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Foreword

Demography can be considered the key to understanding much of biology. It is the
demographic processes of birth and death which govern the spread of populations
through environments and the spread of genes through populations. An understand-
ing of demography can yield not only an understanding of population size and pop-
ulation change, it can help us to understand the form and function of life histories;
when organisms mature, when they breed, and when they die. Demographic insights
allow us to see how populations function, how they interact with their changing
environment, and how they adapt.

The analysis of demographic processes in free-living organisms is however no
simple task and involves considerable challenges in observation and analysis. Some
20 years ago, there was a concerted effort to promote inter-disciplinary collaboration
between biologists and statisticians to address these challenges and thereby to fur-
ther our understanding of demographic processes in natural populations. Although
many diverse organisms can be studied in the wild, birds have proved particularly
amenable with large numbers being marked and followed by large networks of ob-
servers. It was no coincidence then that the European Union for Bird Ringing (EUR-
ING) played a leading role in these initiatives, teaming up in the mid-1980s with the
Mathematical Ecology Group of the Biometric Society, and the British Ecological
Society, to bring together experts from diverse fields to address the challenges in
hand. Twenty years on, progress has been considerable and we now have significant
insights into demographic processes thanks to the wide range of quantitative tools
and systematically collected datasets which have been built up over this period.

The biological questions and the methodological challenges are however by no
means settled, indeed the field continues to progress at an ever accelerating pace. In
2003, a group of just under 100 scientists met to discuss and identify the key areas
of development in which ongoing research effort should be focused. As listed in the
Contents section, the group identified five areas defined by biological applications
and five areas defined by statistical approaches including the issue of software with
which to implement state-of-the-art analyses. Experts in each of these areas then
took the lead in assembling authoritative contributions, with one or two overview- or
perspectives- papers prepared by leading figures, and three to five primary research
papers which reported the most significant new findings. A further open-forum was
created for notable contributions which lay outside the ten targeted areas. Authors
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came together to discuss their contributions at a meeting hosted by the University
of Otago at the beginning of 2007.

This field continues to move rapidly, but we hope this resulting volume will stand
as a definitive compilation on the state-of-the-field at the present time, and that it
will steer the further development of the field over the years ahead. As reflected
in this volume, we anticipate increasing emphasis on integrated approaches which
combine multiple sources of information and an increasing emphasis on Bayesian
approaches. In terms of biological applications, it has traditionally been the field
of wildlife management which has provided the impetus for developing modern ap-
proaches, but increasingly we see the activities of evolutionary biologists and biode-
mographers as a driver of growth in this field. Modeling demographic processes in
marked populations is a truly interdisciplinary endeavour, and we look forward to
continued fruitful dialogue not just between biologists and statisticians but between
these different fields of biology which are conceptually similar and which share the
same need for sound quantitative approaches to demographic analysis.

This volume has been a team effort, and as well as crediting all the work of
the authors themselves and the associate editors listed in the Contents section, we
would like to acknowledge Prof. Richard Barker and his team for their hard work
and kind hospitality in hosting a successful meeting of contributors in Dunedin. All
contributions have benefited from the expert input of at least two referees, and we
would of course like to thank Prof. G.P. Patil, Manjula Jude (Project Manager at
Integra Software Services), Lindy Paul and the team at Springer for facilitating the
publication of this volume.

David L. Thomson
Evan G. Cooch
Michael J. Conroy
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Bayesian Hierarchical Models for Inference
About Population Growth

Richard J. Barker, Matthew R. Schofield, Doug P. Armstrong,
and R. Scott Davidson

Abstract Mark recapture models have long been used for estimating wildlife popu-
lation parameters. Typically, the data are summarized in terms of parameters that are
interpreted in the context of an implicit demographic model for describing popula-
tion dynamics. Usually, this demographic model plays little or no role in the mark-
recapture model. Bayesian hierarchical models (BHM) offer a way to explicitly
include demographic models in an analysis. We argue that such an approach should
have wide appeal to ecologists as it allows inference to focus on ecological models
of interest rather than obtaining a parsimonious depiction of the sampling process.
We discuss the use of BHM’s for modeling mark-recapture data with a focus on
models describing density-dependent growth.

1 Introduction

Ecologists interested in population dynamics of wildlife populations typically work
with two kinds of models: demographic models, in which predicted population
trajectories are obtained conditional on parameter values and statistical models
in which parameter estimates are obtained using data sampled from the study
population.

Demographic models may be matrix- or individual-based and can be determin-
istic or stochastic (Williams et al. 2002). Whether population models are determin-
istic or stochastic they depend on parameters. Formally, we can write our model as
F(Z; ») where Z represents the output and A represents demographic parameters. In
using demographic models our interest lies in predicting future population behavior,
usually in terms of summaries of Z such as extinction rate or equilibrium population
size.

Statistical models are used to summarize data. We can formalize a statistical
model as F(Y; ) where Y represents data and 7 parameters involved in describing
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the sampling process. Note that 7 might include some or all of the demographic
parameters in A. Once the data have been collected they are fixed; we use the statis-
tical model to describe the mechanism by which we imagine our data were gener-
ated. We use our data and the model to obtain information about the parameters.
In the model, Y is regarded as random outcome sampled from F(Y; ) with the
parameters 7 fixed at (usually) unknown values.

In the context of the EURING technical meetings, the mark-recapture model is
an important class of statistical model. A strong tradition of the EURING technical
meetings has been the stimulation of the development of mark-recapture analysis,
to the extent that one of the main aims of these meetings has been to establish
mark-recapture as one of the standard methodologies in ecology and conservation
biology (Senar et al. 2004b). The past 20 years have seen the development of models
appropriate for analyzing almost every conceivable type of mark-recapture data, and
the development of powerful software such as MARK (White and Burnham 1999),
MSURGE (Choquet et al. 2004) and POPAN (Arnason and Schwarz 2002). Obvi-
ously, the development of mark-recapture modeling is not an end in itself. The value
of mark-recapture models lies in their application. “I note that although EURING
conferences have focused on estimation issues, it is important to recall that esti-
mation is not a ‘stand-alone’ activity or an inherently useful endeavor and attains
value primarily in the context of larger processes, such as science or management”
(Nichols 2004).

Applications of mark-recapture models have tended to focus on estimation as a
means for summarizing status of populations, for example the MAPS program in
North America (Tautin et al. 1999), or the interpretation of vital rates and factors
influencing these e.g. (Catchpole et al. 1999; Conroy et al. 2002; Reed 2004).

Implicit to a mark-recapture model is a demographic model that describes the
population dynamics of the study population, at least in part. For example, in the
Cormack-Jolly—Seber model (Cormack 1964; Jolly 1965; Seber 1965), the number
of marked survivors alive at occasion i + 1 is a binomial random variable with
index being the number of marked animals in the population immediately after
sample i and probability the survival rate for interval [i, i + 1). The implied demo-
graphic model has tended to play little part in subsequent analysis, although the most
recent EURING conference (Senar et al. 2004a) saw the appearance of a number of
papers that focused on assessment of population dynamics based on mark-recapture
data (e.g., Caswell and Fujiwara 2004; Francies and Saurola 2004; Gauthier and
Lebreton 2004; Brooks et al. 2004).

Caswell and Fujiwara (2004) stressed the potential benefits of explicitly incor-
porating demographic models into a mark-recapture analysis by “... making the
estimation of demographic models a goal at the outset of a mark-recapture study”.
A key advantage to integrating demographic and statistical models, of which mark-
recapture models are an example, is that it allows full expression of uncertainties.

Typically, demographic modelers have used fixed values for parameters in their
models. For example, Francis and Saurola (2004) used a deterministic model based
on mean parameter values to construct a deterministic predator-prey model to make
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predictions about tawny owl Strix aluco demographics. While this approach allows
general predictions to be made, it does not provide any measure of prediction
uncertainty associated with the fact that parameters must be estimated. Conditioning
on a set of parameter estimates allows one to consider the implications of this partic-
ular set of parameter values (Caswell and Fujiwara 2004). To assess the influence of
parameter uncertainty Caswell and Fujiwara (2004) discusses use of “perturbation
analysis” based on derivatives of population summaries, or functions of these, such
as sensitivities and elasticities.

An alternative to expression of parameter uncertainty using calculus and sensi-
tivities is to use probability distributions. The use of probability distributions to
describe uncertainty is a defining feature of Bayesian inference. In Bayesian infer-
ence prior probability distributions for parameters are combined with models for
data to construct posterior distributions for parameters and posterior predictive
distributions for predicted values. These posterior distributions express the uncer-
tainty that we have about parameters and associated predictions after the data have
been collected. Instead of focusing on the implications of a particular set of param-
eter estimates for projected population growth, the Bayesian approach allows us to
consider a range of plausible parameter values with the contribution of any particular
combination weighted by its posterior density.

The use of posterior distributions to summarize knowledge about parameters
is convenient if interest is in exploring the demographic consequences of certain
choices of parameter values in demographic simulations. Predictions under the
demographic model can be made by sampling plausible values for parameters
from the posterior distributions generated by the statistical model. Alternatively,
we can combine the demographic and sampling models to obtain a fully integrated
analysis.

A specific advantage of Bayesian inference procedures is that Bayesian models
are naturally hierarchical. Hierarchical models have several levels of variability. In
a Bayesian model we have data which depends on parameters that are themselves
drawn from a distribution that also has parameters. The term hyperparameters is
often used to describe parameters for distributions of parameters. Bayesian hier-
archical models offer a way to formally integrate statistical models for estimating
parameters with simulation models for predicting the likely future behavior of popu-
lations based on sample data. Mark-recapture models are also naturally hierarchical
in that parameters such as survival probability and abundance are often modeled
as random variables by demographers. Moreover, ecologists are often interested
in relationships among parameters, such as density-dependent survival or recruit-
ment, that have major implications for predicted population trajectories. Hierar-
chical mark-recapture models offer a way to model all sources of data as well as to
model relationships among parameters (Link and Barker 2004) in a way that allows
all posterior uncertainty, including uncertainty about predictions, to be expressed
using probability distributions.

In this paper we use a case study of North Island saddlebacks (Philesturnus
rufusater) to illustrate the use of Bayesian hierarchical modeling to predict
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population trajectories based on a density-dependent population model. Our
emphasis is on accounting for parameter uncertainty conditional on the model.
Methodology for multi-model inference in a Bayesian setting has been well covered
elsewhere (Brooks et al. 2004).

2 North Island Saddlebacks of Mokoia Island

The North Island saddleback is a member of the wattlebird family (Callaeidae), a
family of birds endemic to New Zealand. The Callaeidae comprise two or three
(depending on taxonomic fashion) extant species. By the end of the nineteenth
century saddlebacks had become locally extinct from the mainland of New Zealand:
a single remnant population survived on one island off the coast of the North Island
(Armstrong et al. 2005) and a single remnant population survived on one island off
the coast of the South Island. Since the early 1960 s translocations have been used
to re-establish populations including some mainland populations.

Armstrong et al. (2005) used mark-resighting analysis and counts of fledged and
unmarked birds to monitor the outcome of a translocation to Mokoia Island in Lake
Rotorua. Thirty six adult birds were released on the 135-ha island in 1992 following
rat eradication. Mokoia Island is 2.1 km from the nearest shore, a distance believed
to be beyond the flying range of saddlebacks. The translocated population is thus
believed to be closed to emigration.

Armstrong et al. (2005) were interested in predicting future population growth
of the Mokoia Island saddleback population to assess future population viability
and to devise strategies for translocating birds from re-established populations
to places elsewhere. In particular, they were interested in evidence for density-
dependent population dynamics as the presence of density dependence can have
a major stabilizing influence on dynamics. Re-introductions are useful for studying
density dependent growth because founding populations are usually established at
low population densities and with a relatively high level of resource availability.

In their analysis, Armstrong et al. (2005) used a stochastic matrix model to
project the likely future trajectory of the Mokia Island saddleback population. Their
model tracked the number of males and females in the population at the start of
each breeding season and used estimates of survival and fledging rates from anal-
yses of their banding data and from fledgling surveys. Because Armstrong et al.
(2005) conditioned on these parameter estimates, their projection model does not
account for all the uncertainties in the analysis. Also, Armstrong et al. (2005) treated
abundance estimates obtained in their analysis as fixed, using these to assess density-
dependent effects on survival and juvenile production rates. In addition to unmod-
eled uncertainty there is also some sampling correlation unaccounted for between
the abundance and survival probability estimates.

With multiple sources of data and with interest in modeling parameters such as
survival and production rate as a function of population size, this problem is ideally
suited to an approach based on fitting a hierarchical model using Bayesian model
fitting procedures.



Bayesian Hierarchical Models 7
3 Data and Models
3.1 Mark-Resighting Data

The 36 founder birds were color-marked before release. Mark-resighting data were
obtained from 24 surveys carried out between June 1992 and December 1997 at
approximately 3-month intervals: in March, June, September, and December. The
marked population comprised the 36 founding birds and 245 nestlings that were
banded during the five breeding seasons that took place during the study. Nestlings
were banded either in December or March according to when they were born. In
October 1996 an aerial poison drop was used to try and eradicate mice from the
island. An additional mark-resighting survey was carried out in November 1996 to
assess the effect of the poison drop on the saddlebacks. During the mark-resighting
surveys counts of all unmarked birds were also recorded.

To analyze the mark-recapture data we followed Armstrong et al. (2005) and
fitted a simple 2-age model in which juveniles became adults after 9 months. The
logit of the 3-month survival probabilities were modeled as a linear function of
effects due to the age of the bird (juvenile/adult), poison drop, and the number of
breeding pairs. We did not consider a sex-specific model as the analysis of the mark-
resighting data by Armstrong et al. (2005) found negligible support for sex-specific
survival.

To account for unexplained variation in three month survival probabilities over
time we included a normal N (0, o) random effect. Because the intervals were
not exactly 3-months, interval-specific survival probabilities were adjusted for the
length of the interval.

Let y; denote the length of time between survey j and survey j + 1 (3 months =
1.0), By the overall mean 3-month survival probability on the logit scale, Z;; = 1
for if individual i is juvenile and 0 if it is adult, Z,; = 1 if there was a poison drop
in the 3-month interval starting at the time of survey j and zero otherwise, and N;
denotes the number of breeding pairs in the breeding season associated with survey
Jj, then:

bij = S;/
and
logit(Sij) ~ N(Bo + B1Z1i + PaZoj + P3Z1: Zaj + PaIn(N)), o).
where ¢;; is the interval specific survival probability and §;; the 3-month survival
probability. Detection probabilities (p;;;i = 2...25, j = 1 forjuveniles, j =
2 for adults) we modeled as age- and time-specific fixed effects.

For model fitting we used the complete data likelihood (Schofield and Barker
2008) which is proportional to:

[X|d, p, RI[d|S, RI[S|B, Zo?]
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where X denotes the mark-recapture set, d the vector of times of death for each
individual, R a vector indicating when birds were first released, p the detection
probabilities, and S the survival probabilities. We use the notation [Y] to denote
the probability (density) function of the random variable Y. The completion step
involves the model [d|S] for the times of death for each bird. These are interval-
censored, known up to the sample interval, and also left censored by the end of the
study.

3.2 Production of Young

To assess the number of young produced by breeding pairs, all known nests were
monitored in the first 3 years and a sample of 30-35 pairs from known nests in
the last 2 years. Chicks were banded between 10 and 21 days after hatching and
counted as fledged if observed in the nest at least 14 days after hatching (chicks
fledge at about 28 days).

Pairs from unknown nests were also monitored and the number of fledglings
counted. Because fledglings can die before their parents are detected, these counts
would have underestimated the number of fledglings produced. Data from pairs
that used nestboxes and that were also detected in the post-fledgling survey were
used to estimate the joint probability of the parents being found and the fledglings
surviving until their parents were found. These data were used to adjust the number
of fledglings produced by pairs nesting at unknown sites by modeling fi‘J’.”“, the
observed number of fledged young for pair i from an unknown nest site in year
J» as a binomial random variable with index f;;, the true number of young fledged
by pair j and probability ;.

For all pairs, we modeled f;; as a Poisson P(A;;) random variable with mean
depending on the number of breeding pairs in September of year j (N;), the
combined age of the pair (A;; = the number of adults in the pair), the length of
time the pair had been established P;, and a random pair effect. That is,

111()\,'/‘) = +0[1Nj +O[2A,‘j +O[3P,‘

where ag; ~ N(O, a}). Because there was a known lower bound on the numbers
of birds fledged from the fledgling survey we censored the total number of birds
fledged at this lower bound.

To allocate new fledglings as additions to the December or April population we
modeled the number fledged in December as a binomial random variable, with index
given by the total number fledged and with probability 7pe. assumed to be the same
each year. Information on § was obtained by modeling the observed number of birds
fledged in December each year conditional on the number observed fledging in
December or April that year. Sex for each individual was modeled as a Bernoulli
random variable with parameter 7. The sex-ratio of fledged birds was assumed to
be the same as the sex-ratio of marked fledglings.
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3.3 Sightings of Unmarked Birds

Sex- and age-specific counts of unmarked birds in sample j were modeled as bino-
mial random variables with indices given by the sex- and age-specific number of
birds in the population and probability equal to the detection probability in the mark-
resight model for sample j. That is, we assumed that marked and unmarked birds
were seen at the same rate. The binomial indices are unknown, but were determined
by the (model-based) predicted number of unmarked fledglings surviving until the
time of sample ;.

4 Model Fitting

The model was fitted to the 4 sets of data jointly using WinBUGS (Spiegelhalter
et al. 2002) and priors as given in Table 1. Except for density dependence, we used
uninformative priors. We restricted density-dependent effects to be negative.

A sample of size 100,000 was drawn from the joint posterior distribution of all
parameters and predicted quantities (see below) after discarding a burn-in sample of
size 10,000.

For the marked subset of the population the interval-censored time of death (i.e.,
time of death is known only up to the period in which the bird died) was predicted
as part of the data completion step. We also predicted the numbers of unmarked
survivors at each sample assuming that all juveniles (marked or unmarked) had the
same survival probability and all adults (marked or unmarked) had the same survival
probability. From the predicted number of marked and unmarked survivors we could
predict the numbers of birds at the time of each sample classified according to age
and sex.

Table 1 Priors used for parameters in the joint model for saddleback mark-recapture and count
data

Parameter Prior

Mark-resight model

Bo Normal N (0, 10,000)

Bi Normal N (0, 10,000)

B Normal N (0, 10,000)

B3 Normal N (0, 10,000)

Ba Uniform U (-5, 0)

o? Inverse-gamma 1 G(0.001, 0.001)
Dij Beta Be(1,1) (i=2,...,25;j=1,2)
Model for number of fledglings

o Normal N (0, 10, 000)

a Normal N (0, 10, 000)

o3 Normal N (0, 10, 000)

o% Inverse-gamma 7/ G(0.001, 0.001)
TTDec Beta Be(1, 1)

Tl sex Beta Be(l1, 1)
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To assess the likely trajectory of the saddleback population on Mokoia Island
we also predicted the numbers of saddlebacks present in September for 100 years
following the last survey on the island in December 1997. For these projections
we ignored the effect of pair age and year of establishment, effectively assigning
all pairs the average value for pair age and year of establishment. We did this
to facilitate model fitting using WinBUGs which does not allow the reversible-
jump (Green 1995) step needed to properly implement such an individual-based
model.

To assess the likely effect of regular harvesting we also examined the popula-
tion trajectory when varying numbers of birds are removed each year from 1999
onwards. Dimond and Armstrong (2007) suggested that about 30 birds could be
safely removed each year to establish populations elsewhere. The number of males
that were removed each year was modeled as a binomial random variable with index
30 and probability msx. We also looked at the effects on extinction rate when birds
were removed at 3-yearly intervals.

5 Results

Predicted abundances during the study were in close agreement with those of
Armstrong et al. (2005), although our credibility intervals tend to be wider (Fig. 1).
The saddleback population on Mokoia Island quickly increased from the 14 females

110

- This paper
100 © Armstrong et al. 2005 i

90 - E

60 - E

50 E |
30t E |

20 | b

No. females

10 L L L L L L
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Year

Fig. 1 Predicted number of adult female saddlebacks on Mokoia Island between September 1992
and September 1997. The error bars indicate the range of the central 95% credible interval. The
estimates (and confidence intervals) of Armstrong et al. (2005) are included for reference
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released in 1992 to around 90-100 females in September 1996, dropped sharply
following the poison drop in October 1996 but then quickly recovered.

The acute effect of the poison operation is evident in the estimates of the survival
effects (Fig. 2). Both adult and juvenile birds died as a result of the poison drop
but the positive interaction between age and the poison effect (83) suggests that
the poison drop effect was not as strong for juveniles as it was for adults. Juvenile
birds survived at a lower rate than adults, with a 95% credibility interval (CI) of
(0.88, 0.93) for non-poison intervals dropping to (0.36, 0.84) for the poison interval
compared to (0.98, 0.99) for adults during non-poison intervals dropping to (0.63,
0.80) for the poison interval.

Our analysis also agreed with that of Armstrong et al. (2005) in finding strong
evidence that production rates were higher for older birds and on territories estab-
lished in the first three years (Fig. 3), as well as varying between pairs for unex-
plained reasons (95% ClI for oy =0.03, 0.33)

Our analysis confirmed that of Armstrong et al. (2005) in finding strong evidence
of density dependent juvenile survival and per-capita production of young as well as
evidence supporting density-dependent survival of adult saddlebacks (Fig. 4). This

03 4 5 6 7 0—4 -3 -2 -1 0
Bo B

6 5 -4 3 =2 1 -2 0 2 4 6
B2 Bs

Fig. 2 Posterior density plots for the logit of expected 3-month survival probability for adult birds
in a non-poison period (), the juvenile effect on survival (B;), the effect of the poison drop on
adults (B,) and the interaction between the age effect and the poison effect (33)
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No adults in pair
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Fig. 3 Posterior density plots for the effects of «», the effect of the standardized number of birds
of age 17 in the pair, and o3, the effect of whether or not the pair were on a territory established in
the first year of the study

Juvenile survival

Adult survival

Reproductive rate

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
O3

Fig. 4 Posterior density plots for the effect of log population size on juvenile survival rate (,Bi”),
adult survival rate (ﬂff)) and per-capita juvenile production rate (o3)
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Fig. 5 Predicted number of adult female saddlebacks on Mokoia Island for the 100 years following
the end of the study in 1997 and September 1997. The lower of the three lines is the 2.5% percentile,
the middle the median and the upper the 97.5% percentile

density-dependence has important consequences for likely future population trajec-
tories. Our analysis suggests that the population would quickly reach an equilibrium
of around 130 females after about 1015 years (Fig. 5), with the 2.5% value around
70 females and the 97.5% percentile around 400 females. The first 10 years of this
trajectory shows that the projected development of the population follows a similar
trend to that observed between 1992 and 1997 (Fig. 6).

None of our simulated population trajectories dropped below 10 females sugges-
ting that the risk of extinction of the re-established population is small, all other
things being equal. However, extinction occurred in around 5% of simulations when
the population was subjected to a regular harvesting of 30 birds per year increasing
to around 30% if 40 birds were removed (Fig. 7). If only 20 birds were removed
each year the rate of extinction would be near zero. If simulations were based on
parameter estimates (we used the median of the posterior sample) rather than the
full sample then extinction risk was predicted to be near zero if fewer than 40 birds
were removed each year but rapidly increased to near one if 50 birds or more were
removed each year. The bias evident in the predicted extinction risk function arises
because the effects of density dependence may be much weaker or stronger than
indicated by the parameter estimates. If weaker, then even moderate removals will
enhance extinction risk but if stronger then the population could sustain a higher
level of harvesting. Note that if removals are carried out at 3-yearly intervals a much
higher level of harvest could be sustained; our simulations indicated that up to 80
birds could be removed while maintaining extinction risk below 5% (Fig. 8).



14 R.J. Barker et al.

350 T T T T T T T T

300 b

250 | k

200 E

150 | E

No. females

100
]

50 I E

0 ! ! ! ! ! ! ! !
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Year

Fig. 6 Predicted number of adult female saddlebacks on Mokoia Island for the 10 years following
the end of the study in 1997 with the estimates from 1992 to 1997 included. The error bars indicate
the range of the central 95% credible interval. For the population projection the lower of the three
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Fig. 7 Predicted rate of extinction when varying numbers of birds are removed each year from
1999 onwards (circles and fitted line) compared to rate of extinction predicted conditioning on the
median values from the posterior simulations (asterisks)
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Fig. 8 Predicted rate of extinction when varying numbers of birds are removed every three year
from 1999 onwards (circles and fitted line) compared to rate of extinction predicted conditioning
on the median values from the posterior simulations (asterisks)

6 Discussion

In any modeling or inference problem there are a number of components about
which we are uncertain, including values for the parameters in the model and
often the exact form of the model itself. In addition, we might also be uncertain
about relationships that exist among our parameters or between the parameters and
external covariates. Inferences about population vital rates and subsequent popu-
lation growth, must account for sampling variation in estimates that are based on
sample data (Williams et al. 2002).

The analysis we have outlined for the Mokoia Island saddleback population, in
which all sources of data are modeled simultaneously and population projections are
considered as data-based predictions, is necessary if all uncertainties about param-
eters are to be expressed in population models. Although our analysis confirmed
the essential findings of Armstrong et al. (2005) an important difference is that we
did not condition on point estimates of effects on survival and production rate in
our population projections and we did not treat abundance estimates as known. The
effect of this will be an appropriate increase in uncertainty about the eventual equi-
librium level of the saddleback population and the rate at which it approaches this
value.

Because the banding study was discontinued in 1997, there are no reliable data to
indicate how the saddleback population has fared since 1997, although Armstrong
et al. (2005) reported that a survey of the island carried out in 2002 recorded 177
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birds. As this was the raw count the true population size is likely well in excess of
177 birds. This suggests that our projected equilibrium value of around 130 females,
and with no fewer than 70 females, is a reasonable prediction.

There are a number of ways in which we could improve our analysis. One useful
step would be to base the population predictions on a fully individual-based model.
Although we modeled the fate of marked individuals using an individual model
we did not do so for the unmarked individuals. As noted in the model description
section, implementation of such an individual-based model requires a reversible-
jump step, something presently beyond the capability of WinBUGS. The conse-
quence of ignoring individual effects is that apparent posterior uncertainty is under-
stated. An alternative approach would be to refit the model leaving out the effects of
pair-age and the time that the territory was established and allowing for these to be
accounted for through the random pair effect.

In our analysis we included no model selection. In most applications there is
likely to be uncertainty about which effects to include in the model and how to best
express relationships among variables. The correct way to include this additional
level of uncertainty would be through multi-model inference. Effective multi-model
inference using hierarchical models will almost certainly require algorithms such as
reversible-jump McMC (e.g., Brooks et al. 2004) to generate posterior predictions
that are suitably averaged across the models considered.
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Assessing Density-Dependence: Where Are
We Left?

Jean-Dominique Lebreton

Abstract The history of density dependence started in 1798 with Malthus’ sentence:
population, when unchecked, increases in a geometrical ratio. The famous contro-
versy between Lack, Andrewartha and Birch and others in the 1950s and 1960s
remained largely unsolved: while the impossibility of long term exponential growth
required density-dependence, density-independent environmental variation in vital
rates was often dominant in empirical studies. Fifty years later, where are we left? I
revisit first the representation of density-dependence in dynamical models, whether
deterministic or stochastic, and I emphasize the lack of theory for the simulta-
neous occurrence of density-dependence and environmental variation. I then review
approaches to detect and measure the intensity of density-dependence, in two steps:
based on population size estimates and in demographic parameter analyses. I discuss
then how the question of density-dependence could be efficiently revisited, taking
advantage of progress in our understanding of spatio-temporal dynamics, statistical
procedures, access to individual characteristics, and possibilities of experimental
approaches.

Keywords Population dynamics - Density-dependence - State-space modeling

1 Introduction

The history of density-dependence started with Malthus (1798) famous sentence:
population, when unchecked, increases in a geometrical ratio. Deterministic popu-
lation models with density-dependence (Verhulst 1838; Nicholson and Bailey 1935)
were the major landmarks of a long period that could be called the embryonic
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growth of the subject. Then, in the 1950s and 1960s, Lack (1954), Andrewartha
and Birch (1954) and others (Wynne-Edwards 1962) discussed the relative role
of density-dependent and density-independent variation in vital rates, in a contro-
versy that remained largely unsolved: while the impossibility of long term expo-
nential growth required density-dependence, density-independent environmental
variation in vital rates was often dominant in empirical studies. Parallel discus-
sions in the very different context of fishery research (Ricker 1954; Beverton and
Holt 1957) lead also to attribute a prominent role to density-dependence, which
is still at the core of the stock-recruitment relationship paradigm (Haddon 2001,
Chapter 9).

Until recently, the subject of density-dependence seemed then to be avoided or
hardly touched upon in the literature, as if a moratorium had been imposed on
it, although recent discussions (Berryman 2002; Berryman et al. 2003; Berryman
2004) in particular on “local density dependence” (Murdoch 1994; Rodenhouse
et al. 1997) seem to announce a revival. This would be fortunate, as density-
dependence is critical to many different issues in population biology, notably
selection regimes and the diversification of life histories (in particular with r—K
selection; Boyce 1984) in evolutionary biology, and pest and quarry species manage-
ment (in particular with the issue of harvest compensation; Burnham and Anderson
1984) in applied population ecology.

Fifty years after the Lack—Andrewartha—Birch controversy, where are we left? I
attempt here, with unavoidable personal biases, to revisit one major aspect of density-
dependence, namely methods of empirical assessment of density-dependence. The
huge evolution of empirical population models, both statistical (Lebreton et al.
1992; Williams et al. 2002) and dynamical (Tuljapurkar 1990; Caswell 2001),
certainly opens new possibilities of efficiently addressing the empirical asses-
sment of density-dependence as well as many other questions raised by density-
dependence.

As a preliminary step to set up the scene, I revisit first briefly the representation
of density-dependence in dynamical models and I emphasize the need of consid-
ering simultaneously density-dependence and environmental variation (Section 2).
I then review approaches to detect and measure the intensity of density-dependence
based on population size estimates (Section 3). We will see that this apparently easy
task is still frequently the subject of mistakes. I show then how state space models
can be used in density-dependence assessment, despite open statistical questions.
I go on with methods for assessing density-dependence in demographic parameter
analyses (Section 4). The latter two subjects are affected in strikingly different ways
by uncertainty in population size estimates.

I review then (Section 5) the potential of state-space models and discuss how
the biological questions related to density-dependence could then be efficiently
revisited, by taking advantage of progress in our understanding of spatiotemporal
dynamics, statistical procedures, access to individual characteristics, and possibili-
ties of experimental approaches.

I use throughout this paper a simple model to emphasize underlying ideas.
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2 Density-Dependence and Stochasticity in Dynamical Models

By density dependence in a model population, what is usually meant is a
variation in growth rate with population size. A general form of discrete time
density-dependent model is:

Nip1 =g (Ni) Ny,

assuming for simplicity at this stage that N, is a scalar. For the sake of simplicity
too, I restrict my attention to “direct” density-dependence, i.e., I consider g (N) as
a monotonous decreasing function of N. Inverse density-dependence is inherent in
the Allee effect (Courchamp et al. 1999). Among many different models, a straight-
forward one is the deterministic (discrete time) Gompertz model (DG) (May et al.
1974; Hassell 1975; Royama 1992, p. 48):

Nip1 = ANPN,, (1)

which has the advantage of translating into a linear model for log population size
X, = Ln(N,) as (denoting Ln (A) as r):

X1 =r+{-=>b)x (2)
or
T4l = Xip1 — X =7 — bx; 3)

In passing, one should note that r = Ln (}) is the growth rate for N = 1, while
the growth rate for N = 0 is infinite (Royama 1992, p. 50). This slight artifact will
not interfere with our use of this model, as we will always assume N (0) > 1. From
(2), one can easily show that if 0 < b < 2, which we will assume in all what
follows, the model population size converges asymptotically to a stable equilibrium
K =exp(r/b) (Fig. 1).

By density-dependence in a natural population, what is generally meant is a
decrease in individual demographic performance induced by an increase in density,
generally local density (through a number of different potential mechanisms:
increase in time spent in agonistic interactions, in time spent traveling farther away
to collect food, decrease in chances of getting a proper nest site, etc.). However,
animals or plants do not measure their density; hence their demographic perfor-
mance is at most sensitive to some unknown amount of interactions between indi-
viduals or of accessible resource per individual: population size cannot be the
actual determinant of demographic performance. This ambiguity has led to a lot
of confusion around the concepts of regulation (i.e. density-dependence in model
populations) and environment-mediated limitation (i.e. density dependence in
natural populations) (Berryman 2004). Even in extreme cases, demographic traits



22 J.-D. Lebreton

250 T T T T T T T T T

200

150 -

\ ~
PPN

100

50

0 10 20 30 40 50 60 70 80 90 100

Fig. 1 Trajectory of the deterministic discrete time Gompertz model (continuous line) N,y =
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in which one assumes E (g;) = 0 and var (¢;) = o with at this stage no specific
assumption on the autocorrelation spectrum of ¢,. This model has wide applicability,
even if a more sophisticated functional form for density dependence (Royama 1992,
p. 50 ff) might be often preferable: assuming a linear relationship on an appropriate
scale is a common simplification for a preliminary study of the relationship between
two variables, especially when stochasticity is strong enough to mask details of
a potentially more complex relationship. Because of its simplicity, this model has
indeed been used repeatedly in the literature on density dependence modeling and
assessment (Maelzer 1970; Slade 1977; Dennis and Taper 1994; Dennis et al. 2006).
We will come back to the issue of functional form of density-dependence later.
The SG model can also be written as:

X1 —1/b =0 —=b)(x; —r/b) + & (6)

Thus, if the series ¢; is not autocorrelated, i.e. is a white noise, and if, as in the DG
model, 0 < b < 2, the log-population size varies around its ergodic expectation
U = r/b according to an autoregressive process (Fig. 1), with a typical decreasing
autocorrelation function directly depending on the value of b. If the series ¢, is auto-
correlated, the autocorrelation function of the log-population size will be modified,
possibly to a large extent, compared with that of an autoregressive process. In the
absence of density-dependence, the model becomes a random walk model with drift
r (Hamilton 1994, p. 436), a stochastic process which is no more stationary:

X1 =7+ X+ & @)

In all cases, as emphasized by Bulmer (1975), it is clear that the information on
density-dependence is in the autocorrelation spectrum of the population size series:
the empirical assessment of density-dependence pertains to time-series analysis and
raises some tricky issues. We will see that this point has often not been taken seri-
ously enough in the literature.

The lack of relevance of deterministic models to density-dependence in natural
populations extends partly to chaos in discrete time logistic models. Bifurcations
in the deterministic discrete time Ricker model (May 1976) have indeed as coun-
terparts in the stochastic version of the model sharp changes in the autocorrelation
function (Texier 1996). A remaining key property of chaotic behavior is the sensi-
tivity of the trajectory to slight changes in initial values (Hastings et al. 1993), which
bears a relationship to the predictability of such systems.

Another topic concerns the behavior induced by stochastic components in
density-dependent models. A first basic point is that the expected population size in
a density-dependent stochastic model is not given by the population size of its deter-
ministic counterpart because of the nonlinearity inherent in density-dependence
(Dennis and Taper 1994). There is relatively little in the literature on scalar density-
dependent random environment (DDRE) models, in particular in relation to empir-
ical data, with the notable exception of Lande et al. (2003, chapter 1). If demo-
graphic stochasticity is also considered, there is even less (Gosselin and Lebreton
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2000; Gosselin 2001). There is literally nothing on DDRE models for structured
populations, although the effect of random environment on exponential growth
models in the case of structured populations has been thoroughly investigated
(Tuljapurkar 1989; Tuljapurkar 1990). There is thus a clear need for future research
in this area.

3 Detecting and Measuring Density-Dependence from Counts

Population monitoring nearly always incorporates a census or some other kind of
population size estimation. As a consequence, there is a great interest for being
able to test for density dependence based on time series of population size esti-
mates. However, one should realize that when investigating density-dependence, a
population process, based on population size estimates, a result of the many mecha-
nisms inherent in population dynamics, one is seeking information on process based
on pattern. It is thus not surprising that many difficulties arise (Murdoch 1994,
p. 275 ff).

The shortness of time series often precludes any serious testing power, but this
state of affairs is changing with long term programs. Sound procedures, even with
low power, may also be useful in meta-analyses of density-dependence, in which
results from several populations or different pieces of information from the same
population are combined into a single test or statistic. Bias becomes then critical: a
small bias, even if negligible in a single study, is contrasted with a much lower stan-
dard error, with extremely deleterious consequences, if present in all components of
an overall statistic. One may suspect this is the case in Brook and Bradshaw (2006).

We just saw that the information on density dependence based on a series of
population size estimates is contained in the autocorrelation spectrum of the series.
In an ideal world, under the SG model (6), b is linked to the first order autocor-
relation p; (Box and Jenkins 1976, p. 176) as b = 1 — p;. In the real world, any
departure from the basic model that modifies the autocorrelation function must be
taken into account. This critical statement has several key consequences:

(1) Naive methods to estimate b should be avoided. Time series methods are needed
and must be used.

(2) Uncertainty in population size will modify the autocorrelation and have
extremely deleterious effects on the detection of density dependence and must
be taken into account.

(3) Environmental variability must be taken into account, with a particular care if
there is a risk of autocorrelation in the environment, again because it would
modify the autocorrelation function of the series.

(4) Population structure such as age-structure must be taken into account, since it
is equivalent to a delay, with, again, consequences on autocorrelation.

Although these warnings have been made repeatedly in the literature, as early as
the 1970s (Saint-Amant 1970; Ito 1972; Slade 1977), deleterious consequences of
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naive approaches are not yet fully realized. These four points above are developed
below.

3.1 Some Time Series Difficulties

Under the SG model, a maximum likelihood estimate (MLE) of b can be obtained
(Hamilton 1994, p. 118 ff). A preliminary estimate of b can be derived from that
of the estimated first order autocorrelation p; (Box and Jenkins 1976, p. 176) as
b = 1 — p;. The resulting estimate is always >0, and cannot thus be used to
test for Hy b = 0. Hamilton (1994, p. 123) recommends using maximum likeli-
hood conditional on the first observation x;. This avoids specifying a distribution
for x;, which is then considered as ancillary for the estimation of parameters of
interest (Cox and Hinkley 1974, p. 35). The likelihood reduces to the product of the
normal densities of x; conditional on x;_;. ML estimation amounts then to using
ordinary linear regression of x; w.r.t. x;_;; the MLE of b is derived from that of the
regression slope ¢, as b = 1 — ¢, i.e., apart a trivial transformation, the ordinary
regression estimate is the MLE under the SG model: however, this does not imply
the MLE benefits from the usual properties of the regression estimates, and even
not of those of MLEs under standard conditions (Dennis and Taper 1994), for two
reasons:

— First, several assumptions of ordinary regression are not met; e.g. the dependent
variable values in the regression are not independent;

— Second, the model is a non-stationary stochastic process, and ML theory for
dependent observations fails then to provide strong results.

