probability distribution g(t) is conditional on knowing that
state transition took place during the given interval. Hence,

∫ 1
0 g(t)dt = 1 (e.g., g(t)

is a uniform or a beta distribution).
Our approach is similar to the approach of Joe and Pollock (2002). However,

both the movement probabilities and the probability distributions for times of state
transition for each interval depend on a distribution for latent times of state transi-
tion, f (t), which span the entire study period. The parameters of f (t) are included
in the parameter vector estimated by maximum likelihood. In this way we are able
to partition the overall transition probability (Φ = Pr(‘Survive’ ∩ ‘Mature’)) into
the probability that latent maturation is located within the interval unconditional on
whether the individual survives the interval or not (Pr(‘Mature’)) and survival condi-
tional on maturation (Pr(‘Survive’|‘Mature’)), rather than survival (Pr(‘Survive’))
and maturation conditional on survival (Pr(‘Mature’|‘Survive’)). We also model
survival probabilities by the use of continuous mortality hazard functions over time
or age. This allows easy implementation of proportional hazard models and models
addressing questions related to longevity and senescence (see Gaillard et al. (2004)).

Our model is formulated in detail below. Sections 2.1 and 2.2 introduce the
multi-state m-arrays (e.g. Brownie et al. 1993) and apply generally for multi-state
models with two states where transitions can only take place in one direction –
these sections are provided for completeness. Section 2.3 describes our modeling
of the cell probabilities corresponding to the m-array, and the rest of Section 2 is
devoted to discussing maturation and mortality hazard functions and to describing
the computer implementation and numerical optimization methods that we have
used. In our modeling, we make the simplifying assumption that mortality hazard
rates do not vary among individuals belonging to a given group. The implications
of this assumption are investigated in a simulation study presented in Section 3.
Finally, we apply the model to a case study on life-history correlations in a cyclic
population of field voles (Section 4), before moving on to a general Discussion about
the modeling (Section 5).
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2.1 Data Structure

The data are assumed to come from a capture-recapture study (Lebreton et al. 1992;
Williams et al. 2002) of individually marked animals where it is recorded (without
error) whether the individuals are immature (state A) or mature (state B) every time
they are captured. Individuals may belong to one of several groups (e.g., sites or
cohorts).

We assume data from each group of animals to be summarized in the standard
multi-state m-array of Brownie et al. (1993), shown for four capture sessions in
Table 1. Here, m XY

i j is the number of the animals of state X (A or B) observed alive
in session i that were first recaptured in session j when being in state Y (A or B),
and m X

i† is the number of the animals that were never recaptured. Note that state
transition from mature (state B) to immature (state A) is not possible, and that index
j is always greater than or equal to index i + 1.

In addition, a vector with the times of the capture sessions, t = [t1, t2, . . . , tn],
must be given for each group.

2.2 Likelihood Function

Each of the m XY
i j -elements in the m-array (Table 1) has a corresponding cell proba-

bility, π XY
i j , which is the probability that an individual of state X released in session

i will be recaptured for the first time in state Y and session j ;

π XY
i j = Pr(first recaptured in state Y and session j | released in state X and session i).

The cell probabilities for each row in the above m-array sum to one. Hence,
the cell probabilities corresponding to the last column of the array may be set to

Table 1 Multi-state m-array with 4 capture occasions and 2 states (A = ‘immature’, B = ‘mature’).
There is one m-array for each group of animals

Session of first recapture ( j)
State of recapture

Session of State of 2 3 4 never
release (i) release A B A B A B

1 A m AA
12 m AB

12 m AA
13 m AB

13 m AA
14 m AB

14 m A
1†

1 B m B B
12 m B B

13 m B B
14 m B

1†
2 A m AA

23 m AB
23 m AA

24 m AB
24 m A

2†
2 B m B B

23 m B B
24 m B

2†
3 A m AA

34 m AB
34 m A

3†
3 B m B B

34 m B
3†
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one minus the other cell probabilities of the row; π A
i† = 1 − ∑

j (π
AA
i j + π AB

i j ) and
π B

i† = 1 − ∑
j π

B B
i j .

Assuming independence among individuals, the elements of each row of the
m-arrays follow a multinomial distribution, and the likelihood function to be
maximized is a product of multinomials. Since the multinomial coefficients are
independent of the cell probabilities, it is sufficient to maximize the log-likelihood
function

�(π ; m) = m′log(π),

where vectors m and π contain the elements of the m-arrays and the corresponding
cell-probabilities.

2.3 Cell Probabilities

The description so far applies also for previous formulations of multi-state models
in the special case where there are only two states (A and B) and where transitions
are only allowed in one direction (from A to B). However, our model differs in the
way the constraints on the cell probabilities are parameterized. We start by defining
a continuous probability density function f (t) for the latent distribution for time of
maturation. This function describes the trait distribution among all animals in the
study population that are ever seen as immature. The function does not only apply
for individuals that survive until maturation – it is independent of survival. Thus,
the probability of having a latent time of maturation (trait value) before time ti is∫ ti
−∞ f (t)dt , and the probability of having a latent time of maturation in the interval

ti to t j given that the individual has not matured before ti is

αi j =
∫ t j

ti
f (t)dt

1 − ∫ ti
−∞ f (t)dt

. (1)

Note that this probability is not conditional on the individual surviving the
interval, or even surviving until maturation. In this way we can partition the prob-
abilities of surviving an interval and at the same time maturing (Pr(‘Survive’ ∩
‘Mature’)) into products of the probability of having the latent time of maturation
within the interval (α = Pr(‘Mature’)) and the probability of surviving given that the
animal matured during the interval (ω = Pr(‘Survive’|‘Mature’)). The latter prob-
ability is not conditional on maturation taking place at a given point in time within
the interval, but is instead found by integrating over the probability distribution for
time of maturation determined by f (t).

Since we only deal with state transitions in one direction between two states, we
do not use the matrix formulation used by Brownie et al. (1993) and by Joe and
Pollock (2002). Instead we incorporate state dependent capture probabilities into
the transition probabilities by the use of logical index functions.
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To write the cell probabilities of the m-array, π XY
i j , we introduce the following

notation:
φX

s1→s2
= Probability of surviving from time s1 to time s2 given that the individual was alive at

time s1 and in state X during the entire time-interval.
φX

i j = Short-hand for φX
ti →t j .

pX
k = Probability of capture of an individual at session k given that it was alive and in

state X .
αi j = Probability of having latent time of maturation in the interval between session i and

j given that the individual was immature at session i .
ωi j = Probability of surviving and not being captured between session i and j given that

the animal matured between session i and j .

The cell probabilities are then

π AA
i j = (1 − αi j )φ

A
i j pA

j

∏
∀k:ti < tk < t j

(1 − pA
k ), (2)

π B B
i j = φB

i j pB
j

∏
∀k:ti < tk< t j

(1 − pB
k ), (3)

and

π AB
i j = αi jωi j pB

j . (4)

In these expressions, the conditions ∀k :ti < tk < t j indicate that the product
should involve all capture probabilities representing occasions between occasion i
and occasion j .

In the expression for π AB
i j , both αi j and ωi j , relate to the probability density func-

tion f (t) for the latent time of maturation T , given by f (t)dt = Pr(t < T < t +
dt). The expression for αi j is given in Eq. 1 above, while ωi j is found by integrating
the joint probability of surviving and not being captured during the interval, condi-
tional on time of maturation (T = t), over the probability distribution for T given
that ti < T < t j ,

ωi j =
t j∫

ti

φA
ti →tφ

B
t→t j

∏
∀k:ti< tk< t j

{
(1 − pA

k )I (t > tk )(1 − pB
k )I (t≤tk )

} f (t)∫ t j

ti
f (t)dt

dt, (5)

where the function I (‘expression’)is a logical function that takes the value 1 if
the argument is true, and 0 if it is false, and where f (t)∫ t j

ti
f (t)dt

is the probability

density function for time of maturation given that maturation occurred between ti
and t j .
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Hence, by expansion of Eq. 4 we get

π AB
i j = 1

1 − ∫ ti
−∞ f (t)dt

pB
j

t j∫
ti

φA
ti →tφ

B
t→t j

∏
∀k:ti < tk < t j{

(1 − pA
k )I (t>tk )(1 − pB

k )I (t≤tk )
}

f (t)dt . (6)

The integral in the above expression cannot be solved analytically when using
reasonable functions for survival and maturation (see below). Some numerical solu-
tions are outlined in Section 2.5 below.

The functions f (t), φA
s1→s2

and φB
s1→s2

depend on hyperparameters, and various
functional forms are discussed below. The main aim of the modeling is to estimate
these hyperparameters. In principle, it should also be possible to estimate an ‘instan-
taneous’ cost of reproduction by including such a parameter in ωi j (Eq. 5). However,
we do not consider such a model in this paper.

2.4 Maturation and Survival Functions

Several functional forms for the latent distribution of time of maturation (or, gener-
ally, any irreversible state transition), f (t), and survival probabilities, φX

s1→s2
, are

possible. The choice depends on the application. When modeling time of matu-
ration or reproduction (e.g., time of first reproduction after the winter season), it
may be reasonable to use a symmetric distribution for f (t), such as the normal
distribution or logistic distribution, but skewed, or even bimodal, distributions may
also be applied. When modeling age (rather than time) of state transition, it may be
necessary to use a probability distribution with a lower bound of zero. If the model is
used to estimate the temporal distribution of individual infection by diseases or para-
sites (or the corresponding infection hazard rates), exponential, Weibull or gamma
distributions may be natural candidates. In principle, the distribution can also be
made discrete, for example at yearly intervals, to estimate the latent age at first time
reproduction in long-lived species (e.g. Cam et al. 2005).

Continuous time variation in survival rates is best modeled by using mortality
hazard functions, h(t), defined as h(t)dt = Pr (t < time of death < t +
dt |time of death > t) . The probability of an individual of state X surviving from
time s1 to s2 is then simply the exponent of the negative cumulative hazard during
the time interval,

φX
s1→s2

= e− ∫ s2
s1

h X (t)dt
.

The state-specific hazard rates hX (t) should be ≥ 0 for all values of t and the
cumulative hazard rates should become infinite over infinite time (e.g. not of the
form e−β2t which integrates to 1/β2 over t = 0 . . .∞ ).

When modeling hazard rates as a function of age, and if effects of environmental
variability are negligible, it may be reasonable to assume hazard rates that increase
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or decrease monotonically with age. In such cases one may use a hazard function
of the form h(at ) = αλaα−1

t , where at is age at time t . This hazard function
corresponds to survival function φas1→ as2

= e−λ(aαs2
−aαs1

), and age at death will follow
a Weibull distribution (exponential distribution in the special case when α = 1 and
the hazard rate is constant).

In other applications, survival will be largely influenced by random environ-
mental events, as is the case for, e.g., small rodents that are heavily predated. One
will then need a flexible hazard function that guarantees positive hazards, and it
is desirable that the function can be integrated to find an analytical expression for
the survival probabilities. In the Case Study on field voles below we used a hazard
function composed as a sum of Gaussian curves parameterized as

h(t) = ea1−b2
1(t−c1)2 + ea2−b2

2(t−c2)2 + · · · + ean−b2
n (t−cn )2

. (7)

Survival probabilities corresponding to this hazard function can be found analy-
tically by the use of the erf-function of the cumulative normal. Note that h(t) in this
case does not integrate to infinity over infinite time. The function can nevertheless
be used as a curve-fitting tool as long as extrapolations are not made. Proportional
hazard rates among groups and states can be specified by using the same b- and
c-parameters for different groups while constraining the a-parameters to additive
differences among terms and groups (exponents of common components of the
a-parameters can be factored out of the sum). One way to use this function is to
fix the c-parameters to regular time-points over the study period (including the end
points) and further constrain the b-parameters to be the same for all terms. Less
constrained models can, in our experience, lead to strong correlations between the
parameters and hence cause problems when fitting the model (this is especially
the case when there is little temporal overlap in the presence of the two states in
the population – see the Case Study below).

2.5 Implementation and Numerical Optimization

The model was implemented in Matlab R© 7.1 in a way that the probability density
functions for time of state-transition, f (t) , and mortality hazard functions, h(t) , can
readily be replaced and where the state, group and occasion specific hyperparame-
ters can be constrained by design matrices and link-functions. Optimization of the
log-likelihood was done by using the quasi-Newton gradient method implemented
in the ‘fminunc’ function of the Matlab Optimization Toolbox Version 3.0.3. The
variance–covariance matrix of the maximum likelihood estimates was estimated
as the inverse of the finite-difference approximation to the Hessian matrix at the
optimum. The Matlab code be will shared upon request to the first author.

The integral in the expression for π AB
i j in Eq. 6 cannot be solved analytically

when using reasonable functions for survival and maturation. Several numerical
integration (quadrature) methods are implemented in programming environments
such as Matlab R©and R (http://www.r-project.org/). The Matlab function ‘quadl’
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performed well in our implementation. However, the optimization can sometimes be
made more efficient by discretizing Eq. 6 directly. By dividing the interval between
capture session i and j into M short sections (e.g. days) in such a way that none
of the capture sessions are included within the sections (captures only at section
borders) and breaking down ωi j (Eq. 5) into a sum of probabilities conditional on
maturation during each of the time sections, and further assuming that maturation
can only take place at specific points within each time section (e.g. at a given time
of the day), we get

π AB
i j = 1

1 − ∫ ti
−∞ f (t)dt

pB
j

M∑
m=1

⎧⎨⎩φA
ti →τm

φB
τm→t j

∏
∀k:ti< tk<τm

{
(1 − pA

k )
}

∏
∀k:τm≤tk < t j

{
(1 − pB

k )
} ∫ tm+1

tm

f (t)dt

⎫⎬⎭ , (8)

where tmand tm+1 are the beginning and the end points of time section m, and where
tm ≤ τm ≤ tm+1 (e.g., τm = (tm + tm+1)/2 ).

In the simulation study presented below we used a Normal distribution for the
individual latent time of maturation, f (t), and time-independent mortality hazard
rates, h(t) (implemented as a Weibull hazard and fixing the shape parameter,
α, to 1). For the Case Study we used a logistic distribution for f (t) and the sum of
Gaussian terms described above (Eq. 7) for h(t). The denominator in the expression
of αi j (Eq. 1) and in the expression of π AB

i j (Eqs. 6 and 8) can potentially become
numerically zero when the cumulative f (t) approaches one (more likely to happen
for the Normal distribution which has lighter tails than the logistic distribution).
This problem can be avoided by constraining the upper limit of the cumulative to
one minus a very small number (e.g., 1 − 1e−12 ).

The recapture probabilities, p’s, can be state, group and occasion specific and
were constrained to the 〈0, 1〉 interval by a logistic link-function. An identity link
was used for the group specific mean latent maturation-time parameters, while the
standard deviation of the maturation distribution was forced to be positive with a
log-link (hence modeling multiplicative effects). The hazard function in Eq. 7 is
always positive, but the b-parameters were still forced to be positive with a log-link
to avoid symmetry around b = 0. A log-link was also used on the parameters of the
Weibull mortality hazard function. The parameters of the mortality hazard functions
can be state and group specific, and the hazard rates of the different states and groups
can be constrained to be proportional (i.e., parallel over time on a log-scale).

3 Individual Heterogeneity and Simulation Results

In the formulation of this model we have specifically addressed individual hetero-
geneity in latent time of maturation (or any irreversible state transition). However,
we have made the simplifying assumption that mortality hazard rates within groups
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do not vary among individuals. This is a potentially critical condition that may not
be met. Individual heterogeneity is ubiquitous in animal populations due to varia-
tion in individual quality and the resources they possess (Łomnicki 1988). Further-
more, correlations in individual life-history traits exist due to life-history strategies
and trade-offs (Roff 2002). For example, animals that reproduce early may face a
higher mortality hazard due to the costs of accumulating resources, or, alternatively,
animals in good condition may be able to both reproduce early and avoid mortality
risks.

To investigate the assumption of individual homogeneity within groups we fitted
the model to simulated data with variable degrees of individual heterogeneity in
mortality hazard rates and correlations between individual mortality hazard and
latent time of state transition. Individual combinations of log(mortality hazard) and
time of maturation were drawn from multivariate normal distributions, and capture
histories were simulated based on Bernoulli trials of survival and capture. We used
11 capture occasions at regular intervals along a time-line from −1 to 1. Capture
probability was set to 0.5 for all animals at all occasions, mean time of maturation
was 0, and the standard deviation in time of maturation was 0.2 . Median hazard
rate in the immature stage was 1 (corresponding to an expected lifetime of 1), and
the individual hazard rate doubled when the animal reached the mature stage. In
different runs of the simulations we varied the standard deviation of log(hazard rate)
from 0 to 1. A standard deviation in log-hazard of 1 means that the 97.5% quantile of
the distribution is 50 times higher than the 2.5% quantile, which is a very substantial
heterogeneity.

Results of simulations where individual hazard rate and latent time of maturation
were uncorrelated are presented in Fig. 1. The bias in the estimators of mean (μ̂)
and standard deviation (σ̂ ) of the maturation distribution is very moderate. Even
with the highest degree of heterogeneity, the bias in σ̂ is less than 2% and the bias
in μ̂ is less than 6% of the true value of σ . There is however a very substantial
bias in the estimated hazard ratios when heterogeneity increases. When the standard
deviation of log-hazard rate is one, the hazard in the mature stage relative to the
immature stage is underestimated by 56% (the mature stage is estimated to have
11% lower hazard rate than the immature stage even though the data were simulated
with a doubling of the hazard rate after maturity). This bias is due to the fact that
individuals with a low survivability (high hazard rate) will have a higher probability
of dying before they mature, and since the hazard estimates of mature animals are
based on only individuals that are alive at maturity, the survival cost of reproduction
for the total population will be underestimated.

There was also a slight upward bias in the estimates of mortality hazard rates at
the immature stage. However, when data were simulated with no difference in the
mortality hazard rates of the two stages and fitted with the corresponding model (not
shown), there was a downward bias in the estimates of the overall hazard rate, and no
detectable bias in μ̂ and σ̂ . The observation that the estimates of hazard rates under-
estimate even median hazard rate when adding heterogeneity may seem odd given
that log-normal heterogeneity increases mean hazard rate relative to the median.
However, log-normal heterogeneity in hazard rates will increase mean survival and
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Fig. 1 Bias in the parameter estimates (y-axes) from the model fitted to simulated data with
various degrees of log-normal heterogeneity in the mortality hazard rates (x-axis). Points with
95% confidence bars are from simulations with 1000 individuals released at the initial occasion
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life-expectancy even though mean hazard rate also increases (see text of Fig. 1).
Also note that, in the presence of heterogeneity in hazard rates, the hazard rates
for both states will be biased downwards for the same reason that the hazard ratio
representing cost of reproduction was underestimated: a cohort will be more and
more overrepresented by high quality individuals (those with low mortality hazards)
as time goes by (see Cam et al. (2002); Zens and Peart (2003); Cam et al. (2005)).
Hence, if only studying population level hazard rates it may look as if survival rate
increases after reproduction even when reproduction has a very substantial survival
cost for the individuals, as is seen in this simulation study.

Note that biased estimation of survival (or mortality hazards) due to individual
heterogeneity in mortality hazards is not specific to the model presented here. Any
method for estimation of survival rates will overestimate survival if individual
heterogeneity is not fully accounted for in the analysis (Zens and Peart 2003).
However, the simulations show that, although we get severe bias in estimates of
survival parameters, we retain fairly robust estimation of the latent maturation
distribution even when there is rather extreme individual heterogeneity in mortality
hazards.

Even though we obtain fairly robust estimation of the latent time of maturation
distribution in the presence of high heterogeneity in the mortality hazard rates, the
situation is very different when individual hazard rate and latent time of maturation
are correlated (Fig. 2). When individuals that mature late tend to have a lower hazard
rate (i.e., a negative correlation), the estimated mean time of maturation will be posi-
tively biased, while the bias in the hazard-rate estimators are reduced compared to
the case when the parameters are uncorrelated. When there is a positive correlation
between the parameters, the situation is the opposite: a negative bias in the estima-
tors of mean time of maturation, and increased bias in the estimators of hazard rates.
Standard deviation of the latent maturation distribution is negatively biased when the
correlation between the parameters is strong, but is quite accurately estimated when
the correlation between the parameters is within ±0.5.

Fig. 1 (continued) (one simulation per point), while the crosses are from simulations with 500,000
initial releases (details in text). The panels from top to bottom represent: (1) Mortality hazard
rate of immatures (λ); (2) Hazard ratio (eβ = λmature/λimmature) (3) Recapture probability (p);
(4) Mean latent time of state transition (μ); and (5) Standard deviation in individual latent time
of state transition (σ ). Parameter estimates β̂ , p̂ , μ̂ and σ̂ are expressed in relation to the true
fixed value used in the simulations (subscripts ‘T’), while λ̂ is expressed in relation to the expected
median of the simulated hazard rates. The upper dashed line in the top panel shows the mean
expectations of the simulated hazard rates (E[λ] = exp(μ + σ 2/2) , where μ and σ are the mean
and standard deviation of log(λ)), which increases to 1.65 at SD (log(λ)) = 1 . The solid black line
shows the hazard rate corresponding to the mean expectation of survival rate, − log(E[exp(−λ)]),
(found numerically). The lower dashed line shows the hazard rate corresponding to the mean life-
time expectancy, E[λ−1]−1 = exp(μ− σ 2/2)
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4 Case Study

We here illustrate the use of the model with a case study on timing of spring
reproduction and associated survival costs in field voles (Microtus agrestis) from a
cyclically fluctuating population in northern England. Onset of spring reproduction
in this study area varies by more than 2 months among years and locations, and
this variation is strongly correlated with population densities in the previous spring,
but not with present densities (Ergon 2003). Capture–recapture data with records of
individual reproductive state were collected at 2-week intervals from four study sites
following a translocation experiment (Ergon et al. 2001) in order to study the effects
of the present and past environment of the individuals on life-history traits among
the overwintering animals. Analyses of these data are also presented by Ergon et al.
(2004) and Ergon (2007).

In the analysis presented here we will apply our model to estimate latent distri-
bution of time of first parturition in the season and survival costs of reproduction
at the four study sites. It is of particular interest to look at the correlation between
mean maturation date and survival costs of reproduction across the four sites; higher
survival costs where reproduction commences late in the season could indicate
correlated effects of the environment on both timing and costs of reproduction,
whereas a higher survival cost at the sites where reproduction takes place early in
the season could indicate an adaptive life-history trade-off as a response to fluc-
tuations in the environment (Ergon 2007). An analysis of the data by the use of
traditional multi-state models (see Discussion) is presented by Ergon (2007). There
are however a couple of differences in the data. First, data from an additional trap-
ping occasion in the beginning of the study are now included. This trapping occasion
was excluded in the previous analysis because the length of the first interval varies
among sites, and since transition probabilities are not scaled according to the length
of the intervals in the traditional multi-state model (but transitions are, unrealisti-
cally, assumed to always occur instantaneously at the end of an interval between
trapping sessions) it was difficult to make use of these data in the previous analysis.
Secondly, to simplify the presentation, we now only include females in the analysis.
We also ignore the history of the individuals prior to translocation, as this has been
shown to be unimportant (Ergon et al. 2001). The aim here is primarily to show how
inferences can be made from fitting the model to data, and a thorough analysis is
beyond the scope of this paper.

The data include records of 354 individuals (from 45 to 115 within each site) at
7 trapping occasions, and the effective sample size (number of releases) was 763.
The data, summarized in multi-state m-arrays are given in the Appendix.

4.1 Choice of Model Constraints and Model Selection

The data cover the entire spring season in which the voles commence reproduction
after the winter; in the beginning of the study all animals were non-reproductive,
and by the end of the study all animals known to be alive had started to reproduce.
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In the beginning of the study, the populations within sites were fairly homogeneous;
most individuals were animals that were born late in the previous breeding season
and had suspended growth and delayed maturation before the winter. Age or cohort
effects are thus not of any concern. Survival may, however, vary quite unpredictably
over time because the voles are heavily predated by mobile predators (mustelids,
birds of prey and foxes), that may occupy the study area for a longer or shorter
period of time. Accordingly, it is desirable to use a rather flexible model for the
time-variation in the hazard rate, and there may be support for models with different
time-effects at the different sites (a ‘time × site’ interaction). We used the hazard
function composed as a sum of Gaussian terms described above (Eq. 7), and we also
considered models with constant hazard rates over time.

The trapping followed a standardized protocol and previous analysis has shown
that recapture probability mainly varied according to reproductive state (Ergon
2007). We thus only considered models with a ‘state’ effect on the recapture
probabilities. The main aim of the analysis was to study the association between
mean latent time of parturition and survival costs or reproduction among the study
sites. Hence a ‘state × site’ interaction effect on mortality hazard and mean time
of state transition was included in all models. The ‘time × site’ and ‘state × site’
effects on mortality hazard was made additive on a log-scale, so that the hazard rates
of the two states within sites will remain proportional over time. For simplicity, we
only present models including the same within-site variance in the latent maturation
distribution (models with different variances of the distribution at the different
sites were not supported by the data). Model statistics for 5 candidate models are
presented in Table 2.

4.2 Results

Ranking the candidate models according to their AICc model-selection criteria
(Burnham and Anderson 2002) revealed that two different models were supported

Table 2 Model statistics for 5 models with different mortality hazard functions fitted to the
vole data. The distributions of individual latent maturation dates within sites were modelled as
logistic distributions with a different mean for each site (4 parameters) and a common variance
(1 parameter). All models include a different recapture probability for each state (2 parameters), but
recapture probabilities are assumed to not differ among sites. The label ‘time(G2)’ means a hazard
function constructed as a sum of two Gaussian curves (Eq. 7) with the same width (b-parameters)
where the means (c-parameters) are fixed to each of the endpoints of the study period (the heights of
the curves (a-parameters) vary freely). Models labeled ‘time(G3)’ include an additional Gaussian
curve at the centre point of the study period. All models have a proportional difference between
mortality hazard rates of immature and mature animals within sites. See text for the meaning of
the other labeling

Hazard model Total no. parameters Deviance Dev. DF Δ AICc

state × site 15 368.86 82 0.00
state × site + time(G2) × site 20 358.40 77 0.03
state × site + time(G2) 17 366.84 80 2.16
state × site + time(G3) 18 365.99 79 3.41
state × site + time(G3) × site 24 355.12 73 5.25
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equally well by the data (Table 2). One of the models had a constant hazard rate
within sites and states (15 parameters in total), and the other more complex model
(20 parameters) had a different hazard curve over time for each of the four sites.
Estimates of hazard ratios, recapture probabilities, and the means and standard devi-
ations of the latent maturation distributions based on both these models are given
in Table 3. The estimates of recapture probabilities and maturation distributions
are virtually identical for the two models. The estimates of the hazard ratios of
the two states are however rather different. The model with constant hazard rates
shows a large difference between the sites in the hazard ratios representing cost
of reproduction. In the more complex model, the confidence intervals are too wide
to support any conclusions. The discrepancies can be understood from looking at
plots of the estimated hazard curves (Fig. 3); there is only a rather short period of
time when animals of both states are present in the same population. Hence, it is
difficult to separate the effects of ‘state’ and ‘time’ (part of the ‘state’ effect may be
absorbed by the ‘time’ effect or vice versa). The problem of separating these two
effects is also evident from the sampling correlations between the log of the hazard
ratios and the height of the second Gaussian component relative to the height of
the first component; this correlation was respectively −0.95, −0.90, −0.57, and
−0.89 for site A, B, C, and D. This illustrates a general potential problem when
estimating survival costs associated with state transition if there is little temporal
overlap between the animals of the two states in the population and when there is
little a priori knowledge about the shape of the temporal change in hazard rates.

Plotting the estimated hazard ratios from the model with time-independent
hazard rates against the estimates of the mean time of latent maturation (Fig. 4)
shows that estimated cost of reproduction is higher in the sites where reproduc-

Table 3 Estimates from the two top (AICc-best) models in Table 2. Differences in mortality hazard
rates of animals in the immature and mature state (the cost of reproduction) are expressed as hazard
ratios (hazard rate of the mature state divided by hazard rate of the immature state), which is the
same as the ratio of log(survival) over an interval. Values within brackets show 95% confidence
intervals

Hazard model

state × site
state × site + time(G2) × site

Survival cost of reproduction (hazard ratio)
Site A 2.43 [1.05, 5.65] 8.56 [0.73, 99.92]
Site B 0.35 [0.14, 0.89] 0.82 [0.10, 6.64]
Site C 1.79 [0.82, 3.91] 0.74 [0.26, 2.09]
Site D 0.55 [0.22, 1.40] 0.65 [0.09, 4.66]

Recapture probability
Immature 0.80 [0.73, 0.85] 0.80 [0.73, 0.85]
Mature 0.87 [0.80, 0.92] 0.87 [0.80, 0.92]

Mean latent parturition date (day of year)
Site A 113.2 [108.8, 117.6] 112.8 [108.3, 117.3]
Site B 93.9 [90.2, 97.7] 93.9 [89.9, 97.9]
Site C 109.5 [106.2, 112.8] 109.9 [106.6, 113.2]
Site D 97.5 [94.0, 101.0] 97.5 [93.9, 101.1]

SD latent parturition date (days)
Within all sites 8.5 [6.8, 10.5] 8.5 [6.8,10.6]
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Fig. 3 Mortality hazard rates on a one-day time-scale according to model ‘state × site +
time(G2) × site’ plotted on a log-scale as a function of day of year for each of the four sites.
Dashed curves show the hazard rates for the immature state, and solid curves represent the mature
state. Grey vertical lines show the mean ± 2SD of the estimated distribution for latent time of
maturation. The curves for the immature state are plotted from the first trapping session to the
97.5% quantile of the maturation distribution, and the curves for the mature state are plotted from
the 2.5% quantile of the distribution to the last trapping session at the site

tion commenced late, which indicates correlated effects of the environment on both
timing and costs of reproduction. That the voles in site B and D show a decrease
in the hazard rates after parturition is not surprising when considering the fact that
mortality is confounded with dispersal; voles may disperse prior to reproducing,
but they will obviously not leave the site while they are nursing young in the nest –
illustrating yet another potential problem in estimating survival cost of reproduction.
Finally, we should also keep in mind the lesson from the simulation study above, that
individual heterogeneity in mortality hazard rates can lead to substantial bias in the
estimates of cost of reproduction.

5 Discussion

Age at first reproduction has long been known to be an important life history compo-
nent with substantive consequences for fitness (Cole 1954; Roff 1992; Stearns
1992). Age at first reproduction is also a component of several so-called life history
invariants (Charnov 1993), and predictions about age at maturity ‘probably represent
the most successful empirical area of evolutionary life history theory’ (Charnov



Estimating Latent Time of Maturation and Survival Costs of Reproduction 191

90 95 100 105 110 115

0.
2

0.
5

1.
0

2.
0

5.
0

Mean latent day of maturation

Su
rv

iv
al

 c
os

t o
f 

re
pr

od
uc

tio
n

 (
ha

za
rd

 r
at

io
)

A

B

C

D

Fig. 4 Survival costs of reproduction plotted as hazard ratios (y-axis has a logarithmic scale)
against the mean of the estimated distribution for latent maturation date (x-axis) at each of the
study sites. Error bars show 95% confidence intervals of the estimates. Estimates were obtained
from the ‘state × site’ model of Table 2. The estimates of monthly (30 days) survival rates of
immature/mature voles (95% c.i.) from this model were: Site A: 0.63 (0.50, 0.74)/0.32 (0.10, 0.57);
Site B: 0.50 (0.36, 0.63)/0.79 (0.57, 0.90); Site C: 0.75 (0.66, 0.81)/0.59 (0.37, 0.76); Site D: 0.63
(0.51, 0.73)/0.77 (0.57, 0.89)

1989, p. 237). Changes in survival probability that might accompany an animal’s
transition from an immature to a reproductively mature state are also relevant to
theory about life history trade-offs and costs of reproduction (Roff 1992; Stearns
1992). Despite the central role of age at maturity in ecological and evolutionary
theory, empirical work lags behind theory, and approaches for estimation of age at
maturity for natural animal populations in the face of imperfect detection have been
relatively recent.

Clobert et al. (1994) developed a capture-recapture approach to inferences about
age at first reproduction for species that are available for detection as young at a
breeding colony and are then unobservable until they return to breed for the first
time. Subsequent recognition that this problem fits naturally within the framework
of multi-state models (Arnason 1972, 1973; Brownie et al. 1993; Schwarz et al.
1993) led to the direct estimation and modeling of age-specific probabilities of tran-
sition between pre-breeding and breeding states (e.g., Lebreton et al. 1999, 2003;
Pradel and Lebreton 1999; Fujiwara and Caswell 2002; Spendelow et al. 2002;
Kendall et al. 2003; Crespin et al. 2006; Hadley et al. 2006).

This work using multi-state models as the basis for inference about age at first
reproduction deals primarily with organisms that reproduce, at most, once a year,
and that can be sampled during the reproductive season each year. Existing multi-
state modeling approaches do not permit inference about the precise timing of pre-
breeder to breeder transition during the interval between sample occasions and do
not account for the different state-specific survival rates that may apply during inter-
vals of transition. Conroy et al. (1996) and Hestbeck (1995) noted the potential for



192 T. Ergon et al.

biased inferences about survival arising because of unknown times of transition. Joe
and Pollock (2002) considered multi-state models in which the probability distribu-
tion of the time of state transition within an interval was known (e.g., uniform or beta
distributions), and found that these models performed fairly well when evaluated in
terms of relative bias of survival, transition and capture probability estimators.

In this paper, we use a latent variable modeling approach (e.g., Skrondal and
Rabe-Hesketh 2004) on multi-state capture-recapture data to address questions
about age at first reproduction in organisms for which the reproductive season
cannot be readily viewed as a single discrete period (e.g., Fairbairn 1977; Ergon
et al. 2001; and Ergon 2007). Our approach focuses on the latent probability distri-
bution for time at maturation or, equivalently, the hazard function associated with
this distribution. This probability distribution is not conditional on survival, whereas
realized (i.e., observable) times of maturation represent functions of survival and
conditional probabilities of maturation. For studies of responses to selection, life-
history trade-offs and phenotypic correlations (e.g. Roff 2002), estimates of the
latent trait distributions are generally more relevant than estimates of the realized
distribution. Also in studies of density-dependence in timing of seasonal reproduc-
tion (e.g., Smith et al. 2006), it will be more informative to study density depen-
dence on the latent times of reproduction than the observable times which will be
influenced by (perhaps density-dependent) variation in survival.

Using this model to analyze variation in maturation and survival rates in field
voles, we found evidence that the survival cost of reproduction (estimated as
mortality hazard ratios of mature vs. immature voles) was higher at sites for which
maturation was later, suggestive of correlated effects of environmental conditions
on both time of maturation and survival, which is consistent with previous analyses
of the study system (Ergon et al. 2001; Ergon et al. 2004; Ergon 2007). The survival
differences between immature and mature voles were relatively large, again arguing
for models such as these that permit the partitioning of between-sample intervals
based on time of maturation.

In our example analysis, it was difficult to discriminate between models with
time-constant versus time-varying mortality hazard rates. This difficulty was largely
a result of synchronous maturation, such that most voles were immature for one set
of time intervals and mature for another set of intervals, with few sample intervals
containing sufficient numbers of both mature and immature voles. This seasonality
in our example leads to the recommendation that sampling should be most intense
during periods for which numbers of animals can be found in both immature and
mature states. Increased synchronization of maturation should lead to an increase in
the focus of sampling intensity on transition periods, especially if large time vari-
ation in mortality hazard rates can be expected. In the case of highly synchronous
maturation, it will be difficult to separate temporal trends in survival from true costs
of reproduction.

The simulation study provided evidence of the sensitivity of estimates of repro-
ductive costs to heterogeneity in individual mortality hazards. Estimation of the
latent time of maturation distribution was found to be fairly robust to heterogeneity
of hazard rates. However, when there were strong correlations between individual
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mortality hazard and time of maturation (e.g., individuals that mature late tend to
have lower mortality hazard rate), then estimates of the maturation distribution tend
to be biased.

These latter observations about potential bias in the face of correlated mortality
hazards and time at maturation lead to clear recommendations for future work.
Our models assume independence of the two demographic processes, transition
to reproductive state and survival. Individual quality can lead to positive corre-
lations between survival and reproductive parameters estimated at the population
level (Cam et al. 2002; Weladji et al. 2006), even if reproductive costs are expected
to lead to negative correlations within individuals. Indeed, it is a major empirical
question to determine the relative importance of these two factors, and how they
can be affected by environmental variability (see Ergon (2007)). One major future
development will be to incorporate such correlation in the model.

The focus of this paper has been on the transition from immature to mature,
but we see applications for modeling of other ecological processes as well. For
example, in disease ecology, the state transition from uninfected to infected and
the mortality hazard ratio for these two states (i.e., lethality) are of primary impor-
tance (e.g. Begon et al. 2002; Telfer et al. 2002; Burthe et al. 2006; Oli et al.
2006). Because infection will frequently produce large differences in state-specific
mortality hazards, bias resulting from failure to deal adequately with transition
times would be expected to be substantial. Indeed failure to re-observe animals
that become infected during the interval between sample periods (because of death)
will result in underestimation of the lethality as well as the rate of infection
(especially if lethality is high). The model presented in this paper will remedy
these problems and yield estimates of infection rates and lethality that are not
biased by background mortality. However, it should be noted that when changing
the focus from the latent distribution for time of state-transition to the corre-
sponding transition hazard rates, it is assumed that the variation in time of tran-
sition (infection) is solely due to stochasticity and there is no individual hetero-
geneity in the infection hazards (susceptibility). Hence, individual heterogeneity
in the infection susceptibility (other than what can be accounted for by group
variables, age or time) is not accounted for in the current model and may lead
to biases.
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Appendix – Case Study Data

The data used in the Case Study, represented as multi-state m-arrays (See Table 1),
are given in Tables 4–7 below. Times of trapping session at each site, expressed
as day of year, are given in the caption of each table. These should be rescaled to
have absolute values less than ∼1 to avoid numerical problems when using some
mortality hazard functions. Note that site A and site C have 7 trapping sessions,
while site B and site D have 6 trapping sessions.



Table 4 Multi-state m-array Site A. Trapping sessions on days 1:41, 2:69, 3:84, 4:98, 5:112, 6:127,
7:139

Session of first recapture ( j)
State of recapture

Session of State of 2 3 4 5 6 7 never
release (i) release A B A B A B A B A B A B

1 A 18 0 1 0 0 0 0 0 0 0 0 0 16
1 B 0 0 0 0 0 0 0 0 0 0 0 0 0
2 A 14 0 1 0 0 2 0 0 0 0 7
2 B 0 0 0 0 0 0 0 0 0 0 0
3 A 13 0 1 1 0 0 0 0 0
3 B 0 0 0 0 0 0 0 0 0
4 A 8 4 0 0 0 0 3
4 B 0 0 0 0 0 0 0
5 A 0 5 0 2 2
5 B 0 4 0 0 3
6 A 0 0 0
6 B 0 3 7

Table 5 Multi-state m-array Site B. Trapping sessions on days 1:21, 2:76, 3:92, 4:106, 5:119,
6:134

Session of first recapture ( j)
State of recapture

Session of State of 2 3 4 5 6 never
release (i) release A B A B A B A B A B

1 A 4 0 0 1 0 0 0 0 0 0 23
1 B 0 0 0 0 0 0 0 0 0 0 0
2 A 13 8 0 1 0 0 0 0 7
2 B 0 0 0 0 0 0 0 0 0
3 A 2 13 0 2 0 0 1
3 B 0 10 0 1 0 0 2
4 A 0 3 0 0 0
4 B 0 28 0 0 2
5 A 0 0 0
5 B 0 27 13

Table 6 Multi-state m-array Site C. Trapping sessions on days 1:13, 2:67, 3:82, 4:96, 5:110, 6:124,
7:137

Session of first recapture ( j)
State of recapture

Session of State of 2 3 4 5 6 7 never
release (i) release A B A B A B A B A B A B

1 A 26 0 4 0 0 0 0 0 0 0 0 0 18
1 B 0 0 0 0 0 0 0 0 0 0 0 0 0
2 A 28 0 3 0 0 0 1 1 1 1 10
2 B 0 0 0 0 0 1 0 0 0 0 0
3 A 28 1 1 1 0 0 0 0 5
3 B 0 0 0 0 0 0 0 0 0
4 A 9 14 0 3 0 0 9
4 B 0 1 0 0 0 0 0
5 A 0 11 0 0 1
5 B 0 15 0 0 3
6 A 0 1 1
6 B 0 21 14
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Table 7 Multi-state m-array Site D. Trapping sessions on days 1:30, 2:74, 3:89, 4:103, 5:117,
6:131

Session of first recapture ( j)
State of recapture

Session of State of 2 3 4 5 6 never
release (i) release A B A B A B A B A B

1 A 12 0 3 1 0 0 0 0 0 0 22
1 B 0 0 0 0 0 0 0 0 0 0 0
2 A 19 2 2 1 0 3 0 0 5
2 B 0 0 0 0 0 0 0 0 0
3 A 3 20 0 0 0 1 4
3 B 0 3 0 0 0 0 0
4 A 2 2 0 2 4
4 B 0 22 0 3 5
5 A 0 4 1
5 B 0 29 7
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Inferences About Landbird Abundance
from Count Data: Recent Advances
and Future Directions

James D. Nichols, Len Thomas, and Paul B. Conn

Abstract We summarize results of a November 2006 workshop dealing with recent
research on the estimation of landbird abundance from count data. Our concep-
tual framework includes a decomposition of the probability of detecting a bird
potentially exposed to sampling efforts into four separate probabilities. Primary
inference methods are described and include distance sampling, multiple observers,
time of detection, and repeated counts. The detection parameters estimated by these
different approaches differ, leading to different interpretations of resulting estimates
of density and abundance. Simultaneous use of combinations of these different infer-
ence approaches can not only lead to increased precision but also provides the ability
to decompose components of the detection process. Recent efforts to test the efficacy
of these different approaches using natural systems and a new bird radio test system
provide sobering conclusions about the ability of observers to detect and localize
birds in auditory surveys. Recent research is reported on efforts to deal with such
potential sources of error as bird misclassification, measurement error, and density
gradients. Methods for inference about spatial and temporal variation in avian abun-
dance are outlined. Discussion topics include opinions about the need to estimate
detection probability when drawing inference about avian abundance, methodolog-
ical recommendations based on the current state of knowledge and suggestions for
future research.

1 Introduction

For decades, the majority of inferences about landbird abundance and density have
been based on counts conducted by investigators, either stationed at points (e.g.,
Blondel et al. 1970) or walking along line transects (Emlen 1971; Jarvinen and
Vaisanen 1975). Counts resulting from point and transect sampling have been
treated frequently as indices to abundance, in the sense that the expected counts
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have been assumed to represent an unknown, yet relatively constant, proportion of
the sampled population. Early on, some investigators argued that the proportionality
assumption is not likely to be widely met, or at least merits testing, and advocated
the collection of supplemental data with counts that permit inference about the
detection probabilities of individual birds and thus about true abundance and density
(e.g., Ramsey and Scott 1979; Burnham et al. 1980, 1981). Debate about approaches
for drawing inferences about population size and dynamics from avian count data
has motivated symposia and workshops over the years (Ralph and Scott 1981; Ralph
et al. 1995) and has persisted through the present time (e.g., Anderson 2001; Hutto
and Young 2002, 2003; Rosenstock et al. 2002; Thompson 2002b; Ellingson and
Lukacs 2003).

The past 5 years have been a period of especially active research on inference
methods for avian count data. Such research has included development of new esti-
mation methods, application of these and previous methods in investigations of rela-
tively large scale, and serious testing of existing methods using novel experimental
approaches. These developments are sufficiently recent that it has been difficult
for investigators to keep up with progress that has been made. Thus, we hosted a
small workshop at Patuxent Wildlife Research Center, Maryland USA, inviting 19
biometricians and avian population ecologists (see Acknowledgements) who have
played large roles in the recent research. The purposes of the workshop were to
obtain a synthesis of the current “state of the art” in methods for estimating landbird
abundance from point count and related data, to highlight future research needs, and
to determine how best to bridge the gap between statisticians and practitioners. This
paper represents an effort to summarize some of the central conclusions and points
of discussion from the workshop.

2 Conceptual Framework

2.1 Basic Framework

Discussions of use of count data as a basis for inference about animal populations
frequently begin with 2 facts about sampling animal populations (e.g., Lancia et al.
1994, 2005; Borchers et al. 2002; Williams et al. 2002):

(1) Interest is frequently in areas that are sufficiently large that animals cannot be
counted over the entire area for which inference is desired;

(2) At locations where investigators do obtain counts of animals by whatever
means (counts of animals seen, heard, captured, etc.), these counts seldom
include all animals at the sampled location.

Fact 1 is common to many areas of statistics, and traditional design-based
sampling approaches are applicable (e.g., Cochran 1977; Thompson 2002a). These
sampling approaches are designed to use data from locations at which counts
are made to draw inferences about locations where counts are not made. In
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design-based sampling, the key to such extrapolation is to sample locations in such
a manner that all locations about which inference is desired have some known,
non-negligible probability of being included in the sample. These probabilities
(sometimes called “coverage” probabilities) are determined by the type of design
(e.g., random sampling, stratified random sampling, systematic sampling, adap-
tive cluster sampling), and can be computed based on a knowledge of the design
(including desired sample size). Model-based sampling represents a somewhat
different approach in which covariate relationships estimated from data on loca-
tions that are visited are assumed to apply to locations that are not visited. If this
assumption holds, then as long as covariate information is available for all locations
of interest, inferences about animal abundance can be made even from locations at
which no counts are made. Although geographic variation and spatial sampling were
not the primary foci of the workshop, discussion of these topics arose frequently, as
their importance was clearly recognized.

Fact 2 involves detectability, and the workshop focused on approaches for dealing
with this issue. Traditional discussions of detectability view counts of animals (Ci

for location i) as random variables, the expectation of which can be written as the
product of the true number of animals at the location at the time of the survey (Ni)
and the detection probability (pi), the probability that a member of Ni appears in Ci:

E(Ci ) = Ni pi . (1)

In the context of the workshop, counts were usually the numbers of birds seen or
heard, and discussion focused on how to translate these counts into inferences about
true abundance or density.

For some purposes, estimates of true abundance or density are required, and can
be obtained as:

N̂i = Ci

p̂i
. (2)

In many cases, we can view location i as corresponding to an individual sampling
unit selected from a large area for which an abundance estimate, N̂ , is desired.
In an effort to deal with facts 1 and 2 listed above, we define pc,i as the coverage
probability of sample i within this large area and estimate N as:

N̂ =
∑

i

Ci

p̂i pc,i
. (3)

More frequently, inferences of interest involve not abundance itself, but ratios of
abundance over space (often termed relative abundance) or time (often termed trend
or rate of population change). One approach to inference about ratios of abundance
is to standardize data collection procedures in hopes of obtaining similar detection
probabilities for the different times or locations to be compared. If similar detection
probabilities can be obtained, then ratios of the counts themselves provide reason-
able estimates of ratios of abundances. Another approach is to hope that most of
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the relevant temporal and spatial variation in detection probability is associated with
recorded covariates that have no possibility of also being associated with variation in
true abundance. For example, observer identity is such a covariate and can be incor-
porated into analyses that use raw count data (e.g., Link and Sauer 1997). Those
who do not believe it is safe to rely on standardization and covariate identification
typically advocate collection of data needed to draw direct inference about detection
probability and its variation. Given such data, it is possible to compare alternative
models that express different hypotheses about how detection probability varies as
a function of time, space, or recorded covariates. The workshop included discus-
sion of the relative efficacy of these 2 general approaches: (1) use of raw counts
with assumptions about relevant sources of variation in detection probability, versus
(2) collection of data needed to draw inferences about variation in detection proba-
bilities, using methods that also require assumptions about the detection process.

2.2 Decomposition of Coverage and Detection Probabilities

K.H. Pollock presented a conceptual framework for the workshop that extended the
ideas presented above to include different components of detection (also see Pollock
et al. 2002; Farnsworth et al. 2002, 2005). Specifically, he noted that detection can
be broken into components associated with availability and detection given avail-
ability. The issue of availability has been discussed, mainly with respect to aquatic
organisms that may be submerged at the time of the survey and thus not exposed to
surface survey methods (e.g., Marsh and Sinclair 1989; Laake and Borchers 2004;
Okamura et al. 2006). In an auditory survey, a bird that does not vocalize during
the survey period is not available to be detected. A bird that does vocalize is avail-
able and may or may not be detected depending on the probability of detection
given availability. During the course of the workshop, there was also discussion of
temporary emigration and the possibility that a bird that sometimes uses a particular
sampled site (i.e., the site is included in the bird’s territory or home range) may not
be present on the site at the time of the survey.

These ideas about geographic sampling and detection probability cause us to
further subdivide the coverage and detection probabilities of Section 2.1 and view
the probability that a bird in some large area of interest is actually detected during
a survey within that area as the product of 4 conceptually distinct probabilities. We
begin by considering all birds whose territories or home ranges lie at least partially
within the large area about which inference is to be drawn. We refer to this number
as superpopulation size, N*, indicating that these birds have some probability of
being exposed to sampling efforts at any given survey time. We are not necessarily
interested in estimating N*, but we simply identify members of N* as the individuals
that may appear in our sample counts. We then consider a randomly chosen bird
from the superpopulation N* and consider its probability of being counted during a
survey.

One way to define coverage probability is the probability that the location of
the bird is within a sampling unit (location at which a survey count is conducted)
at the time of the survey. It is helpful to decompose coverage probability into two
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parts. The first is the probability that the bird’s home range or territory at least
partly overlaps a sampling unit. We denote this probability as ps, and associate it
with spatial sampling (Cochran 1977; Thompson 2002a). This probability depends
on the spatial sampling design (how are sampling units selected, what are the sizes
of the units) and on the size and shape of the bird’s home range, or of the portion
of it lying within the large area of interest. Conditional on a bird’s home range
overlapping at least one selected sample unit, the second probability of interest is the
probability that a bird is present at a sample unit during the survey period (the time
spent surveying at that unit). We refer to this as the probability of presence, pp, as it
indicates the probability that the bird is within the area exposed to sampling efforts
for at least some of the survey period. For ease of extrapolation and discussion,
we assume the simple case in which the range of a single bird can overlap at most
a single selected sample unit, although more complicated situations are certainly
possible. Decomposing coverage probability into these two components allows us
to account for temporary emigration of birds from a sampling unit during the time
of the survey; this occurs with probability (1−pp).

We now decompose detection probability into two parts. If a bird is located
within the sample unit during the survey period, we still consider the possibility
that the bird is not available for detection during that time. For example, in an
auditory survey, a bird that fails to vocalize during the survey period is essentially
unavailable for detection despite being present in the surveyed area. We use the
term availability for this detection component and denote the associated probability
as pa. We further note that the methods we consider focus on birds for which pa>0.
For example, if females of some species are simply invisible in the general period
during which surveys are conducted, then none of our estimation approaches will be
useful for them. Finally, we consider the probability of detection given presence and
availability, pd. In an auditory survey, this probability corresponds to the observer
actually hearing a bird and being able to identify the species. This component of
detection probability is likely to vary as a function of such factors as observer skill
and sensory (e.g., hearing) abilities, vocalization characteristics of the bird species,
habitat structure, and distance from the observer.

All of these probabilities are viewed as components of the process generating the
count data, and their identification and specification during the workshop hopefully
led to clear thinking and discussion of the various methods used to estimate bird
numbers and density. In particular, we note that most of the estimation methods
discussed at the workshop incorporate some sort of parameter representing detection
probability. We will use the terms “detection probability” to describe the parame-
ters estimated by different approaches, and we reserve the notation pd for detec-
tion conditional on presence and availability.The nature of the detection probability
parameter varies among the different methods, as it can reflect only pd, the product
papd, or even the product pppapd. Combinations of methods provide opportunities
for estimating these components separately and in some cases such decomposition
may be useful. We believe that it is especially important that the investigator be
aware of which detection parameter applies to a particular method, as this deter-
mines the population about which inferences are being made. We discuss this further
when introducing each method, below.
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Note that for ease of presentation and interpretation, the above components of
the detection process are listed as single parameters, implying that every individual
in the population of interest shares these common parameters. In reality, at least
some of these components will vary by individual, such that these parameters are
best viewed as averages. In some cases, these probabilities are best viewed at the
level of the individual and modeled as a function of individual-level covariates.

2.3 Closed Populations and Open Fields

Frequently, we will express interest in inferences about a closed population of size N
in a known area of size A. While this conceptualization is directly applicable in some
circumstances, for example an island population, it is often the case that the survey
boundaries are not closed to animal movement, so that population size is not a fixed
quantity but varies even over short time intervals. The inclusion of pp as a component
of the detection process in the framework presented above reflects a recognition of
this reality. Further, there are some circumstances when the area of inference A is not
well defined, although these are often associated with circumstances where there is a
poor survey design. M.G. Efford (collaborating with D.K. Dawson) made a presen-
tation, part of which described an alternative perspective to the “closed population”
paradigm, which he called an “open field”. In this perspective, detectors are located
within some area of interest and the focus is on estimating animal density, defined
as the local intensity of a spatial point process.

2.4 Index Methods

In certain situations, it may be possible to diagnose population trends without explic-
itly estimating detection probabilities, treating counts as indices to abundance. In a
recent survey of 224 papers using field counts of landbirds, Rosenstock et al. (2002)
found that 95% viewed the counts as indices for inference about variation in abun-
dance. Index methods traditionally assume constant detectability, so that changes in
raw counts over time or space are viewed as representing changes in the popula-
tion of interest. Use of indices can also involve covariates hypothesized to influence
detection probability but not true abundance or density. Such analyses require that
all systematic changes in detectability can be explained and modeled with covari-
ates (e.g., Link and Sauer 1997). At the workshop, W.A. Link and D.H. Johnson
gave provocative presentations that focused on the key points of consideration when
making decisions about whether to use an index approach to point counts or to
instead try to model and/or estimate detection probabilities. W.A. Link maintained
that covariates influencing detectability can often be controlled for, and that it was
indeed possible to make inferences about population trends without explicit estima-
tion of detection probability. Both presenters argued that index approaches to moni-
toring, such as the BBS, have provided valuable information on population trends, and
have helped to identify species of concern whose status warrants further investigation.
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Subsequent discussion of index methods largely focused on the tenability of
model assumptions. Workshop participants reached consensus that the assump-
tion of constant detectability needed for index methods was sometimes overstated.
Rather, it would suffice that expected detection probability, E(p), is constant over
time (e.g., Nichols et al. 2000; Yoccoz et al. 2001; Conn et al. 2004). D. H. Johnson
argued that even if there is a small trend in detectability, index methods may still be
sufficient to diagnose large scale changes in abundance. The same general comments
apply to covariate analyses of index data, although the interpretation of E(p) is in
this case changed to the expected detection probability after available covariates
have been used to control for variation in detectability.

Index-based methods are inherently attractive when their assumptions are met;
they require fewer data to be collected and avoid potentially problematic assump-
tions about the functional form of individual heterogeneity in detection probability
(Link 2003). On the other hand, when index assumptions are sufficiently violated,
they may lead to erroneous inferences. When trends are estimated as ratios of raw
counts or as regressions of counts on time, undetected trends in detection proba-
bility can either mask changes in abundance or cause one to observe a spurious
trend in abundance. Use of appropriate covariates can correct for some of the factors
influencing detection probability. For instance, Link and Sauer (1998) were able to
detect, and correct for, changes in the competency of bird point count participants
over time. However, these approaches cannot be used to correct for unrecorded
covariates that influence detection, nor for covariates that may be associated with
trends in abundance. For instance, decibel level has undoubtedly increased along
roads in the United States over the past several decades, but historically has not been
recorded at U. S. Breeding Bird Survey (BBS) point counts. Decibel level appears to
be inexorably linked with the auditory detection process (Simons et al. 2007), and so
may have led to unmodeled trends in detectability in BBS analyses. Even if decibel
level had been recorded, this covariate is likely related to land use and proximity
of human development, variables that may influence actual bird abundance. Global
warming, succession, and introduction of invasive species are some of the examples
proposed by workshop participants that might simultaneously influence both abun-
dance and detectability. If these factors have large influences on expected detection
probability, index methods will not be adequate for the analysis of population trends.
In these cases, methods designed to explicitly estimate detection probability are
needed.

3 Basic Inference Methods

3.1 Distance Sampling

L. Thomas presented to the workshop an overview of “conventional” distance
sampling (CDS) methods (Burnham et al. 1980; Buckland et al. 1993, 2001). There
are two main variations: line transects, where the survey is performed from a set
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of randomly located lines, and point transects, where it is from a set of randomly
located points. The basic idea is the same for both. Observers record the distance
from the line or point to all birds detected within some truncation distance, w (which
in practice may be infinity, i.e., all detections are recorded, but some finite truncation
distance is almost invariably specified at the analysis stage). The sample units are
therefore a set of strips (line transects) or circles (point transects) of known size.
Not all birds within the sample units are detected, but a fundamental assumption of
the conventional methods is that all birds at zero distance are available and detected.
Intuitively, one would expect that birds become harder to detect on average with
increasing distance from the line or point. The key to distance sampling is to use the
distribution of the observed distances to estimate the “detection function”, denoted
g(y) – that is the probability of detecting a bird, given it is at distance y. This function
can then be used to estimate the average probability of detecting a bird given that it is
within a sample unit and available for detection – i.e., pd. Note that the conventional
methods are not designed to estimate availability, pa – if this is <1 then additional
data are required. Given an estimate of detection probability, pd, it is straightfor-
ward to estimate density using design-based methods such as equation (3), since
coverage probability is known by design. Let Ns represent the total number of birds
whose home ranges overlap the set of sample units surveyed by the two observers.
Because distance sampling estimates pd, abundance estimates obtained using this
approach are associated with the birds present at the sample locations during the
sample period and available to be detected during that time. If ranges of individual
bird do not overlap multiple surveyed sample units, then E(N̂s) ≈ Ns pp pa .

Assumptions of CDS used in estimating pd are (1) animals are distributed inde-
pendently of the line or point locations; (2) all birds at zero distance are detected;
(3) distances are measured without error; (4) observations at a line or point take
place at an instant in time, so that animal movement is negligible. Assumption 1
(independent animal distribution) is true by design if a large number of sample units
are located at random within the study area, and may be violated if there is non-
random sample unit placement such as surveys along roads or trails. Substantial
violation can lead to substantial bias in the estimator of abundance. Assumption
2 (g(0)=1) may be violated due to “availability bias” (i.e., non-availability of a
component of the population, such as female birds not vocalizing in an aural survey)
or “perception bias” (birds that are available being missed at zero distance). In
both cases, additional information is required to estimate the proportion missed,
either through a separate survey (e.g., observations of radiomarked or colormarked
birds to directly estimate availability, Section 4.3) or more complex mark-recapture
distance sampling methods (Section 3.7). Assumption 3 (no measurement error)
may be more easily met in visual surveys, where laser rangefinders can be used to
provide accurate distances, but is more problematic in aural surveys, as we discuss
later. We also discuss methods designed to correct for bias caused by measurement
error in cases where the measurement error process is relatively simple and well
understood. Assumption 4 (no animal movement) can also be problematic in some
field situations. Responsive movement of animals, such as attraction of birds to the
observer before detection, can cause substantial bias, and even random movement
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can cause significant bias for point transects. One reason that bias tends to be worse
in point transects is that the observer is (more or less) stationary; short survey
periods (perhaps 3 min) can minimize the problems, but a preferable protocol is a
“snapshot” method where only known locations of birds at a pre-defined instant are
recorded – see Buckland (2006) for a more detailed description. Another potential
solution is to use cue-counting methods, where distances to individual cues such
as song bursts are recorded, rather than individual birds. Cue production rate is
estimated in a separate survey, and used to convert an estimate of the abundance of
cues back to abundance of animals. If possible, estimation of cue production rate is
carried out at the same time/place of the actual survey. Detailed advice on survey
design and field methods is given in Buckland et al. (2001, Chapter 7) and Strind-
berg et al. (2004), and recommendations specifically oriented to landbird studies
are given in Buckland (2006). A fifth assumption, that each bird detection is an
independent event, is not as important in practice.

While not strictly assumptions, there are some additional requirements for robust
estimation. First, the detection function should have a “shoulder” – i.e., the prob-
ability of detection should remain at or close to 1 initially as distance from the
line or point increases. This is often referred to as the “shape criterion”. Second,
the detection function should be smooth. Third, the models used for g(y) should
be flexible, in the sense that they can take a wide variety of plausible shapes, so
that they will be a good approximation to the true detection function given a large
sample size. Such models are termed “model robust”. Fourth, an adequate sample
size of distances is required. “Adequate” is hard to define unambiguously, since
more samples are required for “difficult” detection functions (e.g., small shoulder or
steep fall-off in detectability), however Buckland et al. (2001, Section 7.2.2) recom-
mend at least 60–80 observations for line transect studies and 75–100 for point
transect studies. Under these conditions, the estimators of abundance are “pooling
robust”, meaning that even large variations among individuals in probability of
detection due to observer, habitat, etc. cause little bias in the estimate of pd and
hence abundance. Thomas presented simulations that demonstrated this, but which
also showed when heterogeneity in detectability is extreme (e.g., singing males and
cryptic females), significant bias can arise (Thomas et al. in prep.). One potential
solution to extreme heterogeneity is to include the factors causing the heterogeneity
as additional covariates in the detection function model (Marques et al. 2007). This
approach may also offer a partial solution to the sample size requirements if rarer
species can be combined with more common ones and species used as a detection
function covariate (Alldredge et al. 2007b). A fifth requirement is of an adequate
sample of lines or points (minimum 10–20, Buckland et al. 2001, Section 7.2.1) for
reliable estimation of the spatial component of variance of the abundance estimate.

3.2 Multiple Observers

M.W. Alldredge presented the basic ideas underlying models based on multiple
observers and time of detection. The multiple-observer approach requires that 2 or
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more observers either sample a point together or traverse a line transect together,
keeping track of observer-specific detections of individual birds. The approach is
adapted from work by Cook and Jacobson (1979) on estimation approaches for
aerial surveys and is closely related to capture–recapture modeling of closed popu-
lation data (Otis et al. 1978; Seber 1982). Field sampling by multiple observers can
be treated in either of two general ways, labeled dependent and independent. Both
approaches have been used with avian point count data. Our descriptions will be of
point counts, although we note that both approaches can be implemented along line
transects as well.

Under a dependent double-observer approach, at each point one observer is
designated as “primary” and the other as “secondary”. The primary observer identi-
fies all birds detected and communicates each detection to the secondary observer.
The secondary observer records these detections of the primary observer, as well
as additional birds that the primary observer does not detect (e.g., Nichols et al.
2000). Observers switch roles at different points such that each observer serves as
primary observer for about half the sample points. The data for a series of point
counts conducted in this manner by two observers can be summarized as four
sufficient statistics for each species or group of species to be analyzed together:
the number of birds detected by observer i (i=1,2) when that observer was the
primary observer, and the number of extra birds detected by observer i when the
other observer was primary observer. These data can then be used to estimate the
number of birds exposed to sampling efforts at the group of surveyed points under a
general model in which detection probabilities differ between observers and among
species. Reduced-parameter models can then be developed to evaluate hypotheses
about the similarity of detection probabilities for observers and bird species.

The general model for the dependent double-observer approach assumes that
detection probability of an observer does not vary depending on the observer’s role
as primary or secondary. It is assumed that detection and recording of a bird by
the secondary observer does not influence the probability that the primary observer
detects the bird. The approach assumes that all birds of a species found within
the sampled area (frequently defined by a specified fixed radius) at the time of the
sample have the same probability of being detected by an observer (the probabilities
may be different for the two observers). The number of birds exposed to sampling
efforts is assumed to be fixed (population closure), and this assumption may limit
the sample to a very short time period (e.g., 3 min). Nichols et al. (2000) provide a
more detailed discussion of field sampling methods, analysis methods, underlying
model assumptions and field approaches directed at meeting model assumptions.

The independent multiple-observer approach to point counts requires that two or
more observers independently record detections from the same basic field sampling
point for some specified short period of time (e.g., 3 min). The observers will typi-
cally have a schematic diagram of the surveyed area (concentric circles of different
radii around the sample point) such that detections of a species are recorded on
the diagram with a time of detection. Immediately following the count, observers
confer and compare diagrams with the purpose of matching detections of the same
birds and developing detection histories for every bird detected (Alldredge et al.
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2006). For example, with two independent observers, three detection histories and
associated sufficient statistics can be observed: x11 = number of birds detected by
both observers, x10 = number of birds detected by observer 1 and not observer 2, and
x01 = number of birds detected by observer 2 and not observer 1. These data are then
analyzed as closed model capture–recapture data, where time-specific variation in
the capture–recapture context is analogous to observer-specific variation in the point
count context. Observer variation in detection probability can be incorporated into
models, or detection probability can be modeled as a constant for all observers. If
>2 observers conduct the sampling, then finite mixture heterogeneity models (e.g.,
Norris and Pollock 1996; Pledger 2000) can be fit that permit variation among indi-
vidual birds in their probabilities of being detected (Alldredge et al. 2006).

Assumptions underlying the independent multiple observer approach include
population closure and independence of detections among observers. It is further
assumed that detection histories are correct (i.e., that there are no matching errors).
The double observer models assume the same detection probabilities for the
different individuals of the same species within the sample area for each observer.
This homogeneity assumption can be relaxed with >2 observers using finite mixture
heterogeneity models (Alldredge et al. 2006). If limited-radius counts are used, it is
assumed that the observer correctly determines whether each detected bird is inside
or outside of the specified radius.

The detection probabilities estimated using multiple-observer approaches pertain
to the conditional probability of detection, pd, given that the bird is present in the
area exposed to sampling efforts (e.g., located inside the area defined by a fixed
radius) at the time of the sample (probability associated with this event is pp) and
given that it vocalizes or is otherwise available during the sample period (associated
probability is pa). The detection probability is also conditional on the initial proba-
bility that the point count sample unit is overlapped by the home range of a particular
bird (associated probability ps), but as this probability is a component of all bird
detections, we will omit it from our discussions of the different detection parame-
ters estimated by the different methods. Let Ns represent the total number of birds
whose home ranges overlap the set of sample units surveyed by the two observers.
Because multiple-observer estimation focuses on pd, the abundance estimated using
this approach is associated with the birds present at the sample locations during the
sample period and available to be detected during that time. If ranges of individual
bird do not overlap multiple surveyed sample units, then E(N̂s) ≈ Ns pp pa .

3.3 Time of Detection

The time of detection approach to abundance estimation from avian point counts
requires only a single observer at each sampled point. The duration of the entire
point count is divided into component time intervals (e.g., a 3-minute point count
might be divided into three 1-minute time intervals). The initial development of this
approach focused on the time interval of first detection for each bird detected in the
count (Farnsworth et al. 2002). If we let K denote the total number of time intervals
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in a point count, then the sufficient statistics under this approach are the numbers of
birds detected for the first time in each interval, x1, x2,. . . xK.

Modeling of these sufficient statistics requires an abundance parameter, N, and
detection parameters, p. The modeling is identical to that of removal modeling
in capture–recapture literature (Otis et al. 1978; Seber 1982). Estimation is not
possible with interval-specific detection parameters, and these parameters are typi-
cally assumed to be constant over time when all intervals are of equal length.
Farnsworth et al. (2002) also consider the situation where the intervals are of
unequal length. Let ti represent the length of interval i expressed in some rele-
vant time unit (e.g., minutes). Then the probability of a bird being detected during
interval i can be written as: pi = 1−(1− p)ti , where p is the probability of detection
for a single unit of time. Under an equivalent continuous time formulation, let φi be
the instantaneous rate of detection during interval i, or “Poisson detectability coef-
ficient” (Alldredge et al. 2007a). Then the probability of detection during interval
i is: pi = 1 − e−φi ti . Heterogeneity among individual birds at a sample unit can
be modeled using a finite mixture (e.g., Pledger 2000) or other approach (other
estimators for Mbh of Otis et al. 1978).

It is also possible to treat time of detection data as standard capture–recapture
data, rather than as simply removal data (e.g., Alldredge et al. 2007a). For example,
instead of recording the time interval of first detection, the observer records all inter-
vals of detection for each bird. For example, with two time intervals, three detection
histories and associated sufficient statistics can be observed: x11= number of birds
detected in both time intervals, x10 = number of birds detected only in the first time
interval, and x01 = number of birds detected only in the second time interval. These
data are then analyzed using standard capture–recapture models for closed popula-
tions, with time interval of detection being equivalent to a sample period in closed
capture–recapture. It seems likely that the initial detection of an individual might
have a different (typically smaller) detection probability than subsequent detections,
in which case analysis would be based on the time intervals of first detection.

Assumptions underlying the time of detection approach include population closure
and independence of detections of an individual among the different sample intervals.
If time of first detection only is modeled then the latter independence assumption is
no longer relevant. The time of detection approach assumes the same detection prob-
abilities for the different individuals of the same species within any sample interval.
This homogeneity assumption can be relaxed with >2 intervals using finite mixture
heterogeneity models. It is assumed that birds are not double-counted (1 bird mistak-
enly counted as 2). The time-of-detection approach is typically applied to sample
plots defined by a fixed radius (fixed distance from the point). If fixed-radius counts
are used, it is assumed that the observer correctly determines whether each detected
bird is inside or outside of the specified radius. A final assumption concerns the circle
defined by the modeling of the availability process and thus of pa. Farnsworth et al.
(2002) initially modeled availability as a random process in the sense that each bird
had an equal probability of vocalizing in any time interval. However, if the process for
individual birds is Markovian, in the sense that vocalization during one interval causes
the probability of vocalization in subsequent intervals to be larger or smaller, then this
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process should be incorporated into the modeling and estimation (e.g., see analogous
situation in capture–recapture with temporary emigration, Kendall et al. 1997).

The detection probabilities estimated using time of detection approaches pertain
to the product of (1) the conditional probability of being available (pa), given pres-
ence in the sample unit at the time of the survey (associated probability pp), and
(2) the conditional probability of bird detection, pd, given presence and availability.
The detection probability estimated by this approach is also conditional on the initial
probability that the point count sample unit is overlapped by the home range of a
particular bird (associated probability ps), but this term is omitted in our develop-
ment as in the example for multiple observers. Let Ns once again represent the total
number of birds whose home ranges overlap the set of sampled points. Because esti-
mation based on time of detection focuses on the product pa pd, the abundance esti-
mated using this approach is associated with the birds present at the sample location
during the sample period but is not conditioned on availability. Thus, if ranges of
individual birds do not overlap multiple surveyed sample units, thenE(N̂s) ≈ Ns pp.

3.4 Repeated Counts

J. A. Royle outlined approaches to the use of repeated count data from the same
locations as a basis for inference. In doing so, he noted that the data arising from
point counts can be viewed naturally in terms of hierarchical models with two basic
components, an observation component and a process component. The observation
component of such models deals with survey methods and avian detection, condi-
tional on true abundance, whereas the process component deals with the distribution
of true abundance over space or survey points. Royle noted that the likelihoods
for the approaches described above (distance sampling, multiple observers, time
of detection) can all be viewed as multinomial observation models in at least
some instances (e.g., distance sampling with data grouped by intervals). He then
specified two other data types resulting from repeated point counts at the same loca-
tions, the replicate counts themselves and the reduced presence–absence (detection–
nondetection) data separating 0 and positive counts.

The sampling protocol involves simple point counts (no necessary collection of
ancillary data on distance, time of detection, etc.) at the same locations at multiple
times. The different sampling occasions are typically close together in time (e.g., 5
counts at each point during May or perhaps the breeding season) to achieve a kind of
closure in the sense that the same group of breeding birds is potentially exposed to
sampling efforts at each occasion (see more complete discussion below). The data
arising from such sampling are the counts for each sampling occasion. Conditional
on the true abundance of birds potentially exposed to sampling efforts at a point, the
counts at one location can be viewed as binomial random variables with detection
probability modeled as a constant, or perhaps as a function of site- or time-specific
covariates (Royle 2004). If abundances are viewed as site-specific, then the resulting
likelihood contains many abundance parameters and can be difficult to maximize
(e.g., Carroll and Lombard 1985).
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Under the approach outlined by Royle, the conditional (on detection probability
and site-specific abundances) binomials can be viewed as the observation compo-
nent of the likelihood. Royle (2004; see also Kery et al. 2005) then proposed use of
a reasonable density (e.g., Poisson or negative binomial, with parameters possibly
modeled as functions of covariates) for the distribution of true abundances over
the spatial sampling locations as the process component of the model. Estimation
under the resulting hierarchical model can be accomplished numerically, although
a large number of sampling locations will typically be needed to achieve adequate
performance.

When the repeat count data at each location are condensed into detections (at
least 1 individual of the species counted at the sampling occasion) and nondetections
(species not detected at that occasion), abundance can be estimated by relying on
the relationship between detection probability at the level of the sample unit (p*)
and the detection probability of individual birds (p). This relationship is a function
of abundance at location i, as pi∗ = 1 − (1 − p)Ni Presence–absence detection data
provide information about detection probability at the level of the sample unit, and
variation in this probability over space provides information about the distribution
of Ni (Royle and Nichols 2003).

Under the basic approach using replicate counts, the binomial detection param-
eter is actually the productpp pa pd . In order to appear in a count, an individual bird
must be present in the sample unit at the time of the sampling, must be available
for detection during the time of sampling and then must be detected. Similarly, the
individual bird detection parameter of models for presence–absence data reflects
this product. Thus, the detection parameters estimated using the approach of Royle
(2004) and also Royle and Nichols (2003) will usually be smaller than detection
probabilities using other approaches as they include the detection component asso-
ciated with the complement of temporary emigration; the probability that a bird is in
the portion of its range exposed to sampling efforts during the survey. Similarly, the
abundance estimated using these approaches includes not just the animals that are
present during a single survey, but all birds with some non-negligible probability
of being in the sample unit during a survey (i.e., all birds whose ranges overlap
the sample unit). In the language of capture–recapture modeling (e.g., Kendall et al.
1997; Williams et al. 2002), the abundance estimates produced by the replicate count
approaches represent “superpopulation” sizes (Ns) of all of the birds whose home
ranges overlap the sample units.

We note that the above inclusion of pp as a component of the detection parameter
estimated using a repeated counts approach is based on the usual field application in
which the replicate counts are separated in time by a period during which substantial
bird movement is expected (e.g., at least 24 hours). If repeat counts can be indepen-
dently conducted on an area within a much shorter time frame (e.g., every third
minute for 12 min), then this approach will also be conditional on the set of birds
present during this period. Our point is that the different interpretation of estimates
resulting from the repeated count approaches is not based on anything inherent in
the approach itself, but is instead determined by the time intervals over which it is
typically applied.
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The population closure assumption underlying repeated count approaches applies
to the superpopulation size rather than to abundance during any survey occasion.
So the number of birds with ranges overlapping the sample unit is assumed not to
change over the time period of the repeat counts. The probability of detecting an
individual in a given survey (representing the productpp pa pd ) is generally assumed
to remain constant over survey occasions, but this assumption can likely be relaxed
in various ways. The repeat count approach generally assumes the same detection
probabilities for the different individuals of the same species within any survey,
but this assumption can likely be relaxed using various mixture distributions for
the detection parameters. It is assumed that birds are not double-counted (1 bird
mistakenly counted as 2) during a survey. Although not an assumption, the estima-
tion of superpopulation size, rather than abundance of birds in a sample unit at a
snapshot in time, has implications for interpretation and use of resulting estimates.
In particular, use of estimates obtained from repeated counts to estimate abundance
in some larger area of interest may be more difficult. In addition, the superpopulation
of birds exposed to any particular sample unit depends on bird mobility and may
change with bird density, such that comparative uses of resulting estimates must be
evaluated carefully.

3.5 Double Sampling

The general term “double sampling” from general sample survey statistics (e.g.,
Cochran 1977; Thompson 2002a) has recently been used to refer to a specific
approach to estimation of avian density from count data (Bart and Earnst 2002).
The approach involves extensive rapid survey methods on a typically large number
of sample units and intensive surveys on a subset of these sample units. If the inten-
sive surveys yield unbiased estimates of true abundance, then the ratio of counts
from rapid surveys to estimates based on intensive surveys provides estimates of
detection probabilities (for avian applications see Smith 1995). The usual approach
to double sampling in wildlife surveys (e.g., Pollock et al. 2002; MacKenzie and
Royle 2005) uses methods such as those described above as the intensive surveys, as
these methods require ancillary data (distances to detected birds, times of detection),
multiple observers, or repeat counts. The rapid surveys often involve single counts
with no ancillary data.

The intensive approach described by Bart and Earnst (2002) for Alaskan shore-
birds required several hours per day for about 3 weeks, with much of this time
reportedly spent searching for nests and counting territorial birds. No estimator was
presented for abundance on the intensive survey plots, so we did not discuss or
attempt to evaluate this approach. The definition of abundance on a plot as “number
of territorial males whose first nest of the season, or territory centroid for non-
nesters, was within the plot” (Bart and Earnst 2002) indicates interest in a subset
of the superpopulation of all birds whose ranges overlap the sample unit. The basic
assumption underlying this approach is that observers on intensive survey plots end
the season with an unbiased estimate of abundance on the plot.
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3.6 Interpreting Estimates

Both formal and informal discussion at the workshop was devoted to the issue of
interpreting estimates from these basic approaches to abundance estimation. Inter-
pretation is dependent on which components of the detection process are the bases
for conditioning and which are considered as part of the process to be estimated. All
of the approaches begin by conditioning on the birds whose home ranges overlap
the selected sample units, with expected value for this set of birds E(Ns) ≈ N ∗ ps ,
where N* again is the total number of birds in the entire area of interest from which
samples are drawn. If ranges of individual birds do not overlap multiple selected
sample units, then abundance estimates based on repeat sample approaches at the
selected sample units estimate Ns. Estimates based on time of detection approaches
estimate the number of birds present in the selected sample units during the survey
period, Nspp. Estimates based on distance sampling and multiple observers esti-
mate the number of birds that are present in the selected sample units during the
survey period and available to be detected, Nspppa. From an “open field” perspec-
tive, the quantity Nspp is roughly equivalent to the number of birds with home
range centers lying within sample units (assuming that observers do not influence
the probability of presence, etc.). Thus, one key distinction among abundance esti-
mates based on these four approaches is that a repeated count estimate does not
apply to a known fixed area (unless the time scale for repeat surveys is very short),
whereas the other three approaches yield snapshot estimates that can be associated
with sample units of known area. However, estimates or assumptions about pa will
typically be needed to make inferences about absolute abundance when distance
sampling or multiple observer methods are employed. Finally, recall that the above
expectations apply to birds for which pa>0. If a subset of birds is simply invis-
ible to detection efforts, then abundance estimates will of course not include this
subset.

The above considerations lead to three points that deserve emphasis. First, if
abundance is estimated for a set of sample units at which point counts are conducted,
different estimates are expected depending on which estimation approach is used.
Second, approaches based on combinations of the above methods provide an oppor-
tunity to separate components of the detection process in cases where this might be
useful. Third, the different interpretations of the closure assumption for the basic
methods lead to the recognition that some approaches lend themselves more readily
to estimation of abundance for the entire area from which samples are drawn, than
do others. For example, investigators will frequently be interested in the number of
birds whose range centers are located within the specified area of interest (define
this number as N). Distance sampling, multiple observers, and time of detection all
condition on the birds that are actually present in the sample units during the survey
period (expectation Nspp). Given application of design-based sampling protocols,
estimates based on these methods can be readily used to extrapolate (based on ps)
to an estimate of overall abundance, N, for the entire area of interest. However,
repeated count approaches yield estimates of the number of birds whose ranges
overlap the selected sample units such that extrapolation of these estimates to
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estimate N would require extra information (e.g., about the average number of
sample units overlapped by each bird or the actual area sampled by a point count).

3.7 Combination Approaches

Several attendees noted the possibility of using both distance sampling and either
multiple observer or time of detection sampling (e.g., D.L. Borchers, M.W.
Alldredge, K.H. Pollock, M. Efford). The different kinds of information resulting
from such combination-method point or transect counts can be viewed in various
ways. For example, from the perspective of multiple-observer and time at detec-
tion approaches, distance may be viewed as a covariate that is used to deal with
heterogeneous detection probabilities (Alldredge et al. 2006; 2007a, b). From the
perspective of distance sampling, use of multiple observers at the same locations
and times can be used to estimate the probability of detection on the transect line
and/or to test the hypothesis that this probability is 1 (e.g., in aerial surveys). In
addition, multiple observers at lagged times (e.g., while traversing an oceanic line
transect) can be used to estimate pa, where the complement, 1–pa, includes indi-
viduals that are submerged. The need for a time lag between multiple observer
counts in order to estimate pa is based on the same thinking as for time of
detection approaches. Indeed, Farnsworth et al. (2005) combined time at detec-
tion and distance sampling in order to estimate both pa and density, corrected for
availability.

A well-developed literature now exists for combined applications of distance
sampling and double-observer approaches (Alpizar-Jara and Pollock 1996, 1999;
Manly et al. 1996; Hiby and Lovell 1998; Borchers et al. 1998a, b; Borchers 1999;
Laake and Borchers 2004), although applications to avian point count data have
been relatively recent (Alldredge et al. 2006; Kissling and Garton 2006). It is now
widely recognized that such combination approaches can be used to relax assump-
tions required by single component approaches and sometimes to permit separa-
tion of different components of the detection process. For example, mark-recapture
distance sampling (MRDS) allows estimation of g(y) without the requirement that
animals be distributed independently of the transect lines or points (Laake and
Borchers 2004, Section 6.3.1.1). Intuitively this is done using the proportion of
animals seen (“marked”) by one observer at distance y that were also seen (“recap-
tured”) by the other observer. A similar approach can be used to deal with responsive
animal movement (Laake and Borchers 2004, Section 6.3.1.2).

When detection on a point or line is not certain, MRDS methods are typically
not pooling robust in the sense of CDS. However, D. L. Borchers presented some
recent work at the workshop indicating that if the distribution g(y) is assumed to be
known (e.g. uniform), one can use data on the distribution of observed distances to
relax heterogeneity assumptions (Borchers et al. 2006).

K.H. Pollock discussed the possibility of using double observers and time of
detection simultaneously. Pollock noted that this approach can be viewed as a robust
design (Pollock 1982; Williams et al. 2002), with the point count divided into K
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time intervals and detection–nondetection data for each observer at each interval.
For example, in a 3-minute point count with 1-minute intervals and 2 observers,
a detection history for a bird might be: 00 11 01. During the first interval the
bird was not detected by either observer. Both observers detected it during the
second, and only the second observer detected the bird during the final interval.
This approach would permit separate estimation of 2 detection components, pd and
pa. Pollock also noted that whereas the initial development of the time of detection
approach assumed random availability (i.e., constant pa, Farnsworth et al. 2002, or
perhaps variation in pa associated with time or distance, Alldredge et al. in 2007a),
the combination approach would permit treatment of availability as a Markov
process. Under such a model (similar to Markovian temporary emigration models of
Kendall et al. 1997), the availability of a bird in a specific time interval could differ
depending on whether the bird was available in the previous interval. Such Marko-
vian modeling would seem to represent a reasonable hypothesis about avian singing
behavior.

4 Field Tests, Field Trials, and a Simulation Experiment

4.1 Bird Radio System

One of the primary motivations for the workshop was the recent and ongoing work
on field tests of estimation methods for avian point counts. In particular, the bird
radio system developed by the group at N.C. State University has provided an
excellent test system with which to test estimation methods themselves as well
as specific assumptions that underlie those methods (e.g., Alldredge et al. 2007c;
Simons et al. 2007). Workshop presentations by T.R. Simons, M. Alldredge and
K. Pacifici noted that tests with their system showed that most observers had
substantial difficulties estimating distances to birds that are detected aurally, partic-
ularly at large distances (beyond 60 m). Heaping of observations at certain distances
was also a problem. Double counting of individual birds was a substantial problem,
especially in experiments simulating relatively complex field situations (several
bird species with heterogeneous singing rates and different speaker orientations).
Density estimates based on distance sampling approaches were too high and esti-
mated detection probabilities too small when observer-estimated distances were
used. However, there was speculation during discussion that with more truncation
better results might be obtained at the cost of decreased sample size of detections,
and hence reduced precision. Distance sampling approaches based on true distances
to detected bird vocalizations performed well.

Use of the radio bird system to test double-observer and time of detection
approaches led to interesting insights as well. K. Pacifici noted that multiple
observer approaches sometimes seemed to provide reasonable estimates and at other
times yielded biased estimates. In the case of independent observers, there were
substantial difficulties with matching, in that observers found it difficult to decide
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whether detected birds represented a bird detected by both observers or different
birds detected by each observer separately. There was some experimentation with
objective decision rules for determining matches. Despite matching difficulties for
independent observers, estimation results were fairly similar for independent and
dependent double-observer approaches. Double counting of birds occurred fairly
frequently during experiments with time of detection methods. Placement of singing
birds in the wrong time interval was another common error in these tests. In cases
where observers were asked to restrict data to birds within a fixed radius, it was
common to include birds outside the detection radius. Finally, many observers
were unable to identify the species of all detected birds and thus had a number of
“unknown” observations. Overall, estimates based on time of detection approaches
were biased low and frequently appeared to better estimate Nspppa than Nspp. Thus,
the approach did not seem to account well for birds that were present but did not
happen to vocalize during the survey period.

Although it was difficult to summarize results of all the various experimental
tests conducted using the bird radio system, it was clear that none of the basic
estimation methods performed as well as would be desired in the common situa-
tion of many individual birds from a diverse community. Although this work is still
underway, workshop participants involved in the bird radio project offered several
summary conclusions and recommendations. Auditory detection of singing birds
was found to be much more problematic than previously thought. Localization of
sound proved to be very difficult, leading to problems in matching birds when
applying multiple-observer approaches, in double counting for single observers, and
in estimating distances both for distance sampling and for the purpose of identifying
birds lying in and out of fixed radius sample units. Observer performance was espe-
cially poor in more complicated experiments with larger numbers of species and
individual birds. Performance was better in simple experiments with a small number
of species, leading to the recommendation that many of the methods discussed
above would be most useful in situations where observers concentrate on a very
small number of focal species. In situations where interest must focus on an entire
diverse community, it was proposed that alternative approaches such as occupancy
estimation and modeling (e.g., MacKenzie et al. 2006) should be considered. The
rationale for this recommendation is that occupancy estimation simply requires
information on detection, or not, of each species, and does not require keeping track
of individual birds over time and space. Another suggestion was that more effort be
allocated to the field effort with different observers being responsible for different
sub-taxa.

4.2 Robust Distance Sampling Methods Study

S.T. Buckland reported results of a comparison of various distance sampling
methods against results from territory mapping for four species (common chaffinch,
great tit, European robin and winter wren) in a Scottish woodland and parkland
study area of approximately 40 ha (Buckland 2006). The methods compared were
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(1) a conventional point transect of 5 min duration; (2) a point transect survey using
the “snapshot” approach, with 3 min allowed before the snapshot moment and 2 min
afterwards; (3) a point transect using cue counts, where the number of song bursts
were recorded using 5 min surveys, and a separate note was kept of birds where
the observer was confident all cues were heard so that cue production rate could
be calculated; (4) a conventional line transect survey. The habitat was more open
than in the bird radio study, resulting in more frequent visual detections, or at least
identification of the tree or bush from which a bird was heard to sing. A laser binoc-
ular was used to accurately measure distance in these cases. The estimated 95%
confidence limits contained the values obtained by territory mapping for all species
and methods with one exception: the estimate for great tit from conventional point
transects was too high, likely due to animal movement. The snapshot method was
found to be the most efficient of the point transect methods, in terms of precision
per hour field time, but line transect sampling was more efficient than all the point
transect methods. This is likely a general finding, leading to a recommendation that
line transect sampling be employed rather than point transect methods where they
are possible. Where this is not feasible (for example in difficult terrain, or multi-
species surveys where observers may get swamped) then snapshot methods are
preferred over conventional point transects. Cue counting may be particularly useful
for single-species surveys, but are unlikely to be of use when the goal is to survey
many species simultaneously as the observer will quickly become overwhelmed.
Insufficient resources were devoted to estimating cue rates in this study, but given
more resources the method offers great potential to provide reliable results where
animal movement is a problem. The study also included a computer simulation
component, which showed that edge effects caused by undersampling near the edge
of small study areas do not necessarily cause a serious problem with the reliability
of results, nor does sampling at closely spaced points, so that the same birds are
heard from multiple points.

4.3 Grassland Bird Availability Study

D.R. Diefenbach reported results of a study of grassland birds in central Pennsyl-
vania, U.S.A. designed to estimate availability, pa (Diefenbach et al. 2007). Color-
marked and radio-marked grassland sparrows were followed for relatively long
periods of time (e.g., 1 hour) while observers recorded their availability with respect
to auditory detections at point counts, and auditory and sight-based detections at
both point counts and line transects. Overall, availability of male sparrows was low
( p̂a < 0.5) and quite variable for periods ≤ 10 min. Time of the breeding season
was an important source of variation with availability being greatest in late May
and early June but declining to very low levels late June and July. Diefenbach et al.
(2007) concluded that substantial bias and heterogeneity in abundance estimates
would be obtained if this source of detection probability were not incorporated in
population estimates.
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4.4 Other Field Trials

P.F. Doherty recounted experiences with organizing substantial field efforts based on
avian point counts and occupancy surveys in Colorado and southern California. The
California work was on an endangered species, and survey efforts included many
points with no birds detected and only small numbers of detections at remaining
points. His Colorado example included work on design-based sample allocation, and
Doherty noted substantial problems in accessing a large number of selected sites.
A relatively large proportion (10%) of landowners denied access to their lands,
leading to a change in scope of inference. Doherty highlighted the frequent need
to deal with unanticipated practical problems that may necessitate reevaluation of
methods and approaches.

4.5 A Simulation Experiment

Using his “Open Field” view of abundance, M.G. Efford presented preliminary
results from a simulation study, in which the probability of detection of an animal
depended primarily on distance of the animal’s home range centre from the detector
(Efford and Dawson in prep.) He showed that if distance has a strong effect on
probability of capture then many methods show substantial negative bias in esti-
mated density, including multiple-observer, time of detection and repeated count
methods (all using 4 “capture occasions”). This was the case even when using
mixture models to try to account for distance induced heterogeneity. Using distance
sampling methods or adding distance as a covariate in some of the above methods
produced lower bias, although it appeared to be important which model was used
for the relationship between detection probability and distance.

5 Methodological Advances and Extensions

5.1 Distance Sampling with Density Gradients

T. A. Marques presented recent work extending conventional distance sampling
methods to deal with situations where animal distribution is not independent of
distance from the transect line or point (Marques 2008). Such methods are useful in
two contexts. The first is when there are few transects located at random: although
random transect placement ensures independence on average, the actual distribution
of animals for a single realization may be far from the average if there are few tran-
sects. The second is where transects are not located at random, but instead follow
roads, trails, rivers, etc. In these circumstances, it is not possible with conventional
distance sampling to distinguish between changes in animal density with respect
to distance from the transect line and changes in detectability, and hence it is not
possible to use the observed distances to estimate pd without additional data. One
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solution is to use double-observer methods mentioned earlier. A second related
approach, for line transects, is a “crossed design”, where two sets of transects are
laid out perpendicular to one another; information in the along-transect distribution
of observations is then used to estimate the distribution of animals perpendicular to
the other transect (see Buckland et al. 2007a for an application to plant surveys).
Indeed any additional survey that provides information about the distribution of
observations perpendicular to the main line transect could be used. A third approach
is to perform point transects along the linear feature (road, trail, etc.) and record both
the distance and angle of observations. Then, under the assumption that the detection
function is radially symmetric, it is possible to use differences in the distribution of
observed distances in the along-road direction and perpendicular-to-road direction
to simultaneously estimate detection probability and animal distribution. Marques
presented a simulation study of this third method that included different effects
of the linear feature (road) on animal density, and demonstrated marked reduction
in bias relative to conventional methods, although the method did not appear very
robust to misspecification of the model for animal density. It appears that the new
method will not over-ride the advice that roadside (and other non-random) transects
should be avoided whenever possible.

5.2 Measurement Error in Distance Sampling

Part of the presentation by Marques concerned the effects of measurement error
on distance sampling estimators, and extensions to the conventional methods that
account for measurement error (Marques 2004, 2008; Burnham et al. 2004: 11.9,
Borchers et al. in prep.). Random, non-systematic measurement error can lead to
bias in abundance estimates, with the magnitude of the effect depending on the type
of survey (bias is generally much worse for point transects than line transects) and
type of measurement error (e.g., constant variance with respect to distance from the
transect vs. constant CV) and its magnitude. In general, measurement error close to
the line or point has more effect than the same level of error far from the transect.
Systematic errors cause larger bias than non-systematic errors. Given a model for
the error process it is generally possible to estimate error process parameters jointly
with detection function parameters, and so to reduce or eliminate the bias if the
error process model is correct, at the expense of lower precision in the estimate of
pd. In some cases, the correction method is quite simple to implement (Marques
2004). However, the true process leading to measurement errors may be quite
complex, as has been demonstrated by the bird radio studies, and the methods may
not be robust to misspecification of the error model. Marques’ take-home message
was that distance measurement error should be minimized wherever possible in
the field through the use of, e.g., training, calibration exercises, appropriate field
methods (e.g., allowing observers to move around during or after point transects
to better locate birds) and technological aids (e.g., laser binoculars for visual
surveys).
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5.3 Bird Misclassification

R. Webster presented some joint work with K.H. Pollock and T.R. Simons on
dealing with misidentification of individual birds in certain approaches to estimation
using point count data. He focused on the time of detection approach, although this
work has clear relevance to multiple observer approaches as well. The basic problem
involves the misidentification of individual birds in the different intervals, such that
detection histories contain errors. For example, assume that a bird is detected in both
periods of a 2-period point count. Assume that the bird is misidentified as a new
bird in period 2, so that the true detection history, 1 1, gives rise to two incorrect
detection histories, 1 0 and 0 1. Webster modeled this problem by introducing a
correct classification probability, α. For example, if pt denotes detection probability
for period t, then the underlying probability associated with detection history 1 0
would be written as: p1(1 − p2) + p1 p2(1 − α), with the second additive term
corresponding to a misidentification of the original bird as a different individual.
Webster noted that he was experimenting with approaches to fitting such models,
including use of a χ2 loss function. Subsequent discussion (e.g., by W.A. Link, L.
Thomas) focused on the possibility of accounting for the dependencies among the
detection histories resulting from a single study with misidentification.

5.4 Surveys of Cryptic Species

S.T. Buckland presented three recently-developed methods based on distance
sampling that are appropriate for cryptic species not surveyed well by conventional
methods. The first is a “lure point transect” (Buckland et al. 2006), where lures
such as playbacks of territorial songs are used to elicit a response from animals of
the target species. Conventional methods are not applicable because it is likely that
the animal will respond by approaching the surveyors before detection – causing a
positive bias in estimates of abundance using conventional estimators. Instead, the
detection function is estimated in a separate survey, where trials are conducted by two
observation teams, both of which search for animals without using the lure. When
one team detects an animal, the other team deploys the lure and records whether
they detect a response. A set of such trials allows a binary regression to be used to
determine probability of detection given distance of the animal from the lure, and
therefore average detection probability. If this detection probability can be assumed
to apply also to birds detected in the main survey (for which their initial location
before the lure was used is not known) then it is possible to calculate abundance.
This method has been used in a survey of Scottish crossbills (Buckland et al. 2006).

The second approach is a “trapping point transect”, which is essentially identical
to the above approach, except that a trap is used to capture animals rather than a lure.
Trials can be set up in much the same manner as for lure point transects: a marked
animal is located (e.g., because it is radio-collared, or because it has been released
from a different trap) at the same time as the trial trap is set a known distance away,
and whether the animal is caught in the trial trap or not within some fixed time
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interval is recorded. The methods are described in Buckland et al. (2006) and are
being tried on an endangered woodrat in Florida. Note that if repeated captures
of marked animals in different traps are anticipated then standard mark-recapture
methods may be used for estimating animal abundance, or the more recent methods
of Efford (2004) and Efford et al. (2005).

The third approach is crossed line (or strip) transects (Buckland et al. 2007a),
which were mentioned in Section 5.1. They are potentially suitable for sedentary
cryptic objects (such as cryptic plants or bird nests) and allow for probability of
detection on the transect line to be less than 1 and for non-independence of animal
distribution with respect to the transect.

6 Space-time Variation in Abundance

Although much of the workshop emphasis was on approaches for dealing with the
various components of detection, the inferences of most interest to biologists, and
thus the ultimate objective of our efforts, involves variation of density or abundance
over space and/or time. Several workshop attendees were involved in such work and
gave brief presentations on their directions.

6.1 Spatial Variation

J.A. Royle presented examples of work on spatial modeling of avian abundance and
occupancy based on avian count data. Specifically, he focused on replicate counts
as a basis for inference about abundance (Royle 2004) and occupancy (Royle and
Nichols 2003). In the terminology of his presentation on replicate count approaches,
his focus in this presentation was on the process model component rather than the
binomial component dealing with observation. He noted that the Poisson distri-
bution provides a reasonable model for spatial distribution of abundance, Ni for
location i. Modeling can be based on the Poisson mean, λ, and linear models can
be developed for logλi as a function of covariates associated with site i. If counts
exhibit excess variation with respect to the Poisson, then the negative binomial
provides an alternative model for spatial distribution, and the negative binomial
mean can again be modeled as a function of site-specific covariates. Royle presented
several examples in which this basic approach was used for mapping avian distribu-
tion as a function of environmental covariates (Kery et al. 2005; Royle et al. 2005).

R. Webster was similarly interested in spatial modeling (with K.H. Pollock and
T.R. Simons), but used the time of detection approach as a basis for modeling.
Abundance was modeled as a Poisson–lognormal mixture. He explored the use of
conditional autoregressive models in which abundance at a site was modeled as a
function not only of selected site covariates (e.g., elevation), but also as a weighted
(by distance) function of abundances at nearby sites. He noted that the approach
provided a reasonable means of investigating spatial processes and that it could be
used with repeated count, as well as time of detection, data.
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S.T. Buckland described the general framework of Hedley (2000), in which the
location of animals is seen as a realization of a random process with some spatially-
indexed intensity (the density), and the number of animals in a given area can
therefore be described by an inhomogeneous Poisson process (IPP). The detection
process represents a thinning of the IPP, which yields another IPP. Given a para-
metric form for the intensity and detection processes, a likelihood can be derived,
but it is often more convenient to treat the estimation of parameters for the two
processes separately as they often operate on very different scales (the detection
process over a small scale – e.g., 10’s or 100’s of meters, while we usually wish
to model spatial variation in density at much larger scales). This notion has led
to the two-stage methods for spatial modeling of line transect data of Hedley and
Buckland (2004) and Hedley et al. (2004). Spatial smoothing is accomplished using
generalized additive modeling, and improved methods are in development to deal
with problems caused by irregular topography (Wood et al. in press) and local clus-
tering that is not explained by the large-scale smooth (Bravington et al. in prep.).

6.2 Temporal Variation

A general overview of methods for temporal inferences when detection is uncertain
(but focusing on distance sampling) is given by Thomas et al. (2004). One distinc-
tion made in that paper is between empirical modeling and process (or mechanistic)
modeling. Aspects of the former approach were covered in a talk by W.A. Link
(in joint work with J.R. Sauer) based on work with data from the North American
Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) survey. Their
hierarchical modeling approach to BBS data models the logarithm of the expected
count at a survey site as a linear function with stratum-specific intercept, time slope,
and year effect, with observer effects based on observer identity and year (reflecting
temporal changes in observer abilities), and an overdispersion parameter (e.g., Link
and Sauer 2002, 2007; Sauer and Link 2002). The year, observer and overdisper-
sion are modeled as random effects. Their modeling of CBC data includes observer
effort, rather than observer identity. Such models can be fit using BUGS (Spiegel-
halter et al. 1995). Time trend and annual indices to abundance can be derived from
estimates under such models.

Link and Sauer (2007) noted that these continental surveys have the poten-
tial to provide information about seasonality of population change. In particular,
models for the logarithm of counts from each survey include components reflecting
proportional change between approximately January and June and between July and
December. Such modeling permits inference about the relative amount of temporal
variation associated with different seasons of the year, an inference of potential use
for managers.

Link and Sauer noted current interest in estimates not only of trend, but also
of population size. They noted that BBS has two primary deficiencies that preclude
direct inferences about abundance: the absence of information about detection prob-
ability on surveyed routes, and the restriction of the BBS to roads. Experimental
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work using distance and time of detection approaches on both on- and off-road
routes provided data that can be incorporated into BBS analyses, again using a
hierarchical modeling approach, to obtain abundance estimates.

Process modeling was discussed by L. Thomas, who pointed out that this
approach is becoming increasingly popular as recent developments in computer
intensive (largely Bayesian) statistical methods allow reasonably complex, high
dimensional models to be fit to biological data. Overviews of recent developments
in this area are given by Newman et al. (2006) and Buckland et al. (2007b), and an
example using bird (lapwing) count data is given by Besbeas et al. (2005). Thomas
described his work fitting biological models of grey seal population dynamics to
data on seal pup numbers, using a Bayesian fitting algorithm called particle filtering
or sequential importance sampling (early work is described in Thomas et al. 2005).

7 Discussion

The workshop format emphasized participant discussion, with the result that useful
discussion followed virtually every presentation. Here we attempt to capture some
of the ideas expressed, especially on topics that recurred throughout the workshop.
One of these topics was the issue of Section 2.2 about whether to use raw counts as
indices or to instead attempt to collect ancillary data in order to try to better deal with
detection probabilities when drawing inferences about abundance and its variation
over time and space. It seems clear that abundance estimation requires some sort
of estimate of detection probability in order to translate counts into estimates of
abundance (2). However, inferences about temporal or spatial variation in abun-
dance do not require abundance estimates. Raw counts can be used for inferences
about temporal or spatial variation in cases where (1) detection probabilities over the
dimension of interest (space, time) are similar or (2) the primary sources of variation
in detection probability over the dimension of interest are identified, measured, and
used as covariates. This latter approach is only appropriate when the primary sources
of variation in detection probability do not have the potential to also be associated
with variation in abundance.

An important question about inferences for variation in abundance is then: when
is it best to collect ancillary data needed to draw specific inference about detection
probabilities and when is it better to forego the collection and subsequent modeling
of ancillary data and base inference on counts themselves? Many participants held
a belief similar to that expressed in books such as Skalski and Robson (1992),
Borchers et al. (2002), and Williams et al. (2002), that collection and modeling
of ancillary data was wise, even if model selection has the potential to result in
inferences being based on models assuming constant detection probabilities. These
participants argued that collection and modeling of data on detection probability
guarded against incorrect inferences about abundance that can be caused by detec-
tion probabilities that differ over the dimension of comparison. Participants who
did not necessarily agree with this approach suggested that the modeling associated
with the detection process was also likely to produce incorrect inferences in some
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cases. All agreed that if detection probability is not formally incorporated into the
estimation and modeling, then design issues become more important as the only
means of dealing with variation in detection probability over dimensions of interest
(e.g., via standardization).

In considering this difference in opinion, we recall the early days of capture-
recapture modeling, in which some investigators advocated use of these models
whereas others suggested that underlying model assumptions were too restric-
tive and that enumeration methods were preferable. Capture–recapture proponents
investigated performance of model-based estimators in the face of likely assumption
violations (e.g., Carothers 1973, 1979; Gilbert 1973) and in some cases compared
performance with direct enumeration approaches (e.g., Jolly and Dickson 1983;
Nichols and Pollock 1983; Conn et al. 2004). These exercises led many investigators
to the conclusion that capture–recapture models incorporating detection probability
parameters are typically preferable to raw captures as a basis for inference, even in
the face of common assumption violations. We believe that such exercises inves-
tigating the robustness of the various point count approaches to likely assumption
violations, such as those reported by M.G. Efford (with D.K. Dawson), would be
useful here as well. In addition to computer simulation work, test systems such as
the N.C. State University bird radio system could be very useful in such work.

A conclusion emerging from the bird radio system work about which there was
general agreement was the inability to prescribe an omnibus estimation approach
likely to be the wise choice in all situations. Instead, the need to tailor methods to
the particular study was emphasized, with such features as structural habitat type,
relative likelihood of visual versus auditory detections, species richness and study
objectives (e.g., time trend versus habitat variation) all identified as important deter-
minants of method selection.

Weaknesses associated with each of the basic estimation approaches were readily
identified. Many of these specific weaknesses were associated with auditory detec-
tions and the general difficulty in localizing bird sound. For example, this difficulty
led to problems with determining matches of individual birds between multiple
independent observers. Inability to localize sound also produces problems in distin-
guishing multiple observations of the same individual within a point count (e.g.,
double counting and phantom individuals), and such problems can affect all of the
basic methods. Difficulties in determining distances at which birds are heard cause
problems not only with distance sampling but with all approaches using fixed radius
plots. In addition to sound localization, undetected movement in or out of the sample
plot has the potential to lead to bias under all of the considered methods, causing
more difficulties with some approaches than others. Simulation results presented
by M.G. Efford (with D.K. Dawson) further indicated that distance-induced hetero-
geneity in detection probabilities had substantial potential to cause negative bias
in estimators of abundance that did not explicitly account for distance (Efford and
Dawson in prep.). If these approaches are used, the suggestion was made to limit
the effective area surveyed at each line or point to only include individuals that
have naturally “high” detection probabilities, in the sense that they are close to the
observer. Distance estimation is also typically easier for closer animals.
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The bird radio system test results led to the conclusion that it will likely not
be possible to use point count data to draw strong inferences about populations of
all species in even a moderately rich bird community. This conclusion led to the
recommendation that sampling be restricted to a small number of focal species,
but this recommendation was countered by the claim that sometimes the entire
bird community is of interest. Subsequent discussion included the observation that
many avian studies and monitoring programs are not well-conceived in the sense
of having concise objectives. All participants agreed on the importance of estab-
lishing clear study objectives and ensuring that sampling was consistent with these
objectives. It was noted that in cases where community-level inferences really are
of primary interest, then occupancy estimation and modeling (MacKenzie et al.
2002, 2006; Dorazio and Royle 2005) could provide a methodological alterna-
tive to abundance estimation that would yield achievable results consistent with
many kinds of study objectives. Some participants suggested designs in which the
observers focus on 1–3 species for abundance estimation and collect occupancy data
on remaining species, whereas another recommendation was to devote one person to
the focal species and an additional observer to collect occupancy data for the entire
community.

Another aspect of study objectives that is relevant to method selection is whether
one goal is to use abundance estimates on the selected sample units to estimate
abundance for the entire area from which the samples were drawn. Such extrap-
olation seems reasonable for many of the methods, conditional on the ability to
determine whether each detected bird is inside or outside of the prescribed sample
unit. However, such extrapolation is expected to be more difficult for repeated count
approaches (Royle and Nichols 2003; Royle 2004). The fact that detection prob-
ability estimates under these approaches include the probability of a bird whose
range overlaps the sample unit actually being present in the unit at the time of
sampling (pp), means that resulting abundance estimates should include all birds
with ranges that overlap sample units (Section 3.3). Extrapolation based on such
estimates should estimate the product of overall abundance and the average number
of sample units covered by an individual bird’s home range (Section 3.6). If sample
unit size is large relative to individual home range, this sample-units-per-home-
range multiplier is likely to be small, so overall abundance estimates should be
fairly good. If sample units and home ranges are of similar size, then it will be
more difficult to estimate overall abundance from repeat count estimates without
separately estimating the average number of units overlapped by the range of an
individual bird. Note that such extrapolation to an overall abundance estimate will
not be required by many objectives.

Participants discussed possible changes to existing methods that might be worthy
of future consideration. For example, several participants noted that some movement
of observers within a plot for point counts, rather than standing at a single point,
would likely increase detection probabilities of birds in a sample unit. However, it
was suggested that another consequence of such observer movement would likely
be a decrease in ability to keep track of individual birds, with subsequent increases
in the problems of double counting and phantom birds. Observer movement might
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induce unwanted bird movement as well. For multiple-observer approaches, a
suggestion was made to place observers at different edges of a sample plot as a
means of reducing the correlation in detection probabilities of individual birds by the
different observers, thus decreasing the problems associated with individual hetero-
geneity. Once again, though, this approach could lead to an increase in matching
and other errors associated with localizing individual birds and determining which
birds were detected by one or multiple observers.

Recommended durations of point counts have long been discussed and debated.
The explicit recognition of a probability that a bird vocalizes and becomes available
for detection in auditory surveys (pa) leads to the natural suggestion to increase
point count duration in order to increase pa. However, increases in survey duration
increase such problems as bird movement into and out of the study plot and difficul-
ties in tracking individual birds over time. These problems can be reduced to some
degree by employing a “snapshot” approach (Buckland et al. 2006).

A relatively new approach to collection of field data was that proposed by
M.G. Efford (with D.K. Dawson) of using acoustic recording devices (e.g., Hobson
et al. 2002) to collect bird vocalization data for subsequent use with estimation
approaches. Software would then be developed to help extract the relevant infor-
mation (species and individual identification) about bird vocalizations. An array of
such recording devices could be used with models of the type developed for other
passive detectors (e.g., Efford 2004; Efford et al. 2005; Borchers and Efford in press)
to directly estimate bird density.

During discussion, Thomas speculated that it may be possible to develop a highly
portable acoustic array that could be used to provide real-time localizations of
received signals (such as bird vocalizations). Such a system could then be used as
a field aid, to provide better estimation of distance in aural surveys than is possible
using human ears. More reliable estimation of location than is possible for humans
may be achieved if more than two sensors are used, or if the sensors are located
farther apart than human ears.

This proposed work by Efford and Dawson on passive arrays of recording devices
was among the top proposals for future work recommended by workshop partic-
ipants. This work will include the recording devices themselves, computer soft-
ware for resulting sound data, and estimation approaches for computing density
estimates from these data. Additional work on combining data and methods was
another recommendation of virtually all participants. Research on singing rates and
patterns was identified as a priority research problem. For example, current time
of detection approaches typically assume a random process in which all birds in
the survey area exhibit some probability of vocalizing during each time interval.
However, it is likely that this probability is better viewed as resulting from a Markov
process in which vocalization during one interval is partially dependent on whether
the bird vocalized during the previous interval(s). The likely influence of vocaliza-
tions of other birds on singing rates and patterns was also noted, potentially leading
to very complicated models of the stochastic process of bird vocalization. Addi-
tional research on models of individual bird misidentification (Section 5.3) was also
judged to be an important direction of future work. There is no question that double
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counting and phantom individuals occur and can influence all of the recommended
estimation approaches, and formally accounting for the additional uncertainty asso-
ciated with these errors will represent an important advance.

Finally, there were some very pragmatic recommendations for future work. The
most obvious was to field test the various proposed methods using such testing plat-
forms as the bird radio system. The objective of these tests would simply be to deter-
mine which estimation approaches “work best” under various conditions and for
various objectives. Such field testing could also be used to establish an approximate
relationship between estimator performance and number of species considered in the
sampling. Knowledge of such a relationship could then lead to the development of
rules of thumb about how many focal species can be surveyed with the expectation
of drawing reasonable inferences. Recommendations also included work on survey
design and allocation of effort based on survey objectives. Practical considerations
about effort devoted to visiting many sample units versus estimating components
of detection probability for a unit are important and may lead to recommendations
about the use of double sampling (sensu Pollock et al. 2002).

Substantial research has been conducted on point counts during the last 5 years.
The workshop and this paper represent an attempt to summarize key results of that
work and to point to key areas of future research. We offer the opinion that the
various recommendations for future research should not be used as reasons for post-
poning consideration of changes to existing point count programs. Although future
work will certainly lead to more refined recommendations, we believe that many
existing programs that use point counts can be improved based on the current state
of knowledge.
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Abstract Avian point counts vary over space and time due to actual differences
in abundance, differences in detection probabilities among counts, and differences
associated with measurement and misclassification errors. However, despite the
substantial time, effort, and money expended counting birds in ecological research
and monitoring, the validity of common survey methods remains largely untested,
and there is still considerable disagreement over the importance of estimating detec-
tion probabilities associated with individual counts. Most practitioners assume that
current methods for estimating detection probability are accurate, and that observer
training obviates the need to account for measurement and misclassification errors
in point count data. Our approach combines empirical data from field studies with
field experiments using a system for simulating avian census conditions when most
birds are identified by sound. Our objectives are to: identify the factors that influ-
ence detection probability on auditory point counts, quantify the bias and preci-
sion of current sampling methods, and find new applications of sampling theory
and methodologies that produce practical improvements in the quality of bird
census data.

We have found that factors affecting detection probabilities on auditory counts,
such as ambient noise, can cause substantial biases in count data. Distance sampling
data are subject to substantial measurement error due to the difficulty of estimating
the distance to a sound source when visual cues are lacking. Misclassification errors
are also inherent in time of detection methods due to the difficulty of accurately
identifying and localizing sounds during a count. Factors affecting detection prob-
ability, measurement errors, and misclassification errors are important but often
ignored components of the uncertainty associated with point-count-based abun-
dance estimates.

T.R. Simons (B)
USGS, NC Cooperative Fish and Wildlife Research Unit, Department of Zoology, Campus Box
7617, North Carolina State University, Raleigh, NC 27695, USA

D.L. Thomson et al. (eds.), Modeling Demographic Processes in Marked Populations,
Environmental and Ecological Statistics 3, DOI 10.1007/978-0-387-78151-8 10,
C© Springer Science+Business Media, LLC 2009

237



238 T.R. Simons et al.

1 Introduction

The most common method of estimating avian abundance is the point count (Ralph
et al. 1995) where a single observer records all birds seen or heard at a point during
a prescribed interval (usually 3-10 min) (Fig. 1). Surveys of breeding birds rely
heavily on auditory detections which can comprise 70% of observations in suburban
landscapes (Sauer et al. 1994), 81% in tropical forests (Scott et al. 1981), and up to
97% of observations in closed-canopy deciduous forest (DeJong and Emlen 1985;
Brewster 2007).

Avian abundance estimates can vary over space and time due to actual differ-
ences in abundance, differences in detection probabilities among counts, and differ-
ences associated with measurement and misclassification errors (Nichols et al. 2008;
Nichols et al. 2000; Farnsworth et al. 2002; Pollock et al. 2002; Rosenstock et al.
2002; Thompson 2002).

A general conceptual model (Marsh and Sinclair 1989; Pollock et al. 2004, 2006)
for auditory count-based abundance estimates can be represented as:

N̂ = C

parea p̂ap̂da

(A) (B)

Fig. 1 Common point count protocols. (a) A single observer standing at the center of a circular plot
maps the location and estimated distance to all birds seen or heard during a prescribed time interval,
usually 3–10 min. Time of detection information can be incorporated by color-coding or annotating
observations to indicate the time interval of initial and subsequent detections. (b) Multiple observer
methods employ two or more observers who collect data simultaneously. Observers can assume
either dependent (Nichols et al. 2000) or independent (Alldredge et al. 2006) roles
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where:

N̂ = the population estimate

C = the count statistic

parea = the fraction of the area sampled

p̂a = the probability that a bird is available to be counted

p̂da = the probability that a bird is detected given that it is available.

Many factors influence the probability of detecting birds during auditory point
counts. These factors include both “measurement error” factors associated with
observer skill and ability, and “signal to noise ratio” factors that influence how
much information about bird diversity and abundance is available to observers.
Measurement error factors relate to observer skill in identifying and localizing
individual birds (Kepler and Scott 1981), and hearing ability (Emlen and Dejong
1981, 1992; Sauer et al. 1994; Kendall et al. 1996; Downes 2004). Signal to
noise ratio factors include the spectral qualities of songs (Schieck 1997), song
volume, singing rate (Best 1981; Ralph 1981; Skirvin 1981), time of day (Sheilds
1977; Robbins 1981a; Skirvin 1981), the orientation of singing birds (toward
or away from observers), (Alldredge et al. 2007c) presence of an observer
(McShea and Rappole 1997), the number of species and number of individuals
singing during a count (Simons et al. 2007), pairing status (Krebs et al. 1980;
Johnson 1983; Cuthill and Hindmarsh 1985; Gibbs and Wenny 1993), stage of
nesting cycle (Wilson and Bart 1985), vegetation structure (Diehl 1981; McShea
and Rappole 1997; Simons et al. 2006; Pacifici et al. in press), topography,
weather (Mayfield 1981; Robbins 1981b), temperature, humidity, and ambient
noise (Simons et al. 2007). Systematic variation in any of these factors will impart
a systematic bias in count data.

At least five methods of estimating detection probabilities on avian point
counts are currently available (Nichols et al. 2008): distance sampling (Buckland
et al. 2001), multiple-observer methods (Nichols et al. 2000; Alldredge et al. 2007a),
time-of-detection methods (Farnsworth et al. 2002; Alldredge et al. 2007b), double
sampling (Bart and Earnst 2002) and repeated count methods (Royle and Nichols
2003; Kery et al. 2005). Applications of combined methods are also possible
(Kissling and Garton 2006; Alldredge et al. 2007a, b). Different methods estimate
different components of the detection process. For example, distance sampling and
multiple observer approaches assume that all birds on a given sample plot are avail-
able (sing during the count interval) and they estimate the probability of detection
given availability. Time of detection methods provide estimates of the product of
availability and detection given availability (Alldredge et al. 2007a) but they cannot
separate the two components. Repeated count methods (Royle and Nichols 2003;
Nichols et al. this volume) estimate the product of availability, detection given
availability, and a third component of the detection process, the probability that
an individual is present in the sample area.
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Fig. 2 Comparisons of abundance measures for 18 species of breeding birds recorded at 247
paired survey locations in primary and secondary forests in Great Smoky Mountains National
Park (Simons et al. 2006). (Top) Mean relative abundance; counts are not adjusted for differences
in de tectability. (Middle) Effective detection radii (EDR) estimates (calculated using Program
DISTANCE, Thomas et al. 1998). (Bottom) Estimated densities based on effective detection radii.
Error bars represent standard errors. Significant differences are denoted by asterisks (*p < 0.05,
**p < 0.01, ***p < 0.001)
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A brief example will illustrate how correcting avian point count data for
variations in detection probability among species and habitats can dramatically
alter abundance estimates. Figure 2 summarizes count data for 18 species of forest
songbirds from 247 paired point count locations in primary and secondary southern
Appalachian forests (Simons et al. 2006). Of interest is the similarity of unadjusted
counts (Fig. 2a) for two very dissimilar species, the Scarlet Tanager (SCTA, Piranga
olivacea) and the Golden-crowned Kinglet (GCKI, Regulus satrapa). The Scarlet
Tanager is a brightly-colored, very active and vocal species that flies constantly
about the forest canopy giving a loud, high-energy call. The Golden-crowned
Kinglet is a small, drab, and generally inconspicuous species that forages along
branches and gives a high, thin, low-energy call. The unadjusted counts for these
two species suggest that their abundance is similar in primary and secondary forests.
However when we examine the effective detection radii (Buckland et al. 2001) of the
two species (Fig. 2b) and use this information to convert the raw counts into density
estimates (Fig. 2c) dramatic differences in abundance become apparent. Accounting
for differences in detection probability related to differences in the conspicuousness
of theses two species results in a nearly four-fold difference in our abundance
estimate. Similarly, differences in abundance between primary and secondary forest
habitats become apparent once counts are adjusted for differences in detection
probability between habitats. Failure to account for such differences in detection
probabilities among species and habitats weakens inferences from comparative
studies of avian abundance (Yoccoz et al. 2001; Pollock et al. 2002; Williams et al.
2002).

Nevertheless, there is still considerable disagreement over the importance of
estimating detection probabilities associated with individual counts (Rosenstock
et al. 2002). Although common survey methods are largely unvalidated, most
practitioners assume that current methods for estimating detection probability are
accurate, and that observer training obviates the need to account for measure-
ment and misclassification errors in point count data. Given the substantial time,
effort, and money expended conducting avian point counts to address ecological
research and monitoring objectives (Bart 2005; Simons et al. 2007), validating
current avian sampling methods has enormous practical importance. In this paper we
first review factors that influence detection probabilities on auditory counts, and we
then summarize key findings of recent field experiments aimed at understanding the
factors affecting detection probabilities, and the sources and magnitude of measure-
ment and misclassification errors inherent in several common sampling methods.

2 Approach

Our approach uses empirical data from field studies of southern Appalachian song-
birds (Shriner 2001; Lichstein et al. 2002; Brewster 2007) to inform the devel-
opment of new avian sampling methods (Farnsworth et al. 2002; Alldredge et
al. 2007a), and to design field experiments (Simons et al. 2007) that assess the
factors affecting detection probabilities on auditory counts (Alldredge et al. 2007b;
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Fig. 3 System diagram of song playback system. (A) laptop computer and playback software, (B)
transmitter, (C) portable receiver/player. See Simons et al. (2007) for specifications

Pacifici et al. in press), and the precision and accuracy of auditory avian point count
methods. (Alldredge et al. 2007c, d; Alldredge et al. in press).

Field experiments are conducted using a system for simulating avian census
conditions when most birds are identified by sound (Fig. 3). The system uses a

Fig. 4 Volunteers participating in a playback experiment. Observers standing at the center of the
experimental plot conduct point counts simulated using up to 45 different playback devices. Players
are placed at known locations (up to 200 m) and heights (up to 15 m) on the surrounding plot
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laptop computer to control up to 50 amplified MP3 players placed at known loca-
tions up to 200 m around a survey point (see Simons et al. (2007) for details). To
date we have simulated over 5,000 unlimited radius point counts with 50 observers
(Fig. 4). The system can realistically simulate a known population of songbirds
under a range of factors that affect detection probabilities. Validation experi-
ments evaluate traditional methods for estimating detection probabilities, such as
distance sampling, and new approaches that incorporate information from multiple
observers, the time sequence of observations, and combined methods.

2.1 Factors Affecting Detection Probabilities

Figure 5 illustrates the number of six observers able to hear (Heard), correctly iden-
tify (Correct), and number of observers who misidentified (Wrong) calls of Black-
throated Blue Warblers (BTBW, Dendroica caerulescens), at 25 distances between
40 and 160 m. Calls were played randomly at each distance for approximately 20 s.

Fig. 5 Number of six observers able to hear (Heard), correctly identify (Correct), and number
of observers who misidentified (Wrong) calls of Black-throated Blue Warblers at 25 distances
between 40 and 160 m. Calls played randomly at each distance for approximately 20 s. Experi-
ments were replicated under four ambient noise conditions: (a) quiet (mean ambient noise 40.6
dB, S.D. 4.47 dB), (b) breezy (10–20 km/h gusty winds, 55.4 dB, S.D. 3.87 dB), (c) quiet condi-
tions with 1–3 background birds (Winter Wren, Troglodytes troglodytes, Yellow-throated Warbler,
Dendroica dominica, and Ovenbird) singing 20 m behind or to either side of the observers, and
(d) quiet conditions with white noise added (10 dB above ambient). White noise (uniform power,
spectral frequency = 1.0) was played from a speaker facing the observers at a distance of 10 m
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Experiments were replicated under four ambient noise conditions: (a) quiet (mean
ambient noise 40.6 dB, S.D. 4.47 dB), (b) breezy (10–20 km/h gusty winds, 55.4
dB, S.D. 3.87 dB), (c) quiet conditions with three background birds Winter Wren
(WIWR, Troglodytes troglodytes), Yellow-throated Warbler (YTWA, Dendroica
dominica), and Ovenbird (OVEN, Seiurus aurocapillus) singing 40 m behind or to
either side of the observers, and (d) quiet conditions with white noise added (10 dB
above ambient). White noise (uniform power, spectral frequency = 1.0) was played
from a speaker facing the observers at a distance of 10 m. Results illustrate how
detection distances decline and identification errors increase with increasing levels
of ambient noise. Overall, the proportion of birds heard by observers decreased
by 28 ± 4.7% under breezy conditions, 41 ± 5.2% by the presence of additional
background birds, and 42 ± 3.4% by the addition of 10 dB of white noise.

Temporal trends in environmental factors such as ambient noise can impart trends
in count data unrelated to the true abundance of birds. To provide some context for
our ambient noise experiment we asked observers to record ambient noise levels
on 21 Breeding Bird Survey (Sauer et al. 2005) routes across North Carolina in
2006. Note the proportion of North Carolina BBS counts in which ambient noise
levels exceed 40 dB (Fig. 6). Ambient noise experiments (Fig. 5) indicate that an
increase in ambient noise from 40 to 50 dB produces a 42% average reduction in
the counts of six common species. Thus, if ambient noise levels along these North
Carolina routes increased by 10 dB over the past 20 years, we would expect BBS
counts of species detected by ear to decline over that interval by about 40%, even
if populations were stable. Because BBS counts are not adjusted for differences
in detection probability, in this example there is no way of knowing if declines
represent actual population declines or simply declines in detection probability due
to increasing ambient noise.

Fig. 6 Measured levels of ambient noise on 20 North Carolina Breeding Bird Survey routes in
2006. Observers conduct 50 3-min unlimited radius point counts along a 40 km route. Symbols
represent the mean of three sound pressure readings measured along each route using a Martel
Electronics model 325 sound level meter (accuracy ± 1.5 dB)
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Fig. 7 Declining singing rates of Black-throated Blue Warblers (Dendroica caerulescens) over
the breeding season in North Carolina. Sample sizes (individual birds sampled for a minimum of
30 min) and standard errors indicated for each sample period (Brewster 2007)

Trends in other factors affecting detection probabilities, such as observers or
habitat conditions (Sauer et al. 1994; Norvell et al. 2003), can impart similar biases.
For example, a recent analysis indicated that 76% of observers conducting Canadian
Breeding Bird Survey routes are over 45 years old (Downes 2004; Simons et al.
2007). Forty-five percent of observers cited “hearing loss” as their primary reason
for retiring from the survey. As with ambient noise, trends in age-related hearing
loss can impart trends in count data that are unrelated to true abundance.

Singing rates of most breeding songbirds decline steadily during the breeding
season. Brewster (2007) found that singing rates of southern Appalachian Black-
throated Blue Warblers declined by 50% during the first month of the breeding
season (Fig. 7). Temporal trends in factors such as average singing rates, that influ-
ence availability during a count, can also impart trends in count data unrelated to the
true abundance. For example, there is increasing evidence that birds are breeding
earlier now than in the past, presumably due to global warming (Butler 2003).
Climatic trends that impart trends in the average singing rates of birds will bias
abundance estimates over time unless analyses account for the temporal trends in
detection probabilities.

We assessed several factors thought to influence overall detection probabilities
(pa pda) on 40 experimental 3-min point counts comprised of 10 birds per count
and five primary species (Black-and-white Warbler (BAWW), Mniotilta varia),
Black-throated Blue Warbler, Black-throated Green Warbler (BTNW, Dendroica
virens), Hooded Warbler (HOWA, Wilsonia citrina), and Ovenbird over a range
of 15 distances (34–143 m). Songs were played at low (two songs per count)
and high (13–21 songs per count) singing rates (Alldredge et al. 2007b). Detec-
tion probabilities at 100 m ranged from 0.60 (Black-and-white Warbler) to 0.83
(Hooded Warbler) at the high singing rate and 0.41 (Black-and-white Warbler)
to 0.67 (Hooded Warbler) at the low singing rate (Fig. 8). Logistic regression
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Fig. 8 Logistic regression models for a single observer illustrating the relationship between
detection probability and distance for counts of five species (Black-and-white Warbler (BAWW,
Mniotilta varia), Black-throated Blue Warbler (BTBW, Dendroica caerulescens), Black-throated
Green Warbler (BTNW, Dendroica virens), Hooded Warbler (HOWA, Wilsonia citrina), and Oven-
bird (OVEN, Seiurus aurocapillus) singing at high and low singing rates (Alldredge et al. 2007b).
Note the consistent effect of singing rate on detection probability

analyses indicated that species, singing rate, distance, and observer were all signifi-
cant factors affecting detection probabilities. Simulations of expected counts based
on the best logistic model (Table 1), indicated that observers detected between 19%
(190/1000 birds for the worst observer, lowest singing rate, and least detectable
species) and 65% (653/1000 birds for the best observer, highest singing rate, and
most detectable species) of the true population.

2.2 Evaluation of Distance Measurement Error

Detection distance is one of the most important and common auxiliary variables
measured during point count surveys of avian abundance. The distance to individual
birds is used to determine the effective area sampled, to determine if birds are within
a fixed radius plot, and to model the detection process. In densely vegetated habi-
tats, visual detections of birds are rare, and most estimates of detection distance
are based solely on auditory cues. Distance sampling theory assumes that detec-
tion distances are measured accurately, but empirical validation of this assumption
for auditory detections is lacking. We simulated avian point counts in a forested
habitat to determine the error structure of distance estimates based on auditory
detections (Alldredge et al. 2007c). Experiments were conducted with six expe-
rienced observers both before and after distance estimation training. Experiments
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Table 1 Detection probabilities at distances from 30 to 150 m, and expected counts for a simulated
population of 1,000 uniformly distributed birds, based on the logistic models for BAWW (least
detectable species) and HOWA (most detectable species) using the best and worst observers and
both high and low singing rates

Worst Best

Distance Low High Low High

BAWW
30 (40) 0.87 0.99 0.94 1.00
60 (120) 0.61 0.92 0.80 0.97
90 (200) 0.26 0.55 0.48 0.75
120 (280) 0.08 0.11 0.17 0.23
150 (360) 0.02 0.01 0.05 0.03
Expected Count 190 294 295 382

HOWA
30 0.97 1.00 0.99 1.00
60 0.88 0.99 0.95 1.00
90 0.64 0.93 0.82 0.97
120 0.29 0.55 0.51 0.76
150 0.08 0.11 0.19 0.24
Expected Count 382 538 529 653

were also conducted to determine the effect of the height and orientation (toward
or away from observers) of the song source on distance estimation error. Distance
estimation errors for all experiments were substantial, although training did reduce
errors and bias in distance estimates. Distance estimates for all observers increased
for all species played between 23 and 65 m. Distance estimates did not increase for
songs played at distances between 65 and 86 m, indicating observers were not able
to differentiate distances among songs played within this range. The height from
which songs were played had no effect on distance estimation errors. The orientation
of the song source did have a large effect on distance estimation errors; observers
generally doubled their estimates for songs played away from them compared to
songs played directly toward them (Fig. 9).

2.3 Double-Observer Methods

Comparing simultaneous observations by two or more observers provides another
measure of point count detection probabilities (Alldredge et al. 2006). The method
requires that observers accurately map bird locations and match birds detected by all
observers. We evaluated the accuracy and sources of measurement and classification
error in double-observer counts by conducting 60 experimental 3-min point counts
with six experienced observers (Alldredge et al. in press). Thirty five players were
uniformly distributed with respect to area around a single point. All players were
set 1m above ground at radial distances between 0 and 120m. Songs for all species
were played at a sound intensity of approximately 90 dB at a distance of 1m.

Each count had exactly 12 birds of up to eight species. Six primary species;
Scarlet Tanager (SCTA, Piranga olivacea), Acadian Flycatcher (ACFL, Empidonax
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Fig. 9 Differences in distance estimation errors for songs oriented toward observers compared
to those oriented away from observers. Errors for six observers averaged across three distance
categories. WOTH, (Wood Thrush Hylocichla mustelina), RBNU, (Red-breasted Nuthatch, Sitta
Canadensis), BTNW (Black-throated Green Warbler, Dendroica virens), BAWW (Black and White
Warbler, Mniotilta varia), ACFL (Acadian Flycatcher, Empidonax virescens)
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Table 2 Identification and matching errors for two observers conducting a double-observer
point count

Observer A Observer B

# Birds simulated 730 – 730
# Birds recorded (% correct) 581 (72.1) – 598 (75.3)
Birds mapped within true quadrant (%) 448 (77.1) – 424 (70.9)
Birds double-counted (%) 52 (9.0) – 42 (7.0)
Imagined birds (%) 3 (0.5) – 6 (1.0)
180 degree birds (%) 4 (0.7) – 5 (0.8)
Total observations for both – 679 –
Observations match (%) – 495 (72.9) –
Observations matched in same quadrant (%) – 432 (63.6) –

virescens), BAWW, BTBW, BTNW, and HOWA were simulated across a range
of distances to approximate a population of 100 birds uniformly distributed with
respect to area. Table 2 provides typical results from a pair of observers who
conducted 60 3-min double-observer point counts. A quadrant was a 90◦ segment of
the circular plot, centered on the true location of the song (for individual observers)
or the mapped location of one observer (for combined data). Overall, observers
undercounted the total number of birds available, recording on average 75.5% (S.E.
1.7%) of simulated birds, and correctly matching 75% (S.E. 1.7%) of birds recorded.
In contrast, counts were inflated by an average of 8% (S.E. 1.6%) due a combination
of double-counting and misidentification (imagined birds) errors.

2.4 Time of Detection Methods

We evaluated the time of detection method (Farnsworth et al. 2002; Alldredge
et al. 2007a) by conducting 60, 8-min point counts with four experienced observers
(Alldredge et al. 2007d). Counts were divided into four, 2-min intervals, and
observers recorded birds using multi-colored pens to distinguish time intervals.
Detections of birds recorded in a previous interval were noted by underlining the
initial notation in the color of the current time interval. Thirty five players were
uniformly distributed with respect to area around a single point. All players were
set 1m above ground at radial distances between 0 and 1m. Songs for all species
were played at a sound intensity of approximately 90 dB at a distance of 1m.

Eighteen birds of 12 species were simulated on each point. Analyses were
focused on eight species; ACFL, BAWW, BTBW, BTNW, HOWA, OVEN, SCTA,
and YTWA. Songs of 100 total individual birds of each of these eight species were
played on the 60 counts. The total simulated population size was 800 birds because
not all birds in the simulated population were available on some counts. Availability
of ACFL, BAWW, BTNW, SCTA, and YTWA was simulated under a Markovian
process with availability during the count interval varying between 0.60 and 1.0, and
singing rates varying from 2 to 8 songs per minute. Singing rates and availability
for BTBW and OVEN were based on empirical field data (Brewster 2007).
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Double counting, counting a single bird as more than one bird, was a signifi-
cant source of error among the four experienced observers. Double counting rates
ranged from 0.9 to 3.4% (S.E. 0.6%) of total observations among observers. Double
counting occurred in a variety of forms. In most cases single birds were recorded as
two birds throughout the count interval. This created two or more capture histories
that clearly indicated a single individual tracked as two birds throughout the count.
Occasionally observers mapped a bird in one location at the beginning of the count,
then mapped the same bird in a new location and continued to track it at the new
location for the remainder of the count. These cases produced two or more capture
histories of the form xx00 for the original bird and 00xx for the double count, where
x could be a either a one or a zero.

Overall 2.0–4.1% (S.E. 0.43%) of observations were recorded in the wrong time
interval among the four observers. This can occur when two or more individuals of
the same species sing during a count, and observers attribute a song to the wrong
individual. Finally, as we found in the multiple-observer experiment, misidentifi-
cation errors were rare with experienced observers. Misidentification errors ranged
from 0.1 to 0.6% (S.E. 0.09%) of total observations among the four experienced
observers.

3 Discussion

Many known and unknown factors influence detection probabilities on auditory
point counts. These include factors such as ambient noise, habitat structure, and
the singing rates of individual birds that can impart trends in abundance estimates
unrelated to true abundance. Fortunately, multiple methods of estimating detection
probabilities are now available, and we believe direct estimates of detection proba-
bility should accompany all analyses of avian point count data.

Unfortunately, methods that require the localization of auditory detections are
subject to large measurement and misclassification errors. Our experiments illustrate
the source and magnitude of those errors, although we believe errors on actual point
counts are probably larger than our results suggest, because our simulations involved
a relatively small number of species, our observers were highly experienced, and
many sources of variability were carefully controlled in our experiments.

As the example for the Golden-crowned Kinglet and Scarlet Tanager in the intro-
duction illustrates, distance sampling can reduce sampling bias for species with
large differences in behavior, plumage, and song characteristics. Nevertheless we
found that measurement error on auditory point counts is substantial, presumably
because the complexities of sound attenuation and reverberation in natural envi-
ronments make the localization of auditory cues very difficult. We recommend that
practitioners distinguish between visual and auditory detections in their analyses
of point count data, and recognize the limitations of distance sampling methods
on avian point counts when detections are auditory. If distance sampling based
solely on auditory detections is unavoidable, analyses should incorporate estimates
of measurement error.
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Classification and matching errors are important and generally ignored compo-
nents of overall error rates on multiple-observer and time of detection point counts.
Errors result primarily due to the difficulty of localizing auditory cues and accurately
mapping bird locations (Buckland 2006). We would expect substantially larger
errors on actual point counts that employ these methods due to the movement of
birds during the count interval.

These findings imply that the uncertainty surrounding estimates of avian diversity
and abundance based on distance, double-observer, and time of detection auditory
sampling methods is much higher than is currently assumed by practitioners. There-
fore conclusions based on those estimates are, in most cases, weaker than those
currently reported in studies based on auditory detections. Approaches to account
for this uncertainty in abundance models are clearly needed if abundance estimates
are to withstand critical scrutiny.

Alternatively, it is possible that modern avian auditory sampling methods, that
require observers to simultaneously track the location and singing rates of multiple
individuals and multiple species, often exceed the ability of human observers.
Simplified protocols, such as single species surveys, or occupancy approaches based
on presence/absence data (Royle and Nichols 2003) that reduce the demands on
human observers, may ultimately yield better results.
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Density Estimation by Spatially Explicit
Capture–Recapture: Likelihood-Based Methods
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Abstract Population density is a key ecological variable, and it has recently been
shown how captures on an array of traps over several closely-spaced time inter-
vals may be modelled to provide estimates of population density (Borchers and
Efford 2007). Specifics of the model depend on the properties of the traps (more
generally ‘detectors’). We provide a concise description of the newly developed
likelihood-based methods and extend them to include ‘proximity detectors’ that
do not restrict the movements of animals after detection. This class of detector
includes passive DNA sampling and camera traps. The probability model for spatial
detection histories comprises a submodel for the distribution of home-range centres
(e.g. 2-D Poisson) and a detection submodel (e.g. halfnormal function of distance
between a range centre and a trap). The model may be fitted by maximising either
the full likelihood or the likelihood conditional on the number of animals observed.
A wide variety of other effects on detection probability may be included in the
likelihood using covariates or mixture models, and differences in density between
sites or between times may also be modelled. We apply the method to data on
stoats Mustela erminea in a New Zealand beech forest identified by microsatellite
DNA from hair samples. The method assumes that multiple individuals may be
recorded at a detector on one occasion. Formal extension to ‘single-catch’ traps
is difficult, but in our simulations the ‘multi-catch’ model yielded nearly unbi-
ased estimates of density for moderate levels of trap saturation (≤ 86% traps
occupied), even when animals were clustered or the traps spanned a gradient in
density.
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1 Introduction

Trapping is a common source of capture–recapture data, but the spatial component
of such data has generally been ignored. By trapping we mean sampling an animal
population with traps set for a known time at known points in the habitat, often
on a grid. Time is usually divided into discrete intervals (‘occasions’), and new
animals may be captured, marked and released on each occasion. By convention,
closed-population encounter histories are coded in binary form: on each occasion
an individual is either captured (1) or not captured (0) (Otis et al. 1978). A spatial
encounter history also records the location of each capture. We are concerned with
the estimation of population density using information in the spatial encounter
history.

Previous methods for estimating population density D with arrays of traps have
used the relation D̂ = N̂/A, where N is the population size and A is the area occu-
pied by the population. This is the method of choice if the biological population
occupies a defined geographic area (e.g. an island) and if every member of the popu-
lation is at risk of capture. More commonly, the individuals at risk of capture in traps
are an ill-defined subset Nc of a larger biological population that extends indefinitely
beyond the trap array. We may estimate Nc empirically from the encounter histories
with conventional closed population methods (Otis et al. 1978; Chao and Huggins
2005), but this quantity bears only a vague relationship to the biological parameters
of interest (N and D). While we may hypothesize the existence of an ‘effective
trapping area’ Ac such that D = Nc/Ac, rigorous general methods for estimating Ac

are lacking (but see White et al. 1982; Jett and Nichols 1987).
A more secure approach is to estimate density directly without recourse to the

quantities Nc and Ac. The feasibility of estimating D directly from trapping data was
demonstrated by Efford (2004) and Efford et al. (2004). Their method relied on a
simulation of the trapping process. Here we describe a likelihood-based approach
that is in some ways more general and flexible. The underlying theory was devel-
oped by Borchers and Efford (2007).

The literature on nonspatial capture–recapture has not been concerned with the
trapping process although it is an important determinant of capture probability. At
the simplest level, increasing the number of traps per home range will increase
capture probability; more subtly, per capita capture probability will decline with
increasing local density if traps are of a type that ‘fill up’, particularly if they are
‘single-catch’ traps. Such patterns result naturally from suitably formulated spatial
trapping models, so long as care is taken to match the model to the process by which
data were collected. The focus in Borchers and Efford (2007) was on traps that do
not fill up, but which stop an animal from advancing to another trap within the same
occasion (we call these ‘multi-catch’ traps). We extend their treatment to allow
for other types of trapping process; in particular, we model ‘proximity detectors’
such as automatic cameras and devices that passively collect DNA samples from
animals without limiting their movement. As an example, we analyse data from
stoats Mustela erminea identified by their microsatellite DNA in hair samples. We
also discuss the extension of likelihood-based methods to single-catch traps. In lieu
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of a likelihood function for single-catch traps, we use simulation to evaluate the
performance of the multi-catch density estimator applied to data from single-catch
traps.

2 Model

We wish to construct a probability model for encounter histories that include the
location of each detection. Our model comprises one submodel for the distribution
of animals in a region that includes the traps, and another submodel for the capture
process. The capture process submodel gives the probability of catching an indi-
vidual in a particular trap, given the location of its home range. We introduce these
models before proceeding to the likelihood.

2.1 Distribution Submodel

We assume that for the duration of trapping the general location of each individual
in the population may be summarised by the coordinates of a point that we call
the animal’s home range centre. Later we relate probability of detection to radial
distance from this point. The density of the population is equivalent to the intensity
of a spatial point process for the home range centres. In this paper we model the
distribution with a homogeneous spatial Poisson process; more generally, we could
use an inhomogeneous Poisson process (Borchers and Efford 2007).

2.2 Capture Submodel

A spatial model of capture probability must take into account properties of the trap
or detector. We distinguish three types of detector:

• Proximity detector
• Multi-catch trap
• Single-catch trap

We order these by increasing complexity in the probability model, rather than
novelty. Multi-catch traps were treated by Borchers and Efford (2007), while the
likelihood given here for proximity detectors is new.

A proximity detector records the presence of an individual at or near a point, but
leaves it free to visit other detectors on the same occasion. Multiple individuals may
be recorded at a detector on one occasion (see Discussion for one-shot detectors).
Examples are camera traps and passive DNA sampling devices such as sticky hair
traps. The probability that a particular individual i with home range centre X(i) is
recorded at detector k, located at Y(k), is assumed to be a function of the Euclidean
distance dk[X(i)] = |X(i) – Y(k)|, and possibly also of other covariates. Here vector
notation (in bold) is used for location, which might otherwise have been represented
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by Cartesian coordinates (x, y). We assume independence between visits to different
detectors. Each occasion-specific entry in an encounter history from an array of K
proximity detectors is itself a vector of length K whose elements take the value 1 for
detectors at which the individual was recorded at least once and 0 otherwise.

Multi-catch traps differ from proximity detectors in that capture in one trap
precludes capture of the same individual in other traps on the same occasion. As
with proximity detectors, multiple individuals may be recorded at a trap on one
occasion. Mist nets for birds and pitfall traps for lizards are examples of multi-catch
traps used in capture–recapture studies. The probability of capture is modified by
‘competition’ among traps for the chance to capture an individual (multiple traps
within an individual’s home range may reduce its probability of capture in any
particular trap). An additive competing risks hazard formulation is appropriate for
trap-specific capture probability (Borchers and Efford 2007). Each occasion-specific
entry in an encounter history from an array of K multi-catch traps is a single trap
index k where 0 ≤ k ≤ K, and k = 0 indicates no capture.

Single-catch traps are able to catch only one animal at a time, and capture
probability is affected by the presence of other individuals that may ‘compete’ for
traps. The majority of traps used for capture–recapture of small mammals are of
this type. The encounter history has the same form as for multi-catch traps, but
different histories may have the same entry on one occasion only if both are zero.
Capture of an animal disables a trap and immediately reduces the capture probabil-
ities of neighbouring animals. Simulation of the capture process is straightforward
in continuous time, and a capture model may be fitted by inverse prediction (Efford
2004). A likelihood model for single-catch traps is considerably more complicated
than for multi-catch traps, and remains to be developed.

3 Likelihood

The probability associated with each capture history may be treated as the product
of the probability of catching an individual at least once (p.) and the probability of
the observed history given that it includes at least one capture. Each part is condi-
tional on the location of the individual’s home range centre X, but using the distri-
bution submodel we may integrate over possible locations to evaluate the likelihood
without knowing X.

We start by defining a spatial analogue of detection probability a = ∫
p.(X;

�) dX, where � is a vector of detection parameters and a has units of area (the
parallel between a and detection probability becomes clear in the next section). For
a homogeneous Poisson distribution model, the probability of observing exactly n
capture histories is itself Poisson-distributed:

Pr(n) = (Da)n exp(−Da)

n!
. (1)
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The likelihood given n observed capture histories � = (�1,. . .,�n) is then

L(�, D) = Pr(n) ×
n∏

i=1

∫
Pr(ωi |X; �)dX

a
, (2)

where Pr{ωi |X; �}, the probability of the capture history for a given home range
location and model parameters, is defined below. The probability of being caught at
least once over S occasions depends on the distances dk(X) to each of the K traps:

p.(X; �) = 1 −
∏

s

∏
k
{1 − ps(dk(X) ; �)}. (3)

Here ps is analogous to the detection function in distance sampling (e.g. Buckland
et al. 2001).1 Its parameters � control the overall efficiency of detection and also
its spatial scale, which we expect to increase with home range size. Three suitable
forms for ps are shown in Table 1. These use the independent parameters g0 for
overall efficiency of detection and � for spatial scale.2 The hazard function has an
additional shape parameter b (b > 0); when b is fixed at a large value (e.g. 100) the
hazard function comes to resemble a step function (ps(d) ≈ 0 for d > �). Although
our experience tends to favour the hazard function, we recommend that a function
is selected for each dataset only after comparing the fit of alternatives.

The preceding formulation applies to all three types of detector. Differences arise
in the term Pr{�i |X;�}. This has the general form

Pr{ωi |X; �} =
∏

s

∏
k

pδiks
ks (1 − p·s)

1−δi ·s
, (4)

where pks is the probability of detection at k on occasion s, δiks = 1 if individual i
was detected at k on occasion s and δi ·s = 1 if

∑
k
δiks > 0 and δi ·s = 0 otherwise.

Table 1 Detection functions ps for spatially explicit capture–recapture models. d is the distance
between an animal’s home range centre and a detector. The parameter g0 is common to all functions
and represents the probability of detection at a single detector placed in the centre of the home
range; values of the spatial scale parameter � are not comparable between functions

Detection function Parameters �

Halfnormal ps = g0 exp

(−d2

2σ 2

)
g0, �

Hazard rate ps = g0

[
1 − exp

{
−
(

d/
σ

)−b
}]

g0, �, b

Negative exponential ps = g0 exp

(−d

σ

)
g0, �

1Borchers and Efford (2007) use p1
s for ps.

2Independence may not always be appropriate: intuitively, an animal that spreads its activity over
a larger area will become less trappable at any particular place. An alternative parameterization
would scale g0 by 1/�2, as in the pdf of a bivariate normal distribution.
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For an array of proximity detectors we use

pks = ps(dk(X) ; �). (5)

Multi-catch traps ‘compete’ for animals and a competing risks hazard-rate form is
appropriate:

pks = h(dk(X))

h.(X)
[1 − e−h.(X)], (6)

where h(dk(X)) = − ln{1 − ps(dk(X; �))} and h.(X) = ∑K
k=1 h(dk(X)).

4 Estimation

We estimate D and � by numerically maximising the full likelihood (1) with respect
to the parameters. For maximisation we log-transform D and �, and logit-transform
g0 to keep each within feasible ranges. Each evaluation of the likelihood requires
numerical integration over the plane, once for each observed encounter history �i

and once for the null capture history to calculate a. The speed of the algorithm used
for integration is therefore critical. We have not obtained satisfactory results with
standard algorithms such as the adaptive method of Genz and Malik (1980) used
in some packages; our preferred method at present is to sum function values over
a grid of points. Integration may be limited to a subset of the plane that contains
plausible animal locations X; the estimated density will then apply to that area of
habitat. Asymptotic variances may be estimated from the inverse of the information
matrix. Confidence limits for D̂ may be estimated as exp[ln(D̂) ± zα ŝD], where ŝD

is the estimated SE of D̂ on the log scale and z	 is the appropriate normal deviate,
or by profile likelihood. Software is available (Efford 2007).

An alternative procedure is to maximise the conditional likelihood (the product
over capture histories in (1)) to get estimates �̂ and hence a(�̂) , and to estimate
D̂ = n/â. This is advantageous when there are individual covariates zi as we can
then use the Horvitz-Thompson-like estimator D̂ = ∑n

i=1 â(zi )−1, which does not
require the pdf of covariates to be modelled (Borchers and Efford 2007). Similar
methods are used in conventional capture–recapture to estimate population size N
from individual detection probabilities pi (N̂ = ∑n

i=1 p̂−1
i ) (Huggins 1989).

5 Extensions

5.1 Modelling Additional Variation in Detection

Our core model accounts for variation in capture probability due to the varying
number and location of traps in each animal’s home range. This confers a robust-
ness that is lacking in conventional closed-population analyses of trapping data.
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Other sources of variation that are addressed in conventional analyses (e.g. Otis
et al. 1978; Chao and Huggins 2005) may readily be included (Borchers and Efford
2007). Capture probability p in conventional models is replaced in the spatial model
by a vector of at least two parameters, g0 and �. Each conventional source of vari-
ation in p (i.e. time, response to capture, and individual heterogeneity; Otis et al.
1978) may affect either or both of g0 and �. For example, we can fit a model for a
change after first capture in either the efficiency of detection (Mb(g0)) or its spatial
scale (Mb(�)). Individual heterogeneity may be incorporated via mixture models
for either parameter (e.g. 2-class finite mixture Mh2(g0) cf. Pledger 2000). In addi-
tion, the spatial model allows for novel sources of variation, such as dependence of
capture on the type of trap or on other trap-level covariates describing the habitat at
the trap site. Modelling and estimation of additional sources of variation in detection
probability requires additional parameters and adjustments to the expression for pks

(Eqs. (5) and (6)). We do not describe these in detail because they follow directly
from current practice (Otis et al. 1978; Chao and Huggins 2005).

5.2 Variation Across Space or Time

The purpose of a capture–recapture study will often be to compare density at
different places, or at different times. For convenience, we use the word ‘session’
for each sampled population, whether populations are separated by space, time or
an attribute such as sex. Our ‘sessions’ have been termed ‘groups’ in other capture–
recapture contexts (e.g. Williams et al. 2002, p. 426), and are loosely equivalent
to primary sessions in the open-population robust design of Pollock (1982). Even
when a separate density is to be estimated for each session, if data are sparse it may
be efficient to estimate a common detection function across all sessions. In general,
session effects may be treated as constant (pooled across sessions), as fixed effects
(e.g. session-specific levels or a trend across sessions) or as random effects (yet to be
implemented). Thus the utility of the method is greatly extended by a multi-session
model. Alternative models may be compared by standard methods (e.g., Akaike’s
Information Criterion or likelihood ratio tests).

Sessions are assumed to be demographically closed (no births, deaths, immi-
gration or emigration), and each encounter history spans only one session. If the
same individual is caught in two sessions it is artificially assigned a new identity in
the second session. Under these independence assumptions it is appropriate to use
a combined multi-session likelihood (the product of within-session likelihoods) to
model variation between sessions.

Session-specific parameter values (levels of D and the elements of �) may be
treated as functions of session-level covariates, including time. For each evaluation
of the combined likelihood we substitute the current values of D and � into the
within-session likelihood (1), and sum the resulting log-likelihoods across sessions.
The combined likelihood is maximised over all parameters, including those of the
functions controlling the session-specific D and �.
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6 Example: Stoats Identified by DNA Microsatellites

Stoats Mustela erminea introduced to New Zealand have deleterious effects on
populations of native birds, and their ecology and population management are there-
fore a prime concern for conservation. Capture–recapture with traps is onerous
and not always successful because of low capture rates. An alternative to trapping
is to register the presence of individuals from DNA in hair or dung. For stoats,
a convenient sampling device is a tube with a transverse adhesive-coated rubber
band that retains hairs from stoats that pass through (Duckworth et al. 2005). Here
we analyse data from a pilot study in Nothofagus fusca forest in the Matakitaki
Valley, South Island, New Zealand (172◦30’E, 42◦00’S). Hair sampling tubes (K =
94) were placed on a 3 × 3 km grid with 500 m spacing between rows and 250 m
spacing along rows. Tubes were baited with rabbit meat and checked daily for
7 days, starting 15 December 2001. Stoat hair samples were identified to individual
using DNA microsatellites amplified by PCR from follicular tissue.3 Six loci were
amplified and the mean number of alleles was 7.3 per locus, allowing identification
of individuals even in samples for which not all loci could be amplified (27%).

Table 2 Spatial encounter histories of 20 stoats identified by DNA microsatellites in hair samples
collected daily on 7 parallel lines of sampling stations A–G; spacing 500 m between lines and
250 m along lines. Matakitaki, South Island, New Zealand, 15–21 December 2001. ‘–’ indicates
the stoat was not detected. There were no multiple records (>1 stoat per trap or >1 trap per stoat
on any occasion)

Occasion

Animal 1 2 3 4 5 6 7

1 A9 – – – – – –
2 A12 A12 – – – – –
3 – – C6 B5 – – –
4 – – G3 – F3 – –
5 – – – F2 E2 – F1
6 – – – – – E8 –
7 – – F5 – – G7 –
8 F6 – – – – – –
9 – A4 – – – – –
10 – C5 – – – – –
11 – D4 – – – – –
12 – – D7 – – – –
13 – – E5 – – E4 –
14 – – F1 – – G3 –
15 – – F9 – – – –
16 – – G13 – F13 G13 –
17 – – – G9 – – –
18 – – – – – F1 –
19 – – – – – G9 –
20 – – – – – – G8

3We do not address here the problems of identification due to ‘allelic dropout’ and other difficulties
when the samples contain only small amounts of DNA that is potentially degraded.
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The dataset included 20 individuals of which 7 were ‘recaptured’ a total of 10
times (Table 2). The largest detected movement (707 m) was small relative to the
usual home range size of stoats (the average home-range diameter of stoats in New
Zealand is at least 1.3 km; data from King and Murphy 2005, Table 5.5), and indi-
viduals appeared to be localised within the grid (Fig. 1). No stoat was detected in
more than one tube on the same day, although both the field methodology and the
analysis allow for this.

We fitted a homogeneous Poisson density by maximising the full likelihood. For
numerical integration we evaluated the function at 1024 evenly-distributed points in
a rectangular area extending 1000 m beyond the grid. Modelling of even a single-
session dataset such as this requires multiple choices: among forms for the detection
function ps, and among models for variation in the parameters of ps in relation
to previous capture and random individual variation. We did not collect data on
occasion-, trap- or individual covariates (we note that sex determined from DNA
would be a potentially useful covariate of g0 and � in this sexually dimorphic
species).

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C D E F G

Fig. 1 Map of detections of individual stoats in red beech forest, Matakitaki Valley, South Island,
New Zealand, 15–21 December 2001. Sampling stations (crosses) were on seven lines A–G;
stations spaced 500 m between lines and 250 m along lines, with three additional detectors as
shown. The first station on each line was on a forest-pasture edge. Lines are drawn between loca-
tions of the same individual on different occasions; locations are shifted slightly from the actual
location for clarity
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Fig. 2 Detection functions ps(d) fitted to stoat data from proximity detectors in the Matakitaki
Valley, New Zealand, where d is the distance between an animal’s home range centre and a detector.
Density estimates (Table 3) were stable despite the considerable variation in the fitted detection
functions

Strictly territorial animals may have a ‘hard’ edge to their range that is best repre-
sented by a step function (ps(d) = 0 for d > range radius), but zero values for ps can
cause problems when maximising the likelihood. Instead, we used the hazard func-
tion to emulate a step function by setting b = 100. Density estimates and confidence
intervals were not noticeably affected by the form used for ps (halfnormal, hazard or
negative exponential; Fig. 2), and asymptotic intervals resembled profile likelihood
intervals (Table 3). We also fitted models with additional parameters allowing for a
response to previous capture (Mb(g0), np = 4) or random individual variation using
a 2-class finite mixture (Mh2(g0), Mh2(�), np = 6), but these barely increased the
maximised log likelihood (�LL < 0.05) and were clearly inferior by AIC.

7 Single-Catch Traps

Single-catch traps are used very widely in studies of small mammals, and biolo-
gists will ask whether such data may be analysed with the methods described here.
Competition for single-catch traps breaches the model assumption that animals are
caught independently. We expect any resulting bias to be small when trap saturation
(the proportion of traps occupied) is low. Trap saturation will be higher when popu-
lation density is high, the intervals between trap checks are longer, traps are highly
attractive or the animals are inherently very trappable.

With high trap saturation we would intuitively expect density estimates from
single-catch trap data analysed with multi-catch models to be biased downwards.
We conducted simulations to test this prediction for a scenario in which 100 traps
on a square grid with spacing c were operated for 5 occasions. Notional home
range centres were placed at expected density D in a rectangular area extending
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4c beyond the traps. Three distributions were compared. In the first (‘Poisson’),
centres were placed at random uniformly and independently across the area. For
the second distribution (‘clustered’), centres followed a Neyman-Scott distribution
in which the foci of clusters were from a spatial Poisson process with intensity
D/
, and 
 range centres were located around each focus according to a bivariate
normal distribution with scale �c; the clustering parameters were set to 
 = 5 and
�c = c. For the third distribution (‘inhomogeneous Poisson’), centres were placed
independently, but with a linear gradient in expected density from east to west, from
zero at –4c from the western-most traps to 2D at +4c from the eastern-most traps
(the gradient over the traps themselves was from 0.47D to 1.53D). Detection was
simulated with a halfnormal function (g0 = 0.2, � = c) using the algorithm in Efford
(2004, Appendix) to allow for competition between traps for animals and between
animals for traps. Simulated average densities spanned the range 0.0625�–2– 2�–2;
100 replicate simulations were performed for each level of density. For estimation,
a halfnormal detection function was fitted by maximising the conditional likelihood
for multi-catch traps (see Eqs.(2), (3), (4), (6)). Trap saturation was measured by the
proportion of traps occupied at the end of each occasion. Relative bias is estimated
byRB(ν̂) = ν̂−ν

ν
, where � represents any of the parameters D, g0 and �.

Our simulations detected no bias in D̂ for a Poisson distribution, even when
86% of traps were occupied (Table 4). Clustering of home range centres caused no

Table 4 Simulation of bias in density and detection parameters estimated by spatially explicit
capture recapture when data are from single-catch traps and the fitted model assumes multi-catch
traps. Simulations used one of three alternative distributions for animal range centers. Results are
mean ± SE over 100 replicates. Density is expressed in terms of � (1.0 �–2 × 16 is equal to
6.25 ha–1 when � = 10 m, and 0.0625 ha–1 when � = 100 m). Trap saturation is the proportion of
occupied traps at the end of each occasion

D (�–2 × 16) Trap saturation R B(D̂) R B(ĝ0) R B(σ̂ )

a. Poisson distribution
1 0.049 ± 0.002 0.018 ± 0.031 –0.002 ± 0.032 0.017 ± 0.019
2 0.098 ± 0.002 –0.029 ± 0.022 –0.007 ± 0.025 0.010 ± 0.011
4 0.198 ± 0.003 –0.027 ± 0.017 –0.071 ± 0.016 –0.011 ± 0.007
8 0.353 ± 0.004 0.012 ± 0.012 –0.208 ± 0.010 0.002 ± 0.006
16 0.601 ± 0.004 –0.017 ± 0.009 –0.357 ± 0.006 –0.003 ± 0.005
32 0.860 ± 0.002 –0.013 ± 0.007 –0.573 ± 0.005 –0.012 ± 0.004

b. Clustered distribution of animals (Neyman–Scott distribution, 
 = 5 and �c = �)
1 0.044 ± 0.003 –0.034 ± 0.055 –0.067 ± 0.042 0.029 ± 0.019
2 0.090 ± 0.003 –0.028 ± 0.033 –0.118 ± 0.025 0.008 ± 0.012
4 0.169 ± 0.005 –0.047 ± 0.027 –0.160 ± 0.014 –0.003 ± 0.008
8 0.332 ± 0.007 –0.026 ± 0.021 –0.239 ± 0.010 0.000 ± 0.005
16 0.567 ± 0.006 –0.021 ± 0.012 –0.404 ± 0.006 0.004 ± 0.004
32 0.843 ± 0.004 –0.010 ± 0.010 –0.587 ± 0.005 –0.005 ± 0.004

c. Inhomogenous Poisson distribution of animals (east–west density gradient)
1 0.051 ± 0.002 –0.012 ± 0.031 0.064 ± 0.038 0.007 ± 0.016
2 0.097 ± 0.002 –0.014 ± 0.025 –0.037 ± 0.022 –0.003 ± 0.010
4 0.188 ± 0.003 –0.021 ± 0.016 –0.096 ± 0.015 –0.002 ± 0.007
8 0.355 ± 0.004 0.003 ± 0.012 –0.222 ± 0.009 0.008 ± 0.005
16 0.585 ± 0.004 –0.008 ± 0.009 –0.388 ± 0.006 –0.002 ± 0.004
32 0.824 ± 0.002 –0.052 ± 0.007 –0.586 ± 0.004 0.000 ± 0.001
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detectable bias inD̂ at any level of trap saturation (Table 4b). The simulated gradient
in density had a detectable effect only at the highest level of trap saturation, when the
density estimates showed a 5% negative bias (Table 4c). These results are surprising.
We note that σ̂ also remains unbiased at high levels of trap saturation, whereas ĝ0

becomes negatively biased. We infer that competition for traps causes a spatially
homogeneous reduction in capture probability under the conditions of these simu-
lations, and that this is adequately modelled by a multi-catch likelihood with lower
g0. We tentatively conclude that the associated estimator for D may be sufficiently
robust to use for single-catch traps without further development. Extreme trap satu-
ration should be avoided by increasing the density of traps or the frequency of trap
checking, if only because the additional captures will increase precision.

8 Discussion

Many general benefits accrue from the estimation of density in a likelihood-based
framework (Borchers and Efford 2007). Attention is shifted from the artificial
parameters Nc and Ac to the ecologically significant parameter D. The model may be
applied to any configuration of detectors, and is not restricted to compact arrays such
as trapping grids (Efford et al. 2005). Differences between individuals in capture
probability due to spatial location can be modelled with these methods and so do not
result in unmodelled heterogeneity, the bane of conventional population estimation
(there may of course be other sources of unmodelled heterogeneity). Hypotheses for
variation in density over time or space may be evaluated using nested models and
likelihood ratio tests. The fitted model describes the detection process and may be
used in simulations to evaluate the effect of altering the study design, for example
by changing the number and placement of traps.

To these general benefits we now add the ability to adapt the analysis for specific
types of detector, for greater realism in modelling the detection process. In the case
of proximity detectors, the model embraces the possibility of detecting an individual
at multiple points on one occasion. Our results support the tentative use of a multi-
catch model with data from single-catch traps if the goal is unbiased estimation
of density. However, estimates of the detection parameter g0 by this method are
highly biased by trap saturation, and the method of simulation and inverse prediction
(Efford 2004) should be used to fit the full process model to data from single-catch
traps if it is intended to use the process estimates in simulations.

Our stoat example establishes the feasibility of applying spatially explicit
capture-recapture methods to quite small data sets. Precision increases with the
number of recaptures (Efford et al. 2004; M. G. Efford unpubl.), and it is generally
desirable to obtain at least 20 recaptures. There was a promising robustness to the
choice of detection function. Robustness of density estimates to the shape of the
fitted detection function (step function vs halfnormal) was also found in simulations
using inverse prediction (Efford 2004). Passive DNA sampling (e.g. Woods et al.
1999; Mills et al. 2000; Boulanger and McLellan 2001; Boulanger et al. 2004)
and camera traps (e.g. Karanth and Nichols 1998; Trolle and Kéry 2003; Soisalo
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and Cavalcanti 2006) are used increasingly for mobile and difficult-to-trap animals
such as carnivores. We expect our likelihood for proximity detectors to be widely
applicable, assuming reliable identification of individuals.

The three detector types introduced so far do not exhaust the possibilities. A
‘one-shot’ proximity detector would become disabled once it detected an animal,
but would not prevent the animal from finding another detector. Examples are a
camera that does not reset itself, or hair sampling for DNA by some method that
blocks collection of more than one sample per site per occasion (this might be
desirable if sample mixing degrades the accuracy of identification). While there
is no competition among detectors for animals, there is a sense in which animals
‘compete’ for access to ‘one-shot’ detectors. Equation (6) may possibly be adapted
to allow for this by recasting it in terms of a trap-specific hazard rate.

A more difficult issue arises if the laboratory protocol is to reject all mixed DNA
samples because individuals cannot be distinguished with confidence. Censoring
mixed samples effectively creates a new type of detector (one which works only
if fewer than two animals use it). At present we lack a satisfactory model for pks

with this detector, as with single-catch traps. Field methods should be adapted to
minimise the frequency of mixed samples (e.g. by frequent checking of devices).
For analysis, we advise the use of simulation-based methods (e.g. Efford 2004)
or cautious application of the proximity detector or multi-catch likelihoods; simu-
lations should be used to check that the bias in the estimates is small relative to
sampling error.

Other types of single-catch and multi-catch detector may remove animals perma-
nently from the population. Used alone, these are not useful for fitting movement-
based models such as we describe, because in the absence of recaptures we have no
information on the scale of movements. However, such detectors may in principle
be used in composite arrays with other detectors described here.
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Abstract In recent years, the mark-resight method for estimating abundance when
the number of marked individuals is known has become increasingly popular.
By using field-readable bands that may be resighted from a distance, these tech-
niques can be applied to many species, and are particularly useful for relatively
small, closed populations. However, due to the different assumptions and general
rigidity of the available estimators, researchers must often commit to a partic-
ular model without rigorous quantitative justification for model selection based
on the data. Here we introduce a nonlinear logit-normal mixed effects model
addressing this need for a more generalized framework. Similar to models available
for mark-recapture studies, the estimator allows a wide variety of sampling condi-
tions to be parameterized efficiently under a robust sampling design. Resighting
rates may be modeled simply or with more complexity by including fixed
temporal and random individual heterogeneity effects. Using information theory,
the model(s) best supported by the data may be selected from the candidate models
proposed. Under this generalized framework, we hope the uncertainty associ-
ated with mark-resight model selection will be reduced substantially. We compare
our model to other mark-resight abundance estimators when applied to main-
land New Zealand robin (Petroica australis) data recently collected in Eglinton
Valley, Fiordland National Park and summarize its performance in simulation
experiments.
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1 Introduction

The mark-resight method for estimating population abundance when the number
of marked individuals is known (White and Shenk 2001; McClintock and White
2007) may in many circumstances be considered a reliable, cost-effective alter-
native to traditional mark-recapture or index methods based on counts. Mark-
resight is generally most useful for estimating relatively small, closed popula-
tions, and because animals only need to be physically captured and marked once
prior to resighting surveys, the method is typically less expensive and less inva-
sive than mark-recapture. The various mark-resight estimators available include
the Joint Hypergeometric Maximum Likelihood Estimator (JHE) (Bartmann et al.
1987), the Minta–Mangel Estimator (MME) (Minta and Mangel 1989), the Immi-
gration/Emigration Joint Hypergeometric Estimator (IEJHE) (Neal et al. 1993),
Bowden’s Estimator (BOWE) (Bowden and Kufeld 1995), and the Beta-Binomial
Estimator (BBE) (McClintock et al. 2006). These primarily differ in their sampling
protocols and means of modeling variability in resighting probabilities. Temporal
variation in resighting probabilities is readily handled by all of the estimators,
but individual heterogeneity (where sighting probabilities vary among animals)
is not. Similar to mark-recapture abundance models, individual heterogeneity has
been particularly problematic and often causes biased estimates when not properly
accounted for (Otis et al. 1978; Neal et al. 1993).

JHE requires the standard assumptions of mark-resight estimators for the size of
a closed population: (1) geographic and demographic closure; (2) no loss of marks;
(3) no errors in distinguishing marked and unmarked animals; (4) independently
and identically distributed (iid) resighting probabilities for marked and unmarked
animals; (5) homogeneity of resighting probabilities within an occasion; and (6)
sampling without replacement within occasions (Neal et al. 1993; White and
Shenk 2001). IEJHE requires the same assumptions of JHE, but geographic closure
need not be met because the presence of marked animals on the area surveyed is
determined explicitly (Neal et al. 1993). BOWE relaxes several assumptions of JHE
by allowing temporary movement off the study area, individual heterogeneity, and
sampling with replacement (Bowden and Kufeld 1995). Some study designs, such
as those using camera traps or lacking a defined “occasion,” may only be conducted
with replacement and necessitate the use of BOWE. MME has similar assumptions
to BOWE, but its performance in simulation experiments has proven inferior to the
other models allowing individual heterogeneity and its use is not recommended
(White 1993; White and Shenk 2001). BBE has the same assumptions of BOWE,
but sampling must be without replacement. Any heterogeneity model requires that
marked animals be individually identifiable, but in some cases this is not feasible
and necessitates the use of JHE. If individually identifiable marks are used, both
BOWE and BBE tolerate less than 100% individual identification given that the
animal is identified as marked (White and Shenk 2001; Magle et al. 2007). These
models also allow demographic closure to be violated via mortality independent
of mark status, but abundance estimates produced when this occurs become the
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population residing in the study area at the beginning of the resighting period.
As with IEJHE, when geographic closure is violated via temporary movement
off the study area, the interpretation of abundance estimates for the heterogeneity
models becomes the total population using the study area, often termed a “super
population.”

JHE is generally contended to be the most precise when its assumptions hold, but
confidence interval coverage can fall well below the nominal 95% when individual
heterogeneity is moderate to high (Neal et al. 1993; McClintock et al. 2006). BOWE
performs well when individual heterogeneity is present, but is not likelihood-based
and therefore lacks the benefits of likelihood theory, including information-theoretic
model selection and model averaging methods. BBE successfully combines likeli-
hood theory and the ability to model individual heterogeneity. The model may also
incorporate a “robust” sampling design, which combines data from both closed and
open sampling periods to estimate demographic parameters (Pollock 1982; Kendall
et al. 1995). The open periods between primary sampling occasions apply to longer
intervals of time where closure need not be met. Each primary sampling occasion
consists of ≥ 2 secondary sampling occasions, and time intervals between these
must be short enough for the assumption of closure to be satisfied. This approach
has many advantages in long-term monitoring studies, including the ability to model
detection probabilities similarly across time (or groups) for increased efficiency.
Under the robust design, BBE has advantages over JHE in the presence of individual
heterogeneity and over BOWE in cases where sighting probabilities are similar
between primary occasions (McClintock et al. 2006).

When sampling is without replacement, BBE will often outperform other esti-
mators and aid researchers in determining which model is most appropriate, but it
is by no means a superlative mark-resight estimator for all situations. Due to the
different assumptions and general rigidity of JHE, BOWE, and BBE, researchers
must commit to a particular model based on educated guesswork without rigorous
quantitative justification for model selection based on the data. Because there is
no quantitative criterion to choose between these estimators, there remains a need
for a more generalized framework for mark-resight abundance estimation. Similar
to those available for mark-recapture studies, this framework would allow a wide
variety of sampling conditions to be parameterized efficiently and provide quantita-
tive justification for model selection regardless of the types and levels of variation
encountered in the field. These parameterizations would include complex models
utilizing covariates and simpler models where potential sources of variation such as
individual heterogeneity may be ignored. By incorporating a more flexible model
structure under a generalized framework, the uncertainty that remains in mark-
resight model selection would be reduced substantially. In the following section,
we introduce a model addressing this need for a more generalized framework
when sampling is without replacement. We then apply the model to New Zealand
robin (Petroica australis) data and compare its performance to the other estimators.
Finally, we evaluate the performance of our model based on simulation experiments
and discuss the implications for mark-resight model selection.
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2 The Model

The logit-normal mixed effects mark-resight model (LNE) has the same assump-
tions of BBE and allows the data to be combined across t primary sampling occa-
sions in a robust sampling design. In order to incorporate heterogeneity parameters
into the model, we will assume marked individuals are individually identifiable.
However, unlike BBE and BOWE, LNE does not require individually identifiable
marks (although its utility is somewhat diminished without them). A known number
of individuals (n j , j = 1, . . . , t) must first be marked at the beginning of interval j,
and resighting data are collected during the t closed intervals consisting of k j ( j =
1, . . . , t) distinct secondary resighting occasions. The data consist of resightings for
marked individual s on secondary occasion i of primary occasion j (δsi j ) and the total
number of unmarked sightings across all k j secondary occasions of primary occa-
sion j (Tu j ). The δsi j are modeled as independent Bernoulli random variables, where
δsi j = 1 if individual s is seen on secondary occasion i of primary occasion j, and
δsi j = 0 otherwise. Individual sighting probabilities are approximated as the real-
ization of a logit-normal random variable, where time is modeled as a fixed effect
(βi j ) and individual heterogeneity as a random effect with mean zero and unknown
variance σ 2

j . The marked individual resighting data have conditional expectation

E(δsi j | σ j , Zsj , βi j ) = psi j = 1

1 + exp(−(σ j Zs j + βi j ))
,

where Zsj
iid∼ N (0, 1). Therefore, a randomly selected individual s from primary

occasion j with latent sightability Zsj has the marginal probability of being seen on
secondary occasion i

EZsj (psi j ) = pi j |s =
∫

1

1 + exp(−(σ j zs j + βi j ))
φ(zs j )dzs j ,

where φ(zs j ) is the standard normal distribution. Time (βi j ) could possibly be treated
as a random effect, but we chose not to investigate this approach because the number
of occasions is generally too small for this to be useful. Under this framework,
resighting probabilities may be modeled with no time or heterogeneity effects within
secondary occasions (βi j = θ j , σ j = 0), only time effects, only heterogeneity
effects, or additive time and heterogeneity effects. Across all marked individuals
and secondary occasions, an unconditional likelihood function for σ j and βi j is

L(σ j , βi j | δsi j , n j , k j ) =
n j∏

s=1

∫ ⎡⎣ k j∏
i=1

p
δsi j

si j (1 − psi j )
(1−δsi j )

⎤⎦φ(zs j )dzs j . (1)

Abundance (N ) enters the equation by focusing on Tu j and the number of
unmarked individuals in the population (U j = N j − n j ). Using the approach
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validated for BBE (McClintock et al. 2006), Tu j

ind∼ N [E(Tu j ), var(Tu j )], the appro-
ximate likelihood function for N j is:

L(N j | σ j , βi j , δsi j , n j , k j , Tu j ) = 1√
2πvar(Tu j )

exp

{
−[Tu j − E(Tu j )]

2

2var(Tu j )

}
.

Combining the two likelihoods across the t primary occasions yields the LNE
likelihood of the general form:

L(N, σ ,β | δ, n, k, Tu)

=
t∏

j=1

⎧⎨⎩
n j∏

s=1

∫ ⎡⎣ k j∏
i=1

p
δsi j

si j (1 − psi j )
(1−δsi j )

⎤⎦ φ(zs j )dzs j

⎫⎬⎭
×

t∏
j=1

1√
2πvar(Tu j )

exp

{
−[Tu j − E(Tu j )]

2

2var(Tu j )

}
. (2)

For the simplest model, with no time or individual heterogeneity effects within
secondary occasions,

E(Tu j ) = (N j − n j )k j
1

1 + exp (−θ j )
,

and

var(Tu j ) = (N j − n j )k j
exp (θ j )

[1 + exp (θ j )]2
.

For the case of fixed time effects only within secondary occasions,

E(Tu j ) = (N j − n j )
k j∑

i=1

1

1 + exp (−βi j )
,

var(Tu j ) = (N j − n j )
k j∑

i=1

exp (βi j )

[1 + exp (βi j )]2
.

The individual heterogeneity model with no time effects within secondary occa-
sions has unconditional

E(Tu j ) = (N j − n j )k jμ j ,
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and

var(Tu j ) = (N j − n j )k j
[
μ j (1 − μ j ) + (k j − 1)(γ j − μ2

j )
]
, (3)

where

μ j =
∫

1

1 + exp(−(σ j z j + θ j ))
φ(z j )dz j ,

γ j =
∫ [

1

1 + exp(−(σ j z j + θ j ))

]2

φ(z j )dz j ,

and φ(z j ) is the standard normal distribution. For the heterogeneity model with fixed
time effects within secondary occasions,

E(Tu j ) = (N j − n j )
k j∑

i=1

μi j ,

and

var(Tu j ) = (N j − n j )

⎡⎣ k j∑
i=1

μi j (1 − μi j ) +
∑∑

l �=i

(γli j − μl jμi j )

⎤⎦ , (4)

where

μi j =
∫

1

1 + exp(−(σ j z j + βi j ))
φ(z j )dz j ,

and

γli j =
∫

1

1 + exp(−(σ j z j + βl j ))

1

1 + exp(−(σ j z j + βi j ))
φ(z j )dz j .

Interested readers may find the derivations of (3) and (4) in the Appendix.
LNE may incorporate the number of marked individuals that were identified as

marked, but not identified to individual (εi j ). These data enter the likelihood in (2)
via E(Tu j ) and var(Tu j ). For the general case with fixed time effects and individual
heterogeneity,

E(Tu j ) = (N j − n j )
k j∑

i=1

μ′
i j ,

and
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var(Tu j ) = (N j − n j )

⎡⎣ k j∑
i=1

μ′
i j (1 − μ′

i j ) +
∑∑

l �=i

(γ ′
li j − μ′

l jμ
′
i j )

⎤⎦ ,

where

μ′
i j =

∫ [
1

1 + exp (−(σ j z j + βi j ))
+ εi j

n j

]
φ(z j )dz j ,

and

γ ′
li j =

∫ [
1

1 + exp(−(σ j z j + βl j ))
+ εl j

n j

]
×
[

1

1 + exp(−(σ j z j + βi j ))
+ εi j

n j

]
φ(z j )dz j .

Similar to BOWE and BBE, with high levels of individual heterogeneity the
adjustment to incorporate unidentified marks is reliable when the proportion of
unidentified marks remains < 0.10. When > 0.10, the resulting underestimates
of variances can cause confidence interval coverage of N to fall as low as 88%
(White and Shenk 2001; Magle et al. 2007). When individual heterogeneity is low to
moderate, the proportion of unidentified marks can approach 0.20 and still achieve
nominal 95% confidence interval coverage (Magle et al. 2007).

Because the integrals in (2) do not have a closed form solution, they must be
solved numerically. These can be approximated with relative ease using Gaussian–
Hermite quadrature (Givens and Hoeting 2005), with

∫ ⎡⎣ k j∏
i=1

pδsi j
si j (1 − psi j )

(1−δsi j )

⎤⎦φ(zs j )dzs j

≈ 1√
π

M∑
m=1

wm

k j∏
i=1

(
1

1 + exp(−(
√

2σ jvm + βi j ))

)δsi j

(
1 − 1

1 + exp(−(
√

2σ jvm + βi j ))

)1−δsi j

,

μi j ≈ 1√
π

M∑
m=1

wm
1

1 + exp(−(
√

2σ jvm + βi j ))
,
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and

γli j ≈ 1√
π

M∑
m=1

wm
1

1 + exp(−(
√

2σ jvm + βl j ))

1

1 + exp(−(
√

2σ jvm + βi j ))

for tabulated (vm, wm) pairs corresponding to M quadrature points (Abramowitz and
Stegun 1964).

3 Example: New Zealand Robin

3.1 Methods

The New Zealand robin data were collected in March 2005 from t = 2 study
sites in the Eglinton Valley of Fiordland National Park, New Zealand (44’58’s,
168’01’E). The two sites, Knobs Flat and Walker Creek, consisted of 100 ha grids
and were part of an exploratory investigation by the Department of Conservation on
the usefulness of this technique for estimating N of endangered populations in the
Chatham Islands. Prior to the resighting surveys, as many juvenile and adult birds
as possible were captured within the study areas and given individually identifiable
bands. Between September 2003 and March 2005, 80 and 79 birds were banded
in Knobs Flat and Walker Creek, respectively. Immediately prior to collecting
resighting data in March 2005, an independent visual survey was conducted to
sample a known “marked” subset (nk f = 23, nwc = 20) of the previously banded
birds. This was necessary because banded birds could have died or emigrated during
the extended capture period prior to the resighting surveys. The resighting effort was
divided into 7 distinct secondary occasions where the entire area of both study sites
was surveyed. Secondary sampling occasions were conducted in the morning and
typically required four hours each. The populations were assumed closed during
the sampling intervals. On several occasions a marked or banded individual was
seen more than once. However, because the extended capture period left few birds
unbanded, the researchers believed they could identify double counts and satisfy the
assumption of sampling without replacement. Raw estimates of p̄ from the marked
populations were 0.40 (SE = 0.04) and 0.41 (SE = 0.04) for Knobs Flat and Walker
Creek, respectively. Total unmarked sightings (Tu,k f = 45, Tu,wc = 54) included
previously banded birds that were not included in the marked subset.

With t = 2 primary occasions both consisting of 7 secondary occasions, there are
30 possible LNE parameterizations with Nk f �= Nwc (Table 1). The models range
in complexity from the simplest no heterogeneity model, {β(.)σ (0)}, to the most
general time and heterogeneity model, {β(t1, t2)σ (., .)}. The models were easily
implemented using the nonlinear mixed-effects model (NLMIXED) maximum like-
lihood procedure in the SAS System for Windows (SAS Institute 2002). By default,
NLMIXED computes the integrals in (1) using adaptive Gaussian quadrature.
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Table 1 LNE parameterizations for βi j and σ j with t = 2 primary sampling occasions both
consisting of k secondary sampling occasions . Combining the six βi j parameterizations with the
five σ j parameterizations yields 30 possible LNE models with N1 �= N2. The number of estimated
parameters (not including N j ) in the models range from K = 1 for model {β(.)σ (0)} to K = 2k+2
for model {β(t1, t2)σ (., .)}

Model notation Parameterization k

β(.) βi1 = βi2 = θ 1
β(., .) βi1 = θ1, βi2 = θ2 2
β(t1 = t2) βi1 = βi2 k
β(t1, .) βi1 �= βi2 = θ k + 1
β(., t2) βi2 �= βi1 = θ k + 1
β(t1, t2) βi1 �= βi2 2k
σ (0) σ1 = σ2 = 0 0
σ (.) σ1 = σ2 1
σ (., 0) σ1 �= σ2 = 0 1
σ (0, .) σ2 �= σ1 = 0 1
σ (., .) σ1 �= σ2 2

The integrals in E(Tu j ) and var(Tu j ) must be programmed separately within the
procedure, and we found Gaussian–Hermite quadrature with M = 4 points to be
an adequate approximation.

We used Akaike’s Information Criterion (AICc) (Burnham and Anderson 2002)
and the Bayesian Information Criterion (BIC) (Schwarz 1978) as a basis for ranking
the 30 LNE models and obtaining model-averaged point estimates and uncondi-
tional variances with AICc and BIC weights (Burnham and Anderson 2002; Link
and Barker 2006). We defined the effective sample size for AICc and BIC calculation
as n = ∑t

j=1 n j k j + t . We compared the LNE model-averaged estimates to those
of JHE, BOWE, and BBE. BBE estimates were also model-averaged using AICc

and BIC weights. As “equivalents” to JHE and BOWE, we also compared estimates
of the most general LNE and BBE models where all parameters were estimated
independently. Logarithm-transformed 95% confidence intervals for BOWE were
computed as in Bowden and Kufeld (1995). Confidence intervals for LNE, JHE, and
BBE were computed similarly but with the lower bound constrained to be greater
than the known number of marked individuals. In comparing the performance of the
models, our results focus on the precision of the estimates. Bias is also an important
issue, but we were unable to quantify this property because N is unknown for these
populations. However, both AICc and BIC address the trade-off between bias and
precision as a means of model selection.

3.2 Results

AICc and BIC model rankings differed, with AICc giving higher weights to the
more complex additive models (Table 2). BIC rankings suggest mean resighting
probabilities did not differ between secondary occasions or between the two study
areas, but AICc rankings provide some evidence of temporal variation in Knobs
Flat resighting probabilities. The vast majority of AICc weight (85%) was given to
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Table 2 AICc and BIC weights for selected LNE models of New Zealand robin abundance in
Knobs Flat and Walker Creek study areas in Fiordland National Park, New Zealand. Numbers of
estimated parameters include N

Model AICc weight
No. est.
parameters Model BIC weight

No. est.
parameters

β(t1, .)σ (., 0) 0.22 11 β(.)σ (0) 0.61 3
β(t1, .)σ (.) 0.14 11 β(.)σ (., 0) 0.15 4
β(.)σ (., 0) 0.09 4 β(.)σ (.) 0.14 4
β(t1, .)σ (., .) 0.08 12 β(.)σ (0, .) 0.04 4
β(.)σ (.) 0.08 4 β(., .)σ (0) 0.03 4
β(t1, .)σ (0) 0.06 10 β(.)σ (., .) 0.01 5
β(.)σ (0) 0.06 3 β(., .)σ (., 0) 0.01 5
β(.)σ (., .) 0.04 5 β(., .)σ (.) 0.01 5
. . . . . . . . . . . . . . . . . .

β(t1, t2)σ (., .) 0.00 18 β(t1, .)σ (., 0) 0.00 11
. . . . . . . . . . . . . . . . . .

β(., t2)σ (0, .) 0.00 11 β(t1, t2)σ (., .) 0.00 18

models incorporating individual heterogeneity. BIC favored less complex models,
with 36% of BIC weight given to those with heterogeneity parameters. The highest
ranking BIC model estimates were therefore more precise than those of AICc. Esti-
mates for the three-parameter minimum-BIC model, {β(.)σ (0)}, were θ̂ = −0.38
(SE = 0.12), N̂k f = 38.7 (SE = 2.11), and N̂wc = 38.9 (SE = 2.37). Hetero-
geneity and abundance estimates for the 11-parameter minimum-AICc model,
{β(t1, .)σ (., 0)}, were σ̂k f = 0.79 (SE = 0.28), N̂k f = 38.7 (SE = 2.87), and
N̂wc = 38.8 (SE = 2.74). In comparing the various estimators, point estimates
were very similar regardless of the method used, but precision levels did vary
(Table 3). The BIC model-averaged LNE and JHE had the highest precision, but
given the AICc and BIC evidence that individual heterogeneity may be an issue
with these data, we believe JHE is underestimating the uncertainty about N and is
therefore inappropriate. Model-averaged LNE and BBE results were very similar
for these data because both incorporated a robust sampling design and estimated
individual heterogeneity parameters. Even when compared to the “equivalent” BBE
and LNE models with all parameters estimated independently, BOWE was the least
precise of the estimators. Although inferences in this simple example were quite
similar regardless of the model used, the model-averaged LNE or BBE appear to be
the most appropriate because they were more efficient. Had there been less evidence
of heterogeneity, we suspect the AICc model-averaged LNE would also have been
more efficient than its BBE counterpart because of its ability to incorporate these
parameters as deemed necessary by the data.

The use of AICc or BIC has received much attention in recent years (Burnham
and Anderson 2004; Link and Barker 2006). Philosophical issues aside, this example
provides no information on the appropriateness of AICc or BIC for use with
these models. Further, the results from this single data set are not indicative of
the expected relative performance of LNE. We therefore conducted simulation
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Table 3 Abundance estimates (N̂ ), percent coefficient of variation (% CV), 95% confidence
intervals (CI), and percent confidence interval lengths (% CIL) for Knobs Flat (KF) and Walker
Creek (WC) study areas when using the AICc model-averaged (modAIC) LNE and BBE, BIC
model-averaged (modBIC) LNE and BBE, LNE and BBE with both areas estimated independently,
BOWE, and JHE. Estimators are ordered by the smallest average % CV

95% CI

Estimator Study area N̂ % CV Lower Upper % CIL

LNE modBIC KF 38.7 5.8 34.9 43.7 22.8
WC 38.9 6.4 34.6 44.4 25.4

JHE KF 38.4 6.0 34.5 43.5 23.4
WC 38.9 7.1 34.2 45.1 27.9

BBE modBIC KF 38.7 6.4 34.6 44.2 24.9
WC 38.8 7.1 34.1 45.0 28.1

BBE modAIC KF 38.7 6.6 34.5 44.4 25.7
WC 38.8 7.2 34.0 45.1 28.5

LNE modAIC KF 38.7 6.7 34.4 44.5 26.3
WC 38.8 7.2 34.1 45.2 28.6

BBE KF 38.7 7.4 34.1 45.2 28.8
WC 38.8 7.6 33.8 45.4 29.9

LNE KF 38.7 7.4 34.1 45.2 28.9
WC 38.8 7.6 33.8 45.4 29.9

BOWE KF 38.7 7.7 33.0 45.4 32.2
WC 38.7 7.9 32.8 45.6 33.1

experiments to assess the model’s utility in a wide variety of sampling conditions
using both AICc and BIC.

4 Simulation Experiments

4.1 Methods

Data were generated under the assumptions of geographic and demographic closure
within secondary resighting occasions, sampling without replacement, iid sighting
probabilities for marked and unmarked individuals, 100% mark identification,
and no error in distinguishing marked versus unmarked individuals. Individual
resighting probabilities were modeled as logit-normal random variables based on
an underlying population p̄ and individual heterogeneity level (σI H ), but additive
temporal variation (σT V ) allowed psi j to vary for each secondary occasion. Because
resighting probabilities were modeled using this transformation, input values for
p̄, σI H , and σT V did not back-transform identically to their original values.
McClintock et al. (2006) used the same methods and categorized the realized values
for the data-generating parameters. For p̄, the categories were Low (0.15 < p̄ <

0.16), Medium (0.30 < p̄ < 0.38), and High ( p̄ = 0.50). The categories for σI H

and σT V were Low (0.00 < σ < 0.05), Medium (0.10 < σ < 0.15), and High
(0.16 < σ < 0.26).

We first generated simulated mark-resight data for t = 1 primary sampling
occasion. The input parameter values for generating resighting probabilities
were all possible combinations of p̄ = (Low, Medium, or High) and σI H =
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σT V = (Low, Medium, or High). This limited the number of resighting probability
scenarios to seven because when p̄ = Low, only σI H = σT V = Low is theoretically
possible. Applying these seven resighting probability scenarios to the four sample
size classes with k = 3 or 5 and n = 25 (N = 100) or 75 (N = 500) totaled 28
simulation scenarios. These scenarios ranged in sample size from smallest (k = 3,
n = 25, N = 100, p̄ = Low) to largest (k = 5, n = 75, N = 500, p̄ = High) with
the variation in p̄ determined by the level of σI H = σT V .

We next generated data for t = 2 primary sampling occasions. With so many
possible input parameters determining resighting probabilities and sample sizes, we
restricted these simulations to six pseudo-randomly selected scenarios fixing k1 =
k2, n1 = n2, and N1 = N2 (Table 4). We first designated “small” (k = 3, n = 25,
N = 100, p̄ = Low), “medium” (k = 5, n = 25, N = 100, p̄ = Medium),
and “large” (k = 5, n = 75, N = 500, p̄ = High) samples. We then randomly
assigned σI H (1) = σI H (2) and σT V (1) = σT V (2) from (None, Low, Medium, or High)
to create three scenarios. For the other three scenarios, all values were randomly
selected from k = (3, 5), n = (25, 75), p̄ j = (Low, Medium, High), σI H ( j) =
(None, Low, Medium, High), and σT V ( j) = (None, Low, Medium, High) with N j =
100 if n = 25, and N j = 500 otherwise.

With 1 primary occasion, there are four possible LNE parameterizations: (1)
no time or heterogeneity effects, {β(.)σ (0)}, with K = 3 parameters; (2) time
effects only, {β(t)σ (0)}, K = k + 2; (3) heterogeneity only, {β(.)σ (.)}, K = 4;
and (4) time and heterogeneity effects, {β(t)σ (.)}, K = k + 3. With 2 primary
occasions and k1 = k2, there are 30 possible LNE parameterizations (Table 1).
If k1 �= k2, there are 25 parameterizations because constraining βi1 = βi2 is
no longer possible. For each of the 1000 replications within a given simulation
scenario, we compared the performance of LNE with JHE, BBE, and BOWE.
For LNE, we examined both AICc and BIC model-averaged parameter estimates.
For simulations with 2 primary occasions, we also examined the AICc and BIC
model-averaged parameter estimates for BBE. AICc, BIC, and confidence inter-
vals were computed as in Section 3. Model performance was based primarily
on percent confidence interval coverage of N, Bias/SE = E(N̂ − N )/SE(N̂ ),
percent confidence interval length (% CIL = 100(UCI − LCI)/N ), and root mean

Table 4 Data generating scenarios for simulation experiments with t = 2 primary sampling
occasions. Number of secondary resighting occasions (k), marked sample size (n), and population
abundance (N ) were the same for both primary sampling occasions, but mean sighting probability
p̄, individual heterogeneity (σI H ), and temporal variation (σT V ) were allowed to vary

Scenario k n N p̄1 σI H (1) σT V (1) p̄2 σI H (2) σT V (2)

A 3 25 100 Low Low None Low Low None
B 3 75 500 Med None High Low None Low
C 5 25 100 Med High Med Med High Med
D 5 25 100 High Med None Med High Med
E 5 75 500 Med Low High High None High
F 5 75 500 High Med Low High Med Low
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squared error
(

RMSE =
√

Bias(N̂ )2 + var(N̂ )
)

. Bonferroni intervals with family

confidence coefficient α = 0.05 (Hocking 2003) were used to simultaneously
compare average estimator coverage, Bias/SE, and % CIL across scenarios. All
analyses were performed using NLMIXED as described above and the Interactive
Matrix Language (IML) in SAS (SAS Institute 2002).

4.2 Results

In simulations with 1 primary occasion, bias was not an appreciable problem for
any of the estimators, with average Bias/SE across all 28 scenarios < 0.1 for all
models (Cochran 1977) (Table 5). BOWE had the highest average point estimate for
coverage and JHE had the lowest % CIL across the seven resighting probability
scenarios in all four sample size classes. However, BOWE also had the highest
% CIL, and JHE had the lowest coverage across all four sample size classes. No
significant differences were observed between the AICc or BIC model-averaged
LNE approaches. No significant differences in average coverage for the four sample
size classes were observed between BOWE and LNE, but average % CILs were
significantly lower in all sample size classes for LNE than for BOWE. Overall
coverage and % CIL for BBE did not significantly differ from BOWE or LNE. When
σI H = Low, no significant difference in average coverage was observed between
the approaches. However, JHE and the LNE approaches had significantly smaller %
CILs, and the two were not significantly different from one another. BBE tended to
have slightly higher RMSEs than the other heterogeneity models, but BOWE had the
highest RMSEs with the largest sample sizes. Except with the largest sample sizes,
BOWE generally had slightly smaller RMSEs than the LNE approaches. This is
attributable to a slight positive bias for LNE with smaller sample sizes, but because
Bias/SE ratios remained small, the LNE approaches still achieved optimal coverage
and % CILs.

Table 5 Average percent confidence interval coverage, percent confidence interval length (% CIL),
and Bias/SE of abundance estimates for BBE, BOWE, JHE, AICc model-averaged (modAIC)
LNE, and BIC model-averaged (modBIC) LNE across 28 simulated scenarios with t = 1 primary
sampling occasion

% Coverage % CIL Bias/SE

Estimator Est. SE Est. SE Est. SE

BBE 94.1 0.14 42.4 0.11 0.06 0.01
BOWE 94.8 0.13 43.3 0.10 0.03 0.00
JHE 91.6 0.16 37.9 0.10 0.10 0.01
modAIC

LNE
93.4 0.15 41.1 0.11 0.07 0.01

modBIC
LNE

93.1 0.15 40.6 0.11 0.07 0.01
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Table 6 Average percent confidence interval coverage, percent confidence interval length (% CIL),
and Bias/SE of abundance estimates for BOWE, JHE, AICc model-averaged (modAIC) LNE and
BBE, and BIC model-averaged (modBIC) LNE and BBE across six simulated scenarios with t = 2
primary sampling occasions

% Coverage % CIL Bias/SE

Estimator Est. SE Est. SE Est. SE

modAIC
BBE

94.4 0.21 47.5 0.24 0.07 0.02

modBIC
BBE

92.6 0.24 45.0 0.21 0.07 0.04

BOWE 94.5 0.21 50.1 0.23 −.01 0.01
JHE 89.8 0.27 43.7 0.26 0.13 0.03
modAIC

LNE
93.7 0.22 47.1 0.25 0.07 0.02

modBIC
LNE

92.0 0.25 43.8 0.21 0.06 0.04

Across the six scenarios with 2 primary occasions (Table 4), BOWE again had
the highest average coverage and largest average % CILs. JHE on average had
lower coverage and smaller % CILs than the other approaches. Average coverage
for the AICc model-averaged LNE and BBE were not significantly different than
BOWE, but average coverage for the BIC model-averaged LNE and BBE were
significantly lower than BOWE. Both LNE and BBE model-averaged approaches
produced significantly smaller % CILs than BOWE. Average Bias/SE was only
> 0.1 for JHE (Table 6). The poorest performance for all approaches was in esti-
mating N2 of scenario D, where coverage was 87.7% (SE = 1.04) for the AICc

model-averaged BBE, 82.8% (SE = 1.20) for the BIC model-averaged BBE, 92.3%
(SE = 0.84) for BOWE, 80.7% (SE = 1.25) for JHE, 89.0% (SE = 0.99) for the
AICc model-averaged LNE, and 81.6% (SE = 1.23) for the BIC model-average
LNE. In this scenario, coverage was not significantly different between BOWE and
the AICc model-averaged LNE or BBE, but all other approaches were significantly
lower. When σI H ( j) ≤ Low, no significant differences in average coverage or % CIL
were detected between JHE and the AICc model-averaged LNE and BBE, but BBE
had the highest point estimate for coverage (95.4%, SE = 0.27) and LNE had the
smallest point estimate for % CIL (53.7%, SE = 0.46). BIC model-averaged LNE
had significantly lower % CILs than JHE with no significant difference in coverage
for these low heterogeneity scenarios. With the smallest sample size (scenario A),
RMSE was largest for JHE and smallest for the BIC model-averaged BBE. With
the largest sample size (scenario F), RMSE was largest for BOWE and smallest for
the BIC model-averaged BBE. For the other scenarios, RMSE was generally largest
for BOWE or BBE and smallest for JHE. Although average performance across all
scenarios was very similar for LNE and BBE, LNE tended to be more efficient than
BBE in scenarios with low levels of heterogeneity and BBE tended to be slightly
more efficient when p̄ = Low.
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5 Discussion

With t = 1, little difference was observed in LNE performance when using AICc

or BIC for model-averaged inference. When the number of occasions, marked
individuals, and resighting probabilities were all at the lowest levels (scenario A),
BOWE did perform better than the maximum likelihood models. A non-parametric
model such as BOWE (whose properties are not based on asymptotic theory) may
be a less biased approach with such small sample sizes, but precision is so poor
that none of the estimators are particularly useful for inferences. With sample sizes
suitable for producing useful levels of precision, LNE was generally a more precise
estimator with no significant loss in coverage. Its higher efficiency compared to
BBE and BOWE is attributable to LNE’s ability to invest in estimating heterogeneity
parameters as deemed necessary by the data. With low levels of heterogeneity, LNE
had similar coverage and precision to JHE.

With t = 2, the advantages of data pooling in a robust sampling design were
apparent in the increased precision of LNE and BBE. In the few scenarios with low
levels of individual heterogeneity, LNE appeared to be more efficient than the other
estimators, but not enough scenarios of this type were examined to detect a signif-
icant difference. However, based on these results and those from the simulations
with 1 primary occasion, we expect that unlike BBE, the model-averaged LNE will
be as or more efficient than JHE when heterogeneity levels are low. We also expect
these advantages of LNE over the other estimators to be more pronounced with >2
primary sampling occasions.

Although little difference was found in the use of AICc versus BIC with 1
primary occasion, we found a slight advantage in the use of AICc in some cases
with 2 primary sampling occasions. The tendency of BIC to select less compli-
cated models with small to moderate sample sizes (Burnham and Anderson 2004;
Link and Barker 2006) was somewhat of a disadvantage in terms of coverage when
the population mean resighting probabilities were different. Abundance estimates
are particularly sensitive to biases in mean resighting probability estimates, and
BIC’s greater tendency to “split the difference” in estimating fewer parameters
can result in underestimation of N in one primary occasion and overestimation in
the other. We are not suggesting that AICc is not susceptible to similar problems
with small marked sample sizes, but it did appear to alleviate them more than BIC.
For example, in scenario D the “true” generating model had different values for
all of the resighting probability input parameters, and all of the estimators failed
to achieve nominal coverage in estimating N2. As evidence of the criterion “split-
ting the difference,” Bias/SE for the LNE model-averaged estimates of N1 and N2

were 0.35 and −0.26 for BIC, but were 0.11 and 0.02 for AICc, respectively. For
BBE, these were 0.43 and −0.18 for BIC and 0.21 and 0.00 for AICc, respectively.
Although coverage was close to nominal for N1, coverage for N2 using the BIC
model-averaged approach was significantly lower than its AICc counterpart, and the
problem appeared more severe for BBE than for LNE. However, this was not an
appreciable problem for either approach in simulations with different population
mean resighting probabilities and larger sample sizes, such as scenarios B and E.
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Because the estimation of resighting probability parameters is so critical to esti-
mates of N, we advise against the use of BIC model averaging under sampling
conditions similar to those simulated in scenario D. We recommend as a general
guideline that researchers carefully compare the estimates obtained via model aver-
aging to those from the most general model where all parameters are estimated
independently. If the parameter estimates (particularly N) are quite different, a
moderately conservative approach would be to use AICc model averaging for infer-
ences. The most conservative approach would be to use the general model. As indi-
cated by the simulations with 1 primary occasion, the use of the most general LNE
will typically still be more efficient than BBE and BOWE. When compared with
the BIC model-averaged results for scenario D, average performances were better
with the most general LNE and BBE models. Bias/SE for N1 and N2 were 0.02 and
0.10 for LNE, and 0.02 and 0.12 for BBE, respectively. Coverage of N2 was 90.9%
(SE = 0.91) and 90.7% (SE = 0.92) with % CILs of 57.8 (SE = 0.69) and 58.0
(SE = 0.68) for LNE and BBE, respectively. Similar to the AICc model-averaged
results, these coverages were not statistically different from BOWE. Despite being
slightly larger than when using AICc model averaging, % CILs for the general
models were still significantly smaller than BOWE. Although we found it to be
a problem with 2 primary occasions, we expect this small sample issue for BIC to
be less of a concern in longer-term monitoring studies with > 2 primary occasions.

6 Conclusions

In terms of efficiency, we found LNE to be equivalent to or better than the other
available mark-resight abundance estimators (with no appreciable loss in coverage)
regardless of the sampling conditions. LNE provides researchers a more efficient
alternative to JHE capable of incorporating a robust sampling design when indi-
vidually identifiable marks are not feasible. LNE is more efficient than BOWE or
BBE and equivalent to JHE when observed heterogeneity levels are low because it
may ignore this variability as deemed appropriate by the data. When heterogeneity
levels are high, LNE is more efficient than BOWE and equivalent to BBE because it
may incorporate a robust sampling design. When sampling is without replacement,
its flexible modeling framework provides quantitative justification for model selec-
tion based on the data, thereby eliminating the need to determine which of JHE,
BOWE, or BBE is most appropriate based on educated guesswork. Overlooking
philosophical issues, we did identify some potential advantages and disadvantages
of using AICc or BIC for these models, but little difference in inferences can
generally be expected between the two approaches when using model averaging.
Although computationally more complicated than the other estimators, we believe
the increased complexity that comes with the generalized modeling framework of
LNE is justified by its increased efficiency and rigorously defendable means of
mark-resight model selection. While not investigated here, the ability of LNE to
incorporate environmental or individual covariates in modeling resighting proba-
bilities may further increase its efficiency. However, when sampling must be with
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replacement, BOWE is still the only reliable option available for these studies. A
flexible structure similar to LNE allowing sampling with replacement is still desir-
able and warrants further research.
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Appendix

If by definition the sightings of the N − n unmarked individuals (any primary occa-
sion j) are independent over individuals and conditionally (on Zs) independent over
occasions, then

Tu =
N−n∑
s=1

k∑
i=1

δsi =
N−n∑
s=1

Ts .

Hence,

var(Tu) = (N − n)var

(
k∑

i=1

δsi

)
= (N − n)var(Ts),

and

Ts =
k∑

i=1

δsi .

The general variance formula for any individual s is

var(Ts) = EZ [var(Ts | Z )] + varZ
[
ETs (Ts | Z )

]
= EZ

[
k∑

i=1

psi (1 − psi )

]
+ varZ

(
k∑

i=1

psi

)

= EZ

[
k∑

i=1

psi (1 − psi )

]
+

k∑
l=1

k∑
i=1

covZ (psl , psi ).

(5)

For (3), with no fixed time effects (5) becomes

var(Ts) = EZ [kps(1 − ps)] + k2varZ (ps)

= kμ− kEZ (p2
s ) + k2

[
EZ (p2

s ) − μ2
]
,
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where

γ = EZ (p2
s ) =

∫ [
1

1 + exp(−(σ zs + θ ))

]2

φ(zs)dzs .

Hence,

var(Ts) = kμ− kγ + k2(γ − μ2)

= k
[
μ(1 − μ) + (k − 1)(γ − μ2)

]
,

and

var(Tu) = (N − n)k
[
μ(1 − μ) + (k − 1)(γ − μ2)

]
.

For (4), with fixed time effects (5) becomes

var(Ts) =
k∑

i=1

EZ [psi (1 − psi )] +
k∑

l=1

k∑
i=1

[EZ (psl , psi ) − μlμi ]

=
k∑

i=1

μi (1 − μi ) +
∑∑

l �=i

(γli − μlμi ),

and

var(Tu) = (N − n)

⎡⎣ k∑
i=1

μi (1 − μi ) +
∑∑

l �=i

(γli − μlμi )

⎤⎦ .
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Evaluation of the Linkage Disequilibrium
Method for Estimating Effective Population Size

James C. Russell and Rachel M. Fewster

Abstract Data on linkage disequilibrium at unlinked loci provide an estimate of
the inbreeding effective population size of the parental generation of the sampled
cohort. The inbreeding effective population size, Ne, is the reciprocal of the prob-
ability that two gametes, selected at random without replacement from those that
produced the sampled cohort, derive from the same parent. Effective population
size is an important parameter for measuring the rate of inbreeding in a population.
We detail the construction of the linkage disequilibrium estimator of Ne, and eval-
uate its performance by simulation. We simulate populations which are dioecious
and non-selfing. We use the simulations to examine the effects of several types of
deviation from ideal population conditions, and of sample size, genotyping errors,
number of loci typed, and polymorphic loci. We find substantial bias in the Ne esti-
mator when there have been recent fluctuations in census population size, when the
index of breeding variability is greater than one, and when the ratio of sample size
to effective population size differs substantially from one. Due to high variability,
estimators that have low bias for the reciprocal of Ne can present substantial bias
when used as estimators of Ne itself. We consider a recent small sample size bias
correction proposed for the method, and find that it improves bias in the reciprocal,
but at the expense of increased bias for Ne. The improvements in the bias of the
reciprocal are usually small, but are substantial when sample size is much less than
Ne, while the increase in bias for Ne is often substantial. We test the method on two
exhaustively sampled rat populations, and find it performs as expected from simu-
lation. For practitioners, we recommend that resources are spent first in ensuring
that the sample size is likely to be greater than the effective population size, and
only then that the number of loci is increased to improve the precision of the
estimate.
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1 Introduction

1.1 Census Population Size

Population size is a fundamental parameter of interest in ecological systems. Clas-
sical statistical methods have been developed for estimating the census population
size (Nc) from ecological capture data over a period of sampling (e.g. Seber 1982;
Borchers et al. 2002). For population modeling, we are often interested in the total
number of breeding individuals, often differentiating between breeding males and
females (Caswell 2001; Buckland et al. 2004). Only the breeders will contribute to
the next generation. The number of potentially breeding individuals (adults) can be
determined from census data using knowledge of the age structure of the population,
or by using an appropriate surrogate such as the size of animals.