As a consequence, under Hy b = 0, despite E (x;+1/x;) = r + x; there is no
reason for the expectation of the estimated slope to be equal to 1. One may easily
see, for instance by noticing the full reversibility over time of the model, that the
estimate of slope is biased below 1, and in turn that of b is biased towards positive
values, i.e. detects too often density-dependence. It is only asymptotically that one
will have E (b) = 0, because var (x,) — co.

Figure 2 illustrates this bias by presenting simulation results from the random
walk model x4y = r + x;, + & with r = 0.1 and /var(s,) = o = 0.1.
The usual regression slope is biased towards O, pointing to the SG model with
b > 0, i.e. to density dependence. In this case, over 1000 replicates over 20 time
steps, the average slope estimate is 0.9831 % 0.0477. The situation worsens when
var (x;) = o2 increases: 1000 simulated slopes under +/var(e;) = o = 0.2 lead to
an average estimated slope equal to 0.9208 £ 0.1213. The existence of this bias in
the absence of uncertainty on population size estimates goes still commonly unrec-
ognized even in recent reviews (Freckleton et al. 2006). An approximate expres-
sion of the bias is developed in Appendix, reformulating a result first obtained, to
my knowledge, by Saint-Amant (1970). It is only asymptotically that E (13) =0,
because var (x;) — oo (approximate proof in Appendix). A t-test statistic, denoted
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Fig. 2 Bias of standard regression when testing for density dependence based on the discrete
time Gompertz model for log population size x,y; = r + (1 — b) x; + &.. The slope of the usual
regression of x,;; vs x; under Hy b = 0 is biased below 1 for finite sample sizes, implying this
approach will reject Hy, i.e. detect density-dependence too often. (1000 simulations under with

r=0.1and,/var(s) =0 =0.1)

as 1, for testing Hy b = 0 is readily derived from the usual t-test statistic for
the slope. As shown in Appendix, #, remains asymptotically biased, and a simple
approximation of this bias is:

E(t)~\/§/"_1 1
b 2Vn+1 |4 nzlr?

2 o2

Simulations show that the bias corrected t-test statistic, obtained by substituting
r and ¢ in the approximate expression of the bias with their estimates (Appendix),
give satisfying results (selection of results in Figs. 3, 4, and 5). In all cases, the
uncorrected test is severely biased, while the bias correction brings the P-level fairly
close to the nominal level, although it will reject slightly too often for »r = 0
(Fig. 3). The results seem satisfying enough to make the bias-corrected t-test a
good competitor of the parametric bootstrap procedure proposed by (Dennis and
Taper 1994), while the empirical recommendation of using the reduced major axis
proposed by Saint-Amant (1970) also makes sense given the reversibility of the
process, but would deserve further checks.

Altogether, the review above is mainly useful to emphasize the hidden tricks
of an apparently innocuous statistical exercise. Its real world applicability is obvi-
ously low, as one expects always uncertainty in population size estimates to be
present.
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Fig. 3 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model x,; =r+ (1 — b) x, +¢&;, var (&) = o2, as a function of the length of the time series,
under a nominal P-level equal to 0.05. The bias-corrected test uses the bias correction in Appendix.
The results shown here are for r = 0. Uncorrected t-test: thin plain line, crosses, o = 0.1; thin dotted
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Fig. 4 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model x,;; = r + (1 — b)x; + &, var(g;) = o>, over n = 30 points, as a function of the
growth rate r, under a nominal P-level equal to 0.05. The bias-corrected test uses the bias correction
in Appendix. Uncorrected t-test: thin plain line, crosses, o = 0.1; thin dotted line, crosses, o = 0.2.
Bias-corrected t-test: thick plain line, dots, o = 0.1; thick dotted line, dots, ¢ = 0.2
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Fig. 5 Simulated P-level (5000 replicates) of one-tailed t-tests of density-dependence by regression
in the model x,.; = r + (1 —b)x, + &, var(g,) = o2, over n = 30 points, as a function of
the standard error o, under a nominal P-level equal to 0.05. The bias-corrected test uses the bias
correction in Appendix. Uncorrected t-test: thin plain line, crosses, r = 0.1; thin dotted line, crosses,
r=0.2. Bias-corrected t-test: thick plain line, dots, r = 0.1; thick dotted line, dots, r = 0.2

3.2 The Effect of Uncertainty in Population Size Estimates

When the SG model
Xp=r+A-=>b)x; +¢& (8)

is put in relation with data, the estimated population size is linked to N, with some
measurement error. A straightforward approach is to consider that log-population
size x; = log (V;) is estimated without bias, as y,. Then:

Vit = Xpg1 + Ni41 9

One assumes the random terms x, are independently and identically distributed
(iid), that the random terms 7, are also iid, and that the two series are indepen-
dent of each other. One further assumes they have zero means (E (¢,) = 0 and
E (n,) = 0) and constant variances o> = var(g,) and v> = var(s;). In accor-
dance with the generally skewed distributions of population sizes, one can reason-
ably assume normal distributions for ¢, and n,. A constant bias in population size
estimation on a log scale, corresponding to a constant over- or underestimation, e.g.

for the latter because of incomplete detection, would change little to what follows.
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Rearranging (8) and (9) as a one dimension time-series, as
Veyr =r + (L =b) yi+e+ b — D + 0 (10)

clearly shows that the random component &; + (b — 1) n; + 1,4 is necessarily auto-
correlated when the original random terms ¢, and 7, are not. As a consequence, the
autocorrelation function of the observed data y, can be markedly different from that
of the original autoregressive process. Bulmer (1975) proposed the model formed
of Equations (8) and (9) as a minimal model for density-dependence in presence
of population size uncertainty. He recognized the role of this uncertainty in deter-
mining largely the first order autocorrelation and proposed an ad hoc statistic close
to the difference between the second order and the first order autocorrelation to
test for density-dependence. However, as noted by Lebreton (1989), the state equa-
tion (8) and the observation equation (9), with parameters r, b, o2, v? constitute a
linear state-space model amenable to the Kalman filter. The Kalman filter theory for
state space models (Harvey 1989) is powerful and will provide deeper and stronger
results than Bulmer’s treatment. Moreover, although this is rarely stated, standard
asymptotic stochastic process results will not be useful in the context of detection
of density dependence. In relation with this remark, there is no need to assume
r = 0, or to centre or detrend population size to come closer to usual time-series
assumptions. In fact over a finite time window ¢ = 1,2..., T, the population can
well grow, as expressed by the shift parameter . Stenseth et al. (2003) and Jamieson
and Brooks (2002, 2004) proposed indeed state space models, treated by Bayesian
approaches to test for density-dependence. Kalman filtering has been proposed inde-
pendently by several authors in contexts close to ours (Visser and Molenaar 1988,
Ennola et al. 1998, Besbeas et al. 2002, Ives et al. 2003). Dennis et al. (2006)
developed the likelihood approach for the model above based on Kalman filtering.
The key idea is that the linearity of the state and observation equations and the
assumption of normal distributions for ¢, and 7, ensure that x; and y, are normally
distributed. It is thus sufficient to derive their expectation and variance to determine
their entire distribution and obtain the likelihood LogL (yl, V2, eees Yu /T, b, o2, vz).
The Kalman filter (Harvey 1989) can indeed be viewed as a set of recurrence rela-
tionships for deriving the expectations and variances of x, and y,, and producing in
turn the likelihood of the observations.

In the examples that follow, we used Matlab® programs for Kalman filtering
(Besbeas et al. 2002) to calculate the likelihood and we minimized the deviance —2
LogL (yl, V2, ey Yu /15 b, o2, vz).

Reaching the minimum of the deviance Dev (F, b, 62, 0?) =
min [—2 LogL (y1, y2. ... ya/r. b, 6%, v?)] provides maximum likelihood
estimates of the parameters r, b, o2, and v?, and of their covariance matrix 3. In
turn, one can test in a naive fashion the null hypothesis Hy b = 0 against H; b > 0
in two different ways:

1. Based on a Wald test, the statistic zy = (b — 1) / V/var(h) assumed to asymp-
totically follow under Hy a distribution N(0,1);
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2. After having fitted the model under the constraint » = 0 (with constrained esti-
mates denoted as 7, etc.) based on a Likelihood Ratio Test (LRT), assuming that
under Hy, Dev (7, 1, &, 9%) — Dev (7, b, 62, 9%) asymptotically follows a x}
distribution.

Equivalently, one can use z; g7 = sgn (b — 1) x\/Dev (7, 1,52 1) — Dev (7, b, 62, 9?)
and refer it to a distribution N(0,1).

However, even more than in the SG without population size uncertainty, standard
MLEs results do not necessarily apply given the non stationarity of the stochastic
process in the state equation under Hy b = 0. Moreover, Dennis et al. (2006) review
a number of practical and statistical difficulties, such as multiple modes in the like-
lihood, and discuss alternative estimation methods. They emphasize how much the
statistical difficulties met with this relatively simple model have been overlooked in
the literature on state-space models.

As a tentative illustration, Table 1 presents two examples, on the Cormorant
(Brengballe, pers. comm.) and the greater snow goose (Gauthier et al. 2007),
respectively. Both examples were checked for global convergence by using multiple
random initial values for the iterative minimization of the deviance. The snow goose
results seem reliable, in particular with an acceptable order of magnitude for the
population size coefficient of variation (0.06 vs ~0.12-0.17 in field evaluation and
state space modeling, respectively; Gauthier et al. 2007). They point as expected
to density independence, in a context where, obviously, one expects the naive test
procedure to be biased in favor of density-dependence. While the Cormorant results
point as expected to density-dependence, with the warning just given, the results
seem more suspicious, with an estimated 0 variance for population size estimation,
and an inadequate functional form for density-dependence. A non linear state-space
model would then be advisable (De Valpine and Hastings 2002). In both cases, the

Table 1 Statistical analysis of density-dependence for number of breeding pairs of Cormorant
Phalacrocorax carbo in Europe (Bregnballe, pers. comm.), and total spring count of Greater snow
goose Chen caerulescens caerulescens (Gauthier et al. 2007). The analysis is based on Kalman
filter likelihood estimation (Dennis et al. 2006) in the stochastic discrete time Gompertz model
proposed by Bulmer (1975). See text for explanations. The statistical results presented are subject
to some unknown biases as commented in the text

Parameter Method and or statistic Cormorant Greater snow Goose
r KF estimate =+ se 0.6046 £+ 0.0913 0.3273 4+ 0.3077
r Regression estimate + se 0.6161 = 0.1326 0.5044 £+ 0.5255
1-b KF estimate + se 0.9489 £+ 0.0097 0.9784 4+ 0.0243
1-b Bulmer’s estimate * 1.0811 1.0861

1-b Regression estimate =+ se 0.9478 £ 0.0141 0.9643 £ 0.0414
Test of Hy b=0 One-sided KF Wald test 5.2710 p < 0.01 0.8898 NS
JJvar(g;) Process se 0.1000 0.1049

/var (n;) Population size uncertainty 0.0000 0.0603

Test of Hy b=0 One-sided KF LRT test 3.3520p < 0.01 0.6509 NS

Test of Hy b=0 One-sided naive z-test statistic 3.7131 p< 0.01 0.8625 NS

Test of Hy b=0 One-sided Bulmer’s Wald test <ONS <0ONS

Test of Hy b=0 Bulmer overall statistic R* —0.0540 NS —0.0167 NS
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estimation of growth rate was far too high, despite a strong imprecision, and suggest
biases in the estimates. As in the absence of population size uncertainty, a parametric
bootstrap determination of the distribution of 5 under Hy b = 0 could be easily set
up (Dennis and Taper, 2002) and an exploration of the bias (Appendix) might be
feasible too. Further progress pending, the warnings by Dennis et al. (2006) should
be kept in mind.

Moreover, again, not too much can be expected in terms of inference on process
based on pattern. It is not surprising that uncertainty in counts is extremely dele-
terious, as one is then investigating process based on a blurred pattern. Its effect
is however often misunderstood and underrated. For instance Lande et al. (2003)
neglect uncertainty, on the grounds that they use only precise estimates of popu-
lation size. They fail to recognize that even reasonably precise estimates will be
nevertheless affected by some uncertainty, and this problem jeopardizes a larger
part of their conclusions. The same problem is present throughout the analyses of
Brook and Bradshaw (2006).

3.3 The Effect of Environmental Variability

Negative autocorrelation in environmental variables may be fairly common. It is
well known for Beech mast crop, a major determinant of the dynamics of the
Whytham wood Great Tit population (Perrins 1970). Simultaneous analyses of
density and environmental covariates a thus badly needed, unless one takes the risk
of confusion between density-dependence and environmental variation. Inserting
environmental covariates in such models is also a way of decreasing the residual
variance and of increasing power.

Absence of autocorrelation in environmental covariates is critical to the test
procedures presented above. Hence, we recommend use of relevant covariates with
state equation generalised as x,y; = r + bx; 4+ cz, + &;. Density-dependence and
environmental variation are viewed then as main additive effects, a logical first step
even if some interaction, representing for instance increased density-dependence
under poor environmental conditions, could be modelled in case of need.

An analysis of the Great Tit data based on a density-dependent branching process
with environmental covariates is developed by Lebreton (1990). Similarly, Dennis
and Otten (2000) analyze the effect of density-dependence and rainfall on popula-
tion change in a Fox population. In both cases, however, the authors assume there is
no uncertainty in population size estimates.

Stenseth et al. (2003) provide an example of a state space model considering
simultaneously density-dependence and environmental covariates.

3.4 The Effect of Population Structure

When population parameters differ between various categories of individuals such
as age or developmental stage, models based on a scalar population size become
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inappropriate and one generally resorts to matrix models. When the models above
are used, it is clear that the part of the autocorrelation of total population size over
time is generated by the structure. For instance, if population size becomes excep-
tionally large at some point in time because of a high fecundity in a given year,
it will remain so for several years if survival is rather constant. While there is not
problem in using a population vector in the state equation (Ives et al. 2003, Gauthier
et al. 2007), this links tests of density dependence with more general state space
models of population dynamics. This point is discussed later.

3.5 Conclusion

As a preliminary conclusion at this stage, two points are fairly clear:

(1) The fact that naive methods, e.g. regression neglecting population size uncer-
tainty (Lande et al. 2003), or ad hoc treatments of uncertainty (McGhee and
Berkson 2007), are still commonly used and remain commonly undetected by
referees is very annoying, and everything must be done to progress on that point.

(2) State space models are quite promising, whether as an efficient way to handle
Bulmer’s minimal model, or in more realistic generalized versions (e.g., with
environmental covariates), or various functional forms (De Valpine and Hast-
ings 2002), even if some statistical difficulties have still to be solved (Dennis et
al. 2000).

4 Detecting and Measuring the Effect of Density-Dependence
on Traits

Investigating a relationship between a demographic trait, such as a survival prob-
ability and population size does not raise all the difficulties just reviewed. This
is because the information on the demographic trait, for instance Capture-Mark-
Reencounter (CMR) (Thomson et al. 2008) data for estimating survival, are in
general independent from the population size estimates, at least if population size is
not estimated from the same capture—recapture experiment. The overall framework
is that of regression, even if, as is now commonly the case for CMR models, the
regression equation is embedded in a probabilistic model (North and Morgan 1979;
Clobert and Lebreton 1985; Lebreton et al. 1992).

If population size could be assumed as known without uncertainty, the usual
constrained model used to relate survival to any covariate in CMR analysis could
then be used with success. Lebreton et al. (1992) provide an example about the
Roe deer Capreolus capreolus. Frederiksen and Bregnballe (2000) and Hénaux
et al. (2007) discuss a thorough analysis of density-dependence in survival of the
Cormorant Phalacrocorax carbo.

However, as discussed in introduction, and in the previous section, uncertainty
in population size estimates is the rule, and moreover, population size is only a
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proxy to a real unknown causal factor for change in demographic performance with
“density”. One has then to handle an “error-in-variable” problem. The effect well
known in usual linear regression is to shrink the slope estimate towards zero. The
usual regression test is thus conservative, i.e. tends to detect not often enough the
alternative hypothesis Hj, i.e. density dependence. While the estimate of slope is
biased and should thus be looked at with caution, the bias in the resulting test
just amounts to a decrease in power. The same slope bias towards O is present for
more refined regression models: logistic regression, regression embedded in a CMR
model (Crespin et al. 2006).

Barker et al. (2002) adapted a simple bias correction to the regression models
used in CMR. Their elegant solution provides a bias corrected estimate of slope
that also improves the power of the test. One shortcoming is that one has to know
beforehand an estimate of the uncertainty on population size. Moreover, they were
only able to apply their correction to the ordinary least square estimate, which is
less efficient than a weighted least square one would be.

It is clear also that environmental covariates, in particular autocorrelated ones,
can as above have effects confounded with density-dependence; the regression
models embedded in CMR models can easily handle multiple regression and this
does not raise specific difficulty, out of the confounding usually induced by corre-
lation between dependent variables. Barker’s et al. approach would require some
simple adaptations to handle that case.

Nevertheless, it is striking that uncertainty in population size estimates, and the
fact that population size itself is a proxy to some latent variable, are currently
handled in a very different fashion whether one is investigating density-dependence
based on population size estimates or at the level of a demographic trait.

5 Discussion: The Potential of Integrated Modelling

Can one expand on the state space approach proposed above to handle Bulmer’s
minimal model for density-dependence, and obtain a general framework for
assessing density-dependence? Several of our earlier comments encourage doing
s0, using state space models as good candidates for this general framework:

(1) Environmental covariates can easily be incorporated into state space models,
expanding in a straightforward fashion over Bulmer’s model (Lebreton 1990;
Dennis and Otten 2000).

(2) State space models can easily be extended to consider in the state equation a
vector of population size (Besbeas et al. 2002; Ives et al. 2003).

(3) State space models can cover more general functional relationships than the log-
linear Gompertz representation of density-dependence. The reasonable price
to pay is that one has to switch from the explicit and straightforward Kalman
filtering to more sophisticated algorithms, such as numerical integration (De
Valpine and Hastings 2002) or Bayesian algorithms for stochastic integration.



34 J.-D. Lebreton

(4) They can simultaneously represent structure and sophisticated functional forms
of density dependence, with density-dependent Leslie matrix models (Allen
1989).

The gap between the treatment of density-dependence based on population size
estimates and that based on demographic traits can even be filled. The critical point
here is the possibility of representing CMR models as state space models (Doris
2005). This approach has been proposed (Gimenez et al. 2007, 2008) to combine
in a same state space model a Leslie matrix and a CMR model, avoiding the
normal approximation used by Besbeas et al. (2002) to assemble in a simple fashion
the CMR likelihood and the population size Kalman filter based likelihood. The
resulting state space model can be quite general, provided again algorithms more
sophisticated than Kalman filtering are used.

It seems then quite feasible to combine in a state space model one part based on
a density-dependent matrix model (Allen 1989), and another part based on a density
dependent CMR model; the dependence in the latter part would be on some of the
component of the state vector from the former part. The uncertainty in population
size would then be handled in the exact same fashion whether one works with popu-
lation size or with a demographic trait.

Another advantage of such an approach would be to bridge the gap between
pattern and process in statistical investigation of density-dependence.

Under the conditions discussed above, state space models seem thus to have
the potential for totally renewing density-dependence assessment, and in turn,
modeling. One key consequence of using state space models in the fashion just
described would be that various pieces of information would be assembled in an
overall diagnostic. This would partly bridge the gap between pattern and process.
Another advantage would be that statistical models and dynamical models would be
intimately linked. In this respect, density-dependent models with a random compo-
nent, for accounting for environmental variation and for the fact that population size
is always a proxy for what is called density-dependence in a biological population,
should become the rule. Further research on the behavior of such models is needed
and a number of statistical difficulties have to be closely examined.

A critical aspect is nevertheless that most density-dependence studies remain
observational. Experimental approaches, even if they are at a shorter term than the
population series considered in long term programs and in the type of modeling
reviewed here, could be combined with the other information to move even farther
away from pattern towards process. Nest box bird species appear as an ideal material
in this respect since their density and numbers can be easily manipulated. Such
experiments would moreover link easily with studies of individuals quality if based
on sites in which capture—recapture study have been used for several years before
the experiment starts.

Altogether, given the complexity of population numerical mechanisms and
the subtleties of statistical models for density-dependence, it seems that purely
biologically-oriented analyses of density-dependence (e.g., Newton 1998), will have
strong shortcomings. Symmetrically, pure statistical analyses would remain too
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strongly pattern oriented, and be at risk of missing important mechanisms. Alto-
gether, it seems that the scene is nearly ready for a renewal of investigations on
a series of questions on density-dependence, whether they concern fundamental
or applied population ecology. To cite again only two contrasted questions, the
role of density on selective pressure, and its relation to the diversification of life
history (Boyce 1984), and the role of potential compensation between harvesting
and underlying natural mortality in exploited populations (Lebreton 2005) remain
quite open and critical.
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Appendix
We consider the random walk model with drift r,
X1 =7+ X + & (10)

which is a particular case of the density-dependent Gompertz model, linearized by
considering logarithms of population size:

X1 =r+ 1 =b)x +& an

Model (11) reduces to model (10) under Hy & = 0. The alternative hypothesis is
H; b > 0.

Assume data (xy, x2, ..., X, X,+1) originating from model (10) or (11) have been
observed over times t = 1,2, ...,n (i.e.t + 1 = 2,3,...,n + 1). All probability
calculations are conditional on x;. We denote as X, and X,,; the un-shifted and
shifted empirical means, respectively:

I « 1 «
Xp = . E xyand X,41 = . E Xt41
=1 =1

related by X,11 = X + %()C,H_] — X1)
The ordinary least square (OLS) estimate of the slope of the regression of x|
W.I.t. X; 1S:

n
Z (-xtJrl - -’_Cn+1)(-xt - xn)
t=1

IsH

n
Z (xt - xn)2
t=1
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Under the normality assumption for &, the likelihood of model (11), conditional
on xj, reduces to OLS (Hamilton, 1994, p. 118 ff). Hence b = 1 — a is the MLE

of b, conditional on x, under model (11).
Under model (11),

Xip1 — Xnp1 =7+ X + & — bx; — X, — ;(xn+l —X1)

Hence:

D it = B )0t — X)) = ) (o — %)’ = b Y xi(x — %)+ Y e(x — Ea)
t=1 t=1 t=1 t=1

1 n
= = = 31) (% — T)

t=1

in which the last term is equal to 0 by definition of X,

Then, using
n
n n - Z & (xt - )_Cn)
- - 2 =1
Yo —x)=) (n—%) b=—"— +b
t=1 t=1 Z (x; — )_511)2
=1
Hence,

_igt(xt_)_cn)
Ep)-b=E| L —
Z(xr_)_cn)z

t=1

t=1

E (2 (v — mz)

t=1

E (— S e G — m)

of which a first order approximation is E (b) — b

The independence of x, and ¢, and E (g,) = 0, lead then to

(£

E()-b~ . =
E <Z (x, — xn)2>

t=1

Sla
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Based on
n

n n
C = E(Zs,fcn> =1iE (ZS, ij), E (eix;) = E(¢}) = o*for j > t
=1 =1 j=1

and E (s,xj) = 0 for j <t, one obtains then

1 -1 2
c1r0=Don_o_ T
n 2 2

As a consequence, b is positively biased, with

N(n—l) a2

E(b)-b~ 5 -
E (Z (x; — xn)z)
=1

12)

This first part is a reformulation in our notation and context of the results by
Saint-Amant (1970).

We will see that under Hy b = 0, E <Z (x; —)'c,,)2>, grows as ns/z, which
t=1

implies the bias asymptotically vanishes. Thus, although the standard properties
of Maximum Likelihood estimates do not necessarily hold because of the non-
stationarity of the random walk model (10), b is asymptotically unbiased.

However, the bias on b has key consequences on the usual statistic for a test of
slope.

The statistic for testing for Hy b =0, is

~

b
= )
A2 n
7 /Z (xtf)_cn)z
V t=1

or, asymptotically,

Hence, under Hy b = 0, using the approximate expression (12) for E (13):

n—1 o2

2 e (Z (xl_xn)z)
=1

E () ~

The calculation of E (Z (x,_%n)? ) is a bit more involved.
=1



38 J.-D. Lebreton

First,

E (Z (x — xn)2> =Y E(x))—nE (%) =) (var(x)+ E (x)%)

t=1 t=1 t=1

—n (var (%,) + E (%,)) .

Then, from x, = (¢t — 1)r + x; + & + & + ... + &_1, one gets the following
intermediate results:

Xp =

r+x;+ (n—Der+m—2)er1...+&,-1)

n—1

. n—1 ., (n—1 =17,
E (x,) = 5 r+x; and E (X,)" = > r+x) = 2 r

+(n—1rx +x12

n—1 n—1

var (%,) = n_12 (Z t2> o2, in which (Z t2>
=1 =1

B (n—Dn2n—-1)

5 , denoted as S(n — 1)

E(x) = (t— Dr+x, E(x)* = ((t — Dr +x1)2 = (t — 1)*r* +2(t — Dyrx; + x3,

var (x,) = (t — 1) o2, and Zvar(x,) = @02

t=1

Then

E <Z(xt _)_Cn)z) = wcz +8Sn—Dr*+rxn®n—1)+nxt

t=1

~2Sstn-1o?
n

N
_n((n D r2+(n—1)rx1+x12>

4
_ 3n>—3n nnh—-1)2n—-1))\ ,
- 6 n2 6 7
2n—1 -1
+n(n—1)< "6 —”4 )r2

_ (n+1)6(n—1) (02+n;1r2>
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E(r)~\/§/"_1 1
b 2V n+1 |4zl

2 o2

In turn,

As, under Hy, r can be estimated without bias as 7 = % (Xpt1 — X1) = Xpg1 — X
and o can be estimated as

1 n
~2 AN2
o = Z(xt+1—xt_r) =
=1

1 n
Z (xtJrl - )_Cn+l - (xt - )_Cn))zv
n—1 1 P

n—

the approximate bias of the t-test can thus be estimated by substituting the estimates
in the formula above.
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The Efficient Semiparametric Regression
Modeling of Capture—Recapture Data: Assessing
the Impact of Climate on Survival of Two
Antarctic Seabird Species

Olivier Gimenez and Christophe Barbraud

Abstract A nonparametric approach has recently been proposed for estimating
survival in capture—recapture models, which uses penalized splines to achieve
flexibility in exploring the relationships with environmental covariates. However,
this method is highly time-consuming because it is implemented through a fully
Bayesian approach using Markov chain Monte Carlo simulations. To cope with this
issue, we developed a two-step approach in which the existing method is used in
conjunction with a multivariate normal approximation to the capture-recapture data
likelihood. The ability of our approach to capture various nonlinearities in demo-
graphic parameters was validated by carrying out a simulation study. Two exam-
ples dealing with Snow petrel and Emperor penguin capture—recapture data sets
were also considered to illustrate our procedure, including the relationship between
survival rate, population size and climatic covariates.

Keywords Auxiliary variables - Bayesian inference - Bivariate smoothing -
Computational efficiency - Demographic rates - Environmental covariates -
Interactions - Multivariate normal approximation - Penalized-splines - WinBUGS

1 Introduction

Climate change, specifically global warming, is projected to accelerate in the next
century (IPCC 2001). Consequences of this on the functioning of ecosystems are
at present difficult to predict, and the study of climatic fluctuations on popula-
tions is a major topic in ecology (Hughes 2000; McCarty 2001; Stenseth et al.
2002). Recent investigations show that global warming affects some animal popula-
tions, through changes in their physiology, phenology, distribution and demography
(Hughes 2000; Walther et al. 2002; Root et al. 2003; Walther et al. 2005). The vast
majority of studies assume that the potential effects of both climate and population
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density on demographic parameters are linear. However, there is strong evidence
that environmental factors may affect population dynamics in more complex ways.
For instance, using a global proxy to describe climatic conditions (such as the North
Atlantic Oscillation) may induce nonlinear relationships as a consequence of similar
nonlinear relations between the proxy and local climatic variables (Mysterud et al.
2001). Empirical data that can be used to investigate the effects of climate change
on populations is increasing. Yet, at present there is insufficient modeling method-
ology to investigate nonlinear relationships between environmental covariates and
demographic rates, and to create reliable predictions concerning the impact that the
anticipated changes might have on populations.

In this paper, we focus on a new nonparametric approach which has recently
been developed to model flexible nonlinear relationships between environmental
covariates and demographic rates assessed using capture-recapture/recovery models
(Gimenez et al. 2006a). In the spirit of Generalized Additive Models (Hastie and
Tibshirani 1990), the shape of the relationship is determined by the data without
making any prior assumption regarding its form, using penalized splines (P-splines;
Ruppert et al. 2003). However, the whole approach is implemented in a Bayesian
framework using MCMC algorithms, and our experience shows that the model
fitting process may be highly time-consuming, which can be an obstacle to model
selection and to comparative analyses of the response of several species’ population
dynamics to environmental factors.

Here, we propose to overcome this difficulty by the use of multivariate normal
approximation to the capture-recapture model likelihood in a first step (Lebreton
et al. 1995; Besbeas et al. 2003). This approximation is then used in a second step in
conjunction with a Bayesian approach using MCMC methods in order to implement
the P-splines. This combination allows purpose-built programs (e.g. M-SURGE,
Choquet et al. 2005; or MARK, White and Burnham 1999) to be used for analyzing
capture-recapture data with maximum flexibility and results in a considerable
reduction in the computational burden. To validate the ability of our approach to
capture various nonlinearities in demographic parameters, we carry out a simulation
study. Two examples are also considered to illustrate our approach, including the
relationship between survival rate, population size and climatic covariates. Using
this new approach we reanalyzed two capture-recapture data sets of Antarctic
seabirds, for which previous analyses have investigated (and found) linear rela-
tionships between survival and environmental covariates (Jenouvrier et al. 2005).
For the Snow petrel (Pagodroma nivea), we analyzed the nonlinear relationships
between sex-specific adult survival and the Southern Oscillation Index (SOI). For
the Emperor penguin (Aptenodytes forsteri), we investigated nonlinear relationships
between sex specific adult-survival, sea ice extent and population size.

2 Efficient Nonparametric Regression in Capture-Recapture
Modeling

In this section, we introduce our approach following two steps. First, the data
are analyzed using standard capture—recapture models in a Frequentist framework.
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The survival parameter estimates and the associated estimated variance—covariance
matrix are then used to approximate the likelihood of the model best supported
by the data (Step I). This allows us to adopt a Bayesian approach using MCMC
algorithms to implement the nonparametric approach using P-splines (Step 2).

2.1 Step 1: Handling the Capture—Recapture Data

We used standard capture-recapture models (Lebreton et al. 1992) to get maxi-
mum likelihood estimates (MLEs) for the probability ¢; that an individual survives
to occasion i + 1 given that it is alive at time 7, and for the probability p; that an
individual is recaptured at time j. All models were fitted using program M-SURGE
(Choquet et al. 2005), but program MARK could have been used instead (White and
Burnham 1999).

Using program U-CARE (Choquet et al. 2003), we assessed the fit of the most
general time-dependent CJS model to determine whether it provided an adequate
description of the data. In both examples (see the Section 2.4), we detected a
trap-dependence effect on capture (Pradel 1993), meaning that capture probability
at occasion j + 1 was different for individuals captured at occasion j than for
individuals not captured at occasion j. Such a trap-dependent effect in long-lived
species is common and partly reflects heterogeneity in the quality of individuals
in a population. For emperor penguins and snow petrels, trap-dependence was
at least partly caused by heterogeneity between individuals in their capacity to
breed at the colony every year and therefore to be captured. Consequently, we
used a multistate capture—recapture model to cope with this departure from the
null hypothesis that the CJS fits the data (Gimenez et al. 2003). We distinguished
two states whether a capture occurred on the prior occasion (say state A) or not
(say state B). In practice, we considered a separate formulation (i.e., the transi-
tion probabilities are split into survival and movement probabilities — see Hestbeck
et al. 1991). The survival probabilities were time-dependent while the capture prob-
abilities in the states A and B were set constant and fixed to 1 and O respec-
tively, and the transition probabilities were state- and time-dependent. By using this
formulation, the transition probabilities between states A and A were the capture
probabilities given a capture on the prior occasion, and the transition probabil-
ities between states B and A were the capture probabilities given no capture on
the prior occasion. See Gimenez et al. (2003) for further details. If any lack of fit
remained, we applied a correction to the estimates and their estimated variance—
covariance based on the calculation of the coefficient of overdispersion (Lebreton
et al. 1992).

As is seen above, we conducted modeling in two steps (Lebreton et al. 1992).
We first focused on a model that described the nuisance parameter — i.e., the
capture probabilities — in the most parsimonious way, while survival remained
time-dependent. Then, preserving the most parsimonious structure of the nuisance
parameters, we worked out the survival probabilities using P-splines. Note that
for simplicity, we analyzed males and females separately for both data sets (see
Section 2.4).
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We now turn to the approximation of the capture-recapture likelihood, which
will be denoted L(¢, p). Lebreton et al. (1995) and Besbeas et al. (2003) proposed
to use a multivariate normal to approximate the function L(¢, p). More precisely,
the maximum likelihood estimates of the parameters on the logit scale, 6, and the
associated estimated variance—covariance matrix, i, both obtained from fitting an
appropriate capture—recapture model (see above), are used to approximate the log-
likelihood as:

210g{L (¢, p)} = constant — (H —6)" 71 (5 —6). (1)

Note that Besbeas et al. (2003) showed that it is only necessary to make the approxi-
mation for the parameters of interest, which are the survival probabilities in our case.
Obviously, using a multivariate normal distribution in place of the usual product
of multinomial distributions (where cells are complex nonlinear functions of the
survival and recapture probabilities) results in a much simpler form for the likeli-
hood L(¢, p), which in turn greatly speeds up the Bayesian fitting process using
MCMC algorithms.

Nevertheless, the use of Eq. (1) may be made difficult by numerical issues.
Indeed, some parameters may be estimated close to or on a boundary (0 or 1 as
we are dealing with probabilities), resulting in the impossibility to properly quan-
tify the variability associated to the MLEs using standard methods. Technically, the
dispersion matrix 3 is ill-conditioned which prevents us from obtaining its inverse
as required in Eq. (1). We circumvent this issue by neglecting the covariances,
and considering the diagonal 3. matrix of the estimated variances with off-diagonal
terms all zeros. Still, calculating variances for boundary estimates remains prob-
lematic. One option is to use profile-likelihood intervals (Gimenez et al. 2005), the
problem being that this approach does not formally provide a point estimate nor a
standard error. In this paper, we decided to assign a large variance (10,000) to those
para-meters estimated close to or on the boundary, thus affecting relative negligible
weights to the corresponding MLEs (see Eq. (1)). This ad-hoc procedure was used
in the Section 2.4 only.

2.2 Step 2: Semiparametric Modeling of the Survival

2.2.1 Univariate Smoothing

We consider the following regression model for the survival probability ¢;:

oi

logit (¢;) = log (1 s

)Zf(xi)+8i7 (2)

where x; is the value of the covariate applying between occasions i and i + 1, f is
a smooth function and ¢; are i.i.d. random effects N (0, 02). The function f spec-
ifies a nonparametric flexible relationship between the survival probability and
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the covariate that allows nonlinear environmental trends to be detected. Following
Gimenez et al. (2006a), we used a truncated polynomial basis to handle f:

K

fO)=Bo+Bix+...+Bpx" + ) be(x — )], 3)
k=1

where x is the covariate, fo, 1, ..., Bp, b1, ..., bgare regression coefficients to be
estimated, P > 1 is the degree of the spline, (u)fr = u” if u > 0 and O otherwise, and
K1 < kp < .. < kg are fixed knots. We considered K = min (}Tl, 35) knots to
ensure the desired flexibility, and let k; be the sample quantile of x’s corresponding
to probability KLH To avoid overfitting, we penalized the b’s by assuming that the
coefficients of (x — k) _’; are normally distributed random variables with mean 0 and
a certain variance o to be estimated. This is the reason why this approach is referred
to as penalized splines (Ruppert et al. 2003). For further details see Gimenez et al.
(2006a) and references therein.

2.2.2 Bivariate Smoothing

To incorporate the interaction between two continuous environmental covariates,
we opted for bivariate smoothing using thin-plate splines (Green and Silverman
1994). The main challenge here was to achieve the ideal balance between roughness
and smoothness, which is controlled by a parameter § usually referred to as the
smoothing parameter. We considered the restricted maximum likelihood (REML)
criterion to choose this amount of smoothing using the data (Searle et al. 1992),
which allows the whole modeling exercise to be easily implemented in a mixed
model framework (Ruppert et al. 2003; Crainiceanu et al. 2005; Gimenez et al.
2006a). Specifically, we consider a nonparametric model for the survival with
respect to environmental covariates as follows:

logit (¢;) = f(xi) + & “

T. . .
where x; = (xl.1 , x?) is the value of the vector of two covariates x! and x2 for year i,

T denotes transpose, ¢; are i.i.d N (O, 052) and f is a smooth function. Because they
have good numerical properties, we used radial basis functions to handle f (Ruppert
et al. 2003):

f(x) =Xb + Zgv, ®)

where {1, xl.',xl.z} is the ith row of matrix X, {C (||x; — k1|]), ..., C (|Ixi — vg |}
is the ith row of matrix Zg, the k;’s are bi-dimensional vectors of fixed knots, the
function C (||r||) = lle)|? log ||Ir|| with ||r] = VrTr handles the nonlinear structure of
the survival surface, b = (b, b, b3)T andv = (vy,...,0v K)Tare vectors of fixed and

random regression parameters respectively to be estimated with Cov (v) = auzﬂl_(]
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where €}, has (k, k’)th element C (|lk; — k(). Using the re-parameterization

u= Q}!zv and defining Z = Z Kﬂzl/ 2 Eq. (5) becomes equivalent to

f(x) = Xb + Zu, ©6)

where u is assumed to be normally distributed, independent from €, with Cov (u) =

o1 . It can be shown that the optimal amount of smoothing using the REML crite-
rion is given by § = 0/02, which turns out to be also the case in the univariate
smoothing (Ruppert et al. 2003). To choose the number and the location of the knots,
we considered K = max {20, min (/ /4, 150)} knots as suggested by Ruppert et al.
(2003) and used the space-filling algorithm of Nychka and Saltzman (1998) to select
the location of these knots. This algorithm automatically places knots in regions
with high density of observed values while maximizing the average spacing between
knots of those regions. Finally, to plot the fitness surface, we obtained contours and
perspectives views by generating a 30 x 30 grid of predicted values.

2.2.3 Bayesian Inference

Vague prior distributions were provided for all parameters. Specifically, we chose
uniform distributions on [0,1] for the detection probabilities, normal distributions
with mean 0 and variances 1,000 for the 8 ’s and normal distributions with mean 0
and variances 02, o and o2 for the u s, b ’s and ¢ ’s respectively. The priors for the
hyperparameters o2, sz and o were chosen as inverse-gamma with both parame-
ters equal to 0.001. We generated two chains of length 100,000, discarding the first
50,000 as burn-in. Convergence was assessed using the Gelman and Rubin statistic
which compares the within to the between variability of chains started at different
and dispersed initial values (Gelman 1996). All covariates were standardized to
improve convergence. The simulations were performed using WinBUGS (Spiegel-
halter et al. 2003). The R (Ihaka and Gentleman 1996) package R2WinBUGS (Sturtz
et al. 2005) was used to call WinBUGS and export results in R. To implement the
space-filling algorithm, we used the R package FIELDS (Fields Development Team
2006).

Whenever needed, we used the Deviance Information Criterion (DIC; Spiegel-
halter et al. 2002) to discriminate between candidate models: the smaller the DIC
value, the better the model. We acknowledge that the DIC is somewhat controversial
in the statistical literature, and should be used with caution (see Spiegelhalter et al.
2002 and Celeux et al. 2006 and the discussion papers following these two papers).
The R and WinBUGS codes are available on request from the first author.

2.3 Simulation Study

We conducted a simulation study to investigate the performance of our approach, in
particular to check that the use of the approximation for the capture—recapture likeli-
hood did not affect the estimation of parameters. Following Gimenez et al. (2006a),
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we considered two scenarios with different forms for the underlying nonlinear
regression function f of Eq. (3). Study 1 used the regression function f (x) = 2.2
if x < —0.06 and f (x) = 2.08 — 2x otherwise to represent a threshold effect.
The x’s were equally spaced on [—1.5;1.5]. Study 2 used the regression func-
tion f(x) = 1.5g (35°22) — g (%53°) where g (x) = «/;2771 exp (—%) to repre-
sent complex non-linear patterns. The x’s were equally spaced on [0; 1]. For both
studies, we simulated 100 capture-recapture data sets covering 26 sampling occa-
sions, so that 25 survival probabilities had to be estimated. We considered 50,
100 and 250 newly marked individuals per occasion and two levels of variability
with 02 = 0.02 or 6> = 0.1. The capture probability was set constant and equal
to 0.7.

For each data set, we applied our approach in two steps, first fitting a capture—
recapture model with time-dependent survival probabilities and constant recapture
probabilities, second using the MLEs and the variance—covariance matrix to approx-
imate the capture-recapture likelihood of this model in order to implement the
P-splines in a Bayesian framework using MCMC algorithms. Details on the prac-
tical implementation can be found in the Section 2. For each x value, we computed
the median along with a 95% confidence interval for the posterior medians of f and
then back-transformed in order to compare the estimated survival curve to its true
counterpart. The results are displayed in Figs. 1 and 2, showing that our two-step
approach does a good job in capturing the nonlinearities in the survival vs. covariate
relationship. For a fixed number of newly released individuals, the greater the vari-
ance the lower the precision (both Figs. 1 and 2, left column — low variability vs.
right column — high variability), the difference being clearer for Study 1. When the
sample size increases, the precision gets better (both Figs. 1 and 2, going down — 50,
100 and 250 newly released individuals), although for high variability the gain was
not substantial (right column in both Figs. 1 and 2). Overall, as noted by Gimenez
et al. (2006a), the relationship in Study 1 was more precisely estimated than that of
Study 2.

2.4 Applications

2.4.1 Snow Petrels

As a first example, we analyzed the data used in Gimenez et al. (2006a) to illus-
trate the full Bayesian implementation of the semiparametric modeling of survival
probabilities. The data were obtained in a 40—year study on individually marked
Snow petrels, nesting at Petrels Island, Terre Adélie, from 1963 to 2000 (see also
Barbraud et al. 2000; Jenouvrier et al. 2005). We considered the Southern Oscil-
lation Index (SOI) as a proxy of the overall climate condition, available from the
Climatic Research Unit (http://www.cru.uea.ac.uk/cru/data/soi.htm). In total, we
considered 563 female and 561 male capture histories (more than in Gimenez et al.
2006a who were limited by the computational burden).
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Fig. 1 Performance of the nonparametric approach for estimating nonlinearities in the survival
probability — Study 1 (see the Section 2.3 for details). We used 100 simulated capture-recapture
data sets with 50, 100 and 250 newly released individuals per occasion (from top to bottom resp.)
and two levels of variability, 02 = 0.02 or 02 = 0.1 (from left to right resp.). The solid line is the
true regression function, the dashed line is the median of the 100 estimated posterior medians and
the dotted lines indicate the associated 95% confidence interval
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Fig. 2 Performance of the nonparametric approach for estimating nonlinearities in the survival
probability — Study 2 (see the Section 2.3 for details). We used 100 simulated capture-recapture
data sets with 50, 100 and 250 newly released individuals per occasion (from top to bottom resp.)
and two levels of variability, 02 = 0.02 or 02 = 0.1 (from left to right resp.). The solid line is the
true regression function, the dashed line is the median of the 100 estimated posterior medians and
the dotted lines indicate the associated 95% confidence interval
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Step 1. After removing the first capture to remove heterogeneity, the CJS model
still poorly fitted the data for both females and males (females: X1267 (349.98) <
0.01; males: X1269 (472.20) < 0.01), and a closer inspection of the results revealed
that a large part of the CJS x? statistic was explained by a trap-dependence effect
(females: X324(175.74) < 0.01; males: X324 (248.697) < 0.01). The goodness-of-fit
for the model with trap-dependence was still significant (females: x5, (174.239) <
0.01; males: X1235 (223.503) < 0.01) so we used a lack-of-fit coefficient for further
analyses (females: 1.3; males: 1.7). Time-dependent survival probability estimates
and the estimated variance-covariance were then obtained for both sexes using
M-SURGE (Choquet et al. 2005).

Step 2. First, because sex differences in the survival probabilities were found
before, we considered a model with an additive effect of both SEX and SIE factors.
This was achieved by extending the nonparametric approach introduced above to
allow a predictor to enter the model linearly (we will refer to semiparametric
modeling when both linear and nonlinear effects appear in a model). To do so, we
wrote:

K
logit (¢) = o + ¥SEX + B1SOL + Y _ by (SOL; — ki) + &1, @)
k=1
where ¢>f is the survival probability between occasion i and i 4+ 1 for / = males
(SEX = 0) or I = females (SEX = 1). Interestingly, only little adjustments to
the modeling introduced in Section 2.2.1 are needed to specify the model defined
by Eq. (7) (see Gimenez et al. 2006a). We also fitted a model with an interaction
effect between the SEX and the SOI factors. It basically consists of considering
different smooth functions according to the SEX qualitative variable (Coull et al.
2001). Table 1 shows that the model with an additive effect of both covariates is
preferred to the model with interaction.

Finally we considered two further models corresponding to two biological hypo-
theses. First, we were interested in assessing the significance of the SEX effect, so
we fitted a model without the SEX effect, while keeping the nonparametric feature
of the model. This model performs better than the two models having the SEX
effect (Table 1). This was also confirmed by the 95% posterior credible interval
[—0.49;0.15] of the parameter  which contains 0. Second, we were interested in
testing for the presence of nonlinearities in the survival probability. One way to
answer this question was to fit a model with a linear effect of the SOI covariate

Table 1 Models fitted to the Snow petrel data. DIC is the deviance information criterion, and pD
the number of effective parameters. ADIC is the difference between the DIC of a model and the
DIC for the minimum DIC model. The model best fitting the data is in bold font

Model DIC pD ADIC

Additive effect of SEX and SOI 1129.29 1062.99 604.74
Interaction effect of SEX and SOI 1644.82 1595.38 1120.27
SOI effect only (no SEX effect) 679.27 607.34 154.72

Linear effect of SOI (no SEX effect) 524.55 446.49 0
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upon the survival probability, and to compare with its nonparametric counterpart.
To do so, we used:

logit (¢;) = Bo + B1SOIL + ;. (8)

As already noted by Gimenez et al. (2006a), the relationship between the climatic
covariate SOI and the Snow petrel survival seems to be linear (Table 1). The graph-
ical representation of the two latter models tends to confirm this result (Fig. 3)
During negative SOI, characteristic of El Nifio episodes, cooler waters in the western
part of the tropical Pacific and southern Australia down to the Ross Sea region seem
to favor enhanced productivity in this oligotrophic area (Wilson and Adamec 2002).
Therefore these oceanographic conditions may increase the food availability for
snow petrels and reduce their mortality risk associated with starvation. However,
the effect of SOI on adult survival is small, with only a 1-2% difference in survival
between negative and positive SOI conditions, which might explain the linear
relationship between survival and SOI. We will go back to the issue of formally
detecting nonlinearities in Section 2.5.

In this section, we have considered an interaction between a discrete variable
SEX and a continuous variable SOI. In the next section, we consider an interaction
between two continuous variables using bivariate smoothing (Ruppert et al. 2003).
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Fig. 3 Annual variations in Snow petrel survival as a function of the standardized SOI using a
nonparametric model. Medians (solid line) with 95% pointwise credible intervals (vertical solid
lines) are shown, along with the estimated linear effect (dotted line)
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2.4.2 Emperor Penguins

As a second example, we analyzed data on the emperor penguin which consist of
data from a long-term study on marked individuals, nesting at Petrels Island, Terre
Adélie, from 1962 to 2002 (see Barbraud and Weimerskirch 2001; Jenouvrier et al.
2005). We considered the Sea Ice Extent (S/E) as the distance from the colony to
the limit of a 15% or higher sea ice concentration, which was obtained at longi-
tude 140°E using the sea ice data available from the Antarctic CRC and Australian
Antarctic Division Climate Data Sets (http://www.antcrc.utas.edu.au/~jacka/
seaice_C_html). We also considered the number of breeding pairs (POPSIZE). In
total, we considered 382 female and 331 male capture histories.

Step 1. After removing the two first captures to remove heterogeneity, the CJS
model still poorly fitted the data for both females and males (females: ng (182.05)
< 0.01; males: X729 (198.12) < 0.01), and a closer inspection of the results revealed
that a large part of the CJS x? statistic was explained by a trap-dependence effect
(females: X227 (112.07) < 0.01; males: X226 (131.85) < 0.01). The goodness-
of-fit for the model with trap-dependence indicated that the fit was satisfac-
tory (females: X523 (69.98) = 0.135; males: X523 (66.28) = 0.104). Time-dependent
survival probabilities estimates and the estimated variance—covariance were then
obtained for both sexes using M-SURGE (Choquet et al. 2005).

Step 2. The results of the bivariate smoothing for male and female Emperor
penguins are given in Fig. 4. Overall, females survive better than males, which
is in agreement with previous studies (Barbraud and Weimerskirch 2001; Jenou-
vrier et al. 2005). Now if we look into the relationship between survival and the
interaction of the SIE and POPSIZE effects, interesting patterns emerge. Strategies
differ by sex. While the survival optimum for both males and females is reached
for average values of SIE, there is a marked difference regarding POPSIZE: females
prefer very high POPSIZE while males survive better with relatively low POPSIZE.
These differences may be interpreted in the light of the contrasting breeding strate-
gies of males and females. After their 3.5 months fast incubating the egg, emaciated
males return to sea for feeding and density dependent processes may affect their
survival chances through competition for food when POPSIZE is high. This should
be particularly accentuated when food resources are scarce, i.e., when sea ice extent
is low. During the entire incubation, females are absent from the colony, feeding
within the pack ice and below the fast ice. Males at the colony face very harsh
climatic conditions and it has been shown that they also form huddles to save energy
(Ancel et al. 1997). Therefore, we hypothesize that when the population is large it
might be easier to find congeners and to form huddles than when the population is
small, which may increase their chances of survival. However, we note that we could
not formally assess sex differences since the two data sets were analyzed separately.
Interestingly, it is relatively easy to get a picture of the precision associated with the
survival surface as a by-product of the use of the MCMC procedure (Fig. 1, right
column). Having a visualization of the precision helps us in determining to what
extent the patterns we detected are supported by the data. In the present example,
the standard deviations are low, except for extreme values of both covariates (Fig. 1,
right column).
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Fig. 4 Bayesian thin-plate spline visualization of the survival surface for the Emperor penguin
as a function of the two external covariates sea-ice extent (SIE) and number of breeding pairs
(POPSIZE). Posterior mean survival probabilities (left column) and associated posterior standard
deviations (right column) are provided for males (fop) and females (bottom)

2.5 Discussion

In this paper, we have used a combination of the Frequentist and the Bayesian
approaches to implement semiparametric modeling of survival probabilities as
a function of environmental covariates using capture-recapture data. Instead of
opposing the two frameworks and forcing one to make a choice between the two, we
have utilized the merits of each of the two approaches: the Frequentist approach was
used to handle the capture—recapture data using specialist programs like M-SURGE
(Choquet et al. 2005) or MARK (White and Burnham 1999) which allows flexible
fitting of complex models including age, cohort and/or site effects; the Bayesian
approach was used to avoid making any prior assumption regarding the form of
the relationship between the survival and the covariates, while taking benefit of
the automatic adjustment of the amount of smoothing in the P-splines. Besides,
the combination allows the computational burden to be substantially reduced. For
example, it took about 25 hours to fit the semiparametric model of Eq. (7) to the
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Snow petrel data with the full Bayesian approach (Gimenez et al. 2006a), while only
5 minutes were required to obtain the MLEs with the estimated variance—covariance
matrix and to fit the semiparametric model of Eq. (7) using the multinormal likeli-
hood approximation.

Apart from the gain in time of calculation, the use of a normal approximation
to the capture-recapture data likelihood has another appealing application. We can
think of using the information published in the literature to investigate the impact of
climatic conditions on demographic rates, in the general context of a meta-analysis.
The MLEs and the associated standard errors could indeed be extracted from rele-
vant papers and then used to form a likelihood, which in turn, could be used to
relate the demographic rates to climatic conditions, for which measurements are
often freely available from the Internet. Maximum flexibility in describing those
relationships would be assured by the use of the approach advocated here.

Although the results of the simulations are encouraging, the fact that we did not
detect a sex effect in the Snow petrel analysis is in contradiction with a previous
study (Jenouvrier et al. 2005), although no sex differences were found in earlier
studies (Chastel et al. 1993; Barbraud et al. 2000). Possible explanations are very
small differences in survival and/or a loss of power caused by assuming that the
covariances are all zeros (see Section 2.1). Pending further developments, extensive
simulations are needed to assess the loss of precision when standard errors are used
in place of the whole estimated variance—covariance matrix.

Regarding the Emperor penguin example, our analysis should be considered as
a preliminary step towards a more comprehensive study. We envisage that model
selection will be a crucial issue, as we would like to incorporate additional climatic
variables (e.g., SOI and SEX) to POPSIZE and SIE, making the number of scenarios
numerous. Besides, determining whether nonlinearities are required in the model
still needs to be properly addressed. A Reversible-Jump MCMC procedure is a
promising solution to that aim (Bonner et al. this volume).

Finally, so far we have considered environmental covariates only, i.e., variables
with values changing over time. A semiparametric approach to incorporate indi-
vidual covariates, i.e., variables with values changing at the individual level, has
recently been proposed to assess natural selection on a single quantitative trait (e.g.
body mass: Gimenez et al. 2006b) as well as estimating and visualizing fitness
surfaces (Gimenez et al. submitted) using capture—recapture data. There is high
interest in considering both types of covariates in a model (e.g. Coulson et al. 2001),
and the normal approximation might be useful to reduce the computational burden.
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Multivariate State Space Modelling
of Bird Migration Count Data

Jonas Knape, Niclas Jonzén, Martin Skold, and Leonid Sokolov

Abstract We analyse 54 year long time series data on the numbers of common
redstart (Phoenicurus phoenicurus), common whitethroat (Sylvia communis),
garden warbler (Sylvia borin) and lesser whitethroat (Sylvia curruca) trapped in
spring and autumn at Ottenby Bird Observatory, Sweden. The Ottenby time series
could potentially serve as a reference on how much information on population
change is available in count data on migrating birds. To investigate this, we combine
spring and autumn data in a Bayesian state-space model trying to separate demo-
graphic signals and observation noise. The spring data are assumed to be a measure
of the breeding population size, whereas the autumn data measure the popula-
tion size after reproduction. At the demographic level we include seasonal density
dependence and model winter dynamics as a function of precipitation in the Sahel
region, south of the Sahara desert, where these species are known to spend the
winter. Results show that the large fluctuations in the data restrict what conclusions
can be drawn about the dynamics of the species. Annual catches are highly corre-
lated between species and we show that a likely explanation for this is that trap-
ping numbers are strongly dependent on local weather conditions. A comparative
analysis of a related data set from the Courish Spit, Russia, gives rather different
dynamics which may be caused by low information in the two data sets, but also
by distinct populations passing Ottenby and the Courish Spit. This highlights the
difficulty of validating results of the analyses when abundance indices derived by
other methods or from other populations do not agree.

Keywords Trapping data - State space models - Migration - Bird - Seasonal

1 Introduction

Populations of organisms living in seasonal environments are exposed to different
conditions during different parts of the demographic cycle (Fretwell 1972). For
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migratory organisms such as many bird species, the reproductive success may be
mostly influenced by the conditions on the breeding grounds, whereas mortality is
probably highest during migration and wintering (Sillett and Holmes 2002). Thus,
different parts of the seasonal demographic cycle are affected by the conditions at
geographically and environmentally distinct locations. Changes in the environment
on wintering grounds, along the route of migration or on the breeding grounds may
then have different implications for the dynamics of the species (Saether et al. 2004).
Population dynamics of migratory birds is therefore interesting from an ecological
perspective but just because of the long distances they travel, collecting appropriate
data for analysing their dynamics is difficult.

Currently there is no general method for locating the same individuals or popula-
tions at the breeding and wintering grounds and analyses of population dynamics
through the full seasonal cycle are usually restricted to count data or to mark-
recapture data at either wintering or breeding grounds (but see Webster et al. 2002).
Mark-recapture analyses of long distance migrants are often hard due to the possi-
bility of birds returning to sites outside of the study area but can sometimes be used
to estimate, e.g., effects of weather conditions on survival (e.g. Peach et al. 1991).
Traditionally, data from counts at breeding locations such as the North American
Breeding Bird Survey and the Common Bird Census in the United Kingdom have
been used to compute indices of population sizes (e.g. James et al. 1996). Analyses
of this type of data require care since the data often suffer from variation related
to sources at different scales and levels, e.g., differences in skill between observers
and differences in detection probabilities between types of habitats, and of biases
due to biased selections of surveyed habitats (Thomas 1996; Nichols et al. 2008).
Although some recent analyses have tried to take the most serious sources of varia-
tion in breeding bird survey data into account (e.g. Link and Sauer 2002), it would
be helpful if other types of data could be used to confirm conclusions drawn from
analyses of point count data (Dunn and Hussel 1995).

A complementary method for monitoring populations of migratory birds is to use
visual counts or trapping numbers of birds at fixed locations during migration. Many
bird observatories have data from standardised annual or even biannual catches of
passerine birds during the periods of migration. Trapping data from bird obser-
vatories have recently been used to study phenology shifts in relation to climate
change (e.g. Jonzén et al. 2006) and to estimate population trends and dynamics of
passerine birds (e.g. Sokolov et al. 2001; Jonzén et al. 2002; Berthold et al. 2004).
However, because of the high between year variation typically present in such data,
the use of trapping data as indices of population size has been criticised (Svensson
1978). The day-to-day variation in trapping numbers is high and is influenced by
local weather conditions. There are a number of studies analysing daily variation in
migration count data with the aim of retrieving population abundance indices (e.g.
Dunn et al. 1997; Francis and Hussel 1998). Most of these studies regress daily
counts or log counts on sets of weather and time dependent variables and from this
derive annual abundance indices. Here we take a different approach and analyse
seasonal total trapping numbers using state-space modelling techniques. Thus,
instead of accounting for weather effects by estimating adjusted annual indices we
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deal with the problem of noisy data by integrating the noise in seasonal totals as
part of the model.

We analyse trapping numbers from the Ottenby Bird Observatory (Sweden) and
from the Courish Spit (Russia) on common redstart (Phoenicurus phoenicurus),
common whitethroat (Sylvia communis), garden warbler (Sylvia borin) and lesser
whitethroat (Sylvia curruca). These species are thought to spend part of the winter in
the Sahel area south of the Sahara desert. Previous studies of migrants that winter in
the Sahel area have shown that winter survival is dependent on the amount of rainfall
in the Sahel area (Peach et al. 1991; Szep 1995). Particularly, a severe drought in
the Sahel in the late 1960s and early 1970s (Hulme 1992; Nicholson et al. 1998) is
thought to have been the cause of a crash reported for UK populations of common
whitethroat (Baillie and Peach 1992) and Hjort and Lindholm (1978) found a strong
relationship between the water level in Lake Chad and the number of whitethroats
caught at Ottenby the following autumn. With 30 more years of data, we try to
verify the influence of conditions at the wintering grounds on the dynamics of this
species and compare it to the effects on three other Sahel migrants. We do this using
a state-space modelling approach to explicitly deal with the problem of extracting
a dynamical process from data in the presence of sampling error. In order to try to
determine the relevance of the derived abundance indices as measures of population
change we compare an analysis of Ottenby data to an analysis of data from the
Courish Spit and to indices from the Swedish Breeding Bird Survey.

2 Materials and Methods

State-space models (Durbin and Koopman 2001) are becoming a standard tool
among ecologists working on models of population dynamics (Buckland et al. 2004;
Jamieson and Brooks 2004), and have been been extensively used in fisheries stock
assessment (e.g. Millar and Meyer 2000). Sampling error is a common feature
of data from surveys on wild animal populations and a state-space approach to
analysing population dynamics time series data therefore seems natural. For the
Ottenby time series on annual catches, there are reasons to believe that a large
portion of the variation in trapping data on migratory birds is related to varying
external conditions during migration and not to real changes in population sizes
(Svensson 1978). This is further supported by the tendency for high between species
correlations in total annual catches. The high correlations may be caused by the
fact that the species experience similar external conditions during their migration.
Because of these potential problems we model multivariate observation disturbances
within the state space framework.

Since we are interested in comparing the population dynamics between breeding
and wintering seasons we construct a model with two simple dynamical compo-
nents, one for the breeding season and one for the wintering and migration seasons.
Both spring and autumn trapping numbers are inputs for this model which will
henceforth be referred to as a seasonal model. The model will allow us to ask
questions about how strong forces of density dependence are during summer and
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winter respectively (Stenseth et al. 2003) and what effect conditions on the wintering
grounds have on the winter season population dynamics. We further evaluate if
there is any gain in terms of improved parameter estimates and abundance indices
in including both spring and autumn data in the same model and in modelling
correlated observation disturbances. The results from fitting the model are therefore
compared to results from fitting models with uncorrelated observation disturbances
and with models where spring and autumn data are included separately (referred to
as non-seasonal models).

For all models we make the assumption that the disturbance terms in the process
part of the state-space model are independent between species. This assumption may
not be entirely satisfying since species having similar life-histories and geographical
distributions may well have correlated dynamics even when covariates suspected to
influence the dynamics are included in the model. On the other hand, we expect
errors in observations to be large and potentially influence similar species in a
similar manner.

To get an idea about the validity of the population abundance indices that are
derived from the state part of the models as measures of larger scale population
change we compare our results with patterns reported for other European popula-
tions. We also compare population indices estimated from our model with indices
derived with the same analysis of similar data from the bird station at the Courish
Spit and with indices from the Swedish Bird Survey which are computed using
another type of data (see the Data section below). Both the Courish Spit and the
Swedish Breeding Bird Survey may however cover populations distinct from the
ones passing Ottenby and therefore comparisons between these indices are not very
informative unless results agree.

2.1 Data

Ottenby Bird Observatory (56°12'N, 16°24’E) is situated at the southernmost point
of Oland, a 137 km long island ca. 10 km off the coast of south-eastern Sweden. The
trapping area in the observatory garden is 1.2 ha and contains most of the higher
vegetation within the nearest 2 km, and therefore attracts migratory birds. Birds
have been caught at Ottenby in funnel traps of Helgoland-type (Bub 1991) since
the first year of trapping in 1946. Since 1960 birds have also been caught in mist
nets and to avoid a potential increase in trapping numbers due to the increase in
the number of traps we only use data between 1960 and 2005. The start of spring
trapping varied considerably between 1952 and 1979, whereas from 1980 onwards,
the spring trapping started on March 15 and ended on June 15. The spring passage
of the species analysed in this paper is mainly in May, which has been well covered
in all years except for 1966 and 1967 when there were no spring trappings. These
years are treated as missing data points. The spring data we use is the total number
of birds caught per year between March 15 and June 15 in the Helgoland traps
and in the mist nets. The autumn trapping season starts on July 25 and ends on
November 15. In some years the season ended before November 15, but very few
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birds of the species studied in this paper are trapped after mid October. By using the
total number of individuals trapped per year between July 25 and October 25 during
1960-2005 we include 99.9% of all trapped individuals of the species studied here.
Both juveniles and adult birds are caught in autumn but there is an over representa-
tion of juveniles for most species. Since age classification were not complete for all
years, both adults and juveniles are included in our data. For more details about the
trapping conditions, see Stervander et al. (2005).

Data from the Courish Spit consist of the number of birds caught in two
traps between 1977 and 2005. The project was carried out by the Biolog-
ical Station Rybachy of the Zoological Institute, Russian Academy of Sciences
(Sokolov et al. 2000). Index values from the Swedish Breeding Bird Survey
(SBBS) (Lindstrom and Svensson 2005) are available from 1975. These indices
are derived from point counts along routes freely chosen by observers and are
therefore potentially subject to biases such as habitat bias, differences in skill
between observers, etc. (Thomas 1996). Annual Sahel rainfall indices were obtained
from the web-page of the Joint Institute for the Study of the Atmosphere and the
Ocean, http://jisao.washington.edu/data_sets/sahel, and are computed as the mean
of monthly rainfall indices from June through October. The annual indices were
standardised for the period 1950-2004.

2.2 Models

A (rather) general definition of a multivariate linear Gaussian state-space model
with covariates can be given as

=2/ +¢€, € ~N(Q,S2,)
Xir1 = Tix; + Wie +1,, 15, ~N(©O, X)) (D

fort = 1, 2, ...,n, where all ¢ and 7, are independent (the parameters of
the N(u, X)-distribution denote the mean vector and variance matrix respectively,
vectors are denoted by bold face and matrices by capital letters). The first state
vector, X, also needs to be defined to complete the model specification. This can
be done in various ways, and in our models described later in this section the initial
vector is treated as a parameter with an informative prior. An interpretation of the
model is that the vectors y, represent the data which are noisy observations of linear
transformations (Z,) of hidden state vectors x, which need not be of the same size
as the vectors of observations. The hidden state is a linear normal stochastic process
with autoregression coefficient matrix 7;. The matrix W, contains covariates for the
transition from ¢ to r + 1 and their (linear) effect on the process is measured by
the regression coefficients in the vector ¢. Depending on the setting, the elements
of the matrices of the model may either be completely specified or may depend on
unknown parameters.

All our models of the bird observatory data are special cases of the more general
model defined above. To find out if anything is gained by using both spring and
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autumn data in the same model we used both a seasonal and a non-seasonal version
of the state space model. For the non-seasonal model, the data are arranged so that
the vectors y, contain the log of the total seasonal trapping numbers in year ¢ in
either spring or autumn for the four species. The system is modelled on the log
scale in line with common practise in studies on population dynamics. The log
transformation also had the effect of making the data appear more Gaussian. The
non-seasonal model is a simplified version of the model in (1):

i =X +¢€, € ~N(Q, )
X+1 =a+ Bx, +rc+1n, n, ~NQO, X). 2)

The vectors a and ¢ of length 4 contain parameters a; and c; respectively on position
i. The autoregression coefficient matrix B is diagonal with parameter b; on position
(i, i). All the regression parameters a;, b; and c; are different between species so
that there are no shared parameters between species in the deterministic part of the
model. The hidden state vector x, of length 4 should be interpreted as the logarithm
of population indices for the species in year 7. The scalars r, are indices of mean
Sahel rainfall during the wet season (June—October) in year ¢. The amount of rainfall
here serves as a surrogate for availability of food and water for the populations
during the winter, which in turn might affect winter survival (Peach et al. 1991).
The process disturbance variance matrix X~ was constrained to be diagonal with
entries o/ on the diagonal. We consider two models for the observation disturbance
variance matrix §2. In the first £2 is allowed to be non-diagonal and all elements
of the matrix are estimated. In the second model 2 is constrained to be diagonal,
meaning that we have a set of four independent models for the species.

Based on the above definition, the process part of the model for species i can be
written as:

Xit41 = a; + bixy + ¢iry + nig,

where subscripts i refer to element i of the vectors. Thus the processes are AR(1)-
processes with covariates and since the model is defined for the log of the data, this
can be seen as a Gompertz model for the population dynamics (see e.g. Royama
1992).

The quantities 1 — b; in the Gompertz model can be interpreted as measures
of density dependence in growth. The log-linearity of the process guarantees that
the coefficients b; are invariant to multiplying the population process exp(x;) by a
constant. More specifically, if

Nyt = exp(x;41) = expla + bx; +n;) = N;b exp(a + n,),

and the population size is rescaled to an index M, = kN,, then

M;y1 = kNyy = (kN,)? exp(a + (1 — b)Ink + n,) = M" exp(a’ + n,),
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where @’ = a+(1—b) In k. Hence, the parameter b can be interpreted as a measure of
density dependence regardless of the value of the constant of proportionality implied
by the index interpretation of exp(x;). The parameter a on the other hand depends
on the constant and is thus of little interest to us. A critical assumption of the model
is that k, the proportionality constant linking the trapping numbers to the “true”
population size is constant through time. In fact, the same interpretations of the
model parameters hold if the assumption is lightened by letting In k be independent
and identically distributed according to a normal distribution since the terms then
can be seen as a part of the disturbance terms 7;. If however k is not independent
over time or if k depends on population size it might well affect estimates of e.g.
density dependence and abundance indices.

For the seasonal model, both spring and autumn trapping numbers are included
simultaneously. We let y¢ be vectors containing the log of autumn trapping numbers
for the four species and y; be vectors containing the log of the spring trapping
numbers. Using sub- and superscripts b and w referring to breeding and winter
season respectively and sub- and superscripts a and s referring to autumn and spring,
the model is defined as:

Y, =x; +€, € ~NQO ) 3
X =a,+ Bx +1., n) ~NQO, X))

Y, =X/ +¢€, € ~N(QO, Q) 4)
X, =a, + Byx! | +r_ic, +n/, 5~ NQO,X,).

In the same way as for the seasonal model, the vectors a,, a,, and ¢,, contain
species specific parameters and the matrices B, and B,, are diagonal with species
specific autoregressive parameters for measuring seasonal density dependence.
Again, two versions of observation disturbance variance matrices are considered,
in the first these are non-diagonal and in the second they are diagonal. The process
disturbance variance matrices are diagonal. This model is also included in the
general definition in (1), but here the index ¢ refers to year.

Similarly to the non-seasonal model, exp(x;) and exp(x;'), should be interpreted
as indices of spring and autumn population sizes respectively. However, since it may
well be that different populations or parts of populations pass the observatories in
spring and in autumn respectively, the spring and autumn indices may not share the
same constant of proportionality to the “true” population size. In the same way as
above, the parameters b,, and b, are invariant to multiplying the population time
series by a constant.

To try to validate the assumption of correlated observation disturbances we
compared the estimated correlation matrices of the observation disturbances to a
heuristic estimate calculated from the amount of overlap in migration between the
species. The sum of daily catches over the years from 1950 to 2005 for each species
was divided by the total number of catches for the species. The heuristic estimate
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Fig. 1 Autumn phenology curves for whitethroat (solid line) and redstart (dashed line) and the
amount of overlap in migration period (shaded area)

of the correlation was then computed as the area under the overlap of the curves
(Fig. 1). The correlation of the observation disturbances between species i and
species j was estimated as the posterior mean of element (i, j) of the £2 matrix
divided by the square root of the product of the posterior means of the elements
(i, 1) and (J, j) of the same matrix.

2.3 Priors

The model was fitted to data from 1960 to 2005 for Ottenby and from 1977 to
2005 for the Courish Spit. The state vectors of the seasonal model were initialised
by putting normal priors on x7; with means equal to the mean of the log of spring
data between 1950 and 1959 and with prior standard deviations set to 1.5 times the
empirical standard deviations over these periods. Analogous priors were used for
the initial states of the non-seasonal models. Courish Spit data between 1957 and
1976 was used as prior information for the initial state of the model of the Courish
Spit data.

For the other parameters we used vague priors (given below) since there was
no obvious a priori information available. To improve convergence of the Gibbs
sampler (see Section 2.5), the regression was centred around m, = 5, i.e. the model
in (2) was reparametrised as

x4 =a + B'(x, —m, 1) +rec+,,

where 1 is a vector of ones. This parametrisation gives the same interpretation of
B’ as of B. The components of the regression parameter vectors a’ and ¢ were
then given independent N (0, 100)-prior distributions. When |b;| > 1, the model is
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non-stationary and there is no reason to expect extreme non-stationarities of the
population indices. The autoregression parameters b; were therefore given slightly
more informative N (0, 10)-priors. The stationarity argument does not translate
directly to the seasonal model in 3, but to simplify comparisons between the models
we used the same priors for the corresponding parameters a’y, a’y,, b, and b',,.

For the variances of the observation and state disturbances, the information in
the data on separating the two can be low (Dennis et al. 2006). Therefore, if there is
no prior information on the relative size of these it is desirable to give them similar
priors. The variances of the state disturbances, al.z, were given conditionally conju-
gate improper inverse gamma distributions with shape parameter 0 and inverse scale
parameter 0.01, /G (0, 0.01) (Fig. 2). In the models with diagonal observation error
variance matrices, 2, the elements on the diagonal were also given /G (0, 0.01)-
priors. When the matrices §2, £2, and 2, were allowed to be non-diagonal we gave
them improper inverse Wishart priors with 3 degrees of freedom and scale matrix
0.021 where I is the identity matrix. Since the marginal distribution of the elements
on the diagonal of a matrix having an inverse Wishart distribution with scale matrix
V of size p x p and v degrees of freedom is an I G((v—p+1)/2, V;; /2)-distribution,
the marginal prior distributions for the elements on the diagonal then also corre-
spond to /G(0, 0.01)-distributions.

We analysed sensitivity to priors by changing the prior distribution for the
aiz parameters to an improper /G(—0.5, 0.001) distribution and at the same time

4.5 T T T T

Scaled pdf

0 0.2 0.4 0.6 0.8 1

O 1
Prior standard deviation
Fig. 2 The pdf (scaled) of the prior distribution of the standard deviations of the observation and
process disturbances (black line) and of the alternative prior used for sensitivity analysis (grey

line). The priors on the standard deviations correspond to /G(0, 0.01) and 1 G(—0.5, 0.001) prior
distributions on the variances respectively
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changing the parameters of the inverse Wishart distribution to 2.5 degrees of
freedom and scale matrix equal to 0.002/. In this way the priors on the variances
of the process disturbances and on the variances of the observation disturbances
are kept identical. The 71G(—0.05,0.001) distribution on the variances is close to
a uniform distribution on the standard deviations except that it has low support for
small values (Fig. 2). It also lacks the peak of the /G (0, 0.01) probability density
function.

2.4 Goodness of Fit

Bayesian p-values build on some measure of discrepancy between the model and
data and is the posterior probability that a replicate data set yields a larger value of
this measure. We used the deviance, i.e.

D(y,0) = =2log fyis(y)

where fyo(y) is the likelihood of the data given the vector 6 containing the regres-
sion parameters and the parameters of the variance matrices of the observation and
process errors, as a measure of discrepancy. The likelihood was computed using the
Kalman filter (see e.g. Durbin and Koopman 2001).

Goodness of fit was also checked by analysing the residuals of the models. Resid-
uals in the state space model, € and 7}, can be defined as the expected value of € and
n given the data and given the parameters 6 equal to their posterior marginal mean.
The residuals were analysed by computing their correlation, autocorrelation and by

qq-plots.

2.5 Fitting the Models

The model was fit by implementing a Gibbs sampler in the program Matlab. In
each iteration of the sampler, all the state vectors X; and x{ were updated simulta-
neously using the Kalman simulation smoother of Durbin and Koopman (2002).
All the regression parameters a, b and c for all species and both seasons were
updated as a block according to their multivariate normal conditional posterior.
The inverse Wishart prior is conditionally conjugate for the observation variance
matrices §2. When these matrices were allowed to be non-diagonal, they were
therefore updated by simulating a draw from the inverse Wishart posterior. For the
diagonal variance matrices, each diagonal element was updated with a draw from
the inverse gamma conditional posterior. The Gibbs sampler for the non-seasonal
models was constructed in a similar manner but is even more simple since the
regression parameters a, b and c¢ then are the same for each time step of the state
space model.

The sampler was run with a single chain for half a million iterations where the
first 20,000 iterations were discarded as burn. Every 20th value of the output was
then used as a draw from the posterior. Convergence and mixing of the MCMC’s
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were investigated by looking at trace plots and autocorrelation functions of the
thinned chains. Visual inspection revealed no sign of poor mixing and all autocor-
relations of the thinned chains were below 0.15 at lag 5. All chains seemed to have
converged after just a few iterations.

Starting values of the MCMC were chosen at least a small distance away from
the expected region of high posterior density. Specifically, the state vectors were
initialised to 1 for all species, all the regression parameters, a, b and ¢ were initially
set to 2 and all variance matrices were initialised as identity matrices.

Although we have not done so, we believe all our models could be imple-
mented and fit in e.g. the program WinBUGS if the priors on the variance matrices
are changed to proper ones. The non-seasonal model with uncorrelated observa-
tion disturbances is especially simple and parameter estimates can be obtained
using maximum likelihood or REML methods (see e.g. Dennis et al. 2006). These
methods can probably also be used for estimating parameters of at least some of our
more complex models.