1.2 Effective Population Size

From a genetic perspective, concepts of population size are related to the rates of
loss of genetic variation, fixation of deleterious alleles, and inbreeding. In an infinite
population without mutation, migration, or selection, allele frequencies are constant
over the generations. However, for a finite population, a random process of genetic
drift operates to change allele frequencies from one generation to the next (Caballero
1994). This occurs because each generation is formed by taking a finite sample of
the gametes produced by the parental generation. The sampled allele frequencies
will not match the parental frequencies exactly, and departures become greater as the
sample size becomes smaller. The magnitude of genetic drift between generations
therefore contains information about the sampled number of gametes, and hence
the population size. Small populations also increase the chance of an individual
possessing two copies of the same allele (homozygosity), because both copies were
inherited from the same ancestor. This can cause inbreeding depression.

Measures of genetic change are not reflected directly by the census population
size, but are related to the breeding population size, life history characteristics such
as variable individual breeding success and biased sex ratios, and fluctuations in
population size over the generations. The effective population size, Ne, is a surro-
gate size that is related directly to the genetic change being experienced by the
population (Crow and Denniston 1988). The effective population size is the size of
an ideal population that would experience the same amount of genetic change as
that observed in the population under study (Wright 1931; Crow and Kimura 1970).
The ideal population meets the three conditions of equal sex ratio, random mating,
and constant census population size over generations (Crow and Denniston 1988;
Caballero 1994). The notion of effective size provides a yardstick for understanding
the rate of genetic change for any population, irrespective of its life history and
other characteristics. When generations do not overlap, the effective population size
estimate refers to the size of a single generation (Waples 2005).
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To maintain constant population size in the ideal population, N adults must
produce 2N gametes. The numbers of gametes contributed by adults 1,. . ., N are
k1,. . ., kN, where these values sum to 2N. Random mating in the ideal population
means that, for each required gamete, the contributing adult is selected randomly
and independently from the N adults available, so the joint distribution of (k1,. . ., kN)
is Multinomial (2N ; 1/N , . . . , 1/N ) and the marginal distribution of ki is Binomial
(2N ; 1/N ). This model is also termed binomial mating. In a population of constant
size, the mean number of gametes contributed per adult is therefore μk = 2, and
the variance is �2

k = 2(1 − 1/N ). As N → ∞, the distribution tends to Poisson with
�2

k = μk = 2. The model assumes that a gamete can unite with any other gamete,
and hence the ideal population is capable of selfing (mating with oneself) and sex is
not taken into account (Crow and Denniston 1988).

Effective population size (Ne) quantifies the size of an ideal population that would
undergo a given level of genetic change. In the ideal population, regardless of which
measure of genetic change is considered, Ne is equal to the census population size
of a generation. For most real populations, however, the ideal conditions do not
hold and Ne is smaller than the census population size. This is largely because real
mating is not binomial and some individuals have greater breeding success than
others. Frankham (1995) suggested that Ne may be as small as a tenth of the census
population size for many species. It is rare for Ne to exceed the census size, but this
can occur if variability in the number of gametes contributed by each parent is less
than that expected from binomial chance, i.e. �2

k < μk(1 − 1/N ). This is termed
minimal inbreeding and can be produced in managed populations (Caballero 1994).

When considering deviations from the ideal population, it is necessary to specify
what measure of genetic change underlies the definition of Ne. This leads to different
notions of effective population size, the most common of which are inbreeding
effective size and variance effective size (Waples 2005). For inbreeding effective
size, genetic change refers to the rate of increase in inbreeding per generation,
while for variance effective size, genetic change refers to the variance of the change
in allele frequency from one generation to the next (Crow and Denniston 1988;
Caballero 1994). At small population sizes the different effective sizes can differ
substantially (Crandall et al. 1999). Care must also be taken to specify what genera-
tion an estimate of effective size refers to, because a single sampled generation may
yield estimates of effective size for its own generation, its parental generation, or its
grandparental generation, depending upon which effective size is intended, whether
the estimates are genetically based or demographically based, and whether or not
the population exhibits selfing (Caballero 1994; Waples 2005).

The linkage disequilibrium method estimates the inbreeding effective size of the
parental generation (Waples 2005, 2006). We define the inbreeding effective size
of the parental generation to be the number Ne such that its reciprocal, 1/Ne, is the
probability that two gametes, selected at random without replacement from those
occurring in the offspring, derive from the same parent. Caballero (1994) shows how
this probability is related to the rate of increase in the coefficient of inbreeding per
generation in the ideal population. If some parents contribute many more successful
gametes than others (non-binomial mating), the probability will be inflated and Ne
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will be smaller than the census size. With our definition above, we do not require the
randomly selected gametes to be united in a single offspring, so the definition does
not require that selfing has taken place. We use this definition to avoid confusion
over whether the effective size refers to the parental generation or the grandparental
generation in the case of non-selfing populations. For a non-selfing population, two
gametes from a single parent cannot unite in an offspring, but two gametes from
a single grandparent can, so the generation to which inbreeding Ne applies in a
non-selfing population is commonly cited as the grandparental generation (Crow
and Denniston 1988; Caballero 1994). However, the linkage disequilibrium method
estimates its value for the parental generation (Waples 2005, 2006). We circumvent
this confusion by defining Ne via a random selection of two successful gametes that
is notional, rather than a selection united in an offspring. Throughout this paper, the
inbreeding effective size refers to that of the parental generation.

The reciprocal probability, 1/Ne, is a more direct driver of evolutionary processes
than Ne itself (Wang 2001; Waples 2005). This has led previous authors to report
bias in Ne estimators using the harmonic mean of estimated values rather than the
arithmetic mean, because this reflects the bias of 1/Ne. However, this policy has not
been made explicit and could lead to confusion because most researchers focus on
Ne rather than its reciprocal. In this paper, we will focus on bias in Ne itself, which
is assessed by the arithmetic mean of estimated values rather than the harmonic
mean.

1.3 Demographic Estimation

Effective population size can be estimated from demographic data on the total
number of breeding males and females, and the mean and variance across indi-
viduals of their lifetime number of offspring that survive to reproduction (Crow
and Denniston 1988, with corrections in Caballero and Hill 1992; Caballero 1994;
Rockwell and Barrowclough 1995). However, these parameters are notoriously hard
to estimate accurately (Waples 1991; Barrowclough and Rockwell 1993; Schwartz
et al. 1998). Additionally, equations used to estimate effective population size from
demographic data are not always comprehensive (Frankham 1995), because they
do not simultaneously incorporate all three conditions leading to deviation from the
ideal population.

1.4 Genetic Estimation

Genetic estimates of effective population size operate by measuring genetic
processes that are known to be functions of Ne (Waples 1991). Genetic estimates
incorporate all three conditions which lead to deviation from the ideal population
(Frankham 1995). The genetic signal from Ne is strongest when the population size
is small (Waples 1991), and this is where we have the most potential to estimate
Ne accurately (Waples 1991; Wang 2005). For genetic estimation we assume that:
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(1) mutation is negligible; (2) the alleles considered are not subject to natural or
sexual selection (selectively neutral) and not linked with other loci subject to selec-
tion; (3) the samples of individuals for genetic analysis are randomly drawn from
a specified population or generation; and (4) there is no immigration from neigh-
bouring populations (Waples 1991).

Genetic estimates of effective population size are most commonly obtained
from two or more temporally separated samples from a population (Waples 1989;
Williamson and Slatkin 1999; Berthier et al. 2002), and represent an average of
Ne over the appropriate time-scale (Waples 2005; Wang 2005). Other methods esti-
mate historical effective population size over longer time periods using coalescent
theory and mutation rates (Crandall et al. 1999; Wang 2005), or jointly with other
parameters such as migration (Wang and Whitlock 2003) or mutation rate (Garza
and Williamson 2001).

By contrast with the temporal and historical methods for estimating Ne, the
linkage disequilibrium method gives an estimate of contemporary Ne from just one
sampled generation. The single sample exhibits linkage disequilibrium from the two
different processes of genetic sampling (selection of parental gametes) and statis-
tical sampling to form the set of individuals for genetic analysis. By quantifying the
level of linkage disequilibrium in the sample, an estimate of inbreeding Ne for the
parental generation can be obtained (Waples 2006), which we detail below.

1.5 Our Purpose

The effective population size provides a single summary value of the contributions
of breeding variability, sex ratio, and fluctuations in population size to the population
biology of a species (Wang 2005). Most research in effective population size has
focused on rare and endangered species (Nunney and Campbell 1993; Nunney and
Elam 1994), where it is considered important to increase effective population size
to raise the persistence of a population (Lande and Barrowclough 1987; Lynch and
Lande 1998). Our work focuses on invasive species where reducing the census popu-
lation size is the desired outcome. Invasive species are highly successful colonizers,
despite initially small census population sizes and associated limited effective popu-
lation sizes. This scenario is contrary to what would be expected following experi-
ences with threatened species at small population sizes (Sax and Brown 2000).

Census and effective population sizes are both readily estimated when samples
from a population can be taken repeatedly across time and space: for example, mark-
recapture methods can be used for census size, and change in heterozygosity over
time can be used for effective size. However ecologists commonly operate in the
less ideal situation of having only one opportunity to sample a single population.
This scenario is particularly the case for pest species where individuals are removed
as they are encountered. Where the conservation goal is to remove all individuals
as rapidly as possible (eradication) there is very little scope for long-term study of
populations. Researchers then have minimal data from which to gain understanding
of the population biology.
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Our goal is to consider the utility of the linkage disequilibrium method for
making inferences on a closed population which can only be sampled once without
replacement. We present the theory underlying the linkage disequilibrium method,
and use simulation to evaluate its performance. We use selectively neutral and highly
variable microsatellite markers to characterise genetic diversity within a popula-
tion (Selkoe and Toonen 2006). We consider only closed diploid populations with
discrete generations. We also examine the performance of the method on real data of
approximately known census population size, sex ratio and breeding success. Some
previous work has simulated the performance of the linkage disequilibrium method
(Waples 2005, 2006; England et al. 2006), and applied it to real datasets (Bartley
et al. 1992). We focus on a thorough simulation of the parameters that can affect
effective population size, using an ecologically plausible population. We discuss
finally the utility of the method, and how this may affect the partitioning of field and
laboratory work.

2 Linkage Disequilibrium

Linkage disequilibrium is the non-random association of alleles at different gene
loci. Linkage disequilibrium can be produced by a number of factors, including
physical linkage (the two loci are on the same chromosome), epistatic selection
(alleles interacting to control fitness), genetic hitch-hiking (physical linkage with a
selected locus), migration or population admixture, and random drift in finite popu-
lations (Hill 1981; Waples 1991). We are concerned only with the effect of genetic
drift on linkage disequilibrium, in the absence of the other effects.

Genetic drift linkage disequilibrium is generated from the finite sampling of
gametes from the parental generation. Sampling effects in a small sample mean
that the sample correlation between the alleles possessed at two loci will not be
zero, despite the underlying correlation or physical linkage being zero. The expected
squared correlation becomes larger as the population size gets smaller, and can be
shown to depend on 1/Ne (Sved 1971; Laurie-Ahlberg and Weir 1979; Weir and Hill
1980).

Specifically, consider two alleles A and B at loci 1 and 2 respectively, and suppose
for the moment that we have data on individual gametes, as opposed to genotype
data (see below). Let g be the total number of gametes whose alleles are known
at both loci 1 and 2, gA be the number of these gametes with allele A at locus 1,
gB be the number with allele B at locus 2, and gAB be the number with both allele
A at locus 1 and allele B at locus 2. Under random assortment, the proportion of
AB gametes should be approximately the product of the proportion of A gametes
and the proportion of B gametes. The linkage disequilibrium measure for alleles
A and B at these loci is the difference between the observed and the expected
proportions:

DAB = gAB

g
− gA

g
× gB

g
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A variety of methods can be used for estimating DAB from gametic data (Weir
1996, p. 112). However, it is more common that only genotypic data are avail-
able, from which we do not know which gametes the individual’s two alleles are
located on. When we sample individuals with genotype AA′, BB′, for example, we
do not know whether the alleles are arranged on the individual’s two gametes as
(A,B) | (A′,B′) or as (A,B′) | (A′,B). Additional to the disequilibrium DAB within the
gamete, we can define a second analogous disequilibrium D A

B referring to opposite
gametes within the same individual (Weir and Hill 1980). Neither DAB nor D A

B is
observable from genotypic data, but their sum is. This suggests that we can use a
composite disequilibrium measure, attributable to Dr Peter Burrows (see Cockerham
and Weir 1977, p. 142, Weir 1979, p. 241, and later unattributed in Weir 1996,
p. 126):

�AB = DAB + D A
B

The composite �AB is known as Burrow’s composite D, written as � in Weir (1996,
p. 126), and D* in Campton (1987, p. 184). It performs better than an alternative
maximum likelihood estimator for linkage disequilibrium (Weir 1979). It is esti-
mated directly from genotype counts as follows:

�̂AB = n AB

n
− 2 p̂Aq̂B

where n AB = 2n1 + n2 + n4 + n5/2, and n1, ..., n9 are genotype counts defined in
Table 1, and n = n1 + ... + n9 is the total number of counts (sampled individuals).
Here, p̂A and q̂B are the sample proportions of alleles A and B in the n individuals
typed at both loci: for example p̂A = (2n1 + 2n2 + 2n3 + n4 + n5 + n6)/(2n). A
small-sample correction factor of n/(n − 1) should be applied to �̂AB (Weir 1979,
p. 241; Campton 1987, p. 185).

It can be shown that �̂AB = côv(K A, K B)/2, where KA and K B give respectively
the number of A alleles and B alleles possessed by an individual, and each take
values 0, 1, or 2. The covariance is taken across individuals. We can then estimate
the corresponding correlation coefficient, rAB = cor(K A, K B), as

r̂AB = �̂AB√{
p̂A(1 − p̂A) + (ĥ AA − p̂2

A)
} {

q̂B(1 − q̂B) + (ĥ B B − q̂2
B)
}

Table 1 Possible genotypes and their sample counts for alleles A and B at loci 1 and 2 respectively.
A′and B′ denote any other alleles

B B B B′ B′B′

A A n1 n2 n3
A A′ n4 n5 n6
A′A′ n7 n8 n9
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where ĥ AA and ĥ B B are the observed proportions of AA and BB homozygotes in
the sample of size n, for example ĥ AA = (n1 + n2 + n3)/n. This estimate of the
correlation is the ratio of two estimators: the covariance côv(K A, K B) = 2�̂AB , and
the square root of the product of the sample variances for K A and K B (Weir 1996,
p. 38; equation (2) in Waples 2006).

The correlation coefficient rAB has E(rAB) = 0 for unlinked loci, where the
expectation is taken over conceptual replicate populations. In finite populations,
however, the correlation is likely to take non-zero values, with small populations
giving the largest values, so the expectation of its square is non-zero and is a func-
tion of the effective population size, Ne. The expression for E(r2

AB) depends upon
the mating structure and recombination fraction c in a population (Weir and Hill
1980; Weir et al. 1980), and is also affected by sample size n, because linkage
disequilibrium arises from statistical sampling as well as genetic sampling. The
distribution of r2

AB is not known, so the expectation E(r2
AB) is approximated as the

ratio of the expectation of the numerator and the denominator (Weir and Hill 1980,
p. 484; Laurie-Ahlberg and Weir 1979, p. 1309; Waples 2006, p. 169). For randomly
mating populations, this yields

E(r2
AB) ≈ c2 + (1 − c)2

2N I
e c(2 − c)

+ 1

n

where Ne
I is the inbreeding effective size of the parental generation. Thus E(r2

AB)
is inversely related to both inbreeding effective population size and sample size.
This expression is the same for dioecious species with random pairing and for
monoecious species with or without selfing (Weir and Hill 1980). Rearranging the
expression and replacing E(r2

AB) with r̂2
AB gives the formula for estimating Ne

I in
the case of unlinked loci (c = 0.5):

N L D
e = 1

3(r̂2
AB − 1/n)

(1)

where Ne
LD is the linkage disequilibrium estimate of Ne

I, and n is the number
of individuals sampled (Laurie-Ahlberg and Weir 1979; Hill 1981; Waples 1991).
Equation 1 incorporates the contribution of both genetic and statistical sampling to
the estimate of effective population size (Waples 2006). For species with a mating
system of lifetime monogamy, the numerator becomes 2 (Weir and Hill 1980), but
we do not consider this case.

The method above shows how Ne
LD is obtained from data on a single pair of

biallelic loci, where there are only two alleles A and A′ at locus 1, and B and B′ at
locus 2. In many applications, there will be several loci which are polymorphic, in
other words have more than two alleles. In this case we must derive an estimate r̂2

that combines all possible allele–allele comparisons within a single pair of loci, and
additionally all possible pairs of loci. All these comparisons contain information on
the underlying parameter r2.

For a single allele–allele comparison with a single pair of loci, for example A
and B above, all other alleles at the loci are binned together as with A′ and B′ in
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Table 1 (Wang 2005). This gives a single allele–allele estimate r̂2
AB . Let xi and xj

be the number of alleles at loci i and j respectively. We obtain xi × x j estimates
of r2, but only (xi − 1) × (x j − 1) of these estimates are independent. This can
be seen by noting that (for example) rAB = cor(K A, K B), and the K A values have
to sum to 2 across the xi different alleles at locus i, and similarly for locus j. The
estimate of r2 within the locus pair is obtained as the arithmetic mean of the xi × x j

estimates (England et al. 2006, p. 304). If there are L loci, this produces L(L − 1)/2
locus-pair estimates of r2. A single estimate for r2 across all locus pairs is gained
from the weighted arithmetic mean of the estimates for each locus pair, weighted by
the number of independent allelic comparisons (xi − 1) × (x j − 1) in each pair. This
estimate for r2 is substituted into equation (1) in place of r̂2

AB .
The appropriate sample size n to substitute into equation (1) is complicated by

the possibility of missing data for some individuals at some loci, and the different
numbers of estimates of r2 contributed by the different locus pairs. Let ni j be the
number of sampled individuals with data available for both loci i and j. There are
(xi − 1) × (x j − 1) independent estimates of r2 available from this locus pair. The
final value n in equation (1) is the harmonic mean of the ni j values, where each ni j

is included (xi − 1) × (x j − 1) times.
For calculating confidence intervals, the distribution of r2 is approximated by a

chi-square distribution with M = L(L−1)/2 degrees of freedom (Hill 1981; Waples
1991). Confidence limits for r2 are estimated with

(1 − α)CI = (
r̂2 × M/χ2

(α/2),M , r̂2 × M/χ2
(1−α/2),M

)
(2)

and confidence intervals for N I
e are obtained from equation (2) using equation (1).

The method above assumes that loci are neutral (non-selected) and physically
unlinked (c = 0.5). Microsatellite loci are highly suitable for the linkage dis-
equilibrium method (Schwartz et al. 1998), because they are highly polymorphic
and nearly selectively neutral, although this may be compromised by genetic hitch-
hiking. To avoid physical linkage of microsatellite loci, the loci should be located
on different chromosomes where possible. Unfortunately, the greatest information
about Ne is provided when loci have tight physical linkage (Hill 1981; Hayes et al.
2003), but this would require knowledge of the recombination fraction c, which is
not usually available for natural populations (Waples 1991). As the recombination
fraction decreases (c < 0.5), the effective population size estimate applies to more
distant generations (Hill 1981; Hayes et al. 2003; Waples 2006). For unlinked loci,
the linkage disequilibrium signal for Ne is determined by the random reassortment
from the breeding process in the parental generation, and is greatest when the popu-
lation size is small (Waples 1991, 2006).

The relationship between the estimated r2 and Ne
LD takes the form of a hyper-

bolic curve (Fig. 1). When r̂2 is less than 1/n, negative estimates of Ne
LD are

possible. In these cases, which are most likely to arise when the sample size is
small, the contribution of genetic drift to linkage disequilibrium is swamped by the
contribution from statistical sampling. Because it is not possible for Ne to be nega-
tive, the conventional way of interpreting a negative Ne

LD is to replace it with an
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Fig. 1 Relationship between Ne
LD and r̂2 (n = 4 for illustration)

estimate of infinity (Waples 1991), meaning that the observed linkage disequilib-
rium is estimated to be entirely due to sampling and with zero contribution due to
drift, as would occur in an infinite population. This scenario is a considerable disad-
vantage to the linkage disequilibrium method. There is also a singularity (undefined
value) associated with Ne

LD (equation 1) when r̂2 = 1/n.
The linkage disequilibrium in a sample is also affected by residual disequilibria

from previous generations. If a population of effective size Ne is initially drawn from
an infinite population at time 0, and then remains at constant size Ne for subsequent
generations, the expected value of r2 takes a few generations to reach its equilibrium
value. The rate of convergence is given by Sved (1971), and is 1−(1/4) t for unlinked
loci, where t is the number of generations (Waples 2005). It follows that r2 reaches
its equilibrium value after about four generations. Waples (2005) performed prelim-
inary simulations for populations with recent increases and decreases in Ne, and
confirmed that accumulated disequilibria over multiple generations can affect Ne

LD.
Populations suffering recent declines were only affected for about one generation
until Ne stabilized. For populations that had undergone recent increases, residual
effects could persist for a few generations, and caused negative bias in estimates of
Ne, depending upon the severity of the bottleneck and the magnitude of the subse-
quent increase in Ne.

England et al. (2006) simulated ideal populations and found that the Ne
LD esti-

mator was robust to different distributions of allele frequencies with up to five alleles
per locus. However, for small sample sizes (less than 100), they found serious nega-
tive bias in Ne

LD when the sample size was smaller than the true value of Ne. Waples
(2006) additionally noted a less serious positive bias in Ne

LD when the sample
size was larger than the true Ne. The conclusion that the sample size should be
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approximately equal to the quantity that we are trying to estimate, in order for the
estimates to be unbiased, is clearly problematic. To improve the method, Waples
(2006) used simulated data to derive an empirical correction factor to adjust the
estimated r2 to its correct value. This was to take account of the second order terms
in (1/N I

e ) and (1/n) that were omitted in the original derivation of the approxi-
mation E(r2) ≈ 1/(3N I

e ) + 1/n. He derived two separate modified equations for
Ne

LD, one for n < 30 and one for n ≥ 30. Using biallelic simulations, he showed
that the harmonic mean of the corrected Ne estimates compared well with the true
values (Fig. 4 of Waples 2006; Waples personal communication). The harmonic
mean was used because the method adjusted bias in r2, which is related to the recip-
rocal (1/N I

e ). He also found that dependencies in r2 effectively lower the degrees
of freedom for estimating var(Ne

LD). Both England et al. (2006) and Waples (2006)
stated that their simulations were only exploratory and that a thorough evaluation of
the linkage disequilibrium method was still required.

The linkage disequilibrium method has seen limited application to real datasets.
Bartley et al. (1992) applied the method to natural populations, though obvious
errors in their equations (2) and (3), and incorrect sample variances for allele
frequencies in estimating r, should all be noted. Recent studies have estimated Ne

LD

using the software package neEstimator (Peel et al. 2004), following Bartley et
al. (1992), but do not provide confidence intervals for their estimates (Lippé et al.
2006), or compare it to inappropriate demographic estimates (Schmeller and Merilä
2007). A new software package LDNe estimates Ne

LD using the bias-corrected
method, removing alleles below a specified proportion, and implementing bootstrap
confidence intervals (Waples and Do in press).

3 Simulation

We are concerned with populations consisting of two sexes (male and female;
i.e. dioecious and diploid), two distinct generations (adults and juveniles), and a
small number of offspring annually from each adult (number of offspring ≤ 15),
as is common for terrestrial vertebrate species. We consider only populations with
discrete breeding generations where breeding occurs once within a generation. We
simulate small populations (N < 200) of individuals for four discrete generations
after initially drawing alleles from an effectively infinite pool. This allows us to esti-
mate Ne from genetic data on a generation once r2 has reached its equilibrium value.

We first generate a population of individuals with L loci and A i alleles in locus
i, where A1, ..., AL can be set a priori as constant, or drawn from a Normal distri-
bution (rounded to integer values) to create polymorphism. Initial allele frequencies
for the simulation are drawn from a Dirichlet distribution with a specified shape
parameter which controls allele rarity. We use relatively common allele frequencies
(p > 0.1) to reduce the chance of alleles being lost from the population through
genetic drift over the generations.

The first generation of N1 individuals is given alleles drawn from an infinite
sampling distribution with the selected frequencies, which effectively means that
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N0 = ∞. Generations 1–4 have finite sizes N1, ..., N4 determined by the chosen
value of Nc for the simulations. Over these four generations genetic drift occurs,
which creates the desired linkage disequilibrium but can alter the number of alleles
and their frequencies from those specified for the simulation.

In each generation, individuals are assigned male or female sex so that the gener-
ation’s sex ratio is exactly equal to that specified by the simulation parameters. The
ideal population has a 1:1 sex ratio. Males and females in the population contribute
k gametes (or, equivalently, k offspring when gametes are united) to the next gener-
ation, where the value of k for any individual is drawn from a negative binomial
distribution with mean μk and variance �2

k , and μk and �2
k are specified separately

for males and females. For a population of constant size and equal sex ratio, the
mean must be μk = 2 for each sex.

The ratio of offspring variance to mean is called the index of variability in
breeding success: I V = �2

k/μk (Barrowclough and Rockwell 1993; Waples 2006).
It is a key parameter for controlling departures from the ideal population. If some
individuals have much greater breeding success (k) than others, the index of vari-
ability is high, and the inbreeding Ne is lowered due to an increased probability of
two randomly selected gametes being derived from the same, successful, parent. We
control the index of variability separately for each sex. In an infinite ideal popula-
tion, IV = 1 and k follows a Poisson distribution. This specifies a randomly mating
(promiscuous) population. For IV > 1, the negative binomial distribution for k has
greater than Poisson variance, which is characteristic of polygamous populations
where a few individuals have the most successful matings. We do not consider the
unusual case where IV < 1.

For creating simulated populations with IV exactly equal to the value specified
by the simulation parameters, we require vectors of gametes (k1, ..., kM ) for the M
male adults such that the mean and variance of (k1, ..., kM ) are exactly equal to the
specified values for μk and �2

k , and similarly for the female adults. We achieve this
by reformulating the vectors as (n0, n1, ..., nK ), where nk is the number of males
contributing k gametes, to a maximum allowed number of gametes K = 15. We
have three equations for the K + 1 unknown integers n0, n1, ..., nK , where these
are

∑K
k=0 nk = M ,

∑K
k=0 knk = Mμk , and

∑K
k=0 (k − μk)2nk = M�2

k . We select
guesses for all but three of the n0, n1, ..., nK , and solve a matrix equation to find
the remaining three values, which leads to some initial guesses being discarded
because there are no solutions in integers ≥ 0. Only certain combinations of μk

and �2
k yield exact solutions in non-negative integers for M individuals. We restrict

our simulations to these combinations where possible, or use closely approximate
solutions otherwise when the sex ratio and index of variability are both non-ideal.

Once the gamete vectors have been generated for both sexes, gametes from each
sex are united with those from the other sex at random without replacement, to create
offspring from breeding pairs. Because each offspring is formed from the union of a
male and female gamete, the two sexes contribute the same number of gametes, even
when sex ratios differ. For unequal sex ratios, μk and �2

k are determined separately
for each sex to achieve the target population size and index of variability.

Finally, we simulate statistical sampling from the generated population by
drawing a sample of n individuals at random without replacement from the final
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generation (N4). The genotypes of these n individuals are inspected, and genotyping
errors may be added with a specified probability to mimic real laboratory conditions
(van Oosterhout et al. 2004; Hoffman and Amos 2005). We simulated two types
of errors. The first is allelic drop-out, where one of two alleles for an individual
is not typed. This causes the individual to appear homozygous when in fact it is
heterozygous but one allele was not typed. We simulate allelic dropout for an indi-
vidual by replacing one of its two alleles with the other one. The second type of
error is missing data, where the individual fails to type for both alleles at a locus.
This reduces the sample size for that locus across the population. All error rates are
assigned across individuals × loci. For a single individual at a single locus, allelic
dropout is assigned first (yes or no), then missing data, which will override allelic
dropout if both are selected. We do not consider other microsatellite typing errors
which change the length of the microsatellite allele due to either contamination
(allele is drawn from the population frequencies) or stutter error (allele is altered
by a multiple of the repeat unit). We assume that the error rates are independent and
multiplicative. Reported error rates from studies may be conservative, since missing
data errors can mask allelic dropout, and both can mask typing errors.

The inbreeding effective population size at time t − 1 for the non-selfing popu-
lations such as in our simulation is approximated from demographic parameters as:

1

N I
e

= μk − 1 + �2
k/μk

Nt−1μk − 2
(3)

(equations 2, 2′ and 2′′ in Crow and Denniston 1988; equation (23) in Caballero
1994). Here, the overall μk and �2

k for both sexes combined are given by μk =
2mμm = 2 f μ f and �2

k = m�2
m + f �2

f + m f (μm − μ f )2, where m and f are
the proportions of adult males and females, μm and μ f are the mean number of
progeny of adult males and females, and �2

m and �2
f are the variances in the number

of progeny of adult males and females. Nt−1 is the total number of adults in the
parental generation (time t − 1), given by Nm + N f .

Because inbreeding is slightly retarded in non-selfing populations, Ne
I is slightly

less than N even in an ideal population without selfing. Our estimate of Ne
LD is for

a non-selfing population, and so we do not adjust Ne
I so that our effective popu-

lation size is exactly equal to our census population size under ideal conditions
(Caballero and Hill 1992; Waples 2006). Equation 3 is thus an appropriate true
value for comparison to our simulation Ne

LD estimates when linkage disequilibrium
is generated from the non-selfing parental population.

Using this model, we simulate across a range of ecologically realistic param-
eter values (Table 2), and consider how each parameter influences our estimates of
the mean Ne

LD and 95% confidence intervals, compared to the true comprehensive
demographic Ne

I calculated from equation (3).
The default simulation values involve eight loci with five alleles per locus at

approximately equal allele frequencies, and the entire generation is sampled to
estimate effective population size (n = N ). First we consider ideal populations of
different census population sizes. We then determine how the linkage disequilibrium
estimate is affected by deviation from each of the three ideal population conditions:
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Table 2 Simulation parameters and values. Bold indicates default values that are used unless the
simulation specifies that the associated parameter is to be varied. The number of alleles per locus
is an integer generated by rounding a Normal(s,v) variate with mean s and variance v given in the
table

Parameter Values

Population properties Census population size 10, 50, 100 and 200
Index of variability 1, 2, 3, 4 and 5
Sex ratio 1:1, 1:1.5

Sample properties Proportion sampled 1, 0.5, 0.2
Number of loci 8, 16, 24
Allele numbers N(5,0), N(2,0), N(10,0), N(5,1)
Sequencing errors Dropout (1%)

Missing (5%)

constant population size; equal sex ratio; and random mating with I V = 1. To
investigate the effect of non-constant population size, we run the simulation for
a further four generations after r2 has stabilized in generation 4, and allow Ne to
change over generations 5–8 before using the generation 8 data to calculate the
estimate Ne

LD. Table 3 shows the patterns of population change that we simulate,
which we label increasing, decreasing, fluctuating up (where ‘up’ refers to the last
change from generation 7 to 8), and fluctuating down. The populations are ideal in
all characteristics except for the changes in population size.

The sequences of population sizes chosen in Table 3 are dictated by our require-
ment that the mean number of gametes per individual is exactly equal to the vari-
ance, to ensure that I V = 1, and that the new population size (half the mean number
of gametes, times the old population size) is an integer. Sequences of population
sizes meeting these requirements are unusual and hard to generate. We restrict our
simulations to these exact sequences so that the performance of the Ne

LD estimator
is not confounded by the unknown effect of using an approximate IV.

After investigating the impact of the three departures from the ideal population,
we then test how Ne

LD is affected by sampling properties. We select ecologically
realistic population parameters, for which N I

e = Nt−1/2, and vary the proportion
of the population sampled; the number of loci typed; the number of alleles occur-
ring per locus (distributed Normally and rounded to 0 d.p.); and the presence of
genotyping errors.

Multiple paternity (offspring within a litter sired by multiple fathers) can impact
on the effective population size (Sugg and Chesser 1994), but we do not model this

Table 3 Simulation parameters for changing population sizes in an otherwise ideal population

Population change N1, . . . N4 N5 N6 N7 N8

Increasing 12 24 36 48 60
Decreasing 64 48 36 24 12
Fluctuating up 36 48 36 24 36
Fluctuating down 36 24 36 48 36
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separately because its only effect would be to alter �2
k (and hence IV) contingent

on the model for multiple paternity. Dominance multiple paternity where the most
successful male breeders also sire other litters increases �2

k , while sneaky multiple
paternity where unsuccessful male breeders sire other litters reduces �2

k , and random
multiple paternity should not alter �2

k .

4 Results

We simulated over a range of Ne values from 6 to 199, where Ne = 6 occurs with
census size N = 10, sex ratio 1.5:1, and IV = 2; and Ne = 199 occurs with N = 200, sex
ratio 1:1, and IV = 1. For most values of census size N, we allowed IV to vary from
1 to 5, but for N = 10 we only used IV of 1 and 2, because exact solutions for larger
IV were not possible. Substantial loss of alleles due to genetic drift over the four
generations of equilibration was only problematic for populations with N = 10. We
refer to the original linkage disequilibrium method as the standard method (SM),
and the small sample bias correction introduced by Waples (2006) as the Waples
adjustment (WA). WA results are discussed but not shown.

4.1 Population Properties

For both methods, Ne
LD has a right-skewed distribution (Fig. 2; only showing

SM). The reciprocal 1/N L D
e , which estimates the probability that two randomly

selected successful gametes derive from the same parent, is distributed approxi-
mately Normally. For the ideal population (IV = 1), both the arithmetic mean and
the harmonic mean of Ne

LD are almost equal to the true value of Ne, for both the
SM and WA methods. Because most researchers currently focus on estimators for
Ne rather than its reciprocal, we focus on the bias of Ne

LD rather than the bias of
1/N L D

e and therefore report arithmetic means of our results rather than harmonic
means. Estimates of infinity are omitted when calculating the arithmetic mean for
each simulation, which is justifiable in the sense that these estimates would be
discarded by practitioners when they occur in practice. Omitting these poor results
will enhance the apparent performance of the Ne

LD estimator to some extent, but
in practice they only occurred in one of our simulations (the biallelic plot A2 in
Fig. 6 below). Infinite values are recorded on the boxplots when they occur within
the central 95% of the distribution of simulated Ne

LD estimates, which again only
occurred once.

In the ideal populations, where sample size n ≈ Ne, a positive bias in Ne
LD is

present which increases with census population size (Fig. 3; upper left plot). This is
consistent with the suggestion that the Ne

LD method should work best in small popu-
lations, where the genetic signal is strongest (Waples 1991, 2006). The SM performs
better than the WA (graphs not shown). For each of the 10,000 simulations in every
boxplot, 95% confidence intervals are calculated using the chi-squared approxima-
tion in equations (2) and (1). Except for very small populations, uninformative upper
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Fig. 2 Distribution of linkage disequilibrium SM estimates from 10,000 simulations with N = 50,
equal sex ratio and index of variability 1 (an ideal population), and index of variability 3. Bold
lines are means, dotted lines are true values. The entire generation is sampled

95% confidence interval estimates of infinity are ubiquitous when the SM is applied
to ideal populations. Precision is constant in ratio to the mean for increasing census
population sizes. Changing the sex ratio from the ideal 1:1 to the non-ideal 1.5:1 has
very little effect on the calculation of Ne by equation (3), and also has very little
effect on the bias or precision of either method (Fig. 3).

Figure 4 shows the impact of increasing the index of variability, simultaneously
for both sexes, for different population sizes. The bias of both methods increases
with increasing IV (Fig. 4), in the sense of the true value lying below the 25%
quantile of the estimator distribution, and the bias of the WA becomes more similar
to that of the SM. For populations with identical Ne the bias is greater at higher
indices of variability, but precision remains similar. Both biases are considerable
at high indices of variability, with the true value lying at about or below the 25%
quantile of the estimator distribution, but the SM still has less bias than the WA at
our maximum index of variability (5). High indices of variability did substantially
decrease the number of upper 95% confidence interval estimates of infinity, beyond
that expected from a decrease in Ne alone.
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Fig. 3 Boxplots of the SM Ne
LD estimator for sex ratios 1:1 and 1.5:1, and indices of variability

1 and 2 for populations N = 200, 100, 50 and 10 from 10,000 simulations. Boxplots show 2.5, 25%,
mean, 75 and 97.5% quantiles of the estimator distribution. Dotted lines are true Ne values

Fig. 4 Boxplots of the SM Ne
LD estimator for sex ratio 1:1 and indices of variability 1–5 for

populations N = 200, 100 and 50 from 10,000 simulations. Boxplots show 2.5, 25%, mean, 75 and
97.5% quantiles of the estimator distribution. Dotted lines are true Ne values

If males and females are given different values of IV, the resulting bias is greater
than the bias obtained if the same overall average IV is used and is equal for both
sexes (results not shown). If the IV differs between sexes and the sex ratio is also
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Fig. 5 Boxplots of the SM Ne
LD estimator when generations N5, . . . , N8 are steadily increasing,

steadily decreasing, and fluctuating with a final increase and final decrease, from 10,000 simula-
tions. Boxplots show 2.5, 25%, mean, 75 and 97.5% quantiles of the estimator distribution. Dotted
lines are true Ne values

deviated from 1:1, we see an additional, but small, positive bias again. Precision is
similar to that in Fig. 4 when both sexes are given the average of the two IV values.

Figure 5 shows the results of changing the census population size over genera-
tions 5–8 in populations that are otherwise ideal, using the population size sequences
in Table 3. For both SM and WA methods, the Ne

LD estimate is affected differ-
ently depending on the form of the population change. The Ne

LD estimate from
generation 8 will be distorted by residual linkage disequilibrium from roughly the
previous four generations (Sved 1971). For a systematically increasing population
Ne

LD was positively biased, and imprecise (Fig. 5). For a systematically decreasing
population Ne

LD was negatively biased but very precise. For the ‘fluctuating up’
population where the final fluctuation was upwards, Ne

LD was also slightly posi-
tively biased, but not to the extent of the ‘increasing’ population. For the ‘fluctuating
down’ population where the final fluctuation was downwards, Ne

LD showed no bias.
Waples (2005) also found that decreases in population size had less severe effects
than increases. Bias reflected the persistence of directional population change,
while precision reflected the final census population size as expected from previous
results. In all cases the SM performed better than the WA, which was highly posi-
tively biased for both cases of decreasing populations. The Ne

LD for systematically
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increasing and decreasing populations was in fact more closely aligned with the
census population size of the offspring generation 8 rather than that of the parental
generation 7, which would correspond to the variance effective population size
rather than the inbreeding effective size. Further investigation beyond that of our
limited population sequences is warranted for this ecologically important scenario.

Ne
LD estimates of infinity are a concern for inference from the linkage disequi-

librium method, but in our simulations they only occurred once (biallelic case: plot
A2, Fig. 6 below). They occur because the Ne

LD estimator is sensitive to variation in
r2 (Fig. 1). The estimator is constructed by replacing the expectation E(r2) by the
sample value r̂2 in equation (1), so a large variance in r̂2 could draw the estimator
into the part of the parameter space left of the singularity in Fig. 1, which would be
impossible for the true expectation E(r2). The result is a negative estimate of Ne

LD,

Fig. 6 Boxplot of the SM Ne
LD estimator for N = 50, sex ratio 1:1 and index of variability 3

from 10,000 simulations (except A2 = 20,000 simulations). Boxplots show 2.5, 25%, mean, 75
and 97.5% quantiles of the estimator distribution. The dotted line is the true value Ne = 25. L8 =
standard reference sample with 8 loci and 5 alleles; L16 = 16 loci; L24 = 24 loci; A2 = biallelic
loci, i.e. number of alleles per locus is Normal(2,0); A10 = polymorphic loci with N(10,0) alleles
per locus; A5v1 = N(5,1) alleles per locus; R = rare alleles in initial population (p < 0.1); E =
errors in genetic sequencing at an individual rate of allelic dropout = 0.01 and missing data = 0.05
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which has to be interpreted as infinity. A greater problem in our simulations is upper
confidence limits of infinity, which are gained using the chi-squared approximation
in the SM and are very common. The SM consistently overestimates the variance of
Ne

LD. Except for very small census population sizes of N = 10, the 95% confidence
intervals contained the true value 100% of the time, usually with uninformative
upper confidence intervals of infinity. The chi-square approximation for the variance
of r2 does not appear to be appropriate for estimating suitable confidence intervals.

By contrast, coverage of the 95% confidence intervals using the WA method was
usually below 95%, sometimes as low as 40% for small census population sizes.
Only for large census population sizes with significant deviation from the ideal
population did the WA coverage approach 100%. Waples (2006) did some inves-
tigations of confidence interval coverage and also found that for Ne < 100 his bias-
corrected confidence intervals would have coverage well below 95% (Figs. 5 and 6
in Waples 2006). The poor coverage of the WA confidence intervals was attributable
to a decrease in the estimator variance, coupled with an increase to the positive bias
already present when sample size was greater than Ne. This often led to the lower
confidence interval being above the true value. The WA 95% confidence interval
was additionally problematic when the square root component of his adjusted Ne

equations (Waples 2006) was positive for the corrected r̂2, but not for the lower 95%
confidence interval of r̂2. This meant a second approximate equation was necessary
to estimate the lower 95% confidence interval for Ne

LD in the WA method.

4.2 Sample Properties

Effects of number of loci sampled, allele numbers and rarity, and genotyping errors
were investigated with the ecologically reasonable value IV = 3 (e.g. Heiberg et al.
2006). Increasing the number of loci sampled substantially improves the precision
of the Ne

LD estimate for both methods (Fig. 6, plots L8, L16, L24), and reduces
the number of upper confidence interval estimates of infinity in the SM. However,
increasing the number of loci sampled has little effect on the bias, and confidence
interval coverage remains at 100% for the SM. For the WA, confidence interval
coverage decreased markedly to 40% with 24 loci. For strictly biallelic loci, 20,000
simulations were required to attain stability. Biallelic loci generated a substantial
positive bias in both methods (Fig. 6, plot A2), due to the presence of many large
estimate values, including infinity. The biallelic loci case was the only case where
the WA performed better than the SM, which is notable because the WA method
was derived using biallelic loci (Waples 2006, p. 182). In the biallelic loci case for
the SM, confidence interval coverage was reduced slightly less than 95%, and the
precision of the estimator was reduced to the extent that it included infinity in the
central 95% of its distribution. However, the harmonic mean of Ne

LD was almost
exactly correct in the biallelic case for the SM.

With an increased polymorphism of 10 alleles per locus (plot A10), precision
was improved slightly but bias was also increased slightly over the 5 allele setting
(plot L8). Normally distributed variation in the number of alleles had no effect on the
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estimates from either method (plot A5v1). The presence of rare alleles meant some
were lost during genetic drift, creating a positive bias and decrease in precision as
found for the extreme biallelic case (plot R). The presence of errors in the data at
our specified rates also created a positive bias and decrease in precision (plot E).

The important effect of sample size n on the Ne
LD estimator was emphasised by

both Waples (2006) and England et al. (2006). For the SM we found a similar pattern
to that reported in Fig. 1 of Waples (2006). When n > Ne (so sampling fraction
S = n/Nc satisfies S > Ne/Nc), positive bias occurs (Fig. 7). When n > Ne

(S < Ne/Nc), we obtain severe negative bias. The least bias occurs when n < Ne

(Fig. 7: S = 1 with IV = 1; and S = 0.5 with IV = 3). In our simulations, the WA

Fig. 7 Boxplots of the SM Ne
LD estimator for N = 50, sex ratio 1:1 and indices of variability

1–4 from 10,000 simulations. Boxplots show 2.5, 25%, mean, 75 and 97.5% quantiles of the
estimator distribution. The dotted line is the true value Ne. S = n/Nc is the proportion of the
census population size sampled
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removed the negative bias but created a positive bias of at least similar magnitude.
The WA did however reduce the bias of the reciprocal estimator when n < Ne. As
the sampling fraction decreased, the coverage of the WA 95% confidence interval
for Ne decreased to below 50%, because the positive bias lifted the lower confidence
interval above the true value. The SM became more precise at smaller sampling
fractions, but the estimator distribution did not include the true value. By contrast,
the WA estimator became less precise at lower sampling fractions. Increasing the
number of loci typed when the sample size was very small led to the very poor
interaction of large bias and high precision, because the estimator became more
precise with more loci, but had confidence interval coverage below 50% due to the
negative bias. Increasing the number of loci did however reduce the bias of the WA.

5 Rat Populations

We now compare demographic and linkage disequilibrium estimates of inbreeding
effective population size using data collected from closed rat populations on two
small (<10 ha) islands in New Zealand, with negligible migration. Random mating
can be achieved as all rats can physically find each other on the islands. We assume
that rats follow a breeding model with discrete generations. In the wild, rats rarely
survive longer than one year (Innes 2005a, b), usually only breeding in one gener-
ation (season). Hence we assume that any adults caught can not be offspring of
other adults in our sample from a previous generation. As many rats as possible
were sampled prior to eradication from the islands. Rats were classified by sex and
assigned as adult or juvenile based on an arbitrary weight value and breeding condi-
tion. On each island we therefore have a total population of size N, comprising two
generations of rats (Nt and Nt−1), from which we will use the linkage disequilibrium
method with a sample of size nt juveniles to estimate the effective population size
of generation t − 1. In each case, N was approximately known due to exhaustive
eradication sampling and follow-up observation.

We estimate the mean and variance of the number of progeny of adults, sepa-
rately for males and females, by applying the two-stage parentage assignment soft-
ware Cervus (Marshall et al. 1998) to the juvenile genotypes. Missing data rates
were estimated from the real populations, and a default mis-typing rate of 1% was
assumed. We then use equation 3 to estimate an approximate demographic Ne

I for
the parental generation. We assume equal catchability between age classes, and
therefore estimate the total number of adults (Nt−1) by dividing the number of adults
caught by the approximate sampling proportion of the population. Our demographic
estimates are only approximate due to possible incorrect assignment of parentage
and missing individuals, which will influence our estimates of mean and variance
in breeding success. We have essentially ignored the statistical issues in estimating
these demographic parameters (Crow and Denniston 1988), and do so merely for
comparative purposes with the linkage disequilibrium estimates. We assume indi-
viduals were sampled at random so that our estimates are representative of the entire
population.
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5.1 Ship Rats (Rattus rattus) – Hawere (9.3 ha)

A total of n = 29 ship rats were genotyped from a known population of N = 31
individuals, giving a sampling proportion of S = 0.94 for the population. An arbitrary
weight of 120 g was used to distinguish between adults and juveniles, giving 7 male
and 11 female adults (nt−1 = 18), and 6 male and 5 female juveniles (nt = 11).
Parentage was assigned with 80% confidence for the fathers of 8/11 juveniles, and
mothers of 10/11 juveniles. We estimated μm = 1.14, �2

m = 0.48, μ f = 0.91, and
�2

f = 1.69. Using the expressions below equation (3) (but using μk = mμm + f μ f

to allow for unequal parentage assignment for male and female adults), the overall
estimates were μk = 1.00 and �2

k = 1.23. By equation (3):

1

N I
e

≈ 1.00 − 1 + 1.23/1.00

18/0.94 × 1.00 − 2

This gives our demographic estimate Ne
I = 13.93 (73% of Nt−1). The Ne

LD estimates
from the linkage disequilibrium method were: SM = 7.52, 95%CI = [2.35, ∞]; and
WA = 30.68 [17.37, 47.34].

5.2 Norway Rats (Rattus norvegicus) – Moturemu (5.0 ha)

A total of n = 27 Norway rats were genotyped from a population of approximately
N ≈ 39 individuals, giving a sampling proportion of S = 0.69 for the population.
An arbitrary weight of 220 g was used to distinguish between adults and juveniles,
giving 11 male and 5 female adults (nt−1 = 16), and 4 male and 7 female juveniles
(nt = 11). Most likely parentage was assigned for the fathers and mothers of all
11 offspring (ties in parentage were assigned 0.5 to each parent), giving estimates
μm = 1.00, �2

m = 2.40, μ f = 2.20, and �2
f = 11.08. The overall estimates were

therefore μk = 1.38 and �2
k = 5.42, so by equation (3):

1

N I
e

≈ 1.38 − 1 + 5.42/1.38

16/0.69 × 1.38 − 2

therefore Ne
I = 6.92 (30% of Nt−1), while the Ne

LD estimates were SM = 1.92,
95%CI = [0.85, 4.39], and WA = 1.16 [0.63, 1.84].

6 Discussion

6.1 Simulations

Data on linkage disequilibrium in a population provide a method of estimating
inbreeding effective population size in the parental generation, and its reciprocal,
the probability that two randomly chosen successful gametes derive from the
same parent. The concepts underlying the method are intuitively challenging, and
this has led to some confusion in the literature regarding gametic and genotypic
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estimators (Waples 1991; Bartley et al. 1992), and variance and inbreeding effective
population sizes (Leberg 2005). The method can be used when just one sample
is available from a population, complementing alternative methods for estimating
effective population size when multiple samples are available (Wang 2005).

Throughout our study, we evaluated the bias of Ne
LD as an estimator of Ne, rather

than using the harmonic mean of Ne
LD estimates. The harmonic mean would be

appropriate if the parameter of interest were the reciprocal, 1/Ne, rather than Ne

itself, and has been used by previous authors in assessing bias of Ne
LD (Waples

2006). We intentionally conducted our investigations on Ne
LD rather than the recip-

rocal estimator, because this is the parameter that researchers focus on and set out
to estimate in conservation biology. The bias correction method (WA) of Waples
(2006) was developed in such a way that it improves the bias of 1/Ne

LD for biallelic
loci, especially when the sample size is much less than Ne, but this has the effect
of exacerbating upwards bias in Ne itself in most other situations. For the standard
method (SM), the bias in the arithmetic mean and harmonic mean of Ne

LD estimates
were similar in direction and magnitude. For the Waples (2006) adjusted method
(WA), the bias in the harmonic mean was generally reduced slightly below that of
the SM, but the bias in the arithmetic mean was increased substantially above that of
the SM. Using the arithmetic mean had the disadvantage that infinite values had to
be discarded before assessing bias, but this happened only in the biallelic simulation
A2 (Fig. 6).

Our simulation results suggest that the Ne
LD estimator performs poorly for non-

ideal populations and when the sample size is either substantially greater than or less
than the true value Ne, which we wish to estimate. Deviation from ideal sex ratios
has little effect, but deviation from random (binomial) breeding by using index of
variability IV > 1 leads to bias in the method. Of some concern is that the size of the
census population, and recent fluctuations in it, have considerable effects on Ne

LD

(Waples 2005). This is a problem as much of the interest in Ne
LD is in its application

to natural populations, where usually N is unknown and changing. Non-constant
population size can cause considerable bias, because Ne

LD is affected by residual
disequilibria from previous generations. Waples (2005) simulated changes in popu-
lation size and the subsequent rate of recovery in Ne

LD for the population at its final,
stable, size. For a population that had gone through a bottleneck and then increased,
the bias was considerable for several generations because the small population size
during the bottleneck generated strong levels of linkage disequilibrium which took
several generations to decay. In our limited simulations of non-constant population
size, we found bias in the direction of the most recent population change. The bias
became greater as population change persisted in a single direction.

The bias in Ne
LD changes direction according to whether the sample size is larger

or smaller than the true value Ne, and this is a considerable drawback of the method
(Hill 1981; England et al. 2006; Waples 2006). The bias correction method proposed
by Waples (2006) only improves properties of the reciprocal estimator 1/Ne

LD when
n is much less than Ne, but in our simulations did not perform as well as the standard
method when considering bias, precision and confidence interval coverage for esti-
mating Ne itself. England et al. (2006) suggested a way of addressing the problem
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that the optimal sample size is the same as the value of the unknown parameter
we wish to estimate. They recommended sub-sampling the available sample to
create several Ne

LD estimates from different sample sizes and plotting the results
against sample size to investigate whether it stabilizes. Stability suggests that the
correct value has been reached, because the bias from n > Ne is much less than
that from n < Ne. The sample size effect has been observed in every evaluation
of the Ne

LD undertaken to date, and it would be wise for researchers applying
the method to real data to routinely investigate results from this sub-sampling
procedure.

The index of breeding variability exerts a strong influence on Ne, and another
tactic for overcoming the problem of requiring n ≈ Ne is to produce a rudimentary
estimate of the index of variability within a population. With this, it may be possible
to gain a crude estimate of Ne from demographic data using equation (3), and hence
an estimate of Ne/Nc and the proportion of the population that should be sampled.
For example, assuming IV = 3, Ne ≈ N/2, so n > N/2 is appropriate. Estimates
of the proportion of the population sampled can be obtained from removal data
and catch-effort modeling methods (Seber 1982). However, these approaches are
themselves subject to considerable statistical error.

Waples (2006, p. 180) remarked that simulating ideal populations of N = Ne,
and assuming that estimators will behave similarly if Ne is of an equivalent value
under non-ideal conditions, may be a reasonable approximation; however, this was
not always the case with our simulations. Different forms of deviation from the
ideal population led to substantially different biases in the linkage disequilibrium
estimate. Waples (2006) simulated a standard population of sample size 50, which
we also used as our default value and which performs very well in most simulations.
As census (and effective) population size increase, the magnitude of the positive
bias, and lack of precision, in the method increases. This is consistent with the point
made by Waples (1991, 2006) that the linkage disequilibrium method is most useful
for small populations in which the genetic signal from linkage disequilibrium is
strongest.

Although genetic drift over the four generations of burn-in for our simulations
did reduce allelic diversity for small census population sizes or for populations
with rare alleles (p < 0.1), no loci ever became monomorphic. Monomorphic
loci positively bias the linkage disequilibrium method because all their pair-wise
loci combinations have r = 0, which will lead to infinite estimates of Ne

LD. In
general as the number of alleles decreases for a locus (reduced polymorphism, or
apparent fixation), estimates of Ne

LD will become increasingly positively biased
due to a poor ability to detect linkage disequilibrium, causing r2 to be underesti-
mated in some samples. With a high level of polymorphism, precision is improved
and there appears to be little if any effect on bias. Researchers should be aware
of the effect of polymorphisms and select appropriate loci for estimating Ne

LD.
The presence of occasional genotyping errors had little effect on Ne

LD in our
simulations.

Increasing the number of loci sampled improves precision substantially, but this
is only desirable when bias is relatively small compared to precision, otherwise
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misleading estimates which are precise but highly biased are possible. Practitioners
should therefore focus primarily on increasing their sample size of individuals.
Once they are confident that their sample size exceeds the effective population size,
increasing the number of loci sampled is a useful secondary consideration in order to
give precise estimates which will be useful for inference. Increasing the number of
loci sampled with an inadequate sample size can lead to highly misleading results.
This recommendation is similar to advice given when estimating census population
size through mark-recapture studies, where captures of new individuals provide
more information than recaptures of previously caught individuals (Seber 1982;
Borchers et al. 2002).

6.2 Rats

With a removal sample from a population, an estimate of census population size is
possible, but this is prone to poor precision and accuracy (Borchers et al. 2002). By
estimating the index of variability for all adults from trapping data and parentage
assignment, and with a reliable estimate of Ne (and knowledge of any recent fluctu-
ations in N) it may be possible to improve or corroborate estimates of N. As others
have previously noted this relies heavily on the accurate estimation of the index of
variability (Barrowclough and Rockwell 1993), which is problematic.

The sample sizes (parents and offspring) for our rat datasets were 29 and 27, and
the total population sizes were 31 and approximately 39 respectively. Despite small
sample sizes, n was very likely to be greater than Ne for both populations. Both
populations had a mean number of offspring less than two, suggesting declining
populations, which our simulations suggested would lead to negative bias in Ne

LD.
Consistent with this, the standard method estimates were less than the demographic
estimates in each case. The index of variability of the Norway rats was three times
that of the ship rats, for which the index of variability was only a little greater than
the ideal value of 1. The ship rat confidence interval was far too wide, and included
infinity as expected from our simulations for populations close to IV = 1, while
the Norway rat confidence interval was unexpectedly narrow and did not include
our demographic estimate. As Ne approaches N, we expect the WA to have some
positive bias with a wide confidence interval approaching 95% coverage, and this
is somewhat consistent with the ship rat results. For Ne < N we expect the WA
confidence interval to have very poor coverage as seems likely for the Norway rat
results.

For ship rats, the demographic, SM and WA methods give substantially different
answers. It is not possible to make a judgement as to which is correct, as all three
methods have associated problems. The Ne

LD estimates between 1 and 2 for Norway
rats are likely to be underestimates for a population of this size. The comparison of
estimates is encouraging in appearing to corroborate some of our simulation results,
but also illustrates the poor results that may be obtained from the Ne

LD method with
real data, even though the sampling fractions are large and Ne is small enough for a
strong genetic signal to be expected.



Evaluation of the Linkage Disequilibrium Method 317

6.3 Application

The effective population size provides a single statistic which simultaneously
adjusts for the effects of fluctuations in population size, deviations from random
mating, and unequal sex ratios when measuring genetic change in a population.
As such, it can be a useful summary value in population dynamics, particularly
for conservation managers (Wang 2005). It does not directly quantify the genetic
diversity in a population, however, for example the number of different alleles per
locus. Populations can display local adaptation and persistence with low genetic
diversity and effective population size (McKay et al. 2001). The linkage disequi-
librium method for estimating effective population size is particularly useful for
providing information about populations that can only be sampled once. However,
the methodology is still at a stage where estimates must be treated with caution.

Threatened species at small population sizes are routinely found to have low
ratios of effective to census population sizes (Frankham 1995), which are implicated
in their bottleneck. This creates something of a paradox, however, as introduced
invading populations created from small numbers of founders also undergo a severe
bottleneck and might be expected to be poorly adapted to successful establishment
(Sax and Brown 2000). We would expect this to be reflected in invasive species also
having a low ratio of effective to census population size. Effective population size
can therefore play an important comparative role in understanding the persistence
of not just threatened but also invading species (Holland 2000). Particularly, it is of
interest to study whether there are certain mechanisms that help invasive species to
overcome the long-term effects of severe bottlenecks and low effective population
sizes.

We have performed a reasonably extensive simulation on the effect of multiple
and simultaneous deviations from ideal conditions, as well as sampling properties,
on the linkage disequilibrium estimate of effective population size. From this and
other work (England et al. 2006; Waples 2005, 2006) we now have a reasonable
understanding of the effect of multiple loci and alleles on the method, and sensi-
tivity to allele frequencies and genotyping errors. Violation of critical assumptions
needed for genetic estimation of effective population size remain to be investigated,
including selected or linked markers; mutation; population admixture, migration,
and sub-division; non-random sampling; and overlapping generations, which will
all affect the method (Vitalis and Couvet 2001; Waples 2006). Our simulation had
no spatial component, and so was biased towards ‘random mating’, in that it implic-
itly assumed all individuals could access all other individuals, which would only be
possible in small closed populations. In other situations, a ‘Wahlund effect’ might
occur where genetically similar family clusters are created. The presence of such
population subdivision will affect the linkage disequilibrium estimate (Wang and
Caballero 1999). More importantly, a thorough treatment of r2 is required, consid-
ering both its accurate estimation with respect to population and sample size, and
the impact of dependencies among pairwise loci comparisons. From this it may be
possible to propose more robust methods of estimating Ne from data on linkage
disequilibrium.
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Migration and Movement – The Next Stage

Carl James Schwarz

Abstract The design and analysis of multi-state studies when the states are discrete
entities is now well understood with several robust software packages (e.g. M-Surge,
MARK) available. However, recent technological advances in radio and archival
tags will provide very rich datasets with very fine details on movement. Current
methods for the analysis of such data often discretize the data to very coarse states.
This paper will review the current state of the art on the analysis of such datasets
and make some (bold) forecasts of future directions for the analysis of these data.

1 Introduction

Many animals move, often over long distances. Where do they move to, how many
move, which routes do they choose, and how many survive the migration or dispersal
are key questions to ecologists. Sugden and Pennisi (2006) introduced a special issue
of Science on this topic where up-to-date references can be obtained.

The earliest attempts to answer these questions used simple capture–recapture or
tag-recovery studies. Animals are tagged at various locations and simple tabulations
of subsequent recoveries show where the tagged animals moved. However, unless
recovery rates are equal in all reporting locations, the relative numbers of recoveries
are uninformative about the real underlying migration rates, or survival rates.

Mark-recapture methods have been developed for cases where detection rates
are less than 100% and for differential detection probabilities (Williams et al. 2002;
Barker and White 2004). These methods have become more and more advanced
(e.g. multi-state and multi-event models) but still have the same basic form, discrete
capture occasions on a discretized landscape.

Advanced technology will provide new, exciting sources of data on movement.
For example, archival and satellite tags can record, store, and report on the location
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of animals on a daily basis. In the past, animals had to be physically handled to read
tags, but newer tags can be interrogated at a distance. These new data streams can
be used to construct the entire trajectory of an animal. In many cases, detection
rates are essentially 1 (i.e. known fate studies) and the challenge is to summa-
rize a vast quantity of data measured on very fine temporal and spatial scales.
Additional complications such a seasonality of movement will also need to be
modeled.

In this paper, I will review some of the recent work on dealing with measuring
migration starting with very coarse spatial and temporal scales and finishing with
examples of how known fate and known path data may be analyzed.

2 Discrete Time – Discrete State Models

The discrete state/discrete time models are based on stratified capture–recapture
methods and are well developed. Much development has occurred in applications
to bird migration, driven in large part by the triannual EURING conferences. These
methods extend the capture–recapture methods developed by Cormack (1964), Jolly
(1965), and Seber (1965) for estimating survival (Cormack–Jolly–Seber or CJS
models) and abundance (Jolly–Seber or JS models) to populations that are spatially
stratified. Schaefer (1951), Chapman and Junge (1956), Darroch (1961), Plante et al.
(1998), and Schwarz and Taylor (1998) dealt extensively with the two sample cases.
Arnason (1972, 1973) extended these methods to three sample times while Hestbeck
et al. (1991), Brownie et al. (1993), Schwarz et al. (1993), and Dupuis and Schwarz
(2007) completely generalized the problem. In the past 10 years, there has been an
explosion of effort in applying the multi-state models not only to geographic move-
ment, but also to any movement among discrete states of animals (e.g. Kendall and
Nichols 2002; Lebreton and Pradel 2002). A related model is used for tag returns
typically from exploited animal populations where the key difference is that now
recoveries take place over an extended period of time between release occasions,
many of the tags that are captured are not reported, and tag reporting rates are
unknown. Hilborn (1990) and Schwarz et al. (1993) used this type of data to estimate
migration rates in a fishery context.

In general, the population is first divided into discrete, non-overlapping states
corresponding to geographic locations, stock units, weight classes or condition
factors. (States defined by age are not usually considered in the same context as
movement models because of the fixed, non-probabilistic movement between age
classes.) Each and every animal that is captured should be readily classified into
one and only one state. Without loss of generality, suppose there are K states corre-
sponding to geographical locations numbered 1, . . . , K.

Releases occur at regular widely spaced intervals (say, yearly) for a total of T
years in the study. At each release time point, animals are tagged and released in
state s in year i. It is assumed that releases are instantaneous to ensure that animals
are alive and present in state s at the time of release. Usually releases take place
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in all states. Each released animal requires an individually labeled tag so that the
location of release and recovery can be determined.

Recaptures take place every year in every state. Tagged animals have their tag
numbers recorded. Modern practice is to construct a capture history vector for each
animal observed in the study. The capture history (Lebreton et al. 1992) is a vector,
ω, of length T with components (ignoring losses-on-capture)

ωi =
{

0 animal not seen at time i
s animal seen in state s at time i and released

For example, the history vector (3, 0, 2, 0, 1, 0) represents an animal released in
state 3 in year 1, not seen in year 2, seen in state 2 in year 3, not seen in year 4, seen
in year 5 in state 1, and not seen in year 6.

There are three sets of parameters needed to model these data:

φs
i Apparent survival rate, which is the probability that an animal alive in year

i in state s will survive and remain in the study until year i + 1. Permanent
migration out of the study area is indistinguishable from mortality.

ψ st
i Inter-state movement rates conditional upon survival from year i to year i +

1. This is the probability than an animal who survived from year i to year i+1

will “move” from state s to state t.
K∑

t=1
ψ st

i = 1.

ps
i Recapture rate. This is the probability that an animals which is alive in year i

in state s will be captured. All captured animals have their tag read.

The Arnason–Schwarz model for migration does not specify the timing of the
inter-state movements, which can take place any time between year i and year
i + 1. The inter-state movement parameters are also net movement rates that are
conditional upon the animal surviving for the year. Lastly, because of the Markovian
assumption, movement patterns between the years is unrestricted, that is, an animals
may have moved from state 1 to state 4 via state 2 or state 3 between the 2 years.

Similarly, the survival terms measure net survival “averaged” over all destination
states. Because the migration rates sum to 1 over the destination states, it is possible
to combine the migration and survival parameters into one parameter measuring the
product of survival and movement, but there are some advantages to the current
parameterization.

These parameters are used to construct a probability expression for each history
conditional upon the initial release. These expressions are complex and must
account for all the (hidden) paths when an animal is not seen. For example, the
history vector (0, 2, 0, 2, 1, 0) has probability (assuming only two states):[

φ2
2ψ

21
2

(
1 − p1

3

)
φ1

3ψ
12
3 + φ2

2ψ
22
2

(
1 − p2

3

)
φ2

3ψ
22
3

] × p2
4φ

2
4ψ

21
4 p1

5χ
1
5

where the term in square brackets represents the two possible paths between being
seen in state 2 at time 2 and state 2 at time 4 without being seen at time 3; and
χ1

5 is the probability of not being seen after time 5 in state 1. Construction of these
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expressions is complex (Brownie et al. 1993), but, as shown by Brownie et al. (1993)
and Schwarz et al. (1993) can easily be expressed using matrix notation.

While capture–recapture models assume that captures take place at a point in
time, harvest models assume that returns are from dead animals typically captured
in a harvest (e.g. fishery, hunting season). The multi-state models are an extension
of the Brownie et al. (1985) suite of models with the key difference being that not all
tags are reported when harvested. Schwarz et al. (1993) developed the theory for the
multi-state harvest models which is similar to the theory of the multi-state capture
models. It is also possible to combine multiple sources of information (e.g. the live
recapture and dead recovery models of Barker (1997)) and to separate survival from
philopatry (e.g. Henaux et al. 2007).

Closed models assume movement among a set of states with no losses or new
entrants to the population. Schwarz and Ganter (1995) developed methodology for
this case.

While many of the applications of the multi-state model are extensions of the
CJS models and do not estimate abundance, Dupuis and Schwarz (2007) recently
developed an extension of the ordinary Jolly–Seber models that can be used to also
estimate abundance. The key change is that now, like in the Jolly–Seber models, the
probability of the first capture of an animal must also be modeled. For example, the
history vector (0, 2, 0, 2, 1, 0) now has probability (assuming only two states):

[
β1

0

(
1 − p1

1

)
φ1

1ψ
12
1 + β2

0

(
1 − p2
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φ2

1ψ
22
1 + β2

1

]
p2

2×[
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(
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(
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where βs
t is the probability that an animal in the study will enter the study popula-

tion between time t and t + 1 in state s. The term before the first capture is analo-
gous to the term after the last capture. Pradel (1996) noticed this relationship and
used a reverse capture-history approach for simple CJS models to estimate seniority
rates but this has not been extended to the multi-state case. McGarvey and Feenstra
(2002) used an analogous approach in the multi-state approach to estimate transition
rates by conditioning upon recaptures (rather than releases), but this methodology
requires further development as it requires external information about natural and
other sources of mortality (e.g. fishing mortality).

In all of the above cases, the state of the animal is known with certainty when-
ever the animal is captured. Recently, Pradel (2005) introduced the multi-event
model where the state of the animal is not directly observable; rather “events” are
observable whose probabilities may depend upon the underlying state. For example,
an underlying state may be breeding or non-breeding while the events may be
“sitting on egg”, “courting”, or “not observed”. An event history such as (3,0,1) has
probability:

∑
i,j,k∈states

π i
1bi3

1 φ
i j
1 b j0

2 φ
jk
2 bk3

3
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where π s
t is the probability of initially being in state s at time t; bso

t is the probability
that an animal in state s is observed in event o at time t; and φst

t is the probability
that an animal alive at time t moves from state s to state t. The multi-event model
provides a nice way to integrate uncertainty about the underlying state based on
an observed event. The multi-event model can be used for a much wider diversity
of ecological problems such as the mover-stayer problem (see Pradel and Kendall
2008).

In some cases, not only is the state not observable, animals are not even present in
the set of states under study, e.g. temporary emigration. There are a number of ways
to deal with this problem. Some animals could be tagged with a radio tag so that
they can be tracked in these non-observable states. Or, auxiliary information may be
available such as returns of dead animals and models similar to Barker (1997) can
be fit. Lastly, a robust design can be used to estimate the temporary emigration rates
(e.g. Kendall and Nichols 2002, 2004).

Finally, age-structured models are not traditionally modeled using multi-state
approaches but the multi-state approach is a natural application. In this case, because
the transitions are exact, there is no need to model the transition matrix at all.
Pollock’s age-structured Jolly–Seber model (Pollock 1981) has been structured
using the multi-state approach in Dupuis and Schwarz (2007).

The use of these models is now standard practice in ecology with well
developed software such as MARK (White and Burnham 1999) and M-SURGE
(Choquet et al. 2005). But there are still some outstanding issues that need to be
resolved.

The main issue is how to actually fit the models. Both standard likelihood and
Bayesian approaches have been developed (e.g. King et al. 2006). The key problem
is the huge number of parameters often found in these models. The likelihood
surface is very flat, and there are many local maxima. Multiple starting points
(as done in M-SURGE) are one way to check that the final solution is a global
maximum. Bayesian methods seem to explore the parameter space quite well and
they rarely have problems in locating the appropriate mode of the posterior but
the multiple-starting point likelihood methods of M-SURGE require less compu-
tations than a single Bayesian run. Much more algorithmic work is needed on this
problem.

Model selection in likelihood methods follows the well understood AIC
paradigm. This facet needs more work for the Bayesian paradigm. There are a
number of ad hoc methods that attempt to mimic the AIC framework such as DIC
and BIC, but these have drawbacks (Gelman et al. 2004, p. 182). A natural way to
incorporate model uncertainty is to allow the Bayesian models to also explore the
model space via RJMCMC methods. The DIC/BIC or RJMCMC approaches both
require the pre-specification of the set of models to be explored which, despite a
similar requirement when using AIC, is rarely followed. Or some sort of automatic
searching through “all possible models” (e.g. King et al. 2006) is required. At the
moment, the use of RJMCMC methods in capture–recapture is limited to a handful
of researchers and much work is needed to make these methods more accessible to
the general scientist.
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A secondary issue which leads to the next section is that in many cases the
states are often arbitrary. It is implicitly assumed that all animals in a state have
the same chance to moving to other states regardless of where located in the state.
It is possible that animals could be very close geographically, but in two different
states. It is becoming increasingly possible to measure exact locations of animals so
that discretization of states may not be necessary.

3 Discrete Time – Continuous Space Models

While discrete time intervals often occur naturally (e.g. yearly samples), the
discretization of space is rather arbitrary. At the moment, the multi-state models
assume completely separate movement patterns for animals that may be in geo-
graphically similar areas, but happen to lie on either side of the arbitrary boundary.

I think it is useful to distinguish two cases. First, the movement may be linear
(such as often occurs in fisheries up and down a river), or the movement may be
over a two dimensional space. The linear case has an almost exact correspondence
with recent work on individual time-varying covariates (such as body mass) that can
only be measured when the animal is observed.

The first attempts to model individual covariates discretized the individual
covariate into discrete classes (e.g. body mass classes) and used the Arnason–
Schwarz multi-state approach. For example, Nichols et al. (1992) classified body
mass of voles into four weight classes and used the standard multi-state models to
estimate survival and “movement” as a function of the mass category. The process
of discretizing a continuous covariate into classes imposes no model for the shape
of response. This may be desirable when the form of the response is unknown,
especially given the power to select among models is typically low and the bias due
to imposing incorrect covariate response models is unknown. However, it seems
logical that the response of neighbouring covariates should be similar, so spline
models may be a more suitable approach. The splines impose local smoothing but
allow the response model to vary globally.

Bonner and Schwarz (2006) generalized the CJS model to allow for individual
time-varying covariates. For example, here is a sample capture history and covariate
information:

1 0 1 0

47 • 42 •

The animal is known to be alive at time 2 (because it was recaptured after time
2), but because the animal was not captured, the value of the covariate is unknown
at time 2. Similarly, the animal was not seen after time 3, so both the alive status
and the covariate are unknown at the fourth occasion.

As in the multi-state case, both the transition (change in covariate to the next
sampling interval) and the survival rates may be related to the covariate. Because the
covariate is unknown whenever the animal is not captured, the likelihood function



Migration and Movement 329

must integrate over all possible values of the unmeasured covariates. For example,
the probability of the above history and covariate vector is:

∫
c2

φ1 (47) f (c2 |47) (1 − p2 (c2))φ2 (c2) f (42 |c2 ) dc2 × p3 (42)

×
⎡⎣1 −

∫
c4

φ3 (42) f (c4 |42) p4 (c4) dc4

⎤⎦
where pt (ct ) is the probability of seeing the animal at time t given the covariate
value ct ; φt (ct ) is the probability of surviving from t to t + 1 given the covariate
value c at t; and f (ct |ct−1 ) is the probability of moving to covariate ct at time t
given the animal had covariate value ct−1 at time t − 1. The likelihood is intractable
for all but the simplest cases.

Bayesian methods provide a more natural way to attack these problems using
MCMC methods to numerically integrate over the latent covariates. Bonner and
Schwarz (2006) modeled covariate changes between sampling occasions using a
normal distribution with unknown mean and variance. The survival depended upon
the covariate through a logistic function. Following the standard Bayesian paradigm,
the missing values (covariates and survival status) were first imputed (conditionally
upon the observed data and the current parameter steps), and then the parameters
were updated based on the complete-data likelihood (which has a simple form), the
observed and imputed data, and the prior distributions.

These models assume a simple global model for the relationship between the
covariate and survival or capture probabilities. As noted earlier, it seems reasonable
that covariate values close together should have similar effects, but the general form
of the relationship may vary over the range of the covariates. Bonner et al. (2008)
and other papers in this conference show how to use splines to fit non-parametric
models to the survival function rather than relying on a simple parametric form.
A similar method can be used to model the capture rates.

Currently, very strong assumptions are made about changes to individual covari-
ates over time. A spline model would also seem to be a reasonable way to model
these changes, but I am unaware of any work in this area.

These models have a direct correspondence with mark-recapture studies on a
stream. For example, salmon may be captured and tagged with radio tags as they
begin their migration up the stream. Daily walks of the banks attempt to locate the
salmon. The locations of detected salmon are marked. Survival and catchability are
a function of location and time. Unfortunately, simple functions for the survival and
catchability as a function of location are unlikely to be useful – the survival and
detection curve is likely to be very non-linear.

I think these models will be difficult to fit in a two-dimensional space because of
the difficulty of fitting a two-dimensional spline for both capture and survival even
with a very simple movement model. Data sparsity will be an issue as well.
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4 Continuous Time – Continuous Space

When dealing with large geographic extent with animals dispersed over the entire
space, movement over a large spatial area is of interest rather than interchanges
between discrete stock units. Sibert et al. (1999) is a typical example where the
movement of tuna through the southwest Pacific Ocean is studied.

The basic idea can be summarized by a differential equation (Sibert et al. 1999):
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where N is the number of tagged fish alive at a point (x, y) at time t in the study
area. The first two terms represent movement of fish through diffusion in the x and
y directions. The next two terms represent directed movement in the x and y direc-
tions in response to some gradient. The generic term for these types of models is
advection-diffusion. The last term represents mortality from all causes. In general,
the diffusion parameter, D, the directed movement parameters, u and v, and the
mortality parameter, Z, vary in space and time.

For practical purposes, the physical space is first discretized to a regular spatial
and temporal grid. Sibert et al. (1999) used this model to estimate movement rates
of skipjack tuna (Katsuwonus palamis) in the southwest Pacific Ocean (Fig. 1). The
entire region was subdivided into 1-degree square blocks and time was discretized
into monthly intervals. Between 1977 and 1980 over 94,000 tuna were tagged

Fig. 1 Map of the southwest Pacific Ocean showing the location of the 10-region model area used
for the skipjack tuna analysis. The regions are sub-divided into 1-degree blocks. Reproduced from
Sibert et al. (1999, Fig. 2, p. 929)
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and released, and about 5,000 tags were returned from harvested tuna throughout
the grid.

The most general model has four parameters at each grid point in space and
time, which is clearly too many to fit. At this point, simpler models are assumed.
For example, movement parameters are equal over regions or seasons, and fishing
mortality is a known function of fishing effort.

The 1-degree squares were further grouped into 10 larger regions and time was
further grouped into single-, two-, or four-season blocks. Within region–season
combinations, movement parameters (over the 1-degree grid) were set equal. These
parameters were also held constant over years. They further assumed that natural
mortality was assumed constant over time and space, that fishing mortality was a
simple function of known fishing effort, and that reporting rates were 100%. Sibert
et al. (1999) considered single, two, or four season models for the movement param-
eters with varying start points for the seasons. Figure 1 illustrates the grouping of
the smaller grids into larger spatial structures – note that modeling still took place at
the fine spatial scale; the larger groups of units were used to reduce the number of
parameters. As an aside, I think that an alternate approach would be to implement
a smoothed surface over the fine grid that would force close grids to have similar
parameters.

The observed number of tag returns are related to the predicted number of tag
returns using (typically) a Poisson distribution:

Ct
i j ∼ Poisson (C̃ t

i j ) where C̃ t
i j = N t

i j

(
1 − e−Zt

i j

) Ft
i j

Z t
i j

β t
i j

and

Ct
i j , C̃ t

i j are the observed and expected catch at grid (i, j) at time t
N t

i j is the number of tags present at grid (i, j) at time t according to the
discretized solution to the differential equation;

Zt
i j is the total mortality at grid (i, j) at time t;

Ft
i j is the fishing mortality at grid point (i, j) at time t; and
β t

i j is the reporting rate at grid point (i, j) at time t.

The latter two parameters are often assumed to be known (e.g., reporting rates
of 100%) or a function of known covariates (e.g., fishing mortality proportional to
effort).

The likelihood function is constructed as the product of the above over all grid
points in space and time. Standard numerical methods are used to maximize the
likelihood function. As pointed out in Sibert et al. (1999), the discretization process
needs to be carefully implemented to obtain meaningful results. I am unaware of
any general software packages that implement the above models, and these must be
hand constructed for each problem.

The best fitting model selected was that with two seasons (starting in March and
September). It has 66 parameters – three movement parameters (diffusion D and
north–south and east–west rates (u and v) for each of the 10 regions for each of two
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Fig. 2 Estimated movement pattern for model 2 of Sibert et al. (1999). In this model, movement
differs between the two seasons (September–February in (a) and March–August in (b)). The length
of the arrows is proportional to the resultant directed movement component (u, v), and the areas
of the circles are proportional to the random movement component (D). The arrow in the legend
inset represents directed movement of 100 Nmi·month–1; the circle represents random movement
of 3000 Nmi2·month–1. Reproduced from Sibert et al. (1999, Fig. 8, p. 933)

seasons plus one parameter for natural mortality plus five parameters for the catch-
ability coefficients for the five fleets operating. Results from this model are shown
in Fig. 2. There is considerable spatial variability in both the directed and random
components of movement. Figure 2 also shows a consistent eastward and southward
directed movement in the September–February season for five of the regions. The
diffusive movements are larger for most regions in this season compared to the
diffusive movements in the March–August season. Numerical estimates can be
found in Sibert et al. (1999).
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5 Continuous Time – Discrete States

In the previous cases, the time intervals were fixed, and movement was of interest.
In some cases, the reverse is true – monitoring stations are fixed (check-points) and
the time to pass the monitoring stations is of interest. Modeling is easiest when
movement is essentially uni-directional (e.g. fish along a river) and interest lies in
where mortality occurs in the migration, and the migration speed. Typically, a series
of check-points are set up along the migration path, and animals may be detected as
they pass the check-point.

Burnham et al. (1987) discuss the simplest of these models where fishes are
tracked as they move downstream past a series of dams but the time taken to move
between check-points is not of interest. In this case, the dams form the “sampling
points”, and survival between dams is of interest. These models are the exact
analogue of the CJS models where states are now the sampling points, but the time
taken to move between the states is not of interest (but could be measured). The
analysis is identical to the standard CJS model (replacing time by check-points)
with parameters pi being the probability of detection at check-point i, and φi being
the probability of survival between check-point i and i + 1 given that it was alive
at check-point i. Despite the differences in the way time and space are handled, the
analysis is identical to that of standard CJS models and so is not discussed here
further.

In some cases, the path is still one-way but there are several routes from the
start to the end. For example, Skalski et al. (2002) described a situation where there
are multiple paths across a dam (spillway, turbine, or fish way) and the transition
probabilities among these three paths is also of interest (e.g. Fig. 3). As a fish moves
over the dam, it can choose among three possible routes with various probabilities.
For example, the probability that a fish is released alive at R1, detected at the Rock
Island powerhouse 1, and then detected in the Wanapum pool is expressed as:

P (121) = Spool (1 − E) (1 − G) (1 − δ) pT1ST1λ

where the following parameters were defined:

Spool Rock Island pool survival probability;
E probability that smolts will travel over the spillway at Rock Island Dam, i.e.,

spill efficiency at Rock Island Dam;
G conditional probability of guidance to powerhouse 2, given that smolts were

going to a powerhouse;
pT1 powerhouse (turbine) 1 primary array detection probability;
pT1′ powerhouse 1 secondary array detection probability;
pT2 powerhouse 2 primary array detection probability;

PT2′ powerhouse 2 secondary array detection probability;
ps spillway primary array detection probability;
ps′ spillway secondary array detection probability;

ST1 powerhouse 1 survival probability at Rock Island Dam;
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Fig. 3 Schematic example of route-specific passage and survival through the check point (the Rock
Island Dam) based on releases up-stream after the previous check-point (Rocky Reach Tailrace
R1) and releases downstream just after the check-point in the Rock Island Dam tailrace (R2).
Parameters are defined in the text. Reproduced from Skalski et al. (2002, Fig. 2, p. 1389)

ST2 powerhouse 2 survival probability at Rock Island Dam;
SSP spillway survival probability at Rock Island Dam;


 joint probability of surviving and being detected at the three Wanapum pool
arrays;

� probability that a smolt is censored (i.e. lost on capture) at Rock Island Dam.

Similarly, the probability of path (141) (through the spillway) is found as:

P (141) = Spool (1 − δ) EpSPSSPλ

The likelihood is found as the product of the multinomial probabilities in the
usual fashion.

As Skalski et al. (2002) noted, some care is needed if measurements are to be
taken at too fine a scale. For example, only the products of the parameters along
a path can be estimated without additional information. In their protocol, they also
included multiple detection points at each of the powerhouses and spillway (similar
to the robust design with multiple secondary samples at each primary period) so that
information about the specific route capture probability (the pT1, pT2, and pSP) can
be determined from the secondary sampling capture histories. A standard likelihood
analysis similar to the robust design gave estimates as shown in Fig. 4.
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Fig. 4 Schematic representation of estimated route-specific passage and survival probabilities
based on releases as outlined in Fig. 3. Reproduced from Skalski et al. (2002, Fig. 3, p. 1390)

These models have a close relationship to the multi-state models but require addi-
tional constraints placed on some of the movement parameters. For example, refer-
ring to Fig. 3, all fish must return to the common state (the tailrace) after selecting
one of the three pathways past the dam, i.e. the probability of movement from power
house #1 to the tailrace is 1.0.

The above models ignored the travel time between the check-points and assumed
that survival between the check-points was independent of travel-time. For highly
clustered groups of animals this may be appropriate, but in many migrations, differ-
ences in travel time between check-points is considerable. Hence the travel time
should also be recorded for each animal as it is detected at a check-point.

Muthukumarana et al. (2008) examined the case where the timing is measured
and is of interest. The context is the POST (Pacific Ocean Shelf Tracking System,
http://www.postcoml.org/) where tagged fishes are released at the start of their
migration, and tracking lines along the ocean floor record the tag-number and time
of passage of the fish if it passes close to the detector. (Detection probabilities are
still less than one.)

The typical data looks like a standard capture history but timing information is
also recorded:

(1, 1, 0, 1, 0) with times (0, 6.1, •, 12.5, •)
This fish was released at t = 0 at location 1, took 6.1 days to travel to location 2

where it was detected, was not detected at location 3 (hence the time the fish passed
the 3rd check-point is unknown and is indicated by •), was detected at location 4
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at t = 12.5 days, and not detected afterwards. [This fish was released at time 0 at
location 1, but fishes could be released at different times.] The fish must have passed
location 3 (because it was detected at location 4), but the time of passage between
locations 2 and 4 is somewhere between 6.1 and 12.5 days.

The parameters of interest are p j – the probability of detection at location j, that
is independent of when the fish arrived at location j, a survival function for the i th
fish that may depend upon the inter-location travel time, e.g. φi j = f (t j+1, t j , φ j ) =
φ

t j+1−t j

j = φ
Λt j

j , and parameters (θ ) describing the distribution of travel times
between any two check-points gi (•|θ ). A common choice for the travel time distri-
bution is an inverse Gaussian or log-normal distribution. For example, the proba-
bility of history (1, 1, 0, 1, 0) with times (0, 6.1, •, 12.5, •) can be written as:

g1(6.1|θ )φ6.1
1 p2 ×

6.4∫
t=0

g2 (t |θ)φt
2 (1 − p3) g3 (6.4 − t |θ)φ6.4−t

3 dt × p4

×
⎛⎝1 −

∞∫
t=0

g4 (t |θ)φt
4 p5dt

⎞⎠
The likelihood would be written as the product of these probabilities, but is

intractable because of the “missing” data (e.g. the time of passage at location 3
is unknown, but the fish was known to be alive; both the time of passage at location
5 and whether the fish is alive at time 5 are unknown). The formal likelihood would
need to be integrated over all the possible times in a similar fashion as when the
Arnason–Schwarz models “integrate” over all possible paths when there is move-
ment between states but the intermediate states are unknown. However, numerical
quadrature is difficult to do properly.

However, as in similar situations, Bayesian methods using MCMC methods
provide a tractable solution. For convenience, think of the problem as movement
of the tag past check-points to which is attached a fish that may be alive or dead. If
the fish is dead, then the probability of detection at any check-point is 0.

The problem has two sets of unknown random variables – the parameters of
interest, and the missing data. This missing data are the times when the tag passed
the check-points when not detected and the final time of death after the last check-
point where the fish was seen.

The integration is performed using MCMC methods and requires two parts in
each iteration. First is the imputation of the missing data values (conditional upon
the observed data and current values of the parameters). Then the parameters are
updated based on the observed and imputed data and a complete data-likelihood
(that has a very simple form). The sample from the posterior distribution of the
parameters or missing data is found numerically.

Of more interest is that now additional questions can be answered. For example,
not all fishes pass the detection lines at the same time. Are some fishes naturally
slower than others or is the difference in timing purely stochastic? One way to
answer this question is to ask if there is a correlation between Δ j and Δk across



Migration and Movement 337

Table 1 Estimated posterior mean (standard deviations) for a four check-point passage model
where the travel times are modeled

Capture
rate

Daily
survival
rate

Mean
log(travel
time

Covariance (upper triangle) and correlation (lower
triangle) of travel times

pi φi μi Σ

1 0.871
(0.019)

0.992
(0.000)

5.377
(0.026)

⎡⎣ 0.193(0.016)
−0.09
−0.07

−0.027(0.021)
0.479(0.046)

−0.07

−0.032(0.039)
0.058(0.061)
1.272(0.135)

⎤⎦
2 0.672

(0.026)
0.974
(0.001)

4.205
(0.047)

3 0.547
(0.028)

0.940
(0.002)

3.202
(0.084)

fish? A positive correlation would indicate that slower (faster) fish tend to be slower
(faster) across the various intervals. For example, Muthukumarana et al. (2008)
assumed a multivariate normal distribution for the log-travel times:⎡⎣log (Δt1)

log (Δt2)
log (Δt3)

⎤⎦ : N

⎛⎝⎡⎣μ1

μ2

μ3

⎤⎦ ,

⎡⎣ σ 2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ 2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ 2
3

⎤⎦⎞⎠
where ρi j refers to the correlation in travel times between intervals i and j. This again
is easily modeled in the Bayesian framework. Muthukumarana et al. (2008) obtained
estimates shown in Table 1. The correlations among the travel times between the
check-points is very small indicating that despite wide differences in travel times
among fishes, these cannot be attributed to individual fishes being “slow” or “fast”
movers.

Even more complex models for travel time or survival could easily be fitted where
these are a function of individual-fixed covariates (such as sex or body mass at time
of release).

6 Continuous Time – Continuous Space – Known Fates

In the above examples, detection of animals was uncertain and sampling effort at
the check-points is often substantial. However, modern technology will lead to very
rich sets of data where it is not necessary to set up fixed check-points and essentially
continuous data will be available on animal movement. For example, Argos satellite
tags and archival tags with internal GPS sensors give essentially continuous data
on animal positions such as seen in Fig. 5. These data are complex both in their
underlying biological mechanisms and in their statistical properties.

Any pathway may consist of several different behaviors (e.g. foraging, swim-
ming, sleeping). Is a single average movement parameter (e.g. swimming speed and
direction) estimated for the entire pathway or are separate parameters estimated for
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Fig. 5 Shearwater migrations originating from breeding colonies in New Zealand. Interpolated
geolocation tracks of 19 sooty shearwaters during breeding and subsequent migration pathways.
The 30◦ parallels, equator, and international dateline are indicated by dashed lines. Reproduced
from Shaffer et al. (2006, Fig. 1a, p. 12800). Copyright (2006) National Academy of Sciences,
USA

each behavior? In the latter case, how is it determined when one behavior ends and
another begins?

Furthermore, many remote sensing devices impose complex error structures on
the data that must be dealt with appropriately so that important biological variability
can be separated from artificial noise. Estimation errors in position are typically
non-Gaussian and vary in time; observations, while on a fine spatial scale, often
occur irregularly in time.

The key difference between these types of data and classical mark-recapture
models is that the concept of detection probabilities at discrete check-points or time-
points is not really relevant. For all intents and purposes, this data is known-fate data
where the time/location of death are known.

Several authors have proposed the use of state-space models (e.g. Newman 2000;
Sibert and Fournier 2001; Brillinger et al. 2004; Buckland et al. 2004; Jonsen et al.
2005; Newman et al. 2006; Jonsen et al. 2006) for this type of data. The key feature
of state-space models is that stochasticity in the underlying unobservable process is
separated from uncertainty in the measurement process. This is unlike standard like-
lihood methods where all sources of uncertainty are integrated into one expression.
Likelihood approaches will likely be intractable except for simple cases involving
standard normal distribution (e.g. the Kalman filter as described by Harvey (1991)).
As seen in many papers at this conference, Bayesian methodology is favored in these



Migration and Movement 339

cases. In the Bayesian state-space methods, the unobservable (latent) process vari-
ables are first simulated, and then inference is based on a complete data-likelihood.
MCMC methods integrate over the unobservable data value.

The first component of the state-space model is a description of the state process.
In this case, the state process consists of the actual (unobserved) locations at regular
time intervals for each animal, i.e.

x1, x2, L, xK

where xi is a two-dimensional location vector (latitude and longitude).
There are many different models for the state process. The simplest (and often

unrealistic) is that the state process is a simple first order random walk:

xt+1 = xt + �t

where �t are uncorrelated random disturbances with drift (i.e. direction).
A slightly more complex (and often biologically more realistic) model uses a

correlated random walk. As in many time series models, this model looks at the
differences in locations rather than the actual locations, i.e. it models

dt = xt − xt−1

with

dt = γTdt−1 + �∗
t

where T(θ ) =
[

cos θ − sin θ
sin θ cos θ

]
is a transition matrix that describes the rotational

movement of the random walk (i.e. change in direction),

ε∗
t : N

([
0
0

]
,

[
σ 2

lon ρσlonσlat

ρσlonσlat σ 2
lat

])

is the random walk in the difference with different variance in the latitude and longi-
tude directions, and γ is a parameter describing the degree of autocorrelation in
movement (γ = 0 corresponds to an uncorrelated random walk).

If there are several behavior modes, then a separate equation and sets of parame-
ters can be defined for each behavior, along with a switching process with switching
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probabilities at each time step being described by a first order “movement” process.
For example, with two behaviors, the matrix:

mode1 mode2

mode1

mode2

[
ψ11 1 − ψ11

1 − ψ22 ψ22

]

measures the switching rates between the two behaviours at each time step, i.e. P
(being in mode 1 at t | in mode 1 at t – 1) = ψ11

The second part of the state-space formulation is the observational process. While
the underlying state-space operates on regular time intervals, the observed locations
are typically recorded at irregular points in time. A reasonable assumption is that
animals move linearly between the underlying states, and so the observed location is
a weighted average of the bounding state locations plus some measurement error, i.e.

yt∗ = (1 − α) xt−1 + αxt + εobs
t∗

where t* lies in some interval (t – 1,t), t∗ = (t − 1)+α, and εobs
t∗ is the observational

error.
One challenge with satellite data is that large observational errors are quite

common. Consequently, many researchers use a scaled t-distribution with small df to
model the observational errors where both the scaling factor and the df are estimated
from the data as well.

Jonsen et al. (2005) fit this model for individual animals. For example, Fig. 6
shows the fitted line for two behaviors (foraging and swimming) with estimates
presented in Table 2 based on satellite tags from a hooded seal. There was good
evidence of a separation in parameters between the two behaviors (foraging and
migrating) and data points that were clearly erroneous were handled without the
need for arbitrary pre-processing of the dataset.

Jonsen et al. (2006) extended these types of models in a natural way to multiple
animals (turtles) using a hierarchical Bayesian framework. Now the parameters for
individual animals come from a hyper-distribution on these parameters. There is
an enormous amount of information that is estimated from such models at various
levels. For example, consider Fig. 7. This displays the distribution of travel rates for
individual animals and the distribution of the population of the individual parame-
ters in three modes of behavior.

For the present, these models have been used for long-lived animals. However,
it is not difficult to see how survival rates could be added to these models in
a similar way as done by Muthukumarana et al. (2008). Similarly, these models
currently ignore the physical environment, but again, extension where parameters
vary depending on local typography (e.g. turning angles dependent upon closeness
to mountains) are easily implemented.
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Fig. 6 Plot of hooded seal track data, with observed locations as open circles and state esti-
mates from the DCRWS (first-difference correlated random walk switching) model as filled circles
(migrating behavior) or open diamonds (foraging behavior). Erroneous detections are indicated
with large circles. The black line is the straight-line path between observations and the gray line
is the straight-line path between state estimates. Reproduced from Jonsen et al. (2005, Fig. 1A,
p. 2876)

Table 2 Posterior medians and 95% credible intervals for parameters from a two behaviour mode,
correlated random walk on the differences fit to Argos satellite data from a hooded seal. Extracted
from Table 1 of Jonsen et al. (2005)

Parameter Lower Median Upper

Mean turning angle θ – migrating (radians) –0.07 0.04 0.16
Mean turning angle θ – foraging (radians) –3.13 –2.70 3.13
Autocorrelation parameter γ – migrating 0.71 0.83 0.94
Autocorrelation parameter γ – foraging 0.07 0.62 0.94
Pr(stay in migration mode) 0.45 0.85 0.96
Pr(stay in foraging mode) 0.80 0.91 0.97
�lat (degrees) 0.04 0.06 0.09
�long (degrees) 0.09 0.12 0.20

7 Discussion

The design and analysis of the discrete-time discrete-space migration models is very
mature, but the story is not finished. The theory for the analysis of these models is
well known. Likelihood based methods are well developed and work well for small
sets of models. Future work will likely tend more and more towards the use of
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Fig. 7 Raindrop plots (Barrowman and Myers 2003) summarizing the 95% credible intervals
of the posterior densities of the absolute day (white) and night (grey) travel rates of leatherback
turtles during the predominant phases of their migratory cycle: (a) northern foraging (b) southward
migration, and (c) northward migration. The point within each raindrop indicates the posterior
mode. The top and bottom symmetric curves show the log(density) for the highest 95% predictive
density. The width of the raindrop plot reflects variation in the parameter value while the height
reflects probability density. A perfect normal distribution would have a (reflected) quadratic shape

The sex (M = male, F = female, Jv = juvenile when sex cannot be easily determined) and
breeding status (B = breeding, I = interbreeding, NA = not known) of each turtle are displayed on
panels (a) and (c), respectively.

The taller raindrops in the bottom two rows of the panels are hierarchical summaries, and
are interpreted differently from the raindrops for the individual turtles. The “mean w 95% CI”
raindrops are the estimated hierarchical mean travel rate with 95% credible intervals. The last row
represents the Bayes predictive distributions (Bpd) for individual travel rates and are shaded-in
darker (day = grey, night = black) to emphasize that they are different from the mean. Reproduced
from Jonsen et al. (2006, Fig. 4, p. 1052).

Bayesian methods because of the intractability of the likelihood when movement
rates depend upon underlying unknown states. The key problems for the future for
Bayesian methods are model selection – RJMCMC methods (e.g. King et al. 2006)
hold great promise for an “automated” model selection, but fitting these models is
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currently limited to a very small subset of researchers! Unfortunately, no amount of
statistical wizardry can salvage a study with too few releases and recoveries – much
more effort needs to be placed into planning these studies – there is a need for easy
to use planning tool based on the lines of Xiao (1996) or Devineau et al. (2006).

The discrete time – continuous space models require substantially more work.
The key problem is that space is very large and most datasets are far too sparse to fit
parameters at very fine spatial scales.

In many cases, particularly with certain species of fishes, migration routes are
very linear (along a river or along the continental shelf). Large scale detection arrays
will soon provide large amount of data on migration speed. Of particular interest
will be the relationship of migration choices (e.g. routes) or speeds upon individual
covariates.

Finally, the continuous time – continuous space models will require work on
fitting smooth surfaces rather than arbitrarily discretizing these models to larger
scales.

All of these models work well when the states and time intervals are very
coarse. Researchers are pushing towards finer and finer scales in both dimensions.
In these cases, classical models where rates are either completely time dependent or
completely constant over time simply are not reasonable. Random effect models are
a step towards intermediate models, but these still implicitly assume some constancy
over time. Parameters that are close in time or space should be similar; those further
apart should be different. One way to attack this is through the use of autocorre-
lated random effects (e.g. along the lines of Johnson and Hoeting (2003)) or auto-
mated smoothing methods analogous to the spline methods (e.g. along the lines of
Gimenez et al. (2006); or papers presented at this conference) where the data drive
the complexity of the variation in the parameters over time or space.

To make predictions about the future is always dangerous – particularly if your
predictions can be retrospectively examined! What do I see in my cloudy crystal
ball?

My boldest prediction is that using mark-recapture with p< 1 to monitor migra-
tions will be obsolete in 15 years (just in time for me to retire!).

What do I mean by this? The greatest challenge with mark-recapture is that
detection probabilities are less than 1 so that when an animal is not captured, there
is no information about its current state. However, technology is rapidly advancing.
A special issue of Science (Sugden and Pennisi 2006) reported on some cutting
edge technology. For example, 300 mg transmitters attached to dragonflies that
allowed tracking for 12 days; the worldwide POST system will enable thousands of
smolt to be tracked as they migrate along the continental shelves. With relatively
modest investments in detection equipment, these signals are essentially always
detected.

What are the challenges with this deluge of data? The statistical analysis of
remotely sensed movement data is complicated by high serial correlation within
individuals; missing data caused by equipment malfunction; irregularly spaced
but finely grained data in time; complexity in the underlying behavior processes;
and estimation errors that are (currently) often non-normal and ill-defined. When
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large collections of animals are marked, the individual parameters must be collated
together.

These types of data have many similarities to standard longitudinal data for which
there is a vast literature. For example, hidden Markov models (Cappé et al. 2007)
are essentially multi-event models with 100% detectability; standard longitudinal
survival analysis (e.g. Fitzmaurice et al. 2004) can be used for CJS models when the
probability of detection is certain (i.e. p = 1). However, many of the longitudinal
models assume regularly spaced collection points and simple covariance structures,
none of which are likely to hold for these complex datasets.

Classical likelihood methods are unlikely to be practical in these contexts
because of the need to integrate over many latent variables. State-space models that
separate the underlying real process from the observed data seem like a natural way
to proceed (Buckland et al. 2004; Newman et al. 2006).

Simple models will likely be suitable to model correlations within individuals,
e.g. modeling first or second differences. Extensive experience with standard time
series data have shown that simple ARMA(1,1) applied at a suitable degree of differ-
encing can give rise to a very rich set of possible curves (Nelson 1973).

Rather than trying to regularize the collected data to force it to match a regular
time-step, the approaches outlined above where the observed data are related to
an underlying regular framework will likely make modeling easier. For example,
modeling the distance moved on regular time intervals is easily done using log-
normal (or related) distributions, but becomes much harder when the time-intervals
vary within an animal.

The underlying behaviors are latent data that are rarely directly observable.
However, in many cases, the underlying parameters describing movement are
different between the behavior modes and MCMC methods provide a natural way
to model these latent variables.

The state-space model avoids the need to remove “bad” observations by using
a recursive procedure where predictions of the unobserved states are made via a
process model and these predictions are refined by combining them with current
observations via Bayes’ rule.

Finally, Bayesian hierarchical models provide a natural way to model different
levels of data from individuals, to families, to larger aggregations. By taking a
hierarchical Bayes approach to modeling migratory travel rates, it is assumed that
individual animals exhibit some degree of similarity in their migratory behavior.
The hierarchical model is the formal representation of this assumption, and allows
the estimation of not only the parameters for the individual data sets but also those
at a higher level(s) in the model. These hierarchical models use information from all
the data to estimate parameters at each of the levels in the hierarchy and this has the
effect of reducing uncertainty in parameter estimates at the individual data set level.
Hierarchical Bayes models allow quantification of all the uncertainty at all levels of
the hierarchy.

What are the current stumbling blocks? First, software. While WinBUGS is a
very powerful fitting tool, it still requires a high level of expertise to use with very
detailed coding required. What is needed is a front-end that would take a sequence
of model statements and create the underlying WinBUGS code.
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Second, fitting many models is “relatively” easy, but discerning among models
is still difficult. A Bayesian analogue of Akaike’s information criterion (AIC),
deviance information criterion (DIC) does not work with many models because the
underlying likelihood is not log-concave. This situation results in negative estimates
of the effective number of parameters (pD) which is clearly invalid.

Third, model fits are wonderful, but it is dangerous to become enamored with
models without formal model checking. Many people underestimate the power of
graphical displays to assess model adequacy – more work is needed here partic-
ularly with Bayesian models where simply looking at the numbers is not at all
helpful.
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Stopover Duration Analysis with Departure
Probability Dependent on Unknown Time
Since Arrival

Shirley Pledger, Murray Efford, Kenneth Pollock, Jaime Collazo,
and James Lyons

Abstract In stopover duration analysis for migratory birds, models with the prob-
ability of departure dependent upon time since arrival are useful if the birds are
stopping over to replenish body fat. In capture–recapture studies, the exact time of
arrival is not generally known, as a bird may not be captured soon after arrival, or it
may not be captured at all. We present models which allow for the uncertain knowl-
edge of arrival time, while providing estimates of the total number of birds stopping
over, and the distribution and mean of true stopover times for the population.

Keywords Age-related survival · Capture–recapture · Jolly–Seber model ·
Mark-recapture · migratory birds · residence time · Schwarz–Arnason model ·
Stopover duration · Survival curve

1 Introduction

Many migratory bird populations stop over at predictable sites en route, replen-
ishing body reserves before flying on. The total number of birds using the staging
site is important when studying the population (see e.g. Routledge et al. 1999;
Fredericksen et al. 2001; Ydenberg et al. 2004), and detection of trends in popu-
lation size uses comparisons of these totals over the years. Individual residence
time at stopover sites is also an important variable in the biology of migratory
birds for at least three reasons. First, if there is turnover of the population during
staging, with some birds leaving before others have arrived, a snapshot estimate
of the number of birds will underestimate the total throughput. Second, individual
residence times, together with rate of refueling, shape overall migration strategies
(Ålerstam and Lindström 1990). Migrating birds typically spend more time and
energy at stopover sites than aloft (Wikelski et al. 2003); the total time spent on
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stopovers and the number of stopover sites visited largely determine the spatiotem-
poral course of migration. Effective conservation and management of migratory
birds therefore depends on a fundamental understanding of stopover behaviour,
including time spent resting and refuelling. Finally, stopover duration is a critical
component in models of optimal bird migration (Ålerstam and Lindström 1990;
Ålerstam and Hedenström 1998). Testing models of bird migration and reducing
parameter uncertainty requires accurate estimates of stopover duration.

In stopover duration analysis, the key problem is estimating residence time before
first capture and after last encounter (recapture or resighting). If birds are individu-
ally marked and uniquely identified at a stopover site, frequent sampling during the
stopover provides a record of dates when caught (a capture history) for each bird
which was caught or seen at least once. A capture–recapture analysis may then be
used, with “age” meaning residence time (time since arrival). A Cormack–Jolly–
Seber (CJS) model (Cormack 1964; Jolly 1965; Seber 1965) provides estimates of
the probabilities of “survival” (retention at the site) from one sample to the next, and
the probability of recapture at each sample. In the basic CJS model, these probabil-
ities are assumed to depend on time (sample). This model was extended to multiple
age classes by Pollock (1981). Lebreton et al. (1992) produced a comprehensive
framework of likelihood models based on the CJS. They extended the basic CJS
model to allow for multiple groups and covariates, and allowed survival and/or
capture probabilities to be constant, to depend on time, known age and/or group
(e.g. sex or site). They also introduced the idea of selecting from a wide class of
models using Akaike’s Information Criterion (AIC, Akaike 1973). The basic CJS
model has been used to estimate stopover duration (Kaiser 1995; Dinsmore and
Collazo 2001; Rice et al. 2007). In these studies, the estimated daily probability
of retention was used in the life expectancy formula of Seber (1982), stopover
duration = −1/loge(daily retention probability). The life expectancy method is
not unbiased however because the CJS model is conditional on first capture. If
the “age” (time since arrival) is known at the time of first capture, CJS models
provide estimates of “age-related survival”, where the probability of retention at
a particular sample is assumed to be related to the duration of stopover so far. If,
however, exact arrival times are unknown, assuming each newly caught bird has just
arrived biases the estimates of the parameters of interest. It is necessary to estimate
how long the bird was in residence before its first capture. Schaub et al. (2001)
used Pradel’s (1996) recruitment parameters to get an overall estimate of stopover
time, but see Efford (2005) and Pradel et al. (2005) for the limitations of this
model.

We present new capture–recapture models which use information from each indi-
vidual capture history to estimate the arrival times, and hence provide estimates of
retention probabilities (which are dependent on time since arrival). The Jolly–Seber
(JS) model (Jolly 1965; Seber 1965) provides estimates of the population size at
each sample, and from these an estimate of the total number of birds stopping
over may be obtained. Schwarz and Arnason (Schwarz and Arnason 1996; Schwarz
2001) provided a fully likelihood-based variant of the JS model, which we call
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JSSA. This makes available maximum likelihood estimates of all the parameters,
likelihood ratio tests and model comparisons based on AIC. The JSSA model also
directly estimates N, the total number of birds stopping over, which is an advantage
for our application. The likelihood framework gives profile likelihood intervals for
N and other parameters (Cormack 1992).

This paper extends the JSSA model, providing a new collection of models in
which capture and retention probabilities may depend on the residence time so far,
even if arrival times are unknown. The models may also be applied to true births and
deaths in populations with no migration, giving estimates of frailty and senescence.

Section 2 sets out the assumptions and notation of these models, Section 3
describes models in discrete time, and Section 4 introduces retention curves in
continuous time. Statistical methods are in Section 5, Section 6 illustrates the models
with real data, and Section 7 reports a simulation study. Evaluation and discussion
are in Section 8.

2 Assumptions and Notation

2.1 Assumptions

Assumptions 1–6 are those of the JSSA model, but interpreting “birth” as arrival,
“death” as departure, “survival” as retention at the site, “age” as time since arrival or
residence time, and “lifetime” as stopover duration. We assume there are no actual
births or deaths during the study.

1. K samples are taken at intervals which are large in relation to the time needed
for the sample, so that samples may be regarded as instantaneous.

2. Arrivals and departures occur between samples, and departure is assumed to be
permanent.

3. Each individual bird is uniquely and correctly identified.
4. There is a superpopulation of N birds, each available for capture on at least one

sampling occasion.
5. Proportions β0, β1, . . . βK−1 of the N birds enter the population and are first

available for capture at times 1, 2, . . . K respectively (
∑

β j = 1).
6. Capture and departure events are independent between birds and between

samples, and the birds are independent in their arrival times.
7. Sampling covers all the time when birds are present.

The extra assumption 7 prevents boundary effects from biasing estimates. Early
birds arriving long before the first sample and late lingerers after the last sample
would have their stopover durations underestimated.

The discussion to follow also assumes the samples are equally spaced in time,
although unequal intervals may be modelled by adjusting all retention probabilities
to a standard time unit.
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2.2 Data

The data come in the form of a D × K capture matrix X, where D is the number of
distinct birds caught. Element xi j is 1 if bird i is captured on occasion j, otherwise
xi j = 0. Row i of X is the capture history (CHi ) for bird i, i = 1,2,. . .,D.

Thus there are N – D birds never caught, each with capture history 0, a K-vector
of zeros. N is an unknown parameter.

2.3 Parameters

We use the JSSA N and β j parameters, while the retention and capture parameters
are extended to allow dependence on time since arrival as well as calendar time
(sample). A bird which arrived a time units ago and is present at sample j is assumed
to have probability p ja of capture at sample j and φ ja of retention from sample j to
j + 1. These simplify to φ j and p j (the JSSA models) if there is no dependence on
residence time, to φa and pa if there is no calendar time dependence, and to φ and p
if the probabilities are constant over both residence time and calendar time.

3 Models in Discrete Time

3.1 Capture Histories and Their Likelihoods

We now develop likelihoods for open population models which allow both time
since arrival and calendar time to affect the capture and retention probabilities of
the birds. Modelling individual capture histories in the JSSA framework enables us
to allow for different possible arrival and departure times for each bird via random
variables B and D. If bird i is first present and available for capture at sample bi, and
is last available for capture at sample di before departure, we denote its presence
history PHi by {bi , di }. The ordered pair (bi , di ) is an unobserved realisation of
the joint distribution of B,D. If retention is related to residence time, B and D
are correlated. Suppose a bird has capture history CHi with first capture at sample
fi and the last at �i (1 ≤ bi ≤ fi ≤ �i ≤ di ≤ K ). Then the probability of this
capture history, conditional on this presence history, is (omitting the i subscripts on b
and d)

P(CHi | PHi = {b, d}) =
d∏

j=b

p
xi j

ja (1 − p ja)1−xi j (1)

where a is the time from arrival to sample j, e.g. if time is measured in days, a =
j – b + 1 assuming “age” 1 day at arrival time. However, the JSSA model provides
the probability of this presence history, allowing retention to depend on time since
arrival:
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P (PHi = {b, d}) = P (B = b and D = d) = βb−1

⎛⎝d−1∏
j=b

φ ja

⎞⎠ (1 − φda) (2)

where, if b=d, the empty product
∏d−1

j=b is taken to be unity.
Hence the unconditional probability of bird i’s capture history with unknown

arrival and departure times is found by summing P (CHi | {b, d}) × P ({b, d}) over
all possible presence histories, using equations 1 and 2:

P(CHi ) =
fi∑

b=1

K∑
d=�i

⎧⎨⎩βb−1

⎛⎝d−1∏
j=b

φ ja

⎞⎠ (1 − φda)

⎛⎝ d∏
j=b

p
xi j

ja (1 − p ja)1−xi j

⎞⎠⎫⎬⎭ . (3)

Similar reasoning gives the unconditional probability of no captures, denoted by
CH0:

P (CH0) =
K∑

b=1

K∑
d=b

⎧⎨⎩βb−1

⎛⎝d−1∏
j=b

φ ja

⎞⎠ (1 − φda)

⎛⎝ d∏
j=b

(1 − p ja)

⎞⎠⎫⎬⎭ . (4)

The summation over possible departure times in equations 3 and 4 is an extension
of the use of the parameter χ j = probability not seen after sample j in the JS model.
The JSSA model’s entry parameters, β j , allow us to do a similar summation over
the entry times before the first sighting.

Let h index the different observed capture histories, with nh being the number of
birds with capture history h, and write the parameters N, β, p and φ as a parameter
vector θ . Then a multinomial model to allocate the N birds to their capture histories
gives the full likelihood of θ given the capture matrix X as

L(θ | X) = N !

Πhnh! (N − D)!
×
(

D∏
i=1

Li

)
× L N−D

0 (5)

where Li = P(CHi ) (equation 3) and L0 = P(CH0) (equation 4). If the a subscripts
are dropped from equation 5, some algebra reduces the formula to the full likelihood
for the JSSA model.

3.2 Linear Logistic Models for Retention and Capture Probabilities

The full model above may be labelled {β(t), φ(t × a), p(t × a)}, to indicate βs
dependent on time (sample), while φ and p both allow for time and age effects in an
interactive way. However, there is not enough information in capture–recapture data
to estimate the interactive parameters, and so we propose simplifications of φ and
p with fewer parameters. An additive or main effects model on the logistic scale
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(which is preferable to a raw scale for normality of estimators and avoidance of φ
or p estimates outside [0,1]) could have φ ja reparameterised as

log

(
φ ja

1 − φ ja

)
= τ j + αa (a, j = 1, 2, . . . (K − 1)) (6)

where τ is the time effect and α is the age effect. A constraint is needed on α,
perhaps a sum-to-zero constraint (

∑
αa = 0) or a corner-point constraint (α1 = 0).

Similarly capture probabilities may be modelled with additive time and age effects
on the logistic scale:

log

(
p ja

1 − p ja

)
= ν j + ζa (a, j = 1, 2, . . . (K − 1)) (7)

Suitable notation for labelling these additive models would be φ(t + a) and
p(t + a).

Further simplifications could have

• φ(a) or p(a), with probabilities depending on residence time but constant through
calendar time,

• φ(t) or p(t), with probabilities independent of residence time but varying through
calendar time, or

• φ or p constant over changing residence time and calendar time, denoted by φ(.)
and p(.) in the model specification.

If all 2K observable capture histories are actually seen, the models above are
feasible, except for some minor parameter redundancy in early or late p or φ

parameters (Catchpole and Morgan 1997). If no individual birds have a presence
history with fi = 1 and li = K, there is virtually no information about parameters
beyond a certain maximum observed duration of stay (M = max (li – fi + 1)), and
there is near-singularity of models (Catchpole et al. 2001); in this case param-
eters from “age” M +1 onwards are not estimated. Also sparse data, with few
different capture histories observed, can give substantial parameter redundancy.
Schwarz and Arnason (1996) suggested various options for dealing with the two
redundant parameters in the Jolly–Seber model {β(t), φ(t), p(t)}, including setting
p1 = pK = 1. However, as this gives an underestimate of β0, leading on to
overestimates of the later βs (Jim Nichols, pers. comm.), we have set such end
parameters to the mean of the estimable ones, on a logistic scale. For example,
our JS model has logit(p1) = logit(pK ) = mean{logit(p2), . . . , logit(pK−1)}.
Table 1 shows the numbers of estimable parameters in the models proposed
so far.
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Table 1 Numbers of independent parameters with K samples, an observed maximum stopover
duration of M ≤ K, and a large enough set of different capture histories to make the estimates
feasible

p(.) p(t) p(a) p(t + a)

φ(.) K + 2 2K * K + M − 1 2K + M
φ(t) 2K 3K − 3 *† 2K + M − 2 * 3K + M − 4 *†
φ(a) K + M 2K + M − 2 * K + 2M − 2 *† 2K + 2M − 4 *†
φ(t + a) 2K + M − 2 3K + M − 5 *† 2K + 2M − 4 * 5K − 9 *†
All models assume β(t). Some parameters are not estimable. Models marked * must have p1 or its
logistic equivalent assigned, and models marked † must have pK or its logistic equivalent assigned.

3.3 Using Covariates

Covariates in calendar time may be incorporated into this scheme, as shown in
Lebreton et al. (1992). For example, a time effect in the probability of capture due
to weather or varying search effort could be accounted for by modifying equation 7 to

log
p ja

1 − p ja
= ζa + λx j + δw j

where x j is search effort and w j is a relevant weather covariate at sample j. The
parameters λ and δ are logistic regression coefficients. An example for retention
parameters could use a measure of weather between samples (w j = weather between
samples j – 1 and j) as a covariate. One such modification of equation 6 is

log
φ ja

1 − φ ja
= αa + δaw j .

The different slopes (δa rather than δ) provide for a differential effect of severe
weather conditions on retention – perhaps birds which arrived more recently are
more likely to delay departure if the weather is poor.

3.4 Comparing Different Groups of Birds

The data may come from two or more populations which are separated spatially,
temporally, taxonomically or sexually. These groups are modelled as in Lebreton
et al. (1992) but using the full likelihoods of Sections 3.1 and 3.2. The joint
likelihood is formed as the product of the individual likelihoods for each group.
Comparison between groups of retention and/or capture probabilities is effected
by starting with a global model allowing each group its own parameters, and then
fitting submodels with various constraints on parameters. For example, we could
compare the residence time-related retention probabilities of different groups, while
still allowing each group its own N, β and p parameters. The constrained model
would have the same retention parameters across the groups. These groups could
be females and males, or populations at different locations, or different sub-species.
With migratory birds, we may look for changes over the years in the total number
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stopping over, by comparing a constrained model with equal N over different years
with a model having N fluctuating, or on a linear trend over time.

4 Retention Curves in Continuous Time

Traditional survival curve analysis and lifetime modelling provides a method of
smoothing the discrete retention probabilities into a retention curve depending on
the time since arrival, using fewer parameters.

Suppose a continuous random variable X for the stopover duration of an indi-
vidual has distribution function F(x) = probability of departure by age x, and prob-
ability density function f(x) = d F(x)

dx (x > 0). The retention function, probability
of retention for at least x time units, is S(x) = 1 – F(x), and the hazard function
(instantaneous departure rate) is h(x) = f (x)

S(x) .
The retention probabilities from discrete-time capture–recapture may be

constrained to lie on such curves, using

φx = P(duration > x + 1 | duration > x) = S(x + 1)

S(x)
. (8)

Standard survivorship (retention) curves of Types I, II and III (see, e.g. Richter
and Söndgerath 1990) may be modelled with a Weibull distribution for the stopover
duration random variable X (X > 0). The distribution function F(x) = 1 −
exp

{
−
(

x
γ

)κ}
has scale parameter γ > 0 and shape parameter κ > 0, and gives

retention function S(x) = 1−F(x) = exp
{
−
(

x
γ

)κ}
and hazard rate (instantaneous

departure rate) μ = f (x)
S(x) =

(
κxκ−1

γ κ

)
. The value of κ gives the type of retention

curve, with κ > 1 for a Type I retention curve (high retention rate until near the end
of the stopover, then high departure rate, a J-shaped hazard curve), κ̂ = 1 for Type
II retention (constant hazard rate), and κ < 1 for Type III (lowest retention soon
after arrival, a reverse J-shaped hazard curve). The case κ = 1 with an exponential
retention curve and constant hazard rate 1/γ is implicit in all models, such as the
JS, where departure probability is assumed to be unrelated to time since arrival. If
the κ estimate from the data gives a rejection of H0: κ = 0 in favour of HA: κ > 1,
there is evidence for high retention soon after arrival and lower retention later.

The connection with discrete time data is φa = exp
{
−
(

a+1
γ

)κ
+
(

a
γ

)κ}
where

φa is the probability of retention from “age” a to a + 1. The assumed arrival time
for a bird first available for capture at sample b is midway between samples b – 1
and b, and for those present at the first sample it is the time of the first sample minus
half the average interval between samples.

Type IV retention has highest departure rates when either recently arrived or after
staying a while with high retention, a “bathtub” shaped hazard curve (Richter and
Söndgerath 1990). One example is the 6-parameter Siler curve (Siler 1979), which
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also allows for a trend in retention over time to be tested. The retention probability
from “age” a (at time t) to a +1 is

φat = exp

[
β1

γ1

{
e−γ1(a+1) − e−γ1a

} − β2a − β3

γ3

{
e−γ3(a+1) − e−γ3a

} − β4t

]
. (9)

If the data select a bathtub curve in preference to a Weibull, there is evidence for
two types of bird, transients which depart soon after arrival, and stayers with high
retention before ultimate departure.

The Weibull curve may also be adapted for time trends by allowing the shape
parameter to vary by calendar time, γ = γ0 +γ1t . A significantly non-zero γ1 could
show if, say, later arrivals spend less time at the site.

5 Statistical Analysis

5.1 Model Comparison and Parameter Estimation

Model selection among these likelihood-based models may be done using Akaike’s
Information Criterion (AIC) or some variant of that (Lebreton et al. 1992; Burnham
and Anderson 2002). For confirmatory studies, all the models have the usual likeli-
hood ratio tests (χ2 tests) available for comparing two models or for testing parame-
ters. Maximum likelihood estimates of parameters arise from the model fitting, with
estimated standard errors available from the inverse of the estimated Hessian matrix.

Following Lebreton et al. (1992), the models are fitted using the logits of the
retention and capture probabilities. This gives better convergence properties, and
more appropriate confidence intervals. The greater normality of the estimators on
the logit scale means the associated symmetric confidence intervals (± 1.96 stan-
dard errors) are realistic. The centres and endpoints of the logit confidence intervals
are back-transformed to the [0,1] scale to give asymmetric confidence intervals for
the original probabilities. Similar advantages result from using log(N) as a param-
eter in the optimisation, with back-transformation giving an asymmetric confidence
interval for N.

Profile likelihood intervals (PLI) are also strongly recommended for interval
estimation with these models (Cormack 1992). They also provide the asymmetric
intervals appropriate to the data.

5.2 Stopover Duration Estimation

For specific models, estimates of mean stopover duration have been used in the
past. If a model with φ constant has been selected, mean stopover duration may be
estimated by

− 1

loge φ
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(Seber 1982). If a fitted stopover duration curve (e.g. Weibull or Siler) was selected,
the mean of that distribution may be used. If a discrete-time model with φa was
chosen, with the final φK = 0 (valid if sampling continued to the final departures),
a probability branching diagram gives estimates of the mean and standard deviation
of stopover duration.

However, for any of the models in this paper, the parameter estimates and equa-
tion 2 provide estimates of the joint distribution of arrival and departure times,
P (B =b and D =d). To obtain the (discrete) derived distribution of stopover dura-
tion S = D − B + 1, the probabilites of histories with a common duration are
summed. With unequal spacing of samples the support of the distribution has irreg-
ular spacing, but fitting a retention curve in continuous time will give a distribution,
mean and variance for the stopover duration.

6 Real Data Example

At the Cabo Rojo salt flats in Puerto Rico, 113 previously-banded semipalmated
sandpipers (Calidris pusilla) were sighted over 18 weeks in 1992–3. These data
represent overwintering residency rather than a short stopover.

Analysis of resightings by Rice et al. (2007) using CJS models (Lebreton et al.
1992) selected as the best models φ(fat)p(t) (with a covariate of body fat, ΔAI Cc =
0), and φ(.)p(t) (ΔAI Cc = 0.66).

Our models differ by including estimation of arrival time, and by using first
sighting information more fully. The model selected by AIC was {β(t), φ(t +
a,W eibull), p(a)} (Table 2), where a Weibull model for retention has its scale
parameter on a linear trend over time. This allows for later cohorts to be on a longer
or shorter stopover duration, while keeping the shape of the curve constant.

In this example, the parameter estimates indicate that the later arrivals are staying
longer. This model choice is being driven by a number of early arrivals being seen
only once, while a large group arriving about the middle of the study were seen
frequently until the end.

The distribution of stopover time was found for the best four models, giving the
means and standard deviations shown in Table 3.

However, this real data set has high capture probabilities, around 0.8 per sample,
leading to an estimate of N, N̂ = 113 = D, which is the number actually seen. This

Table 2 Relative AIC values for semipalmated sandpipers (Calidris pusilla) at Cabo Rojo

p(.) p(t) p(a) p(t + a)

φ(.) 13.90 19.25 10.39 9.34
φ(t) 15.62 21.79 9.43 9.96
φ(a) 21.52 22.94 17.84 15.11
φ(t + a) 20.43 24.85 14.53 14.62
φ(a,W eibull) 15.69 20.66 11.98 9.31
φ(a, Siler ) 21.58 26.36 18.02 16.15
φ(t + a,W eibull) 10.99 20.26 0.00 9.99
φ(t + a, Siler ) 20.43 24.92 15.28 14.17
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Table 3 Means and standard deviations of estimated distributions of stopover times (weeks) for
Cabo Rojo semipalmated sandpipers (Calidris pusilla), using the best four models

Model ΔAIC Mean Duration Standard Deviation

φ(t + a,W eibull), p(a) 0.00 10.09 3.50
φ(a,W eibull), p(t + a) 9.31 9.97 3.43
φ(c), p(t + a) 9.34 10.04 3.59
φ(t), p(a) 9.43 10.33 3.69

data set is not providing a good test of the value of these models for estimation
of N. It is also not really necessary to distinguish true arrival time from time of
first capture, as most birds were seen very soon after arrival. The simplest model,
φ(.)p(.), gave stopover time estimates fairly similar to those from the four models
above.

Because of the differences in the analyses, detailed comparisons with the model
of Rice et al. (2007) are not meaningful.

7 A Simulation Study

A simulation study was run to evaluate the model selection procedure, estima-
tion of N and estimation of stopover duration. Three scenaria were tried, encom-
passing low and high K values (either 5 or 10) and different patterns of entry
probabilities, with details given in Table 4. All simulations used n = 200 birds and
the generating model {φ(a)p(.)} with constant capture probability 0.4 and reten-
tion probabilities 0.9, 0.8, 0.2, 0.1, 0. This gave high retention for two intervals,
followed by low retention. No birds were retained for more than four intervals (five
samples).

At each replication, a population was simulated to give a capture matrix of
observed birds, which was then analysed with all 16 discrete-time models. A model
fit was ruled inadmissible if any parameter estimate was at the boundary of the
parameter space, which happened sometimes with sparse generated data. Table 4
gives an overview of model selection and estimation of N from the simulations.

In all three scenaria, the generating model was selected by AIC more times than
any other, with improvement of the proportion of times selected as K increased.
Overall, the best two models were the generating model {φ(a), p(.)} and the model
{φ(.), p(a)}. Strong correlations between φ estimates and adjacent p estimates intro-
duce “leakage” of parameters (see e.g. Sidhu et al. 2007); if we insist on constant φ,
the failure to observe long-staying birds is attributed instead to capture probabilities,
and the p(a) estimates become zero from a certain “age” onwards. In this case,
common sense would dictate that birds do not suddenly become uncatchable when
they have stayed for a certain time – a far more reasonable explanation is that they
have departed. Models with constant φ or φ dependent on time only are unrealistic
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Table 4 Simulation Study Results. The generating model was φ(a), p(.)}, and in each replication
the 16 models were fitted. All scenaria had the same retention probabilities φ(a) = (0.9, 0.8, 0.2, 0.1,
0), and constant capture probability 0.4. Entry probabilities β were (.3,.2,.2,.2,.1) for Scenario A,
(.15,.15,.1,.1,.1,.1,.1,.1,.05,.05) for Scenario B, and (.05,.1,.1,.15,.15,.15,.1,.1,.05,.05) for Scenario
C. Coverage is from a 95% log-based confidence interval for n, back-transformed

Scenario A B C

Number of samples, K 5 10 10
Number of birds, N 200 200 200
Entry pattern (details in caption) low–high low–low high–low
Retention probabilities .9 .8 .2 .1 0 .9 .8 .2 .1, 0 .9 .8 .2 .1, 0
Capture probability 0.4 0.4 0.4
Number of replications 100 100 100
Model selection results:
% reps, correct model 1st choice 33 45 38
% reps, correct model 2nd choice 38 30 36
% reps, correct model 3rd choice 24 16 22
Analysis by correct model:
Coverage for N 0.95 0.94 0.93
Average % bias of N̂ −0.07% −2.71% −1.58%

for stopover duration analysis. If the unrealistic model {φ(.), p(a)} is excluded, the
selection of {φ(a), p(.)} improves considerably.

The coverage of the nominal 95% confidence intervals for n (log based and back-
transformed) was acceptable with analysis by the true (generating) model (Table 4),
and was almost always nearer 0.95 than coverage from the other 15 analysing
models.

To evaluate the estimation of stopover duration, we compare the true distribu-
tion of duration (from the generating model) with the estimated distribution from
the analysing models, averaged over the 100 simulated populations. The compar-
isons of true and estimated stopover duration distributions are shown for Scenario B
(K = 10) in Fig. 1. The probabilities from fitting the correct model {φ(a), p(.)} are
much closer to the true probabilities than those from analysis by three competing
models {φ(.), p(.)}, {φ(.), p(a)} and {φ(a), p(a)}. The simulated populations were
also analysed using the correct {φ(a), p(.)} model but with a simplified likelihood
model using only the birds seen at least once; no attempt was made to estimate N
or allow for the unseen birds in the likelihood. Arrival and departure times were
estimated only for the seen birds, and φ and p parameters were estimated from
this incomplete data set. The estimated stopover duration probabilities were calcu-
lated, averaged over the 100 simulations, and the trace of this “seen” model is
also shown in Fig. 1. The resulting overestimation of stopover duration probably
occurs because the unseen birds are largely those with short stopovers, so estimation
without allowing for them gives a positive bias.

The means and standard deviations of these generating and analysing distribu-
tions are in Table 5. Note the 23% overestimation of the mean stopover duration
which results from considering only the seen birds.
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Fig. 1 True and estimated distributions of stopover duration, Scenario B. The true (generating)
model is {φ(a), p(.)}. Five analysing models were fitted for each simulated population, and the
probabilities estimated from averages over the 100 simulations. Analysis by the true model gives a
close fit. The “seen” model ignored the unseen birds

Table 5 Means and standard deviations of the true stopover duration distribution and the estimated
distributions

Model Mean Standard deviation

True model
{φ(a), p(.)} 2.63 0.79
Analysing model:
Seen birds only 3.23 0.59
{φ(.), p(.)} 2.17 1.43
{φ(.), p(a)} 2.93 1.78
{φ(a), p(.)} 2.49 0.88
{φ(a), p(a)} 2.79 1.59

8 Discussion

We have introduced new models, aimed at improving accuracy of estimation of the
total number of birds using a stopover site, and the duration of stopover. Likelihood-
based models are employed, bringing a range of benefits: AIC comparisons, likeli-
hood ratio tests, and the estimation of the distribution of stopover duration rather
than just a mean and standard deviation. The use of joint likelihoods allows for
comparisons of different groups of birds, perhaps two sexes, different species, or the
same species over different years. Tests may be constructed to see if, for example,
there is a trend over the years of the numbers stopping over.

In the survival literature, it is known that individual heterogeneity of survival, if not
allowed for in a model, has consequences for the estimation of survival parameters
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(Burnham and Rexstad 1993; Pledger and Schwarz 2002; Efford 2005). In stopover
applications, the birds with intrinsically longer stopover times provide the information
about the upper end of the retention curve. Since they are not representative of the
whole group, an increasing instantaneous departure rate for the whole population
can be masked. Our models allow for heterogeneity of retention via an “age” effect,
using the (unknown) true time since arrival rather than the time since first capture.

It is necessary to sample over the whole time of the stopover, to eliminate
boundary effects. If the sampling starts late, and some birds have already been
present a long time before a first opportunity for capture, their arrival times are
underestimated. Similarly if sampling finishes too soon, birds still present at the last
sample will be assumed to depart soon, when in fact they may stay much longer.

The models are performing well, as shown by a simulation study with substan-
tial turnover in the population. Compared with existing models (with constant or
time-dependent retention and capture probabilities), the new models allowing for
retention to depend on residence time give a much more accurate estimation of
distribution, mean and variance of stopover duration.

These models may be extended in various ways. Allowance can be made for
unequal spacing of samples, using smoothing or “lifetime” curves in continuous
time. Adaptations are possible to allow for some occasions which have resighting
only, with no attempt to capture new birds. Also, the capture–recapture data may
be combined via likelihoods with count data of unmarked birds, using joint multi-
nomial models for the capture–recapture and Poisson models for the counts. Joint
likelihoods also allow the inclusion of extra information such as some birds having
known arrival and departure times, perhaps from radiotelemetry information.

These models also apply to population dynamic studies, where age and survival
have their true meanings, and are not interpreted as residence time and retention.
With studies which are long in relation to the lifetime of the animal, and where
there is little or no migration, the distribution of lifetimes may be estimated and the
detection of senescence in animals of unknown age is possible.
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Habitat Selection, Age-Specific Recruitment
and Reproductive Success in a Long-Lived
Seabird

Lise M. Aubry, Emmanuelle Cam, and Jean-Yves Monnat

Abstract Delayed recruitment (i.e. first reproduction) is a key feature of the demog-
raphy of long-lived species such as seabirds. If physiological, behavioral, and envi-
ronmental factors are thought to influence age at first breeding, knowledge of the
fitness prospects corresponding to different recruitment tactics is needed to get
insight into the evolution of delayed recruitment.

Because the age at which an individual recruits may depend on the location
chosen to breed, we first investigated the relationship between habitat quality and
age of first breeding in a long-lived seabird, the black-legged the Kittiwake (Rissa
tridactyla). We used multi-state mark-recapture approaches to model the transition
from non-breeding to breeding status as a function of age and habitat quality. We
also investigated whether there was a relationship between age at recruitment and
reproductive success in the year of recruitment. We assessed several non-exclusive
hypotheses. (i) If experience plays a part in reproductive success per se (e.g. in
the quality of parental care), or in acquisition of higher-quality breeding sites
(i.e. increased competitive ability), then reproductive success should be lower for
early recruits (i.e. age 3) than others. (ii) In the same vein, if delayed recruitment
corresponds to a queuing tactic allowing access to higher-quality sites, then late
recruits (age 6 or 7) should exhibit higher breeding success than others. Alter-
natively, delayed recruitment may reflect behavioral inability to access to higher-
quality sites; in this case, late recruits should exhibit poorer breeding success than
younger ones. (iii) Experience combined with social constraints may lead to an
initial increase in breeding success with recruitment age, and a decrease in older
recruits.

We found that recruitment probability was highest at intermediate ages (i.e. 5–6
years old), and that recruitment probability was maximal in habitat patches (i.e.
‘cliffs’) of medium quality. This may reflect harsh competition in the most produc-
tive cliffs, and avoidance of the least productive ones (i.e. where predation on eggs
is high). In accordance with our predictions (i and iii), we found that the youngest
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recruits experienced poor breeding success at the beginning of their reproductive
life, and that breeding success was higher for birds recruiting at intermediate age.
In addition, recruitment probability was best predicted by apparent habitat quality
the year preceding recruitment. The latter result suggests either that habitat selec-
tion takes place the year preceding settlement and first reproduction, or that the
information available to individuals at the beginning of a season is temporally auto-
correlated to past productivity.

Reproductive choices and/or the constraints met during the pre-reproductive
stage of life may influence age at recruitment. Our results show that there is a rela-
tionship between age of first breeding and breeding success probability. However,
age of first breeding may also have substantial effects on breeding success over life.
Future study should examine if reproductive success improves, shows senescent
decline, or remains the same over the life course of individuals recruiting at various
ages.

Keywords Age-specific recruitment · Black-legged the Kittiwake · Capture-Mark-
Recapture · Habitat selection · Habitat quality · Multi-state modeling · Breeding
success

1 Introduction

Age of first breeding (i.e. recruitment) in vertebrates is determined in part by age at
sexual maturity, a constraint limiting flexibility in the minimum age at recruitment.
However, even within the same population, a wide range of ages at first breeding
is observed in many vertebrates, and many seabirds delay first reproduction well
beyond physiological maturity. Accordingly, the pre-breeding segment of the popu-
lation constitutes a significant part of the population. It is important to understand
factors influencing the timing of recruitment to the breeding population, as the age
of first breeding may have a significant impact on population dynamics and fitness
(Caswell and Hastings 1980; Stearns 1992; Charlesworth 1994).

A consistent prediction from models based on life history trade-offs is that early
reproduction should be favoured by natural selection (Stearns 1992; Charlesworth
1994), except under specific circumstances (i.e. population decline or fluctu-
ating juvenile survival, Charlesworth 1994). Thus, unless one underestimates
the importance and evolutionary consequences of temporal variation in juvenile
survival, one might expect delayed reproduction to be rare in the wild. Interestingly,
empirical observations do not always support this prediction (e.g. in birds: Viallefont
et al. 1995; Pradel et al. 1997; Cooch et al. 1999; Lebreton et al. 2003). In a habitat
selection framework, delaying recruitment has been suggested to allow individuals
to gather information about potential breeding patches before recruitment (Boulinier
and Danchin 1997). Reproductive delay might also be beneficial in terms of fitness if
reproductive success increases with age, experience (i.e. skill enhancement through
learning), or both (Charlesworth 1994), as long as the survival costs associated to
such a delay do not exceed its benefits. Furthermore, delayed reproduction can be
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adaptive (i.e. ‘bet-hedging strategy’) in environments where reproduction is uncer-
tain (Tuljapurkar 1990).

In the black-legged Kittiwake (Rissa tridactyla), a cliff-nesting seabird, repro-
duction can begin at age two (Cam et al. 2002b, 2003), but the bulk of recruitment
takes place between 3 and 6 years of age (Danchin et al. 1991; Cam et al. 2005),
and some individuals delay recruitment even longer (e.g., 15 years; Cadiou 1993).
In addition to physiological constraints, a certain level of behavioural maturity
is required to complete reproduction successfully (Danchin 1987a; Porter 1988).
Behavioral maturity is part of the general complex of ‘increasing reproductive
ability with age and experience’ proposed by Charlesworth (1994), and may explain
delayed age of first breeding. A certain level of maturity (e.g. competitive abilities
in males to gain ownership on a nest-site), that may require a relatively long learning
process, is therefore mandatory before reproduction can begin (Nur 1984; Pickering
1989; Monnat et al. 1990; Danchin et al. 1998).

Environmental conditions may interact with an individual’s intrinsic quality and
result in a variety of recruitment tactics. Energetic constraints on reproduction are
likely to depend on resource acquisition, which is determined by both resource avail-
ability (i.e. a feature of the environment) and the individual’s ability to harvest them
(i.e. intrinsic quality). Only individuals of high quality may be able to recruit early
if resource limitation occurs (e.g. in the lesser snow goose, Viallefont et al. 1995; in
the blue petrel, Barbraud and Weimerskirch 2005).

Within this framework of constraints setting limits to variation in the age at first
reproduction, individuals still have ‘a decision to make’. For instance, age at first
reproduction may directly depend on habitat selection tactics based on optimization
of expected fitness (Fretwell and Lucas 1970). Potential recruits may decide either
to breed or to wait until the next breeding season based on the quality of poten-
tial breeding locations in a given year (Boulinier and Danchin 1997). For example,
severe predation events on eggs or chicks in the colonies attended by pre-breeders in
a given year (Cam et al. 2004a) may lead some of them to postpone recruitment until
the following breeding season. In this view, habitat selection may be one of the main
components of the ‘selective environment’ of the age at recruitment. The decisions
of where and when to start breeding may actually be ‘two sides of the same coin’
as Ens et al. emphasized (1995), and delayed recruitment might be the outcome of
a specific habitat selection strategy involving:

(1) Information gathering, in order to identify potential habitats and assess habitat
quality (e.g., assessment of conspecific reproductive success and predation pres-
sure in different colonies over time, Cadiou 1993; Boulinier and Lemel 1996;
Boulinier and Danchin 1997; Danchin et al. 1998);

(2) Gaining ‘ownership’ on a new site via competition or by queuing for an already
occupied site to become available (see Wiley and Rabenold 1984; Ens et al.
1995; Cam et al. 2002b).

Obviously, constraints related to the acquisition of a nest-site may influence the
timing of recruitment, especially in colonial cliff-nesting seabirds where compe-
tition amongst individuals to acquire a nest-site is strong, and may in turn delay
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accession to the breeding population. In the study-population, nest-site density is
stronger in higher-quality patches (i.e. cliffs) than in low-quality ones. Density is
part of the environmental features that may influence individual age at recruitment.
However, long-term observations (1979–2007) have shown that individuals can
always ‘create’ new nest-sites in higher-quality patches if they have the competi-
tive abilities to do so; thus, none of the patches are saturated in the study area. The
common observation of individuals competing for specific nest-sites that are already
occupied (Cadiou 1993) in higher-quality patches contradicts the idea that density
dependence is the main factor influencing settlement decisions. Indeed, these indi-
viduals might be more interested in queuing for already occupied nest-sites, or in
evicting previous owners of occupied sites, as in both cases they can directly observe
how much this site is ‘worth’ (i.e. based on their conspecific’s reproductive success
on this particular site). The pays-offs of such behaviour might overtake the benefits
associated with the creation of a new nest-site, in which case individuals have no
information on its potential. Our assumption is that social constraints and compet-
itive abilities, rather than density dependence per se, are the main determinants of
the age at first reproduction.

The optimal age at first reproduction, if any, is likely to depend on an individual’s
phenotype, the environment, and their interaction. It is probably not achievable to
fully understand why an individual recruits at a given age without identifying habitat
characteristics (nest-site, territory, colony or breeding location) where recruitment
takes place. Regrettably, these tend to be treated independently in the literature (but
see Ens et al. 1995; Boulinier and Lemel 1996). To circumvent this shortfall, our
main objective was to address the relationship between age at first reproduction and
habitat selection. Several behavioural tactics of habitat selection characterized by
different ages at first reproduction may coexist in populations. For example, age
per se may be associated with increased behavioural maturity and competitive
ability, which may in turn translate into a higher probability of acquiring a good nest-
site in older, more experienced individuals. A non-exclusive hypothesis may explain
a similar relationship between age and habitat quality: the queuing hypothesis (Ens
et al. 1995). Higher quality individuals may acquire higher quality nest-sites if they
wait for a productive site (i.e. site where the current and past reproductive success is
high) to become available. Alternatively, individuals with poor competitive abilities
may recruit in lower-quality sites, regardless of age, which may lead to a situation
where the oldest recruits breed on low-quality sites.

We used capture-mark-recapture (i.e. CMR) multi-state models (Nichols and
Kendall 1995; Nichols 1996; Cam et al. 2005) to estimate recruitment probabili-
ties as a function of age, cohort, as well as covariates used as surrogates for habitat
quality. We first examined the age at which birds recruit (whether this choice reflects
an individual decision or results from constraints), and where they settle at recruit-
ment (in terms of habitat quality) as a function of age, in order to determine whether
delayed recruitment results in the acquisition of higher-quality sites within produc-
tive cliffs.

Our second objective was to determine how well individuals recruiting at various
ages and in habitat patches of different qualities perform in terms of breeding
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success probability in the year of recruitment. This aims at assessing whether
delayed recruitment is associated with higher breeding success than early breeding;
more generally, we aim at assessing the importance of habitat selection on fitness
prospects in the very first breeding event.

2 Methods

2.1 Estimation of Recruitment Probabilities as a Function
of Habitat Quality Using CMR Multi-State Models

In 1979, a black-legged Kittiwake monitoring program was initiated in Brittany,
France, and is continuing today (five colonies located in Cap Sizun a few kilo-
meters apart from each other, 48◦5’N, 4◦36’W; Monnat et al. 1990). Here, we
examine the capture–recapture histories of twelve birth cohorts (1986–1997) over
18 years (1986–2003), that is a total of 4030 individuals. The fieldwork covers
each breeding season entirely such that observers do not miss a single reproduc-
tive event in the study area (Cam et al. 1998). It is therefore possible to iden-
tify the very first reproductive event of each individual returning to the study area
(Cam et al. 2002b, 2003, 2005). We acknowledge that some pre-breeding individ-
uals may have recruited into another population (e.g. the British Isles or Spain; Cam
et al. 2002b) before breeding in Brittany, that is, we may have missed the very first
breeding event. However, we believe that such cases are rare as most individuals
resighted as recruits attend Brittany colonies in the years preceding recruitment,
and the majority of the recruits are sexed through behaviour before first breeding.
Thus, attending Brittany colonies while breeding in the British Isles is likely
to be rare.

2.1.1 Habitat Quality

To address the relationship between habitat selection and recruitment probability,
we first defined habitat patches as sections of a cliff delimited by topographical
discontinuities (e.g. Danchin et al. 1998). In the following, we will use ‘cliff’ and
‘habitat patch’ interchangeably. Only patches hosting at least ten nest-sites were
included in our study. Following the approach developed by Danchin et al. (1998),
we calculated yearly ‘habitat quality’ (i.e. local productivity) as the percentage
of nests in a success situation within each cliff (0–33% for poor quality cliffs,
33–66% for medium quality cliffs, and 66–100% for highly productive cliffs). A
‘success’ was defined as a nest fledging at least 1 offspring. Similar to Danchin
et al. (1998), and Cam and Monnat (2000a), the performance of the focal indi-
vidual was excluded from the calculation of habitat quality in order to maintain
independence between measures of individual breeding success and habitat quality.
Our measure of habitat (cliff) quality will be referred to as ‘Cliff’ in the statistical
analyses.
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2.1.2 Approach to Modeling

Recruitment Probability

We used the definition of recruitment given by Pradel and Lebreton (1999): the prob-
ability that a pre-breeder in year t, which survived up to year t + l, reproduces in year
t + l (i.e. transition probability from pre-breeding to a breeding state; Brownie et al.,
1993). Transition probabilities from breeding to non-breeding states were fixed to
zero (i.e. impossible transitions). The recapture probability of breeders is ≈ 1 in
the study population (Cam et al. 1998, 2005), but previous studies have shown that
recapture probabilities for pre-breeders are lower than 1 (Cam et al. 2005). Hence,
estimation of transition probabilities conditional on survival (i.e. recruitment prob-
ability) requires probabilistic models incorporating recapture probability.

Multi-state (MS) models (Arnason 1973; Nichols et al. 1992, 1993; Nichols and
Kendall 1995; Schwarz et al. 1993; Lebreton and Pradel 2002) are designed in such
a manner that individuals can move among states (e.g., states can be geographical
states, or biological states such as size classes, breeding states, etc.). ψt is the prob-
ability of moving among states between time t and t + l (in our case, transition from
non-breeding to breeding state) conditional on surviving up to time t + l. We used the
multi-state models implemented in Program MARK (White and Burnham, 1999) to
estimate recapture, survival, and transition probabilities denoted as:

Pr
t : Recapture probability at time t for an individual in state r at time t (t = 2,

3, . . ., k)
Sr

t : Probability of being alive at time t + l, for an individual alive and of state r
at time t (t = 1, 2, 3, . . ., k–l)

�rs
t : Transition probability from state r (non-breeder) at time t (t = 1, 2, 3, . . .,

k–l) to state s (breeder) at time t + l, for an individual surviving between t
and t + l.

Here, age is accounted for by inclusion of both cohort and year (for additional
details see Cam et al. 2005)

Influence of Habitat Quality on Recruitment Probability

We modeled the effect of habitat quality on transition probabilities �rs
t (from a

non-breeding state r to a breeding state s) using two different approaches. First,
we assigned a covariate corresponding to the quality of the recruitment habitat
to each individual. Because previous studies have provided evidence that patch
quality the year preceding recruitment (t–l) influences settlement decisions in year
t in both dispersers and recruits (Cadiou et al. 1994; Danchin et al. 1998; Cadiou
1999), we considered models with a covariate accounting for habitat quality the
year preceding recruitment (covariate qt–l), or the year of recruitment (covariate
qt). The biological hypotheses underlying a model including habitat quality in
the year preceding recruitment is that recruits might be prospecting for a high-
quality patch. They might make the decision of where they are going to settle and
breed for the first time at least a year in advance. We also considered quadratic
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models including qt–l squared (q2
t–l), and qt squared (q2

t), to evaluate possible non-
monotonic relationshipsbetweenrecruitmentprobabilitiesandhabitatquality.Testing
for a positive linear relationship between recruitment probability and cliff quality
is testing whether recruitment probability increases as cliff quality increases. A
quadratic relationship term may account for higher recruitment probabilities in
habitat of medium quality and lower recruitment probabilities in habitats of poor
and high quality, or conversely if the sign is switched. We also considered a model
without any covariate accounting for habitat quality to address the ‘null’ biological
hypothesis that is a lack of influence of habitat quality on recruitment probability.

Since one must assign a covariate value to each individual, we had to dispense a
value to individuals that did not recruit and for which recruitment-habitat character-
istics did not exist (i.e. individuals that have never reproduced, died before recruit-
ment, or emigrated out of the study area before recruitment). Following Cooch
and White’s (2006) two-step solution to the ‘missing-value’ issue, we assigned
average covariate values to individuals that did not recruit (i.e. qt = 0.464, q2

t = 0.215,
qt–l = 0.456, q2

t–l = 0.208). This may artificially skew the estimate of transition prob-
ability towards these values (i.e. habitat patches of intermediate quality). To assess
the importance of the bias, we compared our results (i.e. models receiving large
support) to recruitment estimates obtained in a second set of analyses, where no
covariates were involved, but where states were defined differently and accounted
for the quality of the recruitment habitat.

The second approach assesses the effect of habitat quality on transition probabil-
ities �rs

i (from non-breeding state r to breeding state s) by specifying four states.
We considered (1) pre-breeders; (2) breeders recruiting in high-quality cliffs (i.e.
cliffs where local productivity is between 66 and 100%); (3) breeders recruiting in
cliffs of intermediate quality (i.e. local productivity between 33 and 66%); and (4)
breeders recruiting in poor quality cliffs (i.e. local productivity between 0 and 33%).
Because the previous approach indicated that models including habitat quality the
year preceding recruitment performed better than others (according to information
criteria, Burnham and Anderson, 1998, see also results), the categorical index of
habitat quality used in the second approach to define the states is based on habitat
quality the year preceding recruitment.

Our models included covariates (i.e. various measures of habitat quality) or
breeding states accounting for habitat quality, as well as age and cohort effects on
transition probabilities. We never used interaction terms between age and cohort as it
would be equivalent to considering a time effect. However, additive models allowed
disentangling age effects on recruitment probabilities from cohort-related effects. The
latter may reflect long lasting birth-year effects on age-specific recruitment prob-
abilities (e.g. climatic effects). We also used such additive models (cohort + age)
for purely technical reasons, that is to fix some parameters to zero according to the
specificity of the distribution of ages at recruitment in the different cohorts (e.g. if
in the birth cohort 1992, the minimum transition from a non-breeding to a breeding
state occurred between ages 3 and 4, the ‘cohort + age’ format allowed us to fix
the parameters representing the probability of recruitment in younger age classes
to zero, such as recruitment probabilities in between age 0 and 1, 1 and 2, or 2 and 3).
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Model Selection

Based on prior studies of recruitment probability (Cam and Monnat 2000a;
Cam et al. 2002b, 2003, 2005), and movement among colonies of black-legged
kittiwakes in Brittany (Danchin and Monnat 1992; Danchin et al. 1998), we were
primarily interested in hypotheses pertaining to the relationship between age-
specific recruitment probability and habitat selection, conditional on age- and state-
specific survival. Accordingly, we designed a general model reflecting all biological
processes of interest. Because recapture probability of the youngest pre-breeders is
known to be low, sample sizes within age-by-state combinations were assessed to
design the most general model (e.g. Cam et al. 2002b, 2003, 2005).

Previous studies indicated that adult recapture probabilities have always been
≈ 1 in the study area (Danchin and Monnat 1992; Cam et al. 1998, 2005), hence
we assumed that adult recapture probabilities were independent of time and cohort
in all models: p2(.) (state ‘2’ corresponds to adults i.e., after recruitment). On the
contrary, we expected recapture probabilities to vary with age amongst pre-breeders:
p1(.) (state ‘1’ corresponds to pre-breeders). As the majority of pre-breeders recruit
before 7 years old, we pooled data from pre-breeders of age 7 or more (i.e., recapture
at age 1, 2, 3, 4, 5, 6, 7 or greater).

Previous work also indicated that apparent survival probability is lower for pre-
breeders than for breeders (Cam et al. 2005), as they might be subjected to greater
extrinsic causes of death than adults, or have a higher probability of permanent
emigration. Therefore, we considered a 7 age-class effect on pre-breeders’ survival
as well. Climatic conditions experienced during early development or during the first
winter at sea may affect differently each birth cohort justifying why we considered
cohort variations in pre-breeders’ survival (i.e. S1(c12, a7), where ‘c12’ stands for
the cohort effect and ‘a7’ for the seven age-class effect). We did not consider cohort
variation in adult survival, as we were trying to limit model size (i.e. number of
estimated parameters). We focussed preferentially on the parameters of interest (i.e.
parameters representative of the ‘pre-breeding’ stage, and of ‘first-time breeding’
events). We then considered an age effect on adult survival (denoted as S2(a5)). In
the case of adults, we defined only 5 age classes (i.e. a5 defines age classes 2, 3, 4, 5,
6, 7 +, where 7 + stands for individuals aged 7 years old and more), as the minimum
age to become a breeder is 2 years old.

The last set of assumptions concerns the probability of transition from a non-
breeding to breeding state, �. As previous studies have provided evidence of an
increase in recruitment probability with age, and in a limited sense, with experience
as well (Cam et al. 2002b, 2003, 2005), we considered age effects on transition prob-
abilities. Also, we included an additive cohort effect to account for the influence of
annual environmental change (climatic conditions or predation events affecting the
proportion of high-quality breeding habitats available to recruits), when individuals
belonging to different cohorts reach the age at which transition to the breeding state
is theoretically possible. Such environmental factors may influence age-specific
recruitment differently from one cohort to another. As our primary objective was
to examine the influence of habitat quality on age at first reproduction, we also
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included the effect of habitat quality, either by using individual covariates (approach
1), or by stratifying the data set into different states, reflecting different combina-
tions of habitat quality and age (approach 2). The initial model accounted for an
age effect on recruitment probabilities characterized by 6 age-specific transition
probabilities (transition in between 1 and 2 years old, 2 and 3, 3 and 4, 4 and 5,
5 and 6, 6 and 7). Transition probabilities were denoted �12(c12 + a6 + qt + qt

2 +
(a6 x qt)) in the first approach and �12(c12 + a6) �13(c12 + a6) �14(c12 + a6) in
the second, where 2, 3 and 4 corresponded to the three different habitat qualities (i.e.
poor, medium, high) in which a bird can recruit. As transitions cannot biologically
occur in the opposite direction, �21(.) �31(.) �41(.) were fixed to zero.
For each approach, our starting model was defined as follows:

Approach 1 (with individual covariates):
S1(c12 + a7) S2(a5) p1(a7) p2(.) �12(c12 + a6 + qt + qt

2 + (a6 x qt)) �21(.)

Approach 2 (discrete states):
S1(c12 + a7) S2(a5) S3(a5) p1(a7) p2(.) p3(.) p4(.) �12(c12 + a6) �13

(c12 + a6) �14(c12 + a6)

We acknowledge that both global (starting) models are not saturated, even though
it would be desirable to compare the performance of saturated models and less
parameterized ones. A saturated model is defined as the model where the number of
parameters equals the number of data points. Such a model is needed to compute the
baseline deviance, which is in turn used to estimate the amount of over-dispersion
in the data (Cooch and White 2006). However, we had to limit the degree of
stratification of the data to make parameter estimation feasible. Furthermore, the
large number of biological parameters of interest made it difficult to define a small
set of alternative models defined ‘a priori’ (Burnham and Anderson 1998). We
sequentially specified models by simplifying the starting model to test for specific
biological hypotheses. Nevertheless, we acknowledge that sequential development
of models might lead to different conclusions compared to considering a set of
models defined a priori.

Unfortunately, formal goodness-of-fit tests for MS models do not allow for
treatment of situations with permanent transitions (Pradel 2006). As an alternative
approach to a formal goodness-of-fit test, we estimated an overdispersion parameter
(i.e. ĉ) for the global model without individual covariates (approach 2 described
above) using bootstrap simulations in MSSURVIV (Hines 1994).

We used Akaike’s Information Criterion modified for small sample size, AICc,
in the first approach (where no overdispersion parameter ĉ can be calculated), and
the qAICc modified for overdispersion in the second approach (where q stands for
quasi-likelihood; Akaike 1973, see also Sakamoto et al. 1986; Lebreton et al. 1992;
Burnham and Anderson 1998). We also used Akaike’s weights, wi, to select the best
models from our set of candidate MS models in both approaches 1 and 2. Only
models with an Akaike weight exceeding 0.95 were systematically retained. If the
weight was shared among 2 or more models, we discussed the interpretation of each
of them.
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2.2 Estimation of Breeding Success in the Year of Recruitment

2.2.1 Sample Specifications

Only individuals that survived until recruitment and recruited were considered in
analyses of breeding success (1450 individuals, 5054 observations). More specifi-
cally, we addressed breeding success probability in the year of recruitment and in
subsequent breeding occasions. As emphasized above, for birds recruiting in the
Cap Sizun, the probability of recapture is virtually 1 after recruitment (Cam et al.
1998, 2005). Working on the sample of individuals that has recruited allows us to
use simple statistical models that do not account for recapture probabilities, such as
generalized linear models and mixed models. Individuals whose breeding success in
the year of recruitment was unknown or uncertain were excluded from the analyses.
Only individuals that fledged at least one chick up to independence were considered
‘successful’, others were considered to have ‘failed’.

2.2.2 Generalized Linear Models (glm) and Mixed Models (glmmM)

We used generalized linear models (Agresti 1990) to address the influence of two
covariates (i.e. age at first reproduction and habitat quality) on breeding success
probability, a binary response variable (i.e. success versus failure). Sample sizes
incited us to minimize the number of states in the analysis, thus we did not include
different levels of failure (e.g. early failure when the chick dies at the nest or late
failure when the chick died at fledging) or success (e.g. kittiwakes generally produce
1 or 2 eggs, and occasionally produce up to 3 eggs, and may fledge several chicks).

We built a series of glms (use of the logit link) accounting for cliff quality the
year preceding recruitment (found to be a better predictor of the recruitment process
than cliff quality the year of recruitment, see Results) and age at recruitment. Age
at recruitment was treated either as a continuous or as a categorical covariate. We
tested several transformations of cliff quality (i.e. proportions of successful nests
within a cliff in a given year):

– the arcsine transformation, suitable for binary data summarized as proportions.
– the square root transformation, suitable for Poisson-distributed covariates where

sample means are proportional to the variances of the respective samples;
replacing each measure by its square root will often result in homogeneous
variances (Neter et al. 1996).

We also built models including a quadratic effect and a cubic effect of age and
habitat quality on breeding success probability. A quadratic effect of cliff quality on
success probability would mean that maximum (or minimum) success probability
is reached in cliffs of intermediate quality. Similarly, a quadratic effect of age on
success probability would account for a minimum, or maximum breeding success
at intermediate ages. A cubic relationship would account for a bimodal pattern in
success probability as a function of covariates.
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We accounted for temporal variation in breeding success (possibly resulting
from environmental fluctuations; e.g. climatic conditions, predation events, food
shortage, etc.) by incorporating a random effect of time (year) only to the
best performing model. We modeled year as a random effect for two reasons.
First, we had no motive to suspect any specific shape for the influence of
year on breeding success probability (e.g. a systematic trend). Second, using a
random effect to account for temporal variation in breeding success leads to
fewer parameters than a fixed effect model. We viewed this as an advantage
(i.e. larger sample sizes) to address the influence of covariates more relevant to
hypotheses pertaining to habitat selection (e.g. habitat quality). We used the package
‘glmmML’ (i.e. package ‘MASS’, R version 2.3.1) to implement mixed models.

2.2.3 Model Selection

First, we compared pairs of models containing the same covariate but parameterized
in different ways (e.g. a model containing the age at first reproduction AFR, treated
as a continuous covariate, was tested against a model containing AFR treated as a
factor). After retaining the best parameterization, we compared models with an addi-
tive effect or an interaction term. Each model was created to discriminate between
various underlying biological hypotheses. The models selected will be discussed in
the manuscript. For model comparison, we only reported model selection based on
Akaike’s Information Criterion AIC (Akaike 1973; Burnham and Anderson 1998),
as results based on AICc were consistent with results based on AIC.

3 Results

3.1 Estimation of Recruitment Probabilities as a Function
of Habitat Quality: A CMR Approach Using Multi-State
Models

The estimated overdispersion parameter (i.e. variance inflation factor) for the global
model was 1.94 (bootstrap procedure in MSSURVIV, 1000 simulations).

3.1.1 Analysis with Individual Covariates

The best model, ‘2-state-model-19’, is structured as follow (see Appendix 1;
Table 1):

S1 (c12 + a6) S2(.) p1(a4) p2(.) �12(c12 + a6 + qt-1 + qt–1
2) �21(.)

This model includes a cohort effect on survival probability of pre-breeders,
and survival probability at a given age varied according to birth year. Pre-breeder
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Table 1 Modelling the influence of habitat quality on the recruitment process I: model selection
results based on the first approach (approach with covariates, see Methods)

Model selection AICc �i Wi Likelihood NP Deviance

M19 21374 0.00 0.77 1.00 42 21290
M24 21377 2.69 0.20 0.26 43 21290
M13 21382 7.98 0.01 0.02 43 21296
M18 21838 8.87 0.01 0.01 44 21294
M11 21384 9.93 0.00 0.01 33 21318
M7 21384 10.44 0.00 0.00 33 21318
M12 21395 20.50 0.00 0.00 50 21294
M5 21396 21.98 0.00 0.00 49 21297
M4 21397 22.51 0.00 0.00 51 21294
M3 21401 26.75 0.00 0.00 40 21320
M14 21404 30.35 0.00 0.00 57 21290
M20 21406 32.16 0.00 0.00 58 21289
M6 21408 34.17 0.00 0.00 59 21289
M10 21409 35.22 0.00 0.00 56 21297
M16 21418 44.06 0.00 0.00 43 21332
M22 21420 45.78 0.00 0.00 43 21333
M15 21428 53.50 0.00 0.00 43 21341
M21 21430 55.55 0.00 0.00 43 21343
M9 21449 75.11 0.00 0.00 45 21359
M8 21457 83.04 0.00 0.00 34 21389
M17 21643 268.88 0.00 0.00 38 21567
M23 21643 269.12 0.00 0.00 38 21567
M1 21826 452.40 0.00 0.00 60 21706
M1bis 21861 934.67 0.00 0.00 47 21766
M2 22666 1291.50 0.00 0.00 54 22557

Note: NP: number of estimated parameters; AIC: Akaike’s Information Criterion = −2*log-
likelihood + 2*NP; Wi = exp (−0.5*�AIC)/NP.

survival also varied across ages (i.e. survival probabilities between ages 0-1, 1-2,
2-3, 3-4, and 4-5 years old were significantly different).

Adult survival probability was best accounted for by a model with constant
survival across ages and cohorts (S2(.)).

The recapture probability of pre-breeders did not vary across cohorts, but varied
across ages ‘p1(a4)’. The best model retained had a 4 age-class structure (0-1, 1-2,
2-3, and 3-4 years old and more) showing a non-negligible difference in recapture
probabilities across age groups.

Recapture probability of adults was ≈ 1, regardless of cohort and age class
(p2(.)) and confirms previous findings (Danchin and Monnat 1992; Cam et al. 1998;
2005).

The probability of transition from the ‘pre-breeding’ to the ‘breeding’ state varied
across cohorts and ages (�12(c12 + a6 + qt–1 + qt–1

2)). The model selected included
six age classes (transition from 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6 and 6 to 7 +
years old and more). Averaged across cohorts, the recruitment probability between
ages 1 and 2 was close to zero (only a handful of individuals recruited at such an
early age). Model selection provided support for a model where recruitment proba-
bility increased with age at first breeding up to 5 and 6 years of age, after which it
declined (i.e. recruitment probability peaks for the transition occurring in between
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Fig. 1 Recruitment probabilities as a function of habitat quality and age at first reproduction
Cliff quality (i.e. continuous covariate) was calculated the year preceding recruitment. Recruitment
probabilities were estimated from the best performing multi-state model. The recruitment proba-
bilities were averaged across cohorts (birth cohorts 1986 to 1997, followed from 1986 to 2003).

age 5 and 6; Fig. 1). The model selected also included an effect of cliff quality the
year preceding recruitment (i.e. qt–l), largely preferred (according to AICc) over a
model with an effect of cliff quality in the recruitment year (i.e. qt), and over a
model without a covariate accounting for cliff quality. Moreover, a quadratic effect
of cliff quality in the year preceding recruitment (i.e. qt–l + qt–l

2) received more
support than a linear effect (Table 1). Thus, for each recruitment tactic, maximum
recruitment probability occurred in cliffs of intermediate quality the year preceding
recruitment (Fig. 1).

One may argue that this result does not reflect any active individual choice, but
rather that the availability of habitat patches of intermediate quality exceeds that of
patches of other qualities (i.e. poor and highly productive cliffs). Individuals may
simply distribute themselves randomly according to habitat availability. That is true
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Table 2 Time series of the proportion of poor, medium, and high quality cliffs from 1986 to 2003

Year Cliffs of good
quality (%)*

Cliffs of intermediate
quality (%)**

Cliffs of poor
quality (%)***

1986 29 45 26
1987 32 39 30
1988 16 35 49
1989 6 34 59
1990 11 39 50
1991 35 40 26
1992 33 35 33
1993 23 28 49
1994 10 23 67
1995 26 21 53
1996 19 19 62
1997 24 34 41
1998 7 22 7
1999 15 54 31
2000 21 62 17
2001 41 32 27
2002 20 44 36
2003 62 35 4

Note: Cliff quality was calculated the year preceding recruitment as model selection results indi-
cated that this quantity best predicts recruitment probability.
* Proportion of cliffs in a given year containing 66–100% nests in a success situation.
** Proportion of cliffs in a given year containing 33–66% nests in a success situation.
*** Proportion of cliffs in a given year containing 0–33% nests in a success situation.

in less than half of the cases (see Table 2, years 1986, 1987, 1991, 1992, 1999,
2000 and 2002). Consequently, a higher recruitment probability in cliffs of interme-
diate quality cannot be interpreted as resulting exclusively from a spatially random
recruitment process. In more than half of the years included in this study, individual
choice and/or constraints led recruits to select habitat features different from those
that would be obtained by random settlement.

3.1.2 Analysis Without Individual Covariates

The above results provided evidence that models including an effect of cliff quality
in the year preceding recruitment on transition probability best fit the data. In the
second approach (i.e. without individual covariates), we therefore defined three
states for breeders (‘2’, ‘3’, and ‘4’, settling in poor, medium, and high quality
habitat patch, respectively) according to cliff quality in the year preceding recruit-
ment, as the model including a quadratic form of this covariate was found to perform
better than models including cliff quality the year of recruitment (Appendix 2;
Table 3).
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Table 3 Modeling the influence of habitat quality on the recruitment process II: model selection
results for the second approach (approach without covariates, see Methods)

Model selection qAICc* �i Wi Model likelihood NP Deviance

Md21 32218 0.00 1.00 1.00 76 16355
Md12 32238 20.35 0.00 0.00 86 16355
Md8 32238 20.37 0.00 0.00 86 16355
Md7 32239 21.32 0.00 0.00 87 16354
Md9 32240 22.39 0.00 0.00 85 16360
Md15 32241 22.82 0.00 0.00 84 16362
Md6 32241 23.15 0.00 0.00 88 16354
Md14 32242 24.53 0.00 0.00 85 16362
Md20 32244 26.36 0.00 0.00 83 16368
Md4 32241 33.25 0.00 0.00 102 16336
Md3 32252 34.08 0.00 0.00 103 16335
Md1 32254 36.12 0.00 0.00 104 16335
Md5 32255 37.05 0.00 0.00 101 16342
Md11 32284 66.32 0.00 0.00 76 16422
Md19 32291 73.34 0.00 0.00 53 16475
Md16 32348 130.43 0.00 0.00 50 16539
Md13 32481 263.59 0.00 0.00 81 16609
Md18 32513 295.45 0.00 0.00 68 16667
Md10 32550 331.86 0.00 0.00 69 16702
Md17 32561 342.85 0.00 0.00 35 16781
Md2 34003 1785.50 0.00 0.00 98 18096

Note: NP: number of estimated parameters.
* We used Akaike’s Information Criterion modified for sample size qAICc (where q stands for
quasi-likelihood) and for an estimated overdispersion parameter ĉ of 1.93 using bootstrap simula-
tions (see Methods).

The best approximating model, ‘4-states-model-21’, had the following structure:

S1(c12 + a6)S2,3,4(a3)p1(a5)p2,3,4(.)�12(c12 + a6)�13(c12 + a6)�14(c12 + a6)

This model included a cohort effect on pre-breeder survival, ‘�1(c12)’, showing
that birth year influences survival. In addition, pre-breeder survival probabilities
changed with age, S1(a6) (i.e. survival probabilities from age 0 to 1, 1 to 2, 2 to 3,
3 to 4, 4 to 5, and from 5 years old to any higher age were significantly different).
Adult survival probability did not vary across cohorts or across cliff qualities in the
year preceding recruitment. We did however detect an age effect on adult survival
(where individuals aged 3, 4, 5 years old and more had different survival probabili-
ties: ‘S2,3,4(a3)’).

Recapture probability of pre-breeders was constant across cohorts, but varied
across five age classes: 0, 1, 2, 3, 4 years and more; ‘p1(a5)’. For adults, neither
cliff quality, cohort, nor age influenced recapture probabilities.

Recruitment probabilities varied according to birth cohort and age (transition
probabilities from 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7 years old and more
were significantly different). Consistent with the results obtained using the previous
approach, transition probabilities were highest at intermediate ages (i.e. 5 and 6
years old; quadratic age effect on recruitment probability). In addition, age-specific
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Fig. 2 Recruitment probability as a function of habitat quality and age at first reproduction
Cliff quality was calculated the year preceding recruitment. Three states accounted for the quality
of the recruitment habitat the year preceding recruitment: poor, medium and high quality cliffs. A
fourth state accounted for the pre-breeding segment of the population. Recruitment probabilities
were estimated from the multi-state model that received the most support, and were averaged across
cohorts (birth cohorts 1986–1997, followed from 1986 to 2003).

recruitment probabilities varied according to cliff quality in the year preceding
recruitment, and were higher in habitat patches of intermediate quality Fig. 2).

3.2 Breeding Success the Year of Recruitment

The best model contained both an effect of age at first reproduction (treated as a
factor: AFR = 3, 4, 5, 6, 7 years old and more) and a quadratic effect of cliff quality,
on breeding success (Table 4; Fig. 3). Breeding success probability was maximal
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Table 4 Model selection results: generalized linear models and mixed model testing the effects of
age at recruitment and habitat quality on breeding success in the year of recruitment

Model NP AIC �i exp(–(1/2)* �i) Wi

AFR.cat + (Cliff)2+ � (time)* 7 1613.0 0.0 1.000 0.609
AFR.cat * (Cliff)2 10 1619.6 6.6 0.037 0.022
AFR.cat + (Cliff)2 6 1614.0 1.0 0.606 0.369
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliff + (Cliff)2 3 1658.4 45.4 0.0 0.0
Sqrt (Cliff) 2 1668.5 55.5 0.0 0.0
(Cliff)2 2 1656.9 43.9 0.0 0.0
Arcsin (Cliff) 2 1661.1 48.1 0.0 0.0
Cliff 2 1659.6 137.3 0.0 0.0
AFR + (AFR)2 + (AFR)3 4 1733.0 120.0 0.0 0.0
AFR + (AFR)3 3 1735.8 122.8 0.0 0.0
AFR + (AFR)2 3 1734.5 121.5 0.0 0.0
AFR.cat 5 1733.3 120.3 0.0 0.0
AFR 2 1750.3 137.3 0.0 0.0

Note. Model selected in bold characters; Models contained above in italic character(s) are models
that were not retained but that have some weight in explaining the biological process that gave rise
to the data; we used a mixed model to add a random time effect ‘� (time)’ to the best performing
glm; ‘+’ additive effect; ‘*’ interaction; NP = number of estimated parameters; AIC: Akaike’s
Information Criterion = −2*log-likelihood + 2*NP; Wi = exp (–0.5*�AIC)/

∑
exp (–0.5*�AIC).

Covariates: Age at first reproduction (AFR if continuous, AFR.cat if categorical, AFR2 for a
quadratic effect, AFR3 for a cubic effect); cliff quality (Cliff if continuous, Arcsin(Cliff) if arcsinus
transformed, Sqrt(Cliff) if square root transformed, and Cliff2 for a quadratic effect).

for individuals recruiting at an intermediate age of 5 years old (Fig. 3). By including
a random effect of time in this model, the AIC dropped by 1 unit, down to the
value of 1613, providing slight evidence of yearly variation in breeding success
over time.

4 Discussion

In this paper, we first aimed at examining whether habitat selection and age at
recruitment were linked, and if so, which recruits gained the best breeding habitats:
early recruits or individuals delaying recruitment. We also examined which recruit-
ment tactic led to the highest breeding success in the year of recruitment. Overall,
this paper studies (1) recruitment-habitat selection, (2) when and where recruits
breed for the first time, and (3) breeding success as a function of the location and
the age at which individuals recruit.

4.1 The Timing of Habitat Selection, Habitat Quality
and Age-Specific Recruitment

A number of investigators (Danchin 1988b; Danchin et al. 1991, 1998; Cadiou
et al. 1994) have suggested that dispersers actively select their recruitment habitat
the year preceding settlement (e.g. the number of prospectors in habitat patches
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Fig. 3 Breeding success the year of recruitment as a function of cliff quality the year preceding
recruitment and age at first reproduction

depends on their current productivity; Cadiou 1993). Corroborating their hypothesis,
we also observed that models including cliff quality the year preceding recruitment
performed better in explaining the recruitment process than models including cliff
quality the year of recruitment (Appendix 1; Table 1). Two scenarii can be proposed.
Habitat selection may take place in the year of recruitment based on information
available at the beginning of a breeding season on habitat quality (i.e. information
based on social activity and attendance of individuals that bred in that patch the
previous year and returned to the same breeding patch). Such information may be
strongly autocorrelated to local productivity in the preceding year (Boulinier et al.
1996). However, young recruits (i.e. recruiting at 3 years old) might only benefit
from an imperfect knowledge of cliff quality, as they arrive on average 2 months later
than individuals delaying recruitment (based on direct observations). Alternatively,
settlement decisions may be made the year preceding recruitment. This implies that
pre-breeders prospect for a breeding ground at least a year in advance (Danchin
et al. 1991). Both scenarii rely on the assumption that habitat quality in a given
year t is a reliable indicator of its quality in year t + l (Boulinier and Lemel 1996).
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If so, temporal autocorrelation in breeding success over 2 consecutive years in a
given patch should allow pre-breeders to locate a higher-quality breeding location
a breeding season in advance. Although we only considered habitat quality in the
year of recruitment and the year preceding recruitment, recruitment probability may
depend on past productivity over several consecutive years (with temporal autocor-
relation of cliff quality being superior to a year).

In most age classes, recruitment probability in a given year (from 1986 to 2003)
was highest in cliffs of intermediate quality the year preceding recruitment (with the
exception of individuals recruiting at age 2, for which transition probabilities are
not reliable as sample size is very small). According to habitat selection theory, if
no constraints are operating (i.e., no competition, no dominance in social hierarchy,
and if individuals have information on the range of habitats available), we might
expect natural selection to favour habitat selection tactics that maximize fitness
(Holt and Barfield 2001). That is, recruitment probability should be highest in the
most productive cliffs, where the fitness prospects are maximal. Our results do not
support this prediction, and therefore suggests the existence of constraints. High-
quality cliffs may not be accessible to most recruits (i.e. the youngest). They may
be constrained to breed in habitats where competition for nest-sites is lower. Our
results also provided evidence that older first-time breeders recruit in habitats of
lower quality than intermediate age individuals; therefore, the queuing hypothesis
is unlikely to explain the pattern observed in these recruits. Features of individual
quality relevant to habitat selection may involve differences in behavioural maturity,
social and territorial dominance. These differences could be expressed in terms of
the age at recruitment, whereby old recruits (i.e. of low intrinsic quality) can only
afford to breed in low-quality patches because of competitive inferiority. However,
in the case of young recruits, if they are sometimes assumed to be of high intrinsic
quality (Nur 1988), we did not find evidence that this translates into access to higher-
quality habitat, as they do have the advantage of an early breeding start, but still do
not recruit on the best breeding-sites. These individuals may not be of lower intrinsic
quality, they may simply lack competitive skills. Behavioral maturation may explain
why individuals recruiting at intermediate age have access to higher-quality sites.

These results are valuable only if one assumes that recruits make an active selec-
tion of the habitat in which they will breed for the first time. One could imagine
that individuals breed preferentially in intermediate quality cliffs because these are
more abundant than other cliffs type (i.e. cliffs of low or high quality). However,
our results suggest that we are observing the outcome of an individual choice
involving active habitat selection rather than random settlement. Indeed, over all
the years studied, the proportion of cliffs of intermediate quality was not larger than
the proportion of cliffs of high or poor quality, as cliffs of low, high, and inter-
mediate quality were equally available in the study area. In addition, we acknowl-
edge that density dependant processes may influence settlement decisions. However,
we believe that density dependance alone cannot explain the observed distribution
of recruits according to habitat quality. Indeed, behavioural studies have provided
evidence that creation of new nest-sites by pre-breeders is possible even in highly
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productive patches, but that this option is not usually preferred by pre-breeders: they
mostly compete for occupied sites (Cadiou 1993; Cadiou et al. 1994).

Both multi-state modeling approaches showed age-related variation in recruit-
ment probability, with highest recruitment probabilities reached at intermediate ages
(transition probability in between 5 and 6 years old). Yet, a non-negligible propor-
tion of individuals recruited earlier (i.e. recruitment probability of 0.15 at age 3,
and approximately 0.40 at age 4). Age-specific variation in recruitment probability,
more specifically the initial increase in recruitment probability, may partly reflect
the progressive acquisition of behavioural and physiological maturity of individuals
in the population. Whether individuals delaying reproduction do so because they are
not sexually mature, or because of a lack of behavioural maturity (in sexually mature
individuals), is beyond the scope of this paper: physiological and behavioural data
are required to address this question. However, within the framework of physio-
logical and social constraints (e.g. competition), it is possible to address whether
there is scope for natural selection processes to operate on age of first breeding
by evaluating and comparing fitness components associated with each age-specific
recruitment tactic. We addressed whether there was a relationship between each
tactic and age-specific reproductive success in the recruitment year to determine
which one(s) might yield highest breeding success levels.

4.2 Breeding Success

We found evidence that birds recruiting at intermediate ages (i.e. recruiting at age
5) experienced the highest reproductive success in the year of recruitment. These
results complete our findings regarding age-specific recruitment probability, where
again, the highest probability of recruitment was observed at that age. Based on
these results, it is tempting to suggest that the age at first reproduction has been
shaped by an optimization process. Under this view, recruiting around age 5 (i.e.
delaying recruitment up to intermediate ages) would be associated with fitness
advantages that offset the direct costs of delayed recruitment (i.e. costs such as
‘missed’ breeding opportunities in comparison with individuals recruiting earlier).

One of the predictions of life history theory is that early reproduction should
be favoured by natural selection in stable or increasing populations (Stearns 1992;
Charlesworth 1994), except in situations where delayed reproduction is benefi-
cial in terms of fitness. A well-known case explicitly addressed by Charlesworth
(1994) is when reproductive success increases with age, experience (or both). In this
case, theory suggests that younger individuals may balance the potential benefits of
recruiting early (e.g. more breeding events accumulated throughout life compared to
recruits delaying first reproduction), with the cost of unsuccessful breeding attempts
early in life (Charlesworth 1994), as the youngest recruits lack experience and
have a higher probability of breeding failure than others. Also, the time spent
prospecting for a site may provide benefits in terms of information gathered on a
potential breeding site, despite the costs associated with missing breeding opportu-
nities (Boulinier and Danchin 1997). Early recruitment in this population is indeed
associated with low reproductive success in the year of recruitment. Behavioural
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maturity and competitive abilities gained before breeding may explain why indi-
viduals recruiting at intermediate ages exhibit higher breeding success than early
recruits (Nol and Smith 1987; Lunn et al. 1994).

Also, it has been suggested that heterogeneity in individual quality contributes to
explain the age-specific variation in age at first breeding (Nur 1988; Curio 1983).
According to this hypothesis, higher-quality individuals are assumed to be able
to invest more into reproduction without incurring as large costs as lower-quality
individuals; this may favour early investment into reproduction for higher-quality
individuals. At this point, our results concerning breeding success probability are
not consistent with this hypothesis. Overall, our results provided evidence that the
youngest first-time breeders (the ones that theoretically are assumed to be of highest
intrinsic quality: Nur 1988; Pyle et al. 1997), experienced the poorest breeding
success probability in the recruitment year, compared to intermediate-age recruits,
regardless of the quality of the recruitment habitat. However, it is possible that early
recruits improve their breeding success as they age and gain experience; again, they
may not be of lower intrinsic quality. Heterogeneity in quality among individuals
may explain only partially our results: the decrease in recruitment probability in
first-time breeders after age 5 (i.e. individuals delaying recruitment), and the fact
that late breeders recruit in lower-quality habitat than birds recruiting at intermediate
age. Social inferiority may prevent these individuals from beginning reproduction
earlier in life. However, their breeding success probability in the year of recruit-
ment is high: experience gained over a longer pre-breeding period may result in this
pattern.

Attempting to explain the evolutionary (dis)advantages of early or delayed
recruitment by addressing reproductive success in the first breeding attempt exclu-
sively is too restrictive: first reproduction is only a snapshot of the lifetime profile
of reproductive success for individuals recruiting at various ages in each habitat
type. However, this first step was crucial in the understanding of the age-specific
recruitment process and how it is related to habitat selection theory.

4.3 Prospects

Regarding habitat selection mechanisms, preliminary analysis conducted in the
same study population (Aubry, unpublished; Bled 2006; Bled et al. in prep),
suggests that it is critical to work at a much finer spatial scale to address recruitment;
that is the nest-site itself, within a given cliff (e.g. it may be disadvantageous to
gain ownership on a site of poor quality within the most productive cliff). Using
an approach based on the quality of patches, there is no clear hierarchy among
age classes in terms of access to habitat of lower, intermediate, or higher quality,
but there is a relationship between habitat quality at the patch level and success
probability in the year of recruitment. The shape of the relationship between age
and success probability (which is highest in birds of intermediate age) cannot be
explained by higher recruitment probability in higher-quality habitat: intermediate
age first-time breeders do not recruit in higher-quality habitats than others (e.g. the
interaction between age and quality was not retained in multi-state models with
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individual covariates). Heterogeneity in quality among sites within habitat patches
may obscure the relationship between habitat quality, age, and individual success
probability. A more detailed study of habitat selection at the site level may help
understand the observed influence of age on breeding success probability. In this
mobile species exhibiting breeding dispersal (Danchin and Monnat 1992; Danchin
et al. 1998), it may not be possible to fully understand age-specific variation in
fitness components (e.g. variation over life) without considering features of the
habitat where each reproductive event takes place. But the very high degree of strati-
fication required by such analysis of age-specific reproductive success as a function
of habitat quality may be a major obstacle, and further work is needed to assess
whether it is feasible using this data set.

The study of reproductive success indicates that reproductive choices and/or the
constraints met during the pre-reproductive stage of life may influence age at recruit-
ment, which may in turn have substantial effects on breeding success over life.
To address the overall fitness of recruitment tactics, one may consider measures
of lifetime fitness such as Lifetime Reproductive Success (Clutton-Brock 1988),
or individual lambda (McGraw and Caswell 1996). This would be a first step to
assess whether different tactics are associated with a different total number of viable
offspring, and if there is scope for natural selection to operate on age of first breeding
in a different manner than understood on the basis of breeding success in the first
breeding attempt exclusively. However, the same lifetime fitness may be achieved
in very different ways in terms of longevity, age-specific reproductive investment,
and choices in terms of habitat selection. As for further investigations, an interesting
step to take would be to look over the life course of individuals recruiting at different
ages (i.e., recruitment tactics), and determine whether breeding success improves,
shows senescent decline, or remains the same across ages for the different recruit-
ment tactics identified above. Our results provided evidence that early recruits (i.e.
3 years old) start their reproductive life with a handicap, as their initial breeding
success probability is the lowest (Fig. 3). It would be worth addressing whether
recruits experiencing poor breeding success in the year of recruitment catch up
and perform increasingly better throughout life. One may also assess whether indi-
viduals recruiting at intermediate ages (i.e. recruits of 5 years old which show the
highest reproductive success in the recruitment year), are the ones performing best
overall (i.e. highest fitness prospects). Last, one may determine if recruiting beyond
this age leads to the lowest fitness prospects or not. Assessing fitness differences
among reproductive tactics and determining the selective advantages of adopting
one tactic or the other will require additional work (e.g. Evolutionary Stable Strategy
modeling; Maynard Smith 1982).

Moreover, our work suggests that there may be a substantial level of
individual heterogeneity in the study population (i.e. variation in age-specific
recruitment tactics leading to variation in reproductive success), and highlights
the need to develop multi-state models for estimating transition probabilities
while properly accounting for unobserved heterogeneity in reproduction (and in
survival) in cases where recapture probability is lower than 1. Multi-state CMR
models allowed us to address the influence of observable covariates on recruitment
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probability, but measurable covariates may not account for heterogeneity in a satis-
fying manner. Heterogeneity in survival (e.g. frailty) has been looked at in human
demography starting some 20 years ago (Vaupel and Yashin 1985), and ecologists
have long been concerned with heterogeneity as well (e.g. Burnham and Rexstad
1993; Pledger and Schwarz 2002). However, developments regarding heterogeneity
in both survival and reproductive success in wild animal population are only fairly
recent (Burnham and Rexstad 1993; Cam et al. 2002b; Pledger and Schwarz 2002;
Barbraud and Weimerskirch 2005; Crespin et al. 2006; Gordon et al. 2006; Royle
2008), and require additional efforts.
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Toulouse, France.

Boulinier T, Lemel JY (1996) Spatial and temporal variations of factors affecting breeding habitat
quality in colonial birds: some consequences for dispersal and habitat selection. Acta Oeco-
logica 17:531–552.

Boulinier T, Danchin E, Monnat J-Y, Doutrelant C, Cadiou B (1996) Timing of prospecting and
the value of information in a colonial breeding bird. Journal of Avian Biology 27:252–256.

Boulinier T, Danchin E (1997) The use of conspecific reproductive success for breeding patch
selection in territorial migratory species. Evolutionary Ecology 11:505–517.

Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB (1993) Capture–recapture studies for
multiple strata including non-Markovian transitions. Biometrics 49:1173–1187.

Burnham KP, Rexstad E (1993) Modeling heterogeneity in survival rates of banded waterfowl.
Biometrics 49:1194–1208.

Burnham KP, Anderson DR (1998) Model selection and inference, a practical information-
theoretic approach. Springer-Verlag, New York.
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Cubic Splines for Estimating the Distribution
of Residence Time Using Individual
Resightings Data

Rachel M. Fewster and Nathalie J. Patenaude

Abstract Residence time, or stopover duration, is of considerable interest to biol-
ogists studying migratory populations. We present a method for estimating the
distribution of residence time for a population of southern right whales (Eubaleana
australis) in the subantarctic Auckland Islands, using photo-ID resightings data
from the 1998 winter breeding season. We explain how we can estimate a smooth
probability distribution for residence time, by formulating a likelihood penalized
for roughness in the residence distribution. The estimated residence distribution is a
cubic spline that maximizes the penalized likelihood. The non-parametric approach
allows complete flexibility in the shape of the distribution for residence time, and
can fit distribution shapes that would be difficult to obtain using a parametric
mixture distribution. We show that cubic splines give a general solution to penalized
likelihood problems, and fitting the spline is an optimization problem accessible
to users of standard statistical software. The methodology is quite general in its
potential for fitting smooth probability distributions to data.

Keywords Auckland Islands · Cubic spline · Nonparametric estimation ·
Penalized likelihood · Photo-identification · Southern right whale Eubaleana
australis · Stopover duration

1 Introduction

The southern right whale (Eubaleana australis) was once widely distributed across
the southern hemisphere (Townsend 1935). Extensive coastal and vessel-based
whaling reduced their numbers to near extinction during the 19th century (Dawbin
1986). The species was abundant in New Zealand waters, around both the mainland
and the subantarctic islands (Dawbin 1986). Although the mainland New Zealand
population has yet to show signs of recovery (Patenaude 2003), southern right
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whales have reestablished winter calving grounds further south in the subantarctic
Auckland Islands, latitude 50◦33′ S (Patenaude and Baker 2001).

Little is known about interactions between southern right whales from the
Auckland Islands and those from other calving grounds. Significant differentiation
in mitochondrial DNA (mtDNA) has been found between calving grounds from
the Auckland Islands, Argentina, South Africa, and Western Australia (Patenaude
et al. 2007). This suggests strong maternal fidelity among these calving grounds,
despite the lack of geographic barriers to movement. However, mtDNA provides no
evidence about movements of males and non-calving females among the calving
grounds.

Photo-identification studies have revealed occasional records of individual
whales sighted in different years in the Auckland Islands and a South Australian
wintering ground, but no whale has yet been sighted at both grounds within the
same year (Pirzl et al. in review). However, studies in Australian wintering ranges
show that movements of hundreds of kilometres are common within a winter season,
particularly among adult males and females without a calf of the year (Burnell
2001). Our current study is motivated by the possibility of within-season movements
of individual whales between the Auckland Islands and other wintering locations,
perhaps including wintering grounds not yet discovered. Within-season movements
of males between the Auckland Islands and other calving grounds might mean
there is male-mediated gene flow between stocks that are currently thought to be
non-interacting, and has management implications for protection of transit waters.
Additionally, population estimates of the species might be affected if the same indi-
viduals are being counted in two different locations over a winter season.

To gain insight into movement patterns within a season, we investigate the distri-
bution of within-season residence time of whales in Auckland Island waters. If some
whales remain in the Auckland Islands for a short time only, they might be making a
brief stop on the way to another calving ground. Our analysis is based on photo-ID
sightings of individual right whales in the Port Ross area of the Auckland Islands,
New Zealand, to investigate the residence time of the animals in the waters around
the islands over a single winter breeding season. Data were collected in the austral
winter over the 54 days from 26th June to 18th August, 1998 (Patenaude 2002).
This period was thought to cover most, although not all, of the residency period
of whales in the area. The population appeared to be confined to a 20 km2 area of
shallow waters around Port Ross. Whale densities reached a maximum of about 8
whales per km2 in the middle of the survey period.

Photographs of whales were collected from small vessels, focusing on callosity
patterns, lip ridges, unusual skin pigmentation or prominent scars for individual
identification. All photographs were reviewed by several independent photo-ID
experts. Where possible, whales were sexed by molecular methods by collecting
biopsy samples. Any whale seen associated with a newborn calf in the season was
classified as a cow (female adult calving in 1998). All other whales, whether male,
female, or unknown, were classified as non-cows.

In total, individual photo-ID records were collected for 34 cows and 188 non-
cows. These photo records, for days 1, 2, . . . , 54 of the survey period, constitute 222
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individual capture histories. About 62% of whales in the data were photographed
once only, 25% were photographed twice, 7% three times, and 3% each of four
and five times. The mean number of days between the first and last sightings was
8.0 for cows, and 6.5 for non-cows. We analyse cows and non-cows separately,
because cows use the coastal waters to give birth and their behaviour with respect
to residence time might differ from non-cows.

Previous work on estimating residence time from individual capture histories has
used a conceptual equivalence between residence time for migrating animals, and
survival time in Jolly–Seber models (Crosbie and Manly 1985; Lady and Skalski
1998; Manske and Schwartz 2000; Efford 2005; Pledger et al. 2008). Time since
arrival in the residence model corresponds to age in the survivorship models, and
a departure from the stopover location corresponds to a death. Lady and Skalski
(1998) developed models for stream residence time of salmon from a single release
of marked fish, while Manske and Schwartz (2000) allowed for multiple releases
and a distribution on entry time. Pledger et al. (2008) further extended the ideas to
allow ‘age-dependent survival’, so that the time of departure is affected by how long
the animal has already stayed at the stopover location. Crosbie and Manly (1985)
suggested many of these models and recommended a parametric framework for
parsimonious modelling and to allow smooth distributions for residence and entry
times. An alternative modelling approach was provided by Whitehead (2001), who
used continuous time Markov models and diffusion models to analyse movements
of sperm whales between study areas using photo-ID data.

Here we investigate a new alternative, in which we estimate the probability
distribution of residence time directly. Pradel et al. (2005) commented that there
is currently no statistical method to assess the distribution of residence time from
empirical data. We present such a method using a penalized likelihood based on
the individual capture histories. Similar to Crosbie and Manly (1985), we aim to
generate a smooth distribution of residence time, but our work differs from all
previous work by modelling the residence distribution directly with a smooth but
non-parametric curve.

The model and likelihood are developed in Section 2. In Section 3 we show how
the likelihood can be penalized to guarantee a smooth, but otherwise completely
flexible, distributional shape for residence time. We show that the residence time
distribution is fitted by a cubic spline that can be computed using standard software.
Finally, we apply the cubic spline method to the right whale data in Section 4.

2 Model for Resightings Data

2.1 Log-Likelihood

We use the following notation for the likelihood formulation. Let Ti be a
discrete random variable denoting the residence time (in days) of whale i , where
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i = 1, . . . , n and Ti can take values 1, 2, . . . , τ . The random variables T1, . . . , Tn

all have the same distribution, which we wish to estimate.
Let at = P(Ti = t) for t = 1, . . . , τ . The at are the unknown parameters of

interest, and they satisfy
∑τ

t=1 at = 1 and at ≥ 0 for all t .
We number the days of the survey period 1, 2, 3, . . . , D. For whales i = 1, . . . , n,

let fi be the day on which whale i was first photographed, and �i be the day whale i
was last photographed. We assume that whale i was present in the region at least for
days fi , ( fi + 1), . . . , �i , so the total length of stay is Ti ≥ �i − fi + 1.

Let ωid be an indicator such that ωid = 1 if whale i was photographed on day d,
and 0 otherwise. Define pd to be the probability that any whale present in the region
on day d is photographed. These probabilities are allowed to vary by day, but are the
same for all whales. The observations for whale i are given by the capture history
ωi = (ωi1, . . . , ωi D). Sightings of the same whale on different days are assumed to
be independent.

To link residence time with the observations, we also require a distribution for
the entry day of whale i , Ei , which is the day on which whale i first entered the
region. Let qe = P(Ei = e) for allowable entry days eL , . . . , 1, 2, . . . , eU , where
the initial entry day eL may occur before day 1 when the survey began. The nuisance
parameters qeL , . . . , qeU satisfy

∑
e qe = 1 and qe ≥ 0 for all e.

To form the log-likelihood, we assume that all whales i = 1, . . . , n are indepen-
dent, and that residence time t is independent of entry day e for each whale. Let
θ = (a1, . . . , aτ , qeL , . . . , qeU , p1, . . . , pD) be the vector of all unknown param-
eters. Because residence time and entry day are unknown, we partition over all
possible pairs (t, e) for whale i , and use the law of total probability to give the
log-likelihood:

logL (θ ; ω1, . . . ,ωn ) =
n∑

i=1

log

{
τ∑

t=1

eU∑
e=eL

at qe P(ωi | t, e ; θ )

}
.

Now P(ωi | t, e) = 0 if t < �i − fi +1, the known minimum length of stay. For given
t ≥ �i − fi +1, the possible days of entry range from e = �i −t+1 (for which the last
sighting day �i coincides with the day of departure), to e = fi (for which the first
sighting day fi coincides with the day of entry). For all other (t, e) combinations,
P(ωi | t, e) = 0. Define Di (t, e) = {e, . . . , fi −1, �i +1, . . . , e+ t −1} to be the set
of days that whale i must have remained unobserved strictly before the first sighting
fi and strictly after the last sighting �i , if it was present for t days and entered the
region on day e. Then:

logL(θ ; ω1, . . .ωn ) =
n∑

i=1

log

⎧⎨⎩
τ∑

t=�i − fi +1

fi∑
e=�i −t+1

at qe

e+t−1∏
d=e

pωid
d (1 − pd )1−ωid

⎫⎬⎭
=

n∑
i=1

log

⎧⎨⎩
τ∑

t=�i − fi +1

fi∑
e=�i −t+1

at qe

∏
d∈Di (t,e)

(1 − pd )
�i∏

d= fi

pωid
d (1 − pd )1−ωid

⎫⎬⎭
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=
n∑

i=1

�i∑
d= fi

{
ωid log(pd ) + (1 − ωid ) log(1 − pd )

}

+
n∑

i=1

log

⎧⎨⎩
τ∑

t=�i − fi +1

fi∑
e=�i −t+1

at qe

∏
d∈Di (t,e)

(1 − pd )

⎫⎬⎭ , (1)

where the first term of (1) is gained by taking out the factor
∏�i

d= fi
pωid

d (1− pd )1−ωid

that is common to all allowed combinations of (t, e).
The likelihood (1) can be maximized with respect to the parameters θ , subject to

the constraints that
∑τ

t=1 at = ∑eU
e=eL

qe = 1 and 0 ≤ at , qe, pd ≤ 1 for all t , e,
and d. The daily sighting probabilities p1, . . . , pD are estimated primarily from the
first component of (1), which does not involve the other parameters. The parameters
for residence time and entry time, at and qe, are estimated only from the second
component of (1). This component does not involve any of the sightings data from
days fi to �i for whale i . Information about at = P(Ti = t) and qe = P(Ei = e)
is gained from the number of days that the whale would have to be unobserved at
the start and end of its residence period, if it entered at time e and stayed for time t .
Given the sighting probabilities p1, . . . , pD , it is likely that there are a few days on
which the whale was unobserved at either end of its stay, but it is unlikely that the
whale would be unobserved for very long runs of days. This is sufficient to estimate
the distribution of Ti and Ei across all whales.

The likelihood (1) does not contain a component for whales never sighted. We
therefore restrict all inference to the whales that were sighted at least once during
the survey period. Whales seen at least once might not be representative of all
whales with respect to residence time, because the whales staying the shortest times
are those least likely to be seen. We investigate the effect of this restriction in
Section 4.3.

2.2 Fitting Options

There are several options for using the log-likelihood (1) to estimate the distribution
of residence time. The simplest option is to maximize (1) directly with respect
to all the parameters θ = (a1, . . . , aτ , qeL , . . . , qeU , p1, . . . , pD), subject to the
constraints

∑τ
t=1 at = ∑eU

e=eL
qe = 1 and 0 ≤ at , qe, pd ≤ 1 for all t , e, and d.

This gives flexibility to each parameter, so that at does not vary smoothly with t but
has the freedom to spike up and down from one value of t to the next, and similarly
for qe and pd for values of e and d respectively. This behaviour is appropriate for
the daily sightings probabilities p1, . . . , pD , because the probabilities do not vary
smoothly through time due to abrupt changes in weather and sea state. However, we
might wish to estimate smooth distributions for residence time (at = P(Ti = t))
and entry time (qe = P(Ei = e)).

In the case of residence time, the aim of the analysis is to identify the impor-
tant qualitative features of the residence distribution, in particular to investigate
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evidence for transient animals. This motivates the need to estimate a smooth distri-
bution of residence time. One possibility is to smooth the output â1, . . . , âτ from the
direct maximization, using a sum-preserving smoothing spline such as the function
smooth.spline in the software R (R Development Core Team 2007). However, it is
preferable to incorporate the smoothness directly into the model fitting, rather than
to apply a smoother to the output from an unsmoothed model. The difference is
akin to the difference between fitting a generalized additive model (GAM: Hastie
and Tibshirani 1990) and smoothing the output from a generalized linear model.

It is possible to fit smooth parametric distributions to the residence distribu-
tion, for example using a mixture of distributions P1 and P2 such that at =
μP1(t)+ (1−μ)P2(t), where P1 and P2 represent the probability mass functions of
distributions such as Poisson or discretized log-normal, and μ is a mixing parameter
to be estimated. This has the disadvantage that the number of mixing distributions
must be stipulated beforehand, and the final estimated distribution is constrained by
the shapes of the mixing distributions.

The aim of this article is to show how we can use cubic splines to estimate a
distribution for residence time which has true flexibility of shape while remaining
smooth. This non-parametric approach ensures that the distribution shape is not
influenced by parametric modelling choices. The procedure is motivated by the use
of cubic splines in GAMs (Hastie and Tibshirani 1990), but it applies to a general
likelihood such as (1), which cannot be cast into the GAM framework. In GAMs, a
flexible regression line is fitted assuming a specified response distribution and link
function. By contrast, here we are attempting to estimate a flexible distributional
shape.

For the nuisance parameters for entry time, qeL , . . . , qeU , either a smooth para-
metric distribution or a completely flexible distribution may be considered. Using
a smooth parametric distribution has the disadvantage that choices of parametric
shape for the nuisance parameters might unduly influence the shape of the estimated
residence distribution. Additionally, animals might arrive into the area in bursts (for
example in social groups or in certain weather conditions), so a parametric distribu-
tion might not be able to capture the true pattern of entries.

We investigate both options for entry distribution. For a flexible entry model, we
allow each qe to be estimated individually so that the model choices exert minimal
influence on the estimated distribution for residence time. The entry distribution is
not of primary interest, so we are not concerned about the lack of smoothness in the
output. We also investigate a parametric entry model, in which qe is obtained from a
discretized beta distribution with parameters α and β to be estimated, and with the
support scaled to the interval [eL , eU + 1]. Under the beta entry model,

qe =
∫ e+1

e
f

(
x − eL

eU + 1 − eL
; α, β

)
dx for e = eL , . . . , eU , (2)

where f (·;α, β) is the probability density function of the beta (α, β) distribution.
This model is similar to an entry model used by Crosbie and Manly (1985). A third
alternative, which we do not trial here, is to use cubic splines to provide a flexible
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but smooth distribution for entry time, as we will demonstrate for the residence time
distribution.

The set of possible entry days eL , . . . , eU need not correspond exactly to the
sightings period 1, . . . , D. Because we are restricting inference to the whales seen
at least once between day 1 and day D, we stipulate that all whales must have
entered by day D: therefore eU = D = 54 in all analyses. The choice of lower
boundary eL is less straightforward, especially in our context where whales began
entering the survey region well before sightings commenced. Taking into account
biological opinion and trials of several different values of eL , we use eL = −26
for all analyses presented here. This choice corresponds to the point at which the
probability of arrival in the first 10 days was estimated at about 1%. If eL is moved
10 days earlier (eL = −36), the probability mass for the extra 10 days is estimated
at less than 1%, and conclusions about qe, at , and pd do not change. The choice of
eL = −26 allows whales to enter the survey region from 30th May onwards, while
sightings began on 26th June. By a similar process, we fix the upper limit for the
support of Ti as τ = 60 days.

3 Cubic Splines for Estimating Residence Time

3.1 Penalized Likelihood

We now show how we can estimate values a1, . . . , aτ for the residence time distri-
bution, where at = P(Ti = t), such that the shape of the distribution formed by
a1, . . . , aτ is smooth but is otherwise unconstrained.

Consider a smooth, continuous function s(x) defined on the interval 0 ≤ x ≤
τ + 1, where (as before) τ is the maximum supported value of the discrete distribu-
tion of Ti . The values s(t) at integers t = 1, 2, . . . , τ are to be the required values
at = P(Ti = t) that determine the distribution of Ti : thus s(t) = at = P(Ti = t)
for t = 1, 2, . . . , τ . Note that Ti is a discrete random variable, and s(x) is not
a probability density function; rather, s(x) is a continuous function that is evalu-
ated at the discrete points s(1), . . . , s(τ ) to yield the τ discrete probabilities for
Ti . This formulation is designed to produce a discrete distribution with a smooth
shape. It might seem more natural to approximate Ti by a continuous random
variable with probability density function s(x), but the discrete formulation can
readily be solved using standard approaches, and is easier to handle than the contin-
uous approach which would involve maximizing the likelihood under the integral
constraint

∫ τ+1
0 s(x) dx = 1.

The basis of our method is to find the function s(x) that maximizes an expression
involving the log-likelihood together with penalty terms that ensure s conforms to
desired properties. To ensure that s is smooth, we introduce a roughness penalty:

λ

∫ τ+1

0
s ′′(x)2 dx . (3)
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Here, λ is the ‘smoothing parameter’. By integrating the squared second derivative
of s, we penalize curvature in s, and disallow rough or ‘wiggly’ functions. Large
values of λ force s to be increasingly smooth. Equation (3) is the same as the penalty
term for GAMs (Hastie and Tibshirani 1990:27).

Additionally, the probabilities at = s(t) should be ≥ 0 and sum to 1, for t =
1, . . . , τ . To ensure that a1, . . . , aτ ≥ 0, the usual procedure would be to use a
parameter transformation, for example using log(a1), . . . , log(aτ ) as inputs to the
likelihood maximization, because their values are unconstrained in R. However, this
is not possible in our context, because the at are closely connected with s(x), and
s(x) and its derivatives are required elsewhere in the objective function (for example,
in the penalty term (3)). Instead, we can impose a second penalty term to ensure
positivity of a1, . . . , aτ . Because the penalized likelihood must be differentiable,
the penalty term must also be smooth, so discontinuous step functions such as 0
for at ≥ 0, 106 for at < 0 are not appropriate. Although it is possible to force
strict positivity of at , we have found that the most effective strategy is to allow
a small amount of leeway. Forcing strict positivity with a smooth s(x) makes it
difficult for genuinely unsupported values of t to yield the estimate ât = 0. We
therefore propose the penalty term

∑τ
t=1 exp (−106at − 20), for which the penalty

associated with at is of the order 10−9 when at = 0, escalating to 1034 when at =
−0.0001.

For the condition
∑τ

t=1 at = 1, we add a third penalty term: K
(∑τ

t=1 at − 1
)2

,
where K is a large positive number. We use K = 105, which produces results
for

∑τ
t=1 ât between 1 and 1.001 for all our analyses. Our primary interest is in

distributional shape, so this approximation is adequate for our purposes.
Fulfilling constraints for the nuisance parameters is more straightforward. We

ensure 0 ≤ pd ≤ 1 for d = 1, . . . , D by using input parameters log {pd/(1 − pd )},
which take values in R, so that the domain for numerical maximization is uncon-
strained. For the flexible entry model, we require qe ≥ 0 for e = eL , . . . , eU and∑

e qe = 1. The first constraint is satisfied by using the real-valued parameters
log (qe) for input to the maximization, and the second is satisfied by adding an extra
penalty term K (

∑eU
e=eL

qe − 1)2, where K = 105 as before. For the beta entry model
(2), only α and β need to be estimated, and the constraints α, β > 0 are ensured by
using the real-valued inputs log (α) and log (β).

The final expression for the penalized negative log-likelihood is:

PL(θ) = − logL(θ ; ω1, . . . ,ωn ) + λ

∫ τ+1

0
s ′′(x)2 dx +

τ∑
t=1

exp (−106at − 20)

+ 105

(
τ∑

t=1

at − 1

)2

+ 105

(
eU∑

e=eL

qe − 1

)2

, (4)

where the last term is automatically zero when using the beta entry model (2).
The parameters are θ = (a1, . . . , aτ , qeL , . . . , qeU , p1, . . . , pD) for the flexible
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entry model, or θ = (a1, . . . , aτ , α, β, p1, . . . , pD) for the beta entry model. The
log-likelihood logL(θ ; ω1, . . . ,ωn ) is given by (1), and the parameters are
connected to the smooth function s(x) via at = s(t) for t = 1, . . . , τ .

Our overall problem is to find a smooth function s and additional parameters
{qe, pd} that minimize expression (4). The space of smooth functions is defined as
the space of all functions s for which s, s ′ and s ′′ are continuous on the interval
(0, τ + 1). Additionally, because s(x) is an envelope for the distribution of Ti , we
constrain s(0) = s(τ +1) = 0. We also add the constraints that s ′′(0) = s ′′(τ +1) =
0, so that s is linear or constant at the endpoints: these constraints are reasonable in
context and are needed for the optimization (see Appendix).

If the nuisance parameters {qe, pd} are temporarily considered fixed, we can
rewrite PL(θ ) in (4) as the following expression over the function-space:

G(s) = λ

∫ τ+1

0
s ′′(x)2dx − H (s(1), . . . , s(τ )) , (5)

where H (a1, . . . , aτ ) is a function of τ arguments that is formed from the right-hand
side of (4) by excluding the term λ

∫ τ+1
0 s ′′(x)2dx and substituting (1) for logL.

Our optimization problem is to minimize G(s) over all functions s : (0, τ + 1)
→ R with s, s ′, and s ′′ continuous, and with s(0) = s(τ + 1) = s ′′(0) = s ′′

(τ + 1) = 0.
Minimizing expressions of the form (5) is a standard problem in the calculus

of variations (e.g. Reinsch 1967). Surprisingly, the expression is minimized by a
unique function s that can be written down in closed form. The minimizing s is a
cubic spline, which means it is a piecewise cubic with joins or knots at the integers
1, 2, . . . , τ :

s(x) = at+bt (x−t)+ct (x−t)2+dt (x−t)3 for t ≤ x < t+1 ; t = 0, 1, . . . , τ. (6)

The coefficients {at , bt , ct , dt } are all readily computable. Note the consistency of
notation, so that at = s(t) = P(Ti = t) as in the rest of the manuscript.

A sketch of the derivation of (6) is given in the Appendix. It should be noted that
the methodology is quite general. Any optimization of the form

minimize

{
λ

∫ b

a
s ′′(x)2dx − H

(
s( x1), . . . , s(xm )

)}
(7)

has a cubic spline solution. The cubic spline is a result of the term
∫ b

a s ′′(x)2dx ,
which can be shown to guarantee a zero fourth derivative of the optimizing s
(Appendix equation (18)). The third derivative of s is a step function with jumps
given by the partial derivatives of H (equation (20)), and the other coefficients are
determined by the conditions that s, s ′, and s ′′ are continuous, as we demonstrate
below. The penalty term

∫ b
a s ′′(x)2dx produces outputs that accord well with visual

perceptions of smoothness, so the technique is applicable to any problem in which
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the aim is to construct a smooth function that feeds into a likelihood at a set of
discrete values.

Initially, it appears that there are four parameters at , bt , ct , and dt to be estimated
for each t = 0, . . . , τ in order to compute the spline s. In the next section, we show
how the smoothness constraints of the spline reduce this burden to just one param-
eter for each value of t . In particular, all coefficients may be expressed in terms
of just a1, . . . , aτ , or alternatively (and more conveniently) in terms of c1, . . . , cτ .
The optimal solution for s can then be found simply by minimizing the penalized
log-likelihood (4) with respect to the τ parameters c1, . . . , cτ , and using the optimal
values {ĉt } to compute the other spline coefficients {ât , b̂t , d̂t }, and particularly the
required parameters {ât }.

Overall, the estimated θ̂ = (â1, . . . , âτ , q̂eL , . . . , q̂eU , p̂1, . . . , p̂D) is obtained
by minimizing (4) simultaneously with respect to the spline parameters c1, . . . , cτ
detailed in the next section, and the nuisance parameters (qeL , . . . , qeU , p1, . . . , pD).

3.2 Computation of the Cubic Spline

Here we show how continuity conditions on the spline s enable all spline parameters
{at , bt , ct , dt } to be expressed in terms of {ct } only. We emphasize that the log-
likelihood is not involved in the following development, showing that the details of
the spline computation are general to any problem of the form (7), regardless of the
specific model, data, and log-likelihood.

The following relations are obtained by differentiating (6) repeatedly and
imposing continuity conditions:

s ′′(x) is continuous =⇒ dt = ct+1 − ct

3
for t = 0, 1, . . . , τ. (8)

s ′(x) is continuous =⇒ bt + 2ct + 3dt = bt+1 for t = 0, 1, . . . , τ. (9)

s(x) is continuous =⇒ at + bt + ct + dt = at+1 for t = 0, 1, . . . , τ. (10)

We also have the following constraints discussed above:

s(0) = s(τ + 1) = 0 =⇒ a0 = aτ+1 = 0. (11)

s ′′(0) = s ′′(τ + 1) = 0 =⇒ c0 = cτ+1 = 0. (12)

s(x) ≡ 0 for x ≥ τ + 1 =⇒ bτ+1 = dτ+1 = 0. (13)

Conditions (11) and (13) are natural requirements of the function s enveloping
the probability distribution of Ti , which is supported only between x = 1 and x = τ .
Condition (12) is required for the optimization of (5) (see Appendix).

We compute the spline as follows. Equation (10) shows that bt can be expressed
in terms of coefficients a, c, and d; substituting for d from (8) puts bt in terms of
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a and c coefficients only. Inserting these expressions into (9) gives the following
equation for a and c:

at+2 − 2at+1 + at = 1

3
ct+2 + 4

3
ct+1 + 1

3
ct for t = 0, 1, . . . , τ − 1. (14)

Equation (14) can conveniently be rewritten in matrix notation. Let a =
(a1, . . . , aτ ) and c = (c1, . . . , cτ ). Note that a0 = aτ+1 = c0 = cτ+1 = 0. Let
M and V be τ × τ matrices such that:

Mi j =
⎧⎨⎩

1 if i = j + 1 or i = j − 1,
−2 if i = j,

0 otherwise.
Vi j =

⎧⎪⎨⎪⎩
1
3 if i = j + 1 or i = j − 1,
4
3 if i = j,

0 otherwise.

Equation (14) is then:

Ma = Vc =⇒ a = M−1Vc. (15)
We can show that the τ × τ matrix M−1 can be computed by a simple closed form
expression:

M−1
i j =

{− (τ+1−i) j
τ+1 if i ≥ j + 1,

− (τ+1− j)i
τ+1 if i ≤ j.

This makes it easiest to work with the c coefficients rather than the a coefficients,
because we have a closed form for the matrix inverse M−1 needed to compute a
from c.

The development above gives a complete formulation of the cubic spline s in
terms of only the second derivative coefficients c1, . . . , cτ . The a coefficients are
expressed in terms of c by (15); the d coefficients by (8); and the b coefficients by
using the previous expressions for a and d in (10).

We can also derive a useful matrix expression for the penalty term:

λ

∫ τ+1

0
s ′′(x)2 dx = 2λcT V c. (16)

All the results above apply for any problem with smoothing penalty term
λ
∫ τ+1

0 s ′′(x)2dx and conditions (11)–(13), regardless of the log-likelihood and other
penalty terms in H . The spline is estimated by minimizing equation (4) with respect
to c1, . . . , cτ , using (16) to compute the smoothness penalty and (15) to compute
the parameters a1, . . . , aτ needed for the other terms of (4).

Code for the analyses is written in the programming languages C, SPLUS, and R,
and likelihoods are maximized numerically using the downhill simplex routine
amoeba from Press et al. (1988), with multiple restarts to ensure convergence. To be
conservative, we use 40 restarts; however, observation suggests that 6–8 restarts are
usually sufficient.
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4 Results

4.1 Fitting Methods

Figures 1 and 2 show results from the three fitting methods for cows and non-cows.
Row A shows results from maximizing the unpenalized likelihood (1) directly with
respect to all parameters in θ . In each case, a basic shape is evident for the residence
distribution, but the jagged output distracts from the global picture. The output from
smoothing the jagged distribution is overlaid on the barplot, but is not ideal because
the smooth output is not the optimal solution to an explicitly formulated likelihood
or penalized likelihood.

Row B shows results from the flexible entry model, in which the residence distri-
bution is estimated by a cubic spline, but the nuisance parameters in the entry distri-
bution are allowed to be completely flexible. Row C shows the results from the beta
entry model (2), in which the entry distribution is constrained to a beta distribution
scaled onto the interval (−26, 54).

The spline fits for residence time (rows B and C) demonstrate that the estimated
distribution is both smooth and flexible. The smoothing parameters were λ = 0.5 ×
106 (0.5 M) and λ = 1 × 106 (1 M), selected to give outputs that retained a good
visual balance between smoothness and flexibility. Suitable choices for λ depend
upon several effects, including the size of the log-likelihood term in (4) against
which the smoothness penalty has to compete, the length of the interval (0, τ + 1)
for the penalty in (3), and the desired smoothness in the output. For our applications
with τ = 60, we have found that values of λ in the range of 100–1000 times the
magnitude of the log-likelihood are effective.

Especially for the flexible entry model, the estimated distributions have shapes
that would not be easily captured by parametric modelling. For both cows and non-
cows, the estimated distribution is broad but essentially unimodal. Short-stay peaks
suggestive of a group of transient animals are absent in both cases.

The flexible entry models suggest that entry into the survey region occurred in
two to three bursts, with non-cows entering earlier than cows. The beta entry model
appears to be an over-simplification of the arrival process, so it seems preferable to
retain complete flexibility in the nuisance parameters. The impact on the residence
time distributions of using the beta entry model is relatively slight, given the level
of oversimplification, but it appears to make the residence distributions less broad
and more symmetric.

The sighting probabilities are relatively insensitive to the model choice, which
is expected because they are estimated primarily from the first term of the log-
likelihood (1), which does not involve the parameters for residence time or entry
time. For both cows and non-cows, there were 17 days for which weather precluded
sighting effort and pd = 0. Of the remaining 37 days of the survey period, the
mean estimated daily resighting probability was about 0.10 for cows (standard devi-
ation 0.09), and 0.07 for non-cows (standard deviation 0.04), consistently across the
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Fig. 1 Results from the three fitting methods for cows. A. Direct maximization of the likelihood
with respect to all parameters in θ . B. Flexible entry model, with residence time estimated with a
cubic spline. C. Beta entry model, with residence time estimated with a cubic spline. For each fit,
plots are shown of the estimated discrete distributions of residence time and entry distribution, and
estimated sightings probabilities for each day of the survey period are shown. For each spline fit, the
smoothing parameter is λ = 0.5 × 106 (0.5 M). For the direct maximization (case A), a smoothing
spline is applied to the output for residence distribution and is shown as a curve overlaying the
barplot. The estimated beta parameters for the entry distribution in case C are α = 6.2, β = 4.6

different models. It is biologically reasonable that the sighting probabilities should
be higher for cows than for non-cows, especially after calving. Cows spend more
time resting at the surface, move slowly, and after calving gain extra visibility due
to the presence of their newborn. Additionally, survey effort was sometimes directed
specifically at cows.
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Fig. 2 Results from the three fitting methods for non-cows. Details as for Fig. 1. The smoothing
parameter is λ = 1 × 106 (1 M). The estimated beta parameters for the entry distribution in case C
are α = 4.9, β = 6.5

4.2 Variance and Characteristics of the Cubic Spline Fit

In principle, we could assess the variance of the cubic spline fit for residence time by
obtaining pointwise confidence intervals for the parameters a1, . . . , aτ , for example
using bootstrap resampling. However, this is problematic because the parameters
are highly correlated, being constrained to be part of the same smooth curve. A
bootstrap resample that shifts the entire curve to the left or to the right will create
the impression of high pointwise variance in the individual parameters, when it
might in fact represent biologically similar conclusions with respect to the shape
and characteristics of the fitted output.
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Fig. 3 Traces of the residence time distribution obtained from 40 replicates of the parametric
bootstrap for cows and non-cows, for smoothing parameter λ = 0.5×106 (0.5 M) and λ = 1×106

(1 M). The flexible entry model is used

Figure 3 shows traces of 40 bootstrap replicates from the fitted flexible entry
models. Because we are restricting inference to the animals in our data set, the para-
metric bootstrap is used rather than the non-parametric bootstrap. For each bootstrap
replicate, a new data set of cows or non-cows is generated from the fitted model, with
the same number of animals as in the original data sets. The flexible entry model
is refitted to the new data, with the optimization started from a neutral (uniform)
starting point for each set of parameters {at , qe, pd}. The original fitted residence
distributions, which give the ‘correct answer’ for each of the bootstrap replicates,
are shown by bold lines in Fig. 3. Figure 3 also shows the effects of using different
smoothing parameters for each of the cows and non-cows data sets.

Figure 3 shows a number of points of interest. Firstly, the flexible entry model
has been quite successful in reproducing the correct residence time distributions,
at least in general shape. This is especially true of the larger data set of non-cows,
which also has lower variance in a visual sense than the cows distributions. For
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non-cows, changing the smoothing parameter from λ = 0.5 to 1 M makes very little
qualitative difference to the output, except for reducing variance with the smoother
model. The difference in the fitted distributions is much greater for cows, but
interestingly the bootstrap traces for cows with λ = 1 M reproduce much the same
picture as those for λ = 0.5 M. We deduce that the two fitted distributions shown in
Fig. 3 for cows are not readily distinguishable from the data set of only 34 animals.

For more formal assessment of variance, Table 1 shows the bootstrapped vari-
ance of features of the fitted residence distribution, namely the distribution mean,
variance, quartiles, and position of the peak. In nearly every case, the estimation
method has performed very well in fitting the residence time distribution to data
drawn from the known correct model through the parametric bootstrap, with the
mean of the quartiles, peak, and distribution mean from the bootstrap replicates
being within one or two days of their known correct answers (given by the previous
row for each quantity in Table 1). The fitting method therefore seems to be approx-
imately unbiased in recreating the important features of the residence distribution.
The exception is the cows fit with λ = 1 M, which did not perform so well. Given
the heavy parametrization of the models, the flexibility of potential spline fits, and
the relatively small data sets, the overall performance of the method is encouraging.

4.3 Model Validation

Monte Carlo goodness-of-fit tests for the fitted model can be conducted by
comparing attributes of the data and model fit with the same attributes obtained

Table 1 Characteristics of the fitted residence time distribution for cows and non-cows under
the flexible entry model, with two values of the smoothing parameter: λ = 0.5 × 106 (0.5 M)
and λ = 1 × 106 (1 M). The characteristics given for the fitted residence time distribution are:
distribution mean; distribution variance; lower quartile; median; upper quartile; interquartile range
(IQR); and peak. Except for variance, all quantities are measured in days. Below each quantity are
the mean and standard deviation of the quantity from 100 replicates of the parametric bootstrap

Cows Non-cows

Distribution λ = 0.5 M λ = 1 M λ = 0.5 M λ = 1 M

characteristic mean sd mean sd mean sd mean sd

Mean 31 38 37 38
–bootstrap 31 3.0 32 3.8 37 2.6 39 2.0

Variance 130 110 120 140
–bootstrap 150 21 150 18 140 18 130 22

Lower 25% 22 31 29 30
–bootstrap 21 3.2 23 4.1 29 3.4 32 3.1

Median 31 39 37 40
–bootstrap 31 3.6 32 4.3 38 3.0 40 2.1

Upper 25% 39 46 45 47
–bootstrap 40 3.3 41 3.9 46 2.4 48 1.5

IQR 17 15 16 17
–bootstrap 19 1.9 18 1.6 17 1.7 16 1.9

Peak 28 40 40 43
–bootstrap 31 7.3 33 7.4 40 5.0 44 2.7
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from data that were genuinely simulated from the fitted model, using the parametric
bootstrap replicates above.

A check on the sightings data may be performed by generating data from the
fitted models and compiling sightings tables for each simulated data set, giving
the number of animals detected once only, the number detected twice, and so on.
By creating these frequencies over 10,000 simulated animals, we determine the
expected frequency table under the fitted model. We then conduct a chi-squared test
to determine whether the real sightings tables were consistent with the frequencies
generated from the fitted model.

Results from the cows fits were good (p = 0.50 for λ = 0.5 M, p = 0.55 for
λ = 1 M). However, results from the non-cows fits were extremely poor (p < 10−8

in each case). The number of non-cows in the real data that were sighted only once
is far in excess of the number expected under the fitted models. Possible reasons for
this bad failure of the sightings component of the non-cows model are given in the
Discussion.

For an indicative test of model fit, we can compare the optimized log-likelihood
of the real data against optimized log-likelihood values generated by refitting the
model to the parametric bootstrap replicates, which create the true distribution of
optimized log-likelihoods if the fitted model is correct. By ranking the real-data
log-likelihood value amongst those from the simulated replicates, we gain a Monte
Carlo p-value for the fit. The p-value is the proportion of simulated data sets with a
lower (worse) optimized value than that of the real data.

Again, the results were good for cows: p = 0.80 for λ = 0.5 M, p = 0.70
for λ = 1 M. The results were extremely poor for non-cows, with the real
data log-likelihood standing well away from the distribution of log-likelihood
values genuinely created from the fitted model. Investigation reveals that this is a
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Fig. 4 Comparison of the empirical distribution of residence times for simulated data of 100,000
whales generated from the fitted models, for all animals (seen and unseen) and for animals seen
at least once. The solid line shows the distribution for all animals, and the dashed line shows the
distribution for animals detected at least once. The smoothing parameters for the fitted models are
λ = 0.5 M for cows, and λ = 1 M for non-cows
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consequence almost entirely of failure of the sightings model mentioned above.
Splitting the log-likelihood (1) into components given by the first term (sightings
component) and the second term (residence component), we find that the log-
likelihood of the residence component is only marginally outside of the distribution
created by simulation, while the large discrepancy in overall log-likelihood is caused
mainly by the sightings component.

Finally, we noted in Section 2.1 that we have restricted inference to whales seen
at least once, because these might not be representative of all whales with respect to
residence time. In Fig. 4, we show the effect of this restriction using data simulated
from the fitted models. The dashed line shows the residence time distribution for
simulated whales seen at least once, while the solid line is the distribution for all
simulated whales. There is a slight bias towards higher residence times among the
whales seen at least once, but the effect is almost negligible. We conclude that, if
the fitted models are accurate, the impact on residence estimation of restricting to
the whales seen at least once will be slight.

5 Discussion

The analysis has demonstrated the flexibility of the cubic spline method for esti-
mating the distribution of residence time. The estimated residence time distribution
for both cows and non-cows covers a broad range with median of about 31 days for
cows and 37 days for non-cows. In each case, the central 50% of the distribution
covers a range of about 8 days above and below the median.

The results for cows appear to be a good fit, although there is high variability
in the output. The high variability is an expected consequence of fitting a complex
distribution to observations on only 34 cows. Of some concern to the validity of
our results is the right-censoring of observations. An informal count conducted on
the last day of the survey period detected at least 38 cows still present (Patenaude
2002), showing that the survey period ended before all cows had left the area. Few
cows appeared to be present before the beginning of the survey period, however. To
avoid bias, the survey period should cover the entire residence time at both ends,
or at least cover the whole residence period of most individuals. The length of this
survey was dictated by logistics in the subantarctic Auckland Islands, and it is not
known whether the survey covered the whole residence period for the majority of
cows or non-cows.

Our estimate of mean residence time of 31 days for cows in the Auckland Islands
is much lower than the mean of 70 days (s.d. 30 days) found by Burnell and
Bryden (1997) for right whale cows in South Australia using direct observation. This
discrepancy might be due to right-censoring, or might genuinely reflect behavioural
differences between the Australian calving grounds and the much more southerly
subantarctic grounds. The Auckland Islands data were collected from mid-June to
mid-August, while the Australian data were collected over a much longer period
from mid-June to mid-October.
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The results for non-cows did not fit well, primarily in the sightings component
of the model. Far too many non-cows were sighted only once during their stay,
compared with the number of sightings that would be expected from the fitted
model. This in turn affected the likelihood of the fitted model, providing very poor
results for likelihood-based goodness-of-fit tests. The sightings component is not
affected by the fit for residence time, as can be seen from the first term of equation
(1) where the sightings component covers each whale from its first sighting to its last
sighting, and does not involve the residence parameters {at } or the entry parameters
{qe}. The explanation for the poor fit must lie primarily with the sightings model
rather than the residence model.

There are several possible explanations for failure of the sightings model. Firstly,
our assumption that whales remained in the survey area between their first and
last sighting may be incorrect. In their South Australian study, Burnell and Bryden
(1997) reported that some non-cows left the calving grounds for a period of time
during the season before returning. This would cause the effect seen with our data,
where a period of absence would explain why non-cows were not sighted as often
as expected. This explanation is worth following up biologically, because important
information about mixing of known or unknown stocks might be gained from deter-
mining where non-cows go if they leave the Auckland Islands during the season.

Another possible explanation is that the matching of photographs was imperfect,
and some resightings were logged as new records because the photographs were not
identified as belonging to the same whale. This explanation is unlikely to account for
the severe failure of the resighting model in our data, because photos were reviewed
by several independent experts, and individual right whales are generally easily
recognisable from their photographs within a season. Data on within-season error
rates were not recorded, but discrepancies between experts for the more difficult
task of matching right whale photographs between years were less than 3%.

A third possible explanation is that whales exhibited avoidance behaviour after
the first photograph, which was sometimes accompanied by a biopsy sample.
However, no evidence for avoidance after a biopsy was found in the data, using
a chi-squared test on number of sightings with and without biopsy (p = 0.73).
Like most other residence models, our model does not accommodate heteroge-
neous behaviour between whales. The daily sighting probabilities p1, . . . , pD vary
according to day, but for a given day we assume that every whale present has the
same probability of being photographed. It would not be easy to reformulate our
method to allow for individual heterogeneity, because differential behaviours and
differential residence times would be confounded. An alternative model that might
perform better in the presence of individual heterogeneity is the Jolly–Seber model
of Pledger et al. (2008), in which daily capture probability for each whale is allowed
to depend upon the length of time the whale has already spent in the region. Their
model also removes our assumption that residency time is independent of the time
of arrival, which might also be responsible for bias in our results.

It is surprising that the model for residence time did not fit a low (short-stay)
peak to the non-cows data, which would have attributed the large number of one-
off sightings to short residence times rather than to long periods of non-detection
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during residence. Burnell and Bryden (1997) found a much lower mean residence
period of only 20 days (s.d. 21 days) for non-cows. The long-residence fit might
be explained by the severe left and right censoring of observations in the case of
non-cows. An estimated minimum number of about 100 non-cows was already in
the survey region before the photo-ID survey commenced, and at least 60 were still
left on the last day of the survey (Patenaude 2002). Additionally, there were 17 days
during the 54-day survey period during which sightings could not be made due to
weather conditions. Overall, a whale could easily reside for 40 days and have only
10–15 sighting opportunities, allowing the one-off sightings to remain reasonably
likely with an average sighting probability of about 7% per opportunity.

In addition to censoring of observations, failure of the assumption that non-cows
remain in the survey area between their first and last sighting will also tend to
cause positive bias in residence estimates. With some whales absent, resightings
probabilities are likely to be underestimated, leading to overestimation of residence
time because long periods of non-sightings at the start and end of the whale’s stay
are more easily tolerated. A final effect causing positive bias in residence time for
non-cows is that some animals may have been mistakenly recorded as non-cows
when they were in fact cows, because they were never photographed after giving
birth.

We conclude that the results for non-cows should be treated with caution.
Censoring of observations is problematic, and the assumption that non-cows remain
in the survey area between their first and last sighting is probably violated. However,
this conclusion is interesting in itself, and warrants further investigation. Right-
censoring is also problematic for the cows data. In addition, successful estimation of
sighting probabilities, entry time, and residence distribution places heavy demands
on the data. For small data sets or low capture probabilities, it is likely that these
effects can not be fitted reliably, illustrated by our results for cows in Fig. 3.

To test the reliability of our residence model, we conducted informal simulations
with different sample sizes and levels of censoring. Using daily capture probabilities
of 0.2, and with the true residence distribution given by the fit for non-cows with
λ = 1 M, we found that the model reliably fitted the correct residence distribution
for a sample size of only 100 whales, even with severe left and right censoring.
However, if the true residence distribution was strongly bimodal, with a low peak
at 7 days and a high peak at 38 days, and zero support between 19 and 25 days,
detection of the low peak was very poor for samples of 100 whales, even with no
censoring. With 500 whales, detection of the two peaks was good as long as at
least 80% of whales had their residence period covered completely by the survey
period.

For fitting the model, capture probabilities should not be fitted for days before
the first animals arrived, otherwise the model will be unable to distinguish between
zero capture probability for the pre-arrival days (and consequently longer residence
times), and higher capture probability with no animals to capture. The simula-
tions generally performed well for estimating entry distribution, even with severe
censoring, but high data quality was needed for reliably untangling effects of
sighting probabilities and residence time.
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Overall, we recommend that biologists should simulate likely scenarios for resi-
dence distribution before collecting data, to ascertain the data quality needed to
detect the effects of interest. With our example, the data for non-cows were almost
certainly not sufficient to detect a short-stay residence peak if one were present, so
it is still possible that the Auckland Islands population includes a set of transient
animals. The method is promising as a way of modelling residence time directly,
but it requires good data quality and the computational burden is high.
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Appendix

We wish to minimize the expression (5) with respect to functions s satisfying
s(0) = s(τ + 1) = s ′′(0) = s ′′(τ + 1) = 0 and with two continuous derivatives. We
write the function H with τ arguments as H (y1, . . . , yτ ). Consider the effect of a
small perturbation function εh(x) on the minimizing function s(x), where h is any
function with two continuous derivatives, satisfying h(0) = h(τ +1) = 0 so that the
endpoints of s are not perturbed. At the minimizing s, we require

lim
ε→0

(
G(s + εh) − G(s)

ε

)
= 0.

Substituting s +εh into (5), and using a first-order Taylor expansion of H
(

s(1)+
εh(1), . . . , s(τ ) + εh(τ )

)
about

(
s(1), . . . , s(τ )

)
, we obtain

lim
ε→0

(
G(s + εh) − G(s)

ε

)
= 2λ

∫ τ+1

0
s ′′(x)h′′(x) dx

−
τ∑

t=1

h(t)
�H

�y t

∣∣∣∣
y=s(1),...,s(τ )

(17)

The minimizing s is the function that sets the right-hand side of (17) to 0, for
any function h satisfying h(0) = h(τ + 1) = 0. Here it becomes clear why it was
necessary to set the penalty terms in (4) (partly constituting H ) to differentiable
functions.

The first term on the right-hand side of (17) is handled by integrating by parts
twice. The constraints s ′′(0) = s ′′(τ + 1) = h(0) = h(τ + 1) = 0 make most of the
evaluated integrals vanish, leaving

2λ
∫ τ+1

0
s ′′(x)h′′(x) dx = 2λ

∫ τ+1

0
h(x)s(4)(x) dx .
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For the second term in (17), we note that the point values h(t) �H
�yt

∣∣∣
y=s(1),...,s(τ )

can

be written as the integral of the Dirac delta function, δ(t − x) defined for −∞ <

x < ∞ such that (by definition),

τ∑
t=1

h(t)
�H

�yt

∣∣∣∣
y=s(1),...,s(τ )

=
∫ τ+1

0

(
τ∑

t=1

δ(t − x)h(x)
�H

�yt

∣∣∣∣
y=s(1),...,s(τ )

)
dx .

Substituting these in (17), and equating to 0, we get:

∫ τ+1

0

(
2λs(4)(x) −

τ∑
t=1

δ(t − x)
�H

�yt

∣∣∣∣
y=s(1),...,s(τ )

)
h(x) dx = 0.

Because this holds for all functions h, it follows that

2λs(4)(x) −
τ∑

t=1

δ(t − x)
�H

�yt

∣∣∣∣
y=s(1),...,s(τ )

≡ 0 for all 0 ≤ x ≤ τ + 1. (18)

Whenever x /∈ {1, 2, . . . , τ }, then δ(t − x) = 0 by definition, so 2λs(4)(x) = 0.
This tells us that s(3)(x) is constant, with possible jumps at x = 1, 2, . . . , τ . This
immediately reveals that the solution s, with zero fourth derivative, must be a cubic
spline, with knots at the points x = 1, 2, . . . , τ . We may therefore write:

s(x) = at + bt (x − t) + ct (x − t)2 + dt (x − t)3 for t ≤ x < t + 1. (19)

This confirms result (6). Equation (19) may be differentiated to find s, s ′, s ′′, and
s ′′′ directly in terms of the coefficients at , bt , ct , and dt .

To find the jump size in the third derivative s(3) at integer point t , we inte-
grate (18) from t − ε to t + ε for ε � 1. The integral is necessarily 0, so we
obtain:

s(3)(t + ε) − s(3)(t − ε) = 6 (dt − dt−1) = 1

2λ

�H

�yt

∣∣∣∣
y=a1,...,aτ

for t = 1, 2, . . . , τ,

(20)

where a1, . . . , aτ have been substituted for s(1), . . . , s(τ ). Using (8), (15), and (20),
some algebra shows that the spline coefficients c may be written succinctly as the
solution to the equation

c = 1

4λ
M−1 �H

�yk

∣∣∣∣
y= M−1Vc
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Detecting Invisible Migrants: An Application
of Genetic Methods to Estimate Migration Rates

Steven D. Miller, Hamish E. MacInnes, and Rachel M. Fewster

Abstract In studies of migration, both between and within populations, it is not
always feasible to use physical tags to track the movement of animals. Funding and
time constraints may not allow for the trapping and tagging of a sufficiently large
set of animals to expect that a reasonable number will be recaptured at a future time
in another population. An alternative approach is to use genetic markers to esti-
mate migration and population parameters of interest. This is a rapidly developing
area of research, an advantage being that each captured subject has effectively been
“tagged”. The choice of tag however is not at the discretion of the researcher, and
is a realisation of a complex array of historical events and random fluctuations. It is
therefore necessary to develop methods to interpret observed genetic characteristics
in order to describe inter- and intra-population movements. We present research
using simulated and real-world data which evaluates the performance of one recent
genetic approach to handling these sorts of problems. The collected data is of an
invasive species, where it is likely the populations from which the samples were
taken were recently established and therefore did not meet the usual genetic equi-
librium conditions.

Keywords Genetics · Migration · Rattus

1 Introduction

Traditionally, mark-recapture studies have been used to study the demographics of
populations. However, such an operation is sometimes impractical or infeasible,
subject to constraints such as funding or time. It might even be impossible, for
instance when the initial capture is made by kill-trapping. In such cases, methods
that use genetics to infer historical migration patterns among populations might be
considered as alternatives. These methods should be distinguished from methods
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which make use of animals’ genetic signatures within the classical mark-recapture
framework (Nichols and Kendall 1995).

Using the genetics of animals is closely analogous to the physical tagging of
animals. With the exception of monozygotic siblings, an animal’s genetic code is
unique. This means each individual has a unique tag which does not need to be
applied by the researcher. Thus there is no “mark” phase, in the classical sense.

When attempting to detect migration between populations, it is necessary to take
representative genetic samples from every potential source population, much as it
would be necessary to tag animals in each population when using mark-recapture
models. In a genetic study however, it is not necessary for an individual sampled in
the source population to subsequently migrate. When a migrant has a genetic profile
that is more similar to related individuals in its source population than individuals in
its new population, it is not necessary to mark the migrant in its source population
prior to its migration. Rather, it is sufficient to have a representative sample of the
genetic profiles of individuals from the source population with which the migrant
should closely associate.

It has been demonstrated that indirect methods of characterising movement
between populations using genetics can be as effective as methods involving direct
observation, but require a fraction of the field-time (Berry et al. 2004). Although
use of genetics can substantially reduce field-time and its associated costs, these
efficiencies must be balanced against the lab-time and costs necessary to extract the
genetic information from the biological samples.

2 Estimating Migration Through Genetics

We were interested in calculating the levels of migration between populations of
an invasive species. Because invasive species are generally short-lived, it can be
difficult to complete further sampling as part of a longer-term study involving resam-
pling tagged individuals during those individuals’ lifetimes. However, because such
species are necessarily fast-breeding, it is likely that a migrant will leave descen-
dants in its destination population. This is an ideal scenario for tracking migration
through genetic signals.

It is not necessary for a sampled individual to be a migrant itself in order to
detect migration events. Within several generations, and assuming populations are
relatively distinguishable genetically, a genetic signature carried by an immigrant
will remain detectable within that immigrant’s progeny. By contrast, physical tags
cannot be passed from parent to offspring. However, estimates of migration based
on genetics rely on migrants successfully breeding in their destination populations.
If resident individuals are unwilling to breed with migrants from other populations,
the genetic record will underestimate the true level of migration.

Several factors affect the detectability of ancestral migration:

• How representative was the genetic profile of the migrant of its source
population?
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• How similar were the genetic profiles of the source population when the migra-
tion event occurred, and when the sampling occurred?

• How distinguishable are the genetic profiles of the migrant’s population of origin
and destination?

• How likely is a migrant individual to breed successfully in its new population?
• What is the probability of sampling the migrant or one of its descendants in the

new population?

The detection of migration will not always be certain therefore, and the chance
of detection decreases over time.

Another advantage of using a genetic approach to detect migration is that
every sampled individual has the potential to be identified as a migrant. Contrast
this with studies involving tagged individuals, where it is impossible to discrim-
inate between untagged individuals – they could be untagged resident individuals,
untagged migrants from identified source populations, or migrants from unidentified
source populations.

However, methods using genetics might not behave properly if underlying
genetic models on which they rely do not hold. For example, many early method-
ologies rely on the assumption that the populations analysed conform to the Hardy-
Weinberg Equilibrium (HWE) conditions. In practice, these conditions can never
hold perfectly. Recent modifications to earlier implementations of genetic methods
relax many of these assumptions.

2.1 An Individual Assignment Approach

Assignment methods are a class of methodologies that use genetics to estimate indi-
viduals’ most likely source populations or ancestries (Paetkau et al. 1995; Rannala
and Mountain 1997; Pritchard et al. 2000; Wilson and Rannala 2003). Many of
these methods allow a diploid individual’s genes to have descended from different
populations, representing an ancestral migration event, even if the individual itself
is a non-migrant (Rannala and Mountain 1997; Pritchard et al. 2000; Wilson and
Rannala 2003). With the appropriate data, these methods are more efficient at char-
acterising migration than other methods, particularly if migration has only occurred
over the last few generations (Rousset 2001).

Once migrant ancestries have been estimated, it is possible to construct point
estimates of migration rates by dividing the number of migrants in a population by
the size of that population (Manel et al. 2005). This requires the population sizes
to be estimated, which is often difficult. Wilson and Rannala (2003) developed a
Bayesian assignment-based method to estimate rates of migration between popu-
lations without needing population sizes. Analysis of the output from the MCMC
chains enables distributional characteristics of the migration rates to be evaluated
(Wilson and Rannala 2003).
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Assignment methods are useful for studying migration over short time-scales
(Manel et al. 2005). Many contemporary approaches rely on fewer assumptions than
traditional models, such as the requirement for the populations to be in HWE, but
this comes at the cost of the results being applicable to only recent trends in migra-
tion (Wilson and Rannala 2003). The complexity of these models increases expo-
nentially with the number of generations since the unobserved migration (Rannala
and Mountain 1997; Pritchard et al. 2000). Although performance is better when
gene-flow is low, accurate estimates are possible even when migration is frequent
(Berry et al. 2004). The ability to precisely estimate migration rates when popula-
tions lack genetic diversity might be enhanced, for example by taking larger sample
sizes from each population, and particularly by using highly-variable loci (Berry
et al. 2004; Paetkau et al. 1995; Wilson and Rannala 2003).

Bayesian variations of assignment methods often recognise that the genetic infor-
mation provided is only a sample from the population, and there will be uncertainty
inherent in the population genetic profiles calculated from these samples due to
sampling variation (Rannala and Mountain 1997; Pritchard et al. 2000; Wilson and
Rannala 2003).

3 Data and Motivation

We have collected data for a study of the invasion dynamics of Norway rats (Rattus
norvegicus) and ship rats (R. rattus) among offshore islands in New Zealand. The
aim of this study is to investigate the geographical and biological characteris-
tics affecting the rate at which rats migrate between islands. Outcomes from this
research are intended to assist conservation managers during the planning stages of
the restoration of protected islands. This involves the eradication of invasive species
present on the islands, the reintroduction of native species, and ongoing monitoring
to prevent the reinvasion of the eradicated species. Resource availability and the
biology of rats rendered it infeasible to attempt to infer the migration rates of rats
between islands using physical tagging.

Twelve existing Norway rat microsatellite markers for unlinked loci on separate
chromosomes were selected for this study (Jacob et al. 1995). One locus failed to
amplify for both species, and another locus did not produce reliable results for ship
rats. Thus, samples from Norway rats were genotyped at 11 independent loci, while
those from ship rats were typed at 10 loci.

The populations we were interested in were likely to have been founded recently,
so the equilibrium conditions were unlikely to hold. In order to describe migration
in this sort of system, assignment methods are most appropriate (Rousset 2001).

We have focused on the assignment method described by Wilson and Rannala
(2003), and implemented in the program BayesAss+ (http://www.rannala.org/
labpages/software.html). This approach estimates migration rates between popula-
tions, which are of primary interest for our study.
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3.1 Genetic Migration Models

3.1.1 The BAYESASS+ Method

BayesAss+ assumes that migration is relatively rare (Wilson and Rannala 2003).
This is necessary to derive the equations for the ancestry probabilities employed
in the conditional multinomial distribution of ancestries, given migration rates.
If migration rates are assumed to be low, terms involving squared or higher
polynomials of migration rates are deemed to be negligible, and the proba-
bility of a pair of migrants breeding in their destination population is effectively
zero.

BayesAss+ describes an individual’s genetic ancestry through the use of the
parameters S, the population the individual was sampled from; M, the individual’s
ancestral population; and t, the individual’s ancestral time. An ancestral time of t=1
implies an individual is a direct migrant from the population specified by M, which
means the individual was born in that population and migrated to the population
it was caught in, S. The individual’s parents’ ancestries are irrelevant in this case.
If t=2, an individual was born in the population it was sampled from, one of its
parents was also born in that population, and the other was a direct migrant from the
population specified by M. Finally, if t=0, the individual has no migrant ancestry,
which means it was born in the population it was sampled from, to parents who were
also born in that population.

Consider all individuals sampled from population S=a. These individuals must
have one of the three ancestries described above. BayesAss+ defines m ji to be the
proportion of individuals in population i who migrated from population j . These
are referred to as migration rates. When we refer to “external migration rates”, we
are talking about those values m ji where i �= j . That is, the proportion of indi-
viduals in population i who were not born in population i, and therefore must have
migrated from an external population. “Internal migration rates” refer to values mii ,
the proportion of individuals in a population born in that population. Thinking in
terms of genes, being born in a population is a migration event from the parents in
population i to their offspring in population i, so the genes have migrated within the
same population.

BayesAss+ assumes the proportion of individuals with full migrant ancestry
from population b in population a, (S = a, M = b, t = 1 : a �= b), to be mba . The
proportion of individuals with half migrant ancestry from population b in population
a, (S = a, M = b, t = 2 : a �= b), is approximated as 2mba . In order to ensure
the ancestry proportions sum to one, the proportion of individuals in population
a with no migrant ancestry, (S = a, M = a, t = 0), is required to be maa =
1 − 3

∑
{k∈I:k �=a} mka , where I is the set of all populations. This requires that the

sum of all external migrant proportions be less than 1
3 in order to ensure the propor-

tion of individuals with no migrant ancestry is non-negative. We will refer to this
method of calculating the ancestry proportions in a population as “Method 1” from
here on.
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3.1.2 A New Method

We couldn’t rely on migration being rare between populations of rats for our study.
In order to make the migration model employed by Method 1 more flexible, we
introduce the parameters M1 and M2, in place of M and t. M1 represents the ancestry
of one of an individual’s parents and M2 represents the ancestry of the other parent.
As before, S represents the population the individual was sampled from. We will
assume we cannot distinguish between the cases (M1 = i, M2 = j) and (M1 = j,
M2 = i). For our purposes, it is reasonable to assume that an individual may only
migrate once in its lifetime. We also assume that generations are non-overlapping.
In this scenario, the two parents are required to move from their initial populations
to a common population so that they can breed together. When born in this
population, the individual in question must migrate to the population where it
was captured. Let b and c be the populations from which an individual’s parents
originated, and let a be the population from which we sampled the individual. If
m ji is defined as before, then the probability of such an ancestry can be written as

Pr(S = a, M1 = b, M2 = c) =
{∑

κ∈I mbkmckmka if b = c;∑
κ∈I 2mbkmckmka otherwise.

(1)

We will refer to this method of calculating the ancestry proportions in a popula-
tion as “Method 2”.

A comparison of the ancestry probabilities between the two methods is shown in
Table 1, where the scenario involves three possible populations.

Table 1 Comparison of the formulae for expected ancestry proportions between Method 1 and
Method 2, for the case of three populations. The equations shown are only for individuals sampled
from population a. Equations for pure and half ancestries from only population b are shown –
analogous equations exist for ancestries involving population c.

Description Notation Probability

(a) Method 1

Pure Migrant Ancestry (S = a, M = b, t = 1) mba
from populations b

Mixed Migrant Ancestry Not possible 0
from populations b and c

Half Migrant Ancestry (S = a, M = b, t = 2) 2mba
from population b

No Migrant Ancestry (S = a, M = a, t = 0) maa = 1 − 3(mba + mca)

(b) Method 2

Pure Migrant Ancestry (S = a, M1 = b, M2 = b) m2
bamaa + m2

bbmba + m2
bcmca

from population b
Mixed Migrant Ancestry (S = a, M1 = b, M2 = c) 2(mbamcamaa + mbbmcbmba+

from populations b and c mbcmccmca)
Half Migrant Ancestry (S = a, M1 = a, M2 = b) 2(maambamaa + mabmbbmba+

from population b macmbcmca)
No Migrant Ancestry (S = a, M1 = a, M2 = a) m2

aamaa + m2
abmba + m2

acmca
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3.2 Assessment of the Genetic Models Using an Individual-Based
Ecological Migration Model

We simulated three populations that had experienced constant rates of migration
between each other for two generations. The simulation was designed to mimic
individual behaviour, and not adhere to either migration model used by Method
1 or Method 2. In this way, we were testing the suitability of the two methods,
by comparing their predicted proportions of ancestries with those derived from the
neutral, ecologically-based simulation.

There were 1000 individuals in each of the populations. In the first migration
step, a proportion m of these individuals were moved between each of the nine pair-
wise combinations of source and destination populations. Because the proportions
of migrants were symmetric, the population sizes were still 1000 at the conclusion of
this step. Breeding then took place. Pairs of individuals were selected at random with
replacement. This allowed individuals to be involved in multiple matings. Each pair
produced one offspring by randomly selecting an allele from each parent for each
locus. The resulting offspring then undertook migration in the same fashion as their
parents. The offspring’s true genetic ancestries were recorded for comparison with
the expected proportions under each model. Method 1 and Method 2 were tested at
three levels of migration: m = 0.05 (rare), m = 0.15 (frequent), and m = 0.3 (very
frequent).

The 18 simulated ancestry proportions spread over the four types of ancestry
described in Table 1 are shown in Fig. 1. The expected proportions for each ancestry
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Fig. 1 Expected ancestry proportions for a three population system when (a) mii = 0.9, and
m ji = 0.05; (b) mii = 0.7, and m ji = 0.15; and (c) mii = 0.4, and m ji = 0.3, j �= i . Crosses
are the population proportions of each ancestry type calculated from simulations using a neutral,
individual based movement model. Solid lines are the expected ancestry proportions according to
Method 1, and dashed lines indicate the expected ancestry proportions using Method 2. PMA =
Pure Migrant Ancestry, MMA = Mixed Migrant Ancestry, HMA = Half Migrant Ancestry, NMA
= No Migrant Ancestry (see Table 1 for details)



424 S.D. Miller et al.

type under Method 1 are indicated with solid horizontal bars, while the ancestry
proportions expected by Method 2 are shown with dashed horizontal bars.

The results in Fig. 1 justify the suitability of Method 1 in cases of low migration,
as the authors of BayesAss+ advise, but indicate there could be discrepancies
between the expected and observed proportions at the higher rates of migration
BayesAss+ can accommodate. Certainly the model used by BayesAss+ is inad-
equate in cases where migration rates exceed the maximum value ensuring propor-
tions are non-negative, i.e. when the sum of the proportions of external migrants
in a population exceeds 1

3 (Fig. 1c). Method 2 accurately reconstructs the migrant
proportions under all of the migration scenarios investigated.

3.3 Application of the Model to Simulated Data

After establishing Method 2 was suitable for estimating ancestry proportions when
migration rates are known, we incorporated it into the MCMC framework used
by BayesAss+ to assess how it performed when estimating migration rates from
genetic data.

Samples were taken of 50 individuals from each of the populations generated
according to the neutral simulation routine described above. Individuals’ genotypes
consisted of 10 loci. There were 10 allele types at each locus. Individuals generated
from the ancestral populations were randomly assigned genotypes according to the
specific allele frequencies for their population. We desired the ancestral populations
to be genetically distinct. The coancestry coefficient θ (Weir and Cockerham 1984)
for the ancestral populations was 0.22, with a 95% bootstrap confidence interval
of (0.17, 0.28). The closer values of θ are to 0, the more genetically similar the
populations. Values of θ in excess of 0.2 are considered high, suggesting populations
have been separated for a long time. Individuals in the offspring generation were
randomly assigned one allele from each of their parents at each locus.

Migration rates of m = 0.05 are considered to be relatively low. After two gener-
ations of migration at this rate and breeding, the coancestry coefficient reduced to
0.1123 (0.0871, 0.1417). Migration of m = 0.15 is close to the maximum migration
that Method 1 can accommodate for three populations and equal external migration
rates (since we require 1 − 2m > 2

3 ). Within two generations, the genetic differen-
tiation between the populations is markedly reduced, down to just 0.0229 (0.0173,
0.0294). A migration rate of m = 0.3 makes the reconstruction of the ancestral allele
profiles for the populations very difficult. The coancestry coefficient was effectively
zero (<1×10−5). Method 1 is not designed to cope with such a situation, but it was
of interest to see the results from Method 1 under this scenario.

MCMC chains from a Bayesian framework employing Method 1 and Method
2 were run for 3,000,000 iterations, with the first 500,000 iterations discarded as
burn-in. Samples were taken every 1000 iterations. Three replicate chains were run
with different starting configurations to avoid reporting results drawn from locally
optimal solutions.
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3.4 Multiple Solutions from MCMC

During these simulations, we discovered that Method 2 was capable of finding
multiple migration solutions for which the posterior probabilities were equivalent,
particularly when migration was high. The flexibility of Method 2 means that there
are often two or more sets of migration rates that fit the estimated ancestries equally
well. This is not so much of an issue with Method 1 because of the constraints it
imposes on the migration rates. These restrict the set of possible scenarios that can
be considered, potentially excluding the true migrant proportions, if migration is
high.

Figure 2 shows an example of the problem of equally probable parameter sets.
The top row shows the traces of the posterior probability of the parameter sets from
three separate MCMC chains using Method 2, initiated with different seeds. The
lower three rows display the traces of the estimates for the three internal migrant
proportions (mii ) when mii = 0.7, for each of the three chains.

Examining the posterior probabilities alone, all three chains seem to have found
a common solution, since the posterior probability distributions are the same across
the three chains. However, the estimated migration rates switch between solutions
during all three chains, and each chain finds solution sets that the others do not. By
comparing the estimated allele frequencies with the known allele frequencies of the
three ancestral populations, we found all three chains had calculated the frequencies
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Fig. 2 Plot of the traces of the log of the posterior probability, and each of the internal migration
rate estimates when m ji = 0.15, j �= i , for three separate MCMC chains. The true value of the
internal migration rates was mii = 0.7. The third chain confused the allele frequencies for two
of the populations. The three mean posterior probabilities were almost identical. These appear as
three indistinguishable dashed lines in the first row
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well, but that the third chain had swapped the frequencies for population 2 with
those for population 3.

Although chains 1 and 2 estimated the ancestral allele frequencies correctly,
four separate, similarly supported migration solutions were derived from these two
chains. These sets were isolated using a clustering method. In the absence of addi-
tional information it would be necessary to treat each possible solution as equally
plausible.

In practice however, often some solutions are less believable than others. For
example, a small population might receive a large proportion of migrants from a
neighbouring large population, but the large population is unlikely to receive the
majority of its individuals from the smaller population. In this way, additional infor-
mation can be used to select the most plausible set of parameters. Alternatively, such
information could be incorporated into the shape of prior distributions used for the
parameters before the MCMC chains are run. Implicitly, this is the approach taken
by Method 1. By not allowing internal migration rates to be below 2

3 , the method
is incorporating the prior belief that no more than 1

3 of the population comprises
individuals who were not born in that population.

Typical convergence diagnostics did not provide much insight for these problems.
For Method 1, migration rate estimates quickly reached an equilibrium (typically
within 50,000 iterations), which rarely varied for the length of the chain. Estimates
also corresponded across multiple chains. These indicators confirmed consistency,
not accuracy or appropriateness. In contrast, at higher migration rates Method 2
provided estimates that regularly jumped between apparent solutions. Within a
chain, there was little consistency, and the three chains exhibited wildly different
behaviour.

Because of the inconsistency of the behaviour across chains, and the existence of
multiple solutions, particularly when using Method 2, we found it was advisable to
use a number of replicate chains. The choice of three chains for the simulation study
was probably too few to guarantee the discovery of all plausible parameter sets,
although correct estimates of the true parameter set appeared to be recovered for
each of the migration rates tested (Section 3.5). The comparison of results between
chains can be used to distinguish globally optimal solutions from locally optimal
solutions, and provides a greater probability of detecting all globally optimal param-
eter sets.

3.5 Simulation Results

Figure 3a shows the estimated migration rates from Methods 1 and 2 when the
external migration rates were set to m = 0.05. Recall that for low external migra-
tion rates, both methods predict similar proportions of ancestries (Fig. 1a). The
populations are also still relatively genetically distinct. Both methods success-
fully allocate allele frequencies to populations, and the estimated migration rates
are similar between the methods. The interval containing 95% of all estimated
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Fig. 3 Estimated migrant proportions for samples generated from a neutral model. True values are
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mii = 0.4, m ji = 0.3
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migration rates contains the values of m used to generate the data in all cases,
except for m12 under Method 1.

Figure 3b presents the migration rates estimated when the true external migration
rates were m = 0.15. While diagnostic tests gave no indication that Method 1 had
any difficulty with the similarity of the populations, in only four of the nine cases
is the true migration rate within the central 95% of values estimated. This is due to
the migration model adopted by Method 1 inadequately estimating the proportion of
ancestries in the presence of high external migration rates (Fig. 1b). As mentioned,
Method 2 found four sets of parameters that were judged equally likely from this
data set (Fig. 2). Point estimates of the migration rates are close to the true values for
the first parameter set, but the 95% intervals are quite wide, reflecting the uncertainty
inherent in the genetic data due to the low genetic diversity between the populations.

Figure 3c shows the estimated migration rates from Methods 1 and 2 when the
true migration rates were mii = 0.4, and m ji = 0.3. Method 1 was not designed to
cope with scenarios where more than 33% of a population is comprised of individ-
uals with full migrant ancestry. Despite this, when the simulated populations were
generated with external migration rates of m = 0.3 (i.e. 60% of individuals in each
population were migrants), diagnostics from Method 1 did not signal any problems.
However, it is impossible for the model to estimate the true value of the internal
migration rates, mii = 0.4. Similarly, the sum of the external migration rates must
be less than 1

3 , so both external migration rates cannot attain their true value of 0.3.
Method 1 estimated equal migrant proportions from each external population, which
is correct, but this requires both external migrant proportions to be underestimated.
The internal migration rate is estimated to be nearly as low as possible (0.67), but
is nevertheless over-estimated. Perhaps of most concern, the Markov chain realises
the external migration rates are too low and internal migration rates are too high, so
it seldom accepts proposals that move away from the upper and lower bounds for
the external and internal migration rates respectively.

The effect is to generate values from the chain with little variability, which might
be mistakenly interpreted as indicating strong support for the estimated parameters.

For Method 2, one of the three chains gave very different migration estimates
from those given by the other two chains. The posterior probability distribution for
this chain was centred lower than those for the other chains, suggesting this chain
was drawing values from a local optimum rather than the global optimum. This
chain was discarded. The other two chains estimated similar migrant proportions.
All estimates were highly variable, reflecting a lack of information in the genetic
data with respect to migration.

These simulations using a neutral ecological model indicate that Method 2
improves upon Method 1 in high migration scenarios. When migration is low, both
methods cope fairly well with estimating migration parameters. At higher migration
rates, Method 2 is capable of better estimating the correct migration parameters, but
suffers from its flexibility, and will suggest a range of solutions that are as probable
as each other.
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By restricting consideration to only a subset of possible solutions, Method 1 is
unable to even suggest the correct parameter values when migration is very high.
Although Method 1 is not able to cope with such high levels of migration, it is
not always obvious from the output, creating the potential for misinterpretation. At
very high levels of migration, Method 2 finds it difficult to conclusively estimate
the migration parameter values, but this is clearly indicated in the output, with high
variability of estimates or frequent switching between alternative solutions. While
such results may be of little practical use, they present a more accurate reflection of
the difficulty in isolating information about population movement from the genetic
data in such situations.

4 Application to Real Data

We investigated the invasion rates of rats over the island archipelago in the Bay of
Islands (Ipipiri o Tokerau), Northland, New Zealand. There are seven main islands in
this group (see Fig. 4). Samples were collected from survey lines over 2 week-long
surveys, one in January (mid-summer) and the other in May (late autumn) 2005.
Private landowners on several of the islands provided additional samples from their
properties between surveys. Ship rats and kiore (R. exulans) were detected in small
numbers, but the vast majority of captures were Norway rats. In addition, we trapped
surrounding mainland areas, resulting in the addition of many ship rat samples. We
included five DNA samples from Norway rats preserved in Te Papa Tongarewa, the
Museum of New Zealand, taken during a previous survey of rodents from the islands
conducted in 1984 (Moller and Tilley 1986).

PCA of Norway Rats from the Bay of Islands
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1. Motuarohia
2. Moturua
3. Motukiekie
4. Okahu

5. Waewaetorea
6. Urupukapuka
7. Poroporo

Fig. 4 Bay of Islands, Northland, New Zealand. Map of the archipelago and Principal Compo-
nents plot of genetic distance between Norway rats. Individuals are grouped according to sampling
populations. Substantial overlap indicates genetic similarity between groups. The first two principal
components describe 89% of the variation seen in the data
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4.1 Norway Rats

We analysed 310 Norway rat samples from this area, genotyped at 11 loci. A
multivariate extension of the plotting method shown in Fig. 6 of (Paetkau et al.
2004) was used to explore the genetic relationships between individuals. This
exploratory analysis of the data showed there was a large degree of genetic similarity
between Norway rats in the Bay of Islands (Fig. 4), possibly indicating frequent
migration between populations. Norway rats are known to be capable swimmers,
covering distances of at least 400 m across open water between islands (Russell
et al. 2005). The five historic samples did not differentiate themselves, indicating a
level of consistency in the genetic make-up of the Norway rats on the islands over
20 years.

Each island was treated as a single population. Pair-wise estimates of Weir and
Cockerham’s coancestry coefficient θ (Weir and Cockerham 1984) were typically
low. Ignoring Motuarohia (1.), all point estimates were less than 0.05 for every pair
of islands except Moturua (2.) and Poroporo (7.), which was 0.06. The value of
θ for pairs of islands involving Motuarohia were all greater than 0.05. Other than
θ = 0.06 between Motuarohia and Motukiekie (3.), all other point estimates of θ
for population pairs involving Motuarohia were in the range 0.09–0.11.

An estimate of θ over all seven populations is

θ = 0.06 (0.04, 0.09)

The value of θ for the populations as a group is quite low. This might cause
the genetic migration models to have trouble distinguishing populations. The pair-
wise values of θ suggest this is likely to be the case for some pairs of islands more
than others. Table 2 shows the results from the data-set analysed using Method 2
(Section 3.1).

Six random seeds were used to generate MCMC chains to estimate the param-
eters in an attempt to avoid interpreting a locally optimal solution and to iden-
tify differences due to attributing allele profiles to different populations. Conver-
gence to the parameters’ equilibrium distribution is guaranteed under MCMC, but
this convergence may not occur within the number of iterations observed. Chains
which suggest a consistent set of parameter values for the majority of the chain
are probably drawing parameter values from an optimal region of the parameter
space, but it might be unclear whether this is a local optimum or a global optimum.
Using multiple chains increases the possibility of at least one chain finding a global
optimum region. If the parameter sets suggested by some chains have higher poste-
rior support than others, it can be concluded that the chains with lower posterior
support are stuck in local optima. Our choice of six chains attempted to balance
the increased probability of finding globally optimal solutions with computational
burden. If we had found that few chains were suggesting the same solutions at the
end of the procedure, it would have been prudent to use a larger set of chains initiated
with different random seeds.
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Examining the posterior probabilities of the solutions suggested by the sepa-
rate chains indicated three of the chains had located parameter sets that the data
supported better than the solutions suggested by the other three chains. The less-
well supported solutions were discarded. Two of the three chains that appeared to
be performing well were calculating similar parameter estimates. The other chain
suggested parameter values that we felt were unlikely, for example suggesting the
majority of rats on the large island of Urupukapuka (6.) were migrants from the
small neighbouring island of Poroporo (7.). On closer inspection, this chain was
estimating allele profiles that matched those from the other two well-performing
chains, except it had swapped the allele frequencies for Urupukapuka and Poroporo,
which would explain some of the unusual estimates. We therefore decided to rely on
the output from the two chains previously mentioned. These chains were run for a
further 97,000,000 iterations, during which they rarely suggested any different sets
of parameter values, and no parameter sets with the same or higher posterior support.
The results with highest support from these two chains were used in Table 2.

The two largest eastern islands, Urupukapuka (6.) and Waewaetorea (5.) seem
to consist predominantly of non-migrants. The other of the major eastern islands,
Okahu (4.), is estimated to consist predominantly of immigrants from Waewaetorea
(5.). We were expecting the Okahu and Waewaetorea populations to be particularly
genetically indistinguishable, which should have resulted in variable estimates of
the migrant and non-migrant proportions of these islands within their respective
populations. There is little evidence to suggest Okahu has any significant propor-
tion of non-migrants, and virtually no evidence to suggest Waewaetorea’s popula-
tion consists of any Okahu immigrants. It is possible that the strong sea current
between these islands favours migration from Waewaetorea to Okahu only. Alter-
natively, the spatial location of traps may have influenced this result. Waewaetorea
had three traplines laid across it: one on the shoreline on the south coast facing
Urupukapuka (6.), one on the shoreline on the west coast facing Okahu, and a line
running between these two, spanning the interior of the island. There was only one
trapline on Okahu, and the majority of samples were taken close to the south-eastern
shoreline facing Waewaetorea. Although the subpopulations on the facing shores of
Okahu and Waewaetorea might be frequently swapping migrants, the diversity of
samples from the wider spatial range across Waewaetorea might swamp this signal,
instead leading to the conclusion that while the majority of rats on Okahu could fit
the Waewaetorea population profile, not all Waewaetorea rats would fit well into
the Okahu population. This scenario suggests that accurate spatial representation of
populations is necessary to derive accurate migration estimates.

In the set of solutions chosen, Poroporo (7.) is described as consisting of a
majority of migrants from Urupukapuka (6.) and Waewaetorea (5.), but there are
wide credible intervals associated with these estimates, and for the proportion of
Okahu (4.) migrants in Poroporo. This reflects the genetic similarity of those three
populations with each other, and with the samples taken from Poroporo. That is, it
is likely that Poroporo’s population is dominated by migrants each generation, but
it is difficult to discern which of the three other populations they are coming from.
Common sense would suggest most, if not all, the migrants hail from Urupukapuka
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(6.), due to its proximity. Incorporating an isolation-by-distance rationale in the
BayesAss+ framework to favour migration between neighbouring populations, or
using geographical distances to inform the posterior probability through the prior
distribution of migration rates would be a useful addition.

The migrant proportion estimates for Moturua (2.) were highly variable, probably
resulting from the low sample size from this island. No conclusive interpretations
could be made from these results.

Despite low sample sizes from Motukiekie (3.), five of the other six islands
are strongly discounted as sources of migrants. This leaves Waewaetorea (5.) as
a major source of migrants, and a large proportion of non-migrants. These two
migrant proportion estimates are highly variable, and strongly negatively correlated.
Because Motukiekie and Waewaetorea rats are genetically very similar, it is possible
that the population on Motukiekie is relatively recently established from immigrants
from Waewaetorea, and the program has difficulty deciding which ancestry fits these
individuals best, particularly when the reference population for Motukiekie is so low
(11 samples).

Based on the exploratory analysis (Fig. 4), we expected the Motuarohia (1.)
population to be the most isolated population in our study. While there is very strong
evidence to suggest there has been no recent migration between Motuarohia and five
of the six other islands in the chain, there is surprisingly strong evidence that about
18% of individuals on Motuarohia are migrants from Motukiekie (3.). The precision
of this estimate is especially surprising considering the low number of samples from
Motukiekie. The density of rats on Motuarohia was very high, whereas we detected
very few rats on Motukiekie. A fifth of the size of the Motuarohia population at
that time was likely to be many times the size of the population on Motukiekie. It
is likely there is some genetic characteristic of the Motukiekie sample that accounts
for this unusual result, which we have yet to determine.

For the ship rats caught in the Bay of Islands, 32 samples were from the island
archipelago, 29 coming from Urupukapuka (6.) alone. Two more samples were from
Okahu (4.), and the other sample was from Moturua (2.). We classed all these rats
together as island rats. We also analysed samples from 34 ship rats trapped on
the surrounding mainland area of Rawhiti. Eight more samples were taken from
a marina at Doves Bay, more than 15 km from the islands by sea, and more than
80 km from Rawhiti by land (see Fig. 5). These 74 ship rat samples were genotyped
at 10 loci. Ship rats are relatively recent arrivals to the island chain, with none
being detected on the islands in 1984 (Moller and Tilley 1986). We expected the
island ship rats to be more closely related to the ship rats from Rawhiti, and the
Doves Bay rats to look distinct from both these populations. Instead, exploratory
analyses seem to indicate rats from the two mainland sites are more closely related
to each other than to the island rats (Fig. 5). It is clear however that one of the
island rats (the single rat caught on Moturua (2.)) has strong ancestral links with the
mainland rats. Pair-wise values of θ were greater than 0.2 for both pairs involving
the islands and each of the mainland populations. The value of θ between the two
mainland populations at Doves Bay and Rawhiti was surprisingly only 0.06, despite
the improbability of exchanging migrants over such a long distance.
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Fig. 5 Bay of Islands, Northland, New Zealand. Map of the islands and surrounding mainland,
and Principal Component plot of genetic distances between ship rats. Individuals are grouped by
sampling population. The first two principal components describe 98% of the variation seen in the
data

The estimate of θ over all three populations is

θ = 0.20 (0.12, 0.32)

The θ for the combined populations is very high. The pair-wise values of θ
indicate this is mostly due to the large differentiation between the island rats and
the mainland rats. However, even the mainland sites show only a moderate level of
similarity. The results of applying Method 2 to this sample of rats is provided in
Table 3.

Although rates of convergence varied, all six chains settled on the same solution.
We therefore feel confident that this is a plausible solution set.

Table 3 indicates all three populations are essentially isolated from each other.
Due to the geographical distance, we were not expecting Doves Bay rats to be
migrating between the other populations. Although the Rawhiti and island popu-
lations are proximate, the plot of genetic distances (Fig. 5) supports the conclusion
that there is negligible gene-flow between these populations. Ship rats are reluctant
swimmers (Innes 1990), so migration from the mainland to the islands is likely to

Table 3 Median immigration rates between populations of ship rats in the Bay of Islands region
calculated with Method 2. 95% credible intervals from 25,000 draws from Markov chains are
indicated in brackets

Doves Bay Rawhiti Islands

Doves Bay 0.93 0.03 0.02
(0.79, 0.99) (0.00, 0.14) (0.00, 0.06)

Rawhiti 0.03 0.96 0.01
(0.00, 0.16) (0.85, 0.99) (0.00, 0.04)

Islands 0.02 0.01 0.97
(0.00, 0.12) (0.00, 0.04) (0.93, 0.99)
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stem from unintentional migration (for example, stowing aboard boats which visit
the islands). Migration in this manner is likely to be infrequent, making it difficult
for ship rats to establish populations in the presence of the high densities of Norway
rats on most of the islands. Populations that do manage to establish are unlikely to
frequently exchange migrants with the mainland population.

Although there was no evidence of frequent recent gene-flow between any of
our populations, our exploratory analysis identified an island rat that showed clear
mainland ancestry (Fig. 5). This rat was consistently identified as a full migrant with
pure genetic ancestry from the Doves Bay population by Method 2. This might be
evidence of human-assisted migration by boat, and emphasises the need for care
from boats passing near eradicated islands, in order to ensure they do not uninten-
tionally reintroduce pests.

5 Discussion

An appreciation of the rate of migration between populations is useful in many
conservation applications. As an example of this, we introduced a project to
characterise the migration dynamics of rats over island archipelagos in New
Zealand. Interest might lie in which islands are most suitable to reintroduce and
protect threatened animals and plants. This requires any pest species present to
be eradicated, and the prevention of any re-establishment of these populations.
Eradications are expensive, both in terms of money and time. Success must be
assured.

We gave examples where the conventional means of detecting migration through
direct observation might be impractical. In such situations, methods which estimate
migration indirectly through genetics may be suitable.

For the purpose of this project, estimating rates of migration through genetics was
the only approach practicable. However, estimates of direct migration would have
been useful. Genetic estimates of migration relate only to successful migration, i.e.
where a migrant manages to breed in its new population. For the purposes of erad-
ication and preventing reinvasion, once an island is rat-free, the rate of reinvasion
will solely depend on how often rats from neighbouring islands move to that island.
There is no need to consider the chances of successfully being incorporated into
the resident population. Prior to an eradication, the resident population might have
forcibly repelled migrant rats, and so there would be little indication of migration
in the genetic composition of the island’s population. In the event, the levels of
genetic admixture we saw in populations of Norway rats in the Bay of Islands
suggests that migrants were readily accepted into their destinations’ breeding
populations.

Methods now exist that relax many of the unrealistic assumptions that earlier
genetic methods relied on. This flexibility often comes at the cost of generality,
where estimates might be applicable to only recent generations (Wilson and Rannala
2003). However, pest species often experience rapid growth and decline, meaning
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extant populations have often existed for only a small number of generations. This
makes the application of these new flexible methods ideal.

A particular method, BayesAss+, was introduced as an example of these new
flexible methodologies. Through simulations, we demonstrated that the original
version of this program works well in situations where migration is low. However,
at higher rates of migration, the simplification of equations used to estimate the
proportions of migrants in populations becomes inaccurate. Beyond a certain level
of migration, the program is unable to consider the range containing the true propor-
tions of migrants, and potentially provides inaccurate results that indicate spurious
precision.

We introduced a new model based on equations that accurately calculate these
migrant proportions at any level of migration. This modification increases the
program’s flexibility by allowing it to consider any recent migration scenario,
although this substantially increases the number of migration scenarios available.
This places greater onus on users to select the most reasonable solution from the
sets provided. It is also important to ensure all plausible sets of parameter estimates
have been considered. One way to achieve this efficiently would be to implement
Metropolis-coupled Markov chain Monte-Carlo (MCMCMC; parallel tempering)
(Geyer 1991). Here, several MCMC chains are run in parallel, where the posterior
distribution associated with each chain is a weighted version of the desired distribu-
tion, increasing in diffusion. During the course of the simulation, parameter values
can be swapped between chains, according to the Metropolis algorithm. Examining
the distribution of parameter values drawn from the chain corresponding to the
unweighted posterior distribution provides the areas of the posterior density with
greatest support.

There will always be situations where direct methods should be preferred over
indirect methods to estimate levels of migration, and the contrasting approaches
should be seen as complementary (Rousset 2001). Indirect methods which rely on
genetics often struggle when populations experience large degrees of gene-flow, but
in this situation, direct observation of movement might be easier. Conversely, when
migration events are rare, observing an event directly might take multiple sampling
occasions, but an unusual genetic signature might persist for a short time, giving
the researcher a better chance of detecting the migration, if successful reproduction
followed the migration. Synergy is created when both approaches inform each other,
for example where a small scale physical assessment of migration is used to weight
the possible solution sets available from the genetic analysis.

Even if a mark-recapture study is preferred, there is nothing lost in taking genetic
samples of animals as they are captured. Such records would be useful if a tag is
ever lost or becomes illegible. There is also the benefit of being able to discriminate
between individuals from known populations who had not previously been tagged,
and individuals from populations outside of the study. As samples are collected over
generations, parentage analysis could be performed, or lineages constructed. This
could aid in the calculation of other demographic parameters. The opportunity to
collect such a wealth of information could only benefit the research behind catching
the animals in the first place.
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Stochastic Variation in Avian Survival Rates:
Life-History Predictions, Population
Consequences, and the Potential Responses
to Human Perturbations and Climate Change

Joel A. Schmutz

Abstract Stochastic variation in survival rates is expected to decrease long-term
population growth rates. This expectation influences both life-history theory and the
conservation of species. From this expectation, Pfister (1998) developed the impor-
tant life-history prediction that natural selection will have minimized variability
in those elements of the annual life cycle (such as adult survival rate) with high
sensitivity. This prediction has not been rigorously evaluated for bird populations,
in part due to statistical difficulties related to variance estimation. I here overcome
these difficulties, and in an analysis of 62 populations, I confirm her prediction by
showing a negative relationship between the proportional sensitivity (elasticity) of
adult survival and the proportional variance (CV) of adult survival. However, several
species deviated significantly from this expectation, with more process variance in
survival than predicted. For instance, projecting the magnitude of process variance
in annual survival for American redstarts (Setophaga ruticilla) for 25 years resulted
in a 44% decline in abundance without assuming any change in mean survival rate.
For most of these species with high process variance, recent changes in harvest,
habitats, or changes in climate patterns are the likely sources of environmental vari-
ability causing this variability in survival. Because of climate change, environmental
variability is increasing on regional and global scales, which is expected to increase
stochasticity in vital rates of species. Increased stochasticity in survival will depress
population growth rates, and this result will magnify the conservation challenges
we face.
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1 Introduction

Survival rates and population sizes fluctuate over time. Such stochastic variation can
be the consequence of simple binomial variation among individuals (demographic
stochasticity) or through variability in the environment (environmental stochas-
ticity). Except for very small populations, only the latter contributes significantly to
population variation (Lande et al. 2003). Importantly, the long-term growth rate of
a population, 
s, is reduced by stochastic variation in a, an element of a projection
matrix (such as adult survival rate), which Tuljapurkar (1982) identified with the
following equation,

loge(λs) = loge(λ1) − 0.5/λ1
2 × var(a) × Sa

2 (1)

where 
1 is the asymptotic growth rate predicted by the mean matrix, Sa
2 is the

(squared) sensitivity (Caswell 2001) of matrix element a, and a term for covari-
ances among matrix elements is ignored. This equation can be recast in terms
of elasticities, which are proportional sensitivities, as follows (Morris and Doak
2004),

loge(λs) = loge(λ1) − 0.5 × CVa
2 × Ea

2 (2)

where CV is the coefficient of variation of matrix element a and E is the elasticity of
a. Pfister (1998) recognized that these equations established a tradeoff between the
mean and variance of a trait, such as adult survival rate. Specifically, she predicted
that for trait values with greater sensitivity that a given amount of variability in these
traits would have greater effect on fitness than comparable variability in other traits
with lower sensitivity. Consequently, selection against variability in a trait should
be stronger for those traits with high sensitivity. Such selection pressure would
lead to the canalization of a trait, such as adult survival. Pfister (1998) tested and
largely verified her predictions by contrasting 30 different populations of very wide
taxonomic diversity.

Pfister’s predictions and support for the idea that variance in a trait is negatively
related to its sensitivity is of strong importance to life history theory. I chose to
further examine this life history tradeoff for two principal reasons. First, Pfister’s
(1998) work was flawed in that she used the total variance of a trait (or matrix
element), which includes both sampling and process variances, whereas only
process variance is of ecological interest. The decomposition of total variance
into sampling and process variances has received increasing attention in recent
years (Gould and Nichols 1998; White 2000; Burnham and White 2002; Morris
and Doak 2004). Using estimates of process variance, Gaillard and Yoccoz (2003)
examined whether variability in survival led to canalization of survival rates with
high sensitivity, through a meta-analysis of 27 populations of mammals. Doherty
et al. (2004) examined the relationship between process variance and its sensi-
tivity across a set of vital rates for one species − red-tailed tropicbirds (Phaethon
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rubricauda). In the only meta-analysis of birds, Sæther and Bakke (2000) examined
18 populations where sampling circumstances made them believe that sampling
errors were negligible and that total variance could be interpreted as process
variance. Given the ecological and evolutionary importance of Pfister’s (1998)
predictions, more evaluation of their universality is needed. Thus, with a focus on
birds, I was motivated to re-examine her predictions with a large set of populations
(n = 62) and where I decomposed total variance to enable use of an estimate of
process variance. In this paper, I use the term stochasticity as equivalent to process
variation.

My second motivation for such re-examination relates to the impacts of stochas-
ticity on population growth and the conservation of species. Given that species’ life
histories are shaped by their environment (Roff 2002), it is logical to expect that
increased environmental variability causes increased stochasticity in species’ vital
rates. Because stochastic variation in adult survival rates (or any other vital rate)
reduces the long-term growth rate of a population (Tuljapurkar 1982), then increased
environmental variability is expected to reduce species’ abundance. Importantly, this
prediction reflects just the effects of stochastic variation and connotes that popula-
tions would decline without necessitating changes in the means of vital rates. The
conservation relevance of this prediction is that several lines of evidence suggest
that climatic aspects of the global environment are becoming increasingly stochastic
(Easterling et al. 2000; Emanuel 2005; Boyce et al. 2006), which leads to predicted
increases in stochasticity in species’ vital rates and reduced long-term population
growth rates. While such increases in stochasticity will create conservation chal-
lenges, it is unclear how regional such effects will be or if certain life histories will
be disproportionately affected.

Given these two motivations, my goal is to conduct a meta-analysis of adult
survival rates of bird populations wherein I test Pfister’s (1998) prediction that
the sensitivity of adult survival is negatively related to its variance. Further, I
combine mean survival and variance, as their product gives a prediction of the
effect on population growth from stochastic variation in survival (Caswell 2001;
Haridas and Tuljapurkar 2005). As population growth is diminished by stochasticity
(equations (1) and (2)), the expectation is that all life histories across the r to k
selection continuum (Sæther and Bakke 2000) have evolved to limit the impact
of stochastic variation, and thus the product of sensitivity (squared) and variance
in a trait yields the expected variance in population growth, which should be
small and similar across populations (Fig. 1). I test this idea and look for what
species or populations may deviate from this life history expectation. I principally
focused on three species groups that reflect different life histories: marine birds,
waterfowl, and passerines, which represent a continuum from long- to short-lived
species and which may experience different types of anthropogenic effects (e.g.,
waterfowl are the only ones commonly hunted). I did not restrict the geographic
extent of this meta-analysis, and thus I have included studies from areas that
I categorize as North America, Europe, Southern Ocean, and Tropics (< 20◦

latitude).
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Fig. 1 All life histories are expected to have evolved low variability in population growth rate
(Tuljapurkar 1982). Thus, across the range of mean survival (S) rates, one expects low values for
the variance in population growth which is calculated as var(
) = (
/S × e)2 × var(S), where e
is the elasticity of adult survival rate (Pfister 1998). One can also use a somewhat analogous equa-
tion with the sensitivity rather than elasticity. If all environments for all species become similarly
more stochastic, we expect all species to experience similar increases in var(
), as shown by the
dotted line. Alternatively, if only the environments for long-lived species (e.g., marine ecosystems)
became more stochastic, then we might expect a shift in var(
) toward the dashed line

2 Methods

I obtained data for this analysis by locating journal articles containing annual esti-
mates of survival and annual estimates of sampling variance (typically standard
errors or confidence intervals). Specifically, I used keywords (e.g., ‘survival’ and
species or genus name) at www.scopus.com, and restricted the search to articles
published in 2000 or later. By focusing on only recent articles, I anticipated that the
vast majority of papers would use modern modeling methods, which give less biased
estimates than precursors (Williams et al. 2002). To further promote confidence
that these selected papers presented largely unbiased estimates of survival, I iden-
tified what specific survival model (e.g., Cormack–Jolly–Seber model vs Burnham
combined model), what method of goodness of fit evaluation, and what software
programs were used in these analyses (Appendix). I only selected papers with
annual estimates for five or more years. If estimates were given in figure form,
I interpolated them to the third decimal point. Annual estimates were typically
derived either from the best approximating model in an analysis or from model
averaging procedures across a set of candidate models (Burnham and Anderson
2002). Also, any lack of fit was usually accounted for by use of a variance inflation
factor, which increased the size of the sampling variance associated with each year’s
estimate.

A total of 62 populations were used in this analysis. Most populations reflected
a combination of adults of both sexes, but a few were sex specific and seven
pairs of populations reflected separate estimates for males and females (Appendix).
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I used a variance decomposition approach outlined by Burnham et al. (1987:260)
and White (2000), which uses an iterative procedure to inversely weight the contri-
bution of individual years relative to the size of each year’s sampling variance.
This approach partitions the total variance into sampling and process variation,
and it is this latter quantity that I then use for testing Pfister’s (1998) predic-
tions. This approach assumes there are no sampling covariances among annual esti-
mates within a given study. Sampling covariances exist for most mark-recapture
based estimates of survival, and likely for most estimates used in this study;
however, sampling covariances are rarely reported. To gauge the consequence of
ignoring sampling covariances when decomposing the total variance, I more closely
examined three species for which sampling covariances were available: roseate
terns (Sterna dougallii; Gould and Nichols 1998), black-capped chickadees (Parus
atricapillus; Gould and Nichols 1998), and emperor geese (Chen canagica, Schmutz
unpublished). Using the variance decomposition approach of Gould and Nichols
(1998), which includes the contribution of sampling covariances, I determined that
for these three studies sampling variances contributed 13–90 times more weight to
the total measured sampling error than did sampling covariances. Thus, omission
of sampling covariances in the variance decomposition approach I used for all the
study populations likely resulted in negligible bias.

I input the mean estimate of annual adult survival into a matrix model, whose
size was dictated by a literature-based estimate of age of breeding. I then input
values for fertility and prebreeding survival to whatever values were necessary to
yield a population growth rate of 
 = 1.0. Although not all study populations were
necessarily stable, population trend was often not known or reported. Further, the
comparability of study populations was enhanced by deriving all projection matrices
to predict stability (
 = 1.0). Because fertility and prebreeding survival have the
same elasticity and both relate to the recruitment process only, the relative magni-
tudes of these two vital rates to one another is immaterial, given the constraints
of age of breeding, adult survival, and stable population growth. From this matrix I
calculated elasticity and sensitivity of adult survival for each population. Aside from
the issue of using total variance versus process variance, another potential hindrance
to examining the predicted relationship between the sensitivity of survival and its
variance is the fact that high survival rates are bounded by 1.0, which may result
in a statistical rather than ecological limitation to its variability. Two methods of
accommodating this issue have been suggested. One is to use a variance stabilizing
formula (Link and Doherty 2002), and the other is to express observed variance
(or CV) as the proportion of theoretically possible variance, which for binomially
distributed survival rates is greatest at 0.5 and least as survival approaches 0 and
1 (Gaillard and Yoccoz 2003; Morris and Doak 2004). I here employed both these
methods, with use of an arcsine transformation for variance stabilization.

Relationships between sensitivity and variance can be equivalently explored with
the proportional sensitivity (elasticity) and the proportional variance (coefficient of
variation), which minimizes issues relating to scaling of vital rates (Pfister 1998).
Although such scaling complications do not exist in this analysis, due to an exclusive
focus on adult survival, I show all results using elasticities and CVs to maximize
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comparability to other studies. Following Pfister (1998) I calculated the expected
variance of population growth as var(
) = (
/S × e)2 × var(S), where e is the elas-
ticity of adult survival rate, S. This quantity is a theoretical expectation of variation
in population growth, given the e and the observed variation in S.

I was concerned that estimates of process variance might be biased high for short
time series of data (Burnham and White 2002; White et al. 2008). Thus, I used a
maximum likelihood generalized linear model to examine whether the SD or CV of
survival was negatively related to the number of years in a time series.

3 Results

Mean annual survival varied among populations from 0.303 for Phylloscopus colly-
bita to 0.950 Rissa tridactyla (Appendix). Estimates of process variance in survival,
expressed as a SD, varied among populations from 0 to 0.213. Across all popula-
tions, mean annual survival and SD of survival were 0.738 and 0.062, respectively.
Years of data in individual time series varied from 5 to 42 years, with a mean of
12. There was little evidence that number of years in the time series affected point
estimates of mean survival, its process variance, or the CV (for all three statis-
tics, r2 < 0.02 and confidence intervals on slope parameters broadly overlapped
zero).

I affirmed Pfister’s (1998) prediction of an inverse relationship between elas-
ticity of survival and its variability. Inverse relationships were found when using
arcsine transformations (slope parameter = -0.905, SE = 0.164, r2 = 0.29, Fig. 2)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.4

0.6

0.8

1

1.2

ArcSine(Observed CV of adult survival)

A
rc

S
in

(E
la

st
ic

ity
 o

f a
du

lt 
su

rv
iv

al
)

BASW (f  )

AMRE

WEBL

GRBISNGO

CANV

CEWA

Fig. 2 Arcsine transformed elasticities of adult survival in relation to the arcsine transformed CV
of adult survival for 62 populations of birds. The seven species with high var(
) (> 0.01) are
explicitly identified, where species codes are AMRE = American redstart, BASW = barn swallow
(females), CANV = Canvasback, CEWA = cerulean warbler, GRBI = great bittern, SNGO = greater
snow goose, and WEBL = western bluebird
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Fig. 3 Elasticities of adult survival in relation to an adjusted CV of adult survival, where the
adjusted CV represents the observed CV divided by the theoretically maximum possible value of
CV for that mean survival rate. The seven species with high var(
) (> 0.01) are explicitly identified,
where species codes are AMRE = American redstart, BASW = barn swallow (females), CANV =
Canvasback, CEWA = cerulean warbler, GRBI = great bittern, SNGO = greater snow goose, and
WEBL = western bluebird

and when using a CV adjusted by the maximum potential CV (slope parameter =
−1.439, SE = 0.272, r 2 = 0.318, Fig. 3). As predicted, the variability in population
growth, var(
), was small (≤0.010) for the vast majority of populations (Fig. 4).
However, for seven populations, var(
) was one to five orders of magnitude higher.
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Fig. 4 Variance in population growth, var(
), in relation to mean survival rate for 62 popula-
tions of birds. The seven species with high var(
) (> 0.01) are explicitly identified, where species
codes are AMRE = American redstart, BASW = barn swallow (females), CANV = Canvasback,
CEWA = cerulean warbler, GRBI = great bittern, SNGO = greater snow goose, and WEBL =
western bluebird
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Although var(
) is a function of multiple quantities (survival rate, its elasticity, and
the variance of survival), these high values in var(
) were principally a function of
comparatively high point estimates of process variance in survival. The species with
var(
) > 0.010 were American redstart, barn swallows (females), western bluebird,
great bittern, cerulean warbler, greater snow goose, and canvasback (Latin names in
Appendix). I then input estimates of process variance for these species into equation
(2), and by projecting over 25 years, obtained an estimate of population reduction
over that time span solely due to stochastic variation in survival. For these species,
these percent population reductions ranged from 13 to 44%.

4 Discussion

The significant population impact of changes in mean survival rates of adult,
iteroparous organisms is widely recognized. Regarding long-lived birds, this impact
has been identified for many taxa (Sæther and Bakke 2000). However, less well
appreciated is the consequence of Tuljapurkar’s (1982) approximations (equations
(1) and (2)), which is that variability in survival rates without changes in mean
values is alone sufficient to reduce population growth rate from that expected in an
invariant environment. This occurs because the asymptotic population growth rate
(equation (1)) is best measured by the geometric, not arithmetic, mean of annual
population change, and temporal variability in annual population growth (caused by
variability in one or more vital rates) reduces the geometric mean (Morris and Doak
2004). For the species exhibiting the most variability in survival rates in Fig. 2−4,
the potential effect on population trend is not trivial. If process variance in survival
of American Redstarts continued for 25 years at the magnitude estimated here, then
its population size is expected to be only 56% of that in an environment with no
stochasticity in survival. A notably similar population statistic is that Partners in
Flight, a North American based organization concerned with the monitoring and
conservation of landbirds such as American redstarts, sets its monitoring goal as
the ability to detect a 50% decline in population size over 25 years (Rich et al.
2004). If one attempted to monitor the population by estimating survival rates (such
as the MAPS program (DeSante et al. 1995)), and used an unbiased point estimate
of survival in a deterministic matrix model to project what population growth was
occurring, one may falsely conclude that the population was stable whereas in reality
it had almost halved. Such a result emphasizes the need to estimate process variances
of demographic parameters and use stochastic methods (Lande et al. 2003; Haridas
and Tuljapurkar 2005) to monitor and model population dynamics.

Based on a foundation of life-history theory that predicted reductions in fitness
due to variability in traits (Lewontin and Cohen 1969; Gillespie 1974; Tuljapurkar
1982), Pfister (1998) developed and tested the important life-history prediction that
natural selection will minimize variability in vital rates (matrix elements) with high
sensitivities. Her prediction has not been widely tested, in part due to statistical diffi-
culties of doing so (Morris and Doak 2004). Nonetheless, recent rigorous analyses
of mammalian (Gaillard and Yoccoz 2003) and alpine plant (Morris and Doak 2004)
populations have supported her prediction. My results here for bird populations
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also support the prediction. However, I think the large amount of residual variation
exhibited in Figs. 2−4 merits some attention, and that it may be fruitful to think
about some residual variation (e.g., populations with var(
) >0.010 in Fig. 4) as
true departures from life history expectations and why that may occur. But before
doing so, I will first consider potential bias in my results.

One concern with my study is that I focused only on adult survival rates and
did not examine patterns of variation in other vital rates (e.g., fecundity). In the
absence of temporal correlation among vital rates (matrix elements), a focus on just
survival is safely unbiased. However, covariation among vital rates can influence
the estimate of how much variation in any one vital rate affects population growth
(Coulson et al. 2005; Doak et al. 2005). If adult survival is negatively correlated with
other matrix elements, then I will likely have overestimated the effect of process
variance in survival on population growth. The converse is true if adult survival
is positively related to other elements. I do not know the correlational structure
among vital rates in these 62 studies. However, despite the predicted and observed
tradeoff between survival and reproduction at the individual level, at the popula-
tion level positive correlations between survival and reproduction are much more
common than negative ones (Clutton-Brock 1988). Positive correlations arise for
two principal reasons. One is that phenotypic variability among individuals is large,
which results in a favored phenotype in a particular environment outperforming less
favored phenotypes in multiple fitness attributes (e.g., both survival and reproduc-
tion) (Clutton-Brock 1988). Second is that changes over time in an environment
tend to similarly affect multiple vital rates; a ‘good year’ may boost both average
survival and average fecundity. An example of these contrasting correlations at the
individual and population level was evident in an experimental study that is one
of the 62 populations shown here − black-legged kittiwakes in Alaska (Golet et al.
2004). Among unmanipulated birds, those that successfully reproduced consistently
had higher survival rates than those that failed to lay eggs. However, individuals
that were on the path to successful reproduction (eggs nearly hatched) but who did
not have to raise young (eggs were removed) survived better than those that raised
young − a negative correlation. What is relevant to my study is what occurred
among the population of unmanipulated individuals, which was clearly a positive
correlation between survival and reproduction (Golet et al. 2004). I do not know if
my estimates of var(
) from these 62 populations are biased. However, given the
greater preponderance of positive than negative correlations among vital rates, if
there is bias then it seems more likely I have underestimated the effects of process
variance in survival on population growth. Thus, my results could be viewed as
conservative.

Now, I reconsider the low r2 values and substantive residual variation evident
in Figs. 2−4. It seems possible that covariates such as taxonomic order, landscape
(e.g., marine, forested, alpine), or clutch size may account for some of this varia-
tion (Gaillard et al. 2005) and the dispersion in data points in Figs. 2 and 3. Such
patterning would still be consistent with life-history theory, but use of such covari-
ates seems inadequate to explain the high values in variance of survival, which then
manifest as high variance in population growth seen in Fig. 4. Unless large process
variances in survival are counter-weighted by negative covariances in reproduction
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(discussed above), then large values of var(
) are predicted to have substantive nega-
tive effects on populations and would be selectively disfavored relative to the many
populations with small var(
). I suggest that large values of var(
) may be indica-
tive of these species encountering environments different from that in which their
current life history evolved. This could occur through a variety of anthropogenic
effects as well as through substantive changes in climate. An obvious example is
greater snow geese (Calvert and Gauthier 2005), where substantial variation in adult
survival during this study was clearly a function of the initiation of spring hunting,
which has been widely viewed as an additive (rather than compensatory) form of
mortality for geese (Johnson and Owen 1992). One would expect that if hunting
were compensatory, it would have only a small effect on population dynamics, and
thus high values of var(
) for hunted species may potentially be a signal of the
additive effects of harvest. Of the ducks studied by Lake et al. (2006), only canvas-
backs had high var(
). In their review of additive and compensatory mortality in
ducks, Nichols et al. (1984) found little evidence for additive mortality, except in
canvasbacks (Nichols and Hines 1983).

Other types of anthropogenic effects may also impact vital rate variability, albeit
less directly. For instance, cerulean warblers have declined in abundance, enough
so that the United States Fish and Wildlife Service considered listing them as a
threatened species (Link and Sauer 2002). The causes of population change are
uncertain but potentially linked to alteration to their wintering habitats in montane
evergreen forests of South America, which have recently undergone substantial
change due to agriculture, principally coffee and coca production (Stotz et al. 1996;
Jones et al. 2004). Many species face significant habitat degradation or loss from
human activities, including western bluebirds (logging, grazing, and fire suppres-
sion; Guinan et al. 2000) and great bittern (filling of breeding wetlands; Puglisi
and Bretagnolle 2005), which are two species with high var(
) in Fig. 4. The
response to and consequence of habitat loss can be conceptualized in light of the
ideal free distribution elucidated by Fretwell and Lucas (1970). As the abundance
of primary habitats declines, birds distribute among remaining primary habitats and
less optimal secondary habitats, with an overall decline in average fitness. In the
context of this paper, fitness decline equates to a reduction in mean survival rate.
Additionally, because of the increased heterogeneity of habitats exploited, the vari-
ability in survival rates among all birds is expected to increase. Thus, changes to the
mean and variance of vital rates can be a demographic consequence of habitat loss.

Greater environmental variability due to changing climate is a concern for many
species. Rainfall patterns appear to impact survival of American redstarts, the
species with the largest var(
) (Fig. 4). Global climate models predict changes in the
variability of precipitation, through changes in both the frequency and magnitude of
precipitation events (Alley et al. 2007). There is much geographic heterogeneity in
global climate models, so the predicted effects on particular species groups must
be contemplated in the appropriate regional context of model outputs. Notably,
Saltz et al. (2006) used regional outputs of a global climate model to demon-
strate how changes in the variance of precipitation (without a change in mean) in
Israel is expected to have a negative affect on dynamics of Asiatic wild ass (Equus
hemionus).
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Female barn swallows exhibited the second largest var(
), although males in this
population exhibited much less variation. This species exhibits strong sexual selec-
tion and the magnitude of that sexual selection is being heightened by the advanced
timing of spring associated with climate change (Spottiswoode et al. 2006; Møller
2007a). Because such climate change is creating more but variable opportunities to
breed within a season for this species (Møller 2007b), this may then cause more vari-
ability in adult survival as females incur the survival costs of variable and increased
reproduction (Golet et al. 2004).

For virtually all species with high var(
) in Fig. 4, there appears to be recent
human-caused perturbations to their habitats or changes in the climate patterns they
experience. I think it is useful to view these species as deviations from life-history
expectation because current conditions have likely deviated from their evolutionary
past, when their particular life history patterns evolved. Of the 62 populations
considered, more than 40% were long-lived marine birds and none of these were
among the seven populations with high var(
). This result suggests that perhaps
more r selected species are more vulnerable to heightened stochasticity. Some
degree of environmental variability can be accommodated by species through
phenotypic plasticity, which likely explains, for instance, the different balance
of survival and fecundity rates among black-legged kittiwakes in Atlantic versus
Pacific ocean habitats (Coulson 2002; Frederiksen et al. 2005). Additionally,
some adaptation (genetic change through natural selection) has been noted in
correspondence to changing season lengths for temperate breeding species (Nussey
et al. 2005). However, the magnitude of environmental change is likely too large
and rapid for species to adapt fast enough (Bradshaw and Holzapfel 2006; Holland
et al. 2006; Alley et al. 2007). The predictions are for an increasingly stochastic
world, which reduces population viability, even in the absence of changes in mean
vital rates (Boyce et al. 2006). Such environmental change creates a significant
conservation challenge.
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Appendix: Populations Used for Meta-Analysis of Adult Survival
Rates

I located data-sets by searching specific keywords at www.scopus.com, limiting the
search to articles printed since 2000, and requiring at least 5 years of annual survival
estimates of adult birds, along with annual estimates of the square root of sampling
variance. Entries are sorted by mean survival rate.
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Filling a Void: Abundance Estimation of North
American Populations of Arctic Geese Using
Hunter Recoveries

Ray T. Alisauskas, Kiel L. Drake, and James D. Nichols

Abstract We consider use of recoveries of marked birds harvested by hunters, in
conjunction with continental harvest estimates, for drawing inferences about conti-
nental abundance of a select number of goose species. We review assumptions of this
method, a version of the Lincoln–Petersen approach, and consider its utility as a tool
for making decisions about harvest management in comparison to current sources
of information. Finally, we compare such estimates with existing count data, photo-
graphic estimates, or other abundance estimates. In most cases, Lincoln estimates
are far higher than abundances assumed or perhaps accepted by many waterfowl
biologists and managers. Nevertheless, depending on the geographic scope of infer-
ence, we suggest that this approach for abundance estimation of arctic geese may
have usefulness for retrospective purposes or to assist with harvest management
decisions for some species. Lincoln’s estimates may be as close or closer to truth
than count, index, or photo data, and can be used with marking efforts currently
in place for estimation of survival and harvest rates. Although there are bias issues
associated with estimates of both harvest and harvest rate, some of the latter can
be addressed with proper allocation of marks to spatially structured populations if
subpopulations show heterogeneity in harvest rates.

1 Introduction

While estimation of population growth rate provides a useful metric of popula-
tion health, abundance estimation remains of fundamental importance to animal
conservation, particularly for exploited populations, or for those which face risk
from other factors (e.g., habitat loss) unrelated to direct exploitation. For example,
low abundance remains relevant to the status of a population, even if it shows a
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high rate of population growth. In some cases, high densities of certain animal
populations could pose conservation problems for other reasons, regardless of popu-
lation trajectory. In the case of animal populations exploited directly by humans,
such as through hunting, informed decisions about harvest management should be
underpinned minimally by knowledge about abundance of animals and hunters,
population trajectory, survival probability and harvest, and how such direct exploita-
tion might influence survival and thus population growth.

There may be few if any reliable annual estimates of continental populations of
geese that nest in arctic North America. Most information about annual variation
in abundance is based on counts conducted by observers in aircraft that visually
estimate the number of geese within flocks. In some cases, flocks contain hundreds
of thousands of geese; moreover, counts are conducted in a few seconds without
photographic or video aids, without a sampling design or without notions about
what fraction of the population is counted (or sampled when sampling designs
exist). Such visual estimates have long been known typically to underestimate true
numbers, and the bias is more severe with larger groups of birds (Spinner 1949;
Ely et al. 1993; Boyd 2000). Direct counts based on such visual estimates are also
the method used for annual midwinter counts of waterfowl, often referred to as
“the midwinter index”. As well, estimates of some species are made irregularly
in the arctic using aerial photography of breeding colonies (Kerbes et al. 2006),
when colonial species are relatively clumped and sedentary. However, assumptions
about complete enumeration (i.e., detection) of colonies, the number of unsampled
nonbreeders, and detection of geese from photographic images have not been rigor-
ously tested. False assumptions about these issues lead to incorrect inferences, prob-
ably with continental abundance estimates biased low. The extent of this bias for a
continental population is related to the magnitude of nondetection, which remains
unknown with methods normally used.

We consider the usefulness of Lincoln’s (1930) approach, as originally proposed
for population estimation of North American ducks, for annual estimation of popu-
lation size and possibly derived metrics of population change for 4 recognized
populations of arctic-nesting geese. We focus on (1) greater snow geese (Chen
caerulescens atlanticus), (2) midcontinent lesser snow geese (C. c. caerulescens),
(3) Ross’s geese (C. rossii), and (4) midcontinent white-fronted geese (Anser
albifrons frontalis). While all four breed in remote regions, two of these (2 and
4) have relatively widespread breeding distributions, both characteristics which
impede enumeration. Populations 1, 2, and 3 are colonial so that breeding concen-
trations are clumped, and two of these (1 and 3) have relatively restricted breeding
ranges. Broad geographic breeding distributions and dispersed nesting, charac-
teristic of white-fronted geese, provide a virtually insurmountable challenge to
complete annual coverage using, e.g., appropriate aerial survey methods either with
helicopter or fixed-winged aircraft and a design using either strip or line tran-
sects.

We review existing sources of abundance information to illustrate the void, and
then review assumptions behind Lincoln’s estimator for population size. Finally, we
apply information from band recovery data and harvest estimates for estimation of
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continental abundance for these four example populations, in comparison to existing
sources of abundance information.

2 Background

2.1 Pertinent Aspects of Life History of Arctic-Nesting Geese

Most species of geese are highly social, and remain in gregarious concentrations
throughout the annual cycle (Owen 1980). During most of the year, geese are also
highly mobile, especially during spring and fall migration, but also throughout
winter. However, after arrival on their breeding ranges in May or June, arctic-
nesting geese become relatively sedentary near nest territories, although they are
still capable of flight. Although precise timing depends on latitude, geese undergo
an annual molt of flight feathers resulting in flightlessness from July until some time
in August. Geese that do not attempt to nest, or that experience nest failure, undergo
wing molt before those that successfully hatch nests. Portions of some popula-
tions undertake a molt migration to areas outside of the normal breeding range
(Salomonson 1968; Abraham et al. 1999), whereas successfully breeding adults
are confined to brood-rearing areas limited to distances that flightless goslings can
either swim or walk. Nevertheless, during this period of flightlessness after nesting,
large numbers of arctic-nesting geese (both breeders and nonbreeders) are gener-
ally found in habitats that offer abundant graminoid vegetation, in association with
relatively large (> 1 ha) water bodies that provide escape from terrestrial predators.
Although flightless, most species of arctic-nesting geese remain highly gregarious.
These qualities render the flightless period during the arctic summer as the most
efficient time of year to capture and mark large numbers of arctic-nesting geese.
Although some situations permit researchers to capture reasonably large numbers
of flightless geese on foot (e.g. Sedinger et al. 1995), use of helicopters (Timm and
Bromley 1976) increases accessibility to large areas permitting mass capture while
allowing far greater flexibility in stratification and allocation of marking effort over
larger geographic areas.

Consequently, many arctic-nesting geese have been marked in the arctic most
recently (Fig. 1). Unlike prairie-nesting ducks, most recoveries of arctic-nesting
geese occur far to the south of where they are marked. Whereas most marking of
these geese occurs before mid-August, they are generally not harvested by hunters
until mid-September in Canada, and most are killed later and farther south in the
U.S. (e.g. Alisauskas et al. 2006).

2.2 Lincoln’s (1930) Estimator

The estimation approach dates back to Lincoln’s (1930:2) reasoning behind the
use of marked ducks for estimation of continental population size. He postulated
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Fig. 1 Locations where adults from arctic goose populations of interest were marked during
June to August (1989 – 2004) in Canada’s central and eastern arctic (filled circles), in relation to
distributions of recoveries by hunters. Recovery distribution is represented as density of recoveries
per 1000 km2. Note geographic separation of first sample (during marking) from second samples
(during hunting seasons). Only recoveries from Canada or U.S. are used for subsequent Lincoln
estimates of population size

Given a fairly accurate statement showing the number of wild ducks killed in North America
in any one season, then the total number of ducks present on the continent for that season
may be estimated by a percentage computation, based upon the relation that the total number
of banded ducks killed during their first season as band carriers bears to the total number
banded.
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The estimator of population size, N, is simply

N̂i = Ĥi

ĥi
(1)

where Ĥi is an estimate of harvest for year i, and ĥi is the estimated probability that a
bird alive at the time of banding in year i is harvested in year i. It may be convenient
to think of Ĥi as analogous to a count statistic, with ĥi functioning as a kind of
detection probability, as structured in a general canonical estimator of abundance
(Williams et al. 2002:244). For example, the Lincoln–Petersen capture–recapture
estimator of abundance for closed populations can be written as:

N̂ = n2

p̂2
(2)

where n2 is the number of animals captured in the second of two sampling occasions,
and p̂2 = m2/n1 or the ratio of recaptures to animals marked in the first sample.

One difference between the harvest and capture–recapture contexts is that the
number of animals captured in the second sample is known in the capture–recapture
context, whereas in the harvest context, the total number of birds harvested must
be estimated. Harvest of each waterfowl species and its associated variance are
estimated annually for each province in Canada (Sen 1971). These estimates are
reported at the online source of the Canadian Wildlife Service (CWS) National
Harvest Database (http://www.cws-scf.ec.gc.ca/harvest/default e.cfm) for Canadian
harvest. U.S. harvest estimates, as desribed by Sen (1971) and Geissler (1990) are
also available (Kruse and Sharp 2002; Kruse 2006). Associated sampling variance
estimates are not readily available for U.S. harvest data, although methods exist
for its computation (Geissler 1990). Otis (2006) assumed CVĤi

= 0.05 for annual
harvest of mollards (Anas platyrhynchos), as estimated by Geissler (1990).

A second difference between the harvest and capture–recapture contexts is that
both the initial number of animals marked, n1, and the number of recaptures, m2,
are known in the capture–recapture context. In the harvest context, the number of
birds banded is known, but the number of banded birds harvested must be esti-
mated. Incomplete reporting of recovered bands has long been recognized, leading
to interest in band reporting rate, ρi , defined as the probability that a banded bird
that is harvested (shot and retrieved) in year i is reported (band number conveyed
to the Canadian or U.S. Bird Banding Laboratories). In the absence of any special
incentives or solicitation to induce complete reporting of recovered bands, we are
left with recovery rate, fi , defined as the probability that a banded bird alive when
a given cohort is banded will be shot and its band reported during the next hunting
season (Brownie et al. 1985), where

f̂i = ĥi ρ̂i . (3)

Note also that incomplete reporting probability of marked animals during the
exploitation process means that there is a detection probability associated with
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estimation of ĥ, itself a detection probability applied to Ĥi (Eq. 1). Otis (2006)
noted that there are technical concerns about the statistical performance of ratio
estimators, in general, that are related to imprecision associated with the estimated
denominator. Thus, there are several characteristics inherent in Lincoln’s estimator
that may render it ill-behaved statistically.

2.3 Previous Application of Lincoln’s Estimator
to Waterfowl Populations

There are numerous examples of the use of banding data in conjunction with annual
harvest statistics for exploited waterfowl populations specifically, but there has been
no integration of the method into annual decisions about harvest management, to our
knowledge. For example, Bowers and Martin (1975) used this approach with wood
ducks (Aix sponsa), which are difficult to enumerate during breeding because they
are widely distributed at low densities, and are difficult to detect because of their
habitat preference for forested wetlands.

Boyd (1976) used Lincoln’s index for estimating numbers of arctic-nesting geese.
His focus was what he referred to as the Hudson Bay population of lesser snow
geese, also known as the midcontinent population of lesser snow geese in refer-
ence to their winter quarters. Most recently, Otis (2006) compared the similarity
of Lincoln estimates of mallard abundance to independent estimates of breeding
population (BPOP) size. BPOP is obtained from the Waterfowl Breeding Popula-
tion and Habitat Survey conducted annually by the U.S. Fish and Wildlife Service
and the Canadian Wildlife Service in cooperation with other state and provincial
resource management agencies. Estimation of BPOP is based on an extensive aerial
survey with associated ground-based work designed to estimate the fraction of ducks
detected from the air. The outcome of Otis’s evaluation was a remarkably good
consistency between the two methods of estimation that resulted in similar time-
series profiles, although the Lincoln estimates were consistently higher than BPOP
estimates, sometimes by a factor of ∼2. Otis also estimated the coefficient of varia-
tion of N̂i , ĈV (N̂i ), as well as the average instantaneous rate of population growth,
r̂, and its estimated variance, v̂ar(r̂), using annual Lincoln estimates and associated
measures of variation. Otis (2006) further advocated derivation of metrics of popu-
lation change from estimation of mourning dove population size using Lincoln’s
method for making decisions about harvest regulations.

2.4 Assumptions Behind the Method

Although Eq. 1 is simple and straightforward, a number of assumptions must be
satisfied before N̂ can be viewed as a suitable estimator for N (e.g., Seber 1982:59;
Williams et al. 2002:291). Here, we consider assumptions in the context of the
geographic range of the species of arctic geese that we are interested in:



Goose Population Estimation 469

(a) The population is closed so that N is constant. The Lincoln estimator has
been shown to be robust to some forms of deviation from the closure assumption
(e.g., Seber 1982; Williams et al. 2002). In particular, we expect mortality to occur
between the time of banding and the time of harvest, so that the population is open to
losses. Robson (1969) showed that if mortality occurs between the first and second
samples in a 2-sample capture–recapture study, and if this mortality applies equally
to marked and unmarked animals, then the Lincoln estimator provides an approxi-
mately unbiased estimate of abundance at the time of the first sample. Thus, there
can be no mortality resulting as a direct consequence either of mark presence, or of
handling. Although there is ample evidence for increased mortality in geese each
marked with a neckband and a legband, compared to those only with a legband
(Alisauskas and Lindberg 2002; Alisauskas et al. 2006; but see Gauthier et al. 2001),
the generally accepted assumption is that survival probability of birds marked with
only a legband is identical to that of unmarked birds. Another way in which this
assumption can be violated involves nonrepresentative banding in which animals
that are marked experience higher or lower mortality between first and second
samples than animals marked elsewhere (see below), resulting from a handling bias
(Sedinger et al. 1997). Gains to the population between the first and second samples
are not expected to occur because of the discrete seasonality of arctic goose breeding
and the timing of the banding period. We view Lincoln estimates of abundance as
pertaining to the time of banding in late summer.

(b) Probabilities of animals appearing in a sample may differ between the first
and second sampling periods, but should be equal for animals within each period.
This assumption is very likely to be violated in harvest applications for arctic-
nesting geese and is the one on which we focus. Banded samples do not repre-
sent randomly selected birds from throughout the breeding range, thus providing
the potential for different probabilities of harvest for banded and unbanded birds.
Heterogeneous capture probabilities with Lincoln estimates are known to produce
negatively biased abundance estimates (e.g., Seber 1982; Williams et al. 2002).
However, this inference only applies to a specific kind of heterogeneity in which
probabilities of a bird appearing in the first and second sample are correlated within
individuals (e.g., birds with low probability of being banded also have a low prob-
ability of being harvested). In fact, heterogeneity among individuals in the case of
independence between the first and second samples yields approximately unbiased
estimates (e.g., Robson 1969; Seber 1982). The sampling reality of our application
is that we may be banding subpopulations of breeding geese in a manner that is
not proportional to their abundance. Thus we get variation across space in proba-
bilities of birds appearing in the first sample. If these birds from different subpop-
ulations then show different probabilities of appearing in the second sample (i.e.,
different harvest rates), then we expect biased estimates of abundance with the bias
depending on the relationship between the probabilities of appearing in the first and
second samples.

(c) Animals do not lose their marks in the time between the two samples and
all marks are reported on recovery in the second sample. Legband loss between
summer banding and the subsequent hunting season is likely to be negligible, so
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we do not consider this as a potential problem. It has long been known that hunters
do not report all birds that they harvest. As noted in Eq. 3, band recovery rate,
f̂ , estimated directly from banding data, must be adjusted by band reporting rate,
ρ̂, to compute ĥ. Band reporting rate can be estimated from reward band studies
whereby hunters are induced to report bands from harvested birds with high prob-
ability (hopefully approaching 1) by rewarding them with monetary compensation
(Henny and Burnham 1976; Nichols et al. 1991; Nichols et al. 1995; Royle and
Garrettson 2005). Such studies have been designed to estimate ρ̂ for bands that carry
no reward. Until recently (2003–2005), there have been no reward band studies
to estimate reporting rates for arctic-nesting geese, as most attention has instead
focused on ducks, and specifically on mallards. Thus, we considered using reporting
rate estimates for mallard ducks to adjust arctic goose recovery rates. Geographic
variation in band reporting rates (Nichols et al. 1995) is a function of many unknown
aspects of human dimensions driving hunter behaviour and can be problematic for
application to continental estimates of harvest rate when derived in an ad hoc fashion
using f̂ /ρ̂. However, most recoveries of arctic-nesting geese of interest to us in
this paper occur in areas of the midcontinent (i.e., prairie Canada, and the Missis-
sippi and Central Flyways, Fig. 1) where hunters also recover most mallards. It is
possible that differences exist in the probability that duck and goose hunters report
bands, but we reasoned that such differences are minimized when such hunters are
from the same geographic area. In addition, many hunters harvest both ducks and
geese, so we suspect that they report bands from both. In the absence of direct
estimates of harvest rate for geese, estimates of band reporting rate from mallard
studies should be reasonable for our purposes. Specific hypotheses about differences
in band reporting rates between mallards and different goose species are currently
being tested with reward bands that have been applied on different species and popu-
lations of arctic-nesting geese during 2003–2005 (Zimmerman et al., USFWS, pers.
comm.). Future estimates of goose abundance based on the Lincoln estimator can
benefit from use of these population-specific reporting rate estimates.

Historically, point estimates of ρ̂ have differed over time and across species (see
review in Conroy and Blandin (1984) and subsequent work of Nichols et al. (1995)
and Royle and Garrettson (2005)). However, when considered with respect to stan-
dard errors associated with estimation, there is little evidence of substantial variation
in reporting rate before 1995. In 1995, a new band type was instituted with a toll-
free telephone number stamped on the band in addition to the mailing address. The
toll-free number has increased band reporting rate substantially (James Dubovsky,
USFWS, pers. comm.; Royle and Garrettson 2005), requiring separate treatment of
bands with and without the toll-free stamp.

(d) Geographic area of band recoveries corresponds to geographic area of
harvest estimates. Although the inference about population size pertains to the
number alive at the time of marking, the geographic range of recoveries used for
estimating ĥi must match that for which Ĥi is estimated. Ideally, this should capture
the full geographic range of distribution during the second sampling period (harvest)
for the population of interest. If so, then annual direct recovery rate is maximized
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leading to improved precision in estimation of ĥi . For example, estimation of N̂i

can be done with recoveries from Canada to estimate Canadian ĥi , so long as
only Canadian Ĥi is used. However, even if all other assumptions about absence
of heterogeneity in ĥi are satisfied to reduce bias, precision would be reduced.

2.5 Heterogeneity as a Source of Bias in the Lincoln Estimator

We considered the sampling process as it applies to arctic-nesting geese (i.e., initial
captures during summer, and dead recoveries during the subsequent hunting season)
and evaluated the potential for sampling heterogeneity to cause bias, E(N̂ − N ),
in Lincoln estimates, N̂ , of population size, N. Specifically, we address variation
in harvest rate among subpopulations, for cases where constituent subpopulations
are sampled disproportionately to their abundance. We imagined a simple system
where a superpopulation of size N is composed of only two subpopulations, N1 and
N2, with respective harvest probabilities, h1 and h2. We define the binomial mixing
parameter, �N, as the probability that a goose from a superpopulation of size N
is a member of subpopulation 1, such that E(N1) = NπN and E(N2) = N(1 – πN).
Finally, from a marked sample of size b, a proportion πb is from N1 (such that
expected number marked from subpopulation 1 is bπb) and the complement from
N2 [expected number marked from subpopulation 2 is b(1 – πb)].

We investigated behavior of Lincoln’s N̂ using the following expectations for
estimators of harvest and harvest rate:

E(Ĥ ) = N [πN h1 + (1 − πN )h2] (4)

E(ĥ) ≈ b[πbh1 + (1 − πb)h2]

b
= πbh1 + (1 − πb)h2. (5)

Thus, we approximated the expectation of the abundance estimator as:

E(N̂ ) = E

[
Ĥ

ĥ

]
≈ N [πN h1 + (1 − πN )h2]

πbh1 + (1 − πb)h2
. (6)

Equation 6 shows that if members from the two subpopulations are marked in a
representative fashion, i.e., in proportion to their abundance in the population such
that πb = πN, then N̂ should be approximately unbiased, regardless of heterogeneity
in h. As well, if marking is nonrepresentative of subpopulation composition, then
N̂ still remains unbiased, so long as there is no heterogeneity in h. However, if
subpopulations are marked nonrepresentatively, and respective harvest rates differ,
then abundance estimates can be biased; magnitude and direction of bias depends
on differences between πb and πN, and between h1 and h2.

We examined bias further as a function of these differences. We first specified N
and πN, πN ≥ 0.5. In each exercise, we held h2 constant at 0.05, and then varied
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Fig. 2 Bias, E (
(
N̂ − N

)
), in Lincoln estimates, N̂i (as derived from estimates of harvest, Ĥi , and

harvest rate, ĥi ) for a hypothetical population of size N = 5 million in which relative abundance of
subpopulations, N1: N2, was 9:1 in Fig. 2a, and 1:1 in Fig. 2b. Bias is in relation to ratio of marks,
πb (labels beside curves), applied to respective subpopulations, and degree of heterogeneity in
harvest rates between subpopulations (h1i = 0.005 to 0.25, and h2i = 0.05, respectively). Magnitude
and direction of bias depend on differences between proportion of all geese in subpopulation 1,
πN, and proportion of all marks in subpopulation 1, πb
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h1 between 0.005–0.25. We fixed the total number in the banded sample, and then
specified a range of πb. Thus, we explored the bias as a function of differences
between πb and πN and between h1 and h2.

In the situation where the true subpopulation ratio is 9:1 (πN = 0.9), if the smaller
subpopulation (N2) is over-represented in the banded sample (πb < 0.9), and N2 has
a lower harvest rate (i.e., h2 < h1), then N̂ is biased high. If N2 is over-represented
in the banded sample, and N2 has a greater harvest rate (i.e., h2 > h1), then N̂ is
biased low. Alternatively, if the larger subpopulation (N1) is over-represented in the
banded sample, and h1 > h2, then N̂ is biased low. If N1 is over-represented in the
banded sample, and h1 < h2, then N̂ is biased high (Fig. 2a).

In the situation where the true subpopulation ratio is 1:1 (πN = 0.5), then N̂ is
biased low if the banded sample over-represents the subpopulation with a greater
harvest rate. On the other hand, if the banded sample under-represents the subpop-
ulation with the greater harvest rate, then N̂ is biased high (Fig. 2b). In summary,
if the harvest rate estimate is expected to be smaller than true harvest rate, then N̂
should be positively biased. If the harvest rate estimate is expected to be larger than
true harvest rate, then N̂ should be negatively biased.

It is possible to deal with bias arising from unrepresentative marking, if there is
knowledge about the true proportional abundances of the subpopulations, π̂N . In an
example with 2 subpopulations, each with different, ĥi , an appropriately weighted
estimate of the superpopulation ĥcorr

i is given by

ĥcorr
i = π̂N ĥ1,i + (1 − π̂N ) ĥ2,i . (7)

This approach (Eq. 7) corresponds to the practice of “weighting” either band
recovery data, or estimates computed from them, by relative population size for the
purpose of estimating age ratio, and both distribution and derivation of the harvest
(e.g., Munro and Kimball 1982; Nichols and Tomlinson 1993).

3 Methods

3.1 Harvest Rate

We first computed numbers of lesser and greater snow geese marked annually with
standard USFWS/CWS metal legbands, by selecting only instances that occurred
east of 110◦ W longitude and north of 53◦ N latitude during June, July or August
from 1989 to 2004. We restricted the geographic range of Ross’s goose marking
to the Queen Maud Gulf region, where most Ross’s geese breed (Ryder and
Alisauskas 1995) although winter and breeding range of this species is expanding
(Alisauskas et al. 2006). Also, we used information about adult white-fronted geese
with legbands only marked north of 60◦ N latitude in Canada. Thus, all geese with
neckbands, reward bands, or control bands used in conjunction with reward bands
were excluded from analysis to avoid potential bias. For example, Alisauskas et al.



474 R.T. Alisauskas et al.

(2006) found that recovery probability of adult Ross’s geese marked with neckbands
was 1.75 times that of adults marked only with standard metal legbands. Most geese
were marked with such standard metal legbands in August, or secondarily in July.
We then computed numbers of direct recoveries (i.e., only during the hunting season
subsequent to marking) from this sample of marked geese and estimated probability
of direct recovery with associated binomial variance (Fig. 3).

We adjusted annual recovery rates, f̂i , by band reporting rate, ρ̂i , to estimate
harvest rate, ĥi (Fig. 3). We used estimates of band reporting rate from reward
bands applied to mallards during 1989–2002. These estimates were 0.38 ± 0.02
SE for 1989–1993 (Nichols et al. 1995), 0.514 ± 0.077 for 1994, 0.498 ± 0.094 for
1995, 0.491 ± 0.069 for 1996, 0.620 ± 0.089 for toll-free bands for 1997, 0.805
± 0.033 for 1998–2001 (James Dubovsky, USFWS, pers. comm.), and 0.719 ±
0.034 for 2002 (Royle and Garrettson 2005). In the preceding, a year, i, corresponds
to the hunting season beginning in fall of year i and ending in winter of calendar
year i + 1. As well, reward bands were applied to various species of arctic-nesting
geese (greater and lesser snow geese, Ross’s geese, but not white-fronted geese)
that are the focus of this paper from 2003 to 2005. Thus for 2003 and 2004, we used
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Fig. 3 Time series of recovery probability, f̂i , of geese marked only with legbands and reported as
retrieved by hunters during the subsequent hunting season (i.e., direct recovery rate open circles);
also shown is probability of harvest, ĥi (closed circles), estimated as the ratio of annual recovery
probability to band reporting rate (see text). Only recoveries from Canada and the U.S. are used to
correspond with availability of harvest estimates, Ĥi , from those countries
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ρ̂i = 0.730 ± 0.028 as a preliminary estimate for all species (Zimmerman et al. pers.
comm.). This estimate seems reasonable for use with white-fronted geese because,
as with lesser snow geese, most harvest of midcontinent white-fronted geese (Fig. 1)
is largely sympatric with mallard harvest. Variance of ĥi was estimated for year i
using the delta method as:

V âr
(
ĥi
) ≈ ˆvar

(
f̂i
)

ρ̂2
i

+ f̂ 2
i . ˆvar (ρ̂i )

ρ̂4
i

. (8)

3.2 Harvest

We used estimates of harvest in Canada during autumn (i.e. during regular seasons,
R̂i jk , where i denotes year, j denotes population, and k is jurisdiction) available from
the CWS National Harvest Database; specifically, we selected (a) greater snow geese
from Quebec, (b) lesser snow geese from Saskatchewan and Manitoba, (c) Ross’s
geese from Alberta, Saskatchewan and Manitoba, and (d) white-fronted geese from
Alberta and Saskatchewan. These correspond largely to the geographic range of
band recoveries in Canada for each species (Fig. 1). Harvest estimates of respective
populations during autumn and winter regular seasons in pertinent regions of the
U.S. were taken from Kruse and Sharp (2002) for 1989–1998 and from Kruse
(2006) for 1999–2004. Annual estimates of U.S. harvest included (a) [greater]
snow geese from the Atlantic Flyway (b) [lesser] snow geese from the Central and
Mississippi Flyways, (c) Ross’s geese from the Pacific, Central and Mississippi
Flyways, and (d) white-fronted geese from the Central and Mississippi Flyways.

To illustrate the approach, we focus on estimation of adult population size,
although we note that population size of juvenile geese could similarly be estimated,
and simply added to adult estimates for a total continental population size at the
time of marking in August. The proportion of adults, gijk, harvested in year i was
calculated for each population j and jurisdiction k, noted above, as:

ĝi jk = 1 −
[

âi jk

1 + âi jk

]
(9)

where âi jk is the ratio of juveniles (<1 year old) to adults (>1 year old) harvested
(http://www.cws-scf.ec.gc.ca/harvest/default e.cfm, Kruse and Sharp (2002) and
Kruse (2006)). Thus, adult harvest during regular seasons is R̂adult

i jk = ˆgi jk ·R̂i jk and,
summing over z jurisdictions, results in regular-season harvest of adults for year i
from population j, or

R̂adult
i j =

z∑
k=1

R̂i jk (10)

There have been large and unprecedented changes in the duration of hunting
seasons for greater and lesser snow geese, and Ross’s geese (e.g. Moser 2001; Reed
and Calvert 2006), in attempts to reduce population size (Batt 1997). Beginning
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in spring 1999, regulations in Canada and the U.S. allowed harvest during regular
seasons, R, to be supplemented with additional harvest, C known as spring harvest
in parts of Canada or conservation order harvest in the U.S. Thus, annual harvest,
Hijk in year i of species j in jurisdiction k should be estimated from

Ĥi jk = R̂i jk + Ĉi jk (11)

Harvest of Ross’s geese during spring is not permitted in Canada (Alisauskas
et al. 2006), but estimates of spring harvest of lesser and greater snow geese sepa-
rately, Ĉi jk , are made by CWS (Michel Gendron, CWS Ottawa). However, species-
specific estimates of conservation order harvest, Ĉi jk , are not available from the
U.S. because their survey design does not distinguish between Ross’s and lesser
snow geese, nor between age classes (Paul Padding, USFWS). Instead, Alisauskas
et al. (2006) estimated Ĉi for Ross’s Geese by weighting regular reason harvest by
the ratio of band recoveries from conservation order seasons, ci, to those recovered
during regular seasons, ri. Namely, we expect that

Ci

Ri
= ciρ

−1
ci

riρ
−1
ri

. (12)

If band reporting rates during regular and conservation order seasons are not
different, then Eq. 12 can be rearranged so that

Ĉi = ci

ri
R̂i . (13)

Consequently, we estimated adult harvest in years 1999–2004 for each species of
Ross’s and snow geese as:

Ĥ adult
i j = R̂adult

i j + Ĉadult
i j . (14)

Because recovery rate data are used to estimate Ĥ in this case, the estimates of
Ĥ and ĥ are no longer independent and will have some covariance; we assumed that
this was negligible for the purposes of this paper.

3.3 Population Size

We used Eq. 1 to estimate N̂i . We took two approaches toward estimation of N̂i :
the first was to use Ĥi j and ĥi j from the geographic area in both Canada and the
U.S. in which each species is normally harvested (i.e., Mexico excluded because
of absence of harvest estimates); the second approach was to restrict estimation to
use of only Canadian Ĥi j and ĥi j because of consistency in design and approach
to harvest estimation during 1989–2004, compared to harvest estimation in the
U.S. which changed sampling frames in 1999. It was expected that the cost of
restriction to Canadian ĥi j would be reduced precision because of the generally low
proportion of total continental recoveries that occur in Canada for each of these
species (Alisauskas et al. 2006).
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The delta method can be used to estimate variance of N̂i as:

v̂ar
(
N̂i
) ≈ v̂ar

(
Ĥi
)

ĥ2
i

+ Ĥ 2
i v̂ar

(
ĥi
)

ĥ4
i

(15)

where v̂ar
(
Ĥi
)

is based on an assumed ĈV Ĥi
= 0.05 (Geissler 1990; Otis 2006).

Similarly, Otis (2006) used the delta method to estimate the coefficient of varia-
tion ĈV N̂i

of N̂i

ĈV N̂i
=
√

ĈV
2
Ĥi

+ ĈV
2
ĥi
. (16)

4 Results

4.1 Harvest Probability

Figure 3 shows annual harvest rate for each species based on recoveries of adult
geese, marked only with standard metal legbands, from Canada and the U.S. There
were 365 direct recoveries of 11,209 greater snow geese marked from 1990 to 2002,
from a marking effort mostly localized near Bylot Island (Fig. 1). Lesser snow geese
were marked over a much wider geographic range (Fig. 1) reflecting occurrence of
large known breeding concentrations; from 1989 to 2004, there were 1,178 direct
recoveries from a sample of 49,867 adults. We used 10,213 adult Ross’s geese
marked with legbands near the Queen Maud Gulf only from 1989 to 2004 (Fig. 1)
of which 191 were direct recoveries. Finally, of 21,997 adult white-fronted geese
marked with only legbands in Canada north of 60 degrees N latitude, there were 767
direct recoveries from Canada and the U.S. (Table 1).

In general, precision of estimates improved more recently with larger numbers
of adult geese of each species marked annually with only legbands. The exception
was that there were insufficient adult greater snow geese marked with only legbands
in 2003 and 2004 (n = 12) to permit estimation of annual recovery probabilities. As
well, there were only 36 and 3 Ross’s geese so marked in 1993 and 1996, with no
direct recoveries reported. Over the period of study, greater snow geese showed the
highest average (± 1 SE) annual harvest probabilities (0.061 ± 0.024), followed by
white-fronted geese (0.051 ± 0.014), lesser snow geese (0.030 ± 0.009), and Ross’s
geese (0.028 ± 0.012).

We further checked to see if there existed heterogeneity in ĥi for lesser snow
geese. From 1998 to 2004, most lesser snow geese marked with legbands only
were captured either at Queen Maud Gulf in Canada’s central arctic (representing
a northern breeding area, b =10,189) or from three areas south of Hudson Bay
(La Pérouse Bay, Cape Henrietta Maria, or Akimiski Island representing southern
breeding areas, b =28,411). The proportion of banded snow geese that were from
northern breeding areas, �b, each year ranged from 0.13 to 0.55 (Table 2). There was
annual variation in ĥi for each of the two subpopulations, and harvest probability
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ĥ i
C

or
re

ct
ed

h̃ i
N

aı̈
ve

(b
ia

se
d)

N̂
i

B
ia

s-
co

rr
ec

te
d

Ñ
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tended to be higher for lesser snow geese that were marked in areas south of Hudson
Bay, compared to those marked north of Hudson Bay.

4.2 Harvest

Harvest from all 4 populations showed increases starting during the early 1990s,
followed in most cases by declines in the 2000s (Table 1). As well, harvest of
midcontinent lesser snow geese, greater snow geese and Ross’s Geese all appeared
to increase further after initiation of conservation order or spring seasons in 1998.
Approximate 95% CL of slope estimates from linear time models of annual harvest
suggested an average annual increase of 5,560 ± 2,818 greater snow geese/year,
6,005 ± 10,213 lesser snow geese/year, 4,379 ± 1,121 Ross’s geese/year, and 5,844
± 4,269 white-fronted geese/year, over the period considered.

4.3 Lincoln Estimates

In general, Lincoln’s estimates were considerably and consistently higher than other
count-based estimates such as spring counts of adult greater snow geese in Quebec,
and fall counts of adult and young white-fronted geese in Saskatchewan (Fig. 4).
Such counts are often treated as complete inventories of species. In these two exam-
ples, there was a discrepancy that may have arisen from (1) bias in the Lincoln
estimates, (2) biased inferences about abundances from the counts, or (3) biased
inferences from both approaches.

Despite large differences between the Lincoln estimates and other estimates or
counts, there was rather good parallelism in time series. Correlations were very
high for greater snow geese and Ross’s geese, which also have the most restricted
breeding ranges of the four examples (Fig. 5). There are no annual indices of abun-
dance other than the midwinter count for lesser snow geese, which was weakly
related to Lincoln’s estimates (r = 0.398). Lincoln estimates of adult white-fronted
geese, when based on both Canadian and U.S. recoveries and harvest estimates, were
also weakly correlated with fall counts of this species (r = 0.448), which include
both adults and young of the year. However, when estimation of adult white-fronted
geese was based on information restricted to band recoveries and harvest estimates
from Canada only, the relationship was much more certain (r = 0.780), although
Lincoln estimates were even greater for unknown reasons.

Based on this approach, estimates of greater snow geese and Ross’s geese had
low precision because of comparatively low numbers marked (Table 1), and because
of low harvest rates in the case of Ross’s geese (Fig. 3). Greater precision for
estimates of lesser snow geese was a result of greater numbers marked, espe-
cially in more recent years, and for white-fronted geese a function of high harvest
rates. Sample size requirements are provided in Appendix as related to the level of
precision required under specific harvest rates and precision of harvest estimates.
Species differences in precision led to variation in inference strength. For example,
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Fig. 4 Time series of Lincoln estimates of population size at time of marking, i.e., August,
computed from annual estimates of harvest and harvest probability. For lesser snow geese, shown
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unstratified by geographic location of marking, N̂1989−2004, and (ii) bias-corrected Lincoln esti-
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although recent declines in greater snow geese and continued increases in Ross’s
geese corresponded to patterns in time series from other counts or estimates, low
precision precluded confidence about temporal changes in the Lincoln estimates. In
contrast, an absence of declines in lesser snow goose numbers, but declines in white-
fronted goose numbers (also consistent with the fall count of white-fronted geese in
Saskatchewan) can be inferred with greater confidence (Fig. 4). With relatively long
time series such as considered herein, inference about population trajectory might
still be reasonable if a small number of years with imprecise estimates are excluded
from consideration. For example, precision in N̂i of lesser snow geese was very low
in the years 1991, 1994 and 1997 (Fig. 4), and their exclusion from the time series
still results in 13 annual estimates of rather good precision from which to draw
inference. Log-linear regression of loge N̂i over such a time series could be used for
estimation of intrinsic rate of increase, ˆ̄r , (Eberhardt and Simmons 1992), perhaps
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weighted by 1
ˆvar(loge N̂i ) ; then, mean annual rate of increase, ˆ̄λ, over the time series

may be calculated as ˆ̄λ = e ˆ̄r , or alternatively as ˆ̄λ = 1 + ˆ̄r as recommended by
Eberhardt and Simmons (1992) for “birth pulse” populations such as arctic-nesting
geese.

4.4 Heterogeneity in Harvest Probability

We estimated harvest probabilities for lesser snow geese marked north vs. south of
Hudson Bay for 1998–2004 (Table 2). Kerbes et al. (2006) reported that contribution
of snow geese from north of Hudson Bay to the superpopulation was πN = 0.90.
However, allocation of marks to northern birds was disproportionately low with πb

ranging between 0.13 and 0.55. As well, harvest probabilities of southern birds was
1.1–2.3 times higher than northern birds in 6 of 7 years. Such over-representation
of southern snow geese in the marked sample, even though they represented only
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(1−πN) = 0.10 of the superpopulation, resulted in negatively biased estimates of
continental population size because of the pattern of heterogeneity in harvest proba-
bility of geese from the two geographic strata (Table 2). Thus, Lincoln estimates
of abundance for midcontinent snow geese were likely biased low in all years
with exception of 1999 when ĥi was greater for northern birds resulting in slight
overestimation.

5 Discussion

Estimates of geese using Lincoln’s (1930) method from these four examples were
invariably higher than other independently conducted counts or other methods of
estimation. This was consistent with Otis’ (2006) findings when he applied the
method to midcontinent mallards. Previous presentation of such estimates from our
goose examples to professional biologists and wildlife managers familiar with the
biology of these species or the process of setting harvest regulations most often
resulted in disbelief and reluctance to accept the Lincoln estimates (Alisauskas,
pers. obs.). More weight tended to be placed on various counts (e.g., Nieman et al.
2005), or in the case of midcontinent snow geese, on photographic surveys of
breeding birds at known colonies (Kerbes 1975).

Although we found correlations between Lincoln estimates and other sources
of information, wide disparities remained and it is unknown which estimates
exhibit greater bias. In the case of white-fronted goose counts during September in
Saskatchewan and Alberta, it is assumed that the superpopulation of migrating geese
is completely within the sampled area when counts are made, all flocks are detected
within the area, and counts of geese in each flock are without appreciable error.
Thus, the discrepancy between counts (all white-fronted geese) in Saskatchewan,
and the Lincoln estimates (of adults only) could be due to incomplete detection of
geese during counts, incomplete presence of geese during counts, large errors in
counts of up to hundreds of thousands of birds/flock, bias in Lincoln estimates, or
some combination thereof.

Bias in Lincoln estimates could only emanate, in turn, from biases in ĥi or Ĥi .
If Ĥi is unbiased, then a major assumption underpinning Lincoln’s method is that
there is sufficient mixing of geese from different source populations before harvest
occurs. If there is much spatial structuring of populations when marked during
summer, then without subsequent mixing before harvest, there is a good likelihood
for heterogeneity in ĥi . For example, differences in routes or schedules of migration
by different source populations may result in heterogeneity due to spatial variation
in harvest rates, or to different duration of harvest. We expect that the potential for
biased N̂i stemming from heterogeneity in ĥi is greater for our two examples with
broad breeding ranges (white-fronted and lesser snow geese) than for those with
more restricted ranges (Ross’s and greater snow geese).

Such heterogeneity in ĥi was evident in lesser snow goose, which have a breeding
distribution spanning the widest range of latitude among our four examples, yet
appear to be composed of two large subpopulations that differ in their migration
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behavior as well as harvest and survival probabilities (Alisauskas et al. in prep).
The distribution of these subpopulations is such that birds from the northern portion
of their range (between 65 and 68◦N) are thought to represent about 90% , i.e.,
π̂N = 0.9, of the breeding population compared to 10% from south of Hudson Bay
(south of 60◦N) based on photographic estimates of breeding birds in 1997–1998
(Kerbes et al. 2006). Photographic enumeration likely provides an underestimate
of breeding numbers (see below) because, among other things, there likely are
undetected colonies (Alisauskas and Boyd 1994). For our example, we assumed
a constant probability of colony detection, but this probability may vary over snow
goose breeding range. For example, the estimate of π̂N from photo surveys may be
biased low if detection of colonies in the northern, more remote portion of mid-
continent snow goose breeding range has been lower than in the south. In fact, most
newly documented colonies in the last two decades (Alisauskas and Boyd 1994;
Kerbes et al. 2006) have been located in this northern stratum, where researchers
have been focusing more attention more recently outside of southern Hudson Bay.
Thus if π̂N is biased, we suspect that it may be an underestimate.

Snow geese marked on the southern portion of their breeding range (including
LaPérouse Bay, Akimiski Island, and Cape Henrietta Maria) tend to be recovered at
higher rates compared to those from northern portions including West Hudson Bay,
Southampton Island, Baffin Island and Queen Maud Gulf (Table 2). In addition,
variation in harvest dates of midcontinent lesser snow geese was most sensitive
to the latitude at which geese were marked before migration when compared to
age of geese and neckband presence, while controlling for latitude of recovery;
Canadian harvest of northern snow geese occurred about 10 October, which was
a full two weeks later than the average date of 25 September for southern snow
geese (Alisauskas et al. in prep). Indeed, this difference in schedules of harvest
persisted into the northern U.S. Thus, it appears as though the vanguard of snow
goose migration during fall is composed of the relatively small southern Hudson Bay
subpopulation (1 − πN

∼= 0.10) which is harvested first possibly by a relatively high
ratio of hunters to geese. About 2 weeks later, ∼9 times as many snow geese from
northern breeding areas arrive onto hunting areas, essentially swamping southern
birds and likely increasing the ratio of geese to hunters. We suspect that this is the
cause for lower ĥi for snow geese that originate from northern areas of Hudson Bay,
compared to areas south of Hudson Bay.

Midcontinent white-fronted geese winter in areas largely sympatric with midcon-
tinent snow geese, but breeding range spans a greater range of longitude from Alaska
to Hudson Bay (Fig. 1). However, current knowledge of their density distribution
over this summer range is very incomplete. As well, our analysis was restricted
to birds marked in Canada because that represented an unbroken time series since
1989. As such, we could not more fully assess the extent to which differences in
harvest regimes among source populations (including Alaska) may have biased our
abundance estimates for white-fronted geese.

In addition to heterogeneity of ĥi related to geographic origin, we envision
additional sources of heterogeneity related to social or breeding status of geese
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from the same geographic area. For example, schedules of annual wing molt and
ability to regain flight are earlier for nonbreeders and failed breeders than for adults
that have produced young capable of flight. Earlier departure from the arctic by
unsuccessful adults may predispose them to higher hi than faced by adults with
young, in the same way that snow geese from south Hudson Bay are harvested
at a higher rate than individuals from the more numerous northern stratum. On
the other hand, adults with young may suffer higher vulnerability from harvest
in relation to nonbreeders because of family cohesiveness and the predisposition
of juvenile geese to show greater vulnerability to harvest. Indeed, Drake (2006)
found that successfully nesting Ross’s geese had lower survival probability than
those that experienced experimentally induced nest failure, but that failed breeders
were more susceptible, or available, for harvest. In any event, harvest heterogeneity
between productive and nonproductive adults may vary annually in response to
severity of arctic weather; breeding failure due to delays in arctic snow melt is
the most important governor of breeding success and recruitment on a continental
scale, at least for mid-continent lesser snow geese (Boyd et al. 1982; Alisauskas
2002), and probably most other arctic-nesting geese. This hypothesis of differ-
ential migration with accompanying differences in probabilities and schedules of
harvest between breeders and nonbreeders requires testing. If important, then we
suggest that breeding probability could be a suitable population-level metric, and
a special case of the binomial mixing parameter, πN, (substitute in Eqs. 6 and 7),
so long as something is known about the number of bands applied to breeders and
nonbreeders.

The disparity between our estimates of midcontinent lesser snow geese and other
methods of enumeration were the greatest of all species considered. Our 1998
estimate of 14.9 ± 3.1 million (95% CL) snow geese coincided with 1997–1998
count from periodic photographic surveys done in arctic nesting colonies (Kerbes
et al. 2006) of 3.8 million breeding snow geese. Adjustment for relative bias
increased Lincoln’s estimate for this year to 18.7 million. Part of the discrepancy
may be attributable to negative bias associated with the photosurvey method; only
breeders within known colonies are sampled, and so the method does not account
for (1) nondetection of unknown colonies, mentioned above, and (2) nondetection of
non breeders. As well, there likely is incomplete detection of goose images during
photo interpretation that varies among observers and among different nesting habi-
tats of geese, and probably between color morphs. It has been assumed, but not
confirmed, that flying geese captured on photographs, as well as those on water, or
those in groups of >3 are nonbreeding, and so are not counted as part of the photo
enumeration. A final assumption is that all breeding geese remain flightless when
photo aircraft fly over. The extent of negative bias associated with the photosurvey
method remains unknown without further testing and evaluation, but the cumulative
effect of each of these undoubtedly causes progressively worse negative bias, and
accounts for some of the disparity between photosurvey estimates and those using
the Lincoln estimator. In fact, disproportionate marking of southern snow geese
likely caused negative bias in Lincoln estimates in most years because of higher
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harvest of those birds. An important point here is that bias adjustments for this
problem are possible.

If Lincoln estimates of snow goose population size are biased high, then bias
is likely unrelated to heterogeneity in ĥi in our example, as such heterogeneity in
combination with non-representative marking of birds should result in negative bias
in N̂i . Instead, positive bias could result from overestimation of Ĥ . We are unsure of
the extent to which biases in Ĥ influence our estimate of N̂i Padding (pers. comm.)
and Otis (2006) point to potential biases in Ĥ stemming from sampling frame prob-
lems associated with estimation of U.S. harvest. Additional bias in Ĥ may arise from
inaccurate reporting of harvest by hunters due to prestige, memory, or nonresponse
bias, although there are efforts to make adjustment for this in both Canada and the
U.S. (e.g. Sen 1971; Filion 1975). It is thought that Ĥ may be overestimated by
∼30% but there are currently efforts underway to confirm and rectify this (Paul I.
Padding USFWS, pers. comm.)

In summary, the Lincoln method for estimation of goose population size
appeared to be useful for retrospective purposes in some of our examples. General
relationships between these estimates and other sources of information suggested
that inferences about longer term population trajectory were probably reasonable.
However, there was a wide range of estimated precision between species and
for annual estimates within species. Boyd et al. (1982:8) found that “calculated
confidence intervals are so wide as to be of little assistance in discerning what may
be happening, though they show that little weight should be give to apparent changes
from one year to the next”. Increased precision can be achieved with larger numbers
of birds marked (Appendix), but precision is also an inverse function of ĥ (Eq. 12),
so as to be a problem for estimation of species with very low ĥ, such as Ross’s
geese. In contrast, precision of estimates for lesser snow geese and white-fronted
geese were much better, because of greater numbers marked (particularly in more
recent years, Table 1), and comparatively higher harvest probabilities (Fig. 2).

Although heterogeneity of ĥi as a source of bias in N̂i is largely beyond the
researcher’s control, bias associated with ĥi can, at least in principle, be controlled
for with (1) proper allocation of marks consistent with proportional contributions
of source populations to the superpopulation, or (2) bias adjustments (Eq. 7) after
estimation of ĥi for each population stratum. Knowledge about spatial distributions
appear to be better for colonial species (lesser snow geese, Ross’s geese, greater
snow geese) than for more dispersed nesters (white-fronted and cackling geese
Branta hutchinsii), but remoteness of all species and vastness of breeding distribu-
tions, especially for dispersed nesters, poses a considerable challenge. Such knowl-
edge may be improved only with further basic survey work that involves systematic
sampling and fuller coverage leading to density estimation completely within each
species’ range. Where there is high likelihood of heterogeneity in harvest probability
for different breeding subpopulations, future marking should either focus on propor-
tional representation of subpopulation abundance, or solely on the largest (and thus
most representative) strata for marking, if population estimation is the goal. Finally,
fundamental to use of Lincoln’s method is the estimation and resolution of any bias
in Ĥi or ĥi for each species.
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Appendix

Coefficient of variation of population estimate, CV(N̂i ), using the Lincoln
(1930) estimator in relation to number of geese marked with legbands, b, in
increments of 1,000, and in relation to harvest probability, h, for different
levels of precision in harvest estimates, CV(Ĥ ) = 0.05, 0.075, 0.10, or 0.15.
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Integration of Demographic Analyses
and Decision Modeling in Support
of Management of Invasive Monk Parakeets,
an Urban and Agricultural Pest

Michael J. Conroy and Juan Carlos Senar

Abstract We investigated from 2003 to 2006 the population dynamics of Monk
Parakeets (Myiopsitta monachus), an invasive, exotic, pest species inhabiting north-
eastern Spain. Our study focused on several colonies of parakeets in Barcelona.
Starting in 2003, we trapped and marked birds at the main Barcelona colony in
Ciutadella Park during 2 annual periods: winter (pre-nesting) and late summer (post-
nesting), respectively. We marked 459 individuals, and subsequently reencountered
marked birds at the colony via recapture, and additionally obtained resightings of
parakeets throughout Barcelona (n = 381 recaptures and 570 resightings). We used
a variation of the Robust Design in conjunction with reverse-time CR modelling
to estimate survival and recruitment rates, and to determine the relative contribu-
tion of survival and recruitment to population growth rate. Due to high dispersal,
apparent survival rates were low, so we used the combined recapture-resighting data
to provide more realistic estimates of demographic survival. We then combined the
projections with estimates of survival and recruitment elasticity from our statistical
models in a decision model, in order to investigate alternative management scenarios
for reducing damage from continued parakeet expansion. Given the logistical and
social constraints under which managers operate, it appears that the most effective
management strategy would be removal by trapping (in urban areas) or shooting (in
rural areas) of birds during summer-winter period.

1 Introduction

Exotic species are now recognized as one of the leading global threats to
native biodiversity and ecosystem function (Temple 1992; Kolar and Lodge 2001;
Stockwell et al. 2003). They also cause significant economic losses (Pimentel et al.
2000), but their control and removal is normally difficult, and to succeed, requires
previous appraisal and study (Feare 1991; Myers et al. 2006).
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The Monk Parakeet (Myiopsitta monachus) is a typical invasive, exotic, pest
bird species. The increase in parrot trade in recent years has facilitated its spread
from South America into North America and Western Europe (Hyman and Pruett-
Jones 1995; Van Bael and Pruett-Jones 1996; Cassey et al. 2004). The species is
considered as a pest in most parts of its range, causing agricultural damage, injuring
ornamental trees by picking up small branches for nest-building, damaging electric
lines and other human made structures during nesting, acoustic contamination, and
problems with falling nests (Bucher and Bedano 1976; Bucher and Martin 1983;
Bucher 1984; Temple 1992; Bucher 1992).

The species has been especially successful in Barcelona, Spain, with the city
containing one of the largest populations in western Europe (Domènech 1997;
Domènech et al. 2003). Monk parakeets became established in Barcelona city in the
early seventies, and by 2001 had reached 1441 (±265) individuals, with 313 nests,
growing at an average 8% annual rate over 1994–2001 (Domènech et al. 2003).

Economic losses associated with the increase in parakeets have been partially
quantified by Senar and Domènech (2001), who conducted surveys of damage in
the agricultural area of Baix Llobregat, specifically in the municipalities of Prat
de Llobregat, Sant Boi de Llobregat, Viladecans and Gavà. Senar and Domènech
(2001) focused on damage to tomatoes, which is the main crop in the area, and prone
to damage by parakeets. The birds also damage fruit trees and maize, but these fields
are of much lower economic importance in the area. Senar and Domènech (2001)
estimated that parakeets damaged 93,679 tomatoes (71,000–136,000). Assuming an
average price of 0.50 €/kg and that 1 kg represents about 6 tomatoes (5–9), this
translates to an estimated loss of 7,800 € (6,000–11,400 €) during 2001.

Damage by parakeets also occurs within Barcelona city but is more difficult
to quantify. Birds harvest large number of branches during nest construction, and
damage to trees (especially Platanus sp.) can be locally significant (Senar and
Domènech 2001). Nests are built high (8–15 m) in trees and present a risk of
human injury and property damage when they are dislodged during storms (Senar
and Domènech 2001). Finally, large colonies of birds are very noisy and create
disturbance around human dwellings; to mitigate complaints and minimize damage
from falling nests, nests are periodically removed by the City Council. The costs of
damage due to birds and nests, and of efforts to reduce these damages, are, however,
poorly quantified.

The aim of this paper is to construct a decision support model that incorporates
existing demographic data on Monk Parakeets, in order to evaluate alternative means
of controlling the increase of parakeet populations.

2 Methods

2.1 Study Area

Monk Parakeets were studied in Barcelona city and the Baix Llobregat area, north-
eastern Spain. The Baix Llobregat area is a traditional agricultural area in the
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Fig. 1 Location of study areas for Monk Parakeets in Spain, 2003–2006

Llobregat river delta, located 10 km south of Barcelona (Fig. 1). The land is mostly
flat and with intensive irrigated agriculture, comprised of many different vegetables.
Damage by parakeets, is however concentrated on tomatoes, maize and fruit trees.

2.2 Capture–Recapture and Resighting

We used a variation on the Robust Design (Williams et al. 2002) to allow for esti-
mation of key demographic parameters over 26-month periods, the first (winter–
summer; Table 1) of which includes the principal breeding period of parakeets. We
obtained capture–recapture data over 6 primary (assumed to be open to survival,
recruitment, and movement) and 23 secondary occasions (assumed closed to these
factors) from November 2003 to August 2006. We captured and recaptured para-
keets with a Yunick Platform Trap (2 × 1× 1 m; Yunick 1971) located at the Natural
History Museum of Barcelona, within the Ciutadella Park in Barcelona city, which
holds the larger Monk Parakeet colony within the Barcelona city (Domènech et al.
2003) (Fig. 2). Birds were marked with numbered aluminium rings and with special
numbered medals, which could be read without having to trap the bird (Ingram
1977). We marked a total of 459 individuals, obtaining 381 recaptures between
November 2003 and October 2006. We also obtained 570 resightings of individ-
ually marked birds during November 2003–March 2006. During the study period,
we obtained resightings via reports from birdwatchers throughout Barcelona, and
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Table 1 Encounter periods and survival/emigration intervals for capture-recapture, resighting, and
recovery analysis of Monk Parakeets in Barcelona, Spain, 2003–2006

Month Year Primary period Secondary period Interval length (d)a

Nov–Janb 2003–2004 1 1 16
2 16
3 15
4 222c

Aug–Sepd 2004 2 1 16
2 15
3 105e

Dec–Febb 2004–2005 3 1 16
2 15
3 179c

Jul–Sepc 2005 4 1 16
2 15
3 15
4 15
5 124e

Jan–Marb 2006 5 1 16
2 15
3 15
4 156c

Aug–Octc 2006 6 1 15
2 15
3 26
4

a Interval between end of sampling period and beginning of next primary or secondary period.
b Winter capture period.
c Winter–summer interval.
d Late summer trapping period.
e Summer–winter interval.

observations made during the course of other activities, such as censusing para-
keet nests. These observations were augmented by a citywide survey over 235 h
in the summer of 2004 via a series of transects throughout Barcelona (Senar and
Carrillo-Ortiz 2005); this latter effort resulting in 216 of the 570 total resightings.
The resightings were then grouped, along with captures and recaptures, according to
primary (open) and secondary (closed) occasions for subsequent analysis (Table1).

2.3 Statistical Analyses

2.3.1 Components of Population Growth

We initially used the Robust Design and Pradel’s temporal symmetry model
(Williams et al. 2002) with the Huggins full heterogeneity models to estimate
apparent survival (φ) and recruitment (f) between each of the primary periods, as
implemented in program MARK (White and Burnham 1999). This model provides
estimates of abundance (N) at each primary period as derived parameters. Estimates
of population growth rate (λ) and seniority (γ ) can be computed either by reparam-
eterizing the Pradel model, or as derived parameters via
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λ̂t = f̂t + φ̂t (1)

and

γ̂t+1 = φ̂t

φ̂t + f̂t
, (2)

with estimated variances computed via the delta method (Williams et al. 2002:
Appendix F). Expression (2) estimates the proportional contribution of survival
to population growth at t+1, important for our later consideration of strategies to
optimally control parakeet populations. We preferred the φ, f parameterization over
the φ, λ or φ, γ parameterizations available in MARK (White and Burnham 1999)
because constraints such as φt = φ or ft = f can be specified independently,
whereas constraints such as λt = λ force a dependency with the remaining param-
eter (in this case φ). We evaluated goodness of fit under the Pradel model first via
program RELEASE (from the MARK interface), which provides a general test of
fit for CJS-type models. We also conducted 500 bootstrap simulations under the
most general (time-specific survival and recapture) CJS model corresponding to
these data, and compared the average deviance value from these simulations to the
deviance obtained under this model for our data, finally taking the ratio of the latter
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to the former as an estimate of c. We then applied this factor to our estimates and
AIC values under the Pradel model, to adjust for overdispersion.

We note that our data and the Pradel model do not allow for complete identifica-
tion of parameters of biological interest. First, the parameter φ is denoted apparent
survival, because it is the product of the probability of demographic survival (S) and
fidelity (F); thus, to the extent that emigration from the study area occurs, φ will
underestimate S. Second, our estimates of the parameter f cannot separate between
in-situ recruitment, and immigration from other sites. We used the joint recapture-
resighting data and the Barker (1997) model to address the former problem and to
obtain estimates of S and F. We used the data from the Robust Design (Table 1) to
estimate survival, fidelity, return, recapture and resighting, with survival and fidelity
rates constrained to one and return rates constrained to zero over the secondary
(closed) periods. Because no dead recoveries occurred during the study period,
we constrained recovery parameters (rt) to be zero. As with the Pradel analyses,
we evaluated goodness-of-fit via bootstrap simulation, adjusting subsequent model
comparisons and confidence intervals by the variance inflation estimate as neces-
sary. Our study design, and inability to accurately determine ages of captured birds,
precluded us from addressing the latter problem, with implications for the applica-
tion of our estimates to the decision problem, considered further below.

2.3.2 Decision Model

A decision model requires 3 components: (1) a quantitative statement of the objec-
tive, (2) delineation of decision alternatives, and (3) a model relating the decision
alternatives or controls to the objective. The task then is to determine the combina-
tion of decisions that best meet the resource objective, taking into account biolog-
ical, economic, or other constraints.

In our case, the biological objective is to reduce population numbers or growth
of parakeets, so as to reduce economic and other damages. For either urban or rural
situations, economic loss occurs, and it is thus desirable to reduce the number of
parakeets. Because we cannot necessarily quantify these losses (particularly for
urban birds), we will henceforth assume that the goal is to reduce the losses by
reducing number of birds, and use our population and catch-effort models to provide
guidance as to the most efficient ways to do so.

The decisions at our disposal include removal of adult and flighted juvenile birds
via trapping or shooting, and removal of nests. These controls are assumed to relate
to specific parameters of survival (S) and recruitment (f). The exact form of our
decision model depends on a number of considerations, including the availability of
appropriate information for costs and other constraints. First, we specified controls
and model outcomes in terms of per-capita rates, because our most reliable data was
in these terms. Second, we considered objective functions of 2 forms: (1) meeting
a biological objective (reduced growth), subject to economic and other constraints;
and (2) meeting a cost objective, subject to biological constraints. The first form can
be generically represented as:
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min [λ(x, y)]

subject to

C(x, y) < C∗

λ = λ0

(3)

where λ(x, y) is a predicted relation of removal of birds (x) and of nests (y) to
population growth, C(x, y) is a function describing the per-unit costs of x, y; C* is a
cost constraint that cannot be exceeded; and λ0 is an initial (pre-control) value for
population growth (currently, >1).

Alternatively, the problem can be expressed in terms of a cost or effort objective,
which is constrained to meet the biological objectives. That is,

min [C(x, y)]

subject to

λ(x, y) ≤ λ∗
(4)

Somewhat counter-intuitively, this approach may be effective when costs are diffi-
cult to quantify but nevertheless it is desirable to keep effort as low as possible.
Depending on the situation, we will consider both forms.

2.4 Control Model

Our expression of the relationship of the controls to population growth rate requires
further elaboration. This relationship is closely related to our seasonal model of
population growth, as parameterized by the reverse-time capture–recapture anal-
ysis. Recall that λ has 2 components, survival (φ) and recruitment (f), and that the
relative contribution of these to λ is captured by the parameter γ (throughout this
development we assume that φ = S, i.e. that permanent emigration is negligible; we
relax this assumption later by invoking the results from the joint recapture-resighting
analysis). Furthermore, γ can be used to model the proportional change in λ that
would occur due to a proportional change in either φ or f (Williams et al. 2002).
In our case, we have these relationships estimated over 2 separate, approximately
6-month periods of the year, one (winter–summer) in which reproduction is impor-
tant, and the other (summer–winter) in which it is negligible. If we define λ over
a single 6-month period, the relationship between our controls x and y (which are
proportional decreases in φ and f, respectively), is

λ(x, y) = λ0 [1 − xγ − y(1 − γ )]

where

x = Δφ

φ0
, y = Δ f

f0
(5)

and φ0, f0 are the current values and proposed reductions, respectively in φ and f.
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In our model, demographic parameters are specific to each 6-month period,
which in turn has relevance for decision making. We allow “recruitment” to occur
during both periods, but assume that it is principally due to reproduction during the
first period (and thus subject to control via nest removal) but due to immigration
during the second period (and thus not subject to control via removal). Over the first
(winter–summer) period when recruitment is significant we have

λ1(x1, y) = λ01 [1 − x1γ − y(1 − γ1)] .

whereas over the second (summer–winter) period, when reproduction is negligible,
we have

λ2(x2) = λ02 [1 − x2γ2]

Finally, annual population growth is obtained as the product:

λ1(x1, y) × λ2(x2) = λ01 [1 − x1γ1 − y(1 − γ1)] λ02 [1 − x2γ2]

= λ0 [1 − x1γ1 − y(1 − γ1)] [1 − x2γ2] (6)

where γ1, γ2 are the proportional contributions of survival to population growth
during the first (winter–summer) and second (summer–winter) periods, respectively.

2.5 Cost Functions

We could quantify costs for some of our controls, but others were problematic. First,
we have estimates of the time and other costs needed to trap a given number of birds,
and have related this to our estimates of trapping success. Our records of trapping
efforts in 2005 and 2006 indicated that approximately 54.6 h of effort were required
to achieve the current capture rate of approximately 0.15; these hourly costs are
in addition to fixed costs of trapping (traps, feed, and so forth) and that we need
a trap for each main colony. We modelled the relationship of capture (removal)
rate to increasing effort via a simple exponential model (Williams et al. 2002:
320) as

Δφ = p = 1 − exp(−k f ) (7)

where p is capture rate, f is effort (in this case, hours), and k is a coefficient relating
effort to success. Equation (7) is easy to solve for k given specified p and f, providing
for an estimate of k = 0.00297 given p = 0.15 and f = 54.6. These relationships
can provide an idea of the effort needed to obtain specific reductions (Fig. 3).
For instance, 50, 75, 90, and 99% would be predicted to require 232, 465, 773,
and 1547 h, respectively. More or less time-efficient procedures would of course
result in different values for k and these predictions, but we would expect a similar
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Fig. 3 Capture-effort relationship: hours of removal effort in relation to removal rate for Monk
Parakeets in Barcelona, Spain, 2003–2006

relationship of cost to effort over a wide range of abundance and removal efforts.
We recognize that equation (7) requires the assumption of a constant relationship (k)
between a unit of effort (f) and capture rates (p); however, we have no information on
which to base a more realistic model, for instance allowing for a saturation effect of
removal. In the Section 4 we describe how this assumption may affect the generality
of our results, and offer recommendations for further work.

2.6 Optimization Solution

We used a combination of graphical examination, nonlinear optimization, and
simulation-optimization to find control strategies that met our objectives. Because
we anticipated that control via nest removal, although potentially effective, would
be costly and socially unacceptable (Neidermeyer and Hikey 1977; Van Bael and
Pruett-Jones 1996), we first sought to explore the proportional reduction in recruit-
ment or survival required to maintain λ at a specific level λ∗, where λ∗ is presumed
to be a reduction from the initial (pre-reduction) growth rate of λ0. Under this special
case of equation (2), the relationship between x, y and λ is completely specified by
equation (6). For this analysis, we made the additional assumption x1 = x2 = x ;
that is, proportional reduction in survival is the same during both seasons. With this
proviso, the constraint λ = λ∗ provides the solution

y =
[

1 − xγ1 − λ∗

λ0(1 − xγ2)

]
(1 − γ1)−1 (8)
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for specified values of y. By plotting y on x for selected values of λ∗ (e.g., 1.00,
0.95, and 0.90), we can visually determine combinations of x and y that achieve the
objective, and, for instance, rule out those that are clearly impracticable.

The above is a useful first step in our decision analysis, but does not consider
the relative costs of means of reducing population growth. As suggested above,
and according to previous experience in the U.S.A., removal of nests – the principal
means of reducing f – may be an unpopular means of reducing growth rates, causing
serious political problems (Temple 1992; Van Bael and Pruett-Jones 1996). Our
second decision analysis instead assumes that reduction is by means of removal,
principally by trapping, and considers how removal effort should be allocated
between seasons. We recast equation (2) so that the decision variables were achieved
reductions in survival during each season (�φ1,�φ2), and changed the inequality
constraint to an equality constraint. The former is required for application of our
effort-removal relationship (equation 7), and the latter greatly simplifies the search
for optimal solutions. The recast decision problem is

min
[
C(�φ1, φ2)

]
subject to

λ(�φ1,�φ2,� f0; f0, φ0) = λ∗
(9)

where

C(�φ1,�φ2) =
2∑

i=1

[− log(1 − �φi )/k
]

and the constraint is satisfied by

x1 =
[

1 − y0(1 − γ1) − λ∗

λ0(1 − γ2x2)

]
γ−1

1 (10)

where

xi = �φi

φ0i
, y0 = � f0

f0

and � f0 is a specified, constant reduction in recruitment, which for the purposes
of exploring allocation of removal effort can be set to zero. This problem could be
solved by nonlinear optimization, for example using Lagrangian multipliers (Taha
1976; Williams et al. 2002). However, because there is a single constraint and 2
control variables, it is easy to solve by substituting the constraint for one of the
control variables. Thus, we replaced x1 by equation (10) and from equation (9)
obtained the value of �φ2 that minimized C(�φ1,�φ2) via direct search; this value
satisfies the constraint, and therefore is optimal. However, the above presupposes
that λ0 > λ∗; if instead λ0 ≤ λ∗ then the optimal decision by definition is no action
(�φ1 = �φ2 = 0). Although this condition appears to be pathological, it does
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arise in the course of stochastic simulations under parameter uncertainty (below).
Finally, there are situations where no solution is feasible; that is, no combination
of removal actions is sufficient to achieve λ∗. These could occur, for instance, if
recruitment alone produces λ > λ∗, and again can arise in the course of stochastic
simulations.

Although the above approach leads to a rational way to explore candidate deci-
sions about control, it is fundamentally dependent on assumed values for the under-
lying parameters- namely, seasonal survival (φ), reproduction ( f ), and the derived
parameters λ and γ . However, these parameters are not known, but rather are
estimated from field data and stochastic models, with varying degrees of statis-
tical reliability. Furthermore, the parameters themselves can and likely do vary
over time. Optimization should therefore take into account this stochastic uncer-
tainty, because it potentially will influence decision making. Formal approaches
exist in which uncertainty can essentially be added as another constraint to the
decision model (Taha 1976); however, these can be extremely complicated to solve.
We instead use a simulation-optimization approach, which contains the following
steps:

• The objective function and constraints are defined as for the deterministic
problem.

• Uncertainty in model parameters is characterized by probability distributions,
and a random draw is made of a vector of parameter values.

• An optimal decision and objective value are obtained based on these parameter
values.

• The process is repeated a large number (e.g., 10,000) of times and the distribu-
tions of the decision variables and objective values examined.

Specifically, we computed standard errors for each parameter θ that incorporated
statistical and temporal variation, by

SE(θ ) =
√∑

i

[(θ̂i − θ̄ )2 + SE(θ̂i )2] (11)

where θ is the parameter of interested (seasonal φ or f), θ̂i is the estimated parameter
for the ith study year, SE(θ̂i ) is the estimated sampling variance for θ̂i , and θ̄ is
the average of the estimates over the k study years (k = 2 or 3, depending on the
parameter). These values were used to draw normally distributed random variables

xi = gi (θ ), where g1(φ) = log
[

φ

1−φ
]
, g2( f ) = log( f ), with var(x) obtained by delta

approximations under the appropriate transformation. The random variates xi were
then back-transformed via g−1

i (θi ) to obtain random values for θ and f, which in
turn were used to calculate λ and γ . This approach provides optimal decision solu-
tions for each selection of random variates, but is not a formal, stochastic optimiza-
tion, which would require more computationally intensive methods (Williams et al.
2002). We performed all decision model computations using Enthought Numeric
Python version 2.4 (http://python.org).
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3 Results

3.1 Survival, Recruitment, and Population Growth

We initially attempted to fit several Pradel models to the full Robust CR data structure,
using Huggins heterogeneity estimators in MARK. Because of numerical instability,
particularly for capture and abundance estimates within primary periods, we modified
our approach to a Pradel symmetry model with survival and recruitment parameters
constrained to be closed across secondary periods. This eliminated abundance esti-
mates (which were not of primary interest in this analysis) but retains estimates of φ
and f . This model fit as evaluated by program RELEASE; however, our bootstrap
simulations revealed mild overdispersion, and we used our estimate of ĉ = 1.10 to
adjust variances and AIC values (Burnham and Anderson 2002). Based on QAICc,
we selected model φ(t) f (t)p(t) (Table 2); the resulting point estimates of φ and f
were similar to those from the full Robust analysis, but confidence intervals were
narrower (Table 3). However, apparent survival rates seemed to us to be unreal-
istically low, particularly during the winter–summer periods; we suspect that this
was due to high rates of emigration. This was confirmed by the joint recapture-
resighting analysis (Tables 4–5), with survival during both periods variable among
years, but generally exceeding 0.90; the global model fit these data adequately, with
indication of mild extra-binomial variation (ĉ = 1.12). We used these estimates
of S in conjunction with the Pradel estimates of f (Table 3) to obtain estimates of

Table 2 Model selection for reverse-time capture–recapture analysis of Monk Parakeets in
Barcelona, Spain, 2003–2006

Modela �QAICcb QAICc Weightc Number of parameters

φ(t) f (t)p(t) 0.000 0.796 30
φ(t) f (s)p(t) 4.004 0.107 28
φ(s) f (t)p(t) 4.578 0.081 28
φ(p) f (s)p(t) 7.784 0.016 25
φ(.) f (.)p(t) 32.445 0.000 23
φ(.) f (.)p(.) 655.084 0.000 3

aModel subscripts: t denotes variation in parameter over seasons and years; p over
seasons only (constant across years), s by period (winter–summer vs. summer–
winter), and · denotes no seasonal or annual variation.
bAkaike Information Criterion adjusted for quasi-likelihood factor of 1.10 and
small-sample correction.
cModel weight based on QAIC (Burnham and Anderson 2002).

Table 3 Model-averaged estimates of apparent survival and recruitment from reverse-time
capture–recapture analysis of Monk Parakeets in Barcelona, Spain, 2003–2006

Year Period φ̂ SE f̂ SE

2003–2004 Winter–Summer 0.300 0.078 1.413 0.567
Summer–Winter 0.633 0.083 0.118 0.173

2004–2005 Winter–Summer 0.391 0.070 0.894 0.259
Summer–Winter 0.958 0.100 0.154 0.201

2005–2006 Winter–Summer 0.222 0.057 0.484 0.140



Integration of Demographic Analyses and Decision Modeling 503

Table 4 Model selection for joint recapture-resighting analysis of Monk Parakeets in Barcelona,
Spain, 2003–2006

Modela Delta QAICcb QAICc Weightsc Number of parameters

S(t) F(t) F’(t) 0 0.948 39
S(.) F(t) F’(t) 5.825 0.052 36
S(t) F(.) F’(.) 17.389 0.000 34
S(.) F(.) F’(.) 18.151 0.000 31
aAll models have time-specific recapture and resighting probabilities, and
recovery probabilities constrained to zero.
bAkaike Information Criterion adjusted for quasi-likelihood factor of 1.12 and
small-sample correction.
cModel weight based on QAIC (Burnham and Anderson 2002).

Table 5 Model-averaged estimates of survival (S), fidelity (F) and return (F ′) from joint recapture-
resighting analysis of Monk Parakeets in Barcelona, Spain, 2003–2006

Year Period Ŝ SE F̂ SE F̂ ′ SE

2003–2004 Winter–Summer 0.971 0.044 0.163 0.056 0.124 0.041
Summer–Winter 0.853 0.039 1.000 0.002 0.000 0.000

2004–2005 Winter–Summer 0.776 0.055 1.000 0.002 0.600 0.328
Summer–Winter 0.928 0.037 0.069 0.055 0.245 0.087

2005–2006 Winter–Summer 0.994 0.026 0.184 0.038 0.142 0.036

the derived parameters, λ and γ (Table 6). The estimates reveal both seasonal and
annual variation in growth rates and components of growth, with, as expected, a
generally a higher proportion (1 − γ ) due to recruitment occurring during the winter-
summer period, which encompasses the breeding season. Annualized growth rate over
2003–2005 was λ̄=2.04, substantially higher than crude, apparent growth as reflected
by population surveys (λ̄=1.08), possibly due to recruitment from immigration, but
also to the fact that surveys are based on the counts of nests, which are routinely
removed by the city council when pruning the trees, potentially resulting in underes-
timates of abundance. We acknowledge that our estimate of annualised growth rate
likely overestimates actual population growth rate, and suggest that the true value
is likely lower. Nevertheless, we suggest that our estimates of γ and λ reasonably
represent the relative contributions of survival and recruitment, and thus proceeded
to use the averages of the seasonal estimates, and standard errors incorporating
temporal variability and statistical uncertainty, in our decision model (Table 7).

Table 6 Estimated population growth and components of population growth of Monk Parakeets in
Barcelona, Spain, 2003–2006

Year Period λ̂ SEa γ̂ SE

2003–2004 Winter–Summer 2.383 0.568 0.407 0.097
Summer–Winter 0.971 0.177 0.879 0.156

2004–2005 Winter–Summer 1.670 0.265 0.465 0.074
Summer–Winter 1.081 0.204 0.858 0.160

2005–2006 Winter–Summer 1.478 0.142 0.672 0.064
λ̄b 2.04

aEstimated via delta method from separate estimates of SE(φ) and SE(f).
bSquare root of product of estimated seasonal growth rates through summer–winter
2004–2005.
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Table 7 Parameter values used in simulations of Monk Parakeets in Barcelona, Spain, 2003–2006

Parameter Period x̄ SEa

φ Winter–Summer 0.914 0.185
Summer–Winter 0.891 0.075

f Winter–Summer 0.931 0.917
Summer–Winter 0.136 0.266

λb Winter–Summer 1.844 –
Summer–Winter 1.026 –

γ b Winter–Summer 0.515 –
Summer–Winter 0.868 –

aIncorporates both temporal variability and statistical uncertainty
in parameter value.
bEstimate based on mean φ and f; realizations for stochastic
simulations use random draws from distributions of φ and f.

3.2 Decision Model

Our graphical analysis of combinations of proportional reduction in recruitment and
survival resulting in specified values of population growth (Fig. 4) suggests that
proportionally less effort is required in lowering φ than in lowering f to achieve the
same λ∗. Thus, based on purely biological considerations, the most rapid decrease in
population growth could theoretically be achieved by concentrating on decreasing
survival rates. Further, nest removal, the main technique for lowering f may be
difficult because of the high synchronicity in breeding phenology of the species
and the need to apply control within the last two weeks of the breeding period, to
optimize the effort and to reduce time left to the Parakeets for re-breeding. It may
also be socially unacceptable in urban areas, in particular because of perceptions

Fig. 4 Combinations of proportional reduction in recruitment and survival resulting in specified
values of population growth (λ∗) for Monk Parakeets in Barcelona, Spain, 2003–2006, using mean
initial recruitment and survival estimates from Table 7
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Table 8 Optimal allocation of removal to seasonal periods for Monk Parakeets in Barcelona, Spain,
2003–2006

Removal allocationa

λ∗ p1 p2 Effort (hours) Years to achieve 90% reduction

0.95 0.0019 0.510 240 44.9
0.75 0.004 0.618 324 8.0
0.50 0.003 0.754 472 3.3
0.25 0.012 0.889 742 1.7
api = �φ, i=1 (winter–summer), 2(summer–winter)

about abandonment and mortality of pulli during nest removal. By contrast, removal
of adults can be accomplished in urban areas by trapping and translocation or
euthanasia, and can be done in a way that it less disturbing to the public. We thus
shifted focus from allocation of effort between � f vs. �φ, to allocation of removal
effort to winter–summer (�φ1), during which reproduction occurs, and summer–
winter (�φ2), during which reproduction is minimal. We used the constrained opti-
mization approach described earlier to find values of �φ1, �φ2 that achieve λ∗ =
0.25, 0.5, 0.75, and 0.95, while minimizing cost. The results indicate that the optimal
allocation of removal effort is to allocate the bulk of removal to the summer–winter
(Table 8). Costs depend on the desired λ∗, with costs obviously increasing as λ∗

decreases, and with the assumed value of k, with the costs increasing at lower k
(requiring proportionally more removal effort to achieve the same �φ). Assuming
that the specified levels of λ∗can be maintained (e.g., there are no density feed-
backs), parakeets could be nearly eliminated (reduced by 90%) within <10 years if
λ∗<0.75 (Table 8).

The general pattern of these results is confirmed by the stochastic simulations,
with median objective values clearly indicating that removal effort allocated to the
summer–winter period is optimal (Table 9). Under stochastic assumptions, however,
a substantial number of cases arise in which no solution is feasible; i.e., given
the parameter values randomly drawn, it is not possible to achieve λ∗via removal.
These cases occur, not surprisingly, more frequently as the objective becomes more
aggressive, so that at λ∗= 0.25, >25% of simulations had no feasible solution.
In a smaller number of cases, simulations resulted in “no action” scenarios; i.e.,
given the parameter values randomly selected, λ∗ had already been achieved without
removal; these occurred most frequently under less aggressive reduction objectives
(e.g., λ∗ = 0.95).

4 Discussion

In the early 1970’s, the United States Fish and Wildlife Service (USFWS) reduced
USA Monk Parakeet population size by half in three years, by an extensive program
of removal of nests and shooting of adult birds (Neidermeyer and Hikey 1977;
Van Bael and Pruett-Jones 1996). However, the relative success of the different
control methods was not evaluated, particularly important when dealing with large
population sizes, as it is the case with many current Monk Parakeet populations
(Butler 2005). Our demographic analyses and optimizations/simulations suggest
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that the most effective method for reducing parakeet population growth would
be removal via trapping or shooting during the summer–winter period, when
reproductive recruitment is minimal. Besides being less efficient at reduction, nest
removal operations may also be difficult to apply for social and political reasons
(Temple 1992; Van Bael and Pruett-Jones 1996). Nest removal operations must also
be concentrated in a short period of time of about two weeks, because of the highly
synchronous reproduction of the species in our area (Senar and Carrillo-Ortiz
2005) and the need to avoid re-laying. Thus, for both biological as well as social
constraints, removal of individuals rather than nests, with efforts concentrated
during the summer–winter period, are proportionally more effective at reducing
populations. However, we must be clear that these analyses are fundamentally
dependent on critical assumptions, some of which cannot be confirmed with
existing data.

First, our estimates of demographic parameters (φ, f and the derived parame-
ters λ and γ ) are, strictly speaking, applicable only to the population of parakeets
subject to capture in vicinity of the Museum. Although we think that these rates are
reasonably general, and projections based on them agree with the observed popu-
lation trajectory, other portions of the population in Barcelona and environs may
exhibit higher or lower rates. Our examination of resightings of birds marked with
visible tags suggests substantial interconnection between the Museum colony and
other colonies in Barcelona (Senar and Carrillo-Ortiz 2005). Our analysis of survival
and fidelity based on joint recaptures and resightings confirms that emigration from
the Museum population to other colonies is high, and that the Museum popula-
tion also receives substantial immigration from other colonies. However, there is
little evidence of regular exchange with populations beyond Barcelona. Future work
could focus on CR of birds at multiple colonies, thus providing both colony-specific
demographic rates, as well as potentially estimates of movement via multi-state
models (Williams et al. 2002).

Second, recruitment and survival are only partially controllable with nest control
and removal, respectively. A portion of f is, by definition, survival of juveniles to 1
year of age; therefore, removal of flight-capable birds at least partially can contribute
to � f . Also, as earlier noted, a portion of f is contributed by immigration from
outside the local population, and therefore, would not be expected to be influenced
by removal of nests, unless control is conducted over the full distribution of the
species; for Barcelona birds, this would imply city-wide control.

Third, many of our parameter estimates, particularly seasonal growth rates (λ)
but also �, were estimated with poor precision. More seriously, our data did not
allow us to fully evaluate key assumptions underlying our statistical models, so that
estimates may not accurately represent the parameter of interest. Specifically, we
are reasonably confident in our estimates of demographic survival (S) based on the
combined recapture-resighting data. However, we suspect that we have overesti-
mated recruitment (f), in part because of our inability to disentangle in-situ repro-
duction from immigration; this may have also led to unrealistically high estimates of
seasonal population growth rate (λ), and potentially could have biased our estimates
of �. This, in turn, would have caused us not only to overestimate the amount of
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effort required to achieve specified λ values, but potentially could have misled us
in our examination of the relative efficiencies of reductions in recruitment versus
survival. The decision model also relies on a very simplistic relationship between
effort and trapping success, forced on us by the lack of more informative data on
this relationship. If the relationship between removal effort and survival reduction
is variable (e.g., a function of density), then our estimates of both absolute and
relative cost would be biased. Full exploration of the sensitivity of decisions to these
uncertainties would be important to future applications of this approach.

Finally, our models do not incorporate density-dependent feedback or other
compensatory mechanisms, and the absence of these components may affect the
generality of our conclusions. If, for instance, there is a compensatory response
to removal, via density-dependent decreases in other mortality sources, we would
expect to see no response of the population to �φ, up to a critical value that
is determined by a survival in the absence of removal (Anderson and Burnham
1976). Likewise, depression of breeding populations to low levels could trigger a
density-dependent increase in recruitment rates, again at least partially nullifying
the effects of management. Managers wishing to apply these models to control deci-
sions might be prudent to explore optimal decisions under alternative assumptions,
and, if possible, reduce this type of structural uncertainty via adaptive management
(Williams et al. 2002).

Our analyses assume that control could be accomplished over a relatively short
time span, by means of a sufficiently aggressive removal program. In the absence of
such programs the population is predicted to increase rapidly, and our cost equations
do not account for the increased difficulties associated with larger densities of para-
keets. If “waiting for the future” to control parakeets is a decision alternative, then
managers should examine what these future costs might be. Finally, parakeet popu-
lations clearly have an intrinsically great capacity for population growth (Muñoz
and Real 2006), and it seems likely that populations, if not eliminated, could rapidly
expand following cessation of control. Full consideration of the problem thus may
require a more formal, dynamic analysis that takes into account uncertainty in
dynamics, financial discounting, and other factors in allocating control decisions
through time (Taha 1976; Williams et al. 2002).

4.1 Social Considerations

The Monk Parakeet is attractive to many people, so that many efforts to control the
species have become so contentious that they have been abandoned (Temple 1992;
Hyman and Pruett-Jones 1995). In a survey based on 1,800 people in Barcelona city,
80% of people were opposed to the control of the species (Senar and Domènech
2001). However, given the rate of increase and spread of the species in newly
established populations (Muñoz and Real 2006), the potential damage that this can
cause (Bucher and Bedano 1976; Bucher and Martin 1983; Bucher 1984; Temple
1992; Bucher 1992; Senar and Domènech 2001), and the general consideration of
the Monk Parakeet as an exotic invasive species, social considerations should not
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prevent the different relevant governmental organizations from controlling of the
species. Nevertheless, social considerations complicate the control problem. For this
reason, the use of traps, which are more discrete than shooting, may be more advis-
able in urban environments. Additionally, shooting in urban areas is not allowed by
law and may be highly dangerous and contentious.

In rural environments, however, removal by shooting may be a practicable means
of reducing φ, and may be socially accepted, especially by the farmers who suffer
most of the loss. For instance, in 2000–2001, within the agricultural municipality of
Gavà, 76 Monk Parakeets were shot in 24 days, because of attacks on maize fields
(Departament de Medi Ambient pers. comm.). The costs of removal by shooting
will obviously be different from those of trapping. We have no estimates on these
costs for parakeet shooting, but note that costs would only affect k in equation (5),
and would not affect either the relative effect of shooting vs. nest removal, or the
optimal allocation of shooting between seasons (which should be identical to the
optimal allocation of trapping). Since absolute costs would be affected, however,
it would be important to quantify these, and ensure that the costs incurred in
any removal program were justified by the economic damages avoided. We have
mainly focused on the relative costs and benefits of various means of control, on
assumption that such control would be economically warranted, because of difficul-
ties in quantifying economic losses from parakeet damage. Future analyses should
obtain these cost estimates, and better quantify the total costs of proposed control
measures, thus allowing fuller consideration of the economic and social benefits
of control.
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Completing the Ecological Jigsaw

Panagiotis Besbeas, Rachel S. Borysiewicz, and Bryon J.T. Morgan

Abstract A challenge for integrated population methods is to examine the extent
to which different surveys that measure different demographic features for a given
species are compatible. Do the different pieces of the jigsaw fit together? One conve-
nient way of proceeding is to generate a likelihood for census data using the Kalman
filter, which is then suitably combined with other likelihoods that might arise from
independent studies of mortality, fecundity, and so forth. The combined likelihood
may then be used for inference. Typically the underlying model for the census data
is a state-space model, and capture–recapture methods of various kinds are used to
construct the additional likelihoods. In this paper we provide a brief review of the
approach; we present a new way to start the Kalman filter, designed specifically for
ecological processes; we investigate the effect of break-down of the independence
assumption; we show how the Kalman filter may be used to incorporate density-
dependence, and we consider the effect of introducing heterogeneity in the state-
space model.

Keywords Abundance data · Diffuse initialization · Exact initial Kalman filter ·
Grey heron · Grey seals · Heterogeneity · Initialisation of the Kalman filter ·
Integrated analysis · Joint likelihood · Lack of independence ·
Mark-recapture-recovery data · Maximum likelihood · Stable age distribution ·
State-space model

1 Introduction and Background

State-space models are now widely used in ecology; see for example de Valpine
(2002; 2003; 2004); de Valpine and Hastings (2003); de Valpine and Hilborn (2005)
and Dennis et al. (2006). They also provide a framework for combining in a single
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analysis information from several different surveys of wild animals. How this might
be done using methods of classical inference is described in Besbeas et al. (2002,
2003), with further illustrations in Besbeas et al. (2005) and Gauthier et al. (2007).
One of the examples in Besbeas et al. (2002) concerns the grey heron, Ardea cinerea,
on which we have available national census data and ring-recovery data, and we use
a subset of these data to illustrate this paper. The ring-recovery data provide infor-
mation on annual survival probabilities, while the census data provide information
on both survival and productivity. Under the assumption of independence of the two
surveys a combined likelihood is formed from the product of the two component
likelihoods, and inference then follows from maximisation of this combined likeli-
hood. The approach extends flexibly to include additional likelihood components,
for instance possibly referring to productivity or movement. It is sometimes conve-
nient to approximate certain component likelihoods, as explained in Besbeas et al.
(2003). The central likelihood that links the component likelihoods together is that
for abundance data, which in classical analysis may be obtained from a Kalman
filter approach applied to an underlying state-space model; see for instance Webster
and Heuvelink (2006). A major appeal of this type of analysis is its computational
tractability and objectivity. While this paper employs classical methods of statistical
inference, Bayesian methods can be found in, for example, Brooks et al. (2004);
Meyer and Millar (1999) and Millar and Meyer (2000a,b).

However this approach to joint analysis depends on making a number of assump-
tions and adopting certain procedures. For example, it is assumed that the different
surveys are independent; it is assumed that we can approximate discrete distribu-
tions by normal distributions; it is assumed that we can suitably start the Kalman
filter iterations, and it is assumed that the state-space model adopted correctly parti-
tions variation between its transition and measurement processes, to be described
later. The robustness of the normality assumptions has been demonstrated by Brooks
et al. (2004). In this paper we explore the other distinct issues described above,
and the layout of the paper is as follows. In Section 2 we propose a new method
of Kalman filter initiation that is designed specifically for ecological investiga-
tions, and demonstrate its good performance in a simulation study. In Section 3 we
investigate the effect of relaxing the assumption of independence between different
surveys. In Section 4 we show, by means of an example, that it can be possible to
include non-linearity in a standard Kalman filter approach. In Section 5 we investi-
gate how one might include heterogeneity in a state-space model, and also combine
it with heterogeneity in an associated model for mark-recapture-recovery data. The
paper ends with a Discussion section which revisits each issue in turn, and outlines
further avenues for research.

2 Starting the Filter Using a Stable Age-Distribution

The Kalman filter is an efficient computational algorithm for fitting state-space
models to time-series data; see for example Meinhold and Singpurwalla (1983).
In ecological applications, state-space models, which encompass matrix population
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models (Caswell 2001), can be used to provide a straightforward analysis of census
data when fitted by the Kalman filter. Consider the usual linear state-space model

αt+1 = Ttαt + εt

yt = Ztαt + ηt , t = 1, . . . , n,
(1)

where {αt } is a sequence of m × 1 vectors called state vectors, with an initial state
vector α1, {yt } is a sequence of q × 1 observation vectors, there are two sequences
of random variables, {εt } and {ηt }, with zero expectation, and {Tt } and {Zt } are two
sequences of m ×m and q ×m matrices called transition and measurement matrices
respectively. For univariate observations, where q = 1, yt and ηt are scalars. The two
equations above are termed, respectively, the transition equation and the observation
equation. The system matrices Tt and Zt typically depend on unknown parameters,
and the aim of a state-space analysis is to estimate the unknown parameters and state
vectors. In ecological applications both system matrices might be functions of time.
Under the two conditions that the initial state vector is Gaussian with mean E(α1)
and covariance P1 = Cov(α1), both being given, and also that the two sequences
{εt } and {ηt } are mutually independent Gaussian, and are mutually independent of
α1, with covariances Cov(εt ) = Qt and Cov(ηt ) = Ht , respectively, then the model
may be fitted by the Kalman filter. Full descriptions of the state-space modelling
framework and the Kalman filter are provided by, for example, Harvey (1989) and
Durbin and Koopman (2001).

Common to all applications of the Kalman filter is the choice of the mean
and covariance matrix of the initial state vector, α1; see for example Gomez and
Maravall (1993). The initialisation problem of the Kalman filter is an issue requiring
attention in general, in areas such as economics and engineering, but the problem
may be more important in population ecology, where typically there are small
samples, state-space models may involve a large number of states and unknown
parameters, and models are usually non-stationary. For this reason we do not in this
paper consider the method of unconditional initialisation (Harvey 1989, p. 121),
because this method depends critically upon the assumption of stationarity. We shall
now describe three alternative methods of initialisation that may be used, before
outlining a new approach. The work of Sections 2.1–2.3 draws upon Besbeas and
Morgan (2006).

2.1 Diffuse Initialisation

2.1.1 Approximate Diffuse Initialisation

For non-stationary state-space models the unconditional distribution of the state
vector is not defined. In the absence of any prior information, the initial distribution
of α1 may be specified in terms of a diffuse prior. That is, we assume that

α1 ∼ N (0, κI), (2)
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where I is the identity matrix, for very large κ . For univariate observations, this
results in a prior distribution that is updated from the first m observations, which are
not included in the likelihood function (Harvey 1989, pp. 122, 127). In our work we
have set κ = 106. The value assigned to κ is crucial to the success of the approxi-
mation (Harvey and Phillips 1979); if κ is too small the effect of using Eq. 2 does
not diminish quickly enough and the resulting calculations are inaccurate, while if
κ is too large there is a loss of precision through rounding errors. Furthermore it
is not always clear how to decide on the value of m, for instance in the case of
multivariate observations. Unlike in many other areas of application of the Kalman
filter, ecological time-series are relatively short, and diffuse initialisation can reduce
the length of the series appreciably. For instance, in the illustration of Section 4, we
have 21 years of data and m = 7.

2.1.2 Exact Diffuse Initialisation

Exact methods of diffuse initialisation also exist; see for example de Jong (1991).
The exact diffuse approach considered in this paper is described by Koopman and
Durbin (2003) and provides a simple objective algorithm for initialising the Kalman
filter. This approach extends the standard Kalman filter recursions, and in principle
the method determines m automatically.

2.2 Maximum-Likelihood Initialisation

As an alternative, we can assume that α1 is a vector of fixed constants, so that α1 = d
and P1 = 0. Estimating the vector d can then be done by including d in the param-
eter vector θ for estimation as part of the maximum-likelihood (ML) procedure. In
practice, however, the elements of d may not all be identifiable, and the likelihood
may have multiple optima.

2.3 A New Method for Ecological Applications

In population ecology, the state vector αt is typically a vector denoting the numbers
of individuals in the population in a number of classes at time t . Typical elements
of Tt include age or stage-specific survival and productivity parameters and rates
at which individuals in one state make the transition to another state, for example
through immigration or emigration. The matrix Tt is referred to as a Leslie or
Lefkovitch matrix, depending on whether the population is age- or stage-classified,
respectively.

The Perron–Frobenius theorem states that, for appropriate constant transition
matrices T, there exists a real positive eigenvalue λ that is greater in absolute
value (or in modulus, if some of the other eigenvalues are complex) than all other
eigenvalues. The implications of this theorem are that the dominant eigenvalue λ

represents the asymptotic growth rate of the population, and the normalized right



Completing the Ecological Jigsaw 517

eigenvector associated with λ represents the asymptotic proportion of every age or
stage class in the total population. Note that we may obtain λ < 1. We call the
eigenvalue λ the asymptotic growth rate and its corresponding right eigenvector, v,
is called the stable age (or stage) distribution.

We propose starting the Kalman filter by taking the initial mean vector a1 to be
proportional to the stable age (stage) distribution of a Leslie (Lefkovitch) matrix T,
with the proportions scaled by the total size of the first observation, y1. In order
to choose P1 we take the conservative approach of requiring the lower end of a
100(1 − α)% confidence interval for each element of α1 to be non-negative, and
that elements are independent. Thus for example for univariate observations, with
α = 0.05, we take

a1 = vy1/(Z1v), P1 = diag((a1/1.96)2)

where y1 and Z1 are the first observation and measurement vector respectively. In
practice, in order to derive the stable age distribution we need to know T, which may
contain unknown parameters. We select the values for the parameters in T that are
in common with the demographic analyses by using their maximum-likelihood esti-
mates obtained from analysing the demographic data alone. Any remaining param-
eter(s) can be obtained by iteration; for details see Besbeas and Morgan (2006).
When the matrix Tt is time-dependent, then we obtain T by an appropriate time-
average of the Tt .

We now compare these four methods by means of a simulation study based on
an analysis of grey heron data.

2.4 A Grey Heron Application

Taken from Besbeas et al. (2002), the example consists of ring-recovery and abun-
dance data. The demographic data are from birds ringed as young in the UK between
1955 and 1997, and the abundance data arise from a census estimating the total
numbers of breeding pairs in England and Wales between 1928 and 1998 inclu-
sive. For simplicity here, we do not incorporate demographic data on productivity.
However in any case, for this species, it is difficult to obtain such information.
The recovery data are modelled using multinomial distributions involving annual
survival probabilities, φ1, φ2 and φa , of first-year, second-year and older animals,
respectively, and a recovery probability λ, which is the probability of recovery
and reporting of dead marked birds. The survival probabilities are regressed on a
measure of winter severity, w, using logistic regression. As before, time-variation is
denoted by a t subscript. We take w to measure the number of days in a year when
the temperature drops below freezing at a particular Central England location. Thus
we have logit(φ1t ) = β0 + β1wt , logit(φ2t ) = γ0 + γ1wt and logit(φat ) = δ0 + δ1wt ,
where wt denotes the weather severity in year t . In addition, as reporting rates for
dead wild birds in the UK are generally found to decline over time (Baillie and
Green 1987), we set logit(λt ) = ξ0 + ξ1t , where t measures years.
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The census data are described by means of a linear Gaussian state-space model
based on a Leslie matrix, involving a constant productivity measure f and measure-
ment error variance Ht = σ 2, in addition to the survival probabilities. The model
used by Besbeas et al. (2002) is given as⎛⎝N1

N2

Na

⎞⎠
t+1

=
⎛⎝ 0 f φ1 f φ1

φ2 0 0
0 φa φa

⎞⎠
t

⎛⎝N1

N2

Na

⎞⎠
t

+ εt

yt = (
0 1 1

)⎛⎝N1

N2

Na

⎞⎠
t

+ ηt ,

(3)

where N1,t , N2,t and Na,t denote, respectively, the numbers of female herons aged
1-year, 2-years and greater than 2-years at time t . Thus we assume that the census
estimates N2,t + Na,t . Appropriate binomial and Poisson expressions for the vari-
ances of the sequences {ε1,t }, {ε2,t }, {εa,t }, which in obvious notation are the
components of εt , are explained in Besbeas et al. (2002) and Sullivan (1992). In
Section 5 of the paper we consider more general models by introducing hetero-
geneity. Maximum likelihood parameter estimates describing both data sets result
from maximizing the joint likelihood

L j (θ ) = Lr (φ, λ)Lc(ψ,φ), (4)

where θ represents all the model parameters, φ represents all the survival probability
parameters, the census component Lc is formed by the Kalman filter, and Ψ denotes
additional parameters f , σ and also d, if and only if initialisation by maximum
likelihood is to be used, and the ring-recovery component Lr is a product of multi-
nomial distributions, each corresponding to a separate cohort of ringed birds, which
is given in Eq. 5.

2.5 Simulation Comparison of Methods

The simulation study is tailored to the real data application of the last section. For
the simulation study, recovery data with 10, 15 and 20 years of recoveries were
generated using the observed ringing totals and winter severity, wt , in 1988–1997,
1983–1997 and 1978–1997, respectively. These were combined for joint analysis
with independent sets of abundance data from 1984–1998 (n = 15), 1979–1998
(n = 20), 1974–1998 (n = 25) and 1969–1998 (n = 30). The sample sizes
were selected to reflect values typically encountered in population ecology. The
abundance data were generated by simulating a population from 1928 using the
model of Eq. 3. The parameter values used to generate the data were obtained
from a previous joint analysis of all the observed data, and are shown in Table 1.
For each set of simulated ring-recovery and abundance data, the parameters were
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Table 1 Parameter values used to generate the simulated data which are used to compare the perfor-
mance of four different methods for starting the Kalman filter

Parameter Value

β0 −0.191
β −0.022
γ0 0.379
γ −0.017
δ0 1.182
δ −0.014
ξ0 −2.030
ξ −0.833
log f −0.040
log σ 2 12.256
log N1,1 7.278
log N2,1 6.704
log Na,1 7.852

estimated by maximum likelihood from Eq. 4, with the Kalman filter initialised by
four different methods. In the stable age (SA) case, the productivity parameter f
does not have an estimate from demographic information. In the simulation, for
simplicity, rather than employ an iteration method on the parameter f , we instead
choose f at random, uniformly over the range [0.5, 1.5]; this means that the SA
method results could be improved, had an iterative procedure been used.

The SA method was based on the mean transition matrix over the relevant period
to account for annual environmental stochasticity. Thus for each replication we
obtained estimates for survival from the ring-recovery data. These estimates were
combined with a single simulated value for f , generated uniformly on [0.5, 1.5], to
form n − 1 transition matrices for times t = 1, . . . , n. The mean of these matrices
yielded a stable age distribution, v, which we used to initialise the Kalman filter in
the manner of Section 2.3.

The ML method was implemented with d = (d1, d1, d2)′, corresponding to
N1 = N2 in the initial state vector, as only a linear combination of N1,1 and N2,1 was
identifiable in this model. Nonetheless, the method occasionally terminated with
a boundary (zero) estimate for d1, which makes little biological sense, and these
replicates are omitted. The results are given in Table 2. We can see relatively small
differences between the methods, particularly for the cases with 15 and 20 years of
recovery, but across all parameters the SA method performs well in comparison with
the alternatives, in terms of root mean square error (RMSE). Differences between
the methods are more pronounced for intercept rather than slope parameters, and f .
Note that the productivity parameter f appears in the Kalman filter likelihood alone,
and for this parameter the SA method had the smallest RMSE in 11 out of 12 cases.

Clearly RMSE and relative performance will vary with the parameter values, and
dimensions of the study but the results matched to one typical study are encouraging
for use of the SA method. An alternative approach to simply scaling up proportions
by the total size of the first observation is to use simple multinomial sampling, based
on y1, and this is done in the work of Section 4.2.
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3 Dependent Data: Animals in Common Between Ring-Recovery
and Census Data Sets

It is sometimes the case that census data and demographic data are not independent.
This can occur, for instance, in studies involving mammals living on small islands,
an illustration being provided by Tavecchia et al. (2007). It is therefore important to
investigate how such a lack of independence can affect a method of combined anal-
ysis in which component likelihoods are multiplied together. Here we consider the
effect of having dependence between a ring-recovery data set and the corresponding
census data. We do this for a model with two age-classes for survival and with
constant parameters, φ1, φa, and λ; we shall return to this model in Section 5.2.1.
Life histories were constructed for a 20 year period, with φ1 = 0.5, φa = 0.7.
Separate recapture and recovery tables were derived from the life histories, each
of 8 years duration, for a range of values of the probability of reporting of a dead
animal, λ, and probability of recapture of a live animal, p. In addition, observation
error was added to the life histories, to produce census data. Thus in this illustration
there is strong dependence between the various data sets. In the study described
by Tavecchia et al. (2007) the dependence was far less extreme, with demographic
information gathered on a study site which was a relatively small part of an island
where the census took place. The simulations were run 250 times, and mean square
errors calculated for each of the model parameters. Here we only give results relating
to using the recovery information since, with the simulation configuration described
above, the recapture information dominated the census information, so that it was
then far less important whether or not the census information was dependent or
independent. The RMSE results shown in Table 3 are clear. In this example, when
λ = 0.4, when independent census data are combined with recovery data, then for
the three parameters φ1, φa and λ there is a reduction in RMSE from combining
the two data sets. Additionally, we are able, when the data sets are combined, to
estimate the productivity parameter f and the standard deviation σ for the observa-
tion equation. However, when we combine the recovery information with dependent
census data, then RMSEs are mostly increased compared to the case of combining
with independent census data. However for the three parameters, φ1, φa and λ the

Table 3 A simulation study of the effect of combining recovery data with independent and depen-
dent census data. Shown are the RMSEs of each parameter, resulting from 250 simulations

λ Parameter Recovery Recovery + Independent census Recovery + Dependent census

0.4 φ1 0.3474 0.3131 0.3439
φa 0.5505 0.4402 0.5150
λ 0.2587 0.2184 0.2449
f 0.5160 0.5933
σ 0.2027 0.1995

0.7 φ1 0.2245 0.2114 0.2335
φa 0.3980 0.3669 0.3855
λ 0.3961 0.3736 0.5309
f 0.4074 0.4368
σ 0.2086 0.2202
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RMSEs are slightly reduced, compared with using the recovery data alone to esti-
mate those parameters. When λ = 0.7, the effect of the dependency is more serious,
and although the effect of data combination is again that we can now estimate f and
σ , as well as RMSEs increasing relative to the case of combining independent data,
the RMSEs for two out of the three parameters φ1, φa and λ are increased relative
to the values that result when only the recovery data are used. While this is only a
single study, the message is that one should take care conducting combined analyses
for dependent data sets. We note finally that the paper by Barker and Kavalieris
(2001) is relevant to the study of this section, as it considers the information gained
from combining data sets with common parameters. Where our work is different is
in considering small sample results for mean square errors – Barker and Kavalieris
obtained large sample results, with no consideration of bias.

4 Non-Linearity: An Illustration Involving Grey Seals

For the case where the state-space model is non-linear, variations on the Kalman
filter, such as the extended Kalman filter, have been developed; see, e.g., Chen
(1993). However in certain important cases, non-linear models can be regarded as
conditionally Gaussian, when a standard Kalman filter analysis may be carried out –
see Harvey (1989, p. 156). Here system matrices, Tt , may depend upon previous
observations, up to and including yt , in the notation of Eq. 1. We illustrate this
approach by means of an application to populations of grey seals, Halichoerus
grypus. The study of grey seals on the British coast dates from 1960, when the
animal was protected; this is the earliest example of a protected British animal
species. In the work that follows we use census data from 1984 to 2004 from one
colony, Faray, as previous data from that colony are unreliable. The ecology and
scientific study of the grey seals are complicated by the distribution of animals
over many different physical locations, and by their movement between these. The
research encompasses separate investigations of pup and adult survival, of fecundity,
and of annual pup censuses. A novelty of the grey seal application is that in this
instance, the annual censuses are aerial, and focus on the newly born pups in each
year. This is because the pups are readily counted on the resulting photographs, as
pups have white fur.

4.1 Model for Grey Seals

In this work we employ approximating likelihoods for first year and adult seal
survival probabilities, obtained respectively from Hall et al. (2001) and Pomeroy
(pers. comm.). The capture–recapture work of Pomeroy derives from data collected
on the island of North Rona. The estimates from the Hall et al. (2001) paper,
and from the Pomeroy capture–recapture study were: from Hall et al. (2001):
φ̂

f
1 = 0.8950(0.0339), φ̂m

1 = 0.7360(0.0520), where we distinguish between male
and female first-year survival, and from Pomeroy: φ̂a = 0.9496(0.0100). With the
exception of pups, when both sexes are included, in the modelling work that follows
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we just consider female seals, and use φ1 to denote φ
f

1 . As explained in Besbeas
et al. (2003), the appropriate likelihoods for these parameters were approximated
using normal distributions based on these values.

The state-space model takes the form shown below, where N0 denotes the number
of pups, both male and female, and Ni denotes the number of females of age i, i =
1, . . . , 6+. Here we assume that female seals do not have pups until they are of
age 5, and thereafter productivity is denoted by f . The parameter νt is a probability
of site-fidelity.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

N0

N1

N2

N3

N4

N5

N6+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
t+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 φaν f φaν f
0.5φ1 0 0 0 0 0 0

0 φaν 0 0 0 0 0
0 0 φaν 0 0 0 0
0 0 0 φaν 0 0 0
0 0 0 0 φaν 0 0
0 0 0 0 0 φaν φaν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

N0

N1

N2

N3

N4

N5

N6+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

+ εt

We make the usual Poisson/binomial variances for the components of εt , as was
done previously. The observation equation is now simply given by

yt = N0,t + ηt ,

ie., Zt = (1, 0, 0, 0, 0, 0, 0), and we assume that var (ηt ) = σ 2.
We incorporate all the available information from setting

L j (φ1, φa, β, f, σ ) = N (φ1; φ̂1, σ̂1) × N (φa; φ̂a, σ̂a) × Lc(φ1, φa, β, f, σ )

where β is a carrying-capacity related parameter, included to slow down growth,
we use N to denote a univariate normal probability density function, and σ̂1 and σ̂a

are respectively the appropriate estimated standard errors given above for the two
survival probabilities. When we consider the pup census from the colony on Faray,
we find that the size of the pup population levels off, corresponding, it is thought, to
the operation of some form of density dependence. We considered three alternative
ways to deal with this density dependence, as described in the next section.

4.2 Including Density Dependence

We experimented with 3 different models to account for density dependence, and
they are described below; in each case, all other model parameters are held constant.

(i) Density-dependent pup survival, where for suitable τ ,

φ1,t =
{
φp t = 1984, . . . , τ

φp

1+β(N0,t−N0,τ ) t = τ + 1, . . . , 2004.
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(ii) Density-dependent permanent emigration (or, equivalently, adult survival)

νt =
⎧⎨⎩1 t = 1984, . . . , τ

1
1+β(N0,t −N0,τ ) t = τ + 1, . . . , 2004.

(iii) Broken-stick fecundity. The idea here is that there is a change-point in fecun-
dity at a certain time. How to devise such a model is explained in Besbeas et al.
(2005). This results in a linear model and so the details are not given here.

We illustrate performance of these models in Fig. 1 with τ = 1990, replacing N0,t

by yt , as appropriate. The first and second of the above models are non-linear but
may be treated as conditionally Gaussian, and can be fitted in the usual way by the
Kalman filter. Conditionally Gaussian models arise when the non-linearity involves
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Fig. 1 Pup census data from Faray, showing the relative fits of three alternative models to account
for apparent density dependence. The separate solid line denotes the census data. The models are:
(i) density dependent pup survival, (ii) density-dependent emigration (or death) and (iii) broken-
stick fecundity. The text explains the 100 replicate model fits in each case, which result from
smoothing the Kalman filter estimates (Harvey 1989, p. 154). Also shown as the limits of grey
shaded areas are the values of yt ± 1.96σ̂m , where σ̂m is the median of the 100 estimates of σ
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elements of the state-space vector from the previous observation time, estimated
by the corresponding observations at that time. In this application we used a stable
age-distribution start to the Kalman filter, as described in Section 2.3. Instead of
obtaining a single set of fitted values, we sampled from the normal distributions for
φ1 and φa , obtained as explained above. In addition we used multinomial sampling
based on y1, as described in Section 2.5. This was then repeated 100 times, to give
the several fitted curves for each of the three models, in Fig. 1, each corresponding
to a different stable age distribution start to the Kalman filter. The fitted values result
from smoothed Kalman filter estimates (Harvey 1989, p. 154). In this application,
we averaged the T t matrices for only the start of the time-period, which also avoided
having to obtain an estimate of β when forming the T t matrices. Had we needed an
estimate of β to form a T t matrix, then we could have done so by sampling from
an appropriate prior distribution for β. It appears from Fig. 1 that the model with
density-dependent emigration/survival provides the best description of the data, and
this is also thought to be the most sensible model from an ecological perspective: as
colonies fill up, then animals emigrate.

Seals produce a single pup each year, and the effect of perinatal mortality is
that we should expect to obtain f̂ < 1. In fact, we obtain the boundary esti-
mate, f̂ = 1, in all of the replications. This incorrect finding is probably due to
the model including density-dependent emigration (mortality), but not including
corresponding immigration. Work in progress also allows for immigration, and good
model fits are then obtained in agreement with a value of f < 1.

The fitted curves exhibit little of the irregular variation seen in the count data,
and a better-fitting model might arise from the logistic regression of the survival
probabilities on a suitable weather covariate, as in Section 2.5.

5 Heterogeneity in Ring-Recovery and State-Space Models

In a state-space model there are two types of variation, in the transition and obser-
vation equations, respectively. In this section of the paper we present a prelimi-
nary study of how models effectively divide up the total variation between the two
equations, in the important case when the transition equation includes parameter
heterogeneity (cf., for example Clark et al. 2005). The heterogeneity modelled is
between-individual heterogeneity. We shall use the grey heron data to illustrate the
work of this section, and we shall start by considering in some detail how to incor-
porate heterogeneity in a model for ring-recovery data alone. Morgan and Freeman
(1989) and Freeman and Morgan (1992) describe more general models involving
additional age-dependence in survival, and/or time dependence in all parameters. In
order to write down the likelihood function for the data, we introduce the following
new notation. Let the number ringed in year l ≤ i ≤ r be Ri , the number recov-
ered in year l ≤ j ≤ c, having been ringed in year i , be mi j , and let the number
unrecovered from the year i cohort be ui = Ri − ∑c

j=i mi j . Let the model proba-
bility corresponding to mi j be pi j and let qi = 1 − ∑c

j=i pi j be the probability of
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non-recovery from the i th cohort. A particular model for the data consists of a speci-
fication of the probabilities pi j ≡ pi j (φ, λ) in terms of the model parameters. Then,
provided the birds suffer independent fates, the likelihood is product-multinomial,
with log-likelihood given by

log Lr (φ, λ) =
r∑

i=1

c∑
j=i

mi j log pi j +
r∑

i=1

ui log qi , (5)

where terms not depending on the parameters have been omitted. This is the ring-
recovery log likelihood, as encountered earlier in Eq. 4. In order to display appro-
priate multinomial cell probabilities below, we shall take a ring-recovery study
with birds ringed as nestlings for r = 3 successive years, and recoveries recorded
for the c = 4 years following the initial ringing. In the simplest case, parame-
ters are constant, and the recovery probabilities are given in Table 4 for the case
of just two age-classes for survival, with corresponding probabilities, φ1 and φa .
For each cohort, the probabilities of non-recovery are (1− the corresponding row
totals).

5.1 Allowing for Heterogeneity in Recovery Data Alone

This section describes how models for ring-recovery data that allow for hetero-
geneity in their parameters can be specified and fitted in a straightforward manner
using maximum likelihood. The new models include all of the models discussed
by Freeman and Morgan (1992) as special cases, including those incorporating
covariates. For illustration we concentrate on heterogeneity in adult survival, but
the approach is general and not restricted to introducing overdispersion in one
parameter alone. As we shall see, it is important to consider heterogeneity in tandem
with model-structure, and so we provide a detailed study of heterogeneity for ring-
recovery data before we consider how also to include heterogeneity in a state-space
model, and in the combination of the same with a ring-recovery model.

We can allow for variability in φa by giving it a beta distribution, with density
function

f (φ) = �(α)�(β)

�(α + β)
φα−1(1 − φ)β−1, 0 ≤ φ ≤ 1,

Table 4 Cell probabilities {pi j } for a simple model for recovery data, with no over-dispersion. In
this illustrative example there are three years of ringing and four years of recovery

Year of ringing Year of recovery

1 2 3 4

1 (1 − φ1)λ φ1(1 − φa)λ φ1φa(1 − φa)λ φ1φ
2
a (1 − φa)λ

2 (1 − φ1)λ φ1(1 − φa)λ φ1φa(1 − φa)λ

3 (1 − φ1)λ φ1(1 − φa)λ
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where α, β > 0 are the parameters of the distribution. For related work, see Barry
et al. (2003); Pollock and Raveling (1982) and Burnham and Rexstad (1993). It is
straightforward to show that

E
[
X g(1 − X )h

] = �(α + β)

�(α)�(β)

�(α + g)�(β + h)

�(α + β + g + h)
(6)

var (X ) = αβ

(α + β)2(α + β + 1)
(7)

when the random variable X has the beta probability density function f (φ).
The recovery probabilities in Table 4 are no longer appropriate in the new frame-

work because φa is now random. In order to account for variation in φa we replace
the random multinomial probabilities pi j by their expected values, p∗

i j . Thus this
approach involves calculating the expectations E(pi j ) with respect to the distri-
bution of φa , which, from Eq. 6, are straightforward to obtain. For example, the
expected recovery probabilities corresponding to the probabilities in Table 4 are
given in Table 5. The log-likelihood for the data may then be calculated using Eq. 5,
with pi j replaced by p∗

i j .
In order to incorporate environmental covariates, as in Section 2.4 for example,

it is convenient to use an alternative parameterisation, in which the beta distribution
is parameterised in terms of its mean, μ = α/(α + β), and a second parameter
θ = 1/(α + β). We can now easily introduce logistic regressions on covariates
through the parameter μ; see Crowder (1978). The second parameter, θ , is propor-
tional to the variance of the beta distribution, and here we assume that θ is constant,
although a logarithmic regression of θ on covariates is just as easily introduced.
When θ = 0 the model reduces to the form illustrated in Table 4. The corresponding
expressions for the recovery probabilities p∗

i j , in terms of μ and θ , are shown in
Table 6, where we also indicate time dependence of all parameters except for θ ,
which is held constant. We now illustrate this approach by application to the grey
heron data.