3 Results

Unless otherwise stated, the results below refer to the Ottenby data. Tests always
refer to the informal test of whether or not 95% credible intervals contain the value
of the null hypothesis. Estimates of abundance indices from the non-seasonal model
on autumn catches with observation disturbances allowed to be correlated across
species are shown in Fig. 3. A comparison with estimates from spring catches
(Fig. 4) shows that on a coarse (long term) scale, the indices for the two data
sets have similar tendencies with sample correlations 0.8, 0.6, 0.3 and 0.5 for
redstart, whitethroat, garden warbler and lesser whitethroat respectively. (Note that
the sample correlations should be interpreted with care as the indices are autocorre-
lated.) The estimated whitethroat indices show declines in the early 1970 and 1980s
which roughly coincide with droughts in the Sahel area. Declines in numbers of
whitetroats following these droughts have been reported in the UK. A decline by the
time of the first drought was reported for redstarts in the UK (Gibbons et al. 1993)
and the indices derived here decline at about the time of the start of the drought
in the late 1960s but this result is weaker than for the whitethroat indices. Any
trends in the garden warbler and lesser whitethroats indices are less clear although
there was a drop in autumn catches of lesser whitethroats in the early 1970s and
a sudden drop in both spring and autumn catches of garden warblers around 1990.
The regression coefficient for Sahel rainfall, ¢, is only significantly larger than zero
in the model of whitethroat autumn data (Table 1). Estimates of parameters repre-
senting density dependence, b, all had wide credible intervals that don’t allow us to
make any comparisons between species or seasons (Table 1). However, the credible
intervals of b for whitethroat and garden warbler are well separated from one. Since
b equal to one represents density independence this could be an indication of some
degree of density dependence, but because of the wide credible intervals we avoid
drawing any firm conclusions.
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Table 1 Parameter estimates and 95% credibility intervals for the non-seasonal models applied
to autumn and spring data at Ottenby and to autumn data at the Courish Spit. Estimates of the
square root of the elements on the diagonal of the observation disturbance variance matrix §2 are
denoted w;. Indices refer to redstart, r, whitethroat, w, garden warbler, g, and lesser whitethroat /.
All models in the table have correlated observation disturbances

Parameter Ottenby spring Ottenby autumn Courish spit autumn
p-value 0.62 0.51 0.51

b, 0.58 (—0.06, 0.96) 0.63 (0.20, 0.94) 0.24 (—0.45,0.76)
by, 0.25 (—0.63,0.82) 0.11 (—=0.27,0.45) 0.35 (—0.17,0.78)
by 0.13 (=0.26,0.51) -0.30 (—=0.90,0.22) 0.02 (—=0.52,0.54)
b, 0.57 (—=0.27,0.98) 0.43 (—0.11,0.93) 0.65 (0.11, 1.07)
cr 0.08 (—0.05,0.22) 0.10 (—=0.03,0.24) -0.19 (—0.48,0.08)
Cw 0.07 (—0.05,0.20) 0.27 (0.15,0.39) 0.05 (—=0.21,0.32)
Cq -0.17 (—0.44,0.09) -0.01 (—0.26,0.25) -0.18 (—0.50,0.12)
¢ 0.02 (—=0.10,0.17) 0.13 (—=0.01,0.28) -0.13 (—0.47,0.19)
o, 0.22 (0.07, 0.40) 0.24 (0.08,0.41) 0.37 (0.23,0.58)
o 0.16 (0.07,0.28) 0.20 (0.09, 0.29) 0.42 (0.22,0.62)
o, 0.57 0.41,0.75) 0.36 (0.12,0.55) 0.41 (0.13,0.66)
oy 0.19 (0.08, 0.32) 0.22 (0.10,0.34) 0.41 (0.13, 0.66)
W, 0.39 (0.25,0.52) 0.32 (0.19,0.42) 0.41 (0.17, 0.69)
Wy 0.34 (0.24, 0.45) 0.23 (0.13,0.33) 0.35 (0.14,0.61)
w, 0.39 (0.19, 0.62) 0.48 (0.30, 0.68) 0.50 (0.24,0.78)
wy 0.42 (0.30, 0.56) 0.34 (0.23,0.47) 0.45 (0.18,0.76)

When combining spring and autumn data in the seasonal model, the derived
indices appear more similar to the indices from the non-seasonal model of autumn
data than to the indices from the non-seasonal model of spring data (Fig. 5). This
indicates that the information in the spring data is less than the information in
the autumn data in agreement with a belief that spring ringing figures at Ottenby
are more dependent on local weather than autumn figures (Hjort and Lindholm
1978). Estimates of the regression coefficients on standardised Sahel rainfall, c;,
are qualitatively similar between the seasonal and the non seasonal models with a
positive effect for whitethroat (Table 2). There is however a stronger indication of
a positive effect of Sahel rainfall for redstart in the seasonal model even though
it is barely significantly larger than zero. As for density dependence the credible
intervals are still very wide and not much can be said about differences between
seasons. The whitethroat estimates of b are however lower in the winter season than
in the breeding season although this is not significant at the 95% level. We therefore
leave it as a hypothesis that whitethroats are more strongly regulated by density
dependence in the period between leaving and arriving at the breeding grounds than
in the period spent at the actual breeding grounds. As an indication of whether or
not the combined model improved abundance indices we summed the lengths of the
95% credible intervals of the log abundance indices x;; for each species across time
for spring and autumn indices separately. This was done for both the seasonal and
the non-seasonal models. We then computed the percent reduction of these summed
totals for the seasonal model compared to the non-seasonal models. The total lengths
of the log spring index credible intervals were reduced by 10, 15, 13 and 9 percent
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Fig. 5 Posterior mean abundance indices from the seasonal model of Ottenby data with 95%
credibility bands (dotted lines). Grey lines denote spring indices and black lines denote autumn
indices

for redstart, whitethroat, garden warbler and lesser whitethroat respectively. The
analogous reductions in autumn were 6, 1, 9 and 4 percent. Hence in this sense the
seasonal model performes slightly better than the non-seasonal models. The fact that
the reduction is larger for the spring indices also supports the conclusion above that
the spring data are less informative.

The reduction in total length (both spring and autumn) of log abundance cred-
ible intervals when moving from the seasonal model with independent observation
disturbances to the seasonal model with correlated observation disturbances are
9% for redstart, 4% for whitethroat, 30% for garden warbler and 22% for lesser
whitethroat.

The agreement between SBBS-indices and indices from the non-seasonal model
of spring and autumn data is weak (Fig. 6). Sample correlations between SBBS-
indices and autumn indices from the non seasonal model were 0.4, 0.2, —0.1 and 0.1
for redstart, whitethroat, garden warbler and lesser whitethroat. For indices from the
non-seasonal model of spring data these correlations were 0.5, 0.3, 0.1 and 0.2. For
the redstart, both the SBBS and our indices indicate a decline in the early 1980s but
that is much more marked in the former. For the whitethroat no decline at all at this
point is seen in the SBBS indices. A noticeable feature is that a sudden sharp decline
in whitethroats in 1991 occurs in both autumn data at Ottenby and in the SBBS-
indices and is further consistent with a drop in the British CBC-indices (Gibbons
et al. 1993).
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Table 2 Parameter estimates with 95% credible intervals for the seasonal model with correlated
and uncorrelated® observation disturbances applied to data from Ottenby. First indices refer to
breeding season b, winter season w, spring observation s and autumn observation a. Second indices
refer to species as in Table 1.

Seasonal model Seasonal model* Prior sensitivity

p-value 0.60 0.68 0.66

by 0.72 (0.39,1.13) 0.88 (0.38, 1.50) 0.68 (0.33,1.13)
bpw 1.05 (0.56, 1.79) 1.33 (0.65,2.38) 1.08 (0.52,1.99)
by, 0.28 (0.01,0.54) 0.46 (—0.12, 1.50) 0.27 (0.01,0.53)
by 0.62 (0.19, 1.14) 0.57 (—0.39,1.98) 0.55 (0.15,1.04)
buy 0.92 (0.42, 1.49) 0.81 (0.36,1.41) 0.83 (0.32,1.48)
buw 0.20 (—0.13, 0.60) 0.22 (—0.04,0.57) 0.16 (—0.15,0.55)
bug —0.03 (—0.73,0.65) 0.26 (—0.83,1.89) —0.01 (—0.60, 0.54)
by 0.68 (0.10, 1.55) 0.14 (—1.25,1.67) 0.70 (0.08, 1.76)
Cur 0.13 (0.00, 0.27) 0.09 (—0.02,0.23) 0.14 (0.00,0.31)
Cuw 0.19 (0.09,0.31) 0.17 (0.07,0.29) 0.19 (0.08,0.31)
Cuyg —0.10 (—0.34,0.15) —0.12 (-0.37,0.12)  —0.10 (—0.35,0.16)
Cul 0.10 (—0.03,0.24) 0.09 (—0.08, 0.25) 0.10 (—0.04,0.25)
Opr 0.18 (0.07,0.35) 0.18 (0.06, 0.40) 0.21 (0.04,0.41)
Opuw 0.16 (0.07,0.25) 0.17 (0.07,0.29) 0.17 (0.05,0.27)
Opg 0.40 (0.17,0.54) 0.31 (0.08,0.62) 0.43 (0.27,0.56)
O 0.16 (0.07,0.28) 0.23 (0.07,0.44) 0.17 (0.05,0.30)
Owr 0.18 (0.07,0.35) 0.15 (0.06,0.33) 0.21 (0.04,0.41)
Oww 0.14 (0.07,0.24) 0.13 (0.06,0.22) 0.15 (0.05,0.26)
Ouwg 0.61 (0.46,0.79) 0.49 (0.12,0.79) 0.63 (0.49,0.81)
Owl 0.20 (0.09,0.31) 0.22 (0.07,0.47) 0.23 (0.08,0.34)
Wy 0.38 (0.26, 0.50) 0.39 (0.27,0.51) 0.37 (0.22,0.51)
Wy 0.35 (0.27,0.45) 0.36 (0.28,0.46) 0.36 (0.27,0.46)
Wyg 0.31 (0.13,0.53) 0.42 (0.09,0.75) 0.30 (0.10,0.53)
Wy 0.41 (0.30,0.53) 0.38 (0.12,0.55) 0.40 (0.28,0.53)
War 0.33 (0.21, 0.44) 0.32 (0.15,0.45) 0.31 (0.16, 0.44)
Waw 0.23 (0.14,0.34) 0.18 (0.07,0.31) 0.22 (0.13,0.33)
Wag 0.41 (0.24,0.62) 0.43 (0.10, 0.68) 0.39 (0.21, 0.60)
Wal 0.36 (0.25,0.47) 0.31 (0.09, 0.49) 0.36 (0.25,0.49)

Estimated abundance indices for the Courish Spit data show a quite different
picture than the Ottenby estimates (Fig. 7). There is e.g. a decreasing trend in the
lesser whitethroat and a drop in the number of whitethroats in the mid 1990s. No
clear effect of Sahel rainfall is found for the Courish Spit data (Table 1). Credibility
intervals for the parameter estimates are in most cases too wide to allow for compar-
isons with estimates from Ottenby data but, except for the garden warbler, estimates
of state disturbance variances are less precise for the Courish Spit data.

A comparison between the heuristic correlation estimate and the estimate from
fitting the seasonal model with correlated observation disturbances (Table 3) reveals,
especially in autumn, a close agreement between the two. The estimates from the
model are in general higher than the heuristic estimates, but sample correlations
between the off diagonal correlation estimates were 0.99 in autumn and 0.76 in
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Fig. 6 Indices from the Swedish breeding bird survey (solid line) and from the non-seasonal model
of data from Ottenby in spring (dotted line) and autumn (dashed line). The indices are scaled to
have mean equal to one for the given time period

spring. A good estimate of the overlap in trapping season between the species can
thus be computed from just total annual catches.

P-values did not indicate signs of bad fit for any of the models (Tables 1
and 2). Analysis of residuals showed that the model with correlated observation
disturbances in total had somewhat less correlation and autocorrelation of the resid-
uals than the model with independent observation disturbances. Also, the observa-
tion disturbance residuals of the seasonal model show that the fit is worse for spring
than for autumn data (Fig. 8). None of the autocorrelations of the residuals at lag 1
were larger than 0.2 but correlations between residuals for different species were in
some cases larger than expected. This was true for all of the models we considered.

Table 3 Estimates of correlations in observation disturbances from the seasonal model and the
heuristic estimate. Upper right triangles show estimates from spring data and lower left triangles
from autumn data

Model estimate Heuristic estimate

r w g 1 r w g 1
r 1.00 0.60 0.64 0.84 1.00 0.67 0.50 0.84
w 0.51 1.00 0.79 0.83 0.39 1.00 0.77 0.79
g 0.76 0.73 1.00 0.76 0.69 0.62 1.00 0.62
1 0.66 0.84 0.85 1.00 0.57 0.77 0.82 1.00
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Fig. 7 Posterior mean abundance indices from autumn data at the Courish Spit spring (black lines)
with 95% credibility bands (dotted lines). The circles denote the observed data

A reason for this might for example be that the correlations or variances of the
disturbances are not constant through time as we assume in our models.

Residual analysis for the Courish Spit data also show a worse fit than Ottenby
data for at least whitethroat and lesser whitethroat, which are the species that are
caught in lowest numbers. Using the log of total counts is not very appropriate
when counts are small and an overdispersed Poisson model of observations could
have been a better alternative here.

4 Discussion

The linear dynamics derived from our state space model of trapping data is presum-
ably a mix of “true” variation in population abundance, of weather dynamics or
other external forces that influence migration patterns and of trapping probabilities
and possibly also of dynamic changes in migratory routes. The relative influence of
these processes determines the amount of information available in the data and the
relevance of the data as indicators of population size. It is however hard to assess this
amount of information unless there is a close agreement between analyses of various
kinds of data at several locations. Different methods of recording and analysing
data may give rise to different kinds of bias and geographically (or temporally)
separated populations may experience different conditions that cause differences in
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Fig. 8 Qq-plots of observation disturbance residuals for spring (grey circles) and autumn (black
crosses) for the seasonal model with correlated observation disturbances

dynamics. The rough agreement between spring and autumn indices from Ottenby
may thus indicate that there is a relation to changes in abundance but let alone can
not exclude the possibility of e.g. dynamical changes in catching probabilities. The
lack of agreement between indices from Ottenby, the Courish Spit and the SBBS on
the other hand can not be taken as more than an indication that some of the indices
are not very precise as there may well be differences in both breeding and wintering
locations of the populations passing the stations. What can be done using statistical
analyses of ringing figures is to set limitations to what information can be extracted
from the data. This is exemplified by the fact that autoregressive parameters in our
model could not be estimated with any reasonable degree of precision.

The good agreement between the heuristic estimates of correlations in observa-
tions and the matrices estimated from the model (Table 3) indicates that the assump-
tion of correlated observation disturbances and independent population dynamics
is reasonable. The relatively high variance of these disturbances in turn show that
catches are highly dependent on extrinsic factors which has been hypothesised
before (Svensson 1978). Ignoring effects of correlated measurement errors could



Multivariate State Space Modelling 77

cause the dynamics between species that migrate during the same time period to
appear overly coherent, if for no other reason, simply because the sample size is
overestimated. There is not much sign of such an effect in this analysis but it is
important to be aware of the correlations in the data, not only when analysing popu-
lation dynamics or population sizes but in all analyses relying on ringing figures
(e.g. analyses of phenology). We expect that the high correlation in catches is not a
special feature of the Ottenby and Courish Spit data but rather is common in counts
of populations during migration.

Despite the high variance in observation disturbances, there are still hints that
there is some valuable information in the data, at least for some species. There
is support for a positive effect of Sahel rainfall on between year fluctuations
in abundance indices for whitethroats and weak support for the same effect on
redstarts. Visual inspection of the abundance indices for redstart and whitethroat
show declines following the Sahel droughts and give some support for the possibility
of picking up clear population trends in the data for some species. When the purpose
is to produce visual population trends, the state-space modelling approach could be
used to produce more smoothed estimates than the ones given here. For example, a
local linear trend model (Durbin and Koopman 2001) could be used instead of the
autoregressive model.

Our analyses give some support to the view that spring catches at Ottenby are less
informative about population sizes than autumn catches (Hjort and Lindholm 1978).
The location of Ottenby at the southern tip of Oland may influence the dynamics of
spring and autumn catches differently. In autumn, migrating birds may use Oland
as a lead line on their southward migration whereas no such lead line is available
for birds passing Ottenby in spring (Stervander et al. 2005). This can lead to spring
catches being more dependent on local weather conditions (Hjort and Lindholm
1978).

Due to the high variance in observation disturbances, we believe that ringing
figures from bird stations are not very suitable for picking up even drastic changes in
population abundances. However, long term ringing figures on migrating birds from
bird stations with carefully standardised trapping methods might in some cases be
useful in recovering long term trends and biological information but any conclusions
from such analyses need to be confirmed by independent data.
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Contribution of Capture-Mark-Recapture
Modeling to Studies of Evolution
by Natural Selection

Emmanuelle Cam

Abstract Capture-Mark-Recapture (CMR) modeling is one of the most commonly
used estimation methods in population ecology of wild animals. Until recently,
much of the emphasis of this method was on the estimation of abundance and
survival probability. Despite common interest in estimation of such demographic
parameters, evolutionary ecologists have often been more critical of CMR esti-
mation methods than wildlife biologists, mostly because the available models did
not allow investigators to address what is at the heart of evolutionary ecology.
Evolutionary ecology aims at explaining biological diversity: studies in this area
of research necessarily involve assessment of variation in traits among individuals,
including fitness components. The main limitation of early CMR models was the
inability to handle states among which individuals move in a stochastic manner
throughout life (e.g., breeding activity and number of offspring raised, locations,
physiological states, etc.). Several important advances have enhanced ecologists’
ability to address evolutionary hypotheses using CMR data; namely multistate
models and models with individual covariates.

Recently, methodological advances have allowed investigators to handle random
effects models. This is bringing CMR models close to modern statistical models
(Generalized linear mixed models) whose use is rapidly increasing in quantitative
genetics. In quantitative genetics, the animal model aims at disentangling sources
of phenotypic variation to draw inferences about heritability of any type of trait
(morphological, demographic, behavioral, physiological traits). The animal model
partitions variation in the trait of interest using variance components. Understanding
evolution by natural selection and predicting its pace and direction requires under-
standing of the genetic and environmental influences on a trait. Phenotypic char-
acteristics such as morphological or life-history traits (i.e. demographic parameters
such as number of offspring raised and survival probability) are likely to be influ-
enced by a large number of genes, the genetic basis of which can be quantified
via statistical inferences based on similarities among relatives in a population. The
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extent of evolutionary responses in a quantitative trait is assumed to be proportional
to the force of natural selection and heritability of a trait. Estimating the genetic
basis of quantitative traits can be tricky for wild animal populations in natural
environments: environmental variation often obscures the underlying evolutionary
patterns. However, this genetic basis of traits is at the heart of natural selection,
and recently there has been increased interest in applying the animal model to
natural populations to understand their evolutionary dynamics. Such models have
been applied to estimation of heritability in life history traits, either in the rare study
populations where detection probability is close to 1, or without considering the
probability of detecting animals that are alive and present in the study area (recap-
ture or resighting probability). Applications of the animal model to demographic
parameters (fitness components) such as survival, breeding probability or to lifetime
reproductive success in wild animal populations where detection probability is < 1
require trans-disciplinary efforts; this is necessary to address evolutionary processes
in such populations.

Keywords Capture-mark-recapture - Dispersal - Evolution - Fitness functions -
Heritability - Life history theory

1 Introduction

Approaches to estimating demographic parameters using capture-mark-recapture
data while accounting for incomplete detection of individuals by investigators
during sampling sessions have tremendously diversified over the past 20 years
(CMR estimation models; reviewed in Williams et al. 2002). Early efforts in devel-
opment of CMR models have been directed mostly to estimation of abundance and
survival probability, but recent advances now allow investigators to estimate other
population vital rates such as breeding and recruitment probability, or movement
probability among units of fragmented populations, temporary emigration, etc. (e.g.,
Spendelow et al. 1995, 2002; Pradel 1996; Pradel and Lebreton 1999; Oro and
Pradel 2000; Schwarz and Arnason 2000, 2001; Schwarz and Stobo 2000; Nichols
et al. 2000; Lindberg et al. 2001; Kendall and Bjorkland 2001; Lebreton et al. 2003;
Reed et al. 2004; Barbraud and Weimerskirch 2005; Cam et al. 2005; Crespin et al.
2006; Hadley et al. 2006; Martin et al. 2006). In other words, CMR models allow
estimation of the main parameters governing demographic processes. In addition,
CMR models are now increasingly used to address community vital rates (e.g.,
species extinction or colonization probability; Nichols et al. 1998 a, b; Williams
et al. 2002), and vital rates specific to large-scale features of species distribution
(e.g., site occupancy models, MacKenzie et al. 2006). Recent technical advances
relevant to the particular field of evolutionary ecology are extensively explained in
Conroy (2008, this volume).

Recent CMR models aimed at estimating demographic parameters have two
important features: (1) an increased variety of population vital rates can be estimated
(provided appropriate sampling design), and (2) an increased degree of stratification
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of populations can be achieved (i.e., classes in which individuals stay permanently
or temporarily, or individual attributes) and stratum-specific vital rates can be esti-
mated. This has partly alleviated an old tension between biologists and statisticians,
the former blaming the latter for designing estimation methods corresponding to
unrealistically simple populations or biological systems, the latter doubting that
appropriate data could ever be collected to match the requirements of complex
models (i.e., appropriate sampling design and large sample sizes in all strata within
populations). Moreover, development of software programs and documentation has
considerably facilitated access to CMR estimation techniques for biologists (some
examples of software used in ecology, in alphabetical order: CAPTURE: White et al.
1978; Rexstad and Burnham 1991, MARK: White and Burnham 1999; Cooch and
White 2007, MSURGE: Choquet et al. 2003, MSSURVIV: Hines 1994, POPAN:
Arnason et al. 1998, SURGE: Clobert and Lebreton 1985; Lebreton and Clobert
1986, SURPH: Smith et al. 1994, SURVIV: White 1983). From the viewpoint of an
evolutionary ecologist, an enormous stride has been made with the development of
multistate models (e.g., Nichols and Kendall 1995). This was a first step towards
accommodation of a pervasive property of the history of individuals in long-lived
species: individuals change state (location, social or physiological state, etc.) in a
stochastic manner.

CMR field techniques have long been popular among biologists (especially in
studies of birds, small and large mammals, or fish). They have been widely used
to estimate demographic parameters, but the corresponding statistical approaches
disentangling sampling processes and demographic ones have not always been
used (Martin et al. 1995). Not all the fields of ecology have taken full advantage
of the potential that new CMR estimation models offer. The Proceedings of the
1994 EURING conference held at Patuxent Wildlife Research Center (Laurel, MD,
U.S.A)) include a paper entitled: “Capture-recapture and evolutionary ecology: a
difficult wedding?” (Clobert 1995; see also Clobert 2002). Despite the regular pres-
ence of researchers involved in evolutionary ecology studies at EURING meetings
and the recent advances in CMR methodology applied to evolutionary studies,
analytical tools that estimate demographic parameters of wild animal populations
while accounting for imperfect detection of individuals do not seem as widely used
in this field as in other fields of ecology, especially wildlife ecology and conserva-
tion biology. This probably partly results from differences in history and educational
practices.

Although mathematics and statistics play an important part in education for
evolutionary ecologists (e.g., Charlesworth 1994; Lynch and Walsh 1998; Caswell
2001), as far as estimation is concerned (e.g., genetic parameters; Lynch and Walsh
1998) analytical tools used typically do not account for the sampling processes that
are specific to studies of wild animal populations, more precisely, incomplete detec-
tion of individuals (Martin et al. 1995). This may not be a problem for traits whose
phenotypic values are independent of detection probability, but the assumption that
the sample of captured or resighted individuals and the sample of undetected indi-
viduals have identical features is unlikely to be met for demographic parameters
like breeding probability after recruitment (e.g., Nichols et al. 1994), age-specific
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recruitment probability (e.g., Viallefont et al. 1995 a, b; Spendelow et al. 2002),
breeding success probability or clutch size (e.g., Yoccoz et al. 2002).

Efforts to carefully design sampling protocols specific to wild animal populations
and to master the corresponding statistical analyses (e.g., Williams et al. 2002) are
probably more common in education programs offered to students in wildlife ecology
and conservation biology than to evolutionary ecologists. There is no international
review available on the topic, but when one scans web sites detailing course sequences
offered in undergraduate and graduate programs organized by evolutionary ecology
departments, classes on CMR modeling hardly ever appear. Such classes appear
in several wildlife ecology programs offered in internationally known universities.
Because it is necessary to have accurate estimates of demographic parameters to
assess the state of populations, design efficient management plans and make deci-
sions, notaccounting for sampling “biases” that have long been known (e.g., Cormack
1964; Jolly 1965, 1993; Seber 1965; Lebreton et al. 1992) may be considered more
“irresponsible” in wildlife ecology educational programs (Anderson et al. 2003) than
in others. The quantitative content of university programs for wildlife ecology may
be considered as insufficient by quantitative wildlife ecologists, but there is some
pressure in specialized scientific journals to develop quantitative skills in education
(e.g., Kendall and Gould 2002; Seber and Schwarz 2002; Anderson et al. 2003).

Because wildlife ecologists focus on wild animal populations, they are constantly
faced with the challenge of using or designing appropriate approaches for anal-
ysis. This is not true for evolutionary ecologists. The discipline differs from that of
wildlife ecology in that there are strong historic relationships with some other disci-
plines that tend to utilize experimental study systems and molecular approaches to
address the genetic basis of evolution (e.g., evolutionary biology, molecular evolu-
tion, phylogeography, population, quantitative and developmental genetics, system-
atics, etc.; e.g., Freeman and Herron 2000). Students in evolutionary ecology devote
a large proportion of time to these fields and may not be introduced to the speci-
ficity of the data and analytical tools required to conduct demographic studies in
wild animal populations (e.g., non-detection of marked individuals that are alive and
present in the study area). Nevertheless, comparative methods play an important part
in evolutionary ecology (e.g., life history evolution and evolution of morphological
traits; Promislow et al. 1992; Bennett and Owens 2002; Liker and Székely 2005)
and such studies are unlikely to be possible without using data from wild animal
populations, especially for long-lived species. Several comparative studies have
ignored the distinction between studies that have estimated demographic parameters
while accounting for incomplete detection of individuals, and those that have not,
even in situations where survival probability was the focal trait (e.g., Owens and
Bennett 1994; Liker and Székely 2005). Use of estimates of demographic parame-
ters ignoring incomplete detection of individuals may lead to erroneous conclusions.

Almost 15 years later, the answer to the question: “Capture-recapture and evolu-
tionary ecology: a difficult wedding?” (Clobert 1995) may not be unanimous in the
EURING meeting audience. Despite the slowness of integration of CMR estima-
tion models in evolutionary ecology, the range of questions relevant to evolutionary
ecology addressed in studies that have used appropriate CMR estimation techniques
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is large. In addition, recent advances in development of CMR models may open new
opportunities for evolutionary ecologists to use empirical data from wild animal
populations to address novel questions. In the following Section (2), I will address
the specificity of evolutionary ecology as a discipline. If evolutionary ecology has
generally been viewed as relevant to basic research exclusively, several researchers
are now advocating consideration of the theoretical framework of (micro-) evolution
to address questions about ecological processes and the consequences of human
influence on wild animal populations and their habitat (e.g., Ferriere et al. 2004;
Reznick et al. 2004). In Section 3, I will define natural selection, one of the corner
stones of evolutionary ecology. In this section, I will also describe how the specific
question of the evolution of demographic parameters is usually addressed. Under-
standing how natural selection is addressed in wild animal populations is necessary
to assess the features of existing CMR studies in evolutionary ecology, which I will
do in Section 4. Concerning the evolution of demographic parameters by natural
selection, up to now CMR estimation techniques have been used to address only
part of the prerequisites for natural selection. A central prerequisite, heritability,
has not been addressed. Recent advances in estimation methods used in quantitative
genetics and in methods aiming at estimating demographic parameters from CMR
data have some common features that should be useful to address heritability. In
Section 5, I will describe the method used in quantitative genetics with data from
wild animal populations to address heritability of traits (the animal model), and 1
will offer suggestions concerning the type of development needed in CMR estima-
tion models to address heritability in demographic traits.

2 Evolutionary Ecology: Historical Background

There have been numerous attempts to classify the different disciplines of biology “to
deal with the enormous range of phenomena brought together under the heading of
biology” (Mayr 1997, p. 111). According to Mayr (1997), classification of disciplines
according to the type of question asked in research is one of the most logical clas-
sification systems. There are three main questions: “What?”, “How?”, and “Why?”
However, the first question, “What?”, is shared by all biological disciplines. Descrip-
tion (establishment of a “solid factual basis”) is the first step in any branch of biology.
However, “Answers to the “What?* questions alone failed to produce a satisfactory
solution to the problem of how to classify the subdivisions of biology” (Mayr 1997,
p- 115). In addition, it is impossible to conduct any descriptive work without identi-
fying the object to describe. Identification of the objects on which scientific research
focuses in different biological disciplines is possible because there are specific theo-
retical bodies. Description cannot be conducted without referring to a theoretical back-
ground because no “factual basis” emerges ex nihilo, independently of the hypotheses
and theories. Consequently, answers to the “What?” question depend on identification
of biological disciplines using other criteria.

Answers to the “How?”, and Why?” questions provide a more efficient basis
for classification of biological disciplines — a distinction that appeared in 1870 in
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debates among biologists. Biology has considerably diversified since then, but a
fundamental distinction between disciplines has survived, even if this classification
system has its problems. The main distinction between these two types of questions
lies in the type of causes invoked to explain biological phenomena. Proximate causes
allow investigators to explain the functioning of biological entities “here” and “now”
(answers to the “How?” question). Conversely, ultimate causes allow investigators
to explain observed phenomena in the light of the history of life and evolutionary
theory (answers to the “Why?”” question). “Why?” questions usually relate to adap-
tation or organic diversity (Mayr 1997, p. 118); “ultimate causes attempt to explain
why an organism is the way it is, as a product of evolution”. [...]. However, “no
biological phenomenon is fully explained until both proximate and ultimate causes
are illuminated”. “One of the special properties of the living world is that it has these
two sets of causations.” (p. 67).

Mayr (1997) also described ecology as the most heterogeneous and compre-
hensive field of biology, and one that is difficult to assign to one single type of
question (“How?”, or “Why?”): both types of questions are addressed. Ecologists
focusing on ultimate causes are called evolutionary ecologists (Fox et al. 2001).
According to Fox et al. (2001), “Evolutionary ecology and ecology share the goals
of describing variation in natural systems and discovering its functional basis.
Within this common framework, evolutionary biologists emphasize historical and
lineage-dependent processes and hence often incorporate phylogenetic reconstruc-
tions and genetic models in their analyses. Ecologists, while recognizant of histor-
ical processes, tend to explain variation in terms of contemporary effects of biotic
and abiotic environmental factors. Evolutionary ecology spans the two disciplines
and incorporates the full range of techniques and approaches from both”

The apparent difference between the timescales invoked in ecology and evolu-
tionary ecology may lead to the conclusion that the dichotomy is natural. However,
this traditional dichotomy may have become an obstacle to our understanding of
ecological phenomena, and this may have consequences on our ability to design
efficient conservation plans. There is growing evidence that evolutionary responses
to environmental changes can be so fast that researchers are able to witness
them both in the laboratory and in the wild (Ferriere et al. 2004; Frankham and
Kingsolver 2004; Reznick et al. 2004). Hendry and Kinnison (1999) suggested that
rapid microevolution is the norm in contemporary populations confronted with envi-
ronmental change. According to Saccheri and Hanski (2006), “there is a growing
acceptance that the traditional dichotomy between ecological and evolutionary
timescales is a false one”.

3 Evolution by Natural Selection

3.1 Natural Selection

“Evolution may be defined as any net directional change or any cumulative change
in the characteristics of organisms or populations over many generations [...]” and
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“may occur as a result of natural selection, genetic drift, or both” (Endler 1986,
p- 5). According to Fairbairn and Reeve (2001, p. 30),

Natural selection is notoriously difficult to define. In the broadest sense, the process of
natural selection has been defined by the following deductive argument:
If there is:

(i) variation in some attribute or trait among biological entities (phenotypic variation),
(ii) a consistent relationship between the trait and fitness (a fitness function), and
(iii) descent with heritability for the trait (i.e., the variation in the trait must have a genetic
component),

Then the trait distribution will change:

(I) within generations more than expected from ontogeny alone, and
(II) across generations “in a predictable way” until an equilibrium is reached.

This definition is true to Darwin’s original description of natural selection, and was adopted
by Endler (1986) in his review of selection in natural populations. However, in addition to
being rather cumbersome, the deductive argument is flawed because conclusion (I) does
not require premise (iii) and holds for any fitness difference caused by differences in
survival (i.e., differences in fecundity alone will not cause within-generation changes in trait
distributions) In constructing a more concise and logically consistent definition of natural
selection, most authors (e.g., Lande and Arnold 1983; Futuyma 1998) prefer to distinguish
the process of natural selection occurring within generations (premise i and ii) from the
evolutionary consequences of that selection (premise iii and conclusion II)

Researchers working in different areas have used different definitions of fitness
(Endler 1986, p. 38). In life history theory, the fitness concept currently relies on
invasibility: the possibility of a rare mutant strategy to replace the strategy played
predominantly in the population (Metz et al. 1992). However, as emphasized by
Brommer et al. (2002), invasibility is not readily measured in natural populations,
and many empirical studies focus on other measures of evolutionary success. When
focusing on selection at the level of individual organisms, fitness “in its most general
sense is success in contributing descendants to the next generation” (Fairbairn and
Reeve 2001, p. 31). The definition of fitness by Endler (1986, p. 39) highlights
the direct relevance of CMR estimation models to evolutionary ecology: “Fitness
is the degree of demographic difference among phenotypes”, or a measure of the
degree of the following condition for natural selection: “a consistent relationship
between [a] trait and mating ability, fertilizing ability, fertility, fecundity, and or
survivorship”. Natural selection is based on demographic processes, and estimation
of demographic parameters is a key point in some approaches to detecting natural
selection (Endler 1986).

3.2 Evolution of Demographic Parameters by Natural Selection

Demographic parameters (i.e., age at maturity, number of offspring produced,
longevity, age-specific reproductive investment and mortality schedule, etc.) are not
only involved in the evolution of morphological, behavioral, or physiological traits
by natural selection, but they are themselves subjected to natural selection (Roff
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1992; Stearns 1992). The field of life history evolution focuses on the evolution of
demographic parameters, a class of traits also called fitness components (Stearns
1992)

Studies of the evolution of demographic parameters do not necessarily address
all the above Premises: some studies do not require Premise (ii) because they do
not involve other classes of traits than fitness components themselves. Such studies
involve two fitness components (or more), and Premise (i) concerns several compo-
nents simultaneously. In life history theory, it is assumed that there are relationships
among traits and that natural selection operates on complexes of traits: “Age-specific
survival and fecundity are not free to independently evolve, but are constrained by
physiological and ecological trade-offs” (Tatar 2001). As emphasized by Clobert
(1995), Viallefont et al. (1995a) and Cooch et al. (2002), reproductive costs and
trade-offs between life history traits are central to the theory of life history evolu-
tion (Reznick et al. 2000). The basis of physiological trade-offs (Stearns 1992) is
the following: because individuals have access to limited resources, resources allo-
cated to one trait are assumed not to be allocated to another (Principle of allocation,
Levins 1968). According to Reznick et al. (2000), “[...] it became convenient to
think of the life history as being similar to a pie divided into slices, each slice being
devoted to a different function, such as growth, maintenance, storage or reproduc-
tion. Because the pie is of fixed size, increasing the size of a given slice neces-
sarily decreases the size of another slice”. For example, individuals that raised two
offspring to independence in a given breeding occasion may not be able to invest
the same amount of energy in their own maintenance functions as individuals that
raised only one offspring, and the former may incur survival costs. Trade-offs may
also have a behavioral basis when reproductive activity is associated with increased
mortality risk because of predators or fights with conspecifics. Last, there are inter-
generational trade-offs linking parental allocation of resources to reproduction and
offspring fitness (e.g., offspring size at birth; Stearns 1992).

Trade-offs also play a central part in one of the evolutionary theories of senes-
cence: antagonistic pleiotropy (Williams et al. 2006). Antagonistic pleiotropy
assumes that “improvements early in life are purchased at a cost to later-age fitness
components” (Williams et al. 2006). Several hypotheses have been put forward
concerning the mechanisms responsible for pleiotropy (Tatar 2001), but one of
them is based on physiological trade-offs: “For instance, the allocation of lipid to
current egg production may preclude its use in cell or mitochondria cell membrane
turnover. Natural selection favors genotypes that maximize fitness within such sets
of constraints” (Tatar 2001, p. 131). Studies of antagonistic pleiotropy may address
covariation between age at maturity and at last reproduction. Here, Premise (ii) isn’t
relevant.

However, traits other than fitness components may be taken into account in
studies of life history evolution, even if the evolution of such traits isn’t the central
topic of these studies. For instance, variation in fitness components such as fecundity
(e.g., number of eggs in fish) may be intrinsically linked to variation in morpholog-
ical traits such as body size (n.b.: here fecundity describes the actual reproductive
performance; see Caswell 2001, p. 10, for an alternative definition from human
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demography). Consequently, studies of the evolution of demographic parameters
by natural selection may address Premise (ii): a consistent relationship between a
(non-demographic) trait (e.g., morphology) and fitness. However, in studies of life
history evolution involving morphological traits, the latter are usually addressed as
part of a trio including two fitness components. In the above example (fecundity and
body size), in species with delayed maturity, changes in age at maturity may result
in changes in body size, which in turn may result in changes in fecundity (Roff
2001). In other words, body size is involved in the trade-off between development
time (age at maturity) and fecundity.

4 Features of Existing CMR Studies in Evolutionary Ecology

CMR estimation models have been used in evolutionary ecology studies addressing
evolution of “non-demographic traits”. For that class of traits (i.e., morphological,
physiological, behavioral traits) CMR estimation methods have been used to address
Premise (ii), i.e., to estimate fitness components and assess fitness functions (e.g.,
Gimenez et al. 2006). Apart from estimation of fitness components, CMR estima-
tion models may be considered to address other Premises for natural selection and
Deductions I and II. For morphological, behavioral or physiological traits, the ques-
tion of whether samples are representative in studies addressing Premises (i) and (iii)
in the above definition of natural selection, or Deductions I and II, should probably
receive attention. If detected and undetected individuals have different character-
istics with respect to the trait of interest (e.g., if there is a relationship between
size or color and detection probability), then use of CMR estimation models may be
necessary to assess the distribution of trait values in populations (in this case closed-
population models may be useful to estimate the frequency of trait values). In most
studies, the observed distribution of phenotypic trait values in samples is assumed
to reflect the distribution of trait values in populations in an exhaustive and consis-
tent manner (i.e., samples are assumed to be representative of (sub-) populations).
In addition, multitrait animal models (see Section “Multitrait Models”) or random
coefficients animal models (Schaeffer 2004) can be used to address fitness func-
tions based on breeding values (a possible approach to Premise (ii)) and heritability
(Premise (iii)) of traits changing over life (e.g., body size in some mammal or snake
species, egg size in some bird species). In this case, repeated data from individuals
are needed. For continuous traits, this may raise the issue of missing individual
covariates when individuals are not recaptured or resighted (Bonner and Schwarz
2004), an area where methodological development is needed. In most studies, data
are assumed to be missing at random (e.g., missing data in growth curves).
Concerning the evolution of demographic parameters themselves, Premise
(i) (phenotypic variation and covariation between parameters) has been addressed
using CMR estimation models, as well as Premise (ii) when morphological or phys-
iological traits are assumed to be involved in the trade-offs between demographic
parameters. I am not aware of studies that have addressed Premise (iii) using CMR
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estimation models (Premise (iii) is the third condition for evolution of demographic
parameters by natural selection: heritability). Interestingly, CMR estimation models
required to address Deduction I (within-generation selection) have been developed
(Burnham and Rexstad 1993; Pledger and Schwarz 2002; Royle and Link 2002;
Royle 2007), but I am not aware of studies that have addressed the evolutionary
consequences of selection (Deduction II) for demographic parameters using CMR
estimation techniques.