Table 5 Cell probabilities {p∗
i j } for a model for recovery data when the adult annual survival

probabilities of Table 4 have a beta distribution, with parameters α, β

Year of recovery

1 2 3 4

1 (1 − φ1)λ φ1
β

α+β λ φ1
α

α+β
β

α+β+1λ φ1
α

α+β
α+1

α+β+1
β

α+β+2λ

2 (1 − φ1)λ φ1
β

α+β λ φ1
β

α+β
β

α+β+1λ

3 (1 − φ1)λ φ1
β

α+β λ
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Table 6 As for Table 5, but now with the (μ, θ) parameterisation for the beta distribution, and with
general time-variation for all parameters except θ

Year of recovery

1 2 3 4

1 (1 − φ11)λ1 φ11(1 − μ1)λ2 φ11
μ1

1+θ (1 − μ2)λ3 φ11
μ1

1+θ
μ2+θ
1+2θ (1 − μ3)λ4

2 (1 − φ12)λ2 φ12(1 − μ2)λ3 φ12
μ2

1+θ (1 − μ3)λ4

3 (1 − φ13)λ3 φ13(1 − μ3)λ4

5.2 Application to Grey Heron Data

Previous modelling of British heron survival (North and Morgan 1979; Besbeas
et al. 2002) included separate survival probabilities for first-year and second-year
animals, and a common probability for older animals, as was done previously in
Section 2.4. In this section we shall consider this survival age structure as well
as alternative survival models. In particular, we experiment with models where
the survival of birds was modelled as being age-dependent to age 1, 2 or 3, and
common for older ages thereafter; it would not seem necessary to introduce further
age classes for survival for these data. For each of the three survival age structures,
we have fitted models involving (i) constant parameters, (ii) time-dependent param-
eters but constant adult survival, and (iii) time-dependent parameters, including
adult survival. As in Section 2.4, when we have time-dependent survival then this
is modelled by logistic regression on a weather covariate, while time-dependent
reporting probability corresponds to logistic regression on time. For survival proba-
bilities we shall use the same single environmental covariate as was used in Section
2.4. We are interested in the effect of assumptions made with regard to heterogeneity
on what we conclude with regard to model structure.

5.2.1 Models with Two Survival Probabilities

In this case the model is that considered in Section 3. The maximum-likelihood
estimates and corresponding maximum likelihood values from models involving
two age classes for survival are given in Table 7. We can see that the use of covariates
greatly improves the maximised likelihood values in both approaches. We can also
see from Table 7, panels (i)–(ii), that the (α, β) and (μ, θ ) parameterisations have
identical likelihoods, as expected. If we also look at panel (iii), we can see that
the model with heterogeneity provides a better description of the data, in terms
of likelihood/AIC value. There are interesting differences between the maximum-
likelihood parameter estimates from the two approaches. Table 7 (iii) also shows
differences between estimates of precision for the common parameters, with the
new approach providing more conservative estimates of standard error, as a result
of the variability introduced into φa . The estimated beta distribution for φa from the
new approach is shown in Fig. 2 (solid line).
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Fig. 2 An illustration of how increasing the age-structure for annual survival probabilities in a
model for ring-recovery data can reduce the amount of heterogeneity needed in the model. Shown
are the estimated beta distributions assumed for the adult survival probability φa . Solid line: when
there are two survival probabilities in the model; dashed line: when there are three survival prob-
abilities in the model; dash-dotted line: when there are four survival probabilities in the model

5.2.2 Models with Three Survival Probabilities

We also considered models distinguishing a separate probability of survival, φ2, for
birds in their second year of life, as in Section 2.4. Thus, in these models, φ1 denotes
the probability of first-year survival, as before, but the probability of adult survival,
φa , applies to birds aged 2 years or older. The maximum-likelihood estimates and
likelihood values from these models are shown in Table 8.

The use of three age classes for survival is seen to improve the fit of the models,
but now less so for the models with heterogeneity. There are smaller differences
between the maximum-likelihood estimates from the models with and without
heterogeneity. However, the former models still provide a better description of the
data. It is interesting to note that the regression of adult survival on weather severity
is only significant in the model without heterogeneity. In fact there is no evidence
that the mean of the beta distribution changes with time, as a model having a sepa-
rate value for μ for each year, μt , has a maximised log-likelihood of −8456.25.
Note that the estimate of θ , which determines the spread of the beta distribution,
shrinks as the model becomes more sophisticated. The fitted beta distribution for
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φa is plotted in Fig. 2 (dashed line). The distribution has become more focused, as
second-year survival has been decomposed into its constituent rate, φ2, and is no
longer incorporated into φa .

5.2.3 Models with Four Survival Probabilities

Figure 2 and Table 8 (iii) demonstrate that there is still an amount of heterogeneity in
adult survival. For example, an approximate Wald-test statistic of θ = 0 equals 1.95,
which is nearly significant at the 5% significance level. We therefore considered
models also distinguishing a separate probability of survival, φ3, for birds in their
third year of life. The results from fitting these models are shown in Table 9 and Fig.
2 (dash-dotted line). Note that the probability of adult survival, φa , now applies to
birds aged 3 years or older

The use of four age classes for survival is seen to improve further the fit of the
models, particularly for the models without heterogeneity. It is interesting, therefore,
that previous modelling of grey heron survival has concentrated on three age classes.
There are now only minor differences between the maximum-likelihood estimates
from the models with and without heterogeneity. Estimates of precision are gener-
ally larger for the models with heterogeneity, as previously. However there is no
evidence of heterogeneity in adult survival, and refitting the models with zero θ only
changes the likelihood by < 0.5. There is also no evidence, in Table 9 (iii), from
simple Wald tests, that the regressions of third-year and adult survival on winter
severity are significant. This is further illustrated in Table 10, where it is seen to
hold in both presence and absence of heterogeneity, in contrast to the case of three
age classes for survival (cf. Table 8(iii)).

The conclusion from this study of heterogeneity in adult survival when one
is modelling ring-recovery data alone is that heterogeneity appears to depend on
the model structure. If one has enough survival age-classes in the model then one
does not need a heterogeneity parameter to account for age-variation in survival.
We now consider how this conclusion may change when one is performing a joint
analysis.

5.3 Accounting for Heterogeneity in State-Space Models
and in Combined Modelling

In state-space modelling it has been natural to use binomial error variances, for
when a number n of individuals survive or die in any particular year, and Poisson
error variances for when one considers recruitment, as from reproduction. In both of
these cases, we can allow for heterogeneity, and in this section we explain how this
might be done by simply focussing upon the binomial distribution for adult animals.
We replace the binomial variance of nφa(1−φa) by the corresponding beta-binomial
variance which is given by



534 P. Besbeas et al.

Ta
bl

e
9

M
ax

im
um

-l
ik

el
ih

oo
d

es
tim

at
es

of
pa

ra
m

et
er

s
fo

r
a

ra
ng

e
of

m
od

el
s

fo
r

ri
ng

-r
ec

ov
er

y
da

ta
al

on
e

w
he

n
th

er
e

ar
e

fo
ur

su
rv

iv
al

pr
ob

ab
ili

tie
s.

T
he

co
nv

en
tio

n
fo

r
co

lu
m

n
la

be
lin

g
ad

op
te

d
he

re
is

th
e

sa
m

e
as

th
at

us
ed

in
Ta

bl
e

7

(i
)

C
on

st
an

tp
ar

am
et

er
s

(i
i)

C
on

st
an

ta
du

lt
su

rv
iv

al
(i

ii)
T

im
e-

de
pe

nd
en

tp
ar

am
et

er
s

H
et

er
og

en
ei

ty
H

et
er

og
en

ei
ty

H
et

er
og

en
ei

ty

Pa
ra

m
et

er
W

ith
ou

t
(α
,
β

)
(μ
,
θ

)
W

ith
ou

t
(α
,
β

)
(μ
,
θ

)
W

ith
ou

t
(μ
,
θ

)

φ
1

in
te

rc
ep

t
−0

.2
58

2
−0

.2
53

9
−0

.2
53

9
−0

.1
98

2
−0

.1
94

8
−0

.1
94

8
−0

.1
97

8(
0.

04
84

)
−0

.1
94

6(
0.

04
88

)
φ

1
sl

op
e

(β
1
)

−0
.0

30
9

−0
.0

30
8

−0
.0

30
8

−0
.0

30
9(

0.
00

54
)

−0
.0

30
8(

0.
00

54
)

φ
2

in
te

rc
ep

t
0.

30
46

0.
31

21
0.

31
21

0.
38

14
0.

38
72

0.
38

72
0.

38
23

(0
.0

74
2)

0.
38

75
(0

.0
75

0)
φ

2
sl

op
e

(γ
1
)

−0
.0

15
6

−0
.0

15
5

−0
.0

15
5

−0
.0

15
5(

0.
00

68
)

−0
.0

15
5(

0.
00

68
)

φ
3

in
te

rc
ep

t
0.

78
05

0.
79

15
0.

79
15

0.
88

33
0.

89
14

0.
89

14
0.

88
45

(0
.1

04
3)

0.
89

19
(0

.1
06

6)
φ

3
sl

op
e

−0
.0

15
4

−0
.0

15
4

−0
.0

15
4

−0
.0

15
5(

0.
00

92
)

−0
.0

15
5(

0.
00

92
)

φ
a

in
te

rc
ep

t
1.

27
36

1.
34

38
1.

34
32

(0
.0

90
3)

φ
a

sl
op

e
(δ

1
)

−0
.0

07
0(

0.
00

64
)

α
26

.1
01

6
38

.6
87

2
β

7.
73

36
10

.4
81

9
μ

in
te

rc
ep

t
1.

21
64

1.
30

59
1.

30
73

(0
.1

05
7)

μ
sl

op
e

−0
.0

06
9(

0.
00

64
)

θ
0.

02
96

0.
02

03
0.

01
88

(0
.0

32
0)

λ
in

te
rc

ep
t

−2
.1

80
8

−2
.1

78
7

−2
.1

78
7

−2
.0

28
7

−2
.0

27
0

−2
.0

27
0

−2
.0

28
5(

0.
02

56
)

−2
.0

27
0(

0.
02

59
)

λ
sl

op
e

−0
.8

31
9

−0
.8

31
8

−0
.8

31
8

−0
.8

30
3(

0.
04

63
)

−0
.8

30
2(

0.
04

63
)

−
lo

g
L

r
86

61
.1

8
86

60
.6

8
86

60
.6

8
84

76
.1

3
84

75
.8

9
84

75
.8

9
84

75
.5

3
84

75
.3

2



Completing the Ecological Jigsaw 535

Table 10 A comparison of minus the maximised log-likelihood values when models are fitted to
ring-recovery data alone, there is regression of certain survival probabilities on a measure of winter
severity, w, regression of the reporting probability on time and the heterogeneity parameter θ is
excluded (case (i)) or included (case (ii))

(i) Without overdispersion − log Lr No. of parameters

φ1(w), φ2(w), φ3(w), φa(w), λ(t) 8475.53 10
φ1(w), φ2(w), φ3(w), φa, λ(t) 8476.13 9
φ1(w), φ2(w), φ3, φa, λ(t) 8477.53 8

(ii) With overdispersion − log Lr No. of parameters

φ1(w), φ2(w), φ3(w), μ(w), θ, λ(t) 8475.32 11
φ1(w), φ2(w), φ3(w), μ, θ, λ(t) 8475.89 10
φ1(w), φ2(w), φ3, μ, θ, λ(t) 8477.28 9

nμ(1 − μ)

{
1 + θ (n − 1)

1 + θ

}
.

Here μ is the mean of the beta distribution assumed for φa , and θ is proportional to
the variance of that distribution, as in the ring-recovery work described above. When
this is done, we can now combine the ring-recovery and census data likelihoods,
with the beta-distribution parameters μ and θ in common. Of course, in practice it is
possible that one or other of the two data sets might experience more over-dispersion
than the other, and that possibility is easily accommodated.

We provide an example of joint analysis of ring-recovery and census data
with heterogeneity in both cases by returning to the heron example. For illustra-
tion, we consider the model with parameters φ1(w), φ2(w), φ3, μ, θ, λ(t), σ and f .
The profile log-likelihood for the two dispersion parameters, σ , corresponding to
the state-space observation equation, and θ , corresponding to the beta-distribution
assumed for the annual survival probability φa of adult birds is shown in Fig. 3.
The change in the maximised log-likelihood values, between fixing θ = 0 and esti-
mating θ is 23, and the estimated value of θ is θ̂ = 0.0635(0.0129). Thus we have
strong evidence against θ = 0, in contrast to the analysis of the ring-recovery data
alone. We can see here how the introduction of θ reduces σ , and at the same time
increases θ . The estimators of these two dispersion parameters are negatively corre-
lated, as one might expect. The heron census includes the winter of 1962, which
was extremely severe, resulting in a very large decline in the census count for the
following year. In a model without the dispersion parameter θ , this variation had to
be described by the observation dispersion parameter σ alone. The inclusion of θ
allows the variation to be shared between the two parts of the model.

In this example, although we have seen large, but explainable, changes in the
parameter σ , the other model parameters are remarkably stable (results not shown
here), and it is gratifying that they and their standard errors change little when
overdispersion is added to the model. However, this one example shows that dealing
with heterogeneity in modelling ring-recovery and census data needs very careful
thought. Furthermore, model-selection in this area may need to be informed by
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Fig. 3 Combined modelling of ring-recovery and census data for the grey heron, with a common
over-dispersion parameter θ . Profile log-likelihood for the two dispersion parameters σ and θ . The
model fitted here has the parameters, φ1(w), φ2(w), φ3, μ, θ, λ(t), σ and f. The location of the
maximum is denoted by ×

additional/biological considerations, which might for instance provide guidance on
the appropriate magnitude of measurement error.

6 Discussion and Further Research

We have provided preliminary investigations of a number of aspects of using the
Kalman filter to fit state-space models to ecological time-series in conjunction with
modelling demographic data. In Section 2 we have presented a way of initiating
the Kalman filter which is particularly suited to ecological applications, has good
performance relative to alternatives, and is very simple to use, especially for the case
of multiple time-series, and we have also shown how the method may be adapted,
in the work of Section 4. It is especially attractive to be able to use a method in
ecology which depends on an ecological construct such as a stable age distribution.
As emphasised by Besbeas and Morgan (2006), not only is this initialisation method
easy to use, but it is also superior to competitors when one is dealing with multiple
time-series. In Section 3 we provided a brief illustration of the potential dangers
of combining dependent data sets, emphasising that this feature of joint analysis
might be important in any particular application. In Section 4 we showed how non-
linearities may be easily accounted for if a resulting model is treated as conditionally
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Gaussian. In Section 5 we showed how to include heterogeneity in models for both
census and ring-recovery data, and demonstrated the effect of doing this on grey
heron data. From a detailed analysis of the ring-recovery data alone, it was empha-
sised that it is vital to use a correct model-structure, as otherwise a heterogeneity
parameter will describe lack of fit, and this is especially important when combining
information.

There is potential for much more research, for instance with regard to hetero-
geneity in other parts of the state-space model, and also with regard to checking
for parameter stability as the dispersion features of the model are changed, and
we are continuing work in all of the areas covered in the paper. More generally,
fruitful additional areas for research in integrated population modelling relate to
goodness-of-fit, model-selection, relative amounts of information described, with
regard to how one might model the observation variance in terms of the current
population sizes, and in determining the parameter redundancy status of state-space
models, and how that might change as models are combined in a single analysis.
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Using a State-Space Model of the British Song
Thrush Turdus philomelos Population to
Diagnose the Causes of a Population Decline

Stephen R. Baillie, Stephen P. Brooks, Ruth King, and Len Thomas

Abstract We investigated the utility of state-space models for determining the
demographic causes of population declines, using the Song Thrush as an example.
A series of integrated state-space models were fitted to census and ring-recovery
data from the United Kingdom for the period 1968–2000. The models were fitted
using Bayesian MCMC techniques with uniform priors and were ranked using
the Deviance Information Criterion (DIC). Ring-reporting rates were modelled as
a declining logit-linear function of year, with separate slopes for first-year birds
and adults. The system process involved three demographic parameters, first-year
survival, adult survival and productivity. Survival rates were modelled as year-
specific, as specific to blocks with uniform population growth rates, or as logit-linear
functions of weather or year. Productivity rates were modelled as random annual
effects, as block-specific or as log-linear functions of year. We fitted 17 such models
chosen on the basis of our prior knowledge of this system, given that it was not prac-
tical to fit all potential models. Six models within 10 points of the smallest DIC value
were selected for inference. The posterior distributions from these preferred models
suggest that population growth rates are best correlated with first year survival and
that and that there is also a pattern of consistent but weaker correlations between
population growth rate and adult survival. Correlations between population growth
rates and productivity were more variable, and may have been influenced by errors
in other parts of the model, as productivity is essentially measured by difference.
Thus in this analysis the evidence for productivity having a substantial influence of
population changes is equivocal. The interpretation of these results and the potential
value of integrated state-space models for research into the population dynamics of
declining populations are discussed.

1 Introduction

Many wild bird populations have declined in recent years as a result of large-scale
environmental changes (Baillie et al. 2006). Some populations need to be managed
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to reduce their economic impacts or to protect other wildlife, while others need
to be managed in ways that will produce a sustainable harvest. To address any of
these management objectives it is important to understand the demographic and
ecological processes that bring about population changes (Baillie 2001; Caughley
1994; Green 1995, 1999).

The British Trust for Ornithology operates an Integrated Population Moni-
toring programme, which monitors the abundance and demographic rates of a large
number of widespread bird species (Baillie 1990). To-date most applied analyses
of these data have involved estimating relative abundance and individual demo-
graphic rates from appropriate statistical models, and then exploring the conse-
quences of these estimates using simple demographic models (Baillie and Peach
1992; Siriwardena et al. 1999; Thomson et al. 1997; Freeman and Crick 2003).
Freeman et al. (2007) present a partially integrated approach where a population
model is fitted directly to the site-specific census data but productivity and survival
are still incorporated as “known constants” derived from separate statistical models.
Fully integrated approaches allow parameter estimation and demographic modelling
to be combined within a state-space model (Besbeas et al. 2002; Buckland et al.
2004; Thomas et al. 2005; Morgan 2008). Lapwing (Vanellus vanellus) data from the
UK have been used to explore the use of this approach for birds. Models can be fitted
using the Kalman filter under certain normality assumptions (Besbeas et al. 2002,
2005; Besbeas and Freeman 2006) or within a more general Bayesian framework
based on MCMC methods (Brooks et al 2004; King et al. 2006).

Here we explore the use of state-space models to investigate the demographic
causes of population declines using the Song Thrush (Turdus philomelos) popu-
lation of the United Kingdom as an example. Unlike the Lapwing, for which the
recovery analysis must be based on birds ringed as nestlings, we were able to
model recoveries of Song Thrushes ringed as juveniles and adults. The population
of this species declined by 51% between 1967 and 2003 (Baillie et al. 2006) and
it is currently red listed. However, Song Thrushes are reasonably abundant and
widely distributed in the UK, with an estimated population size of 1.1 million pairs
(Gibbons et al. 1993; Baker et al. 2006). They have therefore continued to be reason-
ably well represented in demographic monitoring schemes throughout the period of
the decline. The demographic causes of the decline of this species have been the
subject of several previous studies (Baillie 1990; Thomson et al. 1997; Robinson
et al. 2004). This earlier work provides a good basis for evaluating the potential role
of state-space modelling.

2 Methods

2.1 Field Methods and Sources of Data

This analysis is based on a long-term series population data for Song Thrushes from
Britain. Relative abundance was measured using territory counts from the Common
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Birds Census and survival estimates were derived from ring recovery data. The data
set analysed here was exactly the same as that used by Robinson et al. (2004) except
that we have omitted recoveries of birds ringed as nestlings. Details of the data
gathering methods have therefore not been repeated here. Methods of analysis are
set out below.

2.2 Census Data

The census data were taken from the Common Birds Census using the years 1968–
2000. This provides counts of the number of territories present on each plot in
each year that it was censused, based on the mapping method. Many plot years
are missing from the data set, due mainly to turnover of plots within the scheme. A
population index and its variance were calculated using the method of King et al.
(2006, Appendix A). Annual indices were calculated initially using a log-linear
Poisson regression model fitted as a generalized linear model (GLM) with cate-
gorical site and year effects. Thus:

et =
( K∑

k=1

exp(αk + βt )
)

where et is the index in year t, 	k is the site effect for year k and �t is the year
effect for year t, both from the GLM. The GLM also gives asymptotic standard
errors for the site effects (sk) and year effects (�t).

We used an estimate of the natural logarithm of the total number of territories
present on all plots that had been included in the CBC during the study period
(1968–2000) as an index of population size. We take logs here due to the skew-
ness of the underlying distribution. Our new index was calculated by Monte Carlo
integration using:

γt = ln
( K∑

k=1

exp(ak + bt )
)

where �t is the index of abundance in year t, ak is the site effect for year k and bt

is the year effect for year t. We treat ak and bt as random variables where:

ak ∼ N (αk, s2
k ) and bt ∼ N (βt , τ

2
t )

and the two distributions are assumed independent. The �t are then calculated
by drawing values of ak and bt from their respective distributions to obtain a series
of values for �t and the sample mean taken as an estimate of the population index.
Similarly the variance of the �t provides an estimate of the variance of the population
index. This procedure gives an index on a log-normal scale, with variances that take
full account of the errors in the site and year effects.
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The census data were also used to identify periods with similar population growth
rates (Fewster et al. 2000; Robinson et al. 2004). A generalized additive model with
site effects and a smoothed trend function was fitted to the data. Significant turning
points (p<0.05) were identified from the second derivatives of the smoothed popu-
lation trend by bootstrapping on sites. We based our analysis on logarithms of the
smoothed series so that turning points would represent changes in the relative rate
of population change. Within the time series from 1968 to 2000 turning points were
identified in 1975, 1979, 1983, 1987, 1992 and 1998. These turning points were
used to define blocks of years within which particular demographic parameters were
assumed to be constant within some of our models (Table 1).

2.3 Ring Recoveries

The ring recovery models were based on a two age-class model where birds were
ringed as juveniles and adults (Brownie et al. 1985). The analysis uses recoveries
of Song Thrushes ringed as adults or as free flying juveniles between April and
September. Details of exactly how recovery years were defined are given in Fig. 1
of Robinson et al. (2004). The numbers ringed in the first cohort and the expected
frequencies of recoveries of birds ringed as adults (first row) and as juveniles
(second row) in the first year of ringing and the first three years of recoveries are as
follows:

Na1 Na1(1 − Sa1) λa1 Na1Sa1(1 − Sa2)λa2 Na1Sa1Sa2(1 − Sa3)λa3

Nf1 Nf1(1 − Sf1)λf1 ,Nf1Sf1(1 − Sa2)λa2 Nf1Sf1Sa2(1 − Sa3)λa3

Table 1 Seventeen combined models ranked using the deviance information criterion. The termi-
nology used to define these models is given in the text

Number of
Model First-year survival Adult survival Productivity parameters � DIC

AWR Year-specific Drought Random effects 73 0.0
BWR Blocks Drought Random effects 48 0.1
AWB Year-specific Drought Blocks 78 1.5
WWR Frost Drought Random effects 43 3.2
AWY Year-specific Drought Year trend 73 5.1
BWB Blocks Drought Blocks 53 7.2
BAR Blocks Year-specific Random effects 78 11.8
AAR Year-specific Year-specific Random effects 103 13.2
BBR Blocks Blocks Random effects 53 15.4
ABR Year-specific Blocks Random effects 78 15.5
WAR Frost Year-specific Random effects 73 16.2
WBR Frost Blocks Random effects 48 17.9
AAY Year-specific Year-specific Year trend 103 23.1
AAB Year-specific Year-specific Blocks 108 24.0
BBB Blocks Blocks Blocks 58 24.2
WAY Frost Year-specific Year trend 73 38.3
YWB Year trend Drought Blocks 48 44.5
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The above example shows the full model where adult survival (Sa), first year
survival (Sf), adult reporting rate (
a) and first year reporting rate (�f) all have
annual parameters. Na1 represents the number of adults ringed in year 1 and Nf1

the number of juveniles ringed in year 1. In all of our analyses we used reduced
parameter models for some or all of these parameters as detailed below.

2.4 Modelling Ring Reporting Rates

A large number of ring reporting rate models for this data set were examined by
Robinson et al. (2004). This included a model in which reporting rates were both
age and year-specific, and various simpler models with additive age effects and with
either year-specific or logit-linear effects of time. There was a significant decline in
reporting rates with time, a pattern that has been found in several other datasets
(Baillie and Green 1987; Freeman et al. 2007). There was strong support for a
model that showed a logit-linear decline in reporting rate, with separate slopes and
intercepts for the first year and adult age classes. This model was the most strongly
supported for all nine parameterizations of survival rate considered by Robinson
et al. (2004). Thus:

logit (λf) = af year + bf

logit(λa) = aa year + ba

This model for reporting rates has therefore been used for all of the analyses
presented in this paper.

2.5 Modelling Survival

The survival rates of Song Thrushes have been shown to be dependent on weather
during both winter and summer (Thomson et al. 1997; Robinson et al. 2004). Their
main food is soil invertebrates, particularly earthworms, which may become inac-
cessible during periods of severe winter weather. Similarly, drought may severely
restrict access to soil invertebrates during the summer.

We extracted weather data for three weather stations that are broadly representa-
tive of Lowland England where most Song Thrushes are ringed. For each station we
calculated the length of the longest consecutive period of freezing weather (mean
air temperature < 0) between October and March and the length of the longest
period of consecutive days with negligible rainfall (total daily rainfall less than
1 mm) between June and mid-August. These values were then averaged across the
three weather stations and are referred to as frost days and drought days respectively
(Robinson et al. 2004).
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We therefore considered models where survival is a logit-linear function of
weather. These were:

logit (Sf) = af frost +bf

logit (Sa) = aa drought + ba

We restrict our modelling of relationships between weather and survival to these
two equations following the earlier analysis of these data by Robinson et al. (2004).
They found that modelling either first year or adult survival in relation to both frost
and drought did not increase the amount of variation explained significantly. We
also considered models in which survival was year-specific, block-specific or a
logit-linear function of time. Block models assumed that survival rates of the age
class concerned (first year or adult) were constant within periods of similar popu-
lation growth rates, determined from turning points in the abundance trajectory as
described above.

2.6 Modelling Productivity

Our data set did not include any explicit estimates of reproductive rates. Productivity
was therefore calculated by difference using the overall measures of population
change and the first year and adult survival data. The productivity measure used
here therefore represents the number of young produced per breeding female up to
the mean date when birds are ringed as juveniles. It therefore incorporates variation
due to number of breeding attempts, number of fledglings produced per attempt and
survival over the first 63 days after fledging (Robinson et al. 2004).

We initially considered a model with year-specific estimates of productivity.
However, such a model is likely to result in over fitting where productivity is
calculated by difference, because the estimated population growth rates from the
demographic parameters will always be identical to those derived directly from the
census data. We therefore fitted the following random effects productivity model:

Pt ∼ N(P, σ 2)

where Pt represents the annual productivity effects, P is the mean productivity
and �2 is the variance of the annual effects. This was incorporated in our integrated
model as a Bayesian hierarchical model. P was assigned a normal prior with mean
1.0 and variance 10. �2 was assigned an inverse Gamma prior with parameters 0.001
and 0.001. We undertook additional simulations to check that our results were not
sensitive to the exact priors chosen. Productivity was also modelled as, as constant
within blocks of uniform population growth rates (block-specific) or as a log-linear
function of year.
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2.7 State-Space Model

To model the overall dynamics of the population we use a state-space model
(Buckland et al. 2004) that comprises observation and system process components.
The observation process involves a model of the annual CBC indices and their vari-
ances (but not their co-variances) derived using the method described above. We
assume that the log of the population index is Normally distributed about the log of
the true population size. Thus:

ln yt ∼ N( ln Nt, σ
2
t )

where yt represents the observed annual population indices, Nt represents the
true underlying numbers of females in the breeding population and �t

2 represents
the year-specific variances of population size.

The system process is based on a simple Leslie matrix model. Song Thrushes
breed when they are one year old. Survival rates of first year birds differ from those
of older individuals but otherwise survival is assumed to be independent of age.
Following earlier integrated models of the dynamics of bird populations (Besbeas
et al. 2002; Brooks et al. 2004; King et al. 2006) we use a Poisson model to describe
the number of offspring produced each year and a Binomial model to describe
survival from one year to the next. Our model for the number of females in the
population is based on the deterministic relationship:

Nt = Nt−1Pt−1Sf,t−1 + Nt−1Sa,t−1

Thus we model the number of females in the population as:

Nt = Na,t+N1,t

where

Na,t ∼ Bin(Nt−1,Sa,t−1)

and

N1,t ∼ Po(Nt−1Pt−1Sf,t−1)

2.8 Fitting the Joint Model

In the state-space model we consider the population indices y as a function of true
population size, productivity, first year survival, adult survival and the variances of
the population indices. Thus we have:

f(y|N,P,Sf,Sa, σ
2
t )= f(y|N, σ 2

t ) f(N|P,Sf,Sa)
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where f(y|N, σ 2
t ) is the density corresponding to the observation process and

f(N|P,Sf,Sa) is the density corresponding to the system process.
The recovery data m are modelled as the product of multinomial distributions

with parameters first year reporting rate, adult reporting rate, first year survival and
adult survival. Thus we have:

f(m| λf, λa, Sf,Sa)

Under the assumption of independence between the census and recovery data we
can obtain a joint probability distribution for the combined data as follows:

f(y,m| N,P,Sf,Sa, σ
2
t , λf, λa)

= f(y|N,P,Sf,Sa, σ
2
t ) f(m| λf, λa,Sf,Sa)

The models were fitted using Bayesian methods. We define priors on the param-
eters and then draw samples from the joint posterior distribution using MCMC
methods.

The models were fitted using a purpose written FORTRAN program to perform
sequential Metropolis-Hastings updates on each parameter in turn. We performed
1,000,000 iterations for each set of simulations and discarded the first 100,000 as
burn in. The results were thinned by a factor of 10. Our various models took between
2 hours 24 min and 18 hours 42 min to run on various PCs (typically 2.8 GHz proces-
sors) running under Fedora Linux. Good convergence was achieved and model runs
with different starting values gave similar results.

We did not have prior information that was independent of this study. Therefore
survival rates were assigned uniform priors between 0 and 1.0 while productivity
rates were assigned uniform priors between 0 and 2.0. Priors for regression coef-
ficients and intercepts were normally distributed with means of 0 and variances
of 100. The system equation for the state-space model is recursive, requiring the
provision of a starting value for population size (N). The population index for this
starting year (1968 in the present analysis) was treated as a normal prior with mean
and variance obtained from the analysis of index values described above. Previous
studies using similar state space models have found that the results are not sensitive
to the exact choice of prior starting value (Brooks et al. 2004; King et al. 2006). This
is to be expected, as this is effectively a model of relative abundance.

2.9 Model Selection

Our models included three demographic parameters (productivity, first year survival
and adult survival) each of which could vary in four different ways (log or logit-
linear function of weather, year-specific/random annual effects, block-specific or
log or logit-linear function of time). This gave a set of 64 potential models. It was
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not possible to fit all of these models using the MCMC methods described above
due to constraints of computer time. We therefore selected 17 models that we felt
were most likely to describe this system, based on previous work (Table 1). The
fit of these models was compared using the Deviance Information Criterion (DIC).
Differences in DIC values of more than 10 should definitely rule out the model
with the higher DIC value, while differences between 5 and 10 may be regarded as
substantial (Spiegelhalter et al. 2002).

2.10 Classical Analysis

We compare some of our results with those from a classical analysis of the same data
set which did not incorporate any formal joint modelling of the census and recovery
data. For these analyses standard recovery models were fitted using program MARK
(White and Burnham 1999). Productivity was calculated as that required to give the
observed population change given the survival estimates obtained from the MARK
analyses.

3 Results

The new population index generated by simulation is very similar to the orig-
inal index (Fig. 1). The small but systematic difference between the two indices
is because the original index values represent the mode of a skewed distribution
while the new index values represent the mean (King et al. 2006, Appendix A).The
population declined from the start of the time series in 1968 until 1987, with the
steepest decline from 1975 onwards. There were marked fluctuations in abundance
between 1987 and 2000 but there was no clear long-term trend during this period.
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Fig. 1 Abundance of Song Thrushes on CBC plots between 1968 and 2000 calculated from the
site and year effects by simulation (filled circles joined by solid line). Error bars are 95 percentiles
from the simulation results. The open circles joined by a broken line show an index based only on
the year effects from the generalized linear model. For further details of methods see text
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Our integrated models aim to determine the demographic processes that brought
about this pattern of population changes.

The numbers of parameters and delta DIC values for our 17 models are shown
in Table1. Six models had � DIC values of less that 10, including four with � DIC
values of less than 5. In all six models adult survival was a logit-linear function
of drought. First year survival was year-specific in three models, block-specific
in two models and a function of frost on one model. Productivity had random
annual effects in thee models, block-specific effects in two models and showed
a log-linear trend with year in one model. Thus there is good evidence of some
form of year-specific variation for both first-year survival and productivity, while
variation in adult survival appears to be well modelled as a function of drought.
The only difference between the two best models (� DIC 0.1) is that one has
fully year-specific first year survival, while the other has block-specific first year
survival.

Ring reporting rates of both first year birds and adults showed a logit-linear
decline with time. The details given here are based on model AWR (posterior means
with 95% HPDIs for regression parameters: first year slope –0.424, –0.566 to –
0.282; first year intercept –3.616, –3.782 to –3.437; adult slope –0.579, –0.657 to
–0.504; adult intercept –3.748, –3.828 to –3.664) but results from the other five
preferred models were similar. Reporting rates of first year birds were slightly higher
than those of adults (Fig. 2a), a feature found in all six models. First year reporting
rates from the MARK analysis were slightly higher than those from the integrated
analysis in this model (Fig. 2b) but the differences were less than this in the other
five models. In all six analyses the adult reporting rate estimates from MARK and
from our integrated analysis were almost identical. Results from the best model
(AWR) are plotted in Fig. 3. Broken lines show results from a similar model based
on a conventional analysis, where N is taken from the CBC index, survival rates
are modelled using Mark with the same parameterization as in model AWR, and
annual productivity is calculated by difference. In model AWR the estimates of true
population size from the state-space model closely match the original CBC index
(Fig. 3a). The system error in the model is represented by a Poisson process and
the pattern of system errors therefore closely follows that of true population size
(Fig. 3b). Population growth rates from the integrated and classical analyses are
similar (Fig. 3c) but the differences between the two approaches can be seen more
clearly than in Fig. 3a.

Annual estimates of productivity (Fig. 3d) and first year survival (Fig. 3e) from
the integrated model have relatively poor precision, even though the productivity
values are shrinkage estimates from a random effects model. Nevertheless there is
reasonably good agreement between the integrated analysis and the classical anal-
ysis in both cases. The poor precision of the first-year survival estimates was found
in both the integrated and MARK analyses, and is likely to be a function of the
number of recoveries available for this species. The logit-linear relationship between
adult survival and drought days was very similar in both the classical and integrated
analyses (posterior means and HPDIs from integrated analysis: intercept 0.509,
0.427 to 0.592; slope –0.135, –0.191 to –0.076). As a result of this the patterns
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Fig. 2 Temporal trends in ring reporting rates of Song Thrushes, modelled as a logit-linear func-
tion of year. Error bars show 95% highest probability density intervals from MCMC analysis. (a)
First year (open circles) and adult (filled circles) reporting rates from model AWR. (b) First-year
reporting rates (open circles with error bars) from model AWR. Broken line shows the results of a
stand-alone mark-recovery analysis of the same data conducted using program MARK

of annual variation in adult survival shown by the two analyses are almost identical
(Fig. 3f).

The six best models (Table 2) all showed very similar patterns of change in the
population index over time. Patterns of variation in population growth rates were
very similar for the top five models (r = 0.879–0.992) but posterior mean popula-
tion growth rates from model BWB showed a weaker relationship with those from
the other models (r = 0.749–0.823). Posterior mean values for annual productivity
were less strongly correlated between the different models. The three models that
included random annual effects for productivity (AWR, BWR and WWR) showed
moderate correlations between posterior mean productivity values (r = 0.725–0.812)
as did the three models with block effects or a year trend (AWB, BWB and AWY,
r = 0.612–0.892). Posterior mean first year survival rates were well correlated
between the three models with year-specific first year survival (AWR, AWB and
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Fig. 4 Relationships between population growth rates and individual demographic parameters
from two of our preferred models, AWR and AWB. Both models have year-specific first year
survival rates and adult survival modelled as a logit-linear function of drought days. Productivity is
modelled as either random annual effects (model AWR) or as constant within periods with uniform
population growth rates (model AWB). Points are posterior means from the MCMC analysis. Lines
show linear regressions where the 2.5 percentiles of the posterior correlation coefficients are greater
than zero. (a) Productivity, model AWR; (b) Productivity, model AWB; (c) First-year survival,
model AWR; (d) First-year survival model AWB; (e) Adult survival, model AWR; (f) Adult
survival, model AWB
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AWY, r = 0.915–0.927). Similarly the first year survival estimates between the two
models with block-specific first year survival were well correlated (BWR vs BWB, r
= 0.949). In contrast posterior mean first-year survival values from the model where
first year survival was logit-linear function of frost days (WWR) were only moder-
ately correlated with those from the other models (r = 0.501–0.606). The six best
models all had adult survival modelled as a logit-linear function of drought, and
posterior mean adult survival rates from all of these models were almost identical
(r > 0.999 in all cases).

A key aim of this type of analysis is to quantify the contributions of changes in
different demographic rates to overall population changes. To illustrate the patterns
involved posterior means for annual population growth rates were plotted against
posterior means for annual productivity, first year survival and adult survival .
Sample plots for models AWR and AWB are presented in Fig. 4. The MCMC
approach makes it straightforward to carry out formal tests of these relationships.
Correlation coefficients for the above relationships were calculated separately using
the results from each MCMC iteration. The distributions of these posterior correla-
tion coefficients were then used to asses the strength of these relationships within
each of our six preferred models (Table 2). Posterior mean correlations between
population growth rate and productivity varied between 0.114 and 0.798, with the
2.5 percentile for three of the six models overlapping zero. In contrast posterior
mean correlations between population growth rates and first year survival varied
between 0.525 and 0.875, with only that from the model with the greatest delta DIC
having a 2.5 percentile less that zero. Posterior mean correlations between popula-
tion growth rate and adult survival were less that the equivalent correlations for first
year survival in five out of six cases, and in all models the 2.5 percentile was greater
than zero.

4 Discussion

4.1 Demographic Causes of the Song Thrush Decline

Analyses of the BTO’s Song Thrush population data up to the 1980s indicated
that there were no trends in nesting success or adult survival that could explain
the decline (Baillie 1990). Indeed nesting success had actually increased, a pattern
that has since been found in some other declining species and may be a density-
dependent response to reduced abundance (Siriwardena et al. 2000). A subsequent
analysis of first year and adult survival rates based on constant reporting rate models
showed that the observed variation in first year survival was sufficient to explain the
observed population decline (Thomson et al. 1997). Further more detailed analyses
extended this work by including temporal variation in reporting rates and the
estimation of post-fledging survival (Robinson et al. 2004). This block-specific anal-
ysis showed that population growth rates were well correlated with first year survival
and more weakly correlated with post-fledging survival. There was no correlation
with either productivity or adult survival.
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The results from the present study are broadly consisted with these earlier anal-
yses of this data set, with strong evidence that population growth rates are well
correlated with first year survival. Adult survival is also correlated with population
growth rates, although the correlation is weaker than for first year survival. Evidence
for a correlation between productivity and population growth rate is equivocal,
being sensitive to the choice of model within the set of models selected using DIC
(Table 2). The three models where productivity is modelled using random annual
effects all show a correlation between productivity and population growth rate but
the other models do not. Productivity is essentially calculated by difference and
it may therefore incorporate errors in the measurement of the other demographic
parameters. Thus a correlation between population growth rate and productivity may
partly reflect errors in other parameters or parameters that have not been measured
adequately. While our use of a random effects model for productivity may have
reduced problems of over-fitting, it will not solve this problem completely. Incor-
poration of direct measures of productivity from nest record cards or from juvenile
to adult ratios in standardized catches could potentially improve the robustness of
these results. It should be noted that our measure of productivity includes post-
fledging survival (between ringing as a nestling and 63 days later), for which there is
some previous evidence for a correlation with population growth rate. The addition
of explicit estimates of post-fledging survival to our model would help to clarify
this. This study suggests that all three demographic rates included in our model
have some influence on population growth rates, as is to be expected. The main
aim of such studies is to identify the relative contributions of these demographic
parameters, as part of the process of constructing and testing hypotheses about the
ecological causes of population changes.

To further explore the differences between the results of this study and those of
Robinson et al. (2004) we examined the posterior correlations between population
growth rates and demographic parameters using model BBB, with block-specific
estimates similar to those from the earlier study. This model had poor support,
being ranked 15 out of 17 on the basis of DIC (Table 1). Posterior mean corre-
lation coefficients indicate that under this model population growth rate is most
strongly correlated with first year survival (r = 0.632) and is only weakly associated
with adult survival (r = 0.227) and productivity (r = 0.127), results that correspond
well with the results from our preferred models, and also with those of Robinson
et al. (2004). However, the HPDIs for all of these correlations substantially
overlap zero.

The key environmental factors responsible for changes in the first year survival of
Song Thrushes remain to be identified. Evidence for a range of candidate hypotheses
that could explain this change has been reviewed elsewhere (Peach et al. 2004b;
Robinson et al. 2004). Song Thrushes feed mainly on soil invertebrates, particularly
earthworms, and reductions in the amount and quality of suitable feeding habitat
are likely to have contributed to their decline. Important habitat changes are likely
to include the loss of permanent pasture to arable and increased under-field drainage
leading to more rapid drying out of the soil. There is also good evidence that
Song Thrushes are affected by summer moisture levels in surface soils, which in
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turn affect the availability of their earthworm prey (Peach et al. 2004a). Further-
more, Peach et al. (2004b) demonstrated a strong negative relationship between the
percentage of land subjected to under-field drainage and regional changes in Song
Thrush populations. This evidence fits well with the relationship between summer
droughts and adult survival, which in turn influences population changes. Similar
factors may also have affected first year survival, although there is no direct corre-
lation between first year survival and summer drought.

Variation in summer food supply may also affect components of our productivity
measure, particularly post-fledging survival. Intensive field studies have demon-
strated that in a rapidly declining farmland population Song Thrushes were making
too few nesting attempts to sustain the population (Peach et al. 2004b) However,
these results are based on comparisons between two local populations after the main
national decline had taken place. In contrast, national nest record card data show
that success per attempt has increased over the period of the decline (Baillie 1990;
Baillie et al. 2006). These two results are not necessarily contradictory but further
work is needed to clarify the possible role of productivbity changes in the decline of
this species.

4.2 Utility and Development of Integrated Population Modelling

Integrated population modelling of the type presented here is a potentially
powerful method for identifying the demographic mechanisms underlying popula-
tion declines. The need to develop purpose written code currently restricts the speed
with which these methods can be applied, and the ease of evaluating new models
that may be proposed during the analysis. However, new general software for the
these types of methods is developing rapidly, and with increased computing power
it should become much easier to perform such integrated analyses in the future.
The code that we have developed for the analyses presented here will make it much
easier to conduct similar analyses of other BTO population data.

We plan to extend the current study in a number of directions. Obvious first steps are
toaddexplicit estimationofpost-fledgingsurvival to themodeland toextendouruseof
random effects, particularly within the co-variate relationships (Hoyle et al. in prep.;
Fonnesbeck et al. 2008). We also plan to incorporate more structural relationships
within the models, particularly density-dependence (Lebreton 2008), through the use
of a hierarchical modelling approach. Only being able to fit a small number of models
was a limitation of the present study, although we did examine more models than in
most other applications of these techniques to-date. The best way forward here is likely
to be the application of reversible-jump MCMC to explore large model spaces. The use
of this technique within an integrated population modelling framework has already
been demonstrated by King et al. (2006). However, a substantial amount of develop-
ment work will be needed to apply this technique to the range of models envisaged
here. In the short-term one alternative approach may be to use techniques based on
the Kalman Filter (Besbeas et al. 2002), which would allow certain classes of models
to be fitted more rapidly. Another may be to apply the approach used by Maunder
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(2004) for analyses of fisheries data. He developed models that use random effects
(or approximations using penalized likelihood) rather than the state space framework
(although these are arguably the same) because population sizes were very large and
demographic uncertainty was minor.

In addition to ringing and census data the BTO operates a Nest Record Scheme
that provides detailed data on individual nesting attempts (Crick et al. 2003). The
statistical models used to estimate various components of nesting success can poten-
tially be incorporated in an integrated population model in a way that is analogous
to the ring recovery analyses used in this paper (Besbeas unpublished). The anal-
ysis presented here is based on only summary statistics derived from the census
data. In principle it is possible to fit an integrated population model to the full
sites by years matrix from the census data, thus incorporating the full variance–
covariance structure of these data within the analyses (Besbeas and Freeman 2006).
We do not currently know how much useful information would be obtained by
increasing the complexity of the modelling process in this way but it seems likely
that this might differ between datasets. Maunder (2001) found that integrated fish-
eries models showed little difference in point estimates but considerable reductions
in estimates of uncertainly. This is probably because the integrated approach takes
the covariance among years into consideration. This could also be achieved if the
covariance of the years from the census data were included using a multivariate
normal likelihood (Besbeas et al. 2003). Finally there is the potential to extend these
methods to different types of ornithological monitoring data, such as the Constant
Effort Sites Scheme. This scheme provides data on relative abundance, juvenile to
adult ratios and mark-recapture survival data all measured at the same sites. Work to
develop integrated Bayesian population models for these types of data is currently
in progress (Cave et al. 2008).
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A Hierarchical Covariate Model for Detection,
Availability and Abundance of Florida Manatees
at a Warm Water Aggregation Site

Christopher J. Fonnesbeck, Holly H. Edwards, and John E. Reynolds III

Abstract We constructed a Bayesian hierarchical model for estimating the popu-
lation size and associated probabilities of availability and conditional detection
for Florida manatees aggregating during winter, based on a series of monitoring
flights over 3 years, 2001–2003. Building upon the findings of Edwards et al.
(2007), our approach combines four sources of monitoring data in a single inte-
grated modeling framework to estimate all model parameters simultaneously. Popu-
lation size was modeled as a function of availability and detection, which in turn
were estimated with covariate models consisting of environmental predictor vari-
ables. Previous work estimating manatee abundance from aerial surveys have either
serially combined parameters estimated in separate models (Edwards et al. 2007),
modeled availability and detection jointly (Craig and Reynolds 2004) or ignored
detection bias altogether. Time-specific estimates of availability were high, with
some variation among flight series, while estimates of conditional detection were
extremely variable from one survey to the next. We obtained improved precision in
our estimates of population size relative to Edwards et al. (2007). Our results empha-
size the consequences of ignoring detection bias when interpreting survey counts.
We hope that this research will be influential in the design of a new state-wide aerial
survey monitoring program for Florida manatees.

1 Introduction

For more then 40 years aerial surveys have been used to assess the distribution and
obtain counts of the Florida manatee (Trichechus manatus latirostris) population.
However, until recently, the utility of aerial surveys for assessing the status of the
manatee population was limited because an unknown number of animals went unde-
tected by the observers, resulting in population underestimation (Hartman 1974;
Caughley 1977; Eberhardt 1982; Packard et al. 1989; Pollock and Kendall 1987;
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Lefebvre et al. 1995). The ability of an observer to detect and count manatees during
an aerial survey depends on: (1) animals being near the water’s surface where they
can be seen and counted by the observer, given that they are present (otherwise
inducing availability bias); and (2) animals being seen, given that they are avail-
able to be detected by the observer (otherwise inducing perception bias; Marsh
and Sinclair 1989; Lefebvre et al. 1995; Pollock et al. 2004, 2006). Most aerial
survey methods for manatees do not account for either of these biases. However,
recent work by Edwards et al. (2007) and Craig and Reynolds (2004) has attempted
to estimate components of detectability to improve manatee abundance estimates
at winter aggregation sites. Edwards et al. (2007) partitioned and estimated the
different components of manatee detection probability (presence at the aggregation
site, availability of an individual animal, and then detection conditional on pres-
ence and availability of an individual animal) at one warm-water refuge. Craig and
Reynolds (2004) analyzed repeated winter counts of manatees at power plants over
20 years using a Bayesian hierarchical model that allowed for uncertain detection
that varied by region and by water temperature.

In winter, Florida manatees aggregate at warm-water outfalls of power plants
and natural springs to avoid the cold ambient temperatures of surrounding waters.
Unlike other marine mammals, sirenians (Order Sirenia, i.e. dugongs and mana-
tees) are poorly adapted to tolerate cold. Because of their low metabolic rate and
high thermal conductivity, manatees seek warmer water when water temperatures
drop below approximately 20◦C, thereby avoiding cold stress injury or death. Since
the middle of the last century, Florida manatees have become dependent on the
warm-water effluents from power plants and other artificial warm-water sources for
survival in winter (Irvine 1982). In 2006, for example, 82% of manatees counted
during the statewide synoptic survey were seen at power plants (FWC, unpublished
data). Aerial surveys that intensively cover these winter aggregation sites (Packard
et al. 1985) have been useful in obtaining minimum population counts (Shane 1984;
Packard et al. 1989; Garrott et al. 1994, 1995; Reynolds III and Wilcox 1994;
Ackerman 1995). However, they have not been useful for obtaining reliable popu-
lation estimates or indices because counts obtained from surveys are not adjusted
to account for imperfect detection of manatees by the observers. The resulting esti-
mates are therefore not appropriate for either assessing population status or trend
analysis (Anderson 2001, 2003).

Availability and detection of manatees during aerial surveys are influenced by
several factors, most related to environmental conditions. Results of previous studies
at the Tampa Electric Big Bend power plant (TECO) in Tampa Bay (e.g. Edwards
et al. 2007) have illustrated the influence that environmental conditions, mainly
weather, have on manatee behavior. Temperature, cloud cover and wind can influ-
ence a manatee’s dive interval, dive depth and basking behavior at the plant. Some
of these covariates also influence the timing of migration to the power plant each
winter (Deutsch et al. 2003). Since manatees are sensitive to cold, their behavior in
winter is almost entirely dominated by their need to thermoregulate. (Deutsch et al.
(2003) found that during very cold weather (water temperature ∼13−14◦C) manatees
forego feeding and spend 88% of their time inside the warm-water discharge of the
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TECO Big Bend power plant. Tampa Bay aerial survey studies found that counts
are almost always higher in the afternoon when sun angle and air temperatures are
highest (Edwards et al. 2007; Wright et al. 2002); highest counts were obtained
on warm, sunny days, following a cold front, when manatees were basking at the
water’s surface. On cold, windy and cloudy days, manatees bottom-rested for up
to 20 min, making it difficult or impossible to fully enumerate them. Even when
animals are at the surface, detection is not guaranteed. Factors that can affect the
ability of an observer to see manatees include: environmental conditions (e.g. water
turbidity, sea state), air speed and altitude of the aircraft, sun angle, observer fatigue
and observer experience (Lefebvre et al. 1995).

Recent research by Edwards et al. (2007) has attempted to account for biases in
detectability by calibrating winter survey counts at the TECO Big Bend power plant
using estimates of availability and detection based on marked animals. Extending
this work, we seek to improve estimates of abundance by (i) developing general
covariate models for each of the components of detection and (ii) integrating infor-
mation from multiple data sources to improve inference. These goals are realized
with a single, unified modeling framework.

2 Methods

2.1 Study Area

We conducted an aerial survey study of manatees at the coal-fired TECO Big Bend
power plant at Apollo Beach, Florida (Fig. 1), during three winters (December 2000
to March 2003, see Edwards et al. 2007, for description). The Big Bend plant is
one of 5 sites along the west coast of Florida that regularly attracts more than 100
manatees during winter (Fig. 2; U.S. Fish and Wildlife Service, 2001). Of these
sites, aerial surveys are most difficult at this location; the location of the power
plant relative to the discharge canal makes it difficult to survey efficiently, and the
water depth and turbidity in the discharge canal where the animals aggregate greatly
reduce the observers’ ability to see submerged or partly-submerged manatees. The
canal dimensions were approximately 1006 m long × 96 m wide × 8 m deep.

2.2 Field Methods

2.2.1 Marking Manatees

Manatees were opportunistically captured and marked in December of 2000, 2001,
and 2002 in or near the Big Bend plants thermal discharge canal (see Edwards
et al. 2007, for details). The animals were beached for a short time so that their
health could be assessed and tracking and marking gear could be attached (Deutsch
et al. 1998; Weigle et al. 2001). Fifteen manatees were marked in 2000, 15 in
2001, and 16 in 2002. A 56 × 33 cm colored vinyl flag (green, yellow, white, or
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Fig. 1 Aerial photograph of TECO power plant, showing discharge canal on the left

Fig. 2 Aerial view of manatees at the east end of the TECO Big Bend power plant discharge canal

red and white) inscripted with a large, unique black symbol (“X”, diagonal or
vertical line, square, or solid background with no symbol) was attached to the tail
of the animals to mark individuals. When the animals were at or near the surface of
the water, the flags were visible to both ground and aerial observers. In addition,
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time-depth-temperature archival data loggers (hereafter, TDR; model LTD-100
Archival Data Logger, Lotek, Inc., St. Johns, Newfoundland, Canada) were
deployed on 5 marked manatees in each year (n=15). The archival tags recorded
pressure (PSI) and temperature (C) every 30 s (see Edwards et al. 2007, for details).
Pressure readings were converted to depth (m) by d = p/1.458.

2.2.2 Aerial and Ground Surveys

Several series of aerial surveys (flight series) were conducted, generally on consec-
utive days before and after the passage of strong cold fronts (2000–2001, n = 29
surveys, 3 flight series; 2001–2002, n = 15 surveys, 1 flight series; 2002–2003,
n = 29 surveys, 2 flight series). Surveys were flown once in the morning and once
in the afternoon (10 passes over the canal during each flight at approximately 1000
and 1400 h) to assess the temporal variance of survey counts. Observers had approx-
imately 1 min to count manatees during each pass using intensive search methods
(Packard et al. 1985). Each 10-pass survey lasted about 30 min. To avoid double
counting, each group was counted separately over a few of the passes, using hand
counters for large groups. Large groups were circled until the observer was satisfied
that all animals in that group had been counted. Once a group was counted, the
observer moved to another group and proceeded down the canal until all groups
were counted. Biases introduced by mixing of individuals among groups are avoided
if counting of the groups is done with short intervals between counts (Edwards et al.
2007).

All surveys were flown by one of five experienced aerial observers (>150 h of
manatee aerial survey experience and >50 counts at power plants) in a high-winged
Cessna 172 aircraft at an altitude of about 500 ft (152 m) and a ground speed of
60–70 knots (111–130 km/hr). Each set of surveys began 1–2 days prior to a strong
cold front (weather permitting) and ended 3–15 days later depending on the length
of the cold period. A second observer in the back seat, seated on the same side
of the plane as the primary observer recorded the sightings of individually-marked
(flagged) manatees. These sightings were recorded and mapped separately for each
pass and combined for the 10 consecutive passes. Herd structure and social orga-
nization are not well-defined in manatees (Hartman 1979; Bengtson 1981); indi-
viduals join and leave groups frequently, therefore we believe that detection of
one individual is independent of the detection of another (Edwards et al. 2007).
However, synchronous diving and surfacing may occur, particularly in response to
disturbance.

During the surveys, two land observers were positioned on an elevated platform
(approximately 3.5 m above the water) overhanging the east end of the discharge
canal. These observers documented the presence of flagged animals during the
surveys to compare sightings of manatees in a defined aggregation area with those of
the aerial observers. The land observers were present at the power plant throughout
the day and recorded the time and position of all flagged manatees seen, in addition
to those within their view (within a predetermined area) during each aircraft pass
over the canal during the survey. On survey days the ground observers were present
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at the plant observing the manatees from about 0830 to 1630 h. This was adequate
time for the observers to move around the discharge canal and document all marked
animals present in the aggregation area. Any flagged manatees that were known
(from telemetry or visual sightings) to be away from the power plant, or for which
the flag gear was known to have been lost, were subtracted from the total number
present at the plant on that day. All marked animals present at the plant on any
given day were assumed to have been sighted by either the on-ground or the aerial
observers (i.e., perfect detection). In a portion of the survey area near the elevated
platform, it was possible for both aerial and on-ground observers to simultaneously
count all flagged animals seen from their respective vantage points as the plane
passed over pre-specified start and stop points. Air-to-ground radios were used to
coordinate the counting between all observers. During each of 10 passes over the
discharge canal, both aerial and ground observers recorded sightings as described
above. Three separate counts were obtained from each pass by cross-referencing and
comparing flagged animals mapped by the aerial and ground observers: (i) animals
seen from both the air and ground, (ii) animals seen from the air only, and (iii)
animals seen from the ground only (Edwards et al. 2007).

2.2.3 Environmental Data

We recorded a variety of environmental parameters to help assess the effects of
weather and other environmental factors on our aerial survey counts. Air temper-
ature (◦C), wind speed (kts) and wind direction were recorded before take-off of
every flight as reported by the Federal Aviation Administration Automated Surface
Observation System. Cloud cover (estimated as the percentage of the sky obscured
by clouds) was recorded from the airplane just prior to each survey; for use in the
model this variable was discretized to a binary value representing the presence or
absence of cloud cover. Environmental readings were recorded at 1000 and 1400 h
to best reflect the conditions during the surveys. Optic StowAway digital temper-
ature probes (Onset Computer Corp., N. Falmouth, MA, USA) collected water
temperatures at three sites around the Big Bend power plant. Two probes were
placed within the heated discharge canal, one at the platform at the east end of
the canal where manatees aggregate, and the other mid-way down the canal along
a shallow area near a sand flat where manatees frequently rested. A third probe
was placed at the intake of the plant to record ambient water temperatures from
Tampa Bay.

2.3 Modeling and Estimation

The number of manatees using the TECO Big Bend power plant on a given day in
winter can be estimated by modeling a relationship between the number of animals
Ci counted during each survey i and the true, latent abundance Ni . Recognizing
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that detection is imperfect, this relationship is mediated by the probability pi of
detecting manatees at the site during survey i :

Ci = Ni pi . (1)

During aerial surveys of manatees, some animals present at the site are
submerged, thus not available for detection by observers (i.e. pi = 0). It is therefore
useful to express p as the product of two quantities: (i) the probability of an animal
being at or near the surface (availability) p(a)

i and (ii) the conditional probability of
detection, given availability p(d|a)

i :

pi = p(a)
i p(d|a)

i (2)

Edwards et al. (2007) estimated availability by assuming that probabilities of
a manatee being available for detection during each of 10 passes were identical
and independent. This yields an estimate of availability that is calculated as the
complement of the probability of non-detection during all 10 passes:

p(a)
i = 1 − (1 − θi )

10 (3)

where θi is the probability of availability for a single pass during survey i . However,
the assumption of independence for each pass may not be appropriate. Examination
of dive profiles reveals a pattern of autocorrelation among TDR readings; manatees
at the surface at any point during the time series tend to remain at the surface in
subsequent readings, while those diving tend also to be submerged in one or more
subsequent readings.

To account for observed autocorrelation, we instead modeled dive behavior as
a stochastic process. First, the proportion of animals available at the beginning of
the survey θi was estimated by the proportion of TDR readings within 2 m of the
surface during survey hours, according to a binomial distribution:

x (up)
i ∼ Bin(x (up)

i + x (down)
i , θi ) (4)

where x (up)
i and x (down)

i are the numbers of TDR readings at and below the surface,
respectively. The threshold value of 2 m was chosen because it is an approx-
imation of the deepest plausible depth at which the TDR (attached above the
tail of an adult animal) could be submerged, with the head or torso still visible
near the water’s surface. Smaller values resulted in continuous dives of unreal-
istic length (>50 min), suggesting that the animal was actually at the surface
even when the TDR was below the threshold. Moreover, due to lack of water
clarity, animals are rarely visible in the canal when submerged deeper than 2 m.
Second, to estimate availability during the entire survey, we estimated the prob-
ability of a submerged animal resurfacing at least once during the survey. This
probability was derived by modeling surfacing events for submerged animals as
a Poisson process, with mean and variance λ; this corresponds to an exponential
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model of waiting time with parameter λ (Ross 1996). From this, it is straightfor-
ward to model the probability of no surfacing events u during the period of the
survey t :

Pr (u | λ, t) = e−λi t (λt)u

u!

Pr (u = 0 | λ, t) = e−λt
(5)

The fraction of unavailable animals during survey i is the product of the proba-
bility of being submerged at the beginning of the survey and the probability of not
surfacing at any point during the survey. Thus, the probability of availability p(a)

i is
simply the complement of this product:

p(a)
i = 1 − (1 − θi )e

−λi t (6)

We estimated that the mean time for conducting a 10-pass survey was about
30 min. Estimates for λi were derived based on 2-h periods of TDR monitoring,
corresponding approximately to the periods during which surveys were conducted
(09:00–11:00 and 13:00–15:00), therefore t = 0.25. This model of surfacing
behavior assumes that there are no “instantaneous” surfacing events between passes
that cannot be detected by observers. While we concede that this assumption may
be violated, we contend that (a) this model is more biologically appropriate than
the independent surfacing probabilities model in (3) (Edwards et al. 2007), based
on inspection of manatee dive profiles and (b) such brief surfacing events, should
they occur, may not fairly be considered periods of availability, given the limited
opportunity to view such events. This implicitly defines availability as prolonged
periods of surface activity.

In an effort to account for extra-binomial variation and to aid prediction, covariate
models were developed for both λi and θi . In both cases, linear models were
constructed to predict availability parameters based on environmental covariates
collected during the study. The proportion of time spent at the surface θi was
modeled as a function of air temperature (air), wind speed (wnd) and a fixed effect
for the flight series s of which the current survey si was a member, to account for
unmeasured temporal variation:

logit[θi ] = γ0 + γ1wndi + γ2airi + γ3i I (si ) (7)

Here, I (si ) is an indicator function that is equal to 1 when survey i is in flight
series si , and zero otherwise. Canal and discharge temperatures were standardized
and the logit link function was used to guarantee probabilities on the unit interval.
Similarly, the Poisson parameter λ from (6) was estimated as a linear function of the
same covariate set:

log[λi ] = α0 + α1wndi + α2airi + α3i I (si ) (8)
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with a log link function applied to ensure non-negative values of λi . Because θi and
λi are modeled from the same set of covariates, it is possible that the resulting esti-
mates may be correlated. Coping with such correlations is an additional advantage
conferred by a joint estimation framework.

The unconditional (on availability) probability of detection pi was estimated
from the number of flagged manatees known to be present at the site yi during survey
i , based on counts from land observers, and those that were actually observed from
the air during survey flights xi . These were related in a binomial likelihood:

xi ∼ Bin(yi , pi ) (9)

where the unconditional detection rate pi is calculated from (2). The conditional
probability of detection p(d|a)

i was calculated as a linear function of factors thought
to be related to an observer’s ability to see manatees, which included wind speed,
cloud cover (cld) and ns−1 flight series fixed effects:

logit[p(d|a)
i ] = β0 + β1wndi + β2 I (cldi ) + β3i I (si ) (10)

With estimates of detection, we are able to correct the total count of manatees
during each flight to yield an estimate of abundance at the power plant for each
survey, following (1). Finally, we estimated the mean abundance μs for each flight
series by modeling the individual survey abundances Ni , i = 1, . . . , ns as negative
binomial random variables:

f (Ni ) = Γ (ωs + Ni )

Γ (ωs)Ni !

[
μs

μs + ωs

]Ni
[

1

1 + μs/ωs

]ωs

(11)

with positive-valued parameter ωs .
Estimation of model parameters was via Markov chain Monte Carlo methods

(MCMC, Gilks et al. 1996; Gamerman 1997). The model was implemented in
PyMC (http://pymc.googlecode.com), a MCMC module for the Python program-
ming language (http://python.org) that implements a random-walk Metropolis–
Hastings sampler. All model parameters were assigned uniform (non-informative)
prior distributions; for covariate model parameters these were sparse normal priors
(precision τ = 0.001), while non-negative-valued parameters were given uniform
priors over [0, 1000]. The model was run for 300,000 iterations, with the first
100,000 discarded as a burn-in interval during which proposal distribution variances
were tuned to achieve optimal mixing. A time series analysis was conducted to
detect evidence of non-convergence, following Geweke (1992); no evidence of lack
of convergence was discovered for any model parameters. Finally, goodness-of-fit
was assessed by comparing the deviance of the data used to fit the model to values
simulated from the model, based on the estimated parameters (Gelman et al. 1996).
Results of this test suggested adequate fit for the model.
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3 Results

3.1 Covariate Models

The overall probability θi of an individual being at the surface was estimated to
be negatively correlated with wind speed γ1 and positively with air temperature γ2

(Table 1), both with 95% Bayesian credible intervals (BCI) that did not include
zero. Conversely, the Poisson mean frequency λi of surfacing events was positively
correlated with wind speed α1 and negatively with air temperature α2. However, the
latter 95% BCI included zero, and more than 25% of the posterior distribution of
values were positive (Table 1).

Wind speed and cloud cover were modeled as covariates to the conditional proba-
bility of detection. Estimates suggest lower rates of detection at higher wind speeds,
and higher rates during cloudy conditions.

3.2 Availability and Detection

The probability of availability p(a)
i for each flight, as calculated in (6) ranged from

a low of 0.826 (0.786, 0.866) on 28 January 2003 to a high of 0.950 (0.920, 0.977)

Table 1 Estimates of linear mixed model parameters of covariate models for at-surface proba-
bility (top), surfacing frequency (middle), and conditional detection probability (bottom) within
the MCMC estimation framework, with standard error and 95% Bayesian credible interval. All
estimates are on the logit scale

95% BCI

Model Parameter Estimate SE Lower Upper

Surface Proportion (θ) intercept (γ0) –0.934 0.032 –0.998 –0.871
wind (γ1) –0.095 0.014 –0.124 –0.068
air temperature (γ2) 0.504 0.018 0.468 0.539
series 2 (γ30) –1.689 0.077 –1.843 –1.541
series 3 (γ31) –0.389 0.042 –0.474 –0.308
series 4 (γ32) 0.720 0.054 0.616 0.826
series 5 (γ33) 0.155 0.043 0.072 0.242
series 6 (γ34) –0.452 0.042 –0.534 –0.367

Surfacing Frequency (λ) intercept (α0) 2.145 0.069 2.011 2.278
wind (α1) 0.065 0.032 0.003 0.127
air temperature (α2) –0.014 0.038 –0.090 0.059
series 2 (α30) –0.026 0.123 –0.266 0.213
series 3 (α31) 0.060 0.087 –0.106 0.231
series 4 (α32) –0.067 0.132 –0.324 0.187
series 5 (α33) –0.251 0.100 –0.444 –0.052
series 6 (α34) –0.253 0.092 –0.433 –0.073

Detection (p(d|a)) intercept (β0) 0.628 0.251 0.155 1.126
wind (β1) –0.610 0.103 –0.818 –0.415
cloud cover (β2) 0.694 0.215 0.260 1.108
series 2 (β30) –0.748 0.513 –1.723 0.283
series 3 (β31) 0.460 0.356 –0.256 1.148
series 4 (β32) 1.631 0.625 0.491 2.806
series 5 (β33) 0.464 0.436 –0.345 1.270
series 6 (β34) 0.094 0.329 –0.550 0.742
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Fig. 3 Estimated probabilities of availability (top) and detection given availability (bottom) for
each flight in sequence, 2001–2003. Estimated mean values are shown with 95% BCI. Dotted
vertical lines group individual flights into 6 series

on 1 March 2002. Availability was consistently high, with greater variation among
flight series than within (Fig. 3). Estimates of the probability of detection p(d|a)

i ,
given availability, ranged from 0.364 (0.248, 0.481) on 9 January 2001 to 0.962
(0.922, 0.996) on 6 March 2002. There was strong variation in conditional detection
among flights, independent of flight series (Fig. 3).

3.3 Abundance

The estimated power plant manatee abundances during each flight series, estimated
as the expected value of a log-normal distribution, are shown in Table 2. The lowest
abundance was during the lone 2002 flight series, 117.64 (92, 144), while the highest
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Table 2 Estimates of manatee abundance at the TECO power plant for each flight series from this
research and from (Edwards et al. (2007), with associated standard errors

This Study Edwards et al. (2007)

Series Year Estimate SE Estimate SE

1 2001 224.73 29.81 239.30 40.64
2 2001 340.02 76.06 360.78 107.23
3 2001 234.81 26.18 238.53 37.03
4 2002 117.64 13.56 135.27 17.81
5 2003 202.94 16.98 288.03 35.65
6 2003 329.43 32.22 352.12 35.26

was during the second January 2001 series, 340.02 (201, 495). Note that this series
was also the least-precisely estimated, yielding a standard error more than 3 ×
larger than for any other estimate.

4 Discussion

This work brings four sources of information to bear on the problem of estimating
manatee abundance at the primary warm-water aggregation site in Tampa Bay:
(1) time-depth recorder readings, (2) sightings of known numbers of flagged mana-
tees, (3) total counts of manatees using the TECO Big Bend discharge canal and (4)
a suite of environmental covariates recorded during each survey. By implementing
a hierarchical model, we were able to integrate these datasets into a single estima-
tion framework. Previous analyses by Edwards et al. (2007) estimated each of the
components of detection separately, then combined the estimates to correct survey
counts for an estimate of abundance. By making more efficient use of informa-
tion with the hierarchical model, we were able to derive more precise estimates
and develop covariate relationships that may be useful in future survey analysis
efforts.

Relative to those of Edwards et al. (2007), our point estimates of abundance
during each of the six flight series were lower (Table 2). However, in all but one
series (5) the 95% BCI included the estimated value from the previous work.
In all series, the standard error associated with each estimate of abundance was
smaller for this study. Our lower estimates of abundance (with the exception of
series 2) are likely attributable to generally higher estimates of availability in
each of the flight series. Recall that Edwards et al. (2007) assumed independent
probabilities of availability during each pass within a survey, while we allowed
for dependence in availability among passes, modeling the probability of resur-
facing as a stochastic process. The validity of our availability model rests both on
the assumptions regarding surfacing behavior mentioned in the Methods section,
and on the representativeness of the sample of animals fitted with time-depth
recorders. Though there are a large total number of readings, these were derived
from a small number of subjects, leaving open the possibility of sampling bias.
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As this is the same dataset employed by Edwards et al. (2007), sampling error
should not be responsible for differences in estimated availability between the
studies.

As we expected, the linear covariate model for detection revealed a negative
association of conditional detection with wind and higher detection in cloudy condi-
tions (Table 1). Windy conditions cause disturbances on the water’s surface, making
sighting difficult, particularly for animals that are partly submerged. Manatees also
are likely to remain submerged on windy days to avoid its chilling effect, so we
expect the proportion of time on the surface to be reduced. Though counter-intuitive
to the views of some observers (sunlight is thought to increase visibility into the
water column), overcast or partly-cloudy skies can reduce glare, thereby increasing
visibility. The resulting estimates of detection are highly variable among flights,
with little consistency within flight series (Fig. 3). This variability underlines the
importance of estimating detection for manatee surveys, and reinforces the impor-
tance of survey conditions. Without such estimates, researchers are forced to make
unreasonable assumptions about the magnitude and temporal variability of these
biases.

The extreme variability in detection speaks against pooling data within flight
series, as done by Edwards et al. (2007). This highlights an advantage of the
hierarchical modeling approach for such analyses. Data are often pooled when
they are sparse, in spite of the level of heterogeneity among the data. The hierar-
chical covariate model avoids this trade-off by modeling a common model intercept
among flights, but accounting for heterogeneity via covariate relationships. Thus,
each detectability estimate borrows strength from the entire dataset without unduly
sacrificing precision. This is a primary advantage of using Bayesian estimation via
MCMC rather than separately fitting each model component individually.

In comparison, availability proved to be far less variable, with more variation
among flight series than within (Fig. 3). The environmental covariates, wind speed
and air temperature, influenced at-surface proportion θ and surfacing frequency λ

each in opposite directions (Table 1). This may have contributed to the relatively
consistent estimates of availability, although the covariates more strongly influenced
at-surface proportion. However, observing that the strongest pattern of variation was
among flight series suggests that unmeasured covariates varying over a coarser time
scale may be more appropriate predictors of availability than wind speed and air
temperature.

Further refinement of our model might be achieved by applying model selection
e.g. using DIC, Spiegelhalter et al. 2002) to a suite of alternative model parame-
terizations. Though most of the key covariate parameters, save some of the flight
series fixed effects, had 95% credible intervals that excluded zero, a more formal
model selection approach may identify variables that do not contribute to better
inference. This is not of immediate concern, since the covariates employed in the
model were relatively straightforward and inexpensive to obtain, but we concede
that model selection could yield an improved model with additional precision. This
could include a comparison of alternative functional forms for the distribution of
survey population estimates {Ni }.
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The current draft of the Florida manatee management plan (FWC, in prep.) iden-
tifies population estimation based on aerial surveys as a research priority, to serve
as a monitoring tool for the recovery of species. This research demonstrates the
potential for estimating abundance at manatee aggregation sites based on counts
that are subject to availability and perception biases. Ultimately, we hope that these
results will provide guidance in the design of a new state-wide survey for obtaining
reliable estimates of population status. While some aspects of this work are specific
to the TECO Big Bend aggregation site, we believe some results to be more general,
and therefore, applicable at other similar manatee aggregation sites. The covariate
relationships for detection and availability, for example, likely hold true indepen-
dent of location since wind, air temperature and cloud cover ought to affect these
probabilities similarly across space. This notion should be tested with smaller-scale
validation studies at other locations. Moreover, it is encouraging that informative
models of variation in detection and availability can be constructed using a set of
covariates that is cheaply and easily obtained. However, we recognize that correcting
for incomplete detection and availability is just one of many issues that impede the
use of aerial surveys as a state-wide population monitoring tool (Lefebvre et al.
1995). These problems must be fully addressed in a robust sampling design that
accounts for manatees both at and away from power plants during the winter. It may
be that a suite of methods is needed to survey across a range of expected manatee
densities in a variety of habitats; the methods described here may not be appropriate
for very sparse populations away from aggregation sites, for example. Plans for
such a redesigned survey are currently in preparation, and we are optimistic that
aerial surveys can play a more prominent role in the conservation of the endangered
Florida manatee.
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Recruitment, Mark-Recapture-Recovery
and Multisite Census Data
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and O. Gimenez

Abstract The statistical analysis of mark-recapture-recovery (MRR) data dates
back to the 1960s, when the foundation was laid for stochastic models, fitted to
data by the method of maximum likelihood. There have been a number of develop-
ments which have proved to be extremely influential. Two of these are: the extension
of MRR data and modelling to multi-site inference, and the integrated modelling
of single-site MRR and census data. The aim of this study is to unite these two
independent research programs, in order to enable effective integrated analysis of
multi-site MRR data and multi-site census data. Census data can be described by
a state-space model, and the likelihood is formed using the Kalman filter. By mak-
ing use of movement information provided by MRR data, it is possible to avoid
flat likelihood surfaces, thus allowing estimation of site-dependent parameters. This
increases the precision of dispersal parameters and allows estimation of parameters
inestimable from MRR studies alone.

This paper extends research within the area of integrated population analysis by
developing methods for analysing multi-site census data coupled with multi-site
capture recapture data. The methodology is explored using a simulated data set, the
structure of which is motivated by a dataset of Great cormorants (Phalacrocorax
carbo sinensis).

Keywords Integrated Analysis · Kalman Filter · Mark-Recapture-Recovery Data·
Multistate Models ·Phalacrocorax carbo sinensis ·Recruitment ·State-Space Models

1 Introduction

1.1 Mark-Recapture-Recovery Models

The development of models for mark-recapture-recovery (MRR) data began in the
1960s with the Cormack-Jolly-Seber (CJS) model (Cormack 1964; Jolly 1965;
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Seber 1965), which estimates survival and capture rates from recapture data of an
animal population collected at a single site. This model initiated a surge of interest
into constructing models for this type of data and numerous extensions have since
been developed. These include incorporation of categorical variables for character-
ising individuals and analysis of multiple data sets using group effects (Lebreton
et al. 1992). Also, models that allow the integrated analysis of both recaptures of
live animals and recoveries of dead animals have been developed (Burnham 1993;
Lebreton et al. 1995; Barker 1997; Catchpole et al. 1998).

A further development which has enhanced the potential of MRR data analysis
has been the extension of the CJS model to the multi-site framework. First estab-
lished by Arnason (1972, 1973) and later developed by Schwarz et al. (1993) and
Brownie et al. (1993), this extension allows estimation of survival and transition
probabilities as well as recapture parameters and parameter redundancy of these
multi-site models has been assessed in Gimenez et al. (2003). The Arnason-Schwarz
model has been further generalised to multi-state models (Lebreton et al. 1999) and
multi-event models (Pradel 2005). A number of computer software packages for
fitting such models are available, including program MARK (White and Burnham
1999) and M-Surge (Choquet et al. 2004).

1.2 Integrated Population Analysis

Integrated population analysis combines data from a variety of sources. Integrating
MRR and census data was first proposed by Besbeas et al. (2002) as a method for
estimating productivity, otherwise not estimable from either type of data alone. It is
possible to form the likelihood for the MRR data as outlined in Section 1.1. A state
space model of the census data comprises two parts – the observation equation and
the underlying state equation. Gaussian assumptions provide the key to the accessi-
bility of these models and makes it possible to form the likelihood, using a recursive
procedure known as the Kalman filter (Harvey 1989; Durbin and Koopman 2001).
Assuming independence, it is possible to combine the MRR and census likelihoods
to provide one global likelihood which can be optimised to provide maximum like-
lihood estimates of all parameters.

A multivariate normal approximation to the exact MRR likelihood (Besbeas et al.
2003) more efficiently integrates both data sets. Further, Brooks et al. (2004) intro-
duced a Bayesian approach, while Besbeas et al. (2005) provides a discussion on
further possible advances. Besbeas et al. (2008) gives details of the Kalman filter
methodology, including initialisation procedures in ecological applications and a
discussion of the break-down of independence assumptions and the effects of intro-
ducing overdispersion in the state space model.

The integrated analysis performed in this paper is on a simulated multi-site
data set which contains both breeding and non-breeding individuals. Recruitment,
defined as the progression from a non-breeding state to a breeding state, is a param-
eter of biological interest, and it is this type of transition, along with dispersals
between study areas which will be estimated from the contribution of MRR multi-
site/state and multi-site census simulated data.
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2 Motivation for the Study

This investigative simulation study was motivated by data on cormorants, Phalacro-
corax carbo sinensis, collected by the National Environmental Research Institute in
Denmark. P. carbo is the most widely distributed of all cormorants – known to breed
in North America, Europe, Asia, Africa and Australasia. The studied cormorants
belong to the Eurasian subspecies P. carbo sinensis. This subspecies is smaller than
the North Atlantic subspecies P. carbo carbo, and often breeds and winters inland
(Hatch et al. 2000).

The data were collected as part of a larger ringing programme started in Denmark
in 1977, which continues to the current day. The data correspond to a period of pop-
ulation expansion (1981–1993) in 6 colonies located 32–234 km apart. Recapture
and recovery data from this period were analysed in detail by Henaux et al. (2007)
who estimated dispersal and recruitment.

The oldest of the six colonies, Vorsø, was established in 1944 and along with
Ormø (OR, est. 1972) and Brændegård Sø (BR, est. 1973) comprised the only
colonies present in Denmark at the start of the ringing study. Colonies Toft Sø (TO),
Dyrefod (DY) and Mågeøerne (MA) established during the study in 1982, 1984 and
1985 respectively.

14,018 cormorant chicks were marked between 1981 and 1991 with a standard
metal ring on one leg and a coloured plastic band, engraved with a unique com-
bination of 3 alphanumeric characters, on the other leg. Resightings of the ringed
cormorants took place from 1983 to 1993. Resightings were of breeding cormorants
only and these breeders were identified using strict biological criteria identified in
Henaux et al. (2007). Recoveries spanned a large geographical area, ranging from
northern United Kingdom to Southern Algeria and from western Spain to eastern
Romania. Recoveries of birds for which only one ring was found were excluded to
avoid negative bias due to ring loss.

Each of the six colonies were censused in early May. Data consisted of a count
of all occupied nests. The location of nests varies between colonies: in MA nests
were built on the ground, in BR nests were found in trees and on the ground while
in the other colonies all nests were in trees.

Based on the parameters of this real-life investigation, this simulation study
demonstrates the statistical gains of performing integrated population modelling
on multi-site data and also the ease with which even complex models, such as the
recruitment structure, can be incorporated into an integrated population modelling
framework.

3 Methods

3.1 Formation of the Mark-Recapture-Recovery Likelihood

The closed-form likelihood for Arnason-Schwarz models is derived in King and
Brooks (2003). Suppose captures or recaptures occur for animals age j ∈ J =
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{0, . . . , J } and the study site is split into R regions. The set of model parameters
includes:

φ j (r ) is the probability that an animal in location r at age j survives until age
j + 1;

λ j (r ) is the probability that an animal in location r at age j dies and is recovered
dead before age j + 1;

p j+1(r ) is the probability that an animal in location r at age j +1 is recaptured;
and

ψ j (r, s) is the probability that an animal in location r at age j moves to location
s by age j + 1 given that it is alive at age j + 1.

The encounter history of each animal can be broken down into three partial histo-
ries. These are: last live encounters and beyond, consecutive live sightings and dead
recoveries. The likelihood can similarly be deconstructed into these elements and
full details of the likelihood construction can be found in the Appendix.

3.2 Formation of the Census Likelihood

3.2.1 The State Space Model and the Kalman Filter

The Kalman filter is a recursive procedure for computing the optimal estimator of a
state vector at time t , based on the information available at time t (Harvey 1989). By
imposing Gaussian assumptions it is possible to calculate the maximum likelihood
estimates of unknown model parameters. The general linear Gaussian state space
model is:

yt = Ztαt + εt (1)

αt+1 = Ttαt + ηt (2)

with εt ∼ N(0, Ht ) and ηt ∼ N(0, Qt ).
Equation (1) is the observation equation and (2) is the state space equation. The

state vector, αt , is unobserved and yt is a vector of observations. The matrices
Zt , Tt , Ht and Qt are assumed to be serially independent and independent of each
other at all times.

The initial state vector α1 is assumed to be N(a1, P1) independently of ε1, . . . , εn

and η1, . . . , ηn . In practice, some or all of the matrices will depend on elements of
an unknown model parameter vector.

The aim is to obtain a conditional distribution of αt+1 given Yt = {y1, . . . , yt}.
Since all distributions are normal, conditional distributions of subsets of variables
given other subsets are also normal; the required distribution is therefore determined
by a knowledge of at+1 = E(αt+1|Yt ) and Pt+1 = V ar (αt+1|Yt ).
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The Kalman Filtering derives the filtering equations and may also compute
the smoothed estimates of the error vectors εt and ηt , given all the observations
y1, . . . , yn. Denoting the parameter vector by θ and using our previous assumptions
of normality, the likelihood is

L(θ | y) = p(y1, . . . , yn | θ ) = p(y1 | θ )
n∏

t=2

p(yt |Yt−1, θ )

and the log-likelihood is given by

log L(θ | y) =
n∑

t=1

log p(yt |Yt−1, θ )

where p(y1|Y0, θ ) = p(y1). Following substitution of appropriate parameters we
obtain

log L(θ | y) = −np

2
log 2π − 1

2

n∑
t=1

log(|Ft | + v′
t F−1

t vt ) (3)

This likelihood is known as the prediction error decomposition form of the like-
lihood since vt can be interpreted as a vector of prediction errors, yt − E(yt ). Ft

is the covariance matrix of the conditional distribution of the observations and both
vectors vt and matrix Ft are calculated directly from the Kalman filter.

3.2.2 Ecological Application of the Kalman Filter

Define Ni
x
t to be the number of animals in state x = {N, B} (where N denotes

non-breeder and B denotes breeder) in site i = 1, 2, 3 at time t . State vector αt is

αt = (
N N

1 N N
2 N N

3 N B
1 N B

2 N B
3

)T

t
,

then following the notation of equation (1), since only breeders are observed

Zt =
⎛⎝0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎞⎠ ,∀t .

Vector yt is the observed census data and the observation error, σ , is assumed
to be constant over time and site; we discuss relaxing this assumption later. The
underlying state space equation is governed by a Leslie matrix (Caswell 2000), and
the explicit form of the Leslie matrix for this application is given in Section 3.4.

The Kalman filter is initialised by specifying values for a1 and P1, the mean
and covariance matrix of the initial state vector, respectively. Following Besbeas
and Morgan (2008) we initialised the filter using the stable age distribution of the
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population. Other initialisation procedures were implemented on the same simulated
data set and the model structure was robust to the assumption of the stable age
distribution start.

3.3 Simulation of Multisite Recruitment Data

150 simulated non-breeding animals were marked at each site and MRR data were
simulated on this cohort for seven years. All ringing was carried out on non-breeders
and recaptures were of breeders only. Recapture and survival probabilities were site-
and state-dependent and the recovery probability was independent of recovery site.
Three types of transition were considered, which reflect the model structure used by
Henaux et al. (2007):

– natal dispersal: the movement of a non-breeder from one geographical location
to another whilst remaining a non-breeder.

– recruitment: the accession from non-breeder to breeder.
– breeding dispersal: the movement of a breeder from one geographical location

to another.

Cormorants can only start breeding from age two and remain capable of breeding
in every subsequent year (Henaux et al. 2007), thus, within this simulation study we
assume that animals start recuiting at age 2 and that all animals have recruited by
age 5 and once a breeder, they remain a breeder until death. Only breeding birds
are ever recaptured and hence constraints applied to natal dispersal and recruitment
need to be enforced in order to ensure identifiability of all transitions, and so it is
assumed that natal dispersal occurs only in the first year of life and subsequently
recruitment then occurs at a single site and no further dispersals occur between sites
until the animal has reached the breeding state.

The assumptions, defined above, are in addition to the traditional Arnason-
Schwarz model assumptions, and in order to proceed with integrated analysis the
MRR data and census data must be independent. Violation of this assumption can
lead to biased estimates, as shown in Besbeas et al. (2008).

The simulated census data were site-specific with structure governed by a Leslie
matrix. Twenty years of site-dependent census information were simulated which,
like the cormorant data set, was of breeding birds only. Parameter values were cho-
sen to reflect biologically reasonable values. Fecundity (defined to be the number of
offspring multiplied by the probability of reproduction in a particular year) was fixed
at a constant value of 1.2. Fecundity however could be adapted to allow for time,
site or density dependence. Transition, survival, capture and recovery probabilities
were set to values which were biologically reasonable, with non-breeder survival
(0.6) assumed lower than breeder survival (0.8) and recovery rates (0.4) lower than
recapture rates (0.7). Dispersal rates varied between 0.05 and 0.3 between sites.
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3.4 Specification of the Leslie Matrix

Suppose we denote the three non-breeding states as 4, 5 and 6 and the three breed-
ing states as 1, 2 and 3 for the respective three sites in each case. The parameters
involved in the MRR likelihood, following the notation of Section 3.1, are:

Survival Probability: φ j (r ) = φ(r ) for all j , for r ∈ {1, 2, 3, 4, 5, 6}, where
r ∈ {1, 2, 3} denotes breeder survival and r ∈ {4, 5, 6} denotes non-breeder
survival;

Recovery Probability: λ j (r ) = λ for all j and r ;
Recapture Probabilities: p j+1(r ) = p(r ) for all j and r ∈ {1, 2, 3};
Natal Dispersal: ψ1(r, s) for r, s ∈ {4, 5, 6}
Breeding Dispersal: ψ(r, s) for r, s ∈ {1, 2, 3}
Recruitment: ψ2+(r, r − 3) for r ∈ {4, 5, 6}
Non-Maturation: ψ2+(r, r ) for r ∈ {4, 5, 6}

The structure of the Leslie matrix for the state space model, using the notation
above is then:

⎛⎜⎜⎜⎜⎝
φ(4)ψ2+(4, 4) 0 0 f φ(4)ψ1(4, 4) f φ(5)ψ1(5, 4) f φ(6)ψ1(6, 4)

0 φ(5)ψ2+(5, 5) 0 f φ(4)ψ1(4, 5) f φ(5)ψ1(5, 5) f φ(6)ψ1(6, 5)
0 0 φ(6)ψ2+(6, 6) f φ(4)ψ1(4, 6) f φ(5)ψ1(5, 6) f φ(6)ψ1(6, 6)

φ(4)ψ2+(4, 1) 0 0 φ(1)ψ(1, 1) φ(2)ψ(2, 1) φ(3)ψ(3, 1)
0 φ(5)ψ2+(5, 2) 0 φ(1)ψ(1, 2) φ(2)ψ(2, 2) φ(3)ψ(3, 2)
0 0 φ(6)ψ2+(6, 3) φ(1)ψ(1, 3) φ(2)ψ(2, 3) φ(3)ψ(3, 3)

⎞⎟⎟⎟⎟⎠
where f is the fecundity parameter.

3.5 Computational Implementation

MATLAB was used to code the MRR likelihood and the Kalman filter which con-
structed the census likelihood. The global likelihood, formed by multipliying the
two likelihoods, assuming independence, was then optimised using a built-in opti-
misation method within the MATLAB software. The logistic link was used to con-
strain recapture, recovery and survival probabilities between 0 and 1, whilst the
generalised logit link, which is an extended logit function was used to ensure that
as well as transition probabilities being between 0 and 1, appropriate combinations
of the transitions added to 1. Further details of the use of the generalised logit link
can be found in Choquet et al. (2005). Figure 1 demonstrates the formation of the
appropriate likelihoods and also the common parameters used to model each type
of data.
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Fig. 1 Directional acyclic graph showing how two types of data (MRR data and census data)
are combined to obtain global estimates of parameters: Φ – survival parameters; Λ – recovery
parameters; P – recapture parameters; Ψ – transition parameters, f – fecundity, σ – observation
error. The Arnason-Schwarz model is used to form the MRR likelihood whilst the Kalman filter is
applied to a state space model to form the census likelihood

4 Results

The maximum likelihood estimates (MLEs) are shown in Table 1. There were no
issues of either intrinsic or extrinsic parameter redundancy in the integrated model
structure, so the MRR data analysed alone is able to estimate all survival, transition
and capture/recovery probabilities. Once the MRR data were combined with cen-
sus information we were also able to estimate the fecundity of the population. The
addition of census data improves the precision of capture and recovery probabilities
slightly (Table 2), however the change is small as the only information added by
the census data is through the correlation structure of these parameters. The largest
improvement in precision is for the breeding dispersal parameters, with no improve-
ment in the natal dispersal parameter. This is most likely due to the fact that natal
dispersal only appears in the Leslie matrix as a product with the unknown parameter
fecundity. Thus, precision is not improved without compromising the precision of
the fecundity parameter. Attempting to estimate parameters from the census data
alone results in parameter estimates with low precision due to the census data pro-
ducing a flat likelihood (the fecundity estimate from census data alone is 1.77 with
standard error 14.854), however once the census data are combined with MRR data,
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Table 1 The maximum likelihood estimates and associated standard errors calculated by a finite
difference method, of the MRR data used alone and the integrated MRR and census data

Integrated Integrated
Parameter True Value MRR Estimate MRR SE Estimate SE

φ(1, 2, 3) 0.80 0.826 0.0312 0.820 0.0279
φ(4, 5, 6) 0.60 0.587 0.0211 0.586 0.0211
p 0.70 0.714 0.0396 0.712 0.0379
ψ(4, 5) = ψ(4, 6) 0.10 0.078 0.0395 0.073 0.0350
ψ(5, 4) = ψ(5, 6) 0.20 0.189 0.0441 0.193 0.0418
ψ(6, 4) = ψ(6, 5) 0.05 0.024 0.0227 0.025 0.0236
ψ(1, 2) = ψ(1, 3) 0.20 0.248 0.0367 0.209 0.0213
ψ(2, 1) = ψ(2, 3) 0.10 0.083 0.0283 0.106 0.0194
ψ(3, 1) = ψ(3, 2) 0.30 0.332 0.0351 0.325 0.0279
ψ(4, 1) = ψ(5, 2) =
ψ(6, 3)

0.60 0.593 0.0593 0.601 0.0559

λ 0.40 0.406 0.0258 0.405 0.0258
f 1.2 - - 1.167 0.1420

Table 2 The mean square errors of the parameters for the MRR data used alone and the integrated
MRR and census data

Parameter MSE (MRR Data Alone) MSE (Integrated Data)

φ(1, 2, 3) 0.0752 0.0525
φ(4, 5, 6) 0.0106 0.0110
p 0.0422 0.0375
ψ(4, 5) = ψ(4, 6) 0.4436 0.4621
ψ(5, 4) = ψ(5, 6) 0.1504 0.1273
ψ(6, 4) = ψ(6, 5) 1.6180 1.5683
ψ(1, 2) = ψ(1, 3) 0.2402 0.0362
ψ(2, 1) = ψ(2, 3) 0.2184 0.0594
ψ(3, 1) = ψ(3, 2) 0.1733 0.1056
ψ(4, 1) = ψ(5, 2) = ψ(6, 3) 0.0612 0.0544
λ 0.0120 0.0119
f – 0.0156
σ – 0.0232

the fecundity parameter estimate was precise (MSE = 0.0156). Adult survival gains
some precision whilst juvenile survival does not.

The generalised variances of the common parameters of the MRR analysis and
the integrated analysis are 3.64 × 10−13 and 2.80 × 10−17 respectively. Thus, com-
bining the additional census data has considerably improved the overall precision of
common parameters and allowed fecundity to be estimated with good precision.

The combined analysis has also accurately estimated the observation error of
the census data. Though it was assumed constant for this simulation, it is interest-
ing to allow observation error to vary proportionally to population size, e.g. εt ∼
N(0, yt−1σ

2) (Tavecchia et al. 2006). Similarly, complex fecundity structures, such
as density dependence could also be considered.
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5 Conclusions

These procedures are extensions of the single-site integrated population analysis.
MRR is now a widely used type of data, with even advanced MRR models in com-
mon use. Frequently, however, census information is collected concurrently with
MRR data. Until now, census data have been analysed separate from the MRR data,
thereby sacrificing their shared information. The methodologies described in this
paper are simple to implement and can be completed ‘post-hoc’ by using a simple
multivariate normal approximation to the MRR likelihood; if only MLEs and asso-
ciated standard errors are available, they can be used to construct an approximate
diagonal variance-covariance matrix to facilitate analysis and complicated popula-
tion transitions can be incorporated into the state space model.

The potential of single-site integrated population analysis has been assessed in
numerous studies as a method for estimating previously inestimable parameters.
This simulation study has shown that not only does multi-site/state integrated pop-
ulation analysis estimate these parameters, but also greatly improves the precision
of some parameters. This is obviously desirable in complex models with a large
number of parameters that are frequently estimated with low precision.

Single site integrated population modeling with one dimensional census informa-
tion allows the estimation of additional parameters, however little change is made
to the precision of common parameters. By incorporating multi-dimensional census
data, in terms of site or state-specific census data, we have shown that this extra
information has greatly improved the precision of parameters within the model.

Acknowledgments We wish to thank Jens Gregersen and Lars Abrahamsen for their great effort
in ringing and recording breeding attempts of colour-ringed cormorants.

Appendix

The Construction of the Closed-Form Arnason-Schwarz Likelihood

This appendix gives an outline of the construction of the explicit MRR likelihood
first derived in King and Brooks (2003). Recall that the encounter history of an
animal can be broken down into three partial histories: last live encounters and
beyond, consecutive live sightings, dead recoveries. The likelihood can similarly
be deconstructed into these elements. The following derived probabilities facilitate
the likelihood construction.

Let χ( j,k)(r ) denote the probability that an animal is seen for the last time at
age j ∈ J in location r ∈ R, and would be age k at the end of the study, with
j ≤ k ≤ J . Then,

χ( j,k)(r ) =

⎧⎪⎨⎪⎩
1 ( j = k)

1 − φ( j )(r )
[
1 − ∑

s∈R ψ j (r, s){1 − p j+1(s)}χ( j+1,k)(s)
]

−{1 − φ j (r )}λ j (r ) ( j < k)
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O(k, j )(r, s) denotes the probability that an animal in location r ∈ R at age k ∈ J
remains unobserved until it is subsequently resighted in location s ∈ R at age j +1,
for 0 ≤ k ≤ j ≤ J − 1. Then,

O(k, j )(r, s) = p j+1(s)Q(k, j )(r, s),

where Q(k, j )(r, s) denotes the probability that an animal migrates from region r ∈ R
at age k ∈ J to location s ∈ R at age j + 1, for 0 ≤ k ≤ j ≤ J − 1, and is
unobserved between these ages, and is given by

Q(k, j )(r, s) =
{
φk(r )ψk(r, s) (k = j )

φk(r )
∑R

l=1{1 − pk+1(l)}ψk(r, l)Qk+1, j (l, s) (k < j )

D(k, j )(r ) denotes the probability that an animal is recovered dead in the interval
( j, j + 1) given that it is last seen at age k ≤ j in r ∈ R and is given by

Dkj (r ) =
{

{1 − φ j (r )}λk(r ) (k = j )∑R
l=1{1 − φ j (l)}λ j (l){1 − p j (l)}Qk, j−1(r, l) (k < j )

The following sufficient statistics which are obtained from the encounter history
data are then formed:

v( j,k)(r ) denotes the number of animals that are recaptured for the last time in
location r ∈ R aged j and would be aged j ≤ k ≤ J at the end of the study;

n(k, j )(r, s) denotes the number of animals that are observed in location r ∈ R
at age k and next observed alive in location s ∈ R at age j + 1; and

d(k, j )(r ) denotes the number of animals recovered dead between ages j and
j + 1 that are last observed alive at age k ≤ j in location r ∈ R.

The likelihood function has the form given below:

L(θ |v, n, d) =
∏
r∈R

⎡⎣ J∏
j=0

J∏
k= j

{χ( j,k)(r )}v( j,k)(r)
J−1∏
k=0

J−1∏
j=k

{D(k, j )}d(k, j )(r)

J−1∏
k=0

J−1∏
j=k

∏
s∈R

{O(k, j )(r, s)}n(k, j )(r,s)

⎤⎦
where θ comprises the model parameters {Φ,Λ, P, Ψ } and we denote our MRR
likelihood by L M R R(Φ,Λ, P, Ψ ).
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Bayes Factors and Multimodel Inference

William A. Link and Richard J. Barker

Abstract Multimodel inference has two main themes: model selection, and model
averaging. Model averaging is a means of making inference conditional on a model
set, rather than on a selected model, allowing formal recognition of the uncertainty
associated with model choice. The Bayesian paradigm provides a natural framework
for model averaging, and provides a context for evaluation of the commonly used
AIC weights. We review Bayesian multimodel inference, noting the importance of
Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on
parameters, we define and propose nonpreferential priors as offering a reasonable
standard for objective multimodel inference.

Keywords Bayes factors · Bayesian inference · Multimodel inference ·
Nonpreferential priors

1 Introduction

Science is about uncertainty. In the best circumstances, phenomena studied produce
data which can be regarded as realizations of a random variable X having proba-
bility distribution f(x;�), completely specified except for some or all components
of a vector �. We refer to the family of distributions f(x;�) as a model; scientific
inference focuses on estimation or prediction of the unknown quantities in �.

Our statement that “data can be regarded” as described is intended to be neutral,
as also our use of the term “model.” The representation may be exact, or it may
be merely a useful approximation. Unfortunately, the term “model” is charged
with meaning, frequently carrying the sense of approximation. Used thus, the
phrase “true model” is an oxymoron. It is easy when discussing models to become
entangled in all sorts of philosophical musings about Truth and the limitations
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of Knowledge, musings which pursued with sufficient assiduity leave us with
Descartes, questioning our own existence.

When we say that data “can be regarded” as observations of a random variable we
mean simply that the family of distributions is taken as granted, and that our infer-
ence is conditioned on this assumption. Single model inference operates as though
the posited model were an exact depiction of the stochastic processes generating
observations.

Our inference is limited by model uncertainty: we are limited by our inability to
confidently assert that f(x;�) is an exact depiction of the stochastic processes giving
rise to the data. Goodness of fit tests may tell us that we ought not to have confidence
in a model, but they cannot finally decide the issue of model adequacy. Nor does
the evaluation of a single model point the way forward; if the model is deemed
inadequate, what then? What is needed is a set of alternative models fi (x ; �(i)),
i = 1,2, . . ., and a formal mechanism for evaluating the relative confidence we place
in each of them.

Bayesian multimodel inference provides such a mechanism.
Two aspects of multimodel inference are distinguished: model selection and

model averaging. Model selection is the choice of a single model; subsequent infer-
ence is conditioned on this choice. The dangers of using the same data for model
choice and subsequent inference are well-known (Chatfield 1995; Draper 1995;
Hoeting et al. 1999). For instance, significance tests for modeled effects cannot be
interpreted as though the model were fixed in advance: effects included in selected
models are almost certain to be statistically significant in those models.

Model averaging is the process of making inference conditional on a model set,
rather than on a particular model in the set. The resulting inference is based on a
weighted average of the models, the weights relating to the confidence we have in
the various models.

In this paper, we point out that if model averaging is conducted in accordance
with basic rules of probability, it is essentially an application of Bayes theorem.
This observation applies regardless of whether one chooses to conduct a Bayesian
analysis: one need not be Bayesian to use Bayes theorem. Seen thus, model weights
are posterior probabilities for models, conditional on the model set. There exists a
corresponding set of prior model probabilities, even if it is not explicitly specified.
The prior on models has a substantial role in the resulting inference.

Wildlife and ecological statistics have been substantially and positively influ-
enced by Burnham and Anderson’s promotion of Akaike’s information criterion
(AIC) as a tool for model selection, and as a basis for model averaging (Burnham
and Anderson 1998, 2002, 2004). We encourage a careful evaluation of the prior on
models associated with AIC weights. This prior will be seen to depend on sample
size, and in such a way as to substantially favor more highly parameterized models.
We describe alternative weighting schemes similar to AIC weighting, which can be
implemented at no additional computational cost while avoiding this tendency.

We believe that despite computational challenges, the best approach to multi-
model inference is provided by the Bayesian paradigm. We begin, therefore, with a
review of Bayesian multimodel inference (BMI), noting the centrality of a quantity
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known as the Bayes factor. Bayes factors are determined by the data, the probability
distribution f (x ; �), and the priors on parameters �, but do not depend on the prior
model weights. Indeed, Bayes factors can be thought of as the machinery by which
prior model weights are converted to posterior model weights; the mechanism exists
independent of the specified prior model weights.

Bayes factors, and consequently BMI, are sensitive to the choice of priors on
parameters. The effect of this choice is much greater than its effect in single model
applications, such as Bayesian estimation. BMI being a fairly new and somewhat
unfamiliar topic in wildlife and ecological applications, we feel that problems of
prior sensitivity may not yet have received adequate attention among analysts. We
briefly review the issue, describing approaches that have been proposed for dealing
with prior sensitivity, and proposing principles that may serve as guidelines for prior
selection.

2 Bayesian Multimodel Inference for Fully Specified Models

Bayes theorem, in its simplest form, follows directly from the law of total proba-
bility and the definition of conditional probability. Given a mutually exclusive and
exhaustive set M = {M1, M2, ..., MR} of outcomes, and an event X, the conditional
probability of M j given X can be calculated as

Pr(M j |X ) = Pr(M j and X )

Pr(X )
= Pr(X and M j )

R∑
i=1

Pr(X and Mi )

= Pr(X |M j ) Pr(M j )
R∑

i=1
Pr(X | Mi ) Pr(Mi )

(1)

In Bayesian multimodel inference, the set M = {M1, M2, ..., MR} consists of
models.

Let Q be a quantity about which we wish to make a prediction based on the obser-
vation X. In Bayesian inference, that prediction will take the form of a probability
statement based on a posterior distribution; if we were only considering model j,
the prediction would be based on Pr(Q|X, M j ). If we are interested in combining
predictions over the entire model set M, we will use

Pr(Q|X ) =
R∑

j=1

Pr(Q|X, M j ) Pr(M j |X ); (2)

Note in equation (2) that the posterior model probabilities Pr(M j |X ) serve as
weights for the model-specific inferences.

We have referred to M as a “mutually exclusive and exhaustive set.” More realis-
tically, we might suppose that M is a subset of some larger collection of models. But
there is no difference in the resulting inference. When conducting inference with a
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single model, we acknowledge that inference is conditioned on that model; in multi-
model inference, we acknowledge that inference is conditioned on the model set.
Recognizing that M is a subset of some larger collection of models does not change
our inference though it might change our notation: it would perhaps be wise for us to
include M in the conditional probability notation, as for instance Pr(M j |M) instead
merely of Pr(M j ). For ease of notation this conditioning is usually not explicitly
indicated, just as it is not typically indicated in single model inference. One way or
the other, all probability statements are conditioned on this set.

If we are only interested in the relative support for two models, say M j

and Mk , we might consider the ratio of their posterior probabilities, the odds
Pr(M j |X )/Pr(Mk |X ). From equation (1) it is seen that the posterior odds can be
written as

Pr(M j |X )

Pr(Mk |X )
= Pr(X |M j )

Pr(X |Mk)

Pr(M j )

Pr(Mk)
. (3)

The Bayes factor for comparing models j and k is defined as the ratio BFj,k =
Pr(X |M j )/Pr(X |Mk). Thus equation (3) is

Pr(M j |X )

Pr(Mk |X )
= BFj,k × Pr(M j )

Pr(Mk)
, (4)

Note that the Bayes factor is a likelihood ratio for the two models, and that it is the
multiplicative factor by which prior model odds are converted to posterior model
odds. Expressed another way, the Bayes factor is the ratio of posterior odds to prior
odds on models. BFj,k > 1 means that the data provide greater support for model j
than for model k. It is worth noting that the Bayes factor exists independently of the
model set M; it is an absolute measure of relative support.

It will be useful to re-write equation (1) in terms of Bayes factors. Substituting
πi = Pr(Mi ) for the prior model weights and wi = Pr(Mi |X ) for posterior model
weights, and dividing numerator and denominator by Pr(X |M1), we have

w j = Pr(X |M j )/Pr(X |M1) π j

R∑
i=1

Pr(X |Mi )/Pr(X |M1) πi

,

i.e.,

w j = B Fj,1 π j

R∑
i=1

B Fi,1 πi

. (5)

The choice of expressing model weights in terms of Bayes factors relative to model
1 is of no consequence; one could replace BFi,1 and BFj,1 in equation (5) with BFi,k

and BFj,k since the latter values are simply obtained by multiplying the former by
BF1,k .
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2.1 Example 1

A concrete example may be helpful at this point. Suppose that in writing a computer
program, you have the uncomfortable feeling that instead of typing RNDU (gener-
ating a variate uniformly distributed on the interval [0, 1]) you may have typed
RNDN (generating a standard normal variate). Having compiled the code, there is
no easy way to check, except to look at the output X. Let M1 denote the uniform
model and M2 denote the normal model. Then the Bayes factor based on a single
observation X = x is the ratio of density functions

BF1,2 = I(0 ≤ x ≤ 1)

exp(−x2/2)/
√

2π
,

portrayed in Fig. 1. Note that observations x falling in the range [0,1] shift support
toward the uniform model, but that observations outside of this range yield BF1,2 =
0; these provide incontrovertible evidence against M1 in favor of M2. Observations
X < 0 or X > 1 result in posterior probability of zero for model 1. An observation
X = 0.60 leads to a Bayes factor of 3 : prior odds of 1–1 are changed to posterior
odds of 3–1, prior odds of 1–9 are changed to posterior odds of 3–9. In the first
case prior probability of 0.50 for model 1 becomes posterior probability of 0.75;
in the latter case, prior probability of 0.10 is increased to posterior probability of
0.25 (3/12).

Three features of the Bayes factor are worth emphasizing: first, that is an evalua-
tion of the evidence in favor of one model versus another; this stands in remarkable
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Fig. 1 Bayes factor B F1,2 for Example 1, plotted as function of observation x



600 W.A. Link and R.J. Barker

contrast to test statistics, which only provide evidence against a single model. The
second is that Bayes factors operate independently of the prior model weights, indi-
cating only a shift in support: prior probabilities of 0.10 and 0.90 on M1 and M2

are only changed to posterior probabilities of 0.25 and 0.75 when BF1,2 = 3. This
feature is neither “good” nor “bad” – it is simply a logical consequence of applying
the rules of probability theory to the problem of multimodel inference.

The third feature is that Bayes factors for subsequent independent observations
are combined multiplicatively; if you observe Xi = xi , i = 1, 2, . . ., n in n runs of
the computer program, the Bayes factor for the entire data set is

B F1,2(x1, x2, ..., xn) =
n∏

i=1

B F1,2(xi ).

This appealing feature is an example of Bayesian coherency (i.e., adherence to the
basic rules of probability). Bayes factors from independent studies are combined by
multiplication, yielding the same results as if analyzed simultaneously. In hypothesis
testing, analyses of individual data sets need not lead to the same conclusion as
analysis of a combined data set; a p-value for a combined data set might not have
any direct relation to the p-values for individual data sets.

Kass and Raftery (1995) describe weights of evidence in favor of one model over
another as Positive (3 < BF ≤ 20), Strong (20 < BF ≤ 150), and Very Strong (BF
> 150). Not surprisingly, a single observation of X, of necessity producing a Bayes
factor B F1,2 < 4.2, cannot yield strong evidence in favor of the uniform model,
though it can provide conclusive evidence against it (B F1,2 = 0).

2.2 Comments Thus Far

2.2.1 Truth in the Model Set

In the preceding description, we have identified models with a mutually exclusive
and exhaustive set of events M = {M1, M2, ..., MR}. Thus the mathematical struc-
ture underlying Bayesian multimodel inference is equivalent to a single draw from a
multinomial distribution with cell probabilities πi = Pr(Mi ), i = 1, 2, . . ., R followed
by the generation of data X according to the selected model. Perhaps unfortunately,
the selected model is often referred to as the “true model.”

This structure has been dismissed as unreasonable, on the grounds that it requires
“Truth in the model set”; from thence, one slides easily into the aforementioned
philosophical morass about Truth and Models. But “ truth in the model set” is merely
a model; one might as well criticize the BMI structure for not specifying who made
the draw. Berger and Pericchi (1996) refer to “truth in the model set” as “standard
Bayesian language” noting that “one does not strictly have to assume that one of the
models is true.”

In single model inference, we always condition on the model being “true”,
whether we are certain that to be the case or not Box (1976). We use a t-distribution
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because under normality the sample mean and variance are independent normal and
chi-squared, even though we really might confess uncertainty about these assump-
tions if pressed hard enough. There is not much of a leap from that modeling abstrac-
tion to the multimodel abstraction: “truth in the model set” is just a model.

It is crucial to see multimodel inference as conditional on the model set, just
as inference under a single model is conditional on that model. In both cases we
acknowledge our inferences as conditional. Posterior probabilities of “truth” are
conditional on “truth in the model set.” Thus they can be regarded as relative degrees
of support, within the model set. If we are radically skeptical of the model set, there
is probably no point in model averaging over it; in this case, the use of Bayes factors
for comparing models is nevertheless appropriate. Bayes factors stand independent
not only of prior model weights, but also of the model set: they can be used simply
for pairwise comparisons of models.

So then rather than saying that Bayesian model averaging requires “truth in the
model set” we should say that Bayesian model averaging “operates as though truth
were in the model set.”

2.2.2 Model Weights as Posterior Model Probabilities

Equation (2) can be thought of as a special case of a general formula for a variety of
weighted predictions, namely

Pr(Q|X,M) =
R∑

j=1

w j Pr(Q|X, M j ); (6)

where w j summing to one are model weights; here we make explicit that all of
the probabilities under consideration are conditional on a model M. Equation (6)
indicates a recipe for weighted predictions: one obtains a prediction under each of a
set M of candidate models, then weights these by the w j to obtain a single prediction
for the entire model set.

Under the Bayesian paradigm, equation (2) indicates that w j = Pr(M j |X,M)
is a solution of equation (6). If it is reasonable to assign probabilities to models,
so that Pr(M j |X,M) is defined, it can be shown under weak conditions that w j =
Pr(M j |X,M) is the only solution of equation (6); proof is included in Appendix 1.
The point of this is that using model weights in predictions of the form equation
(6) is essentially treating them as posterior model probabilities, conditional on the
model set.

3 Bayesian Multimodel Inference with Unknown Parameters

Equations (1)–(5) were presented as applicable to fully specified models, without
unknown parameters. Nothing is changed by supposing that corresponding to
model j is an unknown parameter �( j), except that we must calculate Pr(X |M j ) by
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integrating the conditional distribution Pr(X |�( j), M j ) against a conditional prior
distribution for �( j). In the interest of simplicity, we will commence using bracket
notation for distributions, with [A] denoting the marginal distribution of A, and [A|B]
denoting the conditional distribution of A given B. Thus equations (1)–(5) are gener-
ally applicable in BMI, but using

Pr(X |M j ) =
∫ [

X |�( j), M j
] [

�( j)|M j
]

d�( j), (7)

the marginal distribution of X under model j.
Note that

[
X |�( j), M j

]
can be regarded as a joint likelihood for parameters and

model; indeed, if
[
�( j)|M j

]
were replaced by a point mass prior on the maximum

likelihood estimator (MLE), the Bayes factor would reduce to the Neyman–Pearson
likelihood ratio. Instead, the marginal distribution is used as a likelihood for the
model, averaging the joint likelihood against the parameter uncertainty indicated by
the prior.

3.1 Example 2

Let model 1 be that observation X is from a binomial distribution with unknown
index N and unknown success parameter p. Assigning a discrete uniform prior for
values of N less than or equal to T, and a uniform prior on [0,1] to p, we have

Pr(X = x |M1) = 1

T + 1

⎧⎨⎩
T∑

N=x

(
N
x

) 1∫
0

px (1 − p)(N−x)dp

⎫⎬⎭
= 1

T + 1

T∑
N=x

1

N + 1
, 0 ≤ x ≤ T .

(8)

Let model 2 be that observation X is from a Poisson distribution with unknown
parameter 
. Given that 
 has a Γ (α, β) prior, the marginal distribution of X has
distribution

Pr(X = x |M2) =
∞∫

0

λx e−λ

x!

�αλ(α−1)e−βλ

�(	)
dλ

= �α�(	 + x)

(� + 1)α+x x!�(	)
, x/,≥ 0 (9)

a negative binomial distribution. If T = 25 in equation (8), then setting 	 = 75/53
and � = 12/53 in equation (9) equates mean and variance of the marginal distri-
butions Pr(X = x |M). The marginal distributions of X under models 1 and 2 are
shown in Fig. 2; their ratio, the Bayes factor is given in Fig. 3. Note that since the
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Fig. 2 Marginal distributions for Example 2, under model 1 (thick line) and model 2 (thin line).
Here, T =25, 	 = 75/53, and � = 12/53
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Fig. 3 B F1,2 for Example 2, plotted as a function of observation x. Here, T = 25, 	 = 75/53, and
� = 12/53

prior on N under model 1 rules out values of X > 25, such values are conclusive
against model 1.

For now we make no further comment on choice of priors for parameters, a topic
of substantial importance to which we return subsequently.
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3.2 Approximations for Bayesian Multimodel Inference
with Unknown Parameters

Calculation of Bayes factors can be challenging, and various asymptotic approxi-
mations have been proposed. As a general rule we do not advocate these, except in
preliminary analysis. Given the expenses typically associated with study design and
data collection, it seems appropriate to face up to the costs of computation, and give
statistical analysis its due.

We mention one such approximation, the Bayesian information criterion, not
only because of its usefulness in its own right, but also because it provides a means
for evaluating the widely used AIC weights and, perhaps, improving on them.

3.2.1 Bayesian Information Criterion

The Bayesian information criterion (BIC) is unfortunately named, the name having
been chosen doubtless because of its computational similarity to the AIC, and not
because of any explicit relation to Kullback–Liebler (KL) information. Both are
penalized forms of the log-likelihood,

AIC = −2 log
(

f (x, �̂)
) + 2k, (10)

and

BIC = −2 log
(

f (x, �̂)
) + k log(n), (11)

where �̂ is MLE of �, k is the number of estimable parameters in the model, and n is
the sample size. AIC is an estimator of KL information, but BIC arises in an entirely
different fashion, in producing an asymptotic approximation to the Bayes factor in
a fully Bayesian analysis, with a specific vague prior on �. Using subscripts i and j
for models, B Fi, j is approximated by exp

(−(BICi − BIC j )/2
)

(Kass and Raftery
1995). Substituting these approximations in equation (5) and simplifying, we have
the approximation

ŵ j = exp(−BIC j/2) π j

R∑
i=1

exp(−BICi/2) πi

. (12)

The quantities typically referred to as BIC weights are obtained using this approx-
imate Bayes factor, and assuming equal prior model weights. There is however
nothing requiring that the prior model weights be equal. We will speak of general-
ized BIC weights as those arising from the BIC approximation to the Bayes factor,
but with alternative sets of prior model weights. These can be computed at no addi-
tional computational cost relative to AIC weights, allowing (indeed, forcing) the
analyst to specify prior model probabilities, rather than to accept default values.
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3.2.2 AIC Weights as Generalized BIC Weights

AIC weights are of the same form as equation (12), but with AIC replacing BIC,
and equal prior model weights. Thus

wAIC
j = exp(−AIC j/2)

R∑
i=1

exp(−AICi/2)

,

which from the definitions (10) and (11) can be expressed as

wAI C
j = exp(−BIC j/2) exp

(
(k j/2) log n − k j

)
R∑

i=1
exp(−BICi/2) exp ((ki/2) log n − ki )

.

Thus AIC weights can be considered generalized BIC weights (i.e., approximate
posterior model weights) with prior weights

π j ∝ exp
(
(k j/2) log n − k j

)
, (13)

as noted by Burnham and Anderson (2004). These priors have the unusual feature
of relying on sample size and substantially favor more highly parameterized models
when n is large. Thus, since priors are supposed to represent knowledge before
collection of data, the more data one plans on collecting, the more credence is placed
a priori on the more complex models. Kadane and Lazar (2004) note

One justification for the AIC is Bayesian (Akaike 1983), namely that asymptotically, compar-
isons based on Bayes factors and on AIC are equivalent if the precision of the prior is
comparable to the precision of the likelihood. This requirement that the prior change with
the sample size is unusual asymptotics and, furthermore, is usually not the case. Rather, the
data tend to provide more information than the prior.

We recently compared a set of 5 models, having 1, 2, 2, 3, and 4 parameters, respec-
tively. The data set we considered had n = 1961; we were taken aback to realize that
if we used AIC weights, the corresponding prior model weights form (13) were 0.02,
0. 35, 0. 35, 5.74, and 93.53%, respectively (Link and Barker 2006). Users of AIC
weights ought to be aware of equation (13) and its implications; similar results are
easily obtained for AICc weights. One of the advantages of AIC weights is their ease
of computation. However, we note that generalized BIC weights (equation (12)) can
be computed with essentially no additional computational expense, but allowing,
indeed forcing the analyst to supply a reasonable set of prior model weights.

4 Effect of Priors on Parameters on Bayes Factors

In Example 2, keeping T= 25 in model 1, but changing the prior under model 2 from
having {	 = 75/53, � = 12/53} to {	= 75/20, � = 12/20} maintains the marginal
mean under model 2, but decreases the variance, so that the marginal distributions
are given as in Fig. 4. The result is that the Bayes factors are now as in Fig. 5.



606 W.A. Link and R.J. Barker

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00
0 8 12 16 20 24 28 324

Fig. 4 Marginal distributions for Example 2, under model 1 (thick line) and model 2 (thin line).
Here, T =25, 	 = 75/5, and � = 12/5
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Fig. 5 B F1,2 for Example 2, plotted as a function of observation x. Here, T = 25, 	 = 75/5, and
� = 12/5
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Thus the choice of priors on unknown parameters plays an important role in
determining the Bayes factor for comparing the two models. It is an inevitable and
possibly disconcerting feature of BMI that priors on parameters have a substan-
tial influence on Bayes factors. This stands in contrast with single-model Bayesian
inference, in which priors on parameters can often be “overwhelmed” by data, in
the sense that the influence of priors on posterior distributions diminishes as sample
size increases.

The reason for priors on parameters having substantial influence on the model
selection problem is that Bayes factors do not merely test, in this case, for Binomial
versus Poisson, but for one fully-specified marginal distribution (8) vs. another (9).
We do not regard this as a failing of the inferential system, but as a feature that
needs to be taken into account in implementation. There is no problem in so doing
if informative priors are available, but selecting priors representing limited prior
knowledge can be challenging, as indicated by the next example.

4.1 Example 3: Problems Arising from Improper Priors

Bayes factors provide a sensible means for comparing two fully specified models,
including comparisons frequently handled by means of hypothesis tests. Suppose
for instance that we wish to decide whether an observation X comes from a standard
normal distribution (Model 1), or from a normal distribution with mean 
 = 2,
and standard deviation of one (Model 2). Using the self-explanatory notation
X ∼ N (
, σ 2), we have M1 : X ∼ N (0, 1), and M2 : X ∼ N (2, 1). Then
B F1,2 = exp(−2x + 2), a strictly decreasing function of x, equal to one when
x = 1, when the data supports the two models equally (Fig. 6).
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Fig. 6 Bayes factors for Example 3, B F1,2 (solid line) and B F2,1 (dashed line), plotted as functions
of observation x
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Suppose however that in model 2 the mean is unknown; we might suppose that
the value “2” still is our best guess, but that our uncertainty about 
 is conveniently
modeled as that 
 is a normal random variable with mean 2 and specified variance
σ 2. Then model 2 becomes M2 : X |
 ∼ N (
, 1),
 ∼ N (2, σ 2). The marginal
distribution for X is the same as if we had specified M2 : X ∼ N (2, 1 + σ 2); hence,
the Bayes factor is

B F1,2 =
√

1 + σ 2 exp

(
−1

2

x2σ 2 + 4x − 4

1 + σ 2

)
, (14)

The Bayes factor (14) has some disturbing features when either � or |x| is large.
First, B F1,2 is no longer a monotone function of x if � > 0. Indeed, for fixed

� > 0, the limit as x approaches ± ∞ is zero. Large negative values of x thus
provide more support for model 2 than for model 1, perhaps contrary to intuition.
This conundrum is resolved by noting that model 2 is consistent with greater vari-
ation in X, noting that Bayes factors provide only a measure of relative support for
models, and do not measure model adequacy. With � = 0.9, observations X < −6
somewhat surprisingly favor model 2 over model 1.

Perhaps more alarming is the observation that for fixed x, the limit as �
approaches ∞ is infinite; a fact that at first note seems to contradict the previous
observation (but which involved fixing �, and varying x). In Bayesian estimation,
complete absence of knowledge of an unknown parameter is often represented by
use of an improper prior, with infinite variance. Restricting attention to model 2,
this approach is completely satisfactory for estimation: the posterior distribution
for 
 can be shown to be normal with mean X and variance 1, yielding reasonable
results, numerically similar to typical frequentist analyses. However, the example
considered here shows that the use of improper priors might not be satisfactory in
multimodel inference.

Indeed, Berger and Pericchi (1998) note that these problems extend to the use
of vague proper priors. The problem is that models having more parameters tend
to allow greater prior uncertainty in the range of the data to be produced; this is
reflected in typically lower values for the marginal distribution function of the data,
hence a tendency for the Bayes factor to be large in comparing a simple model to
a more complex model. The greater the uncertainty in the collection of priors, the
more serious the problem becomes.

4.2 Choosing Priors on Parameters for BMI

Clearly, implementation of BMI requires careful specification of priors on parame-
ters. We turn our attention once again to the calculation of the marginal distribution,

Pr(X |M) =
∫

[X |�, M] [�|M] d� (15)
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taking heed to the role of [�|M]. A substantial literature on methods for choosing
[�|M] exists; see Berger and Pericchi (1996) for a review.

Some examples: Smith and Spiegelhalter (1980) and Spiegelhalter and Smith
(1982) proposed using an imaginary minimal training sample that most favors the
simpler model as though it were previous data, to inform the prior for the parameter.
In the case of Example 3, this would mean supposing a previous observation X∗ = 0
under model 2, with arbitrarily large prior variance on 
. The resulting posterior
would be [μ|M2] = N (0, 1), so that the marginal distribution under model 2 would
be N (0, 2), and B F1,2 = √

2 exp(−x2/4 − x + 1).
Aitkin (1991) suggests using the actual data as a training sample. Thus (for

Example 3) the posterior distribution for 
 under model 2, having begun with prior
having arbitrarily large variance, is [
|M2] = N (X, 1). The resulting Bayes factor
is B F1,2 = √

2π exp(−x2/2). This procedure has been criticized as contrary to
standard Bayesian practice, in using the data twice (Aitkin 1991, Discussion; Berger
and Pericchi 1996), but it may perhaps be justified in terms of posterior predictive
distributions (see Aitkin 1991, and Aitkin 1991 Response to Comments).

Other authors have suggested splitting data sets into training and analysis
portions; using the former to generate informative priors for parameters, and the
latter for multimodel inference. This expedient side-steps the criticism of using the
data twice, but is itself liable to criticism on various grounds: for one, the results
will depend on which subset of the data is selected for training; for another, some
loss of information is incurred through not using the training data for model selec-
tion. In addition, and more importantly from our perspective, this approach may not
deal with the fundamental difficulty that alternative models, incorporating varying
amounts of prior uncertainty, will have marginal distributions which prejudice the
analysis a priori. This vice appears to be taken as a virtue by some authors, who
suggest that Bayes factors “automatically” penalize model complexity. Our perspec-
tive is that this phenomenon is inconsistent across applications and hence undesir-
able; penalties for model complexity, if desired, should be incorporated in priors on
models, and not in the Bayes factors.

We thus suggest that priors on parameters be chosen with the marginal distribu-
tions in mind, attempting to achieve some level of parity in the effects of priors on
parameters across models in the model set.

We will suppose that the observation is of the form X = (X1, X2, ..., Xn), where
Xi are conditionally independent, given � and M. The effect of parameter uncer-
tainty on Xi under model M is expressed in the marginal distribution [Xi |M].
The guiding principle for selecting priors will be that the marginal distribution of
individual observations is as nearly identical as possible, and that the evidence for
selecting among models is in the joint marginal distribution. We will say that a set
of priors [�( j)|M j ] is nonpreferential over M if for all i,

[Xi |M] =
∫

[Xi |�( j), M j ] [�( j)|M j ] d�( j) (16)

is constant for M j ∈ M.
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4.3 Example 4: Random Effects vs. Fixed Effects

Suppose [Xi |�i , M] is specified, and that if M = 1, �i ∼ F , with F known; but
under M = 2, �i ≡ μ, an unknown. Then any prior satisfying [μ|M = 2] = F is
nonpreferential over the pair of models.

For example, suppose we have n independent observations of Binomial random
variables with success rates pi . Model 1 is that the pi ’s are sampled from a specified
beta distribution, say �(2,2). Model 2 is that pi ≡ μ, for some unknown value
0 < μ < 1.

A nonpreferential prior is obtained by supposing that 
 | M = 2 ∼ �(2,2). Regard-
less of whether model 1 or model 2 is correct, the marginal distribution of a single
observation is the same beta-binomial. It should be noted, however, that the joint
distribution [X |M] depends on M: observations Xi will tend to be more clustered
under model 2.

4.4 Example 5: Random Effects vs. Fixed Effects, Continued

A slight generalization of Example 4: Suppose [Xi |�i , M] is specified, and that if
M = 1, �i ∼ Fα , with the family F known, but 	 unknown. As in example 4, under
M = 2, �i ≡ μ, unknown.

We need to specify prior distributions [α|M = 1] and [μ|M = 2]. If [α|M = 1]
= g, then suppose that [μ|M = 2] = Fβ , with � ∼ g. It follows that the marginal
distribution [�i |M] is the same mixture of F and g, hence independent of M.

For example, suppose we have n independent observations of Binomial random
variables with success rates pi . Model 1 is that the pi ’s are sampled from an
unspecified �(a,b) distribution, Model 2 is that pi ≡ μ, for some unknown value
0 < μ < 1. Given a specification for priors on a and b under Model 1, we implicitly
define a marginal prior g(p) = [pi |M = 1]; a nonpreferential prior is constructed by
supposing that given M = 2, 
 ∼ g.

4.5 Example 6: Finite Mixtures of Binomials

Suppose that Xi |pi are independent binomial random variable with known index N
and success parameters pi . Model 1 is that there is a single unknown value of pi , say
�; model 2 is that pi is drawn from a two point mixture: pi = πL with probability
w, and pi = πH with probability 1−w. Thus

pi = I(M = 1)π + I(M = 2) (γi πL + (1 − γi )πH )

where I(·) is the indicator function and γi are independent Bernoulli trials with
parameter w. A nonpreferential set of priors is obtained as the distributions induced
by setting πL = min(U1,U2), πH = max(U1,U2), w = U3, and π = U4, where Ui

are independent uniformly distributed random variables on [0,1]. Then [pi |M] is a
uniform distribution under either model.
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This example can be extended to include k-point mixtures, with mass points
{π1, π2, ..., πk} having prior distribution equivalent to the order statistics of a sample
of size k from a uniform distribution, and weights sampled from a uniform Dirichlet
distribution.

4.6 Example 7: Regression Models

Suppose that [Xi |�i , M] is a distribution indexed by parameter �i , and that
{ξi1, ξi2, ..., ξi p} is an associated set of covariates determining �i as satisfying,
g(�i ) = ∑P

j=1 � jξi j , for a specified link function g. The problem of choosing covari-
ates is a multimodel inference, with alternative models obtained by setting some of
the � j ’s equal to zero.

While it may not be possible to construct prior distributions for the unknown
� j ’s exactly satisfying equation (16), the goal of nonpreferential priors may be
approximated by matching typical values of moments of the linear predictor across
models.

For example, Link and Barker (2006) considered a set of logistic regression
models. Having standardized covariates, they specified mean-zero normal priors for
the � j ’s, with variances proportional to the number of parameters in the model. The
total variance V of the linear predictor was treated as a draw from an inverse-gamma
distribution, i.e., so that 1/V has mean p/λ = 3.2890 / 7.8014 = 0.4216, and vari-
ance/mean ratio of 1/λ = 1 / 7.8014 = 0.1282. This choice was motivated by the
observation that, if logit( p) is a mean-zero normal random variable with variance
V, then marginally p has a distribution that is approximately uniform on the unit
interval.

5 Discussion

Computational barriers having fallen, the benefits of the Bayesian paradigm are
being realized in hierarchical models of increasing complexity. Our capacity as
analysts to fit models may be outstripping our efforts at model criticism and
evaluation.

There are still computational barriers for BMI. For small model sets, program
WinBUGS (Spiegelhalter et al. 2000) can be used, with models sampled according
to a multinomial distribution. This approach requires considerable tuning and
tweaking. For example, priors for parameters �( j) need to be specified not only
conditional on their model, but also conditional on models M (k) for k �= j. If these
“pseudo-priors” [�( j)|M (k)] are vague, mixing across the model space will be slow.
These quantities having no bearing on inference, it is wise to choose these as approx-
imating [�( j)|X, M ( j)], on the basis of preliminary single model analyses.

It is also useful (whether using WinBUGS or not) to take advantage of the
fact that BF’s are invariant to prior model weights: hence, one may fix a prelim-
inary set of prior model weights, calculate posterior model weights and obtain
a working estimate of the BF’s. This working estimate of the BF’s can then be
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used to choose new prior model weights which lead to approximately equal poste-
rior model weights, enhancing Markov mixing over model space. The process can
be iterated until reliable estimates of the BF’s are obtained; these, then can be
used with whatever set of prior weights one desires for final model averaging. A
rough estimate of the necessary computation time for obtaining a fixed level of
precision in estimating Bayes factors can be obtained using methods described in
Appendix 2.

A sample set of WinBUGS code for multimodel inference is available online
at Ecological Archives E087-159-S1, http://esapubs.org/archive/ecol/E087/159/
suppl-1.htm, an online appendix to Link and Barker (2006).

Reversible jump Markov chain Monte Carlo (RjMcMC, Green 1995) provides
substantial computational advantages over the multinomial model approach. The
analysis reported in Link and Barker (2006) conducted using RjMcMC coded in
GAUSS, ran in about one tenth the time of the corresponding WinBUGS code. There
is, however, a rather steep learning curve associated with RjMcMC.

Regardless of how BMI is implemented, Bayes factors are a lurking presence.
Care needs to be taken in choosing priors for parameters; one cannot simply adjust
the priors as though they were tuning parameters for the performance of Markov
chain simulations.

Appendix 1: Model Weights as Model Probabilities

Theorem Let Q be an event, let X denote observed data, and suppose that

Pr(Q|X, Mi ) = Pr(Q|X, M j )

implies i = j.
Suppose that posterior model probabilities Pr(Mi |X ) exist, for models Mi , i = 1,

2, . . . . Let Ai , i = 1, 2, . . . be positive constants, corresponding to the models.
Let M(k) denote a collection of k models; without loss of generality we will

assume M(k) consists of the models 1 through k, assuming only that at least one
of the models in the set has Pr(Mi |X ) > 0.

Suppose that model weights for the collection M(k) are defined by

wi,k = Ai

/∑k

j=1
A j .

Finally, suppose that for every k,

Pr(Q|X,M(k)) =
k∑

i=1

wi,k Pr(Q|X, Mi ), (17)

Then wi,k = Pr(Mi |X,M(k)).
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Proof Let ai,k = Pr(Mi |X,M(k)) = Pr(Mi |X )/Pr(M(k)|X ) and bi = Pr(Q|
X, Mi ). Then Pr(Q|X,M(k)) =

k∑
i=1

ai,k bi , so equation (17) can be written as

k∑
i=1

ai,k bi =
k∑

i=1

wi,k bi . (18)

Consider the case k = 2, and set w = A1
/

(A1 + A2). Then equation (18) becomes

a1,2 b1 + a2,2 b2 = w b1 + (1 − w) b2,

implying that

w = a1,2 b1 + (a2,2 − 1) b2

b1 − b2
,

provided that b1 �= b2, which follows from the assumptions. Thus there exists a
unique solution to equation (18), for k = 2. Note that

wi,k = ai,k

/
k∑

j=1

a j,k = Pr(Mi |X )

/
k∑

j=1

Pr(M j |X ) (19)

is a solution to equation (18), for all k. Thus equation (19) is the unique solution to
equation (18), when k = 2, so

A1

A1 + A2
= Pr(M1|X )

Pr(M1|X ) + Pr(M2|X )
,

from which it follows that

Pr(M1|X ) A2 = Pr(M2|X ) A1. (20)

Let C = A1/Pr(M1|X ). Then A1 = C Pr(M1|X ), and from equation (20), A2 =
C Pr(M2|X ). Furthermore, since the reasoning holds under any permutation of the
integers i, A j = C Pr(M j |X ) for all j. Consequently

wi,k = Ai

/∑k

j=1
A j = Pr(Mi |X )

/
k∑

j=1

Pr(M j |X ) = Pr(Mi |X,M(k)). (21)

Appendix 2: Precision of Estimated Bayes Factors Using MCMC

The Bayes factor for comparing models i and j is the ratio of posterior odds to prior
odds,
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B Fi, j =
wi
/
w j

πi
/
π j

.

For specified prior weights, we use MCMC (Markov chain Monte Carlo) to obtain
estimated posterior weights ŵi , which are used to obtain estimated Bayes factors,
which we distinguish here as E B Fi, j . A bit of rearrangement yields

E B Fi, j = B Fi, j

⎛⎝ ŵi
/
ŵ j

wi
/
w j

⎞⎠ .

Now supposing that instead of a Markov chain, we had independent draws from the
posterior for models, the ŵi would be cell frequencies for a multinomial random
variable, and the delta method approximation would yield

SD
(
E B Fi, j

) = B Fi, j

√
(wi + w j )

M wi w j
.

where M is the chain length. Thus in a run of 5.0E6, suppose that the autocorrelation
at lag 200 was less than 0.003. We could conservatively treat the full chain of 5.0E6
as equivalent to 2.5E4 independent values. If (through tweaking of the prior model
weights) we had approximately equal posterior model weights, and there were
5 models in our model set, we could obtain a rough estimate of SD

(
E B Fi, j

)
as

SD
(
E B Fi, j

) ≈ B Fi, j

√√√√ ( 1
5 + 1

5 )

2.5E4 1
5

1
5

= B Fi, j × (0.02).

Thus the relative error of the Bayes factors would probably be no more than 2%.
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Abstract We compared a method of moments approach using estimates from a
maximum likelihood framework, ultrastructural models within a maximum like-
lihood framework, and hierarchical models estimated using Markov chain Monte
Carlo within a Bayesian framework for estimating survival and recapture probabil-
ities and their variance components for a large, complex 20 year data set consisting
of both live recaptures and recoveries. Estimates of mean age-specific survival
and recapture probabilities for four age classes (young, second-year, third-year and
adult) were similar with all approaches, but the maximum likelihood approach with
year-specific parameters estimated some recovery and recapture probabilities on
boundaries, leading to overestimates of some individual adult survival probabilities
and hence overestimates of adult variance components. All approaches estimated
similar coefficients for the relationships between winter temperature and survival
probabilities, but the maximum likelihood approaches appeared to exaggerate vari-
ation in relation to prey abundance. Annual estimates from the Bayesian hierar-
chical models were sensitive to the choice of the hierarchical structure; modelling
the difference between second-year, third-year and adults in survival and recapture
probabilities as random effects better estimated the patterns of annual variation than
treating all age classes as independent. Our comparisons suggest that Bayesian hier-
archical models may be more likely to produce reliable estimates than maximum
likelihood methods, even for large data sets, especially if there are many parameters
and considerable annual variation in sample sizes.
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1 Introduction

Survival probabilities of birds may vary among years due to factors such as annual
variation in average weather, individual severe weather events, changes in food
supply, population density or other stochastic factors. Understanding the magnitude
of this variation and the relative importance of the factors influencing variation is
important for modeling population dynamics (e.g., Caswell 2001) and identifying
factors that may limit a population (e.g., Barker et al. 2002).

One approach for estimating variance components of annual survival proba-
bilities from mark-recapture data is to use maximum likelihood methods to fit a
model with year-specific parameters for all survival probabilities and then estimate
relationships based on analysis of these point estimates taking into account their
estimation error (Link 1999). Burnham and White (2002) describe such a method
of moments approach which has been implemented in program MARK (White and
Burnham 1999) to estimate the true variance in a collection of parameters such as
survival probabilities, after adjusting for the sampling variances and covariances of
the parameters. They showed, through simulations, that this approach can perform
well with a standard mark-recapture model. External covariates can also be incor-
porated into the model to estimate their importance in explaining observed variation
(e.g., Barker et al. 2002; Francis and Saurola 2004). However, this approach is
dependent on obtaining reasonable estimates not only for the parameters but also
their sampling variance–covariance matrix. Especially in large, complex models, it
is often necessary to use a logit link function or similar transform to ensure conver-
gence of the estimation procedure and to ensure that estimates remain within bounds
(White and Burnham 1999). In this case, if any parameters are estimated near the
boundaries, the variance–covariance matrix is not reliably estimated, and the method
may not perform well (Burnham and White 2002). This may be a concern not only
with sparse data sets, but also with relatively large data sets with substantial annual
variation in sample size, such that some cells may have small sample sizes. An addi-
tional limitation is that this method only allows modelling random effects in one set
of parameters at a time (e.g., adult survival probabilities), whereas in a complex data
set it may be appropriate to consider simultaneously several groups of parameters as
random effects (e.g., survival, recapture and recovery probabilities of multiple age
classes).

An alternative approach for modelling variation in parameters in relation to
covariates is to build a fixed effects ultrastructural model that considers selected
parameters (e.g., adult survival probabilities) as constant or as a linear function
(usually on a logit scale) of external covariates, and then directly estimates the
coefficients of the extra parameters (Lebreton et al. 1992). Such models are readily
implemented in the software package MARK using a design matrix to specify the
constraints (White and Burnham 1999). Some possible options include modelling
a set of parameters as constant over time (thus effectively estimating mean values
of the parameters), modelling a logit-linear trend over time, or modelling relation-
ships with external covariates, such as weather or food availability. This approach
can be used to fit models even with data sets that are too sparse to obtain precise
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estimates for individual years, but has a number of limitations. The precision of
the estimated mean values or regression coefficients may be overstated, as they are
based on the unrealistic assumption that the data exactly meet the model without
any additional sources of variation. If there is among-year variation in sample size,
estimates may be weighted towards years with larger sample sizes. Furthermore,
constraining one group of parameters to fit exactly in a deterministic relationship
may lead to bias in estimates of coefficients of other parameters if the true model
includes extra variation, because of correlations among parameter estimates. For
example, modelling recapture probabilities as a linear function of a covariate may
bias estimates of survival probabilities if there is additional, unmodeled variation
in recapture probabilities that does not fit the linear function. Finally, this approach
does not allow estimation of variation around the expected values, because this is
assumed to be zero. Estimates of variance components are necessary for any form of
stochastic population modelling; realistically, we do not expect demographic param-
eters to vary in a deterministic way with any given set of external covariates, but
to be influenced to at least some degree by additional, unknown sources of varia-
tion. This can only be captured with a random effects, rather than a fixed effects
model.

Link and Barker (2004) recommended an alternative approach to estimate
random effects and relationships with covariates, using Bayesian hierarchical
models that directly incorporate all of the potential sources of variance, including
fixed effects, random effects, and any desired covariates into the model structure.
They suggested that such a conceptual framework has many advantages, including
the fact that all desired parameters are estimated simultaneously rather than after the
fact in a somewhat ad hoc fashion. The models can be readily fitted using Markov
chain Monte Carlo (MCMC) methods within a hierarchical Bayes framework using
the MCMC features recently implemented in MARK (White et al. 2008). Several
recent papers have promoted the advantages of a Bayesian framework for analysis
of population parameters (e.g., Brooks et al. 2004; Jamieson and Brooks 2004; Link
and Barker 2004). However, we are not aware of any published papers that have
applied the MCMC feature in MARK to a large, complex real mark-recapture data
set, and compared the results to the more traditional maximum likelihood (ML)
approaches.

We note that Lele et al. (2007) proposed an approach which they called data
cloning, to obtain ML estimates for hierarchical models using MCMC methods,
that is independent of the choice of priors. However, several aspects of hierar-
chical models, and in particular random effects models, are inherently Bayesian. For
example, a random effects model that assumes particular groups of parameters (e.g.,
first year or adult survival probabilities) are drawn from a random distribution (e.g.,
normal) is effectively imposing an empirical Bayes prior on the data that allows
information from other years to inform estimates for years with limited data. This
is, in some ways, intermediate between a model assuming that parameters remain
constant over time, and a complete fixed effects model estimating each parameter
separately (Burnham and White 2002). Because we view this as one of the potential
advantages of hierarchical models in a mark-recapture context, we consider only the
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Bayesian implementation of hierarchical models in this paper, but note that other
approaches do exist.

In this paper, we use an empirical approach to compare each of the three methods
described above for estimating survival probabilities and their correlates for a
large, relatively complex data set for Finnish Tawny Owls (Strix aluco), involving
combined recapture and recovery data over a 20-year time period. We have previ-
ously shown, based on estimates from ML models (Francis and Saurola 2004), that
survival probabilities of this species vary in relation to both winter weather (espe-
cially mean winter temperature) and the stage of the multi-year abundance cycle
of voles and other microtine rodents. Recapture probabilities (which are related to
breeding propensity) are also strongly affected by the vole cycle.

We compare the three approaches for estimating several types of parameters:
mean values of age-specific survival, recapture, recovery and fidelity parame-
ters; relationships between survival and capture probabilities and both categorical
covariates (the stage of the vole cycle) and continuous covariates (measures of
winter weather); and variance components of survival probabilities with and without
covariates. We also compare two approaches, within the hierarchical model frame-
work, for estimating age-specific variation in survival and recapture probabilities
beyond the age classes (young and adults) that were specifically identified at the
time of marking.

Unlike a simulation, our approach does not allow a determination of the absolute
validity of each approach (because the true values are unknown). Instead we deter-
mine whether parameter estimates, and biological conclusions, differ among the
approaches and identify any practical advantages or disadvantages of each approach
based on a real data set.

2 Methods

2.1 Field Data

Tawny Owls (Strix aluco) breed throughout much of Europe. In Finland, the Tawny
Owl is a relative newcomer, with the first record in 1875 and the distribution still
largely restricted to the south (Saurola 1995). Finnish bird ringers, both amateurs
and professionals, have concentrated on ringing owls for many years, with the result
that relatively large sample sizes are available for several species. Ringing of Tawny
Owls has taken place throughout much of the species breeding range in southern
Finland since the 1960s (Saurola 1997; Francis and Saurola 2002, 2004; Saurola
and Francis 2004). Many individuals now breed in nest boxes, mostly installed by
ringers and inspected regularly during the breeding season. At successful nests, the
nestlings are ringed when they are of sufficient age. In addition, most ringers also
attempt to trap and ring the adult female and many also trap the male at each nest.
We selected data from the 20 year period from 1980 to 1999 for analysis. This period
was selected to match the analyses in Francis and Saurola (2004), and also because
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the 3-year cycle in abundance of voles was very regular during this period, facili-
tating estimation of the impacts of the vole cycle on demography. The sample sizes
during this period (including only breeding season captures) were 18,166 nestlings
ringed, leading to 1,737 recaptures and 1,655 recoveries, along with 1,742 adults
ringed which generated 1,278 recaptures and 190 recoveries.

Small mammal abundance varied dramatically among years, with variation in
abundance of voles between high and low points in the population cycle up to two
orders of magnitude (Brommer et al. 2002; Hanski et al. 1991). Previous analyses
have shown that patterns were generally well correlated at broad spatial scales with a
3-year cycle in most of southern Finland (Sundell et al. 2004). However, quantitative
measures of vole abundance were only available from selected areas of Finland and
not for the whole of the time period, so it was necessary to combine these data with
qualitative, casual observations in the field to classify years for our study period into
one of three categories, here labelled based on the potential impact for survival of
owls over the coming year:

1. Poor – voles are at their peak at the beginning of the year (which is good for
breeding), but crash later in the year, sometimes starting in the summer, such
that owls have very few voles available for food during the year, especially in the
following winter;

2. Medium – voles are low at the start of the year, but gradually increase over the
course of the year;

3. Good – voles are moderately abundant at the beginning of the year and increase
to a peak over the summer and following winter.

As an index of winter severity, we used the mean of the mean monthly temper-
atures between December and March taken as the mean of data from five weather
stations of the Finnish Meteorological Institute in southern Finland: 1201 Jokioinen
(60◦ 49’N, 23◦ 30’E) ; 1303 Hattula Leteensuo (61◦ 04’N, 24◦ 14’E); 1304 Hattula
Lepaa (61◦ 08’N, 24◦ 20’E); 1306 Pälkäne Myttäälä (61◦ 20’N, 24◦ 13’E); 1403
Lammi, Biological station (61◦ 03’N, 25◦ 03’E). Mean temperature over the winter
varied from a low of –11◦C to a high of –2◦C. For simplicity of comparison, we did
not consider the second measure winter severity, snow depth, examined by Francis
and Saurola (2004) which, in any case, had a much weaker relationship.

2.2 Statistical Analyses

Survival, recapture and recovery probabilities were modeled using the joint recap-
ture and recovery model of Burnham (1993). Previous analyses have shown that
these combined models allow estimation of age-specific survival probabilities with
little apparent bias due to emigration from the study areas (Francis and Saurola
2002). These models estimate four classes of parameters: survival (�) – the proba-
bility that an animal alive at the beginning of the year (here defined as 1 June) will
be alive the following year; recapture (p) – the probability that a marked individual
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alive and present in the study population will be captured in a particular year;
recovery (r) – the probability that an individual that dies in a particular year will be
found and its ring number reported to the ringing office; and “fidelity” (F) – defined
as the probability that a marked surviving individual that was in the local population
the previous year is still in the population available for recapture. The “fidelity”
parameter is difficult to interpret biologically because both recaptures and recoveries
occurred over a large geographical area (Francis and Saurola 2004); hence it does
not actually provide an estimate of fidelity to a particular breeding location. Rather,
it estimates the probability that a bird will return to breed in an area where a ringer
is working.

We used models in which survival and recapture probabilities were allowed to
differ with age over 4 age classes, while recovery probabilities and fidelity param-
eters were allowed to differ between two age classes (many parameters were not
estimable if additional age classes were added for recovery or fidelity because too
few birds were recaptured as known second or third years and then recovered).
Birds ringed as “adults” were treated as if they were all in the highest age class.
In practice, these would have included some birds in their second or third year.
Although methods are now known for distinguishing these younger age classes
based on plumage, they generally were not identified during the early years of this
study. However, these were not a large percentage of birds captured (because of the
lower capture probabilities of younger birds), and are thus unlikely to cause much
bias in the adult estimates.

All model selection and parameter estimation using both ML and MCMC models
was performed using program MARK, with all models fitted using a logit-link func-
tion (White and Burnham 1999).

For the ML approach, the most general model we fitted allowed all age-specific
parameters to vary independently among years. Constrained models were also fitted
in which 2nd and 3rd year survival and recapture probabilities were constrained
using a design matrix to vary in parallel (on a logit scale) with those of adults and/or
fidelity parameters were constrained to be constant over time (Table 1). For compar-
ison of fit among these models, QAICc was calculated using ĉ = 1.20 as determined
previously by Francis and Saurola (2004). MARK underestimated the number of
parameters for some models, in which one or more parameter estimates was on a
boundary, and it was thus necessary to adjust the parameter counts to determine the
correct QAICc.

For the method of moments approach, year-specific parameters were estimated
for each age class from the ML models, and then the mean values and process
variance were estimated using the variance components procedure implemented in
MARK. We also fitted models incorporating stage of the vole cycle, winter temper-
ature or both as covariates, and estimated the change in the residual variance. This
procedure fits a regression model to a group of parameters taking into account the
estimated variance–covariance matrix (Burnham and White 2002). For each age
class, we excluded the final year estimates which were generally not identifiable
(e.g., the final survival parameter is confounded with the final recapture or recovery
parameter). In a few cases, one or more parameters were estimated at boundaries,
in which case we calculated means with and without those boundary estimates.



Estimating Demographic Parameters from Complex Data Sets 623

Table 1 Model selection results for a series of models based on maximum likelihood estimation
using MARK, showing models with year-specific survival parameters in increasing order of gener-
ality and decreasing parsimony (models 1–5), followed by models with survival constrained by
various covariates (models 6–9)

Model parameters1 Model fit2

# S P R F �QAICc # Parm. QDeviance

1 Y,+,+,Y Y,+,+,Y Y,Y C,C 0.0 122 3272.2
2 Y,+,+,Y Y,Y,Y,Y Y,Y C,C 35.4 154 3237.0
3 Y,Y,Y,Y Y,+,+,Y Y,Y C,C 41.9 156 3239.9
4 Y,Y,Y,Y Y,Y,Y,Y Y,Y C,C 76.2 188 3203.2
5 Y,Y,Y,Y Y,Y,Y,Y Y,Y Y,Y 129.4 222 3183.9
6 WV,+,+,WV Y,+,+,Y Y,Y C,C 11.3 92 3358.5
7 W,+,+,W Y,+,+,Y Y,Y C,C 25.6 88 3385.3
8 V,+,+,V Y,+,+,Y Y,Y C,C 109.3 90 3480.9
9 C,C,C,C Y,+,+,Y Y,Y C,C 126.2 86 3510.9
1 Parameters represent probabilities for survival (S), recapture (P), recovery (R) and “fidelity” (F) –
see text for definitions. In each column, letters refer to variation modeled in first-year, second-year,
third-year and adult age classes respectively (or first-year and older age classes for R and F): Y =
year-specific, C = constant, + = parallel (on a logit scale) to the adult age class, V = varies only
with stage of the vole cycle, W = logit-linear relationship with winter temperature, WV = varies
with both weather and voles.
2 ĉ was estimated at 1.2 from a parametric bootstrap procedure.

We estimated mean values of all parameters on the real scale (i.e., after back-
transforming from the logit scale). However, variance components were estimated
on the logit-transformed parameters to allow comparison with estimates from the
MCMC approach.

For the ultra-structural, fixed effects ML approach, we fitted models in which
first year and adult survival probabilities were further constrained, using a design
matrix, to be either constant, to vary only with the stage of the vole cycle, to vary
only with weather, or to vary with both the stage of the vole cycle and with weather
(Table 1). For this approach, all models were fitted with second and third year
survival and recapture parameters constrained to fluctuate in parallel with those of
adults. Covariates were modelled only on survival parameters, while first year and
adult recapture parameters were allowed to vary freely among years. These models
provide estimates of mean values and regression parameters, but not variance
components around the model (as the latter are assumed to be zero in this approach).

For the hierarchical models approach, we used the MCMC estimation procedure
in MARK based on one of three underlying structural models, as defined through
the design matrix. The first was the most general model described above which
allowed all age-specific parameters to vary independently. The second modeled
second and third year survival and recapture parameters to be equal to those of adults
plus a difference parameter (on a logit scale), but these difference parameters were
allowed to vary among years. Within an ML framework, this has the same number
of parameters as the most general model (and produces identical results to the most
general model), but in a hierarchical framework it differs in that prior “hyperdistri-
butions” can be set on the differences between age classes, rather than on the values
for each age class separately. The third model constrained the differences between
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second-year, third-year and adult age classes to be constant over time for both
survival and recapture, and further constrained fidelity parameters as being constant
over time, thus matching the most parsimonious model fitted through the ML
approach (model 1 in Table 1).

Imposing a hierarchical structure to these data in MARK was done by defining
the hyperdistribution using a “hyperdesign” matrix to set up expected values for
each group of age-specific parameters (White et al. 2008). Each parameter was
modeled as a linear function (on a logit scale) of various covariates, with an error
term �t assumed to be normally distributed with mean 0 and variance �2 where �2

was modeled separately for each group of parameters. The following four linear
functions for particular time-specific parameters �t were considered (bi represent
regression coefficients):

(1) Mean (M): Logit(�t) = b1 + εt

(2) Voles (V): Logit(�t) = b1X1 + b2X2 + b3X3 + εt

where X1 = 1 if the voles are at stage 1 in year t, otherwise X1 = 0; X2 = 1 if
voles are at stage 2 in year t, otherwise X2 = 0, and X3 = 1 if voles are at stage
3 in year t, otherwise X3 = 0.

(3) Weather (W): Logit(�t) = b1 + b2Tt + εt

where Tt = the difference in year t from the mean temperature over the 20-year
time period, standardized to variance 1.

(4) Voles and Weather (VW): Logit(�t) = b1X1 + b2X2 + b3X3 + b4Tt + εt

where Xi, and Tt are defined as in Equations (2) and (3).

In the most general model, functions were fitted with separate means and vari-
ances for 12 groups of parameters (4 age classes each for survival and recapture, and
2 each for recovery and fidelity). For comparisons among the three different struc-
tural models used for MCMC, all age-specific groups of parameters were modeled
with no covariates (Equation 1). For estimation of variance components as well as
changes in expected values with covariates, we considered only models in which
second and third year survival and recapture probabilities were parameterized using
time-varying differences from adult parameters (models 11–15 in Table 2). For
these models, hyperdistributions for first-year and adult survival parameters were
modeled with each of Equations 1–4 while those for first-year and adult recap-
ture parameters were modeled with either Equations 1 or 2, as listed in Table 2.
Other parameters, including the difference parameters for second and third year
survival and recapture probabilities, as well as recovery and fidelity parameters were
only modeled with Equation 1 (i.e., no relationships with external covariates were
considered).

To complete the hierarchical model, standard non-informative priors were placed
on the coefficients of each of the design parameters (bi) and each of the variance
parameters (�i

2) for the hyperdistributions, as well as any parameters constrained to
be constant over time, as described by White et al. (2008).

Because of the complexity involved with editing the large Parameter Index
Matrices, the Design Matrix and the Hyperdesign Matrix, the input files for the
analyses were created using custom-written SAS programs (SAS Institute 2003),
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Table 2 Model structure and Deviance Information Criteria (DIC) for all hierarchical models
considered in this paper and fitted using MCMC

Model parameters1

# S P R F DIC

10 Y,Y,Y,Y Y,Y,Y,Y Y,Y Y,Y 4171
11 Y,+y,+y,Y Y,+y,+y,Y Y,Y Y,Y 4146
12 Y,+y,+y,Y V,+y,+y,V Y,Y Y,Y 4140
13 V,+y,+y,V V,+y,+y,V Y,Y Y,Y 4140
14 W,+y,+y,W V,+y,+y,V Y,Y Y,Y 4135
15 WV,+y,+y,WV V,+y,+y,V Y,Y Y,Y 4136
16 Y,+c,+c,Y Y,+c,+c,Y Y,Y C,C 4153
17 V,+c,+c,V V,+c,+c,V Y,Y C,C 4153
18 W,+c,+c,W V,+c,+c,V Y,Y C,C 4145
19 WV,+c,+c,WV V,+c,+c,V Y,Y C,C 4143
1 Parameters represent probabilities for survival (S), recapture (P), recovery (R) and “fidelity”
(F) – see text for definitions. In each column, letters refer to variation modeled in first, second,
third and adult age classes respectively (all models on a logit scale): Y = random effects with
no covariates, V = random effects with mean that differs for each stage of the vole cycle, W =
random effects around logit-linear relationship with winter temperature, WV = random effects
that varies both with winter temperature and voles, +y = difference between second or third
year and adults modelled as random effects with no covariates, +c = difference between second
or third year and adults constrained to be constant over time, C = constant over time.

and run using the MARK batch facility. For the ML approach, it was sometimes
necessary to rerun the models a number of times using starting parameters derived
from simpler models, as the ML estimation procedure sometimes converged on local
maxima.

All MCMC models were run with the default options in MARK, using a random
starting point, 1,000 burn-in samples, 4,000 tuning samples, and 10,000 iterations
in each chain. A minimum of six independent chains were run for each model. In
all cases, for the models presented here, the Gelman (1996) convergence diagnos-
tics provided by MARK were less than 1.02 (usually less than 1.001), indicating
no marked difference between the chains; parameter estimates matched to 2 or 3
significant digits, much less than the standard error estimates. Estimates presented
here were derived by combining data from 6 to 10 chains (to increase precision),
and determining the 2.5, 50, and 97.5 percentiles (representing the median and 95%
posterior credible intervals), as well as the mean and standard error for all parame-
ters and hyperparameters of interest. MCMC models were compared based on the
Deviance Information Criterion (DIC) as calculated within MARK; we present the
mean DIC of all estimation chains run for a particular model.

3 Results

Model selection in the ML framework, among models in which first-year and adult
survival and recovery probabilities were allowed to vary with time (models 1–5
in Table 1) indicated that the most parsimonious approach involved constraining
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fidelity parameters to be constant over time and second and third year survival and
capture probabilities to vary in parallel with those of adults.

ML models incorporating either voles, winter weather or both in an ultrastruc-
tural framework, were a much better fit than models assuming survival was constant
over time (models 6–9; Table 1), but not nearly as good a fit as the model allowing
survival to vary freely among years (model 1; Table 1) indicating that, although
some variation in survival probabilities could be explained by vole abundance and/or
winter weather, these covariates were clearly not sufficient to explain all of the
annual variation in survival.

With the MCMC hierarchical approach, models in which second- and third-year
survival and recapture probabilities were treated as differing from those of adults
based on time-varying difference parameters (models 11–15; Table 2) generally
had a much lower DIC than equivalent models in which these probabilities were
modeled independently from those of adults (model 10). They were also somewhat
better than equivalent models in which the difference parameters were treated as
constant over time (models 16–19; Table 2).

Despite differences in fit of the models, estimated means of age-specific param-
eters were generally similar regardless of the estimation procedure used (Table 3).
The only exceptions were related to problems in the ML model approach with 1 or
more estimates at the upper boundary for recovery probabilities in both the general
and parsimonious models, and for 1 estimate of recapture probability under the most
general model. In these cases, because the standard error was estimated at zero, the
method of moments estimator did not perform well, and overestimated the mean.

Table 3 Estimates of mean age-specific survival probabilities with their standard errors derived
from selected maximum likelihood and hierarchical models listed in Tables 1 or 2. Means from
the ML process were calculated using the method of moments procedure in MARK from the
year-specific ML estimates with their estimated variance–covariance matrix. Means from the hier-
archical models were estimated directly using MCMC with all year-specific groups of parameters
modelled as random effects drawn from a normal distribution with the specified mean and no
covariates (see Methods for details)

Maximum likelihood MCMC hierarchical model

Parameter Model 5 Model 1 Model 10 Model 11 Model 16

S year 1 32.8 ± 3.0 33.1 ± 3.1 35.0 ± 3.6 34.7 ± 3.4 34.8 ± 3.5
S year 2 63.9 ± 4.1 64.3 ± 3.4 63.3 ± 2.2 63.7 ± 3.1 64.0 ± 3.1
S year 3 76.0 ± 3.2 72.0 ± 3.3 72.3 ± 2.2 71.1 ± 3.0 70.9 ± 3.0
S adult 76.4 ± 2.7 74.7 ± 2.5 76.3 ± 1.5 76.0 ± 2.2 75.6 ± 2.3
P year 1 18.5 ± 3.0 18.6 ± 3.0 16.7 ± 3.2 16.6 ± 3.1 16.5 ± 3.2
P year 2 37.6 ± 5.0a 32.7 ± 2.8 34.4 ± 3.4 32.6 ± 3.2 32.5 ± 3.1

(32.0 ± 2.9)
P year 3 37.6 ± 4.0 38.1 ± 3.2 39.5 ± 4.0 37.7 ± 3.8 38.0 ± 3.5
P adult 42.0 ± 2.6 41.9 ± 2.8 42.3 ± 2.8 42.3 ± 3.0 42.4 ± 3.1
R year 1 8.0 ± 0.6 8.5 ± 0.7 8.2 ± 0.8 8.1 ± 0.8 8.2 ± 0.8
R adult 23.0 ± 6.5b 19.2 ± 4.7a 13.6 ± 1.3 14.0 ± 1.1 14.0 ± 1.2

(10.9 ± 0.7) (12.1 ± 0.8)
F year 1 34.5 ± 2.6 37.4 ± 2.7 37.1 ± 2.8 37.8 ± 2.5 37.5 ± 2.7
F adult 90.6 ± 2.8 89.5 ± 1.4 92.9 ± 3.0 91.2 ± 2.4 90.2 ± 1.4
a, b includes 1(a) or 2(b) values estimated at upper boundary with sampling variance estimated at
zero. Values in parentheses show estimated means excluding these values.
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However, omitting these boundary estimates underestimated means relative to other
approaches (Table 3).

Precision of the estimates was also generally similar with all methods with
the exception of the adult “fidelity” parameter, which was estimated much more
precisely in models that assumed it was constant over time (models 5 and 16). Of
course, this greater precision may be misleading if the true parameter varied over
time.

In contrast to mean values, estimates of the pattern of annual variation in
survival, recapture and recovery probabilities differed among estimation methods
(Figs. 1–3). For the ML models, the precision of individual survival estimates for
all age classes (as reflected in much narrower 95% confidence limits) was greatly
improved by using the more parsimonious models (compare Fig. 1b with Fig. 1a).
Both ML models suggest one or more years with exceptionally high adult survival
probabilities, but the years are not the same with the two models (1984 and 1987
for the most general model, but 1988 for the parsimonious model). These estimates
were related to boundary estimates for the corresponding recovery parameters
(Fig. 3a,b). Similar problems with boundary estimates of recapture parameters
were apparent in the most general model (Fig. 2a) but all recapture estimates were
relatively precise and well behaved based on the more parsimonious model in
which 2nd and 3rd year capture probabilities were constrained to vary in parallel
with those of adults (Fig. 2b).

The MCMC models did not have problems with boundary estimates in any
parameters (Figs. 1–3), but differed with the choice of hierarchical structure: models
in which all age-specific survival and recapture parameters were modelled as inde-
pendent random effects suggested very little annual variation in survival of older age
classes (Fig. 1c). In contrast, the model treating differences between second-year,
third-year and adult age classes for both survival and recapture as random effects
not only had a lower DIC (models 11–15, Table 2), but also indicated much greater
annual variation in survival probabilities of older age classes (Fig. 1d). Estimated
first-year survival probabilities were similar with either model. Estimated first-year
and adult recapture probabilities were also similar with either model, but second
and third year recapture probabilities were estimated much more precisely with
the difference model (Fig. 2d). Estimated recovery probabilities from the differ-
ence model showed much less annual variation (Fig. 3d), suggesting that the extra
variation in recovery probabilities in Fig. 3c may have been due to inadequately
estimated variation in adult survival probabilities.

Variance components analysis based on the method of moments ML estimator
and the hierarchical models MCMC approach gave similar estimates of the vari-
ance in first-year survival probabilities (Table 4). This is consistent with the simi-
larity in the pattern of annual variation for first-year survival from both approaches
(Fig. 1b,d). Both approaches indicated that the residual variance could be reduced by
considering voles and/or winter temperature as covariates, though the ML approach
suggested these explained a higher percentage of the total variance compared with
the MCMC approach (Table 4).

For adult survival, the estimated process variance based on the ML approach was
nearly double that estimated by the MCMC approach (Table 4). Both approaches
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Table 4 Estimated process variance (�2) on logit scale (with 95% confidence or credible intervals)
in first-year and adult survival probabilities of Tawny Owls derived from the maximum likelihood
(ML) and hierarchical (MCMC) models. For the ML approach, variance was estimated from the
method of moments estimator in MARK using parameter estimates and their estimated sampling-
covariance matrix from Model 1 (Table 1) and incorporating appropriate covariates (intercept only,
voles, winter temperature or both) using a design matrix. For the MCMC approach, covariates were
incorporated directly into the hierarchical structure of the models prior to estimating parameters
(models 11–15 in Table 2)

First-year Adults

Model ML MCMC ML MCMC

Mean only1 0.21 (0.09 – 0.57) 0.23 (0.14 – 0.38) 0.38 (0.19 – 0.90) 0.14 (0.05 – 0.26)
Mean only2 n/a 0.26 (0.15 – 0.44) n/a 0.16 (0.05 – 0.29)
Voles2 0.13 (0.04 – 0.40) 0.19 (0.09 – 0.40) 0.31 (0.15 – 0.80) 0.17 (0.06 – 0.32)
Weather2 0.12 (0.03 – 0.38) 0.16 (0.08 – 0.30) 0.20 (0.09 – 0.54) 0.01 (0.00 – 0.10)
Weather & Voles2 0.09 (0.01 – 0.32) 0.14 (0.06 – 0.30) 0.19 (0.08 – 0.56) 0.01 (0.00 – 0.10)
1 For MCMC, prior distribution of recapture probabilities modeled with no covariates.
2 For MCMC, prior distribution of recapture probabilities modeled with mean that varies with
vole cycle.

indicated a reduction in variance after taking into account winter weather, but the
ML approach suggested some effect of prey abundance and a combined effect
explaining only about 50% of the variance. In contrast, the MCMC approach indi-
cated that winter weather alone could explain nearly 100% of the annual variation
in adult survival.

Incorporating different combinations of covariates into the hierarchical structure
of the MCMC models tended to reduce the DIC (Table 2; Models 12–16) suggesting
an improvement in the predictive ability of the models. The pattern of individual
survival estimates for both age classes was generally similar with any combination
of covariates (Fig. 4), though they tended to approach more closely the expected
values for models incorporating weather as a covariate. Comparison of individual
survival estimates with their expected values suggest that much, but not all, of the
variation in first-year survival matches variation in both voles and winter temperature
(Fig. 4d), while adult survival can be almost perfectly explained by winter temper-
ature alone (Fig. 4c). Recapture probabilities (which are proportional to breeding
propensity) varied strongly with the vole cycle for one-year old owls, but there
was additional variation in adult capture probabilities (Fig. 5b). We have previously
shown (Francis and Saurola 2004) this can be modeled with a temporal trend of
increasing capture probability over time, but we did not fit such models in this study.

Both the ML and MCMC approaches were consistent in indicating that first-year
and adult survival was, on average, substantially lower at the bottom of the vole
cycle than the top (Table 5). Ultrastructural models that constrain survival proba-
bilities to fit the regression model exactly (ML-1; Table 5) produced qualitatively
similar results to the method of moments ML estimates (ML-2) or MCMC esti-
mates, but tended to exaggerate the variation with the vole cycle. This was particu-
larly apparent for adult survival rates, for which the ultrastructural models not only
suggest a very large, 23% difference in mean survival probabilities through the vole
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Fig. 5 Estimated annual recapture probabilities with 95% credible intervals for Tawny Owls
in their first year of life (lowest line, •) and as adults (top line, �) from 1980 to 1997 derived
from MCMC models with different hyperdistributions in which survival was modeled with: (a) no
covariates (model 11); (b) variation in relation to voles (model 13; see Table 2 for model details).
Stage of the vole cycle is shown as in Fig. 4

cycle, but are also misleadingly precise. In contrast, the MCMC approach suggests
relatively little variation in adult survival with the vole cycle. The estimated rela-
tionships between survival and winter temperature were very similar with all three
approaches (Table 5), possibly reflecting the fact that the MCMC approach suggests
nearly all of the variation in adult survival can be modelled with this covariate.



634 C.M. Francis and P. Saurola

Table 5 Estimated first-year and adult survival probabilities (mean ± SE) of Tawny Owls in relation
to each stage of the vole cycle (means at each stage), and in relation to mean winter weather
(intercept and slope in relation to standardized temperature expressed on a logit scale) derived
using maximum likelihood (ML) or hierarchical models (MCMC). ML-1 represents models with
the covariates incorporated as fixed effects into ultrastructural models 7 (for voles) or model 8 (for
temperature) in Table 1. ML-2 represents models in which coefficients were estimated using the
method of moments approach as described in Table 4. MCMC estimates were derived from model
13 (voles) or model 14 (temperature) in Table 2

First-year Adults

Model ML – 1 ML – 2 MCMC ML – 1 ML – 2 MCMC

Vole Stage
1 – Poor 27.7 ± 2.3 26.2 ± 3.9 29.1 ± 4.5 68.6 ± 2.8 68.1 ± 4.5 72.7 ± 3.9
2 – Medium 28.7 ± 2.4 29.6 ± 4.2 34.1 ± 5.3 73.5 ± 2.8 73.8 ± 4.5 78.0 ± 3.5
3 – Good 48.6 ± 3.6 42.7 ± 4.6 44.0 ± 5.5 91.8 ± 1.5 82.2 ± 4.1 78.0 ± 3.6

Temperature
(◦C)

Intercept –0.60 ± 0.10 –0.73 ± 0.13 –0.59 ± 0.13 1.16 ± 0.08 1.15 ± 0.13 1.14 ± 0.07
Slope 0.33 ± 0.04 0.28 ± 0.09 0.31 ± 0.10 0.37 ± 0.04 0.41 ± 0.11 0.28 ± 0.06

4 Discussion

Our analyses found that, in many cases, estimates of survival, recapture, and
recovery probabilities, especially their mean values (Table 3), were similar regard-
less of the analysis approach used. Estimated relationships with external covari-
ates were also generally similar among approaches, although the ultrastructural ML
models tended to exaggerate differences and suggest excessive precision, presum-
ably because they did not allow for additional, unmodelled variation (Table 5).

However, discrepancies between the ML approach, even using the method of
moments estimates (Burnham and White 2002), and the hierarchical MCMC models
arose in some cases due to estimation of one or more recapture, recovery or survival
parameters near boundaries with the ML approach. Because of the strong sampling
covariances among parameter estimates, recovery probabilities estimated at bound-
aries lead to over-estimated survival probabilities. Unfortunately, due in part to the
logit transform required to fit such models, the variances and covariances for such
parameters in the ML approach were incorrectly estimated as being very small or
zero, biasing the method of moments estimators (Burnham and White 2002). These
boundary estimates thus affected not only individual survival estimates, but also
the variance components estimates, as shown by the much higher ML estimate for
variance of adult survival (Table 4).

In contrast, the hierarchical models did not have problems with boundary esti-
mates, because the prior distributions for families of parameters provided additional
information, in an empirical Bayes framework for estimating parameters with few
data. We agree with Link and Barker (2004) that hierarchical models provide a
logical framework for incorporating prior information about the likely structure of
the system. For example, in the absence of information to the contrary, it seems
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logical to assume that recovery probabilities will be similar among years. However,
unlike an ultrastructural model in which recovery probabilities can be modelled
as constant over time, the Bayesian framework allows individual probabilities to
vary over time when sufficient data are available to obtain reliable individual esti-
mates.

Without knowing the true values of the parameters, it is not possible to be certain
which approach provided the most reliable estimates. However, two factors suggest
the estimates from the hierarchical models are likely to be more reliable. The first
is the problems with boundary estimates with the ML approach. The second is the
relatively tight fit in the hierarchical models between covariates expected to affect
survival or recapture and their estimated values in the MCMC framework (Figs. 4
and 5), as also indicated by the improved fit of these covariate models relative to
models without covariates (Table 2).

Estimation of variance components necessarily requires fitting models with
annual variation in parameters such as survival, recapture or recovery probabilities.
In a large data set, this can lead to a proliferation of parameters; our most general
4-age class model had 222 identifiable parameters, and even the most parsimonious
model still had 122 parameters (Table 1). Despite the fact that we have a very large
data set involving nearly 20,000 birds and 5,000 subsequent encounters, the data
available to estimate some individual parameters was sparse, due in part to the
high annual variation in demographic parameters (the estimation of which is one
of the objectives of analysing the data). The major advantage of the hierarchical
models was that they allowed information from year-specific parameters with better
data to inform estimates for parameters with sparser data, in an empirical Bayes
fashion. We suspect that this may be an advantage for many different data sets,
ranging from small, sparse data sets to which only simple models can be fitted, to
large, long-term data sets to which complex models with many parameters can be
fitted.

Although not considered in this paper, an additional advantage of hierarchical
models is that they can also be used to model and estimate covariances among
parameters (e.g., Jamieson and Brooks 2004). For this particular data set, this
could potentially be useful for estimating life history tradeoffs, such as trade-
offs between breeding at a young age and subsequent breeding or survival proba-
bilities.

We did find, however, that the hierarchical models were somewhat sensitive to the
selection of hyperdistributions, with substantial differences in the observed pattern
of annual variation depending on the model selected. Furthermore, the structure
imposed on one group of parameters (e.g., survival probabilities) also affected the
pattern for other parameters such as recovery probabilities (e.g., Fig. 3) owing to the
sampling covariances among estimates. In our models, the sample sizes available
to estimate second and third-year survival and capture probabilities were gener-
ally small and variable, relative to those of young or adults, due to the relatively
small number of birds captured at one-year of age, especially in years of low
vole abundance (Fig. 2). Thus, the survival estimates for these age classes were
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relatively strongly affected by the selection of the prior distribution (Fig. 3). Because
of correlations among parameter estimates, these also affected estimates of adult
survival (Fig. 3). A priori, we might expect that survival and capture probabili-
ties of 2nd and 3rd year birds would vary in similar ways to those of older age
classes. Thus, in the absence of information to the contrary, it seems reasonable
to model individual survival or capture probabilities as being similar to those of
adults, with a difference parameter, rather than varying completely independently.
This is, in fact, analogous to the ultrastructural model used to constrain survival
parameters for this age class in the ML framework (model 1, Table 1). However,
DIC model selection suggests that imposing these constraints through a prior distri-
bution that still allows for some annual variation if the data warrant, in a stan-
dard Bayesian fashion, provides a better fit than constraining the differences to be
constant (comparison of models 11–15 with models 16–19 in Table 2). This param-
eterization had the advantage that data from all three older age classes contributed to
improving estimates of annual variation in survival. The improved fit, as measured
by DIC, of this model relative to a model in which independent priors were imposed
on all age-specific parameters (model 11 vs model 10 in Table 2), as well as the
very close match between the resultant estimates of adult survival probabilities
and external covariates (Fig. 4c,d) suggest this was a much more appropriate prior
distribution.

An important practical consideration in any modeling procedure, especially from
the perspective of a biologist, is the availability of computer software to imple-
ment the models. We found the MCMC implementation of hierarchical models
within MARK (White et al. 2008) to be straightforward and easy to use. Hierar-
chical models were readily set up with similar design matrices to those used for
constraining model parameters in an ultrastructural framework. Because of the size
and complexity of our models, and to reduce the risk of errors, we created the input
data sets using custom-written SAS programs, but an interactive interface is also
available for setting up the hyperdistributions within MARK, similar to that used
for setting up parameter index matrices or other design matrices. Although model
fitting took much more computing time than the standard ML approach in MARK, a
single chain in the MCMC procedure, even for this relatively large complex data set
typically completed in a few hours, and we encountered no problems with conver-
gence provided the model was properly specified. In contrast, the ML models some-
times required repeated runs with different starting values to ensure that they had not
converged on local maxima. We thus encourage others interested in modeling annual
variation in survival or other population parameters to consider using hierarchical
models for mark-recapture analyses.
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Inference About Species Richness
and Community Structure Using
Species-Specific Occupancy Models in the
National Swiss Breeding Bird Survey MHB

Marc Kéry and J. Andrew Royle

Abstract Species richness is the most widely used biodiversity measure. Virtually
always, it cannot be observed but needs to be estimated because some species
may be present but remain undetected. This fact is commonly ignored in ecology
and management, although it will bias estimates of species richness and related
parameters such as occupancy, turnover or extinction rates. We describe a species
community modeling strategy based on species-specific models of occurrence, from
which estimates of important summaries of community structure, e.g., species rich-
ness, occupancy, or measures of similarity among species or sites, are derived by
aggregating indicators of occurrence for all species observed in the sample, and for
the estimated complement of unobserved species. We use data augmentation for an
efficient Bayesian approach to estimation and prediction under this model based
on MCMC in WinBUGS. For illustration, we use the Swiss breeding bird survey
(MHB) that conducts 2–3 territory-mapping surveys in a systematic sample of 267
1 km2 units on quadrat-specific routes averaging 5.1 km to obtain species-specific
estimates of occupancy, and estimates of species richness of all diurnal species free
of distorting effects of imperfect detectability. We introduce into our model species-
specific covariates relevant to occupancy (elevation, forest cover, route length) and
sampling (season, effort). From 1995 to 2004, 185 diurnal breeding bird species
were known in Switzerland, and an additional 13 bred 1–3 times since 1900. 134
species were observed during MHB surveys in 254 quadrats surveyed in 2001, and
our estimate of 169.9 (95% CI 151–195) therefore appeared sensible. The observed
number of species ranged from 4 to 58 (mean 32.8), but with an estimated 0.7–11.2
(mean 2.6) further, unobserved species, the estimated proportion of detected species
was 0.48–0.98 (mean 0.91). As is well known, species richness declined at higher
elevation and fell above the timberline, and most species showed some preferred
elevation. Route length had clear effects on occupancy, suggesting it is a proxy
for the size of the effectively sampled area. Detection probability of most species
showed clear seasonal patterns and increased with greater survey effort; these are
important results for the planning of focused surveys. The main benefit of our model,
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and its implementation in WinBUGS for which we provide code, is its conceptual
simplicity. Species richness is naturally expressed as the sum of occurrences of
individual species. Information about species is combined across sites, which yields
greater efficiency or may even enable estimation for sites with very few observed
species in the first place. At the same time, species detections are clearly segregated
into a true state process (occupancy) and an observation process (detection, given
occupancy), and covariates can be readily introduced, which provides for efficient
introduction of such additional information as well as sharp testing of such relation-
ships.

Keywords Biodiversity · BBS · Breeding bird survey · Community · Data
augmentation · MCMC · Monitoring · Metacommunity · Species richness ·
WinBUGS

1 Introduction

Species richness is the number of species present at a time and place. It is arguably
the simplest and therefore also the most widely used measure of biodiversity in
ecology and management (Gotelli and Colwell 2001; Purvis and Hector 2000.
Furthermore, species richness is comparatively easy to measure in practice, in stark
contrast to other, conceptually less well defined surrogates of biodiversity such as
ecosystem health, or more costly measures, such as genetic diversity.

Measurement of species richness is not without problems though. In most situ-
ations, some species will be overlooked (Schmidt 2005). This will bias observed
species richness and its dynamic components, species turnover, extinction and
colonisation rates, as well as measures of similarity among sites or species with
respect to the true values of these parameters in the community. Although this situ-
ation is commonly ignored in ecology and management, earlier efforts to correct
for such non-detection biases include extrapolation of the observed number of
species using accumulation curves (Gotelli and Colwell 2001) as well as community
analogues of closed population capture–recapture models for abundance estima-
tion where species take the place of individuals (Boulinier et al. 1998a, b; Nichols
et al. 1998a, b; Boulinier et al. 2001; Cam et al. 2002; Kéry and Schmid 2006). Both
approaches have their drawbacks. Accumulation curves are purely phenomenolog-
ical and do not have a mechanistic basis in a sampling process. Capture–recapture-
types of models are inefficient for the frequent case when species richness estimates
are desired for multiple surveyed sites that represent samples of the same commu-
nity, and they may be impossible when the number of detected species is very low
(Kéry and Royle 2008). Accounting for additional information such as covariates is
difficult for both approaches.

Here, we present a statistical model for the estimation of species richness and
related community measures that is applicable in the frequent case when replicate
sites (=communities) representing a metacommunity are sampled repeatedly over
a short time (Dorazio and Royle 2005; Royle et al. 2007a). Our model consists of
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component models for site-occupancy of individual species tied together by random
effects assumptions about some of the species-specific parameters and is a multi-
species generalisation of single-species site-occupancy models (MacKenzie et al.
2002, 2006; Royle and Kéry 2007). We apply the model to the 2001 data of the Swiss
national breeding bird survey “Monitoring Häufige Brutvögel” (MHB; Schmid
et al. 2004) to estimate the fraction of species present and detected at sampled
sites. Importantly, our model enables us to introduce covariate information for both
occurrence and detection of species.

2 Material and Methods

2.1 The Swiss Breeding Bird Survey MHB

The national breeding bird survey “Monitoring Häufige Brutvögel” (MHB) has
been run by the Swiss Ornithological Institute since 1999 (Schmid et al. 2004).
In a systematic sample of 267 1 km2 quadrats, volunteers conduct three territory-
mapping surveys (two in high-elevation quadrats above the timberline) during every
breeding season (15 April–15 July) along a quadrat-specific, irregular transect route
averaging 5.1 km (range 1.2–9.4) that aims to cover as large part of each quadrat
as possible. Route length declines significantly from 5.4 km on average at 210 m
to 4.7 km on average at 2710 m elevation (F1,262 = 14.65, p < 0.001), but this
relationship was weak (R2 = 5%), and there was no relationship with forest cover
(F1,262 = 1.64, p = 0.20). Mean duration of a single survey in 2001 was 228 min
(range 75–410), mean survey effort (time per unit transect length) 48 min km-1

(range 14–157) and mean survey dates were 10 May, 29 May, and 9 June, respec-
tively. Although MHB yields abundance information for about 150 detected species
(see, e.g., Kéry et al. 2005; Royle et al. 2005; Royle et al. 2007b), we only used
survey-specific detection/nondetection records for each of the 134 diurnal species
observed anywhere in the 254 surveyed quadrats in 2001. Hence, we are modelling
a three-dimensional data matrix X where element xk (i, j) denotes detection (1) or
nondetection (0) of species i (i = 1, . . ., N) at quadrat j (i = 1, . . ., 254) during survey
k (k = 1,2,3).

2.2 The Model

Here we adopt the framework of developing community models based on species-
specific models of occurrence (Dorazio and Royle 2005). The basic idea is to formu-
late the model in terms of a latent binary process z(i, j), where z(i, j) = 1 if species
i occurs at quadrat j. To account for imperfect observation of this state process, we
require data xk(i, j) for k = 1,2, . . ., K which are Bernoulli trials if z(i, j) = 1, other-
wise they are structural zeros. In the context of single species, this is a state-space
formulation of the model described by MacKenzie et al. (2002). Like these authors,
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Dorazio and Royle (2005) proposed a procedure for estimation based on integrated
likelihood, in which the latent z(i, j) variables were removed from the likelihood.
Further, Dorazio and Royle (2005) adopted a conditional formulation of the likeli-
hood in which the size of the community, say N, is also removed from the likelihood.
They develop a Bayesian analysis based on Markov chain Monte Carlo, in which
species-specific occurrence probability parameters are estimated. They used these to
develop predictions of missing z(i, j) variables, and functions of those variables such
as community similarity and richness. Here we provide a fully Bayesian analysis of
the model applied to the MHB data, using the data augmentation parameterization
described by Royle et al. (2007a). This formulation was also used in the analysis
presented in Dorazio et al. (2006).

The species occurrence model is specified by z(i, j) ∼ Bernoulli (ψ(i, j)) and
the observation model is specified by xk (i, j) ∼ Bernoulli (pk (i, j)*z(i, j). Thus, if
z(i, j) = 0, the resulting observations are fixed zeros. In the most general formulation,
we suppose that logit(ψ(i, j)) = μi +α j and logit(p(i, j)) = νi +β j . Here, ψ(i, j)
is the probability of occurrence (occupancy) for species i at quadrat j, p(i, j) is the
probability of detection for species i at quadrat j,μi and νi are species effects, and α j

and β j are quadrat effects. Hence, the logit transforms of occupancy and detection
probability are both assumed to be a sum of species and quadrat effects.

The general modelling framework described so far can easily be adapted to
the specific data set and objectives of a particular study. For instance, in all three
previous applications (Dorazio and Royle 2005; Dorazio et al. 2006; Royle et al.
2007a), it was assumed that quadrat effects α j and β j are constant and hence,
logit(ψ(i)) = μi + α and logit(p(i)) = νi + β. Since μi and νi were assumed to
be draws from zero-mean normal distributions, α and β were the mean logit-scale
parameters of occupancy and detection probability.

Furthermore, these authors modelled species-specific differences in occupancy
and detection probability as being correlated by assuming a parametric form for the
joint distribution of μi and νi . That is, they assumed

[
μi , νi |�

] ∼ Normal(0,�)
with the 2 × 2 matrix � specified by two variances (σ 2

μ, σ
2
ν ) and a covariance (σμν).

Modelling this correlation can easily be justified on grounds of the expected rela-
tionships between quadrat-specific abundance and occupancy on the one hand and
abundance-induced heterogeneity in quadrat-specific detection probability on the
other (Royle and Nichols 2003; Dorazio and Royle 2005).

Kéry and Royle (2008) assumed a minimal version of the model; logit(ψ(i)) =
μi and logit(p(i)) = νi , with μi and νi normally distributed, species-specific
random effects such that μi ∼ Normal(μμ, σ

2
μ) and νi ∼ Normal(μν, σ

2
ν ). This

model is analogous to model Mh in a site occupancy context (Otis et al. 1978), since
it assumes that the only source of variation in detection and occurrence probabilities
is species identity.

In this paper, we consider an obvious but important extension of the model, by
allowing for effects of quadrat- and survey-specific covariates in detection prob-
ability, and also spatial covariate effects in occupancy. While such model struc-
ture would seem necessary in most applications, existing conventional methods of
estimating species richness in the presence of imperfect detection do not easily
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accommodate such structure. We feel that this is one of the main benefits of devel-
oping the model based on species-specific models of occurrence. The quadrat effects
can be expressed as linear functions of quadrat-specific covariates that are thought
to influence the probability that species i occurs at quadrat j. In our present study,
we adopted a model where the logit transform of occupancy is a linear function of
forest cover, quadrat elevation (linear and squared) and route length:

logit(ψ(i, j)) = μi + β1i ∗ forest j + β2i ∗ elev1 j + β3i ∗ elev2 j + β4i ∗ length j

Here, μi is again a species effect and serves as an intercept, while coefficients
β1i through β4i are subscripted i, showing them to be different for each species i.
We add route length as a predictor of occupancy rather than detection probability
since we envision it as a surrogate of the effectively sampled area but note that a
point could be made for adding it into the linear predictor of detection probability
instead. Given enough temporal replicates, it could be included in both.

Similarly, we expressed the logit transform of detection probability pk (i, j) for
species i, quadrat j and survey k as a sum of three components.

logit(pk(i, j)) = νi + β5i ∗ date1 jk + β6i ∗ date2 jk + β7i ∗ effort jk

Hence, we assumed that each species had its own logit-scale baseline probability
of detection (νi ) that was modified by the date (linear and quadratic) at which survey
k was conducted at quadrat j as well as by survey effort at quadrat j during survey
k. We expressed effort by the ratio of survey duration and route length. As before,
coefficients β5i through β7i are species-specific. For numerical reasons, all covari-
ates except route length were normalised.

As described so far, this model contains far too many parameters to be useful.
Moreover, many of the parameters are liable to be poorly identified because many
species will be observed a small number of times (or even once). In addition, there
are presumably a number of species in the community that did not appear in the
sample at all, and so the information about parameters for those species must derive
from the prescribed model structure. Hence, we add to the model one hierarchical
layer and assume that β1i through β7i are independent normal random effects (see
above for the multivariate normal distribution assumed for μi and νi ,) and we esti-
mate the hyperparameters, i.e. means and (co)variances of these distributions.

2.3 Data Augmentation and Bayesian Analysis

One of the fundamental issues in the development of models of community struc-
ture and composition is that a given sample is unlikely to contain all species within
the community. Historically, this has been dealt with by formulating models for
estimating community structure as capture–recapture models, in which the commu-
nity size parameter is analogous to population size. The main disadvantage of that
approach in the present problem is that calculation of the likelihood would require
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tedious integration to remove all of the random effects from the likelihood (i.e.,
worse than Dorazio and Royle 2005).

This computational burden, and the search for a convenient Bayesian treatment
of the problem, motivated the data augmentation approach described by Royle et al.
(2007a), which we adopt for our analysis of the MHB data. With data augmentation,
the observed data comprised of encounter histories on n individuals is physically
augmented with a large number of “all zero” encounter histories, say M – n, yielding
a fixed total number of available “species” of M. This comprises n observed species
and M – n pseudo-species represented by all zeros. The resulting model for the
augmented data set is a zero-inflated version of the “known-N” model (provided that
M is sufficiently large). The nice thing about this formulation is that zero-inflation
models yield to a simple Bayesian implementation due to their conditional structure.
They also can be implemented directly in WinBUGS (Spiegelhalter et al. 2003).
Specifically, we introduce another latent indicator variable wi for i = 1, 2, . . ., n,
n + 1, n + 2, . . ., N, N + 1, N + 2, . . ., M and then assume z(i, j) are Bernoulli
(wi ∗ψ(i, j)) and wi ∼ Bernoulli(�). The problem of estimating N is thus translated
into the equivalent task of estimating that Bernoulli parameter �.

The interpretation of M is that of a super-population of species from which the
actual sampled community (the species exposed to sampling) was drawn by some
hypothetical random sampling mechanism; see Royle et al. (2007a) for additional
details and discussion of the data augmentation idea. The main consideration in
setting a fixed M is that it must be large enough so as to avoid truncation of the
posterior distribution. This is easily diagnosed by looking at a few small trial runs
of the MCMC algorithm.

On the other hand, N is not a fixed constant, but rather one of the important struc-
tural parameters of the model. However, its interpretation may not be self-evident.
In the context of a simple model with no spatial covariates, so that all quadrats are
essentially regarded as i.i.d. replicate samples from a homogeneous landscape, N
is the asymptote of a species-accumulation curve (Dorazio et al. 2006), i.e., it is
the number of species that occur in some area from which the samples were drawn,
as that area tends to infinity. To obtain an estimate of the number of species that
actually occur on any location, or at any set of sampled locations, one must obtain
the small-area estimate of the number of species, say N(j) (Dorazio and Royle 2005).
This can be obtained by predicting each unobserved z(i, j) for i = 1,2, . . ., N and
j = 1,2, . . ., J, and then summing them up at each quadrat, and aggregating spatially.
The interpretation of N is somewhat complicated when covariates on z(i, j) are
included in the model. In this case, N still seems to represent a maximum community
size that could exist as the size of a geographic region tends to infinity. However, as
that hypothetical area increases, it is not clear how the structure of that hypothetical
landscape is defined in the context of the covariate model in which the covariates
are fixed. One could clarify the interpretation of N when there are covariates in
the model, if those covariates were themselves assumed to be random variables.
Regardless of this conceptual issue in defining N, we can predict each of the
z(i, j) ’s including for the “unobserved species” and then aggregate those over space
and time given data on the covariates at quadrats for which predictions are desired.
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The implementation in program WinBUGS (Spiegelhalter et al. 2003) is straight-
forward and requires only a few lines of code (see Appendix 1). To complete the
formulation of our model, we assumed vague prior distributions for all parameters,
see Appendix 1; in addition, as priors for the hyperdistributions of the β’s above we
chose N(0,10) for the means and Uniform(0,10) for the standard deviation.

We have found that in some cases WinBUGS does not appear to update the
random effects properly in a logit-normal model. We don’t know why this is, but
it can be diagnosed by complete non-mixing of the variance components when
multiple chains are run from random starting values (see left panels in Appendix 2).
We have an ad hoc fix for this problem, which is to truncate the random effects distri-
butions by multiplying with the indicator function I(– B,B) for B fairly large relative
to the variance in the random effect, e.g., B = 21 (see right panels in Appendix 2).
We think that this tricks WinBUGS into choosing a different algorithm, perhaps
more general, but one that seems to work, albeit at the same time it slows down the
algorithm considerably. While the model can be implemented fairly easily in other
packages such as R, and despite the WinBUGS updating problem, we feel that the
extensibility and simplicity of the WinBUGS implementation is a benefit to its use
in such problems.

For purposes of evaluating convergence, we ran three chains using random
starting values, of length 2000 each after a 1000 burnin. Resulting chains were
thinned by 2 resulting in 3000 iterations for inference about posterior distributions.
Convergence was assessed using the Brooks–Gelman–Rubin diagnostic (Gelman
and Rubin 1992), using the facilities provided in the R add-on library BOA (Smith
2005). Results indicated convergence, with scale reduction factors near 1 (0.9997–
1.089) for all parameters except for sigma(route length) with 1.647 indicating
apparent nonconvergence. (Interestingly, the mean parameter for length appeared to
converge). We therefore caution that results associated with that variance component
be viewed with caution.

3 Results

3.1 Community Analysis MHB

Among 254 MHB 1 km quadrats, 134 diurnal bird species were observed during
2001 while the estimate under our model was 169.9 (95% CI 151–195; Fig. 1a).
Figure 1a indicates that data augmentation by 100 was entirely sufficient. The
observed number of species ranged from 4 to 58 per quadrat (mean 32.8, sd 11.3).
Under our model, there were between 0.7 and 11.2 further, unobserved species
(mean 2.6, sd 1.1) in each quadrat. This translates into a proportion of species actu-
ally detected ranging from 0.48 to 0.98 (mean 0.91, sd 0.08). Hence, the estimated
species richness in 1 km quadrats in Switzerland in 2001 ranged from 8.1 to 59.3
(mean 35.4, sd 10.8). Figures 1b–d show posterior distributions of species rich-
ness for three sample quadrats with virtually no unobserved species (b) and with a



646 M. Kéry and J.A. Royle

0.
00

0.
01

0.
02

0.
03

0.
04

Metacommunity size

F
re

qu
en

cy

142 178 214

0.
0

0.
1

0.
2

0.
3

Number of species

F
re

qu
en

cy

47 50 53

0.
00

0.
05

0.
10

0.
15

0.
20

Number of species

F
re

qu
en

cy

34 38 42 46

0.
00

0.
05

0.
10

0.
15

Number of species

F
re

qu
en

cy

33 37 41 45 49

(a) (b)

(c) (d)

Fig. 1 Examples of posterior distributions of species richness of diurnal breeding birds in
Switzerland in 2001. (a) Metacommunity size, and community size in (b) quadrat 73, (c) quadrat
105 and (d) quadrat 168. Thin vertical lines indicate the observed number of species

moderate (c) or a large number of unobserved species estimated to be present (d). As
expected on theoretical grounds (Royle and Nichols 2003) occupancy and detection
probability were clearly correlated with that correlation estimated at 0.62 (95% CI
0.43–0.76).

Avian species richness in Switzerland showed the well-known decline with
increasing elevation (Fig. 2a) and was distinctly higher in forested than unforested
quadrats (Fig. 2). The estimated number of unobserved species per quadrat under
the model remained more or less constant over the elevation and the forest cover
gradients (Fig. 2–d), which translated into a decline in the estimated propor-
tion species detected per quadrat at higher elevations and very low forest cover
(Fig. 2e–f).

Species responses of occupancy probability to elevation were highly variable,
but not surprisingly, most species showed some distinct elevational preference
(Fig. 3a). Route length had an important effect on occupancy probability in most
species (Fig. 3b), suggesting a larger effectively sampled area was more likely to
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Fig. 2 Relationships between elevation and percentage forest cover, respectively, and (a and b)
Swiss avian species richness (estimated number of diurnal bird species per 1 km MHB quadrat),
(c and d) estimated number of unobserved diurnal species and (e and f) the estimated proportion
of species detected. Smoothing splines are added

contain at least one territory of a species than a smaller sampling area. Species
differences in detection probability were huge, and species responses of detection
probability to date and survey effort were also variable. Many species showed a
maximum detectability in the middle of the survey season, but some also had a nega-
tive hyperbolic, negative or positive relationship, or none at all (Fig. 3c). Response
of detection probability to effort was clearly positive for most species (Fig. 3d).

4 Discussion

4.1 Modelling Framework

Species richness is of great importance in many branches of ecology as well
as in management (Purvis and Hector 2000; Connolly 2005; Orme et al. 2005).
Although most often possible complications due to imperfect species detectability
are simply ignored in these studies, there exists a large array of methods to
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Fig. 3 Species-specific reponses of occupancy probability to (a) elevation and (b) route length,
and of detection probability to (c) date and (d) survey rate. Note the caveat about non-convergence
of the Markov chains with respect to the variance of species-specific responses of occupancy to
route length

estimate species richness while correcting for imperfect detectability, e.g. extrap-
olation of species accumulation curves, parametric modelling of apparent species
abundance distributions, nonparametric modelling based on sampling theory and
capture–recapture type of models. So what are the benefits of our model?

First and foremost, perhaps, are its conceptual simplicity and elegance. Species
detections are clearly separated into a true, but imperfectly observed occupancy state
of each species in the metacommunity z(i, j), i.e. the latent structure Z, and into an
observation process conditional upon that occupancy state. Consequently, factors
affecting the observations can be clearly segregated into those that affect the system
state (occupancy), here, forest cover, elevation and route length, and those affecting
only the observations of that system (i.e., the detection process), here, survey date
and effort. This not only sharpens our thinking about the system but arguably also
uses the available information more efficiently.
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Second, the model effectively integrates all available information by retaining
species identity across quadrats. Arguably the largest amount of variance in
detectability pk (i, j) will be due to species identity i, and our model borrows strength
across quadrats j in the estimation of pk (i, j) and hence, quadrat-specific N(j). Not
surprisingly, compared to a quadrat-by-quadrat analysis of species richness, inte-
grated modelling of the metacommunity yields large benefits in terms of precision
of the estimates, and in some quadrats with very small numbers of observed species
enables an estimate in the first place (Kéry and Royle 2008).

Further, the core of the model is the Z matrix (i.e. the set of indicators z(i, j)), a
centerpiece of many applications of ecology, management and conservation and the
true presence-absence matrix (McCoy and Heck 1987). The Z matrix is a complete
description of a metacommunity in terms of the occurrence of individual species. An
estimate of Z enables rich inference about a metacommunity; for instance, summing
across species yields quadrat-specific species richness and summing across quadrats
essentially yields occupancy for each species, another central quantity in ecology
and its applications (MacKenzie et al. 2006). Furthermore, species similarity can be
assessed in terms of the number of quadrats they co-occur, and quadrat similarity
by the pattern of species occurrences (Dorazio et al. 2006). Finally, species richness
can be estimated not only for each community (=quadrat) but also for the entire
metacommunity or subsets thereof.

Data augmentation greatly simplifies the fitting of the model in a Bayesian mode
of analysis by allowing analysis of a zero-inflated version of the model in which N
is known. The simple conditional structure of this model is amenable to Bayesian
analysis, and the zero-inflation parameter takes the place of N. That is, while there
are a number of missing species in the sample, we know the data for all such species
to be composed entirely of zeros. Thus, we create a larger data set by augmenting the
observed data with a large number of such all-zero encounter histories. The model
for the augmented data is acknowledged to have excessive zeros by the inclusion
of a single additional zero-inflation parameter. The hierarchical formulation of this
zero-inflated version of the “known-N” model is trivial to implement, especially in
WinBUGS.

The requirement of spatially and temporally replicated data may be seen as a cost
of our model. However, spatial replication is a common feature of a many studies
on species richness, and its degree can be far less than in our current study. For
instance, we have previously applied the model to a much smaller subset of MHB
data consisting of 26 quadrats only (Kéry and Royle 2008). Hence, our model could
probably be applied to many data sets provided that a minimum of two temporal
replicates are available.

4.2 The Application

Switzerland is a country with a high population density of capable ornithologists and
despite its mountains, has hardly any larger, really inaccessible areas. We can thus
safely assume that the true metacommunity size is rather well known. From 1995 to



650 M. Kéry and J.A. Royle

2004, 185 diurnal breeding bird species were known, of which 163 bred regularly
and 22 irregularly. In addition, for 13 species 1–3 nesting records are known for the
period 1900–2004 (Volet 2006). 134 diurnal species were observed during MHB
surveys in 2001. The estimate under our model of 169.9 (95% CI 151–195) therefore
appears sensible, even though perhaps slightly low. However, this example shows
how elusive a concept such as species richness really is; does it refer to the regular,
or to the regular and irregular, or all breeding species ? It is likely that it is the rare
species which introduce most uncertainty (and complications !) into such estimates
(Mao and Colwell 2005). Therefore, we would not want to put too much emphasis
on this estimate of metacommunity size but rather feel comfortable with an apparent
consistency between the estimate and “known truth”.

At a quadrat level, in 97% of cases the estimated number of overlooked species
was only 1–4, which lead to a high estimated proportion of detected species (91%).
The relationships of avian species richness with two important landscape predictors,
elevation and forest cover, was as expected; there was a strong decline at higher
elevations and with very low or no forest cover. Of course the two are confounded,
since the fall in species richness above the timberline around 2000 m can be seen
in both. Interestingly, the timberline is also evident in the estimated proportion of
species detected. Probably this is because only two surveys are conducted at most
high-elevation quadrats. This must lead to a smaller proportion of species detected,
as can be seen from the the relationship P∗ = 1 − (1 − p)n , where P∗ is the
proportion of species detected, p the per-survey mean species detection proba-
bility and n the number of surveys. In addition, the slightly shorter route lengths
at higher elevations may have induced a smaller effective sample area within the
sampling quadrats and therefore a smaller number of species actually present in
that area.

Variation in abundance arguably leads to variation in detection probability (Royle
and Nichols 2003), and positive abundance–occupancy relationships belong to the
most general patterns in community ecology (He and Gaston 2003; Freckleton et al.
2006). As explained by Dorazio and Royle (2005; also see Royle and Nichols 2003),
a positive correlation between occupancy and detection probability was therefore
expected.

The estimated occupancy probability of most species showed some preferred
elevation which was very much expected on biological grounds. The strong rela-
tionship between estimated occupancy and route length is a strong indication that in
most quadrats the effective sampling area is smaller than 1 km2. Under a Poisson
assumption for the number of territories, a longer route will clearly expose to
detection at least one territory of a species with greater likelihood than a shorter
route. We note that our parameterisation of this effect could be improved by
assuming an asymptotic rather than a logit-linear relationship between occupancy
and route length as was done for models of abundance in Royle et al. (2007b).
We are investigating parameterizations that accommodate incomplete quadrat
coverage.

Detection probability varied enormously among species and for most species
also drastically over the season. There was less variation but still a clear increase
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of detection probability related to increased sampling effort as quantified by the
time spent per unit route length. These are important results because they illus-
trate very clearly the danger of comparing observed, raw occupancy across species
with different detection probability, or observed species richness between surveys
conducted at different times in the season or at different sampling intensities. Figure
3c and d can also have great importance for the planning of a survey of an individual
species in that the optimal values of season and effort can be easily determined for
each species (Kéry 2002).

Our present results regarding the proportion of species detected (91%) concur
well with a previous estimate of 89% based on Burnham’s Jackknife for a larger
number of years (2001–2003, and thus including the data in this study) as they do
with those of mixed modelling of the resultant mean species detectability estimates
in the earlier study (Kéry and Schmid 2006). We confirmed a decline in the propor-
tion of species detected with elevation and in quadrats surveyed only twice instead
of three times, as well as a lack of effects of landscape structure (forest cover) apart
from a fall at very low forest cover, which apparently is accounted for by the reduced
number of surveys above the treeline. We also confirmed a positive effect on detec-
tion probability of route length, although we modelled this into occupancy here, and
of survey effort.

In contrast to earlier work, we introduced rich covariate structure into our model
here, which is equivalent to introducing additional information. In particular, in the
MHB there are four important components that affect detection of a species in a
quadrat; route length, duration of survey, season of survey and observer identity. All
were previously shown to have considerable effects on counts of species or individ-
uals in avian surveys such as the North American BBS or the Swiss MHB (Sauer
et al. 1994; Link and Sauer 1998; Kéry et al. 2005; Royle et al. 2005; Kéry and
Schmid 2006; Royle et al. 2007b). In our analysis, we account for all of them except
the last one; we note that it would be entirely possible to include a random observer
effect if the same observer surveys different quadrats. The ease with which such
covariates can be introduced in the analysis is one of the strengths of our modeling
framework.

Five of the key assumptions of our model are these: (1) Occupancy probability
ψ(i, j) must be conditionally (on covariates such as elevation) independent across
species and quadrats. This is obviously violated to the degree that there exists
structure in the community caused by predation, competition or facilitation, i.e.
by direct interactions among the species. However, it is likely that at the scale of
our analysis such effects might be hard to distinguish from a random occurrence of
species, which, interestingly, resembles arguments in favour of neutral community
models (Gotelli and McGill 2006). Furthermore, it might be possible to formally
test hypotheses about such species interactions within our modeling framework by
adding hypothesized structure to Z. (2) Detections are also conditionally (on covari-
ates) independent across species and quadrats, i.e., detection probability of a species
should not depend on which other species was detected at a quadrat, nor on which
other quadrat it had been detected before. In our study, the former is unlikely to be
violated, furthermore, virtually all quadrats were surveyed by different observers,
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hence, the latter is no problem either. (3) Detections are also independent across
temporal samples at the same quadrat. This assumption may be violated to some
degree for some noteworthy species at least. For instance, rare or attractive species
may be more likely to be detected once an observer has recorded them at a quadrat.
Alternatively, shy species might become more elusive after first detection. Again, at
the scale of our analysis we think it unlikely that such “behavioural response” effects
(Otis et al. 1978) would be a problem, and if they were deemed to be, they could be
included in the model. (4) The distribution of the logits of occurrence and detection
probability is adequately modelled. We think that this assumption is reasonable, but
note that parametric forms other than the normal distribution could be chosen if
necessary. (5) The metacommunity is closed, i.e., the matrix Z is constant across
all temporal samples. In spite of staggered arrival of some migratory species there
seems to be little noticeable violation of the traditional “closure assumption” in our
MHB data (Kéry and Schmid 2006). Furthermore, known patterns of closure viola-
tion, as in the case of migrant arrival, could also be accommodated in the model.
Finally, a convenience rather than an assumption is that the surveyed quadrats are a
representative sample of some larger area, because then the estimated metacommu-
nity size has a useful interpretation.

5 Conclusions

We have illustrated a promising new modelling framework applicable to spatially
and temporally replicated samples that provides an estimate of the imperfectly
observed species-by-site occurrence matrix. This enables rich inference about
species richness of both the entire metacommunity as well as each community indi-
vidually, as well as of occupancy of each species and of measures of similarity of
species and sites. The clear segregation of the observations into occupancy state and
observation process permits an efficient integration of additional covariate informa-
tion. Possible extensions of the model consist of relaxing the closure assumption
partially or entirely. This would allow application of our modelling framework to
communities that are dynamic relative to the time frame of a survey (e.g. insects) as
well as direct estimation and modelling of parameters of community dynamics such
as extinction, colonisation and turnover rates.
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Appendix 1

WinBUGS code for a model without covariates for the sake of improved readability.
However, we indicate places where covariates would be introduced.
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model {
#Prior distributions and parameter transformations
omega ∼ dunif(0,1)
p0 ∼ dunif(0,1)
psi0 ∼ dunif(0,1)
sigmap ∼ dunif(0,10)
sigmapsi ∼ dunif(0,10)
rho ∼ dunif(-1,1)

taup <- (1/(sigmap*sigmap))
taupsi <- (1/(sigmapsi*sigmapsi))
mup <- log(p0/(1-p0))
mupsi <- log(psi0/(1-psi0))
var.eta <- taup/(1.-pow(rho,2))

# Likelihood
for(i in 1:(nspec+nzeroes)){ # Process model

w[i] ∼ dbin(omega,1)
lpsi[i] ∼ dnorm(mupsi,taupsi) I(-21,21) # Note truncation trick
mu.lp[i] <- mup +(rho*sigmap/sigmapsi)*(lpsi[i]-mupsi)
lp[i] ∼ dnorm(mu.lp[i],var.eta) I(-21,21) # Note truncation trick
for(j in 1:nquadrat){

logit(psi[j,i]) <- lpsi[i] # Add covariates here
mu.psi[j,i] <- psi[j,i]*w[i]
z[j,i] ∼ dbern(mu.psi[j,i])

}
}
for(k in 1:(nspec+nzeroes)){# Observation model

for (i in 1:nquadrat) {
for(j in 1:T){

logit(mu[i,j,k]) <- lp[k] # Add covariates here
mu2[i,j,k] <- z[i,k]*mu[i,j,k]
x[i,j,k] ∼ dbern(mu2[i,j,k])

}
}

}
# Species-richness N as a derived parameter
for(i in 1:nquadrat){

Nquadrat[i] <- sum(z[i,1:(nspec+nzeroes)])
}
n0<-sum(w[(nspec+1):(nspec+nzeroes)])
Ntotal<-nspec+n0
}
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Appendix 2

WinBUGS time-series plot for some random effects and random effects distribution
hyperparameters. Left: Plots for model without restrictions; right: plots for model
where random effects truncated by multiplication with indicator function I( - 21,21).

beta0[1] chains 1:3

iteration
11 500 1000 1500

–4.0

–2.0

0.0

2.0

iteration

11 500 1000 1500

2.0

1.5

2.5

3.0

3.5

beta0[1] chains 1:3

iteration
11 500 1000 1500

0.0

–2.0

2.0

4.0

6.0

lp[1] chains 1:3

iteration
11 500 1000 1500

2.0

2.5

3.0

3.5

lp[1] chains 1:3

iteration
11 500 1000 1500

–1.0

–2.0

0.0

1.0

2.0

mup chains 1:3

iteration

11 500 1000 1500

2.0

–3.0

–1.0

0.0

1.0

mup chains 1:3

iteration
11 500 1000 1500

1.0

0.5

1.5

2.0

2.5

sigmapsi chains 1:3

iteration
11 500 1000 1500

1.0

2.0

3.0

4.0

sigmapsi chains 1:3

References

Boulinier T, Nichols JD, Sauer JR, Hines JE, Pollock KH (1998a) Estimating species richness: The
importance of heterogeneity in species detectability. Ecology 79:1018–1028.

Boulinier T, Nichols JD, Hines JE, Sauer JR, Flather CH, Pollock KH (1998b) Higher temporal
variability of forest breeding bird communities in fragmented landscapes. Proceedings of the
National Academy of Sciences 95:7497–7501.



Avian Community Models 655

Boulinier T, Nichols JD, Hines JE, Sauer JR, Flather CH, Pollock KH (2001) Forest frag-
mentation and bird community dynamics: Inference at regional scales. Ecology 82:
1159–1169.

Cam E, Nichols JD, Sauer JR, Hines JE (2002) On the estimation of species richness based on the
accumulation of previously unrecorded species. Ecography 25:102–108.

Connolly SR (2005) Process-based models of species distributions and the mid-domain effect.
American Naturalist 166:1–11.

Dorazio RM, Royle JA (2005) Estimating size and composition of biological communities by
modeling the occurrence of species. Journal of the American Statistical Association 100:
389–398.
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Regression in Capture–Recapture: An Adaptive
Spline Approach
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Abstract Advances in capture–recapture methodology have allowed the inclusion
of continuous, time-dependent individual-covariates as predictors of survival and
capture probabilities. The problem posed by these covariates is that they are only
observed for an individual when that individual is captured. One solution is to
assume a model of the covariate which defines the distribution of unobserved values,
conditional on the observed values, and apply Bayesian methods to compute param-
eter estimates and to test the covariate’s effect.

Previous applications of this approach have modeled the survival probability as
a linear function of the covariate on some scale (e.g. identity or logistic). In some
applications a linear function may not adequately describe the true relationship.
Here we incorporate semi-parametric regression to allow for more flexibility in the
relationship between the covariate and the survival probabilities of the Cormack–
Jolly–Seber model. A fully Bayesian, adaptive algorithm is used to model the rela-
tionship with splines, in which the complexity of the relationship is governed by
the number and location of the knots in the spline. A reversible jump Markov chain
Monte Carlo algorithm is implemented to explore splines with different knot config-
urations, and model averaging is used to compute the final estimates of the survival
probabilities.

The method is applied to a simulated data set and to data collected through the
Dutch Constant Effort Sites ringing project to study the survival of reed warblers
(Acrocephalus scirpaceus) as a function of condition.
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1 Introduction

Continuous, individual variables (e.g. body mass) may often be of interest as
predictors of survival or catchability of animals in capture–recapture (CR) studies.
The difficulty posed by variables that are unique to each animal and change over
time is that they can only be observed when an individual is captured. Because
of the missing values, these variables cannot be used in standard CR models (see
e.g. Lebreton et al. (1992) who employ environmental or fixed individual covariates
as predictors of survival). Bonner and Schwarz (2006) introduce one method for
including continuous covariates in CR studies by developing a hierarchical model
of the unobserved covariate values and then using Bayesian analysis via Markov
chain Monte Carlo (MCMC) simulation to obtain parameter estimates. The method
is applied to study the effect of body mass on the survival of the meadow vole
(Microtus pennsylvanicus).

The objective of this paper is to allow more flexibility in the relationship between
the covariate and the survival probability. The model of Bonner and Schwarz (2006)
assumes that the link between the probability that individual i survives from occa-
sion t to t + 1 and the covariate is a linear function on the logistic scale:

ηi t = logit (P(ind. i is alive at time t+1|ind. i is alive at time t)) = β0 + β1zit

where zit denotes the value of the covariate for individual i at time t . In this paper
we model ηi t using a large class of non-linear functions. In particular we model:

ηi t = s(zit )

where s(·) is a smoothing spline fit through an adaptive spline approach.
Smoothing splines are flexible functions formed from polynomial segments

which connect at selected points called knots. Unlike polynomials which form a
global fit to data, splines are locally adaptive such that the coefficients of the poly-
nomial segments may vary over the range of the data (Eubank 1999). The amount of
local change possible in a spline is determined by two factors: the number and loca-
tion of the knots, and the amount by which the spline may change at each knot. This
dichotomy leads to two methods for fitting splines. Penalized spline methods use a
large number of fixed knots over the range of the data, but introduce a smoothing
parameter which limits how the coefficients of the polynomial segments may differ
on either side of a knot. Adaptive (or free knot) spline methods include estimation
of the number and location of knots as part of the fitting procedure.

The adaptive method can be framed as a problem of fitting a hierarchical
model in which splines with different numbers of knots form different submodels.
This problem is ideally suited to Bayesian inference incorporating reversible jump
Markov chain Monte Carlo (RJMCMC) to explore splines with different numbers of
knots and hence different numbers of parameters (Green 1995). Final estimates are
computed by model averaging the functions sampled on each RJMCMC iteration.



Time-Varying Covariates: An Adaptive Spline Approach 659

Section 2 of this paper provides an introduction to adaptive splines and describes
the method for fitting survival probabilities as a function of a continuous covariate.
Section 3 examines a simulation study in which the survival probability is known
to have local dependence on the covariate. Fit of the spline model is compared with
the fit of a simpler cubic polynomial model. In Section 4, we apply the method to
study the relationship between the survival and condition of reed warblers (Acro-
cephalus scirpaceus) captured as part of the Dutch Constant Effort Sites (CES)
ringing program. The final section discusses advantages and disadvantages of the
method and provides some suggestions for its use in future CR studies.

2 Methods

2.1 Notation

Observed Data & Latent Variables:

T = number of capture occasions (indexed by t). Observed.
ai = occasion on which individual i is first captured and marked. Observed.
zit = value of time-varying covariate for individual i at time t . Partially

observed.

Parameters:

φi t = probability that individual i is available for capture at occasion t + 1
given that it was available for capture at occasion t

pt = probability that any individual available for capture at occasion t is
captured

s(z) = spline function modelling dependence of φi t on zit

κ = number of potential knot locations
K = number of knots in a single realization of the adaptive spline
ξk = location of the kth knot

ξl, ξu = lower and upper boundary knots
β, γ = vectors of coefficients of s(z) (truncated polynomial basis)

b = vector of coefficients of s(z) (B-spline basis)
μt = population mean change in covariate between t and t + 1
σ 2 = population variance of change in covariate between adjacent capture

occasions

2.2 Cormack–Jolly–Seber Model with Individual Covariates

The purpose of our method is to allow flexibility in modelling the relationship
between some process in a capture–recapture experiment (e.g. survival or capture)
and an individual covariate. Here we illustrate the method by incorporating a
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time-varying condition measure as a predictor of survival in the Cormack–Jolly–
Seber (CJS) model. We assume that animals are captured and marked on T capture
occasions and released back into the population where they can be recaptured on
subsequent occasions. The CJS models the probability of recapturing individuals in
terms of two sets of parameters: the apparent survival probabilities and the capture
probabilities. Standard assumptions for the CJS model can be found in many sources
(see e.g. Seber (1982), Williams et al. (2002)).

Our model modifies the assumptions by allowing the survival probability to
depend on a single time-varying covariate, denoted zit . Bonner and Schwarz (2006)
model the relationship between φi t and zit using a simple logistic function:

ηi t = logit(φi t ) = β0 + β1zit .

The primary difficulty with fitting this model is the large number of missing values
for the covariate that may result when animals are not captured. Bonner and Schwarz
(2006) solve this by defining a distribution for the unobserved values of the covariate
conditional on the observed values. In particular, the model assumes that changes
in the covariate between subsequent capture occasions are normally distributed
according to:

zi,t+1|zit ∼ N (zit + μt , σ
2) (1)

where μt is allowed to vary with t and σ 2 is constant. Estimates of β0 and β1 are
then generated from Bayesian inference via Markov chain Monte Carlo.

Here we extend the model by allowing ηi t to be a non-linear function of zit . In
particular, we model ηi t = s(zit ) where s(z) is a spline. For simplicity, the capture
probabilities are assumed to depend only on the capture occasion.

2.3 Splines

The class of splines is a set of functions that is commonly used for smoothing –
finding a flexible function, y = f (x), to describe coordinate data (x1, y1), . . . ,
(xn, yn). Part of their appeal is that splines can be formulated as an extension of poly-
nomial regression, and much of the methods and theory used to fit simple regression
models can be applied to fitting splines. The disadvantage of a straight polynomial
regression model for scatterplot smoothing is that its fit is global. The value of the
polynomial over any (small) interval determines its value over the entire range of
data (Schumaker 1993, p. 103). If the relationship between y and x is complicated
then the polynomial model will not fit well or will require many terms to achieve an
adequate fit.

Spline models remedy this by introducing extra predictors that allow local
changes in the fitted curve. A polynomial of order q is a function formed as a
linear combination of the functions {1, x, . . . , xq−1}. A spline of order q on the
interval [ξl, ξu] is a function formed as a linear combination of the basis functions
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{1, . . . , xq−1, (x − ξ1)q−1
+ , . . . , (x − ξK )q−1

+ }, for some points ξl < ξ1 < . . . < ξK

< ξu . That is:

f (x) = β1 + β2x + . . .+ βq xq−1 +
K∑

k=1

γk(x − ξk)q−1
+ .

The function (x − ξk)q−1
+ is a truncated polynomial of order q defined to be equal to

0 for x < ξk and (x − ξk)q−1 for x ≥ ξk . The points ξl and ξu are the boundary knots
of the spline and the points ξk , which partition [ξl, ξu] into k + 1 disjoint intervals,
are the internal knots of the spline.

Over any interval between adjacent knots, [ξk, ξk+1], the spline is equal to a poly-
nomial of order q. At each knot the form of this polynomial is allowed to change, but
only in a constrained manner which ensures that the entire curve over [ξl, ξu] will
be smooth. The curve must be continuous at each knot (limx→ξ−

k
f (x) = f (ξk) =

limx→ξ+
k

f (x)), it will have q − 2 continuous derivatives over the entire range, and
the (q − 1)th derivative will be continuous except for jumps of size γk at each knot.
In contrast, a polynomial of order q has q − 1 non-zero derivatives all of which
are continuous. Our method considers cubic splines (q = 4) so that the spline
is equivalent to a cubic polynomial between adjacent knots and has 2 continuous
derivatives (Schumaker 1993, p. 108).

The flexibility of a spline comes from the jumps in the (q−1)st derivative allowed
at each knot. For a cubic spline, the jumps occur in the 3rd derivative which means
that the second derivative is continuous but may change very sharply at each knot.
With q fixed, more flexibility can be introduced in the spline in one of two ways:
(1) increasing the number of knots or (2) allowing for larger jumps in the derivative.
This dichotomy leads to two competing approaches for fitting splines. Penalized
spline methods use a large number of knots with fixed positions to allow flexibility
anywhere in the range, and maintain smoothness by constraining the size of the
jumps in the (q − 1)st derivative allowed at each knot (Ruppert, Wand, and Carroll
2003, p. 65). This requires specification or estimation of a smoothing parameter
which constrains the γ k . Adaptive or free-knot spline methods allow γk to change
more freely and include estimation of the number and location of the knots within
the fitting procedure so that knots can be placed where needed. This is the approach
taken in our method.

2.4 B-Splines

In practice, the truncated polynomial basis {1, . . . , xq−1, (x − ξ1)q−1
+ , . . . , (x −

ξK )q−1
+ } can often lead to numerical problems. First, the columns of the design

matrix can be highly correlated if ξk and ξk+1 are close; and second, the entries
of the design matrix can be very large so that matrix operations become unstable.
These problems can be avoided by using an equivalent basis of functions: i.e. a set of
q + K functions such that every spline can be written as a linear combination of the
new set of functions and vice versa. A common choice is the set of B-spline basis
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functions (Ruppert et al. 2003; Schumaker 1993). This basis has several computa-
tional advantages including: (1) the basis functions are positive and sum to 1 at any
single point, (2) as a result, the values of the design matrix will always be between
0 and 1, and (3) all of the functions in the basis are local in that each is positive only
over a sub-interval of [ξl, ξu]. In the new basis, a spline of degree q with K knots
can be written as:

s(z) =
q+K∑
j=1

b j B(q)
j (z)

where B(q)
j (z) is the j th B-spline basis function of order q and b j is its coefficient.

One important consideration in computing the B-spline basis is the choice of the
values ξl and ξu which define the interval over which the spline will be computed.
These points are often called the boundary knots, and are required in computing the
values of the B-spline basis functions. While the basis functions can be computed
even for points which lie outside of this interval, the choice of the boundary knots
is crucial for numerical reasons. At any point which lies inside [ξl, ξu] the value of
the B-spline basis functions will all lie in [0, 1] and the sum over all of the basis
functions will be exactly 1. This makes computing with the basis very stable. At
points outside of this interval the value of the B-spline basis functions may be nega-
tive, and may become very large which makes the algorithms prone to numerical
errors. This issue is addressed further below. Further discussion and algorithms for
computing B-splines are provided in (Schumaker 1993).

2.5 Bayesian Adaptive Splines

To estimate the function s(z) we follow the adaptive Bayesian method of Biller
(2000) for fitting B-splines to generalized linear models. First, we select a large
number, κ , of potential knot locations prior to the analysis. Here we space these
locations evenly across the observed range of the data. The prior distribution is then
constructed so that it places all of its mass on functions in the set of splines with
between 1 and κ knots at these locations. This prior distribution is then updated
with information from the data, in the form of the likelihood, to generate the
posterior distribution over the same space of splines. In practice, even though the
number of different knot configurations is finite the likelihood cannot be computed
for each model and so the posterior cannot be constructed analytically. Instead,
Biller provides a Markov chain Monte Carlo algorithm for generating a sample of
realizations from the posterior distribution from which inference can be made.

A single spline in the restricted space is identified by three components: K , the
number of knots (0 ≤ K ≤ κ); ξ , the vector of knot locations; and b , the coefficients
of the spline. To define a distribution over the space we need to define a joint density
for these parameters. Following Biller (2000) again we write the joint prior density
as the product of densities:

π (b, ξ , K ) = π (b|ξ , K )π (ξ |K )π (K )
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where π (b|ξ , K ) is the conditional density of the coefficients given the number and
locations of the knots, π (ξ |K ) the density of the knot locations given the number of
knots, and π (K ) the marginal density on the number of knots.

First, we assign π (K ) a truncated Poisson(λ) distribution so that:

π (K ) ∝ e−λλK (K !)−1.

Then given K knots we assume that all configurations of the knots are equally likely.
As there are

(
κ

K

)
possible splines with K knots out of the κ potential locations, this

leads to the conditional density:

π (ξ |K ) =
(
κ

K

)−1

.

Finally, given ξ and K we assign the elements of b independent, diffuse normal
priors with mean 0 and variance τ 2.

The likelihood for the model is an extension of the CJS likelihood with time-
varying covariates and is exactly as given in Bonner and Schwarz (2006) with
logit (φ(z)) = s(z). Combined with the prior distribution above, this defines a poste-
rior over the restricted space of splines. Because of the large number of models in the
space it is not possible to compute summaries of the posterior distribution analyt-
ically. Instead, Biller (2000) provides a MCMC algorithm that samples different
realizations from the space. Inference is then made by computing summary statistics
from this sample of functions.

The major challenge in the algorithm is that moving between splines with
different numbers of knots changes the dimension of the model by increasing or
decreasing the length of b . Moves between models of different dimension cannot
be accommodated in standard MCMC algorithms, like Metropolis-Hastings (MH),
and instead, adding or removing knots is performed through RJMCMC. Like the
MH algorithm, each iteration of RJMCMC involves proposing a new state for the
parameters conditional on the current parameter values. This new function is then
accepted with a probability computed from the prior distributions of the current
and proposed states, their likelihoods given the observed data, and their densities
under the proposal distribution. If accepted, the proposed state becomes the current
state, and the chain continues. Otherwise the current state is retained and a new
proposal is generated. As in the MH algorithm, the acceptance step in RJMCMC
ensures that the posterior distribution will be a stationary distribution of the Markov
chain. The RJMCMC acceptance probability was first derived by Green (1995);
a simplified derivation is given in Waagepetersen and Sorensen (2001) and more
details are available in recent books on Bayesian analysis or statistical computation
(see e.g. Chen et al. (2000)).

The specific algorithm of Biller (2000) generates new proposals by adding or
deleting one knot from the current spline. On each iteration, a random choice is
made to add or delete one knot. When adding a knot, the location of the new knot is
selected from all of the currently unoccupied locations with equal probability. When
deleting a knot, the knot to delete is randomly chosen from the currently occupied
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locations. Each iteration also includes a step for moving one chosen knot to a nearby
unoccupied location, which helps the chain to move across the function space.

Implementation of this algorithm for our model poses some difficulties because
of the unobserved covariate values. In particular, Biller (2000) recommends
choosing the boundary knots, ξl and ξu , equal to the minimum and maximum values
of the covariate and spacing the κ potential knot locations between. This is not
possible in our application because the minimum and maximum values are not actu-
ally observed. Setting ξl and ξu equal to the observed minimum and maximum,
say zobs

min and zobs
max, it is likely that some of the unobserved covariate values will

lie beyond the boundary knots. Instead, we recommend choosing ξl and ξu to
enclose a wide range about the observed data (e.g. ξl = zobs

min − (zobs
max − zobs

min) and
ξu = zobs

max + (zobs
max − zobs

min)) but still spacing the potential knots equally between zobs
min

and zobs
max. This arrangement allows for covariate values to lie outside of [zobs

min, zobs
max],

but constrains the curve to be a cubic polynomial on the intervals [ξl, zobs
min] and

[zobs
max, ξu] where there is no observed data. Sampling from the posterior distribu-

tion also requires steps to impute the unobserved covariate values and to update the
remaining model parameters.

As in Bonner and Schwarz (2006) steps must be included in the algorithm for
updating the remaining parameters of the model and simulating the missing data
values. The final algorithm for generating a sample from the posterior distribution
of all random variables has the following structure:

Initialization:

(1) Define the boundary knots, ξl and ξu , and select κ potential knot locations
between zobs

min and zobs
max.

(2) Select initial values for all parameters, hyperparameters, and the missing data
values for each individual.

MCMC Iteration:

(1) Latent data:
Simulate the unobserved covariates, zit .

(2) Parameters of covariate distribution:
Update the parameters μ1, . . . , μT −1, and σ 2.

(3) Spline fit:

(a) Propose change in dimension (i.e. addition of a knot at an empty location
or deletion of a randomly selected knot).

(b) Propose movement of a single, randomly chosen knot to a vacant location
in the same neighbourhood.

(c) Update the spline coefficients, b .

(4) Remaining CJS parameters:
Update the capture probabilities p2, . . . , pT .
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MCMC iterations are then repeated until the chain converges and a large sample
of realizations is generated. Full details of the different MCMC steps are described
in a technical report (Bonner 2007).

Because there is no single set of knots, an estimate of s(z) cannot be generated
by plugging estimates of the coefficients into the B-spline equation. Instead, s(z) is
estimated by the posterior mean over the entire model space which is approximated
by averaging over the functions sampled on a large number of iterations from the
tail of the Markov chain. Precision of s(z) is assessed with pointwise 95% highest
posterior density (HPD) credible intervals. That is, for each value of z in [ξl, ξu] we
compute the shortest interval which covers 95% of the sampled values of s(z).

3 Simulation Study

In our simulation study, capture histories for 500 individuals were generated from
a CJS model with 3 capture occasions. Covariate values for each individual were
simulated from the diffusion model in (1) with the initial distribution zai ∼ N (0, 1)
and parameters μ1 = μ2 = 0.00 and σ 2 = 1.00. Survival probabilities for each
interval were computed from a bimodal function of the covariate with modes at
z = −1 and z = 1. This function is plotted in Fig. 1. Capture probabilities were
p2 = p3 = 0.85. Marking times were assigned so that half of the individuals were
first captured at occasion 1 and half at occasion 2.

Three different models of the survival probability were fit to the simulated data
to study the method’s performance. The first model fit a cubic polynomial to the
logit of the survival probability. The second and third fit the adaptive spline model
described above using two different prior distributions for the number of active
knots: Poisson with mean 25 and Poisson with mean 75. Markov chains for all three
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Fig. 1 Estimated survival probability as a function of the covariate for the simulated data. The left
plot illustrates the estimated function assuming a cubic fit, the centre plot using the adaptive spline
method with a Poisson(25) prior on the number of knots, and the right plot using the adaptive
spline method with a Poisson(75) prior on the number of knots. In each plot the solid grey line
indicates the true function, solid black line the pointwise posterior mean fit, and dotted black lines
the bounds of the pointwise posterior 95% credible interval. The vertical dotted grey lines indicate
the 2.5 and 97.5 percentiles of the simulated covariate values
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analyses were run for 100,000 iterations. The initial 10,000 were discarded as burn-
in, and every 10th of the remaining 90,000 iterations were retained for inference.

Estimates of the survival probability as a function of the covariate for all 3 models
are plotted along with their pointwise 95% HPD credible intervals in Fig. 1. The
cubic function clearly is too rigid to adjust to the local changes in the survival prob-
ability. Instead, the fitted curve decreases throughout the range of the covariate, and
the 95% credible intervals fail to cover the true survival probability for much of the
range.

In comparison, the spline fit using the Poisson(25) prior easily captures the
bimodality of the survival probability. The pointwise 95% credible intervals
completely cover the true function, but are between 2 and 3 times wider than the
credible intervals for the cubic fit. A trace plot and histogram of the number of
active knots in the spline for each MCMC iteration and a plot indicating the average
number of times each knot location is occupied are shown in Fig. 2. The number
of knots appears to converge very quickly to a stable distribution which places 95%
of the posterior probability on models with between 5 and 14 knots. The posterior
median is 10 knots. Knot locations that are most often occupied are centred near the
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Fig. 2 Number and locations of knots in the spline fits of the survival probability for the simulated
data. The upper row shows results using the Poisson(25) prior distribution on the number of knots
and the lower using the Poisson(75) prior. The plots illustrate, from left to right, the number of
knots on each MCMC iteration, the proportion of knot locations occupied on each iteration, and
the proportion of iterations for which each potential knot location is occupied
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Table 1 Estimates of capture probabilities and parameters of the covariate distribution for the
simulated data. Results on the left are from the model assuming a cubic relationship between
survival and the covariate; on the right are from the spline models. Estimates are given by the
posterior mean with 95% HPD credible interval

Parameter True value Cubic polynomial Poisson(25) prior Poisson(75) prior

p1 0.85 0.85(0.77,0.91) 0.84(0.76,0.90) 0.84(0.76,0.90)
p2 0.85 0.84(0.73,0.96) 0.82(0.72,0.93) 0.80(0.70,0.90)
μ1 0.00 −0.06(−0.23,0.10) −0.06(−0.23,0.10) −0.06(−0.23,0.10)
μ2 0.00 0.04(−0.09,0.17) 0.04(−0.09,0.17) 0.04(−0.09,0.17)
σ 1.00 1.03(0.96,1.10) 1.03(0.96,1.10) 1.03(0.96,1.10)

largest mode, although knots throughout the range have a minimum probability of
approximately 0.01 of being occupied.

The posterior distribution of the spline fit using the Poisson(75) prior assigns
probability to more complex models with many more knots. Ninety-five percent of
the posterior probability is assigned to models with between 14 and 35 knots, with
a posterior median of 23 knots. The minimum posterior probability of activity is
doubled to approximately 0.02.

The result of using the Poisson(75) prior is that more knots are included in the
spline on each MCMC iteration and so the estimated survival probability as a func-
tion of the covariate is less smooth. In fact, the estimate now contains considerable
noise and the most frequently occupied knot locations are associated with an anoma-
lous local change in the survival probability at z = 1.8. This spike in the survival
probability is caused by a chance grouping of individuals in the data all of which
are captured on one occasion with covariate values near 1.8 and fail to survive until
the next capture occasion. Examination of the true survival status (available from
the simulation) versus the covariate shows exactly the same result. Note that even
though the estimated survival probability is far from the true value, the 95% credible
intervals still cover the truth at all points.

Results for the remaining parameters are given in Table 1. Changing the model of
the survival probabilities has negligible affect on their estimates, and the means and
95% credible intervals produced by all three models are remarkably similar. The
reason for this is the combination of high capture and high survival probabilities.
Of the 500 individuals, 300 are captured on at least 2 occasions. With this many
recaptures good estimates of the capture probabilities can be obtained from direct
comparison of the capture histories, and the observed covariate values allow accu-
rate estimation of μ1, μ2, and σ 2, without any knowledge of the survival probability.

4 Example

Data for the study of reed warblers (Acrocephalus scirpaceus ) was obtained from
the Dutch Constant Effort Sites (CES) banding project (Speek 2006). In the CES
project, volunteer ringers capture birds on 12 day-long visits between April and
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August to each of 38 sites in Holland. Ringers optionally record demographic and
biometric characteristics of captured birds including age, sex, body mass, wing
length, and tarsus length. The program was initiated in 1994 and data was available
for 10 years up to 2003.

This analysis applies our extended CJS model to the final 5 years of data using
a measure of the birds’ condition as a predictor of survival. Each year of the study
was considered as a single capture occasion. Multiple captures of the same bird
in 1 year were combined by collapsing records into a single capture indicator and
averaging the biometrics measurements. The condition measure for a single bird
in a single year was defined as the ratio of its average observed body mass to its
average observed wing length. After cleaning the data, measurements of the body
mass ranged from 9.9 to 17.5 g and wing length from 62 to 71 mm. The range of the
condition measure was 0.15 to 0.24 g/mm.

The CES database contains records of approximately 300,000 captures of 25,000
reed warblers captured between 1999 and 2003. The majority of these birds were
observed only once, which was taken as evidence of large numbers of transients
in the population. To avoid heterogeneity in the survival probability resulting from
emigration, we used an ad hoc method restricting our analysis to resident individuals,
including only birds captured 2 or more times–even if the 2 captures occurred in
the same year. Capture histories were then conditioned on the birds’ second release.
Observations of juvenile birds were removed from the data because we believed that
the probability of survival, and its relation to condition, was likely to differ between
juveniles and adults. It was also necessary to remove many individuals for whom the
condition measure could not be computed in any year of the study because of missing
data on body mass or wing length. The final data set for our analysis contained capture
histories of 592 birds, with 111 captured on 2 or more years.

As in the simulation study, three models were fit to the relationship between
the survival probability: a cubic model on the logit scale, and two adaptive spline
models with different priors on the number of knots. For the spline models, κ = 100
potential knots were equally spaced between the minimum and maximum observed
condition values and the boundary knots were located at 0.05 and 0.34 g/mm. The
prior distributions on the number of knots were Poisson with mean 25 in the first run
and Poisson with mean 75 in the second. Separate intercept terms were included in
all three models to allow the survival probabilities to change over time and capture
probabilities were also modelled separately for each capture occasion. Note that
φ4(z) and p5 are not completely confounded because of the dependence on z, but
are very weakly identifiable separately and so only their product was estimated. The
covariate was again modelled according to (1).

Figure 3 compares the survival probabilities estimated from the three different
models. Here the fit of the curves is similar for all three models. Some local effects
do appear in the spline estimates, but these occur at extreme values of condition
where few birds are observed and come at the cost of much lower precision. Indeed,
the apparent peak in survival at 0.22 g/mm arises from two birds captured with
covariate values near this point. The peak disappears from both spline models when
these birds are removed (results not shown) and the credible intervals at this point
range from approximately 0.10 to 0.90 indicating extreme uncertainty. As in the
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Fig. 3 Estimated survival probabilities as a function of condition for the reed warbler data.
Estimates from the cubic model are shown in the top row, from the spline model with Poisson(25)
prior on the number of knots in the middle, and from the spline model with Poisson(75) prior on the
bottom. Solid black lines indicate the pointwise posterior mean and dashed lines the bounds of the
posterior pointwise 95% credible intervals. In each plot, the vertical grey dashed lines indicate the
2.5-th and 97.5-th percentiles of the observed condition values. The plots for 2002–2003 actually
estimate the product φ4(z)p5 because of the weak identifiability of these parameters separately

simulation, the Poisson(75) prior generates a posterior that places higher probability
on models with more knots, which decreases the smoothness and precision of the
estimated survival probability (see Figure 4). The 95% credible intervals for all three
models overlap at all points.

Estimates of the remaining parameters and a point estimate of survival at the
median value of condition, 0.17 g/mm, are provided in Table 2. Also included are
the results of fitting a Bayesian implementation of the CJS model with no effect
of the covariate. The results are very similar for all four models. In all cases, the
estimates suggest no significant change in the capture probability over time, though
there is a slight decrease in the survival probability. Credible intervals of φt (z) are
wider for the spline models than for the cubic model, but this does not affect the
remaining parameters. The estimates of μt are all close to 0 indicating that there is
no distinct increase or decrease in the birds’ condition over any period. The estimate
of σ is 0.012 g/mm for all models. For a bird with fixed wing length between 62 and
71 mm, this translates to an estimated standard deviation in mass between 0.74 and
0.85 g.
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Fig. 4 Number and locations of knots in the spline fits of the survival probabilities for the reed
warbler data. The upper row shows results using the Poisson(25) prior distribution on the number of
knots and the lower using the Poisson(75) prior. The plots illustrate, from left to right, the number
of knots on each MCMC iteration, the proportion of knot locations occupied on each iteration, and
the proportion of iterations for which each potential knot location is occupied

5 Discussion

To our knowledge, only one other author has suggested the use of splines to allow
more flexibility in modelling a covariate’s effect in capture recapture methods.
Gimenez, Covas, Brown, and Anderson (2006a) incorporate splines to model the
effect of the southern oscillation index (SOI) on the survival of Snow petrels living
in Terre Adèlie, and Gimenez, Crainiceanu, Barbraud, Jenouvrier, and Morgan
(2006b) to model the effect of body mass on the survival of sociable weavers in
South Africa. Both applications employ Bayesian methods but differ from our model
in two respects. First, there is no missing data in the covariate: in the first applica-
tion, (SOI) is an environmental covariate that can be observed regardless of the
capture of individual birds, and in the second, a single, static covariate is computed
by averaging all observations of body mass for each bird. The second difference is
that both applications make use of penalized splines with fixed number of knots and
fixed knot locations, rather than adaptive (free-knot) splines.

Another application of spline methods in a capture–recapture study is given by
Fewster (2008). Their objective is to estimate the distribution of residence times
for southern right whales’ on their breeding grounds in the Auckland Islands from
multiple sighting data. Penalized cubic splines are fit to the density function of the
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residence times to ensure a smooth result. In contrast to our method, and the work
above, inference in this application is based on classical likelihood methods.

The advantage of an adaptive spline over a penalized spline is that the number
and location of the knots are estimated as part of fitting the spline, so that knots can
be located where more flexibility is needed. One consequence is that the degree of
smoothing can vary across the spline by clustering knots where the curve changes
most rapidly and placing no knots where the curve is most smooth. The posterior
distribution computed from the simulated data set with the Poisson(25) prior assigns
low probability of being occupied to most knot locations, except for those in the
area of the largest mode which are 2–3 times more likely to be occupied. Denison,
Mallick, and Smith (1998) provide some examples of adaptive spline fits to even
more rapidly changing functions with jump discontinuities. In contrast, a penalized
spline fit has an upper limit to the flexibility which is determined by the spacing
of the fixed knots. Of course, the added flexibility also increases the potential for
overfitting as seen in both the simulation and the analysis of the reed warbler data.

The Bayesian approach to adaptive spline fitting also provides a natural way to
incorporate uncertainty concerning the location of the knots. Selecting a single set
of knots for the model, based on the posterior mode or any other criteria, ignores
the fact that the knot locations aren’t known and that different knot configurations
provide different fitted curves. The Bayesian methodology provides posterior model
probabilities that naturally rank the different models. Model averaging using these
probabilities to weight the different models then provides a clear way to aggregate
the different fitted curves into a single estimate. The posterior mean over all knot
locations will favour the features of the most probable models, but also includes
some features of the less probable models weighted according to their posterior
probabilities. Credible intervals computed from the entire set of models also allow
for uncertainty across different sets of knots and will generally be wider than those
computed from a single set of knots (Hoeting, Madigan, Raftery, and Volinsky
1999).

The primary difficulty with Bayesian adaptive spline methods is selecting the
joint prior distribution on the set of models indexed by b , ξ , and K . As is evident
from the examples in this paper, the choice of prior is a very important determinant
of the smoothness of the final curve. A prior distribution that places too much mass
on simple models risks ignoring important aspects of the data, while a prior that
favours complex models risks overfitting. Apart from the prior distribution there is
no penalty for the model complexity, and overfitting is a serious concern. In simple
smoothing of a scatterplot it is possible to choose the priors subjectively and then
plot the fitted curve over-top of the raw data to assess the fit. The difficulty in our
application is that neither the covariate nor the response are completely observed,
so the fit of the curve cannot be visualized directly.

Our recommendation is that several prior distributions be selected and the
resulting curves compared to see how the fit changes and whether the changes are
biologically plausible. For the reed warbler data, the obvious difference between
the cubic fit to the survival probability and the spline fits with Poisson(25) and
Poisson(75) prior is the peak at 0.22 g/mm. The size of the peak in the last set
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of curves in Fig. 3 is striking, but the point where this occurs is well beyond the
97.5%-ile of the observed covariate values, where there is little data, and the 95%
credible intervals at this point are very wide. Further analysis reveals that the peak
is the effect of 2 birds and disappears once these birds are removed. Despite the
size of the peak, it seems clear that there is no evidence of a jump in the survival
probability at 0.22 g/mm.

A second subjective decision that must be made in applying our method is the
choice of boundary knots [ξl, ξu]. In theory, as long as [ξl, ξu] encloses the observed
data this choice should have little effect on the fitted curve. The challenge is that if
[ξl, ξu] is very wide then the distance from the lower boundary to the first internal
knot or from the last knot to the upper boundary will be large. This will lead to small
values in the design matrix and the numerical algorithms may become unstable.
Conversely, if [ξl, ξu] is too narrow then it is possible for imputed values of the
covariate to lie far outside this range and similar problems can occur. To assess the
impact of this choice, we repeated the analysis of the simulated data with several
values for of ξl and ξu and found no effect on the fitted survival probability. We
also encountered no numerical problems using our default choice for the boundary
knots.

One source of confusion with the adaptive-spline method might be the apparent
discrepancy between the prior and posterior distribution on the number of knots.
In both the simulation and example, the posterior distribution concentrates its mass
on much simpler models than the prior distribution. This seems contradictory, but
exactly the same behaviour appears in the original examples of Biller (2000). In his
discussion of another paper on Bayesian adaptive splines, Holmes (2002) explains
that the apparent discrepancy is a result of the Bartlett–Lindley paradox. Ignoring
the prior distribution on ξ and K , the vague multivariate-normal prior on the spline
coefficients, π (b|ξ , K ), induces a prior for the data whose variance increases with
the dimension of b . As a result any observed data has lower prior probability under
more complex models and the distribution actually places less and less mass on
models of higher and higher complexity.

The key in the adaptive spline model is that the prior on b|ξ , K which favours
simple models is partially offset by the Poisson prior on K which assigns very little
mass to these models–when λ is large enough. The resulting prior distribution is a
balance that assigns its mass to models simpler than those favoured by π (K ) alone.
In essence, there is no discrepancy; rather, the prior on the set of models has to
be interpreted through the full joint distribution, π (b, ξ , K ), and not simply the
marginal prior π (K ).

Another caution with our approach, and with methods incorporating time-
varying covariates in general, is the amount of data needed to provide adequate
estimates. The final data set for the reed warblers contained 592 animals, but only
111 were captured on two or more occasions. Further, the condition measure was
recorded two or more times for only 77 birds. This provides very little information
regarding how the covariate changes over time and how differences in condition
might affect the birds’ survival. Fitting a Bayesian implementation of the standard
CJS model to the data (assuming time-dependent survival and capture probabilities
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and ignoring any effect of the covariate) yields credible intervals for the survival
probabilities that are between 0.34 and 0.36 wide. In light of this uncertainty when
ignoring the covariate, it seems unlikely that any model will be able to detect an
effect of condition on survival.

Based on our experience, including time-dependent covariates in the CJS model
requires more data (i.e. capture of more individuals at given capture and survival
rates) than models assuming homogeneity of individuals, or using environmental
or static individual predictors. Using splines to model the survival probability as a
function of the covariate will require even more data. Whereas a parametric curve
borrows information from all values of the covariate to estimate the survival prob-
ability at any given value of the covariate, the spline only uses information from a
local neighbourhood of covariate values. The result is that if few birds are observed
with values in a given range of the covariate then in that range the estimate from the
spline model will be highly variable though the estimate from the parametric model
may still be precise.

As a final note we address the removal of transient birds from the CES reed warbler
data. The majority of individuals captured are never recaptured and it is likely that
many of these individuals are passing through the sites while migrating to other
locations. The apparent survival probability of these individuals is 0. Pradel, Hines,
Lebreton, and Nichols (1997) developed a model to account for transient individuals
in the standard CJS model and compared it to the ad hoc method of conditioning on
second release. They found that the ad hoc method produced unbiased estimates of
the survival probabilities and was almost as efficient as the more complicated model
when capture probabilities are high and the model cannot be simplified. With capture
probabilities of 0.4 they found relative efficiency greater than 0.8.

An added effect in our application may be filtering of the values of the covariate.
Resident individuals captured with values that equate to low survival probabilities
will have less chance of being recaptured and more chance to be removed from the
analysis. This should not bias the estimates of survival probability, but will decrease
the precision of the estimates where these individuals are removed. The analysis is
not intended to be an exhaustive examination of the reed warbler data, and how to
deal with transients properly remains an open question.
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A Further Step Toward the
Mother-of-All-Models: Flexibility
and Functionality in the Modeling
of Capture–Recapture Data

Matthew R. Schofield and Richard J. Barker

Abstract The idea behind the mother-of-all-models is to have the likelihoods for
commonly used capture–recapture models factorized into conditional likelihoods
that can be called and combined on request to give a user specified model. Barker
and White (2004) mapped out a conceptual plan for the mother-of-all-models that
included the robust design model and joint recapture, live re-sighting models.
However they were unable to obtain a factorization that could easily include the
multi-state model. Including any missing data directly into the model using data
augmentation allows us to write the model in terms of the complete data likelihood
(CDL). The CDL is a more natural representation of the model that factors into
separate components that can be combined to give many different capture–recapture
models, including the multi-state model. Overcoming the obstacles in the factor-
ization brings the mother-of-all-models one step closer with the development of
software the next step.

1 Introduction

Modern software for capture–recapture models, such as MARK (White and
Burnham 1999) and M-SURGE (Choquet et al. 2004) allows ecologists to consider a
wide range of capture–recapture models. However, these programs suffer from two
inherent problems: (i) there is often a significant lag time between models being
published and becoming available to users in the software, and (ii) matching data
to the correct likelihood requires a thorough understanding of the capture–recapture
literature. For example, at least six types of model are available for open popu-
lations including birth in MARK. There are three different parameterizations of
Pradel (1996), POPAN type models (Schwarz and Arnason 1996) as well as the
parameterizations of Burnham (1991) and Link and Barker (2005).
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These problems, together with the recent proliferation of capture–recapture
models (Barker and White 2004; Schofield and Barker 2007b), gave rise to the
“mother-of-all-models” (MoM) concept. The idea behind the MoM is to have condi-
tional likelihood components that are selected by the user to give the appropriate
capture-recapture model (Barker and White 2004). The MoM overcomes the prob-
lems in more traditional software because (i) new and complex models are simpler
to incorporate in the program as only the additional conditional likelihood compo-
nents are required, and (ii) users only need to understand the features of their data
in order to select the components they need to specify an appropriate model. If
someone wanted to include a per-capita birth rate index in their analysis they would
simply need to include a birth component and select the per-capita birth rate index
parameterization without needing to know the appropriate reference (Pradel 1996).
While the MoM concept is good in theory, it will only work if a factorization of
the likelihood is found that can easily be broken into conditional components that
distinguish between different capture and recapture models.

The observed data from a capture–recapture study is denoted by the u.×k matrix
Xobs , which consists of the capture histories of the u. observed individuals over the
k sampling occasions. The value Xobs

i j = 1 means that individual i was caught in
sample j and Xobs

i j = 0 otherwise.
Barker and White (2004) proposed writing the capture–recapture likelihood in

terms of a Cormack–Jolly–Seber (CJS) core (Cormack 1964; Jolly 1965; Seber
1965). The CJS can be expressed as

[Xobs|u],

where u = (u1, . . . , uk) and u j is the number of unmarked individuals caught in
sample j . The notation [y] denotes the probability density function for continuous
y or probability mass function for categorical y. This representation assumes that
there is no loss on capture, but this can easily be relaxed (Barker and White 2004).
The only demographic parameter in the CJS model are survival probabilities. Other
demographic parameters such as birth rates can only be included when the first
captures u are modeled. Barker and White (2004) showed how the Jolly–Seber
model (Jolly 1965; Seber 1965) and the Crosbie–Manly–Arnason–Schwarz model
(Crosbie and Manly 1985; Schwarz and Arnason 1996) could be obtained by multi-
plying additional likelihood components to the CJS core. For example, the Jolly–
Seber (JS) model is obtained by adding a term that models u,

[Xobs | u][u | U],

where U = (U1, . . . ,Uk) and U j is the total number of unmarked individuals avail-
able for capture at the time of sample j . Though the concept was promising, a diffi-
culty identified by Barker and White (2004) is the lack of convenient factorization
for the multi-state model. The multi-state model does not easily factorize into a CJS
core with additional components.
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Barker and White (2004) factorized the model in terms of the observed data like-
lihood (ODL). The ODL is the likelihood of the data after any missing or unknown
information has been removed through integration (or summation). For the CJS
model, the missing data are the interval censored times of death for every individual
ever observed. An alternative to the ODL is to include the missing data directly into
the likelihood using data augmentation (Tanner and Wong 1987). Instead of explic-
itly integrating out the unknown information, it is removed by choosing an appro-
priate computational algorithm to fit the model. Commonly used algorithms for data
augmentation are the EM algorithm and Markov chain Monte Carlo (MCMC) algo-
rithms (Dempster et al. 1977; van Dyk and Meng 2001). Including the missing data
means that we are able to model in terms of the complete data likelihood (CDL). We
show how the CDL can be factored so that many of the popular capture–recapture
models are obtained as products of the conditional likelihood components.

2 Development of the Mother-of-All-Models Framework

2.1 Closed Population Modeling

The first step in completing the data is to introduce N , the total number of indi-
viduals ever available for capture throughout the study (Crosbie and Manly 1985;
Schwarz and Arnason 1996) as a parameter. Conditional on N , the capture histories
for every individual ever available for capture are known and are denoted by X ,
which comprises Xobs and a (N − u.) × k matrix of zeros.

The CDL for closed population modeling is

[X| p, N ] = N !

u.!(N − u.)!

N∏
i=1

k∏
j=1

p
Xi j

i j (1 − pi j )
1−Xi j ,

where p is a N × k matrix of capture probabilities with pi j being the probability of
capture for individual i in sample j . Different models for the capture process, such
as models M0, Mt , Mb, Mh , Mtb, Mth , Mbh and Mtbh (Otis et al. 1978) are obtained
through placing constraints on the parameter pi j . For example, model Mt assumes
the probability of capture varies between capture periods, but is constant between
individuals in each capture period,

pi j = p j ,∀i, j.

Note that for closed populations the CDL is identical to the ODL.
A useful step, particularly for generalizing the closed population model into open

populations is splitting the capture matrix X in two parts. The first component X1 is
a N × k matrix containing the information up to and including the first capture for
every individual (if caught). The value X1i j takes the value 1 if individual i is first
caught in sampling occasion j and is X1i j = 0 otherwise. The second component
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X2 is a u. × k matrix containing all information after the first capture of each indi-
vidual. The value X2i j = 1 if individual i was recaptured in sampling occasion j
and X2i j = 0 otherwise.

The CDL [X| p, N ] can be factored as

[X| p, N ] = [X1| p, N ][X2| p, X1].

These components are specified as

[X1| p, N ] = N !

u.!(N − u.)!

N∏
i=1

fi∏
j=1

p
Xi j

i j (1 − pi j )1−Xi j ,

[X2| p, X1] =
u.∏

i=1

k∏
j= fi +1

p
Xi j

i j (1 − pi j )1−Xi j ,

where fi is the sample of first capture for individual i . If i was never caught, then
fi ≡ k.

2.2 Cormack–Jolly–Seber Model

The Cormack–Jolly–Seber (CJS) model relaxes the closed population assumption
by allowing death to occur during the study. Mortality is expressed through the
N × k matrix d, with di j = 1 meaning that individual i died between the times of
sample j and j + 1, and di j = 0 otherwise, with the constraint

∑k
j=1 di j = 1 (note

that dik = 1 means the individual was alive at the end of the study). As individuals
can only die after their last capture, di j = 0 for all j before the last capture of i with
the values of di j missing after the time of last capture. As with the capture histories
we split d into two components: the N × k matrix d1 contains the information in
d up to and including the first capture of each individual and the u. × k matrix d2

contains the information in d after first capture.
The CDL for the CJS model is obtained by combining the capture component for

X2 from the closed population model, with a component that models mortality,

[X2|d2, p, X1][d2|S, X1],

where p = (p2 . . . , pk) is the vector of time specific capture probabilities and S =
(S1, . . . , Sk−1) is the vector of time specific survival probabilities with Sj being
the probability of surviving from the time of sample j until the time of sample
j + 1.

The mortality component for each individual is specified to be the outcome a
single multinomial draw,

[d2|S, X1] =
u.∏

i=1

M N (1, ζi ).
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The vector ζi is

ζi =
⎛⎝(1 − S fi ), S fi (1 − S fi +1), . . . ,

k−2∏
j= fi

S j (1 − Sk−1),
k−1∏
j= fi

S j

⎞⎠ .

The likelihood component for X2 is the same as for the closed population models
except that the individuals are only available for capture until the censored period
of death,

[X2|d2, p, X1] =
u.∏

i=1

ti2∏
j= fi +1

p
Xi j

j (1 − p j )
1−Xi j ,

where ti2 is the period of death (diti2 = 1).
The defining feature of the CJS model is that we do not include the likelihood

component for X1 because we are unwilling to make any assumptions about the
birth process. If we included the conditional likelihood component for X1 with no
component for birth, we would assume all individuals were available for capture at
the beginning of the study. Including another conditional likelihood component to
allow for birth yields the Crosbie–Manly–Arnason–Schwarz model in Section 2.4.

2.3 Jolly–Seber model

Even though most of our focus will be on the Crosbie–Manly–Arnason–Schwarz
(CMAS) formulation of the model (see Section 2.4), we present the Jolly–Seber
(JS) model for completeness.

The CDL for the JS model is obtained by combining the CDL for the CJS model
and a conditional likelihood component that models the first captures of individuals
in terms of the number of unmarked individuals in the population at the time of each
sample,

[X2|d2, p, X1][d2|S, X1][u| p,U].

Note that the vector p now also includes p1. The components [X2|d2, p, X1]
and [d2|S, X1] are the same as in the CJS with

[u| p,U] =
k∏

j=1

U j !

u j !(U j − u j )!
p

u j

j (1 − p j )
U j −u j.

This formulation completes the data by including the random variables U as
parameters, instead of N .
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2.4 Crosbie–Manly–Arnason–Schwarz Model

The Crosbie–Manly–Arnason–Schwarz (CMAS) model (Crosbie and Manly 1985;
Schwarz and Arnason 1996) relaxes the closed population assumption by allowing
birth and death. Strictly, by “birth” we mean recruitment of individuals into the
population with members not distinguished by age. We express mortality in the
same way as for the CJS model. Birth is expressed through the N × k matrix b, with
bi j = 1 meaning that individual i was born between the times of sample j and j +1,
with bi j = 0 otherwise, with the constraint

∑k−1
j=0 bi j = 1 (note that bi0 = 1 means

the individual was born before the study began). As individuals must have been born
before their first capture, bi j = 0 for all j after first capture with the values of bi j

missing before first capture.
The CDL for the CMAS model is obtained by taking the CDL for the closed

population studies and including the birth and death,

[X1|b, p, N ][X2|d2, p, X1][b|β, N ][d1|b, S, N ][d2|S, X1].

The components [X2|d2, p, X1] and [d2|S, X1] are same as for the CJS model.
The likelihood component for X1 is the same as for closed population modeling
except that the individual is only available for capture after it has been born,

[X1|b, p, N ] = N !

u.!(N − u.)!

N∏
i=1

fi∏
j=ti1

p
Xi j

j (1 − p j )
1−Xi j,

where ti1 is the first sample after birth for individual i . The likelihood component
for b is

[b|β, N ] =
N∏

i=1

M N (1, (β0, β1, . . . , βk−1)) ,

where β j is the probability of being born between time of sample j and j + 1
conditional on being alive and available for capture at some time during the study
and has the constraint that

∑
j β j = 1 (Schwarz and Arnason 1996). The likelihood

component for d1 is

[d1|b, S, N ] =
u.∏

i=1

fi −1∏
j=ti1

Sj

N∏
i=u.+1

M N (1, ζi ),

ζi =
⎛⎝(1 − Sti1 ), Sti1 (1 − Sti1+1), . . . ,

k−2∏
j=ti1

Sj (1 − Sk−1),
k−1∏
j=ti1

Sj

⎞⎠ .

The likelihood is split into two components because all u. individuals caught are
known to have not died before first capture.
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An advantage of this factorization is that different parameterizations can easily
be included for any component. For example, the birth models of Burnham (1991),
Pradel (1996), Link and Barker (2005) or any other parameterization can be
specified instead of β j (Schofield and Barker 2007b). Switching between these
different models does not involve re-writing the complete likelihood of the model,
but re-parameterizing the birth component of the model.

There are many possible factorizations for the CMAS model. The factorization
in equation (1) was chosen due to its simplicity. However, to include more complex
models, such as models that allow density-dependence, a more complex factoriza-
tion is required (Schofield and Barker 2007b). If we factorize the birth and death
components according to the natural ordering of time events, we can write the CDL
of the CMAS model as

[X1|b, p, N ][X2|d2, p, X1]×
N∏

i=1

⎧⎨⎩[bi0|β0]
k−1∏
j=1

[bi j |b:(0: j−1), d :(1: j−1),β0: j−1][di j |b:(0: j), d :(0: j−1), Sj ]

⎫⎬⎭ ,

where d :(1: j−1) is a matrix containing columns 1 through j − 1 of the matrix d. This
factorization is general with the factorization specified earlier a special case.

2.5 Covariates

2.5.1 Multi-State Model

The multi-state model is obtained when we include a partially-observed individual-
specific categorical covariate that provides information about various parameters in
the model. The values of the covariate are known for the sampling occasions when
the individual was caught, but are missing when the individual was not caught. We
follow Dupuis (1995) and include the missing covariate values using data augmen-
tation to obtain the CDL. An example of the multi-state model is when tagging
occurs in three different locations, A, B or C, and the probability of capture and
survival rates are thought to differ by location, with the location unknown when
the individual is not caught. Denoting the covariate by the matrix z, we split the
covariate into z1, the covariate values up to and including the first capture and z2,
the covariate values after first capture. Conditioning on first capture, the CDL for
the multi-state model is the CDL for the CJS model combined with a component for
the covariate,

[X2|d2, p, z, X1][d2|S, z, X1][z2|z1, ψ ;],

where ψ is a matrix/vector of parameters used to model the covariate. Note that
both the likelihood components for X2 and d2 condition on z as the capture and
mortality components can depend on the covariate. The model for the covariate
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[z2|z1, ψ] can be specified to give various models, such as the first order Markovian
model (Schwarz et al. 1993) or the second order Markovian model (Brownie et al
1993). For a first order Markovian model,

[z2|z1, ψ] =
N∏

i=1

ti2∏
j= fi +1

[zi j |zi j−1, ψ][
zi j = A|zi j−1 = A, ψ

]= ψ11[
zi j = B|zi j−1 = A, ψ

]= ψ12[
zi j = C |zi j−1 = A, ψ

]= 1 − ψ11 − ψ12[
zi j = A|zi j−1 = B, ψ

]= ψ21[
zi j = B|zi j−1 = B, ψ

]= ψ22[
zi j = C |zi j−1 = B, ψ

]= 1 − ψ21 − ψ22
...[

zi j = C |zi j−1 = C, ψ
]= 1 − ψ31 − ψ32.

Availability for capture is another potential categorical covariate, where zi j = 1
means that individual i was available for capture in sample j and zi j = 0 otherwise.
Various movement assumptions such as permanent, random or first order Marko-
vian emigration can be specified through the likelihood component [z2|z1, ψ]. For
example, permanent emigration is,[

zi j = 1|zi j−1 = 0, ψ
]= 0[

zi j = 0|zi j−1 = 0, ψ
]= 1[

zi j = 1|zi j−1 = 1, ψ
]= Fj[

zi j = 0|zi j−1 = 1, ψ
]= 1 − Fj

.

Permanent emigration causes confounding between Sj and Fj . The most conve-
nient way to include this movement structure into the model is to not include the
likelihood component for z and consider the parameter φ j = Sj Fj instead of Sj .
Likewise, for random emigration, we can consider the parameter p′

j = p j Fj instead
of p j .

2.5.2 Multi-Event Models

Multi-event models arise when covariates are observed with uncertainty. The true
underlying value of the covariate is referred to as the state and denoted by the matrix
z with the covariate values observed with error referred to as the events and denoted
by z′ (Pradel 2005). The only extension to the CDL of the multi-state model above
is the introduction of a conditional likelihood component that models how the true
covariate values z were corrupted to give z′,

[X2|d2, p, z, X1][d2|S, z, X1][z′|z, θ ][z2|z1, ψ],
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where θ models the corruption process. In many cases the covariate model
[z2|z1, ψ] and the corruption model [z′|z, θ ] can be specified to give a hidden
Markov model (Pradel 2005; Cappé et al. 2005).

2.6 Continuous Covariates

A model with time-varying individual-specific continuous covariates has the same
factorization as a model with time-varying individual-specific categorical covari-
ates. Bonner and Schwarz (2006) included the individual body weight as a covariate
and modeled the covariate as

[z2|z1, ψ] =
N∏

i=1

ti2∏
j= fi +1

[zi j |zi j−1, ψ]

[
zi j |zi j−1, ψ

]= N (zi j−1 + ψ1 j−1, ψ2),

where ψ1 j is the mean increase in weight for the population between the time of
sample j and j + 1.

2.7 Joint Re-sighting Models

The joint models of Burnham (1993) and Barker (1997) are used when dead recov-
eries and/or re-sightings of individuals occur between sampling occasions. The
recoveries and re-sightings give us additional information about d. If an individual
was recovered dead we have complete knowledge of the i th row of d. Furthermore,
we also obtain additional information about d if an individual was re-sighted after
the sample of last capture.

The information from dead recoveries is expressed through the u. × k ′ matrix
Y 1, where Y1i j = 1 means that individual i was recovered dead between samples j
and j + 1 and Y1i j = 0 otherwise. The value k ′ is the number of periods re-sighting
and recovery data was collected. The information from live re-sightings is expressed
through the u. × k ′ matrix Y 2, where Y2i j = 1 if individual i was re-sighted alive
between sample j and j + 1 and Y2i j = 0 otherwise. Note that if k ′ ≥ k then the
matrix d becomes a N × (k ′ + 1) matrix to include the additional information on
death from the re-sightings and recoveries.

To incorporate a model with only dead recoveries, we include a likelihood
component for Y 1. Conditioning on first capture, the CDL becomes,

[X2|d2, p, X1][d2|S, X1][Y 1|r, d],

where r = (r1, . . . , rk ′ ) and r j is the probability of being recovered dead between
time of sample j and j + 1 given the individual died between time of sample j and
j + 1. The likelihood component for the dead recoveries is
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[Y 1|r, d] =
N∏

i=1

r
Y1i ti2
ti2 (1 − rti2 )1−Y1i ti2 .

The CDL for the joint re-sighting and recovery model includes an additional likeli-
hood component for Y 2,

[X2|d2, p, X1][d2|S, X1][Y 1|r, d][Y 2|R, R′, d,Y 1, X1],

where R = (R1, . . . , Rk ′ ), R′ = (R′
1, . . . , R′

k ′ ), R j is the probability of being re-
sighted alive between time of sample j and j + 1 conditional on surviving between
time of sample j and j + 1 and R′

j is the probability of re-sighting an individual
alive between time of sample j and j + 1 conditional on it not surviving between
time of sample j and j +1. We follow the model of Barker et al. (2004) and specify
the likelihood component for the live re-sightings as

[Y 2|R, R′, d,Y 1, X1 =
N∏

i=1

{(
R′

ti2
Y2i ti2 (1 − R′

ti2 )1−Y2i ti2

)1−Y1i ti2

×
ti2−1∏
j= fi

R
Y2i j

j (1 − R j )
1−Y2i j

}
.

2.8 Known Fate Models

In known fate models the capture probabilities p j are specified to be 1. This means
that the interval censored times of death are known and are no longer included using
data augmentation.

2.9 Robust Design Models

Robust design models include closed population sampling periods within open
population sampling periods. To implement a robust design model, we constrain
the survival probabilities to 1 and (if included) the birth probabilities to 0 during the
closed population periods. In the usual way capture probabilities can be specified to
reflect belief about the closed population capture process.

3 Discussion

We have mapped out a factorization of the CDL that allows for conditional likeli-
hood components to be combined to form user specified models. The conditional
likelihood components relate to features of the capture–recapture experiment, such
as mortality and birth, with many of the well used capture–recapture models being
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able to be specified. The choice of matrices to express mortality and birth is arbi-
trary. We choose b and d because this offers a distinction between the birth and death
processes, however, there are numerous possibilities, including using the matrix a,
where ai j = 1 if individual i is alive in sample j and ai j = 0 otherwise.

The CDL is a natural representation of the likelihood that allows us to concen-
trate on modeling the demographic features of interest instead of focusing on the
complexities of sampling. For example, the most meaningful birth parameter for the
dataset can be obtained by switching between the parameterizations of Burnham
(1991), Schwarz and Arnason (1996), Pradel (1996), Link and Barker (2005) or any
other birth rate parameter, without having to alter the rest of the model. We do not
need four separate models to include different birth parameters, just four different
parameterizations of the conditional birth component.

Data augmentation can also be used to specify hierarchical models that offer
the ability to include relationships between parameters (Link and Barker 2005),
and between parameters and random variables. An example is density dependent
relationships, where both survival and per-capita birth rates are related to population
size (Schofield and Barker 2007b).

To fully utilize the MoM concept, we require user friendly software with efficient
algorithms that integrate over the missing data. Unfortunately, no such software
currently exists. Making inference from the CDL is difficult in a frequentist setting
because algorithms such as the EM algorithm can be difficult to implement in prac-
tice, especially with many missing values. The Bayesian framework appears more
promising, with the development of computational methods such as MCMC making
it feasible to use the CDL in practice. The leading Bayesian computation program is
WinBUGS (Spiegelhalter et al. 1999). A virtue of WinBUGS is that it was developed
to combine conditional likelihood components as outline in the models above. Even
though Schofield and Barker (2007a) showed how WinBUGS can be used to fit
many capture–recapture models using the CDL, there are still problems:

1. WinBUGS is not as fast as user-written complied code, particularly when the
data set is large or the model complex.

2. In the CMAS model, the size of the b, d and X all depend on N , a param-
eter in the model. One possible approach is to specify the matrices b, d and
X as M × k matrices, where M is an upper size limit for the parameter N
(Durban and Elston 2005; Royle et al. 2007). The problem with this approach
is that in practice M may need to be very large, dramatically slowing the
program.

One possible solution to the difficulties is to modify the source code for WinBUGS.
Open source code is available and specialized toolboxes could be included to solve
any problems in implementation. This would allow use of the good features of
the WinBUGS software, such as smart algorithm choices and the ability to easily
specify hierarchical relationships between parameters, while overcoming many of
the deficiencies.
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Exploring Extensions to Multi-State Models
with Multiple Unobservable States

Larissa L. Bailey, William L. Kendall, and Don R. Church

Abstract Many biological systems include a portion of the target population that is
unobservable during certain life history stages. Transition to and from an unob-
servable state may be of primary interest in many ecological studies and such
movements are easily incorporated into multi-state models. Several authors have
investigated properties of open-population multi-state mark-recapture models with
unobservable states, and determined the scope and constraints under which param-
eters are identifiable (or, conversely, are redundant), but only in the context of a
single observable and a single unobservable state (Schmidt et al. 2002; Kendall
and Nichols 2002; Schaub et al. 2004; Kendall 2004). Some of these constraints
can be relaxed if data are collected under a version of the robust design (Kendall
and Bjorkland 2001; Kendall and Nichols 2002; Kendall 2004; Bailey et al. 2004),
which entails >1 capture period per primary period of interest (e.g., 2 sampling
periods within a breeding season). The critical assumption shared by all versions
of the robust design is that the state of the individual (e.g. observable or unob-
servable) remains static for the duration of the primary period (Kendall 2004). In
this paper, we extend previous work by relaxing this assumption to allow movement
among observable states within primary periods while maintaining static observable
or unobservable states. Stated otherwise, both demographic and geographic closure
assumptions are relaxed, but all individuals are either observable or unobservable
within primary periods. Within these primary periods transitions are possible among
multiple observable states, but transitions are not allowed among the corresponding
unobservable states.

Our motivation for this work is exploring potential differences in population
parameters for pond-breeding amphibians, where the quality of habitat surrounding
the pond is not spatially uniform. The scenario is an example of a more general
case where individuals move between habitats both during the breeding season
(within primary periods; transitions among observable states only) and during the
non-breeding season (between primary periods; transitions between observable and
unobservable states). Presumably, habitat quality affects demographic parameters
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(e.g. survival and breeding probabilities). Using this model we are able to test this
prediction for amphibians and determine if individuals move to more favorable habi-
tats to increase survival and breeding probabilities.

Keywords Capture-mark-recapture · Clearcut · Identifiability · Multistate
mark-recapture models · Parameter redundancy · Pond-breeding amphibians ·
Robust design · Ambystoma · salamanders · Unobservable states

1 Introduction

In many biological systems a portion of the target population may be unobservable
because not all geographic areas are sampled or because some individuals in the
population may not make themselves available for detection. Examples involving
marine species include seabirds (Hunter and Caswell this issue; Converse et al. this
issue; Lebreton et al. 2003), marine mammals (Fujiwara and Caswell 2002), sea
turtles (Kendall and Bjorkland 2001; Dutton et al. 2005; Rivalan et al. 2005), and
anadromous or spawning fish (Sulak and Clugston 1999; Fox et al. 2000). Terres-
trial systems also have species that have been modeled with multi-state models
with unobservable states, including waterfowl (Barker et al. 2005), dormant plants
(Shefferson et al. 2001; Kéry and Gregg 2004) and amphibians (Schmidt et al. 2002;
Bailey et al. 2004; Church et al. 2007).

Failing to account for these unobservable states may cause severe bias in demo-
graphic parameters obtained from mark-recapture models. The severity and direc-
tion of the bias depends on the proportion of the population that is unobservable
and whether movement to and from observable states is completely random or
Markovian (Burnham 1993; Kendall et al. 1997; Kendall 1999). Utilizing multi-state
mark-recapture (MSMR) models with unobservable state(s) (Arnason 1972, 1973;
Lebreton and Pradel 2002), with or without the robust design (Pollock 1982; Kendall
et al. 1997; Kendall 2004), is a way of reducing or eliminating the bias caused by
unobservable states. Furthermore, these models allow for estimation of transitions
between unobservable and observable states, which may, in some instances, be of
primary biological interest (e.g. estimation of breeding probabilities).

One consideration before applying any mark-recapture model is to determine
whether the model is ‘identifiable’ (i.e. that it does not contain redundant parame-
ters). A model is defined to be identifiable if no two values of the parameters yield
the same maximized likelihood (Gimenez et al. 2004). A classic example of a model
that does not meet this criterion is the fully time-specific Cormack–Jolly–Seber
(CJS) model. It is well known that this model is not ‘full-rank’ (i.e. contains
redundant parameters) because the last survival and recapture probabilities cannot
be estimated separately, only their product is estimable (Lebreton et al. 1992;
Gimenez et al. 2004). Determining the number and identity of uniquely identifiable
parameters is crucial for valid biological inference and proper interpretation of
parameters and model selection (Burnham and Anderson 2002; Gimenez et al.
2003, 2004). To date, parameter redundancy in MSMR models has been thoroughly
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explored for models lacking unobservable states (Gimenez et al. 2003), and for
scenarios with a single observable and single unobservable state (Kendall and
Nichols 2002; Fujiwara and Caswell 2002; Schaub et al. 2004) and in situations
where extra information is available (e.g. robust design (Kendall and Nichols
2002; Schaub et al. 2004; Bailey et al. 2004) or recoveries (Barker et al. 2005)).
In cases without recovery information investigators have explored both open
population and robust design MSMR models, and determined the scope and
constraints under which models are identifiable. In general, investigators found
that robust designs yield more estimable parameters with better precision and
less restrictive assumptions (Kendall and Nichols 2002; Schaub et al. 2004).
Among robust design models a common, critical assumption is that the state of the
individual remains static for all sampling occasions within the ‘primary’ period
(Kendall 2004). The sampling takes place at 2 temporal scales: multiple samples
are collected over a relatively short time period where the state of the individual
is maintained (over secondary occasions within primary periods), then transitions
between states are possible between these primary periods. Kendall (2004) outlined
three existing versions of the robust design: (1) the classic Pollock’s robust design
(Pollock 1982; Kendall et al. 1997) where within primary periods both geographic
and demographic closure is maintained; (2) the open-population robust design
(Schwarz and Stobo 1997; Kendall and Bjorkland 2001) where geographic closure
is relaxed, allowing individuals to enter and exit the sampling area once between
secondary surveys, but demographic closure is maintained over the primary period;
and (3) the gateway robust design (Bailey et al. 2004) where geographic closure
is maintained but demographic closure is relaxed to allow mortality within the
primary period. In each case the state of the individual (observable or unobservable)
is maintained within the primary period. Here, we extend this previous work
by further relaxing the gateway robust design by allowing movement among
observable states within primary periods while maintaining a static observable or
unobservable state. Stated otherwise, both demographic and geographic closure
assumptions are relaxed, but the observable state is maintained within primary
periods (Fig. 1).

Our motivation for this work was to explore potential differences in popu-
lation parameters for pond-breeding amphibians, where the quality of habitat
surrounding the breeding pond was not uniform. Specifically, a portion of the
forest surrounding the pond(s) had been clearcut. Several studies have documented
reduced counts of pond-breeding and terrestrial salamanders in clearcut areas
(reviewed in deMaynaider and Hunter 1995, 1998), and this was also true for
the collection of ponds studied by Church (2004) in Virginia, USA. This obser-
vation naturally leads one to pose the question: ‘why are the counts reduced
in clearcut areas?’ To address this question, we offer 3 possible explanations:
(1) apparent survival is higher in the forested area, (2) breeding probability is
higher in the forested area, or (3) individuals are selecting or moving to the forested
habitat, perhaps but not necessarily, because the first 2 explanations hold true. In
other words, individuals may be selecting the forested areas because it represents
‘better’ habitat, leading to higher survival and breeding probabilities, or they may
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Fig. 1 Diagram of 4 states with 2 observable (A, B), and 2 unobservable (a, b). Transitions denoted
with dotted lines may happen between any sampling occasions, while the remaining transitions
only occur between primary periods. In our amphibian example, A and a represent breeders and
non-breeders, respectively, in the forested habitat; B and b represent the same breeding states in
the clearcut habitat. Transition probabilities, denoted with �, include both movement and breeding
probabilities. For example, �AB represents the probability a breeder in the forested habitat at time
t, remains a breeder and moves to the clearcut habitat before the next sampling occasion t +1. �Aa

represents the probability a breeder in the forested habitat at time t, remains in same habitat but
skips a breeding opportunity (i.e. transitions into an unobservable, nonbreeding state). Notice that
(1− �Aa ) represents the probability a breeder in the forested habitat at time t, remains a breeder
between t and t +1. Individuals are assigns to different habitat states based on which habitat they
are captured in entering and exiting the pond

be selecting forested habitat in the absence of any apparent demographic advantage
(Schlaepfer et al. 2002).

In this paper, we explore identifiably for the case of a single pond with
2 observable and 2 unobservable states, representing the corresponding breeding
and non-breeding state in both clearcut and forested habitats (Fig. 1). We apply our
findings to data from a single pond and species to test our 3 a priori hypotheses
about the species response to a 20-year-old clearcut.

2 Investigating Intrinsic Parameter Redundancy

2.1 Methods

Gimenez et al. (2004) provides an outstanding review of tools used to investi-
gate parameter redundancy in mark-recapture models. We applied three of the
methods they detailed (The Hessian, simulation or analytic-numeric, and the formal
derivative matrix) to our MSMR models to investigate intrinsic redundancy of
model parameters. By exploring intrinsic redundancy, we sought to detect redun-
dancy problems in the structure of the model, independent of any specific data
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set. We utilized programs MARK and M-SURGE and an analytic-numeric method
(Burnham et al. 1987, pp. 214–217, 292–295, referred to as the simulation method in
Gimenez et al. 2004) with several sets of parameter values to explore approximate
bias and precision of parameter estimates and determine the rank of the resulting
Hessian matrix (a matrix of second partial derivative of the multivariate likeli-
hood function). We also tried to utilize the formal derivative matrix (Catchpole and
Morgan 1997; Catchpole et al. 2002; Gimenez et al. 2003) and a numerical version
of this method, termed the numerical Catchpole Morgan Freeman (numerical CMF),
included in program M-SURGE (Choquet et al. 2005). The fully general formal
method is based on the analytic computation of a symbolic matrix of derivatives of
the multinomial cell probabilities with respect to the model parameters. It has been
recommended because it is more reliable in determining if a model is fully identifi-
able, yielding less ambiguous results compared to the rank of the Hessian matrix
or analytic-numeric methods. In addition, the formal method can determine the
estimable functions of redundant parameters in cases where the models are not fully
identifiable (Catchpole et. al. 2002; Gimenez et al. 2003, 2004). While the formal
method, using the symbolic math features of software Maple, has been successfully
used to examine parameter redundancy with a single unobservable state (Schaub
et al. 2004), we found that the problem was too large for the software with more
complex MSMR models involving multiple unobservable states (also see Hunter
and Caswell this issue).

The analytic-numeric method involves using a known, ‘true’ model with real-
istic parameter values, θ true, to generate an artificial data set consisting of either the
expected value of each detection history or expected sufficient statistics (Nichols
et al. 1981; Burnham et al. 1987; Gimenez et al. 2004). The generated data are
analyzed as if they were real data, under any model of interest. The method is
strictly numerical, but ‘analytical’, not Monte Carlo-based (Burnham et al. 1987,
p. 215). Using large numbers of released individuals, this method can be used to
approximate estimator bias and precision, and using criteria determined a priori, a
model can be deemed ‘identifiable’. For example, Kendall and Nichols declared a
model identifiable if all parameter estimates were unbiased to the 5th decimal place
and had coefficients of variation <100% (Kendall and Nichols 2002). The analytic-
numeric method is only valid for the fixed parameter values chosen to generate the
expected values, thus several sets of different, realistic values should be explored to
insure that models are not conditionally full rank (Gimenez et al. 2004).

We employed the analytic-numeric method and determined the rank of the
Hessian matrix using both programs MARK (White and Burnham 1999) and
M-SURGE (Choquet et al. 2005). For each scenario, we considered 4 primary
periods, each with 2 secondary surveys (8 total survey occasions). The number of
newly released individuals, Rij was set at 1000 for the first time period (R11 = 1000),
with 100 newly marked individuals released for every occasion thereafter. For the
exploration in program MARK, we generated expected capture histories for 2
scenarios (Tables 1 and 2) and analyzed these data using the default selection (2nd
Part) to invert the Hessian matrix and calculate variances (source code for gener-
ating expected value data is available from J. Hines, jhines@usgs.gov). Often initial
values had to be provided to achieve convergence: we explored at least 2 sets of
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Table 1 Parameter values used to generate expected value datasets for one scenario used to
evaluate intrinsic redundancy of various model. For transition probabilities, the pair of values
corresponds to within primary periods (within the breeding season) and between primary periods
(between breeding seasons) respectively. Letters represent different states (e.g. habitats): capital
letters represent observable states and corresponding unobservable states are denoted by lower
lowercase letters

SA = 0.65 Sa= 0.65 SB= 0.90 Sb= 0.90
pA = 0.60 pa = 0 pB= 0.50 pb= 0
ψ AA = 0.90, 0.50† ψa A = 0.00, 0.30 ψ B A = 0.20, 0.20 ψbA = 0.00, 0.40
ψ Aa = 0.00, 0.40 ψaa = 1.00, 0.20† ψ Ba = 0, 0 ψba = 0, 0
ψ AB = 0.10, 0.10 ψaB = 0.00, 0.50 ψ B B = 0.80, 0.40† ψbB = 0.00, 0.40
ψ Ab = 0, 0 ψab = 0, 0 ψ Bb = 0.00, 0.40 ψbb = 1.00, 0.20†

†Transitions calculated by subtraction.

Table 2 Parameter values used to generate expected value datasets for a second scenario. For tran-
sition probabilities, the pair of values corresponds to within primary periods (within the breeding
season) and between primary periods (between breeding seasons) respectively. Letters represent
different states (e.g. habitats): capital letters represent observable states and corresponding unob-
servable states are denoted by lower lowercase letters

SA = 0.80 Sa= 0.80 SB= 0.70 Sb= 0.70
pA= 0.60 pa= 0 pB= 0.50 pb= 0
ψ AA = 0.70, 0.50† ψa A = 0.00, 0.30 ψ B A = 0.40, 0.40 ψbA = 0.00, 0.40
ψ Aa = 0.00, 0.20 ψaa = 1.00, 0.50† ψ Ba = 0, 0 ψba = 0, 0
ψ AB = 0.30, 0.30 ψaB = 0.00, 0.20 ψ B B = 0.60, 0.30† ψbB = 0.00, 0.30
ψ Ab = 0, 0 ψab = 0, 0 ψ Bb = 0.00, 0.30 ψbb = 1.00, 0.30†

†Transitions calculated by subtraction.

initial values for each scenario. Initial values were within ± 0.20 (θ true) but were
never set equal to the true values. For the exploration in program M-SURGE, we
used these same sets of parameters values and one other (Tables 1–3) to generate
expected sufficient statistics (i.e. m-array, Choquet et al. 2005). To reduce the
possibility of the likelihood search settling at a local minima, we used multiple
(10) random initial values to initialize each model and parameter set combination.

Table 3 Set of parameter values used to generate the third set of expected value data. This anal-
ysis was performed in M-SURGE only. Parameter values were chosen to mimic estimates obtained
from an analysis of female salamander data from a single breeding pond. In this scenario survival
probability varies between primary periods and secondary surveys, corresponding to the non-
breeding and breeding seasons, respectively. For survival and transition probabilities, the pair of
values corresponds to within primary periods (within the breeding season) and between primary
periods (between breeding seasons) respectively. States A and a correspond to breeders and
nonbreeders in the forest habitat, respectively. States B and b correspond to those same 2 breeding
states in the clearcut habitat

SA= 0.97, 0.63 Sa= 0.97, 0.63 SB= 0.97, 0.63 Sb= 0.97, 0.63
pA= 0.82 pa= 0 pB= 0.82 pb= 0
ψ AA = 0.98, 0.45† ψa A = 0.00, 0.75 ψ B A = 0.50, 0.10 ψbA = 0.00, 0.15
ψ Aa = 0.00, 0.53 ψaa = 1.00, 0.20† ψ Ba = 0, 0 ψba = 0, 0
ψ AB = 0.02, 0.02 ψaB�aB = 0.00, 0.05 ψ B B = 0.50, 0.20† ψbb = 0.00, 0.40
ψ Ab = 0, 0 ψab = 0, 0 ψ Bb = 0.00, 0.70 ψbb = 1.00, 0.70†

†Transitions calculated by subtraction.
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M-SURGE computes the rank of the Hessian matrix by a finite difference scheme
using an analytic gradient method which improves precision in inverting the Hessian
(Gimenez et al. 2004) over methods which determine the first derivatives numeri-
cally. Furthermore, M-SURGE contains a numerical version of the formal method
(the numerical CMF) that has proven quite reliable (Choquet et al. 2005). The rank
is estimated as the number of non-zero singular values and the redundant parameters
are given (Choquet et al. 2005).

We evaluated the performance of each model by examining the resulting rank of
the Hessian matrix, parameter estimates and their associated standard errors, and
the maximum rank of the derivatives matrix calculated at the MLE and several
neighbors (i.e. rank determined by numerical CMF method in M-SURGE). Kendall
and Nichols (2002) conservatively identified models without redundancy prob-
lems as those where ‘all estimators were unbiased to the 5th decimal place and
had coefficients of variation <100%’. As this is an admittedly arbitrary crite-
rion, we report results for this as well as a more liberal criterion that estimates
be unbiased to 3 decimals with CV <100%. Although we admit that requiring
CV<100% might exclude parameters that are structurally estimable, an estimator
with a larger CV would provide little biological information. We did not consider
fully parameterized models, rather we maintained constraints that were determined
necessary in previous explorations of MSMR models with a single unobservable
state (Kendall and Nichols 2002; Schaub et al. 2004; Bailey et al. 2004). These
constraints include: survival probabilities for unobservable and observable animals
are set equal (SU

i j = S0
i j ), no transitions are allowed between unobservable states

(ψu1u2 = ψu2u1 = 0), and for models with time-dependent transition probabilities,
the last nonzero transition probability was set equal to the previous nonzero transi-
tion probability (ψt = ψt−1) and the first nonzero transition probability involving
movement from an unobservable state was similarly constrained to the next like
parameter (e.g., ψuO

1 = ψuO
2 in scenarios described next).

In our biological setting, individuals are captured entering and leaving a common
location (e.g. breeding area) each season, yielding j = 2 secondary samples within
each of 4 primary periods, i = 1,2,3,4. It is possible for individuals to transition
between breeding areas during the primary period, i.e., between the 2 observable
states, but they maintain their breeding/nonbreeding status: only movement between
observable states is allowed (i.e., no movement is allowed between the unobserv-
able states; Fig. 1). We use capital letters to denote observable states and lower
case letters to denote the corresponding unobservable states. Under this setting we
explored parameter redundancy using the previously described analytic-numeric and
numerical CMF method with 3 sets of parameters (Tables 1–3). In addition, we
explore models where capture probability is known from another source of data or
by employing the gateway robust design.

2.2 Results

All examined models were found to be non-redundant even without extra
information on capture probability, using the numerical CMF method in



700 L.L. Bailey et al.

Table 4 Results of analytic-numeric analysis with expected values for parameters defined in
Tables 1 and 2. K is the number of parameters in each model and the rank of the Hessian was
determined by both programs MARK and M-SURGE. Additionally, we report whether the model
would be defined as ‘estimable’ under the conservative criteria used by Kendall and Nichols (2002):
unbiased to 5 decimal places and coefficient of variation <100% for all parameters (Level 1) or
whether parameter estimates are unbiased to only 3 decimals and CV<100% (Level 2). Occasion-
ally models did not converge utilizing the analytic-numeric method in program MARK, with any
set of initial values (denoted DNC). The model is deemed full rank if the numerical approximation
of the formal model, implemented in M-SURGE, showed no parameter redundancy

Parameter values: S A=a = 0.65, SB=b = 0.90, pA = 0.60, pB = 0.50, ψ given in Table 1

Analytic-numeric method

Survival Transitiona Detection K Level 1 Level 2 Rank of
Hessian

Numeric CMF:
full rank

S A=a
i j , SB=b

i j ψ.All Known 22 Y Y Full Y
p.A, pB 24 Y Y Full Y
pA

i j , pB
i j 34¶ N Y Full Y

ψ All
i Known 34 Y Y Full Y

p.A, pB
. 36 N Y Full Y

pA
i j , pB

i j 48 DNC DNC Not Full† N

S.A=a, S.B=b ψ.All Known 10 Y Y Full Y’

p.A, pB
. 12 Y Y Full Y

pA
i j , pB

i j 24 DNC DNC Full† Y

ψ All
i Known 22 DNC DNC Full† Y

p.A, pB
. 24 Y Y Full Y

pA
i j , pB

i j 36 DNC DNC Full† Y

Parameter values: S A=a
. = 0.80, SB=b

. = 0.70, pA
. = 0.60, pB

. = 0.50, ψ given in Table 2

S A=a
i j , SB=b

i j ψ.All Known 22 Y Y Full Y
p.A, pB

. 24 Y Y Full Y
pA

i j , pB
i j 34¶ N Y Full Y’

ψ All
i Known 34 N Y Full Y

p.A, pB
. 36 N Y Full Y

pA
i j , pB

i j 48 DNC DNC Not Full† N

S.A=a, S.B=b ψ.All Known 10 Y Y Full Y
p.A, pB

. 12 DNC DNC Full† Y
pA

i j , pB
i j 24 N Y Full Y

ψ All
i Known 22 Y Y Full Y

p.A, pB
. 24 N Y Full Y

pA
i j , pB

i j 36 Y Y Full Y

aTransitions include ψ AB , ψ Aa, ψ B A, ψ Bb, ψa A, ψaB , ψbA, and ψbB . Four additional transitions
are calculated by subtraction, ψ AA, ψ B B , ψaa, and ψbb. For models with time dependence in
transitions, the transitions in the last time period were set equal to the previous time step, ψ All

i =
ψ All

i−1 and transitions out of the unobservable state in the first time period were set equal to the
second ψuO

1 = ψuO
2 .

¶ Last Si and pij are cleanly confounded.
†Rank of Hessian obtained from M-SURGE only.
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M-SURGE, except the most general model with time-specificity in all parameters,
S A=a

i j , SB=b
i j , ψ All

i , pA
i j , pB

i j (Table 4). For the first 2 parameter sets, some models
would not have met the conservative criteria employed by Kendall and Nichols
(2002) as they contained parameter estimates that were not unbiased to 5 decimals,
but all these estimators were unbiased to at least 3 decimals. Results from parameter
set 3 are identical to the findings in Table 4 except all estimates in non-redundant
models were unbiased to 5 decimal places. All combinations of models and param-
eter values produced estimators with CV <100%. In cases where identifiably would
be questionable under the analytic-numeric method only (i.e. some parameters were
not unbiased to 5+ decimal places), we found that survival probabilities were gener-
ally the least biased estimators and generally met the criteria, but there was no
consistency in which of the remaining parameters were most biased, failing to meet
the a priori criteria. Furthermore, the parameters that failed to meet the criteria often
changed when different initial values were used with the same model and generating
scenario. Movements from unobservable to observable states were always the least
precise estimators, with CV often >50%, which is consistent with previous studies
and was expected given that relatively little information is available to estimate these
parameters (Kendall and Nichols 2002; Schaub et al. 2004; Bailey et al. 2004).

3 Example

3.1 Amphibian Study System

The scenario described above represents a general case where only breeding indi-
viduals are observable, but breeders may move between habitats of variable quality
within the breeding season (within primary periods). Both geographic movement
and breeding state transitions are possible between sampling seasons (i.e. between
primary periods). We apply our findings above to data from a single sinkhole
pond within the George Washington National Forest in Virginia, USA. The forest
surrounding 1/4 of the pond had been clearcut in 1980 and partially replanted
with pine species. The remaining 3/4 of the pond is embedded in 100+ year-old,
primarily deciduous forest. A drift fence, approximately 290 m in circumference,
was monitored between September 1999 to August 2004, with pitfall traps spaced
on each side of the fence at 10 m intervals. Pitfall traps were opened and checked
daily during the active migratory and breeding seasons for a suite of salamander
species (mostly ambystomatids). In this analysis, we focus on a single species, the
marbled salamander (Ambystoma opacum). Adult A. opacum migrate to breeding
ponds beginning in September to court and lay eggs in the dry pond basin or along
the dry margins of the pond. Males generally leave the pond basin after breeding,
but females will remain at the nest until late fall or winter rains fill the pond and
flood the nest.

During migration to and from the pond, individuals are captured by the drift fence
and collected in pitfall traps. Each captured individual was digitally photographed
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on the dorsal side and a computer assisted pattern matching software developed
specifically for this species was used to match individuals and construct capture
histories (Lex Hiby, Conservation Research Ltd, Cambridge, UK). Males are easily
distinguished by swollen cloacae, and females entering the pond have enlarged
abdomens. During the 4 breeding seasons, 4742 females and 6476 male captures
were recorded on the forested side of the pond, compared to only 630 female and
1229 male captures on the clearcut side. We formulated 3 hypotheses to explain why
captures are six times higher in forested compared to clearcut habitat, despite only a
3:1 ratio of forest:clearcut pitfall sampling effort. First, demographic rates (apparent
survival and breeding probabilities) may be lower in the clearcut habitat, perhaps
due to limited shelter or food resources. Alternatively, individuals may simply be
moving or selecting forested habitat, perhaps (but not necessarily) because it repre-
sents superior habitat leading to higher survival or breeding probabilities. Finally,
if detection probabilities are approximately equal among the 2 habitats, low counts
may simply be a consequence of historic effects of the clearcut, and populations of
salamanders have not yet rebounded from acute mortality, reproductive failure, or
mass migration caused by clearcutting activities.

3.2 Methods and Models

To test these hypotheses we used data from a single pond consisting of 4 states
(Fig. 1) with 2 groups (males and females), during 4 breeding seasons (4 primary
periods each with 2 secondary surveys, 8 total capture opportunities). We formu-
lated a candidate model set consisting of 72 models, representing a combination of
2 capture probability structures, 9 survival probability structures and 4 transition
probability structures determined a priori. We modeled capture probability as either
completely time, sex and habitat specific, or a reduced model that is sex and habitat
specific, but with only 3 different time periods. During one occasion in the first and
third years, conditions were such that it was impossible or potentially dangerous to
the animals to process all individuals in the pitfall traps, thus a subset of individuals
were photographed and the rest escaped or were released without photographing.
Finally, to avoid any confounding in models with time-specific survival probabili-
ties, we set capture probabilities in the last primary period equal, p4,1 = p4,2.

Survival probabilities were always assumed to be equal between observable and
unobservable individuals (e.g. S A

i j = Sa
i j ). In our most time-constrained survival

model, we assumed survival was different during the breeding and non-breeding
season (i.e., survival probabilities within the pond were always modeled differ-
ently than survival probabilities outside the pond). Generalizing from this time-
constrained survival structure, we considered models with: no year effects, each year
different, or years grouped into wet (i = 1,2) and dry (i = 3,4) years determined
by the pond conditions during the fall breeding season. In addition to these time-
specific structures, we modeled survival probability as sex-specific, habitat-specific,
or sex and habitat-specific, yielding 9 total combinations of survival structures.
Finally, we modeled transition probabilities (movement and breeding probabilities)
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as either sex and habitat-specific or just sex-specific, with 2 time structures: constant
among years or with years grouped into wet and dry seasons.

The major emphasis of the modeling was to account for known or suspected time
and sex differences in capture, survival and transition probabilities, in order to focus
on the main objective of exploring whether habitat state (forest, clearcut: denoted
with different letters in Fig. 1) was an important factor in estimating survival,
breeding, and movement parameters. Because several of the biological models in the
candidate set were not clearly constrained versions of more general, non-redundant
models tested above, we verified that all biological models were identifiable using
the 3 parameter sets and methods described above. We used M-SURGE to analyze
the real data, but estimated overdispersal using the median c-hat method with the
global model in program MARK (Cooch and White 2006).

3.3 Amphibian Results

All biological models in the candidate set were found to be non redundant. A
single model with sex and time-specific survival, habitat- and sex-specific transition
probabilities and habitat, sex and time-specific capture probabilities fit the data
better (more parsimoniously) than any other model in the candidate set (Table 5).
Consistent with our a priori expectations, capture probabilities clearly dropped
during the occasions where not all individuals were photographed, but there was
time variation even among occasions where we didn’t expect it based on field
observations (Fig. 2, Table 5). Apparent survival probabilities were slightly lower
for females, especially during the non-breeding season, but there was no indication
of differences in survival probabilities among individuals inhabiting forest or
clearcut habitats (Fig. 3, Table 5). Transition probabilities were constant among
wet and dry years, but varied among sex and forest and clearcut habitats. Breeders
moved to the forested side of the pond at a higher rate than would be expected

Table 5 Summary of the fit and selection statistics for the top 5 models for marbled salamander
(Ambystoma opacum) data. Model selection was based on Akaike Information Criteria adjusted
for overdispersal (QAIC); the model with the lowest QAIC value is considered ‘best’. �QAIC is
the difference in QAIC values between each model and the low-QAIC model; K is the number of
estimated parameters; w is the Akaike model weight. Parameters include survival (S), transition
(�), and capture probability (p); these parameters were permitted to vary according to time (t),
habitat (hab), and sex (sx). The model in bold is the most parameterized (global) model in the
parameter set. The median c-hat estimate based on the global model was ĉ = 1.74 (SE = 0.03)

Model Deviance K QAIC �QAIC w

S(sx,t) ψ(hab,sx) p (hab,sx,t) 24089.26 58 13960.40 0.00 1.0
S(sx,t) ψ(hab,sx) p (hab,sx,t*) 24169.84 43 13976.71 16.31 0.0
S(hab,sx,t) ψ(hab,sx) p (hab,sx,t*) 24136.21 57 13985.39 24.98 0.0
S(hab,t†) ψ(hab,sx,t†) p (hab t,sx,t) 24179.53 52 14000.28 39.88 0.0
S(hab,sx)ψ(hab,sx,t†)p (hab,sx,t) 24114.85 72 14003.11 42.71 0.0

* Denotes capture probability with 3 time parameters: p12, p31, pother.
† Denotes probabilities that differ for wet (i=1,2) and dry years (i=3,4).
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Fig. 2 Estimates and 95% confidence intervals for time, habitat and sex-specific capture probabil-
ities using the top model in the candidate model set (S(sx,t) ψ(hab,sx) p (hab,sx,t))
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Fig. 3 Estimates and 95% confidence intervals for time and sex-specific apparent survival proba-
bilities using the top model in the candidate model set (S(sx,t) ψ(hab,sx) p (hab,sx,t))

based on the 3:1 ratio of forest:clearcut area. Within the pond, males were slightly
more philopatric with movement ψ B A = 0.38 (SE = 0.03, 95% CI = (0.33,0.43))
and ψ AB = 0.03 (SE = 0.004, 95% CI = (0.02,0.04)) compared to females,
ψ B A = 0.48 (SE = 0.04, 95% CI = (0.41,0.55)) and ψ AB = 0.03 (SE = 0.005,
95% CI = (0.02,0.04)). Females were more likely to skip breeding opportunities
than males, but the probability was higher for individuals that exited the clearcut side
of the pond: ψ Bb = 0.67 (SE = 0.05, 95% CI = (0.55,0.77)) vs. ψ Aa = 0.53 (SE =
0.02, 95% CI = (0.48,0.57)) for females and ψ Bb = 0.40 (SE = 0.06, 95% CI =
(0.29,0.51)) vs. ψ Aa = 0.36 (SE = 0.05, 95% CI = (0.27,0.45)) for males. Notice
that because we had no a priori reason for expecting habitat to differentially affect
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one sex, but not the other, we did not include such model structures in the candidate
model set. Successive breeders were highly philopatric, during the non-breeding
season (between primary periods), and their movement probabilities did not
suggested preferential migration to the forest habitat given the 3:1 availability of
forest:clearcut area: ψ AB = 0.05 (SE = 0.007, 95% CI = (0.04,0.07)) vs. ψ B A =
0.10 (SE = 0.02, 95% CI = (0.06,0.15)) for males, and ψ AB = 0.03 (SE ψ B A =
0.005, 95% CI = (0.02,0.04)) vs. ψ B A = 0.10 (SE = 0.03, 95% CI = (0.05,0.18))
for females. The most striking differences among habitats were seen in those
individuals that skipped breeding opportunities. Those individuals were more
likely to return to breed the following year if they exited into the forested
area. For females, these probabilities were high: ψa A = 0.74 (SE = 0.07, 95%
CI = (0.59,0.85)) and ψaB = 0.04 (SE = 0.01, 95% CI = (0.02,0.08)) vs. ψbB =
0.46 (SE = 0.13, 95% CI = (0.24,0.70)) and ψbA = 0.13 (SE = 0.07, 95% CI =
(0.04,0.33)). Notice, ψa A + ψaB = ψaO = 0.78 compared to ψbO = 0.59, where
O represents transitioning to either observable breeding state (A or B). Males that
skipped breeding opportunities took longer to return to a breeding state, but the
probability of returning appeared higher for those individuals that exited into the
forested area: ψa A = 0.41 (SE = 0.12, 95% CI = (0.21,0.66)) and ψaB = 0.02 (SE
= 0.011, 95% CI = (0.01,0.06)) (orψaO = 0.43) vs.ψbB =0.22 (SE = 0.08, 95% CI
= (0.10,0.42)) and ψbA = 0.07 (SE = 0.04, 95% CI = (0.02,0.21)) (or ψbO = 0.29).

Overall, movement probabilities between habitats were highest for breeders
within the pond basin and this movement preferentially favored forested habitat
for both sexes. Probabilities that correspond to movements that occur outside the
pond basin did not seem to differ from expectations based on ratios of available
clearcut and forested habitats. While individuals in the forested habitat did not have
substantially higher apparent survival probabilities, they did have higher estimates
of breeding probabilities, which together with movement probabilities, help explain
why salamander counts are higher in forested areas.

4 Discussion

Here we explored a common biological scenario where only breeding individ-
uals are observable, but these breeders may move between habitats of variable
quality within the breeding season (within primary periods). Both geographic and
breeding state transitions are possible between sampling seasons (i.e. between
primary periods). While previous work had explored identifiably issues for systems
with a single observable and unobservable state, we needed to expand the state
space to address our biological questions. We explored 3 different methods to inves-
tigate intrinsic identfiability (non redundancy) and found that it was possible to
relax the geographic closure assumption of the previously described robust design
models, to allow movement among observable states within primary periods. Both
the analytic-numeric (also termed simulation method in Gimenez et al. 2004) and
the numeric approximation of the formal method implemented in M-SURGE gave
similar results, but the numerical CMF method helped verify model identfiability in
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situations where results from the analytic-numeric method were ambiguous. Criteria
for declaring a model intrinsically identifiable under the analytic-numeric method
are somewhat arbitrary; thus determining whether a model meets a priori defined
criteria is not simply a function of the model structure, but also depends on the
parameter values used to generate the expected data set(s) and the values used to
initiate the optimization of the likelihood.

For models that converged, the rank of the Hessian obtained via programs MARK
and M-SURGE were nearly identical, but we were unable to obtain convergence
for some combination of models and generated data sets using program MARK
(Tables 1 and 2). Our results indicated that the Hessian matrix was full rank for all
but our most general model (i.e. no identified nonzero eigenvalues or all singular
values were considered > 0). Still, we acknowledge that evaluating only the rank
of the Hessian may be flawed by numerical issues, such as deciding which eigen-
values are truly non-zero. A perfect tuning of a zero threshold value is probably not
possible (Viallefont et al. 1998). The formal derivative method and the numerical
CMF method implemented in M-SURGE do not require numerical approximations
of the Hessian and thus avoid this complication (Choquet et al. 2005). Also see
Hunter and Caswell (this issue) for an alternative method involving automatic differ-
entiation and exploration of a more general multi-state problem involving multiple
unobservable states. We found that using the combination of analytic-numeric and
the numerical CMF methods was useful for evaluating whether models were intrin-
sically identifiable as well as anticipating expected precision of various parameters.

Utilizing our results from the intrinsic identfiability investigation, we were able
to address a series of biological hypotheses about the current effects of a 20-year-old
clearcut on a single amphibian species. Our results suggested that forested habitats
provide resources that allow individuals to breed more often compared to clearcut
habitats, and perhaps as a result, salamanders tend to move into forested habitats
despite apparently higher densities. Interestingly, most of this movement occurs
within, or across, the pond basin with relatively little movement occurring between
breeding seasons. One possible explanation for this finding is that salamanders
may use different orientation cues when exiting the pond basin (favoring the forest
habitat) compared to those they use to locate and migrate to breeding habitats.

Female A. opacum have lower apparent survival probabilities than males, espe-
cially during the non-breeding season, contrary to previous findings for two other
ambystomid species that breed in this pond (A. tigrinum, Bailey et al. 2004; Church
et al. 2007, and A. maculatum unpublished results). If females incur a cost of repro-
duction associated with brooding eggs, the cost seems to be incurred after females
have exited the pond basin. The habitat that the females exit into does not seem to
affect their apparent survival probability, although it does appear to influence their
subsequent breeding probability.

The biological scenario presented here is common to most pond-breeding
amphibian systems, but one could conceive of numerous biological systems
involving unobservable states. We concur with other authors that both intrinsic and
extrinsic parameter redundancy needs to be explored in complex MSMR scenarios
(e.g. Lebreton and Pradel 2002; Gimenez et al. 2004), especially in cases with
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multiple unobservable states. Multiple tools are available within programs MARK
and M-SURGE to allow investigators to tailor the investigation to their own biolog-
ical systems. An added advantage of program M-SURGE is the numerical CMF
method for non redundancy, and the ability to quickly run the optimization for a
single model with multiple, randomly chosen, initial values to help insure a global
minimum is found.
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Extending the Robust Design for DNA-Based
Capture–Recapture Data Incorporating
Genotyping Error and Laboratory Data

Paul M. Lukacs, Kenneth P. Burnham, Brian P. Dreher, Kim T. Scribner,
and Scott R. Winterstein

Abstract For many species, non-invasive sampling of feathers, hair, feces or other
tissue has the potential to be very useful and in some cases is already widely used
to answer ecological questions. These samples are genotyped and the genotypes
are used to identify individuals. There is some level of uncertainty when identi-
fying individuals from genotyping results. We present an extension to the robust
design capture–recapture model that allows for the estimation of genotyping error
rate and properly estimates population size, survival, temporary emigration, and
capture probability in the face of genotyping error. The model uses information
contained in the secondary encounter occasions to estimate genotyping error which
would otherwise be impossible for an open-population model with a robust design
component. We further extend the model to allow estimation of the probability of
correctly genotyping a sample from laboratory data. We demonstrate that with an
additional data source for genotyping error, parameters are more precisely estimated
by allowing some genotyping error and a larger sample size than by culling samples
to eliminate the potential for errors in genotypes and reducing model complexity.
We use noninvasive and hunter collected data from black bears in Michigan as an
example.

Keywords Abundance · Capture–recapture · Microsatellites · Non-invasive
sampling · Tag misread

1 Introduction

Non-invasively sampled feathers, hairs and scats are being widely collected to
answer ecological questions. DNA can be extracted from cells found in these
samples. One use for these data is to obtain microsatellite genotype of the animal
that left the sample in order to identify individuals. This can be a very powerful
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method to study species which are expensive and dangerous to handle or are
very difficult to capture. Thus far, DNA-based capture–recapture studies have been
largely used for estimating abundance (Woods et al. 1999; Boulanger et al. 2003),
but capture–recapture theory has been developed to estimate a wide range of ecolog-
ically interesting parameters such as survival, emigration rates and population
growth rates. Therefore, it is important to broaden the scope at which these data
are being applied.

Standard capture–recapture theory assumes that individual animals are correctly
identified each time they are captured. For DNA-based studies, not all individuals
are necessarily identified correctly. Errors may arise in genotyping which are caused
by a number of sources including degradation of the sample, mutation within the
PCR reaction and other sources. When errors are present in genotyping, it will
appear as if there are more individuals in the population than actually exist. It will
also appear as if survival rates are lower than they actually are because errant geno-
types are not likely to be observed again. Some studies have been able to minimize
error to a great degree (Paetkau 2003). Other studies showed error rates that are
much larger (Creel et al. 2003). Given that error in genotyping is a distinct possi-
bility and if it occurs it will bias parameter estimates, it is important to be able to
explicitly model the error rate in a capture–recapture model.

An important issue facing the use of genotypes as marks is that the researcher
never knows the list of marks in the population (Lukacs and Burnham 2005a). With
conventional capture–recapture studies, no animals in the population are marked
prior to the study. Then, each animal captured is given a unique mark which is
subsequently recorded by the researcher. Therefore, the list of marks in the popula-
tion is known. When genotypes are used as marks, every animal has a mark prior to
the beginning of the study. Unfortunately, the researcher does not know what any of
the marks are or even how many marks exist. This causes uncertainty in interpreting
the mark of an individual because there is often no way to verify that the mark is
read correctly. In a conventional capture–recapture study, if a researcher recorded
a ring number that does not match a ring on the list of known marks, then the ring
would either be read again or the capture would be ignored. Researchers involved
in DNA-based capture–recapture studies do not have this luxury.

Lukacs and Burnham (2005b) developed a method to estimate genotyping error
rate in demographically and geographically closed population capture-recapture
models. The method uses three basic assumptions to develop a likelihood func-
tion to estimate genotyping error rate, population size and capture probability.
First, the model assumes that a molecular marker set is used that has sufficient
power to resolve individuals with a high degree of certainty. Typically, these marker
sets are microsatellites, but they can be single nucleotide polymorphisms or any
other molecular marker with sufficient power to uniquely resolve individuals. Such
marker sets exist for a large number of species and more are being developed.
Second, it is assumed that a genotyping error will not result in a genotype that exists
in the population. Given the typically small population sizes relative to the huge
number of possible genotypes, it is unlikely for an error to result in the genotype
of an individual that already exists in the population. This assumption may not
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hold for populations with little genetic variation, but is useful in many situations.
Moreover, if this assumption is violated, the result only changes the sufficient statis-
tics slightly and in some cases does not change the sufficient statistics of a closed
capture–recapture model and therefore will not change the estimates much. Third,
it is assumed that the same error will not be generated twice. A large number of rare
events would have to occur for two errors to result in identical incorrect genotypes.
This assumption may be violated if, for example, one allele at a locus tends to have
a much higher dropout rate than the other alleles. These assumptions are practical
and can be realistically met in DNA-based capture–recapture studies. In addition to
their use in capture–recapture, the assumptions have been asserted as useful in the
examination of error in molecular techniques (Paetkau 2003).

The model in Lukacs and Burnham (2005b) uses some simplifying assumptions
to make the problem more tractable. Notably, the model assumes that all encounter
histories are independent, while in fact correct and incorrect observations of geno-
types from the same individual are dependent. This assumption allows for a useful
model and is often reasonably well approximated because animals frequently leave
more than one sample within an occasion and therefore both the correct and incor-
rect genotype can be observed in the same occasion. In addition, capture proba-
bility and genotyping error are assumed to be equal across individuals. Variation
in capture probability is common in trapping studies and is just as likely in nonin-
vasive sampling. Therefore, the potential for bias due to parameter heterogeneity
exists in this model just as is does in standard closed-population capture–recapture
models.

We extend the results of Lukacs and Burnham (2005b) to a demographically and
geographically open population model and sampling scheme often referred to as
Pollock’s robust design (Pollock 1982; Kendall et al. 1997). The robust design is
composed of two types of sampling periods. Primary sampling periods are sepa-
rated by a relatively long length of time during which the population is assumed
to be demographically and geographically open. Within each primary period are
secondary periods which are very close together in time and the population is
assumed to be demographically and geographically closed. An extension to the
robust design relaxing the closure assumption has been developed (Schwarz and
Stobo 1997), but that model will not be addressed in this paper. The robust design
allows the estimation of population size at each primary period, survival proba-
bility between primary periods, temporary emigration between primary periods, and
capture probability during a secondary period. In addition, our extension allows for
the estimation of genotyping error rate at each primary period.

We further extend the robust design with genotyping error model to incorporate
data from laboratory studies of genotyping error. The ability to combine multiple
sources of data helps estimate parameters more precisely than could be done with
any one data source analyzed alone. There is also a potential trade-off between
eliminating genotyping error from noninvasive samples at a considerable expense
of effort versus using auxiliary data to more precisely estimate the error rate while
allowing some errors to exist. Moreover, these data are often already being collected;
therefore it would be most efficient to use the data in a single analysis.
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2 Statistical Model and Notation

Our notation largely follows Kendall et al. (1997) and Lukacs and Burnham
(2005b). The robust design is a sampling scheme with t primary sampling periods.
Each i = (1, 2, . . ., t) of the primary periods contains li secondary sampling periods.
The li secondary periods are not required to be equal in number. The population is
assumed to be open between primary periods and closed between secondary periods
within a primary period. An example of a design for a relatively long lived species
could have t = 5 primary periods each separated by 1 year and l1, . . ., l4 = 4
secondary periods per primary period separated by 1 day (Fig. 1).

2.1 Parameters

�i Probability of an animal surviving from primary period i to i + 1 and
remaining faithful to the population given it is alive at i

�′
i Probability of being off the sampling area at time i given the animal was
off the area at i – 1

�
′′

i Probability of being off the sampling area at time i given the animal was on
the area at i – 1

pij Probability of initially observing a genotype at secondary sample j of
primary period i

cij Probability of subsequently observing a genotype at secondary sample j
of primary period i. The probability of subsequent observation is different
than p because p includes both correct and incorrect genotypes while c only
includes correct genotypes and because there may be a behavioral response
to the sampling device.

φ1

Primary period

p11 p12 p13 p14

α2

Secondary period

γ ''2

φ2 φ3 φ4

γ ''3

1 – γ '3

γ ''4

1 – γ '4

p21 p22 p23 p24

c12 c13 c14 c22 c23 c24

α1 α3 α4 α5

c32 c33 c34

p31 p32 p33 p34

c42 c43 c44 c52 c53 c54

p41 p42 p43 p44 p51 p52 p53 p54

Fig. 1 An example robust design with t = 5 primary periods and l1, . . . , l5 = 4 secondary periods



Robust Design Incorporating Genotyping Error 715

pi* Probability of being captured at least once during primary period i.

p∗
i = 1 −

li∏
j=1

(1 − pi j )

	i Probability that the first observation of a genotype in primary period i is a
correct genotype

fi0 the number of genotypes in the population which are never observed at
primary period i

Ni Population size at primary period i

2.2 Statistics

L total number of secondary capture occasions. L =
t∑

i=1
li

h = {h1, h2, . . ., hL} encounter history vector hi=1 if the genotype is observed,
0 otherwise

hi encounter history of the secondary samples within primary period i
hp encounter history of the primary periods. hpi equals the sum of the

encounter history for the secondary occasions within primary period i. This
subset of h is needed to help delineate whether a genotype is detected in a
given primary period.

xij an indicator variable that equals 1 if the genotype is observed at secondary
occasion i and 0 otherwise

Mi,t+1 Number of unique genotypes observed during primary period i

We used the same assumptions here as were used in Lukacs and Burnham
(2005b) and discussed in the introduction to estimate genotyping error rate within
a primary period. From those assumptions cell probabilities were computed for
each possible encounter history and the likelihood was constructed. The robust
design likelihood was composed of two pieces, the likelihood for the open popu-
lation primary periods, L1, and the likelihood for the secondary periods within each
primary period, L2.

The likelihood for the secondary periods within each primary period was devel-
oped from the cell probabilities of each possible encounter history. For genotypes
first observed at secondary occasion k and subsequently observed again within
primary period i, the probability of the encounter history is

Pr[hi ] =
⎡⎣k−1∏

j=1

(1 − pi j)

⎤⎦ [pikαi ]

⎡⎣ t∏
g=k+1

c
xig

ig (1 − cig)1−xig

⎤⎦
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For a genotype which is only observed at secondary occasion k and never observed
again, the probability of the encounter history is

Pr[hi ] =
⎡⎣k−1∏

j=1

(1 − pi j )

⎤⎦⎡⎣pikαi

⎛⎝ t∏
g=k+1

(1 − cig)

⎞⎠ + pik(1 − αi )

⎤⎦
For a genotype that is never observed, the probability of the encounter history is

Pr[hi ] =
t∏

i=1

(1 − pi j ).

An example of the cell probabilities and their expected values is in Appendix 1 for
a five-occasion case. The multinomial likelihood for the secondary periods is the
product of the likelihood of each secondary period within a primary period

L2 =
t∏

i=1

⎡⎣ ( fi0 + Mi,t+1)!

fi0!

∏
hi

Pr[hi ]
nhi

⎤⎦
The likelihood for the primary periods is also based on a multinomial distribu-

tion. For a K= 4 primary occasion case the cell probabilities for the first encounter
after release are given in Appendix 2. From these cell probabilities, it is possible
to construct an expression for an encounter history. Let A be an upper triangular
matrix of cell probabilities similar to those represented in Appendix 2 and let aij

represent the elements of A. In addition, let b be the set of occasions on which the
genotype was observed and subsequently seen again. Let r be the occasion of the
last observation of the genotype. For example, for a genotype observed at times 1, 3
and 4, b⊂{(1,3), (3,4)} and r = 4. For a genotype that was observed more than once,
otherwise stated the sum of the elements of hp > 1, the probability of the encounter
history is

Pr[hp] = αt

⎡⎣ ∏
(i, j)∈b

ai j

⎤⎦⎛⎝1 −
t∑

j=r+1

ar j

⎞⎠
For a genotype that is only observed once (sum of hp = 1), the probability of the
encounter history across primary periods is

Pr[hp] = αt

⎡⎣1 −
t∑

j=r+1

ar j

⎤⎦ + (1 − αt )

The multinomial likelihood across primary periods is

L1 ∝
∏
hp

Pr[hp]nhp
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The full likelihood for the robust design incorporating genotyping error is given
by the product of L1 and L2. Parameter estimates can be found by numerical opti-
mization of the log-likelihood. We used a quasi-Newton optimization in SAS PROC
IML (SAS Institute Inc. 2002). The variance–covariance matrix of the parameters
was computed by inverting the Hessian matrix and taking its negative. This model
is now available in Program MARK (White and Burnham 1999).

Up to this point, N has not appeared in the likelihood and it does not enter into
the likelihood. N must be estimated as a derived parameter for this likelihood. It is
estimated as

N̂i = α̂i ( f̂i0 + Mi,t+1)

The variance of N̂ is estimated as

v̂ar[N̂ ] = α̂2
i v̂ar[ f̂i0] + (

f̂i0 + Mit+1
)2

v̂ar[α̂i ] + 2α̂i Mit+1 ĉov[ f̂i0, α̂i ]

The estimates of N across primary periods may covary depending on the model
structure of the capture probabilities and genotyping error rates.

Model parameters may be functions of group covariates as is commonly used in
general linear models (McCullagh and Nelder 1989). The 	 parameter will typically
be modeled on a sine link because it is near the boundary of 1.0 in many studies. If
the likelihood of the secondary periods within a primary period is replaced with the
conditional likelihood given in Lukacs and Burnham (2005b), parameters, except for
N, may be modeled as functions of individual covariates as well as group covariates.

When considering the likelihood presented, it is important to note a simplifying
assumption that was made in the model development. Information about genotyping
error across primary periods is not completely used to help estimate genotyping
error. This assumption was made to reduce the parameter set. If all information is
used across primary periods, cohort specific p and c parameters must be added to
the model and abundance must be estimated for every cohort. This quickly leads to
a model with too many parameters to estimate.

The robust design likelihood can be supplemented with additional sources of
data to better estimate the probability of correctly assigning a genotype and survival
probability. Laboratory results can be used to help estimate the probability of
correctly assigning a genotype. Genetic data are likely to exist from known indi-
viduals in the population. Genotypes from tissue or blood samples can be compared
to those from feather, hair or scat samples. The tissue or blood samples can be
genotyped with virtually no error and therefore serve as a reference sample. The
count of correctly and incorrectly matched noninvasive samples should follow a
binomial distribution. Therefore, the likelihood for estimating the probability of
correctly assigning a genotype is

L3 =
K∏

i=1

(
ni

xi

)
α

xi
i (1 − αi )

ni −xi
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where ni is the number of reference samples from primary period i, xi is the number
of correctly matched samples from primary period i and 	i is the probability of
correctly assigning the genotype as defined above. As with the robust design, 	i can
be modeled as a function of covariates through a link function.

Now the full likelihood for the robust design with multiple sources of data is the
product of the three likelihood functions

L = L1L2L3

If no laboratory data are available, L3 = 1. Without laboratory data, there must
be at least three secondary sampling occasions per primary occasion to estimate 	
because 	 is not identifiable with only two secondary occasions. With laboratory
data available only one secondary sample is needed if abundance is not of interest.
Despite that, it is always beneficial to have multiple secondary occasions to better
estimate all model parameters.

3 Model Testing

We used simulated data to test the properties of the robust design model incor-
porating genotyping error. First, we concentrated model evaluation on only the
open population portion of the model. Capture–recapture data were simulated in a
factorial design with four levels of the probability of correctly genotyping a sample
(0.96–0.99), five levels of capture probability (0.1–0.5) and two levels of survival
probability (0.6, 0.9). Initial population size was 1,000 for all simulations. Each
design point was replicated 100 times. All simulations used four primary occa-
sions and five secondary occasions within each primary occasion. Population size,
capture probability and recapture probability were estimated separately for each
primary occasion and survival probability and the probability of correctly geno-
typing a sample were estimated as equal across primary occasions. The probability
of temporary emigration was fixed to zero for all simulations because it is known
to be very difficult to estimate precisely and to allow clear inferences about the
estimates of abundance and survival. The data were simulated under a model that
is more complicated than the estimating model, so exactly unbiased results are not
expected.

We further evaluated the utility of laboratory data to better estimate 	 and conse-
quently N. To do this we used black bear (Ursus americanus) genetic capture-
recapture data from Dreher et al. (2007). These data consist of five occasions of
noninvasive hair sampling and one occasion consisting of a black bear hunt where
hunters were required to submit a hair and tissue sample from their harvested bear.
For complete study design details see Dreher et al. (2007). These data represent a
single closed-population capture–recapture session or one primary sampling period
of the robust design. The genetic analysis of the noninvasive hair samples consisted
of three stages with additional error checking and quality control at each stage.
The genetic analyses followed the protocol of Paetkau (2003). At the first stage
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Table 1 Sample sizes and genotyping error rates for the eight data sets used to examine the effec-
tiveness of auxiliary laboratory data

Stage Loci amplified Sample size Error rate

Initial run ≥3 508 0.11
≥4 501 0.13

5 350 0.06
Rerun ≥3 564 0.20

≥4 561 0.20
5 508 0.26

Mismatch at 1 or 2 loci ≥4 546 0.01
5 504 0.01

all samples were genotyped and samples with three or more amplifying loci were
retained (n =508). At the second stage, samples failing to amplify at all loci in
the first stage were reanalyzed and those with three or more amplifying loci were
retained (n = 561). Finally, at the third stage, samples that differed at only one or two
loci were reanalyzed to check for potential errors. Only those samples considered
accurate at four or five loci were retained (n = 504). This provides data sets with
varying accuracy of identification and sample size (Table 1). In addition, 96 paired
hair and tissue samples were collected from the hunter harvested bears to directly
test the error rate of the hair sample analysis using genotypes from tissue samples
as a known genotype.

We developed encounter histories for each of the eight data sets by matching
common genotypes across sampling occasions. We then selected 500 bootstrap
samples with replacement from each of the data sets. We fit a standard closed
capture-recapture model (Otis et al. 1978), a model incorporating genotyping error
(Lukacs and Burnham 2005b) and the model presented here using the laboratory
data. We then compared the average standard error size for each model to determine
which method would be expected to provide the most precise results.

4 Results

The models provided good parameter estimates in the simulated examples. Abun-
dance at the first primary occasion was well estimated across varying levels of the
probability of correctly genotyping a sample (Table 2). As would be expected,
the estimates of abundance improved as the rate of genotyping error decreased.
Survival was well estimated across the range of probabilities of correctly genotyping
a sample (Table 3). Beyond the first primary period, abundance is a function of
survival and therefore a fixed true value of abundance is not available to compare
the estimated abundance to for future sampling periods.

Capture probability 0.2 or more provided reliable estimates of abundance
(Table 4). With a capture probability of 0.1, estimates of abundance were biased
high (>12% bias, SE = 1.2), were imprecise and failed to converge in 29 of 900
replicates. As capture probability decreases below 0.1 abundance estimates will
further degrade unless the number of secondary occasions is increased. Abundance
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Table 2 Average abundance estimates for the first primary occasion of a robust design model
including genotyping error at four levels. The probability of correctly genotyping a sample is
denoted 	 and abundance is N and SE is standard error of the mean of N. Mean N is averaged over
five levels of capture probability from 0.1 to 0.5. Mean N is based on 1,000 simulation replicates
per level of 	. True N = 1,000 and 	 = 0.95

	 Mean N SE

0.96 1098 3.3
0.97 1073 2.9
0.98 1054 3.0
0.99 1037 3.2

Table 3 Average estimated survival between primary occasions for a robust design model including
genotyping error at four levels. The probability of correctly genotyping a sample is denoted 	 and
survival is �. Means and standard errors (SE) are computed over 500 simulation replicates at each
level and averaged over varying levels of capture probability

Mean estimated �

	 True � = 0.6 SE True � = 0.9 SE

0.96 0.595 0.001 0.911 0.002
0.97 0.596 0.001 0.915 0.002
0.98 0.591 0.001 0.899 0.002
0.99 0.601 0.001 0.909 0.002

Table 4 Average abundance estimates by capture probability for the first primary occasion of a
robust design model including genotyping error at four levels. The capture probability is denoted p
and abundance is N and SE is standard error of the mean of N. Mean N is averaged over five levels
of the probability of correctly genotyping a sample from 0.95 to 0.99. Mean N is based on 1,000
simulation replicates per level of p

p Mean N SE

0.1 1120 12.17
0.2 1041 3.11
0.3 1050 1.50
0.4 1059 1.19
0.5 1067 1.19

was best estimated when capture probability was in the range of 0.2–0.3. Bias in
estimated abundance increased slightly at higher capture probabilities. Survival was
generally well estimated across the entire range of capture probabilities (Table 5).

Without additional laboratory information about misidentification, the standard
error was always larger for the misidentification models than for a standard capture–
recapture model (Fig. 2). When the additional data are added, the misidentifi-
cation models estimate abundance more precisely. In the case where nearly all
genotyping error has been removed including laboratory data does not improve
precision. In addition, the standard error for model using the laboratory data and
a higher misidentification rate is less than that of the standard capture-recapture
model using the nearly error free data, yet the nearly error free data are more
expensive to achieve.
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Table 5 Average survival estimates by capture probability for a robust design model including
genotyping error at four levels. The capture probability is denoted p and survival is � and SE is
standard error of the mean of N. Mean � is averaged over five levels of the probability of correctly
genotyping a sample from 0.95 to 0.99. Mean � is based on 1,000 simulation replicates per level
of p

Mean estimated �

p True � = 0.6 SE True � = 0.9 SE

0.1 0.620 0.001 0.927 0.002
0.2 0.609 0.001 0.960 0.002
0.3 0.596 0.001 0.905 0.001
0.4 0.583 0.001 0.890 0.001
0.5 0.574 0.001 0.876 0.001
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Fig. 2 Mean standard errors of estimated abundance for models including genotyping error (dark
shaded) and not including genotyping error (light shaded) with (bottom panels) and without (top
panels) the inclusion of auxiliary laboratory derived genotyping error rate data based on real data
from black bears in Michigan

5 Discussion

Noninvasive DNA sampling techniques open many opportunitiesfor capture–
recapture studies where they were not previously feasible. This will allow ecolo-
gists to answer important questions regarding species that are difficult to detect or
handle. Thus far, genetic capture–recapture data has been used only for estimating
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abundance. One necessary step toward answering broader ecological questions is to
expand DNA-based capture–recapture studies beyond estimates of abundance at a
single point in time. The robust design allows ecologists to explore more interesting
ecological questions involving survival, abundance and emigration rates.

The robust design is a natural extension from abundance estimation to explo-
rations of survival and temporary emigration rates. The expanded robust design
model presented here allows abundance, survival and emigration to be estimated
properly in the face of genotyping error. For studies currently estimating abundance
annually in a closed population capture–recapture framework, the robust design
offers survival and emigration rates with little or no additional effort. Moreover,
these parameters can be modeled as functions of covariates in a general linear
models framework to answer a wider array of ecological questions.

The simulation results presented suggest the estimator performs well across
varied capture probability and genotyping error levels. It is not surprising that the
estimator performed poorly when a capture probability of 0.1 is used because in
those cases an animal has only a 0.08 probability of being caught two or more
times within a primary occasion containing five secondary sampling occasions.
Therefore, relatively few individuals are recaptured. Recaptures are essential in
order to estimate genotyping error rate because it is estimated from the over abun-
dance of genotypes only detected once relative to those detected more than once.
Without recaptures or an alternate data source, there is no way to estimate geno-
typing error. If capture probability is low and there is no direct field method to
increase it, estimates of abundance and survival can be improved by increasing
the number of secondary sampling occasions. This increases p* that in turn
increases the total number of unique animals caught and improves the parameter
estimates.

A useful feature of this robust design model is that it shares the same likelihood
as a robust design model not including genotyping error. Therefore, model compar-
isons can be made with information – theoretic criteria such as AICc (Burnham
and Anderson 2002). This allows one to examine the information loss in assuming
no genotyping error when some may be present. If genotyping error rate is rela-
tively small, it may be advantageous in terms of mean squared error to assume zero
error. Conversely, when genotyping error rate is large the added bias would suggest
assuming zero error is a poor choice. AICc can quantitatively assess such tradeoffs.
Given the debate in the literature over the effect of genotyping error on capture–
recapture studies (McKelvey and Schwartz 2004a; Paetkau 2004; McKelvey and
Schwartz 2004b) and evidence supporting both no genotyping error (Paetkau 2003)
and considerable genotyping error (Creel et al. 2003), it is important to have a data
driven way to resolve the issue.

Combining data sources is an important way to gain a better understanding
of an ecological system. Here we present a model that incorporates noninvasive
genetic data and laboratory testing of the accuracy of the genotyping methods. For
species such as bears (Ursus spp.) these data are routinely available through hunter
harvested bears. It is not surprising that when misidentification rate is estimated,
the abundance estimate is less precise given identical data are used to estimate
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abundance because an additional parameter is estimated. The addition of the labo-
ratory data allows abundance to be more precisely estimated while reducing the
cost of reanalysis of samples to eliminate genotyping errors from the data set.
This is the real power of this method because genotyping error rates are likely
to change over time and thus will likely be estimated as a time varying param-
eter. Without the additional lab data, the error rate parameter would be very poorly
estimated.

The bootstrap analysis also lends insight into the trade-off between spending a
lot of money and effort to eliminate genotyping error versus allowing some error
and estimating its rate. If no auxiliary data are available on genotyping error rate,
the most precise estimate of abundance can be obtained by eliminating genotyping
error (Fig. 2). If auxiliary data are available on genotyping error rate, a more precise
estimate of abundance can be obtained by allowing some error and a larger sample
size and combining the two sources of data (Fig. 2). Given that the potential exists
for individual variation to exist in the quality of noninvasive samples, using more
low quality samples and allowing some genotyping error may reduce amount of
individual variation in detection probability.

Without accounting for genotyping error when using DNA-based capture–
recapture methods, the risk exists to over-estimate abundance and under-estimate
survival. DNA-based sampling is often used for rare and exploited species. There-
fore, accurate assessment of demographic parameters is a key aspect for species
management. The robust design model presented here allows for appropriate esti-
mates of abundance and survival in the face of genotyping error.
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Appendix 1

Cell probabilities and expected values for the secondary capture occasions within
a primary occasion for a 5-occasion case with p =0.3, c = 0.3, 	 = 0.95 and N =
1,000. A population with 1,000 individuals and a 0.95 probability of the genotype
being correct is expected to have 1,052 different genotypes available for detection.
Note that a constraint must be placed on p5 for all of the model parameters to be
identifiable (Table 6).

Appendix 2

Cell probabilities for the primary sessions of a robust design can be constructed
through the use of matrix algebra. To do so, a few matrices must be defined.
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Table 6 Cell probabilities and expected values for the secondary capture occasions within a primary
occasion for a 5-occasion case with p = 0.3, c = 0.3, α = 0.95 and N = 1, 000. A population
with 1,000 individuals and a 0.95 probability of the genotype being correct is expected to have
1,052 different genotypes avilable for detection. Note that a constraint must be placed on p5 for all
of the model parameters to be identifiable

History Cell probability Probability E[n]

00001 (1–p1)(1–p2)(1–p3)(1–p4)[p5	+p5(1–	)] 0.0720 75.8211
00010 (1–p1)(1–p2)(1–p3)[p4	(1–c5)+p4(1–	)] 0.0736 77.4458
00011 (1–p1)(1–p2)(1–p3)p4	c5 0.0293 30.8700
00100 (1–p1)(1–p2)[p3	(1–c4)(1–c5)+p3(1–	)] 0.0758 79.7668
00101 (1–p1)(1–p2)p3	(1–c4)c5 0.0293 30.8700
00110 (1–p1)(1–p2)p3	c4(1–c5) 0.0293 30.8700
00111 (1–p1)(1–p2)p3	c4c5 0.0126 13.2300
01000 (1–p1)[p2	(1–c3)(1–c4)(1–c5)+p2(1–	)] 0.0789 83.0826
01001 (1–p1)p2	(1–c3)(1–c4)c5 0.0293 30.8700
01010 (1–p1)p2	(1–c3)c4(1–c5) 0.0293 30.8700
01011 (1–p1)p2	(1–c3)c4c5 0.0126 13.2300
01100 (1–p1)p2	c3(1–c4)(1–c5) 0.0293 30.8700
01101 (1–p1)p2	c3(1–c4)c5 0.0126 13.2300
01110 (1–p1)p2	c3c4(1–c5) 0.0126 13.2300
01111 (1–p1)p2	c3c4c5 0.0054 5.6700
10000 p1	(1–c2)(1–c3)(1–c4)(1–c5)+p1(1–	) 0.0834 87.8195
10001 p1	(1–c2)(1–c3)(1–c4)c5 0.0293 30.8700
10010 p1	(1–c2)(1–c3)c4(1–c5) 0.0293 30.8700
10011 p1	(1–c2)(1–c3)c4c5 0.0126 13.2300
10100 p1	(1–c2)c3(1–c4)(1–c5) 0.0293 30.8700
10101 p1	(1–c2)c3(1–c4)c5 0.0126 13.2300
10110 p1	(1–c2)c3c4(1–c5) 0.0126 13.2300
10111 p1	(1–c2)c3c4c5 0.0054 5.6700
11000 p1	c2(1–c3)(1–c4)(1–c5) 0.0293 30.8700
11001 p1	c2(1–c3)(1–c4)c5 0.0126 13.2300
11010 p1	c2(1–c3)c4(1–c5) 0.0126 13.2300
11011 p1	c2(1–c3)c4c5 0.0054 5.6700
11100 p1	c2c3(1–c4)(1–c5) 0.0126 13.2300
11101 p1	c2c3(1–c4)c5 0.0054 5.6700
11110 p1	c2c3c4(1–c5) 0.0054 5.6700
11111 p1	c2c3c4c5 0.0023 2.4300
00000 (1–p1)(1–p2)(1–p3)(1–p4)(1–p5) 0.1681 176.9158

Total 1.0000 1052.6316
Derived abundance estimate 1000

Matrices

fi + 1 = [
γ ′′

i+1 (1 − γ ′′
i+1) (1 − p∗

i+1)
]

Gi =
[
γ ′

i (1 − γ ′
i )(1 − p∗

i )
γ ′′

i (1 − γ ′′
i )(1 − p∗

i )

]

di =
[

(1 − γ ′
i )

(1 − γ ′′
i )

]
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Table 7 Multinomial cell probabilities for primary periods of a 4-period robust design. Cell prob-
abilities are conditional on a genotype that is released at the occasion listed in row label and next
detected at occasion listed in the column label. The values represent the elements of matrix A

Primary recapture occasion

Primary release occasion 2 3 4

1 �1(1 − γ ′′
2 )p∗

2 �1f2 ϕ2d3 p∗
3 �1f2ϕ2G3ϕ3d4 p∗

4
2 �2(1 − γ ′′

3 )p∗
3 �2f3 ϕ3d4 p∗

4
3 �3(1 − γ ′′

4 )p∗
4

p∗
i = 1 −

li∏
j=1

(1 − pi j )

Given these matrices and the other model parameters, cell probabilities can be
constructed as is shown in Table 7.
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A Traditional and a Less-Invasive Robust
Design: Choices in Optimizing Effort Allocation
for Seabird Population Studies

Sarah J. Converse, William L. Kendall, Paul F. Doherty Jr.,
Maura B. Naughton, and James E. Hines

Abstract For many animal populations, one or more life stages are not accessible
to sampling, and therefore an unobservable state is created. For colonially-breeding
populations, this unobservable state could represent the subset of adult breeders
that have foregone breeding in a given year. This situation applies to many seabird
populations, notably albatrosses, where skipped breeders are either absent from
the colony, or are present but difficult to capture or correctly assign to breeding
state. Kendall et al. (in press) have proposed design strategies for investigations of
seabird demography where such temporary emigration occurs, suggesting the use
of the robust design to permit the estimation of time-dependent parameters and to
increase the precision of estimates from multi-state models. A traditional robust
design, where animals are subject to capture multiple times in a sampling season, is
feasible in many cases. However, due to concerns that multiple captures per season
could cause undue disturbance to animals, Kendall et al. (in press) developed a less-
invasive robust design (LIRD), where initial captures are followed by an assessment
of the ratio of marked-to-unmarked birds in the population or sampled plot. This
approach has recently been applied in the Northwestern Hawaiian Islands to popu-
lations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) alba-
trosses. In this paper, we outline the LIRD and its application to seabird population
studies. We then describe an approach to determining optimal allocation of sampling
effort in which we consider a non-robust design option (nRD), and variations of both
the traditional robust design (RD), and the LIRD. Variations we considered included
the number of secondary sampling occasions for the RD and the amount of total
effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used
simulations, informed by early data from the Hawaiian study, to address optimal
study design for our example cases. We found that the LIRD performed as well or
nearly as well as certain variations of the RD in terms of root mean square error,
especially when relatively little of the total effort was allocated to the assessment of
the marked-to-unmarked ratio versus to initial captures. For the RD, we found no
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clear benefit of using 2, 4, or 6 secondary sampling occasions per year, though this
result will depend on the relative effort costs of captures versus recaptures and on the
length of the study. We also found that field-readable bands, which may be affixed to
birds in addition to standard metal bands, will be beneficial in longer-term studies
of albatrosses in the Northwestern Hawaiian Islands. Field-readable bands reduce
the effort cost of recapturing individuals, and in the long-term this cost reduction
can offset the additional effort expended in affixing the bands. Finally, our approach
to determining optimal study design can be generally applied by researchers, with
little seed data, to design their studies at the outset.

1 Introduction

For many animal populations, one or more life stages are not accessible to
sampling. Traditional open-population capture–recapture models that do not
account for this are likely to produce biased estimates of survival (Kendall et al.
1997). Several authors have suggested the use of multi-state capture–recapture
models including one or more unobservable states to account for temporary
inaccessibility to sampling (Fujiwara and Caswell 2002; Kendall and Nichols
2002; Schaub et al. 2004). Such models allow for estimation of the probabilities
of transition between states, in addition to survival and detection probabilities.
However, multi-state capture-recapture models integrating an unobservable state
generally suffer from a lack of identifiability of parameters in the model, especially
when time-specific forms are used (Kendall and Nichols 2002; Schaub et al. 2004).
In the face of unobservable states, Kendall and Nichols (2002) showed that use of
Pollock’s (1982) robust design (RD) increases parameter identifiability as well as
the precision of estimates of state transitions.

A familiar example of an unobservable life stage occurs with colonially-breeding
bird populations where each year some adults do not breed and non-breeding indi-
viduals are largely unobservable because they either remain at sea or visit the colony
occasionally but are not easily captured or assigned to breeding state. This situation
applies to many seabird populations, and notably albatrosses (Diomedeidae).
Kendall et al. (in press) have proposed design strategies for investigations of alba-
tross demography where such temporary emigration occurs, suggesting the use of
the robust design to permit the estimation of time-dependent parameters and to
increase the precision of estimates from multi-state models. These design strate-
gies arose to meet the needs of US Fish and Wildlife Service biologists studying
the demography of Laysan albatross (Phoebastria immutabilis) and black-footed
albatross (P. nigripes) breeding in the Northwestern Hawaiian Islands, particularly
on 2 islands of Midway Atoll. Monitoring objectives in this ongoing study include
estimation of survival and breeding probabilities. Due to concern by investigators
that multiple captures per season could cause undue disturbance to animals, Kendall
et al. (in press) developed a less-invasive robust design (LIRD), where initial
captures of individuals each year are followed by a tally of birds used to calculate
the ratio of the sampled population previously captured in that year.
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Therefore, multiple options exist for capture-recapture study design in the face of
unobservable states, including a non-robust design option (nRD), in which animals
are subject to capture only once in a sampling season, and variations of both the RD
(where animals are subject to capture multiple times in a sampling season, during
which the population is assumed to be closed to demographic changes) and the
LIRD (where animals are subject to capture once and are subject to a tally once in
a sampling season). Simulation is an excellent tool for determining optimal study
design for a particular case, and given particular study objectives. As an example,
we developed a simulation study to determine optimal sampling strategies for alba-
tross studies. Here, we present the results of our simulation study of RD and LIRD
sampling scenarios, and sampling scenarios not including the robust design (nRD).
With our simulations, we addressed the following questions: (1) What is the perfor-
mance of the LIRD versus the RD and nRD in terms of root mean square error
and confidence interval coverage of survival and state transition parameters used to
estimate breeding probabilities; (2) For the LIRD, what is the optimal allocation of
effort to initial captures versus tally effort; and (3) For the RD, what is the optimal
number of secondary sampling occasions? We asked these questions for studies of
different lengths and under different sampling contexts. We used the 2 albatross
species resident on Midway Atoll in the Northwestern Hawaiian Islands as focal
species in designing our simulations.

1.1 The Less-Invasive Robust Design

Before introducing our simulation methods we present further details on the LIRD.
We use sampling in an albatross colony as an example to illustrate the LIRD, which
is described in greater detail in Kendall et al. (in press). Here we imagine applying
this design to a colony in which no birds are banded at the outset.

Each year just after the egg-laying period, investigators move through the colony
or chosen plots within the colony, randomly choosing nesting individuals and fitting
them with a standard metal (e.g., U.S. Geological Survey Bird Banding Laboratory)
band bearing a unique numeric code (hereafter, metal band). In some designs, an
auxiliary field-readable band may also be attached to the other leg, and for these
individuals, subsequent “recaptures” will consist of reading the field-readable band
rather than the metal band, i.e., the animal need not be physically handled after
a field-readable band is applied. A field-readable band is made of hard, colored
plastic and has a numeric code in a contrasting color. This band can be read from a
short distance (typically 3–4 m) while the bird is either standing or sitting on a nest
(in the latter case, this may require approaching the bird and moving feathers away
from the leg manually).

After the first year, a portion of the individuals will have already been banded
from previous years, and these individuals will be subject to recapture, while
previously unmarked birds will be banded as in previous years. To indicate that an
individual was captured in the current year, a temporary mark (one that will last
for the duration of the field season but will disappear before the next) is applied.
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Examples of temporary marks include a streak of acrylic nail polish or felt-tipped
marker on the individual’s head. Individuals with temporary marks are avoided for
the remainder of the first sampling period, and on subsequent sampling trips (e.g.,
days) during the first sampling period, only birds without temporary marks are
captured. For albatrosses, the first sample should be conducted over a long enough
period to have access to both members of a breeding pair – perhaps 2 weeks or
more – as members of a pair switch between incubating and foraging at sea. When
applying the LIRD to other taxa, the first sample may be conducted over a shorter
period of time as appropriate.

Shortly after the first sample is concluded, an investigator walks through the
study area choosing active nests at random, then checking and recording whether
or not the individual on the nest has a temporary mark, resulting in a tally of
temporarily marked and unmarked individuals (the second sample). It is critical
that there be no bias in selecting marked versus unmarked individuals for inclusion
in the tally, i.e., the tally sample must be a random sample of the population subject
to marking. After the tally is completed (a fixed number of nests to tally might
be determined beforehand), the proportion of temporarily marked individuals in
the sample should be an unbiased estimate of the proportion of the population
physically captured in the first sample: p̂t = mt2/nt2 where nt2 is the total number
of nesting individuals examined and mt2 is the number of those individuals with the
temporary mark in the second (tally) sample.

For the statistical model, consider a multiyear study of a population where there
are two life history states of interest, e.g., an observable breeder (O) and an unob-
servable skipped breeder (U) in the case of albatrosses. Let SO

t , SU
t be the proba-

bility an animal in state O or U, respectively, in year t survives to year t + 1 and
remains faithful to the population. Furthermore, let �O O

t ,�U O
t be the probability

an animal in state O or U, respectively, in year t breeds (i.e., becomes observable)
in year t + 1, given that it survives to year t + 1. Finally, let pO

t , pU
t be the prob-

ability an individual is captured in year t, given that it is in state O or U, respec-
tively, and where we assume that pU

t = 0. This leads to the Arnason–Schwarz
multistate capture–recapture model (Schwarz et al. 1993) with an unobservable
state.

The parameters of this model cannot be estimated without further restrictive
assumptions, such as time-constancy in parameters (Fujiwara and Caswell 2002;
Kendall and Nichols 2002; Schaub et al. 2004) or an additional source of data
(Kendall 2004). The additional source of data can come from the LIRD described
above, where the multi-state multinomial likelihood is supplemented by a product
of simple binomial models for each year:

#years∏
t=1

nO
t2!

mO
t2!(nO

t2 − mO
t2)!

(pO
t )mO

t2 (1 − pO
t )(nO

t2−mO
t2).

This second source of information is sufficient to estimate pO
t from only the

within-year data, and therefore permits estimation of time-specific survival and state
transition probabilities (Kendall et al. 1997).
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2 Simulation Methods

2.1 Study Designs

We considered 3 different basic study designs in our simulation study, including
designs without robust design information (nRD), the traditional robust design
(RD), and the less-invasive robust design (LIRD). Each of these designs was exam-
ined both with metal bands only and also with field-readable bands. Field-readable
bands may be useful in albatross capture–recapture studies because both effort and
disturbance to birds can be reduced in recaptures if birds need not be handled.
In 2005, the US Fish and Wildlife Service began widespread application of field-
readable bands on adult albatrosses in several study colonies of the Northwestern
Hawaiian Islands.

For the 2 robust design types, we considered 3 variations of each. For the RD, we
varied the number of secondary sampling occasions (2 occasions, 4 occasions, or 6
occasions) within each year. For the LIRD, we varied the proportion of the popu-
lation that is included in the tally (5%, 25%, or 45%). For example, in a sampled
population of 5000 birds, a tally of 5% of the birds would indicate that, on average,
250 birds would be tallied to calculate the ratio of temporarily marked-to-unmarked
birds.

For each of these designs, we considered studies of either 5 or 10 years. We
also considered 2 species: both Laysan and black-footed albatrosses. Because black-
footed albatross tend to be less docile than Laysan albatross, most types of sampling
activities, such as banding a previously unbanded bird, take longer when working
with black-footed albatross; this has implications for optimal effort allocation.

In all of the simulation sets, we assumed a population of 10,000 individuals
and the same between-year population dynamics: a 2-state multi-state model, with
one observable and one unobservable state, an annual survival probability of 95%
(equal for the 2 states and across years), annual probability of movement from
the observable to the unobservable state of 80%, and annual probability of move-
ment from the unobservable to the observable state of 80% (both also equal across
years). On average, half of the individuals in the population were observable in any
given year.

In the first set of simulations, we considered a time-constant estimation model
on the survival and transition parameters. Only detection probabilities varied across
simulation sets and over time within simulation sets, as described below. Under
the time-constant model, model parameters were identifiable both with and without
robust-design information.

In the second set of simulations, we considered a time-dependent estimation
model on the survival and transition parameters. In the time-dependent estimation
model the last of each of the transition parameters was set equal to the penultimate
parameter, and the first transition out of the unobservable state was set equal to
the second (Kendall and Nichols 2002). This set of simulations was designed to
compare design types when identifiability of parameters was compromised under
the nRD (Kendall and Nichols 2002; Schaub et al. 2004).
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We considered 56 simulations in the first set, including 1 variation of the nRD,
3 variations of the LIRD, and 3 variations of the RD for 2 marking types (metal
or field-readable), 2 study lengths (5 or 10 years), and 2 species (Laysan alba-
tross or black-footed albatross). In the second set, we considered a smaller set of
6 simulations, including 1 variation each of the nRD, RD (2 occasions), and LIRD
(5% of effort in tally) for 2 marking types (metal or field-readable), 1 study length
(10 years), and 1 species (Laysan albatross).

2.2 Simulations – Seed Data

A combination of the RD and the LIRD was applied to Laysan and black-footed
albatrosses in 2005 on a pilot basis (Kendall et al. in prep) providing seed data for
our simulations. Birds banded at the U.S. Fish and Wildlife study at Midway Atoll
are generally not physically captured; rather, a bander reaches under the bird and
bands the leg(s) while another worker shields the bander from the bird’s bill with
a hard plastic tray. Occasionally birds are physically captured for banding if they
attempt to leave the nest. Banding birds under these conditions may take more time,
but is thought to reduce the risk that birds will temporarily abandon eggs, leaving
eggs at risk for thermal stress or predation, or, more seriously, will permanently
abandon eggs.

We used a sample of the pilot data from Sand Island, Midway Atoll, North-
western Hawaiian Islands, to estimate average times necessary to complete various
components of the sampling process under each of the different designs; these times
were used as seed data in our simulations. We broke the sampling process down
as follows: Sampling under the different designs consisted of various combinations
of (1) marking previously unmarked birds; (2) “recapturing” birds last captured in
a previous year (all designs) or in the present year (RD only), which may involve
simply reading and writing down a field-readable band number; (3) tallying birds,
and (4) traveling between birds. Banding unbanded birds involved some combina-
tion of affixing a metal band, affixing an additional field-readable band, and adding
a temporary mark. Recapturing birds involved some combination of reading a metal
band, reading a field-readable band, and adding a temporary mark. For example,
under the LIRD with field-readable bands, 2 investigators would spend on average
approximately 5 min banding a previously unbanded Laysan albatross, including
3 min affixing a metal band, 1 min affixing a field-readable band, 0.5 min adding
a temporary mark, and 0.5 min traveling between birds. More effort was needed
for the less docile black-footed albatross. The average numbers of minutes spent
by 2 investigators per individual bird for different types of sampling activities are
recorded in Table 1.

We then used these numbers to develop our simulation parameters. We consid-
ered a fixed amount of effort (total minutes spent by 2 investigators in a sampling
season) of 60 h, or 3600 min, per year. A fixed effort of 60 h per year allowed us
to simulate constant effort throughout the length of the study; if we had used a
greater fixed effort we would not have been able to keep it constant over the length
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Table 1 Mean times necessary, in minutes, for 2 investigators to complete different types of
sampling activities on an individual bird under the different study designs considered, for both
Laysan and black-footed albatrosses

Minutes to complete activity

Designa Capture typeb Laysan albatross Black-footed albatross

nRD m New 3.5 5
Recapture 2 2.5

nRD fr New 4.5 6.5
Recapture 0.5 0.5

LIRD m New 4 5.6
Recapture 2.5 3.1
Tally 0.325 0.4

LIRD fr New 5 7.1
Recapture 0.75 0.8
Tally 0.325 0.4

RD m New 3.5 5
Recapture 2 2.5

RD fr New 4.5 6.5
Recapture 0.5 0.5

aDesigns include no robust design without (nRD m) or with (nRD fr) a field-readable band, the
less-invasive robust design without (LIRD m) or with (LIRD fr) a field-readable band, and the
traditional robust design without (RD m) or with (RD fr) a field-readable band.
bA new capture is a bird that was previously unmarked. A recapture under the LIRD is a bird
captured in a previous year and recaptured in the present year. A recapture under the RD includes
both recaptures from a previous year and recaptures within the present year.

of the simulated study because the total possible effort expended in later years
would have been lower than the total effort allotted. Next, we determined expected
detection probabilities given this effort, assuming an observable population of 5000
birds (i.e., half the total simulated population of 10,000 birds). For example, for the
first variation (5% of population in tally) of the LIRD design with metal bands for
Laysan albatross, in the first year, the detection probability (p1) can be determined
by solving the equation

ET = N × p1 × En + N × ptal × Etal

for p1, where ET is the total available effort (3600 min), N is the observable popula-
tion size (5000), ptal is the proportion of the total population in the tally (0.05), En is
the effort required to process a new capture of a single bird under this design (4 min),
and Etal is the effort required to tally a single bird under this design (0.325 min).
Solving for p1, we find that we would expect a detection probability of approxi-
mately 0.176 in the first year. In subsequent years, detection probability increases
as some birds that are encountered will already have metal bands and captures of
these individuals will require less effort (i.e., an additional component will be added
to the equation, the previously marked population multiplied by the detection prob-
ability p1 multiplied by the effort to recapture previously marked individuals), so
a greater proportion of the population may be captured for the same effort. In this
way, detection probabilities were calculated for each simulation set in each year.
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2.3 Simulation Methods

We simulated data sets in a SAS data step (SAS 9.1, SAS Institute, Cary, North
Carolina, USA) and used Program MARK (White and Burnham 1999) to obtain
parameter estimates. We assumed a constant population size of 10,000 individuals
(i.e., releases of 10,000 in year 1, releases of 500 in subsequent years to make up for
a mortality probability of 5%). We used a Monte Carlo step to assign approximately
half of releases to the observable state, and additional Monte Carlo steps for survival
and transitions between states each year.

A Monte Carlo step was also used to simulate the capture of individuals, and
thus to compile encounter histories consisting of a series of “1”s and “0”s to denote
capture or non-capture, respectively, in a particular year or secondary occasion
within a year. In the nRD simulations, there were an equal number of capture occa-
sions as years. These data were analyzed under the multi-state data type in Program
MARK. In the RD designs, there were 2, 4, or 6 capture occasions per year, each
with the same capture probability within a year, and these data were analyzed under
the multi-state robust design data type in Program MARK. Finally, for the LIRD, we
devised a strategy for simulating data so that it could also be analyzed in Program
MARK (code can be obtained by contacting the first author).

We completed 1000 simulations of each simulation set. We calculated the average
bias and variance in estimators of survival probability (S) and the 2 transition param-
eters between states (�OU

t ,�U O
t ) and used these to calculate average root mean

square error
(

MSE =
√

bias2 + variance
)

on each of these 3 parameters. For the

time-constant estimation model, comparative results between the different designs
were generally similar for the 3 different demographic parameters (S, �OU , and
�U O ), so we present graphical results for the survival parameter only.

For the time-dependent models, we calculated the average bias and variance in
the estimators across the first 4 estimates (corresponding to the first 4 years) and
across all of the identifiable estimates (i.e., 8, except for transitions out of the unob-
servable state, where there were 7). We also computed average confidence interval
coverage (95% nominal) on these parameters. Confidence intervals computed in
Program MARK are computed based on the standard error on the transformed scale
(in this case, with a sine transformation) and then back-transformed to the real scale
to ensure that they fall on the interval 0–1.

3 Results

With the time-constant model, MSE on S was between 3 and 5% for all variations of
the RD and LIRD and the nRD based on Laysan albatross over 5 years (top panel,
Fig. 1) and between 4 and 8% for all designs based on black-footed albatross over
5 years (top panel, Fig. 2). Over 10 years, these values were much lower: between
0.3 and 1% for Laysan albatross (bottom panel, Fig. 1) and between 1 and 2% for
black-footed albatross (bottom panel, Fig. 2).
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Fig. 1 Root mean square error (MSE) of survival (S) for study designs of Laysan albatross over
5 (top panel) and 10 (bottom panel) years, based on constant survival and transitions over years.
Designs include the robust design (solid) using metal (RD m) and field-readable bands (RD fr), the
less-invasive robust design (checked) using metal (LIRD m) and field-readable bands (LIRD fr),
and non-robust design (striped) using metal (nRD m) and field-readable bands (nRD fr). Within
the RD, light bars are 2, medium are 4, and dark are 6 secondary occasions per year. Within the
LIRD, light bars are 5%, medium are 25%, and dark are 45% of the population in the tally. Note
the difference in scale between the panels

For transition �OU with the time-constant model, MSE was between 2 and
4% for Laysan albatross and between 4 and 7% for black-footed albatross over 5
years. Over 10 years, these values were between 1 and 2% for Laysan albatross
and between 2 and 3% for black-footed albatross. For transition �U O , MSE was
between 8 and 13% for Laysan albatross and between 11 and 21% for black-footed
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Fig. 2 Root mean square error (MSE) of survival (S) for study designs of black-footed albatross
over 5 (top panel) and 10 (bottom panel) years, based on constant survival and transitions over
years. Designs include the robust design (solid) using metal (RD m) and field-readable bands (RD
fr), the less-invasive robust design (checked) using metal (LIRD m) and field-readable bands (LIRD
fr), and non-robust design (striped) using metal (nRD m) and field-readable bands (nRD fr). Within
the RD, light bars are 2, medium are 4, and dark are 6 secondary occasions per year. Within the
LIRD, light bars are 5%, medium are 25%, and dark are 45% of the population in the tally. Note
the difference in scale between the panels

albatross over 5 years. Over 10 years, these values were between 2 and 5% for
Laysan albatross and 5 and 7% for black-footed albatross.

Confidence interval coverage was generally quite close to the nominal value of
95% (i.e., between 93 and 97%) for the time-constant model, with a few excep-
tions. For S over 5 years, coverage was much below nominal for both Laysan and
black-footed albatrosses (top panels, Figs. 3 and 4). Poor coverage in these cases was
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Fig. 3 Confidence interval (CI) coverage (95% nominal – dashed line) of survival (S) for study
designs of Laysan albatross over 5 (top panel) and 10 (bottom panel) years, based on constant
survival and transitions over years. Designs include the robust design (solid) using metal (RD m)
and field-readable bands (RD fr), the less-invasive robust design (checked) using metal (LIRD m)
and field-readable bands (LIRD fr), and non-robust design (striped) using metal (nRD m) and
field-readable bands (nRD fr). Within the RD, light bars are 2, medium are 4, and dark are 6
secondary occasions per year. Within the LIRD, light bars are 5%, medium are 25%, and dark are
45% of the population in the tally

likely related to the fact that the true parameter value was near the maximum value
of 1.0. Also, for transition �U O over 5 years for black-footed albatross, coverage
was also somewhat below nominal.

In all cases, the LIRD performed best, in terms of MSE, when the proportion
of the population in the tally was lowest (i.e., 5% of the population sampled in the
tally). This was true for simulation sets of both 5 and 10 years, but in simulations
of 10 years, designs with a greater proportion of the population in the tally (i.e.,
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Fig. 4 Confidence interval (CI) coverage (95% nominal – dashed line) of survival (S) for study
designs of black-footed albatross over 5 (top panel) and 10 (bottom panel) years, based on constant
survival and transitions over years. Designs include the robust design (solid) using metal (RD m)
and field-readable bands (RD fr), the less-invasive robust design (checked) using metal (LIRD m)
and field-readable bands (LIRD fr), and non-robust design (striped) using metal (nRD m) and
field-readable bands (nRD fr). Within the RD, light bars are 2, medium are 4, and dark are 6
secondary occasions per year. Within the LIRD, light bars are 5%, medium are 25%, and dark are
45% of the population in the tally. Note the difference in scale between the panels

45%) faired even worse, with a greater difference between the performance of
the strongest and weakest of the LIRD variations. Based on additional a poste-
riori simulations of the LIRD for Laysan albatross (with metal bands only, for 10
years) we found that the lowest average MSE over the 3 demographic parameters
in the time-constant estimation model (S, �OU , �U O ) occurred with 9% of the
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population included in the tally. In this case, the tally accounted for only 4.1% of
the total sampling effort.

Within the RD, we found little difference between 2, 4, and 6 sampling occasions
in terms of MSE, and no consistent pattern. While overall detection probability
(p*, the probability that an individual is captured at least once during a sampling
year) is greater with 2 sampling occasions (because less effort is allocated to recap-
turing individuals that were previously captured in that year) overall sample size of
captures is greater with 6 sampling occasions. For example, given RD with field-
readable bands for Laysan albatross, the average p* over 10 years for 2 secondary
occasions was 0.286, the total number of individuals in the data set was 9067,
and the total number of detections was 15,780. For 4 secondary occasions, these
numbers were 0.280, 8951, and 16,147, respectively; and for 6 secondary occasions
these numbers were 0.278, 8914, and 16,272, respectively.

For the 5-year simulation studies of both species, the MSE on all 3 parameters of
interest was lowest for the RD variations with metal bands. Within the Laysan alba-
tross simulations, the next lowest mean square errors on the 3 parameters occurred
with the RD variations with field-readable bands or with the LIRD with 5% of the
population in the tally, with metal bands. However, with the black-footed albatross,
the next lowest mean square errors always occurred with the LIRD with 5 and 25%
of the population in the tally, with metal bands. In all cases, the nRD simulations
fared worst in terms of MSE.

In the 10-year simulation studies, the simulations including field-readable bands
performed better in terms of MSE than they did in the 5-year studies. For the Laysan
albatross, the nRD with field-readable bands performed best for all 3 parameters,
followed by the RD with field-readable bands, and the LIRD variation 1 (5% in
tally) with field-readable bands, while the LIRD variation 3 (45% in the tally) with
metal bands performed worst. For the black-footed albatross simulations, designs
integrating metal bands continued to perform well. For survival, the nRD with field-
readable bands performed best followed by the RD with metal bands. For the 2
transition parameters, the smallest MSE was found for the RD with metal bands
along with the LIRD variation 1 (5% in the tally) with both metal and field-readable
bands. For black-footed albatross, the LIRD variation 3 (45% in the tally) with field-
readable bands performed worst in the 10-year simulations in terms of MSE.

In the time-dependent model, MSE on S, �OU , and �U O was much higher
with the nRD designs than with the RD and LIRD designs. For example, for
survival, MSE was between 0.045 and 0.049 for the RD and LIRD, but was between
0.216 and 0.233 for the nRD, when averaged over the first 4 estimable parameters
(Fig. 5). If all 8 estimable parameters were considered, the averages were between
0.048 and 0.062 for the RD and LIRD, but were between 0.872 and 0.973 for the
nRD. This difference in performance was even greater for transition parameters
(Figs. 6 and 7).

In the time-dependent estimation model, confidence interval coverage was poor
(i.e., coverage was always less than 75%) for the nRD designs. For the RD and
LIRD designs, confidence interval coverage was near nominal for the transition
parameters, but was poor for survival (Fig. 8).
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Fig. 5 Root mean square error (MSE) of survival (S) for study designs of Laysan albatross over
10 years, based on time-dependent survival and transitions over years. Designs include the robust
design using metal (RD m) and field-readable bands (RD fr), the less-invasive robust design using
metal (LIRD m) and field-readable bands (LIRD fr), and non-robust design using metal (nRD m)
and field-readable bands (nRD fr). The gray bars represent the average over the first 4 estimable
parameters, and the black bars over all 8 estimable parameters
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Fig. 6 Root mean square error (MSE) of transition �OU for study designs of Laysan albatross over
10 years, based on time-dependent survival and transitions over years. Designs include the robust
design using metal (RD m) and field-readable bands (RD fr), the less-invasive robust design using
metal (LIRD m) and field-readable bands (LIRD fr), and non-robust design using metal (nRD m)
and field-readable bands (nRD fr). The gray bars represent the average over the first 4 estimable
parameters, and the black bars over all 8 estimable parameters
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Fig. 7 Root mean square error (MSE) of transition �U O for study designs of Laysan albatross over
10 years, based on time-dependent survival and transitions over years. Designs include the robust
design using metal (RD m) and field-readable bands (RD fr), the less-invasive robust design using
metal (LIRD m) and field-readable bands (LIRD fr), and non-robust design using metal (nRD m)
and field-readable bands (nRD fr). The gray bars represent the average over the first 4 estimable
parameters, and the black bars over all 7 estimable parameters
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Fig. 8 Confidence interval (CI) coverage (95% nominal – dashed line) of survival (S) for study
designs of Laysan albatross over 10 years, based on time-dependent survival and transitions over
years. Designs include the robust design using metal (RD m) and field-readable bands (RD fr),
the less-invasive robust design using metal (LIRD m) and field-readable bands (LIRD fr), and
non-robust design using metal (nRD m) and field-readable bands (nRD fr). The gray bars repre-
sent the average over the first 4 estimable parameters and the black bars over all 8 estimable
parameters
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4 Discussion

Overall, we found that the LIRD could, in some cases, perform as well as the tradi-
tional RD. Designs where greater effort was placed on the first sampling occasion,
versus on the tally, showed improved performance for both species in terms of MSE
on the estimates for both 5- and 10-year studies. Such designs also had improved
confidence interval coverage, especially noticeable in the 5-year simulations.

These results indicate that the LIRD can be a viable study design for alba-
trosses, most likely if the large majority of the effort is placed on new within-
year captures, rather than on tallying the marked-to-unmarked count. The premium
on new within-year captures was even greater in longer-term studies (i.e, 10-
year studies) likely because more new within-year captures translate to a greater
number of newly marked individuals over time, and a greater sample size of marked
individuals will tend to increase estimator performance, especially for long-lived
animals.

We developed a method for fitting the LIRD in Program MARK which was,
while possible, not straightforward. The capability to analyze data under the
LIRD has also been added to program MSSRVRD (http://www.mbr-pwrc.usgs.gov/
software), which was originally developed to analyze data under the multistate RD.

With the RD, there was not a clear benefit of few versus many secondary
occasions. While the total number of individuals in the data set decreases with
an increase in the number of secondary occasions, the total number of detections
increases. This is because recaptures are less costly in our simulations, in terms
of effort, than first captures. With a greater number of secondary occasions, more
effort is allocated to less costly recaptures, thus allowing a greater total number of
detections. The tradeoff between the total number of individuals and total number
of detections will depend on the relative costs of first captures versus recaptures
and the length of the study. In our case, we found that, for 5-year studies, 4 or 6
occasions were almost always optimal, while for 10-year studies, 2 occasions were
more frequently optimal. Again, this reflects the increased benefit of first captures
in longer-term studies.

In the RD, we assumed a model without heterogeneity in capture probabilities
across individuals, which can be fit in an unbiased fashion with 2, 4, or 6 occasions.
However, if there is heterogeneity, it is necessary to have more secondary occasions
to fit it well. In addition, if there are more complicated movement factors in the
model, such as, in colonially-breeding birds, late arrival or early departure from the
nesting area, the open robust design model is a more appropriate choice, and this
model benefits from more time periods (Kendall and Bjorkland 2001).

We found that field-readable bands were also more valuable in longer-term
studies, where the increased effort placed on new captures early in the study has
greater opportunity to pay off in lower effort placed on future recaptures. This
was especially true for the simulations based on Laysan albatross, which require
less effort to band. Field-readable bands used with black-footed albatross would
presumably show a greater benefit in even longer-term studies. The LIRD will
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probably be more attractive to investigators who do not have the option of using
field-readable bands. Recapture effort, and disturbance to individuals, in albatross
studies with field-readable bands may be so much reduced that the benefits of a
true robust design or an open robust design; (Kendall and Bjorkland 2001) are more
easily afforded. However, as Kendall et al. (in prep) note, there are some situations
where field-readable bands are not a viable choice (e.g., burrow-nesting species),
and the LIRD could also have many benefits in these cases. It is important to note
that while in some cases the RD with metal bands performed best in terms of MSE,
this design is not an acceptable option for Hawaiian albatrosses because of the
concern about excessive disturbance.

Because we restricted our effort to be equal over time, by necessity detection
probabilities in our simulations started out fairly low and increased over time, as a
larger proportion of the population was marked, and so a larger proportion could
be captured for the same effort. However, in the Northwestern Hawaiian Islands,
investigators have focused on adding field-readable bands to a large majority of
individuals early in the study. In future years, this will pay off with increased preci-
sion for a lower effort.

In the time-constant models, over longer time periods (i.e., 10 years), the designs
without robust design information sometimes fared best (e.g., nRD with field-
readable bands performed best for all 3 parameters estimated for Laysan albatross,
in terms of MSE). This result likely reflects the increased value in longer-term
studies of putting all the effort into marking new birds, rather than recapturing birds.
However, for the time-dependent model, there was a substantially larger MSE for
the nRD designs. This reflects the increase in bias and variance that occurs in the
absence of robust design information with a time-dependent model, due to the fact
that parameter identifiability and precision are compromised in the time-dependent
model without the robust design (Kendall and Nichols 2002). Strong time constancy,
especially in state transition parameters, may be the rule with albatrosses. So we
recommend that collection of robust design information always be seriously consid-
ered. Robust design sampling can be integrated with other elements of sampling
in seabird colonies. For example, nest success monitoring can be combined with
robust design sampling of adults. With field-readable bands, this can be more easily
accomplished because the presence of a particular individual on a nest can be ascer-
tained by reading the leg band, and the nest status can be determined at the same
time.

The approach we took to optimizing study design can be usefully applied in a
variety of circumstances. Results will vary for different species, where different
amounts of effort would be required to accomplish sampling tasks. Furthermore, as
we found in our results, planned study length will also strongly influence the optimal
study design. Seed data similar to what we used here for constructing simulations
can be gathered in a relatively short amount of time, and can be highly valuable in
determining the optimal use of study resources. Simulation code for conducting the
simulations described herein, and for analyzing LIRD data in Program MARK, can
be obtained by contacting the first author.
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Non-random Temporary Emigration
and the Robust Design: Conditions for Bias
at the End of a Time Series

Catherine A. Langtimm

Abstract Deviations from model assumptions in the application of capture–
recapture models to real life situations can introduce unknown bias. Understanding
the type and magnitude of bias under these conditions is important to interpreting
model results. In a robust design analysis of long-term photo-documented sighting
histories of the endangered Florida manatee, I found high survival rates, high rates of
non-random temporary emigration, significant time-dependence, and a diversity of
factors affecting temporary emigration that made it difficult to model emigration in
any meaningful fashion. Examination of the time-dependent survival estimates indi-
cated a suspicious drop in survival rates near the end of the time series that persisted
when the original capture histories were truncated and reanalyzed under a shorter
time frame. Given the wide swings in manatee emigration estimates from year to
year, a likely source of bias in survival was the convention to resolve confounding
of the last survival probability in a time-dependent model with the last emigration
probabilities by setting the last unmeasurable emigration probability equal to the
previous year’s probability when the equality was actually false. Results of a series
of simulations demonstrated that if the unmeasurable temporary emigration proba-
bilities in the last time period were not accurately modeled, an estimation model
with significant annual variation in survival probabilities and emigration proba-
bilities produced bias in survival estimates at the end of the study or time series
being explored. Furthermore, the bias propagated back in time beyond the last two
time periods and the number of years affected varied positively with survival and
emigration probabilities. Truncating the data to a shorter time frame and reanalyzing
demonstrated that with additional years of data surviving temporary emigrants even-
tually return and are detected, thus in subsequent analysis unbiased estimates are
eventually realized.

Knowing the extent and magnitude of the potential bias can help in making deci-
sions as to what time frame provides the best estimates or the most reliable oppor-
tunity to model and test hypotheses about factors affecting survival probability.
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To assess bias, truncating the capture histories to shorter time frames and rean-
alyzing the data to compare time-specific estimates may help identify spurious
effects. Running simulations that mimic the parameter values and movement condi-
tions in the real situation can provide estimates of standardized bias that can be
used to identify those annual estimates that are biased to the point where the 95%
confidence intervals are inadequate in describing the uncertainty of the estimates.

1 Introduction

Capture–recapture estimates of survival probabilities with the Cormack–Jolly–
Seber (CJS) model can be biased in the presence of non-random temporary emigra-
tion (Kendall et al. 1997). The extension of the robust design (Pollock 1982)
capture–recapture framework to model temporary emigration (Kendall et al. 1997)
has improved survival estimation, as well as advanced our ability to answer
questions and test hypotheses about factors affecting movement and survival.
Nonetheless, deviations from the model assumptions in the application of models to
real life situations can introduce unknown bias. Understanding the type and magni-
tude of the bias under these conditions is important to interpreting model results.
Robust estimates of changes in annual rates of survival and movement are critical to
both biological and legal assessments of population status.

Here I present the results of a robust design analysis of photo-documented
sighting histories of the Florida manatee (Trichechus manatus latirostris). Estimates
of annual adult survival rates and how they vary temporally are key components in
population models used to assess status and recovery of this federally-listed endan-
gered species (Runge et al. 2004). Previous analysis of manatee data for one subpop-
ulation under the standard (CJS) model identified significant annual variation in non-
random temporary emigration rates and possible bias in survival estimates, which
threw suspicion on a highly ranked model of declining trend in survival (Langtimm
et al. 2004). However, annual survival probabilities estimated in this study under
a robust design framework that allows for estimation of temporary emigration also
showed similar, but less severe, suspect low estimates near the end of the time series,
which again either could be due to a real decline or an artifact from biased estimates.
To determine the nature of the low estimates, I implemented a series of Monte Carlo
simulations of robust design data to mimic the manatee system and identified a
source of bias. With additional simulations I explored factors that affect the magni-
tude and proliferation of the bias back through time and examined approaches to
reduce bias.

The Florida manatee’s biology and our current monitoring program present what
may be an unusual case of high and extremely variable non-random temporary
emigration. Delineating bias for special cases, however, can alert others to poten-
tial bias in their own systems, and lead to caution and improvements in current
applications. Most importantly, understanding the performance of models with
regard to annual estimation during long time series is crucial, as long-term studies
designed specifically for analysis with capture–recapture models are becoming



Non-random Temporary Emigration and the Robust Design 747

more common. Furthermore, many long-term monitoring studies focus on large,
long-lived endangered or threatened species with life history strategies of relatively
constant, high adult survival, which tend to be the most sensitive/influential compo-
nent of population growth rate.

2 Methods

2.1 Monitoring and Data Acquisition

Annual adult manatee survival rates are estimated from a long-term photo-
identification monitoring program where individuals are identified by unique
features, most often healed scars acquired from boat strikes (Langtimm et al. 2004).
Sighting records, images, and life history information of individuals are entered
into the Manatee Individual Photo-identification System (MIPS), a multi-partner
database maintained by the United States Geological Survey, the Fish and Wildlife
Research Institute of the Florida Fish and Wildlife Conservation Commission, and
Mote Marine Laboratory.

Photographs are taken annually at several primary winter aggregation sites. In
summer manatees are dispersed along the coast of Florida and the southeastern
United States where they forage on seagrass and freshwater aquatic vegetation
(Hartman 1979). In winter the manatee’s home range contracts to areas near a
limited number of natural and industrial warm-water discharge sites, which mana-
tees primarily use when water temperatures drop below 20oC. Manatees are tropical,
and at their northern limits in Florida are subject to death and debilitating effects
from cold stress during extended periods of cold weather (Buergelt et al. 1984;
Bossart et al. 2002). These seasonal movements and mass attraction to warm-water
facilitate photo-identification and monitoring.

Casting the biological and sampling system in terms of robust design capture–
recapture models, the study areas consist of very small areas in and around the
warm-water sites, where photographers have access to manatees through an under-
water or telephoto lens. Manatees are not resident to these sites for the entire winter,
but move in and out of the sites according to their physiological needs for warm
refuge, forage, and fresh drinking water. Manatees beyond the limits of camera
range are not in the study area and are not available for capture. With regard to
defining what constitutes a temporary emigrant, the manatee situation is analogous
to the example presented by Kendall et al. (1997) on white-footed mice and torpor.
With the mice, some individuals could be considered “temporary emigrants” during
cold periods if they remain underground (potentially in torpor) during trapping
occasions. In the manatee case, some individuals could be considered “temporary
emigrants” if during warmer winters they do not frequent the sampled high quality,
primary refuges and instead rely on unsampled lower quality secondary refuges
nearer to seagrass beds, freshwater, or other resources. Other factors could produce
temporary emigrants as well, such as changes in warm-water discharges at power
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plants due to electricity demand and market forces or down-time for maintenance.
It has also been proposed that hurricane strikes could displace individual manatees
into poorly monitored areas due to storm-generated currents or storm-related loss of
habitat, and may account for some of the correlation of lower adult apparent survival
rates with years of extreme storms (Langtimm and Beck 2003).

Although variation in temporary emigration is most likely non-random among
years (open population among primary periods), the movement and detection of
individual manatees using the warm-water sites within a season is most likely a
random process (closed population within the primary period). Manatees prone to
use warm-water sites in a given year should continually enter those sites during
the coldest periods, where field personnel randomly photograph individuals within
view. Thus the manatee system should meet the assumptions for analysis with a
closed robust design framework.

2.2 Robust Design Analysis

I constructed capture histories for a first analysis employing the CJS model for
two regional subpopulations in Florida: Northwest Gulf Coast (NW, 22 years of
data) and Atlantic Coast (AC, 18 years of data). These subpopulations are spatially
distinct and rely on different types of warm-water refuges. In the NW, large warm-
water artesian springs dominate; while on the AC artificial warm-water effluents
from power plants are primary refuges. These two regions also differ in popu-
lation attributes, habitat, and threats to manatees (O’Shea and Langtimm 1995);
thus comparative analysis can be useful in discerning if temporary emigration and
effects on bias in survival estimates is a potential problem for analysis of all Florida
manatee subpopulations. Data selection criteria and protocols are described in Lang-
timm et al. (1998, 2004). Multiple sightings of individuals during a winter sample
are routine, and for this analysis I collapsed the data to represent one sighting per
sampling occasion.

I used the goodness-of-fit (GOF) tests of U-Care 2.2 (Choquet et al. 2005) to
assess the fit of the data to the most general CJS model. Schaub et al. (2004) demon-
strated that subtest 2.Ct has good power to detect Markovian temporary emigration
(probability of being an emigrant depends on whether or not an individual was an
emigrant on the previous occasion). The significant lack of fit suggested non-random
emigration within these 2 subpopulations and led me to use the robust design to
model and estimate manatee temporary emigration and survival.

I rearranged the photo-identification data to conform to a robust design by
partitioning the multiple-sightings during each winter (primary period) into two
secondary surveys of equal length. I applied the multi-state robust design temporary
emigration model, with Huggins closed captures, to the new capture histories using
Program MARK (White and Burnham 1999; Kendall 2001).

The model is composed of capture probabilities (p), movement probabilities
(Ψ ) and survival probabilities (S). I used a step-down approach to evaluate each
of these parameters (Lebreton et al. 1992), first keeping temporary emigration and
survival general, I determined the top model among candidate capture probability
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models and then using that capture probability structure, I compared each of the
candidate models of temporary emigration and finally of survival probabilities. For
within period capture probabilities, I allowed p to vary between the two surveys and
set pt = ct (where p is the probability of initial capture and c is the probability of
recapture). I then evaluated two models of variation in capture probabilities among
the primary periods; one constant (p.*) and the other time specific (pt*).

Temporary emigration in this model is further specified as two parameters condi-
tional on the state of a given animal at time t: Ψ t

OU = the probability that an animal
observable in the study area in period t emigrates out of the study area and is
unobservable for period t + 1; Ψ t

UU = the probability that an emigrant out of the
study area in period t and unobservable remains away from the study area and is
unobservable in period t + 1. Temporary emigration is random when Ψ OU = Ψ UU

(Kendall et al. 1997); the larger the difference between Ψ OU and Ψ UU, the greater
the Markovian effect. I evaluated the following temporary emigration models: (1)
no temporary emigration (Ψ OU = Ψ UU = 0), (2) time-invariant random temporary
emigration (Ψ OU = Ψ UU), (3) time-specific random temporary emigration (Ψ OU

t =
Ψ UU), (4) time-invariant Markovian emigration (Ψ OU , Ψ UU ), and (5–7) three vari-
ants of time-specific Markovian emigration (Ψ OU

t , Ψ UU
t ), (Ψ OU, Ψ UU

t ), (Ψ OU
t ,

Ψ UU). When Markovian temporary emigration is time-specific, the last estimate of
Ψ OU and Ψ UU are confounded with survival in models with time-specific survival
probabilities. Following Kendall et al. (1997), I set the final two emigration proba-
bilities as equal (Ψ OU

T = Ψ OU
T −1 and Ψ UU

T = Ψ UU
T −1) to resolve this confounding. Alter-

natively, Kendall (2006) recommends constraining the last emigration estimates to
be functions of one or more covariates that would better predict what the unmea-
surable temporary emigration probabilities were between the last 2 primary periods.
Although some hypotheses about factors affecting manatee temporary emigration
have been proposed, in this analysis I elected to use the time-specific model results
for an exploratory examination of patterns and to identify possible covariates for use
in future analyses.

I evaluated two models of survival (S) – one time-specific (St) and the other
time-invariant (S.). The time-specific model is important because it is the basis for
estimates of temporal variance (Langtimm et al. 2004) necessary for the construc-
tion of manatee population models used in assessments of population dynamics and
status (Runge et al. 2004). Under the multi-state robust design, survival probabilities
for unobservable and observable animals were set equal (SU

i j = SO
i j , Kendall and

Nichols 2002).
I used Akaike’s Information Criterion adjusted for small sample size (AICc,) and

normalized Akaike weights to evaluate the evidence for a given model relative to all
the other candidate models (Burnham and Anderson 1998). Maximum-likelihood
was used for estimation of parameters and their standard errors.

2.3 Truncation of Data to Test for Bias

Examination of the annual survival point estimates indicated a suspicious drop in
survival near the end of the 20 year study under the time dependent survival model
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for both the CJS and robust design approach. To test for a spurious effect, I right
truncated the capture histories to span fewer years of data, reran the best models
under the robust design model, and generated new survival estimates for comparison
to estimates in the first analysis. By truncating the capture histories, estimates for
years in the middle of the original time series, now occurred at the end. If the model
was accurately estimating annual survival probabilities, the point estimate for any
given year in either the full or truncated datasets should be similar regardless of its
location at the end or middle of the time series. A large change in a point estimate
when moved to the end of the series could indicate some source of bias affecting the
analysis.

2.4 Monte Carlo Simulations

To examine expected bias and precision of parameter estimates of the robust
design models I conducted Monte Carlo simulations, using the simulation option
in Program MARK (Cooch and White 2006). I used time-invariant robust design
models to generate capture histories to study the conditions I had identified in the
manatee system. By constraining the underlying values to be constant, it made it
easier to examine bias under time-dependent estimation models, which I found to
be important in previous analyses of manatee data (Langtimm et al. 1998, 2004).
The models and values to generate data (Tables 1–2) included high annual survival
rate and significant annual variation in Markovian temporary emigration. For all true
models I considered 12 primary periods with 2 secondary surveys with 500 newly
released individuals at each capture occasion (a total of 24 capture occasions).
I held survival probabilities constant (S.) and capture probabilities constant (p* =
0.5) and modeled temporary emigration as Markovian with Ψ OU < Ψ UU. In one
scenario I held emigration probabilities constant over time (Ψ OU,Ψ UU); in another
set of scenarios I mimicked significant annual variation in migration probabilities by
alternating between two sets of values for Ψ OU and for Ψ UU. All generated capture
histories from the true models were evaluated with the estimation model St, Ψ OU

t ,
Ψ UU

t , p*. . , with survival probabilities for unobservable and observable animals set
equal (SU

i j = SO
i j ) Kendall and Nichols (2002). Because the last emigration proba-

bilities were confounded with the last survival probability under the time-dependent
model, following Kendall et al. (1997) I constrained the final two emigration prob-
abilities as equal (Ψ OU

T = Ψ OU
T −1 and Ψ UU

T = Ψ UU
T −1). I also evaluated additional

estimation models, in which no or alternative constraints were placed on the last
annual emigration probabilities.

I calculated absolute bias (difference of parameter estimate from the true value)
and coefficient of variation (CV) for the annual survival estimates. I also calcu-
lated the standardized bias (the ratio of absolute bias/standard error) to evaluate the
expected coverage of the estimated 95% confidence interval under the estimated
bias. If the standardized bias is ≤ 0.5, the effect on coverage of the 95% confidence
intervals is negligible (Cochran 1963:14, Burnham et al. 1987:284).
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3 Results

3.1 Robust Design Model Outcomes

The global GOF test for the CJS model was significant for both regional subpopu-
lations (NW: χ2

98 = 143.066, P = 0.002, ĉ = 1.6; AC: χ2
136 = 342.032, P < 0.0001,

ĉ = 2.5). Subtest 2.Ct was significant for both the subpopulations (NW: χ2
20 =

46.516, P = 0.0007; AC: χ2
17 = 144.391, P < 0.0001), indicating non-random

temporary emigration as a probable cause for the lack of fit. The variance infla-
tion factor calculated from the test 2.Ct results showed a larger effect of temporary
emigration on GOF for the AC (ĉ = 8.5) as compared to the NW (ĉ = 2.3).

Non-random temporary emigration was substantiated with the model selection
results in the robust-design analysis for both regions, suggesting a pattern of emigra-
tion common to the Florida manatee. For both regions, the best models included
Markovian movement (temporary emigration). There was no support for random
movement (Akaike weights <0.00001) or permanent emigration (i.e. models with
no temporary emigration, Akaike weights <0.00001). For the AC, the best Marko-
vian model included significant annual variation in probabilities of being out of
the study area for both new emigrants (Ψ OU) and emigrants of the previous year
(Ψ UU) (Akaike weight = 0.735). For the NW however, variation was negligible for
new emigrants, but significant for emigrants of the previous year (Akaike weight =
0.999). Examination of the annual point estimates of Ψ OU and Ψ UU (Figs. 1 and 2)
shows several interesting patterns. In both regions, generally the differences in
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Fig. 1 Annual probabilities of Ψ OU
t (�) and Ψ UU

t (�) and SE for Florida manatees on the Atlantic
Coast of Florida estimated under the robust design model St, Ψ OU

t , Ψ UU
t , ct = pt, where Ψ OU

T =
Ψ OU

T −1 and Ψ UU
T = Ψ UU

T −1 (T = 19 years, Akaike weight = 0.735). Ψ OU
t = the probability that an

animal observable in the study area in period t emigrates out of the study area and is unobservable
for period t + 1. Ψ UU

t = the probability that an animal out of the study area in period t and unob-
servable remains out of the study area and is unobservable in period t + 1. Temporary emigration
is random when Ψ OU

t = Ψ UU
t ; the larger the difference between Ψ t

OU and Ψ t
UU, the greater the

Markovian effect
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Fig. 2 Annual probabilities of Ψ OU
t (�) and Ψ UU

t (�) and SE for Florida manatees in Northwest
Florida estimated under the robust design model S., Ψ OU

. , Ψ UU
t ct = pt, (T = 22 years, Akaike

weight = 0.999). Ψ OU = the probability that an animal observable in the study area in period t
emigrates out of the study area and is unobservable for period t +1. Ψ UU

t = the probability that
an animal out of the study area in period t and unobservable remains out of the study area and is
unobservable in period t + 1. Temporary emigration is random when Ψ OU

t = Ψ UU
t ; the larger the

difference between Ψ OU
t and Ψ UU

t , the greater the Markovian effect

probabilities are quite pronounced betweenΨ OU andΨ UU, and in most casesΨ OU <

Ψ UU, i.e. there is a much higher probability for manatees to remain away from the
study area, than to leave if they were present the previous year. Although the SE is
large for some of the annual estimates, it is apparent that emigration probabilities
can vary broadly from year to year, particularly for individuals absent the previous
year.

Based on the differences in manatee aggregation behavior and variable moni-
toring effort between warm and cold winters, it was expected that the best models
of capture probability included significant annual variation, and indeed, there was
no support for constant capture probabilities (Akaike weights < 0.0001). The best
survival model under time-specific capture probabilities and time-specific Marko-
vian emigration (St, Ψ OU

t , Ψ UU
t , ct = pt) contained significant annual variation for

the AC (Akaike weight = 0.735), but time-invariant survival probabilities (S., Ψ OU
. ,

Ψ UU
t , ct = pt) for the NW (Akaike weight = 0.999).

3.2 Annual Survival Estimates After Truncation
of Capture Histories

Examination of the annual survival probabilities for the Atlantic Coast estimated
under the time-specific model indicated high survival rates, but with a large drop at
the end of the 20-year time series. After truncating the capture histories to shorter
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Fig. 3 Annual survival probabilities for Florida manatees on the Atlantic coast estimated under
the robust design model St, Ψ OU

t , Ψ UU
t , ct = pt, where Ψ OU

T = Ψ OU
T −1 and Ψ UU

T = Ψ UU
T −1 before

and after the capture histories for the 20 year study (�) were truncated to 17 (�) and 9 (–) years.
Arrows identify the final survival estimate for each set of time series

time frames of 17 and 9 years, lower survival probabilities near the end of these
shorter series remained (Fig. 3).

3.3 Bias and Coefficients of Variation

Because the last few annual survival estimates appeared to change with additional
years of data, a possible source of bias was the constraint I placed on the last two
emigration parameter estimates, namely setting Ψ OU

T = Ψ OU
T −1 and Ψ OU

T = Ψ UU
T −1.

Given the wide swings in manatee emigration estimates from year to year (Figs. 1
and 2) it was likely that the equality constraint was not realistic and the bias intro-
duced to those final two emigration estimates also biased the survival estimates. The
series of simulation analyses supported this assumption. Annual survival estimates
were unbiased under the time-dependent estimation model, if Markovian tempo-
rary emigration in truth was constant over time (Scenario 1, Table 1). However if
emigration varied between consecutive years, the estimation model produced biased
estimates at the end of the series that propagated back through more than the last
two survival estimates. Bias was evident, regardless of the value of the survival
rate; however, both the magnitude of the bias and the number of biased estimates
increased as true survival probability increased (Scenarios 2–4, Table 1). Standard-
ized bias was greater than 0.50 (with reduced coverage in the 95% confidence inter-
vals) for the last 5 years at a survival rate of 0.95; for the last 3 years at a survival
rate of 0.70; but only for the last year at a survival rate of 0.50.

Note that Scenarios 2–4 (Table 1: time-dependence by alternating two values
for Ψ OU and two for Ψ UU)were run with the order of the true values for the last
estimates of Ψ UU set to 0.50 and 0.75 and Ψ OU set to 0.3 and 0.5. By constraining
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the last two probabilities as equal in the estimation model, emigration probability
in the last time period should be biased lower, while emigration in the previous
period should be biased high. Survival estimates for these time periods under this
situation were negatively biased (Table 1), resulting in the spurious appearance of a
downward trend. Reversing the order of the values of the last two Ψ UU to 0.75 and
0.50, and Ψ OU to 0.50 and 0.30 would reverse the direction of known bias in emigra-
tion probabilities for these time periods; consequently survival estimates under this
situation showed a positive bias at the last time period, but negative bias in the years
before (Scenario 6, Table 2). Applying the estimation model to datasets describing
other situations with a known inequality between the last two emigration probabil-
ities resulted in biased survival estimates at the end of the time series; however the
magnitude of bias differed. Lowering the emigration probabilities and reducing the
difference in true values between the last two time periods for Ψ OU (0.2 and 0.3)
and Ψ UU (0.3 and 0.4) reduced the bias to only the last year (Scenario 5, Table 2).
If Ψ OU was held constant and only Ψ UU was time-specific (Scenario 7, Table 2),
or the reverse (Ψ OU time-specific and Ψ UU constant), survival estimates were still
biased at the end of the series. However, if emigration probability for the last time

Table 3 Comparisons of bias and coefficient of variation (CV) in annual survival probabilities
for the robust design model of time-dependent survival and time-dependent Markovian temporary
emigration, St, Ψ t

OU, Ψ t
UU, ct = pt, with different constraints for the final Ψ OU and Ψ UU. The esti-

mation models are evaluated for data generated with Monte Carlo simulations of constant capture
probability of 0.5, constant survival of 0.95, and with time-dependent temporary emigration, Ψ OU

and Ψ UU, alternated over time between the two values listed, with the final time period ending with
the higher value. In Scenario 8, no constraints are placed on the estimation model. In Scenario 9, the
last emigration estimates are constrained to the true value at T–2. Absolute bias = mean estimate
–true value, standardized bias = absolute bias/mean SE of the estimate (Burnham et al. 1987:215),
%CV = mean SE/mean estimate X 100. Values in bold highlight CVs with unusually high values
indicative of high SE that make the survival estimates meaningless

Scenario 8: Estimation Model: No
Constraints

Scenario 9: Estimation Model: Last emigration
rates constrained to a true equality

Ψ OU = 0.30, 0.50 Ψ OU = 0.30, 0.50
Ψ UU = 0.50, 0.75 Ψ UU = 0.50, 0.75
replicates = 500 replicates = 500

S year
Absolute
bias

Standardized
bias %CV

Absolute
bias

Standardized
bias %CV

1 0.000 0.000 1.9 –0.004 –0.222 1.9
2 –0.001 –0.077 1.4 –0.003 –0.231 1.4
3 0.000 0.000 1.4 –0.004 –0.333 1.3
4 0.000 0.000 1.2 –0.004 –0.400 1.1
5 –0.002 –0.065 3.3 –0.003 –0.273 1.2
6 –0.001 –0.037 2.8 –0.004 –0.400 1.1
7 –0.012 –0.075 17.0 –0.003 –0.214 1.5
8 –0.010 –0.079 13.5 –0.003 –0.214 1.5
9 –0.060 –0.077 88.1 –0.005 –0.167 3.2

10 –0.048 –0.082 65.0 –0.002 –0.057 3.7
11 –0.165 –0.071 295.4 –0.005 –0.143 3.7
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period was constrained to a year where the equality was indeed true, annual survival
estimates were unbiased (Scenario 9, Table 3). If no constraints were placed on the
last estimates, the standard errors were too broad yielding the last survival estimates
meaningless (Scenario 8, Table 3).

4 Discussion

The analysis of the real manatee datasets identified and described a biological
system with strong annual variation in non-random temporary emigration. Our
unusual monitoring system, where cold weather is the only inducement to draw
manatees into our extremely small “study areas” at spatially dispersed warm-water
sites, undoubtedly contributes to the magnitude of the observed Markovian vari-
ation. In both regions, there is a much higher probability for manatees to remain
away from the study area, than to leave if they were present the previous year.
This makes sense in that individuals have different home ranges, which will vary
in availability and quality of secondary passive thermal refuges that can be used in
lieu of the monitored primary refuges. Use of these secondary sites will vary with
overall winter severity. Telemetry studies (Deutsch et al. 2003) indicate that mana-
tees have high fidelity to their seasonal home ranges. If we were able to sample
individuals in a larger study area that included their foraging areas, and not just
their winter refuges, undoubtedly more individuals in the global population would
be observable compared to those of the present design. Potentially this would reduce
the magnitude of the difference between Ψ OU and Ψ UU, and reduce bias in survival
rates as seen in simulation Scenario 5 (Table 2). Logistical constraints however limit
our ability to effectively sample outside the refuges.

Although, our sample design may be unusual compared to other wildlife species,
the combination of high survival rates, high rates of non-random temporary emigra-
tion, significant time-dependence, and a complexity of potential factors affecting
emigration making it difficult to model temporary emigration in any meaningful
fashion may be common to other species. The simulations presented here to examine
bias under those conditions are not all inclusive of the range of possible scenarios,
but this case study presents an approach and conclusions that can be useful to a
broader suite of studies.

Results of the Monte Carlo simulations demonstrated that if the unmeasurable
temporary-emigration probabilities in the last time period are not appropriately
constrained, an estimation model with annual variation in survival can produce
bias in some of the survival estimates at the end of the study. Examination of
the sampling variance–covariance matrix for each of the original analyses and
of select simulations showed decreasing covariance of the last survival estimate
to each preceding survival estimate. This attenuating covariance illuminates why
there is attenuation in bias in survival estimates with decreasing time. Comparing
covariance of the last Ψ OU and Ψ UU showed the highest dependence on survival
parameters, with decreasing dependence moving back through time in the annual
estimates. The pattern of covariance is easily discerned from examination of the
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Table 4 Cell probabilities underlying the primary period capture–recapture data for Markovian
temporary emigration, summarized in mij–array format under the robust design (taken from
Kendall et al. 1997). φi = probability of an animal in the superpopulation in period i surviving
to, and remaining in the superpopulation at period i + 1; Ψ i

OU = probability that a nonemigrant
at time i is a temporary emigrant at i + 1; p*i = probability that an animal is caught at least
once in primary occasion i, given that the animal is in the population during that sampling period;
fh+1 = a 1 X 2 vector of probabilities of not being captured during the first primary period after
release (period h + 1), given that an animal survives from primary period h to h + 1 and is in the
superpopulation at h + 1; Gi = a 2 X 2 transition matrix of probabilities that an animal is outside
the study area but not captured in primary period i = h + 2, h + 3, . . ., K–1, given that it is outside
or inside the study area in primary period i – 1, survives to period i, and is in the superpopulation
in both periods; dj = a 2 X 1 vector of probabilities of an animal being in the study area in primary
period j, given that it is either outside or inside the study area in primary period j – 1 and survives
to period j. When Ψ OU

T = Ψ OU
T −1 and Ψ UU

T = Ψ UU
T −1 is assumed but false in the time-dependent

estimation model, (1 – Ψ OU
i ) and dj in primary periods 4 and 5 are biased and affect the estimation

of all φi in the cell probabilities for those periods

Primary period of next recapture

Primary period
of release 2 3 4 5

1 φ1(1 − Ψ OU
1 )p∗

2 φ1 f2φ2d3 p∗
3 φ1 f2φ2G3φ3d4 p∗

4 φ1 f2φ2G3G4φ4d5 p∗
5

2 φ2(1 − Ψ OU
2 )p∗

3 φ2 f3φ3d4 p∗
4 φ2 f3φ3G4φ4d5 p∗

5

3 φ3(1 − Ψ OU
3 )p∗

4 φ3 f4φ4d5 p∗
5

4 φ4(1 − Ψ OU
4 )p∗

5

cell probabilities underlying the primary period capture–recapture data of the robust
design, as summarized in the mij -array format (Table 4). The cell probabilities for
individuals returning in the last period 5, when originally released at periods 1, 2,
or 3 incorporate estimates of the unmeasurable emigration probabilities in the last
period. Estimation of S1 through S4 in those cells is dependent on the estimate of
Ψ OU

T and Ψ UU
T . If setting the last two estimates as equal is not valid, those param-

eters are biased and will affect the estimation of the survival parameters in the cell
probabilities at time T (period 5 in Table 4) as well as at time T–1 (period 4 in
Table 4).

The simulation results demonstrated that the number of biased annual survival
estimates depended on both the true survival rate and the true emigration rates.
Maintaining high emigration rates, but decreasing the survival rates resulted in
fewer affected years (Scenarios 2–4, Table 1). Maintaining a high survival rate, but
decreasing the Markovian effect also resulted in fewer affected years (Scenario 2,
Table 1 compared to Scenario 5, Table 2). The results suggest the interaction of these
parameters influence how far the bias propagates back through the annual survival
estimates. Examination of the cell probabilities in Table 4 shows why this is true.
If released individuals have high survival and a high probability of emigrating and
staying away, eventually they will return to the study area. If the number of returned
emigrants (1–Ψ UU) in each of the last two cells is large, the bias of parameters
derived from the improper constraint of setting the last two estimates of Ψ OU and
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Ψ UU will cause bias in the estimates of annual survival probabilities near the end
of the study. If survival rates are lower or temporary emigration rates are lower,
the number of returning emigrants is smaller, particularly for individuals released
earlier in the study, and the contribution of that cell to the overall estimation of S is
smaller or even negligible.

The convention to constrain the last two emigration estimates as equal (Kendall
et al. 1997) may not be the best option in the presence of significant annual vari-
ation in temporary emigration. As a preferred approach, Kendall (2006) suggested
modeling the last estimate as a function of predictive covariates. Nonetheless, if the
covariates do not accurately describe the variation, or some event affecting emigra-
tion in the last period is not immediately identified and adequately modeled (for
example displacement from an extreme storm), the time-specific survival rates still
could be biased. Another option would be to use radio-telemetry or some other
approach to monitor and estimate temporary emigration during the last period and
construct a joint likelihood incorporating both approaches. Detection rates are close
to one with telemetry and there is greater certainty on the location of individuals
inside and out of the study area. However, sample size will probably be an issue
due to the time, effort and expense of a tracking program. USGS manatee research
includes a successful satellite telemetry program (Deutsch et al. 2003), but it is not a
realistic option for the AC or NW areas. The number of individuals we could simul-
taneously monitor is small and the analysis would require monitoring individuals at
each of the aggregation sites where we conduct photo-documentation. This option,
however, may be appropriate for studies of other species. A final option would be
to use a random effects model, rather than a time-specific model for survival prob-
abilities. The random effects model accounts for the correlation that exists between
successive estimates and for variation in parameters across individuals. Use of such
a model would lessen the magnitude of bias due to the unmeasureable final param-
eters and provide better estimates of trend. This approach would provide valid esti-
mates of temporal variance necessary for population models, but does not allow one
to test for a fixed effect from a proposed mortality source that just recently occurred.
With increasing environmental variability and uncertainty with climate change and
human development, testing for fixed effects is becoming increasingly important.

If no other options are available to reduce bias, then constraining emigration
probabilities for the last two time periods may be the best approach. The propagation
of bias back through the time-specific survival rates, however, could be problem-
atic. The degree of bias one is willing to accept will depend on the objectives of
the analysis for research and management. The good news, however, is that with
additional years of data, unbiased estimates eventually should be realized. Nonethe-
less, regardless of bias or statistical fixes, inherently there will be less information
about survival at the end of the time series compared to the beginning, especially
for long-lived species. Later estimates will always show greater uncertainty.

Knowing the extent and magnitude of the potential bias can help in making deci-
sions as to what time frame provides the best estimates to meet the objective, or
the most reliable opportunity to model and test hypotheses about factors affecting
survival. To assess bias, I recommend the two approaches I took in this study. First,
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truncating the capture histories to shorter time frames and reanalyzing the data to
compare time-specific estimates may help identify spurious effects. Second, running
simulations that mimic the parameter values and movement conditions evident from
the initial analysis provide estimates of standardized bias that can be used to iden-
tify those annual estimates that are biased to the point where the 95% confidence
intervals are inadequate in describing the uncertainty of the estimates. The simula-
tion option in Program MARK is easy to use and can greatly facilitate this type of
assessment.

Reducing the magnitude of the Markovian movement should help reduce bias,
given the results of Scenario 5 (Table 2). The biology and behavior of the study
animals determine a great deal of this and are beyond the control of the investigator.
However, sampling design and monitoring protocols may exacerbate the effect, and
this can be reviewed and possibly improved. With regard to our manatee research,
we hope to move to a more systematic monitoring schedule. With greater effort
during the warmer winters, we may be able to identify more individuals that visit
the aggregation sites. This should not only reduce the gaps in the sighting histories,
but also provide better representation for analysis of the movement behavior.
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One Size Does Not Fit All: Adapting
Mark-Recapture and Occupancy
Models for State Uncertainty

William L. Kendall

Abstract Multistate capture–recapture models continue to be employed with
greater frequency to test hypotheses about metapopulation dynamics and life history,
and more recently disease dynamics. In recent years efforts have begun to adjust
these models for cases where there is uncertainty about an animal’s state upon
capture. These efforts can be categorized into models that permit misclassification
between two states to occur in either direction or one direction, where state is certain
for a subset of individuals or is always uncertain, and where estimation is based
on one sampling occasion per period of interest or multiple sampling occasions
per period. State uncertainty also arises in modeling patch occupancy dynamics.
I consider several case studies involving bird and marine mammal studies that illus-
trate how misclassified states can arise, and outline model structures for properly
utilizing the data that are produced. In each case misclassification occurs in only
one direction (thus there is a subset of individuals or patches where state is known
with certainty), and there are multiple sampling occasions per period of interest. For
the cases involving capture–recapture data I allude to a general model structure that
could include each example as a special case. However, this collection of cases also
illustrates how difficult it is to develop a model structure that can be directly useful
for answering every ecological question of interest and account for every type of
data from the field.

Keywords Capture–recapture · Disease model · Multistate models · Occupancy ·
State uncertainty

1 Introduction

Multistate mark-recapture models (MSMR), in which an animal is captured and
marked, then tracked over time through multiple locations or life history states,
were first developed in the early 1970s (Arnason 1972, 1973). They were more fully
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developed in the early 1990s (Schwarz et al. 1993; Brownie et al. 1993). Beginning
with a metapopulation study of geese (Hestbeck et al. 1991), they have been applied
in numerous studies to model survival, transitions between states, or state-specific
abundance. Lebreton et al. (1999) and Lebreton and Pradel (2002) conceptualized
death as an absorbing life history state, and therefore under this approach most
capture-mark-recapture models (CMR) become MSMR models.

Especially in taking the approach of Lebreton and Pradel (2002), several sources
of uncertainty about an animal’s state arise. Many of these revolve around the occa-
sions when an individual is not captured. Where an animal is missed at a given
occasion but it is captured before and thereafter, was it present in one of the states
subjected to capture effort but simply missed? Alternatively, at that time did it
occupy an unobservable state, where no capture effort was applied? For time periods
before an animal is first captured, was it present but not captured, or had it not yet
recruited into one of the states that were being monitored? Conversely, for occasions
after its last capture, was the animal available but not captured, had it temporarily
moved to an unobservable state, permanently dispersed outside of the set of observ-
able states, had its ring or other mark fallen off, or was it dead? These cases all
represent state uncertainty, and have been treated by several authors (see review by
Williams et al. 2002).

Other cases of state uncertainty occur on occasions where an animal is captured
or sighted. The animal is detected but there is uncertainty about which state it
occupies. For geographic states this is mostly not a problem, but can still arise.
For example, for breeding ground studies there could be animals captured in the
southern part of the breeding range where it is not clear whether they have reached
their breeding grounds or are transients on their way to sites further north. Similarly,
a migratory bird might be captured on the wintering grounds, but it is not clear to
which breeding population it belongs (see Kendall et al. 2006).

More commonly, uncertainty arises about a detected animal’s life history state.
For example, in breeding colonies it is not always clear if a sighted animal is a
breeder that year, a pre-breeder, or an adult who has skipped breeding that year.
Observing an individual feeding a chick on a nest might indicate a breeder with
certainty. Seeing an individual that is known to have nested in previous years elim-
inates the possibility that it is a pre-breeder, but does not by itself determine its
exact state. In addition, for disease studies it is not always clear upon inspection
whether or not an animal has a disease. A similar problem can arise for cases where
an animal’s state does not change. For sexually monomorphic species, many obser-
vations of an animal can be made without knowing its sex with certainty (Nichols
et al. 2004; Pradel 2005).

Ignoring state misclassification can cause substantial bias in survival and transi-
tion probabilities. Mistakenly assigning individuals to the wrong state will lower the
power to detect differences between survival probabilities for those states. Ignoring
an uncertain state will bias survival estimates for all states involved. For example,
through simulation Nichols et al. (2004) found that if the probability of assigning
a bird to the proper sex is 0.3 each time it was encountered, thus producing a
cohort of birds that are never sexed, survival estimates for males and females were
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positively biased by 8 and 12%, respectively (500 and 400% increase in mean square
error, respectively). Transition probabilities are also affected. In a study of manatees
Kendall et al. (2004) found that under a MSMR model conditional breeding prob-
ability was estimated to be 0.31, whereas when corrected for misclassification the
estimate was 0.43 (100% increase in mean square error).

In this paper I will focus on the case where state is not certain at the time of
detection. Pradel (2005, 2008) presented a general structure for this type of model,
where each period of interest consists of a single detection occasion. Under this
framework “events” (observed states) are accounted for in the process of modeling
vital rates and transitions among true phenotypic states. For perspective I will briefly
present an example of this type of model where an animal that occupies one of
two live dynamic states can be misclassified into the opposite state at any time.
Although the list of cases of misclassification that can be modeled under this general
framework is long, the list is not exhaustive. I present five case studies that do not
fall directly under this model structure. Three involve the modeling of captures of
individuals under a robust design approach. These three cases point to the value
of developing a robust design generalization of the Pradel (2005) model. The last
two cases involve occupancy modeling of disease, viewing them as misclassification
problems.

2 Dynamic States, One Capture Occasion per Period

Models correcting for misclassification of dynamic states can be viewed as adjusting
a MSMR model. Therefore, for perspective I first review the structure of an
Arnason–Schwarz MSMR model without misclassification. For a K-period study
let Sr

t = probability an animal in state r at time t lives to time t + 1 and remains
faithful to the population or metapopulation; ψrs

t = probability that an animal in
state r at time t transitions to state s at time t + 1, given that it lives to time t + 1; and
ps

t = probability that an animal in state s at time t is detected (e.g., captured). Below
I provide a simple example of a detection history over two periods, and its proba-
bility structure under the Arnason–Schwarz model, for an animal that can occupy
either of two states: diseased (D) and not diseased (N).

DD SD
1 ψ

DD
1 pD

2 (1)

I have purposefully provided a simple example, with a reminder that even with
two states, these probabilities become very complex quickly as the number of time
periods or states grows (Schwarz et al. 1993; Brownie et al. 1993).

Now assume that at each point in time, it is possible to mistake a diseased animal
for one without disease (e.g., it shows no clinical sign), or vice versa (an animal that
has recovered fully from a disease in terms of mortality risk still shows vestigial
clinical signs). To adjust the Arnason–Schwarz model for these possibilities we need
additional notation. Let π r

t1 = probability that an animal is in state r at time t1,
given that the investigator has captured it at that time; and δs

t2 = probability that an
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investigator assigns an animal to state s at time t2, given that the animal occupies
that state and is captured. In this case the probability structure for the history above,
conditional on release at time 1 in an apparently diseased state, becomes:

DD π D
1 [SD

1 ψ
DD
1 pD

2 δ
D
2 + SD

1 ψ
DN
1 pN

2 (1 − δN
2 )]

+ (1 − π D
1 )[SN

1 ψ
N D
1 pD

2 δ
D
2 + SN

1 ψ
N N
1 pN

2 (1 − δN
2 )] (2)

The first and second terms describe the cases where the true state of the individual
at time 1 is diseased or not diseased, respectively. Within each set of brackets the
first and second terms refer to the cases where the state assignment at time 2 is
correct and incorrect, respectively. So π D

1 SD
1 ψ

DN
1 pN

2 (1 − δN
2 ) represents the case

where the animal is diseased at time 1 (π D
1 ), survives to time 2 (SD

1 ), recovers from
the disease (ψDN

1 ), is detected at time 2 (pN
2 ), but is misclassified as still being

diseased (1 − δN
2 ).

This model is a simple case of the very general model of Pradel (2005). He found
that without further information, if the state of the animal does not change over
time (e.g., sex), under maximum likelihood exactly two combinations of parameters
produce the minimum deviance. The biologically realistic set of values is chosen by
the investigator. When sex was known with certainty for a subset of animals in the
study, the problem of bimodal deviance disappeared (see also Nichols et al. 2004).
For another static state problem, Runge et al. (2007) corrected for misclassifica-
tion of species under a similar model where state does not change: classification
to species of vole (Microtus spp.). They had direct supplemental information on π r

t
and δs

t from a subset of study animals that died in the trap and could be examined for
species indicators internally. For dynamic states involving misclassification, if true
state were not known for a subset of individuals one would expect the multimode
problem to be exacerbated.

3 Dynamic States, Multiple Capture Occasions per Period

The following case studies have three things in common. First, each is conducted
under a robust design (Pollock 1982; Schwarz and Stobo 1997; Kendall and
Bjorkland 2001), consisting of multiple sampling occasions for each period of
interest. Relatedly, the state of an individual is assumed to remain static for the
duration of a primary period (Kendall 2004). Second, in each case misclassifica-
tion occurs in only one direction. For example, state 1 can be mistaken for state 2,
but state 2 is never mistaken for state 1. Therefore, there is a subset of animals at
each time period for which the true state is known (e.g., those assigned to state 1).
However, in each case we assume there is no set of animals in the opposite state
whose state is unambiguous through observation. Therefore assignment to state 2
is always ambiguous. In each case, an animal is assumed to occupy this ambiguous
state until a given definitive behavior is displayed. The correction for uncertainty is
based on the detection probability for that behavior, conditional on observing the
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individual across multiple sampling periods within a season. Third, in each case the
state structure of the population (or at least for those states accessible to sampling)
is estimated as a set of parameters in the model. In case three this state structure
among juveniles, not dynamics over time, is the focus of the analysis.

3.1 Breeding State of Florida Manatees

Kendall et al. (2003, 2004) considered a MSMR for adult female Florida mana-
tees (Trichechus manatus latirostris) that occupied one of two states: breeder (B)
and skipped breeder (b). Individual adult females were identified from photographs
taken by observers in the water or from a vantage point out of the water, based
on scar patterns created by boat propeller strikes. If a first year calf was in close
attendance when the photo was taken, then the adult was classified as a breeder. If
no young calf was seen, a calf was present but was considered >1 year old, or if it
was not clear to which adult a calf belonged, then the marked adult was assigned
to state b. By being conservative in assigning a calf to an adult female, one-way
misclassification was maintained. An assignment to the breeder state was unam-
biguous, whereas an assignment to non-breeder was ambiguous. In the terminology
of Pradel (2005, 2008) the “event” of a clearly attendant first-year calf maps directly
into the breeder state, whereas the events of an adult female apparently alone or with
an apparently older calf maps into either the breeder or skipped-breeder state.

The model in Kendall et al. (2004) is less restrictive than the model in Kendall
et al. (2003), and therefore is outlined here. The sampling effort for manatees is
intense during winter aggregations at warm-water sites. Observers make multiple
circuits of manatee winter range, taking photos. Therefore sampling effort can be
characterized as consisting of multiple sighting occasions within the season (i.e.,
a robust design). Kendall et al. (2004) partitioned sighting data within each year
into two sampling periods. The breeding state of a female was assumed to remain
constant within the season (i.e., no calves were born and a calf was assumed not to
wean during that time), thus calling for a closed population model within a season.
Therefore the Kendall et al. (2004) model consists of a multistate closed robust
design model, adjusted for one-way misclassification. I summarize this model
below.