Despite the relatively “limited” scope of the evolutionary ecology studies that
have used appropriate CMR estimation models (several aspects of natural selection
have not been addressed), such studies have required considerable efforts from biol-
ogists and statisticians: details of the technical advances are reviewed in Conroy
(2008, this volume). In this section, I will focus on some evolutionary ecology
studies that have accounted for incomplete detection of animals to estimate demo-
graphic parameters. This is not an exhaustive review; my goal is to provide examples
illustrating the diversity of topics addressed.

4.1 Life History Evolution

4.1.1 Trade-offs Between Life History Traits

Trade-offs are one of the topics that have been addressed in the largest proportion of
CMR studies in evolutionary ecology (e.g., Nichols et al. 1994; Nichols and Kendall
1995; Viallefont et al. 1995a, b; Cam et al. 1998; Yoccoz et al. 2002; Barbraud
and Weimerskirch 2005). In a large number cases, the studied species exhibited a
small range of reproductive investment levels (e.g., non-breeding versus a single
egg produced in birds or a single young in mammals, or only two or three young
raised; McElligott et al. 2002; Barbraud and Weimerskich 2005). In such long-term
observational studies that have retrospectively used data collected over long periods
of time, trade-offs have been addressed using few discrete categories of reproductive
investment, as opposed to continuous trade-off functions (Reekie et al. 2002). Tech-
nical development in CMR estimation methodology in the 1990’s has considerably
broadened the scope of studies aimed at detecting trade-offs. First, in iteroparous
species, the proportion of individuals breeding more than once is larger than 0,
which implies that individuals may change breeding state (i.e., breeding activity
or success; Nichols et al. 1994) over time and raise a different number of offspring
to independence on different breeding occasions. For this reason, development of
multistate models has played a central part in studies of trade-offs (Arnason 1973;
Brownie et al. 1993; Nichols and Kendall 1995; Williams et al. 2002; Conroy 2008
this volume). Several versions of multistate models have been designed to esti-
mate state-specific transition probabilities in situations where there are unobserv-
able states or where individuals are sometimes misclassified (e.g., when individuals
are erroneously considered as nonbreeders in a given sampling occasion; Kendall
and Nichols 2002; Kendall et al. 2003; Kendall 2004; Nichols et al. 2004). These
tools allow investigators to accommodate situations that are common in empirical
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studies (i.e., state uncertainty). In addition, development of models allowing use of
different sources of data provides a means of improving estimates of local survival
probability by estimating permanent emigration (Burnham 1993). Indeed, unless an
additional source of data is available, estimates of local survival incorporate perma-
nent emigration out of the study area. The ability to disentangle the factors influ-
encing “true” local survival and those influencing dispersal is important for studies
of trade-offs between survival and other life history traits. Unfortunately, studies in
evolutionary ecology mostly use live captures/resightings of marked animals, partly
because study systems focusing on hunted species may be considered as “artificial”.
However, there may be situations where selective hunting may correspond to care-
fully designed experimental systems that have played a major role in development
of theory in evolutionary ecology (e.g., Mertz 1975).

Before multistate models became standard, other approaches were possible
(reviewed in Viallefont et al. 1995a); for example one may compare survival prob-
ability in individuals assumed to have identical reproductive history (e.g., first time
breeders with no prior experience). That is, groups of individuals are defined on the
basis of the number of offspring raised in the first breeding occasion, and group-
specific survival probabilities over the first year of reproductive life are compared.
Alternatively, experiments may be conducted by randomly assigning “identical”
individuals (i.e., same age, same year, same environmental condition, same prior
reproductive history etc.) to treatments (increased/decreased clutch or brood size).
The underlying assumptions are that no important factor influencing survival prob-
ability has been missed (left uncontrolled), and that the controlled factors correctly
reflect the factors involved in natura in the studied process (the factors have been
correctly identified). In some instances, recapture probability in the year following
the first breeding attempt has been compared to subsequent recapture probability
to address possible experience-related reproductive costs in terms of future repro-
duction, assuming that recapture probability reflects breeding probability to some
extent (Viallefont et al. 1995b). Last, temporary emigration has also been used as
an indicator of breeding probability (e.g., Kendall and Nichols 1995; Schmidt et al.
2002; Frétey et al. 2004).

Progressively, more complex definitions of state have been used to address the
question of trade-offs more thoroughly. More complex multistate models incorpo-
rating individual covariates have also been developed. Indeed, because individuals
vary in their ability to obtain resources, or because they live in environments with
different resource availability (Stearns 1992), reproductive costs may not be iden-
tical in every individual; i.e., some individuals may be able to invest more in repro-
duction without incurring as large costs as others, depending on their state. Here,
state may correspond to different things depending on the organism studied (e.g.,
body size, parasite load, immunological state, social dominance, experience, etc.).
State is assumed to reflect a hierarchy among individuals in their ability to acquire
resources or to use them, or simply a baseline efficiency of functions (e.g., mainte-
nance, reproduction, etc.). Detection of reproductive costs from observational data
requires comparison of fitness between individuals having different condition or
social rank but identical reproductive investment (reproductive activity and success).
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Using states combining information from reproduction and other individual charac-
teristics (e.g., experience), multistate models allow investigators to address trade-
offs in heterogeneous populations. Development of models including individual
covariates (e.g., body mass or size; Bonner and Schwarz 2004) has played a large
part in emergence of studies addressing state-specific reproductive costs and repro-
ductive tactics (e.g., Barbraud and Weimerskirch 2005).

Moreover, temporal environmental variation (i.e., variation in resource avail-
ability or density of conspecifics) may lead to time-specific variation in reproductive
costs within categories of individuals in the same state in different years (Orzack
and Tuljapurkar 2001). Assuming that individuals are able to assess resource avail-
ability in time, individuals may adjust the amount of energy allocated to functions
according to their state; i.e., there may be individual optimization (Van-Noordwijk
and de Jong 1986; Pettifor et al. 1988, 2001; Tinbergen and Both 1999). If individual
optimization occurs, only experimental approaches (e.g., Yoccoz et al. 2002) may
allow detection of trade-offs. The difficulty in designing appropriate experiments to
address trade-offs has been discussed in Cooch et al. (2002, p. 35): “Trade-offs
within an individual must be true (Tuomi et al. 1983; Emlen 1984); if an indi-
vidual is forced to expend greater energy on one activity, then this necessarily
reduces the amount of energy available for another activity. However, this does
not necessarily mean that trade-offs occur among individuals. This is important,
since natural selection operates on the additive genetic covariance among individ-
uals, not correlations within individuals”. If trade-offs are necessarily based on
physiological or behavioral mechanisms operating at the individual level (trade-
offs “within” individuals), addressing relationships between fitness components by
comparing different individuals assigned to different experimental treatments (or
naturally exhibiting different levels of reproductive investment) is addressing rela-
tionships between components expressed “among” individuals (trade-offs “among”
individuals). Comparing different individuals should allow inferences about within-
individual trade-offs if investigators can be sure that individuals are strictly identical
with respect to all traits except the ones involved in the trade-off itself, but failure to
fulfill this condition is thought to be a major reason for failure to detect trade-offs.

The process of individual optimization is assumed to lead individuals to make
decisions according to their current state. State may change over time, but there may
also be permanent differences among individuals. CMR studies have contributed
to identification of permanent differences among individuals. For example, several
studies have provided evidence of permanent differences in fitness components (e.g.,
survival probability) among individuals according to morphological traits reflecting
relative body conditions (e.g., Barbraud and Weimerskirch 2005; Blums et al. 2005).
Similarly, long-lasting cohort effects have been identified (e.g., Cam et al. 2005),
as well as a permanent influence of conditions during development on several life
history traits (e.g., Cam et al. 2003). Blums et al. (2005) have used relative time
of nesting to account for individual differences in “quality”. Experimental studies
have provided contrasting results concerning the hypothesis of individual optimiza-
tion in wild animal populations (e.g., Tinbergen and Sanz 2002; Torok et al. 2004).
However, in all cases tests of this hypothesis require high levels of stratification of
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the data according to state (which may be assigned to individuals in the framework
of an experiment) and year or environmental conditions (biotic and abiotic).

Last, some of the physiological and behavioral mechanisms underlying intra-
and inter-generational trade-offs between life history traits have been investigated
using CMR estimation models. For instance, in an experimental study, Reed et al.
(2006) have addressed the relationship between survival probability and manip-
ulated testosterone level in free-living dark-eyed juncos (Junco hyemalis caroli-
nensis). Testosterone-treated males increased levels of activity and home range
size and had elevated levels of stress hormones. They exhibited increased ability
to attract females (increased ability to produce extra-pair offspring), but produced
smaller offspring with lower postfledging survival. In addition testosterone-treated
adult males had increased detectability and susceptibility to predation, which led to
lower adult survival.

4.1.2 Level at Which Natural Selection Operates and Estimation
of Demographic Parameters

Obviously, modern CMR estimation models allow evolutionary ecologists to
address a large range of questions directly relevant to fitness functions, selec-
tion, and adaptation. However, the ultimate goal of evolutionary ecologists is to
address differences in demographic parameters at the level at which natural selec-
tion operates, which is often identified as the individual level (Endler 1986). Mayr
(1997) identified a reason why evolutionary ecologists constantly press statisticians
to develop complex CMR models allowing investigators to stratify populations
according to large numbers of criteria (e.g., multistate models, models with time-
varying individual covariates; Pollock 2002). This is an irresolute tension between
the conceptual foundations of evolutionary ecology and population ecology which
was extensively discussed in Cooch et al. (2002). The community of researchers
involved in development and use of CMR estimation models is mostly composed of
researchers focusing on wildlife ecology and conservation biology, or of statisticians
who often develop models to answer questions from these same fields of ecology.
Historically, these fields have been dominated by concepts from population ecology,
which “can be tracked back to a school of mathematical demographers interested
in the growth of populations and the factors controlling it” (Mayr 1997, p. 211).
However, the population concept specific to population ecology is different from
that of evolutionary ecology. “The population concept adopted by most mathemat-
ical population ecologists was basically typological, in that it neglected the genetic
variation among the individuals of a population. Their ‘populations’ were not popu-
lations in any genetic or evolutionary sense but were what mathematicians refer to
as sets. The crucial aspect of the population concept to have emerged in evolutionary
biology, by contrast, is the genetic uniqueness of the composing individuals. This
kind of ‘population thinking’ is in sharp contrast with the typological thinking of
essentialism. In ecology, the genetic uniqueness of the individuals of a population is
usually ignored” (Mayr 1997, p. 211).
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Ideally, evolutionary ecologists would like to apply this concept of genetic
“uniqueness” of individuals to demographic parameters as well. This is because “the
ultimate context for estimation is the degree to which selection and the fitness differ-
ences upon which selection operates translates into evolutionary change” (Cooch
et al. 2002). Indeed, the individual level is assumed to be the relevant level of selec-
tion in many studies (Endler 1986). However, as Nichols (2002, pp. 49-50) pointed
out, “[...] the larger the number of strata, the fewer individuals in each stratum,
and the more difficult it will be to estimate stratum-specific survival probability.
[...] increasing stratification will yield a single individual in each stratum, with
the corresponding estimation problem analogous to that of being asked to estimate
the probability of heads from a single flip of a loaded coin. [...] some form of
aggregation is necessary for the conduct of science. [...]. If we view an individual
organism’s fate or behaviour at any point in space and time as a unique event not
capable of informing us about the likelihood of the event for other individuals or
points in space and time, then generalization and prediction become impossible.
The task of the biologist then involves simply recording and describing these unique
events and possibly developing a posteriori stories to explain them. Although such
descriptive work might be interesting, it is not consistent with most definitions of
science”.

Stratification in large numbers of discrete categories and limited sample size makes
statistical inference impossible. However, evolutionary ecologists are familiar with an
approach assuming that phenotypic traits of individuals in a population are charac-
terized by a distribution. The distribution is assessed using random individual effects
models, also called frailty models in human demography (Vaupel and Yashin 1985a,
b; Service et al. 2000; Cam et al. 2002a; Link et al. 2002a, b; Service 2004; Wintrebert
et al. 2004; Fox et al. 2006). Mixed models (Fahrmeir and Tutz 1994) are extensively
used in quantitative genetics to address the genetic basis of phenotypic values of quan-
titative traits in populations (i.e., as opposed to “qualitative traits” such as gender);
more precisely to assess their variance in populations (Lynch and Walsh 1998). Mixed
models are commonly used in human demography to address senescence (e.g., Yashin
et al. 2001; Service 2000, 2004), and they are also used in studies of behavior (e.g.,
Hernandez-Lloreda et al. 2003). The motivations for the use of mixed models in these
different fields have common points: (i) incorporation in statistical models of terms
accounting for heterogeneity among individuals in the focal trait, (ii) the possibility for
dependence of individuals for trait values (e.g., incorporation of a particular variance—
covariance matrix for random effects), and (iii) assessment of the influence of specific
covariates (fixed effects) on the trait while accounting for specific variance—covariance
structures for random effects.

The Process of Natural Selection: Within-Generation Mortality Selection

Several long term studies have provided evidence that wild animal populations
are demographically heterogeneous (e.g., Fox et al. 2006): it has been suggested
that populations are composed of groups of individuals with a permanent hier-
archy in fitness components among individuals. Whenever measurable individual
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characteristics can be used to account for individual heterogeneity in a satisfac-
tory manner, individual covariates may be used (e.g., Blums et al. 2005). However,
studies of survival in humans have provided evidence that measurable covariates
are not always sufficient to account for heterogeneity among individuals (Hougaard
1991). In this case the hierarchy among individuals can be accounted for in discrete
time survival models by incorporating an individual random effect with mean O and
a variance term accounting for the distribution of individual survival probability
around the mean (Cam et al. 2002a, Link et al. 2002a, b). The mean survival prob-
ability may depend on fixed effects such as age, sex, year, birth cohort, etc. These
models assume that there are differences in underlying, or latent survival among
individuals (Cooch et al. 2002). The same approach can be used to model under-
lying differences in breeding probability or breeding success probability among
individuals.

Under the good genes hypothesis, some individuals are assumed to have a higher
breeding success probability than others, or higher survival probability, or both
(e.g., Curio 1983; Cam et al. 2002a; Link et al. 2002a, b). This is likely to have
consequences for studies of senescence or any class of age effect on demographic
parameters (Curio 1983; Vaupel and Yashin 1985a, b). In heterogeneous popula-
tions, one might expect an age-related change in the composition of the population.
The selection hypothesis accounts for the progressive concentration of individuals
with higher intrinsic survival probability in older age classes (Endler 1986), and if
there is a positive correlation between breeding success probability and survival at
the individual level, the progressive concentration of individuals with higher success
probability in older age classes (Cam et al. 2002a; Barbraud and Weimerskirch
2005; Beauplet et al. 2006). This within-generation phenotypic selection process
corresponds to Deduction I in the definition of natural selection (see Section 3.1).
Within-generation phenotypic selection is not a sufficient condition for natural
selection, but this process may explain some within-generation changes in survival
or reproductive parameters detectable in heterogeneous populations (e.g., Forslund
and Pirt 1995; Service 2004). More generally, assessment of phenotypic variation
in fitness components among individuals within populations (e.g., Fox et al. 2006)
is at the heart of studies of life history evolution by natural selection and is relevant
to studies of the evolution of traits other than age-specific life histories (Mazer and
Damuth 2001).

Senescence has been detected in a fair number of wild animal populations using
CMR estimation models (e.g., Nichols et al. 1997; Festa-Bianchet et al. 1999;
Bryant and Reznick 2004; Gaillard et al. 2004), and is common in captive birds
and mammals (Ricklefs 2000; Ricklefs and Scheuerlin 2001). Senescence has moti-
vated an enormous number of studies in humans, probably because of the econom-
ical and sociological implications of the phenomenon. In addition, senescence is
one of the most challenging paradoxes from a fundamental perspective: “Senes-
cence is an intriguing problem for evolutionary theory: can natural selection favour
an age-specific decline in fitness?” (Bennett and Owens 2002). Not all authors
agree on the occurrence of senescence in wild vertebrates. According to Williams
(1992) “Both birds and mammals have life cycles that should make them similarly
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vulnerable to the evolution of senescence, but there is little evidence that senescence
effects birds at all. Where data on avian age structures are most abundant, it usually
appears that mortality rates of young adults prevails through life. This conspicuously
violates expectation from theory” [of Hamilton 1966]. However, as emphasized
by van de Pol and Verhulst (2006); “Phenotypic traits can change as a result of
within-individual changes (phenotypic plasticity) and between-individual changes,
as selection may favour some individuals over others. When quantifying how popu-
lation values of phenotypic traits change over time or differ between groups of indi-
viduals, it is therefore important to realize that both within—and between—individual
process might be underlying causal mechanisms”. Individual heterogeneity may
mask senescence and patterns of change in life history traits over life, or may hamper
quantification of the rate of change in fitness components with age (Service 2004;
van de Pol and Verhulst 2006).

Development of frailty CMR models

Until now, estimating individual variation in life history traits without using observ-
able covariates, and estimating age-specific variation in life history traits (e.g.,
survival probability) while accounting for individual heterogeneity in underlying
survival probability were difficult because methods were not designed to handle
incomplete detection of individuals. The very first CMR estimation models devel-
oped to address heterogeneity in survival probability were developed in the 1970s.
The development of models accounting for individual heterogeneity in parameters
was motivated by the issue of heterogeneity in detection probability among indi-
viduals. The importance of such heterogeneity in wild animal populations has long
been acknowledged (e.g., Carothers 1973; Gilbert 1973; Pollock et al. 1990; Norris
and Pollock 1996; Pledger and Efford 1998; Pollock 2002; Link 2004): for example,
failure to account for such heterogeneity may result in biased estimates of survival
probability in open population models or of population size in both closed and open
populations models. Efforts to account for heterogeneity in detection probability
have triggered development of models accounting for individual heterogeneity in
other parameters (e.g., survival; Burnham and Rexstad 1993; Pradel et al. 1995;
Burnham and White 2002; Pledger and Schwarz 2002; Royle 2007).

Recently developed CMR estimation models allow consideration of hetero-
geneity in survival via random individual effects (Royle 2007). The state-space
formulation of the Cormack-Jolly—Seber model proposed by Royle (2007) offers
flexible means of extending the model to account for the specificity of different
study systems and sampling schemes, and address different biological hypotheses.
Briefly, the model accounts for the individual state on a given sampling occasion
(e.g., dead or alive), and is specified using two distinct models: one for the process
of interest (i.e., the survival process over a given time interval, partly unobservable),
and one for the observations (i.e., whether the individual was captured/resighted on
a given occasion). The observation process depends on recapture/resighting prob-
ability, and is conditional on the latent survival process (i.e., survival probability).
Survival probability can be modelled as a function of covariates such as year, age,
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environmental covariates, individual measurable characteristics (e.g., body size
etc.), and an individual random effect if one has reasons to suspect additional
heterogeneity in survival probability (e.g. Royle 2007). With this innovation, frailty
(Yashin et al. 2001) CMR models can be developed. Parameters in this class
of models can be estimated using a Bayesian approach (e.g., using WinBUGS;
Spiegelhalter et al. 1996). In addition, it is theoretically possible to design a state-
space formulation of the multistate Arnason-Schwarz model (Arnason 1973; Dupuis
1995) with frailty, by using an additional (partially unobservable) transition process
conditional on survival (i.e., a process accounting for the probability of being in a
given stratum in a given occasion, and transition probability among strata in consec-
utive sampling occasions).

4.1.3 Individual Fitness and Population Growth Rate

On a related topic, Link et al. (2002a) used correlated latent survival, breeding and
probability of raising 1 or 2 offspring to independence to estimate individual fitness.
As emphasized above, estimation of fitness is at the heart of studies of evolutionary
change by natural selection. Many empirical studies of selection have used fitness
components to address fitness functions, but there is increased interest in developing
estimates of “total fitness” (not components only; e.g. Coulson et al. 2006). Ideally,
one may want to estimate an “individual growth rate” measuring the capacity of a
given phenotype to be propagated into future generations. Because the growth rate
of a genotype depends on the timing of production of viable offspring during life
(Brommer et al. 2002), McGraw and Caswell (1996) suggested using an individual-
specific Leslie matrix to estimate fitness. Link et al. (2002b) assessed the perfor-
mance of the growth rate estimated using individual-specific Leslie matrices as an
estimator of individual fitness. They defined latent fitness as the “latent individual
growth rate”, which corresponds to the latent survival characterizing the individual,
as well as the individual breeding probability, and probability of producing a given
number of offspring. They concluded that individual capture-recapture history data
(i.e., one realization of the stochastic process defined by latent life history traits,
McGraw and Caswell 1996) result in realized fitness that isn’t consistent with latent
fitness, and advocated a model-based approach to estimating fitness.

Interestingly, the distribution of individual demographic parameters (i.e., latent
parameters) in populations has received much attention in another field, namely,
applied population dynamics and conservation biology. Indeed, Conner and White
(1999), Kendall and Fox (2001, 2003), and Fox and Kendall (2002) have provided
evidence that certain forms of demographic heterogeneity substantially influence
population persistence, a question that is particularly relevant to small popula-
tions. Development of CMR estimation models allowing investigators to estimate
the distribution of individual life history traits and the possible covariation among
latent traits may help develop an empirical basis for investigations of population
persistence.
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4.2 Evolution of Morphological and Behavioral Traits

CMR studies have also contributed to investigations of covariation between morpho-
logical or behavioral traits and fitness components. Just like for life history evolu-
tion, most CMR studies have addressed fitness functions and have drawn inferences
about the possible consequences of these functions in terms of natural selection.
However, I am not aware of studies that have addressed fitness functions of physi-
ological traits using CMR estimation models, apart from the study by Reed et al.
(2006, see above) whose aim was to investigate the physiological mechanisms
underlying trade-offs between life history traits in juncos. The fitness costs incurred
by testosterone-treated males suggest that high-testosterone phenotypes have selec-
tive disadvantages in natura. The body of studies listed below may seem eclectic
compared to studies of life history evolution for two reasons. First, whether a trait is
under selective pressures, or not, strongly depends on the study system and the type
of organism concerned. Second, there are only a few studies that have used CMR
models and have focused on some classes of fitness functions (e.g., fitness functions
of behavioral traits).

4.2.1 Morphology

Several studies of birds have used CMR estimation models with individual covari-
ates to address selection on body size (wing length), mass, condition in juveniles
(e.g., lesser snow goose, Cooch et al. 2002) or adults (tufted duck Aythya fuligula,
common pochard Aythya ferina, and Northern shoveler Anas clypeata, Blums et al.
2005), or both (serins Serinus serinus Conroy et al. 2002). Body condition can
be viewed “as the size of the individual’s energy reserves relative to its body
size” (Blums et al. 2005). As migration is demanding in terms of energy, Blums
et al. (2005) predicted a positive relationship between survival probability and body
condition, but they also considered the possibility for costs associated with very
high mass, as did Conroy et al. (2002). Specifically, they considered non-monotonic
functions of body condition for survival probability. Both Cooch (2002) and Conroy
et al. (2002) found evidence that the relationship between body mass and survival
probability varied according to other covariates. Cooch (2002) found evidence of
a positive relationship between survival probability and body mass in late-hatched
young only. Conroy et al. (2002) found evidence of a negative influence of body
mass in years with low density of competitors (siskins; Carduelis spinus). That
is, in serins the shape of the fitness function varied with environmental conditions
(biotic conditions). In lesser snow geese the fitness function differed according to
the value of another trait (hatching date), which suggests that selection on body
mass cannot be understood without considering the covariance between several
traits (e.g., Lande and Arnold 1983; Houle 1991; Pigliucci 2006). The ability to
use models including several covariates, both individual and time-specific envi-
ronmental covariates proved important. Similarly, Wikelski and Trillmich (1997)
addressed sex-specific relationships between survival probability, fertility, and body
size in Iguanas (Amblyrhynchus cristatus; see also Laurie and Brown 1990) and
suggested that balanced selective forces shaped body size in this species: sexual
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selection favoring large sizes in males in a lek-mating species, but natural selec-
tion penalizing large individuals in years with lower resource availability. CMR
estimation models have also been used to address micro-evolutionary processes in
morphological traits in taxa that are not often mentioned in EURING meetings.
For example, Kingsolver and Smith (1995) have addressed wing pattern traits in a
butterfly species (Pontia occidentalis). They found evidence of a negative influence
of mean grey level of the dorsal wing and of ventral hind wings on daily survival.
They suggested that this relationship resulted from the influence of color on ther-
moregulation ability.

Fitness functions based on estimates of survival probability have also been used
to address the balance between sexual and natural selection in the wild. For example,
Gregoire et al. (2004) have addressed the relationship between bill color in Euro-
pean blackbirds (Turdus merula) and survival probability. Theory of sexual selection
assumes that there are advantages associated with exaggerated sexual characters
in males, more precisely a larger breeding success probability (Andersson 1994).
However, there may also be costs associated with secondary sexual traits, such
as energetic costs of producing ornaments, increased detectability by predators or
intra-specific competition (survival costs). Gregoire et al. (2004) found evidence of
stabilizing selection on bill color using models with individual covariates. However,
there are several non-exclusive hypotheses concerning the relationship between
ornament expression and survival probability. Ornamental traits are assumed to have
evolved through mate choice: in birds, individuals with the most showy feathers for
example are assumed to be “higher-quality” individuals because they can afford
to display costly adornments. In long-lived species, re-mating with the same mate
has been shown to have advantages; loss of the mate through mortality may be
very costly. Ornaments are assumed to serve as viability indicators: individuals
may benefit from choosing a “higher-quality” mate with high survival ability. In
this view, one may expect a positive relationship between survival probability and
ornament size. Jones et al. (2002) have addressed the relationship between sexu-
ally selected feather ornaments and survival probability in crested auklets (Aethia
cristatella), but have not found evidence of such a relationship. Here again, ultra-
structural models were used.

For quantitative traits (as defined in Conner and Hartl 2004, p. 97), the shape
of the relationship between fitness and trait values provides insight into the type
of phenotypic selection (Conner and Hartl 2004). Directional selection is charac-
terized by a linear fitness function, stabilizing selection by a quadratic function
where fitness is highest at some intermediate value of the phenotype, and disruptive
selection by a quadratic function where fitness is lowest at some intermediate value
of the phenotype. However, as emphasized by Gimenez et al. (2006), the shape
of the fitness function estimated using empirical data may not be quadratic, and
more complicated forms of selection can occur (Conner and Hartl 2004). There
is an analogy between the need for development of relevant fitness functions to
address natural selection and the need for development of relevant forms for repro-
ductive or survival functions in optimal control solutions of problems in popula-
tion dynamics (Runge and Johnson 2002). Gimenez et al. (2006) have developed a
nonparametric approach to fitting cubic splines within a CMR framework to address
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the relationship between body mass and survival in sociable weavers (Philetairus
socius). Model parameters were estimated using a Bayesian approach in WinBUGS
(Spiegelhalter et al. 1996). They found evidence that the fitness function is not
symmetric, which suggests that body mass may not be under stabilizing selection.
The technical development in Gimenez et al. (2006) reflects development in quan-
titative genetics where cubic splines and locally weighted least squares are used to
assess the shape of fitness functions (Conner and Hartl 2004).

4.2.2 Behavior

Very few CMR studies have addressed fitness functions of behavioral traits other
than those involved in dispersal and breeding activities. The studies I am aware of
have investigated the influence of discrete behavioral traits on fitness components.
For example, Webb (2006) addressed the consequences of tail autotomy in gekos
(Oedura lesueurii) on survival probability. Some animals autotomize their tails,
which is thought to facilitate escape from predators. Tail autotomy may increase the
likelihood of surviving a predator’s attack, however, this may have costs including:
reduced growth, loss of energy reserves, decreased mating success, loss of social
status, and decreased probability of survival during subsequent encounters with
predators. Results did not provide evidence that spontaneous tail autotomy influ-
ences survival of juvenile geckos.

In a completely different framework, Cam et al. (2002b) have addressed fitness
functions of behavior before recruitment: age-specific survival and recruitment
probability, and breeding success probability in the first breeding occasion and
subsequent occasions. Squatters are individuals present on nesting sites they don’t
own, containing chicks, when the owners are absent (e.g., during foraging trips
at sea). Squatters may be aggressive and even Kkill the chicks, exhibit territorial
behavior and coordination behavior with another squatter of the opposite sex. It
has been suggested that squatting is part of behavioral maturation and territory
acquisition and may influence age-specific recruitment probability. Results provided
evidence that squatters have a higher age-specific local survival and recruitment
probability than non-squatters in age-classes where squatting is represented, and a
higher breeding success probability than non-squatters at the same age (Cam et al.
2002b). In addition, the relationship between initial breeding success probability and
subsequent success probability was addressed using random intercept models (i.e.,
frailty models): individuals with high initial breeding success probability consis-
tently have higher subsequent success probability. Consequently, it may be relevant
to use squatting status before recruitment as a measurable covariate to account for
permanent differences among individuals over life (i.e., as an observable criterion
to classify individuals in “quality” classes).

4.3 Coevolution

Few CMR studies have addressed the evolution of morphological and life history
traits within the framework of coevolution. Although morphology and life histories
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have been treated above, studies of coevolution are rare and are worth identifying
separately. For example, Benkman et al. (2005) addressed bill size and survival
probability in red crossbills (Loxia curvirostra). Their hypothesis to explain the
difference in mean bill size between two populations was local infestation by
the scaly-leg mite (Knemidokoptes jamaicensis) which favored local selection of
smaller-bill birds. Indeed, large-billed males were more likely to exhibit symptoms
of ectoparasitic mites. The authors found evidence that infestation by mites was
associated with lower survival probability and caused directional selection against
larger-billed individuals. In a recent review of dispersal and parasitism, Boulinier
et al. (2001) deplored the weakness of the empirical basis in this area of research.

Concerning life history evolution, Dugger and Blums (2001) addressed brood
parasitism in ducks using several fitness components — breeding success, recruit-
ment in offspring, and adult survival probability. They conducted an experimental
study by adding eggs and ducklings to clutches and broods, and also analyzed a
larger observational data set. Their objective was to compare fitness components of
parasitized and nonparasitized female common pochard (Aythya ferina) and tufted
ducks (Aythya fuligula). They found that addition of small numbers of eggs to host
nests (i.e., simulated parasitism) did not influence host clutch size, host hatching
success, or nest success for either species. Parasitism by large numbers of eggs did
not influence nest success in pochards, but it did in tufted ducks nests (numbers of
eggs = 6 or more). Recruitment probability did not differ between parasitized and
nonparasitized nests for either species, and parasitism had no negative effect on adult
survival. Dugger and Blums (2001) concluded that moderate levels of parasitism do
not have a negative influence on host fitness in these species.

4.4 Evolution of Sex-Ratio

A topic that has received much attention in studies of human populations is evolu-
tion of sex-ratio and its variation, either at birth or in the adult segment of the
population (i.e., secondary sex-ratio). This topic has also received much attention
in studies of animals (e.g., Nager et al. 1999, Weimerskirch et al. 2005), but in
many cases without accounting for incomplete detection of individuals. Sex ratio
theory is based on the idea that if the fitness benefits of producing males or females
vary with environmental or social conditions, parents should adjust the sex ratio
of offspring in a way that maximizes their own fitness. For example, if maternal
condition influences survival probability in male and female offspring, the mother
should produce offspring whose sex ratio maximizes the mother’s fitness.
Empirical tests of hypotheses about adjustment of offspring sex ratio according
to environmental and social conditions are scarce. Uller et al. (2004) addressed
the influence of pre-natal sex-ratio on offspring survival and adult reproductive
parameters in common lizards (Lacerta vivipara). In viviparous animals, sex ratio
in-utero may influence the characteristics of offspring through exposure to sex-
specific steroids in-utero and hormonal interactions between offspring. Evidence
from studies in mammals suggests that both sexes are negatively affected by
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opposite-sexed siblings. Uller et al. (2004) provided evidence of a long-lasting
influence of early conditions on fitness components, more precisely of an influ-
ence of pre-natal sex ratio on female fecundity, but not on survival probability. Age
at maturity was also influenced by pre-natal sex-ratio. Prenatal sex-ratio may be
maladaptive: females from male-biased clutches have lower fecundity and mature
earlier than females from female-biased clutches. The fitness return for the mother
may not be compromised because negative effects on the underrepresented sex
could be counteracted by positive effects on the overrepresented sex. Thus, evolu-
tionary consequences of pre-natal sex ratio on secondary sex ratio are still poorly
understood.

4.5 Movement Among Locations and Habitat Selection Studies

Development of multistate models (Arnason 1973; Hestbeck et al. 1991; Brownie
et al. 1993) also gave an enormous stride to studies of movement, migration and
dispersal using data from wild marked animals (Bennetts et al. 2001; Kendall and
Nichols 2004). This is one of the topics that have received attention in a large
proportion of CMR studies relevant to evolutionary ecology. In a paper focusing on
use of multistate models in evolutionary ecology, Nichols and Kendall (1995) laid
the foundations of many subsequent studies of movement in subdivided populations
(e.g., Spendelow et al. 1995; Senar et al. 2002; Blums et al. 2003, Skvarla et al.
2004). They basically explained in detail the relationship between model parame-
terization and classical hypotheses put forward in the literature on dispersal. One
class of hypotheses considered corresponds to models of gene flow in systems of
subdivided populations (e.g., influence of distance among locations on movement
probability; Skvarla et al. 2004). In evolutionary ecology, because CMR studies
mostly focus on vertebrates (i.e., mobile animals dispersing actively), movement
among locations has mostly been addressed within the framework of habitat selec-
tion theory (e.g., Fretwell and Lucas 1970).

In long-lived species, it is natural to assume that individuals have to make deci-
sions concerning breeding sites several times during life. When the individual’s
perspective is considered, the evolution of dispersal can be addressed within the
framework of “habitat selection”, whose broad scope encompasses both the decision
of leaving a site and the choice of a new one (Ronce et al. 2001). Environmental
conditions are likely to vary over space and time; for this reason, fixed dispersal
strategies are unlikely to be favoured by natural selection (e.g., Ronce et al. 2001).
Dispersal can be viewed as a decision making problem (i.e., “to stay or to leave?”;.
e.g., Danchin et al. 1998; Doligez et al. 1999; Brown et al. 2000; Serrano et al.
2001). It has been hypothesized that decisions are state-specific (i.e., depend on
the individual state, such as condition, previous breeding success, breeding habitat,
other environmental factors; e.g., Danchin et al. 1998). Recent syntheses about
dispersal highlighted the growing attention to questions of individual plasticity and
condition-dependant dispersal (Danchin et al. 2001; Ims and Hjermann 2001; Ronce
et al. 2001; Serrano et al. 2001; Serrano and Tella 2003).
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A key question is how individuals make decisions concerning fidelity to the
previous breeding site, or if they decide to move, selection of a new one. One of
the main predictions of the “ideal free habitat selection theory” (Fretwell and Lucas
1970) is that natural selection should favour dispersal tactics where moving leads to
increased realized fitness (i.e., habitat selection should be shaped by fitness maxi-
mization; Holt and Barfield 2001). Densities in the various locations are expected to
change as well as realized fitness in each habitat, and eventually realized fitness
is equilibrated. This is why studies based on this theoretical framework do not
always address “realized” fitness functions: fitness is not assumed to vary according
to behavioral decisions in a systematic manner. The form of the function depends
on the state of the study system (e.g., a sub-divided population), whether it is at
evolutionary equilibrium, whether fitness is density-dependent, etc. Because of the
numerous assumptions this theory relies on (e.g., individuals have perfect knowl-
edge of their environment, there is no cost of moving, etc.; Holt and Barfield 2001),
the scenario leading to the “ideal free distribution” of individuals in space developed
by Fretwell and Lucas (1970) is unlikely to be observed in the wild (Nichols and
Kendall 1995). However, the seminal idea that habitat selection is shaped by fitness
maximization leads to some specific predictions that have been tested in several
CMR studies of habitat selection. The hypothesis that fitness maximization shapes
habitat selection tactics leads to the question of how individuals can assess fitness
prospects in different potential locations (Danchin et al. 1998).

For example, it has been hypothesized that individuals use their own breeding
success and the success of conspecifics as cues to assess expected location-specific
fitness (Danchin et al. 1998; Doligez et al. 1999; Brown et al. 2000; Serrano et al.
2001), and that the decision regarding the location where they will breed in year
t + 1 is made based on evidence from year ¢. Serrano et al. (2005) suggested that
colony size also contributes to determine fitness prospects. Several CMR studies
have addressed breeding habitat selection and movement within this framework
(e.g., Doligez et al. 2002, 2004; Cam et al. 2004a; Serrano et al. 2003, 2005). In
a different vein, Brown et al. (2005) have addressed how intrinsic individual char-
acteristics (more precisely, steroid hormone level and its influence on competitive
ability) influenced movement probability among colonies and colony choice in cliff
swallows (Petrochelidon pyrrhonota).

Furthermore, theories of habitat selection have been invoked to address life
history traits other than movement probability per se. Indeed, because the quality
of the breeding habitat is likely to influence individual fitness, natural selection
may favor habitat selection tactics involving decisions about “when to breed”. It
has been suggested that the two decisions “where to breed” and “when to breed”
are “two sides of the same coin” (Ens et al. 1995). Habitat selection tactics and
age-specific recruitment probability have been addressed in several studies based on
CMR data (e.g., Oro and Pradel 2000; Frederiksen and Bregnballe 2001). The evolu-
tion of dispersal has also been addressed outside the framework of habitat selection
theory. More specifically, it is sometimes assumed that parents produce offspring
with fixed dispersal strategies (e.g., philopatric versus dispersing offspring). Within
this framework, Hamilton and May (1997) have suggested that in species with
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senescent decline in survival, whether parents should produce philopatric versus
resident offspring should depend on their age. Few CMR studies have addressed
hypotheses about age-specific variation in reproductive investment or reproductive
performance, and dispersal (e.g, natal dispersal and senescence; Ronce et al. 1998).

Last, dispersal evolution theories or habitat selection theories make assump-
tions about whether dispersal is costly (e.g., there may be mortality costs associ-
ated with movement, costs of settling because of competition with conspecifics,
or costs associated with reproduction in unfamiliar environments). Massot et al.
(1994) have studied settlement ability using experimentally translocated common
lizards (Lacerta vivipara). They compared individuals that survived after the intro-
duction with those of non-manipulated populations. Results provided evidence that
translocated individuals had a lower survival probability after being transferred to
their new habitat, except juveniles. Adults may thus incur costs associated with
unfamiliarity with the new habitat. Selected individuals had particular features in
terms of body mass and size. In addition, surviving transplanted males have the
same characteristics as transients or immigrants in natural populations (body mass
and size); they may thus have been transients or immigrants in their own population
of origin. However, this did not hold in females.