Beginning with within-season modeling, for simplicity I present the probability
structure for two of the nine possible sighting histories within a year:

BB ωB
t pB

t1δ
B
t1 pB

t2δ
B
t2/denom

bb [ωB
t pB

t1(1 − δB
t1)pB

t2(1 − δB
t2) + (1 − ωB

t )pb
t1 pb

t2]/denom, (3)

where p and � are now defined on a secondary sampling period basis, and capture
history is conditioned on being captured at least once [denom = ωB

t (pBδ
t +

pB(1−δ)
t ) + (1 − ωB

t )pb
t ];ωB

t = the probability that an adult female manatee is a
breeder in year t, given that she is alive and part of the population; pBδ

t = 1 −
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j=1 (1 − pB

t jδ
B
t j ), the probability a breeder is seen with her calf at least once in the

season; pB(1−δ)
t = ∏2

j=1 (1 − pB
t jδ

B
t j ) − ∏2

j=1 (1 − pB
t j ), the probability a breeder is

seen at least once in a season but her calf is never seen; and pb
t = 1−∏2

j=1 (1 − pb
t j ),

the probability a skipped breeder is seen at least once in a season.
The parameters from within-season modeling are used to correct the MSMR

model between primary periods for misclassification. Simple examples of sighting
histories for two years are given below. In this case within-season histories are
pooled into one. If an adult were seen at least once with her first-year calf, then
her history would be a B (e.g., a history within season of Bb is treated as a B).
Otherwise she would receive a b or 0, depending on whether or not she were seen
during the season:

BB SB
1 ψ

B B
1 pBδ

2

Bb SB
1

[
ψ B B

1 pB(1−δ)
2 + ψ Bb

1 pb
2

]
bB

[
πb

1 Sb
1ψ

bB
1 + (

1 − πb
1

)
SB

1 ψ
B B
1

]
pBδ

2 , (4)

where πb
t = (1 − ωB

t )pb
t /[ωB

t pB(1−δ)
t + (1 − ωB

t )pb
t ], the probability that an adult

female detected in season t is not a breeder. Therefore all parameters in the likeli-
hood are defined at the secondary sampling level except the Sr

t and ψrs
t .

Note the relationship between the πb
t and ωB

t in the expression above, keeping in
mind Equation (2). ωB

t represents the probability that an adult female manatee is a
breeder, given that she is an adult and alive in season t. Conversely, πb

t represents
the probability an adult female manatee is a skipped breeder, given she is captured
in season t. Therefore, ωB

t represents stage structure (Caswell 2001), whereas πb
t

is simply a nuisance mixture parameter. Use of the robust design permits the direct
estimation of stage structure in this case.

3.2 Squatting Behavior in Kittiwakes

A misclassification problem similar to the manatee case arises in the study of colo-
nial nesting seabirds. Cam et al. (2002) characterized the life history of kittiwakes
(Ryssa tridactyla) as consisting of four life history stages after the chick stage: pre-
breeder, squatter, breeder, skipped breeder. A squatter is an advanced pre-breeder
that displays some nesting behavior when the owners of a nest are away from it.
Cam et al. (2002) found that individual squatters tended to be more successful future
breeders, thus distinguishing themselves from other pre-breeders in terms of fitness.
However, some squatters are misclassified as pre-breeders, because investigators do
not always see the squatting behavior.

In the case of the kittiwake in Cam et al. (2002), the field season can be parti-
tioned into multiple sampling occasions. Therefore, statistically the kittiwake case is
very similar to the manatee case, with two life history states involved with one-way
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misclassification (squatters can be mistaken for pre-breeders but not vice versa).
The kittiwake example is different only in that there are additional states in the
model that are not involved with misclassification (breeders and skipped breeders).

3.3 Weaning of Sea Lions

Estimating the proportion of Steller sea lion (Eumetopias jubatus) juveniles, by age,
that have been weaned in a given year (Pendleton et al. unpublished manuscript)
presents an estimation problem similar to the manatee and kittiwake problems.
Repeated surveys are done within a month, and then across multiple months within
a given winter, at the major aggregation site for the population. Observers search for
juveniles branded with unique codes. In some instances the juvenile is seen alone
or its association is not clear, and therefore it is tentatively classified as weaned. On
other occasions an observer might see the same juvenile suckling from its mother. In
this case the individual has clearly not weaned. Therefore a risk for misclassifying
animals exists. Although the state (W = weaned, N = not weaned) of the juvenile
might be considered static for the entire season (i.e., they do not wean during the
season), the collection of individuals at the aggregation site is not. The arrival time of
individuals, as well as their departure times, is staggered over time. Therefore an
open robust design (Schwarz and Stobo 1997; Kendall and Bjorkland 2001) is a
more appropriate starting point for modeling than a closed robust design.

I present below a simple example of an appropriate probability structure for
estimating the proportion weaned under the scenario described above. Consider
a winter where surveys of the sea lion population are conducted four times. The
first two occasions are spaced closely in time (perhaps a couple of days apart). The
next two occasions are also spaced close to one another, but occur in the following
month. Therefore enough time elapses between the pairs of surveys that new individ-
uals could arrive and some that were there during the first pair of occasions could
have departed. Under this scenario I provide two example sighting histories and
their probability structures, where event S denotes observed suckling, and event A
denotes observed alone:

00 SS ωN [βN
o (1 − pN

11)(1 − pN
12)φN

1 + βN
1 ]pN

21δ
N
21 pN

22δ
N
22/denom

AA 0A [(1 − ωN )βW
o pW

11 pW
12φ

W
1 (1 − pW

21)pW
22 +

ωNβN
o pN

11(1 − δN
11)pN

12(1 − δN
12)φN

1 (1 − pN
21)pN

22(1 − δN
22)]/denom, (5)

where ωN = probability a juvenile has not yet weaned, given that it is present in the
population; βN

i , β
W
i = probability an individual that is not weaned (N) and weaned

(W), respectively, arrives at the aggregation site before the first survey of month i
is conducted, given that it arrives at all; φN

i , φ
W
i = probability that a juvenile sea

lion that is not weaned and weaned, respectively, present during the two surveys in
month i is still present during the surveys in month i +1; δN

i j = probability a juvenile
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that is not weaned is seen suckling, given that the juvenile is sighted during survey
j of month i; and denom = the probability a sea lion is sighted ≥1 time during the
season:

ωN [βN
0 {1 − (1 − pN

11)(1 − pN
12)} + {βN

0 (1 − pN
11)(1 − pN

12)φN
1 + βN

1 }
{1 − (1 − pN

21)(1 − pN
22)}] + (1 − ωN )[βW

0 {1 − (1 − pW
11)(1 − pW

12)}
+ {βW

0 (1 − pW
11)(1 − pW

12)φW
1 + βW

1 }{1 − (1 − pW
21)(1 − pW

22)}].

This simple example could be extended to more surveys within a season in a
straightforward manner. If transitions from unweaned to weaned across years were
of interest, a between-years component could be developed as well. It would look
like the manatee corrected MSMR model above, except that the annual probabilities
of detection for each state would be composed of a different function of within-
season parameters.

4 One-Way Misclassification in Occupancy Modeling

Occupancy modeling involves the detection or nondetection of a group of interest
on a collection of well defined spatial units. This group is often a species or other
taxonomic group, but could be anything, including a disease. In recent years occu-
pancy modeling has included accounting for the possibility that the group of interest
was present at a spatial unit but was not detected (see MacKenzie et al. 2006).
A simple example of the most basic occupancy model of this type is illustrated
by the following example. To estimate occupancy, each spatial unit of interest is
surveyed for the group of interest multiple times (e.g., twice) over a short period of
time (so that the unit is occupied or not for both surveys).

Consider two possible detection histories that could result from two samples,
where a 1 indicates the group was detected and a 0 indicates it was not detected:

10 ψt pt1 (1 − pt2)

00 ψt (1 − pt1) (1 − pt2) + (1 − ψt ) . (6)

In this case I define ψt = the probability that a given unit is occupied at time t
(different from the definition of ψ provided in Section 2 but consistent with the
notation of Mackenzie et al. 2006), and pt j = probability the group of interest is
detected during survey j of time period t, given that the unit is occupied. For the
first example detection history in (6) the unit is clearly occupied because it was
detected at least once (during survey 1 but not survey 2). In the second example
history the group was not detected, so the first term of the probability structure is
the probability the group was there but not detected in either survey. The second
term describes the probability the unit was not occupied. Mackenzie et al. (2006)
describe more complicated models, including a robust design approach where local
extinction and recolonization are modeled over time.
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One can see the similarity between model structures 3 and 6, indicating a simi-
larity between occupancy modeling and correcting for misclassification in MSMR
models. Whereas δ in (3), the detection probability of a behavior, serves to correct
for misclassification in MSMR models, p in (6) serves to correct for a misclassifi-
cation of a spatial unit as occupied or not. Each also requires a mixture parameter
to account for an ambiguity about the state of an individual or the status of a patch.
However, even within occupancy modeling there is opportunity to refine the clas-
sification of an occupied spatial unit. I present two cases below. In the first case
occupancy is estimated and then conditional on a patch being occupied, it is further
classified into one of two states. In the second example occupancy is modeled at one
spatial scale, and then conditional on occupancy at that scale occupancy, at smaller
scales within that patch is estimated.

4.1 State Assignment in Disease Occupancy Modeling

In some cases there could be interest not only in the proportion of spatial units
occupied by a species, but in the prevalence of a disease among those areas where
the species exists. This case arose in considering the spread of West Nile Virus
(WNV) through northern spotted owl (Strix occidentalis caurina) habitat, via a
vector such as mosquitoes (Franklin, personal communication). The spatial units
of interest are owl territories. In each territory mosquito traps are set out over, for
example, two sampling occasions close together in time. If mosquitoes are captured
in the trap they are analyzed for the presence of the pathogen that causes WNV.
Below I present two example detection histories for these two samples. In this case
V indicates the vector (mosquito) was found in a territory, but the WNV pathogen
was not detected in these mosquitoes; D indicates the vector was found and the lab
analysis indicated the presence of the WNV pathogen; and 0 indicates the vector
was not found (and hence neither was the pathogen). Note that the pathogen cannot
be found if the vector is not. In this case the probability structure for three example
detection histories would be:
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) (
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) + (
1 − ψV

t

)
, (7)

where ψV
t = probability the vector is present in the owl territory at time period t;

ψ
D|V
t = probability the WNV pathogen is present in the territory at time period t,

given the vector is present; pV
t j = probability the vector is detected in sampling

period j of time period t, given it is present; and δD
t j = probability the pathogen is

detected in sampling period j of time period t, given it is present in the vector. In the
first history both the vector and the pathogen are present, so there is no uncertainty.
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In the second history only the vector is detected. Therefore the first term in the prob-
ability structure accounts for the pathogen being present and missed, and the second
term accounts for the pathogen being absent. In the third history the vector is not
detected (and therefore neither is the pathogen), so the two terms in the probability
structure account for the vector being present and missed and for the vector being
absent, respectively.

There are many applications in disease studies where this type of model could be
applied. However, the use of this misclassification model is not limited to disease
applications. This same model was independently developed by Nichols et al.
(2007), ironically for another population of spotted owls, where the parameters of
interest were the probability an owl territory was occupied by a mated pair (equiv-
alent to ψV

t above), and conditional on that occupancy, the probability that pair
successfully breeds (equivalent to ψ

D|V
t ). These models can be considered special

cases of the species co-occurrence models in MacKenzie et al. (2006).

4.2 Multilevel Sampling in Disease Occupancy Modeling

This case was motivated by the problem of designing a surveillance strategy for the
presence of a highly pathogenic avian influenza pathogen (HPAI) among waterfowl
in the continental United States. This is essentially an occupancy problem, where
waterfowl feces are collected and sent to a lab for analysis. There are several issues
to contend with in designing such a strategy (Farnsworth et al., unpublished report),
but I will focus on estimation issues at various levels. Consider for this example that
the primary measure of interest is the prevalence of HPAI across all 10-min blocks
in the continental USA. A sample of 10-min blocks from this frame is chosen for
assessment. Within each of those 10-min blocks multiple waterfowl refuges could
exist and be sampled. Within each refuge multiple wetlands could be sampled, and
within each of those wetlands multiple samples of feces could be collected. Viewing
it this way 10-min blocks, refuges, wetlands, and samples represent primary,
secondary, tertiary, and quaternary levels of sampling, respectively (Fig. 1).

In Fig. 1 I provide an example of possible detection histories for HPAI at the
various levels of sampling. At the top there is a 1, indicating that for 10-min
block i, HPAI was found. Looking below at the level of refuge, HPAI was detected
at refuge 2 but not refuge 1. Two wetlands were sampled within refuge 2, and
HPAI was found at both wetlands. Looking below again at the level of samples
within these two wetlands, for wetland 1 HPAI was detected in both samples but for
wetland 2 HPAI was detected in sample 1 but not sample 2. As in CMR problems,
at a given level detection in one sample but not in another implies that detection
probability for HPAI is <1.0.

To develop an occupancy model for this problem we begin at the level of refuge
within 10-min block i. At this level the detection history and probability structure
can be expressed as

01 ψi (1 − pi1)pi2
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0 0 1 1

0 0 0 0 1 1 1 0
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Refuge

Wetland
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1

Fig. 1 Example of occupancy data for an avian influenza pathogen in waterfowl, collected at
multiple nested spatial levels: 10-min block, refuge, wetland, and sample. A “1” indicates detection
of the pathogen at the specified spatial scale, and a “0” indicates nondetection

where parameters are defined as in the basic occupancy model with two samples (6).
However, here samples are collected across space instead of over time (MacKenzie
et al. 2006). At this stage we are potentially ignoring a source of misclassification.
Presence of HPAI is determined by laboratory analysis of the fecal samples. Given
that HPAI is present in the sample, the probability it is detected is potentially <1.0.
Here we ignore the potential of a false positive and define δH P AI = δAI δsubtypeδH P
as the probability that laboratory tests detect HPAI, given it is present in a sample.
As can be seen, this probability is a product of three other detection probabilities
associated with three steps in the lab procedure: δAI = probability a PCR test detects
that an avian influenza pathogen is present; δsubtype = probability that a subsequent
test for subtype correctly identifies it as H5 or H7 subtype; and δH P = probability
that a third test correctly determines that it is highly pathogenic. Lab experiments
can determine these detection probabilities and their variances. I will not address
that aspect here, but the statistical model used for the lab tests could be incorporated
into a joint likelihood with the occupancy model I describe here. The overall error
rate can then be incorporated into the occupancy model:

01 ψi (1 − pi1δ
H P AI )pi2δ

H P AI , (8)

so that pi j reflects the probability that HPAI is actually present in a given sample,
rather than including the probability it is properly detected. However sampling vari-
ability within a refuge is still included in pi j .

Extra information can be utilized by considering tertiary sampling within refuge,
across multiple flocks or wetlands. At this level the detection history consisted of
two samples for each refuge (Fig. 1):

00 11 ψi [ψi1(1− pi11δ
H P AI )(1− pi12δ

H P AI )+ (1−ψi1)]ψi2 pi21δ
H P AI pi22δ

H P AI

(9)
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whereψi j = conditional prevalence, the probability that HPAI is present at refuge j
of 10-min block i, given that it is present in 10-min block i; and detection probability
is modified to pi jk = probability HPAI is in the sample taken from wetland k at
refuge j in 10-min block i. Because multiple samples were taken within a refuge,
we have the potential to estimate how prevalent the disease is within an infected
geographic unit. The first two 0’s are ambiguous (it was present at refuge 1 and
missed or it was absent), which is reflected in the two terms within the brackets
in (9).

Because multiple samples are taken from each wetland, we can take one step
further down this cascade, to consider quaternary sampling. At this level the sample
detection history in Fig. 1 consists of four pairs: two samples per wetland, two
wetlands per refuge, two refuges within the 10-min block. The history and its asso-
ciated probability structure is
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1 − pi111δ
H P AI

) (
1 − pi112δ

H P AI
))}{
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1 − pi121δ
H P AI

) (
1 − pi122δ

H P AI
))} + (1 − ψi1)][

ψi2ψi21 pi211δ
H P AI pi212δ

H P AIψi22 pi221δ
H P AI

(
1 − pi222δ

H P AI
)]
(10)

where ψi jk = prevalence within a refuge, the probability that HPAI is present at
wetland k in refuge j of 10-min block i, given that it is present at refuge j; and
detection probability is modified to pi jkl = probability HPAI is in the sample l
taken from wetland k at refuge j in 10-min block i. The last line of (10) describes
the last two pairs in the detection history. It is detected at both wetlands in refuge 2,
so the refuge and both sampled wetlands within the refuge are clearly infected.
Therefore this part of the probability structure is straightforward. The first two lines
of (10) describe the ambiguous nature of all 0’s in the first two pairs within the
detection history. Refuge 1 might or might not be infected, represented by the first
and second terms within the bracket, and if the refuge is infected, the two sampled
wetlands within that refuge might or might not be infected. This model permits the
possibility that neither sampled wetland within a refuge is infected, but the refuge is
infected. If every wetland within every refuge were to be sampled (i.e., exhaustive
sampling within a refuge), then occupancy of a refuge could be written in terms
of occupancy of its wetlands [in this case ψi j = 1 − (1 − ψi j1)(1 − ψi j2)]. The
same would be true for refuges within 10-min block if sampling were exhaustive at
that level.

What is the value of developing this cascade of modeling levels, rather than
focusing on the simple corrected occupancy model presented in (8)? There are two
potential reasons: one from the epidemiological perspective and the other from the
statistical perspective. First, this cascade of sampling levels permits the develop-
ment of hierarchical epidemiological models. Especially given that HPAI could be
“dropped on” a 10-min block due to the migratory nature of waterfowl, knowing
how widespread the disease might be within that spatial unit could be of interest.
If the occupancy model I outlined here were extended to modeling occupancy
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dynamics, then the spread of the pathogen across and within 10-min blocks could
be modeled. Second, different factors could be driving detection or occupancy at
various levels of sampling. If so, different predictors might be used to model these
values at different levels. If these parameters are pooled (e.g., expression 8), this
might induce unspecified heterogeneity that is more difficult to model or account
for, thus inducing bias in estimates of occupancy at the level of the 10-min block.
As with any consideration of adding additional levels of modeling, its value will
depend on how much data are being collected at each level. How much effort would
be needed at each level is an open question.

5 Discussion

I began with a general expression (1) for describing misclassification between two
states that could go in either direction. A general framework for this is presented
in Pradel (2005, 2008) and associated software E-SURGE (Choquet et al. 2008),
assuming there is one sampling occasion per time period of interest. Knowing the
true state of at least a subset of individuals reduces or eliminates the problem of
multimodality in the deviance. This is achieved by the investigator selecting a subset
of individuals for confirming state (e.g., bleeding a bird to determine its sex), or by
modeling the probability that an unambiguous event occurs (e.g., a marked sea lion
pup demonstrates it is not weaned by suckling from an adult female).

In each of the recapture cases I presented misclassification was in one direc-
tion, which simplifies the likelihood. More importantly for analyzing the data, each
primary period of interest consists of multiple sampling occasions. In each case the
state was considered static within a primary period. Whereas with the manatee and
kittiwake examples demographic and geographic closure was assumed, in the sea
lion case the geographic closure assumption was relaxed. A next step would be to
develop a likelihood structure for which these three cases would represent special
cases. This would constitute an open robust design counterpart to the Pradel (2005)
model (Fig. 2). This would represent a very complex structure, with the following
types of parameters: For each primary period, the probability an individual occupies
a given state, then for each state the probability of surviving to the next period
and transitioning to a given state. Within each primary period, for each secondary
sampling occasion and for each state occupied there would be a probability of arrival
to the study area just prior, the probability of detection, the probability of assigning
the individual to each possible state (based on an event), and the probability an indi-
vidual remains in the study area until the next sampling occasion. So the inclusion
of time-dependent state structure and state transition probabilities in the same model
permits modeling of the relationship between the two.

The West Nile Virus example illustrates that misclassification also arises in
occupancy modeling. Nevertheless the approach to adjusting for this phenomenon
was similar to the case of recapture studies. In this case also misclassification
occurred in only one direction. I used it in a disease modeling context, and Nichols
et al. (2007) developed and applied the same model in a case of classifying
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Fig. 2 An outline of the relationship between the Pradel (2005) multievent model, the manatee,
kittiwake, and sea lion case studies presented here, and an open robust design multievent model
that could be developed for an arbitrarty number of states and events

breeding status. Given the recent surge in occupancy modeling, more misclassifi-
cation issues can be expected to arise. The avian influenza case demonstrated how
misclassification can be brought into the modeling of occupancy at various spatial
scales, while carrying adjustments for misclassification through each level, including
calibration in the lab. This sampling at multiple spatial or temporal levels provides
data for parameterizing multi-level or hierarchical models of system dynamics.

Accounting for state uncertainty in capture–recapture models is a relatively
recent area of research. Therefore there is plenty of opportunity to investigate
general and application-specific questions. The Pradel (2005) model provides a
very nice general framework for analyzing many state uncertainty problems, and
E-SURGE (Choquet et al. 2008) will prove a very useful tool to use in that pursuit.
Nevertheless, the cases I have presented here reminds us that new ecological field
projects and new study designs often require new or customized statistical models.
The general multievent open robust design model alluded to in Fig. 2 could provide
a general tool for three of the cases described in this paper, as well as many others,
but this model and the Pradel (2005) model would still not likely be exhaustive in
their combined coverage of cases.

Besides model development, there are plenty of open questions related to this
issue in terms of study design and data selection, which could be evaluated using
simulation or expected value methods. In previous work the use of robust design
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models have been shown to increase precision in estimators, in comparison with
methods that ignore this structure and pool across secondary samples. The same can
be expected with state uncertainty models, but the extent of improvement, or how it
performs with small sample sizes, should be investigated. Precision should also be
investigated as a function of the proportion of encounters that result in unambiguous
assignment to state.

When misclassification can be viewed as occurring in one direction, the problem
becomes simpler conceptually and some parameters are eliminated. For example, in
the manatee study when Kendall et al. (2004) were assembling data for the analysis,
in some cases female that were noted to possibly have a calf were assigned to the
skipped breeder state to maintain the one-way classification. Are there cases (e.g.,
where very few animals are unambiguously in a state) where forcing this one-way
misclassification is not advisable?

Finally, the assessment of goodness of fit is also an open question with these
models, both with and without the robust design. One could envisage an extension of
the method of Pradel et al. (2003) to assess fit. There is also the possibility of using
the median c-hat method found in program MARK (White and Burnham 1999).
A Pearson Chi-square test could also be conducted.

In conclusion, I have presented several disparate ecological studies where the
issue of misclassification arises. My purpose was to illustrate that the problem can
be fairly common, that with various types of extra information it can be dealt with
statistically, and that the approaches needed to address the problem can vary by case
study. Therefore generalized software like E-SURGE (Choquet et al. 2008) can be
used to address the problem in some cases, and other software like MSSURIVmis
(www.mbr-pwrc.usgs.gov/software.html) might be needed for other cases. As with
detection probability, in many cases ignoring misclassification can produce substan-
tially biased estimates of demographic parameters of interest, including survival
and state transition probabilities. More work is needed on eliciting such problems
from field ecologists, and developing statistical models and software to adjust for
them. This interaction and basic modeling will be the same, regardless of whether
ultimately frequentist or Bayesian statistical models are used.
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The Stakes of Capture–Recapture Models
with State Uncertainty

Roger Pradel

Abstract The development of the use of CR multistate models is a major feature
of the last 5 years. However, concerns have rightfully appeared about uncertainty in
state assignment. I examine situations where uncertainties seem to be intrinsic such
as with breeding status. But I also argue that uncertainty is not just a liability, it can
be an opportunity – for instance, to exploit more fully the data at hand and limit
disturbance. Then I examine the methodological answers that have been proposed.
They mainly concern the models conditional on first release and are of a more or
less general applicability. I advocate a general approach that can be adapted to each
particular case and be used to expand extant specialized approaches. I will also
consider how uncertainty could be incorporated into non-conditional models such
as models of stopover duration. I conclude that, with the advent of genetic sampling,
the new challenges for CR models will be uncertainty in individual identity and
dependence among individuals.

Keywords Heterogeneity of capture · Hidden Markov model · Label switching ·
Mixture models · Multievent · Sex uncertainty · Stopover duration

1 Introduction

Capture–recapture (CR) studies have spread rapidly in the ecological literature since
the beginning of the 1990s (Fig. 1). At the same time, their focus has changed. Once
almost exclusively used to address questions of population dynamics, its pertinence
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Fig. 1 The spread of capture–recapture studies: research in Web of Science of articles with the
keywords ‘capture–recapture’ or ‘mark-recapture’ or ‘sight–resight’ or ‘band recovery’ or ‘marked
animals’

in addressing evolutionary questions and studying life history strategies is now
recognized. Indeed, CR studies are an excellent means of assessing an individual’s
performance against what it did at other times (strategy questions) but also according
to its distinctive features as compared to other individuals (individual variability).
The models for the analysis of CR data have had to evolve to meet the new demands.
In the early 90s, models that account for the state of an individual (Arnason 1973)
have been rediscovered and developped and have seen an ever increasing use
since 1998 and particularly for the last five years. Today they represent 5% of all
CR publications and this proportion is likely to increase in the foreseeable future
(Fig. 2). The first multistate papers to appear were theoretical papers dealing
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Fig. 2 Percentage of multistate papers in the capture–recapture literature: research in Web of
Science among the articles of the research in Fig. 1 with the keywords ‘multistate’ or ‘multisite’ or
‘multistrata’
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Table 1 Multistate papers by category. The original use of multistate models was the study of
geographical movements (column 2), the study of transitions between physiological or develop-
mental states followed (column 3 and 4) with an emphasis on reproduction (column 3). Technical
uses where the states refer to a methodological status (presence or absence of the tag, live or
dead encounter. . .) have developped recently (column 5). The papers dealing with the statistical
properties of the multistate models are now less important in proportion than they used to be
(column 6)

Stages Technical uses
Breeding (physiological, (mixture of Purely

Geographical status + developmental information, statistical
Year movement recruitment . . .) tag loss . . .) papers

2006 5 5 2 2 1
2005 3 5 1 2 1
2004 4 0 1 5 1
2003 9 4 2 0 4
2002 4 0 1 0 2
2001 2 1 0 0 1
2000 1 1 0 0 0
1999 2 0 0 0 2
1998 1 1 1 0 0
1997 0 0 0 0 0
1996 0 0 0 0 1
1995 0 0 0 0 0
1994 0 1 0 0 1
1993 0 0 0 0 1
1992 0 0 1 0 1
All years 31 18 9 9 16

with the statistical aspects of these models. Then came papers describing from a
theoretical point of view the adaptation of the general formulation to particular
uses. Eventually, actual uses have become dominant, which is a sign of maturity
(see Table 1). Most of the early uses were about movement but now we see a greater
variety of applications where the states considered are physiological or develop-
mental with a dominance of the breeding status (several studies of trade-off and
recruitment). However, along with this new type of studies, a growing concern about
uncertainty has been rightfully voiced (Fig. 3). Back in the 60s, the concern was
about the uncertainty of detection of the individuals in the field – obviously it is
very difficult to meet with certainty a free-ranging individual and the CR models
have actually been designed to deal with this problem – but today the concern is
about state assessment. Uncertainty in state assessment may arise for instance with
the breeding status of an animal seen without young during the breeding season,
or the health status in an epidemiological study where only outer symptoms can be
observed. Uncertainty is also intrinsically present with any hidden condition, even
static, like the sex in monomorphic species or more generally the membership in
a particular class of a heterogeneous population (Pledger et al. 2003). In a more
technical ground, tag loss can be treated as a problem of uncertain state where the
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Fig. 3 Concern about uncertainty in the CR literature: number of papers with the keyword ‘uncer-
tainty’ among those from the research of Fig. 1

state is the presence or absence of the mark. All in all, just like for uncertainty of
detection, state uncertainty seems to be unavoidable in many situations.

But I believe that state uncertainty has also positive aspects that should be
stressed. Being able to tackle state uncertainty means making use of all the infor-
mation that is currently unused for fear of being mistaken and this is often the bulk
of the information collected. For instance, the behavioral clues are rarely 100% sure
and yet they are often the basis for determining the breeding status or the sex of an
individual. Biometrical measures are another example of ‘imperfect’ information
that is nonetheless commonly used to e.g. sex animals. By becoming able to incor-
porate such information, we can not only retain a greater number of individuals in
our data set but also change the way we carry the field work. In devoting less time
to each individual, we achieve two desirable aims: we limit disturbance and can
monitor a larger sample of the population with the same amount of time and effort.
In limiting disturbance, we show more consideration for animal welfare and at the
same time observe a more natural system.

Yet, some colleagues have voiced concern about the risk of being unable to esti-
mate the parameters with such data and consider that the status of some individuals
must be known with certainty to avoid redundancy problems. It is too early to answer
unequivocally. However, I am more optimistic and do not believe that we should
shy away from the general treatment of uncertain states. The applications I have
considered so far do not behave differently than the mutistate models with respect
to redundancy. I will say more on this point in the discussion but let us already note
that (1) redundancy problems can now be detected automatically so that the use of
models with state uncertainty is not a blind move (Choquet et al. this issue), (2) it is
often possible to incorporate some hardcore data with no uncertainty gathered with
more laborious but more reliable techniques such as genetic sexing in the case of sex
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uncertainty, and (3) if needed, a Bayesian approach can be adopted to incorporate
prior information (see Gimenez et al. this issue).

2 Conditional CR Models with Uncertainty

Up to now, a number of specific responses have been given to the cases perceived
as most important (breeding status: Kendall et al. 2004; sex membership: Fujiwara
and Caswell 2002, Nichols et al. 2004; hidden heterogeneity: Pledger et al. 2003).
Yet, another approach consists in bringing a common response to all cases at once
by treating the question of uncertainty in general terms (multievent models, Pradel
2005). A practical disadvantage of the broad approach is that any specific use will
suppose some tuning of the general model; on the other hand, it provides maximum
flexibility, which is all the more desirable that all situations are unlikely to be antic-
ipated and covered otherwise. Also, providing a unified frame of thought usually
proves fruitful in stimulating new ideas. The multievent approach I advocate seeks
in fact to achieve a balance between the inconvenience of a general formulation and
its advantage in terms of flexibility by introducing simple common concepts that
underlie all specific situations. It is on this basis that a unique computer program
has been developped (Choquet et al. this issue) and can be used for particular
applications.

The main idea is to decouple the observation from the state assessment. In a
multistate approach dealing with the breeding status, a typical capture history can go
like this: (breeder, unseen, breeder). This is what is coded and therefore analyzed,
but the untold truth is perhaps (seen on the colony, not seen, seen feeding nearby
the colony). In effect, the biologist has made the decision that the first and last
observations were tantamount to breeding status. I argue that this decision is in fact
better left to the model. To this aim, we must code in the capture history not the
states, which we leave open, but the particular type of observation that was made
when the animal was encountered or the fact that the animal was not observed : as a
general term, I speak of ‘events’. Thus, the central idea is to shift the emphasis from
the states to the events (Fig. 4). The multievent model then describes two processes:
the process of transition among states, and the process of generation of events given
the underlying state. It has three fundamental types of parameters (Fig. 4):

(1) The ‘initial state probabilities’, which describe the probability that an indi-
vidual is in one or another state when it is first encountered

	t = (π1π2 . . . πs) .

This is an entirely new type of parameters from multistate models. Dependent on
the kind of study, it can be related to the sex-ratio, the prevalence of a disease or the
percentage of breeders in the population.

(2) The ‘transition probabilities’, which are exactly as in the multistate models
except that the state ‘dead’ is explicit; thus, the corresponding matrix below with
departure state in rows is row-stochastic:
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Fig. 4 The rationale of multievent models. The encounter history of a marked individual (boxed
above) is made of the events Ei, not the states. The states Si are related to the observed encounter
history through the probabilities of generation of events given the states, b


t =

⎛⎜⎜⎜⎝
φ11 φ12 . . . φ1s

φ21
...

. . .
φs1 φss

⎞⎟⎟⎟⎠ .

(3) The ‘conditional event probabilities’, which are the probabilities of the events
conditional on the underlying state. They generalize the capture probabilities of
multistate models. For instance, with the event ‘seen’ and the state ‘breeder’, the
corresponding conditional event probability is the probability that a breeder is seen,
i.e. the traditional capture probability of breeders, pbreeder. With the states in rows
and the events in columns, the corresponding matrix is row-stochastic.

Bt =

⎛⎜⎜⎜⎝
b11 b12 . . . b1l

b21
...

. . .
bs1 bsl

⎞⎟⎟⎟⎠ .

To see how the probability of a capture history can be written with these param-
eters, let us consider again the capture history (seen on the colony, not seen,
seen feeding nearby the colony). As we never know what the real state is, we
have to consider in turn all 23 = 8 possible trajectories between the breeding
and non-breeding states over the three years. For each trajectory, we calculate
the associated probability and then add them all together to get the probability of
the capture history itself. For instance, when considering the possibility that the
animal was breeding in all three years, we will write: P(breeder)P(seen on the
colony|breeder)P(breeder in year 2|breeder in year 1)P(not seen| breeder) P(breeder
in year 3|breeder in year 2) P(seen feeding nearby the colony | breeder). P(breeder)
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is an initial state probability. Then, the rest of the formula alternates between event
probabilities and transition probabilities. Here the event probabilities are P(seen on
the colony|breeder), P(not seen| breeder) and P(seen feeding nearby the colony |
breeder). The transition probabilities are P(breeder in year 2|breeder in year 1) and
P(breeder in year 3|breeder in year 2). The probability of this capture history is
found as the sum over all 8 possible paths. It can be written in compact matrix form:

	D(B1(.,seen on the colony))
1D(B2(.,not seen))
2D(B3(.,seen feeding near by
the colony)) where D (Bt (., event i)) is the diagonal matrix with diagonal elements
taken from the column of Bt corresponding to event i (Pradel 2005).

Starting from the general layout of multievent models that we have just seen, one
has to specify the exact form taken by the matrices of parameters for each particular
application. A module in program E-SURGE (Choquet et al. this issue) facilitates
this step. This program then maximizes the likelihood through a quasi-Newton algo-
rithm. Following the steps of Gimenez et al. (2007), it is also possible to express
the multievent model as a state-space model and, on this basis, to use MCMC or
filtering algorithms. I illustrate now how the general model can be particularized
with the example of two previously treated situations. I then show how the new
formulation leads easily and naturally in each case to the treatment of a broader
biological context.

2.1 Models with Unknown Sex Individuals

Nichols et al. (2004) have studied the situation of a monomorphic species where the
sex of the individuals cannot always be ascertained but, when it can, this is done
without error. To rewrite this model as a multievent model, we consider 3 states:
live female (F), live male (M) and dead individual (†), and 3 exclusive events: ‘not
encountered’, ‘sex not ascertained’ and ‘sex ascertained’. Because the first time an
individual is encountered it is necessarily alive, the initial state probabilities involve
only the proportion of females among unmarked, π , as an independent parameter.
(Note that, because of sampling considerations, π is not simply related to the sex
ratio. I will come back to this point in the discussion.)

	t = (
π 1 − π 0

)
.

The transition probabilities are very simple. A female (resp. male) survives with
probability �F (resp. �M) and remains a live female (resp. male) or dies and joins
the state ‘dead’. A dead individual remains dead forever. Hence,


t =
⎛⎝φF 0 1 − φF

0 φM 1 − φM

0 0 1

⎞⎠ .

The conditional event probabilities involve the sex-dependent probabilities of
encounter and the probability to ascertain the sex of an encountered individual: �F
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(resp. �M) for a female (resp. male) (Nichols et al. notation). For instance, the prob-
ability that a female is encountered and its sex is ascertained is pF, the probability
that a female is encountered, times �F, the probability that its sex is then ascertained.

not sex not sex

encountered ascertained ascertained

Bt =
⎛⎝1 − pF pF

(
1 − δF

)
pFδF

1 − pM pM
(
1 − δM

)
pMδM

1 0 0

⎞⎠ (1)

(This corresponds to sampling situation A of Nichols et al.)
One interest of putting this model into the multievent framework is that it is now

fairly easy to expand to more complex situations. Often, the clues used to determine
the sex are not perfect. They nevertheless can be used if a probability of error is
introduced. Pradel et al. (2008) present a thorough treatment of this situation. I give
here a summary. Let xF<1 and xM<1 be the probabilities to sex resp. females and
males correctly. The states remain the same as above but we have now 4 possible
outcomes or events to consider: ‘not encountered’, ‘sex not determined’, ‘named sex
female’, ‘named sex male’. The conditional event probability matrix then becomes:

Bt =
⎛⎝1 − pF pF

(
1 − δF

)
pFδF x F pFδF

(
1 − x F

)
1 − pM pM

(
1 − δM

)
pMδM

(
1 − x M

)
pMδM x M

1 0 0 0

⎞⎠
Contrasting this form of Bt from that of formula (1), we see that the last event has
been duplicated to incorporate the possibility that the named sex is not correct. The

t and 	t matrices remain unchanged.

I have applied this enlarged model to the treatment of sex specificity in
parameters of an Audouin’s gull population where the sex clues are behavioural
displays and relative body size. Four criteria are used: ‘copulation’, ‘begging food’,
‘courtship feeding’ and ‘relative body size’. The determination of sex is based on
the role played by an individual in a pair. The previous model was further enlarged
to allow for different error rates with different criteria. There are then 9 events to
consider (see Table 2). Eight are obtained by crossing the 4 criteria with the 2 named
sexes; the last corresponds to when the sex is not determined. The output from
this model (Table 3) shows that relative body size is the less reliable criterion but
position during copulation is not so good a criterion as was originally thought. In

Table 2 Events considered and codes used in the encounter histories of Audouin’s gulls found at
the Ebro delta (Spain)

Criterion used Named male Named female No sex named

Copulation 1 5 9
Begging food 2 6
Courtship feeding 3 7
Body size 4 8
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Table 3 Results from the model with uncertain sex assessment for Audouin’s gulls at the Ebro
Delta, Spain (excerpt from Pradel et al. 2008, Table 5)

Parameter Estimate (SE)

Proportion of females 0.47 (0.03)
Female survival 0.91 (0.01)
Male survival 0.86 (0.01)
Error copulation 0.06 (0.04)
Error begging food 0.05 (0.03)
Error courtship feeding 0.00 (0.16)
Error body size 0.11 (0.06)

designing future field work, the quality of the information brought by the different
criteria could be balanced with the difficulty of gathering this particular piece of
information.

2.2 Heterogeneity Models

There is almost always some sort of heterogeneity among individuals in a popula-
tion. In particular, heterogeneity of catchability can be high. Pledger et al. (2003)
have brought a general answer to these questions by considering the existence of
several hidden classes of individuals each with their own parameters. This model
in all its generality has a straightforward formulation in the multievent framework.
The states are the classes plus the state ‘dead’; the events are simply ‘encountered’
and ‘not encountered’. With c classes, we have:

1. initial state probabilities (remember that the last state is ‘dead’ and is not observ-
able as an initial state)

	t = (
π1 π2 . . . πc 0

)
with π1 + π2 + . . .+ πc = 1.

2. transition probabilities


t =

⎛⎜⎜⎜⎝
φ1 0 . . . 1 − φ1

0 φ2 1 − φ2
...

. . .
1

⎞⎟⎟⎟⎠
3. conditional event probabilities (first column is ‘not encountered’)

Bt =

⎛⎜⎜⎝
1 − p1 p1

1 − p2 p2

. . . . . .

1 0

⎞⎟⎟⎠
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This model can now easily be generalized to allow transitions among the different
classes. This may be relevant if the membership in one class correspond for instance
to a social status. Here I consider a different situation. In the course of a long-term
study of black-headed gulls in central France, a breeding colony inhabiting a pond
is screened each year from a floating hide. This colony has open water and clusters
of vegetation. The gulls nesting on the edge of the vegetation clusters are easy to
monitor unlike those deep inside. Because the gulls tend to come back from year to
year to the same place in the colony (Prévot-Julliard et al. 1998b), this introduces a
type of heterogeneity of catchability among individuals that can be reduced in a first
approximation to two classes of catchability (Prévot-Julliard et al. 1998a). However,
over the years an individual bird may move and change area. The model can be
modified to account for this last fact by introducing transitions between classes
conditional on survival, �12 and �21. In the specific model used for this data set,
I assumed two classes of catchability (c = 2), no heterogeneity of survival (φ1 =
φ2) and for the sake of simplicity that the parameters were constant over time. I
also assumed that no attempt was made at identifying the class membership from
the position in the colony and the activity at the time of an observation. The states,
events, 	 and B matrices are thus essentially unchanged from the general multievent
formalization of the Pledger, Pollock and Norris model above. Only the transition
matrix changes structure:

	t = (
π1 π2 0

)


t =

⎛⎜⎝φ (1 − ψ12) φψ12 1 − φ

φψ21 φ (1 − ψ21) 1 − φ

0 0 1

⎞⎟⎠

Bt =
⎛⎝1 − p1 p1

1 − p2 p2

1 0

⎞⎠

Table 4 Results from models of heterogeneity of capture for Black-headed gulls inhabiting the La
Ronze pond, central France. The data set has 176 individuals monitored over 19 years. Parameters
with s.e. between parentheses are: � survival, � proportion of low-catchability individuals, p1 low
capture probability, p2 high capture probability, �12 transition from the low to the high catchability
class, �21 transition from the high to the low catchability class. In the first model ‘w/o movement’
individuals are not allowed to move from one catchability class to the other; they can do so in the
second model ‘w/ movement’

Model � � p1 p2 �12 �21 Dev

w/o movement 0.82
(0.08)

0.84
(0.02)

0.08
(0.02)

0.32
(0.06)

– – 2880.25

w/ movement 0.83
(0.02)

0.95
(0.06)

0.09
(0.02)

0.48
(0.10)

0.02
(0.01)

0.09
(0.11)

2873.62
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For the black-headed gull data set, the model allowing transitions between the
two classes fits better than the one with frozen states even though the estimated
movements are relatively low as expected. They are more frequent toward the zone
of low catchability. This is in agreement with the relative number of nests with low
and high catchability: those on the edge of the vegetation clusters and those in the
middle (Table 4).

3 Uncertainty in Unconditional Models

So far, I have considered only models conditional on the time of first encounter. But
there are several areas where it is important to look at the part of the capture history
that precedes the first capture and uncertainty can actually arise from the ignorance
of when an animal entered the population. A clear example of this is provided by
the question of stopover duration: how long does a bird stay on a stopover site
before flying on? Its probability of departure likely depends on how long it has
already been present on the site because the more time it has been around, the more
likely it is to have refuelled enough to start its next migration leg (Pradel et al.
2005; for an early model of departure dependent upon arrival time, see Crosbie and
Manly 1985). The uncertainty of the time elapsed since arrival can be handled by
considering hidden states: ‘not yet arrived’ (–), ‘just arrived’ (pr0), ‘arrived one day
earlier’ (pr1), ‘arrived two days earlier’ (pr2). . ., ‘departed’ (†). The events are just
two: ‘encountered’, ‘not encountered’. Eventually, we need an additional type of
parameter for the transitions from the state ‘not yet arrived’, the probability of arrival
on day t for a bird ‘not yet arrived’, at . As for φi the probability of remaining on the
site for one more day, it will be dependent on age i. With this model, the description
of each encounter history starts at date 1 so that the initial state probabilities are
only needed at this time. Theoretically, we could keep open the possibility that a
bird present on day 1 has been here for several numbers of days. However, if the
study is started sufficiently early during the migration period, we can assume that
all the birds present on day 1 have just arrived. This is the simplifying assumption
I am making here. Thus there are just two initial states possible on day 1: the birds
that have not yet arrived and those which are arriving.

	1 = (
1 − a1 a1 0 . . . 0

)
After its arrival, a bird may depart any time. If it does not, the transition to the next
state will be automatic:


t =

⎛⎜⎜⎜⎜⎜⎜⎝

1 − at at 0 . . . 0
φ1 1 − φ1

. . . 1 − φ2
...
1

⎞⎟⎟⎟⎟⎟⎟⎠
−

pr1
pr2

...
departed
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Table 5 Estimated probabilities of departure of reed buntings (Emberiza schoeniclus) from a
stopover site Bolle di Magadino when probability of departure depends on the time since arrival.
The data set comes from a previous study (Schaub et al. 2001). It has 1712 individuals. The data
are pooled in 5-day periods. The calculated average stopover duration is 7.03 days. It was 7.30 days
in the original study with time-dependent departure rates

Time since arrival Just arrived <5 days 5–9 days 10–14 days

Probability of departure before 5 days 0.19 0.65 1

I also assume for the sake of simplicity that the encounter probability is constant
over time and does not depend on how long a bird has been present:

B =

⎛⎜⎜⎜⎜⎜⎝
1 0

1 − p p
...

...
1 − p p

1 0

⎞⎟⎟⎟⎟⎟⎠
As an example, let us examine the capture history 010. This is a bird that may or

may not have been present the first day and may or may not have departed before
the third day. In combining presence or absence in the first and last days, we have to
consider 4 different possibilities. If the bird was present all three days, it was present
the first day with probability a1 in state pr0, it remained one day more reaching
state pr1 (transition probability φ1), it was spotted on day 2 (probability p), then it
remained for another day moving to state pr2 (probability φ2) but was missed on
day 3 (probability 1 – p) . These five probabilities put together make for the first
term of the complete expression for the probability of capture history 010, which is:

P(010) = a1φ1 pφ2(1 − p) + a1φ1 p(1 − φ2) + (1 − a1)a2 pφ1(1 − p)

+ (1 − a1)a2 p(1 − φ1).

Actually, this model is not entirely unconditional. To appear in the data set, a
bird must have been contacted at least once. Hence, we must condition on this fact:
the corresponding probability appears as a denominator in the likelihood. Because
of this last conditioning, this model is not a multievent model of the type defined
in Pradel (2005) and it cannot currently be fitted with E-SURGE. I have written a
small MATLAB program to implement it. Applied to one example of the original
stopover paper (Schaub et al. 2001), the model yields probabilities of departure that
as expected increase strongly with the time spent on the site (Table 5).

4 Discussion

The advantage of a general treatment of state uncertainty in CR studies is to provide
a unifying framework and a level of abstraction favorable to clear thinking and
generalizations. In a way, it forces to better comprehend the structure of the study
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and hence to clarify the question investigated. This advantage largely offsets in my
mind the inconvenience of having to identify the specifics of the study. This is all the
more true that the idea of decoupling events and states is simple enough to be easily
grasped and applied to different situations. A practical advantage is that a common
tool can then be used to analyse the different types of data; a computer program
with a model description language has been developed to this effect (Choquet et al.
this issue). We have also seen that the simple idea of decoupling events and states
can be carried out to non-conditional models. All in all, the current problem of state
uncertainty is no different from the old problem of uncertainty of detection to which
CR models have been the answer. The risks are similar: if the probability of misclas-
sification depends on the state, estimates would inevitably be biased in the absence
of correction. In our field of work today nobody thinks of ignoring the necessary
correction for p < 1; in the future, probably nobody will think of not correcting for
state uncertainty.

A possible concern with the new models is that they may be unstable and espe-
cially that their parameters might often be non-identifiable. The risk is real but
it does not seem to be as acute as one might have feared. With my still limited
experience with these models, I have acquired the feeling that the risk of redun-
dancy is of the same order of magnitude as in multistate models, the only difference
being that, with time-dependent models, redundancy occurs at the start as well as
at the end of the experiment. Today, there is a variety of tools for studying redun-
dancy (see for instance Hunter et al. this issue). However, the really good news is
that the identification of redundant parameters has been automated (Choquet et al.
this issue) so that there is no need to study the formal structure of the models in
advance.

The occurrence of label switching (Redner and Walker 1984) is another, entirely
different problem, new to the CR area, and inherited from the hidden Markov model
structure of the multievent models (Pradel 2005). Here, several discrete statistically
equivalent solutions exist. For instance, in a study of sex assignment in monomor-
phic species, a second solution is easily obtained from the correct one by renaming
males the females and females the males (see Pradel et al. in press, for a proof).
However, the question is moot most of the time because one of the solutions is
totally unrealistic; we would probably have to accept unrealistically high rates of
error in sex assignment with the ‘wrong’ solution. Of course, this is a very simple
situation. In general, there will be more than two states and they will not be static.
However, if the events are carefully chosen, it should always be easy to distinguish
the correct solution from another one obtained by arbitrarily shuffling the states.
Suppose that we know beforehand that a particular event has a high probability of
realisation under state 1 but not under the others. The examination of the conditional
probabilities of this event will rule out any statistically valid solution where state 1
is misplaced. Ultimately, the label switching problem seems to be only a problem if
the events are not discriminatory.

In fact, if an ambiguity exists – be it linked to redundancy or to label switching –
the right attitude is probably to try to augment the information. This can be done by
obtaining additional information from new data or by incorporating knowledge from
previous studies. To carry on with the example of sex assignment in monomorphic
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species, additional information can consist in sexing genetically a few individuals.
The initial state probabilities for these individuals can then be fixed to the appro-
priate value to specify what their sex is. Little additional information seems to be
needed to eliminate the wrong solution (Pradel et al. in press). The other option is
to use an a priori distribution for the parameters, i.e. doing a Bayesian analysis. The
initial state probabilities are good candidate for this: again with the sex assignment
example, the proportion of each sex in the population is usually fairly well known
in advance. However, the initial state probabilities relate to the new unmarked
individuals encountered, not to the population as a whole. If the sampling scheme
overselects one state, then the proportion known to be valid for the population must
be corrected. If μ is the proportion of males in the population and pM and pF are
the encounter probabilities of males and females respectively, the initial probability
that a newly encountered individual is a male is (pMμ)/(pMμ+ pF (1 − μ)). This
is strictly valid for the initial sample only; in subsequent samples, the initial prob-
ability has to be further corrected for the proportion of males remaining among the
unmarked (see however Oro et al. 2004 for a way around this problem). The initial
state probabilities are thus not directly population parameter and must be rewritten
carefully if a Bayesian approach is to be implemented.

To conclude, I would like to mention what seems to me the natural continuation
of the current topic. So far, we have seen how to deal with state uncertainty. But
there is another type of uncertainty that has not yet been really addressed in CR (but
see Schwarz and Stobo 1999) and yet that should become more and more impor-
tant with the likely and desirable merging of population genetics and population
dynamics: uncertainty in the individual. Being able to deal with this would allow
using incomplete or ambiguous mark reading. This is exactly what is happening with
genetic sampling when there are genotyping errors (Lukacs and Burnham 2005);
true twins are another cause of uncertainty with genetic sampling. I believe that this
is the new challenge we will have to face. Uncertainty in the individual and genetic
sampling are also linked to another aspect of the population dynamics which has
long been ignored in CR, the dependence among individuals. With the advent of
genetic sampling, we will inevitably have to deal with information about pedigree
and more generally kinship and can no longer ignore the relationships among indi-
viduals.
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Rank and Redundancy of Multistate
Mark-Recapture Models for Seabird
Populations with Unobservable States

Christine M. Hunter and Hal Caswell

Abstract Unobservable stages are common in many life cycles. Estimates of the
vital rates, such as survival and breeding probabilities, of these stages are essential
for demographic analysis but difficult to obtain. Explicit modeling of these states in
multi-state mark-recapture methods can provide such estimates. However, models
can be rank-deficient, meaning that not all parameters can be estimated. Deter-
mining whether a model is full rank is essential for interpretation of model selection
and estimation results. Full rank models can be obtained by imposing biologically
reasonable constraints on parameters. Developing such models requires an efficient
way to assess model rank and determine which parameters, if any, are redundant.
We introduce the use of automatic differentiation (AD) for this purpose. It generates
the Jacobian matrix of the likelihood function in a way that is numerically stable,
can accommodate large complicated models, and produces rank estimates accurate
to machine precision. It reveals whether a model is full rank or rank-deficient (either
intrinsically or for a particular data set), how many parameters or parameter combi-
nations can be estimated, and which parameters are confounded. We use the method
to explore three examples relevant to seabirds: a model with multiple breeding sites,
a model distinguishing successful and failed breeders, and a model for pre-breeder
survival and recruitment. We find a surprisingly large number of time-invariant and
time-varying models to be of full rank, thus allowing estimation of all parameters,
despite the unobservable states. We present a biological example for the Wandering
Albatross (Diomedea exulans). Reliable assessment of model rank for multi-state
mark-recapture models with unobservable stages will make it possible to use these
methods in demographic applications.
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1 Introduction

Unobservable states, in which individuals have zero capture or resighting
probabilities, often appear in multi-state capture-mark-recapture analyses. Unob-
servable states can result from factors such as the behavior, physiological state, or
location of individuals in those states. This includes, but is not limited to, temporary
emigration, the special case where individuals leave and then return to a sampling
area over multiple sampling occasions. As multi-state models become more widely
applied to demographic analysis (Caswell and Fujiwara 2004), unobservable states
will be encountered more frequently.

If unobservable states are ignored, heterogeneity in capture probabilities can bias
survival and transition estimates. Explicitly modeling unobservable states can solve
this problem (introduced by Lebreton et al. (1999) and independently by Fujiwara
and Caswell (2002a); see also Kendall and Nichols (2002)) and provides greater
flexibility in modeling biologically important processes. However, the lack of infor-
mation on individuals in unobservable states typically renders models parameter
redundant, meaning that fewer parameters or parameter combinations can be esti-
mated than the original number of parameters in the model (Catchpole et al. 1996;
Gimenez et al. 2003). For simplicity, we hereafter refer to parameters or param-
eter combinations that can be estimated as estimable parameters and to parameter
redundant models as rank-deficient.

Determining rank deficiency is necessary for correctly interpreting model
comparison measures such as Akaikie’s Information Criterion (AIC) and parameter
estimates. One solution to parameter redundancy is to impose certain constraints on
parameters in the model (Fujiwara and Caswell 2002a; Kendall and Nichols 2002).
Parameter constraints can represent a priori information about species biology
or biological hypotheses to be tested by model selection. To the extent that the
constraints are biologically reasonable, this procedure can be a valuable approach
to constructing and testing biological hypotheses.1

Determining rank deficiency and the number of separably estimable parameters
is a challenging problem. Until recently, there was no general and reliable way
to do so. Here we present a new method that complements currently available
techniques. Our method provides estimates of both redundancy resulting from the
structure of the model and irrespective of the data, i.e. intrinsic model redundancy,
and redundancy resulting from the limitations of a particular data set, i.e. extrinsic
model redundancy (Gimenez et al. 2003). It can be applied to a wide class of
model structures, parameter constraints, temporal constraints and additional infor-
mation. Our approach shows which parameters are separately estimable and which
are confounded in some way, although it does not reveal the form of confounded
parameter functions.

1In sufficiently simple models, including extra information on capture probabilities obtained using
Pollock’s robust design can sometimes resolve parameter redundancy (Kendall et al. 1997; Kendall
and Nichols 2002). However, when the unobservable states are more richly structured, merely
knowing capture probabilities in the observable states will generally not solve the problem.
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We describe our method in the context of parameter estimation for long-lived
colonial seabirds, the demographic analysis of which (e.g., Hunter et al. 2000;
Hunter and Caswell 2005) motivated this work. We explore three multi-state models.
The first describes transitions among 2 observable and one unobservable breeding
sites. The second describes the transition of adults among observable breeding
stages and unobservable non-breeding stages. The third describes the recruitment
of fledglings to the breeding population; where fledglings and breeders are observ-
able but intervening pre-breeding stages are not. For each of these models we eval-
uate parameter redundancy under a variety of biologically interesting constraints,
both with and without time variation. As an example, we apply the method to
the Wandering Albatross (Diomedea exulans). Our results show that a surprising
number of complex models with unobservable stages are estimable from mark-
recapture data.

2 Model Rank and Identifiability

The theory for determining estimability of mark-recapture models was laid out in a
series of papers by Catchpole and Morgan (1997, 2001) and Catchpole et al. (1996,
1998, 2001). Estimation is carried out by maximizing the likelihood L(θ) where θ

is a q × 1 vector of parameters. Let fi (θ ), i = 1, . . . , n, be a set of quantities jointly
sufficient for the calculation of L(θ ). In this paper, we use the set of probabilities
corresponding to the entries of the multistate m-array (Brownie et al. 1993). The
same approach can be applied to the probabilities of the individual capture histories
(Nichols et al. 1992; Fujiwara and Caswell 2002b; Caswell and Fujiwara 2004).
Estimability is determined by the Jacobian matrix of the likelihood,

J =
(

� fi

�θ j

)
(1)

The rank of this matrix of derivatives gives the number of parameters or param-
eter combinations that can be separately estimated. The rank deficiency of the
model is the difference between the number q of parameters and the rank of J. An
orthonormal basis for the null space of J provides information on which parameters
are confounded and which are separately estimable.

Evaluating model rank requires: (i) defining the model structure, (ii) calculating
the likelihood for the model, (iii) computing the Jacobian matrix of the likelihood,
and (iv) finding the rank of the Jacobian. We discuss each of these steps below. Then
we present three seabird life cycle models, describing the model structure, sets of
constraints and model estimability.

2.1 Defining Model Structure

We define the overall model structure with a life cycle graph, a directed graph with
nodes corresponding to the stages (or states; we use the terms interchangeably) of
interest. Stages are numbered from 1 to s. An arc in the graph from stage j to stage i
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implies that it is possible for an individual to move from stage j to stage i during
one time step. This life cycle graph differs from those used in demography (e.g.,
Caswell 2001) in that it need not include the entire life cycle and describes only
transitions of living individuals, not production of new individuals by reproduction.

2.2 Calculating the Likelihood

To calculate the likelihood function we define a transition matrix Φ t , of dimension
s × s, corresponding to the life cycle graph. The element φi j (t) of Φ t is the proba-
bility of transition from stage j at time t to stage i at time t+1, for t = 1, . . . , N −1,
where N is the number of sampling occasions. Note the column-to-row orientation
of these matrices, which corresponds to their use in projecting probabilities of state
occupancy (Fujiwara and Caswell 2002b; Caswell and Fujiwara 2004) and to their
use as components of demographic models. We also define a diagonal capture matrix
Pt , with pii (t) the probability of recapture of an individual in stage i at time t , for
t = 2, . . . , N .

Sufficient statistics for the calculation of the likelihood are contained in the multi-
state m-array, which is an array of matrices M(r,c), where r denotes the release time
(r = 1, . . . , N − 1) and c denotes the time of first recapture (c = r + 1, . . . , N ),
and m(r,c)

i j is the number of individuals released in stage i at occasion r that are next
captured in stage j at occasion c, with c > r . Note the row-to-column orientation of
these matrices, which is customary in mark-recapture analysis, but opposite to that
in population modeling.

The probabilities of these release-recapture combinations are calculated from the
matrices Φ t and Pt in the form of an array we call the p-array. The p-array is an
array of matrices Ψ (r,c), where ψ (r,c)

i j is the probability that an individual released in
stage i at time r is next captured in stage j at time c. The matrices composing the
p-array are calculated from Φ and P as

Ψ (r,c) =
{

(Pr+1Φr )� c = r + 1
(PcΦc−1 (I − Pc−1) Φc−2 · · · (I − Pr+1) Φr )� c > r + 1

(2)

Note the transposition required to achieve the row-to-column orientation.
In most (but perhaps not all) cases, individuals cannot be marked and released in

unobservable stages. Thus some of the conditional probabilities in Ψ (r,c) are condi-
tioned on an event of probability zero, and therefore undefined. Thus we set

ψ
(r,c)
i j = 0 ∀i ∈ {unobservable states} (3)

Some individuals are released but never recaptured. However, given the numbers
released, this component is not independent of the fates of the individuals that are
recaptured, so it makes no contribution to the model rank and is ignored here.
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The log likelihood from the recaptured individuals is

log L =
N−1∑
r=1

N∑
c=r+1

s∑
i=1

s∑
j=1

m(r,c)
i j logΨ (r,c)

i j (4)

=
1
2 N (N−1)s2∑

h=1

fh(θ) (5)

where a generic component of the log likelihood has been denoted by fh(θ).

2.3 Computing the Jacobian and its Rank

The Jacobian matrix (1) has dimension 1
2 N (N − 1)s2 × q. The rank of the model

is the rank of J. Rank deficiency may be intrinsic to the model or due to imperfect
data (e.g., Gimenez et al. 2003). The intrinsic rank is the rank that would result from
perfect data, i.e., those in which the m-array is directly proportional to the p-array,

m(r,c)
i j ∝ ψ

(r,c)
i j (6)

for all i , j , r , and c. These are the data that would arise in an infinite sample, and it
is in this sense that we refer to them as “perfect.” The (h, k) element of J is

� fh

�θk
= �

�θk
m(r,c)

i j logψ (r,c)
i j (7)

= m(r,c)
i j

ψ
(r,c)
i j

�ψ (r,c)
i j

�θk
(8)

Thus, if the data are perfect, the elements of J satisfy

�

�θk

(
m(r,c)

i j logψ (r,c)
i j

)
∝ �ψ (r,c)

i j

�θk
(9)

and J can be calculated directly from the p-array without any data. We will denote
this Jacobian by Jintrinsic. The Jacobian matrix for a model with a specific (and
perhaps less than perfect) data set is easily obtained from Jintrinsic as

Jdata = diag

(
m(r,c)

i j

ψ
(r,c)
i j

)
Jintrinsic (10)

where the elements in the diagonal matrix are arranged in the same order as those
in Jintrinsic.



802 C.M. Hunter and H. Caswell

2.4 Differentiation as a Challenge

The entries of the p-array are complicated functions of the parameters. The deriva-
tives of those entries are even more complicated. Thus determining the deriva-
tives that make up J is the key to determining the rank deficiency of the model.
Computing these derivatives is a challenging problem, which has been approached
in several ways. We introduce a new approach (automatic differentiation)
here.

The accuracy of the derivatives has profound consequences for the rank of J,
because the rank of a matrix depends on the exact independence, or lack thereof,
of the columns of that matrix. Arbitrarily small perturbations, caused by errors in
J, can render dependent columns independent. The rank of a matrix is determined
operationally as the number of non-zero singular values, so the ability to detect
rank deficiency depends on the sensitivity of the singular values to errors in the
matrix entries. This sensitivity is measured by the condition number (roughly, the
magnitude of the error in the result relative to the error in the input). The condition
number for singular values is 1 (Stewart 1991), so errors of order ε in J can lead
to errors of order ε in the singular values. This is good news for computing the
largest singular values, but bad news for determining rank (Stewart 1992), which
depends on the smallest singular values. Small errors in the derivatives in J can
make it difficult or impossible to tell which singular values should be considered
zero (Table 1).

Before presenting our solution to computing these derivatives, we briefly review
other approaches.

Table 1 Comparison of the singular values of a Jacobian calculated by numerical differentiation
and automatic differentiation. The underlying model, a time-invariant version of Fig. 2, has two
observable and two unobservable states and 14 parameters. The correct model rank, verified by
symbolic calculation, is 12

Numeric Automatic
differentiation differentiation

Apparent rank 14 12

Singular values 0.570 0.569
0.507 0.506
0.370 0.229
0.326 0.154
0.275 0.061
0.248 0.041
0.219 0.033
0.153 0.024
0.064 0.017
0.054 0.010
0.045 0.005
0.025 0.002
0.017 1.825e-017
0.006 1.100e-017
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2.4.1 Symbolic Differentiation

The most general way to calculate the Jacobian matrix J is to derive a symbolic
formula for each of the partial derivatives in J and then to evaluate the rank of
J symbolically. This calculation is too complicated for solution by hand, but for
simple models can be carried out using symbolic mathematics packages such as
Maple or Mathematica (Gimenez et al. 2003). This method involves forming a
symbolic vector of the log-probabilities log( fi (θ)), differentiating each of the fi

with respect to θ , and determining the rank of the resulting symbolic matrix J(θ ). If
a model is rank-deficient it is possible to determine the separably estimable compo-
nents of θ and the form of the estimable functions of the remaining parameters from
the orthogonal basis vectors of the null space (Gimenez et al. 2003).

Symbolic differentiation produces accurate results, is not dependent on specific
values of θ , and has the advantage of providing information on the estimable func-
tions of the parameters. Unfortunately, even relatively simple problems can quickly
exceed the capabilities of symbolic math packages. So, at least at present, the appli-
cation of this method is limited in scope.

2.4.2 Analytic Differentiation

The likelihood function (4) is computed as a series of matrix products. Using matrix
calculus (e.g., Magnus and Neudecker 1988), it is possible to derive analytical
formulae for the derivatives of each component of the likelihood. These formulae
can then be evaluated for specified values of the parameters and the rank of the
resulting Jacobian determined numerically. This approach of combining the analyt-
ical calculation of the Jacobian with a numerical calculation of the rank is the basis
for the rank calculations in the software M-Surge and E-Surge (R. Choquet personal
communication, Rouan et al. unpublished). It produces accurate estimates of the
rank, and the analytical formulae also provide the gradient of the likelihood, which
is of great use in the optimization process. However, analytic formulae are difficult
to derive and implement and their use requires considerable programming skills.

2.4.3 Numerical Differentiation

A tempting solution that avoids the need to derive and evaluate the analytical
formulae, is the use of numerical differentiation. Unfortunately, numerical differ-
entiation is a notoriously unstable problem. It is plagued with two kinds of errors.
Discretization error arises from using a finite difference to approximate a continuous
derivative. It goes to zero as the size of the finite difference goes to zero. Condi-
tioning error, on the other hand, arises from roundoff errors caused by taking the
difference between two nearly equal quantities. It becomes infinite as the size of the
finite difference goes to zero. Any particular numerical difference scheme will have
its own balance of these two errors, depending on the function and the parameter
values. It is difficult, or impossible, to determine how accurate a particular numerical
approximation to a derivative is.



804 C.M. Hunter and H. Caswell

The combination of discretization error and conditioning error in a numerical
estimate of the Jacobian makes it impossible to decide how many singular values
are “effectively zero” without imposing an arbitrary threshold. Based on exten-
sive exploration of this approach, we strongly recommend against using numerical
differentiation to determine the rank of mark-recapture models.

2.4.4 Automatic Differentiation

After quickly exceeding the capacity of symbolic differentiation, obtaining unre-
liable results from numerical differentiation and struggling to implement analytic
formulae for the derivatives our search for an alternative led us to a recently
developed approach called automatic differentiation (or sometimes algorithmic
differentiation) abbreviated as AD (Griewank 2000, 2003; Shampine et al. 2005).
AD calculates derivatives numerically, but does not use finite differences. It returns
results with the same accuracy as analytical differentiation; i.e., to machine accu-
racy, and is more efficient than symbolic computation.

The idea behind AD is to compute the derivative of a quantity simultaneously
with the calculation of the quantity itself. This is accomplished by replacing each
variable with an ordered pair of objects, the first of which is the value and the
second of which is the derivative. Mathematical operations applied to the variables
are redefined to also provide the derivatives of the variable at each step. At the end
of a calculation, the derivatives are automatically (hence the name) returned.

For example, a variable y would be replaced in AD by an ordered pair

y �→ (y, dy). (11)

The mathematical operations applied to y are redefined to operate on this new
object. Thus addition becomes

(y, dy) + (z, dz) = [ y + z, dy + dz] (12)

Multiplication and division follow the product rule for derivatives

(y, dy)(z, dz) = [ yz, y(dz) + (dy)z] (13)

(y, dy)

(z, dz)
=
[

y

z
,

z(dy) − y(dz)

z2

]
(14)

Applied to the likelihood function, AD carries the differentiation forward as the
fi are constructed, in contrast to the usual differentiation methods that work back-
wards using differentiation rules to decompose the fi .

Redefining mathematical operations so that derivatives are properly mapped in
AD has required a major effort in software engineering over the past decade (see
www.autodiff.org). One such routine is the Matlab Automatic Differentiation
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(MAD) package available from Tomlab Optimization, Inc. (Forth and Edvall 2006;
see http://tomopt.com).

Because the derivatives provided by AD are accurate to machine precision, the
smallest singular values of the Jacobian are (again to within machine precision) zero,
rather than ambiguously small, if the model is rank-deficient. The rank of Jacobian
matrices calculated by AD can be determined directly, e.g. using the Matlab rank
command. For example, Table 1 compares the results of applying numerical differ-
entiation and AD to a model known, from symbolic calculation, to have a rank of
12. The two smallest singular values calculated by AD are zero to machine precision
(≈ 10−17), but when calculated from the numerical derivatives, there is no clear
distinction between the two smallest (0.017 and 0.006) and the next largest (0.025)
singular values.

3 Models for Seabird Life Cycles

We present three life cycle examples that are relevant in the context of long-lived
seabirds. Many seabirds can be marked, released, and recaptured only on their
breeding colonies. Thus, they are unobservable between fledging and recruitment
and between breeding attempts. The life cycles we consider describe these unob-
servable pre-breeding and inter-breeding situations (see, e.g., Hunter et al. 2000
for an example of how these would fit into the entire life cycle). For each of these
models we describe the life cycle structure and the family of constraints that we
consider.

3.1 Multiple Breeding Sites

Figure 1 shows a model with two breeding locations (stages 1 and 2) and an unob-
servable non-breeding state (stage 3). We parameterize the model in terms of a

2

1

3

Fig. 1 The three-stage breeding site model. Stages 1 and 2 represent breeders at two observable
locations; the unobservable stage 3 (shaded) can be interpreted as non-breeding or breeding in an
unobservable location. Transition probabilities are shown from stage 3; other stages are similar
(σi = survival, βi = breeding at an observable site given survival, γi = probability of breeding at
site 1, given survival and breeding)
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sequence of conditional probabilities. The probability of survival of a bird in stage
i is σi . The probability of breeding in an observable site, given survival, is βi . The
probability of breeding in site 1 given a bird is in stage i , conditional on surviving
and breeding, is γi . By definition the probability of breeding in site 2 given survival
and breeding is thus 1−γi . The capture probability of stage i is pi , with the addi-
tional constraint that p3 = 0 because stage 3 is unobservable.

3.1.1 Constraints

Many biological hypotheses might be used to specify parameter constraints in this
model. We consider five possible equality constraint models for each parameter
type, i.e. for the σi , βi , and γi . For example, possible constraint models for survival
are:

Model Constraint

1 σ1 = σ2 = σ3
2 σ1 = σ3, σ2
3 σ1 = σ2, σ3
4 σ1, σ2,= σ3
5 σ1, σ2, σ3,

Constraint Model 1 estimates a common survival probability for all stages. At
the other extreme, Model 5 estimates a separate survival for each stage. Between
these extremes, Models 2–4 estimate two parameters among the three stages.

These constraints can be treated in two equally valid ways: as hypotheses to
be evaluated or as models imposed a priori based on the goals of the study. For
example, if stage 3 represents non-breeding birds, a study of the effects of breeding
on survival might use Model 3, which estimates survival separately for breeding and
non-breeding stages, because that estimates the effect of interest. On the other hand,
a study whose goal was a single survival estimate for all stages would obtain the
best such estimate using Model 1.

Applying these five constraint Models to σi , βi , and γi allows a total of 125
possible constraint model combinations.

3.2 Breeding Success and Failure

In species with significant parental investment, the difference between successful
and failed breeding attempts can have important consequences. For the large alba-
trosses, which are biennial breeders, failed breeders may breed the following year
but successful breeders cannot. In general, the success or failure of breeding in year
t may affect the probability of breeding and of breeding success in year t + 1.

Figure 2 shows a life cycle graph (currently being used for analyses of albatross
demography) that distinguishes successful and failed breeders, and non-breeders
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2 4

1 3success

failure

post-success

post-failure

Fig. 2 The four-stage model for breeding success and failure. Stage 1 is successful breeders,
stage 2 is unsuccessful breeders, stage 3 is non-breeders whose previous breeding attempt was
successful, and stage 4 is non-breeders whose previous breeding attempt failed. Unobservable
stages are shaded. Transition probabilities are shown for stage 3; other stages are similar (σi =
survival, βi = breeding given survival, γi = success given breeding)

whose previous breeding attempt was a success or a failure. Breeding stages (1 and
2) are observable; non-breeding stages (3 and 4) are not. The model is parameterized
in terms of the probability of survival, σi , the probability of breeding given survival,
βi , and the probability of success given breeding, γi . The capture probabilities are
denoted by pi and by assumption, p3 = p4 = 0. For biennial species β1 = 0 and γ1

is undefined.

3.2.1 Constraints

For the breeding success model we consider four constraint models for each param-
eter type; e.g., for survival, we have:

Model Constraint

1 σ1 = σ2 = σ3 = σ4
2 σ1 = σ3, σ2 = σ4
3 σ1 = σ2, σ3 = σ4
4 σ1, σ2, σ3, σ4

Constraint Model 1 estimates a common probability for all stages. Model 4
estimates a separate probability for each stage. Between these extremes, Model 3
estimates one probability for breeding individuals and another for non-breeding
individuals. It corresponds to the biological hypothesis that the energetic and physi-
ological costs of breeding are the most important influence on the vital rates. Model
2 estimates one probability for breeders that are (currently or previously) successful,
and another for failed breeders. As a hypothesis, it emphasizes the distinction
between successful and unsuccessful birds. The four constraint models for σi , βi ,
and γi give a total of 64 possible constraint combinations.
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7(1 – 7)

8 8

9

6(1 – 6)5(1 – 5)4(1 – 4)321

5 5 6 6 7 7

Fig. 3 Prebreeder recruitment life cycle. Stages are (1) first year, (2) second year, . . ., (8) eighth
year, (9) breeders. Stages (1) and (9) are observable, all other stages are unobservable (shaded).
Probability of survival of a bird in stage i is σi , probability of first breeding at age i is αi

3.3 Pre-breeding Survival and Recruitment

Most seabirds with delayed maturity are unobservable between fledging and recruit-
ment. Figure 3 shows an example, parameterized in terms of age-specific survival
probability σi and the age-specific conditional probability of recruitment αi , given
survival. See Clobert et al. (1994) for an analysis in terms of the Cormack–Jolly–
Seber model. The minimum age at recruitment, k, and the number of recruiting
age classes, y, are specified as part of the model structure. Stages 1 and k + y are
observable; all other stages are unobservable. In Fig. 3, for example, k = 4 and
y = 5.

3.3.1 Constraints

One goal of this model is to untangle, as much as possible, the age dependence of
survival and recruitment during the pre-breeding period. Complete age-dependence
is impossible to estimate (Clobert et al. 1994). Many constraint models for survival
and recruitment are possible. As examples we explore six constraint models for
survival and two for recruitment. To specify these, we use the Matlab notation
[a : b] = [a, a + 1, . . . , b].

Model Survival constraint

1 σ1 = · · · = σk+y
2 σ1, σ2 = · · · = σk+y
3 σ1 = · · · = σk−1, σk = · · · σk+y
4 σ1 = · · · = σk−1, σk = · · · σk+y−1,σk+y
5 σ1 = · · · = σk−1, logistic on [k : k + y]
6 σ1 = · · · = σk−1, logistic on [k : k + y − 1],σk+y

Model Recruitment constraint

1 αk = · · ·αk+y−1
2 logistic on [k : k + y − 1]
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Survival constraint Model 1 sets all survival probabilities equal. Model 2 esti-
mates a survival probability for fledglings and a common survival probability for all
older age classes. Model 3 estimates one survival probability for all ages less than k
and another for all ages greater than k. Model 4 estimates one survival probability
for all ages less than k, a second for all ages between k and k + y − 1 (all those that
can potentially recruit), and a third for breeding adults. Model 5 estimates a single
survival probability for all ages less than k and a logistic increase in survival from
age k to the breeding adult stage. Model 6 estimates a single survival probability
for all ages less than k, a logistic increase in survival from age k to k + y − 1, and
a separate survival for breeding adults. The logistic models permit exploration of
hypotheses about the improvement of survival with age. They require two parame-
ters; for example for survival Model 5:

logit (σi ) = a + bi i = k, . . . , k + y (15)

Recruitment Model 1 estimates a single recruitment probability for all ages
beyond the age of first recruitment. Model 2 estimates a logistic increase with age in
recruitment probability beyond the age of first recruitment. We emphasize that these
constraint models are only a sampling of those that might be biologically interesting.

3.4 Time-Varying Models

We investigated model rank for both time-invariant and time-varying versions of
the models. We present results for three classes of temporal variation; free time-
variation, additive time variation, and a temporal trend.

1. Free time-variation yields a separate value at each time for a given parameter.
For example, a freely time-varying model for survival in the breeding site life
cycle (Fig. 1) with constraint Model 4 (σ2 = σ3) would estimate

σ1(t) t = 1, . . . , N − 1
σ2(t) t = 1, . . . , N − 1

(16)

for a total of 2(N − 1) estimated parameters.
2. Additive time-variation requires parameters to vary in parallel on the logit scale.

For example, an additive model for survival in the breeding site life cycle, again
with constraint Model 4, would estimate

σ1(t) t = 1, . . . , N − 1
logit [σ2(t)] = logit [σ1(t)] + c2

(17)

with σ3 = σ2 because of the constraints, for a total of N estimated parameters.
3. Temporal trends in a parameter are described by a logistic dependence of the

parameter on time; e.g.,
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logit [σi (t)] = ai + bi t (18)

The same structure can describe dependence on an environmental covariate x(t),
in which case

logit [σi (t)] = ai + bi x(t) (19)

In this perspective, time is simply a covariate with a particularly simple time
dependent structure.

For simplicity, we chose to examine only models that impose the same type of
time variation on all parameters of the same type (i.e. all survival parameters, or
all breeding probabilities, etc.). For example, we consider a model where the σi

are freely time-varying but the βi are not, but we exclude models where σ1 is time
varying but σ2 is not.

3.4.1 Constraints on Time Variation

In time-varying mark-recapture models it is common for parameters at the last
time period (e.g., survival and capture) to be confounded. In addition, time-varying
models with unobservable states also experience confounding at the beginning of
the capture sequence. Consider Fig. 2 and suppose that individuals can be released
only in the observable states 1 and 2. From t = 1 to t = 2, no marked individuals
can make any of the transitions originating in stages 3 or 4. From t = 2 to t = 3,
however, some individuals originating in states 1 or 2 at t = 1 can make those
transitions and arrive at observable states. Thus time variation in the parameters
defining the transitions from stages 3 and 4 cannot be resolved until two sampling
occasions have passed. Thus, it seems that identifiability requires that freely time-
varying parameters be constrained to be equal at t = 1 and t = 2.

In more complicated life cycles (e.g., Fig. 3), we conjecture that a sufficient
condition is to constrain parameters long enough to assure a positive probability
of individuals released in the observable states traversing all pathways in the life
cycle graph. For Figs. 1 and 2 this requires two time steps.

To address these issues, we constrained all freely time-varying parameters to be
equal at t = 1 and t = 2, and at t = N − 2 and t = N − 1.

4 Implementation using Automatic Differentiation

To implement these calculations, we wrote a series of Matlab programs
(www.mathworks.com) to accept a set of parameter values, generate the matrices Φ t

and Pt , and compute the p-array. We used the Matlab Automatic Differentiation
(MAD) package produced by Tomlab (Forth and Edvall 2006) to generate the
Jacobian matrix. We evaluated the rank of the Jacobian using the Matlab rank
command, which counts the number of singular values greater than a threshold. We
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examined the singular values and found no ambiguity between zero and the non-zero
singular values.

For rank-deficient models we used the Matlab command null to obtain an
orthonormal basis for the null space of the Jacobian. Parameters whose entries are
zero in all of these basis vectors are separately estimable. All other parameters are
confounded in some way.

As an example, consider the time-invariant 3-state breeding site model with N =
5 sampling occasions (Fig. 1). We specify values for the eleven model parameters:

γ1 γ2 γ3 β1 β2 β3 σ1 σ2 σ3 p1 p2

0.60 0.65 0.62 0.90 0.85 0.45 0.95 0.94 0.92 0.90 0.80

The Jacobian J, which is of dimension 90 × 11 in this case, has singular values

5.69e − 001
5.05e − 001
2.31e − 001
1.54e − 001
7.02e − 002
4.36e − 002
2.95e − 002
1.72e − 002
7.65e − 003
2.69e − 003
1.24e − 017

The smallest singular value is zero to Matlab precision, and the rank of J as
calculated by Matlab is 10, implying a rank deficiency of 1. The one-dimensional
null space is spanned by the vector⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0.0000
0.0000
0.1493
0.1493
0.1493

−0.2985
−0.3731
0.8395
0.0000
0.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

The zero entries of this vector correspond to the parameters that can be separately
estimated; in this case only γ1, γ2, γ3, p1, and p2. All the survival and breeding
probabilities are confounded in some combination.
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4.1 Rank, Generic Rank, and Parameter Dependence

Our results are obtained for a particular parameter vector θ , raising the question
of whether a model found to be full rank for one set of parameters might be rank-
deficient for another. However, the theory for generic matrix properties suggests in
a very powerful and general sense that this is unlikely to happen.

Consider a matrix, such as J, whose entries are functions of a set of parameters
θ ∈ Rq . A property of such a matrix is said to be generic if it holds at all points in
a dense open set in parameter space (Hirsch and Smale 1974, p. 154), or if it holds
at all points θ except for those in a subset of Rq composed of the intersection of the
zeros of a set of polynomials in θ (e.g., Wonham 1985, p. 28). Such an intersection,
called a proper algebraic variety, has measure zero in Rq . Thus, by either definition,
a generic property is true of “almost all” matrices, or holds with probability 1 if we
think of the entries of θ as being selected “at random”.

Within the set of all matrices of size m × n the subset of full-rank m×n matrices
is known to be open and dense if the entries of the matrix are independently varying
quantities (Golub and van Loan 1996, p. 73). Thus, under this condition, having full
rank is a generic property of a matrix. However, we are interested in matrices whose
entries are functions of parameters and therefore not generally independent. The
generic-rank of a matrix A[θ] whose entries are functions of a set of q parameters
is the rank obtained for all values of θ outside of a proper algebraic variety in Rq

(Murota 2003, p. 38).
The critical conclusion relevant here is that the generic rank is equal to the

maximum, over all parameter values, of the rank obtained as a function of θ ,

generic-rank(A) = max
θ∈Rq

rank(A[θ]) (21)

(Murota 2003).2 Thus if an arbitrary set of parameters yields a Jacobian of full
rank, the Jacobian is of full generic rank and the corresponding model will be
rank-deficient only for very particular combinations of parameters (i.e., from a set
of measure zero). If an arbitrary set of parameters yields a rank-deficient Jaco-
bian, there are two possibilities. Either the obtained rank is the generic rank, and
the model is rank-deficient everywhere (since its rank can only go down from the
generic rank). Or the parameters happened to fall exactly on one of the measure-zero
proper algebraic varieties in the parameter space, in which case the generic-rank will
be greater, perhaps even full rank.3

2Murota states this result for matrices whose entries are rational functions of the parameters, so it
would apply directly to Jacobians calculated in terms of the probabilities (the identity link) rather
than the logit transform of the probabilities. When calculated using the logit link, the entries of
J are analytic, but not rational, functions of θ . However, analytic functions are given everywhere
by their Taylor series, so the result applies equally to the logit link case (M. Golubitsky personal
communication).
3Note that this same argument is used independently by Rouan et al. (unpublished).
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When investigating a particular model, the chance of the second outcome can
be reduced by avoiding parameter vectors with obvious relations among the entries.
This includes parameters that are equal to each other. Thus, for example, while a
time-varying model with σi (t) = 0.5 for all t is a possible time-varying model, it
may give different rank results from the same model in which the σi (t) vary, however
small the variation.

5 Results: Model Rank for Seabird Life Cycles

Even though these life cycles contain few stages, the combinations of constraints
and time variation for the different parameters (e.g. survival, breeding, capture) yield
many thousands of models. It is surprising how many of these models are full rank.
To reveal patterns we present examples of rank deficiency as a function of parameter
constraints and time variation.

5.1 Multiple Breeding Sites

5.1.1 Time-Invariant Models

Our explorations suggest that constraints on σi and βi have a greater effect on rank
deficiency than constraints on γi or pi . With no constraints on γi or pi , there is a
set of 25 different constraint models for βi and σi (Table 2). Most of these are full
rank. It appears that some constraints on survival are necessary for models to be full
rank. All models with three separate survival probabilities (constraint Model 5; σ1,
σ2, and σ3) were rank-deficient. With only two exceptions, all models with some
constraint on survival were fully estimable. The two exceptions were models where
survival of the unobservable state was unconstrained.

The combination of 5 constraint models for each of the σi , βi , and γi yields 125
models (imposing no constraints on the pi ). Constraints on γi had little effect on
model rank. An additional four models were rank deficient when two γi were set
equal (γi constraint models 2–4) but all 25 models were rank deficient if all states

Table 2 Rank deficiency (and total number of parameters) for the time-invariant 3-stage breeding
site model (Fig. 1) with constraints on σi and βi . In all cases, γi and pi are estimated separately for
each stage

Survival constraint model
constraint model σ1 = σ2 = σ3 σ1 = σ3, σ2 σ1 = σ2, σ3 σ1, σ2 = σ3 σ1, σ2, σ3

Breeding

β1 = β2 = β3 0 (7) 0 (8) 1 (8) 0 (8) 1 (9)
β1 = β3, β2 0 (8) 0 (9) 0 (9) 0 (9) 1 (10)
β1 = β2, β3 0 (8) 0 (9) 1 (9) 0 (9) 1 (10)
β1, β2 = β3 0 (8) 0 (9) 0 (9) 0 (9) 1 (10)
β1, β2, β3 0 (9) 0 (10) 0 (10) 0 (10) 1 (11)



814 C.M. Hunter and H. Caswell

had an equal probability of breeding in site 1 (γi constraint model 1). Thus, 60 of
the 125 time-invariant models for this life cycle are fully estimable.

5.1.2 Time-Varying Models

Adding time variation, even with the restriction that all parameters of a particular
type are treated the same, creates a very large number of possible models. More
than 27,000 combinations of constraint models and time variation in σi , βi , γi , and
pi are possible. Table 3 shows an example set for all constraint and time variation
combinations of σi and βi with no constraints and free time variation for γi and pi .
Comparing Tables 2 and 3, it appears that if the time-invariant model is rank defi-
cient, the time-varying model is also rank deficient when survival varies freely with
time and breeding probability is either constant, additive or freely time-varying. The
remainder of the 361 models in Table 3, i.e. 93% are fully estimable. This suggests
the primary influence on parameter redundancy is the specification of survival prob-
abilities.

Other choices of constraints can, of course, change model rank. Although when
all γi are separate, time variation in γi or p does not affect rank deficiency; when
all γi are equal an additional 116 of the 361 models become rank deficient. This
emphasizes the fact that reducing the number of parameters does not always make
the model easier to estimate, because of interaction among the parameters in deter-
mining the likelihood.

We calculated the rank of the 27,436 models defined by all choices of constraints
and time-variation. Of these, fully 88 were full rank. It is interesting that some
combinations of constraints that are rank-deficient for time-invariant models
become full rank with the addition of time variation in σi and/or βi .

If the pi are known independently, constraints on γi and time variation in γi or
pi had no effect on rank deficiency. A known value for the pi does not allow any
additional combinations of constraint or time variation models in Table 3 to be fully
estimable. However, a few additional models with constraints on γi become fully
estimable when the pi are known.

The results in Tables 2 and 3 were calculated for six sampling occasions.
Gimenez et al. (2003) showed that rank deficiency does not change with the number
of capture occasions, assuming the number of occasions is greater than or equal to
the minimum number that allows for all possible transitions.

5.2 Breeding Success and Failure

5.2.1 Time-Invariant Models

Table 4 shows the rank of the 16 models defined by 4 constraints on the σi and
βi , with breeding success γi estimated separately for each stage and pi estimated
separately for each observable stage. All of the models that estimate survival
separately for the four stages (constraint model 4) were rank-deficient, as were
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Table 4 Rank deficiency (and total number of parameters) for the time-invariant 4-stage breeding
success model (Fig. 2) with constraints on σi and βi . In all cases, γi and pi are estimated separately
for each stage

Survival constraint model
constraint model σ1 = σ2 = σ3 = σ4 σ1 = σ3, σ2 = σ4 σ1 = σ2, σ3 = σ4 σ1, σ2, σ3, σ4

Breeding

β1 = β2 = β3 = β4 0 (8) 0 (9) 1 (9) 1 (11)
β1 = β3, β2 = β4 0 (9) 0 (10) 0 (10) 2 (12)
β1 = β2, β3 = β4 0 (9) 0 (10) 1 (10) 1 (12)
β1, β2, β3, β4 0 (11) 0 (12) 0 (12) 2 (14)

combinations of survival constraint model 3 with breeding probability constraint
models 1 or 3. Constraints on γi had little effect on parameter redundancy. An addi-
tional two models become rank deficient for γi constraint models 1 and 3. As in the
3-stage model, survival constraints had a greater effect on parameter redundancy
than conditional breeding parameters.

5.2.2 Time-Varying Models

Of the many possible time-varying models, we show results in Table 5 for 225
models defined by combinations of constraints and time variation for the σi and
βi . No constraints are imposed on the γi or pi , both of which were allowed to
vary freely with time. Of these models, 203 were full rank. For these cases, where
the probability of breeding success is independent for each stage, rank-deficiency
occurs only in constraint models for which time-invariant models are also rank-
deficient.

Constraints on γi cause some additional models in Table 5 to become rank defi-
cient, especially when all probabilities of breeding success are equal. The combi-
nation of 4 constraint models for each of the σi , βi , and γi , combined with 4 types
of time-variation yields more than 14,000 models.4 Of these, more than 86% were
fully estimable. An additional 2 of models become fully estimable if the pi are
known independently rather than estimated.

5.3 Pre-breeding Survival and Recruitment

As an example of the pre-breeding model, we compute rank deficiency for a model
with a minimum age of first breeding of 4 and a maximum age of first breeding of 8
(as shown in Fig. 3).

4The number is slightly less than a simple combinatorial calculation would suggest because some
possibilities (e.g., all σi equal, with additive time variation) are not possible.
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5.3.1 Time-Invariant Models

All the time-invariant models we examined were fully estimable, regardless of the
survival and recruitment constraint combination. These time-invariant models are
shown as special cases within Table 6, which includes results for the time-varying
models.

5.3.2 Time-Varying Models

To account for confounding of parameters at the initial and final time periods
as discussed in Section 3.4, for all models with freely time-varying survival

Table 6 Rank deficiency for time-varying pre-breeder recruitment models with constraints on σi

and αi for N = 15 capture occasions. The probability of survival in stage i is σi and the probability
of first breeding at age i is αi . Codes used for time variation are: c = constant, x = trend or covariate,
a = additive, and f = free time variation

Recruitment constraint

α4 = . . . = α8 logistic [α4 : α8]

Survival constraint c x f c x f

σ1 = . . . = σ9
c 0 0 0 0 0 0
x 0 0 0 0 0 0
f 0 0 0 0 0 0
σ1
σ2 = . . . = σ9
c 0 0 0 0 0 0
x 0 0 0 0 0 0
a 0 0 0 0 0 0
f 0 0 0 0 0 0
σ1 = . . . = σ3
σ4 = . . . = σ9
c 0 0 0 0 0 0
x 0 0 0 0 0 0
a 0 0 0 0 0 0
f 0 0 0 0 0 0
σ1 = . . . = σ3
σ4 = . . . = σ8
σ9
c 0 0 0 0 0 0
x 0 0 0 0 0 0
a 0 0 0 0 0 0
f 1 0 14 0 0 0
σ1 = . . . = σ3
logistic [σ4 : σ9]
c 0 0 0 0 0 0
x 0 0 0 0 0 0
a 0 0 0 0 0 0
f 0 0 0 0 0 0
σ1 = . . . = σ3
logistic [σ4 : σ8]
σ9
c 0 0 0 0 0 0
x 0 0 0 0 0 0
a 0 0 0 0 0 0
f 0 0 0 0 0 0
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probabilities, the probabilities of survival at the first 4 time periods were constrained
to be equal and the probabilities of survival at the last 5 time periods were
constrained to be equal. Similarly, for freely time-varying recruitment, the proba-
bilities of recruitment were constrained to be equal for the first 4 time periods.

All but two combinations of parameter constraints and time-variation models
were full rank (Table 6). The only rank-deficient models had free time-variation
in three survival probabilities (σ1 = σ2 = σ3, σ4 = . . . = σ8, and σ9) and a
common recruitment probability across ages 4–8 that was either constant or freely
time-varying.

5.4 Applying Constraint Models to the Wandering Albatross

Evaluation of model rank is a useful first step in parameter estimation to aid in model
selection and estimation results. As an example of the use of parameter constraints,
we show some preliminary results from an ongoing study of the Wandering Alba-
tross (Diomedea exulans) at Bird Island, South Georgia. The Wandering Albatross
is classified as vulnerable by the IUCN due to observed population declines (about
28% from 1961 to 1996 at Bird Island, South Georgia) and the impact of longline
fisheries. Albatross are long-lived, reaching maturity between 5 and 15 years, and
have low fecundity, often skipping years between breeding attempts and laying only
one egg each breeding attempt.

We examine parameter redundancy for the 4-stage breeding success model
(Fig. 2) for Wandering Albatross data collected by the British Antarctic Survey
during more than 40 years of banding and monitoring on Bird Island (Croxall et al.
1998). We use a data set for known-age birds from 1986 to 2005, during this period
the recapture effort has been relatively constant. The data set includes 4884 indi-
vidual capture histories.

We are particularly interested in whether the survival of successful and failed
breeders differs, suggesting differences in individual quality, or whether survival of
breeding and non-breeding birds differs, suggesting a trade-off between reproduc-
tion and survival. To address these questions we fit time-invariant versions of the
4-stage breeding success model (Fig. 2).

Before fitting the models using Matlab and program E-Surge (Choquet et al.
2004), we checked extrinsic model redundancy for the data set. In only two cases did
we find Jintrinsic of full rank while Jdata was rank-deficient. These were for survival
constraint Model 4 and breeding constraint Models 2 or 4 and both had free time
variation in survival and a covariate for breeding probability. We have no intuitive
explanation for why these two models should be rank-deficient.

We used AIC to compare support for the models. Table 7 contains the ΔAIC
values (i.e., the AIC for the model relative to the minimum AIC for the model
set). For this set of time-invariant models, the choice of survival constraint had
little effect on AIC or on parameter estimates (not shown here). However, models
providing separate estimates of β2, β3 and β4 performed much better than models
with constrained breeding probabilities. This suggests that there is little difference
in survival probability among the four stages but that important differences exist
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Table 7 ΔAIC values for time-invariant breeding success models (Fig. 2) for the Wandering
Albatross on Bird Island, South Georgia. In all cases, γi and pi are estimated separately for each
stage

Survival constraint model
constraint model σ1 = σ2 = σ3 = σ4 σ1 = σ3, σ2 = σ4 σ1 = σ2, σ3 = σ4 σ1, σ2, σ3, σ4

Breeding

β1 = β2 = β3 = β4 360 333 307 304
β1 = β2, β3 = β4 292 211 211 211
β1 = β3, β2 = β4 242 219 219 221
β1, β2, β3, β4 1.13 0.00 0.00 0.0001

among the breeding probabilities. The model in row 4 column 4 is rank-deficient,
and hence would be of no use for parameter estimation. We would therefore exclude
it from model averaging and further analysis.

The estimation procedure has difficulty distinguishing between the models in
columns 2 and 3. Analyses of simulated data (not shown here) confirm that this is a
function of the similarity among the σi , not a feature of the model structure.

6 Discussion

Unobservable stages are common in the life cycles of many organisms. They are
common in long-lived marine species where individuals can usually only be individ-
ually identified on the breeding grounds. This means that pre-breeding individuals
are unobservable between leaving the natal area and recruiting to the breeding popu-
lation, as are mature individuals that do not breed in a given year. This problem has
been recognized in birds (e.g., Clobert et al. 1994; Kendall and Nichols 1995; Cam
et al. 1998; Pradel and Lebreton 1999; Schwarz and Arnason 2000; Weimerskirch
et al. 1987; Lindberg et al. 2001; Spendelow et al. 2002; Lebreton et al. 1992;
Crespin et al. 2006), marine mammals (Schwarz and Stobo 1997; Fujiwara and
Caswell 2002a) and sea turtles (Kendall et al. 1997; Kendall and Bjorkland 2001).
The phenomenon is not limited to marine species (Kendall et al. 1997; Kery et al.
2005; Bailey et al. 2004).

The rank-deficiency created by unobservable stages can be removed by imposing
constraints on the parameters. In the models studied here, the number of models we
found to be fully estimable (with the exception of the usual confounding of param-
eters at the last time period and equivalent confounding at the first time period) is a
pleasant surprise. This suggests it is possible to estimate demographic models that
encompass interesting biological features even when the life cycle includes unob-
servable states.

In some cases, adding parameters can make a rank-deficient model estimable.
For example, the time-invariant 4-stage breeding success model (Fig. 2) is
rank-deficient when the four survival probabilities are separate. Yet, in a
time-varying model with survival probabilities modeled as functions of a covariate
or a temporal trend, the model becomes fully estimable even though it has an
additional N − 4 parameters. This phenomenon has been observed previously.
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A Jolly–Seber model with fully age-dependent time-invariant survival probabilities
and a time-invariant recovery probability, is rank-deficient. Adding extra parameters
by allowing first-year survival to be time-dependent makes the model non-redundant
(Morgan and Freeman 1989; Catchpole et al. 1996).

Some discussions of temporary emigration have emphasized the use of robust
design models to provide independent information on capture probabilities. Our
results suggest this helps primarily for simple or more highly constrained models.
For example, we found no differences in rank deficiency between models with pi

known versus pi estimated when all γi were modeled separately. Knowing p has
also been shown to improve estimability of a 2-stage (one observable and one unob-
servable state) first-order Markov model (Kendall and Nichols 2002). Our method
suggests more of the models in Table 2 of Kendall and Nichols (2002) are full rank,
particularly those with fewer time constancy or parameter constraints. This differ-
ence is partly due to our use of both initial and final constraints. Kendall and Nichols
(2002) considered models with the usual confounding of parameters at the last time
period to be estimable, but did not allow for not being able to release individuals in
the unobservable state at the first time step.

It is not always obvious from the confounded parameters whether imposing final
and initial constraints will make a model estimable. For example, in the models
considered by Kendall and Nichols, with separate time-varying transition probabil-
ities, separate but constant survival probabilities, and time-varying capture proba-
bility, all parameters except one (capture probability at t = 2) are confounded, but
when initial and final constraints are imposed this model becomes fully estimable.

Although many of the models presented here are intrinsically estimable, they
may not be simple to estimate. Long-term and relatively complete data sets will
be required to fit multi-state models with unobservable states. It is known that
multi-state models tend to produce multiple maxima because they involve sums of
products, rather than only the products that occur in single-state models (Lebreton
and Pradel 2002). Unobservable states are likely to add to this problem and make
estimation under these models even more difficult.

The method we present here extends and complements previous work on the rank
of multi-state models (Catchpole and Morgan 2001; Fujiwara and Caswell 2002a;
Kendall and Nichols 2002; Gimenez et al. 2003, 2004). It has the advantage of
being relatively easy to implement, given the matrix formulation of the likelihood,
the availability of the Tomlab implementation of automatic differentiation, and
a working knowledge of Matlab . It can be used to determine both intrinsic and
extrinsic parameter redundancy. Only the formal symbolic analytic method provides
full information on how parameters are confounded in redundant models, but the
method we present does provide information on which parameters are separably
estimable and which are confounded in some way. Our method is completely general
in terms of model structure (including use of conditional transitions), parameter
constraints, temporal constraints, and availability of additional information, limited
only by biological reality (and the investigator’s imagination).

Estimates of survival and transition rates are essential to a meaningful inves-
tigation of population dynamics, especially in colonial seabirds. Multi-state
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mark-recapture analysis provides a powerful tool for obtaining such estimates. We
hope the methods we present here will improve the utility and efficiency of this
analysis, providing a means to determine parameter redundancy of a wider variety
of models than is currently possible.
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Appendix

Section 5.2 presents rank deficiency results for the 4-stage breeding model for a
species capable of breeding annually. This appendix gives rank deficiency results
for biennial versions of that model as used in the Wandering Albatross example
(Table 8). For such species, β1 = 0, so the transition from successful breeder to post-
success non-breeder (Fig. 2) becomes deterministic. This makes additional models
with survival constraint Model 3 fully estimable. Most models with four separate
survivals and full time variation in survival are still parameter redundant.
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Mark-Recapture Jolly-Seber Abundance
Estimation with Classification Uncertainty

Wendell O. Challenger and Carl J. Schwarz

Abstract Wildlife managers and ecologists are often interested in estimating
abundance of animals belonging to a certain fixed group (e.g. sex), but in some
cases group membership cannot always be ascertained. Group assignment uncer-
tainties can occur either through the inability to assign group membership because
of a lack of group-specific characteristics (e.g. males and females look alike), lack of
training (e.g. volunteers), or through errors in assignment. Recently, methodological
advances in closed population capture-recapture models have allowed for the inclu-
sion of classification uncertainties in parameter estimates. We build on this work
by addressing identification uncertainty in abundance estimation (open population
models), providing a general method for dealing with multiple groups/states when
the true underlying group/state can be considered fixed for the duration of the exper-
iment. We then apply this methodology to estimate the sex-specific abundances of
walleyes (Stizostedion vitreum) in Mille Lacs, Minnesota.

Keywords Capture–recapture · Unknown sex · Jolly–Seber · Maximum
likelihood · Group uncertainty · Sexing errors

1 Introduction

The capture–recapture (CR) experimental protocol provides a flexible approach
for making inferences on animal populations that may be hard to observe other-
wise. Inferences can range from individual level processes, such as survivorship, to
population level processes such as abundance and recruitment. The Jolly-Seber (JS)
model is used for open populations, where both births (or immigration) and deaths
(or emigration) are explicitly modelled. Current applications of the JS abundance
model include estimating overall and group specific abundances.
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The JS class of models make key assumptions on the marked and unmarked
animals in the population of interest. Specifically, both segments of the population
are assumed to be homogeneous in catchability and demographic parameters such as
survivorship. This assumption of homogeneity is not only required at the population
level but also at the individual level, where parameters are assumed to be the same
among all animals. However, populations often have underlying structures that can
violate the latter assumption of animal homogeneity. For example, animals with
differing age and/or sex may exhibit differences in catchabilities and/or different
apparent survivorship.

If left unmodeled the heterogeneity may result in over-dispersion, model misfit
and potentially biased estimates. Heterogeneity can be handled by modeling affected
parameters in terms of individual covariates or, at a courser level, by modeling the
heterogeneity through discrete partitions. When over the course of the experiment
membership to a partition is fixed (e.g. sex), the term “group” is often used, while
the term “state” often implies the potential for membership can change. For systems
where membership to a partition is fixed (i.e. groups) classically parameter grouping
methods (e.g. Jolly 1965; Lebreton et al. 1992) are often used, while systems where
membership can change (non-fixed states) are handled by multi-state (e.g. Lebreton
and Pradel 2002) and multi-event models (Pradel 2005). These approaches not only
assume that heterogeneity may be effectively partitioned, but that the state/group can
also be accurately assessed on capture. Therefore, the ability to assign state/group
represents an additional source of variability, which up until recently has not been
included in many models.

State/group assignment uncertainty can be divided into two distinct types, iden-
tification uncertainty and mis-assignment uncertainty. Identification uncertainty
represents a probability of identifying a state/group when observed, while mis-
assignment is the probability of assigning the incorrect state/group. Depending on
the system, one or both of these types of error may occur separately or in synchrony.
Models have been developed to deal with uncertainties in identification (e.g. Nichols
et al. 2004), state assignment (e.g. Fujiwara and Caswell 2002, Kendall et al. 2003;
Pradel 2005), as well as both types simultaneously (Pradel 2005). However, these
advances are restricted to the Cormack-Jolly-Seber (CJS) framework and as such
do not allow for abundance estimates. Since abundance estimates are often of
interest to wildlife managers, there is a need to extend these approaches to the JS
framework.

In extending the JS framework to deal with identification uncertainty, we deal
with characteristics that are fixed over the duration of the experiment. Fixed charac-
teristics, such as sex, are often of interest to wildlife managers and may also partition
heterogeneity in the population. However, due to factors, such as lack-of-training,
identification of these characteristics on captures is not always known. To this end
we consider the situation where sex can only be accurately assigned on some of the
capture occasions or not at all.

When dealing with group uncertainty for fixed characteristics, it can be appro-
priate to look at identification uncertainty rather than mis-assignment (e.g. see
Nichols et al. 2004). Primarily, each sampling occasion gives an independent
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opportunity to determine the true underlying group. As such, group assignments are
not required on each sampling occasion, since future and previous occasions provide
useful information. In this manner positive group assignments may be restricted to
situations where the group is known with certainty, with all remaining scenarios
handled by assignment to the unknown group. This is in contrast to non-fixed char-
acteristics (e.g. breeding state) that can transition between sampling occasions and
where there is an added emphasis on making a state assignment each every capture
occasion (but see Pradel 2005).

In the present paper we extend the approach used by Nichols et al. (2004) to
deal with sex uncertainty, to the JS framework by modifying the super-population
formulation of Schwarz and Arnason (1996). Positive assignments were restricted
to situations where sex was known with certainty and all other situations were dealt
with as unknown designations. This model was then applied to walleyes (Stizoste-
dion vitreum) data from Mille Lacs, Minnesota, where sexing designations were not
always possible due to staffing restrictions. The model was then used to determine
sex-specific abundances and sex-specific recruitment over multiple years.

2 Survey Protocol

The survey protocol follows the standard JS protocol with groups except that on
each capture occasion, 3 possible events may occur: unobserved, group unknown, or
a positive group identification. We consider the case of 2 groups, males and females.
We assume that any positive assignment is definitive and as a consequence strictly
forbid the assignment of more than one sex to a tag history. For situations where
group uncertainty exists the unknown designation should be used.

This is intended for situations where there are a mixture of experts and non-
experts conducting the survey and each type of observer has different capabilities to
assign group membership (i.e. sex) on capture. Both types of observers are expected
to record tag numbers correctly, while only expert observers are allowed to assign
group membership. Upon capture experts may choose to assign group membership
(i.e. male or female), or designate group membership as unknown, while captures by
non-experts are given the unknown group membership. In doing so we give expert
observers the option of forgoing group membership assignment, should the need
arise, and allow non-expert observations to be incorporated.

This treatment of groups differs slightly from the more classical grouping
methods (i.e. Jolly 1965; Lebreton et al. 1992; Schwarz and Arnason 1996) that
assume all animals can be definitively assigned to their respective groups at some
point during the experiment. We relaxed this assumptions by modeling the proba-
bility of encountering individuals with unresolved sex as being a composite of both
sexes. In this manner we take an approach that is similar both Nichols et al. (2004)
and the post-stratification method developed by Conroy et al. (1999), which used
covariates to assign sex post capture to juvenile animals. However, both approaches
were developed for the CJS framework (excluding abundance estimation) and unlike
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the post-stratification we make no requirements on the availability of covariates that
can be used to predict sex. Our approach also differs from ad hoc techniques that use
a unique category with its own demographic parameters to deal with the unknown
sex designations. If handled in such a manner group specific demographic parame-
ters, such as apparent survivorship, will be positively biased due to the expected
increase in encounters for histories where sex has been resolved (Nichols et al.
2004).

Finally, in the most general case of our model, it is assumed group assign-
ments will be attempted on each and every sampling occasion. While useful for
estimating assignment probabilities, it is not an absolute requirement. If proper
model restrictions are employed, experimental protocols can be designed where
group assignment is only attempted on certain capture occasions (see the example
section).

3 Notation

Classical mark-recapture experiments use a capture history vector of “1” or “0” to
represent whether an animal was caught (1) or not caught (0) during k sampling
occasions. In our case we distinguish between the unobserved state (0) and three
possible observed “groups”: unknown (1), female (2) and male (3). Here the female
and male represent a positive identification, while unknown represents uncertainty
in assignment. As such the capture history will still be a vector of length k, but will
consisting of 0’s, 1’s, 2’s and 3’s instead of the traditional 0’s and 1’s. For example,
the history {313} would be a male that was caught on all three sampling occasions
but was positively identified as male on the 1st and 3rd occasions only.

Lastly, since positive identifications are considered definitive, a single tag history
cannot contain both male and female identifications. As a result histories such as
{312} are not allowed and possible observed tag histories will not be a permutation
of all states, but instead a restricted subset.

3.1 Statistics and Indicator Variables

k – number of sampling occasions in the experiment.
m – number of uniquely observable tag histories. Note that this does not

include the unobserved tag history (ω0).
i – the index for tag histories, where i = 0, 1, 2, . . . ,m; i = 0 is used to

denote the unobserved tag history.
j – the index for sampling occasion, where j = 1, 2, . . . , k.

n j – total number of animals caught at sampling occasion j .
v j – total number of animals lost on capture at sampling occasion j .
ωi – capture and identification history vector,

where ωi = [ωi1, ωi2, . . . , ωik]′ and
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ωi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 for animals captured at sampling occasion j and identified as male

2 for animals captured at sampling occasion j and identified as female

1 for animals captured at sampling occasion j and identified as unknown sex

0 for animals not captured at sampling occasion j

ζi – the sex indicator for history ωi , where

ζi =
⎧⎨⎩

{M} for max(ωi l,ωi l,...,ωik) = 3
{M} for max(ωi l,ωi l,...,ωik) = 2

{M, F} for max(ωi l,ωi l,...,ωik) ≤ 1
.

Animals with an unknown sex designation are modeled as a composite of
both sexes.

ωc
i – a capture history vector, where ωc

i = [ωc
i1, ω

c
i2, . . . , ω

c
ik ]′ and

ωc
i j =

{
1 if ωij ≥ 1 − a captured animal
0 otherwise

ωs
i – sex identification vector, where �s

i = [ωs
i1, ω

s
i2, . . . , ω

s
ik]′ and

ωs
i j =

{
1 if ωij > 1 − a sexed animal
0 otherwise

nωi – number of animals with tag history ωi .
fi – first occasion when animals with tag history ωi were captured.
li – last occasion when animals with tag history ωi were captured.
κi – loss-on-capture indicator for tag history ωi , where

κi =
{

1 lost on sampling occasion li
0 not lost on any sampling occasions

3.2 Fundamental Model Parameters

N – the super-population is the total of animals that were present at the start
of the study or entered the system between any pair of sampling occasion
and survived to the next sampling occasion.

β j – the expected fraction of the super-population that enters the population at
sampling occasion j and survived to sampling occasion j +1 for { j : j =
0, 1, . . . , k − 1}. β0 is the expected fraction of animals alive just prior to
the first sampling occasion and

∑k−1
j=0 β j = 1.

π s
j – the probability that an animal entering the population between j and j +1

is of sex s, for s ∈ {M, F} and { j : j = 0, 1, . . . , k − 1}. The parameter
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π s
0 is the proportion of animals of sex s alive in the population prior to

the first sampling occasion and
∑

s π
s
j = 1, for all j .

ps
j – the sex-specific probability an animal will be caught at occasion j , given

that the animal is alive at sampling occasion j , for s ∈ {M, F} and { j :
j = 1, 2, . . . , k}.

δs
j – the probability, given an animal has been caught, that the sex will be

positively identified at sampling occasion j , for s ∈ {M, F} and { j :
j = 1, 2, . . . , k}. The probability the animal’s sex cannot be identified is
(1 − δs

j ). Positive identifications are considered to be definitive.
φs

j – The sex-specific probability that an animal survives and remains in the
population from sampling occasion j to sampling occasion j + 1, given
it was alive and in the population at sampling occasion j , for s ∈ {M, F}
and { j : j = 1, 2, . . . , k}.

ν j – the probability of losing an animal when it is captured at sampling occa-
sion j . Equal probability is assumed for both sexes. A loss is any event
whereby the animal is not released into the catchable population after
capture.

3.3 Functions of Parameters

β∗
j – the expected fraction of the super-population remaining to enter the popu-

lation between sample occasion j and j +1, for { j : j = 0, 1, . . . , k −1}.
Note that β∗

0 = β0, β∗
j = β j∑k−1

i= j βi
, and β∗

k−1 = 1. The β∗
j ’s were used when

fitting the likelihood, because they are unconstrained, taking on any value
in [0, 1], yet maintain the

∑k−1
j=0 β j = 1 constraint.

χ s
j – The probability an animal of sex s is not observed again when last

captured in period j .

χ s
j =

{
1 − φs

j + φs
j (1 − ps

j+1)χ s
j+1 j < k

1 j = k
for s ∈ {M, F}.

ψ s
j – The probability of an animal of sex s entering the population and

remaining unobserved prior to sampling occasion j .

ψ s
j =

{
β0π

s
0 j + 1 = 1

ψ s
j (1 − ps

j )φ
s
j + β jπ

s
j j + 1 > 1 for s ∈ {M, F},

where π s
0 is the proportion of animals of sex s alive just prior to the first

sampling period, while π s
j , for j > 0, is the sex-specific proportion of

the entrants.
Bs

j – The total number of animals of sex s that enter the system between
sampling occasion j and j + 1, for { j : j = 0, 1, . . . , k − 1} and s ∈
{M, F}. Bs

0 represents the number of animals alive (male or female) just
prior to the first sampling occasion. The remaining Bs

j ’s are referred to as
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the net births and represent the process of live births, immigration and/or

recruitment into the population of interest. Also note E
[

Bs
j

]
= Nβ jπ

s
j

and N = ∑
s

∑k−1
j=0 Bs

j .
N s

j – The sex-specific population size at sampling occasion j .

E[N s
j+1] =

{
Nβ0π

s
0 j + 1 = 1

E[N s
j ]φ

s
j + Nβ jπ

s
j j + 1 > 1

for s ∈ {M, F}.

When losses on capture occur, a different formulation is required (see
Appendix A).

4 Model Development

4.1 Assumptions

The standard mark-recapture assumptions are made. As well, we assume that both
marked and unmarked animals of the same sex exhibit the same sex-specific catch-
ability {ps

i } and survivorship {φs
i } (homogeneity). Also important is the assump-

tion that newly captured unmarked animals are a random sample of all unmarked
animals in the population. Additional assumptions specific to this model include
equal probability of being sexed for caught males and females and homogeneity
of demographic parameters for animals that were sexed and animals that were not
sexed. This last assumption could be violated for example if juveniles are harder to
sex and exhibit different survivorship. It is also assumed that the underlying char-
acteristic (sex) is fixed throughout the experiment and the underlying population
can be dichotomously divided into either males or females. Finally, as with most
capture-recapture experiments it is assumed that tags are not lost, not misread and
are unique to each animal, that sampling is instantaneous, and that the study area is
constant throughout the experiment.

4.2 Likelihood

The model we propose is a direct extension of the super-population model proposed
by Schwarz and Arnason (1996). While Schwarz and Arnason did allow for group
specific demographic parameters (i.e. {β jg}, {p jg}, {φ jg}), we go a step further by
modeling the probability of a positive group assignment (the identification proba-
bility), as well as modeling tag histories in which assignment did not occur.

With the JS capture–recapture models, it is common practice to break the likeli-
hood into distinct portions. Following the notation of Schwarz and Arnason (1996)
the likelihood of the super-population model can be written as

L = L A
1 (N , {βi }, {pi }, {φi }) × L B

1 ({βi }, {pi }, {φi }) × L2({νi }) × L3({pi }, {φi }).
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These components make up L A
1 × L B

1 = P(first capture|{βi }, {pi }, {φi }), L2 =
P(loss-on-capture|νi ) and L3 = P(recapture|{pi }, φi ) respectively. Schwarz and
Arnason divided the probability of first capture into two components (L A

1 and L B
1 ),

by first conditioning the complete likelihood on the total number of unmarked
animals observed in the experiment (we use nobs in place of u.). This formulation
was used to develop a conditional estimate of N̂ by first maximizing L B

1 × L2 × L3

and then using the estimates to derive the conditional MLE of N̂ . Asymptotically,
the final result will be equivalent to maximizing the entire likelihood (Sanathanan
1972; Schwarz and Arnason 1996).

We formulate our model in a similar manner except we combine the L B
1 , L2

and L3 terms (L B∗
1 = L B

1 × L2 × L3) so that the probability expression for each
observed tag history can be modelled directly. Also similar to the group specific
model proposed by Schwarz and Arnason (1996), we have male and female specific
demographic parameters. However, we also model the probability an entrant will be
of a particular sex (π s

j ) and the probability the sex can be identified, conditional on
capture (δs

j ).
We start by modeling the total number of observed tag histories (nobs = ∑m

i=1 nωi

and nω0 = N − nobs), where L A
1 = [nobs |N ] ∼ Binomial(N, 1 − P(ω0)). Here ω0 is

the unobserved capture history (ω0 = [0, 0, . . . , 0]′) and P(ω0) is the probability of
a male or female entering the population at some time prior to, or during, the study
and remaining unobserved for the remainder of the sampling occasions.

P(ω0) =
∑

s∈{M,F}

k−1∑
j=0

β jπ
s
j (1 − ps

j+1)χ s
j+1 (1)

Next, we model the distribution conditional upon being seen at least once, L B∗
1 =[{nωi }|nobs

] ∼ Multinomial
(
nobs, {λωi }

)
, where λωi = P(ωi )

(1−P(ω0)) . The probability of
the observed tag history P(ωi ), is

P(ωi ) =
∑
s∈ζi

ψ s
fi

⎧⎨⎩
li∏

j= fi

(ps
j )
ωc

i j (1 − ps
j )

(1−ωc
i j )

⎫⎬⎭
×
⎧⎨⎩

li∏
j= fi

(δs
j )
ωs

i j ×ωc
i j (1 − δs

j )
(1−ωs

i j )×ωc
i j

⎫⎬⎭
×
⎧⎨⎩

li −1∏
j= fi

φs
j

⎫⎬⎭ (χ s
li
)(1−κi )

×
⎧⎨⎩

li−1∏
j= fi

(1 − ν j )
ωc

i j

⎫⎬⎭ × (1 − νli )
(1−κi )(νli )

κi

(2)

Note that for the case where an animal is seen only once ( fi = li ) the terms
∏li −1

j= fi
φs

j

and
∏li −1

j= fi
ν j are both treated as evaluating to 1.
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The probability of identifying the correct sex is represented by the δs
j parameter,

which is conditional upon capture (i.e. ωs
i j ×ωc

i j ). For animals where the sex identifi-
cation has been positively determined at some point during the experiment ζi � {M}
or ζi � {F}, otherwise ζi � {M, F}. As a result, for tag histories where sex has been
confirmed, only demographic parameters associated with that sex (or group) are
used. For example the tag history 0133 (or 0UMM) is a male that was captured on
the second, third and fourth sampling occasions. On the first capture, its sex could
not be identified, but on subsequent occasions a definitive sex assignment was made.
The probability of this history (excluding the loss-on-capture component) will be

P(0133) = ψM
2 pM

2 (1 − δM
2 )φM

2 pM
3 δM

3 φM
3 pM

4 δM
4 .

However, for tag histories where a definitive group identification is not possible,
the histories are modelled as belonging to both groups, but with an unidentified
status (i.e. ωs

i j = 0 for all j where ωc
i j = 1). As a result the (1 − δs

j ) term appears in
association with each capture occasion. For example the tag history 0111 (or 0UUU)
has the same capture history as the previous example, but without a definitive sex
identification. In this case the probability of this tag history will be

P(0111) = ψM
2 pM

2 (1 − δM
2 )φM

2 pM
3 (1 − δM

3 )φM
3 pM

4 (1 − δM
4 )

+ ψ F
2 pF

2 (1 − δF
2 )φF

2 pF
3 (1 − δF

3 )φF
3 pF

4 (1 − δF
4 ).

This form of grouping differs from more classical grouping methods (i.e. Jolly
1965, Lebreton et al. 1992, Schwarz and Arnason 1996) that assume all animals can
be definitively assigned to their respective groups during at least one of the encoun-
ters. In the classical approach the fully paramaterized model (no model constraints,
either group or time) will be equivalent to running multiple independent capture
recapture experiments in parallel on each of the possible groups. In contrast, for the
approach proposed here the unknown designation will always be a composite of the
possible positive assignments, even in the most parameterized model. As a result,
the complete likelihood for this model will be

Lcomplete = L A
1 × L B∗

1

=
{(

N
nobs

)
(1 − P(ω0))nobs P(ω0)N−nobs

}
×
{

nobs!

nω1 !nω2!...nωm !

m∏
i=1

(
P(ωi )

(1 − P(ω0))

)nωi

}
.

(3)

4.3 Model Constraints, Link Functions and Covariates

We used parameter index matices (PIM) as implemented in MARK (White and
Burnham 1999) to provide a flexible modeling environment, as suggested by
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Lebreton et al. (1992). This allows a general way to specify parameter restrictions on
the fully time dependent model. Four separate PIM’s were used for the {πM

j }, {ps
j },

{δs
j } and {φs

j } model parameters respectively. Covariates may be included through
the use of design matrices. Similar to MARK, parameters may also be fixed at
known values. Fixing parameter values can be useful for creating testable hypothesis
such as a 50:50 incoming sex ratio (i.e. πM

j = 0.5 for all j > 0).
A fifth, limited PIM, was implemented for {β j } parameters, where only basic

constraints may be imposed. Some examples include death only (β0 = 1, β1:k−1 =
0), no recruitment for certain periods (e.g. β1 = 0), and constrained entrance (e.g.
β1 = β2 or β1 = β2 = 0.1). Covariates cannot however be supplied for the {β j }
parameters (see Schwarz and Arnason 1996, for an explanation).

Finally, common link functions were used to restrict parameter estimates to
remain between 0 and 1 (see Lebreton et al. 1992). Possible link functions follow
the MARK implementation and include the sin, logit, log and identity links.

4.4 Parameter Redundancy

As mark-recapture models become more complex, the large parameter sets needed
to describe the modelled processes may lead to parameter redundancy (Catchpole
and Morgan 1997).

Recently, Catchpole and Morgan (1997), Catchpole et al. (1998) and Catchpole
and Morgan (2001) developed a technique for assessing parameter redundancy using
existing computer algebra packages that are capable of performing symbolic math.
The advantage over numeric techniques is that numerical criteria are not needed
to identify uniquely estimable parameters and in some cases estimable parameter
combinations can also be determined.

Following the implementation by Gimenez et al. (2003), we used the software
package Maple (Version 10) to determine the model deficiency as well as the
uniquely identifiable parameters. In our case the most general, time dependent,
model was found to have a parameter deficiency of 4. The full set of the time
dependent classification parameters {δs

j } were identifiable. As in the simple JS
super-population model, {φs

j : j = 1, 2, . . . , k − 2} and {ps
j : j = 2, 3, . . . , k − 1}

were identifiable. Finally, as the sampling occasions increase the middle propor-
tion of entrants {β j : j = 2, 3, . . . , k − 2} and the probability of a male entrant
{π j : j = 2, 3, . . . , k − 2} also become uniquely estimable. The remaining param-
eters formed complex estimable combinations. It should be noted that sparse data
sets may further increase the parameter deficiency, as is the case with the example
study.

4.5 Parameter Estimation

Parameter estimates were derived in a manner similar to the procedure described
by Schwarz and Arnason (1996). Estimates of {ν̂ j } were found by maximizing
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the L2 loss-on-capture component. The L B∗
1 was then maximized with respect

to the remaining parameters given {ν̂ j }. Finally, the estimates {β̂ j }, {π̂ j },
{ p̂s

j }, {δ̂s
j } and {φ̂s

j } were used to derive the estimate N̂ using L A
1 , where

N̂ =
[
nobs/(1 − P̂(ω0))

] (
greatest integer ≤ nobs/(1 − P̂(ω0))

)
as per Sanathanan

(1972).
At this point it should be noted that in this formulation of the JS model, beyond

the assumption on unmarked animals (which is untestable), there is no information
about N or β0 in the capture histories (see Link and Barker 2005). That said, the
capture histories do contain information on the remaining β j parameters and given
reasonable survival estimates, the estimates of N and β0 may still be fair.

Finally, the L B∗
1 was maximized numerically using a quasi-Newton (vari-

able metric) procedure in the free statistical software package R. The Hessian
matrix was numerically determined using the full likelihood (3) and point
estimates from the conditional fit. The delta method was used to determine
the variance-covariance matrix for all derived parameters, such as {B̂s

i } and
{N̂ s

i }. It should be noted that the variance calculations for {N̂ s
i } excluded

the additional variance associated with estimating the sex ratio of the loss-
on-captures that were not successfully sexed (see Appendix A). This repre-
sents a rather rare scenario as well as a small source of variation in most
applications.

4.6 Goodness of Fit

The goodness-of-fit tests for a JS model involves the L B∗
1 component, where the

likelihood has been conditioned on the observed histories. Both model deviance and
the Pearson chi-squared statistic were used. The model deviance is calculated by
comparing the likelihood of the fitted model to the saturated model, where every
ωi history has the probability

nωi
nobs

. The difference between the saturated and fitted

model (4) will be D ∼ χ2
(m−p−1), where the number of degrees of freedom is equal

to the difference in the number of parameters between the two models (m − p −
1). The number of parameters in the saturated model is the number of unique tag
histories m minus 1, while p is the number of parameters estimated in the L B∗

1
component.

D = 2

[
m∑

i=1

nωi

(
log

(
nωi

nobs

)
− log

(
λωi

))]
(4)

In addition to deviance, the Pearson chi-squared goodness-of-fit (GOF) statistic
was also used

χ2 =
m∑

i=1

(oi − ei )
2

ei
(5)



838 W.O. Challenger and C.J. Schwarz

where oi = nωi is the observed tag history frequency and ei = N × P(ωi ) =
nobs × P(ωi )

1−P(ω0) is the expected frequency. Under the hypothesis that the model is

correct χ2 ∼ χ2
(m−p−1). Asymptotically, both tests should be equivalent, however

differences can occur depending on the adequacy of the χ2
(m−p−1) approximation.

Specifically, for small frequencies there is some evidence to suggest that χ2 may
perform better that D, since D can be unduly influenced by very small frequencies
(see Cressie and Read 1989).

4.7 Model Selection

By using the PIM’s and design matrices, many different models can be specified
following the notation of Lebreton et al. (1992). Of particular interest will be time-
varying parameterization (e.g. {π j }), time independent (e.g. π.) and group inde-
pendent parameterization (e.g. pM

j = pF
j for j = 1, 2, . . . , k). Also of interest

may be entrance restrictions such as a death only model (e.g. β0 = 1;β j = 0
for j = 1, 2, . . . , k − 1), or death only for specific time periods (e.g. β2 = 0).
Finally, also of interest may be situations where sex assignment does not occur
in every sampling occasion (i.e. δs

j = 0 for some j). These models can be spec-
ified using the respective parameter PIMs and specifying constants for the fixed
parameters.

A variety of techniques can be used to choose between competing sets of
models and model averaging for models that have equal support (see Burnham and
Anderson 2002). Techniques used for model selection included the Akaike infor-
mation criterion (AICc) and QAICc. Both balance overall model fit to the data with
number of parameters needed, but QAICc also corrects for lack of fit and effective
sample size. It should be noted the lack of fit used for the QAICc calculations was
based on the Pearson GOF statistic (5). Finally, a candidate model set was chosen
a prior and the best fit was selected from competing models.

5 Example

Our example is concerned with estimating the number of walleye in Mille Lacs
Lake, Minnesota, for which the study design is outlined in Schwarz (2004).
Briefly, a three-year mark-recapture study was initiated in 2002. In all years
tags were applied in two phases, first via trap netting on the spawning grounds
and second during the angling season from launch-boats. Recoveries came from
angling, trap netting, tribal harvests and a gillnet assessment at the end of the
season. Nearly complete sexing occurred during the spawning ground releases
and gillnet assessment at the beginning and end of each season respectively.
However, due to manpower restrictions, only partial sexing was possible during
the angling portion of the season, resulting in capture histories with unknown sex
designations.
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Table 1 Summary of Mille Lacs study design

2002 2003 2004

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Survey Spring Launch Spring Launch Spring Launch
Tagging Boats Tagging Boats Tagging Boats
+ + + + + +

Type Tribal Angling Tribal Angling Tribal Angling
Harvest Harvest Harvest

For the purpose of the example all 3 years are considered (2002 – 2004), but only
two sampling occasions per year are included, the spawning ground releases and
harvest at the start of the season and the angling season that occurs over the summer,
but prior to the end of the season gill net assessment, which was not included. This
results in a total of six sampling occasions, with two sampling occasions occurring
every year (Table 1). The data set is available upon request.

5.1 Model Constraints

The first sampling event within each year (sampling occasions j = 1, 3, 5), was
limited to fish greater than 14 in. in length. For the second event within each year
(sampling occasions j = 2, 4, 6), the minimum size requirement was increased
16 in. so as to preclude recruitment. Therefore, in the model recruitment was not
allowed between occasions 1 and 2, occasions 3 and 4, and occasions 5 and 6 (i.e. the
following values were fixed: β1, β3, β5 = 0). New recruits were however allowed
between occasions 2 and 3, and between occasions 5 and 6 (i.e. β2, β4 ≥ 0). These
restrictions reflect allowable catch restrictions and as a result the {β j } parameters
represent recruitment into the size restricted fishery, rather than births.

The walleye data set also suffered from issues of tag loss, mainly between 2002
and 2003 (see Cowen and Schwarz 2006). As a result, the estimates of φs

2 (apparent
survivorship between periods 2 and 3) are expected to be lower than the estimates
of φs

4 as such these values were never restricted to be equal.

5.2 Model Selection and Best Model Estimates

Due to the known issue of tag loss in this population (see Cowen and Schwarz
2006) model misfit was expected. Since the example is for illustration purposes, the
best model presented was judged by a combination of model goodness of fit criteria
(model deviance and the over-dispersion estimate ĉ), derived parameter estimates
(population sizes), and AIC model ranking. The fundamental parameter estimates
from the best fitting model are displayed in Table 2, with derived parameters, popu-
lation size (N s

j ) and recruitment (B js), displayed in Table 3.
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Table 2 Point estimates (SE) from the best model fit. Values have not been adjusted for over-
dispersion (ĉ = 128). Fixed parameters are shown without a SE

2002 2003 2004

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

β j−1 0.846 (0.029) 0 0.052 (0.026) 0 0.102 (0.014) 0

πM
j−1 0.339 (0.024) 0 0.489 (0.050) 0 0.489 (0.050) 0

pM
j 0.131 (0.013) 0.013 (0.002) 0.283 (0.008) 0.010 (0.001) 0.191 (0.017) 0.005 (0.001)

pF
j 0.011 (0.001) 0.025 (0.002) 0.024 (0.002) 0.019 (0.002) 0.029 (0.005) 0.008 (0.002)

δM
j 0.981 (0.001) 0.183 (0.011) 0.981 (0.001) 0.183 (0.011) 0.981 (0.001) 0.183 (0.011)

δF
j 0.968 (0.005) 0.072 (0.002) 0.968 (0.005) 0.072 (0.002) 0.968 (0.005) 0.072 (0.002)

φM
j 0.750 (0.067) 0.624 (0.055) 0.829 (0.071) 0.903 (0.068) 0.829 (0.071) −

φF
j 0.903 (0.068) 0.650 (0.054) 0.795 (0.093) 0.829 (0.151) 0.795 (0.093) −

Table 3 Estimated male and female specific birth, abundances and sex ratio by sampling occasion.
Note that population size (N s

j ) are in 1000’s. Also note that Bs
0 are not shown as they are the same

as N s
1 values. SE have not been adjusted for over-dispersion. The final column represents estimates

from a simple JS model pooled over sex

Births (Bs
j−1) Population sizes (N s

j ) Population total (N j )

Year Females Males Females Males F/M Ratio Sex-specific Simple JS

2002 ( j = 1) − − 490 (34) 252 (25) 1.9 743 (46) 695 (10)
( j = 2) 0 (−) 0 (−) 441 (27) 176 (31) 2.5 617 (45) 677 (10)

2003 ( j = 3) 22 (11) 23 (11) 302 (23) 125 (3) 2.4 427 (23) 342 (5)
( j = 4) 0 (−) 0 (−) 238 (27) 92 (10) 2.6 330 (28) 327 (5)

2004 ( j = 5) 45 (10) 44 (5) 231 (39) 118 (13) 2.0 351 (42) 326 (5)
( j = 6) 0 (−) 0 (−) 182 (41) 89 (20) 2.0 271 (45) 312 (5)

The model fit is poor (ĉ = 128) for two reasons. First, the very large sample sizes
imply that small discrepancies in fit can be detected quite easily. Second, as noted
in Cowen and Schwarz (2006), tag loss, particularly on the first winter, is a serious
problem in this study. The latter would require extensive modeling to incorporate
properly. Nevertheless, despite the apparent lack-of-fit, the estimates are reasonable
and match quite well to those from other work (Schwarz 2004; Cowen and Schwarz
2006).

In particular, the model picks up the known higher catchability of male fish
versus female fish on the spawning ground (occasions j = 1, 3, 5; pM

j and pF
j

estimates, Table 2) and the lower catchability during the angling season (occasions
j = 2, 4, 6; pM

j and pF
j estimates, Table 2). When compared to estimates from

an equivalent simple JS, that does not include sex, the naive catchability estimates
occurred somewhere between the sex-specific estimates (Table 4).

The initial male population estimate was low (N̂ M
1 ≈ 252,000 versus N̂ F

1 ≈
490,000, Table 3), but is not unexpected. Tribal harvest (during the spring) consists
mostly of male fish. Over the years, this will tend to lower the sex ratio of the
standing population, as seen in the female/male ratio column (Table 3). We are
puzzled though, by the apparent high male proportion of new recruits prior to 2003.
We tried several different initial values, but the resulting estimates were always high.
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Table 4 Recapture probabilities estimates (SE) from the sex-specific JS and a simple JS model. SE
have not been adjusted for over-dispersion

Sex-specific Simple JS

Year pF
j pM

j p j

2002 ( j = 1) 0.011 (0.001) 0.142 (0.013) 0.055
( j = 2) 0.024 (0.001) 0.014 (0.002) 0.020

2003 ( j = 3) 0.025 (0.002) 0.282 (0.008) 0.131
( j = 4) 0.020 (0.002) 0.010 (0.001) 0.017

2004 ( j = 5) 0.028 (0.005) 0.193 (0.018) 0.101
( j = 6) 0.008 (0.002) 0.005 (0.001) 0.007

Yearly survival rates for 2002 are likely biased low because of the excessive
tag loss observed between 2002 and 2003. The estimates appear more reasonable
for later periods when tag loss was much less prevalent. Arnason and Mills (1981)
showed that homogeneous tag loss resulted in unbiased estimates of population size,
but biased estimates of recruitment.

Finally, our estimates of population size are comparable to those in Cowen and
Schwarz (2006) which accounted for tag loss, but not a lack of sex identification.
The estimate of total population size are also comparable to those from a simple JS
model pooled over both sexes (Table 3).

6 Discussion

Abundances, both general and sex or group-specific, are of often of interest to biol-
ogists and managers alike, but obtaining such estimates can be difficult in cases
where the group status is not always measurable. If the population sex ratio is known
and constant then such assignments are not needed (Zhang et al. 2005). However,
situations where the sex ratio is known and stable is rare. The method presented here
provides a general approach to deal with unknown designations that avoids biased
demographic estimates that can arise if classification uncertainty is otherwise dealt
with in an ad hoc fashion.

The extension is an intermediate between the classical grouping approach, where
the state is fixed and always measurable and the multi-state extension of the JS
model (Schwarz and Dupuis 2007). If sex is always known then the experiment
may be analyzed as a simple stratification, where male and female abundances are
estimated separately. However, biologically relevant restrictions, such as a 50:50 sex
ratio of incoming entrants, cannot be imposed with stratification. One of the nice
features of the proposed model is that the probability of an entrant’s sex is directly
modelled in the likelihood. This makes it a fairly trivial task to impose constraints
on the sex ratio of entrants, which in turn could be useful for testing a variety of
biological hypotheses in a multi-model framework (see Burnham and Anderson
2002). The model presented is also flexible in regards to identification probabilities.
If definitive sex assignments can always be made (over either a portion or the entire
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experiment), then this formulation can still be used by fixing the the appropriate δs
j

parameter to 1.
While formulation presented here dealt explicitly with sex as the underlying

group of interest, the model notation can also handle multiple fixed groups. In this
case the superscript s would be used to represent the various groups, rather than sex.
Also an additional restriction is needed so that probability of entrant belonging to
a specific group sums to one for all sampling occasions (i.e.

∑
s π

s
j = 1 for all j).

Lastly, for the unknown group tag history i the assigned group ζi would be the set
of all possible fixed groups in the system.

This extension is not however without limitations. In dealing with classification
uncertainty, explicit assumptions were made on how group assignments occurred.
Specifically, any positive assignments were considered to be definitive. This was
intended for sampling situations where there is a mixture of observers (e.g. experts
and non-experts) and only a subset is capable of making positive assignments.
This does not however protect against mis-assignments. If the proportion of mis-
assignment is large, then group-specific estimates may become biased. While it is
possible to adapt the modeling framework to deal with mis-assignment in addition
to group identification uncertainty, mis-assignment can be largely controlled if field
practitioners ensure that any uncertainty in an animal’s group assignment is treated
as an inability to assign a group (i.e. unknown).

Finally, it is also assumed that there is no unmodelled heterogeneity in the iden-
tification probabilities. This may also not be the case if animals that have less phys-
ical development or are diseased have identification probabilities that differ from
the rest of the population. Such conditions will not only affect the identification
probabilities, but such animals may also exhibit different demographic parameters
which would violate homogeneity assumptions. In this case further groupings or
the addition of covariates may be needed to model the potential heterogeneity in
identification probabilities and demographic parameters.
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Appendix A: Calculating Ni
s when Removals Are Present

If removals or losses occur, then the {N s
j } estimates need to be adjusted using

E
[
N s

j+1

] =
{

Nβ0π
s
0 j = 0

E
[

N s
j

]
φs

j + Nβ jπ
s
j − Ls∗

j φ
s
j j > 0

for s ∈ {M, F} (6)

where Ls∗
j are thesex-specific removals/lossesat time j and the term−Ls∗

j φ
s
j represent

the number of losses expected to have have survived to time j + 1 if they were not
removed from the population at time j . The value of Ls∗

j may be known if all losses
can be sexed, otherwise the sex ratio of removals and/or losses must be estimated.
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Let αs
j be the expected proportion of unknown captures that are of sex s, for

s �{M, F}. An estimate of αs
j can be found as

E
[
αs

i

] ≈
E
[

N s
j

]
ps

j

(
1 − δs

j

)
E
[

N s
j

]
ps

j

(
1 − δs

j

)
+ E

[
N sc

j

]
psc

j

(
1 − δsc

i

) for s � {M, F} (7)

where sc is the complement sex and N s
j ps

j (1 − δs
j ) represents the expected number

of animals, at time j , of sex s, caught, but whose sex remains unidentifiable. The
expected number of sex-specific losses for time j can then be determined as

E
[
Ls∗

j

] = Ls
j + Lu

i E
[
αs

j

]
for s � {M, F} (8)

where Lu
j is the number of losses with unknown sex and Ls

j is the number of losses
where sex is known. The estimated value Ls∗

j is then used in (6).
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Program E-SURGE: A Software Application
for Fitting Multievent Models

Rémi Choquet, Lauriane Rouan, and Roger Pradel

Abstract Multievent models (Pradel 2005, 2008) handle state uncertainty, and they
therefore cover a range of situations like hidden capture heterogeneity and sex
determination from behaviour which cannot be treated in the multistate paradigm.
We introduce a new software application called e-surge, built upon the concepts
developed in program m-surge (Choquet et al. 2004) to encompass this new class
of capture–recapture models. It also improves on m-surge by allowing the decom-
position of transitions into several steps. We present the new concepts involved,
notably the event and the multistep process, and how they are implemented in
e-surge. We then illustrate the use of e-surge with three examples. One example
deals with breeding propensity where the breeding state cannot always be ascer-
tained; a further deals with emigration which is considered as a two-step process
(Grosbois and Tavecchia 2003) and the last one with a version of a memory model
where survival can be handled directly.

Keywords Capture–Recapture · Hidden Markov Chain

1 Introduction

Capture–recapture (CR) data, i.e. the histories of encounters of individually recog-
nizable animals, have long been a main source of information on the dynamics of
animal populations. Their use is regularly enlarged to address new questions like
movements, trade-offs between reproduction and survival, transitions among life
stages or the spread of a disease. The concept of state plays a key role in these
new developments. It is flexible and can indifferently represent the breeding status,
the developmental stage or the spatial location. However, it is not always possible
to ascertain the state of an individual when it is encountered. For instance, in an
epidemiological study, a diseased animal may not present any outer symptoms;
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conversely, a medical test may be falsely positive. Yet, the multistate models
currently used to analyze these data do not allow for uncertainty.

Recently, Pradel (2005) has developped a new approach to handle state uncer-
tainty. This approach introduces a new concept, that of event, which is what is
actually known. In our epidemiological study for instance, the event would be
the test result or the observed presence or absence of the symptom. There is no
one–one correspondance between event and state and a particular event may arise
under different states. The new approach is not reducible to the multistate approach.
It has logically been named multievent. This paper presents the first program for
fitting multievent models to CR data, called e-surge (which stands for Multi-
Event SURvival Generalized Estimation). e-surge extends m-surge, a previous
program for fitting mutistate models developed by the same team.

In addition to handling the different structure required for multievent analysis,
e-surge also extends m-surge in another respect: it allows the specification
of transitions between states as a multistep process. For instance, in a study of
movement between geographical locations, the transition toward a particular site
can be decomposed as the probability to emigrate times the probability to settle on
the arrival site given departure. With these two extensions, the new program allows
to fit a much greater variety of models and to address in the same unified framework
several problems which had been tackled individually:

• heterogeneity of capture (Pledger et al. 2003; Pradel 2005),
• sex uncertainty (Nichols et al. 2004),
• memory in movements (Hestbeck et al. 1991; Brownie et al. 1993; Rouan et al.

2008),
• mixture of live and dead encounters over several sites (Lebreton et al. 1999;

Véran et al. 2007).

The motivation for developing program e-surge was to bring to biologists
the multievent framework in a powerful and user-friendly environment. Several
programs exist for CR analysis (Hines 1994; White and Burnham 1999; Choquet
et al. 2005) but e-surge is the first general program for multievent models. It
benefits from the experience gained in developing m-surge. m-surge introduced
a powerful language (Choquet 2008) for describing the set of multistate CR models
and used reduced statistics and advanced numerical algorithms to produce faster
and more reliable estimates. e-surge has similar capabilities for the maximum
likelihood optimization of complex age and time-dependent models with linear
constraints among parameters in a generalized linear model (GLM) fashion. Its
features include:

• A module called GEPAT where the steps making up the transitions (see above
for an example) are specified. Similarly, in this same module, events can be
declared to be linked to states through a multistep process. For instance, a female
animal may be wrongly judged to be a male through three successive steps: it is
encountered, its sex is assessed, an error occurs. This detailed decomposition of
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the event generation conditional on the state allows for the incorporation in the
same analysis of encounters where no judgement is made (Pradel et al. 2008).
Multievent models also include initial state probabilities (see below) which can
equally be decomposed at this stage.

• A module called gemaco, inherited from m-surge, where the mode of vari-
ation of the parameters defined in gepat is specified by means of a powerful
model description language.

• Advanced convergence options. Convergence is a very sensitive issue in multi-
event as well as in multistate models. In e-surge, the user gains a greater control
over convergence through a choice of starting options including the results of
previous models, random initial values and multiple random initial values.

• Acute rank estimation. e-surge calculates, with an algorithm described in
Rouan et al. (2008) very precise estimate of the rank of a model. This is one
of the key steps for correct model selection using the AIC (Akaike 1987).

• The detection of redundant parameters. e-surge analyzes the likelihood in the
neighborhood of the point of convergence and lists the parameters that are appar-
ently redundant. Redundancy can then be double-checked by drawing profile
likelihood curves.

In the next section, we present briefly the theory of multievent models; then in
Sections 3 and 4, the way these models are implemented in e-surge in theory and
in practice. Three examples are detailed in the application section. The first one
concerns breeding status and shows an example of uncertainty in state assessment.
The second is the classical Arnason–Schwarz multistate model but the movement
between sites is decomposed into two steps. The last is an original version of the
memory model where survival probabilities can be handled directly thanks to an
appropriate decomposition of the movement.

2 Short Recalls on Multievent Models

Multievent models assume that individuals move independently among a finite set
E of states over a finite number K of sampling occasions, and that the transitions
among the successive states obey a Markov chain. The successive states occu-
pied by an individual are not observed directly. Rather, at each occasion k, one
member of a finite set � of events is observed. The event observed at occasion k is
assumed to depend only on the unobserved underlying state of the individual at that
occasion (see Fig. 1). Thus, these models belong to the class of Hidden Markov
Models (HMM), see for example MacDonald and Zucchini (2000) and Cappé
et al. (2005).

Multievent models are defined in terms of three kinds of parameters: initial state
probabilities π , transition probabilities φ, and event probabilities b. Our presenta-
tion of multievent models will use the following general notation which generally
follows Pradel (2005):
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. . . Vk−1 Vk Vk+1 . . . observed events
↑ B(k) ↑ ↑

. . . Ek−1 → Ek → Ek+1 . . . hidden states
�(k−1)

occasions k − 1 k k + 1

Fig. 1 Graph summarising the relations of dependence between successive states (transition matrix
�) and observed events (event generation matrix B) in the multievent time-dependent model. Vk

is the random variable of the event observed at occasion k, Ek that of the underlying state of the
animal at the same occasion

N the number of states.
U the number of events.
K the number of occasions.
K the number of occasions.
A the maximum age class.
NG the number of groups.
LI, LT, LB the number of step processes for initial state, trans-

ition and event.
i = 1, . . . , N the index of the previous (or departure) state.
j = 1, . . . , N the index of the current (or arrival) state.
u = 1, . . . ,U the index of the current event.
k = 1, . . . , K the occasion index.
a = 1, . . . , A the index of current age classes.
ng = 1, . . . , NG the index of the current group.
� = 1, . . . ,LI, LT, or LB the step process index
E = {e1, ..., eN } the set of states, where eN = ‘†’ for the death.
� = {v1, ..., vU } the set of events, where the v1 = ‘not seen’

Unlike traditional practice in CR but similar to Fujiwara and Caswell (2002),
Pradel (2005) and consistent to Markov Chain practice MacDonald and Zucchini
(2000), the dead (†) is explicity included in E. All transition matrices are written
with i as row index and j as column index, thus following the Markov chain conven-
tion in which transitions are from rows to columns. Event matrices use j (denoting
the state) as row index and u (denoting an event) as column index. Transition and
event matrices are row-stochastic.

For the time-dependent model, the elementary parameters are

• π
(k)
i the probability of being in state ei when first encountered at occasion k,

• φ
(k)
i j the probability of being in state ej at time k + 1 if in state ei at occasion k,

• b(k,1)
ju the probability of event vu for an animal in state ej encountered for the first

time at occasion k,
• b(k,2)

ju the probability of event vu for an animal reencountered in state ej at occasion
k,

• 	 = (πi ) denotes the (1 × N ) vector of initial state probabilities,
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• 
 = (
φi j

)
denotes the (N × N ) matrix of unconditional transition probabilities,

i.e. the matrix of probabilities that an individual moves from one state to another
state over a time interval.

• B = (
b ju

)
denotes the (N × U) matrix of event probabilities. There are poten-

tially two such matrices, one for first encounters (b(k,1)
ju ) and one for reencounters

(b(k,2)
ju ). They may as well be considered as instances of the same matrix corre-

sponding to two different age-classes. This is what we will do thereafter.

Together, 	, 
 and B define the multievent model. A particular multievent model
will be obtained by specifying the mode of variation (by time, age, group or state...)
of each type of parameter.

The likelihood of a model is proportional to the probability of the data given
that model. The basic unit of data in e-surge is the capture history. Let h =
(o1, . . . , oK ) be a capture history with first encounter at occasion e, event ok, k =
e, . . . , K , has any value between 1 and U and β is the vector of all parameters. Then

P(h|β) = 	(e) D
(
B(e,1)(·, oe)

) ( K∏
k=e+1


(k−1) D
(
B(k,2)(·, ok)

))
1N (1)

where B(k,2)(·, ok) is the okth column of the re-encounter matrix at occasion k, i.e.
the instance of B corresponding to the second age-class at occasion k. D(x) denotes
the matrix with the elements of vector x on the diagonal and zeros elsewhere, and
1N is an N vector of ones.

Assuming that individuals are independent, the likelihood for the entire set of
capture histories is obtained as the product of the likelihoods for each history,

L(β) =
∏

h

P(h|β)nh

where nh is the number of copies of capture history h in the data set.

3 Concepts in E-SURGE

3.1 Decomposition in Elementary Steps

In e-surge, all types of parameters (transition probabilities, initial state probabili-
ties and event probabilities) may be decomposed in an indefinite number of steps as
arising from a sequence of ‘life processes’. The first task is to specify the actual
structure that will be used. The familiar decomposition of the transition matrix
into survival and transition conditional on survival (implemented in m-surge) is
the classical example in CR, but in some cases more steps may be involved. For
instance, if we want to model the movement between geographical locations with
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probabilities of emigration and settlement on the new site, the transition probabil-
ities between locations has to be decomposed into two steps. In the second step
a migrant will not be allowed to settle on its departure site. Thus, in addition to
specifying that there are three steps in total (one for survival and two for movement),
we will also have to forbid certain transitions. These specifications are mainly done
in module gepat.

In e-surge, the matrices 	, 
, B are called the full initial state vector, the
full transition matrix, and the full event matrix, respectively. In an approach similar
to that used for periodic matrix population models (Caswell 2001, Chapter 14)
but between two states, the full matrices are written as products of elementary
matrices.

	 =
LI∏
�=1

	(�)


 =
LT∏
�=1


(�)

B =
LB∏
�=1

B(�)

(2)

For Equation (2), we will say that we need a DES(LI,LT,LB) (Decomposition in
Elementary Steps), where LI, LT and LB define the number of steps for the matrices
	,
,B, respectively.

3.2 Umbrella Model

After having specified the elementary steps, we have defined what we call the
umbrella model (UM). The parameters of the UM are further constrained to compare
different biological hypotheses of interest. In other words, the UM is the most
general model that can be fitted, and the one within which all other models examined
are nested.

There are six potential sources of variation in the parameters:

1. previous state,
2. current state,
3. current event,
4. time, i.e. occasions elapsed since the beginning of the capture session,
5. age, i.e., occasions elapsed since first capture,
6. groups, i.e. permanent categories of individuals, such as sexes or species, or

discrete unconnected study sites.

In the UM, parameters are allowed to vary freely over time and among groups.
Only the number of states and number of age classes can be set to specific values.
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Survival, transitions, and encounter probabilities may depend on age (i.e., time
since first capture, not necessarily true chronological age). The user specifies an
oldest relevant age class; all animals with this age or older are combined into a single
age-class. Constraining the range of ages restricts the range of models that can be
fitted but it can greatly save memory and reduce computation time. For transitions
or survival, common choices for the maximum relevant age are 1 (A = 1), which
implies no age effect, and 2 (A = 2), which creates a model in which the first age
class is contrasted to animals older than one year (this is particularly useful when
animals are marked as young). Setting A = 2 can also be used to model transience
(Pradel et al. 1997).

Specifying age-dependence in encounters is slightly more complicated. In multi-
state (as opposed to multievent) applications, all calculations are conditional on
the first encounter and hence the probability of first encounter is not estimated. In
multievent applications, e-surge has the option of modelling the probability of the
initial event b(k,1)

ju . Therefore, e-surge always considers at least two age classes for
encounters, allowing the first event probability (first age class) to be modelled or
not (probability to be first captured fixed to 1). Thus if one chooses a maximum age
A = 1, which implies no age effect, e-surge creates nonetheless 2 age classes for
events. If one sets A = 2, e-surge creates 3 age classes for events (see Table 1).

3.3 Constrained Models

Model-building in e-surge (as in m-surge) proceeds by imposing linear
constraints on the parameters of the umbrella model in the spirit of GLM (Lebreton
et al. 1992). The vector θ of ‘biological parameters’ (parameters of direct interest
to the biologist e.g., θ = (	,
,B), organized as a vector) is expressed as a linear
transformation of a vector β of ‘mathematical parameters’. To keep the biological
parameters, which are probabilities, in their permissible range (0,1), a link function
f is generally applied:

f (θ) = Xβ

The matrix X is a ‘matrix of constraints’ or genuine design matrix in the case of
a designed experiment. In general, it expresses hypotheses about the dependence of
the parameters on state (of departure or arrival), age, time, group, covariates, and

Table 1 Variations considered in the parameters of the umbrella models of e-surge. The type of
variation is represented by upper indices for time(k), age(a), group(g) and step(l)

A �= 1 	(k,g,(l))


(k,a≤A,g,(l))

B(k,a≤A+1,g,(l))

A = 1 	(k,g,(l))


(k,a=1,g,(l))

B(k,a≤2,g,(l))
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so on. The design matrix is built by the module gemaco (GEnerator of MAtrices
of COnstraints), using the model definition language described in Choquet et al.
(2004) and Choquet (2008). Often X will contain both discrete indicator 0/1 vari-
ables (for equality constraints) and continuous covariates (e.g., effort or weather
covariates). An overview of linear constraints in CR models with a single state is
given by Lebreton et al. (1992), linear constraints in multistate models are consid-
ered in Choquet (2008).

An important difference in the application of gemaco in e-surge, as compared
to m-surge, is that the gemaco keywords (‘from’, ‘to’, etc.) refer to the elemen-
tary matrices in e-surge. The rows (from) and columns (to) in these matrices do not
necessarily correspond to the states in the model (e.g., in the encounter matrix, the
columns refer to events, not states), whereas in m-surge they always correspond
to states.

3.4 Maximum Likelihood Estimation

Reduced-form data descriptions like the m-array are not available for multievent
models. Thus the likelihood calculation depends on the application of the transition
and event probabilities to individual capture histories. The maximum likelihood
algorithm is as follows

1. Calculate the number of identical histories.
2. Select initial values for the vector β of mathematical parameters.
3. Calculate the vector of biological parameters θ = f −1(Xβ), with f the

generalized (or multinomial) logit link or the identity link.
4. Calculate the elementary matrices, and (as the product of the elementary

matrices) each of the full matrices 	, 
, and B according to Equation (2).
5. Use the full matrices 	, 
, and B to calculate the individual probability

P(h|β) of each capture history according to equation (1).
6. Calculate the deviance

Dev(β) = −2 log L(β) = −2
∑

h

nh log P(h|β)

7. Iterate steps 3–6 in a Quasi-Newton minimization method updating the
vector of mathematical parameters to decrease the deviance, until conver-
gence.

8. Obtain the MLE’s and the deviance and various by-products of Maximum
Likelihood estimation like AIC (Akaike 1987) and derivate quantities
(QAIC, QAICc).

Note 1 The choice of initial values is critical in multievent models as the problem
of local minima is worse than for multistate (Lebreton and Pradel 2002). For that
purpose, advanced features were developed in e-surge. Users can choose between
several options for initial values, among them are random initial values, starting
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values estimated from a previous model and starting values given in files. In the
context of Markov chains, the well known Expectation Maximization (EM) algo-
rithm has also poor properties regarding local minima, see Celeux et al. (1995).

Note 2 AIC or derivate quantities (Burnham and Anderson 2002) permit model
selection inside an umbrella model. A likelihood ratio test between two models
under two different umbrella models is not currently available and would require
bootstrapping. We emphasize the difficulty to do bootstrapping in the presence of
local minima. For a more complete discussion about model selection, see Burnham
and Anderson (2002) and Pledger et al. (2003).

4 E-SURGE in Practice

In this section we present three examples illustrating the potential of e-surge. The
first example with breeding propensity is a good example to demonstrate its appli-
cation when uncertain states occur; the second one considers the decomposition of
the survival-transition probabilities into several steps and the last one combines the
two previous issues by showing the implementation of a particular case of memory
model.

4.1 First Example: A Simple Model for Studying
Breeding Propensity

The study of transitions between the states breeder (Br) and non-breeder (NBr) is
a topic of major interest to biologists. Nevertheless, the assessment of the breeding
status can be difficult; indeed animals are not always observed in breeding activity
and their status can remain unknown which motivates the use of multievent model.
Let us define formally the underlying multievent model.

To be consistent with CR practice, events are originally coded in the encounter
histories as:

0 for v1 = ‘not seen’;
1 for v2 = ‘seen breeding’;
2 for v3 = ‘seen but status unknown’.

Inside e-surge, each event code is increment by 1 to be consistent with Equation
(1) but this is transparent for the user.

According to the available information, the ‘hidden states’ chosen to define the
model are:

Br for ‘breeder’;
NBr for ‘non breeder’;
† for ‘dead’.

We have first to specify the parameterization of the model (i.e 	, 
, and B):
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• The initial state probabilities: at the first encounter, the individuals can be
‘breeder’ or ‘non breeder’ but cannot be ‘dead’.

	 =
(

Br NBr †
πB 1 − πB 0

)
,

• The survival-transition probabilities: all the transitions between states Br and NBr
are possible. Transitions between Br and NBr to † are constraint to sum to one,
and transitions between † and Br and between † and NBr are not possible:


 = Br
NBr
†

⎛⎜⎜⎝
Br NBr †

φBr,Br φBr,NBr 1 − φBr,Br − φBr,NBr

φNBr,Br φNBr,NBr 1 − φNBr,Br − φNBr,NBr

0 0 1

⎞⎟⎟⎠

• The event probabilities: in this particular context, a ‘breeder’ can be ‘not seen’,
‘seen breeding’ or ‘seen but status unknown’; a ‘non breeder’ is either ‘not seen’
or ‘seen but status unknown’ and a ‘dead’ individual can only be ‘not seen’.

B(a=2) = Br
NBr
†

⎛⎜⎜⎝
0 1 2

1 − p1|Br − p2|Br p1|Br p2|Br

1 − pNBr 0 pNBr

1 0 0

⎞⎟⎟⎠ (3)

Since the first encounter of the individuals is modelled explicitly here, one needs
to pay attention to the initial-event probabilities. At first encounter, all individuals
alive are obligatorily observed which leads to fix to 0 the probabilities of the event
‘not seen’.

B(a=1) = Br
NBr
†

⎛⎜⎜⎝
0 1 2
0 p0

1|Br 1 − p0
1|Br

0 0 1
1 0 0

⎞⎟⎟⎠

To fit this model in e-surge we have to execute five main stages. In the first
stage, we implement the structure of the model (see Fig. 2) with:

1. the definition of the number of events and states;
2. the definition of the general structure of the matrices of parameters using the

GEPAT interface. The different matrices are represented symbolically using
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(a)

Fig. 2 In the window (1), we specified the number of states (N = 3), events (U = 3), age classes
(A = 1) and groups (G = 1). The gepat interface is then opened. Patterns of 	, 
 and B are
defined in windows 2a, 2b, 2c, respectively using the following rules: the parameters of interest are
indicated using any greek letter, the parameters constraint to zero are indicated using ‘-’ and the
complementary parameters are indicated using ‘*’

an ‘excel-like’ interface; this step consists in filling different cells using the
following rules:

• a greek letter indicates a parameter of interest i.e. one that will be estimated
or fixed;

• ‘*’ indicates the complementary parameter (there is one and only one ‘*’
by row due to the row-stochasticity of the matrices);

• ‘–’ indicates parameters constrained to zero.

Because the pattern must be the same for the two kinds of event matrices
B(a=1) and B(a=2) , which are considered by the program as two instances of the
same matrix corresponding to two different age-classes. A particular attention
must be payed for this example, to the matrices of the event probabilities. For
B(a=1), we need to fix to 0 the probabilities of the event ‘not seen’ conditioning
respectively on the states Br and NBr. This constraint leads us to consider this cell
as a parameter of interest rather than a complementary parameter. As a consequence,
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(b)

(c)

Fig. 2 (continued)
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the pattern used in e-surge is not a direct transcription of the previous matrix B(a=2)

as it was the case for the vector 	 or the matrix 
.
In the second stage, we define the constraints of the model using the gemaco

interface (Choquet 2008) as shown in Fig. 3. Once again, particular attention must
be payed to constraints applied to the event probabilities: the first encounter corre-
sponds to the first age-class of b (denoted ‘a(1)’ or ‘firste’ in the gemaco syntax)

(a)

Fig. 3 The gemaco interface defines constraints for the UM. In window (a), the user has entered
the phrase ‘i’ to define a constant initial state probability. In window (b), the user has entered the
phrase ‘from.to.t’ to define a state and time dependent effect for survival-transition. In window
(c), the user has entered the phrase ‘firste+a(2).from.to’. The first mathematical parameter corre-
sponding to ‘firste’ is fixed to 0 in the next stage. The parameters p1|Br, p2|Br, pNB in equation (3)
are set to be different and constant across time with the phrase ‘a(2).from.to’
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(b)

Fig. 3 (continued)

and the next encounters corresponds to the second age-class of b (denoted ‘a(2)’ or
‘nexte’ in the gemaco syntax).

In the next three stages, we proceed like in m-surge (Choquet et al. 2004):

• we fix the parameter of B corresponding to the probability to be ‘not seen’ when
first encountered to 0 (in the probabilities scale) and change the initial values if
needed using the IVFV interface;

• we run the model;
• we examine and interpret the results.
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(c)

Fig. 3 (continued)

4.2 Second Example: A Version of the Arnason–Schwarz Model
Incorporating Site Fidelity

Now we consider a version of the Arnason–Schwarz model in which the proba-
bility of transition conditional on survival is further subdivided into a probability
of leaving the site (the complement of site fidelity), and a probability of moving
to each other site conditional on leaving (Grosbois and Tavecchia 2003). For this
example, we need a DES(1,3,1). With 3 geographical sites and assuming that if an
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animal is seen, its site is known without error, the set of events (i.e., the results of
observations) is

� = {‘not seen’, ‘seen at 1’, ‘seen at 2’, ‘seen at 3’}

In this case, we will see that the intermediate states involved in the sequence
of life processes are not the same as the basic set of states in the model. Thus the
elementary matrices are not necessarily square.

4.2.1 Defining the Sets of Intermediate States

In the classical separate formulation of the Arnason–Schwarz model, the set of
possible states for an individual is the same for both elementary matrices (survival
and transition conditional on survival). However, as we are going to see, there may
be a different set of states at each of the elementary steps. It can be helpful to use
the graphical formulation of periodic matrix models (Caswell 2001) to construct
the elementary matrices and their states sets. Figure 4 shows the formulation of the
Grosbois and Tavecchia (2003) model, where the states of each elementary matrix
are denoted as numbered nodes on a row. Each step in the life process is represented
by a subsequent row, and the possible transitions are denoted by arrows. The initial
set of states at time k + 1 is reconstituted at the bottom of the graph.

Fig. 4 Graphical representation of the Grosbois and Tavecchia (2003) model. Shown are the
transitions for survival, fidelity given survival, and destination given movement. The elementary
transition probabilities are shown on the pathways originating from site 1 and dead (at the top); the
transition probabilities from the other sites 2 and 3 follow the same pattern. The first row-stochastic
matrix 
(1) maps row 1 onto row 2 of the diagram (survival step S). The matrix 
(2) maps row
2 onto row 3 (fidelity given survival, f), and the matrix 
(3) maps row 3 onto row 4 (destination
given movement, ψ). In row 3, for practical reason, the numbers 1–7 do not refer to the original
states. For instance, the intermediate state 2 corresponds to an individual that has moved from site
1 and the intermediate state 3 corresponds to an individual that has remained in site 2
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In the Grosbois and Tavecchia (2003) site fidelity model, the sets of states are

E(0) = {‘site 1’, ‘site 2’, ‘site 3’, ‘†’}
E(1) = {‘site 1’, ‘site 2’, ‘site 3’, ‘†’}
E(2) = {‘staying in 1’, ‘leaving 1’, ‘staying in 2’, ‘leaving 2’,

‘staying in 3’, ‘leaving 3’, ‘†’}

4.2.2 Matrices

The initial state matrix is

	(k) =
(
π

(k)
1 π

(k)
2 1 − π

(k)
1 − π

(k)
2 0

)

The first elementary transition matrix (for survival) maps E(0) onto E(1), and
hence is a 4× 4 matrix:


(k,(1)) =

⎛⎜⎜⎝
s(k)

1 0 0 1 − s(k)
1

0 s(k)
2 0 1 − s(k)

2

0 0 s(k)
3 1 − s(k)

3
0 0 0 1

⎞⎟⎟⎠
The second elementary matrix (for site fidelity given survival) maps from E(1) to

E(2), and hence is a 4× 7 matrix. Letting fi be the probability of remaining in site i
given survival, we have


(k,(2)) =

⎛⎜⎜⎝
f (k)
1 1 − f (k)

1 0 0 0 0 0
0 0 f (k)

2 1 − f (k)
2 0 0 0

0 0 0 0 f (k)
3 1 − f (k)

3 0
0 0 0 0 0 0 1

⎞⎟⎟⎠
The third elementary matrix (for movement conditional on emigration, ψ) maps

from E(2) back to E(0), and so is a 7× 4 matrix:


(k,(3)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 ψ

(k)
12 1 − ψ

(k)
12 0

0 1 0 0
ψ

(k)
21 0 1 − ψ

(k)
21 0

0 0 1 0
ψ

(k)
31 1 − ψ

(k)
31 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The event matrices B map from the set E(0) of states to the set � of events, and
thus are of dimension 4 × 4.

B(a=1) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠

B(k,a=2) =

⎛⎜⎜⎝
1 − p(k)

1 p(k)
1 0 0

1 − p(k)
2 0 p(k)

2 0
1 − p(k)

3 0 0 p(k)
3

1 0 0 0

⎞⎟⎟⎠

Note The choice of states for the intermediate transitions is not always unique.
There may be more than one way to group individuals, and at present the only
advice we can give is to determine from the structure of the model what information
needs to be kept at any one step in order to define the probability of subsequent
transitions.

4.3 Third Example: The Separate Formulation
of the Memory Model

Finally, we consider a version of the memory model given in Pradel (2005) in
which the survival-transition probability is further subdivided into the probability
of survival and the probability of movement from each site to the others conditional
on surviving. We need a DES(1,2,1). This formulation is the analogue of the separate
formulation of the conditional Arnason–Schwarz model.

With the 2 geographical sites 1 and 2, E consists of 5 states {‘11’, ‘12’, ‘21’,
‘22’, ‘†’}. State ‘11’ denotes presence at site 1 at time k−1 and k, state ‘12’ denotes
presence at site 1 at time k−1 and presence at site 2 at time k, and so on. The set of
states remains constant across the two life processes steps

E(0) = E(1) = {‘11’, ‘12’, ‘21’, ‘22’, ‘†’}

Assuming that if an animal is seen and its current site is known without error, the
set of events (i.e., the results of observations) is

� = {‘not seen’, ‘seen at 1’, ‘seen at 2’}

The initial state matrix is

	(k) =
(
π

(k)
11 π

(k)
12 π

(k)
21 π

(k)
22 0

)
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There are now two elementary transition matrices, one corresponding to
survival(noted s) and one to movements (noted ψ) conditional on survival:


(k,(1)) =

⎛⎜⎜⎜⎜⎜⎝
s(k)

11 0 0 0 1 − s(k)
11

0 s(k)
12 0 0 1 − s(k)

12

0 0 s(k)
21 0 1 − s(k)

21

0 0 0 s(k)
22 1 − s(k)

22
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠


(k,(2)) =

⎛⎜⎜⎜⎜⎜⎝
ψ

(k)
111 1 − ψ

(k)
111 0 0 0

0 0 1 − ψ
(k)
122 ψ

(k)
122 0

ψ
(k)
211 1 − ψ

(k)
211 0 0 0

0 0 1 − ψ
(k)
222 ψ

(k)
222 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
There are two elementary event matrices. The first one is fixed and the second is

varying:

B(a=1) =

⎛⎜⎜⎜⎜⎝
0 1 0
0 0 1
0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟⎠

B(k,a=2) =

⎛⎜⎜⎜⎜⎜⎝
1 − p(k)

1 p(k)
1 0

1 − p(k)
2 0 p(k)

2

1 − p(k)
1 p(k)

1 0
1 − p(k)

2 0 p(k)
2

1 0 0

⎞⎟⎟⎟⎟⎟⎠
This model is an extension of the model presented in Pradel et al. (2008), but the

model of Brownie et al. (1993) can also be decomposed in the same way.

5 Discussion and Perspectives

In this paper, we have presented e-surge, the first program to fit non-homogeneous
hidden Markov chains models in CR, called multievent models. This program has an
interface (named gepat) to build various parameterizations and goes far beyond the
classical combined and separate parameterizations. We can consider any product
of elementary transition matrices, any product of elementary encounter matrices
and any product of elementary initial matrices, which allows great flexibility to
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fit different kind of models. This approach permits incorporation of multievents
models in a GLM framework and avoids dealing with non-linear constraints, which
are difficult to manage. gepat coupled with gemaco for model constraints gives
an easy, flexible and powerfull way to construct models, that are useful to address
biological questions.

Advanced features of e-surge are not described in this paper, yet we enumerate
some of them. Essential but hidden are elaborate algorithms used to fit a model,
compute its rank and detect redundant parameters. More visible are the results stored
in a spreadsheet file, which allows an easy access to the estimated parameters of all
fitted models for further calculations or for drawing graphs. Lastly, the post alloca-
tion of classes proposed in Pledger et al. (2003) is also available.

We are continuously exploring new features with working versions. We hope to
have soon implemented the profile deviance (and more generally all the tools already
implemented in m-surge), estimation of the Lifetime Reproductive Success
(Rouan et al. 2008), the possibility to model individual covariates (with fixed or
random effect) as a promising link with genetics (Gimenez et al. 2006) and the
Stochastic EM algorithm (Celeux et al. 1995) to deal with local minima in a more
efficient way.

6 Program Availability

Program e-surge can be downloaded freely from the WWW at
http://www.cefe.cnrs.fr/BIOM/logiciels.htm

Instructions for installation and a user guide are provided.
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Estimation of Lifetime Reproductive Success
When Reproductive Status Cannot
Always Be Assessed

Laurine Rouan, Jean-Michel Gaillard, Yann Guédon, and Roger Pradel

Abstract The Lifetime Reproductive Success (LRS) of an individual i.e. the
number of young raised during its lifespan is an indicator of its contribution to future
generations and thus a measure of fitness. Nevertheless, the LRS is hard to estimate
because of the difficulty to keep track of the outcome of each breeding attempt
(successful or failed and, if successful, number of young raised). We propose
two new methods to estimating the LRS that takes into account the uncertainty
about the reproductive status when the individuals are not detected or when the
reproductive status cannot be assessed. We illustrate these two methods using roe
deer reproductive histories and discuss their advantages and disadvantages.

Keywords Capture-Recapture · Counting Algorithm · Fitness · Generalized Viterbi
algorithm · Hidden Markov Models

1 Introduction

Lifetime Reproductive Success (LRS) is a commonly used estimate of individual
fitness (Clutton-Brock 1988; Newton 1989). It can be defined as the total number of
offspring an individual produces over its entire lifespan after some critical stage has
been successfully passed (e.g. number of weaned young in mammals or number of
fledglings in birds, see Clutton-Brock (1988) for case studies). As LRS is a measure
of the lifetime reproductive performance of an individual, its actual calculation sup-
poses the knowledge of the individual’s entire reproductive history. Nevertheless, in
wild populations, the exhaustive monitoring of a large number of individuals over a
long time period is difficult; there are not only problems of detection but also prob-
lems in assessing the reproductive status. For instance, an individual seen during
the breeding season could have produced and/or raised young or not and if it has,
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the number of its offspring could be difficult to determine. So, the capture-recapture
(CR) data are inevitably incomplete. In the absence of established statistical tools,
some ‘ad hoc’ methods are used and consist of counting only the reproductive events
observed leading thus to a ‘minimum LRS’ or of completing the reproductive histo-
ries by assuming that an individual not observed in a given year during the reproduc-
tive season, but captured (or observed) a previous year and captured (or observed) in
a later year has some chance to be an effective breeder (Jensen et al. 2004). Pradel
(2005) proposes a new approach, called multievent models, to deal with the uncer-
tainty in the breeding states assessment. The specificity of these models, belonging
to the hidden Markov models class (Rabiner 1989; Ephraim and Merhav 2002), lies
in the distinction between the (hidden) states (in our case, the reproductive status)
and the ‘events’ observed and recorded in the reproductive histories (for exam-
ple: ‘not seen’, ‘seen with one offspring’, ‘seen during the breeding period’, . . .).
Thus, contrary to the hypotheses of the now well established multistate CR models
(Arnason 1973), the underlying state of a captured individual is not necessarily
known for certain i.e. each observation is potentially linked to several underly-
ing states. Thus, a particular encounter history can be associated with different
sequences of ‘hidden states’ (see Fig. 1); but which of these has actually generated
the sequence of observations (encounter history)? Answering this question would
enable to calculate the LRS but it is, unfortunately, impossible. So, we suggest in
this paper to estimate the LRS by taking into account all these potential sequences.
We propose two different methods. The first method (Section 3.1) consists in the
actual determination of the potential hidden state sequences in order of probability
of occurrences (‘associated probability’). It uses the Generalized Viterbi Algorithm
(Foreman 1993). To each sequence corresponds a number of young produced and/or
raised and the LRS is estimated as the mean of these numbers weighted by the

Events

Breeding
status

Seen with one
offspring

Seen on the
site of

reproduction
Not seen

Breeder with
one offspring

Non Breeder?

Breeder with
one offspring?

Breederwith
two offspring?

...

Non Breeder?

Breeder with
one offspring?

Breeder with
two offspring?

...

Dead?

Fig. 1 The events recorded at each capture occasion are potentially linked to several states. In other
words different state sequences can generate the same encounter history
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associated probabilities. But the calculation of the LRS does not require the knowl-
edge of the timing of reproduction, only the number of reproductive episodes is
required. So, we present a second method, less expensive in terms of computation
time (Section 3.2). It is an adaptation to the CR field of a counting algorithm initially
designed for the general framework of the hidden semi-Markov chains (Guédon
1999). It does not enable the access to the underlying states sequences but provides
the distribution of the number of occurences of any underlying state during the ani-
mal lifespan and enables us to estimate the LRS.

Both approaches make use of a common notation and are illustrated with a com-
mon example presented in the following section.

2 Illustrating the Two Methods Using the Roe Deer Capreolus
capreolus Life History

The ‘multievent approach’ is based on the differentiation of the observations made
at each capture session and the actual reproductive status of the females. In other
words, as illustrated in Fig. 1 we consider two separate stochastic processes:

• the state process denoted (St )t>0 that describes the succession of the reproductive
statuses;

• the observation process denoted (Ot )t>0 that describes the different ‘events’
observed over the study period.

These two processes are linked using what we call, hereafter, the ‘observation
probabilities’ or ‘conditional event probabilities’. Based on the roe deer life history,
we can distinguish the following different ‘events’ (see e.g. Gaillard et al. 1998):

0: the animal is not seen;
1: the animal is seen without any fawn;
2: the animal is seen with one fawn;
3: the animal is seen with two fawns;
4: the animal is seen with three fawns.

The associated underlying states are:

Non Breeder (NB);
Breeder with one fawn (B1);
Breeder with two fawns (B2);
Breeder with three fawns (B3);
Dead (†).

This defines the event and state sets: � = {0, 1, 2, 3, 4} and E = {N B, B1, B2,
B3, †}. It remains to specify the parameters that define the multievent model and
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appear in the different algorithms that we propose to estimate the LRS. There are
three kinds of parameters:

1. the transition probabilities:

• φt
i j = P (St+1 = j |St = i ), probability of being in state j at t+1 for an animal

in state i at t;

2. the initial state probabilities

• π t
i = P (St = i ), probability of being in state i when first captured at t . In the

general case, females are initially marked during early life to be considered as
known-aged individuals. For instance, roe deer are often marked in their first
winter at about 8 months of age and can only be in state ‘non breeder’ since
the first reproduction is only possible at 2-year-old (Gaillard et al. 1992). Thus
π t

N B = 1.

3. the conditional event probabilities:

• bt
s(o) = P (Ot = o|St = s), probability of event o conditional on current

state s.

These last parameters can actually be expressed as functions of the familiar
encounter probabilities of the multistate models:

• pt
j , probability to be encountered in site j at time t for an individual alive and

in site j at that time.

For roe deer, we can assume that the uncertainty in assessing the reproductive
status is only due to problems of detection i.e. if a female is seen, its reproductive
status corresponds exactly to the observation made in the right period (September–
December) because fawns closely follow their mother during that period (see
Gaillard et al. 2000). So, most of the bt

s(o) are equal to zero. The only not null
parameters are: bt

N B (1) = pt
N B , bt

B1(2) = pt
B1, bt

B2(3) = pt
B2, bt

B3(4) = pt
B3,

bt
j (0) = 1 − pt

j for j ∈ {N B, B1, B2, B3} and bt
†(0) = 1. This assumption has

been made in agreement with our knowlegde about roe deer life history in order to
simplify the statistical model but is not necessary generally. In the general case,
two kinds of uncertainty can occur: the lack of detection at some reproductive
attempts and an uncertain determination for animals detected. Both kinds can be
easily accounted for in the two methods detailed below.

The estimation of these different parameters is the first step, common to our two
approaches, to estimate the LRS.

3 Estimation of the Lifetime Reproductive Success

To calculate the LRS, one needs to know the number of offspring an individual has
produced at each reproductive occasion. The first, intuitive, idea is to reconstruct the
reproductive life of the individual.
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3.1 Method 1: Estimating LRS Using the Generalized
Viterbi Algorithm

3.1.1 Method

Given any observation sequence O = o1o2 · · · oT , the generalized Viterbi algo-
rithm (Foreman 1993) seeks to find the L (L ≥ 1) most probable underlying state
sequences

{
Si = si

1 si
2 · · · si

T / i = 1, 2, · · · , L
}

maximizing the associated probabil-
ity P (S|O). This algorithm has been originally designed for the area of automatic
speech recognition and is adapted to the treatment of homogeneous Markov chains
and observations sequences starting at time t = 1. Its use for the CR data needs
some specific adaptations to:

1. allow for time varying parameters;
2. handle histories starting after date 1;
3. use a stopping criteria based on the cumulative probability of occurrence i.e.

our ‘adapted’ generalized Viterbi algorithm doesn’t generate a fixed number of
state sequences but more precisely generates the Lα state sequences such that the
cumulative probability

∑Lα

i=1 P
(
Si |O)

reaches a fixed threshold α. In this way,
to obtain all the possible state sequences, α must be fixed to 1.

3.1.2 LRS Estimation

The parameters of the retained model, estimated using program E-SURGE
(Choquet et al. 2007), are used to calculate the different quantities needed to define
the Viterbi algorithm. The second step of this method is to apply the algorithm to
a particular encounter history O thus generating the Lα state sequences and their
associated probability. Finally the LRS is estimated as the weighted mean of the
number of offspring given by the different state sequences:

L RS =
∑Lα

i=1 ni
o f f spring P

(
Si |O)∑Lα

i=1 P
(
Si |O)

3.1.3 Examples

We illustrate this approach using two encounter histories taken from the data set

1. O1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 2 2 0 2 2 2 0
2. O2 = 0 0 0 0 0 0 0 0 0 0 0 1 3 2 3 2 0 3 2 2 2 1 0 0 0 0 0 0 0 0

the second one being ‘less complete’ than the first in the sense that there are fewer
detection issues (number of 0 after the individual first capture) in O1 than in O2.

To illustrate this first method, we have chosen to fix α to one.
The application of our ‘adapted’ generalized Viterbi algorithm to O1 provides

the nine following state sequences (in descending order of associated probability):

• S1 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 B1 with P
(
S1|O1

) ≈ 0.2228;
• S2 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 B1 with P

(
S2|O1

) ≈ 0.1827;
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• S3 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 B1 with P
(
S3|O1

) ≈ 0.1421;
• S4 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 † with P

(
S4|O1

) ≈ 0.1359;
• S5 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 † with P

(
S5|O1

) ≈ 0.1114;
• S6 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 † with P

(
S6|O1

) ≈ 0.0866;
• S7 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 B2 with P

(
S7|O1

) ≈ 0.0482;
• S8 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 B2 with P

(
S8|O1

) ≈ 0.0395;
• S9 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 B2 with P

(
S9|O1

) ≈ 0.0307.

Thus, the LRS is estimated as:

L RS1 = 11 × 0.2228 + 12 × 0.1827 + 14 × 0.1421 + 10 × 0.1359 + 11

×0.1114 + 13 × 0.0866 + 12 × 0.0482 + 13 × 0.0395 + 15 × 0.0307

≈ 11.8965

The same method applied to the encounter history O2 generates 492 state
sequences! The ‘best’ and ‘worst’ sequences with their associated probability are:

• S1 = NB B2 B1 B2 B1 B1 B2 B1 B1 B1 NB with P
(
S1|O2

) ≈ 0.6991.
• S492 = NB B2 B1 B2 B1 B1 B2 B1 B1 B1 NB B2 B1 B2 B1 B2 B2 B1 B2 with

P
(
S492|O2

) ≈ 6.1806e − 007.

The estimated LRS is, for this second encounter history: 12.7639.
The generalized Viterbi algorithm is thus a reasonable approach to estimate the

LRS but presents some limits in terms of computation time. The number of recon-
structed state sequences is variable depending on the associated encounter history;
the computation time can vary between few seconds like in case of O1 and tens of
minutes for O2. However, as the mere calculation of the LRS does not require the
knowledge of the exact sequence of reproductive events but only the total number
of offspring produced and/or raised, we propose another approach for estimating
the LRS, which yields the same estimate as the generalized Viterbi algorithm with
a threshold α = 1 but is much less expensive in computation time.

3.2 Method 2: Estimating LRS Using the Counting Algorithm

3.2.1 Method

Our general idea to calculate the LRS is to count the occurrences of the breed-
ing hidden states. More precisely, this counting algorithm determines, giving an
encounter history O = oeoe+1 · · · oT , the probability P (Nk (T ) = n|oeoe+1 · · · oT )
that an underlying state k has occurred n times (n ∈ {0, 1, 2, · · · , T − e + 2} , e is
the date of first capture and T the last capture occasion) by the end of the study.

Let us so introduce the auxiliary quantities

βt (i, n) = P (St = i, Nk (t) = n, Oe = oe, · · · , Ot = ot ) (1)
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The quantity βt (i, n) is the unconditional probability that the underlying state k
has occurred n times until the date t and that the underlying state at this date is i .

The probability P (Nk (T ) = n|oeoe+1 · · · oT ) that the state k occurs n times can
be expressed using these quantities as follows:

P (Nk (T ) = n|oeoe+1 · · · oT ) =
∑N

i=1 βT (i, n)∑T
n=0

∑N
i=1 βT (i, n)

(2)

The denominator corresponds to the conditioning on the encounter history O. The
counting algorithm corresponds then to the recursive calculation of βt (i, n) for all t
in {0, 1, 2, · · · , T } and n in {0, 1, 2, · · · , t} (see Appendix 1).

3.2.2 LRS Estimation

As in the Viterbi algorithm case, the first step is to introduce the estimated param-
eters of the retained model in the algorithm. In a second step, applying it to an
encounter history O = oeoe+1 · · · oT , provides for each underlying state k the prob-
abilities: P (Nk (T ) = n|O) for n in {0, 1, 2, · · · , T } i.e. the distribution of the
number of occurrences of each state k.

For each state k, the conditional expectancy E [Nk(T )|O] can be inter-
preted as the average number of occasions in state k. We can easily show that∑

all states k E [Nk (T )|O] = T − e + 1 is the number of capture occasions since the
first capture of the individual (see Appendix 2). Given these quantities, the LRS is
estimated in this way:

L RS = ∑K
k=1 k × E [NBk (T )|O] where K is the maximum number of offspring

an individual can produce at each breeding season and Bk corresponds to the status
‘breeder with k offspring’.

3.2.3 Examples

In our examples, only the states B1, B2 and B3 are interesting, so we will give only
the distributions relative to these particular states.

For the first encounter history O1 of Section 3.1.3:

n 0 1 2 3 4 5 6 7

P
(
NB1(T ) = n|O1

)
0 0 0 0 0 0 0 0.3015

P
(
NB2(T ) = n|O1

)
0.8815 0.1185 0 0 0 0 0 0

P
(
NB3(T ) = n|O1

)
0 0.7405 0.2595 0 0 0 0 0

n 8 9 10 11

P
(
NB1(T ) = n|O1

)
0.5158 0.1827 0 0

P
(
NB2(T ) = n|O1

)
0 0 0 0

P
(
NB3(T ) = n|O1

)
0 0 0 0
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The estimated LRS is so:

L RS1 = 1 × E
[
NB1(T )|O1

] + 2 × E
[
NB2(T )|O1

] + 3 × E
[
NB3(T )|O1

]
= 1 × 7.8811 + 2 × 0.1185 + 3 × 1.2595

≈ 11.8966

For the second encounter history O2:

n 0 1 2 3 4 5 6

P
(
NB1(T ) = n|O2

)
0 0 0 0 0 0 0.7237

P
(
NB2(T ) = n|O2

)
0 0 0 0.9048 0.0729 0.0151 0.0049

P
(
NB3(T ) = n|O2

)
0.9971 0.0029 0 0 0 0 0

n 7 8 9 10 11 12

P
(
NB1(T ) = n|O2

)
0.1197 0.1095 0.0329 0.0099 0.0030 0.0009

P
(
NB2(T ) = n|O2

)
0.0016 0.0005 0.0002 0.0001 0 0

P
(
NB3(T ) = n|O2

)
0 0 0 0 0 0

n 13 14 15 16 17 18 19

P
(
NB1(T ) = n|O2

)
0.0002 0 0 0 0 0 0

P
(
NB2(T ) = n|O2

)
0 0 0 0 0 0 0

P
(
NB3(T ) = n|O2

)
0 0 0 0 0 0 0

The estimated LRS is so:

L RS2 = 1 × 6.4998 + 2 × 3.1282 + 3 × 0.0029

≈ 12.7649

In the two cases, the counting algorithm provides the same results as the gener-
alized Viterbi algorithm but with a computation time approaching few seconds.

4 Discussion

This article has presented new general methods to estimate Lifetime Reproductive
Success with missing values for some reproductive events (generated either by a
lack of detection or by an uncertain reproductive status). The two methods provided
identical LRS estimates. The main difference between the two methods lies in the
reconstruction or not of the possible reproductive sequences associated with a given
encounter history. The ‘Viterbi approach’ is the more detailed in that it reveals the
state sequences associated with the encounter history and their probability of occur-
rence. The LRS is then simply calculated as the weighted average of the numbers
of offspring provided by these state sequences. However, this algorithm can be very
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expensive in terms of computation time depending on the level of uncertainty of
the encounter history. The counting algorithm only provides the expected distri-
bution of the number of offspring produced and/or raised over the lifetime. The
exact sequence of reproductive events along the lifetime is not informed using this
latter method but is much faster than the Viterbi algorithm. The counting algorithm
seems thus the most appropriate method to estimate the LRS. However, LRS is
just one measure of single-generation individual fitness, and other single-generation
measurements have been proposed to be better in some situations. For instance,
the ‘individual λ’ method (McGraw and Caswell 1996) accounts for the timing of
reproductive events, which LRS does not (Käär and Jokela 1998). Although a recent
comparative analysis of fitness measures showed that LRS generally performs better
than ‘individual λ’ (Brommer et al. 2004), the latter measure is likely to be preferred
in markedly increasing or decreasing populations when the timing of reproductive
events has a major impact on fitness. By using the Viterbi algorithm, biologists
could not only obtain an estimate of LRS, but also get estimates of reproductive
output at each breeding attempt. Therefore, the calculation of individual λ, or of
the promising measure of individual contributions (Coulson et al. 2006) would be
straightforward by using the Viterbi algorithm. On the other hand, only an estimate
of LRS can be obtained using the counting method.

In conclusion, the counting method we proposed here should allow biologists
to get a way of estimating quickly LRS in a large range of field conditions. By
using the Viterbi method, biologists could even obtain different time-sensitive and
time-insensitive fitness measures. These two methods are currently implemented in
MATLAB and will be soon available in program E-SURGE.

Appendix 1: The Counting Algorithm

As mentioned above for the adaptation of the generalized Viterbi algorithm, in
capture-recapture studies, probabilities are usually calculated conditionally on the
first capture of the individuals; so the recursion will begin with t = e.

1. Initialization
t = e,
i ∈ E ,
n ∈ {0, 1},
If i = k,

βe(k, 0) = 0

βe(k, 1) = P (Se = k, Nk (e) = 1, Oe = oe)

= P (Se = k, Oe = oe)

= π e
k be

k(oe)

Si i �= k,
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βe(i, 0) = P (Se = i, Nk (e) = 0, Oe = oe)

= P (Se = i, Oe = oe)

= π e
i be

i (oe)

βe(k, 1) = 0

2. Recursion

t ∈ {e + 1, e + 2, . . . , T },
i ∈ E ,
n ∈ {0, 1, 2, · · · , t},

If i = k,

βt (i, n) = P (St = k, Nk (t) = n, Oe = oe, · · · , Ot = ot )

=
N∑

j=1

P (St = k, St−1 = j, Nk(t − 1) = n − 1, Oe = oe, · · · , Ot−1

= ot−1, Ot = ot )

If i �= k,

βt (i, n) = P (St = i, Nk (t) = n, Oe = oe, · · · , Ot = ot )

=
N∑

j=1

P (St = i, St−1 = j, Nk(t − 1) = n, Oe = oe, · · · , Ot−1 = ot−1,

Ot = ot )

But, for all time t , all state λ and all number m:

P (St = λ, St−1 = j, Nk(t − 1) = m, Oe = oe, · · · , Ot−1 = ot−1, Ot = ot )

= P (Ot = ot |St = λ, St−1 = j, Nk(t − 1) = m, Oe = oe, · · · , Ot−1

= ot−1) × P (St = λ, St−1 = j, Nk(t − 1) = m, Oe = oe, · · · , Ot−1

= ot−1)

= P (Ot = ot |St = λ) × P (St = λ|St−1 = j, Nk(t − 1) = m, Oe = oe,

· · · , Ot−1 = ot−1) × P (St−1 = j, Nk(t − 1) = m, Oe = oe, · · · , Ot−1

= ot−1)

= P (Ot = ot |St = λ) × P (St = λ|St−1 = j )

×P (St−1 = j, Nk(t − 1) = m, Oe = oe, · · · , Ot−1 = ot−1)
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So:
If i = k,

βt (i, n) =
N∑

j=1

bt
k(ot )φ

t−1
jk βt ( j, n − 1)1[n>0]

= bt
k(ot )

N∑
j=1

βt−1( j, n − 1)φt−1
jk 1[n>0]

If i �= k,

βt (i, n) =
N∑

j=1

bt
i (ot )φ

t−1
j i βt ( j, n)

= bt
i (ot )

N∑
j=1

βt−1( j, n)φt−1
j i

where

{
1[n>0] = 0, if n ≤ 0 (here, if n = 0) ;

1[n>0] = 1, if n > 0.

Appendix 2:
∑

Eall states k [Nk(T )|O] =Number of Occasions

For any state k and encounter history O = oeoe+1oe+2 · · · oT ,

E [Nk (T )|O] = E

[
T∑

t=e

1[St =k]|O
]

=
T∑

t=e

E
[
1[St =k]|O

]
=

T∑
t=e

P (St = k|O)
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Thus,

∑
all states k

E [Nk (T )|O] =
∑

all states k

T∑
t=e

P (St = k|O)

=
T∑

t=e

∑
all states k

P (St = k|O)

=
T∑

t=e

1

= T − e + 1
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WinBUGS for Population Ecologists:
Bayesian Modeling Using Markov Chain Monte
Carlo Methods

Olivier Gimenez, Simon J. Bonner, Ruth King, Richard A. Parker,
Stephen P. Brooks, Lara E. Jamieson, Vladimir Grosbois, Byron J.T. Morgan
and Len Thomas

Abstract The computer package WinBUGS is introduced. We first give a brief
introduction to Bayesian theory and its implementation using Markov chain Monte
Carlo (MCMC) algorithms. We then present three case studies showing how
WinBUGS can be used when classical theory is difficult to implement. The first
example uses data on white storks from Baden Württemberg, Germany, to demon-
strate the use of mark-recapture models to estimate survival, and also how to cope
with unexplained variance through random effects. Recent advances in methodology
and also the WinBUGS software allow us to introduce (i) a flexible way of incor-
porating covariates using spline smoothing and (ii) a method to deal with missing
values in covariates. The second example shows how to estimate population density
while accounting for detectability, using distance sampling methods applied to a
test dataset collected on a known population of wooden stakes. Finally, the third
case study involves the use of state-space models of wildlife population dynamics
to make inferences about density dependence in a North American duck species.
Reversible Jump MCMC is used to calculate the probability of various candidate
models. For all examples, data and WinBUGS code are provided.

Keywords Bayesian statistics · Density dependence · Distance sampling · External
covariates · Hierarchical modeling · Line transect · Mark-recapture · Random
effects · Reversible jump MCMC · Spline smoothing · State-space model · Survival
estimation

1 Introduction

The Bayesian approach dates back to the Reverend Thomas Bayes and the
18th century. However, due to practical problems of implementing the Bayesian
approach, little advance was made for over two centuries. The development of new
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methodology coupled with recent advances in computational power and the avail-
ability of flexible and reliable software have led to a great increase in the application
of Bayesian methods within the last three decades, population ecology being no
exception (Clark 2005; Ellison 2004; McCarthy 2007). Indeed, the application of the
Bayesian theory in population ecology has been greatly facilitated by the implemen-
tation of algorithms known as Markov chain Monte Carlo (MCMC) methods (Gilks
et al. 1996 and Link et al. 2002 for an introduction for ecologists) in flexible and
reliable software. For example, MARK (White and Burnham 1999), one of the most
popular computer programs in population ecology, now includes an MCMC option
which implements a simple MCMC algorithm (White and Burnham this volume).
AD Model Builder (ADMB; Fournier 2001) is a general modeling environment
for fitting complex models to data, that has been used mainly in fisheries stock
assessment (Maunder et al. submitted), and has an MCMC option to implement
Bayesian analysis (see Maunder et al. this volume). Here we focus on the program
WinBUGS (Bayesian inference Using Gibbs Sampling; Spiegelhalter et al. 2003),
which implements up-to-date and powerful MCMC algorithms that are suited to a
wide range of target distributions for analyzing complex models.

The paper is organized as follows. We first review the Bayesian framework and
show how it can be fruitfully implemented using MCMC algorithms and program
WinBUGS. We then focus on three case studies to illustrate how WinBUGS can be
used to apply Bayesian methods using MCMC algorithms in population ecology.
The first example deals with mark-recapture models to estimate survival proba-
bilities and shows how to incorporate covariates with maximum flexibility. The
second example shows how to estimate population density while accounting for
detectability by using distance sampling methods. Finally, the third case study
involves modeling count data using state-space models. We conclude with a short
discussion of various possible extensions to both the methods and software that we
have illustrated.

When presenting the examples, we include short illustrations in WinBUGS
(code is indicated using this typeface). For all three examples,
the relevant data and full WinBUGS code are given at http://eprints.st-andrews.
ac.uk/archive/00000450/.

2 The Bayesian Method Using MCMC Algorithms: Practical
Implementation in WinBUGS

Typical statistical problems involve estimating a vector of parameters, θ , using
the available data. The classical approach assumes that the parameters are fixed,
but have unknown values to be estimated. Classical maximum likelihood esti-
mates generally provide a point estimate of the parameter of interest. The Bayesian
approach assumes that the parameters themselves have some unknown distribu-
tion. The approach is based upon the idea that the experimenter begins with
some prior beliefs about the system, and then updates these beliefs on the basis
of observed data. Using Bayes’ Theorem, the posterior distribution of the parameters
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given the data π (θ |data) has density proportional to the product of the likeli-
hood of the data given the parameters L (data|θ ) and the prior distribution of
the parameters π (θ ): π (θ |data) ∝ L (data|θ ) × π (θ ). The prior distribution
represents the expert’s belief, before observing any data. If there is no strong
prior information on the parameters, vague priors are typically specified on the
parameters which represent very weak opinion concerning the model parameters.
Unfortunately, in most realistic applications the posterior distribution is generally
of such high dimension that little useful inference can be obtained directly. As a
consequence, while the joint posterior distribution (or the corresponding marginal
distributions) provide the best summaries of the parameters, point estimates and
uncertainty intervals are often more interpretable. It is the process of summarizing
the posterior that is the source of the computational complexity of the Bayesian
approach. Estimating the summary statistics of interest (for a vector of parame-
ters θ ) requires elimination of the other parameters. The Bayesian approach does
this through integration using the MCMC algorithm. The high-dimensional integral
associated with the posterior density is actually estimated using appropriate Monte
Carlo integration, which consists of constructing a Markov chain with stationary
distribution equal to the posterior distribution of interest. Then, once the chain has
converged, realizations can be regarded as a dependent sample from this distribu-
tion. WinBUGS implements powerful ways of constructing these chains, adapting
to a wide range of target (posterior) distributions and therefore allowing a large
number of possible models to be fitted. Further details on Bayesian modeling
using MCMC algorithms can be found in Gilks et al. (1996) and Congdon (2003,
2006). The WinBUGS software is currently freely available at http://www.mrc-
bsu.cam.ac.uk/bugs/.

A typical WinBUGS session proceeds as follows: the user specifies the model
to run in the form of the likelihood and prior distributions for all parameters to be
estimated. Data and initial values must also be provided. Following the validation
of the user specification, MCMC simulations are generated such that the stationary
distribution of the Markov chain is the posterior distribution of interest. Thus,
this algorithm provides a sample from the posterior distribution of interest from
which, it is possible to produce estimates of the posterior distributions using kernel
density estimates, and summary statistics of interest such as posterior medians
and credible intervals. Convergence diagnostics are also available either directly
in WinBUGS or using the R packages CODA (Plummer et al. 2004) or BOA (Smith
2004). Note that we will not discuss this crucial issue here, but recommendations
can be found in Kass et al. (1998). An important feature of WinBUGS is that it
comes with a tutorial designed to provide new users with a step-by-step guide
to running an analysis in WinBUGS. There are also a wide range of varied and
detailed examples, including, for instance: logistic regression with random effects,
analyses of variance with repeated measurements, meta-analyses and survival anal-
yses with frailties. It is often useful to call WinBUGS from other programs in order
to input complex sets of data and initial values, avoid specifying the parameters
to be monitored in each run, post-process the results in other software, display
complex graphics or perform Monte Carlo studies running WinBUGS iteratively
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in a loop. Together with data and WinBUGS codes, we give an illustration of
the use of the R (Ihaka and Gentleman 1996; R Development Core Team 2007)
package R2WinBUGS (Sturtz et al. 2005), as well as an illustration of how to
call WinBUGS from MATLAB using the package MATBUGS (http://www.cs.
ubc.ca/∼murphyk/Software/MATBUGS/matbugs.html) at http://eprints.st-andrews.
ac.uk/archive/00000450/. Other programs that can be used to interface to WinBUGS
are listed on the WinBUGS web page given above. General and complementary
introductions to WinBUGS are given in Congdon (2006) and McCarthy (2007). We
now turn to the analysis of real case studies to illustrate the use of WinBUGS. Note
that likelihoods and priors are implemented by defining their probability distribution
based on the model parameters using the tilde (∼) symbol. This notation will be used
throughout the paper.

3 Estimating Survival Using Mark-Recapture Data

As an illustration, we use data on the white stork Ciconia ciconia population in
Baden Württemberg (Germany), consisting of 321 capture histories of individuals
ringed as chicks between 1956 and 1971. From the 60 s to the 90 s, all Western
European stork populations were declining (Bairlein 1991). This trend is thought
to be the result of reduced food availability (Schaub et al. 2005) caused by severe
droughts observed in the wintering ground of storks in the Sahel region of Africa.
This hypothesis has been examined in several studies (Kanyamibwa et al. 1990;
Barbraud et al. 1999; Grosbois et al. in revision). In this section, we use WinBUGS
and several of its features to further explore the relationship between rainfall in the
Sahel and survival probabilities of the Baden Württemberg white stork population.

3.1 Simple Models

The standard Cormack–Jolly–Seber model (CJS, Cormack 1964; Jolly 1965; Seber
1965; Lebreton et al. 1992) considers time-dependence for the probability φi that
an individual survives to occasion i + 1 given that it is alive at time i , and for
the probability p j that an individual is recaptured at time j . The data consist of
encounter histories for each individual made of 1’s corresponding to recapture or
resighting and 0’s otherwise. These data can be efficiently condensed in the so-called
reduced m-array (e.g. Lebreton et al. 1992) which summarizes the data in the form
of the number of individuals released per occasion i, denoted Ri, and the number
of first recaptures given release at occasion i at the succeeding occasions j, denoted
mij. The m-array for the white stork data is provided in Table 1.

Conditioning on the numbers released and assuming independence among
cohorts, the CJS model likelihood can be written as a product of multinomial prob-
ability distributions corresponding to each row of the m-array. The probabilities
corresponding to the m-array cells are complex nonlinear functions of the survival
and detection probabilities. For example, the probability of the number of individ-
uals released at occasion 3 and recaptured for the first time at occasion 5, given the
number of released individuals at occasion 3 is:
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Table 1 The m-array for the White stork data set. The number of individuals released at occasion i
(Ri) and the number of first recaptures at occasion j, given release at occasion i (mij) are provided.
For example, 38 birds were released in 1969 among which, 22 were first recaptured in 1970, and
16 (= 38–22) were never observed again

Year of first recapture (19-)
Year of Number
release (19-) released 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

56 26 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 50 0 33 3 0 0 0 0 0 0 0 0 0 0 0 0 0
58 53 0 0 35 4 0 0 0 0 0 0 0 0 0 0 0 0
59 69 0 0 0 42 1 0 0 0 0 0 0 0 0 0 0 0
60 73 0 0 0 0 42 1 0 0 0 0 0 0 0 0 0 0
61 71 0 0 0 0 0 32 2 1 0 0 0 0 0 0 0 0
62 64 0 0 0 0 0 0 46 2 0 0 0 0 0 0 0 0
63 64 0 0 0 0 0 0 0 33 3 0 0 0 0 0 0 0
64 66 0 0 0 0 0 0 0 0 44 2 0 0 0 0 0 0
65 55 0 0 0 0 0 0 0 0 0 43 1 0 0 1 0 0
66 60 0 0 0 0 0 0 0 0 0 0 34 1 0 0 0 0
67 53 0 0 0 0 0 0 0 0 0 0 0 36 1 0 0 0
68 51 0 0 0 0 0 0 0 0 0 0 0 0 27 2 0 0
69 38 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0
70 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1
71 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

φ3(1 − p4)φ4 p5. (1)

For further details of fitting the CJS model in a Bayesian framework, see Brooks
et al. (2000). We start with a simple mark-recapture model, a simplification of the
CJS model where, based on the conclusions of previous studies (Kanyamibwa et al.
1990; Grosbois et al. in revision), the recapture probabilities are considered constant
over time.

3.1.1 Defining Priors

We define priors for the survival probabilities and the recapture probability as Beta
distributions with parameters 1 and 1 (equivalently uniform distributions between 0
and 1). Within WinBUGS, this is specified as:

for(iin1:ni){phi[i]∼dbeta(1,1)}
p∼dbeta(1,1)

where ni is the number of occasions of release in the study.

3.1.2 Constructing the Likelihood

The likelihood is defined as a product of multinomial distributions using the function

dmulti:

for(iin1:ni){m[i,1:(nj+1)]∼dmulti(q[i,],r[i])}
where the m object is the m-array matrix of data (augmented by the number of
individuals never seen again after release in the last column), nj is the number of
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recapture occasions within the study, r is the vector of released individuals and q is
a matrix of the m-array cells probabilities. The q matrix and r vector are calculated
in the WinBUGS code.

3.1.3 Results

The posterior medians of the survival probabilities are displayed in Fig. 1a, along
with their posterior 95% credible intervals.

To check that the temporal variations in the survival are worth considering, we
also consider a compromise approach in which survival is taken as constant over
time. Starting from the code of the previous model, one way to proceed would be
to consider one scalar parameter for the survival, specify the prior distribution as
for the detection probability and modify the likelihood accordingly. A neat trick
which avoids modifying the likelihood part of the code, is to define a single dummy
variable with a Beta prior and then set all survival probabilities equal to that variable:

#U(0,1)prior distribution for dummy variable

constant.phi∼dbeta(1,1)

#All survival probabilities equal to dummy variable

for(iin1:ni){phi[i]<-constant.phi}

3.1.4 DIC for Model Selection

As a preliminary model selection technique, we use the Deviance Information Crite-
rion (DIC; Spiegelhalter et al. 2002). One interpretation of the DIC is as a Bayesian
counterpart to the AIC for model selection. Essentially, the DIC is a diagnostic that
balances the requirements of model fit and low complexity. Typically, as models
get more complex by the addition of extra parameters, their fit improves. The DIC
diagnostic therefore penalizes additional parameters so that a parsimonious model is
chosen, and the smaller the DIC value, the better the compromise is. One advantage
is that the DIC can be calculated directly in WinBUGS from the chains produced by
an MCMC run. However, the DIC statistic is in its infancy and is controversial (see
the discussion papers following Spiegelhalter et al. 2002 and Celeux et al. 2006).
Here we consider the DIC as a preliminary tool for comparing competing models,
and we will discuss a more rigorous approach later, in the form of posterior model
probabilities.

Examining the DIC values in Table 2, we see that the time-dependent model
appears to outperform the constant model, and hence is better supported by the
data. This suggests that dependence upon time is needed to explain variations in
the survival probabilities. To better understand these findings, we will consider
in the next section environmental covariates as possibly explaining time variation
in the survival probabilities.



WinBUGS for Population Ecologists 889

–1
.5

–1
.0

–0
.5

0.
5

0.
0

1.
0

1.
5

2.
0

Time (Year)

S
ta

nd
ar

di
ze

d 
ra

in
fa

ll 
at

 K
ita

(b)

197019651960

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(a)

Time (Year)

S
ur

vi
va

l p
ro

ba
bi

lit
y

197019651960

Fig. 1 (a) White stork survival estimates from model with time-dependent survival probabilities
and constant detection probabilities; vertical bars represent 95% pointwise credible intervals; (b)
rainfall time series at meteorological station Kita in the Sahel
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Table 2 Models fitted to the white stork data. DIC is the deviance information criterion and pD is
the number of effective parameters. See text for details

Model DIC pD

Constant survival probabilities 174.3 1.9
Time-dependent survival probabilities 166.0 16.3
Covariate-dependent survival probabilities 159.4 3.1
Covariate-dependent as well as random-effect

survival probabilities
161.0 10.6

Nonparametric survival probabilities 158.1 7.4

3.2 Incorporating Linear Effects of Covariates

We now turn to the incorporation of covariates in the CJS model (North and Morgan
1979; Pollock et al. 1984; Clobert and Lebreton 1985; Lebreton et al. 1992; see
Pollock 2002 for a review). As we mentioned earlier, the variation in white storks
survival is likely to be related to rainfall variations. As expected, it can be seen that
the variations in the survival estimates (Fig. 1a) are correlated to Sahel rainfall vari-
ations (Fig. 1b). According to Williams et al. (2002, p. 373), we therefore consider
a model including a linear effect of the rainfall covariate on the logit scale:

logit(φi ) = log

(
φi

1 − φi

)
= β1 + β2xi , (2)

where xi is the value of the covariate between occasions i and i+1, and the β ’s are
regression parameters to be estimated. We use normal distributions with mean 0 and
large variance (106) as vague prior distributions for those parameters. The rainfall
measurements are standardized to improve mixing within the Markov chain. Note
that the standardization can be implemented in WinBUGS:

for(iin1:ni){cov[i]<-(cov[i]-mean(cov[]))/sd(cov[])}
where cov[i] denotes the covariate value in year i.

The code provided in the previous section is amended as follows:

for(iin1:ni){logit(phi[i])<-beta[1]+beta[2]*cov[i]}
for(jin1:2){beta[j]∼dnorm(0,1.0E-6)}
Note that in WinBUGS, normal distributions are described in terms of a mean and
precision, where precision = 1/variance. As a consequence, a variance of 1,000,000
corresponds to a precision of 0.000001. In addition, we note that this model makes
the strong assumption that variation in the survival probabilities is explained by the
covariate. This can be relaxed by the inclusion of additional random effects.

3.3 Incorporating Random Effects

We consider two models with random effects in this section, both addressing two
different questions. Note that incorporating random effects is also a way to share
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information among parameters, particularly improving estimates for years where
there is little information in the data (e.g. Harley et al. 2004).