5 Development of CMR Estimation Models to Address the
Genetic Basis of life History Traits in Wild Animal Populations

A condition for natural selection is heritability in the focal trait (Premise (iii),
Section 4.1.). Until now, evolutionary ecologists have used CMR estimation models
to address the relationship between demographic parameters themselves (i.e.,
covariation in life history traits) or between demographic parameters and morpho-
logical traits (i.e., fitness functions), which has permitted them to gain insights into
Premise (ii) for natural selection. However, studies of Premise (iii) have concerned
either “non-demographic” traits (morphological, physiological, behavioral traits),
or demographic traits estimated without accounting for imperfect detection of indi-
viduals by investigators. As far as the evolution of demographic parameters them-
selves is concerned, the genetic basis of these traits has not been addressed using
CMR estimation techniques. Here I suggest that recent methodological develop-
ment concerning both quantitative genetics models of estimation of additive genetic
variance of traits and CMR models of estimation of demographic parameters theo-
retically allows integration of the two fields.

5.1 Features of Current Knowledge of Heritability of Demographic
Parameters in Wild Animal Populations

Without using CMR estimation models, several studies have provided evidence
that life history traits (fitness components such as age of first breeding, lifetime
reproductive success, clutch size or litter size for example) exhibit low heritability
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compared to other traits (morphological, physiological or behavioral traits), but the
studies in question have also provided evidence that such heritability levels cannot
be ignored, and that they vary among species for the same trait and among popula-
tions of a single species (Stearns 1992; Matos et al. 1997; Kruuk et al. 2000; Réale
and Festa-Bianchet 2000; Réale et al. 2003; Sheldon et al. 2003; Charmantier et al.
2006a, b; Pigliucci 2006). Comparison of results obtained using different statis-
tical techniques to address heritability and additive genetic variance of traits (more
precisely parent-offspring regression versus the animal model; Section 5.2.2) have
provided evidence that the question of heritability of life-history traits should be
re-addressed using the most modern techniques (e.g., Kruuk et al. 2001). Moreover,
several researchers have pointed out that despite the success of quantitative genetics
theory in domesticated animal and plant breeding, very few studies of natural popu-
lations have provided evidence of micro-evolutionary changes in heritable traits in
response to selection in the presence of directional selection (Kruuk 2004). Two
hypotheses have been put forward to explain this: (1) the approaches to estimation
of the amount of genetic variation transmitted from parents to offspring we have
used so far lead to biased estimates of variation or of the strength of selection (more
precisely they overestimate the additive genetic variance or the directional selection
differential, (see below)), and (2) the genetic basis of different traits should not be
addressed separately (Lande and Arnold 1983; Houle 1991). Researchers in quan-
titative genetics have developed approaches to estimating genetic parameters that
may partly solve these problems (Lynch and Walsh 1998).

Importantly, the problem of imperfect detection of individuals by investigators
has been overlooked. Until now, in wild animal populations, quantitative genetics
studies focusing on demographic parameters have been conducted using observed
values of life-history traits (e.g. Sheldon et al. 2003), which is reasonable only in
situations where detection probability of marked individuals alive and present in
the study area is close to 1. Such situations have long been known to be rare in
wild animal populations (Lebreton et al. 1992; Clobert 1995; Martin et al. 1995).
In the vast majority of populations, estimation of survival or dispersal probability,
age-specific recruitment probability (one definition of which is the probability of
making a transition between state “pre-breeder” and state “breeder” at a given
age), and adult breeding probability (in species exhibiting intermittent breeding),
all require use of estimation models explicitly incorporating detection probability.
Unless this probability is equal to 1, the age at which the first breeding event was
recorded cannot be assumed to be a reliable measure of age of recruitment, and the
age at which the last breeding event was observed cannot be assumed to be a reliable
measure of age of last reproduction, observed breeding events cannot be assumed
to account for all the breeding attempts in an individual’s life, and individuals not
recaptured or not resighted in a given year cannot be assumed to be dead that year.
In addition, estimation of breeding success probability in a given breeding occasion,
the probability of laying a clutch of a given size, or giving birth to a litter of a given
size, may require CMR estimation models accounting for state-specific detection
probability (i.e., multistate models, Nichols et al. 1994; Nichols and Kendall 1995;
Williams et al. 2002). Besides, even if heritability of survival probability per se is
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not of interest, in several classes of CMR models for open populations, several of
the aforementioned demographic parameters are conditional on survival probability
over one or several time intervals between sampling occasions. Therefore, the issue
of estimation of survival probability in situations where detection probability is <1
cannot be ignored.

5.2 Mixed CMR Models to Address Heritability
of Demographic Parameters

Lynch and Walsh (1998, p. 50) summarized the problem of analysis of the genetic
basis of quantitative traits as follows: “inferences concerning the genetic basis
of quantitative traits can be extracted from phenotypic measures of resemblance
between relatives”. Obviously, to use CMR statistical techniques to estimate para-
meters relevant to quantitative genetics, CMR data from marked relatives are
needed. Long-term monitoring programs of marked individuals in wild animal
populations have often led to such data. The principles of quantitative genetics are
general; they have been widely used in animal and plant breeding and are valid
in wild organism populations as well. However, “because the systems of mating
and evolutionary forces found in natural populations are generally quite different
than the controlled programs imposed on domesticated species, study of the inher-
itance of quantitative traits in natural populations presents a number of challenges”
(Lynch and Walsh 1998, p. 5). The distinctive feature of the data sets from wild
animal populations is that they correspond to complex pedigrees; there is a variety of
degrees of relatedness between individuals. In domesticated animals, investigators
design experiments to address the genetic basis of phenotype. In wild animal popu-
lations fathers of individuals often cannot be identified unless molecular approaches
are used (Thomas et al. 2002), especially in species without paternal care or species
where extra-pair paternity is common. Most long-term monitoring programs are
purely observational if the target species is protected or is (locally) of conservation
concern. Consequently, specific sources of phenotypic variation in populations have
seldom been addressed using experimental approaches. Experiments have some-
times been conducted (e.g., cross-fostering, Wiggins 1989), but designs specifically
relevant to quantitative genetics are rare and such experiments are usually short
term.

One of the main obstacles encountered by researchers using CMR estimation
methods to address heritability in demographic parameters is obtaining “one” esti-
mate (“one measurement”) of the focal trait per individual (even the mean value
over the lifetime). Early efforts to assess heritability in quantitative traits (morpho-
logical traits or life history traits) have relied on estimation of the slope of parent-
offspring regression (Lynch and Walsh 1998), which requires one measurement of
the trait in parents (or one parent) and one measurement in offspring. This was done
either by estimating the mean value of the trait over the parent’s lifetime and the
mean value of the offspring trait over its lifetime, or by taking one single measure-
ment of the parent and the offspring. Approaches to estimation of demographic
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parameters almost inevitably involve some degree of aggregation of data (Cooch
et al. 2002; Nichols 2002), and it is not possible to estimate quantities like “the
individual survival probability” using data from a single individual. Development
of models with individual covariates (Skalski et al. 1993) allows investigators to
achieve high levels of stratification of populations (Cooch et al. 2002) and to estimate
individual-specific demographic parameters (e.g., an “individual survival proba-
bility”), provided relevant measurable covariates are available. However, the distribu-
tion of the focal trait (the individual survival probability) in the population may not be
accounted for in a satisfactory manner by the relationship between survival probability
and a measurable individual covariate (e.g., body size, laying date in birds, etc.).

Recent developments in CMR estimation methods share a common feature with
the most recent techniques to estimate heritability (Fry 1992; Lynch and Walsh 1998;
Kruuk 2004; Schaeffer 2004), namely, use of mixed models (including both fixed
and random effects). More specifically, the feature shared by the animal model in
quantitative genetics and some CMR estimation models is that part of the varia-
tion in the focal trait is accounted for by random effects. As emphasized in Section
4.1.2, in human demography, random effects have long been used to account for
individual heterogeneity in mortality risk. Mixed effects models may not provide
investigators with “one estimate of survival probability per individual”, but they
provide an estimated distribution of the demographic parameter in the population,
that is, an estimated variance of the focal trait among individuals (after accounting
for relevant fixed effects: sex, age, location, etc.). Similarly, according to Kruuk
(2004) “One of the major recent changes in the study of quantitative genetics of
natural populations has been the use of mixed models, in particular the form of mixed
models known as the ‘animal model’, for the estimation of variance components.”

The following section is largely inspired by Lynch and Walsh (1998), and
Conner and Hartl (2004): it is intended for readers without background in quan-
titative genetics. This material is needed to understand the points shared by
recently developed CMR and quantitative genetics estimation techniques. All the
topics addressed here are extensively covered in two quantitative genetics “bibles”
(Falconer and Mackay 1996; Lynch and Walsh 1998).

5.2.1 A Very Short Introduction to Quantitative Genetics Theory

The phenotypic value of an individual (the measurement of a given quantitative
trait for an individual: morphological, demographic, physiological, or behavioral
trait), z, is determined by the individual genotype and the environment. Quantitative
genetics “focuses on the phenotype, usually without knowing the genotype under-
lying the traits” (Conner and Hartl 2004, p. 3). The traits “are encoded by a large
number of genetic loci, and for practical reasons, the individual loci are generally
unobservable” (Lynch and Walsh 1998, p. 4). The phenotypic value is assumed to
be the sum of the total effects of all loci on the trait, G, the genotypic value and an
environmental deviation E. That is,

z=G+E ey
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The genotypic value is the phenotype produced by a given genotype averaged across
environments. The environmental deviation is the difference between the pheno-
typic and the genotypic values caused by the environment (temperature, prey avail-
ability, rainfall etc., Conner and Hartl 2004, p. 101). The mean and the variance
(Gi) characterizing the distribution of individual phenotypic values are properties of
populations; there is a distribution of individual genotypic values and of individual
environmental deviations. The distribution of environmental deviations is generally
assumed to be normal with mean = 0. One central goal of quantitative genetics is
partitioning the phenotypic variance of, into genetic and non-genetic components:

O'i = 0'26 + 02E 2)

where o7 is the genotypic variance and o7 is the environmental variance.

The evolutionary response of a trait to selection is a function of the intensity of
selection and the fraction of the phenotypic variance attributable to certain genetic
effects (Lynch and Walsh 1998). More specifically, one draws a distinction between
additive genetic effects (the effects of each allele in the genotype adds to determine
the total effect on the phenotype) and interactions between alleles at the same locus,
dominance, or at different loci, epistasis. Hence, the genotypic variance 0'%; can be
partitioned into ci, the additive genetic variance, 02D the dominance variance, and
0% p,» the epistatic variance (or interaction). That is,

2 2 2 2
0G = 0a+0G+0kpy 3)

The additive genetic variance is the most important for sexually reproducing species
because only the additive effects of genes are transmitted directly from parents to
offspring; information on other sources of genetic variation (e.g., linkage disequi-
librium, polyploidy, etc.) can be found in Lynch and Walsh (1998).

The directional selection differential, S, is the within-generation difference
between the mean phenotype after an episode of selection (but before reproduction)
and the mean before selection. Because of direct transmission of additive effects,
o7 is most important in determining changes in mean phenotypic values across
generations in sexual species. It is also the easiest of the genetic components of
variance to estimate using resemblance between relatives: resemblance is caused
primarily by additive variation (Lynch and Walsh 1998). Change in mean pheno-
typic values across generations is the definition of phenotypic evolution (Deduction
II). The degree to which the mean phenotype after selection u, deviates from the
mean before selection (o depends on survival probability and reproduction (fitness)
of individuals with different phenotypes. Under specific assumptions concerning
the (un-) importance of genotype x environment covariance and interaction, if the
regression of the offspring phenotype on that of its average parent is linear with
slope B, a change in the parental mean phenotype induces an expected change in the
mean phenotype across generations equal to:

Ap = o — pg = B°S. “
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where 1ty is the mean phenotype of the offspring of the selected parents. This
equation is the breeder’s equation. “It combines information on the forces of selec-
tion (S) with that on inheritance (3) to yield a predictive equation for evolutionary
change across generations. If 3 is zero, no matter how large S is, the response to
selection across generations is zero” (Lynch and Walsh 1998, p. 47).

In sexually reproducing species, genotypes are not passed on from parents to
offspring, but are created anew in each offspring by combining an allele from each
parent at each locus. “The breeding value can be defined as the effect of an indi-
vidual’s genes on the value of the trait in its offspring; this effect is caused by
the additive effects of genes — it is sometimes called ‘additive genotype’ and has
variance” 0124 (Conner and Hartl 2004, p. 111). Heritability is the proportion of the
phenotypic variance that is due to genetic causes. Broad-sense heritability is defined
as follows:

2
o
H =% 5)
Op
However, because the genotypic value includes genetic components (e.g., epistatis)
that do not contribute to resemblance between relatives as much as the additive

genetic component, we usually define the narrow-sense heritability:

2
(o)
h=—24 (©6)
Tp
In parent-offspring regression, h? can be estimated using the slope of the
regression.

5.2.2 The Classical Parent-Offspring Regression and the Animal Model

Parent-offspring regressions involve measurements from individuals with specific
degrees of relatedness. This commonly used technique to estimate heritability has
advantages that are not restricted to practical considerations (such data are usually
available and the computations are done using classical least squares regression):
parent-offspring regression is not affected by dominance or linkage (loci close
together on the chromosome are said to be genetically linked, which makes recom-
bination between loci during meiosis rarer; see Lynch and Walsh 1998 for details,
p- 537). However, in monitoring programs of wild animal populations, information
from individuals with different degrees of relatedness is available. The so called
animal model allows investigators to make full use of the available information.
The fact remains that the degree of relatedness of the individuals included in the
analysis must be known, and the corresponding information is used in a model
where phenotypic values are expressed as a function of fitness, breeding values,
environmental effects, etc.

In addition, in parent-offspring regression, measurements from individuals were
either averaged over life, or a single observation was retained for analysis. For some
traits, lack of variation over life may be a reasonable assumption (e.g., body size
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after sexual maturity in species whose growth takes place before reproduction),
but not for all traits (e.g., clutch size in birds) or all species (e.g., body size in
snakes). Last, genotype x environment covariance and interactions are assumed to
be negligible, as well as permanent maternal effects if data from the sole mother are
available (permanent maternal effects occur when the phenotype of the offspring is
influenced by the phenotype of the mother, which may be caused either by genetic
or environmental effects; Mousseau and Fox 1998). One of the advantages of the
animal model is to allow investigators to take such effects into account explicitly in
analyses of phenotypes to address variance components and heritability. Studies that
have used both parent-offspring regression and the animal model with the same data
set to address heritability have often provided evidence of discrepancies in results
(e.g., Kruuk et al. 2001), which may result from the fact that variance components
accounting for a larger number of sources of variation in phenotypic values can be
included in analyses with the animal model compared to parent-offspring regression
(Kruuk 2004).

5.2.3 Estimation of Heritability and Breeding Values: The Animal Model

General Formulation of the Animal Model

For the sake of simplicity, here I will assume that phenotypic values of a trait (morpho-
logical, physiological, behavioral, or demographic) are normally distributed, as in
the case in many quantitative genetics applications (when focusing on traits such as
body mass, size, or laying dates in birds for example; e.g., Kruuk et al. 2000; Wilson
etal. 2005). However, the statistical theory for estimation of variance components and
prediction of random effects in mixed models exists for variables with other distribu-
tions (e.g., Bernoulli, Poisson; Fahrmeir and Tutz 1994; Matos et al. 1997; Lynch and
Walsh 1998, p. 745, 779), which may be more useful for addressing heritability in
traits such as survival probability or breeding success probability. Besides, estimation
per se is beyond the scope of this paper: several approaches have been developed in
quantitative genetics (namely, REML and Bayesian methods based on Markov Chain
Monte Carlo simulations; Blasco 2001), which are well suited for complex pedigrees
with unbalanced data, as is usually the case in long-term monitoring programs of wild
marked animal populations. These methods can be implemented within the frame-
work of CMR estimation models (e.g., Dupuis 1995; Dupuis et al. 2002; Vounatsou
and Smith 1995; Royle and Link 2002; Brooks et al. 2002, 2004; King and Brooks
2002, 2004; Link and Barker 2004; Otis and White 2004; Royle 2007; Royle and
Kéry 2007). However, to estimate heritability in fitness components, more flexible
mixed CMR models than existing models are needed.

In the general case (i.e., where the phenotype is determined by genetic and envi-
ronmental effects plus interactions between them), the phenotype of the kth indi-
vidual of the ith genotype exposed to the jth environmental effect can be described
as a linear function of four components (Lynch and Walsh 1998).

zijk = Gi + Iij + Ej + eiji (7



Contribution of Capture-Mark-Recapture Modeling to Studies 113

where G; is the genotypic value, which may be a function of the population mean
phenotype (e.g., z may depend on age, year of birth, gender for example, which can
be accounted for using additional fixed effects, and year using either fixed or random
effects, depending on the study). G; includes the additive genetic effects (breeding
value) and possible genetic components such as dominance and epistasis (different
gene effects on the phenotype). E is the environmental effect on the phenotype, I
is the genotype x environment interaction effect on the phenotype, and e is the
residual deviation.
Accordingly, the total phenotypic variance of a population can be written as:

0% = 0% + 07+ 206 + 0% + 0> (8)

where o6 £ is the genotype x environment covariance. o7 is the genotype x envi-
ronment interaction, which corresponds to the variation in the phenotypic response
of specific genotypes to different environments. o g is the physical association
of specific genotypes with environments: if the genotypes are randomly distributed
with respect to environment, o g is zero. O'ZG may be further decomposed according
to additive genetic variance (Gi) and types of gene effects on the phenotype (see
above). A source of environmental variation of particular interest in evolutionary
ecology is maternal effects (for additional information, see Lynch and Walsh 1998).

A distinctive feature of the animal model is that random effects are used to
account for the additive genetic variance (breeding values), and that information on
the degree of relatedness of the individuals included in the analysis is used to esti-
mate 0'124. Other random effects may be used to account for other components of the
genotypic value (e.g., genotype X environment covariation), and also to account for
sources of variation in the phenotypic values other than genetic effects (e.g., envi-
ronmental effects). The general formulation of the animal model is the following.
Consider an x 1 column vector y with n observed phenotypic values. The model
assumes that y can be described as a linear model with a p x 1 vector of p levels of
fixed effects (B), a g x 1 vector of q levels of random effects (1), and ann x 1 vector
of random, residual terms (e). The first element of vector § is generally the popu-
lation mean. Importantly, the elements of the vector u are usually genetic effects,
including additive genetic effects (i.e., breeding values). The residual deviations are
assumed to be independent of random genetic effects.

y=XB+Zu+e )

X and Z are design matrices whose elements are equal to O or 1 depending on
whether the effect influences the individual’s phenotype. The expectation of y is:

y XB
Elul=1]0 (10)
e 0
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and the variance—covariance structure of y is:

*(0)=(%) an

G is the variance—covariance matrix for random effects other than residual terms,
and R is the variance—covariance matrix of residuals. The square matrices G and
R are assumed to be non-singular and positive definite. V is usually expressed as
follows:

V = V(y) = ZGZ +R (12)

In many applications, residual terms are assumed to be independently and iden-
tically distributed with mean 0 and variance o2. Therefore, R = I o2. In situations
where the phenotype is assumed to be completely influenced by fixed effects (e.g.,
age), and observations are independent (e.g., there is only one observation per indi-
vidual), V is equal to R. However, the distinctive feature of genetic analysis is that V
is generally not diagonal. By definition, individuals with some degree of relatedness
share part of their genes and the main objective of quantitative genetics analysis
is to address the genetic basis of phenotype using resemblance between relatives.
Hence, it is hypothesized that the phenotypic values of relatives are not independent
and that part of the dependence is caused by additive genetic effects: addressing this
hypothesis is central to quantitative genetics.

Incorporation of Dependency Among Relatives in CMR Models

The matrix G describes the covariance among random effects. Assuming that the
only random effects (x) in the model are the additive genetic effects, G corresponds
to the covariance in additive genetic effects among relatives. It can be shown that
the covariance between two relatives i and j is given by 20;;0%, where O;; is the
coefficient of coancestry (Falconer and Mackay 1996, Lynch and Walsh 1998). It
is the probability that an allele drawn at random from individual i will be iden-
tical by descent to an allele drawn at random from individual j. For example, this
probability is 0.25 for parent and offspring, so that the additive genetic covariance
between them is 0.5 (’124 (Kruuk 2004). The matrix including (twice the) coefficients
of coancestry must be built before the analysis (it is often called the Numerator Rela-
tionship Matrix, A), according to the specific data set in hand and the corresponding
pedigree. Several pieces of software or routines have been designed to build it (e.g.,
Kruuk 2004, Saxton 2004, Kinghorn and Kinghorn 2007). This matrix is used to
specify the variance—covariance structure of u: G. R and G have to be modified
according to the design of the study and the question addressed. For example, their
structure may account for repeated measures from the same individual through an
additional random effect reflecting permanent environmental effects on all obser-
vations from the same individual, and through non-independence of residual terms
(Kruuk 2004). Similarly, maternal effects or common environmental effects can be
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accounted for by an additional random effect on all offspring of a given mother, or
on all individuals sharing the same environment during development, respectively.

Recently developed CMR models designed to estimate demographic parame-
ters allow consideration of both fixed and random effects. Importantly, develop-
ment of individual-level models to accommodate individual covariates (Skalski
et al. 1993; Royle 2008) required specification of the likelihood for each indi-
vidual capture—recapture history; this is also required to accommodate individual
random effects (Royle 2007). Incorporation of a user-defined design matrix and
variance—covariance matrix for random effects is what remains to be made possible
to address the genetic basis of demographic parameters estimated using CMR esti-
mation models accounting for incomplete detection of individuals. It is important to
note that in quantitative genetics, the assumption of non-independence among indi-
viduals is central: the main objective of analyses is assessment of the contribution
of common genetic material to resemblance among relatives. Therefore, develop-
ment of flexible tools to specify the variance-covariance matrix of random effects
will probably greatly influence the success of the efforts to address heritability in
demographic parameters.

Multitrait Models

The animal model has been used in quantitative genetics to conduct multivariate
analyses of life history traits (Charmantier et al. 2006a). The “multivariate breeder’s
equation” (Pigliucci 2006) allows consideration of pleiotropic effects such as antag-
onistic pleiotropy invoked in evolutionary theories of aging (e.g., Tatar 2001). In
theory, the state-space formulation of the Arnason—Schwarz model for example
allows simultaneous estimation of several life history traits. Several individual
random effects can be used (Yashin et al. 2002; Cam et al. 2004b) to address the
correlation in latent life history traits.

Other Methodological Challenges

In addition to the technical difficulties associated with the specification of a user-
defined variance—covariance matrix for random effects in CMR estimation models,
two other issues will require additional efforts. First if estimation is done within the
Bayesian framework, according to some researchers, how to conduct model selec-
tion is unclear for models with random effects (e.g., Spiegelhalter et al. 2002). Some
computer-intensive methods (Reversible Jump Markov chain Monte Carlo simula-
tions; Green 1995) have been proposed to explore variable dimension statistical
models, but may be difficult to implement in a flexible manner in standard software
programs (Brooks et al. 2002). In addition, there has been a strong emphasis on
evaluation of the fit of models using information criteria to perform model selection
(e.g., Lebreton et al. 1992; White 2002; Choquet et al. 2003; Pradel et al. 2003).
Here again, how to assess the fit of models is not straightforward.
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Breeding Values and Selection Studies

As emphasized above, studies involving CMR models to estimate demographic
parameters have addressed the question of the evolution of morphological or physi-
ological traits using fitness functions: the relationship between the phenotypic value
of a (morphological, physiological, behavioral) trait and fitness components. Kruuk
(2004) pointed out that one may find evidence of such a relationship even in situations
where there is no relationship between the genetic basis of the trait and fitness. This
may occur when there is an environment-induced covariance between the trait and
fitness (variation in environmental conditions are associated with joint variation in
trait values and fitness). To detect such a phenomenon, the animal model may be
used to predict individual breeding values (i.e., prediction of an individual random
effectaccounting for o , the variance of the additive genotype). Comparisons between
two ways of assessing selection gradients provide insight into the above covariance:
fitness functions obtained using breeding values, and using phenotypic values.

5.3 Concluding Remarks

As emphasized by Lynch and Walsh (1998), evolutionary biology has considerably
been influenced by quantitative genetics, but the need for statistical tools (more
specifically, mixed models) to analyze complex pedigrees in wild animal popu-
lations is currently one of the motivations for statisticians developing methods to
estimate relevant quantities in quantitative genetics. The material introduced above
suffers from the simplifying assumptions early quantitative genetics suffered from,
but the current machinery of the field and of statistics can handle more complex
situations likely to be relevant to wild animal populations, such as genotype x envi-
ronment interactions, maternal, or family effects (e.g., Massot and Clobert 2000). In
addition, multivariate phenotypes and pleiotropic effects can be addressed, and a few
studies conducted using empirical data from wild animal populations where detec-
tion probability of individuals is high have provided evidence of additive genetic
variation in life history traits, and of evolutionary trade-offs and opposing direc-
tional selection on traits (e.g., Charmantier et al. 2006a).

One should keep in mind, however, that if fitness functions (common in CMR
evolutionary ecology studies) are not sufficient to address evolutionary change in
traits, quantitative genetics has its limitations as well. Pigliucci (2006, p. 5) recently
pointed out that heritability is a “local measure, meaning that it can, and often
does, change with changes in the population’s gene frequencies and environments
encountered. [...] Evolution de facto changes gene frequencies. [...] Heritabilities
do not provide a useful measure of the long-term capability of traits to respond
to selection”. Quantitative genetics is successful at making short-term predictions,
mostly qualitative predictions, but in its current state evolutionary biology theory is
unable to predict long-term evolutionary change in traits.

In addition, there is a long tradition of experimentation in quantitative genetics,
which uses creation of “artificial sets of offspring derived from carefully designed
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crosses among parents sampled at random from a natural population” (Pigliucci
2006, p. 9). Experimentations of that type may be possible in some wild animal
populations, but long-term studies (e.g., & 30 years) resulting in complex pedi-
grees haven’t been designed that way. This implies that some inferences (about
maternal effects for example) may not be possible with data from wild animal
populations. In addition, complex pedigrees may lead to situations where there
are small sample sizes to estimate some variance components (Quinn et al. 2006).
However, Pigliucci (2006, p. 9) also questioned whether an artificially created set of
genotypes should be used to draw inference about genetic parameters in the natural
population, because “it is vanishingly unlikely that the individuals in the population
in question would ever cross in even approximately the same pattern as required
by statistics tests and laboratory experiments”. In other words, the corresponding
estimated genetic parameters may not be thought of as the parameters in the natural
population.

Nevertheless, limitations of the inferences that can be drawn from quantitative
genetics parameter estimates should not overshadow the weakness of our knowledge
of heritability of life history traits and of their genetic basis in wild animal popula-
tions. As emphasized above, the emergence of new statistical tools calls for studies
of the genetic basis of these traits (Kruuk 2004). In addition, the rare studies where
detection probability is likely to be high (although not formally estimated) and that
have used animal models with values of life history traits directly observed (e.g., the
mute swan, Cygnus olor, population in Abbotsbury, Dorset, U.K.) have provided
stimulating results (Charmantier et al. 2006a, b). Last, Houle (1992) pointed out
that many previous inferences about the potential for evolution of life history traits
compared to other traits have been drawn using narrow-sense heritability, h? (see
above). Lower heritability of life history traits compared to others has been inter-
preted as evidence of lower genetic variation in demographic parameters than in
other traits. However, Houle (1992) argued that heritability is not appropriate for
comparative studies of genetic variation in traits and proposed a dimensionless
criterion for this purpose. This also calls for new studies of the genetic basis of
life history traits in wild animal populations.

6 Additional Topics

“Evolutionary ecologists consider both historical and contemporary influences on
patterns of variation and study variation at all levels, from within-individual vari-
ation (e.g., ontogenetic, behavioral) to variation among communities or major
taxonomic groups” (Fox et al. 2001, Preface). The enormous range of ques-
tions potentially relevant to evolutionary ecology is reflected in the explosion of
studies that have used CMR estimation models, and of the scope of such models.
In this paper, for the sake of conciseness and homogeneity, several important
topics and CMR models have not been addressed. One of the reasons for this
choice is that overall, studies relevant to evolutionary ecology that have used these
approaches are still rare. However, as for models developed earlier, evolutionary
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ecologists may only grab these tools once they are widely used elsewhere and are
sufficiently developed and flexible to allow them to address novel questions rele-
vant to current evolutionary theory, concepts and methods. There is no conceptual
reason why such models should not be used by evolutionary ecologists in the near
future.

(i) CMR approaches to estimation of vital rates specific to ecological communi-
ties (e.g., Nichols et al. 1998a, b; Dupuis and Joachim 2006; Kéry and Royle
2008, this volume). These approaches use the species ID as the individual
mark in population modelling. A few studies have opened the way to ques-
tions undoubtedly anchored in evolutionary ecology. For example, Doherty
et al. (2003) have addressed the relationship between sexual selection and local
extinction probability in bird communities. As Stenseth and Saetre (2003, p.
5576) emphasized: “community ecology and evolutionary ecology have in the
past, to a large extent, been moving along separate paths. [...]. However, CMR
estimation methods have already been used to draw inferences about varia-
tion in species diversity at long evolutionary time scales (Nichols and Pollock
1983). Stenseth and Saetre (203, p. 5577) also emphasized that “Doherty et al.
(2003) provide an excellent demonstration of the potential power of using
long-term ecological monitoring data to address key problems in community
ecology and evolution”

(i) Occupancy estimation models (MacKenzie et al. 2006). This recent book by
MacKenzie and colleagues focuses on estimation methods to address “occu-
pancy in ecological investigations”, either occupancy of sampling units by one
species, or by several. In other words, these methods are relevant not only to
ecological communities (see above), but also to all the studies using “presence—
absence data” over space and time for a given species. The number of questions
relevant to evolutionary ecology that can be addressed using these methods
is very large (e.g., metapopulation dynamics, changes in geographical range,
epidemiology). This is an area of active research to develop models to estimate
spatio-temporal variation in occupancy probability, but to date mostly method-
ological work as been done (e.g., MacKenzie and Kendall 2002; MacKenzie
et al. 2002, 2004; MacKenzie and Bailey 2004; MacKenzie and Nichols 2004;
Royle et al. 2005).

(iii) Noninvasive genetic sampling. Despite the intensive use of molecular markers in
evolutionary ecology (e.g., Conner and Hartl 2004), capture—recapture analysis
of DNA-based data has received little attention in this field. Recent development
in capture-recapture theory designed for molecular markers may open the way
to new studies (Lukacs and Burnham 2005; Petit and Valiere 2006).
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Application of Capture—Recapture
to Addressing Questions in Evolutionary
Ecology

Michael J. Conroy

Abstract Capture-recapture (CR) is one of the most commonly used methods
in quantitative ecology. Until recently, much of the emphasis of CR was on the
estimation of abundance and vital rates, especially survival rates. Here, I discuss
several important advances that have enhanced ecologists’ ability to address ques-
tions in evolutionary ecology. Generalizations of CR methodology to include group
and covariate effects have allowed direct, empirical modeling of the influence of
extrinsic and intrinsic factors on demographic rates. Advances in sampling design
and software now allow CR modeling to address questions such as dispersal and
natal fidelity, tradeoffs between reproductive effort and survival, senescence, and
variability in demographic rates in relation to individual traits, among others.
Furthermore, complex ecological and evolutionary questions seem to be especially
amenable to a paradigm of multiple alternative (vs. single null) hypotheses, which
is consistent both with information-theoretic and Bayesian approaches to inference.

Previous CR approaches have emphasized the estimation of averages of demo-
graphic parameters for individuals grouped into classes (age, sex, size or other
attributes), but evolutionary questions tend to emphasize individual variability,
with fitness “parameters” best characterized by frequency distributions. Bayesian
approaches are particularly appropriate for modeling individual, temporal, spatial,
and other components of variation via random effects models. Finally, Bayesian
methods and conditional/hierarchical modeling allow for ready construction of
complex models of life history from a variety of data sources. I present selected
examples to illustrate each of these major points.
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1 Introduction

Capture—recapture (CR), in which animals are captured, marked with a tag or
other device, and recaptured at some future time, is one of the most common
techniques used in ecological studies. CR may be employed simply to estimate
population size or vital rates, or more interestingly, to investigate a wide array
of questions about variability (over space, time, and among individuals) in these
parameters (Williams et al. 2002).

The rich nature of CR data now makes it possible, given appropriate experi-
mental designs and sufficient data, to address a wide range of evolutionary ques-
tions, including

Modeling of factors influencing demographic rates.

Analysis of individual heterogeneity in fitness.

Metapopulation dynamics.

Alternative reproductive strategies, including survival/reproduction tradeoffs,
breeding propensity and age at first reproduction, senescence, and fidelity to
breeding areas.

By definition, because CR allows an investigator to follow individual animals or
groups of animals through time, it apparently provides a rich source of informa-
tion on individual behavior and fates. It also is possible to determine the “state” of
animals at various points in time, where “state” can refer to any attribute about the
individual, such as the age, physical condition, breeding status, or the location of
the animal in space.

However, this richness is balanced by the fact that CR data are based on recap-
tures, so if animals are marked and released, but no animals are ever encountered, no
information is provided to the study. Also, unless care is taken in modeling, there
will be confounding between the parameters of biological interest, and nuisance
parameters related to the sampling process. Finally, statistical models must balance
the desire of evolutionary biologists to exploit the rich information in CR studies
(seemingly calling for complex models), with the fact that in most studies, data are
relatively limited (calling for simpler models).

2 Historical Advances

2.1 Separation of Encounter from Survival and Other
Parameters — The CJS Model

As noted earlier, CR studies fundamentally depend upon recaptures. However, in
order to model recaptures, we must also model the events that lead to animals not
being recaptured. It is obvious what events lead to a recapture: for instance, if an
animal is marked and released at time ¢, in order to be recaptured at 7+1, it must
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Fig. 1 Events leading to capture histories under the Cormack—Jolly—Seber model

(1) survive the interval [z, t+1], and (2) be recaptured at time 7+1. By contrast, there
are three ways in a simple CR study that an animal can fail to be recaptured at
t+1: (1) it died between ¢ and #+1, (2) it left the study area between ¢ and #+1, and
(3) it was alive and present on the study area, but was not recaptured at #+1 (Fig. 1).
Failure to separate these events in the parameterization of a statistical model leads
to biases in estimates, and confounding of inferences. For example, the “traditional”
approach of return analysis, still used by some ecologists, which considers the
proportion of animals marked and released that are recaptured or resighted in a natal
area, is at best a crude index, and confounds fidelity with mortality and nuisance
sampling parameters. Because these factors likely vary over time and space, there
is no assurance that the return rate is even a relative index to fidelity, survival, or
other biological parameter. Unfortunately, there is still a tendency among ecologists
and evolutionary biologists to ignore sampling intensity; Clobert (1995) lamented
that fewer than 10% of evolutionary studies until that time considered sampling
intensities (capture probabilities). This percentage has doubtless increased in the
intervening period, but it is interesting to note that of 45 citations of Clobert (1995),
only 6 do not involve either Clobert as a coauthor, or one of the other regular atten-
dees at EURING (e.g., Barker, Cam, Lebreton, Hines, Nichols, Schwarz, to name a
few). This by no means proves that evolutionary ecologists are ignoring sampling
intensities, but perhaps does suggest that use of CMR or methods in evolutionary
studies is still confined to a relatively small group of scientists.

Fortunately, a statistical tool has existed for 40 years that allows at least for valid
separation of sampling intensity from the biological processes of interest. Indepen-
dently developed by Cormack (1964), Jolly (1965), and Seber (1965), the Cormack—
Jolly—Seber (CJS) model has been an important mainstay of empirical population
analysis. The CJS model separates the biological and sampling events by defining
two parameters:

e ¢;, the probability that an animal alive at sampling occasion i is alive and on the
study area at sampling occasion i+1,
e p;.1, the probability that a marked animal that is present at i+1 is recaptured.
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Note that the first of these parameters still combines the event of “surviving”
with that of “remaining on the study area”, and for that reason is sometimes termed
apparent survival; I will return to this point later. Note too that the second param-
eter, recapture, is only defined at the second and subsequent capture occasions. The
reason for this is that CJS models only the fate of marked animals, and at the first
capture period, no animals are marked.

The importance of separating sampling probabilities (p) from the parameters of
the process of interest (in this case, ¢), is made clear by way of a simple example.
Suppose that one marks and releases 1,000 animals and subsequently observes 250
in a recapture sample. Under the CJS model, the expected value of this outcome
is 1,000 x ¢ x p, and thus 250 is consistent with any combination of ¢ and p
where this quantity equals 250, for instance, ¢ = 0.5 and p = 0.5, or ¢ = 0.25 and
p = 1.0. Because there are an infinite number of such combinations, the observation
“250 recaptures out of 1,000 releases” provides no information on the parameter of
interest (¢), unless p can be estimated and “removed” as a nuisance parameter.

Besides the important fact that CJS allowed for separate estimation of survival
(or at least, apparent survival) from sampling intensity, several other advances have
occurred more recently. Notable among these were the development of flexible
approaches for modeling the effects of group factors (such as sex and geographic
area), time effects, and age dependencies, as part of an expanded CJS approach (e.g.,
Lebreton et al. 1992). However, the basic CJS model remained somewhat limited in
its ability to allow modeling of continuous factors, whether these be temporal (e.g.,
environmental) or individual effects. Secondly, survival and permanent emigration
remained confounded in the CJS apparent survival parameter. Both of these issues
were addressed by more recent advances, discussed in the second section.

2.2 Use of Multiple Alternative Hypotheses
and Information Theory

As noted earlier, and observed by others (e.g., Cooch et al. 2002) there is a tension
between the desire of evolutionary biologists to extract detailed information from
CR data, and that of statisticians to work toward models no more complicated than
are supported by data. In particular, evolutionary biologists are often interested in
the variation of traits among individuals, so that models that reduce this variation
to a single parameter are not of much interest. However, science is also presumably
guided by parsimony (Occam’s Razor — but see Cooch et al. 2002), and by the
periodic feedback of information from observational or experimental studies. Thus,
CR modeling is best viewed as collaboration between the biological and statistical
sciences. Fortunately, important advances in both fields are helpful for this problem.

Paralleling the development of CR modeling in the 1960s—1980s, but obviously
of broader scientific relevance, were two trends: one in scientific philosophy, the
other in statistical inference. The first of these was not new, dating at least to Cham-
berlin (1897), who advocated an approach based on multiple working hypotheses.
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Under this approach, rather than seeking to prove (or falsify) individual hypotheses,
scientists would entertain multiple, plausible explanations, each with a connection
to an underlying body of theory. Science would proceed by the collection of data,
just as in single-hypothesis testing, but the emphasis is on accumulating weights
of evidence across the alternatives, rather than in rejecting or supporting single
hypotheses.

More recently, a similar paradigm has emerged in statistics, wherein emphasis is
on inference across multiple alternative (but plausible) models, rather than in statis-
tical null hypothesis testing. This paradigm is supported by important developments
in information theory, including the development of Akaike’s Information Criterion
(AIC; Akaike 1973) and the synthesis by Burnham and Anderson (2002) on multi-
model inference and model selection. Link and Barker (2006) recently suggested an
alternative based on a weighted Bayesian Information Criterion (BIC), and others
(e.g., King and Brooks 2001) have advocated reversible jump Markov chain Monte
Carlo (MCMC), also under the Bayesian paradigm. Regardless of the approach,
emphasis now can be on parameter estimation, prediction, and weights of evidence
under alternative models, rather than on artificially constructed null hypotheses.
Below, I cite examples where this general approach has been effectively applied
to addressing ecological and evolutionary questions using CR.

2.3 Experimental Approaches

Although this paper emphasizes statistical modeling for observational studies,
experimentation, when feasible, will often provide stronger inferences. Under exper-
imentation, subjects (individuals, populations, or other units) are assigned, ideally
at random, to treatments corresponding to the environmental or other factors under
study. Properly designed studies can provide inferences about causation that are
stronger than those provided by observational studies (William et al. 2002). Of
course, experiments can and often should take advantage of statistical modeling
tools such as CR, including the advances outlined below. Recent examples of studies
to address evolutionary questions that have combined observational and experi-
mental approaches with statistical modeling (including CR) include Yoccoz et al.
(2002) and Keyser (2003).

3 Recent Advances

Here I focus on more recent advances that have greatly enhanced the power of CR
modeling to address ecological and evolutionary questions. My coverage is by no
means exhaustive, and is somewhat biased toward studies in avian and mammalian
population dynamics. Nonetheless, these, and the examples cited, should give
readers a good sense of the power of CR for addressing important questions.
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3.1 Modeling of Environmental and Individual Covariates

The basic CJS model, and extensions up through the early 1990s, permitted the
modeling of many group and temporal effects on survival and other parameters.
However, certain types of variation, including temporal and individual variation in
parameters, could only be crudely modeled. Under modifications of the basic CJS
model (Pollock et al. 1990), in fact, there are only 2 alternative expressions for time
variation in apparent survival, ¢:

e Survival is time varying but otherwise unstructured, so that k—1 survival param-
eters are estimated for k capture occasions.

e Survival is constant over all time periods, so that a single survival parameter is
estimated.

Neither of these models of survival variation is likely to be of interest to evolu-
tionary biologists. Indeed, the second of these must be false a priori, since it implies
no variation in this fitness parameter over time; it would only be selected as the
appropriate statistical model if the observational evidence is insufficient to allow
time-specific estimation. Almost always, we are interested not in whether survival
(or other parameters) vary over time but how and why they vary. In particular, is
there an environmental, biotic, or other factor that drives (or at least is correlated
with) temporal variation in survival or other parameters of interest? Are there indi-
vidual traits that mediate this variation? One approach to investigate this question
would be to estimate parameters under a time-specific model (the general CJS
model), and then plot (or conduct a formal regression analysis) these estimates
against temporal variation in a potential predictor variable. However, this approach
is inefficient, and potentially biased. The preferred approach is to reparameterize the
likelihood in terms of the hypothesized relationship. This is more efficient statis-
tically, and also allows direct comparison of alternative biological models (e.g.,
using AIC).

For example, suppose that one is interested in modeling the relationship between
annual survival ¢, and a covariate predictor X; (for example, winter temperature).
A model that specifies this relationship is

exp (Bo + BX,)
[14 exp(Bo + BX))]

equivalently

6 1
In |:—(1 — ¢z):| = Bo + BX;

where the logit transform is used to assure that predicted survival stays on the
interval (0,1). If we now introduce this into the CJS model we see that the observa-
tion “captured at occasion 1, next recaptured at occasion 2” is modeled as
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Pr({11}) = ¢1p>.
However, the covariate model now replaces ¢, in the likelihood so that we have

exp(o+ X0
[1+exp(Bo + BX)]

This is repeated for each of the ¢; in the model, with the effect that instead of
having k—1 survival probabilities to estimate, we have only the two parameters S
and . We have also effectively inserted an interesting model between the general
CJS model (¢;,t = 1, ...,k — 1) and the “null” model (¢, = ¢, t = 1,....,k — 1),
which can also be obtained from the above expression simply by specifying that
B=0, yielding

Pr({11}) =

Pr((11}) = —xPFo) 2= 0.

[1 4 exp(Bo)

Our “interesting model” can be generalized to allow for multiple predictors and
curvilinear relationships by

b .
In[(l—@)}_ﬁ”“’

where X and g are vectors of predictors and parameters, respectively. For example,

In [(1 f’(p’)} = Bo+ B X + X}

specifies a quadratic (on the logit scale) relationship between survival and the
factor X;.

An early, and simple, time-specific covariate analysis was conducted on Euro-
pean dippers (Cinclus cinclus) by Lebreton et al. (1992). Here, interest focused on
the impact of flood events on annual survival. Lebreton et al. (1992) created a time-
specific indicator variable (X;=1 for flood years, and X,=0 for non flood years) and
incorporated this relationship into the CJS likelihood. They found a negative rela-
tionship between flood events and survival, with predicted survival 0.469 in flood
years and 0.607 in non-flood years. The Lebreton et al. (1992) model, although a
simple approach effectively equivalent to grouping the data into two groups of years
and estimating survival for each group, is readily extendable to continuous temporal
covariates, such as temperature, or biotic variables such as density of conspecifics or
competitors (thus allowing direct estimation of density dependence or competition).

The above approach, however, does not really take into account the fact that many
environmental or other factors vary at levels of resolution different than the individ-
uals (the actual units of observation in the study). In the above, for instance, factors
varying over time (e.g., flood effects) are treated as fixed effects, and essentially the
study is replicated across these effects. There are at least 2 problems with this: first,
itis a form of “pseudoreplication” (Hurlbert 1984), second, it does not properly deal
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with the random, hierarchical nature of the “year” effects. Later, I will return to this
example, using a hierarchical modeling approach that more appropriately accounts
for these random year effects.

Modeling of individual covariate effects is based on a similar approach, but the
statistical implementation is a bit different. Here, survival is modeled at the level of
an individual animal i, with attributes X; that are (potentially) unique to that animal.
Thus the fundamental model is

Pi :| ,

In| ———| = o+ B'X;
[(1 — &)

for each of the i = 1, .. .., n animals in the study. Typically, implementation of indi-

vidual covariate models is based on modeling capture histories as multiple Bernoulli

trials, rather than as multinomials (as in CJS) (Skalski et al. 1993, Smith et al. 1994).

I illustrate covariate analysis with a study of Serin finches (Serinus serinus),
ringed in Spain during 1985-2000 (Conroy et al. 2002). We ringed birds during
two periods (October—March, April-September) in order to estimate survival over
6-month periods. In addition to a series of time-, age-, and sex-specific CJS models,
we modeled survival in relation to both temporal (minimum temperature, days
< 0°C, and presence of siskins [Carduelis spinus], a competitor, during winter,
and rain and maximum temperature during summer) and individual (g body mass
and mm wing length, standardized within age—sex group) covariates, measured at
the first capture of individuals. Overall, we found weak support (as judged by AIC)

(@)
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Fig. 2 Predictive model of the relationship between body mass and 6-month survival for Serins
in northeastern Spain. Prediction with below-average (fop), average (middle), and above-average
number of competing Siskins present
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for the temporal covariates but stronger support for individual covariates. I focus
here on the estimated (via AIC averaging across alternative models based on AIC
weight) quadratic relationship between body mass and 6-month survival (Fig. 2).
Interestingly, this body mass-survival relationship seemed to be influenced by the
presence of Siskins, with high numbers of this competitor essentially reversing the
predictive relationship. Our interpretation of these results was that they (1) provide
support for a theoretical view of a fitness tradeoff between starvation and predation
risk, since lighter-than-average birds had best predicted survival, but (2) this tradeoff
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disappears in favor of a strategy toward maximizing mass, when the competitor is
present in large numbers.

Blums et al. (2005) used a similar approach to identify individual traits corre-
lated with fitness components, finding quadratic relationships between standardized
body size and clutch initiation date as traits varying among individuals, and indi-
vidual survival probability. Analyses such as these, particularly when buttressed by
evidence that individual traits such as body size, coloration, or breeding propensity
are heritable, can provide powerful, additional evidence for evolutionary studies.

3.2 Modeling of Heterogeneity via Random Effects

The identification of individual traits correlated with fitness is, as seen above, a
powerful tool in evolutionary studies. However, even in the absence of correlated
traits, it can be important to characterize the manner in which individual animals
vary with respect to survival or other fitness components, or how these components
vary over time. An alternative approach is via random effects models, in which
the emphasis is on estimation of parameters of an underlying stochastic model that
specifies the nature of variation in the component among individuals, or over space,
time, or other dimension (e.g., Royle and Link 2002). Many times, interest will focus
more on how variable fitness components are, rather than average fitness (Fig. 3a).
Alternatively, it may be possible to identify groups within the population having
two or more heritable traits, and to identify “fitness profiles” for each (Fig. 3b).
Obviously, as illustrated by this last case, there is no bright line between “fixed”
(identifiable group or covariate trait) and “random” effects, and which approach is
used will depend upon the nature of the hypotheses and data (see also Cam et al.
(2002) and references therein). Finally, the above discussion emphasizes random
effect modeling where the goal is inference about parameters of interest to ecology
and evolution, such as components of variation in fitness. Random effects models
can also be useful for modeling “nuisance” variation that often occurs in ecolog-
ical studies, such as spatial or temporal dependencies, although such variation may
itself be of primary interest. Finally, while much of evolutionary ecology is focused
on individual variation, modeling variation among demes, populations, or larger
aggregations of animals is also of great importance. Proper modeling at all these
levels should take into account previous cautions about pseudoreplication, and in
most cases should incorporate hierarchical modeling.

3.3 Modeling of Movement and State Transition

As noted earlier, the basic CJS model, while properly separating sampling inten-
sity from demographic processes, cannot distinguish between the event that an
animal died between two sampling occasions, and the event that it emigrated from
the study area (Fig. 4). If emigration is permanent, there is of course no possi-
bility of future recapture, and this event is treated identically to mortality in CJS.



Application of Capture—Recapture to Addressing Questions 141

20 L

a5
B12.1!1]

B 325

s Trait A

Fig. 3 Random effects models for a fitness component, e.g., survival probability. (Top) Survival as
arandom process from a beta(3, 2.5) distribution (/eff) and from a beta (12,10) distribution (right),
providing distributions with identical mean survival but very different variances. (Bottom) Survival
distribution for 2 heritable traits, with higher probability mass under trait B, providing evidence in
favor of selection for that trait

Permanent emigration is confounded with survival, however, temporary emigration
is confounded with recapture, and more complex modeling, such as that provided
under the Robust Design (below), is required to separate these effects.

The problem of emigration is a serious one for CR studies, particularly for
mobile species such as birds, for which it is virtually impossible to establish a
spatial recapture design that would assure that all animals are subject to recapture.
Burnham (1993) developed an approach for combined analysis of ring recovery
and CR data that, under certain assumptions, allows for separating demographic
survival from permanent emigration (confounded under CJS models) and thus
enables the estimation of fidelity rates. Barker (1997) expanded this idea to joint
modeling of recaptures, resightings, and dead recoveries of marked animals. The
Burnham-Barker models depend on the critical assumption that, unlike recap-
tures, recoveries can potentially occur throughout the range of the species. Blums
et al. (2002) applied this model successfully for estimating breeding site fidelity
in European ducks, and it has been applied as well to fidelity in North American
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Fig. 4 Problem of apparent survival under conventional CJS model. Animals alive at time 1 may
be alive and present on the study area at time 2; alive but absent from the study area; or dead.
Capture histories (10) of dead, alive and present but not captured, and alive but absent animals are
indistinguishable

ducks and geese (Alisauskas and Lindberg 2002; Doherty et al. 2002; Zimpfer and
Conroy 20006).

A more general approach involves the use of multi-state (multi-stratum) models,
in which animals are captured, released, and recaptured in two or more “states”.
Again, “state” refers to any attribute about the individual, such as the age, phys-
ical condition, breeding status, or spatial location. These data are summarized in
a manner analogous to the capture history format already seen, but where numer-
ical or other codes now signify the state at each capture. For instance, “20310223”
signifies an animal that was released in state 2 at occasion 1, recaptured in state 3 at
occasion 3, state 1 at 4, state 2 at 6 and 7, state 3 at 8, and not captured at occasions
2 or 5. Multi-state models require definition of many new parameters, notably state-
specific transition and recapture probabilities. Transition probabilities are particu-
larly interesting and allow for complex modeling of many attributes. State transition
can potentially occur among any of the states, and is reversible (i.e., animals can
return to states that they previously occupied). For the 3-state example, this results
in a matrix of transition probabilities (¢);* — the probability that an animal alive and
in state r at sampling period ¢ is alive and in state s at period #+1)

¢ll ¢12 ¢31
¢21 ¢22 ¢23
¢31 ¢32 ¢33

These transition models generally are Markovian, meaning that transition
depends only on the state of the animal at #, and not at previous times (Arnason
1972, 1973; Brownie et al. 1993; Schwarz et al. 1993; Williams et al. 2002) but
have been extended to non-Markovian (memory) transitions as well (Hestbeck et
al. 1991; Brownie et al. 1993; Williams et al. 2002). Also, while in general certain
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kinds of transition, such as growth, are reversible (an animal can move from state r to
state s and back to state r), others, such as stage development, are not (e.g., once an
animal transitions to an adult stage it cannot transition back to neonate). Finally, not
all state transitions are stochastic: some (such as age-transition) are deterministic,
so that transition occurs on a fixed schedule (e.g., for some organisms, 1 year after
birth animals transition with certainty to an adult or breeding state). These cases can
easily be accommodated by the general state transition model, so that, for instance

d)ll ¢12 ¢13
0 0 1
0 0 ¢33

signifies that animals in state 2 transition to state 3 with certainty, those in state
3 never transition to states 1 or 2, but remain in state 3 with probability ¢>3.
Multi-state CR models allow separate estimation of state-specific transition and
recapture probabilities, under assumptions analogous to those of ordinary CJS
models. Under certain assumptions, the transition probability ¢/° has additional
biological significance. In order to transition from state r to state s over [z, #+1], the
animal must of course survive the interval. Under the assumption that survival over
the interval [z, #+1] is dependent only on the state at time #, ¢;* can be re-written as

rs r rs
=8V,

where S] is survival dependent on the originating state r, and W/* is the probability
of moving from state r to state s, conditioned on survival. Under the assumption that
there are j=1,...,k mutually exclusive states to which the animal can transition if it

k
survives, state-specific survival S/, can be computed as S, = _ ¢/*. For instance,
=1

in the 3-state example, S! = ¢! + ¢! + ¢,°. Finally, marked animals that survive
the interval [#, #+1] and transition to one of the states, may or may not be recaptured,
and recapture probabilities may depend upon the state the animal is in at the next
capture period. Thus, for instance, the probability that an animal that is marked and
released in state 2 at time ¢, transitions to and is captured in state 3 and #+1, would be

23 3
t Prt1-

Figure 5 shows how multi-state modeling works for a simple example involving
only 2 states, and should be compared to the much simpler modeling of fates under
ordinary CJS (Fig. 1).

Multi-state modeling has been effectively used to model fidelity to breeding
areas and other types of movement questions (e.g., Lindberg et al. 1998). I illus-
trate multi-state CR modeling with a metapopulation example from Senar et al.
(2002). Citril finches (Serinus citrinella) were ringed in two habitats in the pre-
Pyrenees of northeast Spain, separated by approximately 5 km. One of these habitats
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Fig. 5 Multistate CR model, with captures in two strata (1, 2), and state-specific transition
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still alive and present in one of the states are captured with state-specific recapture probability
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(La Bofia, “B”), has relatively xeric conditions, resulting in low productivity of pine
seeds that are food for the finches, resulting in birds with poor body condition and
lower reproductive output. The other habitat (La Vansa, “V”), is more mesic, with
higher productivity of pine seeds, better body condition, and higher reproductive
output. Senar et al. (2002) captured and ringed birds in both habitats between 1991
and 1999 to estimate habitat-specific survival and probability of movement between
habitats. A model containing age and habitat effects for both survival and move-
ment provided over one-half of the total weight of evidence, as judged by AIC;
other models containing area effects for movement but not for survival constituted
most of the remainder. Model-averaged estimates (Fig. 6) indicate that survival was
higher in the better habitats. Additionally, they suggest asymmetry of movement,

W= 018
La Vansa W =038
$, =042
B= 0.34
Wy, =0.03 .hd_B[?Ql‘
W; = 0.09 4,=0.28

Fig. 6 Asymmetric survival (¢,, ¢;) and movement v,, ¥; probabilities for adult and juvenile,
respectively, Citril Finches captured and released in two environmentally different locations in the
pre-Pyrenees of northeast Spain
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with higher rates of movement from Bofia to Vansa than reverse. The authors inter-
preted these results both as supporting microgeographic adaptation in finches, as
well as supporting a “source-pool” model of movement in favor of alternatives.
Finally, the results are especially interesting, in light of evidence that morphological
differences in finches appear to be correlated with genetic differences between the
2 sites (Senar et al. 2006).

In another example of multi-state modeling, Senar and Conroy (2004) used multi-
state models to estimate transition and survival rates of Serins that either exhibited
or did not exhibit the symptoms of avian pox. In this study, state transition rates had
interpretation in terms of infection and recovery rates, and estimates provided infor-
mation for modeling the spread of diseases in wild populations. Senar and Conroy
(2004) also found evidence that symptomatic and asymptomatic birds had different
recapture rates, which strongly suggests that studies of disease prevalence need to
take into account the unequal probabilities of encountering these different states in
samples.

Finally, evolutionary biologists are often interested in addressing questions about
life history strategies, such as fitness tradeoffs under alternative reproductive strate-
gies (e.g., Brown and Brown 1998; Cam et al. 2003). Multi-state models have
been effective tools for addressing these types of hypotheses, by casting repro-
duction status (or other life history attributes) as states among which animals can
stochastically move. For many organisms, reproductive effort affects behavior, and
consequently the probability that animals are reencountered in a CR study. Because
sampling is often restricted to sites where breeding animals are known to occur this
potentially creates situations where certain classes of animals (e.g., non-breeders)
are virtually undetectable. Under certain designs (e.g., variations of the Robust
Design, discussed below) multi-state models can be used to allow modeling of
transition between an observable state (breeding) and an unobservable one (non-
breeding). Bailey et al. (1995) applied such an approach to pond-breeding amphib-
ians, and were able to address questions such as whether breeding activity has fitness
effects on survival. Likewise, Cam and Monnat (2000) applied MSM to test for
the influences of age and habitat quality on both survival and breeding individual
heterogeneity in kittiwakes (Rissa tridactlya). Cam and Monnat (2000) were able
not only to estimate reproductive state, but to model the interaction between age and
correlation between fitness components. Tradeoffs between dispersal and reproduc-
tive effort have also been investigated by several authors using multi-state models
(e.g., Grosbois and Tavecchia 2003; Lebreton et al. 2003; Danchin and Cam 2002).
Other examples of multi-state models applied to questions of reproductive strategy
and fitness tradeoffs include Yoccoz et al. (2002); Reed et al. (2003); Orell and
Belda 2002; Cam et al. (2004), and Rivalan et al. (2005).

3.4 Modeling the Components of Population Growth

Several important classes of problems revolve around the question of the relative
contribution of different sources to population growth. Specifically, many questions
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of theoretical and applied population ecology relate to the relative contribution of
age-specific reproduction and survival rates. Estimates of relative contributions will
allow prediction about the relative consequences of hypothetical changes in each
type of parameter on population growth, and in turn, can be helpful in directing
conservation actions.

Estimation of components of population growth has been greatly facilitated by a
novel approach to CR modeling, based on viewing capture histories in reverse time
order (Pollock et al. 1974; Pradel 1996; Nichols et al. 1994; Nichols and Kendall
1995; Nichols et al. 2000; Nichols and Hines 2002). In this approach, analysis is
conditioned on the last capture of animals, and modeling is with respect to events
that led to the animal’s capture history. If we consider just two capture occasions, the
capture histories of these animals are all of “1” type. For open populations, a marked
animal that is recaptured at occasion 2 obviously must have been in the population
at a previous time, and survived from occasion 1 to occasion 2, and could not have
been a new recruit into the population. Those animals either may have been captured
(11) or not captured (01) at occasion 1. Animals that were not in the population at
1 but are captured at 2, and so are recruits, also will have history “01”, and so
based on only a single recapture sample these outcomes cannot be distinguished
(Fig. 7). This is much like the situation in forward time, in which for the history
“10” we cannot distinguish the outcomes “died or emigrated” from “survived but
not recaptured” (Fig. 4).

With several (3 or more) capture occasions, reverse-time modeling can be used
to estimate the parameter y; 1, the probability that a member of the population N; |
is a survivor from the previous period, i. This in turn can be used to estimate the two
demographic components (survival, recruitment) of growth, A; = N;;1/N;, as the
weighted average of abundance

Yie1Nig1 + (1 = ¥ 0ONig1

E(A\) =
i N,
Capture
History - )
Time | Time 2
11 Captured
4 Survival
Present . Captured
0 l Not )
captured 1
Recruittment
0 l Not }/

present

Fig. 7 Reverse-time CJS model showing modeling of survival and recruitment components leading
to population growth
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The parameter y;;, also can be used to provide an estimate of the proportional
change in growth rate from a proportional change in one of the components, a
quantity similar to elasticity (Caswell 2001). For example if survival was increased
by an amount « between i and i + 1, (1 +®)S;, then we can obtain the corresponding
proportional change in growth as ay;4;. Likewise, for a proportional change « in
recruitment, the corresponding proportional change in growth would be «(1 — y;41).
Reverse-time modeling also can be combined with multi-state modeling to allow
for estimation of the relative contributions to growth from individual states, such as
animals in different behavioral or physiological conditions, or occupying different
habitat patches.

The Robust Design (RD; Pollock 1982; Williams et al. 2002; Runge et al. 2006)
is another advance useful in this type of analysis. The RD is a two-stage CR design
involving primary sampling periods between which the population is assumed to be
demographically open, and secondary periods over which the population is assumed
closed (Fig. 8). The RD was originally developed to allow for robust modeling of
capture probabilities (best done in a closed model) with estimation of survival,
recruitment, and other demographic parameters. Originally the RD was used in
conjunction with closed CR models to estimate abundance based on the secondary
periods; open (CJS) models to estimate survival; and a combination of estimates
to estimate recruitment. More recently, the RD has been used in conjunction with
multiple-age CR to allow separate estimation of in situ reproduction from immigra-
tion, and with reverse-time modeling to allow estimation of components of recruit-
ment from multiple sites, breeding propensity, and other parameters.

A study by Nichols et al. (2000) nicely illustrates the combination of reverse-time
modeling with the RD. Meadow voles (Microtus pennsylvanicus) were captured and
released in grids in two areas during primary trapping periods every 2 months during
1991-1993. During each primary period, trapping occurred on 2—6 consecutive

Population open

PRIMARY PERIODS

%ﬁ\ R
71 2 3 41 1 2 3 41

1 2 3 41
SECONDARY PERIODS

I

Population closed

Fig. 8 Pollock’s robust design, with combination of primary sampling periods between which
population is assumed demographically open, and secondary periods over which population is
assumed closed



148 M.J. Conroy

days. Thus, the data were analyzed according to the RD, with monthly primary
periods and daily secondary periods. Estimates of growth rate (A;) and proportion
of growth contributed by survival and movement and recruitment for each area
(y;) were estimated using reverse-time modeling. These estimates can be used for
making two kinds of inference about population growth. First, as mentioned earlier,
the estimates of y; (for the moment, not referenced to area) can be used to address
questions in evolutionary biology or resource management, such as “how much
change in population growth rate can be expected by a specified change in survival
or recruitment?” This can be illustrated with the specific case of period 9 growth
by examining the estimates Ao = 0.59, estimating growth between primary periods
9 and 10, and 7,90 = 0.70, the estimated proportion of the population at period 10
derived from survival. To address the question “what would population growth rate
have been, if survival had increased by 5%” we would use these estimates to obtain

7%= 201 + afio] = 0.59(1 + 0.035) = 0.61,

that is, population growth rate would have increased from 0.59 to 0.61 with a 5%
increase in survival. By comparison, the change in growth due to a 5% change in
recruitment would have been

2e = o[l 4+ a(l — P10)] = 0.59(1 + 0.015) = 0.599.
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Fig. 9 Contribution of Area 1 survival, Area 1 recruitment, and survival and recruitment from
Area 2, to population growth in Area 1, for meadow voles captured and recaptured in Maryland,
USA. “Recruitment” in Area 1 includes in situ recruitment, plus immigration from outside the
study system
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Because of the use of multi-state modeling and the RD, a richer analysis
is possible, allowing for inferences on the time- and area-specific variation in
the proportion of population growth for each area derived from three sources:
(1) survival from animals alive on the area at time ¢, (2) recruitment (which includes
both in situ reproduction, as well as immigration from areas outside the study
system) for this area, and (3) survival and movement from other areas. This is
illustrated from the vantage point of Area 1 in Fig. 9, from which at least 2 major
conclusions can be drawn. First, the relative contribution of area 1 survival and
recruitment to area 1 population growth is much larger than the movement into area
1 from other areas. Second, these relative contributions vary over time, raising the
possibility that site-specific factors are interacting with temporal factors, such as
environmental conditions.

4 Other Advances

The rapid advance in CR modeling has been greatly aided by several other devel-
opments, some of which arose directly as a result of efforts in CR modeling, and
others which were developed more-or-less for other reasons.

4.1 Bayesian Modeling of Random and Hierarchical Effects

As noted earlier, many important ecological questions require modeling of the
components of individual, spatial, and temporal heterogeneity, and random effects
models can be especially useful. In other cases, data structures, ecological questions,
or both, dictate hierarchical relationships among model parameters. For example,
individual variation in survival probability may be expressed by

$ii=1,...,N

where there are N individuals in the population under study. Rather than estimating
each of the individual effects (which, in any case, would be impossible), they may
instead be modeled hierarchically, for instance, as random variables drawn from a
beta distribution

¢; ~ Beta(a, B)

with parameters « and B. In this example, a complex relationship (individual
variation in survival rates) is summarized in a very parsimonious way, with just
2 parameters. Link and Barker (2004) provide a very useful overview of hierarchical
modeling in the context of demographic studies.

Both types of problems, while sometimes tractable by conventional, maximum
likelihood approaches, are often much easier to analyze in a Bayesian framework.
In Bayesian analysis, parameters (such as p of the binomial distribution) are thought
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of as “random outcomes” (i.e., are not fixed, but are uncertain). This is in contrast
to “classical” (frequentist) analysis in which parameters are thought of as unknown
constants. The difference largely revolves around differing philosophical viewpoints
about the nature of observations. Frequentists interpret study results in terms of
repeatability, and talk about things like “the number of times the confidence interval
is predicted to include the parameter p in 100 future experiments.” Bayesians wish
to make probability statement about parameters, based on the current study, while
potentially incorporating knowledge about the parameter from previous studies or
other sources (prior information). Formally, inference about the parameter 6 is based
on a posterior distribution. By Bayes” Theorem

P@|x)P(x) = P(x|6)P(0)

where x is the sample data and P(6) is the prior distribution of 6; P(x|6) is the
probability of the data, under the assumed statistical model and value for 6, and is
related to the familiar statistical likelihood. For a given sample, P(x) is a constant,
and so the above formulation reduces to

P(0]x) «x P(x|0)P(0).

In other words, the posterior distribution of 6 is proportional to the likelihood
times the prior distribution. Given the posterior distribution, one obtains inference
on 6 by the usual approach of averaging, computing variances, quantiles, etc. For
some combinations of priors and posteriors the resulting posterior is analytically
tractable, i.e., one can compute these statistics directly from the data in a single step,
much like maximum likelihood estimation. In many others, the statistical likelihood
and priors cannot be put together to form a solvable posterior. MCMC gets around
this problem by generating samples from a distribution that should, given certain
conditions are met, converge on the posterior distribution. There are various ways
of doing this; the method employed in MCMC is known as Metropolis—Hastings.
Basically, the procedure “proposes” values of 6, which are used to compute a value
for the likelihood times the prior. This latter value is then evaluated via an accep-
tance criterion which is compared to a random uniform deviate, and if accepted, the
proposed value is kept in the sample. Given sufficient numbers of MCMC samples
the algorithm converges on values for 6 that are essentially indistinguishable from
random samples from the posterior. Finally, these samples (after convergence or
“burn-in”) are then used to compute means, variances, quantiles, and other statis-
tics. Papers such as Brooks et al. (2000), Link et al. (2002), Royle and Link (2002),
Fonnesbeck and Conroy (2004) and Conroy et al. (2005) provide further discussion
and examples of Bayesian analysis of CR and tag-recovery data.

Current versions of Program MARK (White and Burnham 1999) now allow
MCMC analysis of simple hierarchical models, which can be particularly useful
for properly dealing with random effects in model parameters (Burnham and
White 2002). I used the MCMC procedure in MARK to re-analyze the dipper
example (Lebreton et al. 1992), modeling variation in survival over the flood and
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non-flood years via a logit-normal distribution (i.e., a hyperdistribution) of the
random time effects . After appropriate back-transformation, the new analysis indi-
cates a mean survival of 0.609 (0.555-0.660 95% CI) during non-flood years, and
0.473 (0.418-0.528 95% CI), which is similar to the results of the earlier, simple
analysis, but now properly accounts for random, inter-year variability in survival
during flood and non-flood years in the calculation of confidence intervals.

4.2 Integrated Parameter Modeling

Ecologists frequently collect several different types of data to address similar or even
identical ecological questions. For example, it is not uncommon for physical recap-
tures, radiotelemetry, and resighting of marked animals to be simultaneously used
to estimate survival. CR and other data may be used in conjunction with abundance
surveys, so that one potentially is both predicting abundance (via a demographic
model) and observing abundance independently. It makes sense both ecologically
and statistically to use multiple data sources in an integrated fashion in modeling.
In some cases (e.g., Burnham 1993; Powell et al. 2000; Kendall et al. 2006) it is
possible to include the different types of data in a common statistical likelihood,
in other cases the resulting likelihood would be intractable for analysis. Thus, inte-
grated modeling is a natural realm for the application of the Bayesian methods just
discussed (see for example Fonnesbeck and Conroy 2004).

4.3 Innovative Marking and Recapture

Most ecologists think of CR data as arising from a traditional ‘“‘capture-mark-
recapture” study, in which animals are physically captured, marked, and released,
and then potentially recaptured at some future occasions. Perhaps the majority of
CR studies fall into this category, but increasingly, novel methods are being used for
capture, recapture, or both. These approaches may eliminate the need for physical
recapture, or even initial marking, with obvious benefits in terms of the removal
of concerns of affecting animal behavior, expense, trap mortality, etc. Additionally,
some “marking” approaches permit the acquisition of additional information about
animals that would otherwise not be obtained.

For purposes here, we may consider marking methods to be either active or
passive. Active methods require the physical capture of animals at an initial occa-
sion, but may or may not require physical recapture. These methods obviously
include conventional CR, where reencounters are by physical recapture, but also
designs in which reencounters are via re-sighting of color tags or other visible
markers, radiotelemetry, or other passive methods (e.g., Barker 1997). These types
of data can be analyzed by themselves to estimate parameters, or potentially
combined with conventional CR data. The key here is recognizing that the different
types of reencounters involve different physical processes, and thereby should
be modeled by different parameters (Williams et al. 2002). In some instances
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(e.g., radiotelemetry) reencounters are potentially continuous through time, both
providing rich sources of data for addressing detailed questions, as well as chal-
lenges in deciding on the appropriate level of detail to use in analysis.

By contrast, passive markers do not require the initial capture of animals, in
that they are based on unique markers that individual animals exhibit and can be
detected remotely. For example, camera trapping and CR modeling have been used
to estimate abundance of tigers (Panthera tigris), relying on the unique signature of
striping that each individual tiger possesses (Karanth and Nichols 1998). Genetic
markers also are increasingly being used to estimate abundance and other parame-
ters, based on samples of hair, scat, or other tissues not necessarily obtained through
physical capture. These methods have the obvious advantage of avoidance of capture
and handling of individual animals, which may affect animals’ behavior or fitness in
ways that could cause the sampled (i.e., captured and marked) population to differ
from the population of interest (Williams et al. 2002).

4.4 Computer Software

Early CR analysis involved relatively simple data structures and models, and in
many cases, solutions by hand or desk calculator were feasible. Today’s CR analyses
involve complex data structures and modeling, and generally require the use of high-
speed computers. Fortunately, both computer and software technologies have seen
rapid advances in the last two decades, and all the analyses described here (and
many more) can be performed on desktop computers of moderate capacity. Modern
CR software has greatly facilitated the task of handling data and analyses. Ideally,
CR software should permit

e Management of data and analyses in a common framework.

e Handling of model data types and structures.

e Rapid construction of and evaluation of alternative models, including goodness
of fit.

e Model selection and multiple-model inference using information criteria.

Program MARK (White and Burnham 1999) provides all these capabilities and
more, and is freely available. Other programs that provide some or all of these
features are MSSURGE (Choquet et al. 2004), POPAN (Arnason and Schwarz
1999), SURGE (Pradel and Lebreton 1991), SURPH (Smith et al. 1994), and U-
CARE (Choquet et al. 2003).

5 Summary

This review, though selective, demonstrates that modern CR methods are a powerful
tool for exploring evolutionary hypotheses. This modeling framework is now suffi-
ciently general to allow for models that are motivated by underlying theory, in
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comparison to historical CR modeling, which was constrained to address a few
relatively narrow questions. Successful empirical modeling depends, of course, on
appropriate sampling or experimental designs. Again, novel designs, in conjunction
with appropriate statistical models, have now greatly expanded the nature of ques-
tions that can be addressed by CR. Thus, today’s CR methodology allows, in
addition to estimation of abundance and demographic parameters, investigation of
factors influencing variation in these parameters, analyses of evolutionary trade-
offs (e.g., survival versus reproductive effort, timing of reproduction), investigation
of metapopulation dynamics, and exploration of the sensitivity of populations to
perturbations.

A key to the successful application of CR analysis to the study evolutionary ques-
tions is the proper separation of the processes leading to the observations. This sepa-
ration is at the root of all CR analysis, going back to the relatively simple CJS model,
in which it was recognized that recapture events require animals to both survive over
some interval of time, and be captured at a subsequent sampling occasion. Separa-
tion of these events into constituent parameters allows for inferences that are not
confounded by the sampling process, and that can lead to unambiguous inferences
about the processes of interest (survival, reproduction, fidelity, etc.). A second key
is the direct incorporation of biological hypotheses as part of the statistical likeli-
hood. This, in turn, allows the analysis within a scientific framework that admits
to plausible, a priori alternative explanations for any ecological phenomenon, and
incorporates these as alternative models, each to be challenged by the data.
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Estimating Reproductive Costs with Multi-State
Mark-Recapture Models, Multiple Observable
States, and Temporary Emigration

Jay Rotella

Abstract Multi-state mark-recapture models have seen increased use in recent
years for studies of reproductive costs. When individuals in both breeding and
non-breeding states can be observed, multi-state models can be used to directly
estimate reproductive costs by comparing state-specific estimates of survival and
breeding probabilities. The method assumes that each state that an animal occupies
is observable, an assumption that is violated if some animals are absent for one
or more breeding seasons and are thus, unobservable due to temporary emigration.
Previous research on the case of a single observable state and a single unobserv-
able state has shown that non-random (Markovian) temporary emigration can, if not
accounted for, bias estimates of survival. Here, simulation is used to study effects
of non-random (Markovian) temporary emigration on estimates of survival and
breeding probabilities for the case of two observable states and one unobservable
state. Results clearly show that temporary emigration can cause estimates of survival
and breeding probability to be biased if the unobservable state is ignored. Bias was
either positive or negative depending on circumstances, and was sometimes severe
(percent relative bias was as high as 67% for estimates of breeding probability).
Accordingly, the strengths and limitations of including an unobservable state in
analyses are also considered. For some situations, simply including an unobservable
state will be an adequate solution. But, for those studies particularly interested in
temporal variation in costs of reproduction, it will be necessary to collect other
information to avoid problems of parameter constraints. Additional information
can consist of data from sub-sampling during primary sampling occasions, radio
telemetry, or ring recoveries.

1 Introduction

An organism’s lifetime reproductive output determines its fitness. To maximize
output, individuals must optimize their life-history decisions because producing
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and caring for offspring in one year may decrease energy available for subsequent
reproductive opportunities and reduce longevity. Thus, organisms are expected
to have to balance current reproduction against future survival and reproduction
(Williams 1966). The trade-off between current reproductive effort and future repro-
ductive value is known as the cost of reproduction. The trade-off is expressed
through decreased survival, future probability of reproduction, and/or offspring
quality and is hypothesized to be an important factor shaping life-history strategy
for many species (Roff 1992; Stearns 1992). Accordingly, evolutionary ecolo-
gists have devoted a great deal of effort to empirically measuring reproductive
costs.

In testing for reproductive costs, it is common to be interested in whether
breeding at time ¢ negatively affects an individual’s probability of surviving from
time ¢ to time #+/ or its probability of breeding at time 7+/, although delayed costs
can certainly be of interest as well (Nichols et al. 1994; Clobert 1995). To estimate
possible effects, survival and breeding probabilities are often compared between
breeders and non-breeders. As shown by Nichols et al. (1994), mark-recapture
methods provide a useful approach for comparing these probabilities and allow
one to deal with possible differences in the probabilities of individually marked
breeders and non-breeders appearing in samples. In particular, one can use a multi-
state modeling approach (Darroch 1961; Arnason 1972, 1973; Brownie et al. 1993;
Schwarz et al. 1993) to estimate reproductive costs while accounting for possible
time- and age-specific variation in sampling probabilities across K successive poten-
tial breeding periods (Nichols et al. 1994). When applying multistate modeling to
questions of costs of reproduction when breeders and non-breeders can be observed,
it is common to define each observed individual as being in either the breeder or
non-breeder state for each sampling occasion (breeding period), and to estimate and
compare state-specific probabilities of survival (probability of being alive at time
t+1 given being alive and in a particular state at time 7) and breeding (probability
of being in the breeder state at time 7+/ given being in a particular state at time ¢
and conditional on being alive at time 7+/). Transitions between the breeder and
non-breeder state are typically treated as a first-order Markov process (state at time
t+1 depends only on state at time 7) (Brownie et al. 1993).