First, specifying constant survival probabilities can be too restrictive to capture
sources of temporal variability, while estimating as many parameters as time inter-
vals may be too costly to assess specific time trends (Burnham and White 2002;
Royle and Link 2002). We consider a compromise model where time is treated
as a random effect, ε, with a normal distribution with mean 0 and variance σ 2.
We therefore estimate the mean logit survival probability, say μ, and the temporal
process variance in survival probability σ 2 (Gould and Nichols 1998; Burnham and
White 2002):

logit(φi ) = μ+ εi . (3)

Considering random effects raises the problem of calculating the likelihood, which
is obtained by integrating over the random effect ε. This is, indeed, a problem
involving a high-dimensional integral that could be handled by using approxima-
tions (Chavez-Demoulin 1999), circumvented by resorting to asymptotic arguments
(Gould and Nichols 1998; Burnham and White 2002), or numerical integration (e.g.
importance sampling: Skaug and Fournier 2006 or Gaussian quadrature: Wintrebert
et al. 2005). By contrast, the Bayesian approach provides an exact solution to this
problem (Brooks et al. 2000, 2002, note that both references contain WinBUGS
code) and WinBUGS offers a powerful and flexible alternative to standard software
such as MARK (White and Burnham 1999) or M-SURGE (Choquet et al. 2005).

The specification of the model for the survival probabilities was as follows:

for(iin1:ni){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(mu,taueps)

}
We consider an inverse-gamma distribution with parameters 0.01 and 0.01 and a
normal distribution with mean 0 and large variance (100) as vague prior distributions
for taueps and respectively mu:

taueps∼dgamma(0.01,0.01)

mu∼dnorm(0,0.01)

Note that a gamma distribution for the precision is equivalent to an inverse-gamma
distribution for the variance. In this case, these are typical specifications of vague
priors (see also Lambert et al. 2005; van Dongen 2006; Gelman 2006). The poste-
rior distribution of the variance can easily be obtained by monitoring the quantity
sigma2eps defined as:

sigma2eps<-1/taueps

Second, the inclusion of random effects allows there to be additional variability
within the survival rates that can be attributed to natural variability, or temporal
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variability not explained by the covariates within the study. This is a simple exten-
sion of the above covariate model. In particular, we specify an additional random
effect term denoted by �, which has a normal distribution with mean 0 and vari-
ance σ 2. In particular we model the survival rate to be of the form:

logit(φi ) = β1 + β2xi + εi . (4)

Then, the parameters to be estimated are the regression coefficients (�’s) and the
random effect variance parameter σ 2. In a particular application, Barry et al. (2003)
noticed that omitting the random effect can lead to overestimation of the significance
of the covariate on survival. To include these additional random effects, the code is
modified as follows:

for(iin1:ni){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(f[i],taueps)

f[i]<-beta[1]+beta[2]*cov[i]

}
taueps∼dgamma(0.01,0.01)

In our model, slope estimates produced using Eqs. (2) and (4) to model survival are
very close to each other: posterior medians for the slope β2 were 0.36 in both cases
with 95% credible intervals [0.14; 0.58] and [0.20; 0.55] (see Fig. 2). This may
indicate that the random effect was not needed in the model, as the estimates tend
to confirm (the distribution of σ 2 places all of its mass near 0 with posterior median
0.04 and 95% credible interval [0.01; 0.22]), and indicated by the preliminary DIC
analysis (see Table 2).

A formal way of testing the null hypothesis σ 2 = 0 will be discussed later. In both
cases, the effect of rainfall is positive, indicating that the more it rained in the Sahel
zone, the better storks survived.

3.4 Nonparametric Modeling

There is another strong assumption made in Eq. (2), namely that the effect of
the covariate on the survival probability is linear on the logit scale. However,
nonlinear relationships involving the impact of environmental factors on population
dynamics may occur (Mysterud et al. 2001). More flexible models for the survival
probability are therefore needed. Gimenez et al. (2006a; see also Gimenez and
Barbraud this volume and Gimenez et al. 2006b for a similar approach applied
to individual covariates) have recently proposed a method in which the shape of
the relationship is determined by the data without making any prior assumption
regarding its form, by using penalized splines (P-splines; Ruppert et al. 2003). Here,
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we give details of how to implement their approach in WinBUGS. We consider the
following regression model for the survival probability φi :

logit(φi ) = f (xi ) + εi , (5)

where xi is the value of the covariate between occasions i and i+1, f is a smooth func-
tion and � i are i.i.d. random effects N

(
0, σ 2

ε

)
. The function f specifies a nonpara-

metric flexible relationship between the survival probability and the covariate that
allows nonlinear environmental trends to be detected. Following Gimenez et al.
(2006a), we use a truncated polynomial basis to describe f :

f (x) = β0 + β1x + . . . + βpx p +
K∑

k=1

bk(x − κk)p
+, (6)

where x is the covariate, and β0, β1, . . ., βp, b1, . . ., bK are regression coefficients
to be estimated, P ≥ 1 is the degree of the spline, (u)p

+ = u p if u ≥ 0 and 0 other-
wise, and �1 < �2 < . . . < �K are fixed knots. We use K = min

(
1
4 I, 35

)
knots to

ensure the desired flexibility, and let kk be the sample quantile of x’s corresponding
to probability k

K+1 . Those quantities are calculated outside WinBUGS in program
R. In particular, we model the relationships using a linear (P = 1) P-spline with
K = 4 knots implemented through the WinBUGS constants degree and
nknots. To avoid overfitting, we penalize the b’s by assuming that the coefficients
of (x − κk)P

+ are normally distributed random variables with mean 0 and variance
σ 2

b to be estimated. This is the reason why this approach is referred to as penalized
splines (Ruppert et al. 2003). Note that an alternative to P-splines called adaptive
splines (Biller 2000) is considered in the mark-recapture context by Bonner et al.
(this volume). The penalization is achieved by specifying:

for(kin1:nknots){b[k]∼dnorm(0,taub)}
where the variance parameter is given an inverse-gamma distribution (i.e. the preci-
sion has a gamma distribution):

taub∼dgamma(0.001,0.001)

A by-product of this approach is that the amount of smoothing is automati-
cally calculated as σ 2

b /σ
2
ε . To implement the P-splines model in WinBUGS, it is

convenient to express it as a Generalized Linear Mixed Model (GLMM), as shown
by Crainiceanu et al. (2005). If X is the matrix with ith row Xi = (

1, xi , . . . , x P
i

)T

and Z the matrix with the ith row Zi = (
(xi − κ1)P

+ , . . . , (xi − κK )P
+
)T

, then an
equivalent model representation of Eqs. (5) and (6) in the form of a GLMM is given
by Gimenez et al. (2006a):

logit(φ) = Xβ + Zb + ε, cov

(
b
ε

)
=
(
σ 2

b I 0
0 σ 2

ε I

)
(7)
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We are now able to implement the P-splines model in WinBUGS. To code Eq. (7),
we used:

for(iin1:n){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(f[i],taueps)

f[i]<-inprod(beta[],X[i,])+inprod(b[],Z[i,])

}
The first statement corresponds exactly to Eq. (6), the second implements the
random effects distribution and the last one specifies the structure of the mean logit
survival, where the function inprod denotes the inner product of two vectors. The
first part of the last statement contains the fixed effect of Eq. (7), where beta[] is
the vector β = (β0, β1, β2), X[i,] is Xi and inprod(beta[],X[i,]) is the
polynomial part. The second part of the last statement contains the random effects,
where b[] is the vector b = (b1, b2, b3, b4), Z[i,] is Zi and inprod(b[],Z[i,])
is the truncated polynomial part of the regression in Eq. (7).

We then obtain matrices X and Z directly in WinBUGS, although this step could
be done in program R for example. Matrix X is obtained as:

for(iin1:n) {
for(lin1:degree+1) {
X[i,l]<-pow(covariate[i],l-1)

}
}
where pow is the power function, and pow(a,b) is ab. Matrix Z is obtained using:

for(iin1:n){
for(kin1:nknots){
Z[i,k]<-pow((covariate[i]-knot[k])*

step(covariate[i]-knot[k]),degree)

}
}
where the function step is used to obtain the truncation, where step(x) is 1 if
x is positive and 0 otherwise, so that Z[i,k] is positive only for xi > κk. For
further details see Crainiceanu et al. (2005) and Gimenez et al. (2006a). With the
possibility of fitting nonparametric models, one is obviously interested in testing
for the presence of nonlinearities in the survival probability regression. We address
this question by using the DIC and also using visual comparison for comparing the
model with a linear effect of rainfall as well as a random effect (see previous section)
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Fig. 3 Annual variations in white stork survival as a function of the standardized rainfall using
a nonparametric model. Medians (solid line) with 95% pointwise credible intervals (vertical solid
lines) are shown, along with the estimated linear effect (dotted line)

to its nonparametric counterpart. Figure 3 shows that the relationship between rain-
fall in Sahel and white stork survival can be taken as linear. This is confirmed by
DIC values that are similar for these two models (Table 2). Although we have clues
for linearity in this example, the issue of formally detecting nonlinearity deserves
further investigation.

3.5 Dealing with Missing Data

Bayesian modeling via MCMC also provides a simple method for handling data
with missing covariate values. Missing data might occur in capture–recapture
studies if the value of an environmental covariate is not recorded on all occasions
or if an individual covariate changes over time and can only be observed on the
occasions when the specific animal is captured (Bonner and Schwarz 2006). Essen-
tially, a completed data set is generated on each iteration of the MCMC algorithm
by specifying an underlying model for the covariate and imputing the missing
values of the covariate using the current values of the parameters, and then the
completed data set is used to update the parameter values. The result is a sample
from the joint posterior distribution of both the parameters and the missing data
values, which can be used in Bayesian inference. We illustrate the issue of dealing
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with missing data by estimating the effect of rainfall in the Sahel on the survival
of the white storks in Baden Württemberg after deleting the covariate for several
years.

As with the model incorporating random effects, computing the value of the
likelihood for a given set of parameter values requires integration with respect to
the missing covariates. This can be a complicated numerical problem, especially
if several values are missing, and is an obstruction to computing maximum like-
lihood estimates and their standard errors. From a Bayesian perspective, we view
the missing covariates as random variables to which we can assign a probability
distribution, just like the model parameters. We define a prior distribution for the
missing covariate values and then compute the posterior distribution of both the
parameters and the missing values conditional on the observed data. The likelihood
function used in the analysis is exactly the same function used when all covariate
values are observed, and if MCMC is used to obtain a sample from the posterior
distribution then no additional integration is required. Instead, a sample of probable
values for the missing covariates is generated by sampling new values on each iter-
ation of the MCMC algorithm in exactly the same way that model parameters are
sampled. The prior distribution of the missing covariate can be chosen to capture
prior beliefs about the values of the missing covariates and their relation to the rest
of the data. A simple, vague prior for the rainfall in year i, xi, is the normal distribu-
tion with mean 0 and large variance xi ∼ N

(
0, 106

)
. This prior distributes its mass

evenly over a very wide range of values and assumes independence of the rainfall
across the years of the study. Alternative prior distributions will relate the values
of the covariates to each other or to other quantities. Here we use a hierarchical
prior that models the change in the covariate over time as xi ∼ N

(
xi−1 + μ, σ 2

x

)
.

This asserts that the change in the covariate between adjacent years is normally
distributed with the same mean and variance for all years. Information from the
observed covariate values will then be used in determining the posterior mean and
variance of the missing values. To complete the prior distribution we must also
specify the marginal distribution of the first covariate value, x1, and the distributions
for the hyperparameters, μ and σ 2

x . Here we use the vague prior x1 ∼ N (0, 106) for
marginal prior of the first covariate, and the standard vague priors for a normal
mean and variance: μ ∼ N (0, 106) and σ 2

x ∼ �−1 (0.01, 0.01). Alternate prior spec-
ifications for the covariate values include autoregressive models, regression of the
covariate against time, or relation of the covariate to other variables that might have
been recorded. Adapting the WinBUGS code to account for the missing covariate
values requires two simple changes: (i) adding the prior distribution for the covari-
ates, and (ii) modifying the input data. The WinBUGS code for the hierarchical
prior is:

mu∼dnorm(0,1.0E-6)
taucov∼dgamma(.01,.01)
sigma2cov<-1/taucov
cov[1]∼dnorm(0,1.0E-6)
for(iin1:(ni-1)){
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mucov[i]<-cov[i]+mu
cov[i+1]∼dnorm(mucov[i],taucov)

}
The first three lines of code define the hyperpriors for the hyperparameters (μ is mu
and σ 2

x is sigma2cov). The 4th line defines the marginal prior for x1 and the for
loop defines the distribution of each of the remaining covariate values conditional
on the previous value (xi is cov[i]). Missing values in the input data are specified
by replacing the observed value with ‘NA’. Suppose that the rainfall is observed in
all years except year 15; the input vector for the covariate is:

cov=c(.79,2.04,1.04,-.15,-.01,-.48,1.72,-.83,-.02,.14,
-.71,.50,-.62,-.88,NA,-1.52)

Given this data and the model above, WinBUGS will simulate values for the
hyperparameters and the missing rainfall observation for year 15 on each MCMC
iteration and produce posterior summaries for these quantities, exactly as it does for
the other model parameters. Posterior summary statistics for a single run are shown
in Table 3.

Estimates of the survival probabilities are almost exactly identical to the esti-
mates produced from the full data; differences in the posterior means and standard

Table 3 Summary statistics for the posterior distributions of the model fitted to the white stork
data with survival as a function of rainfall: no missing value, missing value in 1 year (15), missing
value in 5 years (5, 6, 11, 12, 13). Reported statistics are the estimated mean, standard deviation
(SD), and the 95% credible interval [CI]

No missing value 1 missing value 5 missing values
Parameter Post. mean (SD) [CI] Post. mean (SD) [CI] Post. mean (SD) [CI]

φ1 0.74 (0.04) [0.65;0.83] 0.74 (0.05) [0.66;0.85] 0.74 (0.05) [0.65;0.84]
φ2 0.79 (0.05) [0.69;0.86] 0.79 (0.04) [0.70;0.86] 0.77 (0.05) [0.67;0.86]
φ3 0.75 (0.04) [0.67;0.82] 0.75 (0.04) [0.66;0.82] 0.74 (0.04) [0.66;0.82]
φ4 0.65 (0.04) [0.58;0.73] 0.66 (0.04) [0.58;0.74] 0.66 (0.04) [0.58;0.74]
φ5 0.64 (0.04) [0.56;0.71] 0.64 (0.04) [0.56;0.71] 0.62 (0.05) [0.52;0.72]
φ6 0.57 (0.05) [0.46;0.65] 0.57 (0.05) [0.48;0.65] 0.57 (0.05) [0.46;0.67]
φ7 0.79 (0.04) [0.70;0.86] 0.78 (0.04) [0.70;0.85] 0.77 (0.04) [0.68;0.85]
φ8 0.59 (0.04) [0.51;0.67] 0.59 (0.04) [0.51;0.68] 0.60 (0.05) [0.51;0.69]
φ9 0.69 (0.04) [0.61;0.76] 0.69 (0.04) [0.61;0.77] 0.69 (0.04) [0.62;0.77]
φ10 0.73 (0.05) [0.65;0.83] 0.73 (0.05) [0.65;0.83] 0.74 (0.05) [0.66;0.84]
φ11 0.61 (0.04) [0.51;0.69] 0.61 (0.04) [0.53;0.70] 0.63 (0.05) [0.52;0.72]
φ12 0.71 (0.04) [0.64;0.79] 0.71 (0.04) [0.63;0.79] 0.69 (0.05) [0.58;0.80]
φ13 0.61 (0.05) [0.51;0.69] 0.61 (0.05) [0.51;0.70] 0.62 (0.05) [0.51;0.71]
φ14 0.60 (0.05) [0.51;0.70] 0.60 (0.05) [0.51;0.70] 0.62 (0.05) [0.53;0.72]
φ15 0.56 (0.05) [0.45;0.65] 0.53 (0.07) [0.39;0.65] 0.57 (0.06) [0.44;0.67]
φ16 0.57 (0.07) [0.45;0.72] 0.58 (0.06) [0.46;0.71] 0.61 (0.07) [0.49;0.75]
β1 0.70 (0.09) [0.52;0.89] 0.71 (0.10) [0.53;0.91] 0.74 (0.10) [0.53;0.95]
β2 0.36 (0.11) [0.14;0.58] 0.35 (0.11) [0.14;0.56] 0.27 (0.13) [-0.03;0.51]
μ – −0.15 (0.35) [−0.85;0.56] −0.16 (0.38) [−0.91;0.64]
σ 2

x – 1.73 (0.84) [0.80;3.75] 2.03 (1.17) [0.75;5.10]
σ 2 0.06 (0.06) [0.01;0.22] 0.06 (0.06) [0.01;0.21] 0.07 (0.07) [0.01;0.27]
p 0.91 (0.01) [0.88;0.94] 0.91 (0.01) [0.88;0.94] 0.91 (0.01) [0.88;0.94]
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deviations are the magnitude as the MCMC error. There is a very slight increase in
the posterior variability of the regression coefficients, β1 and β2, however the lower
bound of the 95% credible interval for β2 is still well above 0 indicating a clear
positive link between rainfall and the storks’ survival. The estimated mean change
in rainfall is −.15 with 95% credible interval (−.85,.56) which suggests that there
is no consistent trend over time. The standard deviation of the change in rainfall
is relatively large which indicates that there is little association between rainfall in
adjacent years. Because of this, the posterior distribution for rainfall in the missing
year is uninformative about the true value.

When 5 missing values are generated, there are only minor differences in the
posterior distribution of the survival probabilities with small increases in the stan-
dard deviation apparent for the years with the covariate deleted (Table 3). This is not
surprising because the capture probabilities are very high so that most information
about the survival probabilities is derived from a direct comparison of the capture
histories rather than the regression on the covariate. There is, however, significant
change in the inference for the regression coefficients. The posterior mean of the
slope, β2, is closer to 0 in Table 3, though whether the mean is increased or decreased
depends on which years are missing the covariate. More importantly, the posterior
standard deviation is increased from 0.11 to 0.13 and the 95% credible interval
contains 0 which brings the effect of rainfall on survival into doubt.

To close this section, we note that we have only considered rainfall at a single
meteorological station in the Sahel region. However, rainfall measurements at other
stations are available, therefore possibly providing a better spatial representation of
the white storks’ wintering area. The question is then to determine which combi-
nation of the stations best explains the variation in survival. If we have 10 stations,
we need to perform model selection among a set of 1024 (210) possible candidates,
which would be intractable using classical model selection criteria such as AIC, BIC
or DIC. Fortunately, an alternative method can be used that allows model selection
among a large set of candidate models. An example is given later in the section
dealing with state-space modeling of count data, and we have made available the
WinBUGS code to implement this approach on the stork dataset.

4 Estimating Abundance and Population Density Using
Line-Transect Data

Line transect surveys are widely used to estimate the density and/or abundance of
wildlife populations. The methods, which are a special case of a general approach
called distance sampling, are described in detail, from a classical perspective, by
Buckland et al. (2001, 2004a). Observers walk along a set of randomly located
transect lines recording the perpendicular distance to all detected objects of interest
(usually animals) within some detected with some perpendicular truncation distance
w. Not all objects within distance w are assumed to be detected; rather a (semi-)
parametric model is specified for the probability of detecting an object given it is at
perpendicular distance y from the transect line. Under various assumptions (detailed
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in Buckland et al. 2001), it is then possible to derive the probability density function
f(y) of observed distances. This can be fitted to the observed distance data using
maximum likelihood methods, and used to correct for the objects missed during the
survey. The standard formula for estimating object density, D, is (Buckland et al.
2001):

D̂ = n f̂ (0)

2L
(8)

where n is the number of objects detected, L is the total length of the transect lines
and f̂ (0) is the estimated probability density function of observed distances evalu-
ated at zero distance.

As an illustration, we consider a line transect study where a known number
of wooden stakes are placed in a sagebrush meadow east of Logan, Utah
(Buckland et al. 2001). The true density of stakes is known to be 37.5 stakes/hectare.
Eleven different graduate students walked a 1,000 m long transect through the study
area independently of one another and recorded perpendicular sighting distances to
stakes. One student’s data are given in Table 4.

These data consist of 68 observations with a truncation width, w, of 20 m. The
same data set is analyzed by Karunamuni and Quinn (1995) who propose a Bayesian
approach for line transect sampling. For the sake of simplicity, we make the same
assumptions as Karunamuni and Quinn (1995), i.e. we assume that the probability
density function f(y) for the detection distances is half-normal and that the data are
neither truncated nor grouped into distance intervals (see Buckland et al. 2001 for
more on the latter). Thus,

f (y) =
√

2/πσ 2 exp
(−y2/2σ 2

) = c
√
λ exp

(−λy2/2
)
, y > 0 (9)

where c = √
2/π and λ = 1/σ 2. Given n detection values, y1, . . . yn , the maximum

likelihood estimator of f (0) is then given by:

f̂ (0) =
√

2n

π
∑

y2
i

= c

(
T

n

)− 1
2

(10)

where T = ∑
y2

i . The maximum likelihood estimator of the density is given by
Eq. (8), above.

Table 4 Sequence of perpendicular distance values for the Stakes line transect example (in
meters)

2.02 0.45 10.40 3.61 0.92 1.00 3.40 2.90 8.16 6.47
5.66 2.95 3.96 0.09 11.82 14.23 2.44 1.61 31.31 6.50
8.27 4.85 1.47 18.60 0.41 0.40 0.20 11.59 3.17 7.10

10.71 3.86 6.05 6.42 3.79 15.24 3.47 3.05 7.93 18.15
10.05 4.41 1.27 13.72 6.25 3.59 9.04 7.68 4.89 9.10

3.25 8.49 6.08 0.40 9.33 0.53 1.23 1.67 4.53 3.12
3.05 6.60 4.40 4.97 3.17 7.67 18.16 4.08
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Adopting a Gamma prior distribution with parameters a and b for λ, Karunamuni
and Quinn (1995) show that the posterior distribution of λ is also a Gamma distribu-

tion with parameters a + n
2 and

(
1
b + T

2

)−1
. Although classical Monte Carlo simula-

tions could be used to simulate observations from the posterior distribution of λ, we
use WinBUGS to draw random samples using MCMC techniques. This is motivated
by generalizations to other probability density functions for the detection distances
as well as spatial modeling for which explicit posterior distributions are difficult to
obtain. We use the so-called “zeros trick” to implement the half-normal likelihood
distribution because it is not included in the list of standard WinBUGS sampling
distributions. This method consists of considering an observed data set made of
0’s distributed as a Poisson distribution with parameter φ so that the associated
likelihood is exp(−φ). Now, if we set phi[i] to − log(L(i)) where the likelihood
term L(i) is the contribution of observed perpendicular distance y[i], then the
likelihood distribution is clearly found to be L(i). See the WinBUGS manual for
further details. The WinBUGS code is as follows:

for(iin1:n) {
zeros[i]<-0
zeros[i]∼dpois(phi[i])#likelihood is exp(-phi[i])
#-log(likelihood)
phi[i]<--(log(2*lambda/3.14)/2-lambda*pow(y[i],2)/2)

}
Karunamuni and Quinn (1995) conduct a sensitivity analysis showing that changing
values of the prior distribution has little effect on the posterior results. To allow
comparisons with Karunamuni and Quinn’s results, we use a = b = 0.1 in our
analyses. For parameter λ, we therefore specify a gamma distribution with both
parameters set equal to 0.1:

lambda∼dgamma(0.1, 0.1)

Finally, we calculate an estimate of and the density D (Eqs. (8) and (10)):

f0<-sqrt(2*lambda/3.14)

D<-(n*f0)/(2*L)

The results are given in Table 5 and show close agreement with the Bayesian anal-
ysis of Karunamuni and Quinn (1995).

Table 5 Results for the Stakes line transect data analysis

Standard Standard
f(0) deviation D deviation

True 0.110 0.00375
Maximum likelihood Estimator 0.098 0.00332
Karunamuni and Quinn (1995) 0.097 0.008 0.00325*

0.00330**

This study 0.097 0.009 0.003301 0.000292
*Relative squared error loss, **absolute squared error loss.
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5 State-Space Models of Count Data: Assessing
Density Dependence

In this section, we describe the use of WinBUGS to fit population models of density
dependence that simultaneously account for both process and observation error. The
example data we use are annual estimates of the population size of North Amer-
ican duck species on their breeding grounds from 1955 to 2002, derived from the
Waterfowl Breeding Population and Habitat Survey (WBPHS, US Fish and Wildlife
Service 2003).

Assessing the importance of population size or density in regulating popula-
tion growth rate is fundamental to population biology, ecology and conservation.
However, devising robust tests for this so-called “density dependence” has been
controversial (e.g. Lebreton this volume). One problem has been that available data
on population sizes or densities are almost always estimates, with some level of
observation error, and ignoring this observation error can lead to biased tests (e.g.
Shenk et al. 1998).

A potential solution is to use a state-space modeling framework, where one can
explicitly specify models for both the underlying population dynamics that change
population size over time and the observation process that links true population size
to the estimates. Such models describing density dependence were constructed by
Jamieson (2004) and Jamieson and Brooks (2004). Here we take as an example their
“logistic” model for the population dynamics (“state process model”), which can be
written as follows:

nt = nt−1exp

⎛⎝β0 +
k∑

j=1

β j nt− j + σpz p,t

⎞⎠ (11)

where nt is the population size at time t (t = 1. . .,T), β0 determines the expected
rate of population growth when the population size is zero, β j determines the rate at
which growth is changed depending on population size in time period t−j, zp,t is a
Gaussian N(0,1) random variable that represents un-modeled variation in population
growth between time periods (“process error”) and σ p determines the size of these
random fluctuations. This is coupled with an “observation process model”, which
can be written

yt = nt + so,t zo,t (12)

where yt is the estimated population size at time t, zo,t is a Gaussian N(0,1) random
variable that represents measurement error and so,t, which is assumed known (it
is provided as part of the WBPHS data, for example), determines the size of the
measurement errors.

The state-space model defined by Eqs. (11) and (12) is non-linear and non-
normal (because of Eq. (11)), and therefore is difficult to fit using standard frequen-
tist methods, such as the Kalman filter (although see de Valpine 2002, 2003;
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de Valpine and Hastings 2002; Besbeas et al. 2005; Besbeas et al. this volume).
Jamieson (2004) and Jamieson and Brooks (2004) describe how the model can
be formulated in a Bayesian context, and how the parameters may be estimated,
for fixed k, using MCMC. Further, they show how a recent extension of the
MCMC algorithm – Reversible Jump MCMC (RJMCMC; Green 1995) – can be
used to compute the posterior probability for each of a set of possible values
of k, and thereby estimate the probability of the presence of density dependence
(i.e., the probability that k>0) in a population (although we note that autocorre-
lated process error can affect such assessments – see Lebreton this volume). For
the use of RJMCMC in population ecology, see for example, King and Brooks
(2002a, b, 2003, 2008) and King et al. (2006). RJMCMC can also be used to
produce model-averaged predictions of future population size. Jamieson and Brooks
(2004) apply these methods using custom-written MCMC and RJMCMC samplers,
implemented in the computer language C, to data for 10 species of duck from the
WBPHS. Three species (Northern Pintail Anas acuta, Redhead Aythya americana
and Canvasback Aythya valisineria) appear to show some form of density depen-
dence.

Similar models were fitted to Canvasback and Mallard data from the WBPHS
(as well as simulated data) by Viljugrein et al. (2005) using WinBUGS, although
code was not included with that paper. An additional covariate, number of breeding
ponds, was included and model discrimination was via DIC. In that paper, both
species were found to show density dependence.

Our aim is to demonstrate how these models may be fitted using WinBUGS, to
investigate the use of the beta version of the RJMCMC plug-in for WinBUGS, and
to validate the results by comparing them with the independent sampler and C code
written by Jamieson. We present some of this work here; it is described in detail in
Parker et al. (in prep.). To save space, we only present results for Canvasback.

5.1 Logistic Model

For computational convenience, we re-parameterized the model presented above so
that time periods t = 1,. . ., k are the times before data are available and t = k + 1,
. . ., k + T are times when data were collected. Note that missing data are easily
accommodated in this framework. We also turned Eq. (11) into an additive model
by log-transforming:

pt = pt−1 + β0 +
k∑

j=1

β j exp(pn− j ) + σpzt (13)

where pt = log(nt).
Bayesian methods require specification of prior distributions on all unknown

quantities; for the purposes of comparison we used exactly the same distributions
as used in Chapter 2 of Jamieson (2004; note these are slightly different from
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those of Jamieson and Brooks 2004): β j ∼ N (0, 100) for j = 0, . . . , k, σ 2
p =

�−1(0.001, 0.001) and nt ∼ N (0.540, 0.130) for t = 1, . . . , k. Note that numbers
of ducks are expressed x106 and that the distribution is truncated so that nt > 0 (by
setting all sampled values of nt to the maximum of the value drawn from the above
normal distribution and 0.00001). Priors are not required on nt, t = k + 1,. . ., k + T
due to the Markovian structure of the state process model: priors for these quantities
are implicitly specified when priors are set for nt, t = 1,. . ., k. (See Jamieson 2004
for an in-depth discussion of this; see also de Valpine 2002 and Maunder et al. this
volume).

Our WinBUGS program was based on code originally written by Steve Brooks
for a workshop on Bayesian methods (Brooks et al. 2005). The key parts are speci-
fication of the observation process equation (Eq. (12)) and system process equation
(Eq. (13)). The observation process equation code is:

for(tin(k+1):T){
prec[t]<-1/(s[t]*s[t])
m[t]∼dnorm(n[t],prec[t])

}
while the system process equation code is:

for(tin(k+1):T){
#mmisusedtobuildupequation3-notethatb[1]hereis
#beta 0inequation1,b[2]isbeta 1,etc.
mm[1,t]<-p[t-1]+b[1]
for(jin1:k){mm[j+1,t]<-mm[j,t]+b[j+1]*exp(p[t-j]) }
#Expectedvalueofp[t]
Ep[t]<-mm[k+1,t]
#Realizedvalue,withprocesserror-tauis1/sig pˆ2
p[t]∼dnorm(Ep[t],tau)

}
Predictions of future states, for example up to time T + 10, could easily be obtained
by replacing the first line of the above loop with

for(tin(k+1):(T+10)){
Summaries of the posterior parameter estimates for Canvasback for k = 1,2,
and 5 and runs with burn-in of 50,000 and then 1,000,000 samples are given in
Table 6, as are results from the same model reproduced from Jamieson (2004,
Table 2.5).

The results are very similar, with differences within the bounds of Monte-Carlo
variation. Convergence and mixing were relatively slow; diagnostics are reported in
Parker et al. (in prep.).

A naı̈ve way to look for evidence of density dependence is to examine posterior
credibility intervals (CI) on the β parameters. For example, in the first-order time
lag model (k = 1), the 95% posterior CI does not contain 0 throughout, providing
support for the notion of first order density dependence in this species.
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5.2 Model Comparison

The above program was extended to allow selection among models using RJMCMC.
This algorithm searches over the different models, given the observed data, so that
the number of possible models is no longer restrictive. We consider an extension
to the standard Bayes Theorem, where we simply consider the model itself to be
a (discrete) parameter. The standard formula still applies, but now the posterior
distribution is defined over both the parameter and model space. Integrating over
the parameters we are able to calculate the marginalized posterior probability for
each model. However, this integration is analytically intractable and so we resort
to an MCMC-type approach. The standard MCMC algorithm cannot be used in the
presence of model uncertainty, and RJMCMC is therefore used to explore simul-
taneously the parameter and model space within a single Markov chain. We used
the Jump extension to WinBUGS (Lunn et al. 2006) to implement RJMCMC. This
extension allows the sampler to move between models that include all possible
combinations of a set of potential covariates – in our case β1 to βV where V is
the maximum time lag allowable (set to 5 in our code). k indexes the number of β
parameters (excluding β0, which is in all models) in the model for a particular draw
from the chain (i.e., the dimension of the model). In the code, an indicator variable
id, indicates which particular model is in a particular draw – for example if id was
10101, that would indicate that the parameters β1, β3, and β5 were in the model for
that draw (and therefore that k = 3).

In the Jump protocol one specifies a prior on the models by specifying a prior
distribution on k. The following gives a prior probability of 0.5 that any β j (0 > j ≥
V) is in the model (Lunn 2006, p. 3):

k∼dbin(0.5,V)

We then specify a design matrix (see Lunn 2006, Eq. (1) with the number of rows
equal to the number of time periods and V columns. The elements of each row
correspond to the sum in Eq. (13). In the following code, C is the first time period
about which we make posterior inferences in states – i.e., C=V+1.

for(tinC:T){
for(jin1:V){
X[(t-C+1),j]<-exp(p[t-j])

}
}
To set up the reversible jump, we use the two Jump-specific commands
jump.lin.pred and jump.model.id, as follows:

#Jumpprocess
psi[1:(T-C+1)]<-jump.lin.pred(X[1:(T-C+1),1:V],k,taub)
id<-jump.model.id(psi[1:(T-C+1)])

where psi is a vector representing the current values of the linear predictor (Lunn
2006, Eq. (1), and taub is the prior precision on the β parameters (in our case
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1/100; note that the prior on all � parameters is assumed to be multivariate normal,
with mean 0 and the specified precision – this distribution is fixed by the software).

We note that the priors specified on the parameters can influence the corre-
sponding posterior model probabilities. In other words the posterior model proba-
bilities are often sensitive to the prior parameter specification. Thus we recommend
that a prior sensitivity analysis should always be performed, and care taken when
specifying the priors for the parameters, to represent sensible prior beliefs.

Lastly, we specify the system process equation in terms of the psi variable:

for(tinC:T){
#Expected value of p[t]
Ep[t]<-p[t-1]+psi[(t-C+1)]
#Realized value, with process error - tau is 1/sig pˆ2
p[t]∼dnorm(Ep[t],tau)

}
Posterior model probabilities can be calculated from the proportion of time the chain
visited each model of interest. This information can be obtained from the Jump
menu that is added to the WinBUGS interface when the Jump extension is installed,
and reports the proportion of time spent in each value of the id variable. Note,
however, some of the models included in the chain are not of interest – we are
only interested in models that for any given k contain parameters β1,. . ., βk: for
example with k = 2 we are only interested in id 11000, and not 10100, 01100, etc.
We therefore select out from the list of id’s only those we are interested in, and
re-normalize so that the proportion of times in these models of interest sum to 1.
These proportions are then estimates of posterior model probability.

Model-averaged estimates of other unknown quantities, such as the nts, can also
be produced by WinBUGS, but just as with the ids above, these contain both models
we are interested in and those we are not. It is necessary to save the value for
the variable of interest generated in each sample (the CODA button in the sample
monitor tool will do this), as well as the corresponding id values, and then select out
only those samples that were generated under id values corresponding to models of
interest.

Posterior model probabilities for Canvasback for runs with burn-in of 50,000 and
then 1,000,000 samples are given in Table 7, as are results from the equivalent model
from a run of the Jamieson C code using burn-in of 20,000 and 100,000 samples

Table 7 Posterior model probabilities for k = 0, . . ., 5 for the logistic model of Jamieson (2004)
applied to Canvasback data

k WinBUGS Jamieson C code

0 0.279 0.265
1 0.685 0.697
2 0.034 0.036
3 0.002 0.002
4 0.000 0.001
5 0.000 0.000
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(a run of the Jamieson code was required because posterior model probabilities were
not given for these priors in Jamieson 2004).

While the results are similar, they are not identical. This is likely to be caused by
a small difference between the implementations: in the algorithm of Jamieson, the
acceptance probabilities for between-model moves do not depend on the priors for
the β parameters (Jamieson 2005, Section 3.1.1), while in the WinBUGS algorithm
it is not possible to achieve such tuning, and in the default algorithm the priors
on the β parameters do affect acceptance rates. Despite these minor differences,
the overall conclusions are the same: the best supported model (posterior model
probability 0.6–0.7) is the one with first-order density dependence.

6 Discussion

In this paper, we have seen how Bayesian theory can be applied to stochastic
models for population ecology using MCMC algorithms as implemented in program
WinBUGS.

In a mark-recapture data modeling context, WinBUGS can handle many complex
models, without additional effort once the likelihood has been written down. This
includes (i) random effects that allow unexplained residual variance to be coped with
when dealing with covariates, automatic calculation of the amount of smoothing
when splines are to be used but also temporal autocorrelation to be incorporated
(Johnson and Hoeting 2003), (ii) missing data in the covariate values to be handled
and (iii) variable selection. Note that those advantages may also be applied in
distance sampling models in order to incorporate covariates in the modeling of the
detection function (Marques and Buckland 2003; Marques et al. 2007). Random
effects can also be used to address spatial variation in both families of models,
allowing the survival and the detection function to depend on spatial coordi-
nates (e.g. longitude and latitude) using splines in two dimensions (Gimenez and
Barbraud this volume) or a combination of various random effects (Grosbois et
al. in revision) or alternatively, using the geostatistical tools as available through
the GeoBUGS adds-on of WinBUGS and the possibility of interfacing WinBUGS
with Geographic Information System (GIS) software (WinBUGS manual; see Wyatt
2003 for an application in fisheries).

In our experience, using R or MATLAB to call WinBUGS makes its use much
easier for pre- and post-processing data. Note also that an open-source version
of the WinBUGS code has recently been published as OpenBUGS. Among other
advances, it can be made to perform block updates (i.e., update multiple unknown
quantities simultaneously), which might be of interest for experienced program-
mers. OpenBUGS also runs under Linux.

Our introduction may make WinBUGS appear like a panacea. However, like all
computer programs, WinBUGS is not always the perfect tool for Bayesian methods
in population ecology, and developments are taking place to improve it. However,
as can be appreciated from the three case-studies, it is capable of producing infor-
mative results for sophisticated models. In using WinBUGS, one should be aware
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of the following potential problems. First, one should be aware that experience is
needed to be able to debug WinBUGS programs. Also, the computational burden
may be discouraging, and it is sometimes preferable to resort to Fortran or C++
to implement efficient MCMC algorithms for specific problems. Finally, although
user-specific functions can be programmed (see the WinBUGS manual), there are
no tools for matrix calculus so that, e.g., multistate mark-recapture models are diffi-
cult to implement (see however Durban et al. 2005 for closed populations). Inter-
estingly, a state-space modeling approach for data on marked animals proposed
by Gimenez et al. (2007) might be a solution to this problem (see also Royle [in
press] for a similar state-space formulation allowing modeling individual effects).
More generally, in line with Buckland et al. (2004b; see also Newman et al. 2006;
Buckland et al. 2007), we believe that state-space modeling can provide a convenient
and flexible framework for specifying many stochastic models for the dynamics
of wild animal populations. In doing so, WinBUGS may provide an efficient and
flexible tool to fit such models, possibly nonlinear and non Gaussian – as has been
realized for several years in fisheries (Meyer and Millar 1999; Millar and Meyer
2000; Rivot and Prévost 2002; Lewy and Nielsen 2003; Rivot et al. 2004). We note
that other fitting algorithms, such as variations on the Kalman filter, Monte-Carlo
particle filter, Laplace approximation, importance sampling may also be applicable
(see Buckland et al. 2007 for a review). These ideas open the area to numerous
applications including the integration of several sources of information (recovery
and recapture data, see Catchpole et al. 1998; count data and demographic data, see
Besbeas et al. 2002, 2005, 2008; Brooks et al. 2004; Maunder 2004; Schaub et al.
2007).

We end by providing a non-comprehensive list of applications of Bayesian
methods in population ecology. An important advantage of the Bayesian frame-
work is the possibility to incorporate prior information in the analysis. McCarthy
and Masters (2005a) show how to use prior information on body mass to improve
survival estimates using the CJS models, while Pearce et al. (2001); Yamada et al.
(2003); Kuhnert et al. (2005) and Martin et al. (2005a) show how to integrate expert
knowledge. Several authors have dealt with important issues regarding the speci-
fication of vague priors (Lambert et al. 2005; van Dongen 2006; Gelman 2006),
assessment of the sensitivity of the posterior distribution to the specified prior
distribution (Millar 2004; Millar and Stewart 2005), parameter identifiability in a
Bayesian context (Gimenez et al. this volume) and goodness-of-fit tests (Brooks
et al. 2000; Barry et al. 2003; Michielsens and McAllister 2004). Meta-analyses
have been successfully carried out to estimate demographic parameters (Tufto et al.
2000) and assess animal movement (Jonsen et al. 2003). Further applications of
WinBUGS to analyze animal movement data can be found in Morales et al. (2004)
and Jonsen et al. (2005). WinBUGS can be used to address issues associated with
binomial and Poisson data such as spatial autocorrelation (Thogmartin et al. 2004;
Wintle and Bardos 2006), imperfect detection (Royle and Dorazio 2006), hetero-
geneity in the detection process (Durban and Elston 2005), excess of zeros (Martin
et al. 2005b; Ghosh et al. 2006), observer effects (Thogmartin et al. 2004), detecting
trends (Link and Sauer 2002) and missing data (Lens et al. 2002). WinBUGS has



910 O. Gimenez et al.

allowed a better understanding of the impact in assessing complex effects of density-
dependence and predicting the impact of climate change and human exploitation in
population dynamics (Bjornstad et al. 1999; Saether et al. 2000; Stenseth et al. 2003;
Conroy et al. 2005). Regarding model selection, alternatives to DIC and RJMCMC
using WinBUGS are given by Ntzoufras (2002; Gibbs variable selection), Link
and Barker (2006; Bayesian information criterion; see also Link and Barker this
volume) and Ghosh and Norris (2005; minimum posterior predictive loss). Finally,
Link and Barker (2005) considered association among demographic parameters
(e.g. recruitment and survival) in analysis of open population mark-recapture data
(see also Cam et al. 2002 and Wintrebert et al. 2005 when detectability is equal
to one).

In conclusion, we hope this paper will encourage ecologists to explore the poten-
tial of the flexible and useful WinBUGS software, and the methods underlying it,
for carrying out future applications.
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Comparison of Fixed Effect, Random Effect,
and Hierarchical Bayes Estimators for Mark
Recapture Data Using AD Model Builder

Mark N. Maunder, Hans J. Skaug, David A. Fournier, and Simon D. Hoyle

Abstract Mark-recapture studies are one of the most common methods used to
obtain demographic parameters for wildlife populations. Time specific estimates
of parameters representing population processes contain both temporal variability
in the process (process error) and error in estimating the parameters (observation
error). Therefore, to estimate the temporal variation in the population process, it is
important to separate these two errors. Traditional random effect models can be used
to separate the two errors. However, it is difficult to implement the required simul-
taneous maximization and integration for dynamic nonlinear non-Gaussian models.
An alternative hierarchical Bayesian approach using MCMC integration is easier to
apply, but requires priors for all model parameters.

AD Model Builder (ADMB) is a general software environment for fitting param-
eter rich nonlinear models to data. It uses automatic differentiation to provide a
more efficient and stable parameter estimation framework. ADMB has both random
effects using Laplace approximation and importance sampling, and MCMC to
implement Bayesian analysis.

To demonstrate ADMB and investigate methods to analyze mark-recapture data,
we implement fixed effect, random effect, and hierarchical Bayes estimators in
ADMB and apply them to three mark-recapture data sets. Our results showed that
unrestricted time-effects, random effects, and hierarchical Bayes methods often give
similar results, but not in all cases or for all parameters.

1 Introduction

We need easy ways to embed general and flexible random effects into extant capture–
recapture models, without each time deriving estimators. (Burnham and White 2002)

Mark-recapture studies are one of the most common methods used to obtain
demographic parameters for wildlife populations (Lebreton et al. 1992). These
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demographic parameters can then be used in population dynamics models to inves-
tigate the persistence of the populations or to evaluate management strategies
(Williams et al. 2002). In particular, mark-recapture studies can be used to esti-
mate the survival rate, which is subsequently used in population viability analysis
(Boyce 1992; White 1999). If the survival rate is in balance with the other population
processes, the population will remain stable over time. However, if the survival rate
is low the population will decline or if the survival rate is high the population will
increase. Density dependence may cause the population to reach equilibrium at a
higher or lower population size.

The above deterministic description is an overly simplistic representation of
reality because population processes change over time. These temporal changes
may be simple random processes, have trends, or be autocorrelated, and they may be
important for the evaluation of the population under study. For example, temporal
variation or a downward trend in survival may increase the probability of extinction.
Therefore, development of methods to estimate temporal variation in population
processes is important (White 1999; Maunder 2004).

Time specific estimates of parameters representing population processes contain
both temporal variability in the process (process error) and error in estimating the
parameters (observation error). Therefore, to estimate the temporal variation in the
population process, it is important to separate these two errors (Gould and Nichols
1998; Barry et al. 2003). For example, mark-recapture studies can be used to estimate
a survival parameter for each year of the analysis. The survival estimate in a particular
year may differ from the mean survival either because the real survival differed in that
year or because the randomly collected data caused a different estimate by chance.
The variance calculated from the vector of time specific point estimates of survival
includes both true temporal variation in survival and the estimation error. More
sophisticated approaches that separate the observation and process error are needed
to estimate the true temporal variation in survival, particular when data is limited.

State-state modeling approaches (Harvey 1989) have traditionally been used to
separate out process and observation error. For a state-space approach used in the
mark-recapture context, see Gimenez et al. (2007). The term state-space is used
because the procedure evaluates the entire range of possible trajectories (states)
through time (de Valpine 2002). Following de Valpine (2002), a simple state-space
model can be described by two equations:

Process model

Xt = aXt−1 + vt−1

Observation model

Yt = bXt + εt

where Xt and Yt represent the states and observations, respectively, and vt and
εt represent the process and observation error, respectively, in time t. Although,
process variability may be a more appropriate term for vt (Francis and Shotton 1997).
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For fixed parameters, the two random variables (X,Y) define everything about
a specific population trajectory. Y being known and X being unknown. States are
unknown random variables under both frequentist and Bayesian frameworks and
therefore they should be integrated out of the likelihood function. This is equivalent
to integrating out the process error (v in the process model above can replace X as
the unknown random variable; de Valpine 2002). All possible underlying trajectories
(states X) can be represented by all the possible process errors, v, that could produce
those states from the initial conditions. Process error can be modeled as random
effects (as described below) and state space models are equivalent to using models
with process error represented by random effects. Usually, there will be additional
fixed effect parameters in the model (e.g. parameters a and b in the equations above)
that also need to be estimated, thus requiring a mixed effects framework. Other terms
used to describe similar concepts include variance components, random coefficient
models, latent variables, and empirical Bayes.

Frequentist estimation methods applied to mixed effects models require both
integration and optimization. Early state-space models involved linear models with
Gaussian error implemented using the Kalman filter or extended Kalman filter (e.g.
Sullivan 1992). Unfortunately, simultaneous integration and maximization becomes
a difficult problem when nonlinear and non-Gaussian models are used, which are
typical in mark-recapture and population dynamics models of wildlife populations.
It becomes even more complex in dynamic models (Maunder and Deriso 2003;
Besbeas et al. 2002). The complexity of models has become even greater as more
data types are integrated into a single analysis (Maunder 2003). For this reason,
many analysts turn to Bayesian MCMC methods, which are much more amenable
to these problems (Punt and Hilborn 1997; Brooks et al. 2004). In a Bayesian
context, random or mixed effects models are often called hierarchical models. Many
applications, particularly mixed effect (hierarchical) models, can be fitted in a fully
Bayesian framework, but seem beyond the current capability of likelihood or empir-
ical Bayes analyses (Gelfand 1996; George 1996; Clark 2005). However, Bayesian
analysis requires a completely different inference framework and, particularly in
data limited cases, the choice of priors may influence the results (Brooks et al. 2000).
Analysts should always investigate the sensitivity of the results to the priors (Brooks
et al. 2000).

Inference using non-linear non-Gaussian random effects models requires effi-
cient software. AD Model Builder (ADMB; Fournier 2001) is a software package
that provides a general modeling environment for fitting parameter rich nonlinear
models to data that has been used extensively in fisheries stock assessment (Maunder
2004; Schnute et al. 2007; Maunder et al. submitted). ADMB is not a statistical
method but a customizable tool to efficiently and flexibly implement a wide range
of statistical methods. It uses automatic differentiation to provide a more efficient
and stable parameter estimation framework. ADMB has been used to fit complex
nonlinear models with thousands of parameters simultaneously to multiple types
of data (e.g. Maunder and Watters 2003a) and to fit nonlinear models with fewer
parameters to hundreds of thousands of data points (e.g. Maunder 2001a; Maunder
et al. 2006). In particular, ADMB has Laplace approximation and importance
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sampling to implement frequentist random effects models (Skaug and Fournier
2006) and MCMC to implement Bayesian analysis.

We start by discussing issues related to statistical inference and then describe
implementation of random effects in mark-recapture models. Next we introduce AD
Model Builder and apply mark-recapture models developed in AD Model builder to
three data sets using both frequentist and Bayesian inference.

2 Nuisance Parameters

Elimination of nuisance parameters is a central problem in virtually all approaches
to statistical inference (Berger et al. 1999). Let y be a vector of observations. Let θ be
the parameter of interest and let � be a vector of nuisance parameters all influencing
the value of y. Denote the joint density of y, θ , and � by g (y, θ,�) .

The likelihood function for θ is

L (θ ) ∝ g (y, θ,�)

The goal of statistics is to make inferences on θ given y, but this is complicated
by the presence of �. There are several approaches to eliminate nuisance parameters
from the model. The most common are conditioning, maximizing, and integrating
(Royle 1997). The standard frequentist approach, maximum likelihood, maximizes
over �. This is generalized for confidence interval calculations in the profile likeli-
hood procedure. Bayesian methods automatically integrate over �.

Traditionally, the mark-recapture literature refers to the recapture probability
parameters as nuisance parameters because survival is the quantity of interest.
However, any parameter can be considered and treated as a nuisance parameter if
it is not the quantity of interest. The goal is to provide inference about the quantity
of interest independent of the nuisance parameters. Generally, random effects are
considered nuisance parameters, but this is not always the case.

3 Profile Likelihood

The Profile likelihood method, which produces asymmetrical confidence intervals,
often produces a better representation of uncertainty in comparison to the normal
approximation method, particularly for nonlinear models. Morgan and Freeman
(1989) advocate using the profile likelihood approach (see also Gimenez et al. 2005).
In parallel to maximum likelihood, the profile likelihood maximizes out the nuisance
parameters. A profile likelihood is created by choosing a series of values for the
quantity of interest, and then maximizing the likelihood by estimating the remaining
parameters of the model for each value in the series. Confidence intervals are then
generated using the χ2 distribution with the appropriate degrees of freedom (Hilborn
and Mangel 1997). The profile likelihood method, which replaces the nuisance
parameters with their conditional maximum likelihood estimates, ignores some of
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the uncertainty in the nuisance parameters and modified profile likelihood methods
have been developed to adjust for this loss of uncertainty (Berger et al. 1999).

4 Random Effects and Hierarchical Models

Treating nuisance parameters as random effects and integrating them out of the
likelihood is one of the main methods to eliminate nuisance parameters. Random
effects models also provide a parsimonious compromise between over simplistic and
more realistic complex models (Royle and Link 2002). The random effects models
provide a shrinkage estimate of the realizations of the random effects, which are an
improvement (in mean squared error) over MLE unrestricted time-effects models
(Burnham and White 2002). Let � = (u, v), where u is a vector of latent random
variables (random effects) and v is a vector of unknown parameters. In a hierarchical
context let g (y, θ ,u, v) = f (y, θ , v|u) h (u). The likelihood function for θ must be
based on the marginal distribution of y, which is obtained by integrating out u from
the joint distribution f (y, θ , v|u) h (u). This yields the marginal likelihood

L (θ ) =
∫

f (y, θ , v|u) h (u)du.

h(u) is the random effects or hyper distribution, which describes how the realizations
of the random effect are distributed. h(u) usually has hyper parameters defining the
distribution and these may be nuisance parameters or the parameters of interest and
are contained in � or v, but are suppressed in the above notation.

In the random effects case, both frequentist and Bayesian approaches integrate
out the random effects. However, for inference purposes, there still remains the need
to eliminate the nuisance parameters v. In this case, Bayesian analysis integrates out
these additional nuisance parameters while frequentist approaches generally maxi-
mize out these (fixed effect) parameters.

Random-effects or hierarchical models have, for example, been used to deter-
mine individual heterogeneity in breeding and survival rates (Link et al. 2002),
temporal variability in survival rates (Burnham and White 2002), population trends
(Sauer and Link 2002), individual covariation between life-history traits (Cam et al.
2002), and joint modeling of breeding and survival (Wintrebert et al. 2005).

5 Estimation Methods

Most statistical frameworks accept elimination of random effects by integration
(Berger et al. 1999). This is because methods based only on maximization perform
poorly due to the likelihood being singular when the variance of the random-effects
distribution equals zero and the local maximum is an inconsistent estimator (Berger
et al. 1999; Maunder and Deriso 2003). Integration over the random effects distri-
bution, which is equivalent to integrating over the state-space, creates a (true) likeli-
hood that has much better properties. In a frequentist context, mixed effects models,
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which contain both random effects and fixed effects, require both maximization and
integration. Hence the problem with frequentist methods. Applying maximization
and integration simultaneously with nonlinear non-Gaussian models is difficult.
This is a major reason why Bayesian hierarchical nonlinear models have become
so popular (Link et al. 2002; Royle and Link 2002). Integrating across all model
parameters using MCMC is much easier than simultaneous maximization and inte-
gration with nonlinear non-Gaussian models.

5.1 Frequentist: The Laplace Approximation
and Importance Sampling

There are several approaches that have been developed to maximize and integrate
at the same time. Several of these are very efficient and do not take much compu-
tational requirements (e.g Kalman filter), but they are generally applied to linear
models (e.g. in purely Gaussian models a closed-form expression for the integral can
be found). Parameters of nonlinear mixed models can be estimated by maximizing
an approximation to the likelihood integrated over the random effects. Different
approximations to the integral are available: adaptive Gaussian quadrature, first-
order Taylor series approximation, Laplacian approximation (Pinheiro and Bates
1995; Davidian and Giltinan 1993; Beal and Sheiner 1992; Skaug 2002). Simu-
lated likelihood (e.g. Millar 2004a) is a general approach applicable to nonlinear
models. Unfortunately, simplistic simulated likelihood approaches are inefficient in
some dynamic models. For dynamic models, importance sampling methods appear
to work well (Maunder and Deriso 2003). However, effective importance functions
need to be generated. Maunder and Deriso (2003) used the variance–covariance
matrix estimated when treating the realizations of the random effects as fixed effects
to generate the importance function. This method can be improved upon by using
the Laplace approximation to generate the importance function (Kuk 1999; Skaug
2002; Skaug and Fournier 2006).

The Laplace approximation, which is based on a second order Taylor expan-
sion, can be used to approximate the integral required to integrate out the random
effects. For complex models, calculating the second order derivatives required by
the Laplace approximation is difficult. Hand calculation is tedious and error prone
and numerical calculation is computationally demanding and inexact. An alternative
approach is to apply automatic differentiation (AD) (Griewank 2000). Skaug and
Fournier (2006) describe how AD is used to calculate the Hessian matrix and its use
in the Laplace approximation. AD produces derivatives that are accurate to machine
precision, which increases the stability and reduces computation time compared to
methods that use the finite difference approach.

5.2 Bayesian: MCMC

Bayesian inference is based on the posterior distribution, which is proportional to
the product of the likelihood and the prior. Prior distributions are required for all
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model parameters. The random effects distribution is a prior for the realizations
of the random effects. However, additional priors (hyperpriors) are needed for the
parameters (hyperparameters) of the random effects distribution (hyperdistribution;
Gelman et al. 1995). Priors are also needed for the other parameters of the model.
Frequently, no additional information is available to develop priors and default or
objective priors are used to avoid subjectivity. These priors are not necessarily unin-
formative for the quantities of interest. For example, the constant of proportionality
used to scale a relative index of abundance to the total abundance predicted by
a population dynamics model can have different implications depending on what
“uninformative” prior is assumed. The two “uninformative” priors that have been
historically used: uniform and uniform on the log scale; are just uniform priors on a
simple parameter transformation. Cordue and Francis (1994) showed using simula-
tion analysis that the choice between these two priors can have a huge consequence
on the estimates of risk in fisheries stock assessments.

Vounatsou and Smith (1995) described how Markov chain Monte Carlo (MCMC)
(see Gelfand and Smith (1990) for details on the MCMC algorithm) can be used to
implement fully Bayesian methods for analysis of mark-recovery data. They imple-
mented both a Gibbs sampling algorithm and a variant of the Hastings–Metropolis
algorithm. However, they used uniform priors and did not use a hierarchical/random
effects approach. Link and Barker (2004, 2005) used Bayesian analysis to imple-
ment hierarchical extensions to the Cormack–Jolly–Seber model. Barry et al. (2003)
use the hierarchical Bayes method to model covariates. The BUGS software has
made MCMC procedures accessible to a wide range of practitioners. Brooks et al.
(2000) used BUGS to implement a mark-recapture model and Brooks et al. (2004)
used WinBUGS to implement a mark-recapture model integrated with a population
dynamics model and index of abundance data (see also Gimenez et al. this volume).
McCarthy and Masters (2005) used WinBUGS to add prior information on survival
in a mark-recapture analysis.

6 Mark-Recapture Models

Mark-recapture or mark-resight studies are often designed to estimate survival rates
of a population. The standard approach to analyzing the data is to use a multinomial
likelihood to model the outcome of a marked individual. The possible outcomes
from a release are first recaptured in periods 1, 2, . . . , T or not recaptured at all. The
probabilities of these outcomes are a function of the survival in each period and the
probability of being recaptured in each period given that you survived to that period.
Once an individual has been recaptured (or resighted), it is usually treated as a new
release independent of any previous releases or recaptures. Individuals that were
released and recaptured in the same periods can be combined and the data presented
in an m-array (see the data files in the Appendix).

Let φt and pt represent the probability of surviving time t and the probability
of being recaptured in time t, respectively. Let Rj represent the number of indi-
viduals released in time j and mj,i represent the number of individuals that were
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released in time j and recaptured in time i. The probability of an individual marked
in time j being recaptured in time i, but not recaptured in a previous time is

Pr j,i = φi pi

i−1∏
t= j

φt (1 − pt ) and the natural logarithm of the likelihood, ignoring

constants, is

ln [L (φ, p, R,m)] = ∑
j

{(
R j − ∑

i :i> j
m j,i

)
ln

[
1 − ∑

i :i> j
Pr j,i

]

+ ∑
i :i> j

m j,i ln
[
Pr j,i

]}
,

where the first term represents the likelihood component attributed to individuals
that were never recaptured.

The likelihood function can be maximized to estimate the survival and proba-
bility of recapture. Hypothesis tests (e.g. based on AIC) are generally used to test
several different models based on whether the survival or probability of recapture
are constant over time {φ, p}, change over time {φt, pt}, or a combination of the
two {φ, pt} or {φt ,p}. Burnham and White (2002) refer to models that estimate a
parameter for each time period “unrestricted time effects” to differentiate them from
random effects and time invariant models. In the case of both time varying survival
and time varying recapture probability, the parameters for the last time period are
confounded and only a single parameter representing the combination of survival
and probability of recapture can be estimated (Lebreton et al. 1992).

7 Random Effects in Mark-Recapture Models

An alternative to assuming the survival and probability of recapture either change
independently over time or are constant over time, is to treat them as random effects.
For example, Royle and Link (2002) used temporal random effects for both survival
and reporting rates for band recovery data. Both survival and the probability of
recapture lie between 0 and 1, and an appropriate distribution for the random effects
that has this property is desirable. A common approach is to use a normal distri-
bution transformed based on a logit link function (Brooks et al. 2002; Royle and
Link 2002).

pt = 1

1 + exp
[−εp

] where εp ∼ N
(
μp, σp

)
and

φt = 1

1 + exp
[−εφ] where εφ ∼ N

(
μφ, σφ

)
.

In this case, the random effects are the survival and probability of recapture. The
fixed effects are the parameters of the random effects distributions (μφ, σφ, μp, σp).
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If random effects distribution for survival is the quantity of interest, then the param-
eters of the random effects distribution for the probability of recapture are nuisance
parameters and need to be eliminated from the analysis.

When survival and the recapture probability are both treated as temporal random
effects, the confounding of parameters for the last time period does not cause the
model to be over parameterized when random effects are used.

In contrast to Brooks et al. (2002) and Royle and Link (2002), Burnham and
White (2002) used a beta distribution for the random effect distribution used in their
simulations. Royle and Link (2002) preferred the normal distribution with logit link
over a beta because it is less difficult to develop priors and straightforward to include
covariates.

8 Bayesian Hierarchical Models in Mark-Recapture Models

The main difference between developing a frequentist random-effects mark-
recapture model and a Bayesian hierarchical mark-recapture model is the develop-
ment of priors. Brooks et al. (2002) and Royle and Link (2002) use a diffuse normal
for the mean and an inverse Gamma for the variance (conjugate prior) for hyper
priors of a logit transformed normally distributed random effect. It is important to
determine the sensitivity of parameter estimates to prior distributions (see Millar
(2004b) for sensitivity analysis to priors for hierarchical models).

9 AD Model Builder

We illustrate the use of the AD Model builder software package by first developing
a simple maximum likelihood mark-recapture model and applying it to the Euro-
pean dipper data presented in Lebreton et al. (1992). The model developed using
ADMB has time specific parameters for both survival and probability of detection
to replicate the results of Table 10 in Lebreton et al. (1992). Symmetric confidence
intervals are typically calculated using the normal approximation method. However,
we also describe the profile likelihood method, which allows the confidence inter-
vals to be asymmetric and may be more appropriate in some circumstances. We then
describe how this model can be modified to include random effects and estimation
within both frequentist and Bayesian frameworks. We finally apply these methods to
data on albatross and yellow-eyed penguin, which have more years of data and are
therefore more applicable to random effects modeling. Details of the ADMB code
for the mark-recapture models used in this study are presented in the Appendix.

AD Model Builder (ADMB; Fournier 2001) is a software tool for developing
parameter rich nonlinear models and has become the dominant software environ-
ment for estimating the parameters of complex, highly-parameterized, fisheries
stock assessment models. It has several features that make it effective at estimating
the parameters of these types of models. The main concept behind ADMB is that
supplying machine precision derivatives to the function optimizer greatly reduces
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run time and improves stability. The derivatives are supplied automatically through
precompiled derivative code for common functions (e.g. matrix algebra) and the
chain rule. Therefore, any calculations used to derive the objective function from
the model parameters and the data, automatically have the derivatives calculated
for them. Theory shows that the type of automatic differentiation used by ADMB
requires less than 5 times the original calculations to provide the derivative values
(Griewank 2000; Skaug and Fournier 2006). The standard approach of using numer-
ical derivatives, which provides less precise derivatives, requires q + 1 times the
original calculations, where q is the number of model parameters. Inaccuracy of the
numerical derivative approximations causes instability in the minimization process
and produces unreliable results for ill-conditioned problems.

ADMB also makes use of phased optimization. This is the process of adding addi-
tional estimated parameters in a series of steps (phases). At each phase the param-
eters estimated in the previous phase and the new parameters for the current phase
are all estimated, with the values from the previous phase used as starting points.
This approach allows the estimation of influential parameters in the early phases and
fine tuning parameters in latter phases, which can avoid the estimation procedure
getting stuck in unrealistic parameter space. Similarly, the method can also be used
to fix parameters that are relatively well known from other sources until latter phases.
Parameter bounds are also implemented to avoid unrealistic parameter space.

In addition to function optimization, which can be used for maximum likeli-
hood parameter estimation, ADMB also has a MCMC routine to perform Bayesian
integration, a Laplace approximation to implement random effects, and automatic
profile likelihood calculations, as well as numerous other functions. The MCMC
routine uses the mode of the joint posterior, estimated by the optimization routine,
to initiate the MCMC chain and the covariance matrix to develop the jumping rule.
The Laplace approximation uses automatic second derivatives and can also be used
to develop the sampling distribution for use in an importance sampling method to
integrate out the random effect parameters.

10 Applications

Mark-recapture models are applied to three applications: (1) European dipper
(Lebreton et al. 1992); (2) yellow-eyed penguins (David Houston personal commu-
nication); and (3) black footed albatross (Véran 2006; Véran et al. in press). These
applications are used for illustrative purposes only. Three inference approaches are
applied to each application (a) maximum likelihood estimation with time varying
survival and probability of recapture (an unrestricted time-effects model) (denoted
MLE); (b) random effects implemented using Laplace approximation (denoted RE);
and (c) hierarchical Bayes (denoted Bayesian). The hierarchical Bayes method used
uniform priors on all parameters with the standard deviations of the hyper distributions
modeled on the natural logarithmic scale. One million samples were taken using the
MCMC algorithm and every thousandth was used to create the posterior distribu-
tion. The Bayesian estimates were taken as the mean of the posterior distribution
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and the uncertainty intervals were calculated using the 2.5 and 97.5 percentiles of
the posterior distribution. The survival and probability of recapture can not be sepa-
rated in the last time period of the MLE method, and the combination of the two
has to be estimated as a single parameter (see Gimenez et al. (2004) for a review).
We also apply the profile likelihood method to develop confidence intervals for the
MLE method. The data is provided in m-array format and the standard algorithm can
be used to calculate the multinomial likelihood function from the annual values of
survival (φt ) and probability of recapture (pt). We use the term uncertainty intervals
to generally refer to both confidence intervals and Bayesian credibility intervals.

The European dipper data consists of 6 years of releases and 6 years of recaptures
(see Appendix). The parameter estimates from the MLE model and their standard
errors are identical to those presented by Lebreton et al. (1992) (Table 1). The

Table 1 Estimates of probabilities of survival and recapture, and their uncertainty intervals for
the European dipper application. LB = lower bound of uncertainty interval, UB = upper bound of
uncertainty interval, other terms defined in text

MLE

Year φ LB UB p LB UB

1981–1982 0.718 0.407 1.029
1982–1983 0.435 0.297 0.572 0.696 0.365 0.231
1983–1984 0.478 0.359 0.598 0.923 0.777 0.135
1984–1985 0.626 0.508 0.745 0.913 0.797 0.106
1985–1986 0.599 0.486 0.711 0.901 0.793 0.097
1986–1987 0.932 0.841 0.085
1987–1988

RE
Year φ LB UB p LB UB
1981–1982 0.564 0.481 0.647
1982–1983 0.542 0.454 0.630 0.902 0.845 0.960
1983–1984 0.543 0.453 0.633 0.902 0.845 0.960
1984–1985 0.573 0.485 0.661 0.902 0.845 0.960
1985–1986 0.571 0.483 0.659 0.902 0.845 0.960
1986–1987 0.565 0.479 0.652 0.902 0.845 0.960
1987–1988 0.902 0.845 0.960

Bayesian
Year φ LB UB p LB UB
1981–1982 0.568 0.483 0.680
1982–1983 0.540 0.420 0.612 0.899 0.826 0.954
1983–1984 0.542 0.443 0.609 0.902 0.829 0.957
1984–1985 0.575 0.512 0.660 0.904 0.836 0.956
1985–1986 0.571 0.509 0.649 0.904 0.842 0.955
1986–1987 0.566 0.499 0.644 0.905 0.837 0.956
1987–1988 0.904 0.836 0.959

Profile likelihood
Year φ LB UB
1981–1982 0.718 0.451 0.979
1982–1983 0.435 0.292 0.595
1983–1984 0.478 0.353 0.610
1984–1985 0.626 0.495 0.752
1985–1986 0.599 0.480 0.722
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random effects and Bayesian analyses give very similar estimates and uncertainty
intervals for the annual estimates of survival and the probability of recapture, but
they differ from the MLE estimates. The estimates of both survival and probability
of detection are essentially constant over time for the random effects and Bayesian
methods. All three methods estimate lower survival in the second and third years,
particularly the MLE method, which is consistent with the preferred model for this
data set, which assumes a different survival rate in these years due to a flood in
1983 (Lebreton et al. 1992; Brooks et al. 2000). The profile likelihood uncertainty
intervals are similar to the normal approximation intervals. As expected, and unlike
the normal approximation uncertainty intervals, the profile likelihood uncertainty
intervals do not exceed one. The estimates and uncertainty intervals of the means
and standard deviations of the random effects distributions are similar for the RE
and Bayesian methods, except for the lower bound for the RE uncertainty interval
for the standard deviations that is negative (Table 4).

The yellow-eyed penguin data has 20 years of releases and 20 years of recaptures
(see Appendix). The Bayesian and RE models give similar estimates of the annual
values of survival and probability of recapture, which are less variable than the MLE
fixed effects estimates (Table 2). The uncertainty intervals for all three methods are
similar. The estimates and uncertainty intervals of the means of the random effects
distributions are similar for the RE and Bayesian methods (Table 4). The estimates
of the standard deviations of the random effects distributions are similar for the
Bayesian method comparedto the RE method (Table 4).

The albatross data has 12 years of releases and 12 years of recaptures (see
Appendix). The Bayesian, RE and MLE fixed effects models give similar estimates

Table 2 Estimates of probabilities of survival and recapture, and their uncertainty intervals for the
yellow-eyed penguin application. See Table 1 for definitions

MLE

Year φ LB UB p LB UB

1 0.667 0.395 0.939 1.000 1.000 1.000
2 0.668 0.395 0.940 0.874 0.638 1.110
3 1.000 1.000 1.000 0.817 0.584 1.051
4 0.953 0.825 1.082 0.852 0.658 1.045
5 0.930 0.737 1.122 0.893 0.693 1.094
6 0.531 0.310 0.752 0.494 0.205 0.782
7 1.000 1.000 1.000 0.726 0.493 0.958
8 0.928 0.819 1.037 0.726 0.561 0.891
9 0.927 0.817 1.037 0.896 0.783 1.010

10 0.932 0.850 1.014 0.873 0.767 0.979
11 0.956 0.894 1.017 1.000 1.000 1.000
12 0.875 0.794 0.956 0.941 0.874 1.007
13 0.749 0.656 0.843 0.898 0.819 0.977
14 0.826 0.720 0.933 0.703 0.583 0.823
15 0.812 0.704 0.920 0.855 0.760 0.949
16 0.831 0.740 0.922 0.884 0.802 0.966
17 0.858 0.752 0.963 0.861 0.756 0.966
18 0.654 0.526 0.783 0.729 0.590 0.868
19 0.784 0.639 0.928 0.817 0.683 0.952
20
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Table 2 (continued)

RE

Year φ LB UB p LB UB

1 0.787 0.598 0.976 0.878 0.747 1.009
2 0.770 0.570 0.970 0.849 0.697 1.001
3 0.895 0.778 1.011 0.837 0.684 0.990
4 0.891 0.775 1.007 0.853 0.714 0.991
5 0.881 0.758 1.004 0.878 0.756 1.000
6 0.678 0.433 0.923 0.670 0.412 0.928
7 0.895 0.779 1.011 0.792 0.617 0.967
8 0.895 0.786 1.005 0.771 0.593 0.948
9 0.899 0.791 1.007 0.877 0.762 0.991

10 0.905 0.803 1.008 0.864 0.747 0.981
11 0.923 0.832 1.014 0.940 0.869 1.012
12 0.872 0.760 0.984 0.913 0.822 1.004
13 0.764 0.599 0.928 0.883 0.779 0.988
14 0.822 0.688 0.956 0.735 0.530 0.939
15 0.825 0.691 0.958 0.853 0.736 0.970
16 0.835 0.711 0.960 0.875 0.767 0.982
17 0.851 0.729 0.973 0.862 0.746 0.977
18 0.682 0.431 0.934 0.760 0.578 0.942
19 0.802 0.646 0.957 0.826 0.689 0.964
20 0.836 0.672 0.999 0.835 0.675 0.995

Bayesian
Year φ LB UB p LB UB
1 0.783 0.575 0.917 0.867 0.694 0.969
2 0.758 0.546 0.901 0.840 0.682 0.950
3 0.891 0.747 0.978 0.829 0.652 0.938
4 0.889 0.765 0.976 0.849 0.707 0.948
5 0.880 0.753 0.973 0.871 0.750 0.961
6 0.678 0.459 0.852 0.661 0.388 0.848
7 0.890 0.747 0.981 0.787 0.608 0.910
8 0.895 0.793 0.968 0.773 0.625 0.878
9 0.896 0.792 0.967 0.871 0.764 0.949

10 0.906 0.824 0.970 0.861 0.760 0.935
11 0.920 0.847 0.977 0.936 0.852 0.986
12 0.873 0.797 0.939 0.908 0.830 0.966
13 0.764 0.676 0.846 0.879 0.799 0.941
14 0.821 0.724 0.903 0.736 0.619 0.836
15 0.822 0.718 0.909 0.851 0.761 0.921
16 0.834 0.748 0.914 0.870 0.789 0.938
17 0.852 0.757 0.938 0.859 0.773 0.926
18 0.685 0.560 0.802 0.757 0.624 0.859
19 0.799 0.674 0.898 0.822 0.695 0.915
20 0.836 0.682 0.956 0.833 0.678 0.958

(Table 3). The uncertainty intervals for the MLE fixed effects and Bayesian models
are similar. The uncertainty intervals for the RE model are similar to the others for
the early years, however they are much wider for the latter years. The uncertainty
intervals on the probability of recapture for the MLE model are wider than the other
methods for the early years years. The estimates of the means and the standard
deviations of the random effects distributions differ between the Bayesian and RE
methods (Table 4).
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Table 3 Estimates of probabilities of survival and recapture, and their uncertainty intervals for the
albatross application. See Table 1 for definitions

MLE

Year φ LB UB p LB UB

1 0.673 0.358 0.988 0.676 0.305 1.047
2 0.877 0.631 1.123 0.871 0.632 1.111
3 0.618 0.347 0.889 0.553 0.221 0.885
4 0.995 0.975 1.015 0.632 0.537 0.726
5 1.000 1.000 1.000 0.803 0.735 0.871
6 0.969 0.927 1.012 0.700 0.624 0.777
7 0.900 0.869 0.930 0.829 0.792 0.865
8 0.927 0.902 0.953 0.831 0.799 0.863
9 0.876 0.848 0.904 0.791 0.759 0.824

10 0.903 0.878 0.927 0.801 0.772 0.831
11 0.941 0.914 0.969 0.777 0.746 0.808
12

RE
Year φ LB UB p LB UB
1 0.774 0.412 1.136 0.763 0.655 0.871
2 0.914 0.747 1.082 0.784 0.684 0.884
3 0.699 0.212 1.185 0.746 0.634 0.859
4 0.982 0.942 1.023 0.685 0.531 0.840
5 0.988 0.959 1.018 0.794 0.713 0.874
6 0.962 0.892 1.032 0.725 0.604 0.846
7 0.903 0.768 1.038 0.820 0.744 0.896
8 0.928 0.824 1.031 0.824 0.746 0.901
9 0.877 0.702 1.051 0.789 0.714 0.865
10 0.903 0.769 1.037 0.799 0.725 0.872
11 0.940 0.850 1.031 0.777 0.697 0.856
12 0.884 0.700 1.068 0.759 0.648 0.870

Bayesian
Year φ LB UB p LB UB
1 0.778 0.488 0.972 0.748 0.612 0.843
2 0.916 0.717 0.999 0.770 0.661 0.868
3 0.671 0.412 0.877 0.725 0.591 0.822
4 0.987 0.961 0.999 0.680 0.593 0.766
5 0.991 0.971 1.000 0.790 0.736 0.849
6 0.968 0.928 0.998 0.718 0.643 0.785
7 0.903 0.872 0.929 0.818 0.785 0.849
8 0.927 0.902 0.951 0.821 0.789 0.850
9 0.876 0.847 0.903 0.789 0.758 0.819
10 0.903 0.880 0.925 0.799 0.772 0.825
11 0.942 0.916 0.968 0.776 0.748 0.803
12 0.920 0.820 0.998 0.732 0.662 0.811

11 Discussion

11.1 Performance of the Estimators

In a previous evaluation of random effects models for mark-recapture and mark-
recovery data using moment estimators, Burnham and White (2002) found that
their estimator performed well under a wide range of situations. They investigated
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Table 4 Estimates of hyper distribution parameters and associated uncertainty intervals. See
Table 1 for definitions

Dipper Penguin Albatross

RE Bayesian RE Bayesian RE Bayesian

μφ Estimate 0.241 0.244 1.741 1.772 2.604 3.181
LB 0.016 −0.005 1.355 1.394 1.858 2.589
UB 0.465 0.494 2.127 2.210 3.351 4.277

σφ Estimate 0.120 0.133 0.643 0.718 1.123 1.582
LB −0.246 0.012 0.243 0.304 0.418 0.757
UB 0.486 0.520 1.043 1.288 1.829 4.259

μp Estimate 2.223 2.284 1.729 1.742 1.224 1.161
LB 1.584 1.636 1.349 1.358 1.000 0.968
UB 2.862 2.997 2.110 2.172 1.447 1.344

σp Estimate 0.001 0.079 0.623 0.661 0.284 0.316
LB −0.497 0.011 0.243 0.213 0.084 0.109
UB 0.499 0.430 1.004 1.166 0.484 0.567

different number of recapture occasions, releases, capture probability, mean
survival, and survival process variation. Their analysis differed from ours in that
they treated the probability of recapture as a constant rather than as a random effect.
They also did no make any distributional assumptions about the random effects
distribution. They found no or little bias in the estimates of the standard deviation
of the random effects distribution for survival, uncertainty interval coverage close to
the desired value, and symmetrical coverage of uncertainty intervals. However, the
performance did degrade when the true survival was constant over time. Burnham
and White (2002) concluded that the random effect shrinkage estimates of an
individual year survival are better than MLE unrestricted time-effects estimates.
Burnham and White (2002) also found that the uncertainty intervals for individual
year survival estimates using the random effects method were consistently narrower
than the unrestricted time-effects method. Initial simulation analysis of the methods
presented here produced poorer performance compared to that obtained by Burnham
and White (2002) and more analyses are needed to provide guidance on which
methods should be used for a particular application.

11.2 Integrated Analysis

Temporal variation or pattern among parameters has historically (prior to Lebreton
et al. 1992) been modeled as a two-step approach: (1) estimate the parameters and
(2) fit a model to the estimates. Link and Barker (2004) term this two-step approach
“doing statistics on statistics”. Alternatively, in the case of modeling pattern among
parameters, a deterministic relationship (ultrastructural model) has been used (Link
and Barker 2004). These approaches are not completely satisfactory and can intro-
duce bias in the case of the two step approach, or produce overstated precision or
biased hypothesis tests if ultrastuctured models are used (Link 1999; Barry et al.
2003; Maunder and Watters 2003b). When parameters of the model are related to
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covariates, the most appropriate method is to integrate the covariate into the analysis
and use random-effect models to represent the additional process error (Link 1999;
Barry et al. 2003; Maunder and Watters 2003b). This reduces bias caused by esti-
mation error, provides additional information to estimate the model parameters, and
improves the performance of hypothesis tests.

More generally, integrating all available data into the model can reduce bias and
ensure that uncertainty is propagated through the analysis (Fournier and Archibald
1982; Pascual and Kareiva 1996; Maunder 2003; Lebreton 2005). Maunder (2004)
details how traditional mark-recapture analysis can be restructured and integrated
with population dynamics models. Maunder (1998, 2001b) and Hampton and
Fournier (2001) give examples of integrating tag-recapture data into age-structured
population dynamics models in a fisheries stock assessment context. Besbeas et al.
(2002) and Besbeas and Freeman (2006) provide methods to approximate inte-
grated likelihood approaches in a mark-recapture context. Brooks et al. (2004)
provide a Bayesian example of integrating mark-recapture analysis with a popu-
lation dynamics model and an index of abundance.

Statistical inference involves knowing when and how to summarize and combine
data. Integrating all the data into a single analysis may result in a model that is too
computationally intensive to analyze or too complicated to understand. There has
been a large amount of research on traditional mark-recapture models and they are
well understood. There are well developed goodness of fit tests and other diagnos-
tics for these traditional mark-recapture models. These are much less developed
for integrated models. Brooks et al. (2004) suggest that goodness-of-fit can be
evaluated using Bayesian p-values (Gelman et al. 1996). In complicated cases it
might be wise to first apply traditional mark-recapture models before integrating the
data into a population dynamics model or to use approximate likelihood (Besbeas
et al. 2003).

11.3 When to Use Random Effects

Discussing random effects will ultimately lead to the issue of when should random
effects be used and for which parameters. Random effects offer an intermediate
between a single fixed effect that represents a constant value for the parameter
over time, for example, and a separate fixed effect parameter for each time period.
Therefore, random effects can be viewed as a generalization that encompasses the
two extremes as the standard deviation of the random effects distribution approaches
zero and infinity, respectively. For this reason, random effects eliminate the need to
test between the constant and time varying models. However, the issue of testing
between the constant model, the random effects model, or some other model
(consider the dipper example), and whether the model fits the data may arise. There
is also the issue of choosing the form of the random effects distribution.

Pawitan (2003) takes the practical view that random effects can be considered as
just a method to deal with large numbers of parameters. In this context, informa-
tion from data rich time periods is used to inform parameters from data poor time
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periods. Therefore, candidate parameters are those that are expected to vary over
time (or other characteristic), but for which there is a varying degree of information
in the data for the different time periods. Another practical method for determining
which parameters to treat as random effects in a population dynamics context is
to consider which parameters would be considered stochastic in future projections.
The random effects distribution represents the process variation and can be used to
draw from for future projections.

11.4 Comparison of Inference Frameworks

Bayesian and frequentist inference frameworks differ in the way they treat nuisance
parameters and because priors are required for all model parameters in the Bayesian
framework. If data are available to develop data-based priors, the frequentist (and
Bayesian) framework can either integrate these data into the analysis (Maunder
2003), or use prior likelihoods (Pawitan 2003) or approximate likelihoods (Besbeas
et al. 2002). In the case that no data are available to generate data based priors
for some model parameters, the Bayesian framework still requires priors for these
parameters. If no prior is explicitly used, many methods (e.g. Markov Chain Monte
Carlo) implicitly imply a uniform prior. Uniform priors are the basis of inverse
probability as used by Bayes and Laplace (Berger 2000), which dominated statis-
tics in the 19th Century. However, the inverse probability method depends on the
particular parameterization and uniform priors may not be the least informative
priors. This has led to the use of objective or reference priors (Berger et al. 1999).
These priors are objective in the context that they are used as a standard approach
or to reduce the influence of the prior and are not due to the subjective judg-
ment of the analyst. For example, Jeffrey’s priors are commonly used and they
are invariant to reparameterization (Gelman et al. 1995). Unfortunately, there are
concerns with the behavior of Jeffrey’s priors in high dimensions (Berger et al.
1999) and, with the wrong choice, they can be undesirably informative for the
quantities of interest. Jeffrey’s priors are also very difficult to develop for complex
nonlinear models (Millar 2002). Alternatively, the reference prior algorithm can
be used (Bernardo 1979; Berger and Bernardo 1992), which has been shown to
perform consistently better than the Jeffrey’s prior in multivariate examples, and
typically has good frequentist properties (Berger et al. 1999). Frequentist-matching
(i.e. use simulation testing to determine if the proportion of times that the true value
falls inside the credibility interval corresponds to the probability definition of that
interval) is a common method to test these objective Bayesian methods (Bayarri
and Berger 2004). Frequentist matching suggests the use of confidence distributions
(Schweder and Hjort 2002) as objective Bayes posteriors with implied objective
priors.

Link and Barker (2004) suggest that a simple solution to the problem of choosing
priors is to try several and see whether and how the choice influences posterior infer-
ence. Miller (2004b) provides a framework for prior sensitivity analysis in a hier-
archical Bayesian framework. Link and Barker (2004) note that the Bernstein-Von
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Mises Theorem (also known as the Bayesian Central Limit Theorem) implies that,
subject to minor constraints, the influence of the prior diminishes as the sample size
increases. They found that for the mark-recapture application they presented, the
choice of prior did not have a large influence on the results, and that this is generally
the case provided there is adequate data. In general, when the log likelihood is near
quadratic and the prior is multivariate normal or vague, the frequentist and Bayesian
approaches gives similar results (Schweder 1998).

Our results showed that the frequentist and Bayesian frameworks often give
similar results, but not in all cases or for all parameters. Vounatsou and Smith (1995)
found that MLE and Bayesian estimates were similar for mark-recovery data for 9
years of mallard data, but standard errors were smaller for the Bayesian analysis.
For simulated data they found that MLE and Bayesian approaches gave very similar
results for large sample sizes, but for smaller sample sizes the MLE approaches
resulted in unrealistically small standard errors for reporting rates. Brooks et al.
(2000) found that the sensitivity to priors depended on the complexity of the model.
Models with more parameters (time varying survival) were more sensitive to the
choice of priors. They argue that parameters that are not supported by the data will
be most sensitive to priors and that mark-recovery models will be more prone to
prior sensitivity compared to mark-recapture models. Link and Barker (2005) found
that the variance and covariance parameters of the random effects distributions were
sensitive to priors. Brooks et al. (2000) use sensitivity to priors, in conjunction with
parsimony and posterior model probability, as a criterion for judging the appropriate
complexity of their model.

Sensitivity to priors can be linked to the comparison of results from Bayesian
and frequentist analyses. If confidence distributions are viewed as objective Bayes
posteriors with implied objective priors, then comparing results between Bayesian
and frequentist analysis is one way of looking at sensitivity to priors. For example, in
all but the albatross example, the results from the Bayesian and frequentist analyses
were similar indicating lack of sensitivity to priors.

A more comprehensive simulation analysis is needed to compare and contrast
the different estimation methods under different situations. The simulation design
of Burnham and White (2002) could be used as a starting point.

11.5 Computational Time of Methods

When deciding on a statistical framework or method to use, ease of use and compu-
tational requirements are important factors, particularly if the different methods
perform similarly. Computational demands are particularly important when using
simulation analysis to test the performance of an estimator. For example, Burnham
and White (2002) took over 4 months of CPU time to do the 64,000 simulations
used to evaluate a random effects estimator for a mark-recapture model. This
is nearly 3 min per model run. They also found that Bayesian implementation
using MCMC took 100 times as much CPU time. In contrast, the ADMB Laplace
approximations used in a similar simulation study took less than 3 s. Royle and
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Link (2002) promote the Bayesian framework because of ease of application to
complex models. Fixed effect MLE methods are generally computationally effi-
cient compared to the other methods. The Laplace approximation method using
automatic differentiation (Skaug and Fournier 2006), as implemented in AD Model
builder, is efficient, but the methods high memory requirements causes limitations
for complex models. Importance sampling using the Laplace approximation as the
importance function is more computational intensive. MCMC implementation of
non-linear Bayesian hierarchical models often requires a large number of draws and
is therefore computationally intensive. Brooks et al. (2004) illustrate how WinBUGS
can be used to implement an integrated mark-recapture and population dynamics
model, but explain how inefficient it is compared to custom MCMC code written
in Fortran. The profile likelihood method to calculate asymmetrical confidence
intervals requires separate profile likelihoods to be carried out for each quantity of
interest. In contrast, MCMC and bootstrap only need to be done once to developed
uncertainty measures for all quantities of interest. Therefore, when there are many
quantities of interest, MCMC and bootstrap methods may be less computationally
demanding. The profile likelihood method has not yet been implemented in the
random effects version of ADMB.
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Appendix: AD Model Builder Code for the Mark-Recapture
Model, with Application to the European Dipper Data

ADMB is written in C++ and most of the code used to develop the model is C++
or overloaded C++ functions and operators (for more information on ADMB see
admb-project.org). There are also several key words used in ADMBs template
system, which was created to simplify model development. The template is
comprised of several sections, but only three are necessary for model development:
the DATA_SECTION, PARAMETER_ SECTION, and PROCEDURE_SECTION.
Most applications also incorporate a REPORT_SECTION to produce custom
output. The DATA_SECTION contains definitions of data to use in the model
and variables that are used for intermediate calculations that don’t require deriva-
tive calculations (e.g. used for data manipulation). The PARAMETER_SECTION
contains definitions of the parameters of the model to be estimated and variables that
are used for intermediate calculations that do require derivative calculations (i.e. are
functions of the model parameters). The PROCEDURE_SECTION is where the code
is written to develop the model (i.e. the calculation of the objective function from the
data and the model parameters). The code is written in the *.tpl file (* representing
the root of the model name). There are two other files used for developing the model.
The first is *.dat file, which is associated with the DATA_SECTION, and contains
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all the data that was defined in the DATA_SECTION. The second is the *.pin file,
which is associated with the PARAMETER_SECTION, and provides initial values
for all the estimable model parameters defined in the PARAMETER_SECTION.

The code in the DATA_SECTION reads in (the init_ prefix defines a variable
that has data read in from the *.dat file) the number of years of data (NRCperiods),
a vector of releases for each year (Releases), and the m-array matrix (data). An
intermediate variable (temp) is defined and filled with an integer sequence from 1
to the number of years of data so that the variable data can be defined as a ragged
array to fit the m-array data format.

The PARAMETER_SECTION defines two vectors of estimated parameters
(estS and p), which are bounded between 0 and 1 [the dimensions always come
first, followed by the bounds if it is a bounded parameter. The phase always comes
last and is optional]. Survival does not have a parameter for the last year as it is
subsumed in the parameter for the probability of recapture for the last year for
programming convenience. Survival is estimated in the first phase and probability
of recapture in the second phase. A intermediate variable (S) is defined to hold all
values of survival and two intermediate variables (Scum and Pcum) are defined
for the calculation of the multinomial likelihood. Finally, a required variable (f) is
defined to hold the objective function value.

The PROCEDURE_SECTION contains all the code to implement the model
equations. This section calculates the objective function as a function of the data
and the model parameters. The code is written in standard C++ with some excep-
tions. The ADMB function elem_prod does an element-wise multiplication of
two arrays (in this case vectors), sum sums the components of an array. The double
slash “//” is used to indicate a comment.

The REPORT_SECTION allows custom output of the model results. The object
report is a file with the model’s name as the root and “rep” as the extension.

DATA_SECTION
init_int NRCperiods
init_vector Releases(1,NRCperiods)
ivector temp(1,NRCperiods)
!!temp.fill_seqadd(1,1);
init_matrix data(1,NRCperiods,temp,NRCperiods)

PARAMETER_SECTION
init_bounded_vector estS(1,NRCperiods-1,0,1,1)
init_bounded_vector p(1,NRCperiods,0,1,2)

vector S(1,NRCperiods)
matrix Scum(1,NRCperiods,1,NRCperiods)
matrix Pcum(1,NRCperiods,1,NRCperiods)

objective_function_value f

PROCEDURE_SECTION
S(1,NRCperiods-1)=estS;
S(NRCperiods)=1;//so p is combined S and p for last

year
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for (int i=1;i<=NRCperiods;i++)
{

Scum(i,i)=S(i);
Pcum(i,i)=1;
for (int j=i+1;j<=NRCperiods;j++)
{

Scum(i,j)=Scum(i,j-1)*S(j);
Pcum(i,j)=Pcum(i,j-1)*(1.0-p(j-1));

}
Pcum(i)=elem_prod(Pcum(i),p);

for (j=i;j<=NRCperiods;j++) f+=-

data(i,j)*log(Scum(i,j)*Pcum(i,j));

f+=-(Releases(i)-sum(data(i)))*log(1-
sum(elem_prod(Scum(i),Pcum(i))));
}

REPORT_SECTION
report <<"S"<<S<<endl;
report<<"p"<<p<<endl;

The *.dat file includes all the data to be read in the DATA_SECTION. The #
symbol is used to identify a comment.

#init_int NRCperiods
6
#init_vector Releases(1,NRCperiods)
22 60 78 80 88 98
#init_matrix data(1,NRCperiods,temp,NRCperiods)
11 2 0 0 0 0

22 1 0 0 0
34 2 0 0

45 1 2
51 0

52

The *.pin file includes initial values for all estimable parameters defined in the
PARAMETER_SECTION.

#init_bounded_vector estS(1,NRCperiods-1,0,1,1)
0.7 0.7 0.7 0.7 0.7
#init_bounded_vector p(1,NRCperiods,0,1,2)
0.7 0.7 0.7 0.7 0.7 0.7

The model is compiled using the command

admb name
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where “name” is the root used for the files. This creates an executable file
“name.exe”.

The model is run using the command
name

Random Effects

Several modifications of the code are required to convert the MLE with all fixed
effects into a MLE model with random effects for survival and probability of recap-
ture. To avoid some computational issues it is often better to use the following
formulation

pt = exp
[
μp + σpεp

]
1 + exp

[
μp + σpεp

] where εp ∼ N (0, 1)

and

φt = exp
[
μφ + σφεφ

]
1 + exp

[
μφ + σφεφ

] where εφ ∼ N (0, 1)

First, the (hyper) parameters of the random effects distributions are defined in
the PARAMETER SECTION. The standard deviations are defined on the log scale
to ensure they are positive.

init_number meanS(1)
init_number ln_sdS(2)
init_number meanp(1)
init_number ln_sdp(2)

Next, the realizations of the random effects are defined by converting the time
specific parameters into random effects parameters. Random effect parameters have
to be defined after all fixed effect parameters. Due to the use of random effects, the
survival and probability of recapture can now be estimated in the last year.

random_effects_vector Sdev(1,NRCperiods,2)
random_effects_vector pdev(1,NRCperiods,2)

The *.pin file is updated with associated values for the new and updated
parameters.

Four intermediate variables are defined in the PARAMETER SECTION to hold
values of the standard deviations of the random effects distributions, the survival,
and the probability of recapture.
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number sdS
number sdp
vector S(1,NRCperiods)
vector p(1,NRCperiods)

At the start of the PROCEDURE SECTION, the standard deviations of the
random effects distributions are calculated from the logarithmic parameters that are
estimated.

sdS=mfexp(ln_sdS);
sdp=mfexp(ln_sdp);

The survival and probability of recapture are calculated from the random effects
parameters using a logistic function in the PROCEDURE SECTION. The ADMB
function elem div does an element-wise division of two arrays (in this case
vectors).

S=elem_div(mfexp(meanS+Sdev*sdS),(1+mfexp(meanS+Sdev*sdS)));
p=elem_div(mfexp(meanp+pdev*sdp),(1+mfexp(meanp+pdev*sdp)));

The random effects distribution penalty is added to the objective function at the
end of the PROCEDURE_SECTION. The ADMB function norm2, which calcu-
lates the sum of squares of an array, is used.

f+=0.5*norm2(Sdev)+0.5*norm2(pdev);

Full program

DATA_SECTION
init_int NRCperiods
init_vector Releases(1,NRCperiods)
ivector temp(1,NRCperiods)
!!temp.fill_seqadd(1,1);
init_matrix data(1,NRCperiods,temp,NRCperiods)

PARAMETER_SECTION
init_number meanS(1)
init_number ln_sdS(2)
init_number meanp(1)
init_number ln_sdp(2)

random_effects_vector Sdev(1,NRCperiods,2)
random_effects_vector pdev(1,NRCperiods,2)

number sdS
number sdp
vector S(1,NRCperiods)
vector p(1,NRCperiods)

matrix Scum(1,NRCperiods,1,NRCperiods)
matrix Pcum(1,NRCperiods,1,NRCperiods)

objective_function_value f
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PROCEDURE_SECTION
sdS=mfexp(ln_sdS);
sdp=mfexp(ln_sdp);
S=elem_div(mfexp(meanS+Sdev*sdS),
(1+mfexp(meanS+Sdev*sdS)));
p=elem_div(mfexp(meanp+pdev*sdp),
(1+mfexp(meanp+pdev*sdp)));
for (int i=1;i<=NRCperiods;i++)
{

Scum(i,i)=S(i);
Pcum(i,i)=1;
for (int j=i+1;j<=NRCperiods;j++)
{

Scum(i,j)=Scum(i,j-1)*S(j);
Pcum(i,j)=Pcum(i,j-1)*(1.0-p(j-1));

}
Pcum(i)=elem_prod(Pcum(i),p);

for (j=i;j<=NRCperiods;j++) f+=-
data(i,j)*log(Scum(i,j)*Pcum(i,j));

f+=-(Releases(i)-sum(data(i)))*log(1-
sum(elem_prod(Scum(i),Pcum(i))));}

}
f+=0.5*norm2(Sdev)+0.5*norm2(pdev);

REPORT_SECTION
report<<‘‘S "<<S<<endl;
report<<‘‘p "<<p<<endl;

*.pin file

#init_number meanS(1)
1
#init_number ln_sdS(2)
0
#init_number meanp(1)
1
#init_number ln_sdp(2)
0
#init_vector Sdev(1,NRCperiods,1)
0 0 0 0 0 0 0
#init_vector pdev(1,NRCperiods,1)
0 0 0 0 0 0 0

The model is compiled using the command line option –re

admb -re name
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For the penguins and albatross applications, an additional command line option
is needed when the model is run to ensure there is enough memory -mno 2000

name -mno 2000

Standard Deviations

To determine the standard deviations of the annual survival and annual probabilities
of recapture, which are now derived parameters, the variables for survival and prob-
ability of recapture are redefined in the PRAMETER_SECTION using the keyword
sdreport_ as a prefix to indicate that standard deviations are calculated for these
parameters.

sdreport_vector S(1,NRCperiods)
sdreport_vector p(1,NRCperiods)

Bayesian

The only change required to convert the random effects model into a Bayesian
model that uses MCMC integration is to add some code at the end of the
PROCEDURE_SECTION that outputs the quantities of interest.

if(mceval_phase())
{
ofstream outsamples("samples.out",ios::app);
outsamples.precision(10);
outsamples<<meanS<<" "<<sdS<<" "<<meanp<<"

"<<sdp<<" "<<S<<" "<<p<<endl;
outsamples.close();
}
We also added bounds on the standard deviations of the random effects to avoid

the MCMC procedure getting stuck at values close to zero. This is done by adding
the additional prefix bounded to the parameter definition and then adding bounds
in brackets after the parameter name.

init_bounded_number ln_sdS(-4.6,2.3,4)
init_bounded_number ln_sdp(-4.6,2.3,5)

The model is first run using the following command line options to define the
number of samples to take and how often to save the sample to the file.

name -mcmc2 1000000 --mcsave 1000

Then the model is run with the following command line option to evaluate the
model for each of the sets of parameter values saved in the previous command and
output the posterior values of the desired quantities

name -mceval
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Profile Likelihood

To automatically calculate a profile likelihood, a variable needs to be defined in the
PARAMETER_SECTION using the prefix likeprof_

likeprof_number Sprof1

and set equal to the parameter of interest in the PROCEDURE_SECTION

Sprof1=S(1);

Automatic profile likelihood is not implemented in the random effects version of
ADMB at the time of writing of this paper. To run the model with automatic profile
likelihood the –lprof command line option is used.

name -lprof

Yellow-Eyed Penguin *.dat File

# init_int NRCperiods

20

#init_vector Releases(1,NRCperiods)

12 12 10 14 17 21 9 30 25 41 45 79 97 80 62 80 74 74 46 45

#init_matrix data(1,NRCperiods,temp,NRCperiods)

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 1 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 0 1 0 0 0 0 0 0 0 0 0

21 5 1 0 0 0 0 0 0 0 0 0 0

22 0 1 0 0 0 0 0 0 0 0 0

35 3 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0

65 2 1 0 0 0 0 0 0
66 2 1 0 2 0 0 0
48 13 1 0 0 0 0

44 4 1 0 0 0
61 3 0 1 0
55 4 1 0
36 7 2

30 4
31
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Albatross *.dat File

#init_int NRCperiods
12
#init_vector Releases(1,NRCperiods)
11 12 13 101 101 136 469 606 707 798 938 1106
#init_matrix data(1,NRCperiods,temp,NRCperiods)
5 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0
64 30 5 1 0 0 0 0 0

81 11 8 0 1 0 0 0
94 26 2 3 1 0 0
350 49 13 2 1 0
477 52 15 2 2

496 84 21 3
583 95 24
691 127

741
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On Adjusting for Missed Visits in the Indexing
of Abundance from “Constant Effort” Ringing

Vanessa M. Cave, Stephen N. Freeman, Stephen P. Brooks, Ruth King,
and Dawn E. Balmer

Abstract Producing accurate, reliable indices of abundance, enabling the status of
breeding bird populations to be monitored is of interest to government, conservation
groups and other bodies. Indices for Sedge Warblers Acrocephalus schoenobaenus
from 1983 to 2002 were produced using catch data from the British Trust for
Ornithology’s (BTO) Constant Effort Scheme (CES). This is a ringing programme
based on standardised mist-netting across up to 12 annual visits to each of a large
number of sites. A feature of these data is that some yearly site counts are “censored”
due to visits missed within certain years. Peach et al. (1998) developed an intuitive,
non-parametric method for correcting for missed visits, prior to model-fitting in
the form of a Poisson regression model with an additive offset. In this paper a
novel Bayesian approach is introduced, which produces annual indices of abundance
whose uncertainty also incorporates a component due to the correction for missed
visits. We describe the method in detail, applied to the Sedge Warbler data and to
simulated data, and compare the results with those from the current method of Peach
et al. (1998).

1 Introduction

Standardisation of effort (in terms of length and position of nets, and dura-
tion of their operation) brings a number of advantages to the subsequent anal-
ysis of ringing data. Efficient estimation of survival via mark-recapture models
(Peach et al. 1990, 1995; Peach 1993; Bonner et al. this volume) arises from
the capacity to set probabilities of recapture constant over time, for example. As
individual birds caught repeatedly can be identified by their ring number, total
numbers of birds caught annually can also be produced, and used to index both
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abundance (Peach et al. 1998) and productivity (Robinson et al. 2007). The British
Trust for Ornithology’s (BTO) Constant Effort Scheme (CES) is a long-running,
large scale ringing programme based upon such consistency of effort; the breeding
season is divided into 12 roughly equal periods, within each of which birds are
caught and ringed. The precise timing of ringing, and the position of nets, varies
between sites according to local conditions but, importantly, is invariant and repli-
cated at every visit to any particular site. Any variability between years in the
numbers of birds caught, therefore, is attributable only to annual changes in the
population level and to stochastic variation, and not to varying intensity of capture.
If all sites in such a scheme are visited over a series of years in accordance with
this protocol, then the total numbers of birds caught provide an index of the species’
abundance.

In practice, there is considerable deviation from this ideal as sites enter or leave
the scheme, thus any two sites might neither start nor cease operation in the same
year. This turnover is readily accommodated by fitting a simple linear model to the
incomplete series of observations (ter Braak et al. 1994; Peach et al. 1998). The
subject of the present paper is the absence of data from isolated individual visits
within a site’s period of operation, some years receiving fewer than the full twelve
visits due to weather, or ringers’ personal circumstances. This, therefore, violates
the assumption of constant effort between years, yet to omit that year’s records
wastes valuable data. Peach et al. (1998) proposed a non-parametric approach to
address the problem, imputing values for censored counts prior to model fitting.
Underlying this approach is the assumption that while there is variation throughout
the season in the numbers of birds caught, this variation is consistent between years,
otherwise bias is likely to be introduced. Further the approach is conservative in its
overall effect, mitigating against extremely high or low imputed values, and ignores
uncertainty arising from the correction. In applying this method to seven CES data
sets Miles et al. (2007) showed that the estimated ratios of juvenile to adult birds (a
measure of productivity) were similar to those based only upon sites without missed
visits and hence are unbiased by any such correction. Otherwise, this key step in
the process has received little attention, nor has any alternative been proposed. Such
an alternative must be unaffected by the sampling imbalance invariably observed –
not only the numbers of birds caught but also the likelihood of a visit being made
at all vary through the season. In this paper, we consider a Bayesian correction
method in which for the first time imputation is simultaneous with model fitting.
The model adopts a Poisson distribution for the annual numbers of birds ringed at
each site, and a truncated form of this in appropriate years for any site lacking one or
more visits. No assumptions about the pattern of inter-annual catches are made. The
Bayesian approach also more accurately reflects the uncertainty involved in the esti-
mation of the year and site effects by incorporating the additional uncertainty arising
from missed visits within the model fitting algorithm, rather than imputing data for
censored counts prior to fitting. In addition, the Bayesian approach will provide an
estimate of the uncertainty in the corrected counts if these are of interest in their own
right.
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2 Data and a Classical Model

2.1 The Constant Effort Scheme

The scheme began in 1983, after a brief pilot period, with around 40 sites and
quickly proved popular with volunteer ringers. Over 100 sites now provide data to
the scheme annually. Many sources (Peach et al. 1998; Miles et al. 2007; Robinson
et al. 2007) describe the history and the field procedure in greater detail, and we
restrict ourselves to a brief account here. The breeding season (May–August) is
divided into twelve consecutive periods of 10–11 days by the BTO and ringing is
carried out at each site on one day selected (by the ringers) within each, with a
minimum of 3 days between visits to a site.

Sites are selectedby the ringers themselvesandcover theentireUK, though theyare
concentrated in the South-Eastern quadrant where the human population is highest.
Sites are largely woodland, scrub or reedbed, habitats at which succession can be
controlled (keeping these “Constant” too) by appropriate management and which are
amenable to ringing appreciable numbers of birds, largely common passerines. These
birds include both young of the year (juveniles, a few weeks old at most) and adult
birds, and these can be separated in the hand on the basis of plumage. We concentrate
here on the adult birds, numbers of which are assumed to index changes in the breeding
population. In isolation, a similar index based on juveniles is less often used, as fluc-
tuations reflect and confound changes both in numbers breeding and in the seasonal
productivity per pair, making useful interpretation difficult.

A little more than 20 species are now caught at CES sites in sufficient number for
indices to be calculated (Grantham and Robinson 2007). Catches of Sedge Warblers
Acrocephalus schoenobaenus form the basis of the analyses in this paper. This
species is one of the most often encountered, as although its wetland habitats are
highly localised in the UK, they are often favoured by ringers. Further, at sites
especially suitable very large numbers of Sedge Warblers can be caught, making
this a survey of particular value in tracking the fortunes of a species known to be
susceptible to environmental change (Peach et al. 1991). Data from 1983 to 2002
provide 1756 annual site counts from a total of 249 sites recording Sedge Warblers at
least once. In the following subsection we describe the Peach et al. (1998) method,
currently employed by the BTO, for producing annual indices of abundance for
Sedge Warblers and other CES monitored species, before we present an alternative
Bayesian approach.

2.2 The Model of Peach et al. (1998)

We define the following quantities:

nit denotes the number of different adult birds caught at site i in year t when
all 12 visits are made. If less than 12 visits are made nit is unknown but
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represents the total number of individuals that would have been caught had
all 12 visits been made.

Ni denotes the total number of different adults caught at site i for all years of
complete coverage (i.e. in which all 12 visits were made).

N ′
i t denotes the number of birds that belong to Ni that are caught at visits corre-

sponding to those made in year t. Thus, for example, if visits 2 and 5 to site
i in year t were missed then N ′

i t is equal to Ni minus the number of those
birds caught only at visits 2 and/or 5.

lit denotes the observed number of different birds caught at site i in year t.
When one or more visits are missed this is a “lower bound” for nit. In years
of complete coverage lit = nit.

In a year of missed visits, the corrected count Eit proposed by Peach et al. (1998)
for a site is then:

Eit = li t
Ni

N ′
i t

which, it is readily verified, reduces to nit in a year of complete coverage. The
number of birds caught varies between visits due to migratory behaviour, thus the
ratio of Ni to N ′

i t accounts not only for the number of missed visits but also their
precise timing. The model assumes that the lit have a Poisson distribution with mean

it where:

ln(λi t ) = β0 + Si + Yt + ln

(
li t

li t
(
Ni
/

N ′
i t
)) (1)

Without missing visits, the expected count at site i, in year t, is simply derived
from an intercept �0, the ith site effect (Si) and tth year effect (Yt), additive on the
logarithmic scale. Due to the parameter redundancy, the year effect for the first year,
and the site effect at an arbitrary site, are constrained to zero. The rightmost term
in (1) is an offset, the log-transformed ratio of the observed total count (albeit not
necessarily from 12 visits) and the corrected value, used to adjust for the missed
visits where appropriate. The model is then readily fitted by maximum likelihood in
any Generalized Linear Modelling package.

Sites without any years of complete coverage cannot be accommodated quite this
way, as Ni = N ′

i t = 0. An analogous correction is thus employed based upon catches
at all sites, rather than catches only from the site in question (Peach et al. 1998) – a
“global” rather than a “local” correction factor. Counts at a site are however omitted
from the analysis altogether if <8 visits were made in a given year.

3 Parameter Estimation and Imputing Censored Counts:
A Bayesian Alternative

As the approach above imputes censored counts, and treats them as known before
parameters are estimated, no account is taken of their inherent uncertainty. We
now consider a new approach, in which the imputation and the model fitting are



On Adjusting for Missed Visits 953

combined in a single process, and imprecision is determined more accurately. The
Poisson distribution is retained, but a truncated form with lower bound lit is adopted
for those cases with fewer than twelve visits. A full, uncensored count for these is
therefore estimated but this is not required prior to model fitting, as in the previous
section. The Metropolis-Hastings algorithm (Gelman et al. 2004) is employed (i) to
update the model parameters {�0, S, Y} and (ii) to update censored counts, in two
steps as described in the appendix.

3.1 Implementation

Code for implementing the algorithm described in the appendix was written in C.
A total of 100,000 samples from the posterior distributions of the parameters and
imputed censored counts were drawn after an initial burn-in of 100,000 updates was
discarded, so the method is computationally demanding. Posterior medians, which
were essentially identical to the posterior means, were extracted to estimate the
model parameters and the imputed counts. The algorithm was run several times and
essentially identical results were obtained from each.

4 Results

4.1 Sedge Warbler Data

Abundance indices were calculated using both the Peach et al. (1998) correction and
Bayesian method conditioning on the lower bounds for censored data, applied to the
annual site-totals from 216 sites over 20 years, 1983–2002. 96 counts from a further
33 sites are omitted as no complete count, based on a full set of visits, has been
made in any single year. The Bayesian truncated Poisson model cannot be applied
to such data as at least one completed count is required to identify the site effect. Of
the counts used 452 (26%) were lacking one or more of the twelve visits.

Estimates of the year effects Yt from both methods, MLE from the Classical
approach of Peach et al. (1998) and posterior medians from the Bayesian approach,
are compared in Fig. 1. The trends are similar, though it is notable that the Bayesian
estimates are larger (relative to the base year, constrained to zero in each case),
especially in later years. Also shown in Fig. 1 are estimates derived only from those
counts based on a full set of twelve visits, for which no correction is required. The
lack of censored values in such circumstances means that these latter estimates are
identical under the two methods. They are seen to bear a greater resemblance to
those in which the Peach et al. (1998) correction is used with censored data than
they do to those arising from the truncated Poisson.

In years of missed visits predictions of the unknown counts nit via a priori correc-
tion (Peach et al. 1998), and those arising from the Bayesian conditional model
are highly correlated with each other (� = 0.916). Both are also highly correlated
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Fig. 1 Estimated year effects Yt using the Sedge Warbler data and the Bayesian approach (posterior
medians) which conditions on the lower bounds of the censored counts (bold line), and the standard
Classical approach (MLE) which corrects censored counts prior to model fitting using the method
of Peach et al. (1998) (thin line). The analysis of the reduced subset of the data with censored
counts deleted is shown as a line with filled circles

with their observed lower bounds lit. The Bayesian method however inflates the
censored counts by adding an average of 5.49 to these lower bounds, rather than only
1.23 under a priori correction. This explains the Bayesian estimation of abundance
in 1983, relative to subsequent years, being reduced in comparison to the Peach
et al. (1998) method (Fig. 1): only two (5.3%) of the counts in 1983 are censored
(Table 1), and neither method of inflating censored values will have much effect.
Estimates are similar in 1984 too, when there are also few censored counts (7.7% of
the annual total). In subsequent years, with more frequent censored values, more of
the annual totals (and hence the year effects) will become larger relative to those in
the base year under the Bayesian method than they do following Peach et al. (1998).

Similar results were obtained in an identical analysis of the numbers of juvenile
birds caught (Cave 2006).

Table 1 Number of counts per year, and percentages of these censored (i.e. based upon <12 visits)
in adult Sedge Warbler CES data

Year 1983 1984 1985 1986 1987 1988 1989
counts taken 38 39 41 60 71 76 82
% censored 5.3% 7.7% 19.5% 35.0% 23.9% 28.9% 19.5%

Year 1990 1991 1992 1993 1994 1995 1996
counts taken 90 93 97 104 109 108 112
% censored 21.1% 25.8% 25.8% 24.8% 26.6% 25.9% 30.1%

Year 1997 1998 1999 2000 2001 2002 –
counts taken 118 118 122 96 68 78 –
% censored 34.7% 30.5% 28.5% 27.1% 29.4% 25.6% –
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4.2 A Simulation Study

We now describe two analyses of simulated data. In the first we generate artificial
data from a Poisson distribution with known parameter values, and truncate certain
of these at random. We consider both a realistic level of truncation (based on that
in the Sedge Warbler data), and one considerably more extreme than is likely to be
seen in practice. Trends are then estimated via the Bayesian method to investigate
its performance (as these data are not determined at the level of the individual
visits, the a priori correction is not possible). A second set of simulations then
introduces an element of lack of fit by selecting series of observations randomly
from a set of the Sedge Warbler data. This allows a test of the Bayesian method in
circumstances where the Poisson assumption is violated to a degree; furthermore,
as complete records from all visits to a site in a given year are randomly selected,
or not, the method of Peach et al. (1998) can also be used, and the two methods
compared.

To obtain the Poisson data we first fitted the conventional model (1), with counts
for incomplete years corrected a priori as above, to Sedge Warbler data from 1986
to 2005. The resulting parameter estimates were then used to simulate data:

nit ∼ Poisson(λi t ), λi t = exp(β̂0 + Ŷt + Ŝi )

A fully balanced data set (20 years of data for each of 178 sites) was thus
produced, and a set of estimates for year effects Y, unaffected by censoring, was
obtained. Each count nit was then either selected for censoring (with probability
0.35) or retained at the existing value. Selected counts were censored by subtracting
a censoring amount from 0,1,. . ., nit with probability p(i) = 1/(2i+1) for i ∈ [0, nit – 1]
and p(nit) = p(nit – 1). This produces data sets in which the proportion and magni-
tude of the censored observations roughly approximate that in the Sedge Warbler
data (Table 2). The Bayesian approach was then used to produce further estimates
of Y (posterior medians) using the data set with these censored observations, for
comparison with those from the full, uncensored data.

Close agreement is seen between the trends from uncensored and censored data
(Fig. 2). Posterior medians of the imputed counts themselves are also in close agree-
ment with their true (pre-censoring) values, though they are inflated, on average, by

Table 2 Predicted degree of censoring in observed adult Sedge Warbler data from 1986 to 2005
and in the simulated data under the two censoring mechanisms. The observed degree of censoring
is that obtained by the Peach et al. (1998) corrected count minus the observed count

Degree 0 1 2 3 4 5 6 7 8 9+
Observed .51 .23 .12 .05 .03 .02 .02 .01 .01 .01
Simulated .57 .24 .1 .05 .02 .01 .002 .002 .004 .0008
Simulated
(more severe)

.27 .12 .08 .05 .06 .04 .04 .03 .02 .27
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Fig. 2 Posterior medians estimating the year effects from simulated data; from the uncensored
(line with filled circles) and censored (thin line under the first censoring mechanism, and bold line
under the more severe censoring) data. Censored data are modelled using a Bayesian approach
which conditions on the lower bounds of the censored counts

about 1.8. This happens because posterior distributions tend to be skewed (Fig. 3),
meaning that medians are likely to be higher.

Given the relatively limited effect of the censoring mechanism above, we
repeated these analyses choosing the same censoring amounts with probability
p(i) = 1/(nit + 1) for i ∈ [0, nit] – all possible censorings chosen with equal
probability, resulting in more counts censored more severely (Table 2). The
censored counts arising were much less correlated (� = 0.807) with the true
observations than were the set of the previous simulations (� = 0.997). In spite
of this, the estimated trend is still little altered (Fig. 2). The posterior medians
of the imputed counts again agree well with their true counterparts, with some
over-inflation due to the skewed posteriors.

In the second scenario, to simulate data not predetermined to arise from a Poisson
distribution, we first removed from the Sedge Warbler data all censored yearly-site
counts and all data outside the period 1989–2002 (in each year of which at least 32
sites contributed information). In the remainder, 60 sites had at least four years of
observations, a total of 12,844 captures of 7504 birds in 14 years, and 429 annual site
totals. Model (1) was then applied to data from these 60 sites to generate estimated
year effects for comparison. Censoring was then applied by deleting a randomly-
selected 7% of the visits made, this proportion matching that in the genuine data. In
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Fig. 3 Four, arbitrarily chosen, posterior distributions for counts estimated under the Bayesian
approach. Data were initially simulated from a Poisson distribution and censored to a degree
comparable to the Sedge Warbler data

truth, visits are not missed independently (there is, for example, a tendency towards
more missed visits later in the season) but the procedure still gives us a useful
opportunity to compare methods for accommodating censoring. As these data are
produced at the level of individual visits, the method of Peach et al. (1998) can also
be used, and compared with the results of the Bayesian method conditioning on the
lower bounds. Adjustment in the former required the “global”, rather than “local”,
correction in 23% of the cases.

Figure 4 shows excellent agreement between the annual trend under the Peach
et al. (1998) method and that obtained using the data prior to censoring. The trend
in the posterior medians from the Bayesian method also matches well except for
the years 2000–2001 in which a marked discrepancy is revealed. Confidence limits
under the Peach et al. (1998) method are, as expected, narrower than Bayesian
credibility intervals as uncertainty in the correction process is ignored (Fig. 5). The
correlation between the Bayesian posterior medians and the true counts is high
(� = 0.935), though that of the Peach et al. (1998) correction is somewhat
higher (� = 0.993). The Bayesian estimates here are inflated, on average, by
about 5.5.
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5 Discussion and Areas of Future Work

Accurately quantifying the uncertainty in parameter estimates is particularly
important when the findings will be used for identifying and monitoring populations
of species at risk. Bayesian techniques have recently proved useful in modelling
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annual territory counts with this aim in mind, permitting for example the calculation
of (posterior) probabilities that a species has declined by at least a specified amount
(Mazzetta et al. 2007; King et al. 2008). For many species data from constant
effort ringing provide an alternative source of information. Modelling techniques
however need modification to match the different properties of the data. Rather
than being counts of breeding pairs at a site, CES counts are merely numbers of
birds caught in mist-nets, assumed proportional to abundance if the ringing effort is
unchanged. Failure in this latter, crucial assumption requires explicit consideration
in the analysis.

Our first conclusion is that trends from the non-parametric method of Peach et al.
(1998) are shown to be robust, even to a degree of model failure. The simulation
studies presented here indicate that when the underlying Poisson model is correct,
the Bayesian method for incorporating censored counts also works well, even in
the presence of extreme censoring. Population trends are unbiased and the approach
correctly reports the degree of precision. However this model-based approach may
perform worse if the underlying model is incorrectly specified. For a specific data
set, namely CES yearly-site counts for adult Sedge Warblers, in which the particu-
larly simple Poisson assumption appears to be violated in the later years especially,
the Peach et al. (1998) correction method was shown to perform better. The reasons
for the greater differences in the later years will merit further investigation. These
findings do not necessarily imply that the non-parametric method is better gener-
ally. Such an approach underestimates the standard errors of the year effects. By
ignoring the uncertainty arising from the correction a priori of censored counts these
parameters are reported with more precision than they merit. By falsely reporting
the precision of these abundance indices inference becomes unreliable, and declines
might be inferred where a population is in fact stable.

The Bayesian method can readily be adapted to accommodate different, possibly
more appropriate models. For example the full (non-censored) adult Sedge Warbler
data showed evidence of a lack of fit. The ratio of the deviance to the residual
degrees of freedom was 2.44, indicating some overdispersion. Peach et al. (1998)
noted that overdispersion was negligible for the majority of adult CES data sets they
considered, with only 7 of 28 species having ratios greater than 2.0. In cases where
count data are overdispersed the Negative Binomial distribution provides an alter-
native to the Poisson since it allows the variance to exceed the mean. The Bayesian
method described in this paper can be easily rewritten with a Negative Binomial
model by simply replacing the Poisson likelihood with the Negative Binomial like-
lihood and including an extra Metropolis-Hastings updating step for the overdisper-
sion parameter. This is an area of ongoing research.

An additional, viable approach for dealing with missed visits is to model the
counts at the visit level. That is, instead of combining counts across all 12 visits
and modelling the yearly-site counts, the counts at each visit are modelled instead.
An extra factor, the “visit”, with twelve levels is added to the model, a visit effect
term is added to the RHS of equation (1), and the offset is omitted. As missed visits
contribute no information this model can be readily fitted using standard Classical
and Bayesian methods. This extension has three potential advantages. Firstly, the
problem of missed visits is overcome. Secondly, a greater degree of precision in
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the estimates may arise simply due to the greater amount of data. Thirdly, the visit
effects themselves are of interest as they provide information on the availability
of birds for capture over the summer mist-netting season. Further, this latter feature
permits investigation of the assumption underlying the Peach et al. (1998) correction
that there is no variation in the inter-annual pattern of catches. Preliminary analysis
of the adult Sedge Warbler data (Cave 2006) has demonstrated that similar abun-
dance trends were produced, using both Classical and Bayesian methods, whether
adjustments were made for missed visits, or data were analysed at the visit, rather
than annual, level. Comparison of results with analyses of the data at the visit level
will be published separately in due course.

“Constant Effort” schemes are becoming increasingly prevalent. Over a dozen
EURING schemes now have similar programmes; for example Finland, France and
Spain all have schemes operating since the early nineties (EURING 2006), and
the MAPS scheme in the United States adopts a similar protocol (DeSante et al.
1999). We note too that surveys based on bird counts within a specified area, such
as that described by Link and Sauer (1999), require consideration of varying effort.
A Bayesian approach of the kind described here might also prove useful outside the
ringing context. Further investigation into modelling methods is therefore timely as
more data sets accrue with the potential to produce long-term indices.
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Appendix

A two-step procedure for simultaneous model-fitting and imputation of censored
counts. The superscripts z, and z+1, denote the updates at iteration z and (z+1)
respectively.

Step One: Updating the Model Parameters

Assuming the nit are Poisson distributed with mean λit = exp( β0 + Si + Yt) the
likelihood is given by:

f (nz ; �) = f (nz ;β0,S,Y) =
∏

i t

exp(− exp(β0 + Si + Yt ))(exp(β0 + Si + Yt ))nz
it

nz
i t !
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where n z = (nobs, ncen(z)) is a data vector containing both the fully observed uncen-
sored counts nobs and the current updates of the imputed censored counts ncen(z)

rather than their observed values, thus accommodating the truncated distribution
where appropriate. Note that the elements of ncen(z) are constrained such that nit

cen(z)

≥ lit for all i, t. See Step 2 for more details.
Vague, independent, Normal priors p with mean 0 and variance 10,000 are given

to all model parameters. The posterior distribution � of the model parameters is
therefore given by:

π (β0,S,Y; nz) ∝ f (nz ;β0,S,Y)p(β0)
∏

i
p(Si )

∏
t

p(Yt )

The normal proposal is used for updating all parameters, which being symmetric
cancels out in the expression for the acceptance probability. The proposal variance
was set to 0.5 for all parameters as a priori tuning runs indicated that this would
result in acceptance rates, for the majority of the model parameters, near the optimal
rate of 0.234 (Roberts et al. 1997).

At iteration (z + 1) the algorithm begins by updating β0, then one by one the site
and year effects. To update β0, where the current value is denoted by β0

z, a new
v alue, zβ0

*, is proposed from the Normal(β0
z,0.5) distribution, which is accepted

with probability:

α(β z
0, β

∗
0 ) = min

(
1,

f (nz ;β∗
0 ,Sz,Yz)p(β∗

0 )

f (nz ;β z
0,Sz,Yz)p(β z

0)

)

If the move is accepted we set β0
z+1 = β0

*, else β0
z+1 = β0

z.
Next, an update for S1 is proposed from the Normal(S1

z,0.5) distribution, which
is accepted with probability:

α(Sz
1, S∗

1 ) = min

(
1,

f (nz ;β z+1
0 ,S∗

1,Sz
(1),Yz)p(S∗

1 )

f (nz ;β z+1
0 , Sz

1,Sz
(1),Yz)p(Sz

1)

)
Here Sz

(i) denotes the vector of site effects, excluding Si, at iteration z. Likewise the
remaining parameters are updated.

Step Two: Imputing Censored Counts

To update an imputed censored count, where the current value is denoted by nit
z,

a new value, nit
*, is proposed from the discrete Uniform(A,B) distribution (note

that for notational convenience the “cen” superscript has been omitted). Here A =
max(lit, nit

z−ε), is used to guaranteed that nit
* is at least lit, and B = nit

z + ε. The
random walk jump, ε, was set at 6 for all imputed censored counts as a priori tuning
runs indicated that this would result in acceptance rates, for the majority of the
imputed censored counts, again near the optimal rate of 0.234. Under this scheme
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the proposal distribution is not necessarily symmetric (for example when nit
z−ε <

lit or nit
*−ε < lit) and must be incorporated explicitly into the expression for the

acceptance probability. The proposal distribution is given by:

if nz
it − ε < li t then q(n∗

i t |nz
it ) = 1

nz
it + ε + 1 − li t

else q(n∗
i t |nz

it ) = 1

2ε + 1

if n∗
i t − ε < li t then q(nz

it |n∗
i t ) = 1

n∗
i t + ε + 1 − li t

else q(nz
it |n∗

i t ) = 1

2ε + 1

Uniform priors, with upper bound sufficiently large such that imputed values are
extremely unlikely to exceed it, are given to all imputed censored counts. Conse-
quently the prior terms cancel out in the expression for the acceptance probability,
as do all likelihood terms in expression (2) aside from the contribution by the nit

being updated. The proposed update is therefore accepted with probability:

α(nz
it , n∗

i t ) = min

(
1,

f (n∗
i t ;β

z+1
0 , Sz+1

i ,Y z+1
t )q(nz

it |n∗
i t )

f (nz
it ;β

z+1
0 , Sz+1

i ,Y z+1
t )q(n∗

i t |nz
it )

)
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Simulation Performance of Bayesian Estimators
of Abundance Employing Age-at-Harvest
and Mark-Recovery Data

Paul B. Conn, Gary C. White, and Jeffrey L. Laake

Abstract The age structure of harvests has long been an important source of infor-
mation in fisheries stock assessments, especially when augmented with data from
catch-effort or research vessel surveys. Age-at-harvest data are also collected for
many terrestrial species, a fact which has recently prompted several authors to
propose models for analyzing wildlife age-at-harvest data, with the object of esti-
mating abundance, survival, harvest parameters, and recruitment. Since analysis
with age-at-harvest data alone often leads to problems with parameter identification,
these authors suggested that data from studies of marked animals could be used to
inform the estimation of survival and recovery rates. However, little work has been
done to examine estimator performance, particularly when model assumptions are
violated, as when aging errors occur or when mark-recovery and age-at-harvest data
are non-independent. Similarly, we know of no studies that have investigated the
efficacy of posterior simulation when Bayesian estimation methods are used for
such problems. In this paper, we employ a suite of simulation modules to quantify
estimator performance under a number of hypothetical biological scenarios. When
all assumptions are satisfied, we show that bias is typically of small magnitude,
coefficient of variation is small, and that credible interval coverage is satisfac-
tory. Estimators were robust to errors in age determination but precision had the
potential to be severely overestimated when data from marked animals were also
included in age-at-harvest summaries. Nevertheless, joint analysis of age-at-harvest
and mark-recovery data may represent a viable monitoring strategy for many terres-
trial species.
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1 Introduction

Accurate estimation of animal population trends is essential for effective wildlife
management. However, many of the traditional methods of estimating popula-
tion parameters may be too expensive to be practical in some circumstances. For
instance, closed population mark-recapture estimators often require samples of
hundreds or thousands of individuals to achieve adequate precision on abundance
(Seber 1982). Thus, a recent focus of research has been to develop methods for
jointly analyzing data form disparate sources in hopes of enhancing the precision of
abundance estimators without substantially increasing costs.

For exploited populations, one such source of data is the age-structure of hunter
harvests. Data of this sort have frequently been used in fisheries stock assessments
as a primary source of information for estimating cohort abundances and estimating
fishing mortality parameters (Megrey 1989). Methods have ranged from simple
deterministic calculations to fully formulated statistical likelihoods capable of incor-
porating a flexible amount of auxiliary data such as fishing effort and research vessel
indices (Fournier and Archibald 1982; Dupont 1983; Deriso et al. 1985). Recently,
some fisheries analysts have adopted a Bayesian perspective, allowing them to fit
increasingly intricate models for fish population dynamics and to summarize poste-
rior distributions for parameters of interest (McAllister and Ianelli 1997; Virtala
et al. 1998; Meyer and Millar 1999; Lewy and Nielson 2003).

While it is possible to formulate various likelihoods relating abundance and
mortality to age-at-harvest data, parameters typically cannot be identified without
auxiliary information on survival, the harvest process, or abundance (Megrey 1989;
Laake 1992; Gove et al. 2002). Studies of marked animals, while impractical
for many oceanic fisheries, constitute one such potential source of auxiliary data
(Maunder 2001; Gove et al. 2002). Indeed, data from such studies have been
successfully used together with wildlife age-at-harvest data to estimate demographic
parameters. For instance, Gove et al. (2002) used data from radio-telemetry and
reporting rate studies together with age-at-harvest data to jointly estimate survival,
abundance, and harvest parameters for elk in Idaho. Similarly, Conn (2007) and
Conn et al. (in press) used mark-recovery and age-at-harvest data to estimate demo-
graphic parameters for black bear in Pennsylvania.

Since age-at-harvest records are readily collected for many wildlife populations,
modeling with such data appears to be a promising avenue for population moni-
toring. For instance, Conn (2007) and Conn et al. (in press) reported substantially
better precision on abundance for a joint age-at-harvest, mark-recovery estimator
than for approaches ignoring age structure. Nevertheless, little research has been
done to explore estimator performance, particularly when model assumptions are
violated. Further, performance of MCMC methods for addressing such problems
has not been evaluated.

In this paper, we conduct a suite of simulations in order to explore the perfor-
mance of abundance estimators when age-at-harvest data are used in the estima-
tion process. We focus on the case where mark-recovery data are available to help
model harvest and survival processes, and specifically on the state-space, or “hidden
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process” (Newman et al. 2006) formulation described by Conn (2007) and Conn
et al. (in press). Our goal is not to provide a thorough mathematical derivation
of their likelihood. Instead, we start by providing a heuristic description of model
structure. Next, we explore the efficacy of posterior simulation. The majority of
the article is then devoted to obtaining simulation based measures of model perfor-
mance. In particular, we include three different simulation modules. In the first
(Section 4.1), we explore large sample performance when all model assumptions
are met. In the second (Section 4.2), we explore model performance when there
are aging errors. Finally, in simulation module III (Section 4.3), we examine conse-
quences when records from marked animals are simultaneously included in age-at-
harvest and mark-recovery datasets.

2 Model Description

Conn (2007) and Conn et al. (in press) viewed age-at-harvest data as having arisen
from a two-tiered stochastic process. The first part of the process consisted of
a population model describing temporal changes in age-specific abundance. The
population model involves a survival process, as well as a recruitment process
relating the abundance of recruits to previous levels of adult abundance. The recruit-
ment process is summarized by a Poisson distribution, where

Ni+1,1 ∼ Poisson

⎛⎝ A∑
j=1

Ni j fi j

⎞⎠ ,

where definitions of parameters and statistics are given in Table 1. We assume that
survival is a binomial process, such that

Ni+1, j+1 ∼ Binomial(Ni j , Si j ).

Table 1 Definitions of parameters, latent variables, and statistics used in age-at-harvest models

Si j Probability that an age j individual survives to time i+1 given it was alive at time i
hi j Probability that an age j individual is harvested and reported to wildlife personnel in

[i, i+1], given that it was alive at time i (i.e., recovery probability)
ri j Probability that an age j individual is reported to wildlife personnel in [i, i+1], given that

it dies in [i, i+1]
fi j Per breeder recruitment rate over [i, i+1], with reference to the number of age j unmarked

breeders in the population at time i and the number of new recruits at time i+1
Ni j Number of age j individuals in the population in year i immediately prior to harvest. The

N1 j are parameters while the remaining Nkj (k > 1) are treated as latent variables
Ci j Number of age j unmarked individuals that are harvested and reported to wildlife

personnel in year i
Ri j Number of of age j unmarked individuals that are marked and released in year i
A Age at which an individuals age cannot be reliably distinguished from older age classes
Y Duration of the study (e.g., years)
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Introduction of a self-loop (i.e., an absorbing “+” age class) requires some further
development which is omitted here for brevity. The second part of the process
consists of a sampling model, whereby age-at-harvest data are drawn from prob-
ability distributions dependent on age- and time- specific abundance and harvest
parameters. For instance, if the Brownie parameterization (Brownie et al. 1985) is
chosen for harvests,

Ci j ∼ Binomial(Ni j , hi j ).

Reducing the complexity of model structure by assuming time- or age constancy
in model parameters is not enough to render them identifiable. Instead, either
informative prior distributions or auxiliary data such as from a mark-recovery
or radio telemetry study are needed. For the purposes of this paper, we assume
that a mark-recovery dataset is available to help model the harvest process. We
follow the suggestion of Gove et al. (2002) and base inference on the likeli-
hood L = L1L2, where L1 gives the likelihood for age-at-harvest data, and L2

gives the likelihood of the auxiliary dataset (in this case from the mark-recovery
study). Each piece of the likelihood shares the same survival and harvest param-
eters, which allows abundance and recruitment to be identified whenever survival
(Si j ) and recovery (hi j ) probabilities can be estimated from the mark-recovery data
alone.

3 Posterior Simulation

Estimation via traditional maximum likelihood techniques is difficult in this case,
due to the large number of (latent) abundance parameters that need to be inte-
grated out of the likelihood. As Link et al. (2003) pointed out, there may also be
considerable interest in retaining these parameters. For instance, calculating annual
abundance, Ni · = ∑

j Ni j requires knowledge of all of the Ni j parameters. For
these reasons, as well as for ease with which hierarchical extensions to model struc-
ture can be implemented, we preferred a Bayesian estimation scheme using Markov
Chain Monte Carlo (MCMC).

The full conditional posterior distributions for model parameters do not belong to
recognizable families of probability density functions. Therefore, it is not possible
to simulate parameter values directly as in traditional Gibbs sampling. One possi-
bility for simulating these parameters is to use a Metropolis-within-Gibbs hybrid
update (Brooks 1999; Gelman et al. 2004). While this approach has been shown to
work well in Bayesian analysis of mark-recovery and mark-recapture data alone
(Brooks 1999), the addition of age-at-harvest data into the likelihood presents
additional challenges. Abundance is an integer value, subject to a number of
constraints; thus, proposals must also be integers and the Metropolis ratio must
be corrected for asymmetries resulting from these constraints. One possibility for
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generating univariate proposals for abundance, which we adopt throughout, involves
the following algorithm:

1. Generate θ∗
i ∼ Normal(θ (t−1)

i , σ 2
i )∫ θmax

i +0.5

θmin
i −0.5

Normal(θ (t−1)
i , σ 2

i )

for (θmin
i − 0.5) ≤ θ∗

i < (θmax
i + 0.5) by rejection sampling.

2. Round θ∗
i to the nearest integer

3. Calculate Metropolis-Hastings ratio as

P(θ∗
i |Y, θ (t))

∫ θmax
i +0.5

θmin
i −0.5

Normal(θ (t−1)
i , σ 2

i )

P(θ (t−1)
i |Y, θ (t))

∫ θmax
i +0.5

θmin
i −0.5

Normal(θ∗
i , σ

2
i )
.

Here, θ∗
i gives the proposed abundance value, θ (t−1)

i gives the abundance value at
the previous iteration of the Markov chain, and θmin

i and θmax
i give the minimum

and maximum values that are permissable given the constraints (with θmax
i =

∞ if there is no upper constraint). The first author was unable to improve on
the Metropolis-Hastings hybrid update by considering correlated proposals (Conn
2007), so univariate proposals of this type are considered throughout.

Using this approach, mixing of Markov chains was poor. For instance, lag-200
autocorrelation of Markov chains often fell between 0.65 and 0.95 in the simulations
reported below. Given this low degree of mixing, one would naturally wish to know
how many MCMC iterations would be required to accurately summarize features of
the posterior distribution.

While the answer to this question ultimately depends on the population, data, and
estimation model, we describe a “best case scenario” approach for answering this
sort of question. In particular, we summarize the variation between multiple Markov
Chains at different landmarks of simulation time for a number of design points for
model S(a + t)h(a) f (·) (using the notation of Lebreton et al. (1992) to describe
model structure).

To start, we generated expected value data for 12 design points, rounding harvest
numbers to the nearest integer. Possible configurations were

• True abundance, number of releases/year = (5000,150), (5000,300)
• Reporting rate (r ) = 0.2 or 0.5
• Number of years (Y ), cohorts (A) = (3,3), (5,3), or (5,5).

Here, r is related to the recovery rate h by the formula h = (1 − S)r , and is used
to conform to analyses later in the manuscript. Study durations were relatively short
in all cases to reduce computing time. Note that these values of r are relatively
high and indicative of situations in which harvest represents a substantial portion of
total mortality and where hunters/fishermen report a large percentage of harvests to
wildlife personnel.
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All expected value data sets assumed time- and cohort-constant survival and
recruitment of 0.6 and 0.4, respectively, and an initial population size of 5,000.
Each population was started at it’s stable stage distribution by assuming a stable
population (λ=1.0) and using standard approaches to calculating the stable stage
distribution (Caswell 2001). For each design point and candidate proposal scheme,
we employed 10 sets of Markov chains to approximate features of the posterior
distribution. We were interested in the similarity of Markov chains at different points
of simulation time; that is, how repeatable results were as a function of simulation
time. We quantified “similarity” by calculating (a) the average standard deviation
of the posterior mean of total abundance (where the standard deviation is calculated
across Markov chains for each year of the study and then averaged across years), and
(b) the standard deviation of the deviance information criterion (DIC) (Spiegelhalter
et al. 2002) when the posterior mean is used to calculate DIC. Each chain was run
for 2.1 million iterations, with the first 100,000 iterations discarded as a burn- in

Table 2 Performance of Markov Chains in summarizing marginal posterior distributions for
animal abundance and DIC at different landmarks of simulation time for model S(a + t)h(a) f (·).
Part (A) gives the average between chain standard deviation of annual abundance as determined
by the posterior mean, while part (B) gives the average between chain standard deviation of DIC.
A gives the number of age classes, Y gives the number of years of the study, R gives the number
of marked releases per year, and r gives reporting rate (i.e. the probability a tag is reported given
death). Initial abundance was 5000 and model S(a + t)h(a) f (·) was used for estimation in all cases

MCMC Iterations (×105)

A Y R r 1 5 10 15 20

A. Between chain SD(N̂ )

3 3 150 0.2 210.9 71.1 34.2 32.7 44.8
3 3 150 0.5 25.2 12.8 10.7 10.1 9.4
3 3 300 0.2 81.7 28.1 29.3 25.8 18.9
3 3 300 0.5 27.7 11.8 8.8 5.7 4.9
3 5 150 0.2 115.0 69.9 45.2 34.5 27.0
3 5 150 0.5 19.5 12.9 13.6 9.0 7.6
3 5 300 0.2 39.8 13.2 15.9 10.3 8.0
3 5 300 0.5 11.5 7.9 5.1 3.8 3.5
5 5 150 0.2 111.7 39.7 45.3 22.1 17.9
5 5 150 0.5 22.4 14.1 10.9 5.5 2.2
5 5 300 0.2 67.7 20.4 12.9 14.1 9.5
5 5 300 0.5 10.0 5.5 2.9 3.1 2.1

B. Between chain SD(DIC)

3 3 150 0.2 6.5 2.6 1.7 1.8 1.8
3 3 150 0.5 0.4 0.2 0.1 0.1 0.1
3 3 300 0.2 3.3 1.8 0.9 0.6 0.6
3 3 300 0.5 0.5 0.2 0.1 0.1 0.1
3 5 150 0.2 16.4 4.6 3.8 2.7 1.6
3 5 150 0.5 0.4 0.3 0.2 0.2 0.2
3 5 300 0.2 4.3 1.0 0.7 0.4 0.5
3 5 300 0.5 0.2 0.2 0.1 0.1 0.1
5 5 150 0.2 8.1 5.5 4.4 3.5 3.2
5 5 150 0.5 0.6 0.2 0.2 0.2 0.1
5 5 300 0.2 4.5 1.5 1.3 1.1 1.4
5 5 300 0.5 0.4 0.2 0.2 0.1 0.1
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and the chain thinned by recording only 1 in 10 observations to reduce memory
requirements. Markov chains were then summarized at 1.0×105, 5.0×105, 1.0×106,
1.5 × 106 and 2.0 × 106 iterations. In all cases, and throughout the remainder of
this article, we assumed a set of “diffuse” prior distributions. In particular, we set
Pr(N1 j ) ∝ c (Link et al. 2003), [β S

i j ] ∼ Normal(0, 3), [βh
i j ] ∼ Normal(0, 3), and

[β f
i j ] ∼ Normal(0.25, 1). The βθ

i j parameters correspond to fixed effect parameters
on the logit scale for θ = S and θ = h, and the log scale for θ = f .

Several observations may be made based on results of this experiment (Table 2).
First, the number of iterations required to summarize the posterior distribution
decreases as the quantity of mark-recovery data increases. This could occur either
through inclusion of additional years of data, higher recovery probabilities, or higher
numbers of initial releases. Number of age classes did not appear to have much of
an effect on convergence rates, at least with the range of experimental inputs consid-
ered here. A second issue that arose had to do with sparse mark-recovery data. In
particular, when numbers of releases and reporting rates were low (e.g., R = 150 and
r = 0.2), the variance in posterior estimates of abundance from different Markov
chains was extremely high even after 2.1 million iterations. This was likely because
of near non-estimability of parameters when data were too sparse. Apparently, more
data are required to get sensible estimates in these cases, or perhaps stronger priors.
As one reviewer noted, it may be inappropriate to use these results to make infer-
ences about requisite simulation times for real life estimation problems. We view
these results as a “best case scenario” in the sense that it may be easier to sample the
posterior distribution associated with expected value data than would be the case for
real life, “messy” data.

4 Estimator Performance

Although estimators of abundance appear to converge if Markov chains are run
for long enough, this does not preclude bias or guarantee estimators with good
properties. Thus, we used simulation to investigate estimator performance under
a variety of hypothetical scenarios. In total, we considered 3 simulation modules to
summarize estimator performance and diagnostics. In the first module, we evaluated
bias, coefficient of variation (CV) and 90% Bayesian credible interval coverage
(BCOV) for a variety of models, parameter combinations, number of age classes,
years of data, and number of individuals marked per year. In the second module,
we examined the performance of several estimators when there were errors in age
determination. Finally, in the third module, we examined consequences of using
data from marked animals in both portions (age-at-harvest and mark-recovery) of
the likelihood.

4.1 Simulation Module I: Large Sample Performance

In the first simulation module, our goal was to quantify estimator performance when
model assumptions were perfectly satisfied and when enough data were available to
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Table 3 Combinations of initial population size, number of individuals marked and released per
year, and estimation model that are considered in simulation module I

Initial N Number of releases Estimation model

1000 50/year S(·)h(·) f (·)
1000 100/year S(·)h(·) f (·)
1000 100/year S(a)h(t) f (·)
2000 100/year S(a)h(t) f (·)
2000 300/year S(a)h(t) f (·)
2000 300/year S(a + t)h(a) f (t)
5000 300/year S(a + t)h(a) f (t)

avoid issues with parameter estimability. We thus assumed combinations of initial
population sizes, number of marked individuals, and estimation models such that
estimation models included a reasonable level of complexity for the given values
of population size and number of marked animals. We further assumed that marked
individuals were not part of the population being estimated (that is, they did not
contribute information to the age-at-harvest matrix). A complete representation for
each combination of initial population size, number of individuals marked per year,
and estimation model are presented in Table 3.

We generated data with values for λ of 0.9 and 1.0, values for S of 0.6 or 0.8, and
values for r of 0.2 or 0.5. Thus, we considered 8 possible combinations of initial
parameter values, with a possibility of 3, 5, or 7 years of data, and 2, 3, or 6 age
classes. Studies were relatively short in all cases to reduce computing time.

We used different population models to simulate data depending on the number
of age classes. In each case, we specified values of S, λ, and population size and
derived the implied value of recruitment and the stable stage distribution. Recruit-
ment was determined by setting det |A − λI| = 0 and solving for f in terms of λ and
S. The stable stage distribution was determined by solving the system of equations
[A − λI] NT = 0, subject to the constraint N = N11 + N12 + . . . + N1A, where
N = [N11,N12, . . . ,N1A] (Caswell 2001). Possible population models, presented
here as matrices (Caswell 2001), included

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 f f f f
S 0 0 0 0 0
0 S 0 0 0 0
0 0 S 0 0 0
0 0 0 S 0 0
0 0 0 0 S S

⎤⎥⎥⎥⎥⎥⎥⎦ , A2 =
⎡⎣0 0 f

S 0 0
0 S S

⎤⎦ and A3 =
[

0 f
S S

]
.

Here, the matrix model format is used only to represent structural features of the
population models; actual simulations assumed stochasticity in all processes. Model
A1 describes a model with 6 age classes and a pre-breeding census; the last 4 age
classes can produce young. Individuals older than five years old cannot be differen-
tiated, a feature incorporated with a self-loop. This scenario corresponds roughly to
the population biology and age identification criterion of black bear in Pennsylvania,
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a population of interest to us. Model A2 describes a model for a population with 3
age classes, as when juveniles, yearlings, and adults may be differentiated, but finer
scale resolution is not possible. In this case, only adults contributes to recruitment
in the following year. Note that this model is structurally equivalent to A1 if one
were to pool individuals in age classes 3–6 into a single age class. Finally, model
A3 describes a population where only 2 age classes are recognizable, as with many
bird species.

Values for recruitment and stable stage distribution for the 3 models were as
follows:

MODEL A1

f = λ2 (λ− S)

S2
N11 = 1

a
N N12 = S

aλ
N N13 = S2

aλ
N

N14 = S3

aλ3
N N15 = S4

aλ4
N N1,6+ = S5

aλ4 (λ− S)
N a = λ

λ− S

MODEL A2

f = λ2 (λ− S)

S2
N11 = 1

a
N N12 = S

aλ
N N1,3+ = S2

aλ(λ− S)
N

MODEL A3

f = λ (λ− S)

S
N11 = N − SλN N1,2+ = SλN

Limiting the number of simulation inputs was not enough to decrease computing
time to the level that would allow a “normal” number of Monte Carlo simulations to
be run per input configuration (e.g., 1,000–10,000). The number of possible simula-
tion input combinations was 504, and computing time for each combination ranged
from around 30 min to several days, depending upon the problem’s dimensionality.
We thus conceptualized the problem as one of estimating a response surface (Box
and Draper 1987), where the number of simulation runs per input configuration was
low (n = 3), but where strength could be borrowed from the entire ensemble of
simulations to summarize estimator performance in different regions of the input
parameter space.

Although certain performance measures such as bias, CV, and BCOV are fairly
standard, deciding how to summarize estimator performance was difficult. There
were a large number of initial parameter combinations and estimation models, and
for each estimation model there were a large number of estimated parameters. To
condense the number of estimator performance variables to a manageable number,
we thus calculated a mean performance value for each simulation. If there were 5
estimates of annual abundance at a given level of simulation inputs, response vari-
ables would be calculated for a given simulation as the average value across all 5
estimates. An exception was for BCOV, in which the number of estimates in a given
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simulation run were taken to be binomial trials, and the number of successes (i.e.,
the true value of a parameter was within the 90% credible interval) was recorded.
For brevity, we only report results for annual abundance; estimator performance for
survival, recovery rate, and recruitment rate is described by Conn (2007).

We determined convergence by running 2 Markov chains per simulation and
monitoring whether Gelman–Rubin statistics were less than 1.2 immediately after
the burn-in period (Gelman et al. 2004). Starting abundance values for the first
Markov chain were set equal to the lowest possible values with positive support
given the data, and overestimates of survival, recovery rate, and recruitment rate
were provided. For the second chain, initial values were automated to produce over-
estimates of abundance and underestimates of other parameters. Ostensibly, if the
ratio of between-chain to within-chain variance (as measured by the Gelman–Rubin
statistic) declined sufficiently, this would be evidence that the effects of opposite
types of overdispersed starting values had been overcome.

Our approach to summarizing posterior distributions involved running each
Markov chain for 1,000,000 iterations. If convergence was determined to have
occurred after 500,000 iterations, we combined the second halves of each Markov
chain together to produce a sample from the posterior distribution. However, in
order to conserve memory, we thinned each chain by only recording every fifth
iteration throughout the estimation process, thus yielding a sample of 200,000 from
the posterior. Over the course of this study, only 2 simulations did not converge
according to the Gelman–Rubin convergence diagnostic.

4.1.1 Bayesian Credible Interval Coverage

Because each simulation produced multiple estimates, we treated the problem of
estimating the effects of dependent variables on estimator coverage as one of esti-
mating the regression coefficients of a generalized linear model (glm) with binomial
error (McCullagh and Nelder 1989). Under this approach, success probability for the
i th simulation, pi , is determined according to relationship

logit(pi ) = β0 + β1 yi1 + · · · + βk yik,

for k dependent variables and regression coefficients. The number of times that a
specific type of parameter overlaps it’s posterior interval in simulation i , Xi , is then
modeled as

Xi ∼ Binomial(x |Yi , pi ),

where Yi is the number of real parameters of a given type estimated in simulation
i . For instance, if there are 7 years of data, there are 7 Bayesian credible intervals
for abundance (one for each year). Using this approach, we assumed that partic-
ular simulations were more or less prone to failure of coverage, depending upon
the predictors. One issue with this approach is that there are sampling covariances
between abundance estimators derived from the same analysis, which violates the
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independence assumption needed to employ a binomial model. This problem can be
remedied to some degree by estimating an extrabinomial overdispersion parameter
(McCullagh and Nelder 1989).

Potential dependent variables affecting BCOV included A, Y , R, N , λ, S, r , and
the estimation model (Est Mod). We fit models with all possible combinations of
these main effects, estimating an overdispersion parameter, ĉ, from the most general
model for use with QAICc (Burnham and Anderson 2002). Once we had attained
model rankings, we selected a model within 2.0 QAICc units of the top model for
inference. This selection was made somewhat subjectively, with a predilection for
simpler models that contained predictors occurring in most of the highly ranked
models. Model selection results are suppressed here for brevity but are available
elsewhere (Conn 2007).

Using this approach, it appeared that survival, the number of age classes, and
the number of newly released marked animals were the most consistent predictors
of BCOV for annual abundance. Credible interval coverage increased with R, but
decreased with S and A (Fig. 1). Nevertheless, 90% Bayesian interval coverage on
annual abundance was close to “nominal” in most instances.

4.1.2 Percent Relative Bias

Disregarding input simulation parameter specifications, average percent relative bias
for estimated abundance was 7.6% (SE = 0.9%), 1.8% (SE = 0.4%), and 5.8% (SE =
0.7%) for posterior mean, mode, and median moment estimators, respectively (Fig.
2). As a moment estimator for abundance, the mode thus appeared to have the least
bias, which is expected given the manner in which data were simulated.
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Fig. 1 90% Bayesian credible interval coverage for abundance at different levels of number of
released animals per year (R) and number of age classes. Panel (A) gives performance for the case
where S = 0.6, while panel (B) is for S = 0.8
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Fig. 2 The distribution of average percent relative bias for abundance over all simulations, as deter-
mined by (A) the posterior mean, (B) the posterior mode, and (C) the posterior median

In order to investigate which factors affected the bias of the posterior mode esti-
mator for abundance, we compared the parsimony of alternative linear models that
expressed the response variable, |%BIAS|, the absolute value of the average percent
relative bias, as a function all possible combinations of predictor variables (A, Y ,
R, N , λ, S, r , and the Est Mod). We considered |%BIAS| as a response variable
because finding factors that potentially affect the magnitude of bias is perhaps more
important than those that affect it’s direction. Also, the performance of glms was
poor when signed bias was used as a response variable.

Inspection of quantile plots in the statistical language R (R Development Core
Team 2008) indicated that residuals from the most general model were not normally
distributed, and that there was one major outlier in the data. For analysis, we
removed the outlier and systematically considered different power transformations
for |%BIAS| until quantile plots indicated that residuals were normally distributed.
A power transformation of 0.25 seemed sufficient for this purpose, and a plot of
studentized residuals against fitted values further indicated that the residual variance
was largely constant under this approach.

Most predictor variables proved important for abundance |%BIAS|, although
inspection of parameter estimates and standard errors from top-ranked AICc models
indicated that N , λ, and the interaction N × R were not as important. We thus based
inferences on the fourth-ranked AICc model. In general, |%BIAS| increased with A
and S, and decreased with R, Y , and r (Fig. 3). Absolute bias was also negatively
associated with estimation model complexity.

4.1.3 Coefficient of Variation

Conducting preliminary explorations of the data, it appeared that there were a
number of outliers associated with CV for annual abundance. All such instances
were associated with the case of 50 releases per year, 3 years of data, and survival
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Fig. 3 Estimated relationship between absolute average % relative bias for abundance and R, Y , S,
and r . All predictions are given for the case where A and Est Mod are set to three and S(a)h(t) f (·)
in the linear model, respectively. Panel (A) gives results for S = 0.6 and r = 0.5; panel (B) depicts
the case when S = 0.6 and r = 0.2; panel (C) is for S = 0.8 and r = 0.5.; panel (D) is for S = 0.8
and r = 0.2

and reporting rates of 0.8 and 0.2, respectively. In this scenario, the number of
expected recoveries of marked animals is quite small (2.0, 3.6, and 4.9 for years 1,2,
and 3, respectively) and can lead to unstable estimates. Interestingly, other than one
outlier removed from the analysis of bias in abundance, this combination of simu-
lation inputs did not seem to produce unduly extreme outliers for other measures of
model performance. Nevertheless, removing these points was essential for analysis
of CV.

A power transformation of −0.4 on the response variable proved adequate for
meeting linear model assumptions, and the same suite of models were fit to the
data. The top AICc model in this case was the most general model, with the second
closest model > 3 ΔAICc units behind. There were too many important predic-
tors in this case to visually portray cumulative effects of all simulation inputs;
nevertheless, approximate predictions for mean CV can be made using estimated
regression coefficients as
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CV(N̂ )−0.4

] = 1.31 + 0.000402N + 0.00202R + 0.00324A + 0.111Y

+ 0.427λ − 1.517S + 1.844r − 0.150M O D1 − 0.0234M O D2

+ 0.00285(R × M O D1) + 4.93 × 10−8(N × R).

Because the response variable is taken to a negative power, the interpretation of
the sign of regression coefficients is reversed; for instance, a positive coefficient
leads to a decrease in CV. As with any regression analysis, it is important not to
extrapolate predictions from the linear model past the particular input configurations
of the response surface analysis, especially given that the design was not a complete
factorial. Over the support of simulation inputs, mean CV(N̂ ) was predicted to be
lowest (= 0.016) when N = 5000, R = 300, A = 6, Y = 7, λ = 1, S = 0.6,
and r = 0.5. Note that the only estimation model employed for this configuration
was S(a + t)h(a) f (t); a lower coefficient of variation could be expected if a simpler
estimation model had been used instead. The highest prediction for CV(N̂ ) was
0.24, which corresponded to the situation where N = 1000, R = 100, A = 2,
Y = 3, λ = 0.9, S = 0.8, r = 0.2, and Est Mod = S(a)h(t) f (·).

4.2 Simulation Module II: Effects of Aging Error

Misclassification of an individual’s age might be expected to produce bias in param-
eter estimates, particularly if error rates vary systematically by age. For instance,
small magnitude positive biases are typically observed in age estimates of young
black bears, while larger negative biases are observed for older bears (Beck 1991;
Costello et al. 2004; Harshyne et al. 1998). Even if there are no systematic age-
mediated changes in the direction and magnitude of bias, age misclassification
will still tend to result in misrepresentation of “strong” age classes (Fournier and
Archibald 1982). In effect, the power to discriminate cohorts with large abundances
will be somewhat obscured, and process error in recruitment will be underestimated.
In the context of fisheries stock assessment models, it has also been shown that
aging error can lead to negative bias in estimates of harvest mortality and measures
of abundance, possibly leading to management advice which would favor over-
harvesting (Reeves 2003).

In this module, we examined the effect of several magnitudes and types of aging
error on estimates of abundance and other parameters under a number of hypo-
thetical scenarios. In each case, we considered a model for aging errors whereby
assigned age A′ is related to true age A by the relationship

A′ = round(A + ε j ,)

where ε j denotes a random effect associated with age j . Variation in error type and
magnitude are produced by considering different models for ε j . In total, five a priori
models for aging error were considered:
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• Model 1: No aging error (i.e., ε j = 0)
• Model 2:

ε j ∼ Laplace(0, σ j )I[0.5− j,∞)(ε j )

1 − ∫ 0.5− j
−∞ Laplace(0, σ j )

σ j = 0.1 j

• Model 3:

ε j ∼ Laplace(0, σ j )I[0.5− j,∞)(ε j )

1 − ∫ 0.5− j
−∞ Laplace(0, σ j )

σ j = 0.2 j

• Model 4:

ε j ∼ Laplace(μ j , σ j )I[0.5− j,∞)(ε j )

1 − ∫ 0.5− j
−∞ Laplace(μ j , σ j )

σ j = 0.1 j, μ j = 0.4 − 0.2 j

• Model 5:

ε j ∼ Laplace(μ j , σ j )I[0.5− j,∞)(ε j )

1 − ∫ 0.5− j
−∞ Laplace(μ j , σ j )

σ j = 0.2 j, μ j = 0.4 − 0.2 j

Here, I[Ω]() gives an indicator function for the set Ω , and the Laplace (also known
as the double exponential) distribution is the probability density function

fX (x) = 1

2σ
exp

( |x − μ|
σ

)
.

The Laplace distribution has fatter tails than a normal distribution, and may be
more useful for describing aging error in natural populations (Conn and Diefenbach
2007). Models 2 and 4 specify a relatively high level of precision on age estimates,
while models 3 and 5 are relatively imprecise, particularly at older ages. The magni-
tude of aging errors often increase with an animal’s age (Harshyne et al. 1998), a
feature incorporated in models 2–5. Models 2 and 3 assume no bias in age estima-
tion, while models 4 and 5 assume a positive aging bias for yearlings and a negative
one for individuals over 2 years of age. In particular, the degree of bias increases
with age. For all models, we assume that age 0 individuals are aged definitively (as
with cubs in the case of black bears).

For simplicity, we only considered two biological scenarios for which to quantify
possible effects of aging error on estimator performance, both of which corre-
sponded roughly to the demography, harvest numbers, and sampling effort asso-
ciated with female black bears in Pennsylvania. For each scenario, we set initial
population size at 5,000, and assumed that 400 new individuals were marked and
released per year, the ages of which were in proportion to their relative abundance
in the population. We treated the population as if it consisted of 3 demographically
relevant age classes: cubs (0–1 year old), yearlings (1–2 years old), and adults (ages
2+), with associated survival rates (S) of 0.4, 0.55, and 0.7, and harvest rates (h) of
0.1, 0.3, and 0.2, respectively. The two different biological scenarios were described
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by different parameterizations for recruitment ( f ). Scenario A assumed that recruit-
ment was a Poisson process with a mean of 1.364 female cubs per adult female, a
number approximately necessary for a stationary population. Scenario B assumed
the same mean, but with a hyperprior on λ, such that fi ∼ Poisson(λ), where λ ∼
Gamma(10,7.33). Thus the 2 scenarios embodied quite different assumptions about
the nature of process error in recruitment (Fig. 4). We considered this potentially
relevant since aging error will typically serve to obscure the detection of high abun-
dance cohorts, and thus may lead to underestimates of recruitment process error.

Instead of pooling virtual animals into a “+” category to start with, we allowed
them to advance to a possible age of 20, at which time they were automatically
removed from the population. In this manner, aging error could be appropriately
applied to an animal’s real age, and data could be pooled to a pre-specified level
for analysis. In this case, we chose to pool back to 7 age classes (0–5 and 6+). Only
adults were assumed to contribute to recruitment the following year, and populations
were started at a stable stage distribution, as in Section 4.1.

We ran a total of 50 simulations for each combination of the 5 aging error
models and 2 biological scenarios. For each simulation and pooling option, we
ran 2 chains of length 1,000,000 starting at overdispersed values. If after 500,000
iterations Gelman–Rubin statistics confirmed that the chains had approximately the
same within- and between- chain variance, we combined the final 500,000 samples
of each chain to arrive at a sample of 1,000,000 from the posterior distribution,
which was thinned to 200,000 to save memory. We calculated the same statistics as
in Section 4.1 to quantify estimator performance; model S(a)h(a) f (·) was used to
estimate parameters for all Scenario A simulations, while model S(a)h(a) f (t) was
used for all Scenario B simulations. Here, an a denotes the case where 3 parameters
are estimated, corresponding to cubs, yearlings, and adults.
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Fig. 4 Histograms representing the relative likelihood of obtaining different values of recruitment
under Scenarios A and B in simulation module II when populations are started at a stable stage
distribution and an initial population size of 5,000. In particular, Scenario A dictates a relatively
fixed number of recruits, while Scenario B allows recruitment to differ drastically from year to
year
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To quantify effects of aging error on estimator performance, we once again
compared the relative parsimony of different models where estimator performance
was related to all possible subsets of predictor variables. Here, we considered
average absolute percent relative bias and 90% credible interval coverage as possible
response variables; predictor variables were μ (2 levels), σ (3 levels), and recruit-
ment variance scenario (2 levels). We entertained the possibility of including first
level interaction terms whenever the variables comprising the interaction were
included in the list of predictor variables. However, one of the interactions between
σ and μ was not estimable because simulations did not include the design point
where μ j = 0.4 − 0.2 j and σ j = 0.

A total of 36 models were fit for each response variable. When bias was modeled,
our strategy was to find a transformation of the response variable which approxi-
mately satisfied linear model assumptions for the most general model, as indicated
by quantile plots and plots of studentized residuals versus fitted values. In this case,
we used AICc for model selection. When coverage was of interest, we once again
considered a binomial model for the response variable within a generalized linear
model framework where success probability was related to predictors. In this case,
we used a logit link, estimated an overdispersion parameter, c, and used QAICc for
model selection.

For bias on estimators of annual abundance, a power transformation of 0.1 seemed
adequate for meeting linear model assumptions. An intercept model, in which bias was
constant across simulation inputs, was ranked second with ΔAICc = 0.3. Parameter
estimates from other top ranked models actually predicted that bias would decrease
with the amount of aging error (for both σ andμ), although confidence intervals over-
lapped zero. We thus concluded that there was no evidence that aging error increased
average percent absolute relative bias in annual abundance estimators.

Models selected for 90% Bayesian credible interval coverage on annual abun-
dance tended to include μ and σ effects on coverage, as well as interactions with
these terms and the level of recruitment variance. Investigation of parameter esti-
mates and confidence intervals from top ranked models indicated that coverage
decreased slightly when σ > 0 and when recruitment variance was high. Neverthe-
less, BCOV was predicted to be close to “nominal” in all cases, indicating that the
types and magnitude of aging error considered here had little effect on the accuracy
of credible intervals.

4.3 Simulation Module III: Marked Individual Data
in Both L1 and L2

Up to this point, all evaluations of model performance have assumed independence
of L1 and L2. In practical applications, records from marked animals will likely be
included in both age-at-harvest and auxiliary datasets. Technically, this invalidates
the independence assumption needed for a coherent joint likelihood. For instance,
sample sizes will be inflated under this approach and thus we might expect an
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artificially high level of precision. However, the importance of this assumption for
obtaining estimators with good properties has not yet been explored.

In this module, we used simulation to compare the performance of estima-
tors with and without data from marked individuals included in the age-at-harvest
portion of the likelihood. We surmised that performance would likely be influenced
by (i) the number of animals marked each year, and (ii) the complexity of the model
fit to the data. For instance, if the number of marked animals is low in comparison to
unmarked animals, then most of the data informing inference about population size
comes from unmarked animals. Similarly, if fewer parameters are used to describe
the survival, harvest, and recruitment processes, there is more information in the
age-at-harvest likelihood about them. We thus expected to see a greater degree of
bias in coverage and CV when employing simpler models.

We considered a total of 6 scenarios to evaluate estimator performance, which
differed by the number of marked animals released each year and by the estimation
model considered. The number of marked animals newly released each year was set
to either 200 or 400, with the number released in each age category proportional
to the number of animals in that age class. Three possible estimation models were
considered in order to compare results across different levels of model complexity:
S(·)h(·) f (·), S(a)h(t) f (·), and S(a + t)h(a) f (t).

For each scenario, we generated data for cases where marked animals were either
part of or not part of the target population. When not part of the target population,
they were assumed to have equivalent survival and harvest probabilities to the target
population. Fifty replicate data sets were simulated in each case. We used age- and
time-constant population parameters, with survival probability set to 0.6, a recovery
rate or 0.2, and a recruitment probability of 0.4, with 5 age classes, an initial popu-
lation size of 5,000, and 5 years of data.

To quantify effects of non-independence on estimator performance, we once
again compared the relative parsimony of different models where estimator perfor-
mance was related to all possible subsets of predictor variables. In this case, we did
not expect any changes with respect to bias, but we did expect that precision would
be overestimated. Thus, we treated 90% BCOV for abundance as the response vari-
able (see Conn 2007 for analyses involving estimators for survival, recovery rate,
and recruitment). Predictor variables were the number of releases each year (200
or 400), the generating model Est Mod (3 levels), and an indicator for whether or
not data in each part of the likelihood were completely independent (I nd), which
equaled 1 if data were independent and 0 otherwise. In addition, whenever main
effects terms were included in the model, we considered additional models with all
possible combinations of 1-way interactions. If all 1-way interactions were present,
we also considered the possibility of a 2-way interaction.

Using the most general model, overdispersion was estimated as ĉ = 2.5. Never-
theless, model selection using QAICc favored highly parameterized models. We
chose to base inference on the most general model, which was ranked second
ΔQAICc = 0.6, because it was the only model that included a highly influential
two-way interaction effect. In particular, when data from marked animals were also
included in the age-at-harvest matrix, coverage was predicted to be much worse for
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Fig. 5 90% Bayesian credible interval coverage on abundance for different model configura-
tions, number of releases (R), and depending on whether mark-recovery data were independent
(I nd = 1) from age-at-harvest data or not (I nd = 0). Models “1,” “2,” and “3” were S(·)h(·) f (·),
S(a)h(t) f (·), and S(a + t)h(a) f (t), respectively. The R = 200 scenario starts with approximately
4% of the population marked and grows to about 9% by the end of the study, while the R = 400
scenario starts with 8% of the population marked, growing to around 18% by the end of the five
year study. These percentages are roughly in line with the degree of overlap that could be expected
between mark-recovery and age-at-harvest datasets at different points in simulation time

the simple estimation model S(·)h(·) f (·) (0.42) than for the other, more complex
estimation models (≈ 0.7) (Fig. 5).

5 Discussion

In this paper, we explored whether Bayesian implementation of a state-space formu-
lation for the joint analysis of age-at-harvest and mark-recovery data was likely to
result in estimators with good properties. In general, long Markov chains (along
the order of 1.0 × 106 iterations) were needed to generate consistent estimators
of model parameters and for repeatability in estimation of DIC. However, for the
scenarios considered, Bayesian analysis of age-at-harvest and mark-recovery data
generally resulted in estimators of population parameters with a low degree of bias
and high degree of precision. Bias was positive for abundance and decreased with
sample size. Increased sample size could result from longer studies, more individ-
uals marked each year, or higher harvest rates. Further, when all model assump-
tions were satisfied, credible interval coverage was close to “nominal”. Thus, when
all assumptions are met, joint analysis of age-at-harvest and mark-recovery data
produces reasonable estimates of model parameters.
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We also considered what would happen to estimator performance when assump-
tion violations such as aging errors occurred or when individuals contributed infor-
mation to >1 dataset. Bias and coverage were quite robust to aging errors, at
least with the range of models considered here. However, when data from marked
animals were included in the age-at-harvest matrix, the potential for understatement
of uncertainty was substantial. While use of estimation models with a sufficient
degree of complexity helped, coverage was still poor when a large proportion of
the population was marked each year. Ostensibly, including marked animals in both
L1 and L2 artificially inflated sample sizes, resulting in inaccurate inferences about
precision. We expect that a similar situation exists for other, previously proposed
model formulations for analysis of age-at-harvest data (Gove et al. 2002; Skalski
et al. 2005), and for other state-space estimation approaches in which the same
animal may contribute to >1 dataset (Besbeas et al. 2002). Due to it’s importance,
the general issue of non-independence in state-space models is a subject of current
research by other research groups (B. J. T. Morgan, Personal Communication).

Although it is hard to come up with a general rule from the limited number of
simulations we have performed here, there is some indication that a 10-15% overlap
in datasets may be sufficient to produce substantial shortfalls in credible interval
coverage (e.g., Fig. 5). Unfortunately, there is no simple solution to this problem, at
least for the model structure considered in this paper. For instance, the approach of
removing marked animals from the age-at-harvest dataset does not work because it
effectively ignores the dynamical process of “removing” individuals from the popu-
lation by marking, leading to bias in estimators of recruitment and abundance. If the
age distribution of marked and unmarked animals are different, this approach could
also result in biases in survival and recovery probabilities. An alternative would
be to explicitly model the process by which unmarked animals become marked
animals (e.g., by including a detection probability parameter in model structure).
This would introduce a number of extra parameters into the likelihood and require
one to keep track of the latent numbers of marked and unmarked animals in the
population at different points in time. This may be a reasonable solution for the
joint age-at-harvest model we have evaluated here but would require substantial
development. One ad hoc approach that may be useful in practice is to conduct
simulations with input values relevant to the study population, artificially increasing
the length of credible intervals until coverage is close to nominal. Another sugges-
tion is to consider highly parameterized models in an effort to reduce the amount of
“duplicate” information about each parameter.

Extensive assessments of the efficacy of Bayesian analyses of this sort are rarely
seen in the literature, in part because requisite computing time can be daunting. We
regard response surface simulation designs as a natural way to conduct such simu-
lation experiments in these cases. Strength is borrowed from the entire ensemble
of design points, invoking interpolation from a response surface (in our case,
a generalized linear model) to increase predictive accuracy anywhere along the
surface. In this manner, the number of simulation replicates needed at any one
design point decreases dramatically. Use of information-theoretic criterion allowed
us to select simulation input values that were important determinants of estimator
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performance, and thus to provide parsimonious predictions of estimator perfor-
mance under different scenarios.

For the scenarios considered here, coefficient of variation on abundance was
satisfactory (< 0.25) for almost all design points, suggesting that 50 releases of
marked animals per year may be sufficient for monitoring purposes, especially
when tag return rates are high. Additional simulations would be required to deter-
mine the number of marked releases necessary to use this approach for monitoring
purposes when tag return rates are low, as with North American waterfowl, passerine
ringing programs in Europe, or fisheries applications. Increased precision can be
expected if a known fate analysis is employed in addition to mark-recovery analysis
(Conn 2007); however, the underlying tag return rate is fundamental for estimating
sampling parameters such as recovery probability, and thus for estimating abun-
dance from age-at-harvest data.
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A Spatial Model for Estimating Mortality Rates,
Abundance and Movement Probabilities
from Fishery Tag-Recovery Data

J. Paige Eveson, Geoff M. Laslett, and Tom Polacheck

Abstract Spatial heterogeneity in survival and capture probabilities is a critical
issue to consider in tagging experiments. If a non-trivial level of spatial hetero-
geneity exists and is not accounted for, it can lead to unreliable estimates of
mortality rates and abundance, and of the uncertainty in these estimates. Here we
present a spatial model for analysing multiyear tag-recovery and fishery catch data
that allows for mortality rates and abundance to differ among discrete regions and
for fish to move among these regions at discrete time intervals. For a given cohort of
fish tagged in consecutive years in all regions, this model can provide year- and
region-specific estimates of both natural mortality and fishing mortality, region-
specific estimates of abundance at the time of initial tagging, as well as year-specific
movement probabilities between regions. The precision of parameter estimates can
be poor with such a full model, but can be improved with more restricted model
parameterizations. Tagging in some regions may be logistically difficult and/or very
expensive. We show that if tagging is conducted in all regions in the first year of
the experiment, but only in one region thereafter, accurate and precise parameter
estimates can sometimes still be achieved. It is not always the regional estimates of
mortality rates and abundance that are of primary interest, but rather the population-
wide estimates (over all regions). Such population-wide estimates can be obtained
by applying a non-spatial model to the data pooled across regions; however, simula-
tion results suggest that there are many situations for which large biases are incurred
by using a non-spatial model. Simulations also suggest that there is almost no loss
in precision from using the spatial model to obtain population-wide estimates even
when the non-spatial model would suffice.

1 Introduction

A fundamental assumption in the use of tagging experiments to estimate mortality
rates and/or abundance is that tagged and untagged animals are fully mixed
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throughout the range of the population. This can be difficult to achieve in wild
populations, particularly ones distributed over large geographic areas. In cases
where complete mixing is not achieved, spatial heterogeneity in survival and capture
probabilities of animals will lead to biased estimates of mortality rates and abun-
dance, as well as the uncertainty in these estimates, if it is not accounted for. Thus,
spatial heterogeneity is a critical issue to consider in the design and analysis of
tagging experiments. In the current paper, we present a spatial model for estimating
mortality rates (both natural and human-related), abundance and movement from
a multiyear tag-recovery experiment, and use it to investigate the importance of
accounting for spatial heterogeneity on the accuracy of the parameter estimates.
The model assumes that individuals from a population are tagged and recaptured in
a number of discrete regions over multiple years. Population size and mortality rates
are allowed to differ among regions, and individuals are allowed to move between
regions at discrete time intervals (assumed here to be years). The model was devel-
oped for fishery applications in which tags are recovered from dead animals, so that
only tag-recovery (i.e., single-recapture) experiments are feasible.

The term multi-state model is often used for the type of model developed here
(i.e., with discrete states and transitions between states). We use the term spatial
model because the states we are interested in are spatial strata. The states could,
however, correspond to physiological conditions, such as breeder or non-breeder
(spawner for fish), as long as these states were observable on release and recovery.
A number of papers have developed multi-state models in the context of capture–
recapture tagging experiments, where multiple recaptures are available for each
tagged animal (e.g., Arnason 1973; Hestbeck et al. 1991; Nichols et al. 1992;
Brownie et al. 1993). Physiological states are common in applications of multi-state
capture–recapture models, but the principles are the same for spatial states. Less
work has been done on multi-state models for single–recapture data, exceptions
being Joe and Pollock (2002) and Schwarz et al. (1993). The focus of these two
studies, as well as most studies in the multiple–recapture setting, has been on esti-
mating movement (transition) probabilities, whereas our focus is on obtaining robust
estimates of mortality rates and abundance.

The model presented is a spatial extension of the model developed in Polacheck
et al. (2006a). It combines two traditional, but fundamentally different, approaches
for analyzing tag-recovery data. The first approach, generally referred to as a
Brownie model (Brownie et al. 1985), uses tag-recovery data from multiple years
of tagging to provide annual estimates of mortality rates by comparing return rates
over time from the releases in consecutive years. Only the numbers of releases and
returns by year are required, not the size of the sample examined for tags. The
second approach, known as a Petersen model (e.g., Seber 1982), uses data from a
single release event to provide an estimate of population size at the time of tagging
based on the ratio of the number of tags returned from a sample of the population
to the total number of tags in the population. Because our model was developed in
a fishery context, commercial catch data constitute the sample from which tags are
returned, and thus there is uncertainty in the sample size. However, the approach
would be equally valid in a more controlled situation where the exact size of the
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sample examined for tags was known. We refer to our model as the spatial Brownie–
Petersen (BP) model.

The Brownie, or survival, component of the spatial BP model is similar to that
of Schwarz et al. (1993), except it is formulated to have separate parameters for
survival and movement rates, and separate parameters for tag recovery rates and
reporting rates. These separations are important in fisheries for providing advice
to management. Also, the survival and recovery rates are parameterized in terms
of instantaneous rates of natural mortality and exploitation (i.e., fishing mortality)
(Pollock et al. 1991; Hoenig et al. 1998). This parameterization is common in popu-
lation modeling of fish resources (Beverton and Holt 1957; Hilborn and Walters
1992) and in fishery applications of tagging experiments (e.g. Frusher and Hoenig
2001; Polacheck et al. 2006a).

Although a model with a discrete spatial structure will be artificial for any fish
population, it can often provide an adequate approximation. For example, it is
common for fish species to have distinct feeding, spawning and/or nursery areas
between which they migrate. Furthermore, discrete regions are often defined for
fishery management purposes, with regional estimates of exploitation rates and
abundance being sought. Thus, applications of discrete-space models to fishery
tagging data are quite common (e.g., Cappo et al. 2000; Xiao 2000; Schwarz
et al. 1993). Our motivation for developing the spatial BP model was to investigate
whether a spatial design and analysis was needed for an ongoing tagging experiment
being conducted on juvenile southern bluefin tuna (SBT, Thunnus maccoyii). The
fishery for juvenile SBT can be divided into distinct components: an inshore purse-
seine fishery in the Great Australian Bight that operates during the austral summer,
and several offshore longline fisheries spanning much of the southern ocean that
operate during the austral winter. While the spatial BP model, as presented, does
not fully accommodate the complex movement and fishery dynamics for SBT, it
provides the general framework necessary for such investigations. Also, by keeping
the model general, it can more easily be modified to suit a large range of situations
(e.g., a modified version for SBT is presented in Appendix 12 of Polacheck et al.
2006b).

The current paper begins with a description of the spatial BP model, starting with
the assumptions required by the model and followed by the development of the like-
lihood components. We illustrate that, for a cohort of fish tagged and recovered in all
years and regions of the study, the spatial BP model can provide year- and region-
specific estimates of both natural mortality and fishing mortality, region-specific
estimates of abundance at the time of initial tagging, as well as year-specific move-
ment probabilities between regions. With such a full model, the precision of some
parameter estimates can be poor. Thus, we explore how much the estimates can be
improved under a range of reduced model parameterizations (e.g., natural mortality
only year dependent, fishing mortality only region dependent, movement rates the
same across years). Furthermore, for each of these model parameterizations, we
investigate parameter identifiability and model performance under two reduced
experimental designs: tagging in all regions in the first year then in only one region
thereafter, and tagging in only one region in all years. Because tagging in some
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regions may be logistically very difficult and/or expensive (e.g., in off-shore areas
that are not easily accessible), it is of practical interest to know whether it is possible
to still achieve reasonable parameter estimates for experimental designs that do not
include tagging in all regions and years. Finally, it is often not the regional param-
eter estimates for mortality and abundance that are of primary interest, but rather the
population-wide estimates (i.e., over all regions). This is particularly true in a fishery
context, where the assessment of human impacts on the status and sustainability of
the resource is the principal focus. Such population-wide estimates can be obtained
by applying a non-spatial model to the tag release and recovery data pooled across
regions, but are expected to be biased if spatial heterogeneity exists. To investigate
the consequences (biases) of not allowing for spatial heterogeneity when it exists,
we compared estimates of total fishing mortality and abundance when regional data
are analyzed using the spatial BP model versus when the data are pooled across all
regions and analyzed using the equivalent non-spatial model. Results for a range of
scenarios are presented in order to gain insight into those situations for which spatial
tag designs and models are necessary.

2 Methods

Consider a multiyear tagging study in which a cohort of fish is tagged in each of
regions 1 to K in years 1 to I (i.e., at age 1 in year 1, age 2 in year 2, up to age
I in year I). The tags must be specific to a region and year (generally in fisheries,
the tags are specific to an individual via a unique number). Fish from the cohort
are subsequently caught in years, or equivalently at ages, 1 to J (J ≥ I) in a fishery
operating in all regions, and tags are returned from a proportion of the fish recovered
with tags. Estimates of the numbers of fish from the cohort caught in each region and
year are available. The parameters to be estimated from the tag-recovery and catch
data are natural mortality and fishing mortality by year and region, cohort abundance
in each region at the start of tagging (i.e., at the start of year 1), and movement
probabilities between regions in each year. Note that because we are dealing with a
single cohort, year and age are interchangeable (e.g., parameters stated to vary with
year could instead be stated to vary with age).

The model is developed in terms of a cohort of fish because a cohort is the most
natural example of a population closed to births and immigration. This type of
closure is required by the Petersen component of the model in order to get abun-
dance estimates with a meaningful interpretation. If one leaves off the Petersen
component (i.e., omits the likelihood for the catch data from the overall likelihood –
see Model development section), then the requirement for a population without
births or immigration is no longer necessary. Nevertheless, if any of the model
parameters vary with age, then tagging still needs to be specific to age-classes (i.e.,
cohorts) in order to get age-specific parameter estimates.

We present the model for a single cohort because this is the minimum required
by the model and makes the notation less burdensome. In practice, it is likely that
several cohorts (age-classes) would be tagged in each year of tagging. To include
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multiple cohorts in the model, one simply needs to develop the likelihood for each
cohort as described, then multiply them together to form a joint likelihood (provided
the data are independent between cohorts, which we discuss later). Note that if all
parameters being estimated vary with both year and age, then maximizing the like-
lihood for each cohort separately is equivalent to maximizing the joint likelihood
(i.e., will yield the same parameter estimates). More likely, however, some param-
eters will be shared; for example, if fishing mortality varies with year but not with
age, then all cohorts caught in a given year and region will have a common fishing
mortality parameter.

2.1 Model Assumptions

To apply the model to a cohort (or multiple cohorts) of fish requires that the ages
of fish at release be known. For some species, release ages can be determined by
reading scales collected from the tagged fish. When this is not possible, age can
often be inferred from length. The former method has been used in a tagging study
on Australian salmon (Cappo et al. 2002), whereas the latter method has been used
in tagging experiments on juvenile SBT (Polacheck et al. 2006a). The accuracy of
the age estimates will depend on the method, the species, and the specifics of the
situation. Here, we assume the release ages are known accurately enough that the
error can be ignored.

To allocate the catch in each year and region to cohorts requires knowing the
age distribution of the catch in each year and region. Often, the age distribution of
the catch will be determined by taking a sample, estimating the ages of fish in the
sample (either from lengths or from direct aging of hard parts), and scaling up the
estimated age frequencies of the sample to the total catch in numbers (which may
itself be estimated from weight). The model directly incorporates uncertainty in the
estimated numbers of fish caught from the cohort in each year and region, but it
assumes these numbers are unbiased and independent.

Not all tags that are recovered are likely to be reported; this is especially true in
commercial fisheries. We assume that estimates of reporting rates are available, and
treat them as known in the model.

To separate mortality from movement, it is necessary to model the timing of
movement in relation to the mortality processes. We assume that during a given year,
fish in a region stay within the region, where they may be caught or die naturally.
Exactly at the end of each year, fish move between regions according to a Markov
chain model; i.e., a fish’s movement at the end of the current year does not depend
on its movement at the end of previous years. Furthermore, we assume that a fish’s
movement is independent of the movement of other fish.

In addition to the above assumptions, the usual assumptions for non-spatial tag-
recovery models, as outlined by Brownie et al. (1985) and summarized clearly
by Pollock et al. (1991), are required. The most important of these are: the fish
tagged within a region are a representative sample of the fish in that region (i.e.,
that tagged and untagged fish are thoroughly mixed throughout each region where
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tagging occurs); the fate of each fish is independent of the fate of other fish; all fish
in a given region and year have the same survival and capture probabilities; there is
no tag shedding or tag-induced mortality.

A section of the Discussion is devoted to discussing the above model assump-
tions, their implications for parameter estimation if violated, and possible methods
for dealing with violations.

2.2 Model Development

The model is developed in a maximum likelihood framework. The overall likelihood
is comprised of two components: one for the tag-recovery data and one for the catch
data.

First consider the tag-recovery component of the likelihood. Define tagging
group (i,k) to be the N k

i fish tagged in year i in region k. Let Rk,k ′
i, j be the number

of tags returned (i.e., recovered and reported) from tagging group (i, k) in year j
and region k′, and let pk,k ′

i, j be the probability that a tag from tagging group (i, k) is
returned in year j and region k′.

For tagging group (i, k), the numbers of returned tags by region and year, plus the
number of unreturned tags, are modeled as multinomial with a log-likelihood (apart
from an additive constant) given by

log Lk
i =

(
N k

i − Rk,•
i,•
)

log
(

1 − pk,•
i,•
)

+
J∑

j=1

K∑
k ′=1

Rk,k ′
i, j log pk,k ′

i, j

where Rk,•
i,• =

J∑
j=1

K∑
k ′=1

Rk,k ′
i, j and pk,•

i,• =
J∑

j=1

K∑
k ′=1

pk,k ′
i, j .

The data from each tagging group are independent, so the log-likelihood over all
tagging groups is given by

log L tag =
I∑

i=1

K∑
k=1

log L k
i . (1)

The return probabilities can be defined in terms of survival, movement, capture and
reporting parameters. In particular, pk,k ′

i, j is given by the
(
k, k ′) th element of the

matrix

pi, j =
{

D
(
u j
)

D
(
λ j
)

j = i
D (Si )

∏∏∏
i . . .D

(
S j−1

)∏∏∏
j−1D

(
u j
)

D
(
λ j
)

j > i
(2)

where:

Sj is a K × 1 vector whose k th element, Sk
j , is the probability that a fish alive

at the beginning of year j in region k survives the year;
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uj is a K × 1 vector whose k th element, uk
j , is the probability that a fish alive

at the beginning of year j is caught during year j in region k;
�j is a K × 1 vector whose k th element, λk

j , is the probability that a tag will be
reported from a tagged fish caught during year j in region k;

	j is a K × K matrix whose (k, k′) th element, π k,k ′
j , is the probability that a

fish moves from region k to region k′ at the end of year j; and,
D(�) is an operator that transforms a K × 1 vector � into a K × K diagonal

matrix containing the elements of � on its diagonal.

We can further express the survival and capture probabilities in terms of natural
mortality and fishing mortality, as follows:

Sk
j = exp

(− (
Fk

j + Mk
j

))
and

uk
j = Fk

j

Fk
j + Mk

j

(
1 − Sk

j

)
where Mk

j and Fk
j are the instantaneous rates of natural mortality and fishing

mortality, respectively, for fish in year j and region k.
Next, consider the catch component of the likelihood. Let P k

1 be the number of
fish from the cohort in region k at the start of the tagging experiment (i.e., at the
start of year 1), Ck ′

j be the number of fish from the cohort caught in year j and

region k′, and qk ′
j be the probability of a fish from the cohort being caught in year j

and region k′.
If the numbers of fish caught by year and region were known exactly, then they

could be modeled as multinomial with probabilities given by qk ′
j (similar to the tag

return data). However, the catch data will almost always contain uncertainty, some-
times large, due to a number of reasons given in the Model assumptions section.
These sources of uncertainty, which we will refer to jointly as sampling error, will
generally dominate the multinomial variance (see Polacheck et al. 2006a). Thus, we
only include sampling error in the model, and approximate it as Gaussian. Specif-
ically, the number of fish caught in year j and region k′ are assumed to have a
Gaussian distribution with coefficient of variation (CV) υk ′

j .
Assuming that the catches for each region and year are statistically independent,

the log-likelihood for the catch data (apart from an additive constant) is given by

log Lcatch = −1

2

J∑
j=1

K∑
k ′=1

⎛⎜⎝log V
[
Ck ′

j

]
+

(
Ck ′

j − E
[
Ck ′

j

])2

V
[
Ck ′

j

]
⎞⎟⎠ (3)

where E
[
Ck ′

j

]
= q k ′

j

K∑
k=1

P k
1 and V

[
Ck ′

j

]
=
(
υ k ′

j E
[
Ck ′

j

])2
.



994 J.P. Eveson et al.

Similar to the tag return probabilities, we can express the catch probabilities in
terms of survival and movement parameters. Consider a fish that originated in year
1 in region k. The probability, qk,k ′

1, j , of this fish subsequently being caught in year j
in region k′ is given by the (k, k′) th element of the matrix

q1, j =
{

D
(
u j
)

j = 1
D (S1)

∏∏∏
1 . . .D

(
S j−1

)∏∏∏
j−1D

(
u j
)

j > 1
,

which is analogous to (2) except it does not contain parameters for tag reporting
rates. However, for the catch data, we do not know the origins of fish (i.e., their
regions in year 1). Thus, the probability, qk ′

j , of a fish being caught in region k′ in
year j regardless of its origin is given by

q k ′
j =

K∑
k=1

qk,k ′
1, j P k

1

K∑
k=1

P k
1

,

which can be substituted into the expected catch formula in (3).
The overall log-likelihood for the tag-recovery and catch data is the sum of the

two likelihood components, (1) and (3):

log L total = log L tag + log Lcatch. (4)

The parameters that can be estimated by maximizing (4) are
{

Mk
j

}
,
{

Fk
j

}
,
{

Pk
1

}
,

and
{
π

k,k ′
j

}
. Recall that the reporting rates,

{
λk

j

}
, are assumed to be known. Also,

the catch CVs,
{
υk

j

}
, are not directly estimable in the model, so are assumed to be

known (see next paragraph). Furthermore, when a population is tagged in I consecu-
tive years, only I – 1 natural mortality rate parameters (per region) can be estimated;
this is a well-known feature of non-spatial Brownie models. As such, we impose
the constraint that Mk

j = Mk
I−1 for I ≤ j ≤ J , noting that other constraints are

possible. In the applications presented, we only consider an experiment with I = J,
but there is no problem with having more recapture years than release years as long
as natural mortality is appropriately constrained. Finally, we impose the obvious
constraint that the movement probabilities for a given year and region sum to one;

i.e.,
K∑

k ′=1
π

k,k ′
j = 1.

Polacheck et al. (2006a) give a detailed explanation of why the catch CVs cannot
be estimated reliably in the non-spatial BP model, even when constrained to be
constant across years, and a similar argument would apply here. In theory, infor-
mation about the catch CVs should be available based on the sampling design used
to obtain the catch estimates, but such information is often poor or insufficient in
practice. Fortunately, Polacheck et al. (2006a) found that, for a constant catch CV
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across years, the model results were fairly insensitive to the value assumed for the
CV so long as it was in the right ballpark (e.g., within ∼40% of the true value).

2.3 Simulations

2.3.1 Model Performance

We conducted a series of Monte-Carlo simulations to investigate model performance
under six different model parameterizations (Table 1). Model 1 allows for all esti-
mated parameters to vary with region and year (i.e., age for a single cohort). In
many situations such a full model will not be necessary. Thus, we explored a range
of models with more restricted parameterizations to determine the relative improve-
ment that can be achieved in the parameter estimates. We chose parameterizations
expected to be encountered in fishery situations. For example, natural mortality will
often vary with year (i.e., age for a cohort), but may not vary with region (model 2).
In addition, fishing mortality may not vary with year (i.e., age), but will likely vary
with region, given that regions are often defined to correspond to distinct fishery
components (model 3). Finally, movement probabilities between regions are likely
be similar across years for species with annual migration patterns, so we consid-
ered time-invariant movement probabilities in combination with each of the above
mortality parameterizations (models 4–6).

Throughout our simulations, we considered a tagging experiment involving a
single cohort of fish with I = 3 release years, J = 3 recapture years, and K = 3
regions. We assumed 500 fish were tagged in each year and region, for a total of
4500 tags. The parameter values used to generate tag return counts and catch data
were: Pk

1 = 100,000; Mk
j = 0.2; Fk

j = 0.3; π k,k ′
j = 0.25 for k �= k ′, π k,k ′

j =
0.50 for k = k ′; λk

j = 1.0; and υk
j = 0.2. Note that even though the parameter

values used to generate data were the same across years and regions, year- and
region-specific parameters were still estimated in accordance with the model being
fitted. Parameters were kept constant in order to make comparison of their estimates
between models straightforward. The values for the mortality rate and abundance
parameters were chosen to be within a plausible range for SBT, but they should be
reasonable for a number of fish species.

Table 1 Parameter dependency (year-dependent, region-dependent, or both) for the six models
considered. Note that when natural mortality is stated to be year-dependent, it only varies with
year up to year I – 1, where I is the number of release years (see Model development section)

Parameter dependency

Model Movement probabilities, π Fishing mortality, F Natural mortality, M

1 Year and region Year and region Year and region
2 Year and region Year and region Year
3 Year and region Region Year
4 Region Year and region Year and region
5 Region Year and region Year
6 Region Region Year
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For each model, we generated 500 tag return and catch data sets. In particular, we

generated multinomial return counts by year and region,
{

Rk,k ′
i, j

}
, for each tagging

group (i, k), and Gaussian catch data by year and region,
{

Ck ′
j

}
. We then estimated

the model parameters by maximizing log-likelihood (4), with the reporting rates and
catch CVs fixed at their true values. Data were generated and models were fitted
using AD Model Builder (Otter Research Ltd, P.O. Box 2040, Sidney, BC V8L
3S3, Canada). For each parameter estimated, we calculated the mean and standard
deviation (SD) of the 500 estimates, and used these to compute the percent relative
bias (i.e., (mean – true) / true × 100 %) and CV (i.e., SD/mean).

2.3.2 Parameter Identifiability Under Reduced Tagging Designs

Tagging in some regions may be difficult or costly, so it is of interest to know
whether parameters are still estimable with experimental designs that do not include
tagging in all regions in all years. We again considered the same six models as in
the previous section, but under two reduced tagging designs: (I) tagging in all three
regions in the first year, then only in region 1 thereafter; and (II) tagging only in
region 1 in all three years. In both cases, we used a total of 4500 tag releases. For
reduced design I, which has five tagging groups, this meant 900 releases per tagging
group, and for design II, which has only three tagging groups, this meant 1500
releases per tagging group.

To determine whether the parameters for a given model and experimental design
combination were identifiable, we used the analytic-numeric approach described
by Burnham et al. (1987) and applied by Kendall and Nichols (2002). Specifically,
for each model we generated non-random data (i.e., expected return counts and
expected catch numbers) using the same parameter values as in the previous section
(except for the tag release numbers), and fitted the model to these data by maxi-
mizing log-likelihood (4) using AD Model Builder. We considered a parameter to
be identifiable if the parameter value returned was within 0.0001 of the true value
and the Hessian-derived CV was less than 100%. We will refer to a model as being
identifiable if all its parameters were identifiable.

Alternative approaches for determining parameter identifiability have been devel-
oped. For example, Viallefont et al. (1998) present a numerical method for deter-
mining parameter identifiability in single-state capture–recapture models based on
the rank of the information matrix. Catchpole and Morgan (1997) present a related
approach based on symbolic calculation of the rank of a defined derivative matrix
(which has the same rank as the information matrix but is algebraically simpler),
and apply it to models for capture–recapture and ring(tag)-recovery data. Giminez
et al. (2003) generalize the Catchpole and Morgan approach to multi-state capture–
recapture models. While these methods have some advantages in terms of exactness
(i.e., less ambiguity), the analytic-numeric method described above was simple to
apply and adequate for our purposes.

Just because a model is identifiable does not mean it will yield parameter esti-
mates that are useful in practice. For each model and reduced tagging design found
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to be identifiable we conducted 500 simulations using random data sets. Again, the
parameter values used to generate the data were the same as in the Model perfor-
mance section, except that the distribution of the 4500 releases depended on the
reduced tagging design (as described above). The percent relative biases and CVs
of the parameter estimates were calculated and compared with the results from the
equivalent model in the Model performance section to see how much the estimates
were degraded by using a reduced tagging design.

2.3.3 Comparison of Estimates from Spatial and Non-spatial Models

In many situations, the population-wide estimates (i.e., over all regions) of mortality
rates and abundance are of as much, if not more, interest than the regional esti-
mates. Although such population-wide estimates can be obtained using a non-spatial
model, we would expect them to be biased if spatial heterogeneity exists. To inves-
tigate, we compared population-wide estimates of mortality rates and abundance
obtained from regional data analyzed using the spatial BP model with those obtained
from pooled data (pooled across regions) analyzed using the non-spatial BP model
of Polacheck et al. (2006a).

Simulations were carried out using model 1 and the standard tagging design of
releases in all regions and years. Model 1 was chosen to maximize the number of
parameters that vary by region; otherwise it would not be as important to use a spatial
model (in fact it would be unnecessary if none of the parameters varied by region).

We again considered a tagging experiment for a single cohort of fish with I =
3 release years, J = 3 recapture years, and K = 3 regions. Six scenarios were
investigated (Table 2). Scenarios 1–5 have different sets of parameter values for the
mortality and movement parameters; all have 500 releases in each year and region.
Scenario 6 has the same parameter values as scenario 1, but instead of having equal
releases in all years and regions, has releases distributed across years and regions in
proportion to abundance. In addition to the values specified in Table 2, all scenarios
use Pk

1 = k × 100000, λk
j = 1.0 and υk

j = 0.2. Qualitative descriptions of the
scenarios are as follows: scenario 1 has low, symmetric movement probabilities
between regions; scenario 2 has high, symmetric movement probabilities between
regions; scenario 3 has no direct movements between regions 1 and 3 and a net
movement to region 3 over time; scenario 4 has mortality rates (fishing and natural)
that vary with region but not year; in contrast, scenario 5 has mortality rates that vary
with year but not region; finally, scenario 6 has tag releases that are in proportion to
regional abundance. Note that symmetric movement probabilities mean that, for a
given year, the movement probability from region k to k′ is equal to the movement
probability from region k′ to k.

For each scenario, we generated 500 tag return and catch data sets and fitted the
spatial BP model to get estimates of year- and region-specific M’s, year- and region-
specific F’s, region-specific P1’s and year- and region-specific π ’s. We also pooled
the tag-recovery data and the catch data over regions and analyzed the pooled data
using the non-spatial BP model to get estimates of year-specific M’s, year-specific
F’s, and total P1 (i.e., population-wide estimates rather than regional estimates).
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Table 2 Parameter values used for the natural mortality rates (M), fishing mortality rates (F), move-
ment probabilities (π ), and numbers of releases (N) in the six scenarios comparing population-wide
parameter estimates from the spatial and non-spatial Brownie-Petersen models

Scenario

Year Region 1 2 3 4 5 6

M 1 1 0.2 0.2 0.2 0.1 0.3 0.2
1 2 0.3 0.3 0.3 0.2 0.3 0.3
1 3 0.4 0.4 0.4 0.3 0.3 0.4
2 1 0.1 0.1 0.1 0.1 0.2 0.1
2 2 0.2 0.2 0.2 0.2 0.2 0.2
2 3 0.3 0.3 0.3 0.3 0.2 0.3

F 1 1 0.05 0.05 0.05 0.05 0.1 0.05
1 2 0.15 0.15 0.15 0.15 0.1 0.15
1 3 0.25 0.25 0.25 0.25 0.1 0.25
2 1 0.25 0.25 0.25 0.05 0.2 0.25
2 2 0.25 0.25 0.25 0.15 0.2 0.25
2 3 0.25 0.25 0.25 0.25 0.2 0.25
3 1 0.45 0.45 0.45 0.05 0.3 0.45
3 2 0.25 0.25 0.25 0.15 0.3 0.25
3 3 0.05 0.05 0.05 0.25 0.3 0.05

π 1 1→2 0.1 0.3 0.3 0.1 0.1 0.1
1 1→3 0.1 0.3 0 0.1 0.1 0.1
1 2→1 0.1 0.3 0.15 0.1 0.1 0.1
1 2→3 0.1 0.3 0.3 0.1 0.1 0.1
1 3→1 0.1 0.3 0 0.1 0.1 0.1
1 3→2 0.1 0.3 0.15 0.1 0.1 0.1
2 1→2 0.05 0.15 0.3 0.05 0.05 0.05
2 1→3 0.05 0.15 0 0.05 0.05 0.05
2 2→1 0.05 0.15 0.15 0.05 0.05 0.05
2 2→3 0.05 0.15 0.3 0.05 0.05 0.05
2 3→1 0.05 0.15 0 0.05 0.05 0.05
2 3→2 0.05 0.15 0.15 0.05 0.05 0.05

N 1 1 500 500 500 500 500 378
1 2 500 500 500 500 500 756
1 3 500 500 500 500 500 1134
2 1 500 500 500 500 500 343
2 2 500 500 500 500 500 474
2 3 500 500 500 500 500 551
3 1 500 500 500 500 500 249
3 2 500 500 500 500 500 300
3 3 500 500 500 500 500 314

To compare parameter estimates from the spatial and non-spatial models, it is
first necessary to define population-wide parameters for the spatial model. The
population-wide year 1 abundance is simply the sum of the regional year 1 abun-
dance parameters, which we denote by P•

1 = ∑K
k=1 Pk

1 . For the population-wide
fishing and natural mortality rates, we are seeking average rates across all regions,
for which the definitions are not as clear-cut. Suppose we define the average fishing
mortality rate in year j, F̄j , and average natural mortality rate in year j, M̄ j , as the
parameters satisfying

P•
j+1 = P•

j exp
(− (

F̄j + M̄ j

))
(5)
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where P •
j denotes the total number of fish at the start of year j over all regions.

If Pk
j denotes the number of fish in region k at the start of year j, and Pk

j+ denotes
the number of fish in region k at the end of year j, then

Pk
j+ = Pk

j exp
(− (

Fk
j + Mk

j

))
. (6)

Now, using the fact that P•
j+1 =

K∑
k=1

Pk
j+, i.e., the total number of fish at the start

of year j + 1 is equal to the total number of fish at the end of year j (fish may have
moved between regions, but none have died), and substituting from (5) and (6), gives

P•
j exp

(− (
F̄j + M̄ j

)) =
K∑

k=1

Pk
j exp

(− (
Fk

j + Mk
j

))
. (7)

This type of reasoning is called a counting argument.
By applying an analogous counting argument on the number of fish caught in

each year, as opposed to abundance of fish, we obtain the equation

P•
j

F̄j

F̄j + M̄ j

{
1 − exp

(− (
F̄j + M̄ j

))} =
K∑

k=1

Pk
j

Fk
j

Fk
j + Mk

j

{
1 − exp

(− (
Fk

j + Mk
j

))} (8)

We now have two equations, (7) and (8), which can be solved numerically for F̄j

and M̄ j .
For each simulation scenario, we calculated the true values of F̄j and M̄ j using

the true values of Fk
j , Mk

j and P k
j in (7) and (8). Note that to do so involved first

calculating the true P k
j values iteratively. The same procedure was used to calculate

estimated values of F̄j and M̄ j for each simulation run within a scenario, except
using the estimated values of Fk

j , Mk
j and P k

j in (7) and (8) instead of the true
values.

It is worth noting that if we had considered a model for which natural mortality
in a given year is constant across regions (i.e., models 2, 3, 5 and 6), then (7) would
reduce to

F̄j = − log

(
1

P•
j

K∑
k=1

Pk
j exp

(−Fk
j

))

= − log

(
1∑K

k=1 Pk
j

K∑
k=1

Pk
j exp

(−Fk
j

))
.
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This is simply the weighted average of the regional fishing mortality rates, with
the weights equal to the regional population sizes. A slightly different value for the
average fishing mortality would be obtained using (8). This reflects the fact that
the population dynamics have been modeled in terms of exponential and competing
natural and fishing mortality rates (i.e., both occur simultaneously and continuously
throughout the year).

3 Results

3.1 Model Performance

We first consider the results from the simulations using 500 tag releases per year
and region. For all six models, the parameters estimates were essentially unbi-
ased, with the largest percent relative bias for any parameter being less than 4%
in magnitude. For model 1, the CVs of the natural mortality estimates were quite
high (0.36–0.50); however, the CVs of the other parameter estimates were much
lower (Table 3). In particular, the fishing mortality estimates had CVs ∼0.10, and
the movement probability and abundance estimates had CVs ∼0.20. By restricting
natural mortality rates to be constant across regions (model 2), the CVs for these
parameters were reduced by roughly 30%, from an average of 0.36 in year 1 to 0.26
and from an average of 0.48 in year 2 to 0.31 (Table 3). Further restricting fishing
mortality to be constant across years (model 3) reduced the CVs from ∼0.10 to
0.06; while this may be a small absolute change, it represents a 40% improvement.
Restricting movement probabilities to be the same across regions (model 4) led to
∼30% reductions in the CVs for these parameters. Interestingly, restrictions on a
given type of parameter (e.g., natural mortality) led to significant improvements in
the precision of parameters of that type, but to very small improvements in param-
eters of other types (the only exception being that restrictions on fishing mortality
led to a noticeably smaller CV for natural mortality in year 2). This was true even
in models with restrictions on more than one parameter type (models 5 and 6); for
example, even when constraints were placed on both natural mortality and move-
ment (model 5), the fishing mortality estimates were only slightly improved and the
abundance estimates were unaffected. It is worth noting that the precision of the
abundance estimates showed no discernible change in any of the models.

Overall, the CVs of the parameter estimates were better than might have been
expected, especially for model 1 with so many parameters. The level of precision
that can be achieved depends largely on the number of tag returns, which is deter-
mined by the number of releases, the natural mortality and fishing mortality rates,
and the tag reporting rates. The values used for these parameters in the above
simulations resulted in higher tag returns than may be realistic for many tagging
experiments. Thus, we repeated the same set of simulations for a situation with
significantly lower tag returns, which we achieved by reducing the number of
releases to 100 in each year and region (for a total of 900 tags). As expected, the
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Table 3 Coefficient of variation (i.e., standard deviation/mean) of parameter estimates obtained
from simulations using models 1 to 6 (500 runs per model). Qualitative descriptions of models are
given in Table 1; refer to text for parameter values used to generate data

Model

Year Region 1 2 3 4 5 6

M 1 1 0.36 0.26 0.23 0.34 0.24 0.22
2 1 0.49 0.31 0.19 0.45 0.31 0.17
1 2 0.37 – – 0.38 – –
2 2 0.50 – – 0.45 – –
1 3 0.37 – – 0.38 – –
2 3 0.46 – – 0.48 – –

F 1 1 0.09 0.09 0.06 0.10 0.09 0.06
2 1 0.10 0.09 – 0.09 0.08 –
3 1 0.12 0.11 – 0.12 0.11 –
1 2 0.09 0.10 0.06 0.10 0.09 0.06
2 2 0.09 0.09 – 0.09 0.08 –
3 2 0.13 0.11 – 0.12 0.11 –
1 3 0.09 0.09 0.06 0.11 0.10 0.05
2 3 0.10 0.10 – 0.09 0.08 –
3 3 0.12 0.11 – 0.12 0.10 –

π 1 1→2 0.20 0.22 0.21 0.14 0.14 0.13
1 1→3 0.22 0.21 0.20 0.14 0.14 0.14
1 2→1 0.21 0.21 0.20 0.14 0.14 0.14
1 2→3 0.22 0.21 0.20 0.15 0.14 0.13
1 3→1 0.22 0.21 0.19 0.15 0.14 0.13
1 3→2 0.21 0.20 0.18 0.14 0.14 0.14
2 1→2 0.21 0.22 0.20 – – –
2 1→3 0.21 0.21 0.20 – – –
2 2→1 0.20 0.20 0.20 – – –
2 2→3 0.20 0.20 0.20 – – –
2 3→1 0.21 0.21 0.20 – – –
2 3→2 0.21 0.21 0.20 – – –

P 1 1 0.20 0.19 0.20 0.20 0.21 0.19
1 2 0.19 0.19 0.20 0.19 0.20 0.19
1 3 0.20 0.20 0.20 0.20 0.19 0.19

M = natural mortality; F= fishing morality; π = movement probability; P = abundance.

precision of the estimates became much poorer, but more interesting and relevant
is that the relative changes were quite consistent. The CVs of the natural mortality,
fishing mortality and movement estimates averaged 2.1 times larger over all models,
ranging from 1.7 to 2.4 for the natural mortality estimates, from 1.8 to 2.6 for the
fishing mortality estimates, and from 2.0 to 2.4 for the movement estimates. Based
on the variance formula for multinomial counts, a decrease in sample size of five
times increases the CV of the data by

√
5 = 2.2 times, which is very close to the

observed increase in the parameter CVs. To verify this pattern we ran the simula-
tions again with releases increased by three times (from 500 to 1500 in each year
and region), and found, as would be predicted, that the CVs of the natural mortality,
fishing mortality and movement estimates averaged 1.7 (= √

3) times smaller. We
note that the CVs of the abundance estimates were not affected to the same degree
(they averaged 1.2 times greater with releases reduced by 5 times, and 1.1 times
smaller with releases increased by 3 times). This is because changing the number
of tag releases (i.e., the number of tag returns) does not have a direct effect on
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the catch component of the likelihood, from which abundance is estimated; these
estimates are much more influenced by the variance of the catch data.

3.2 Parameter Identifiabiltity Under Reduced Tagging Designs

Under reduced design I (tagging only in region 1 each year), none of the models
were found to be identifiable. However, under reduced tagging design II (tagging in
all regions in the first year, then only in region 1 thereafter), models 3, 5 and 6 were
all found to be identifiable. Moreover, for model 2, all of the true parameter values
were returned, but the estimates of M2, F2

3 , F3
3 and all of the year 2 movement prob-

abilities had CVs over 100% (the maximum being 342% for M2). In cases where the
models were clearly unidentifiable, the CVs for most parameters were huge (over
10,000%) or else not even attainable due to the Hessian matrix not being positive
definite. This suggests that model 2 is in fact identifiable, but that the likelihood
surface has an almost flat ridge. Thus, we concluded that the only two models not
identifiable under reduced tagging design II were those for which natural mortality
varied by both year and region (models 1 and 4).

Given the above identifiability results, we ran 500 simulations using random data
sets for each of models 2, 3, 5 and 6 under reduced tagging design II. For models 3
and 6, all parameters were estimated with less than 3% relative bias. For models 2
and 5, which differ from models 3 and 6 in that they have year- and region-specific
fishing mortality rates (as opposed to just region-specific), the only significant biases
occurred for F2

3 and F3
3 , both being ∼18% for model 5 and much higher (∼75%)

for model 2. Otherwise, all biases in these two models were less than 10% and
the majority less than 5%. (Note that F2

3 and F3
3 were the two fishing mortality

parameters in model 2 that had CVs over 100% in the simulations to determine
identifiability.) The CVs of the parameter estimates are presented in Table 4. For
model 6, which is the most constrained model, the CVs of the parameter estimates
were as good as those obtained with releases in all regions and years (compare
Table 4 with Table 3). For models 2, 3 and 5, many parameters had CVs compa-
rable to those obtained with the full tagging design, but there were some parameters
with noticeably higher CVs. Generally, the parameters that were estimated poorly
were logical when bearing in mind that tagging did not occur in regions 2 and 3
in years 2 and 3. For instance, in the models where fishing mortality varied with
year and region (models 2 and 5), the fishing mortality estimates in regions 2 and 3
in years 2 and 3 had high CVs (0.36–0.67). This, in turn, is likely the cause of the
high CVs in the natural mortality estimates, since estimates of natural mortality and
fishing mortality are known to be highly correlated (e.g., Polacheck et al. 2006a).
As another example, in the models with year-dependent movement probabilities
(models 2 and 3), the year 2 movement probability estimates had very high CVs
(0.59–0.94), and particularly so for movements out of regions 2 and 3 (where no
tagging took place in year 2).

It is important to note that the identifiability results are dependent on the number
of release and recapture years, the number of regions, and the true parameter values
(in particular how much contrast there is in the data). We considered a number of
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Table 4 Coefficient of variation (i.e., standard deviation/mean) of parameter estimates obtained
from simulations using reduced tagging design II (tagging in all regions in year 1, then only in
region 1 thereafter). Shown are the results for all models found to be identifiable (500 runs per
model). Qualitative descriptions of models are given in Table 1; refer to text for parameter values
used to generate data

Model

Year Region 2 3 5 6

M 1 1 0.49 0.23 0.40 0.26
2 1 1.09 0.19 0.59 0.19
1 2 – – – –
2 2 – – – –
1 3 – – – –
2 3 – – – –

F 1 1 0.08 0.05 0.08 0.04
2 1 0.13 – 0.08 –
3 1 0.13 – 0.11 –
1 2 0.08 0.08 0.08 0.08
2 2 0.41 – 0.36 –
3 2 0.67 – 0.54 –
1 3 0.08 0.07 0.08 0.07
2 3 0.39 – 0.36 –
3 3 0.67 – 0.51 –

π 1 1→2 0.28 0.16 0.29 0.11
1 1→3 0.27 0.16 0.29 0.11
1 2→1 0.20 0.15 0.19 0.13
1 2→3 0.30 0.15 0.31 0.14
1 3→1 0.19 0.15 0.19 0.14
1 3→2 0.31 0.15 0.31 0.14
2 1→2 0.62 0.17 – –
2 1→3 0.61 0.16 – –
2 2→1 0.77 0.61 – –
2 2→3 0.94 0.59 – –
2 3→1 0.79 0.59 – –
2 3→2 0.93 0.59 – –

P 1 1 0.19 0.20 0.20 0.18
1 2 0.20 0.19 0.20 0.19
1 3 0.20 0.20 0.19 0.18

M = natural mortality; F = fishing morality; � = movement probability;
P = abundance.

scenarios with these factors varied, and although a more thorough investigation is
needed before drawing any conclusions, we could not determine an obvious pattern.
A researcher would need to investigate his or her specific situation, in a similar
manner as was done here, to determine whether a reduced tagging design would be
viable in that situation.

3.3 Comparison of Population-Wide Estimates from Spatial
and Non-spatial Models

A comparison of the percent relative biases in the population-wide parameter esti-
mates obtained from the spatial versus non-spatial BP model is presented (Fig. 1;
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Fig. 1 Comparison of percent relative biases and coefficients of variation of the population-
wide parameter estimates obtained using the spatial ( filled circles) versus non-spatial (crosses)
Brownie–Petersen model. Results are shown, from top to bottom, for the six scenarios specified in
the text and in Table 2. Mj denotes the average (population-wide) natural mortality rate in year j;
Fj denotes the average fishing mortality rate in year j; P denotes total abundance in year 1

left column). The parameter estimates from the spatial model were unbiased in all
scenarios. In scenarios 1–4, several of the parameter estimates from the non-spatial
model were biased, with the size and direction of the bias depending on the param-
eter and the scenario. The biases tended to be 10–20% in magnitude, but were higher
than 30% in a couple of cases (e.g., for M2 in scenario 1 and F3 in scenario 3). The
only difference between scenarios 1 and 2 is that scenario 2 has higher movement
probabilities and thus more complete mixing of tagged and untagged fish across the
population; therefore, it is not surprising that the same parameters were biased in
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both scenarios, but that these biases were smaller in scenario 2. Scenario 3, which
differs from scenario 1 in its movement probabilities (with net movement towards
region 3), did not have the same large biases in the natural mortality estimates as
scenario 1, but instead had a high bias in F3. Scenario 4, which only differs from
scenario 1 in the values used for the fishing mortality rates (still varying with region
in both cases), had positive rather than negative biases in the natural mortality esti-
mates, and was the only scenario to show a small bias in the abundance estimate.
From these results, we conclude that high biases can occur from applying a non-
spatial model when a spatial one is more appropriate, but that the nature of the
biases is not predictable.

For scenarios 5 and 6, the non-spatial model produces unbiased estimates of all
parameters. Scenario 5 has mortality rates that are constant across regions, which
means no spatial heterogeneity; scenario 6 has tag releases in proportion to regional
abundance, which ensures complete mixing. It was therefore expected that these
scenarios should give unbiased results, as we have verified. Note that the movement
probabilities chosen for these scenarios were the same as scenario 1, because these
were seen to produce some large biases. We wanted to ensure that scenarios 5 and
6 would produce unbiased estimates even under “worst-case” conditions.

A comparison of the CVs of the population-wide parameter estimates obtained
from the spatial versus non-spatial model is also presented (Fig. 1; right column).
The CVs that resulted from both models were very similar, with the exception of
year 2 natural mortality in scenario 3. This is of particular interest for scenarios 5
and 6, for which the non-spatial model was capable of producing unbiased estimates,
because it suggests that there is almost no loss in precision from using a spatial anal-
ysis to obtain population-wide parameter estimates even when a non-spatial analysis
would be sufficient. Thus, even though the CVs of the region-specific estimates from
the spatial model are larger than the CVs of the population-wide estimates from
the non-spatial model (as would be expected for a model with more parameters),
when these region-specific estimates are averaged (or summed for abundance) to
give population-wide estimates, they are virtually as precise as those derived from
the non-spatial model.

4 Discussion

4.1 Model Assumptions: Plausibility, Effects of Violations
and Possible Solutions

The model requires a number of assumptions that may not be satisfied in a field
tagging experiment. The assumption that fish only move between regions at the
end of each time period will not be exactly true; however, for many populations,
large scale movements occur only seasonally and over relatively short time periods.
Furthermore, Hestbeck (1995) investigated how much violations of the assumption
of end-of-year movements can bias the parameter estimates in a capture–recapture
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setting. He found that biases in the movement estimates were variable and could
be high in some situations, but that biases in the survival and capture rate estimates
were consistently small. Nevertheless, it would be possible to develop the model
in terms of an alternative parameterization for the movement process, such as at
the start of each year or continuous throughout each year, if this was considered
more appropriate (e.g., Beverton and Holt 1957; Joe and Pollock 2002). Alternative
assumptions regarding the dependency of movements between years that allow for
some degree of memory are also possible (e.g., Brownie et al. 1993; Appendix 11
of Polacheck et al. 2006b).

Tag shedding and tag-induced mortality may not be negligible, in which case
additional parameters and additional data (e.g., from double tagging) can be intro-
duced into the model to account for them. Much work has been done on approaches
for estimating these quantities (e.g., Beverton and Holt 1957; Kirkwood and Walker
1984; Barrowman and Myers 1996) and incorporating them into non-spatial tag-
recovery models (e.g., Seber and Felton 1981; Wetherall 1982; Leigh et al. 2006;
Appendix 15 of Polacheck et al. 2006). These approaches could be extended in a
straightforward manner to the spatial case.

Although the model, as presented, assumes that tag reporting rates are known,
their estimation can be incorporated directly provided data for doing so are avail-
able. For example, if reporting rate data are available that are independent of the
tag-recovery and catch data (such as data from planted tag experiments), then a
likelihood can be developed for these data and simply multiplied to the tag-recovery
and catch likelihoods, analogously to the way it was done in Polacheck et al. (2006a)
for the non-spatial BP model. If the reporting rate data are not independent of the
tag-recovery and catch data, such as when observers are placed on a portion of
fishing vessels, then the likelihoods for the tag-recovery and catch data need to be
modified; refer to Eveson et al. (2007) for details in the non-spatial case.

When tagging is specific to cohorts, the release ages (and thus cohorts to which
fish belong) are assumed to be known without error. This assumption should not
bias the parameter estimates as long as the distribution of release ages is not biased.
When ages are determined from scales, biases are not expected; however, when ages
are determined from length and a given age-length relationship, biases can exist.
Investigations with a non-spatial Brownie model suggest that in many situations
the effects of aging errors, in terms of biases in the mortality rate estimates, will
be minimal (Appendix 8 of Polacheck et al. 2006b). However, even if no biases
are incurred from assuming the release ages are known, the standard errors of the
parameter estimates derived from the model (i.e., from the Hessian matrix) will be
too small. If aging errors are considered a significant problem, then the standard
errors could be calculated using an alternative approach, such as bootstrapping.

The assumption that the catch data for a cohort are independent between years
and regions should be reasonable for many fisheries, especially those in which catch
samples are collected in each year and region. However, if more than one cohort
is being modeled, then catch data from multiple ages within the same year will
enter the model, and aging errors within a year will be correlated across ages. If
the correlation is strong, a more sophisticated error structure for the catch data
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than independent Gaussians may be required. The appropriate error structure will
depend on the sampling design, but possibilities include multinomial within a year
or multivariate normal.

Finally, the model makes the common assumption that the tag-recovery data
are multinomially distributed. A recognized issue with non-spatial analyses of tag-
recovery data is that the data will exhibit more variation than a multinomial model
predicts (i.e., will be overdispersed multinomial) due to spatial heterogeneity and
incomplete mixing. Although the spatial model is intended to account for much
of this, some overdispersion is still likely to exist due to the patchy distribution
(e.g., schooling nature) of many fish species. If overdispersion exists, the estimates
derived from the multinomial model should still be unbiased, but the model-based
standard error estimates will be too small. Again, bootstrapping is one possible
method for obtaining more realistic standard errors. Another possibility is to esti-
mate the amount of overdispersion from the model residuals and inflate the model-
based standard error estimates accordingly. Unfortunately, the amount by which to
inflate the estimates is not simple with such a complicated model; this issue has
been investigated in non-spatial versions of the BP model (Polacheck et al. 2006a;
Eveson et al. 2007).

4.2 Summary and Conclusions

We have shown how the BP model of Polacheck et al. (2006a) can be expanded
to incorporate a discrete spatial structure. Using simulations, we demonstrated
that when tagging is conducted in all regions and years, this model is capable
of providing estimates of abundance by region, and of natural mortality, fishing
mortality and movement probabilities by both year and region. The precision of
the estimates will depend on several factors, including the model parameterization,
the true parameter values (and their implication for the number of tag returns), and
the parameter being considered. However, our simulation results suggest that high
precision can be achieved in many situations. In relative terms, we found precision
to be consistently highest for the fishing mortality estimates, lowest for the natural
mortality estimates, and somewhere in between for the movement probabilities and
abundance estimates.

An important and practical finding that emerged from our investigations is that,
although tagging in only one region failed to give satisfactory results in any of
the models we considered, tagging in only one region after the first year of the
experiment is a viable option in many situations. In particular, the only models
for which all parameters were not identifiable were ones where natural mortality
varied by region as well as year (models 1 and 4); it seems plausible for natural
mortality to be similar across regions and/or a given year (i.e., age for a cohort). Not
only were the parameters identifiable for many models using this reduced tagging
design, but, more importantly, good accuracy and precision could often be achieved.
Not needing to release tags in all regions beyond the first year could be highly bene-
ficial in terms of making a tagging experiment viable and more cost-effective. For
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example, in many instances it may be logistically difficult and/or highly expensive
to tag fish in some regions, such as high seas regions of tuna longline fisheries.

We should note that there are specific situations with highly structured move-
ment dynamics in which tagging in only one region can produce reliable results.
This was true, for example, in the version of the spatial BP model modified to have
movement dynamics representative of juvenile SBT (see Appendix 12 of Polacheck
et al. 2006b). Briefly, this model incorporated a seasonal migration pattern, with fish
migrating from three offshore regions to a single inshore region at the end of winter,
then migrating back to the offshore regions at the end of summer.

Our investigation showed that, if population-wide estimates of mortality rates
and abundance are of primary interest, then there are situations in which using a
non-spatial analysis would be sufficient. This will obviously be true when neither
fishing mortality nor natural mortality varies across the spatial distribution of the
population of interest (i.e., when there is no spatial heterogeneity in survival and
capture probabilities). Similarly, if movement probabilities are very high, little or
no bias will result from a non-spatial analysis. However, the researcher is unlikely
to have knowledge about whether these conditions apply prior to conducting the
tagging experiment. Also, it seems unlikely for fishing mortality to be spatially
constant because fishing vessels would be expected to concentrate their effort in
areas of high density. More interesting is that a non-spatial model also provides
unbiased estimates when spatial heterogeneity exists among discrete regions if the
distribution of tag releases across these regions is in proportion to abundance. In
practice, this would be difficult to achieve because the researcher would need to
have a priori information on the relative abundances by region, and also because
tagging the necessary numbers of animals may not be feasible in some regions.
Spreading tagging effort randomly throughout the entire area might be one way to
achieve this, but this is likely to be inefficient, with much effort spent attempting
to tag fish in areas of low abundance. Also, catchability (i.e., the effectiveness of
the sampling gear to catch fish that are present) is likely to differ spatially with
differences in the physical and biological environment. Nevertheless, the results do
suggest that spreading tagging effort spatially should help to minimize biases.

In summary, there are situations in which a non-spatial model can provide unbi-
ased estimates of population-wide mortality rates and abundance; however, they all
require some knowledge about the population and fishery dynamics that is unlikely
to be available prior to conducting the experiment. The biases that result from using
a non-spatial model when one of these situations does not apply can be large. Our
simulation results show there is almost no cost in terms of precision in using a
spatial analysis to obtain population-wide estimates even when a non-spatial anal-
ysis would be sufficient. Thus, in order to guard against potential biases, it is recom-
mended that a tagging experiment involving a population with a wide geographic
distribution be designed and implemented so that the results allow for a spatial
analysis to be conducted. Moreover, the region-specific estimates obtained from a
spatial analysis can provide insights and improved understanding of the underlying
biology of the population being studied. This in turn can have important implications
for conservation and management.
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Gaussian Semiparametric Analysis Using
Hierarchical Predictive Models

Daniel Fink and Wesley Hochachka

Abstract The Hierarchical Predictive Model (HPM) is a semiparametric mixed
model where the fixed effects are fit with a user-specified non-parametric compo-
nent. This approach extends current spline-based semiparametric mixed model
formulations, allowing for more flexible nonparametric estimation. Greater adapt-
ability simplifies model specification making it easier to analyze data sets with large
numbers of predictors. Greater automation also extends the scope of exploratory
analyses that may be performed with mixed models. Using a HPM, the analyst
may select the predictive model to best suit their needs, exploiting the strengths of
currently available predictive methods. A simulation study is used to demonstrate
the advantages of accounting for known hierarchical structure in predictive models
and to illustrate the adaptability of current decision-tree based predictive models. A
HPM of the relative abundance of the North American House Finch (Carpodacus
mexicanus) is used to demonstrate exploratory analysis with a real data set.

1 Introduction

Hierarchical models have emerged as the preferred tool for analyzing large compli-
cated data sets. Multifaceted processes can be factored into a series of simpler,
conditionally independent sub-processes and a wide variety of parametric models
can be incorporated. Bird monitoring data lend themselves to hierarchical treat-
ment because data arise as the result of a stochastic observational process condi-
tional on spatio-temporally varying biological processes. By separating these two
processes, researchers have been able to address a number of important compli-
cations that arise in the analysis of ecological monitoring data. For example,
parametric models have been developed to account for imperfect capture of
species (e.g., Jolly 1965; Seber 1965; Amstrup et al. 2006), varying detection
during gathering of observational data (MacKenzie et al. 2002; Gelfand et al.
2005), observer-specific effects such as mis-identifications or incorrect counts
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(e.g., Geissler and Sauer 1990; Thogmartin et al. 2004), and spatial correlation
(Thogmartin et al. 2004; Wikle 2003; Wikle and Hooten 2006).

However, for many problems there is insufficient a priori knowledge to justifi-
ably specify parametric models at all stages of the hierarchy. Often, it is not known
which predictors should be included in a model. Even when important predictors
have been identified, an appropriate functional form for their inclusion is unknown.
In either case, the ability to specify a fully parametric model would still be desir-
able under many circumstances. Efficient exploratory tools are needed to discover
patterns in data to account for and describe potentially complicated relationships
between predictors and response. Exploratory analyses are an important means of
hypothesis generation, and, ultimately, enable the specification of better parametric
models.

Semiparametric models use as much parametric structure as is warranted by
subject-area knowledge while relying on nonparametric techniques to automati-
cally account for additional predictors and processes that are less well understood.
This is a hybrid modeling strategy where the nonparametric components function
as exploratory tools, automatically detecting and fitting patterns in the data while
simultaneously taking into account parametric structure. Several successful semi-
parametric techniques have been built upon the Linear Mixed Model (LMM). These
methods include the spline-based methods of Ruppert et al. (2003), Wood (2006)
and Gu (2002). Each of these spline-based models can adapt over sums of smooth
low-dimensional predictor functions while inheriting a well developed set of infer-
ential tools from the LMM. Ideally, we would like to extend these methods to deal
with large sets of predictors by utilizing nonparametric methods capable of auto-
matically identifying important predictors and interactions, including high order
interactions among predictors, and functional forms of relationships.

Within the last decade, data mining and machine learning techniques have
emerged as some of the most successful tools for modeling complex, multi-
dimensional data (Hand et al. 2001). These techniques are sophisticated nonpara-
metric tools for data exploration with a focus on producing accurate predictions.
Data mining methods include neural networks, decision trees, and support vector
machines. Many of these methods have been gaining recognition within the ecolog-
ical community (De’ath and Fabricius 2000; Elith et al. 2006; Hochachka et al.
2007). These methods are capable of sifting through large number of predictors to
identify important ones, their interactions, and functional forms (Hastie et al. 2001).
The weakness of these methods are their limited ability to incorporate prior infor-
mation, especially patterns of correlation. Most current implementations of these
tools assume independence among the data.

The purpose of this article is to develop a modeling framework that combines
the complementary strengths of the LMM and modern nonparametric predictive
models. We call this framework the Hierarchical Predictive Model (HPM). It is a
semiparametric mixed model where the fixed effects are fit with a user-specified
predictive model. We do this by fitting the HPM as a Bayesian model using a simple
Gibbs sampler. The Gibbs sampler allows us to iteratively update fixed and random
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effects from nonparametric and parametric models, respectively. Taking an Empir-
ical Bayes approach, we estimate the conditional fixed effects with the nonpara-
metric predictive model. Thus, a wide variety of predictive models may be used
to explore the fixed effects. Using data mining and machine learning methods, the
HPM extends current spline-based semiparametric formulations, allowing for more
flexible nonparametric estimation. Greater adaptability simplifies model specifica-
tion making it easier to analyze data sets with large numbers of predictors. This will
be of increasing importance as larger data sets become available to ecologists.

As a hybrid methodology, the HPM draws upon several other modeling frame-
works. In Section 2 we review these modeling frameworks. The HPM and its fitting
algorithm are developed in Section 3. In Section 4 we present results from a simu-
lation study to demonstrate the advantages of accounting for known hierarchical
structure into predictive models and to illustrate the adaptability of current decision-
tree based predictive models. In Section 5, a HPM of the relative abundance of the
North American House Finch is used to demonstrate an exploratory analysis with a
real data set. We conclude with a brief discussion.

2 The Models

In this section we review several modeling frameworks developed for correlated
and uncorrelated observations. Emphasis is placed on brief descriptions of the
model frameworks noting their scope of application, strengths, and limitations. We
distinguish between parametric and nonparametric frameworks and note how their
strengths make them well suited for confirmatory and exploratory analysis, respec-
tively.

2.1 Predictive Models

We use the term “predictive model” to refer to any model that extracts informa-
tion from a set of predictors and independent responses to make future predic-
tions. Let yi , i = 1, . . . , N be the responses each associated with p predictors
xi = [

x1,i , . . . , x p,i
]
. It is assumed that each observation, yi , arises as an inde-

pendent realization from some true but unknown function, F(xi ) that maps xi to
yi . The goal of predictive modeling is to use the data to estimate F(x) while mini-
mizing the expected value of some specified loss function. Predictive models have
been developed in various disciplines with their own unique sets of terminology. In
statistics, this predictive problem is known as regression. In the machine learning
and data mining communities it is known as the supervised learning problem and
the term “regression” refers more specifically to supervised learning problems with
a continuous response.

In this paper we will restrict our attention to normally distributed observations
and write y = F(X ) + ε where y is the n × 1 vector of observations and X is the n
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× p design matrix of predictors. The n ×1 error vector, ε, is assumed arise from an
uncorrelated normal distribution with zero mean and variance �2.

2.1.1 Parametric Predictive Models

Parametric models have an explicit parametric form where model parameters
describe a known or hypothesized process of interest. For example, consider the
classic normal linear model in statistics, y = Xβ + ε, where β is a p × 1 vector of
parameters. The conditional mean of y is modeled parametrically as a linear combi-
nation of predictor effects. Parametric modeling requires enough knowledge about
the process being investigated to specify the model. Constructing good parametric
models can take considerable time and effort. The strengths of parametric models
are the ease of interpretation and the availability of inferential tools. A well devel-
oped body of statistical methods, both Frequentist and Bayesian, can be used to
make inferences about the parameters of interest and about predicted observations.
For this reason, parametric models are most often used to make confirmatory infer-
ences.

2.1.2 Nonparametric Predictive Models

Nonparametric models are often described as models without parameters or without
parameters of direct inferential interest. Here, we use the term “nonparametric” to
describe predictive models that automatically adapt to patterns in data – this being
the essential distinguishing quality. Adaptive models are designed to automatically
discover patterns. This makes them especially well suited for exploratory analysis.
The more adaptive the methodology, the greater the scope of exploration.

Generalized Additive Models (GAMs) (Buja et al. 1989; Hastie and Tibshirani
1990; Wood 2006) are a popular class of nonparametric statistical models for repre-
senting a response as the sum of low-dimensional smooth functions of predictors.
The simple GAM:

y = f1(x1) + ε,

can be used to detect and describe nonlinear functional effects of x1. This GAM can
be extended to simultaneously estimate smooth joint effects of x2 and x3 by adding
an appropriate term, like a tensor plate spline, to yield,

y = f1(x1) + f2(x2, x3) + ε.

This GAM makes 3 assumptions about the systematic effects of the predictors on
the response; (1) the functional effects f1 and f2 vary smoothly with the predictor
values, (2) predictor x1 does not interact with x2 or x3, and (3) predictors x2 and
x3 are allowed to interact. This GAM can be used to detect if there is a 2-way
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interaction among the user specified pair of predictors. Conceptually, one can extend
this idea using higher order terms to automatically adapt to more complex multi-
variate functional forms.

Decision Trees were designed to automatically fit high-dimension multivariate
functional forms. Using a strategy of binary recursive partitioning, these models
adapt over high dimensional tensor-product predictor spaces to fit models with
possibly high-order interactions. Thus, a decision tree model of the form

y = f (x1, . . . , x p) + ε

can be used to investigate numerous functional relationships. Predictive experiments
can be used to extract information for identifying important predictors, describing
their effects, and identifying interactions within sets of predictors; see Sections 4
and 5.

Nonparametric models vary widely in the type of adaptation they do and the
strategies used to achieve them. Many highly-adaptive nonparametric predictive
methods have been developed within the data mining and machine learning commu-
nities where problems are characterized by very large data sets, both in terms
of the number of responses (N) and the number of predictors (p). Consequently,
these methods are designed to be very efficient, both in terms of analyzing large
numbers of responses as well as extracting predictive information from large sets of
predictors. These methods include decision trees (e.g., Breiman et al. 1984), neural
nets (e.g., Mitchell 1997), Support Vector Machines (SVMs) (e.g., Cristianini and
Shawe-Taylor 2000), and ensemble variants of tree-based methods (e.g., bagged
and boosted decision trees, random forests; e.g., Breiman 1996; Breiman 2001).
Recently, these methods have enjoyed increasing visibility and application within
the ecological literature, see De’ath and Fabricius (2000), Elith et al. (2006), and
Hochachka et al. (2007).

2.2 Hierarchical Models

With hierarchical models, one can factor complicated, multifaceted processes into
a series of simpler conditionally independent parametric sub-processes. When data
have obvious hierarchical structure, it is advantageous to model this structure para-
metrically. The hierarchical model is a formal mechanism for pooling information
from correlated responses, potentially making substantial improvements in model
efficiency. In disciplines where correlated data are frequently confronted, special-
ized statistical models have been developed to deal with these correlations. For
example, Kriging was developed for geo-statistical analysis where spatial corre-
lation play is very important. Longitudinal analyses explicitly take into account the
correlation induced by making several observations on individual experimental units
over the duration of an experiment, e.g., patients in clinical trial.

Hierarchical models have also been developed to model a wide variety of
processes including spatial data with varying support (Wikle and Berliner 2005;
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Banerjee et al. 2004), measurement error models (Berry et al. 2002), dispersion
processes (Wikle 2003) and dynamic processes (West and Harrison 1997; Banerjee
et al. 2004).

In this paper we will focus on the Linear Mixed Model (LMM), a two-level
parametric hierarchical model. The strength of this model is its success as a powerful
framework within which to model patterns of correlation. By connecting LMMs
together one may assemble more complex hierarchical structures and patterns of
correlation, e.g., multilevel models (Goldstein 1995).

2.3 Linear Mixed Models

The Linear Mixed Model extends the linear model by incorporating random effects,
which can be regarded as additional error terms, to account for correlations among
observations. The general form of the LMM is

y = Xβ + Zu + ε

where y is a vector of N observable random variables, β is a vector of p unknown
parameters having fixed values (fixed effects), X is the n × p fixed effect design
matrix, and Z is the n × q random effect design matrix. Both u and ε are unobserv-
able random vectors (random effects) of length q and n, respectively. We will refer
to u to as the “random effects” and ε as the “error” term to distinguish them. It is
assumed that both the random effects and errors are normally distributed and uncor-
related with each other. Specifically, u ∼ N (0,Σ(ϕ)) where Σ(ϕ) is assumed to be
a parametric covariance model with variance component(s) ϕ and ε ∼ N (0, σ 2 I )
where σ 2 is a positive constant and I is the n-dimensional identity matrix.

The LMM is one of the most useful models in modern statistics, allowing many
complications to be handled within the familiar linear model framework. This model
has become a standard approach to model genetic effects, longitudinal data, blocked
designs, crossed designs, nested designs, varying coefficient models, and numerous
problems with temporal and spatial correlation (see Robinson 1991; McCulloch and
Searle 2001; Zhao et al. 2006 for good reviews). One of the reasons for the success
of the LMM is the ease and efficiency with which correlation structure can be incor-
porated into the model. Often, a basic understanding of the correlation structure is
sufficient knowledge to specify useful covariance models for the random effects.
The vast literature on LMM is a testament to this fact.

Like any parametric model, the LMM requires enough a priori information to
specify the entire model. For each process that is included in the model, the analyst
must decide which predictors to include, which predictors interact, and the func-
tional form of all effects. When there is more predictor information that prior knowl-
edge, it may difficult to specify a good fixed effect model, ultimately limiting the
amount of covariate information that can be admitted into the model. This becomes
a bigger problem as the number of predictors grows and a priori information does
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not increase proportionally. In practice, this limits the amount of information that
may be brought to bear on confirmatory analyses and it is the reason that the LMM
is not often used for exploratory analyses.

2.4 Semiparametric Mixed Models

Semiparametric predictive models incorporate flexible nonparametric model
components within a parametric framework. This gives the analyst the ability to
include as much parametric structure as can be justified by subject-area knowl-
edge while using adaptive nonparametric components to automatically search for
additional signal in the data. The use of this hybrid modeling strategy can improve
confirmatory analysis by automatically incorporating additional predictor informa-
tion, with fewer unjustified assumptions, than possible in traditional parametric
models. Semiparametric models may also be used to conduct focused exploratory
analyses by adaptively searching for patterns after accounting for known parametric
structure.

The SemiParametric Mixed Model (SPMM) includes nonparametric model
components to automatically incorporate fixed effect predictor information within
the LMM framework. Extending the LMM of the previous section, we write the
general SPMM as

y = f (X ) + Zu + ε

where f(X) represents a nonparametric predictive component for fixed predictor
effects.

Some of the most effective semiparametric modeling strategies to take advan-
tage of the mixed model framework have been based on penalized splines. These
approaches use spline basis-expansions as flexible function effects and then control
the complexity of the fit by means of penalization. The key to incorporating
penalized splines within the mixed model framework is to recast the penalty as a
random effect. Current implementations differ in the types of spline functions and
fitting strategies used. Current examples include the penalized regression splines
of Ruppert et al. (2003), the generalized additive models of Wood (2006) and the
smoothing spline ANOVA models of Gu (2002), though the connection between
penalized spline methods and the mixed model has a much longer history (see
Wahba 1990).

There are two main advantages to bringing this nonparametric smoothing tech-
nique to the mixed model. First, it allows splines to be used with a wide variety of
data types and diverse applications where mixed models are already used. Second,
it give practitioners access to many of the inferential tools developed for the mixed
model. A serious limitation of this strategy is computational. In order to adapt to
functional forms in high-dimensional spaces, it is necessary to generate very large
spline-basis expansions which in turn require the manipulation of equally large
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matrices. This is why most current techniques limit the response to be the sum of
several low-dimensional smooth functions of predictors.

3 Hierarchical Predictive Models

The HPM, is a SPMM

y = f (X ) + Zu + ε,

where y is a vector of N observable random variables, X is the n × p fixed effect
design matrix, Z is the n × q random effects design matrix, and f (X ) is a vector
of N predictions. For notational convenience, we will denote the vector of fixed
effects as f, suppressing its dependence on the predictors in the fixed effect design
matrix. The random effects are normally distributed, u ∼ N (0,Σ(ϕ)) where Σ(ϕ)
is assumed to be a parametric covariance model with variance component(s) ϕ.
The errors are independent and normally distributed ε ∼ N (0, σ 2 I ) where σ 2 is a
positive constant and I is the n-dimensional identity matrix. The errors and random
effects are assumed to be independent of each other.

Although hierarchical models are not inherently Bayesian, complex hierar-
chical models are most easily fit within the Bayesian framework using simulation-
based Markov Chain Monte Carlo (MCMC) techniques. Bayesian inferences are
based on the posterior distribution of the unknown model parameters conditioned
on all observed, known quantities. The posterior distribution for the HPM is
[ f, u, ϕ, σ 2|y, X, Z ]. We denote the distribution of a random vector x by [x] and
the conditional distribution of y given x is by [y|x]. The conditional dependence of
posterior distributions on X and Z will be omitted for notational convenience. The
MCMC sampler used to fit the Bayesian HPM is described below.

The Gibbs sampler (Robert and Casella 2004) is used to simulate the posterior
by breaking the vector of model parameters into convenient subsets and iteratively
sampling from the resulting conditional distributions. The hierarchical structure of
the mixed model naturally breaks down into conditional distributions for u, f, and
the variance components ϕ and σ 2,

[u| f, ϕ, σ 2, y]
[ f |u, ϕ, σ 2, y]
[ϕ| f, u, σ 2, y]
[σ 2| f, u, ϕ, y]

The Gibbs sampler generates samples from each posterior conditional distribu-
tion to sequentially update the parameters. Strategies for updating the parameters
vary depending on the form of the conditional distribution.

The conditional distribution of u is proportional to the product of normal
distributions,
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[u| f, ϕ, σ 2, y] ∝ [u|Σ(ϕ)][y| f, u, σ 2]

= exp

[
−1

2
uTΣ−1(ϕ)u

]
exp

[
−σ 2

2
( f + Zu)T ( f + Zu)

]
.

This distribution is conditionally conjugate, meaning that it has an analytically
tractable form. In this case, the conjugate posterior is also normal (Lindley and
Smith 1972), making it is straightforward to simulate. Most non-normal random
effects will give rise to non-standard, analytically intractable full conditionals which
require MCMC techniques.

Instead of sampling directly from the conditional distribution of f, our strategy
is to use a predictive model to estimate the expected conditional fixed effects, f̂ =
E[ f |u, ϕ, σ 2, y]. Theses estimates are plugged into the Gibbs sampler to update f.
Conditioning on the random effects, u, we consider Zu as an initial estimate of the
predicted observations. This estimate can be improved by taking into account the
systematic effects of the predictors, X. This is where we use the predictive model
to estimate the expected responses f̂ by regressing the residuals r = y − Zu on
predictors X.

The best strategy for sampling from the full conditionals of the variance compo-
nents depends on the specific covariance model Σ(ϕ) and the prior distributions
specified for � and σ 2. For example, when Σ(ϕ) = ϕ I , as in repeat measures
designs or the error term, the inverse gamma distribution is conditionally conju-
gate. Other prior specifications will require MCMC methods, e.g., reference priors
(Zhao and Wells 2005). When the form of Σ(ϕ) is more complex, e.g., autoregres-
sive (AR) processes or Matern covariance models, a general purpose algorithm like
Metropolis-Hastings can be used to generate samples from the conditionals.

To summarize, the Gibbs sampling algorithm is:

1. Initialize MCMC parameters: u(0), ϕ(0), σ 2(0)
2. For m in 1 to M do:
3. Predict f (m) from the residuals r = y − Zu(m−1) and covariates X

4. Sample random effects u(m) ∼ [u| f (m), ϕ(m−1), σ 2(m−1), y]
5. Sample variance component ϕ(m) ∼ [ϕ| f (m), u(m), σ 2(m−1), y]
6. Sample variance component σ 2(m) ∼ [σ 2| f (m), u(m), ϕ(m), y]

7. end For
8. end Algorithm.

Because we estimate the fixed effects, f, this algorithm is not, strictly speaking,
Bayesian. Methods that replace unknown quantities with data-based estimates
and then perform Bayesian analysis are known as “empirical Bayes”. Empirical
Bayesian methods are often used because they allow the analyst to take advantage
of prior information in a simplified way without having to specify prior distribu-
tions. The resulting empirical Bayes estimators often have good frequentist prop-
erties, though theoretical results have been established only for certain estimators
(Lehmann and Casella 1999). One disadvantage of estimating parameters with the
empirical Bayes approach is that the method does not account for the variability in
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the estimation step. For this reason, we suggest that all confidence regions based on
the HPM posterior be considered only approximate, and most likely biased small.
Discussions of the this underestimation in posterior variance, along with remedies,
can be found in Carlin and Louis (2000).

The Gibbs sampler can be started with initial values u(0), ϕ(0), σ 2(0) set equal to
estimates from a LMM with the same random effects design and some reasonably
simplified fixed effects model. The number of iterations, M, required for conver-
gence to the stationary distribution depends on the complexity of the random effect
design and the degree of correlation between fixed and random effects. With rela-
tively simple random effects and little correlation between fixed and random effects,
we have found that chains of several thousand iterations are sufficient to achieve
convergence.

4 Simulation Study

The following simulation study demonstrates the potential advantages of accounting
for known hierarchical structure with predictive models. The predictive perfor-
mances of several decision-tree based models are compared when used on their own
and when embedded within a HPM with known hierarchical structure. With the
HPMs predictive power improves and functional structure may be fit and discov-
ered. The posterior distribution of fixed-effect predictions is explored to illustrate
the adaptability of decision-tree based predictive models.

4.1 Performance Comparisons with Dependent Data

The data for this simulation were constructed to include several functional features
commonly found in ecological data. Dependence among the observations arise from
two separate processes; spatial correlation that describes the similarity of neigh-
boring observations and observer effects that describe the similarity among obser-
vations made by the same observer. The parametric hierarchical model used to
generate the observations is

y = f (X ) + Zsus + Zouo + ε,

where y is a vector of N observations. Observation errors ε are normally distributed
conditionally independent on the process with variance σ 2 = 4. The fixed effects
model is

f (X ) = −4.5 + 5I (x1 > 0.5) − 6x4 + 2 sin(6πx6) + sin(6πr )

r
,

where I (x1 > 0.5) is the indicator function that takes on the value of 1 when x1 > 0.5
and zero otherwise and r =

√
(x9 − 0.5)2 + (x10 − 0.5)2. This model includes a
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threshold effect (x1), linear effect (x4), oscillating effect (x6), and a complex 2-way
interaction between x9 and x10.

The spatial effects us are modeled as a zero-mean, isotropic Gaussian process.
Let us ∼ N (0,Σ(s)) where the covariance matrix Σ(s) describes the covari-
ance between locations, s. The covariance between locations si and s j decays
exponentially as a function of the distance between them Σs

(
si , s j |ρ, σ 2

s

) =
σ 2

s exp
(− ∥∥si − s j

∥∥ /ρ) with range parameter ρ = 0.05 and scale parameter
σ 2

s = 16. For computational convenience we assume that the range parameter is
known.

In order to control the size of the spatial effects, and the computations necessary
to handle them, we model the spatial correlation us as a 50 × 1 vector of spatial
effects at 50 selected “reference locations”. The resulting spatial covariance Σ(s)
is a 50 × 50 reduced rank correlation matrix (Ruppert et al. 2003, Section 13.4).
Reference locations were determined as the centroids of the neighborhoods gener-
ated from a k-nearest neighbor analysis of the observation locations, reflecting the
spatial density of the observations. The spatial design matrix Zs is the corresponding
N× 50 exponential covariance matrix between the observed locations and the refer-
ence locations. The spatial correlation among the N observations is calculated as the
product Zsus , similar to the Kriging prediction equations.

It is assumed that each observation was made by one of ten individual observers
selected at random with equal probability. We further assume that each observer is
biased and that the population of these biases or “observer effects”, uo, are indepen-
dent and normally distributed with variance σ 2

o = 16. The observer effect design
matrix is an N×10 indicator matrix with elements {Zo}i, j equal 1 if the i-th obser-
vation was made by the j-th observer and 0 otherwise. Thus, the factor Zouo induces
correlation among observations made by the same observer.

Each simulated data set consists of N = 2000 observed responses from the model
specified above. A total of ten fixed effect predictors were generated of which only
the 5 indicated above influence the response. Each predictor xi, j , i = 1, . . . , N , j =
1, . . . , 10 was generated independently on a uniform random distribution between
0 and 1, U [0, 1], and stored in the N×10 fixed effect design matrix, X. Locations
si , i = 1, . . . , N were generated randomly as independent latitude-longitude pairs
on U [0, 1], denoted as predictors x11 and x12, respectively. Predictor x13 is the N × 1
vector of randomly generated labels for the ten observers. The signal-to-noise ratio
is

var ( f (X ) + Zsus + Zouo)

σ 2
ε + σ 2

s + σ 2
o

≈ 1.24.

We compare the performance of four decision-tree methods. Decision trees, as
a general class of models, have several features that make them a good choice of
predictive model: (1) they are relatively easy to implement and understand, (2) they
automatically discover and fit interactions including high-order interactions and
(3) most implementations automatically impute missing predictor values. The
simplest decision tree approach used here is the “rpart” model (Therneau and
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Atkinson 2007) which produces a single Classification and Regression Tree (CART)
fit by cost complexity pruning (Breiman et al. 1984). In order to control the highly
variable predictions of CART trees, Breiman (1996) suggested averaging predic-
tions from a bootstrap sample of deliberately overfit CART trees. These “Bootstrap
AGgregations” are known as “bagged” decision trees and usually outperform single
trees. Boosting is another successful method used to average predictions across
many simpler decision trees. It is equivalent to fitting an additive expansion in a
set of basis functions (Hastie et al. 2001). We use the boosted decision trees imple-
mented in the gbm library in R (Ridgeway 2006). RuleFit is another ensemble
method that uses LASSO penalization (Tibshirani 1996) to combine predictions
from individual trees (Friedman and Popescu 2005).

Each realization of the data was fit with all four decision-tree models and their
corresponding HPMs. In order to make a fair comparison between the decision
tree models and the HPMs we gave each of the decision-tree models access to the
same predictor information utilized by the HPMs. Thus, each decision tree was fit
using all 13 predictors including the latitude, longitude, and the vector of observer
identifiers.

Model performance is measured as the Mean Squared Error (MSE) between the
true and predicted responses. To guard against overfitting, the MSE is computed
on an independent test set of data. All test predictions are made at new locations,
for new observers so as to avoid any potential overfitting of the random effects,
that is, overfitting location-specific or individual observer effects. The LMM BLUP
estimator is ŷ = f̂ (X ) + Z P ûs , where “hats” denote estimates and ZP is the covari-
ance between the new locations, si i = 1, . . . , 1000 and the reference locations
s j j = 1, . . . , 50, {Z P}i, j = �s

(
si , s j |ρ, σ 2

s

)
. The HPM predictions use the mean

marginal posterior estimates for the fixed effects, variance components, and spatial
effects. For the decision tree models, we “average out” estimated observer-specific
biases by computing the mean predicted response where the mean is taken over the
set of observers in the data set used for model training.

Half of each data realization was randomly assigned to training and testing sets.
A single training-test set was used, instead of k-fold cross validation to expedite
calculations. The simulation study was based on 100 trials. Diffuse Inverse Gamma
(IG) priors were used for all the variance components,

[
σ 2
] = [

σ 2
s

] = [
σ 2

o

] =
IG(a = 0.1, b = 0.1). MCMC chains were initiated with true values to reduce
computations time. Each chain was run for 1000 iterations. All computations in this
paper were performed with the R statistical computing language (R Development
Core Team 2006).

Boxplots of the test set MSE are shown in Fig. 1. The variation in MSEs is
due to the Monte Carlo error, estimate and model uncertainty, and variation from
the test-train split. The mean square error is seen to vary among the decision tree
models with the largest errors for rpart and smaller errors for each of the ensemble
methods. The performance of all decision tree models improves when the methods
are embedded in the hierarchical model. The HPM based on RuleFit was the best
overall performer. These results suggest the kinds of performance gains possible
when covariance patterns exist and are correctly modeled in the hierarchy rather
than modeled nonparametrically as fixed effects.
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Fig. 1 The test set Mean Squared Error (MSE) between the true responses and the predicted
responses are shown for Decision Tree models (Fixed Effect) and HPMs, organized by the type
decision tree model. The boxplots show the variation in MSEs due to Monte Carlo error, estimate
and model uncertainty, and variation from the test-train split. The performance of all decision tree
models improves when the methods are embedded in the hierarchical model

4.2 Partial Dependence Plots for Effect Exploration

Although nonparametric predictive models have good predictive performance, many
are essentially “black box” methods, making them difficult to interpret. The same is
true of the HPM where all fixed effect information is stored as a high-dimensional
joint posterior distribution of predictions. Partial dependence functions (Friedman
2001; Hastie et al. 2001; Hooker 2007; Hochachka et al. 2007) are a simple general
purpose tool for visualizing and exploring predictor effects. We use partial depen-
dence plots to explore a fixed-effects posterior distribution and use these plots to
illustrate the adaptability of RuleFit within the HPM.

We begin by investigating the effects of each of the 10 individual fixed effect predic-
tors from a single data realization. A natural approach to this investigation is to plot
the predictions as a function of a single predictor. Unfortunately, the resulting trend
may be simultaneously affected by any number of predictors that affect the response,
making it difficult to isolate and describe the effects of any individual predictor. In
order to better isolate the effect of each individual predictor we compute the effect of
the predictor on the modeled response after accounting for the average effect of all
other predictors. This is done by marginalizing over the joint distribution of all other
predictors. These are one dimensional partial dependence plots. They best represent
the effect of an individual predictor on the predicted response when the predictor’s
effects are nearly additive. All partial dependence plots are centered at zero.

Univariate partial dependence plots of the posterior conditional means and
approximate pointwise 90% Bayesian confidence regions for predictors x1, x2, x4,
and x6 are shown in Fig. 2. The partial dependencies for each mean effect were
calculated at 100 equally spaced locations along the x-axis. Linear interpolations
were plotted for the effects and confidence bounds. The approximate pointwise
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Fig. 2 Univariate partial dependence plots of the posterior conditional means and approximate
pointwise 90% Bayesian confidence regions for predictors x1, x2, x4 , and x6 (solid and dashed,
respectively) and true effects (triangles) used in the simulation model described in Section 4.1

confidence regions were estimated with the 95th and 5th quantiles of the posterior
partial effects. The RuleFit estimates of the posterior mean effects capture the main
features of the true effects for all four predictors. Because of the discrete support of
the DT basis, RF is also able estimate the sharp threshold in x1. RuleFit’s penaliza-
tion strategy may produce smooth effects like the oscillations in x6. Predictor x2 is
correctly identified as uninformative. The other four predictors were also identified
as uninformative.

Fig. 3 The two-dimensional partial dependence plots and true interaction surface for x9 − x10 used
in the simulation model described in Section 4.1. The interaction between these two predictors
and their joint functional form were automatically detected and estimated by the predictive model,
RuleFit
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We calculated the two-dimensional partial dependence plots to investigate the
RuleFit estimate of the x9 − x10 interaction surface, Fig. 3 (left). Partial dependence
estimates were made over a 20 ×20 grid on the x9 −x10 unit square and interpolated
using a penalized spline. The true interaction surface, Fig. 3 (right), was evaluated
and smoothed on the same grid. Contours and shading are the same for both panels
to facilitate comparison. The strong similarity between these plots confirm RuleFit’s
ability to detect and fit complex interactions within HPM. RuleFit has automatically
determined which predictors are additive and which interact. This makes RuleFit a
good tool for automatically detecting interactions.

5 HPM Exploration of House Finch Abundance

The goal of this section is to demonstrate how the HPM can be used to explore
patterns in real data. The discussion is presented at a conceptual level focusing
more on analysis techniques and interpretation than the biological results. For
this reason, we have deliberately chosen a model based on a simple hierar-
chical structure from a well understood species. We use HPM to model the rela-
tive abundance of North American House Finch at back yard feeders using data
from the citizen-science winter monitoring program, Project FeederWatch (PFW,
http://www.birds.cornell.edu/pfw/). The HPM has a random feeder-effect and a
large set of previously unused predictors. The exploratory analysis is used to identify
important new predictors and estimate some functional effects.

5.1 The Data

PFW is a winter-long “citizen science” monitoring project in which members of
the general public throughout the United States and Canada record the maximum
number of birds seen together, for each of the bird species that they see at their
bird feeders. Observation periods occur over two consecutive days, at weekly
or biweekly intervals. The program begins in mid-November and runs till the
beginning of April. Participants record the location, date, bird numbers and effort
expended during each observation period. They are also asked to provide data
describing the weather and the environments around their feeder locations, such
as presence or absence of coniferous and deciduous trees, water bodies, and the
degree to which landscapes are altered by humans. Information is recorded about
factors that may attract or deter nearby birds from being observed at a feeder such
as the types of feed available, the number and configuration of the feeders, and the
presence of pets and squirrels.

In addition to the information provided by PFW participants, we acquired
several other descriptors of sites from the Avian Knowledge Network (see
http://www.avianknowledge.net/content/) including descriptions of the general
biogeographic region, local habitat, elevation, and human population density. These
data were extracted based on the latitudes and longitudes of the PFW feeder sites.
The complete data set included a total of 76 predictors, see Table 1.
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Table 1 Fixed effect predictors in HPM analysis used these 76 predictors. Seventy-
two of the predictors were reported by PFW participants plus each site’s Bird Conserva-
tion Region (BCR, see http://www.nabci-us.org/map.html), U.S. Census Bureau census block-
level human population density estimate from 2000, elevation (2 from different digital
elevation data sources and resolutions: USGS National Elevation Dataset, 10 m resolu-
tion data http://www.mapmart.com/DEM/DEM.htm; and GTOPO30, 30 arcsec resolution data
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html), and habitat type from the U.S.
National Land Cover Database (NLCD) recorded as (one of 9 separate Anderson level 1 habitat
classification categories within the grid block of the count site; U.S. National Landcover Data,
1992 version)

Temporal(2) Attraction & deterrence to feeders (29) Local habitat (31)

Season count area size nlcd
Date fed yr round yard type garden

fed in jan yard type landsca
fed in feb yard type woods

Effort (2) fed in mar yard type desert
fed in apr yard type pavement
fed in may hab dcid woods
fed in jun hab evgr woods

Effort 1 fed in jul hab mixed woods
Effort 2 fed in aug hab orchard

fed in sep hab park
fed in oct hab water fresh
fed in nov hab water salt

Human Population fed in dec hab residential
Density (1) numfeeders suet hab industrial

numfeeders ground hab agricultural
Human.pop.density numfeeders hanging hab desert scrub

numfeeders platfrm hab young woods
numfeeders humming hab swamp
numfeeders water hab marsh

Weather (6) numfeeders thistle hab other
numfeeders fruit evgr trees atleast
bird baths atleast evgr shrbs atleast
high feeders dcid trees atleast
nearby feeders dcid shrbs atleast

temp lo squirrels fru trees atleast
temp hi cats cacti atleast
snow coverage dogs brsh piles atleast
snow depth humans water srcs atleast
snow crusty evgr any atleast
precipitation dcid any atleast

Physiographic (5)

latitude
longitude
elevation (categorical)
elevation 1
elevation 2

Although the PFW data set contains a large number of potentially informative
predictors, most of them have never been used to model the distribution or rela-
tive abundance of backyard species (Lepage and Francis 2002; Wells et al. 1998;
Hochachka and Dhondt 2000; Hochachka and Dhondt 2006). Currently, there is
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insufficient landscape-level understanding of the necessary ecological processes to
specify a parametric model for all available predictors, or even a large subset of
them. Such a task would require substantial exploration to determine (1) which
predictors to include in the model, as well as (2) the functional form of the predic-
tors, and (3) their interactions.

Missing data are another serious data complication that often affects how data
are modeled. For example, of the 11,066 observations for NABCI Bird Conser-
vation Region 13 (Lower Great Lakes/Saint Lawrence Plain; http://www.nabci-
us.org/map.html), 9850 were missing at least one of the 72 PFW predictors —
89% of the records were incomplete. The expedient solution to the missing data
problem is to throw out responses and/or predictors with missing data, but this
reduces the information available for analyses and may introduce bias and increase
the variance of results. More rigorous imputation options are often far more difficult
to implement and require additional assumptions. For these reasons, many analyses
are based on only a subset of the available data.

We analyzed the magnitude of positive group sizes from the 1993–1994 to the
2003–2004 seasons within the eastern North American range of the House Finch
(Fig. 4). This species is well understood and has been independently analyzed in

Fig. 4 This map shows the Project Feeder Watch (PFW) feeder sites as black squares within each
of the four BCRs analyzed. BCR 13 is the Lower Great Lakes/St. Lawrence Plain region, BCR 28
is the Appalachian Mountains region, BCR 29 is the Piedmont region, and BCR 27 is the Southeast
Coastal Plain region
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the literature using PFW data (Hochachka and Dhondt 2006) providing a basis for
validation. The spatial domain consists of four distinct Bird Conservation Regions.
In order to simplify the comparison of regional variation in species’ winter distri-
butions, analyses were conducted separately for each of four different BCRs. For
each BCR, a random sample of up to 400 “frequently participating” feeder sites
were selected for analysis. “Frequently participating” feeders were defined to be
sites that contributed at least 15 reports over the 11 season study period. The top 1%
of maximum group sizes were trimmed to focus inference on smaller abundances by
limiting the influence of the largest observations. Sample sizes were 11066, 5321,
12064, 11701 for BCRs 13, 27, 28, and 29 respectively. Four hundred locations were
used for each BCR except BCR 27 which had 232.

5.2 The Model

We use a mixed model with random feeder effects to account for correlation among
observations from the same feeder. Let yi , i = 1, . . . , N be the natural log of the
observed maximum count. We transform to the log scale to model errors as condi-
tionally independent, additive normal noise y = f (X ) + Zu + ε, as in Section 3.
Random effects u estimate systematic differences among the q feeder locations.

They are normally distributed [u|σ 2
f ] = Normal

(
0, σ 2

f I
)

where σ 2
f describes the

amount of variation among the sites and I is the q dimensional identity matrix. The
feeder effect design matrix Z is a N × q indicator matrix with elements {Z}i, j equal
1 if the i-th observation was made at the j-th feeder and 0 otherwise. We use RuleFit
(Section 4.1) to estimate the HPM fixed effect, f (X ). The fixed effect design X is
the N × 76 matrix of the predictors.

The data from each BCR were fit separately using diffuse inverse gamma (IG)
priors for the variance components, σ 2 ∼ IG(a = 0.1, b = 0.1) and σ 2

f ∼ IG(a =
0.1, b = 0.1). Initial values for fixed effects were estimated using RuleFit and the
residuals from this fit were used to initialize u. Realizations of (σ 2, σ 2

f , u, f ) along
with variable importances and partial dependences were collected on each itera-
tion of the Gibbs sampler. Due to the simple structure of the hierarchy, each Gibbs
sampler was expected to reach convergence quickly. The Raftery and Lewis (1992)
diagnostic estimated that convergence sufficient to estimate the 5th percentile to
within 1% accuracy with probability of 0.95 would be achieved with 1825 iterations.
We computed 2600 iterations and discarded a burn-in of 100.

5.3 Exploratory Results

A first step towards uncovering the signal detected by the HPM is to rank the rela-
tive importance of its predictors. RuleFit computes a measure of relative variable
importance designed to identify those variables that are used in its most influential
predictive rules (see Section 7, Friedman and Popescu 2005). Relative importances
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Fig. 5 These plots show the relative variable importances for fixed effect predictors. The barchart
in (a) shows the ordered marginal posterior median relative variable importance score for all 76
predictors. The boxplots (b) of the marginal posterior distributions for the relative variable impor-
tances of the 10 most important predictors, ordered according to their medians

are scaled to sum to 100 with larger values representing more important predic-
tors. We collected the vector of relative variable importance at each Gibbs iteration.
Figure 5a shows the barchart of the ordered marginal posterior medians for all 76
predictors. The exponential decay in importance is common among data sets with
large numbers of predictors. Most information is concentrated among a small set of
predictors.

Figure 5b shows Boxplots of the marginal posterior distributions for the 10 most
important predictors ordered according to their medians. This group of predictors
captures many sources of variation known to be important for PFW data and for
this House Finch population. The Latitude–Longitude pair describe the location of
each feeder. Season is a 11-level ordinal predictor denoting the 11 different winter
seasons. This is consistent with known changes in population trend over this time
period due to the emergence of a novel bacterial pathogen, Mycoplasma gallisep-
ticum (e.g., Dhondt et al. 2005). Date is a continuous Julian date starting at 1 on
November 1st running to 150 on April 1st. This predictor could account for the
known partial winter migrations of this House Finch population, as well as seasonal
variation in propensity of the birds to visit feeders. RuleFit also identified two factors
that attract birds to feeders as important. The Number of Hanging Feeders and
the Number of Ground Feeders were ranked 2nd and 7th respectively. Three local
habitat variables were ranked among the top 10 predictors. Landcover classification
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(NLCD), elevation, and the presence or absence of evergreen trees, were ranked
5th, 6th, and 9th, respectively. Human.Pop.Density is human population density at
the feeder location. This predictor may describe the association of House Finches
with humans in suburban environments. Two observer effort variables describing
the total hours of observer effort over each consecutive two day observation period
and a 4-level ordinal variable that measures how many “halfday” periods were used
for observation were also ranked highly, 13th and 17th, respectively.

A benefit of a Bayesian analysis is the ability to produce estimates of uncertainty.
These estimates incorporate the uncertainty from estimation and model uncertainty
at the fixed effect level. The model uncertainty comes from the predictive model
adaptation over complex model spaces. The boxplots of the marginal posterior vari-
able importances show considerable uncertainty. Note that some of this uncertainty
also arises because of predictor multicollinearity.

Partial dependence plots are used to visualize particular predictors effects.
Figure 6 shows the partial dependence plots of the posterior conditional means and
approximate 90% confidence regions for intra- and inter-seasonal trends in BCR
13. The inter-seasonal trend agrees with our expectation of a decline (Dhondt et al.
2005).

We also used partial dependence plots to explore how NLCD landcover effects
vary by region, or BCR. For each BCR, we computed the partial dependence among
the 9 NLCD Anderson level-1 land cover classes. Boxplots of the posterior partial
dependence effect estimates were plotted for the six landcovers which were repre-
sented by at least three of the four BCR’s, Fig. 7. The partial dependence among

Fig. 6 Partial dependence plots for Intra- and Inter-seasonal trends in BCR 13 with pointwise
90% HPD confidence regions The automatically detected intra-seasonal trends shown here agree
with known changes in population trend over this time period due to the emergence of a novel
bacterial pathogen, Mycoplasma gallisepticum (e.g., Dhondt et al. 2005). The inter-seasonal trend
could account for the known partial winter migrations of this House Finch population, as well as
seasonal variation in propensity of the birds to visit feeders
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Fig. 7 The partial dependence among the NLCD classes are shown here with boxplots of posterior
partial dependence among BCRs plotted by NLCD Anderson level-1 landcover classes. Boxes
are centered within each BCR, facilitating the comparison of landcover effects within that BCR.
However, to compare the relative effects of each landcover class across BCRs we grouped these
relative effects by landcover. Substantial differences in the relative effects of several landcover
classes across different BCR’s suggest that local effects of land cover on group size vary regionally.
For example, the observed group size of House Finches was smaller on shrublands, compared to
other landcover classes, in BCR 13 and 28 while observed group sizes were larger on shrublands
in BCR 29. The center “w” represents the median posterior partial dependence. Only landcover
classes which were represented by at least three of our four BCR’s have been plotted

the NLCD classes are centered within each BCR, facilitating the comparison of
landcover effects within that BCR. However, to compare the relative effects of
each landcover class across BCRs we grouped these relative effects by landcover.
Substantial differences in the relative effects of several landcover classes across
different BCR’s suggest that local effects of land cover on group size vary among
regions. For example, the observed group size of House Finches was smaller on
shrublands, compared to other landcover classes, in BCRs 13 and 28 while observed
group sizes were larger on shrublands in BCR 29.
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This exploration suggests that habitat effects may operate over two distinct
scales – the regional scale represented by BCR and a local scale of the 30 × 30 m
resolution NLCD layers. However, using these data it is not possible to tell if the
habitat affects the probability to detection or the ecological process that governs
abundance, or both. Interpretations of these effects are also confounded by multi-
collinearity, especially with other spatial predictors. The use of observational data
may introduce sampling bias. For example, a known limitation of PFW data is its
spatial footprint, which is concentrated towards anthropogenic habitats. Additional,
carefully collected data would be needed to untangle and confirm the causes of the
patterns that emerged from our analysis.

6 Discussion

In this article we have developed a highly adaptive semiparametric model by
harnessing the complementary strengths of hierarchical and predictive models.
From a mixed-model perspective, the strengths of the HPM are its great automation
and adaptability. Large amounts of predictor information can be conveniently and
quickly included in an analysis and explored.

While HPMs inherit many strengths from their parent models, they also inherit
weaknesses. The parametric hierarchy itself must be specified by the analyst and
this means that there will be a risk of misspecification. For many important problems
patterns of correlation can be specified a priori with confidence, e.g., spatial analyses
or repeated measures. In many hierarchies, the risk of misspecification may be miti-
gated by the adaptability of the hierarchical structure itself. For example, in several
common LMM models, when there is insufficient evidence of variation among the
random effects, the estimated variance components will take on limiting values that
tend to “flatten” the hierarchy, effectively limiting the effect of misspecification.

Like any other model, multicollinearity among predictors makes it difficult to
separately identify relationships between the correlated predictors and the response.
This is an especially important challenge when exploring large environmental data
sets where it is not uncommon to find large sets of multicollinear predictors. Finally,
because HPMs require the computation of both the LMM and a predictive model,
they can be computationally intensive.

It is important to remember that the data-mining component of an HPM does
not carry the negative inferential properties of “data dredging”, a term that unfortu-
nately is often viewed as synonymous with “data mining”. Chatfield (1995) defined
the practice of data dredging as when an “analyst goes to great lengths to obtain
a good fit. When a model is formated, fitted, and checked with the same data set
in an iterative, interactive way”. Within the machine learning community there is a
strong insistence on the use of independent data for testing and validation to guard
against overfitting and dredging. Indeed, by performing exploration and regression
in a single procedure, HPM actually avoids many common “dredging” problems that
arise in more traditional multi-step approaches to regression model development and
testing.
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Because of their relative strengths and weaknesses, we view HPMs as serving
three distinct roles in the analysis of observational data:

1. Where accurate predictions are the desired product of an analysis, HPMs are a
logical class of models to use, because of their ability to make use of available
information from the predictor variables, both when the forms of structural rela-
tionships are known and also where these things are unknown.

2. While many “products” from analysis of ecological data can be viewed as
hypothesis validations, and there is good reason to conduct hypothesis-driven
analysis of data, the specification of realistic and useful hypotheses requires prior
knowledge. Where such knowledge does not exist, more exploratory analyses are
appropriate, and efficient exploratory analyses will lead to creation of appropriate
hypotheses more quickly. HPMs are particularly suited for such exploratory
(hypothesis-generating) analyses when there is some amount of prior informa-
tion available, as this prior knowledge can be incorporated into the exploratory
model-building work.

3. Even when an analyst believes that (s)he has sufficient prior knowledge to
specify an accurate parametric model, this is still merely a faith-based assertion
unless there is some objective way of validating the appropriateness of a para-
metric model. HPMs can be used to assess the validity of fixed effect components
within a hierarchical model by replacing them with more flexible nonparametric
components and then comparing the overall predictive performances. Additional
information may be gleaned from such a comparison by using partial dependence
functions to compare the functional form and interactions of specific predictor
effects estimated under both models.
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Effect of Senescence on Estimation of Survival
Probability When Age Is Unknown

David Fletcher and Murray G. Efford

Abstract Adult survival probability is a key parameter in any population model for
a long-lived species. For many species, information on adult survival comes from
a capture–recapture study involving individuals for whom age is unknown. If the
species experiences senescence, the estimate of overall adult survival probability
will be negatively biased. The purpose of this paper is to assess the extent to which
the estimate is biased and the implications for population modelling. We show that
the amount of bias depends on the capture probability and the strength of senes-
cence. If the capture probability is greater than 0.5, the expected bias is at most
1%, unless senescence is strong and begins early in adulthood. Individual hetero-
geneity in capture probability can also lead to negative bias in estimates of survival
probability, meaning that moderate effects from senescence and heterogeneity may
combine to produce a non-negligible amount of bias. Capture–recapture methods
for survival are also used to estimate the time that migrating animals spend at inter-
mediate “stop-over” sites. In this context, an increase in departure probability with
time since arrival is analogous to senescence, leading to a negative bias in estimated
stop-over duration. This bias will often be large because capture probabilities in
such studies are generally very low and departure probability may increase abruptly
once animals have rested and re-fueled.

Keywords Bias · Population model · Capture–recapture · Senescence · Stop-over
duration · Survival

1 Introduction

In using a population model to help manage a long-lived species, a key demographic
parameter is adult survival probability (Caswell 2000). Suppose the species experi-
ences senescence (risk of mortality increases with age) and we plan to use a capture–
recapture study to estimate annual adult survival probabilities. If we can determine
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the age of each individual, we can estimate age-specific survival probabilities and
use these in an age-based population model. This will be possible when individuals
are marked at birth or when the age of a newly-captured individual can be reliably
determined.

For many species, information on adult survival comes from a study involving
individuals that are marked as adults and for whom reliable determination of age is
not possible. We might then use an estimate of the overall adult survival probability,
with all adults in our model being assigned this survival probability. This approach is
equivalent to using the (unknown) age-specific survival probabilities in an age-based
model, as long as the age distribution of the marked individuals is the same as the
stable age distribution predicted by the population model (Yearsley and Fletcher
2002).

The purpose of this paper is to assess the amount of bias in an estimate of overall
adult survival probability from a capture–recapture study when age is unknown and
there is a senescent decline in survival probability. The only previous work of this
kind in the capture–recapture literature is the pioneering simulation study of Manly
(1970). He compared different methods for estimating birth probabilities, survival
probabilities and population sizes from a capture–recapture study, when the assump-
tions of the analyses are not valid. Part of his study concerned the bias in estimates
of annual survival probability from the fully time-dependent Cormack–Jolly–Seber
(CJS) model when survival probability varies with age. Using ten simulations of
a capture–recapture study involving five sampling occasions, he found that senes-
cence caused the estimates to be negatively biased, and commented (p. 17) that
“. . .this is to be expected since marked animals will tend to be older than the animals
in general and therefore subject to a relatively high mortality rate”. The degree to
which the age distribution of the marked individuals differs from that of the whole
population will be affected by the capture probability for an unmarked individual
(the capture probability for a marked individual does not affect this distribution).
We therefore expect the amount of bias in survival to be influenced by the capture
probability for an unmarked individual.

Our aim, with substantially greater computer power than was available to Manly
(1970), is to chart the extent of the bias for parameter values likely to be encoun-
tered in mark–recapture studies of long-lived vertebrates and to clarify its relation
to other factors. In addition, we consider the implications of the bias for population
modelling: it is possible that a seemingly small bias in the overall adult survival
probability will lead to a practically important bias in the estimate of population
growth rate obtained from a population model.

An increase in the risk of mortality with age is a common, although not universal,
feature of mammalian life histories (e.g. Caughley 1966; Promislow 1991; Gaillard
et al. 1994; Loison et al. 1999). Relatively constant and high survival in early-
to mid-adulthood is typically followed by a steady decline. Senescent decline in
survival has also been documented for several species of birds (Dunnet and Ollason
1978; Loery et al. 1987; Bradley et al. 1989; Aebischer and Coulson 1990; Wooller
et al. 1992; Pugesek et al. 1995; McDonald et al. 1996; Newton and Rothery 1997;
Orell and Belda 2002; Crespin et al. 2006; Sidhu et al. 2007), although the effect
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is less marked and more variable than in mammals. It is usual for senescence to be
more marked in one sex (e.g. Loison et al. 1999). For simplicity, we do not consider
species for which mortality decreases with age in early adulthood (e.g. sparrowhawk
Accipiter nisus Newton and Rothery 1997).

Capture–recapture methods are also used to estimate stop-over durations for
migratory bird species (Kaiser 1995; Schaub et al. 2001; Efford 2005; Pledger et al.
2008). This provides another context in which the results of this paper are relevant.
The probability of departure from a stop-over site may increase steeply with time-
since-arrival (after an initial lag). As the arrival times of individuals are unknown it
is usual to ignore this effect in the analyses (e.g. Schaub et al. 2001; but see Pledger
et al. 2008). This is exactly equivalent to ignoring a senescent decline in survival
probability, and will lead to a negative bias in the estimated stop-over duration.

Our main focus is on the bias in the estimate of overall adult survival probability,
and the consequences of this for the population growth rate resulting from use of a
population model. An alternative approach would be to consider the impact of senes-
cence on direct estimation of the population growth rate using capture–recapture
data (Pradel 1996). We have chosen to focus on estimation of adult survival prob-
ability, as there may be a number of reasons one wishes to use a population model
other than to obtain an estimate of population growth rate; for all these uses one
would want to be aware of the potential amount of bias in the estimate of survival.
In addition, a reliable estimate of the adult survival probability will be of use in other
settings, such as estimating maximum population growth rate for a bird species (Niel
and Lebreton 2005).

2 Methods

We used simulation to estimate the bias in overall survival probability as follows.
For each run of the simulation, we generated a reduced m-array corresponding to
a capture–recapture study, using the calculations given in the Appendix. We then
analysed the data in the m-array by fitting a CJS model in which both survival
probability and capture probability were constant, using maximum likelihood. The
estimate of overall adult survival probability was then compared with the true overall
adult survival probability. In carrying out the simulations, we needed to specify the
following variables:

N Population size, assumed constant over the period of the study
T Duration of the study (years)
p Recapture probability, assumed to be time-independent (and equal to first-

capture probability)
φ(x) Survival probability for an individual of age x, assumed to be independent

of year

The severity of senescence determines the values for the age-specific survival prob-
abilities. We chose to use a senescence function in which survival is constant to
a specified age, with a linear-logistic decline thereafter. The linear-logistic form is
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commonly used in tests for senescence (e.g. Nichols et al. 1997; Crespin et al. 2006),
and the threshold linear-logistic has been fitted to data by Loison et al. (1999) and
Sidhu et al. (2007). Alternatives include the Gompertz function, which is linear on a
complementary log-log scale, and therefore very close to the linear-logistic (Gaillard
et al. 2004), or a quadratic-logistic function (Loison et al. 1999). We would expect
these alternatives to provide similar results to those presented in this paper. The
linear-logistic function, combined with a variable onset of senescence, captures the
main features of senescence in a relatively simple form.

We assumed that all individuals mature at the same age, or that senescence is
determined by the number of years since maturity. The calculations we use can
easily be modified to include between-individual variation in age at maturity when
senescence is determined by actual age. Throughout the rest of the paper, we there-
fore use the term “age” to mean the number of years since maturity.

We specified senescence as beginning at ages 0, 5 or 10. We set the survival prob-
ability at age 0 to be 0.75, 0.85 or 0.95, corresponding to the likely range of survival
probabilities in early adulthood for long-lived species. Finally, we set the decline in
survival probability to correspond to linear-logistic slopes of −0.05, −0.1, −0.2 or
−0.4. We chose these levels to represent the range of senescence patterns evident in
capture–recapture studies of birds and mammals, based on the information available
in the studies cited above. Figure 1 illustrates the shape of the function for the case
where senescence begins at age 5 and survival at age 0 is 0.85.

In performing the simulations, we assumed that the population had a stable age-
distribution, as predicted by a deterministic population model. The model also had
all individuals mature at the same age, and both the reproductive rate and adult
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Fig. 1 Age-dependent survival plotted against age (time-since-maturity), where senescence begins
at age 5, the survival probability at age 0 is 0.85 and the strength of senescence being determined
by a linear-logistic slope of −0.05 (dotted line), −0.1 (dashed line), −0.2 (dotted and dashed line)
or −0.4 (solid line)
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survival probability independent of age. The overall survival probability was then
the weighted mean of the age-specific survival probabilities, with the weights being
the proportion of adults in each age-class, as given by the stable age distribution.

As well as performing the simulations for a range of population sizes,
we estimated the large-sample bias using the analytical approach described by
Burnham et al. (1987, p. 214), which involved calculating the expected m-array
(see Appendix).

We assessed the impact of negative bias in the estimate of overall adult survival
probability on an estimate of population growth rate from a population model in
which individuals mature at age 	, and in which reproductive rate and adult survival
probability are the same for all ages. For this model, the sensitivity of population
growth rate to adult survival probability is given by

sφ = λ

φ + α (λ− φ)

where λ is the population growth rate, α is the age at maturity and φ is the overall
adult survival probability (Heppell et al. 2000).

Individual heterogeneity in capture probability also leads to negative bias in
estimates of survival probability (Carothers 1973; 1979). It is therefore possible
that mild senescence and mild capture heterogeneity may act together to produce
a non-negligible amount of bias. We therefore considered the combined effect of
two-group heterogeneity in capture probability (Burnham et al. 1987, p. 287) and
senescence, focussing on the case where the two group sizes are the same.

All calculations were carried out using R (R Development Core Team 2006), and
the code is available from the authors.

3 Results

We initially focus on the results for a ten-year study, as this would be considered
a minimum study-length for estimation of an overall adult survival probability.
Table 1 shows the estimated bias in the estimate of overall adult survival probability,
for a stable population of 100 individuals, for each senescence function and for a
range of capture probabilities. The bias clearly increases as the capture probability
decreases. Likewise, it increases if senescence occurs earlier or if the rate at which
senescence occurs is higher. The overall pattern in Table 1 also suggests that the
bias increases as the survival probability in early-adulthood decreases.

We ran equivalent simulations for stable populations containing either 1,000
or 10,000 individuals, and found that these were in close agreement with those
obtained using the analytical large-sample estimate of bias. We therefore summarise
the latter in Table 2. The differences between the results in Tables 1 and 2 are gener-
ally small, being at most 0.5% points when the capture probability is greater than
0.1, and at most 0.1% point when the capture probability is greater than 0.4. This
suggests that use of the large-sample estimate of bias (Table 2) will be reasonable for
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Fig. 2 Sensitivity of population growth rate to adult survival plotted against adult survival, for
a deterministic age-based model in which actual age at maturity is 1 year (dotted line), 2 years
(dashed line), 4 years (dotted and dashed line) or 8 years (solid line), and for which the population
growth rate is 1

a wide range of studies. Figure 2 shows this sensitivity for a deterministic age-based
model in which the actual age at maturity (M) is the same for all individuals, and
for which the population growth rate is equal to 1. The sensitivity is plotted against
overall adult survival probability for different values of M. Thus if overall adult
survival is 0.85 and M is 4 years, the sensitivity is 0.69. This means that a negative
bias of 1% point in the estimate of adult survival leads to a negative bias of 0.69%
points in the population growth rate. The sensitivity increases as M decreases and as
overall adult survival increases.

The results in Tables 1 and 2, and in Fig. 1, can be used to provide guidance
as to the potential magnitude of this problem, even when the degree of senescence
that the species is likely to experience is not well known. For example, suppose the
strength of senescence is likely to be no greater than that represented by a slope
of −0.4 on the logistic scale. If the capture probability is at least 0.5, the survival
probability in early adulthood is around 0.85, and the onset of senescence is unlikely
to occur until at least 5 years after maturity, the bias in the estimate of overall adult
survival probability will then be at most 1% point in a 10-year study, regardless of
the population size (Tables 1 and 2).

Figure 3 shows how the large-sample estimate of bias changes with study-
duration, for a range of capture probabilities, when survival probability in early
adulthood is 0.85 and declines from age 5 at a rate of −0.2 on the logistic scale.
The bias increases with study duration in all cases, particularly when the capture
probability is low.

Figure 4 shows the combined effect of senescence and two-group capture hetero-
geneity: the large-sample estimate of the bias is plotted against the coefficient of
variation (CV) in capture probability, for the case where the two group sizes are
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Fig. 3 Effect of study duration on the large-sample estimate of bias in the estimate of overall adult
survival, for a range of capture probabilities, when survival in early adulthood is 0.85 and declines
from age 5 at a rate of −0.2 on the logistic scale. The vertical line indicates the study-duration used
in all other analyses
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Fig. 4 Bias in the estimate of overall adult survival probability plotted against the coefficient of
variation in capture probability, where the group sizes are equal, the mean capture probability is
0.5, and senescence begins at age 5. The survival probability at age 0 is 0.85 and the decline in
survival corresponds to a linear-logistic slope of −0.05 (dotted line), −0.1 (dashed line), −0.2
(dotted and dashed line) or −0.4 (solid line). Bias in the absence of senescence is indicated by the
thick solid line

the same and the mean capture probability is 0.5. The five curves correspond to no
senescence plus the four senescence functions corresponding to survival at age 0
being 0.85 and onset of senescence being at age 5. For example, with a CV of 0.3
in capture probability (corresponding to capture probabilities of 0.35 and 0.65 for
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the two groups) and no senescence, the bias is −1.0%; if the decline in survival
corresponds to a linear-logistic slope of −0.2, this bias increases to −1.8%.

4 Discussion

Our results suggest that if capture probability is high enough, or the degree of senes-
cence is small, the bias in the estimate of overall adult survival probability will be
small. It is often assumed that estimates of survival from a CJS-model are reasonably
robust to departures from the assumptions (Carothers 1973). Our results suggest that
robustness of the estimate of overall survival probability to senescence will depend
on the species and the study, and should not be automatically assumed. For example,
few data are available for small- to medium-sized mammals, and senescence in this
group may be more extreme than we simulated. We have evidence from a long-term
study of Trichosurus vulpecula, a 2.3 kg marsupial introduced to New Zealand, of
a linear-logistic decline in survival of −0.36 y−1 in males, starting at maturity, and
a decline of −0.43 y−1 in females, starting in the fifth year after maturity (Efford
2000; J. Taillon and M.G. Efford unpubl.).

Capture–recapture studies of persistence at migratory stopover sites are espe-
cially vulnerable to the biases we describe, because the capture probability of an
unmarked individual is usually low (<0.25) (e.g. Kaiser 1995; Morris et al. 2005).
Departure from migratory stopover sites may also prove to be highly dependent on
time since arrival (mimicking extreme “senescence”); data on this relationship are
currently lacking (but see Pledger et al. 2008).

Major reviews of the CJS model have generally cited Manly (1970) to the effect
that estimates of survival are robust to “moderate” age-dependent mortality, or at
least more so than the Fisher-Ford method (Cormack 1979; Seber 1982; Pollock
et al. 1990). Williams et al. (2002, p. 435) cited Manly (1970) to the effect that “. . .
use of single-age models in the face of age-specific variation in survival probabilities
can result in positive bias in survival estimates, although the bias is not large for
small to moderate variation in age-specific survival. . .” (our italics). This appears to
refer to simulations with low juvenile survival and high adult survival, and does not
reflect findings for senescence.

Pollock et al. (1990, p. 26) suggested that “[age-specific] differences in survival
probabilities can be thought of as a special kind of heterogeneity”. We agree, but
some care is needed. Heterogeneity in the intrinsic survival probabilities of individ-
uals causes positive bias in estimates of survival probability from a single marked
sample followed through time, due to the depletion of individuals most at risk (e.g.
Rexstad and Anderson 1992; Sheil and May 1996; Zens and Peart 2003). A mixed-
age population that experiences senescence can also be thought of as heterogeneous
with respect to survival probabilities, but leads to negative bias. The key point, as
noted by Manly (1970), is that the age structure of the marked part of the population
will differ from that of the population at large, and that estimates of survival from
the marked individuals are therefore not representative of the population. The size of
the bias will be determined by this difference in age structure and by the age-specific
survival probabilities.
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We have found that bias in the estimate of survival increases with study-duration.
Zens and Peart (2003) noted a similar effect when there is individual heterogeneity
in survival that is not age-dependent. They ignored the issue of detectability of indi-
viduals, which also has a large impact, both on the bias itself and on the effect of
study-duration on that bias (Fig. 3).

The impacts of senescence and heterogeneous capture probability on the esti-
mate of overall survival probability are approximately additive (Fig. 4). Intrinsic
differences between individuals in survival probability are likely to counteract these
effects. Likewise, lower survival in early adulthood would be expected to coun-
teract the effects of senescence on the estimate of overall adult survival. An inter-
esting topic for further research would be to assess the relative contribution that the
different sources of bias are likely to make in practice.

In carrying out an analysis of capture–recapture data, it is important to assess
goodness-of-fit. If survival is age-dependent, we might expect to detect this using
Test 3SR (Burnham et al. 1987, p. 74). We could then use a model in which survival
is “age”-dependent, where age refers to the number of years since first capture.
Crespin et al. (2006) suggest that the power of such a model to detect senescence
will be almost the same as when age is known. However, it is difficult to see how
such an analysis could be used to improve the estimate of overall adult survival
probability.

Pledger (2006; see also Pledger et al. 2008) provides a method of estimation of
age-specific survival when age is unknown. The results of this paper allow one to
assess the conditions under which an estimate of overall adult survival probability
from a CJS-model is likely to be unreliable, thereby indicating when methods such
as those outlined in Pledger (2006) will be of particular benefit.

If capture probability is also age-dependent, and this is not allowed for in the
analysis, the bias in the estimate of overall adult survival probability will differ
from the results presented in this paper. Thus if older adults are easier to capture
than younger adults, the bias will be greater than shown here. In the spirit of Crespin
et al. (2006), one could fit a “relative-age” model for capture probability as well as
survival probability: if this model suggests that capture probability increases with
age, one would expect the bias to be larger than indicated by the results in Section 3.

Heppell et al. (2000) suggested use of a correction-factor for adult survival in a
population model, in order to allow for senescence. Their formula involves speci-
fying a maximum amount of time spent in the adult stage and effectively leads to a
reduction in the estimate of overall adult survival probability. Even if this estimate
were not biased in the way described in this paper (e.g. if capture probability were
equal to 1), the formula provided by Heppell et al. (2000) would be inappropriate,
as the estimate of overall adult survival probability would already include the effect
of senescence. Given the negative bias that might be present in this estimate, use of
this formula would make the situation worse.

Our estimates of bias involve a number of assumptions about the population. We
assume that the population is stable, has a stable age distribution, that both survival
and capture probabilities are not time-dependent, and that first-capture probability
and recapture probability are identical. It is difficult to give general guidance as to
what to expect if the first two assumptions are not met, but the calculations given
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in the Appendix can easily be modified to allow for a population that is increasing
or decreasing, or for an alternative age distribution. If there is time-dependence in
the survival and capture probabilities, we would expect the bias to be approximately
the same as the estimate obtained from Tables 1 or 2 by setting both the survival
probability in early adulthood and the capture probability equal to an estimate of the
corresponding mean value. If the first-capture probability differs from the recapture
probability, we would expect the bias to be different from the results given here. For
example, if we were to have a high first-capture probability in year 1, which reduced
to zero thereafter, and the recapture probability remained constant throughout the
study, we would expect the bias to be greater than given here, as this would lead to
the marked individuals being even older on average than the population.

We have focussed attention on obtaining an estimate of overall adult survival
probability using a capture–recapture model in which adult survival probability is
constant, with the estimate being used in a deterministic population model. Our
results should also provide useful guidance for the case where we are anticipating
using a stochastic population model, for which estimates of the mean and between-
year variation in adult survival probability would typically be required: we would
then be using an estimate of mean adult survival probability from a “random effects”
capture–recapture model for adult survival (Burnham and White 2002), and the bias
in this estimate is likely to be close to that presented in this paper.

Acknowledgments We are grateful to the Associate Editor and the referees for their many helpful
comments.

Appendix

We generate the data used in each run of the simulations in the form of a reduced
m-array (Lebreton et al. 1992), using the following calculations. The reduced
m-array consists of the following variables:

Ri Number of individuals captured and released in year i (i = 1, 2, . . . , T − 1)
mij Number of individuals that were released in year i and were recaptured for

the first time in year j (i = 1, 2, . . . , T − 1; j = i + 1, i + 2, . . . , T )

We generate these variables as follows:

Ri ∼ Binomial (N , p) (i = 1, 2, . . . , T − 1){
mi,i+1,mi,i+2, . . . ,miT |Ri

} ∼ Multinomial
(
Ri ;πi,i+1, πi,i+2, . . . , πiT

)
(i = 1, 2, . . . , T − 1)

where �ij is the probability that an individual released in year i is recaptured for
the first time in year j. For computational convenience, we set φ(x) = φ(50) for
x ≥ 50, as the proportion of the population aged 50 years or more will be very small
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(< 0.1%) for the scenarios that we consider. As the capture probability is assumed
to be the same for marked and unmarked individuals, each release cohort constitutes
a random sample from the population, and we can express π ij as

πi j = p (1 − p) j−i−1

{
49∑

x=0

(
ρ(x)

x+ j−i−1∏
y=x

φ(y)

)
+ ρ(50+)

(
φ(50)

) j−i

}
(i = 1, 2, . . . , T − 1; j = i + 1, i + 2, . . . , T )

where �(x) is the stable age distribution for the adults in the population, given by

ρ(x) ∝ l (x) (x = 0, 1, . . ., 49) ρ(50+) ∝ ρ(49) φ(49)

1 − φ(50)

50+∑
x=0

ρ(x) = 1

where ρ(50+) is the proportion of individuals aged 50 years or more, and l(x) is the
probability of surviving to age x, given by

l (x) =

⎧⎪⎪⎨⎪⎪⎩
x−1∏
y=0

φ(y) x > 0

1 x = 0

For the large-sample case, we generated the expected m-array using

Ri = N p (i = 1, 2, . . . , T − 1)

mi j = Riπi j (i = 1, 2, . . . , T − 1; j = i + 1, i + 2, . . . , T )

For the case of two-group heterogeneity in capture probability, where the two group
sizes are the same, we generated the expected m-array for each group using the
calculations above, and then summed the corresponding elements in the two arrays,
i.e. the final reduced m-array had elements given by

Ri = R1i + R2i and mi j = m1i j + m2i j

where Rki and mkij are the elements of the expected m-array for group k
(k = 1, 2; i = 1, 2, . . . , T − 1; j = i + 1, i + 2, . . . , T ) .
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Weak Identifiability in Models
for Mark-Recapture-Recovery Data

Olivier Gimenez, Byron J.T. Morgan, and Stephen P. Brooks

Abstract The percentage overlap between prior and posterior distributions is
obtained easily from the output of MCMC samplers. A 35% guideline for overlap
between univariate marginal prior and posterior distributions has been suggested as
an indicator of weak identifiability of a parameter. As long as uniform prior distri-
butions are adopted for all of the model parameters, then the suggested guideline
has been found to work well for a range of models of mark-recapture-recovery
data, where all the parameters are probabilities. Its use is illustrated on models
for ring-recovery data on male mallards, and the Cormack-Jolly-Seber model for
capture-recapture data on dippers.

Keywords Bayesian identifiability · Cormack-Jolly-Seber model · Mark-recapture-
recovery models · Parameter-redundancy · Prior/posterior overlap · Sensitivity ·
Survival of wild animals

1 Introduction

1.1 Parameter Redundancy and Identifiability

Models may be devised for mark-recapture-recovery (mrr) data without all the
parameters being estimable. A model is said to be identifiable if no two values of
the parameters give the same maximum likelihood for the data, while parameter-
redundant models can be re-expressed in terms of fewer than the original number of
parameters (Catchpole and Morgan 1997), resulting in that case in likelihood sur-
faces with completely flat ridges or surfaces. The obvious way to check for param-
eter redundancy for a particular application is to examine the likelihood surface by
computing the rank of the observed Hessian (Viallefont et al. 1998; Formann 2003).
Catchpole and Morgan (1997) considered the rank of the model itself, regardless
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of the data, using symbolic algebra. It is then possible to determine how many and
which parameter combinations can be estimated (Catchpole et al. 1998; Catchpole
et al. 2001). Applications of this approach can be found in, for example, Gimenez
et al. (2003), Gimenez et al. (2005), Schaub et al. (2004), Nasution et al. (2004) and
Kéry et al. (2005). In addition, Catchpole et al. (2001) considered near redundant
models, which, while formally not parameter-redundant, can in some cases produce
estimates of certain parameters with poor precision.

1.2 Weak Identifiability

The use of computational Bayesian methods for model-fitting in biology has
increased in recent years (Ellison 2004; Clark 2005), including population ecology
(Brooks et al. 2000a, 2002). With the increase in computing power, the temptation
is to fit more and more complex models using MCMC methods. However, models
that are parameter-redundant may be fitted using Bayesian methods, as a result
of the information in the prior distribution, and a dramatic illustration of this is
provided by Brooks et al. (2000b). Let us write a marginal posterior distribution as
π(θ |Y ), for data Y , parameter θ and prior distribution p(θ ). Then the parameter θ
is said to be weakly identifiable when π(θ |Y ) ≈ p(θ ); see Gelfand and Sahu (1999)
and Garrett and Zeger (2000).

Thus in Bayesian analysis, weak identifiability arises when data supply little
information about certain parameters. Weak identifiability is the counterpart of near
redundancy in a classical analysis, and poses appreciable problems for a Bayesian
approach. For example:

• conclusions based on the examination of weakly identified parameters can be
misleading (Garrett and Zeger 2000);

• weak identifiability may result in strong correlations between parameters in the
posterior distribution, which in turn implies poor mixing in the MCMC samples
and very slow convergence (Carlin and Louis 1996; Rannala 2002);

• even with large sample sizes, the likelihood may be unable to overcome the prior
(Neath and Samaniego 1997);

• a too-informative prior can drive posterior inference, while a prior too close to
improper can yield improper posteriors (Gelfand and Sahu 1999; Bayarri and
Berger 2004).

There are various ways to check for weak identifiability:

• one might conduct a classical test for parameter redundancy;
• one might undertake a detailed prior sensitivity analysis;
• one can examine the correlation matrix of the parameter estimators in the poste-

rior distribution;
• as in Garrett and Zeger (2000), one can display the marginal prior/posterior pair

plots as a visual aid;
• one can evaluate numerically, and calibrate, the overlap for each marginal prior-

posterior pair.
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Gimenez et al. (2006) have compared these alternative procedures, and found
that the last two of these methods are simple and effective. We outline this approach
in Section 2, and then illustrate its use on a data set resulting from marking male
mallards, Anas platyrhynchos, in Section 3. In Section 4 the method is applied to a
data set of capture-recapture data on dippers Cinclus cinclus. In Section 5 we exam-
ine the alternative approach of sensitivity analysis, while in Section 6 we present
correlations between parameter estimates. The paper ends with general discussion
in Section 7.

2 Testing for Weak Identifiability

2.1 Theory

In order to check the weak identifiability of any parameter θ , Garrett and Zeger
(2000) compared its marginal prior distribution to its marginal posterior distribu-
tion by directly evaluating the overlap between the two distributions. This quantity,
denoted τθ , can be computed as

τθ =
∫

min(p(θ ), π(θ |Y ))dθ. (1)

Values of τθ lie in the interval [0,1], and when τθ is above some pre-determined
threshold then θ is declared weakly identifiable. The ad-hoc threshold of 0.35 has
been suggested by Garrett and Zeger (2000), and used in applications of this method.

2.2 Bayesian Inference

The mrr models that we shall consider only involve probabilities, and in this paper
we have only presented results arising from taking uniform distributions on the
interval [0,1] as priors for all of the model probabilities. Based on preliminary runs,
we generated four chains of length 50,000, discarding the first 25,000 as burn-in.
Convergence was assessed using the Brooks/Gelman/Rubin statistic (Gelman 1996),
and we found that in general the Markov chains exhibited good mixing and moderate
autocorrelation.

Simulations were performed using WinBUGS (Gimenez et al. 2008; Lunn et al.
2000), and the R (R Development Core Team 2008) package R2WinBUGS (Sturtz
et al. 2005) was used both to call WinBUGS and examine results in R.

2.3 Practical Computation of τ

The computation of τ follows suggestions by Schmid and Schmidt (2006):
we estimate the posterior distribution π(θ |Y ) by means of a kernel density
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estimator f̂ based on the MCMC generated values xi , i = 1, . . . , n (we took
n = 1000, corresponding to the last 1000 MCMC values obtained), namely

f̂ (x) = 1

n

n∑
i=1

1

h
K

(
x − xi

h

)
where K is a kernel function centered at the

data points xi and h is the bandwidth. We used a standard Gaussian kernel

K (x) = 1√
2π

exp

(
− x2

2

)
with its associated optimal bandwidth h∗ = 1.06 σ̂ n− 1

5 ,

where σ̂ = min (standard deviation, interquartile range/1.34) (Silverman 1986,
page 48).

We then obtained a sample from the distribution of the min function in Equa-
tion (1) by calculating yi = min (1, f̂ (xi )) for all i . Finally, a Monte Carlo approxi-
mation to τ is given by τ̂ =

∑
i

yi/n.

3 Mark-Recoveries: Application to the Freeman-Morgan Model

3.1 The Freeman-Morgan Model

As an example of the approach, we consider a model developed by Freeman and
Morgan (1992; FM model hereafter) involving the survival probability φ1,i of birds
in their first year of life, possibly varying with the year i , the probability φa of
survival of adult individuals (i.e. of age ≥ 1), taken as constant over time, and
constant probabilities of reporting of rings from dead birds in their first year 
1, or
older 
a .

Taking the FM model as an illustration, Catchpole et al. (2001) showed that prob-
ability models that are formally not parameter redundant may behave poorly when
fitted to data. The main reason for this near-singularity is that the FM model con-
tains as a sub-model the model with constant first year survival, which is parameter
redundant. As a consequence, the smallest eigenvalue of the expected information
matrix may be very small rather than zero as is the case in parameter-redundant
models.

When Catchpole et al. (2001) applied this model to ring-recovery data
obtained from animals marked as young, very poor results were sometimes
obtained, with unrealistic estimates of φ1,i and 
1 and large associated standard
errors.

We fitted the FM model to data on mallards, with 9 years of recovery (Table 1).
The data are the result of a ringing study of males ringed as young in the San Luis
Valley, Colorado, 1963–1971; Brownie et al. (1985), p48.

Displays of the marginal prior-posterior distribution pairs for the FM model
parameters are given in Fig. 1, and the corresponding estimated percentages of
overlap are given in Table 2, corresponding to the shaded areas in Fig. 1.

The marginal prior-posterior distribution pairs in Fig. 1 clearly suggest that all
parameters except two may exhibit weak identifiability problems, viz., φa and 
a

which have relatively sharp marginal posterior distributions. Examination of Table 2
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Table 1 Recovery data for male mallards Anas platyrhynchos

Year of
ringing

Year of recovery (−1962) Number never
seen again1 2 3 4 5 6 7 8 9

1963 83 35 18 16 6 8 5 3 1 787
1964 103 21 13 11 8 6 6 0 534
1965 82 36 26 24 15 18 4 927
1966 153 39 22 21 16 8 942
1967 109 38 31 15 1 1005
1968 113 64 29 22 927
1969 124 45 22 940
1970 95 25 786
1971 38 315
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Fig. 1 Display of the prior-posterior distribution pairs for φ1,i , φa, 
1 and 
a in the FM model
applied to the mallard data. In order to compute τ , the shaded area of overlap has to be calculated
(Equation 1). The priors for all parameters were chosen as U (0, 1) distributions. Note that scales
in panels may differ

leads to the same conclusion with all τ values greater than or close to 0.35, except
for φa and 
a and the young reporting rate 
1 which was also found to be identifiable
using the 35% threshold. This is in agreement with the results obtained by Catchpole
et al. (2001), Table 5(a).

3.2 Fitting the Parameter-Redundant Sub-model

It is of interest here to fit the parameter-redundant sub-model, which arises when
there is just a single survival probability, φ1, for birds in their first year of life.
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Table 2 τ values expressed as percentages for the FM model fitted to the mallard data

Parameter τ

φ1,1 40.2
φ1,2 41.5
φ1,3 34.6
φ1,4 40.1
φ1,5 41.7
φ1,6 34.7
φ1,7 41.5
φ1,8 43.4
φ1,9 45.3
φa 10.7
λ1 30.8
λa 13.4

The resulting graph showing the overlaps between priors and posteriors is shown in
Fig. 2. It appears from this graph that the only parameter that is not weakly identifi-
able is φa. This result is in agreement with the classical methodology of Catchpole
et al. (2001), which formally identifies the three estimable parameters in this case
as φa , and the two parameter combinations φ1
a , and φ1(1 − 
1). The values for the
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Fig. 2 Display of the prior-posterior distribution pairs for φ1, φa, 
1 and 
a in the parameter
redundant sub model of the FM model, applied to the mallard data. The priors for all parameters
were chosen as U (0, 1) distributions. Note that scales in panels differ
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overlaps are, τφ1 = 75.93, τφa = 10.78, τ
1 = 60.66, τ
a = 51.33. The difference
between Figs. 1 and 2 is one of degree, with the weakly-identified parameters of
Fig. 2 exhibiting more overlap with the prior than in the case of Fig. 1.

4 Mark-Recapture: Application to the Cormack-Jolly-Seber
Model

We consider now the fully time-dependent capture-mark-recapture Cormack-Jolly-
Seber (CJS) model originally developed by Cormack (1964), Jolly (1965) and Seber
(1965), for which all parameters are time dependent. We define φi as the probabil-
ity that an animal survives to time ti+1 given that it is alive at time ti , and p j the
probability of being recaptured at time t j . Even though it is parameter-redundant,
the model can be useful for analyzing capture-mark-recapture data. We fitted the
CJS model to the dipper data set which consists of 7 capture occasions (Table 3).
The data are the result of a recapture study of both male and female birds ringed
as adults in eastern France, in 1981–1986. In this application, the last survival (φ6)
and detection ( p7) probabilities are known to be confounded while all the other
parameters are estimable.

Displays of the prior-posterior distribution pairs for survival and detection prob-
abilities are given in Fig. 3.

The overlap percentages are given in Table 4 and correspond to the shaded areas
in Fig. 3.

From examining Fig. 3, it appears that almost all CJS model parameters are
well identified given the small overlap between the prior and posterior distributions.
However, as expected, the last survival and detection probabilities are the exception,
their posterior distributions being relatively flat and therefore providing more cov-
erage of the uniform priors. In addition, it should be noted that the first survival and
the first detection probabilities are also clearly weakly identifiable, due to the fact
that very few individuals were marked at the first sampling occasion (approximately
7% of the full data set). The visual diagnostic of Fig. 3 is confirmed by looking at the
numerical values of τ in Table 4. In addition, parameter p3 seems to be marginally
weakly identifiable (τp3 = 35.9).

Table 3 Recapture data for European dippers Cinclus cinclus (data taken from Lebreton
et al. 1992)

Year of
release

Year of recapture (1981+) Number never
recaptured1 2 3 4 5 6

1981 11 2 0 0 0 0 9
1982 24 1 0 0 0 35
1983 34 2 0 0 42
1984 45 1 2 32
1985 51 0 37
1986 52 46
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Fig. 3 Display of the prior-posterior distribution pairs for φ and p in the CJS model applied to the
dipper data. The priors for all parameters were chosen as U (0, 1) distributions. Note that scales in
panels differ

Table 4 τ values expressed as percentages for the CJS model applied to the dipper data. For all
parameters we use U (0, 1) priors throughout

Parameter τ

φ1 53.6
φ2 33.4
φ3 29.2
φ4 27.9
φ5 27.4
φ6 57.2
p2 54.7
p3 35.9
p4 28.4
p5 26.4
p6 23.4
p7 56.5

5 Sensitivity Analysis

If parameters are weakly identifiable, then we would expect this to be revealed by
a sensitivity analysis, in which we repeat the analysis several times, each time for a
different configuration of prior distributions. To illustrate this approach, we consider
the CJS model applied to the dipper data set. We take a U (0, 1) prior for all of the
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Table 5 Sensitivity analysis for the CJS model applied to the dipper data. In rows we show the
parameter for which the prior is changed in turn (from a U (0, 1) to a Beta(1,9)). In columns we give
the posterior means for all the parameters. The last column gives the Euclidean distance between
each row and the case where all priors are U (0, 1)

φ1 φ2 φ3 φ4 φ5 φ6 p2 p3 p4 p5 p6 p7 eucl. dist.

φ1 0.47 0.46 0.48 0.63 0.60 0.72 0.75 0.87 0.88 0.87 0.90 0.74 0.27
φ2 0.74 0.39 0.49 0.62 0.61 0.73 0.65 0.89 0.88 0.88 0.90 0.73 0.07
φ3 0.72 0.46 0.43 0.63 0.60 0.73 0.67 0.86 0.89 0.88 0.91 0.74 0.05
φ4 0.72 0.45 0.48 0.56 0.61 0.73 0.67 0.87 0.87 0.89 0.90 0.74 0.07
φ5 0.72 0.45 0.48 0.63 0.55 0.74 0.66 0.87 0.88 0.87 0.92 0.74 0.06
φ6 0.72 0.45 0.48 0.63 0.61 0.53 0.67 0.87 0.88 0.88 0.90 0.91 0.28
p2 0.83 0.43 0.48 0.63 0.60 0.73 0.42 0.87 0.88 0.88 0.91 0.74 0.26
p3 0.72 0.55 0.45 0.63 0.60 0.73 0.67 0.60 0.88 0.87 0.90 0.74 0.30
p4 0.72 0.45 0.53 0.60 0.61 0.74 0.67 0.87 0.67 0.87 0.90 0.73 0.21
p5 0.73 0.45 0.48 0.69 0.57 0.74 0.66 0.87 0.88 0.71 0.91 0.73 0.18
p6 0.72 0.45 0.48 0.63 0.67 0.71 0.67 0.87 0.88 0.87 0.73 0.71 0.19
p7 0.72 0.45 0.48 0.63 0.61 0.91 0.67 0.87 0.88 0.87 0.89 0.53 0.27

parameters except for one, which is given a Beta(1, 9) prior, and we then change,
in turn, which parameter has the different prior. As we can see from the results
displayed in Table 5, the conclusions are not straightforward.

However it appears that there is little sensitivity of parameters to the prior,
except for parameters φ1, p2, φ6, p3 and p7. This is in line with the findings
from using the overlap measure τ , but there is a difference in order. As with the
overlap measure, there is an issue of calibration here. Carrying out the sensitiv-
ity analysis by changing the prior for one parameter at a time is time consuming
since we need to run the MCMC chains as many times as the number of param-
eters (note also that to check for convergence of the MCMC, we always run two
chains in parallel). Thus this approach could soon become intractable with more
complex models, particularly as one would typically use several alternative beta
distributions.

Because of the relative complexity of a detailed sensitivity analysis, we now con-
sider a simpler alternative approach, of examining correlations between parameters,
obtained from the MCMC output in the usual way.

6 Correlations Between Estimates

6.1 The Dipper Data

The correlation matrix of the parameters for the CJS model applied to the dipper
data is given in Table 6.

We have high negative correlation between φ6 and p7 (−0.89) as expected, mod-
erate negative correlation between φ1 and p2 (−0.50), and all remaining pairs of
parameters give correlations in the range (−0.32, 0.16). We note that the value
of −0.32 relates to parameter p3, as well as to parameter φ2. Thus in this example
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Table 6 Correlation matrix for the parameters of the CJS model applied to the dipper data

φ1 φ2 φ3 φ4 φ5 φ6 p2 p3 p4 p5 p6 p7

φ1 1.00 −0.15 0.02 −0.03 −0.03 0.00 −0.50 0.02 0.01 −0.02 −0.05 0.00
φ2 −0.15 1.00 −0.08 0.00 0.00 −0.03 0.09 −0.32 0.05 −0.03 0.00 0.05
φ3 0.02 −0.08 1.00 −0.06 0.02 0.03 −0.03 0.16 −0.18 0.03 0.01 −0.04
φ4 −0.03 0.00 −0.06 1.00 −0.09 −0.02 0.03 −0.01 0.15 −0.32 0.00 −0.02
φ5 −0.03 0.00 0.02 −0.09 1.00 0.01 0.02 −0.02 0.01 0.15 −0.30 −0.06
φ6 0.00 −0.03 0.03 −0.02 0.01 1.00 0.04 0.05 −0.02 −0.07 0.02 −0.89
p2 −0.50 0.09 −0.03 0.03 0.02 0.04 1.00 0.01 −0.02 0.04 −0.02 −0.03
p3 0.02 −0.32 0.16 −0.01 −0.02 0.05 0.01 1.00 −0.04 −0.01 0.02 −0.06
p4 0.01 0.05 −0.18 0.15 0.01 −0.02 −0.02 −0.04 1.00 −0.02 −0.04 0.01
p5 −0.02 −0.03 0.03 −0.32 0.15 −0.07 0.04 −0.01 −0.02 1.00 −0.04 0.07
p6 −0.05 0.00 0.01 0.00 −0.30 0.02 −0.02 0.02 −0.04 −0.04 1.00 0.03
p7 0.00 0.05 −0.04 −0.02 −0.06 −0.89 −0.03 −0.06 0.01 0.07 0.03 1.00

considering the correlation structure between estimates has proved to be useful, and
is relatively easy to implement.

6.2 The Mallard Data and the FM Model

The correlation matrix of the parameters for the FM model applied to the Mallard
data is given in Table 7.

In this case the correlation matrix is not so easy to interpret. As expected, there
are generally low correlations between φa and all of the other parameters, but that
is not true of parameters 
1 and 
a , which is therefore out of line with the findings
of Section 3.1.

6.3 The Mallard Data and the Parameter-Redundant Sub-model

The correlation matrix of the parameters for the FM submodel applied to the mallard
data is given in Table 8.

Table 7 Correlation matrix for the parameters of the FM model applied to the mallard data

φa φ1,1 φ1,2 φ1,3 φ1,4 φ1,5 φ1,6 φ1,7 φ1,8 φ1,9 λ1 λa

φa 1.00 −0.06 −0.07 −0.05 −0.04 −0.03 −0.02 0.00 −0.01 −0.03 −0.02 0.22
φ1,1 −0.06 1.00 0.85 0.87 0.88 0.88 0.87 0.88 0.86 0.77 0.86 −0.89
φ1,2 −0.07 0.85 1.00 0.82 0.87 0.86 0.84 0.86 0.84 0.73 0.89 −0.83
φ1,3 −0.05 0.87 0.82 1.00 0.88 0.88 0.87 0.88 0.86 0.77 0.85 −0.90
φ1,4 −0.04 0.88 0.87 0.88 1.00 0.90 0.88 0.89 0.88 0.78 0.91 −0.87
φ1,5 −0.03 0.88 0.86 0.88 0.90 1.00 0.88 0.90 0.88 0.78 0.88 −0.89
φ1,6 −0.02 0.87 0.84 0.87 0.88 0.88 1.00 0.88 0.86 0.77 0.88 −0.87
φ1,7 0.00 0.88 0.86 0.88 0.89 0.90 0.88 1.00 0.88 0.77 0.90 −0.87
φ1,8 −0.01 0.86 0.84 0.86 0.88 0.88 0.86 0.88 1.00 0.76 0.87 −0.85
φ1,9 −0.03 0.77 0.73 0.77 0.78 0.78 0.77 0.77 0.76 1.00 0.77 −0.78
λ1 −0.02 0.86 0.89 0.85 0.91 0.88 0.88 0.90 0.87 0.77 1.00 −0.81
λa 0.22 −0.89 −0.83 −0.90 −0.87 −0.89 −0.87 −0.87 −0.85 −0.78 −0.81 1.00
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Table 8 Correlation matrix for the parameters of the FM submodel applied to the mallard data

φa φ1 λ1 λa

φa 1.00 0.00 0.01 0.04
φ1 0.00 1.00 0.86 −0.86
λ1 0.01 0.86 1.00 −0.59
λa 0.04 −0.86 −0.59 1.00

We can see that the only parameter from the original parameter set that is
estimable, φa, is essentially uncorrelated with the other estimates, however other
conclusions are elusive, and this is true also if one considers the results of a principal
component analysis of the correlation matrix.

7 Discussion

Experience with a range of different models and data sets in the general mrr
area consistently suggests that, as proposed by Garrett and Zeger (2000), the
prior/posterior overlap threshold of τ = 35% works well as a guideline for diag-
nosing weak identifiability in models for the annual survival of wild animals, when
the approach is confined to the case of uniform prior distributions. It has been
shown by Gimenez et al. (2006) that if other priors are used then it is difficult to
calibrate τ .

A difference between using a classical approach to parameter redundancy based
on symbolic algebra and estimating the prior/posterior overlap, as in this paper, is
that the latter approach takes account of the effect of both the data and the model.
In practice, if possible it is important to understand both the redundancy structure
of individual models as well as the influence of data. This has been seen in the
analysis of Section 3; the estimates of reporting probabilities for the Mallard data
are quite different, but in contrast the estimates of first-year survival are not. What
this means is that the fitted FM model for the mallard data is essentially similar to
the parameter-redundant sub-model with parameters (
1, 
a, φ1, φa).

While in practice it is important to know the parameter-redundancy status of a
model, that is not always possible (Jiang et al. 2007; Pradel et al. 2008; Schaub
et al. 2004). As we have seen, weak identifiability may be due to the model and/or
the data, and the cause of weak identifiability can be investigated once a model
is fitted, by fitting the model again to a larger data set simulated from the fitted
model. If that were done for the three examples of this paper, then nothing would
change for the parameter-redundant sub-model of the FM model. No amount of
additional data can change the fact that of the original four parameters, it is only
φa that can be estimated precisely. For the FM model, increased precision for the
estimates of first-year survival should improve overall performance, as in this case
the model is not parameter redundant. For the CJS model, analysis of the dipper data
has produced estimates of low precision either because of parameter redundancy or
because of lack of data. Here increasing cohort sizes will improve the precision of
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parameters such as φ1, but the basic parameter redundancy due to the confounding
of parameters φ6 and p7 will remain.

We believe that the use of a 35% overlap threshold for τ , combined with uniform
priors, is an important guide for interpreting the results of Bayesian analyses of mrr
data, and we recommend its use as a simple, general guideline in the area. Of course,
it is only a guideline, and needs to be interpreted sensibly.

Because the correlation matrix between parameters is easily obtained from the
MCMC output, then we recommend that it is also examined. As any Bayesian anal-
ysis will involve some sensitivity analysis, then the results of such an analysis might
also be of value. We note finally that when uniform priors are used then overlap with
the posterior may be related to the variance of the corresponding parameter, though
this will also depend on features such as skew (see for example the results of Fig. 2).
A crude alternative to the measure of overlap considered in this paper is simply to
use (and calibrate) the posterior inter-quartile range, which provides a measure of
spread that is less affected by skew.

The R and WinBUGS programs used in this paper are available on request from
the first author.
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Estimating N: A Robust Approach
to Capture Heterogeneity

Byron J.T. Morgan and Martin S. Ridout

Abstract We evaluate the performance of a new mixture model for heterogeneity
in capture probability when estimating the size of a closed population of wild ani-
mals. The new model expresses the capture probability as a mixture of a binomial
distribution and a beta-binomial distribution. For real data sets, it is shown how the
new model can provide a suitable framework for model discrimination. When there
is no best model from within the family of models represented by the new mixture,
we recommend adopting a conservative approach to estimating population size.

Keywords Binomial Model · Beta-Binomial Model · Closed Population Size ·
Logistic Normal Distribution · Mixture Model · Non-identifiability

1 The Problem of Model Identification

We fit models to data so that we can use them for activities such as summarising,
extrapolation and prediction. Models are only simplifications of reality, and extrap-
olation can depend crucially upon the particular model chosen. This is a well-known
problem; for instance in the area of estimation of virtually safe doses in bioassay,
usually a range of models is considered, in order to be able to judge the effect of the
model on extrapolation.

The important paper by Link (2003) showed that different models for hetero-
geneity of capture probability in the estimation of the size of closed populations can
fit the observed data equally well, yet differ in the prediction of both population size
and its precision. Additional discussion is given in Link (2006).

Various approaches may be adopted in this area; for example, one may

• regard the problem as insurmountable, and refuse to provide any inferences at all,
other than use the data to provide a lower bound to the population size.

B.J.T. Morgan (B)
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• ignore the problem, and pretend that it does not exist. Papers are continuing to be
written that adopt this strategy.

• attempt to model the heterogeneity, using covariate information on observed indi-
viduals, in the hope that the covariates will account for the heterogeneity. This
approach may work to some extent, but the association between covariates and
capture probability may be poor. Thus this is not a general solution to the prob-
lem.

• try to select a model which is thought to correspond to the real-life situation under
study. Although this has been proposed, it is typically difficult, and an incorrect
choice of model can lead to substantial bias in the estimator of N . It is safer, and
more robust, to use the approach of the next item.

• base inferences on an extended model, in order to produce a more robust and
conservative approach.

It the last of these approaches that is adopted by Morgan and Ridout (2008),
henceforth referenced as MR. In this paper we describe their approach, and sum-
marise its performance on a number of real data sets. We then show how the
approach performs for the examples of Link.

2 A Strategy Based on a New Mixture Model

First we give the mathematical formulation of a range of possible models for esti-
mating the size of a closed population with unknown size N . It is assumed that
on each of k occasions, a closed population of wild animals is sampled at random
and those animals in the sample that have not been marked previously are uniquely
marked and returned to the population, while those that have been marked previ-
ously are recorded. If we denote the population size by N , and the remaining model
parameters by the vector η, then, omitting constants of proportionality, we obtain
the general form of the likelihood as

L(N, η) ∝ N!

(N − D)!

k∏
j=0

p
f j

j .

Here, f j denotes the number of animals that have been captured j times, for
j ≥ 0 and D is the number of distinct animals caught, given by D = ∑k

j=1 f j ,
so that f0 = N − D. The probability p j denotes the probability that an animal is
caught j times out of the k occasions; the {p j} are determined by the model, and in
this paper we shall consider the following five possibilities.

• A mixture of A binomial distributions, so that we have

p j ∝
{

A∑
a=1

γaφ
j
a (1 − φa)k− j

}
.
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In this paper, we consider only the cases of A = 1 and A = 2. When A = 1
we have a single binomial, corresponding to homogeneity of capture probability
over animals. We refer to this as the Bin model; it corresponds to the model M0

of Otis et al. (1978). When A = 2 we set γ1 = γ and γ2 = 1 − γ ; the model
abbreviation used in this case is 2 Bins. Finite mixture models for describing
capture heterogeneity were suggested by Norris and Pollock (1996), and have
been substantially developed by Pledger (2000, 2005).

• A beta-binomial model. Here

p j ∝
∏ j−1

r=0 (μ+ rθ )
∏k− j−1

r=0 (1 − μ+ rθ )∏k−1
r=0(1 + rθ )

≡ pBe
j ,

say.
The model abbreviation used here is Beta-bin. This model was investigated by
Burnham (1972), and has been considered further in some detail by Dorazio and
Royle (2003, 2005).

• A mixture of a binomial and a beta-binomial, so that

p j ∝ {
γφ j (1 − φ)k− j + (1 − γ )pBe

j

}
,

where φ is the binomial probability of capture. This is the new mixture model of
MR, and it contains the three models above as special cases. In this instance, the
model abbreviation used is Bin + Beta-bin.

• The logistic-normal binomial model of Coull and Agresti (1999). Here

p j ∝ φ j (1 − φ)k− j ,

where φ = ∫ ∞
−∞

1
(1+e−x ) f (x)dx , and f (x) denotes the normal N(μ, σ 2) density.

The model abbreviation used here is LNB.

3 Examples

3.1 Real Data

We start by presenting five real data sets, extracted from a larger set of fifteen given
by MR. The data are displayed in Table 1; the first four examples involve wild ani-
mals, and the last refers to the number of taxicabs in Edinburgh. MR give the source
details of all of these examples. The last column of Table 1 indicates the model
selected using an appropriate likelihood-ratio test at the 5% level. The only models
considered in these comparisons were the sub-models of the Bin+Beta-bin model.

This subset of real data has been selected because the examples provide instances
of when each of four models is selected as the best single model for the data set,
based on likelihood-ratio tests of nested models, and also one example (pocket
mice) where no single model is selected as the best model for the data. This can



1072 B.J.T. Morgan and M.S. Ridout

T
ab

le
1

T
he

{f
j}

fo
r

5
re

al
da

ta
se

ts
.

Fo
r

th
e

W
oo

d
m

ic
e

ex
am

pl
e

w
e

ha
ve

f j
=

0
fo

r
j
>

18
.

T
he

en
tr

ie
s

un
de

r
th

e
“M

od
el

”
co

lu
m

n
ar

e
ex

pl
ai

ne
d

in
th

e
te

xt

j
k

M
od

el

D
at

a
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

Sk
in

ks
56

19
28

18
24

14
9

–
–

–
–

–
–

–
–

–
–

–
7

B
in

+
B

et
a-

bi
n

H
ou

se
m

ic
e

2
64

40
31

16
13

5
1

0
1

–
–

–
–

–
–

–
–

10
2

B
in

s
Po

ck
et

m
ic

e
16

15
6

5
5

5
3

–
–

–
–

–
–

–
–

–
–

–
7

–
W

oo
d

m
ic

e
71

59
41

39
20

26
19

12
9

5
8

4
9

2
1

3
3

3
21

B
et

a-
bi

n

Ta
xi

ca
bs

14
2

81
49

7
3

1
0

0
0

0
–

–
–

–
–

–
–

–
10

B
in



A Robust Approach to Capture Heterogeneity 1073

Table 2 Values of −�max for 5 illustrative data sets. Shown in bold face are the values
corresponding to selected models, when a single model is selected for the data

Data Binomial Beta-bin 2 Bins Bin + Beta-bin

Skinks 86.71 22.35 23.04 18.57
House mice 44.43 43.55 39.54 39.47
Pocket mice 33.15 14.04 12.37 12.33
Wood mice 357.27 47.45 87.73 45.34

Taxicabs 16.95 16.44 16.34 16.34

be appreciated from the maximised log-likelihood values of Table 2. Note that the
binomial model is nested within the beta-binomial model, and that all models are
nested within the new mixture model. It is interesting to observe for both the house
mice and wood mice examples that there is a clear preference for a particular sub-
model of the Bin + Beta-bin model, and we do not know of such a comparison
having been made previously. In order to compare the beta-binomial model to the
new mixture model the appropriate chi-square distribution to use has two degrees
of freedom. This is because we obtain the beta-binomial model when γ = 0, at
a boundary to the parameter-space. Brooks et al. (1997) and MR investigated the
appropriate asymptotic chi-square distribution for this case. When a single model
is selected for inference, then we may use that model to estimate N and its preci-
sion from an appropriate profile confidence interval. If no model is selected then
we recommend the conservative approach of only presenting an interval estimate,
taking as the lower end of the interval the smallest lower interval value from the
models considered, and taking as the upper end the largest corresponding upper
interval values. Typically this interval will be wide, which is appropriate when one
cannot discriminate between alternative possible models. An alternative strategy is
provided in Section 4.

3.2 Link’s Three Examples

Link has presented a number of examples to demonstrate the problem of non-
identifiability. We are aware of three such examples, which we believe are all arti-
ficial, although that does not detract from their relevance. We shall now examine
how our approach performs for these three data sets. The relevant maximised log-
likelihood values are given in Table 3.

Table 3 Values of −�max for Link’s three data sets. For data set 1 there are not enough observations
to allow the Bin + Beta-bin model to be fitted

Data Set Binomial Beta-bin 2 Bins Bin + Beta-bin

1 23.85 10.84 10.48 −
2 52.65 15.00 15.81 14.55
3 878.07 47.01 105.89 45.74
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data set 1 : { f j , j ≥ 1} = [84, 54, 36, 21].

This example was communicated directly to us by Link, and like the second
example below, was presented as proportions. We have therefore scaled these to
provide realistic data sets for analysis. For this example there are not enough obser-
vations to allow us to fit the Bin + Beta-bin model.

Here a lower bound for N is provided by D = 195. The binomial model is clearly
excluded, but the other two models are indistinguishable. Thus we would produce a
95% interval for N of (221, ∞), from applying the conservative approach above to
the confidence intervals of the two indistinguishable models.

Referees have queried whether one can obtain an upper confidence limit N = ∞,
and a heuristic demonstration of how this can occur is provided in the Appendix.

data set 2 : { f j , j ≥ 1} = [32, 20, 14, 11, 9, 8, 6].

The situation here is identical to that above, and the resulting interval is
(104.7, ∞), whereas the lower bound from taking the sum of the f j is 100.
Thus in this instance the modelling exercise barely improves upon the lower bound
for N that arises directly from the data.

For both of these data sets, when a Beta-bin model is fitted to the data, then the
corresponding beta density rises to infinity at zero. It has been shown (Link 2006)
that for the second data set, the data may be fitted equally well by the LNB model,
but that the two models provide different estimates of N . That is not surprising,
given that the LNB density is zero at the origin. Exactly the same issue arises with
the last of the three examples of this section, which we now consider.

The last example is taken from Link (2003), and is substantially larger than one
would expect to encounter in practice.

data set 3 : { f j , j ≥ 1} = [679, 531, 379, 272, 198, 143, 99, 67, 46, 32, 22, 14, 9,

5, 3, 1, 0, 0, 0, 0].

In this case we have D = 2500, and out of the nested set of models that we
consider in this paper, the best model for the data is the beta-binomial model, with
N̂ = 3494 and with 95% profile confidence interval of (3308, 3730). For this
example, Link writes that “N . . .is for all practical purposes not identifiable,” the
reason being that the LNB model produces an estimate of 3111, with 95% profile
confidence interval of (3018, 3218), which does not overlap with the interval given
above for the Beta-bin model. The discrepancy arises because of the different way
in which heterogeneity of capture probability is handled near the origin, as we can
see from Fig. 1. The LNB model, although having the same number of parameters
as the Beta-bin model, has a density that is always zero at the origin, and that is a
severe restriction. For this data set, the Bin + Beta-bin model acts as a compro-
mise between the Beta-bin and the LNB models. The beta-binomial component is
selected 98.9% of the time, and the rest of the time a binomial model applies, with
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Fig. 1 A comparison of model fits for the third Link data set. Here we show how three models
describe the capture probability near zero. Dashed line: LNB model; solid line: Beta-bin model;
dashed-dotted line: the beta component from the Bin + Beta-bin model

a probability of p = 0.54. In terms of likelihood-ratio tests, the Bin + Beta-bin
model is not in this example a significant improvement over the Beta-bin model,
with a log-likelihood difference of only 1.27. The Bin + Beta-bin model estimates
N = 3372, with a 95% confidence interval of (2966, ∞).

4 Discussion

We have presented the new mixture model of MR, and illustrated its behaviour on a
range of real and artificial examples. We note that when the Beta-bin model is fitted
to all three of the problem data sets of Link then the fitted beta distribution has an
infinite mode at zero. As far as we know, this point has not been made previously.

We speculate that major discrepancies between estimates of N from the Beta-bin
and LNB models will not arise if the beta density corresponding to a fitted beta-
binomial distribution also has zero density at the origin.

We have compared nested models using likelihood-ratio tests, and we suggest
also that the Bin + Beta-bin model provides a robust approach if one is uncer-
tain about the distribution of heterogeneity that is appropriate for any particular
problem. Alternatively, if one compares models in terms of AICs, as was done by
Link (2003) for the last of the three examples in the last section, then the LNB,
Beta-bin and Bin + Beta-bin models will be indistinguishable. The lack of overlap
of the confidence intervals for the Beta-bin and LNB models for that example can
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then be placed in the context of the fits of all three models, as the interval for the
Bin + Beta-bin model overlaps with both of the other two intervals, and here too
a conservative approach could be adopted.

We see from the illustration of Fig. 1 that both of the two-parameter models
illustrated there allow the possibility of radically different behaviour of the proba-
bility density function of the capture probability near the origin, with quite different
estimates of N resulting, as we have seen. The context of the problem might exclude
a particular form of probability density function for the capture probability, though
as observed earlier this will be unlikely in general.

An alternative approach would be always to fit the Bin + Beta-bin model, and
base inferences on that model. One would expect that always using a five-parameter
model would result in conservative inference, and this is currently under considera-
tion. Further research is also taking place in this area, notably with regard to mixing
the LNB distribution with a binomial distribution, and considering absolute, rather
than just relative, measures of goodness-of-fit.

A referee has observed that producing a confidence interval for population size
with an infinite upper bound has no direct relevance to conservation, perhaps when
one is surveying an endangered population. Such an interval provides an expression
of uncertainty, based on the data available.

The important message of this paper is that informed use of the Bin + Beta-bin
model allows conservative inference to take place in the area of estimating the size
of closed populations of wild animals, in the presence of heterogeneity of capture
probability.

The computer programs used to fit this model and its sub-models were writ-
ten in R (R Development Core Team 2008) by MSR, and are available from
http://www.kent.ac.uk/ims/personal/msr/estimateN.html. Multiple starts were used
to reduce problems with local optima.

Acknowledgments We thank the referees for their comments which improved the paper, and in
particular resulted in the Appendix.

Appendix: The Behaviour of the Profile Log-Likelihood for N as
N →∞, for the Beta-Binomial Model

The likelihood can conveniently be written in the factorised form

L(N, η) ∝
{

N!

(N − D)!
p(N−D)

0 (1 − p0)D

}
×
⎧⎨⎩

k∏
j=1

(
p j

1 − p0

) f j

⎫⎬⎭ ,

where the p j ’s are the beta-binomial probabilities, dependent on parameters μ and
φ. The second term is proportional to the conditional likelihood for individuals seen
at least once.
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As N increases, we expect p0 to decrease in such a way that

N(1 − p0) ≈ D, (1)

where D is the number of individuals observed at least once.
Provided N − D is not too small, we have the following approximation, which is

based on Stirling’s approximation

log

(
N!

(N − D)!

)
≈ N log(N) − (N − D) log(N − D) − D.

Then some simple algebra shows that the logarithm of the first term of the
factorised likelihood, assuming that p0 is given by equation (1), is approximately
independent of N and given by

D(log D − 1).

Thus, for large N , and in particular in the limit as N → ∞, the value of the
likelihood depends only on the second (conditional) term.

As N → ∞, we expect the conditional likelihood also to approach a constant.
Indeed we can anticipate the approximate value of the parameter μ by equating the
conditional mean number of times an individual is seen to its expectation. This gives∑k

j=1 j f j

D
≈ kμ

1 − p0
≈ Nkμ

D

or

μ = 1

Nk

k∑
j=1

j f j . (2)

Examples

We now provide two contrasting illustrations from the data sets of Table 1, viz.,
pocket mice and house mice.

Pocket Mice

Here D = 55 and the conditional mean number of times an individual is seen is
32/11 = 2.909. Table 4 shows, for different values of N , the contributions to the
log-likelihood from the first and second terms in the factorised likelihood (denoted
log L1 and log L2), the overall log-likelihood (denoted by log L) and also the
maximum-likelihood estimate of μ, conditional on N and the corresponding value
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Table 4 The behaviour of the profile log-likelihood for N : numerical results for pocket mice

N log L1 log L2 log L μ̂ eqn(2) θ̂

55 162.9451 −244.1642 −81.2190 0.4226 0.4156 0.7320
62.4764 165.8720 −241.3921 −75.5200 0.3728 0.3659 0.2990
98.2389 165.8110 −239.4072 −73.5962 0.2347 0.2327 0.5939
200 165.5634 −239.4919 −74.0886 0.1134 0.1143 0.8675
2000 165.4173 −239.8120 −74.3947 0.0112 0.0114 1.1048
20000 165.4047 −239.8465 −74.4418 0.0011 0.0011 1.1284

from equation (2). The numerical values were obtained using Maple, with 15 digits
of precision.

The second and third rows in the table correspond to the (approximate) lower
confidence limit for N and the maximum likelihood estimate of N respectively. All
the calculations here suggest that the numerical values are stabilising as N → ∞.
In particular, note that the approximation

log L1 ≈ D(log D − 1) = 165.4033

is not only appropriate as N → ∞ but is quite accurate except when N is close to D.
Similarly, the approximate value of μ̂ given by equation (2) is reasonably accurate
for all values of N considered.

It therefore appears that in this example, the upper 95% profile confidence limit
for N is infinite.

House Mice

Here D = 173 and the conditional mean number of times an individual is seen is
585/173 = 3.3815. Table 5 is structured and derived in the same way as Table 4.

The first 3 rows in the table correspond to the (approximate) lower confidence
limit for N and the maximum-likelihood estimate of N and the approximate upper
confidence limit for N respectively. All the calculations here suggest that the numer-
ical values are stabilising as N → ∞, though compared with Table 4, one requires
somewhat larger values of N before log L2 stabilises. In particular, note that the
approximation

Table 5 The behaviour of the profile log-likelihood for N : numerical results for house mice

N log L1 log L2 log L μ̂ eqn(2) θ̂

173.1590 718.9907 −1103.394 −384.4040 0.3379 0.3378 0.0069
176.9660 720.3686 −1102.853 −382.4841 0.3307 0.3306 0.0170
183.6701 719.1309 −1103.524 −384.3930 0.3187 0.3185 0.0353
250 715.7774 −1128.042 −409.5225 0.2306 0.2340 0.2073
2500 718.5412 −1166.812 −448.2921 0.0210 0.0234 0.7095
25000 718.5228 −1168.815 −450.2961 0.0021 0.0023 0.7568
250000 718.5197 −1169.006 −450.4866 0.0002 0.0002 0.7614
2500000 718.5195 −1169.025 −450.5056 0.00002 0.00002 0.7619
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log L1 ≈ D(log D − 1) = 718.5914

is again not only appropriate as N → ∞ but is very accurate for N ≥ 2500 and the
approximate value of μ̂ given by equation (2) is reasonably accurate for all values of
N considered. Thus, in this example too, the profile log-likelihood tends to a limit as
N → ∞. However, in this case the limit is such that a finite upper 95% (or 99% or
99.9%) confidence limit exists for N . The relatively narrow confidence interval for
N in this example occurs because almost all animals that are seen are seen at least
twice, so that the estimated probability that an animal is unseen is necessarily small.

Summary

As is well known, the likelihood for this problem can be factored into two compo-
nents, one of which is the conditional likelihood for the individuals that have been
observed.

In terms of profile likelihoods for N , this conditional likelihood is expected to
tend to a constant as N → ∞. The other term is approximately constant, at least
when N is large. Thus the overall log-likelihood tends to a constant as N → ∞.
Depending on the value of this constant in relation to the log-likelihood at the overall
maximum-likelihood estimate, this may lead to an infinite upper confidence limit for
N (and it may also result in the lower confidence limit being the observed number
of individuals, D).

The basic arguments here are that

i. For large N , one expects the expected number of distinct individuals seen to be
similar to the observed number. This implies that the first term in the factorised
likelihood is approximately independent of N .

ii. For large N , the conditional log-likelihood is expected to be roughly indepen-
dent of the choice of N .

These arguments are not specific to the beta-binomial model and one might
expect similar conclusions to hold for other models of heterogeneity of capture
probability.
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Evaluation of Bias, Precision and Accuracy
of Mortality Cause Proportion Estimators
from Ring Recovery Data

Michael Schaub

Abstract Knowledge about proportions of specific mortality causes is important
for the design of efficient conservation measures or the determination of harvest
regulations. Unfortunately, these proportions are difficult to estimate. We (Schaub
and Pradel 2004) have recently introduced a multistate capture-recapture model that
allows one to estimate proportions of specific mortality causes from recoveries of
dead animals with known cause of death. However, parameter estimation was found
to be difficult, because the likelihood surface of the model relative to most parame-
ters has a flat ridge, unless the proportions of mortality causes vary with time and the
cause-specific recovery rates are constant. These conditions are likely to be violated
in most empirical situations. For the application of this model, it is therefore impor-
tant to study the sensitivity of parameter estimates to violations of these assump-
tions. I use a Bayesian implementation of the model to evaluate bias, precision and
accuracy of parameter estimates under variable means and temporal variation of
mortality cause proportions and recovery rates. Survival rate estimates were unbi-
ased in all scenarios. Bias and precision of the proportion of mortality causes and of
the cause-specific recovery probabilities decreased with increasing temporal vari-
ance of the proportion of mortality causes while their accuracy increased. The bias
of these estimates also decreased with decreasing difference between cause-specific
recovery probabilities and with decreasing temporal variation of them. Moreover,
informative priors affected the posterior distribution of the parameters when tempo-
ral variation in the proportion of mortality causes was low. Temporal variance of the
proportion of mortality causes could be estimated reliably regardless of bias. This
result is important, since it allows one to assess whether accuracy of the estimates
of mortality proportions is acceptable for the objectives of a study. The bias of the
naı̈ve estimator (quotient of the number of animals reported dying from a particular
cause to the total number reported altogether) was usually much larger than the bias
of the corresponding estimator from the multistate model. In conclusion, a careful
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application of the multistate capture-recapture model can give useful information
about the proportion of mortality causes that is otherwise hard to obtain.

Keywords Bayesian · Bias · Multistate Model · Proportion of Mortality Causes ·
Recovery Probability · Simulation

1 Introduction

Overall mortality rates are typically due to a variety of mortality causes such as
predation, disease, accidents or human harvest, and each of these may influence
population dynamics differentially. If the frequency of these causes changes, overall
mortality is likely to change also and thereby population growth rate. Thus, study-
ing the proportion of different sources of mortality is important for understanding
proximate causes of population dynamics.

Unless animals are radio-tagged (e.g. Bro et al. 2001; Buner and Schaub 2008),
the importance of a particular mortality cause is difficult to assess. This is because
the probability of finding an animal that has died due to a specific mortality cause
depends on the mortality cause. For example, animals that die from human-related
mortality causes such as hunting or accidents with cars or windows are usually much
more likely to be found and reported than animals that die from predation, disease
or starvation. Therefore, estimates of the proportion of mortality causes based on
the ratio of the number of animals reported dead from a particular cause and the
total number reported (Newton et al. 1999; Hüppop and Hüppop 2002) are likely to
be seriously biased.

Recently, we (Schaub and Pradel 2004) introduced a multistate capture-recapture
model which allows estimation of overall survival rates (S) and the proportion (	)
of animals dying from a particular mortality cause under question from recovered
dead animal whose cause of death is known. In this model, which I term cause-
specific mortality model, the probability of finding and reporting an animal that died
from a particular cause of death is estimated, allowing to estimate the parameters of
interest (S, 	) without bias. The parameters of interest are intrinsically identifiable,
if 	 is time-dependent and the cause-specific recovery rates constant across time
(Schaub and Lebreton 2004). However, even in intrinsically identifiable models the
model likelihood relative to 	 and the recovery rates has a flat ridge, such that the
estimation of these parameters can be difficult (see discussion in Schaub and Pradel
2004). The problem arises because a nested model with fewer parameters, where 	
is not variable over time, is intrinsically unidentifiable (Schaub and Lebreton 2004).
Therefore, the information matrix of the model is near-singular (Catchpole et al.
2001; Catchpole and Morgan 2001) and the model provides only unbiased estimates
when 	 varies across time. However, it is not clear how large the temporal variation
of 	 needs to be to obtain accurate parameter estimates.

A further important issue is that often additional information is available on some
of the parameters in the model. For example it is known that the recovery rate of
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hunted individuals is larger than the recovery rate of individuals dying from natural
causes. In this situation, it may well be that parameter estimation from a Bayesian
analysis is less delicate owing to the inclusion of such additional information via the
prior distributions or order constraints. I therefore evaluated how much the estimates
can be improved through the use of additional information.

Another challenge is that the parameters (	, recovery rates) are not separately
estimable when the recovery probabilities are time-dependent. One must therefore
fit a model with constant recovery probabilities, yet is it not clear how strongly 	
and the recovery rates will be biased when there is such variation.

The aim of the paper is to enhance the understanding of the cause-specific mor-
tality model to facilitate its application. I developed a Bayesian implementation of
the model and used simulation to explore the conditions when the model provides
reasonably accurate parameter estimates. The sensitivity of the parameter estimates
under the model is explored along several dimensions, (i) magnitude of temporal
variance of 	, (ii) magnitude of temporal variance of the recovery rates, (iii) mag-
nitude of cause-specific recovery rates, (iv) sample size (numbers of data years),
and (v) use of additional information. I also studied bias and precision of the naı̈ve
estimator (quotient of the number of animals reported dying from a particular cause
to the total number reported altogether), to evaluate how much the estimates from
the cause-specific mortality model improve over the naı̈ve estimates. Based on the
results I propose guidelines for the practical application of the model.

2 Material and Methods

2.1 The Cause Specific Mortality Model

The data required for the cause-specific mortality model (Schaub and Pradel 2004)
are capture-mark-recovery data where the cause of death of each recovered animal is
known without error. Such data is frequently available, for example in the database
of the European ringing schemes. The various causes of death observed among
recovered individuals are then allocated to the two groups A and B, where group
A refers to the mortality cause one is particularly interested in (e.g. hunting) and B
refers to all other mortality causes (not A). A multistate capture-recapture history is
then constructed for each individual. For example, capture history 010A0 denotes
an individual that was marked in the second year and died from cause A and was
recovered in year four.

To obtain estimates of 	, survival and the recovery rates, I used a multistate
capture-recapture model with the three states “alive”, “died due to cause A”, and
“died due to cause B”. The model is presented here with a matrix of transition
probabilities and a state-specific vector of “sighting” probabilities. Note that states
are from top to bottom (states of arrival) and from left to right (states of departure)
in the order as indicated above:



1084 M. Schaub⎡⎣St (1 − St )	t (1 − St )(1 − 	t )
0 1 0
0 0 1

⎤⎦⎡⎣ 0
λA,t

λB,t

⎤⎦ .

Here, St is the probability that an individual survives from time t to time t + 1; 	t

is the probability that the mortality cause of an individual is A if it dies between t
and t + 1; and λA,t and λB,t are the probabilities that an individual dying from cause
A or B, respectively, between t and t + 1 is found and reported. A more detailed
description of the model is presented in Schaub and Pradel (2004) and in Schaub
and Lebreton (2004).

While we used a frequentist approach in Schaub and Pradel (2004) and Schaub
and Lebreton (2004), here I apply a Bayesian analysis. The likelihood is formed
from the products of multinomial distributions whose cell probabilities are functions
of S, 	, λA and λB (see also Brooks et al. (2000) for an equivalent formulation of a
classic ring-recovery model). I used several different priors (see below more details)
and Markov chain Monte Carlo (MCMC) methods to sample from the posterior
distribution.

2.2 Intrinsic Identifiability of the Model

Evaluation of the model using formal methods (Catchpole and Morgan 1997, Catch-
pole et al. 2002, Gimenez et al. 2003) has shown that only models in which 	 is
time-dependent and the recovery probabilities are constant across time, i.e. models
[S, 	t, λA, λB] and [St, 	t, λA, λB], are intrinsically identifiable. Other models,
where either all parameters are constant across time or where one or both recov-
ery probabilities are time-dependent, are not intrinsically identifiable (Schaub and
Lebreton 2004). The fact that model [S, 	, λA, λB] is not fully identifiable (i.e.
only the quantities S, 	∗λA, and (1 − 	)∗λB are separately estimable) can pose
problems for the parameter estimation also under the two identifiable models: it is
the time variation of 	 which renders 	, λA and λB separately estimable. One aim
of my study was therefore to understand how large the temporal variation of 	 needs
to be in order to get useful estimates of S, 	, λA, and λB.

2.3 Simulation Methods

To evaluate estimator performance I conducted a simulation study with different
scenarios with 500 generated data sets each. Generation of a data set first required
selection of those parameters values (θ ) that were variable across time. I chose the
beta distribution to model temporal variation in a parameter. For time interval t , a θt

was taken from a beta distribution with mean θ̄ and variance σ 2
θ . The two parameters

a and b of the beta distribution were calculated as a = θ̄ (θ̄(1 − θ̄ )/σ 2
θ − 1), and b =

(1− θ̄)(θ̄(1− θ̄)/σ 2
θ −1), respectively. Considering a specific number of study years,
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then I assumed that 1000 individuals were newly marked in each year and created a
multistate m-array (Burnham et al. 1987) using multinomial distributions. Parameter
estimates were then obtained from analysis of the m-array under the cause-specific
mortality model described above.

In a first set of simulations, I studied the effect of different means of 	 and
the two recovery probabilities on the parameter estimates. I generated data from
a model with constant survival and recovery probabilities and with time-dependent
mortality cause probabilities [S, 	t, λA, λB]. I considered five different mean val-
ues of α (ᾱ = {0.1, 0.35, 0.5, 0.65, 0.9}), seven different temporal variances
of 	 (σ 2

α = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}) and two different
options of recovery probabilities. In the first option the values of the two recov-
ery probabilities were closer (λA = 0.2, λB = 0.1) than in the second option
(λA = 0.25, λB = 0.05). I considered 10 and 30 study years, whereas the mean
value for survival (S = 0.4) remained the same in all scenarios. These values
appeared to cover realistic levels of variation to be expected in practical applica-
tions of the model. Non-informative (uniform) �(1,1) priors were considered for all
parameters and all scenarios. In total I considered 140 different scenarios in this set.

In a second set of simulations, I studied the impact of the inclusion of addi-
tional information on the parameter estimates. I generated data under a model
with constant survival and recovery probabilities and with time-dependent mortality
cause probabilities [S, 	t, λA, λB]. The mean values of survival (S = 0.4), the
proportion dying (ᾱ = 0.35) and the number of study years (10) remained the
same in all scenarios. I evaluated different magnitudes of temporal variances of
	 (σ 2

α = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}), two different options
of recovery probabilities (λA = 0.2, λB = 0.1, and λA = 0.25, λB = 0.05,
respectively) and the inclusion of additional information. For the latter I used four
possibilities. First, I assumed that no additional information is available and used
non-informative �(1,1) priors for all parameters. Second, I used a �(1,1.857) prior
for 	 and non-informative �(1,1) priors for the other parameters. The �(1,1.857)
distribution is an almost linearly decreasing distribution with mean 0.35. This is
exactly the same as the mean value of ᾱ used to simulate the data. This prior dis-
tribution was chosen in order to explore the potential gain in parameter accuracy if
the mean of 	 were known. Third, I used a uniform prior for 	 within the interval
{0, 0.5}, and non-informative �(1,1) priors for the other parameters. This choice
was motivated because in practice it may be possible to have an idea about likely
magnitude of 	. Fourth, additional structural information was incorporated into the
model in form of an order constraint on the recovery probability. Typically, it will be
known which mortality cause is associated with a higher recovery probability, which
can be translated into an order constraint such as λA > λB (specifically I used �(1,1)
priors for λB and Δ, and calculated λA = λB +Δ). For example, in hunted species it
may be sensible to assume that the recovery probability associated with a mortality
cause related to human activity is larger than the recovery probabilities associated
to other mortality causes (e.g. “natural” mortality). Non-informative �(1,1) priors
were used for 	 and S. In total I considered 56 different scenarios in this set of
simulations.
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In a third set of simulations, I assessed the impact of the temporal variance of
the recovery probabilities on the parameter estimates. Consequently, I constructed
the data under model [S, 	t, λA,t, λB,t]. As before, the mean parameter values
(S = 0.4, ᾱ = 0.35, λ̄A = 0.2, λ̄B = 0.1) and the number of study years (10)
were constant in all simulations. I considered the effects of the temporal variance of
	 (�2

	 = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}), two common levels
of temporal variance for both recovery probabilities (σ 2

λ = 0.001, 0.01), and two
different prior distributions for 	 (non-informative: �(1,1), informative: �(1,1.857)).
In total 28 scenarios were considered for this set.

2.4 Data Analyses

All data sets were analyzed with an intrinsically identifiable model [S, 	t, λA, λB].
In addition the naı̈ve estimate of the proportion dying due to cause A (�t: quotient
of the number of recoveries associated with cause A in year t and the total number
of recoveries in year t) was calculated for each data set. For each parameter θ I
calculated the mean bias as,

B(�̂) = 1

500

500∑
sim=1

1

T

T∑
t=1

(
�sim,t − �̂sim,t

)
,

i.e., as the mean over the 500 simulated data sets and T years of the difference
between the generating parameter and its recovered estimate, where �sim,t is the
parameter value at time t to construct the simulated data and �̂sim,t is the estimated
parameter at time t . To evaluate the precision of the estimators, I calculated the
coefficient of variation as,

CV (�̂) = 100

√√√√var

(
1

T

T∑
t=1

�̂sim,t

)/
1

500

500∑
sim=1

1

T

T∑
t=1

�̂sim,t .

Finally, to evaluate the accuracy of the estimators I calculated the mean squared
error as,

M SE(�̂) = var

(
1

T

T∑
t=1

�̂sim,t

)
+ B(�̂)2.

Low MSE indicate high accuracy of the estimator, high MSE indicate low accu-
racy. I also calculated the mean variance of the estimated 	 across time in order to
evaluate how well this estimated the true underlying variance σ 2

α .
I used R (R Development Core Team 2004) to simulate the data and ana-

lyzed them in WinBUGS (Spiegelhalter et al. 2004) from R using the package
R2WinBUGS (Sturtz et al. 2005). Initial trials showed that convergence of the
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MCMC chains occurred very quickly (after about 50 iterations) as evidenced by the
Brooks–Gelman-Rubin diagnostics (Brooks and Gelman 1998). I used 2000 MCMC
samples and conservatively discarded the first 1000 to avoid transient (preconver-
gence) effects in all simulations.

3 Results

In the first set, I evaluated bias, precision and accuracy of the estimators under differ-
ent mean values of 	, λA, λB and different temporal variation of 	. Generally, bias
and precision of α̂ decreased and accuracy increased with increasing σ 2

α (Fig. 1).
The bias of α̂ was mostly positive, but it could become negative when 	 was high.
When the difference between the two cause-specific mortality rates became larger,
bias of α̂ increased, but the precision did not change. The pattern of bias of the two
recovery probabilities was similar to that of α̂: when α̂ was strongly biased, at least
one the recovery probabilities was biased as well (Table 1). Absolute bias of survival
rate estimates was low (< 0.002) in all scenarios. The number of study years only
had a marginal effect with slightly lower bias of α̂ and the two recovery probabilities
with more study years (Table 1). The bias of the naı̈ve estimate η̂ depended on 	, but
only slightly on σ 2

α , and it increased with increasing difference of the two recovery
rates. Moreover, the bias of η̂ was smaller when α̂ was either high or low compared
to when α̂ was medium. Bias of η̂ was much larger than bias of α̂, while precision
of both were similar in almost all conditions (Fig. 1). Consequently, accuracy of η̂
was lower than accuracy of α̂. Exceptions occurred when σ 2

α was low and the two
recovery rates were close.

In the second set of scenarios I assessed the effect of the inclusion of additional
information on the estimator bias, precision and accuracy. As before, bias and pre-
cision of α̂ decreased strongly with increasing σ 2

α , regardless of whether additional
information was considered (Fig. 2). The use of informative priors for 	 or the
order constraint for the recovery probabilities had strong impacts, but their impact
decreased with increasing σ 2

α . The bias of α̂ was reduced and the accuracy increased
when an appropriate prior for 	 was chosen. For example, the use of a �(1,1.857)
prior distribution for 	, which has the same mean as the values used to simulate
	, resulted in considerably reduced bias of α̂. The uniform prior for 	 within the
interval {0, 0.5} also considerably reduced the bias and increased accuracy of α̂,
when σ 2

α was low. However, as σ 2
α increases, bias of α̂ increases as well and accu-

racy declined. The prior distribution which constrained λ̂A to be higher than λ̂B

also resulted in slightly reduced bias of α̂ and higher accuracy. However, the impact
of this choice of prior on parameter accuracy decreased with increasing difference
between means of the two recovery probabilities. Absolute bias of survival rate was
again negligible (< 0.002) in all scenarios (results not shown). Bias of the recovery
probabilities followed the same pattern as that of α̂: when bias of α̂ was low, bias of
both recovery probabilities was low as well (results not shown).
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Fig. 1 Bias, coefficient of variation, mean squared error and temporal variance of the proportion
of mortality causes estimated from the cause-specific mortality rate model (CSM) and the naı̈ve
estimator (naive), respectively, in relation to the simulated temporal variance of α (σ 2

α ), the cause-
specific recovery probabilities and different levels of ᾱ. Shown are mean values originating from
500 simulations. These simulations were performed assuming a survival rate of 0.4, 10 study years
and 1000 newly released individuals in each year. Non-informative � (1,1) priors were used for all
parameters and simulations. Some combinations of ᾱ and σ 2

α = 0.1 are not possible, because the
beta distribution is not defined
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Fig. 2 Bias, coefficient of variation, mean squared error and temporal variance of the proportion
of mortality causes estimated from the cause-specific mortality rate model (α̂) in relation to the
simulated temporal variance of α (σ 2

α ), the cause-specific recovery probabilities and different prior
distributions or order constraints. Shown are mean values originating from 500 simulations. These
simulations were performed assuming a survival rate of 0.4, ᾱ = 0.35, 10 study years and 1000
newly released individuals in each year
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Fig. 3 Bias, coefficient of
variation, mean squared error
and temporal variance of the
proportion of mortality
causes estimated from the
cause-specific mortality rate
model (CSM) and the naı̈ve
estimator (naive),
respectively, in relation to the
simulated temporal variance
of α (σ 2

α ), temporal variance
of cause-specific recovery
probabilities and different
prior distributions. The lines
without dots refer to analyses
using a � (1,1)-prior for α,
the lines with open dots refer
to analyses using a �
(1,1.857)-prior for α. Shown
are mean values originating
from 500 simulations. These
simulations were performed
assuming a survival rate of
0.4, 10 study years and 1000
newly released individuals in
each year
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In the third set, I studied the estimator performance when the recovery proba-
bilities were variable across time. The pattern of bias, precision and accuracy of
α̂ remained the same: bias and precision decreased and accuracy increased with
increasing σ 2

α (Fig. 3). Bias of α̂ increased and precision of α̂ decreased with
increasing σ 2

λ . Use of an informative prior distribution for 	 reduced the bias and
slightly increased accuracy. As in the other sets, bias in survival estimates was
always minimal. Bias of recovery probabilities followed again the same pattern
as bias of α̂ (results not shown). Bias of η̂ was important in all conditions, and it
increased with increasing σ 2

λ (Fig. 3). Precision of η̂ decreased with increasing σ 2
λ

and σ 2
α . Bias of η̂ was larger than bias of α̂ when σ 2

λ was low, otherwise bias of both
estimators was important.

Since σ 2
α plays a major role for bias and accuracy of α̂ and the two recovery

probabilities, there is clearly an interest to know whether the estimated temporal
variance of α̂ is a good estimator of the true underlying temporal variation of α̂ (σ 2

α );
owing to the bias of α̂, this was not clear a priori. As shown in Figs. 1, 2 and 3,
the temporal variance of α̂ was mostly a good indicator of σ 2

α . However, when the
uniform prior (U(0, 0.5)) for 	 was chosen and σ 2

α was high, the temporal variance of
α̂ underestimated σ 2

α (Fig. 2). Moreover, when recovery probabilities were variable
across time, σ 2

α was slightly overestimated (Fig. 3).

4 Discussion

I evaluated bias, precision and accuracy of the estimators of the cause-specific mor-
tality model of Schaub and Pradel (2004). While survival rate estimates were never
strongly biased and always very accurate, bias, precision and accuracy of the pro-
portion of the mortality causes (α̂) and of the cause-specific recovery probabilities
(λ̂A, λ̂B ) strongly depended on the specific situation: generally biases and preci-
sion decreased and accuracy increased with increasing temporal variance of α̂, with
decreasing difference between the two recovery probabilities and with decreasing
temporal variation of the two recovery probabilities. Increasing the number of study
years only had limited impact on parameter accuracy and bias. The commonly used
naı̈ve estimator η̂ was in almost all cases much more strongly biased and less accu-
rate than α̂. These results followed expectations and are in line with our previous
assessment of the intrinsic identifiablity of the parameters in the cause-specific mor-
tality model (Schaub and Pradel 2004, Schaub and Lebreton 2004).

The inclusion of additional information sometimes had a strong effect on the
parameter estimates, in particular when the temporal variation of α̂ was low. Accord-
ing to the evaluation of the intrinsic identifiability this result was expected. When
the temporal variation of α̂ decreases, the likelihood of the model becomes a more
flat ridge, and thus the information in the data to separately estimate all parameters
becomes smaller. Consequently, the prior distributions obtain more weight com-
pared to the likelihood until they dominate the posterior distribution (Brooks 1998).
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I also found that the estimated temporal variation of the proportion of mortality
causes is a fairly good estimator of the true variability of this proportion. Since bias,
precision and accuracy of the parameters of interest strongly depend on the temporal
variation of the proportion of mortality causes, this is an important result that may
help in practical applications of the model. Based on the estimated parameters it can
be judged whether accuracy is acceptable.

The naı̈ve estimate η̂ is only unbiased if the cause-specific recovery rates are
identical. As shown here, bias of η̂ increases the more this condition is violated. In
addition, bias of η̂ was usually much stronger than bias of α̂. In contrast to α̂, where
the magnitude of bias can be assessed by the inspection of the temporal variance
of α̂, magnitude of possible bias of η̂ cannot be assessed, as the cause-specific
recovery rates remain unknown. This clearly shows that α̂ is a superior and more
rigor estimator of the proportion of mortality causes than η̂, even if α̂ is biased in
some situations.

For the practical application of the model, it would be important to evaluate how
often or to what degree the assumptions of high level of variation of mortality pro-
portions across time and constant recovery probabilities are met in practice. Clas-
sical analyses of dead recovery data have shown that sometimes recovery probabil-
ities may be fairly constant across years (Thomson et al. 1997); yet, perhaps more
often, they appear to vary across time (Piper 1995, Frederiksen and Bregnballe 2000,
Schaub et al. 2005, Altwegg et al. 2006). Because these analyses did not distinguish
between recovery probabilities and proportions of mortality causes, the estimated
recovery probability is a combination of the two. Therefore, it is impossible to know
which of these parameters was variable across time or whether both were. In the
only empirical analysis so far that separated these parameter types, we (Schaub and
Pradel 2004) found little evidence for temporal variation in the recovery probabili-
ties and strong evidence for fairly large temporal variation of the proportion of white
storks killed by power lines.

Based on the present study, I here propose some guidelines about how the model
will be most fruitfully applied in practice. Such guidelines are important, because
parameter estimates may not be adequate in terms of unbiasedness or accuracy
in every situation. The first step in the application of the cause-specific mortality
model should be the selection of a proper model using AIC or similar methods,
although the parameter estimation will later be performed with a model in which
the parameters of interest are intrinsically identifiable, i.e. model [S, 	t, λA, λB]
or [St, 	t, λA, λB]. The candidate set should include all combinations of time-
specific and constant proportion of the mortality causes and time-specific and con-
stant recovery probabilities. Despite the fact that some models in the candidate set
may have parameters that are not separately identifiable, such models can validly
be used for model selection. This model selection exercise will help to evaluate the
expected accuracy of the parameter estimates. There are three possible outcomes.
(1) If it turns out that the recovery probabilities are variable across time, it will
be very difficult to obtain useful estimates of α̂, even if α̂ is highly variable over
time. In this situation it may be best to conduct a simulation study that mimics the
current situation in order to explore how large the bias in the parameters of interest
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may possibly be. The estimates under the model could then be reported along with
an acknowledgement of the likely magnitude and direction of bias. (2) If recovery
probabilities are constant and α̂ is variable across time, the parameter estimates will
be fairly accurate. For a further assessment of the potential bias, temporal variation
in α̂ may be considered. This is best combined with a simulation study adapted to the
specific situation, which will indicate the likely magnitude and direction of the bias.
(3) If model selection will favor a model with constant parameters, α is probably
not strongly variable over time and α̂ will be biased. To minimize bias a wise use
of additional information, if available, may be helpful. Because the true proportion
of mortality causes is not likely to be known in practice and because of their strong
impact, I would not recommend to use informative priors for α. Constraining the
range of the prior for α or forcing one recovery probability to be larger than the
other one seems reasonable, because this kind of information is more likely to be
available and is quite confident. Constraining the prior range of α (i.e. U(0,0.5))
worked well in cases where the temporal variation of α̂ was low. η̂ may be useful to
define the upper limit of this uniform prior. Forcing one recovery probability to be
larger than the other, resulted in some bias reduction, in particular when the values
of the two recovery probabilities were not far apart.

Model performance might be improved if additional auxiliary data could be
added, that must, however, contain information about mortality causes. For example,
the inclusion of live recapture data would not help to increase accuracy of α̂ and the
recovery probabilities, since this kind of data only adds more information about
survival rate. Rather, an independent covariate that is correlated with the proportion
of mortality causes might lead to progress. Such a covariate could be included using
ultrastructural modeling (Link 1999). In the context of hunting, the annual propor-
tion of hunted individuals among all individuals in a population might be useful.
Another kind of information would be the mortality causes evaluated with radio
tagged individuals. The frequencies obtained from such smaller scale studies could
be used as a priori knowledge in the model. In practice we are often interested in
long term trends. For example, we may want to know whether a disease over time
becomes more or less important as a mortality cause, or whether the impact of har-
vesting on the overall mortality of a population changes over time. Future research
ought therefore to investigate whether such trends can accurately be estimated in the
presence of bias in the parameter estimates themselves.

This evaluation of the cause-specific mortality rate model suggests that in only
few situations may the required assumptions be sufficiently well met that the model
provides completely unbiased parameter estimates. Encouragingly, in many cases
resulting biases are not very strong though and it is possible to assess the likely
magnitude of bias. Furthermore, it is important to keep in mind that even if the
estimated proportion of mortality causes under the model may be biased somewhat,
these estimates will be an improvement over the usual naı̈ve estimate based on the
actual numbers of animals reported dead from some cause. Therefore, I conclude
that a combination of careful application of the cause-specific mortality model along
with custom-designed simulations can provide useful inference about the proportion
of mortality causes.
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Appendix

WinBUGS code used to estimate the parameters under model [S, 	t, λA, λB]. I also
provide a test data set in the format of a multistate m-array that was generated using
the following parameter values S = 0.4, 	 = {0.4835, 0.0150, 0.5636, 0.0003,
0.9408, 0.0476, 0.3089, 0.8420, 0.6130, 0.0276} (corresponding to σ 2

α = 0.1), λA =
0.2, λB = 0.1, and a set of initial values.

The input data is a matrix consisting of the m-array matrix and an additional
column (the last one) with the total number of animals from each cohort that
were never recovered. The odd columns (except the last) contain the number of
recovered animals dying from cause A, the even columns the number of recov-
ered animals dying from other causes than A. The different lines refer to release
cohorts.

Code

{
# priors
S ∼ dbeta(1,1)
for (i in 1:T) {alpha[i] ∼ dbeta(1,1)}
lambdaA ∼ dbeta(1,1)
lambdaB ∼ dbeta(1,1)

# likelihood
for (i in 1:ni) {m[i,1:(2*nj+1)] ∼ dmulti(p[i, ],
r[i])}

# calculate the number of birds released each year
for(i in 1:ni) {r[i]<- sum(m[i, ]) }

# cell probabilities of the multistate m-array
# above main diagonal
for (i in 1:(ni-1)) {

p[i, 2*i+1]<- S*(1-S)*alpha[i]*lambdaA
p[i, 2*i+2] <- S*(1-S)*(1-alpha[i])*lambdaB}
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# main diagonal
for (i in 1:ni) {

p[i, 2*i-1] <- (1-S)*alpha[i]*lambdaA
p[i, 2*i] <- (1-S)*(1-alpha[i])*lambdaB

# further above
for (j in (i+2):nj) {

p[i, 2*j-1] <- pow(S,(j-i-1))*S*(1-
S)*alpha[i]*lambdaA

p[i, 2*j] <- pow(S,(j-i-1))*S*(1-S)*(1-
alpha[i])*lambdaB}

# below main diagonal
for (j in 1:(2*i-2)) {p[i,j] <- 0}

# last column: probability of non-recovery
p[i, 2*nj+1] <- 1-sum(p[i, 1:2*nj])
}
}

Test Data Set

list(ni=10, nj=10, m= structure(.Data= c(58, 32, 17,
11, 7, 5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
864, 0, 0, 0, 59, 0, 18, 0, 4, 0, 3, 0, 2, 0, 2, 0,
0, 0, 0, 0, 0, 912, 0, 0, 0, 0, 71, 22, 28, 9, 12,
4, 7, 1, 1, 0, 1, 1, 0, 0, 1, 0, 842, 0, 0, 0, 0, 0,
0, 0, 61, 0, 19, 0, 9, 0, 5, 0, 1, 0, 0, 0, 0, 905,
0, 0, 0, 0, 0, 0, 0, 0, 100, 5, 46, 1, 17, 1, 9, 0,
3, 0, 1, 0, 817, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,
63, 2, 29, 0, 5, 0, 3, 0, 0, 894, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 49, 48, 19, 17, 3, 7, 2, 3, 852,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 10,
37, 9, 11, 3, 842, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 73, 16, 34, 9, 868, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 54, 942),
.Dim=c(10, 21)), T=10)

Initial Values

list(alpha=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5), S=0.5, lambdaA=0.5, lambdaB=0.5)
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Standardising Terminology and Notation
for the Analysis of Demographic Processes
in Marked Populations
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Abstract The development of statistical methods for the analysis of demographic
processes in marked animal populations has brought with it the challenges of com-
munication between the disciplines of statistics, ecology, evolutionary biology and
computer science. In order to aid communication and comprehension, we sought to
root out a number of cases of ambiguity, redundancy and inaccuracy in notation and
terminology that have developed in the literature. We invited all working in this field
to submit topics for resolution and to express their own views. In the ensuing discus-
sion forum it was then possible to establish a series of general principles which were,
almost without exception, unanimously accepted. Here we set out the background
to the areas of confusion, how these were debated and the conclusions which were
reached in each case. We hope that the resulting guidelines will be widely adopted
as standard terminology in publications and in software for the analysis of demo-
graphic processes in marked animal populations.

Keywords Mark-recapture · Mark-recovery · Terminology · Notation

1 Introduction

Recent decades have seen rapid developments in the analysis of demographic pro-
cesses in marked animal populations (Senar et al. 2004; Morgan and Thomson 2002;
Baillie et al. 1999; North and Nichols 1995; Lebreton and North 1993; North 1987;
Morgan and North 1984). This has in large part been achieved through the suc-
cessful collaboration of biologists, biometricians, statisticians and computer scien-
tists. Thanks to partnerships across these disciplines, we have been able to advance
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our understanding through the development of new models and methods, better
insights on how to design experiments and collect data (Schwarz 2002), and through
the development of sophisticated software packages. These developments have
revolutionized the way we conduct demographic analysis and the progress is clear
to see, but the interdisciplinary nature of this field and the widespread uptake and
implementation of these statistical models by biologists also brings with it chal-
lenges of communication between disciplines. This communication is not made
easier when ambiguities, inaccuracies and redundancies in terminology and nota-
tion appear in the literature. In principle, provided terminology and notation are
clearly defined, each author can exercise their right to use whatever notation and
terminology are most suited to the issues upon which they are working, but there
are many cases where authors have given different names to the same parameters,
used the same name for different parameters, or used terminology which is not an
accurate descriptor. In an effort to avoid confusion and make communication and
comprehension easier, we tried to identify all places where there were problems or
potential problems and by open debate and consensus we then tried to establish a
series of accepted standards that we hope will be useful and widely followed in
publications, software packages, and in all aspects of work in this field, until such
time as further revision of terminology becomes desirable.

2 Methods

The EURING conferences constitute the premier forum for discussion and interac-
tion on the subject of modeling demographic processes in marked populations, and
it was through this medium that we tried to reach all involved in this field with a
view to airing views and reaching consensus. All members of the EURING mailing
list were contacted and asked to suggest topics where resolution and standardization
would be beneficial, and they were asked to contribute their own views on what they
felt would be the best standards to adopt. A particular effort was made to poll the
views of those authoring software packages as they have particular influence on the
way demographic analyses are approached and the terms and notation which are
used. With the resulting agenda, all members of the list, and indeed in principle
any other interested parties, were invited to attend a discussion forum at the EUR-
ING2003 conference in Radolfzell, Germany. Each of the points was discussed, and
as far as was possible we tried to reach consensus on recommended standards. In
most cases, it was possible to reach unanimous conclusions.

3 Results and Discussion

A summary of the recommended standards is given in Table 1. In more detail, the
issues were debated as follows:



Standardising Terminology and Notation for the Analysis of Demographic Processes 1101

Table 1 Summary of conclusions and recommendations

‘Apparent survival’, ‘local survival’, ‘true survival’, 
 and S

-we should discontinue use of the term ‘local survival’ and use instead only the term ‘apparent
survival’

-we should denote ‘apparent survival’ with the Greek letter � (capital phi), and ‘true survival’
with capital S. This means we should not normally use � in dead-recovery models.

-these parameters should be denoted by capital letters in all cases
-if these parameters are ‘probabilities’ then they should be referred to as such and should not be

referred to as ‘rates’.
-it enhances clarity when we make reference to time periods with terms such as ‘annual’ or

‘monthly’ survival probabilities etc.

‘Recovery probability’, ‘Reporting probability’, f, � and r
A fully unanimous recommendation could not be reached on the core issues here, but
-the word ‘recovery’ should in any case only be used to refer to dead re-encounters of marked

animals.
-even if standardisation can not be achieved, terms and symbols should be clearly defined in

such a way that avoids confusion
As well as these unanimous recommendations, strong arguments were presented for adopting

the terminology of Seber (1970, 1971) which in fact defines ‘reporting’ probability λ as the
probability that a marked bird which has died will be found and reported.

The term ‘recovery’ probability f can then be used sensu Brownie et al. (1985) to refer to the
probability that a marked animal alive at the start of the time period will be shot and have its
mark reported.

Reporting probabilities and population growth rates are mostly not yet modeled
simultaneously, but care is needed to ensure clarity if they are as both are widely denoted
with the same symbols.

‘Multi-state models’, ‘Robust design’, temporary emigration, resighting probability,
�, �, c

-We should use the term ‘multi-state’ and not ‘multi-strata’
-In robust design models, transitions between the observable state inside the trapping area and

the unobservable state outside it should be labeled with the terminology and notation (�) of
multi-state models

-the terms ‘temporary emigration’ �′ and ‘temporary immigration’ �′′ need not normally be
used

-In robust design models, there is no need to introduce a new parameter ‘c’ or label it
‘resighting’ probability; instead structure akin to modeling trap-dependence can be
introduced into the capture probability whereby a distinction can be made between
probabilities of first and subsequent captures within sessions.

3.1 ‘Apparent Survival’, ‘Local Survival’, ‘True Survival’,
Φ, and S

In many mark-recapture studies where intensive observations are made on small
study sites, estimates of survival probabilities are valid under the assumption that
animals do not permanently leave the area within which they can be encountered.
In recognition of the fact that this assumption is rarely likely to hold, we often
use the term ‘apparent survival probability’, �, the probability that an animal will
not die and will not permanently leave the study site during the time period. By
using the expression ‘apparent survival probability’, �, a clear distinction is made
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with ‘survival probability’, S. The survival probability can usually be estimated in
mark-recovery models where dead birds can normally be found and reported even if
they move some considerable distance from the point of marking. The link between
apparent survival probability � and probability of survival S is usually through a
probability of fidelity (Burnham 1993), and � = S × fidelity. The probability of
permanent emigration is 1-fidelity.

There are two main sources of confusion in this area. Firstly, the term ‘local sur-
vival’ has also been used extensively to describe ‘apparent survival’, �. Secondly,
some authors have used � to denote ‘survival probability’, S, in mark-recovery mod-
els, and S is sometimes used to denote apparent survival in mark-recapture models.

The forum felt that the term ‘apparent survival’ made a clearer acknowledgement
that the estimated parameter was not a true survival probability, and that the term
‘local survival’ did not do this and could be interpreted as meaning simply that the
survival probability was specific to a local area. We therefore chose unanimously to
recommend only the use of the term ‘apparent survival’ and to discontinue use of
the term ‘local survival’.

The forum further recommended that apparent survival should always and only
be denoted �, and that survival probability should always and only be denoted S. It
was emphasized that these parameters should be denoted by capital and not lower-
case letters. Later it was added that if confusion may be caused by the use of capitals
for the matrices used in multi-state models, then the matrices could be denoted with
bold-face capitals.

During the discussions, the point was raised that a distinction should be made
between ‘rates’ and ‘probabilities’ and since these models estimate probabilities
they should be referred to as such and not as ‘rates’.

In other fields of statistics and demographic analysis, ‘survival’ often refers to
survival from age zero, while mark-recapture and mark-recovery models typically
concern survival through a specified time period conditional on being alive at the
start of it. The forum agreed that the use of words to specify this time-period
(e.g. ‘annual’ or ‘monthly’ survival) could help to clarify the meaning where there
was potential for confusion.

3.2 ‘Recovery Probability’, ‘Reporting Probability’, f, λ, and r

Brownie et al. (1985) used the term ‘recovery’ probability, f , to denote the prob-
ability that a marked animal alive at the start of the time period will be shot
and have its mark reported. ‘ f ’ can be partitioned further to estimate the prob-
ability (‘reporting’ probability) that a hunter who has shot a marked bird will
retrieve the mark and report it. ‘ f ’ is an index of hunting pressure and these mod-
els are popular for hunted populations in North America. Even when not hunted,
marked birds are found dead and reported, and Seber (1970, 1971) used ‘Report-
ing’ probability 
 to denote the probability that a marked animal that has died
will be found and reported. This formulation has been popular in Europe where
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many non-hunted species are studied and where the probabilities of dead marked
birds being found and reported are higher. Others have since referred to Seber’s
‘reporting’ probability as ‘Recovery’ probability and denoted it ‘r ’ instead of ‘λ’.
Despite the unfortunate ambiguities and redundancy here, these issues proved very
difficult to resolve, and the only unanimous recommendation that could be made
was that:

– even if standardisation can not be achieved, terms and symbols should be clearly
defined in such a way that avoids confusion

As well as this, strong arguments were presented for adopting the terminology of
Seber which had historical precedence. Seber did not in fact use ‘Recovery’ prob-
ability or ‘r’ in these papers. If Seber’s ‘Reporting’ probability λ is adopted then
this avoids the confusion with the ‘recovery’ probability ‘ f ’, but we need to avoid
confusion when using ‘reporting’ probability to refer to the probability that a hunter
will report an animal he has shot.

In discussing these issues, two other points were raised and unanimous conclu-
sions were reached. Firstly, the word ‘recovery’ should only be used to refer to
dead re-encounters of marked animals. This is distinct from live ‘recaptures’ and
‘resightings’. The collective word for all of these is ‘re-encounters’, and particularly
in analyses which combine different types of encounters, it makes sense to refer to
‘encounter histories’ as opposed to ‘capture histories’. The words ‘ring recoveries’
or ‘band recoveries’ are often used to describe all forms of re-encounter, but in
the context of formal models we urge people not to use the word ‘recovery’ when
referring to live animals.

Secondly, in demography, the symbols ‘r ’ and ‘λ’ are also both widely used to
denote measures of population growth. The forum debated whether the notation we
use for reporting probability could lead to confusion in this sense, but concluded that
context would normally ensure there was no ambiguity in practice. With the increas-
ingly integrated nature of demographic analyses, it is to be expected that population
growth rate and reporting probability will increasingly be handled simultaneously
in the same model (Pradel 1996; Besbeas et al. 2002), and care should be taken to
avoid confusion when this is the case. In integrated models, the use of ‘ p’ to denote
capture probability of live organisms could similarly lead to confusion with p for
productivity, though currently this will normally be clear from context.

3.3 Multi-State Models, Robust Design, ‘Temporary Emigration’,
‘Resighting’ Probability, and Ψ, γ , and c

In multi-state models, as well as the estimation of survival probabilities, we can
estimate the probabilities of transition, �, between states (Brownie et al. 1993;
Hestbeck et al. 1991). These states could for example be distinct geographical sites,
or they could be behavioural or physiological conditions such as breeding or non-
breeding, healthy or diseased.
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While conventional open population mark-recapture studies involve single short
trapping sessions at regularly spaced time intervals, Robust Design models can be
used when each of these conventional trapping sessions are further divided into
a short series of closely spaced repeat samples leading to a number of extremely
short time periods, ‘secondary sampling periods’, as well as the conventional longer
‘primary sampling periods’ (Kendall et al. 1995). The population can be assumed
to be closed over these short secondary sampling periods and this makes it possi-
ble to estimate capture probability based on just a single trapping session. With a
Robust Design, it then becomes possible to estimate not just survival and capture
probabilities but also the probability that a bird will undergo transitions to and from
an unobservable state, perhaps by opting in different years to establish a territory
which is inside or just outside the study area (Kendall et al. 1997; Kendall and
Nichols 1995).

A number of terminology issues were recognized as being problematic in these
areas. Firstly, multi-state models are sometimes referred to as ‘multi-strata’ models
even though ‘strata’ usually refers to fixed states between which transition is not
possible. Secondly, the probability of transition to an unobservable state outside the
study area and the probability of remaining there have traditionally been referred
to with the terms ‘temporary emigration’ �′′ and ‘temporary immigration’ �′ even
though there has been some discomfort that these terms do not describe well mean-
ing of the parameters estimated. Thirdly, in Robust Design models a distinction is
made between the probability of capture for the first time within a trapping session,
and the probability of subsequent captures within the trapping session. The proba-
bility of capture of an animal that has already been captured once within a trapping
session has been given a separate name, ‘resighting’ probability, and denoted c. This
same term ‘resighting’ probability is also used in the models of Barker (1997, 1999)
with a different meaning and refers there to the probability that an animal marked
with a field readable ring can be encountered live in the course of the conventional
(primary) sampling periods.

The forum felt that these areas of confusion could be resolved as follows, and
was unanimous in these recommendations:

– where it is possible to make transitions between states, we should use the term
‘multi-state models’ and should discontinue the use of the term ‘multi-strata
models’ because strata are typically states between which transition is not possi-
ble (Lebreton and Pradel 2002). The use of only one term will avoid confusion,
and ‘multi-state models’ is a better descriptor.

– in Robust Design models, transitions to and from unobservable states should
be labeled with the terminology and notation � of multi-state models, and since
these parameters are normally nuisance parameters anyway, terms based on ‘tem-
porary emigration’ need not normally be used. If the transition has biological
meaning, for example when only breeding birds can be observed and where birds
periodically take sabbatical years as non-breeders, then accurate descriptive ter-
minology can be used but normally the notation will suffice. As a standard Greek
letter, ‘�’ will always be used widely by mathematicians in various contexts, but
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within our field, discontinuation of the use of �′′ and �′ in Robust Design models
should reduce confusion with the use of � to denote seniority probability in the
models of Pradel (1996)

– in Robust Design models, we see no need to create a new parameter ‘resight-
ing’ probability or label it c; instead structure akin to modeling trap-dependence
can be introduced whereby a distinction can be made between the capture
probabilities of animals which have or have not previously been captured within
the trapping session. This is more parsimonious and avoids all confusion with
the ‘resighting’ probability of the Barker (1997) models.

In the context of resighting, the forum further suggested that rings which can
be read in the field without capturing an animal should be referred to as ‘field-
readable rings’.

One further topic was raised during the discussions, namely the terminology
which should be used when the exact age of trapped animals is unknown, but where
the effects of age can crudely be built into the analysis by modeling the effect of
‘time since marking’. Under some circumstances, this may be a good surrogate for
age or it may otherwise have a clear biological meaning. For example, in cases
where capture is impossible until animals recruit to the breeding population and
where capture probabilities are high thereafter, ‘time since marking’ approximates
time since recruitment, and this in turn approximates breeding experience. It was felt
that some care should be exercised in using the term ‘age’ though, and under most
circumstances it may be preferable to call these ‘time since marking’ models. In due
course this issue may disappear if new models can be developed which estimate the
effects of age on survival even when exact age of specific individuals is unknown.

Given that these recommendations have been established through open discus-
sion and consensus, with the worthy goal of reducing confusion and simplifying
communication and comprehension across our community, we hope very much that
they will be adopted widely. We hope that these suggestions will not be blindly
enforced or otherwise misused but that they will be taken up voluntarily and used
intelligently to these ends. We urge authors of both manuscripts and software pack-
ages to be clear about what they mean, and we urge everyone not to invent new
terms for established concepts when standard terminology and notation are already
available.
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Estimating the Seasonal Distribution of Migrant
Bird Species: Can Standard Ringing Data
Be Used?

Kasper Thorup and Paul B. Conn

Abstract The true distribution of migrant species is rarely immediately apparent
from the distribution of ring recoveries due to a heavy bias in regional recovery
probabilities. For western Palearctic species, the recovery probability is especially
low in Africa, but also varies within Europe. However, little work has been done
to derive actual estimates of these recovery probabilities needed to infer the “true”
underlying distribution. Here, we investigate the potential of using ringing data to
estimate the seasonal distribution densities of migrant species. Using likelihoods
based on a two point mixture distribution, the proportions of individuals wintering
south of the Sahara are estimated using differences in recovery distributions among
species in species groups where the location-specific probability of a ring recovery
can be assumed to be essentially the same among species. We consider two such
approaches. In the first, survival associated with a wintering area must be set con-
stant across species. In the second, we assume the time series is long enough that
a single binary response (recovered/not recovered) may be modeled independently
of survival parameters. Under the first approach, we estimated the proportion of
sub-Saharan migrants, together with 95% profile likelihood confidence intervals,
for redstart as 0.84 [0.70,0.93], thrush nightingale 1.00 [0.49,1.00], garden warbler
0.95 [0.85;0.99], blackcap 0.60 [0.32;0.78], reed warbler 0.87 [0.72,0.95], and pied
flycatcher 0.90 [0.76;0.97] using recovery data for birds ringed in Denmark and
assuming that all robins winter north of Sahara. In the second approach, estimated
proportions of sub-Saharan migrants were similar, but the confidence intervals were
somewhat narrower. Although further work is required to examine the underlying
assumptions, the models and analyses presented here provide a framework for mak-
ing better use of existing ring recovery datasets to understand the “true” seasonal
distribution patterns of European birds.

Keywords Capture-Recapture · Recovery Probability · Movement Rate · Winter
Distribution · Sub-Saharan Africa
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1 Introduction

Birds are among the most mobile of all terrestrial organisms, and a few species travel
up to more than 20 000 km annually between separate breeding and wintering areas.
The task of defining the seasonal distribution of migratory species is considerably
more complicated than for sedentary species. The recent demand for such data to
assess risk of spread of diseases such as avian influenza (Delany et al. 2006) or
effects of accelerating climate change on species of conservation concern (Walther
et al. 2004) has created an urgent need to improve our ability to estimate the seasonal
distribution and connectivity of migratory species.

From direct observations of birds in the field, we have acquired a general knowl-
edge about seasonal species distributions (e.g. Cramp 1988). While different mod-
eling approaches have been used to help explain variation in these observations
(e.g. using climate variables, Walther et al. 2004), such approaches tell us little
about the connectivity between populations and areas (Webster et al. 2002). While
sophisticated approaches for tracking birds over long distances have been proposed
using radio telemetry (Wikelski et al. 2007), these are not yet practical for most
small passerines. As such, the most suitable available data bases for identifying
connectivity are generally those based on ring recoveries. In Europe, very large
ring recovery data bases exist. In Denmark alone, more than 4 million birds have
been ringed and more than 180 000 of these have been recovered (Bønløkke et al.
2006). However, most analyses of these data to date have been qualitative or semi-
quantitative (e.g. Zink 1973–1985, Zink and Bairlein 1995).

One obstacle to using such data for inference is the fact that spatial distributions
of recoveries may provide biased estimates of the spatial distribution of birds due
to differences in the regional recovery probabilities (Crissey 1955; Perdeck 1977).
For western Palearctic bird migrants, the recovery probability is especially low in
Africa, but it is also low in East Europe compared to West Europe. Because of
difficulties in addressing spatial variation in recovery and survival probabilities,
most analyses of ring recoveries from a larger spatial scale have not attempted any
quantitative analysis and only presented the raw data for inferences on seasonal
distributions (Bakken et al. 2003; Bønløkke et al. 2006; Fransson and Pettersson
2001; Wernham et al. 2002; Fig. 1; though see e.g. Kania 1981).

A number of studies have investigated movements using multi-site (or multi-
state) capture-recapture methods. However, this modeling approach has seen only a
few applications for estimating species densities/distributions. A few single-species
studies have estimated seasonal distributions. For example, Sibert et al. (1999)
used an advection-diffusion model to investigate skipjack tuna movement. Simi-
larly, Skalski et al. (2002) estimated route-specific passage of smolt, in a framework
similar to the migration system considered here. However, they used radio telemetry
and the robust design (Pollock 1982; Kendall et al. 1995) at certain points to estimate
detectability.

Ideally, we would like to model both the spatio-temporal distribution of recover-
ies as well as variation in survival probabilities for each population and age class.
Apart from a general lack of extensive data sets necessary to estimate these many
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Fig. 1 Typical presentation of ring recovery data in national recovery atlases. Here garden warblers
ringed in Denmark (from Bønløkke et al. 2006)

parameters, there is a general problem of parameter identifiability for such move-
ment models. For example, Kendall et al. (2006) found that parameters are only
identifiable if the number of “marking” areas with slightly different migration prob-
abilities is greater or equal to the number of “recovery” areas.

Here, we present an approach for using ringing data to estimate the relative
seasonal distribution (in winter) of migrant species based on a few simplifying
assumptions. The rationale of this approach was already proposed by Busse and
Kania (1977) and Kania and Busse (1987), who considered dividing the birds (of
one species) into different groups. However, their model formulation only allowed
for point estimation of parameters and thus statistical inference could not be based
on their method.

The main focus will be estimating the species-specific proportions of songbirds
wintering south of Sahara. In general, too little information is available in standard
ringing data to separate survival, recovery and movement probabilities. However,
standard ringing data generally includes many species, and the differences among
species can provide the information necessary for estimating these parameters, if
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certain parameters such as survival and region-specific recovery probabilities can
be treated as constant across species. In effect, this approach suffices to increase the
number of “marking” areas (e.g., Kendall et al. 2006). We consider two methods for
analyzing spatial ring recovery data. In the first, survival and ring recovery proba-
bilities are assumed to be equal among species, but ring recovery probabilities are
allowed to differ among regions. This approach utilizes traditional release-recovery
arrays (e.g., Brownie et al. 1985). In the second method, the time series of recovery
data are assumed to be long enough that survival is effectively zero (e.g., by censor-
ing the last 15 years of ringing data), and only a binary response is modeled (recov-
ered/not recovered). This second method requires that one throw out some of the
data, but does not require the assumption that survival is equal among species. How-
ever, life-long ring reporting probabilities are still assumed to be constant across
species within a region. Relaxation of the equal survival assumption in the second
method will do little to alleviate bias if the reporting probabilities r differ between
species. Because of the way in which r is defined, this can occur when sources of
mortality within a region differ between species if each mortality source is associ-
ated with a different reporting rate. For both approaches, we restricted the species
group considered to species where the variation among species in both survival and
recovery probabilities are likely to be of smaller magnitude than the variation in
recovery probabilities among regions.

2 Methods

We developed likelihoods based on a two point mixture distribution to estimate
wintering distributions of songbirds. We assumed that individuals were ringed in
the summer in Europe, and that the probability of capture for marking does not
depend upon migration destination or individual attributes likely to affect survival
or recovery probability. For simplicity, we consider the case where there are two
wintering areas (A and B), and where interest focuses on estimating the proportion
of birds that migrate to each area. We assume that an individual bird follows only
one migration route; that is, an individual would not migrate to area A in one year
and area B the next. As articulated in the introduction, we considered two possibili-
ties for model construction.

2.1 Likelihood 1: Survival and Recovery Probabilities Constant
Across Species

If we assume that survival is constant across species that use similar migration
routes, we can specify a multinomial model for the spatial and temporal distribution
of ring recoveries (Table 1). The parameters of the model include �A

gi , the probability
that an individual of group g, initially ringed in year i , is a migrant to wintering
area A; S A

i and SB
i , the probability of annual survival from the time of ringing in
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Table 1 Multinomial structure for the analysis of summer ringing and winter recovery data when
migration occurs in the spring and fall and when individuals do not change migration route. A
symbolic data description is provided in (A), where Rgi gives the number of individuals of group
g that were ringed in year i , and mc

gi j gives the number of individuals recovered in wintering area
c in year j , given that they were initially ringed as a member of group g in year i . Multinomial
cell probabilities for each type of encounter are provided in (B). Remaining notation is defined in
the text
A. Symbolic data description

Year of Number
release Group released Strata recovered Year of recovery

1 2 3

1 1 R11 A m A
111 m A

112 m A
113

1 B m B
111 m B

112 m B
113

2 1 R12 A m A
122 m A

123

1 B m B
122 m B

123

3 1 R13 A m A
133

1 B m B
133

1 2 R21 A m A
211 m A

212 m A
213

2 B m B
211 m B

212 m B
213

2 2 R22 A m A
222 m A

223

2 B m B
222 m B

223

3 2 R23 A m A
233

2 B m B
233

B. Multinomial cell probabilities

Year of release Group
Strata
recovered Year of recovery

1 2 3

1 1 A �A
11 f A

1 �A
11 S A

1 f A
2 �A

11S A
1 S A

2 f A
3

1 B (1 − �A
11) f B

1 (1 − �A
11)S B

1 f B
2 (1 − �A

11)S B
1 S B

2 f B
3

2 1 A �A
12 f A

2 �A
12S A

2 f A
3

1 B (1 − �A
12) f B

2 (1 − �A
12)S B

2 f B
3

3 1 A �A
13 f A

3

1 B (1 − �A
13) f B

3

1 2 A �A
21 f A

1 �A
21 S A

1 f A
2 �A

21S A
1 S A

2 f A
3

2 B (1 − �A
21) f B

1 (1 − �A
21)S B

1 f B
2 (1 − �A

21)S B
1 S B

2 f B
3

2 2 A �A
22 f A

2 �A
22S A

2 f A
3

2 B (1 − �A
22) f B

2 (1 − �A
22)S B

2 f B
3

3 2 A �A
23 f A

3

2 B (1 − �A
23) f B

3
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year i for those birds migrating to wintering area A and B, respectively; and f A
i

and f B
i , the probabilities that individual migrants to areas A and B are recovered

in (i, i + 1), given that they are alive at time i . Groups in this case can include
members of different species or different banding locations if only one species is
under consideration. Whatever groups are considered, it is assumed that survival
and recovery probabilities are the same for different groups.

Analytical and analytic-numeric (Burnham et al. 1987) methods were used to
explore parameter identifiability with this model. As was found by Kendall et al.
(2006) in the case of stochastic transitions to wintering areas, an argument based on
the number of equations and number of unknowns suggested that parameters would
only be identifiable if the number of groups (banding locations, number of species)
were greater or equal to the number of wintering locations. Further, the proportion of
individuals migrating to different wintering areas needs to differ among the groups
under consideration; as a result, partitioning data from one species and banding
location into two subsets will not remedy the parameter identifiability problem.

2.2 Likelihood 2: Long Term Survival Assumed to Be Zero

Eventually, all birds ringed will die. If ringing records are censored for a long
enough duration at the end of the study (but recovery records are still compiled), one
may eliminate one of the assumptions required by Model 1 by setting S A

∗ = SB
∗ = 0,

where S∗ is survival to the end of the study. Under this approach, each ringing event
is accompanied by a binary response variable which equals 1 if the individual’s ring
is recovered later and 0 if not. Under this approach, we ignore temporal variation in
ring recovery probabilities, and write a likelihood for ringing and recovery data as

L =
T∏

i=1

∏
g

(
Rgi

m A
gi ,m B

gi

) [
�gi r

A
]m A

gi
[
(1 − �gi )r B

]mB
gi

[
1 − �gir

A − (1 − �gi )r
B
]Rgi−m A

gi −mB
gi ,

where r A and r B give time constant ring reporting probabilities for wintering areas
A and B in the sense of Seber (1982), Rgi gives the number of individuals ringed
and released in group g at time i, m A

gi and m B
gi give the number of these individuals

later recovered in wintering areas A and B, respectively, and T gives the number of
years that ringing data are modeled. Requirements for parameter identification are
similar in this approach as they were with Likelihood 1.

2.3 Example Analyses

We coded the preceding likelihoods into program SURVIV (White 1983) to estimate
species-specific differences in the proportions of birds wintering in Europe/North
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Africa and in sub-Saharan Africa, respectively, for 7 species of songbirds. We
analyzed data on redstart Phoenicurus phoenicurus, thrush nightingale Luscinia
luscinia, European robin Erithacus rubecula, reed warbler Acrocephalus scir-
paceus, garden warbler Sylvia borin, blackcap Sylvia atricapilla and pied flycatcher
Ficedula hypoleuca ringed in Denmark 1899–2002. These are all small passerines
passing Denmark on migration in reasonable numbers. For these species, annual
numbers ringed are known as well as detailed data on recoveries. For this analysis,
only birds recovered dead were included. For the species included, live recaptures
are rare and their associated probabilities are probably even more heterogeneous and
have more complicated spatial and temporal variation than that for dead recoveries,
as they depend on the distribution of ringers. For the species considered, most of
the birds ringed are young birds but due to the low number of recoveries for several
of the species, we pooled all age classes together.

All birds were considered to have been ringed in summer of year 0, as data
sparseness precluded investigation of models with temporal variation in model
parameters. The birds were primarily ringed in the migration seasons (spring and
autumn), and very few were ringed in the winter (European robin only). The win-
tering period was defined for all species as December-February,, and no recoveries
outside this season were included. For simplicity, we only modeled recoveries for a
period of five years after ringing.

Reed warbler Redstart Thrush nightingale 

Blackcap Garden warbler Pied flycatcher European robin 

Fig. 2 Spatial distribution of ring recoveries of 7 species ringed in Denmark and recovered in
winter (December–February)
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Each recovery was either in Europe/North Africa or sub-Saharan Africa (Fig. 2).
Due to data sparseness, we set mixture, survival, and recovery probabilities con-
stant over time, and constrained survival to be independent of wintering area. There
were only four recoveries in sub-Saharan Africa, which rendered parameters non-
estimable if mixture parameters were included for all species. Thus, we also set the
probability of migration to sub-Saharan Africa to zero for the European robin (which
does not occur in sub-Saharan Africa; Keith et al. 1992), allowing estimation of
mixture parameters for other species. For each likelihood formulation, two models
were fit to the data. In the first, recovery probabilities were allowed to differ between
Europe/North Africa and sub-Saharan Africa. In the second, recovery probability
was set equal between the two wintering areas.

3 Results

Under likelihood 1, the model with differences in recovery probability between
Europe/North Africa and sub-Saharan Africa was strongly favored by AICc

(�AICc = 150.8 relative to the model with a constant recovery probability; see
Burnham and Anderson 2002). Under this model, the estimated ring recovery
probability for Europe/North Africa was 4.6E-04, with a 95% profile likelihood
interval of [4.1E-04; 5.2E-04] and that in sub-Saharan Africa 1.1E-05 [4.4E-06;
2.6E-05], thus around 40 times lower in sub-Saharan Africa. The common estimate
of annual survival probability was 0.34 [0.30; 0.38]. Estimated probabilities of
migrating to sub-Saharan Africa ranged from 0.60 in the blackcap to 1.0 in thrush
nightingale (Table 2). These estimates can be compared with each species’ actual
recoveries from either region (Table 2 and Fig. 2).

Model selection criterion was similarly dismissive of the model with constant
recovery probability when likelihood 2 was employed (�AICc = 178.6). In this case,
the estimated cumulative probability of a ring being reported over the lifetime of
an individual was 1.4E-03 (95% profile CI: 1.3E-03, 1.6E-03) for birds wintering

Table 2 Numbers ringed (R) and recovered in Europe and North Africa (m A) and sub-Saharan
Africa (m B ) and estimated proportion of the population migrating to sub-Saharan Africa in autumn
for likelihoods 1 and 2 in autumn (�B

1 and �B
2 , respectively). Also presented are 95% profile confi-

dence intervals
Species R m A m B �B

1 (95% CI) �B
2 (95% CI)

Redstart 66,387 7 0 0.84 (0.70–0.93) 0.86 (0.75–0.94)
Thrush nightingale 3,831 0 1 1.00 (0.49–1.00) 1.00 (0.63–1.00)
European robin 334,406 261 0 0.00† 0.00†
Garden warbler 57,057 2 2 0.95 (0.85–0.99) 0.96 (0.88–0.99)
Blackcap 44,155 12 0 0.60 (0.32–0.78) 0.63 (0.38–0.80)
Reed warbler 55,710 5 1 0.87 (0.72–0.95) 0.88 (0.75–0.96)
Pied flycatcher 57,384 4 0 0.90 (0.76–0.97) 0.93 (0.83–0.98)

† Fixed to zero for parameter estimability.
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in Europe and North Africa, and 2.8E-05 (95% profile CI: 0.9E-05, 6.4E-05) for
birds wintering in sub-Saharan Africa. Estimated probabilities of wintering in sub-
Saharan Africa were similar to those from likelihood 1 (Table 2).

4 Discussion

The estimates of recovery probabilities and movement probabilities were obtained
using standard ringing data with only limited trapping information. Only numbers
of birds ringed each year are known. This is a common limitation for many of the
ringing data bases in Europe, in that full information has only been computerized
for birds recovered later in standard ringing data, but annual ringing totals for each
species can generally be obtained with reasonable effort. The two approaches pro-
duced similar estimated movement probabilities that are in general similar to what
one would expect based on biology of the species, and, despite the wide confidence
limits, useful as quantitative estimates. For all species included, we estimated that
the majority of individuals wintered in sub-Saharan Africa. These species are known
to winter in large numbers in sub-Saharan Africa and they are comparatively rare in
Europe in winter (Cramp 1988, 1992).

The rather strong assumptions made here are of course likely to bias the param-
eter estimates. Assuming equal survival probabilities, finding and reporting, and
recovery probabilities among species and within regions are clearly not realistic.
For example, mortality is not likely to be equal among short- and long-distance
migrants. However, the variation in these parameters is likely to be on a smaller
scale than the variation in the estimated parameters. The small differences between
the parameter estimates under the two approaches provides some indication that our
assumption about equal survival probabilities across species is not seriously vio-
lated. However, a full scale sensitivity analysis would likely be needed to confirm
this assertion. Larger differences in parameter estimates between the two approaches
are likely to arise if using less similar species.

Several possibilities exist to improve the estimates. First of all, the data set could
be extended to include data from more countries, as these should be readily avail-
able, e.g. through the EURING data bank (http://www.euring.org/edb/). Another
reasonable extension would be to include more species (e.g. wildfowl to assess
spread of avian influenza). In that case, it would be necessary to model differences
among species in survival and regional recovery probabilities. As long as these could
be considered constant within groups this should still be possible. Alternatively, they
could be modeled as relative differences, i.e. the recovery probability at site B could
be constrained to be a constant proportion of the probability at site A. Estimates of
the regional recovery probabilities could be further improved by using the seasonal
changes in distribution for each species, since constant recovery probability within
regions through seasons is probably a reasonable assumption. This does, however,
cause some trouble due to the fact that many ringing schemes have not computerized
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detailed ringing information. Sensitivity to this can be modeled, but hopefully our
approach may give some additional incentive for ringing organizations to digitize
historical ringing records.

Extending the data set to include more species and more fine-scaled regions (and
even time-specific probabilities from 100 years of ringing) raises the question of
how to deal with high dimensional parameter sets. A custom-made framework is
probably necessary for this type of analysis since complicated models are not easily
accommodated in SURVIV.

The parameter estimates presented here were conditional on highly constrained
models and few recoveries. As such, they are certainly not definitive. However, the
analysis should serve as a template for how this framework could be extended to
analyze larger, richer datasets. Even basic science may benefit from quantitative
distribution maps, where previous studies on e.g. the migratory orientation program
have used qualitative patterns only (Mouritsen 1998; Thorup and Rahbek 2004).
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Evaluation of a Bayesian MCMC
Random Effects Inference Methodology
for Capture-Mark-Recapture Data

Gary C. White, Kenneth P. Burnham, and Richard J. Barker

Abstract Monte Carlo simulation was used to evaluate properties of a simple
Bayesian MCMC analysis of the random effects model for single group Cormack-
Jolly-Seber capture-recapture data. The MCMC method is applied to the model via
a logit link, so parameters p, S are on a logit scale, where logit(S) is assumed
to have, and is generated from, a normal distribution with mean 
 and variance
�2. Marginal prior distributions on logit( p) and 
 were independent normal with
mean zero and standard deviation 1.75 for logit(p) and 100 for 
; hence minimally
informative. Marginal prior distribution on �2 was placed on �2 = 1/�2 as a gamma
distribution with 	 = � = 0.001. The study design has 432 points spread over 5
factors: occasions (t), new releases per occasion (u), p, 
, and �. At each design
point 100 independent trials were completed (hence 43,200 trials in total), each with
sample size n = 10, 000 from the parameter posterior distribution. At 128 of these
design points comparisons are made to previously reported results from a method
of moments procedure. We looked at properties of point and interval inference on

, and � based on the posterior mean, median, and mode and equal-tailed 95%
credibility interval. Bayesian inference did very well for the parameter 
, but under
the conditions used here, MCMC inference performance for � was mixed: poor for
sparse data (i.e., only 7 occasions) or � = 0, but good when there were sufficient
data and not small �.

Keywords Random effects · Variance components · MCMC · Program MARK ·
Bayesian estimation · Process variance · Process covariance

1 Introduction

Estimation of process variance across temporal and spatial scales of estimated sur-
vival parameters is a critical component of population viability analyses (White
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2000). Process variance is the variance of the true underlying parameter value across
space or time. As an example, annual adult survival rates of a bird population likely
vary annually because of differences in precipitation, temperature, and other weather
effects that affect habitat quality. However, biologists have only estimates of annual
survival available, and these estimates contain sampling variation (sometimes iden-
tified as measurement error). The variance of a set of annual survival estimates
computed in the usual simple way provides an estimate of combined sampling and
process variance. The separation of the sampling variance from the process variance
is of immense interest to biologists because population viability analyses (PVA)
should be constructed based on only the process variance, and not the combined
variance. The estimation of process variance is often labeled as the analysis of ran-
dom effects in the statistical literature.

Program MARK (White and Burnham 1999) provides a method of moments
estimation procedure that allows estimation of a single random effect, and which
has been shown by simulation to perform satisfactorily (Burnham and White 2002).
Bayesian estimation procedures incorporating Markov chain Monte Carlo (MCMC)
methods have been programmed into MARK, allowing an alternative method of
estimating random effects for capture-recapture data. Specifically, the MCMC code
in MARK allows for multiple hyperdistributions to create hierarchical models
(Gelman et al. 2004:117–156), so that multiple random effects can be esti-
mated simultaneously. So for example, a set of annual survival estimates,
Si , i = 1, . . . , k, (specifically for MARK, the logit(Si )) can be assumed to
be observed from a hyperdistribution that is modeled as a normal distribution with
mean 
 and variance �2. Further enhancements include a design matrix capability
to incorporate covariates into the hyperdistribution models, as well as estimation of
the process correlation (hence covariance) across multiple random effects.

The objective of this paper is to evaluate by simulation the performance of the
MCMC estimator for a single hyperdistribution.

2 Methods

2.1 Simulation Design

We simulated single-group live capture-recapture data of the CJS type (Lebreton
et al. 1992) to evaluate the performance of the MCMC estimator. Random effects
were simulated as normally distributed variables on the logit scale. The Monte Carlo
simulations were done as a factorial treatment design using five factors:

Capture occasions (t = k + 2) 4 levels (7, 15, 23, 31)
Releases of new animals u on each occasion 3 levels (25, 100, 400)
Constant capture probability p on each occasion 3 levels (0.4, 0.6, 0.8)
Mean survival probability E(S) 3 levels (0.4, 0.6, 0.8)
Process variation � on logit(S) 4 levels (0, 0.1, 0.25, 0.5)
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All 432 combinations (= 4×3×3×3×4) of these levels defined the points used
in the design space. At each design point we simulated 100 independent data sets.
For cases of � > 0 the S1, . . . , Sk were generated as a random sample from a logit
normal distribution as logit(Si ) = log[E(S)/(1 − E(S))] + Normal(0, �). On each
occasion a fixed number of new ‘animals’ (ui = 25, 100, 400) were released into
the population. Data sets were generated one at a time in SAS (SAS Institute, Inc
2003) and passed directly to MARK where the MCMC estimation was performed.

Processing time required to complete these simulations and ensuing MCMC esti-
mation was 4 months on an Intel Pentium 4 dual processor machine with a 3.4 GHz
clock speed and 2 GB of RAM.

2.2 MCMC Estimation

The CJS model was fitted to each of the simulated data sets with a logit link function.
Prior distributions of the capture (p) parameters that were not included in a hyper-
distribution were modeled on the logit scale with a normal distribution of mean
zero and standard deviation 1.75. The value 1.75 was choosen to minimize the AIC
discrepancy between the back-transformed logit variable and a uniform 0,1 variable.
Survival parameters were included in a single hyperdistribution model, assumed
to be a normal distribution, N(
, �), on the logit scale. The prior distribution of

 was taken as normal with mean zero and standard deviation 100, and the prior
distribution of �2 was taken as an inverse gamma distribution with 	 = � = 0.001.

The MCMC procedure was implemented sequentially in MARK using a
Metropolis-Hastings sampler (Givens and Hoeting 2005, pages 183–188). Within
each cycle, the p and S parameters were processed first, randomly ordered for each
cycle (Givens and Hoeting 2005, page 198; Robert and Casella 1999). Then the 

and � parameters of the hyperdistribution were processed to complete one cycle.

Proposal distributions were specified as random jumps from current parameter
values. Jumps were normally distributed with mean zero and parameter-specific
standard deviations adjusted during a tuning phase of 4,000 cycles to obtain an
acceptance rate of approximately 45%. The proposal standard deviations were then
set, and followed by a burn-in of 1,000 cycles. Summary statistics were computed
from 10,000 sequential samples of the posterior distribution.

Convergence of each of the simulated chains was not evaluated directly. How-
ever, prior to starting these simulations, convergence of multiple test cases was
evaluated through comparison of multiple chains (Gelman 1996) and graphically
through plots of sequential values and histograms of the posterior distributions. In
no case was a lack of convergence suggested.

2.3 Simulation Summaries

For each simulated data set, the mean, median, mode, and 2.5, 5, 10, 20, 80, 90,
95, and 97.5% percentiles were recorded from the posterior distributions of 
 and
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�. Percent relative bias (= (�̂ − �)/�, except for � = 0) and coverage of the 95%
credibility intervals for true parameter values was computed.

Relative importance of the 5 design factors was assessed with ANOVA. Because
of the number of simulations completed, trivially small effects could be detected, so
only relative rankings were used. Results for the 3 most important design factors are
presented.

3 Results

Bias in the estimates of 
 was most affected by p, followed by the interaction of
E(S) and p and then the number of releases (Table 1). In general, there was only a
small bias, and this bias seems somewhat inconsistent across 9 scenarios reported.
Because the posterior distribution of 
 is relatively symmetrical, the mean, median,
and mode were approximately equivalent, with the median always intermediate
between the mean and the mode.

Credibility interval coverage of the mean of the hyperdistribution of survival
was close to the expected 95% for the 2.5 and 97.5 percentile summary statistics
(Table 2). Estimated coverage was slightly below the expected value for the more
sparse data sets, i.e., with only 25 releases per occasion or low capture probabili-
ties combined with low survival. Otherwise, coverage tended to exceed slightly the
expected 95%.

Bias of � was most affected by the number of releases followed by the number
of occasions (Table 3). As would be expected, the mean of the posterior distribution
for scenarios with � = 0 was biased high, because the lower bound of the posterior
distribution is zero. Although the mode of the posterior was less biased for these
scenarios, a bias persists. The median was always intermediate between the mean and
mode, and the median was less biased than the mode in all cases except when � = 0.

Credibility interval coverage was zero, as would be expected, for � = 0. Coverage
improved for positive values of � (Table 4). However, credibility interval coverage

Table 2 Credibility interval coverage of the mean of the hyperdistribution of survival rates (
).
The proportion of the simulations with the 2.5 percentile < 
 < 97.5 percentile are reported. Each
entry is based on 4,800 simulations summarized across the 3 remaining design factors, giving a
CV of approximately 0.0033, or 0.33%

True log[E(S)/(1 − E(S))] (E(S) in parentheses)

(0.4) (0.6) (0.8)
−0.405 0.405 1.386

p
0.4 0.923 0.949 0.948
0.6 0.948 0.958 0.959
0.8 0.952 0.958 0.958

Number of releases

25 0.925 0.953 0.955
100 0.943 0.954 0.955
400 0.952 0.959 0.958
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Table 4 Credibility interval coverage of the standard deviation of the hyperdistribution of survival
rates (�). The proportion of the simulations with the 2.5 percentile < � < 97.5 percentile are
reported. Each entry for number of occasions is based on 2,700 simulations summarized across
the 3 remaining design factors (CV of approximately 0.0044), and each entry for number of
releases is based on 3,600 simulations summarized across the 3 remaining design factors (CV
of approximately 0.0038, or 0.38%)

True �

Number of occasions 0 0.1 0.25 0.5

7 0.000 0.990 0.987 0.960
15 0.000 0.993 0.957 0.940
23 0.000 0.983 0.960 0.930
31 0.000 0.979 0.941 0.924

Number of releases

25 0.000 0.991 0.984 0.933
100 0.000 0.992 0.953 0.936
400 0.000 0.976 0.946 0.946

exceeded the expected 95% for � = 0.1, but appears to be approaching the expected
95% for scenarios with ample data.

4 Discussion

Estimation ofprocessvarianceson the logit scalemayseem restrictive.However,often
the logit scale is the biologically relevant scale at which to work. The logit scale is
more likely to provide a linear scale to model the effects of environmental covariates,
e.g., precipitation or temperature. Another consideration is modeling of correlations
between parameters on the real scale, e.g., positively correlated survival rates such
as young and adult survival rates. Positively correlated survival rates modeled on the
real scale with a beta distribution cannot be generated with extensions of the beta
distribution, whereas back-transformation of logit-normal variables makes this type
of model easy to implement.

However, the back-transformation of an estimate of � to the variance on the real
scale depends on the mean of distribution. So, an estimate of � = 0.1 with a mean
of 0 on the logit scale results in a real variable with mean 0.5 and � = 0.025.
But, an estimate of � = 0.1 with a mean of 4 on the logit scale results in a real
variable with mean 0.982 and � = 0.0018. Thus, interpretation of the estimates of
process variance on the logit scale must consider the mean as well. Similarly, the
correlation of 2 variables on the logit scale changes when back-transformed to the
real scale.

A critical part of the Bayesian estimation procedure is to provide an appropriate
prior distribution for each parameter in the model. A common approach is to provide
non-informative or diffuse priors (i.e., a suitably-flat distribution that has little or no
influence on the shape of the posterior distribution) so that nearly all the informa-
tion contained in the posterior distribution is coming from the likelihood function
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Fig. 1 Probability density function of the back-transformed N(0, 1.75) density used as the default
prior distribution for parameters not part of a hyperdistribution

and the data; for example, a normal distribution with a large standard deviation, e.g.,
N(0, 100). The prior distribution for the parameters not in the random effects models
are particularly problematic because these parameters are on the logit scale, and such
a flat prior will result in a U-shaped distribution when back-transformed to the real
scale. The default prior for parameters not included in the random effects model is
N(0, 1.75), which results in a reasonably flat distribution on the back-transformed
scale (Fig. 1). Prior distributions for the hyperdistribution parameters are considered
to be relatively uninformative distributions.

The Bayesian estimators of � do not perform as well as the method of moments
estimators (Burnham and White 2002) also available in Program MARK. Neither
estimator performs particularly well with � = 0, but because the method of moments
estimator allows negative estimates (which get truncated back to zero), bias is reduced
and confidence interval coverage is better than the performance of the Bayesian esti-
mator. Most disappointing with the Bayesian estimators was the excessive coverage
of the credibility intervals for � = 0.1, and the apparent bias for sparse data, i.e., data
with low capture probabilities and/or low numbers of animals released per occasion.
This behavior is conservative in that coverage exceeds 95%, so it should not generally
create problems.

The simulations reported in Burnham and White (2002) were for � of param-
eters on the real scale (i.e., � was estimated for parameter estimates constrained
to the interval 0–1), whereas the simulations reported here are for � estimated for
parameters on the logit scale (i.e., parameter estimates are unconstrained). Thus,
comparisons between these 2 sets of simulations must be made cautiously. How-
ever, Burnham and White (2002) (Table 2) showed negligible bias in estimates
of �, except for � = 0. Likewise, they showed confidence interval coverage
of 95% (Burnham and White 2002:254), with nearly equal misses both below
and above the true �. Thus, we conclude that the method of moments estima-
tor of Burnham and White (2002) performs better than the Bayesian estimator
reported here.

However, the major advantage of the Bayesian approach is the flexibility to
handle multiple hyperdistributions, and to estimate the covariance or correlation
across different random effects. The MCMC implementation in MARK provides
for estimating process autocorrelation across time within a hyperdistribution, plus
estimation of the process correlation between sets of parameters, each modeled
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with a separate hyperdistribution. This capability allows users to estimate the
potentially positive process correlation between recruitment and survival in the
Pradel (1996) model, although the correlation is between the log( f ) and logit(�)
estimates.
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