Since Nichols et al. (1994) first described the multistate modeling approach for
studying reproductive costs, the details and benefits of the approach have been
further discussed (Clobert 1995; Nichols and Kendall 1995; Viallefont et al. 1995;
Boulinier et al. 1997; Doligez et al. 2002; Lebreton and Pradel 2002; Williams et al.
2002; Sandercock 2006), and the multistate modeling approach has been used to
assess costs of reproduction in numerous studies of diverse taxa (e.g., Viallefont
et al. 1995; Cam et al. 1998; Sandercock et al. 2000; McElligot et al. 2002; Yoccoz
et al. 2002; Rivalan et al. 2005; Barbraud and Weimerskirch 2005; Tavecchia et al.
2005; Beauplet et al. 2006; Hadley et al. 2007). Although there are certainly other
approaches to studying costs of reproduction (e.g., Reznick 1985; 1992; Golet et al.
2005), results from multistate modeling can provide rigorous empirical estimates
of potential costs of reproduction under certain circumstances and have contributed
much to our understanding of life history evolution.
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As discussed by Nichols et al. (1994), multistate modeling is especially appli-
cable to studies directed at phenotypic correlations, but the approach can also be
used in some field, experimental-manipulation studies and may be useful for dealing
with possible genotypic variation in capture or observation probabilities in genetic
field studies. However, it is important to note that multistate models based on live
encounter data yield survival estimates that are commonly referred to as “apparent
survival” rates in the mark-recapture literature because they combine the probability
of survival and the probability of not permanently emigrating from the study area,
i.e., apparent survival differs from true survival to an extent that depends on the level
of permanent emigration. This has potentially important implications if breeders and
non-breeders have different rates of permanent emigration: differences in apparent
survival between animals in different breeding states could be due to variation in
site fidelity and not true survival. Accordingly, the multistate modeling approach to
estimating costs of reproduction is most appropriate for species in which site fidelity
is high or for which permanent emigration occurs at similar rates for breeders and
non-breeders.

When using multistate modeling to compare survival and breeding probabilities
for breeders and non-breeders, one assumes that each state that an animal occupies
is observable (for details of all assumptions, see Nichols et al. 1994; Williams et al.
2002). As reviewed by Kendall (2004), this assumption fails if some members of
the population are unavailable for capture or detection when sampling occurs, i.e.,
heterogeneity in detection probability exists such that some individuals are in an
unobservable state (probability of detection is zero). Failure of this assumption can
lead to biased estimates.

In multistate modeling of reproductive costs, some individuals may temporarily
emigrate and be absent for one or more breeding seasons. For example, in some
species, both breeders and non-breeders may be present and observable on breeding
sites, but some non-breeders may use non-breeding habitat and be unobservable
(for an overview of the widespread nature of temporary emigration see Schaub et al.
2004). Estimates obtained from multistate modeling that ignores temporary emigra-
tion can be biased in the presence of some forms of temporary emigration (Kendall
et al. 1997; Fujiwara and Caswell 2002; Kendall and Nichols 2002; Schaub et al.
2004), and consequently, estimates of costs of reproduction will also be biased. In
particular, it is well known that survival estimates can be biased if the probability of
temporary emigration depends on an individual’s state during the previous occasion,
i.e., is non-random or Markovian (Kendall et al. 1997).

The existence of an unobservable state can be accommodated by incorporating it
into multistate models. For the simplest case where individuals occur in either one
observable state or one unobservable state (e.g., only breeders present on study sites;
all non-breeders in an unobservable state; Reed et al. 2003), the effects of Markovian
temporary emigration on parameter estimates have been well studied, methods for
incorporating the unobservable state in mark-recapture modeling have been devel-
oped, parameter redundancies are quite well understood, suggestions for obtaining
useful additional information have been provided, and comprehensive guidelines exist
(e.g., Lebreton et al. 1999; Pradel and Lebreton 1999; Fujiwara and Caswell 2002;
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Kendall and Nichols 2002; Schaub et al. 2004; Choquet et al. 2004; Kendall 2004). Of
particular note, Schaub et al. (2004) used simulation and computer algebra to compre-
hensively evaluate the performance of the traditional Cormack—Jolly—Seber model
(Cormack 1964; Jolly 1965; Seber 1965) and a multistate model that included one
observable state and one unobservable state when Markovian temporary emigration
occurred. Schaub et al. (2004) found that estimates of survival from the Cormack—
Jolly—Seber model were biased in the presence of Markovian temporary emigra-
tion, whereas estimates from the multistate model were not. They concluded that
when survival and recapture probabilities are high the multistate model works well
when Markovian temporary emigration occurs and individual states can be well
described with one observable and one unobservable state.

However, for situations with multiple observable states and at least one unob-
servable state, the complexity is much greater due to the increased number of states,
possible transitions between the various states, and the increased number of parame-
ters. For example, Kéry et al. (2005), in an investigation of parameter identifiability
for a variety of multistate model for perennial plants with two observable states and
one unobservable state, found that most models had identifiable parameters and that
some models allowed for estimation of state-specific survival rates, including that of
the unobservable state. However, they also found that several models contained no
identifiable parameters, which highlights the additional complexity that arises when
working with an unobservable state and multiple observable states. At this time,
it is difficult to know how well information from the single-observable-state situa-
tion applies to the multiple-observable-state situation (Kendall 2004). Of particular
relevance to studies of costs of reproduction, information from studies of single-
observable states provides no information about how temporary emigration may bias
estimates of transitions between observable states, which include breeding probabil-
ities for breeders and for non-breeders. Consequently, it is not clear how one should
proceed with multistate analyses of breeders and non-breeders if temporary emigra-
tion is suspected. If one includes the unobservable state, then additional constraints
such as time constancy must be placed on demographic parameters (Kendall and
Nichols 2002; Kendall 2004; Schaub et al. 2004) unless additional information
about detection probability is available (Kendall 2004).

As clearly articulated by Kendall (2004:100), “To be forced to assume a priori
that parameters are equal over time or group is unsatisfactory. In fact, testing that
hypothesis might be of interest.” Alternatively, one can choose to ignore the tempo-
rary emigration and risk having some level of bias in the resulting estimates. Anal-
ysis choices have been recently considered for a situation with multiple observable
states and a single unobservable state in orchids (Kéry et al. 2005). However, to
date, I am aware of only two papers that have discussed these choices with respect
to estimates of reproductive costs based on multistate analyses of breeders and non-
breeders. Beauplet et al. (2006) chose to incorporate an unobservable state at the cost
of additional parameter constraints and numerical convergence issues. In contrast,
Hadley et al. (2007) chose to ignore the unobservable state in their primary analyses
after preliminary analyses provided evidence that temporary emigration was not
having important effects on estimates of reproductive costs for their situation. Until
better information becomes available on how best to proceed in such situations,
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researchers will continue to face difficult decisions when designing studies of repro-
ductive costs and analyzing resulting data.

Given the rapid increase in the use of multistate modeling to study reproductive
costs in recent years and the possibility that temporary emigration has been, or will
be, an issue in at least some multistate studies, the objectives of this paper are to
stimulate thinking about how to handle temporary emigration in multistate modeling
of reproductive costs by (1) using simulated data to illustrate how temporary emigra-
tion, if ignored, can cause important levels of bias in estimates of survival, breeding
probability, and reproductive costs, (2) using simulated data to show that the inclu-
sion of an unobservable state into multistate models imposes modeling constraints
that can limit one’s ability to fully estimate reproductive costs, and (3) reviewing
suggestions for additional information that can be collected to improve future
multistate comparisons of survival and breeding probabilities in breeders and non-
breeders. The results have implications that reach beyond multistate modeling of
reproductive costs as they are also relevant to a variety of other studies containing
multiple observable states or sites and at least one unobservable state or site (e.g.,
dispersal among sites when some sites are not monitored, Lebreton et al. 2003;
demography of perennial plants with observable vegetative and flowering states and
unobservable below-ground rhizomes, Kéry et al. 2005).

2 Methods

To assess the effects of Markovian temporary emigration on estimates of survival
and breeding probabilities for breeders and non-breeders, I conducted simulations
using M-SURGE (Choquet et al. 2004) and an expected-values approach for a
variety of multistate modeling scenarios that might be encountered. Choquet et al.
(2005) and Devineau et al. (2006) provide details regarding the process for gener-
ating expected data using M-SURGE. Devineau et al. (2006) provide additional
details about the expected-values approach, its benefits, and how it relates to Monte
Carlo simulation. For the simulations done here, all analyses considered one group
with three states: breeders (B), non-breeders in an observable state (N), and non-
breeders in an unobservable state (U). Individuals in state N and U were assigned
the same reference parameters except that detection probability (p) was zero for
those in state U. Because it is a fairly common real-world scenario, I created data
for a situation where only breeders could be captured but in which field-readable
markers could be observed on breeders and non-breeders.
For the multistate model with states B, N, and U, the transition matrix and asso-
ciated vectors of survival and capture probabilities were
vaB 1 — 1)[,BB _ I/IBU wBU SB p
1pNB 1 _wNB _wNU WNU SN
1‘”UB l_wUB_wUU wUU SN 0

t t t

where ;¥ is the probability that an individual which is still alive and present in the
study population at the end of period ¢ will move from state r to state s; S/ is the
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probability that an individual in state r survives and remains in the study population
through period #, where non-breeders are assigned the same survival rate on a given
occasion regardless of whether they are in state N or U; and pj is the probability that
a marked individual alive in state r at time ¢ is captured or observed (zero for those
in state U). The matrix and vector subscript ¢ denotes that time dependence was
possible: in the actual modeling, parameters were held constant for some scenarios
and allowed to vary with time in others (see below).

The key steps in the process used here were to (1) define a set of reference param-
eter values, (2) obtain the expected data (i.e., expected values for encounter histo-
ries) using the Arnason—Schwarz model (Arnason 1972, 1973; Schwarz et al. 1993),
(3) obtain maximum-likelihood estimates of parameters for models of interest (see
below); and (4) derive relevant measures of bias and precision. Expected data were
generated based on (1) the reference values (see below), (2) the number of breeders
released on the first occasion (n = 10,000), and (3) the population growth rate for
the number of breeders between successive occasions. I released a large number of
breeders to minimize possible rounding errors that may have been associated with
working with fractional numbers of animals that result from using expected data in
the encounter histories (trials with even larger numbers of released individuals indi-
cated that the number used was adequate to avoid rounding errors; smaller numbers
may have sufficed). The population growth rate for breeders was set to one between
all successive occasions. Thus, as breeders died or transitioned to other states, an
adequate number of breeders was injected into the population to maintain 10,000
breeders on each occasion, and all new individuals were captured and released.
Thus, there was a staggered entry of newly marked individuals in state B, and
there were resightings of individuals in states B and N. The reference parameters
determined the actual survival, transition, and detection rates for animals in each
state on each occasion (see below).

For multistate modeling, it may not be possible to estimate all parameters because
some may be aliased and not separately identifiable, and the parameter redundancy
is not always intuitive (Gimenez et al. 2003, 2004). Therefore, parameter redun-
dancy was evaluated for each model considered here using the numerical version
of the Catchpole, Morgan, and Freeman approach as implemented in M SURGE
and described by Choquet et al. (2005). After checking that all parameters were
identifiable for a given model, parameter estimates were compared to the reference
parameter values and, where applicable, between competing models applied to a
given dataset. Absolute bias was computed as the difference between a given param-
eter estimate and the true underlying reference parameter value, and percent relative
bias was the absolute bias divided by the reference parameter value and multiplied
by 100. Percent coefficient of variation was calculated for each parameter as the
estimated standard error divided by the parameter estimate and multiplied by 100.

The scenarios that were simulated were not meant to encompass the extremely
broad range of sampling scenarios that might be encountered in actual studies.
Rather, they were chosen to illustrate some estimation problems that can arise if
Markovian temporary emigration is not dealt with properly and to motivate future
work on the problem. The situations were limited to scenarios where only breeders
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were captured and where breeders were always resighted at a higher rate than were
non-breeders. However, within these constraints, and as explained in more detail
below, I did bracket conditions such that reproductive costs to survival, future fecun-
dity, or both were large, small, or absent and for which recapture rates were high or
low. The actual parameter values used were arbitrarily chosen. As detailed below, I
considered scenarios in which parameters were constant over time or time-varying.

2.1 Simulations to Evaluate Effects of Ignoring Markovian
Temporary Emigration when Estimating Reproductive Costs

Based on published information regarding factors affecting bias in survival rates
estimated with multistate models of one observable and one unobservable state in
the presence of temporary emigration (e.g., Kendall 2004; Schaub et al. 2004),
I chose to consider simulations with (1) Markovian temporary emigration, (2) high
versus low capture probabilities (p® = 0.9 or 0.3; pN = pB — 0.2), (3) high versus
low survival rates (S8 =0.9t00.2, S¥ = 0.9 or 0.3), (4) presence or absence of
reproductive costs to survival rate (S8 = SV x 0.667 or S8= V), and (5) presence
or absence of reproductive costs to breeding probability (32 = N8 x 0.445 or
BB = yNB) (Table 1). In all scenarios, the temporary emigration rate was higher
for breeders (y2Y = 0.4) than for non-breeders (¥y¥Y = 0.1), which could occur
if (1) breeders have a propensity to move to an alternate habitat for replenishing
body reserves in the year after a breeding attempt such that %Y > NV but
(2) non-breeders can also gain benefits from being present on breeding sites, e.g., for
evaluating site quality, such that 12V and VY < 1. In all simulations, parameters
were constant across time and age, and data were generated for eight occasions.

For each scenario, two models were run. First, the true generating model (a
model that included state U) was used to estimate parameters from the expected
data. Results from the generating model were checked to ensure that the model
converged on the reference parameters and that all parameters were estimable.
Second, a simplified version of the generating model (included states B and N
but ignored state U and held parameters constant across time and age) was used
and the resulting estimates were evaluated for absolute bias and precision (percent
coefficient of variation), with emphasis on the estimates of S%, SV, 88, and ¢V 8,
i.e., those used to estimate costs of reproduction.

2.2 Simulation of Time-Varying Reproductive Costs in the Presence
of Markovian Temporary Emigration

When no additional information about movements, capture probabilities, or survival
rates is available, parameter estimation for a model that includes states B, N, and U
is only possible if at least one of the following constraints is applied: the order
of Markovian transition probabilities is reduced to make them random, partial
determinism is imposed on transition probabilities (e.g., probabilities of transition
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from non-breeder to breeder are assumed to be 0 before a certain minimum age
and all animals are assumed to begin breeding by a certain age), or parameters are
constrained to be constant over time or to follow a temporal trend (Kendall and
Nichols 2002; Kendall 2004). For some species Markovian temporary emigration
is expected and partial determinism in transitions is not. For example, breeders in
year t may be more likely to be absent from the breeding site in year 7+/ than are
non-breeders in year ¢, but the organisms do not follow a set temporal pattern of
breeding and non-breeding. In such cases, one is only left the option of making
some parameters constant.

To illustrate some of the potential problems with this solution, I generated
expected data for the following scenario. Survival and breeding probabilities
varied by state and environmental conditions (S8 = 0.8 [good year] or 0.6 [bad
year], SV = 0.8 [all years], ®2 = 0.6 [good year] or 0.3 [bad year], and VB=
0.7 [good year] or 0.5 [bad year]). Temporary emigration was Markovian in
bad years (%Y= 0.1 [good year] or 0.5 [bad year], and ¥"*Y= 0.1 [good year]
or 0.3 [bad year]). The simulated study encompassed six breeding seasons, and
conditions for survival and breeding probabilities were good, bad, good, bad,
and good, respectively. Capture probabilities varied by occasion around different
state-specific means (values of p® had a mean of 0.7 and were drawn from a
uniform distribution bounded between 0.6 and 0.8, whereas values of pN had a
mean of 0.5 and were drawn from a uniform distribution bounded between 0.4
and 0.6). This scenario was chosen to illustrate performance limitations of the
multistate model with multiple observable states and a single unobservable state
for a mildly challenging situation. Specifically, survival and detection rates were
moderate to high, and temporary emigration was Markovian in only some years;
under such circumstances, the multistate model as applied to a one observable and
one unobservable state performs quite well (Schaub et al. 2004).

A single model was used to estimate parameters from the simulated data (S5,
SN, pB, and p" allowed to vary by time; 28 and /B constant through time). This
model assumes that researchers were aware that parameters might vary by time but
were not aware of the true underlying pattern of good and bad years and the effects
of those changing conditions on parameters. Results from the model were evaluated
for absolute bias and percent coefficient of variation, again with emphasis on the
estimates of S%, SV, 88 and yB.

3 Results

3.1 Effects of Ignoring Markovian Temporary Emigration
when Estimating Reproductive Costs

For time-constant reference parameters and Markovian temporary emigration,
parameters in the models evaluated were separately identifiable, and estimates
obtained from the generating model converged on reference parameters for all but
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one of the scenarios simulated (Table 1). However, convergence was typically not
achieved unless repeated random initial values were used, and local minima were
apparent in the output, especially when reference values of p® and pN were low.
When a model that ignored temporary emigration (i.e., a model that included states
B and N but not U) was employed, the resulting estimates of survival and breeding
probabilities typically had low coefficients of variation (%CV <7% for 24 of 30
estimates) (Table 1). However, the level of bias varied quite substantially depending
on the simulation scenario and ranged from strongly negative to strongly positive.
When costs of reproduction to breeding probability were present, bias was low for
survival estimates and higher for estimates of breeding probability (average % rela-
tive bias = —4.4, 0.2, —28.2, and —34.2 for estimates of S&, SV, ¥58, and B,
respectively), any bias tended to be negative, and absolute bias was always greatest
for estimates of ¥ VB, In contrast, when costs of reproduction to breeding probability
were absent, bias tended to increase (average % relative bias = 11.4, 22.2, 90.3, and
25.7 for estimates of S, SV, ¥58, and VB, respectively), was always positive, and
was always highest for estimates of 55,

Given the bias in estimates of SZ, SV, %58, and "B, estimates of reproductive
costs were also typically biased: sometimes at low levels and sometimes severely so
(Table 2). Estimates of reproductive costs to survival were typically over-estimated,
whereas estimated costs to breeding probability were always negatively biased.
Absolute bias was always greater for estimates of costs to breeding probability. Of
particular note, when true 28 was equal to 1B, estimates indicated that /3% was
greater than 2 by 0.22-0.33 (absolute difference between the rates).

3.2 Difficulties of Estimating Time-Varying Reproductive Costs
in Presence of Markovian Temporary Emigration

Results from the simulation with full time-varying parameters, which could be sepa-
rately identified for the data and model evaluated, illustrate some of the limitations
that can arise when one is forced to impose time constraints on some parameters.
Even for a scenario with moderately high values for survival rate (>0.6) and capture
probability (>0.4), random and low values of temporary emigration in good years
(0.1), and Markovian temporary emigration only in bad years, the time-varying
multistate model that considered states B, N, and U was not able to fully characterize
several key features of the reference parameters. As this is but one possible scenario
out of a broad set of circumstances that could be considered, the results are kept
brief and only a few highlights are mentioned.

First, the time constraints that were imposed on breeding probabilities, made it
impossible to identify the large changes in breeding probabilities between good and
bad years, which simply emphasizes a known problem when considering an unob-
servable state in models with time-varying parameters. Second, in one of the good
years (reference values: S? = SV), time-varying estimates of survival rate were higher
for breeders than for non-breeders (estimated difference = 0.04). The model did
perform reasonably well in some respects, however. Time-invariant estimates were
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quite accurate for 32 (estimate = 0.46, true average = 0.48) and ¥ (estimate =
0.62, true average = 0.62) and accurately estimated the average cost of reproduction
to breeding probability over the study as being 0.14. Finally, the model typically
produced estimates of survival rates with low bias (range in absolute bias: S® =
—0.01 to —0.02; SN = —0.07 to +0.02) such that estimates of costs of reproduction
to survival had low bias in all but one year.

4 Discussion

For the special application of multistate modeling that was investigated here, i.e.,
comparing survival and breeding probabilities between breeders and non-breeders,
the results obtained make it clear that estimated costs of reproduction, especially
costs of reproduction to breeding probability, can be badly biased when temporary
emigration occurs but is not properly accounted for. For some scenarios evaluated,
estimates of costs of reproduction were only slightly biased. However, for other
situations, biased estimates of costs of reproduction to both survival and breeding
probability could lead to misleading conclusions. For example, when reproduc-
tive costs to breeding probability were absent, and Markovian temporary emigra-
tion was present but ignored, estimates of breeding probability were biased high
for both breeders and non-breeders, and the bias was greater for breeders. Thus,
it appeared that breeding probability was higher for breeders than non-breeders.
Such a result is of great interest in studies of life-history evolution as it relates to
important questions regarding effects of heterogeneity in individual quality (e.g.,
Cam et al. 1998; Wintrebert et al. 2005). It would be useful to have similar
evaluations regarding permanent emigration to aid decision-making for investiga-
tions in which breeders, non-breeders, or both might permanently leave the study
area.

Given the importance of studying reproductive costs and the potential for biased
results if temporary emigration is not properly incorporated into analyses, it is
important to consider the available analysis options. In some situations, researchers
might choose to use multistate models without an unobservable state because tempo-
rary emigration is thought to be a non-issue in their study. In such cases, it would
be helpful if authors would provide justification for ignoring possible temporary
emigration in analyses based on the biology, the sampling situation, and any avail-
able supporting data. It may be less clear how best to proceed in some studies
because (1) less may be known about possible levels of temporary emigration and
whether or not it may be Markovian and (2) there is currently no specific goodness-
of-fit test for detecting temporary emigration. For such studies, it might be useful to
compare results obtained from analyses conducted with and without an observable
state and to then consider how best to proceed (e.g., Hadley et al. 2007). For still
others, it may be known that temporary emigration occurs and an unobservable state
may be incorporated in analyses (e.g., Beauplet et al. 2006).
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When an unobservable state is included in analyses, several options are avail-
able. The simplest approach is to include the unobservable state in the model (with
zero capture probability) using recently described methods (Lebreton et al. 1999;
Pradel and Lebreton 1999; Kendall and Nichols 2002; Kendall 2004; Schaub et al.
2004) and readily available software (White and Burnham 1999; Choquet et al.
2004). When an unobservable state is considered, numerical and statistical problems
inherent to multistate models are increased, and it will be important to use recently
developed software to help ensure convergence (Lebreton and Pradel 2002; Choquet
et al. 2004). As was found in the simulation work reported on here, convergence was
not always easy to achieve even when working with the generating model or a close
approximation and knowing the values of reference parameters. With the multistate
approach, parameter identifiability will be a problem for some models and datasets
and be important to evaluate (Gimenez et al. 2003, 2004; Kéry et al. 2005).

When deciding whether to address temporary emigration by simply including
an unobservable state, researchers should also carefully consider whether or not
the parameter redundancy problems and limitations of the approach will prevent
them from asking key questions of interest. As thoroughly explained by Kendall
(2004) and shown here with a simple simulation with time-varying reference param-
eters, the approach will be inadequate if hypotheses of interest involve time-varying
reproductive costs and other solutions to handling parameter redundancy (such as
partial determinism in state transitions) are inappropriate. As recently discussed by
Tavecchia et al. (2005), there are excellent reasons to be interested in time variation
in reproductive costs because trade-offs may vary in stochastic environments, thus
affecting optimal reproductive strategies.

The results presented here further emphasize previous recommendations to prop-
erly evaluate the magnitude and nature of temporary emigration in mark-recapture
studies (e.g., Kendall et al. 1997; Fujiwara and Caswell 2002; Kendall and Nichols
2002; Kendall 2004; Schaub et al. 2004). Also, as had been shown previously for the
case of a single observable and a single unobservable state (Schaub et al. 2004), it
is possible to obtain relatively unbiased estimates of survival even when Markovian
temporary emigration occurs if capture probabilities and survival rates are high.

Kendall (2004) and White et al. (2006) provide excellent reviews of options for
gaining greater flexibility in multistate modeling in the presence of an unobservable
state. The key idea is that various types of additional information can be used to
make additional parameters estimable. If sub-sampling is done within each breeding
season, the robust design (Pollock 1982) can be used, which allows estimation of
time-varying probabilities (Kendall 2004). This approach still requires the assump-
tion that the survival probability for individuals in the unobservable state is equal
to that for one of the observable states. For the case of breeder and non-breeder
states, it may be reasonable in some situations to assume that unobservable individ-
vals are non-breeders and therefore, have the same survival rate as do observable
non-breeders. However, in other studies such an assumption may be unreasonable
or a question of biological interest. In such cases, further additional information
will be needed. Simply put, it will be necessary to sample unobservable individuals
through radio telemetry, ring recoveries, or combinations of approaches. Examples
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of innovative approaches for estimating temporary emigration and combining
sources of information now exist (e.g., Lindberg et al. 2001; Bailey et al. 2004;
Barker et al. 2005) and should be valuable to future studies of reproductive costs.

An excellent set of analysis options and software now exist for estimating
temporary emigration. With thoughtful study design and analysis, future compar-
isons of survival and breeding probabilities for breeders and non-breeders should
provide valuable information regarding reproductive costs regardless of Markovian
temporary emigration. In fact, estimates of temporary emigration rates may provide
insights into the strategies used to avoid incurring reproductive costs. In planning
future studies or choosing among analysis options, simulations, which can now be
readily conducted in software such as M-SURGE (Choquet et al. 2004) and MARK
(White and Burnham 1999), should prove useful (Schaub et al. 2004; Devineau et al.
2006).
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Estimating Latent Time of Maturation and
Survival Costs of Reproduction in Continuous
Time from Capture—Recapture Data

Torbjorn Ergon, Nigel G. Yoccoz, and James D. Nichols

Abstract In many species, age or time of maturation and survival costs of
reproduction may vary substantially within and among populations. We present a
capture-mark-recapture model to estimate the latent individual trait distribution of
time of maturation (or other irreversible transitions) as well as survival differences
associated with the two states (representing costs of reproduction). Maturation can
take place at any point in continuous time, and mortality hazard rates for each repro-
ductive state may vary according to continuous functions over time. Although we
explicitly model individual heterogeneity in age/time of maturation, we make the
simplifying assumption that death hazard rates do not vary among individuals within
groups of animals. However, the estimates of the maturation distribution are fairly
robust against individual heterogeneity in survival as long as there is no individual
level correlation between mortality hazards and latent time of maturation. We apply
the model to biweekly capture—recapture data of overwintering field voles (Microtus
agrestis) in cyclically fluctuating populations to estimate time of maturation and
survival costs of reproduction. Results show that onset of seasonal reproduction is
particularly late and survival costs of reproduction are particularly large in declining
populations.

Keywords Capture-mark-recapture - Latent traits - Life-history theory -
Maximum likelihood - Multi-state/multi-strata - Continuous time - Hazard rates -
Heterogeneity - Maturation - Cost of reproduction - Disease infection dynamics

1 Introduction
Age and timing of reproduction are important components of fitness and population

dynamics. Causes and consequences of variation in age at first reproduction have
for long been central topics in ecological and evolutionary theory (e.g., Cole 1954;
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Stearns 1992; Gaillard et al. 2005), but also timing of reproduction within seasons
is of prime interest. In multivoltine species, such as many small mammals, early
onset of seasonal reproduction enables more generations to be completed within
the season (Fairbairn 1977; Lambin and Yoccoz 2001; Ergon 2007), and reproduc-
tive success and viability of offspring in univoltine birds and mammals are often
strongly related to the date of reproduction within the season (Lack 1996; Clutton-
Brock et al. 1987; Hochachka 1990; Winkler and Allan 1996). The latter is particu-
larly relevant for match-mismatch theory and changing phenologies due to climate
change (Visser et al. 1998; Visser and Holleman 2001; Stenseth et al. 2002; Both
et al. 20006).

It is of general interest to characterize the full distribution of age or time of repro-
duction in a population, and not just the mean value. The variances of trait values
are central for evolutionary theory, and life-history traits such as age and timing of
reproduction may evolve in response to differential selection of different parts of the
trait distributions. Furthermore, to study response to selection or trade-offs between
different life-history traits, it is the latent trait values that are of interest (i.e., the
propensities existing at birth, e.g. Link et al. 2002). The distribution of latent matu-
ration times is the distribution that potentially could be observed if, hypothetically,
all individuals survived until maturation. In contrast, the realized distribution applies
only to the subset of the population that survives until maturation, and is hence
filtered by mortality. In a sense, the latent distribution is the true trait distribution
that is independent of survival. For example, a group of individuals in a given envi-
ronment may be characterized with a latent distribution for time of maturation, but
the individual trait value is not observable for all members of the group because
some individuals may die before they mature. Because individuals with a late latent
maturation time will have a higher probability of dying before maturation (unless
individuals with a late latent maturation also survive better), the distribution of the
realized maturation times will be biased downwards compared to the distribution of
the latent trait values — the higher the mortality rate is, the stronger this bias will be.
This type of ‘right censoring’ is commonplace in, e.g., medicine where some study
subjects may die or be removed from the study before an effect is observed (e.g. Cox
1972). In such cases, statistical modeling must take into account that observations
of reproductive events might be censored due to the death of individuals; we might
know that a given individual has not reproduced up to a given age or time, but
death prevented recording the actual age or time of reproduction. Common models
incorporating such censoring or competing risks (e.g. Pintilie 2006) are however
not readily applicable for wildlife studies due to the usual inability in such studies
to detect all breeding and non-breeding individuals alive in the population, and it is
not possible to know the exact time that an individual matured or was censored out
of the population due to natural mortality. When detection probability is less than
one, we do not even know if an animal was censored.

As with other important life history characteristics, such as survival rate, capture—
recapture modeling provides a natural means of estimating quantities of interest in
the presence of probabilities of capture or detection less than one. Our goal in this
paper is to include both processes relating to capture probability and censoring due
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to natural mortality in order to provide unbiased and efficient estimates of the latent
distribution of age or time at reproduction. As animals may have different survival
rates before and after reproduction, we can also use the modeling to estimate costs of
reproduction even when reproduction takes place at unknown points in continuous
time. The model can also be applied to estimate the latent timing of other irreversible
state transitions and the survival costs associated with these transitions. It may for
example be applied in capture—recapture studies of disease or parasitism dynamics
to obtain unbiased estimates of the underlying infection rates and survival costs of
infection (see Discussion).

Although we explicitly model individual heterogeneity in the latent time of state
transition, we make the simplifying assumption that mortality hazard rates do not
vary among individuals belonging to a given group. The implications of this assump-
tion are investigated in a simulation study. Finally, we apply the model to a case
study on life-history correlations in a cyclic population of field voles.

2 The Model

We primarily consider a study design in which there are many sampling occa-
sions within a reproductive season and where state transition can take place at
any point in continuous time, not just at given points between sampling occasions.
For example, a population of individually marked animals may be monitored with
repeated sampling occasions from winter, when no individuals are reproducing,
through spring until most individuals have either initiated reproduction or died (see
the Case Study below). In principle, the data could also cover several years as long
as latent time of state transition can be described with a probability distribution.

The aim of the modeling is to characterize the distribution of latent times of state
transition in a population. This distribution may, for example, be represented by a
normal distribution function with a population mean and variance describing indi-
vidual heterogeneity in the population. The distribution can also be made discrete,
for example at yearly intervals, to estimate the latent age at first time reproduction
in long-lived species (e.g. Cam et al. 2005). An alternative perspective is to focus
on the transition hazard rates that correspond to the distribution of latent times of
state transition. In capture-recapture studies of disease or parasitism dynamics, our
modeling will then yield estimates of infection rates and lethality that are not biased
by background mortality (see Discussion).

The basic structure of our model is based on a special case of a multi-state
capture—recapture model (Arnason 1972, 1973; Hestbeck et al. 1991; Brownie et al.
1993; Schwarz et al. 1993) in which there are only two states and transitions are
allowed in only one direction, from the immature to mature state. Such models
have been much used to address questions in evolutionary ecology and in other
applications where animals can change state or location (see Cam (2008), Conroy
(2008) and Rotella (2008) of this volume). In these multi-state models, transition
probabilities are defined as the joint probability of surviving and moving from one
state to another over a time interval, @ = Pr(‘Survive’ N ‘Move’). These transition
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probabilities can be partitioned into survival probabilities and movement probabili-
ties conditional on survival, @ = Pr(‘Survive’) x Pr(‘Move’|‘Survive’). To facilitate
estimation, it is usually assumed that movement takes place at a given point in time
within the intervals, usually at the very end of the intervals so that the survival
probabilities are independent of the terminal state of the interval (Hestbeck et al.
1991; Brownie et al. 1993). While this assumption may be reasonable in some appli-
cations, it is clearly not in others. Joe and Pollock (2002) relaxed this assumption
by treating the time of movement within intervals as a random variable with a given
distribution, g(¢). Thus, denoting survival rate before movement in interval i as SiA
and survival rate after movement as S7, they obtained

1
D = / (SH' Wi (SHIVg(t)dt
0

where ; is the probability of movement given survival (Joe and Pollock 2002,
Eq. 1). Note that the probability distribution g(¢) is conditional on knowing that
state transition took place during the given interval. Hence, fol gt)dt =1 (e.g., g(t)
is a uniform or a beta distribution).

Our approach is similar to the approach of Joe and Pollock (2002). However,
both the movement probabilities and the probability distributions for times of state
transition for each interval depend on a distribution for latent times of state transi-
tion, f(¢), which span the entire study period. The parameters of f(¢) are included
in the parameter vector estimated by maximum likelihood. In this way we are able
to partition the overall transition probability (¢ = Pr(‘Survive’ N ‘Mature’)) into
the probability that latent maturation is located within the interval unconditional on
whether the individual survives the interval or not (Pr(‘Mature’)) and survival condi-
tional on maturation (Pr(‘Survive’|‘Mature’)), rather than survival (Pr(‘Survive’))
and maturation conditional on survival (Pr(‘Mature’|‘Survive’)). We also model
survival probabilities by the use of continuous mortality hazard functions over time
or age. This allows easy implementation of proportional hazard models and models
addressing questions related to longevity and senescence (see Gaillard et al. (2004)).

Our model is formulated in detail below. Sections 2.1 and 2.2 introduce the
multi-state m-arrays (e.g. Brownie et al. 1993) and apply generally for multi-state
models with two states where transitions can only take place in one direction —
these sections are provided for completeness. Section 2.3 describes our modeling
of the cell probabilities corresponding to the m-array, and the rest of Section 2 is
devoted to discussing maturation and mortality hazard functions and to describing
the computer implementation and numerical optimization methods that we have
used. In our modeling, we make the simplifying assumption that mortality hazard
rates do not vary among individuals belonging to a given group. The implications
of this assumption are investigated in a simulation study presented in Section 3.
Finally, we apply the model to a case study on life-history correlations in a cyclic
population of field voles (Section 4), before moving on to a general Discussion about
the modeling (Section 5).
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2.1 Data Structure

The data are assumed to come from a capture-recapture study (Lebreton et al. 1992;
Williams et al. 2002) of individually marked animals where it is recorded (without
error) whether the individuals are immature (state A) or mature (state B) every time
they are captured. Individuals may belong to one of several groups (e.g., sites or
cohorts).

We assume data from each group of animals to be summarized in the standard
multi-state m-array of Brownie et al. (1993), shown for four capture sessions in
Table 1. Here, ml?;Y is the number of the animals of state X(A or B) observed alive
in session i that were first recaptured in session j when being in state Y (A or B),
and ml’; is the number of the animals that were never recaptured. Note that state
transition from mature (state B) to immature (state A) is not possible, and that index
Jj is always greater than or equal to index i + 1.

In addition, a vector with the times of the capture sessions, t = [t1, 2, ..., t,],
must be given for each group.

2.2 Likelihood Function

Each of the m ij -elements in the m-array (Table 1) has a corresponding cell proba-

bility, ni’,-( Y. which is the probability that an individual of state X released in session

i will be recaptured for the first time in state ¥ and session j;

XY

nj;" = Pr(first recaptured in state Yand session j | released in state X and session ).

The cell probabilities for each row in the above m-array sum to one. Hence,
the cell probabilities corresponding to the last column of the array may be set to

Table 1 Multi-state m-array with 4 capture occasions and 2 states (A = ‘immature’, B = ‘mature’).
There is one m-array for each group of animals

Session of first recapture ()
State of recapture

Session of State of 2 3 4 never
release (i) release A B A B A B

AA AB AA AB AA AB A
1 A mi mip mi3 mis myy miy mi;
BB BB BB B
1 B mp mys iy my;
AA AB AA AB A
2 A ma3 ma3 Mo Mo Moy
BB BB B
2 B M3 My, my,
AA AB A
3 A Mm34 Mm34 m3y
3 B BB B
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one minus the other cell probabilities of the row; rri? =1-> j(nl/}A + ni‘?B) and
nf=1-%,7f"

Assuming independence among individuals, the elements of each row of the
m-arrays follow a multinomial distribution, and the likelihood function to be
maximized is a product of multinomials. Since the multinomial coefficients are
independent of the cell probabilities, it is sufficient to maximize the log-likelihood
function

£(m;m) = m'log(r),

where vectors m and 7 contain the elements of the m-arrays and the corresponding
cell-probabilities.

2.3 Cell Probabilities

The description so far applies also for previous formulations of multi-state models
in the special case where there are only two states (A and B) and where transitions
are only allowed in one direction (from A to B). However, our model differs in the
way the constraints on the cell probabilities are parameterized. We start by defining
a continuous probability density function f(¢) for the latent distribution for time of
maturation. This function describes the trait distribution among all animals in the
study population that are ever seen as immature. The function does not only apply
for individuals that survive until maturation — it is independent of survival. Thus,
the probability of having a latent time of maturation (trait value) before time #; is
fi"oo f(t)dt, and the probability of having a latent time of maturation in the interval
1; to t; given that the individual has not matured before #; is

[0 @t
Qij = 1= findr &y
— [M f(nde

Note that this probability is not conditional on the individual surviving the
interval, or even surviving until maturation. In this way we can partition the prob-
abilities of surviving an interval and at the same time maturing (Pr(‘Survive’ N
‘Mature’)) into products of the probability of having the latent time of maturation
within the interval (¢ = Pr(‘Mature’)) and the probability of surviving given that the
animal matured during the interval (w = Pr(‘Survive’|‘Mature’)). The latter prob-
ability is not conditional on maturation taking place at a given point in time within
the interval, but is instead found by integrating over the probability distribution for
time of maturation determined by f(¢).

Since we only deal with state transitions in one direction between two states, we
do not use the matrix formulation used by Brownie et al. (1993) and by Joe and
Pollock (2002). Instead we incorporate state dependent capture probabilities into
the transition probabilities by the use of logical index functions.
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Y

To write the cell probabilities of the m-array, ni)]{ , we introduce the following

notation:

¢§f% ,, = Probability of surviving from time s; to time s, given that the individual was alive at
time s; and in state X during the entire time-interval.
¢]; = Short-hand for ¢[’;’JY

pi¥ = Probability of capture of an individual at session k given that it was alive and in
state X.

a;; = Probability of having latent time of maturation in the interval between session i and
J given that the individual was immature at session i.

w;j = Probability of surviving and not being captured between session i and j given that
the animal matured between session i and j.

The cell probabilities are then

it = —apeipt [ (= pd. 2)
Vkit; <t <t
8P =efp? ] a-pd. 3)
Vk:it; <t < t;
and
71’;?3 = a,-jw,‘jpf. “

In these expressions, the conditions Yk :; < #; < t; indicate that the product
should involve all capture probabilities representing occasions between occasion i
and occasion j.

In the expression for nf}B , both «;; and w;;, relate to the probability density func-
tion f(¢) for the latent time of maturation 7', given by f(f)dt =Pr(t < T < t+
dt). The expression for o;; is given in Eq. 1 above, while w;;is found by integrating
the joint probability of surviving and not being captured during the interval, condi-
tional on time of maturation (7" = ¢), over the probability distribution for 7" given
thaty; < T < 1,

i
- < f@)
wjj = /‘qb;?_)lqth_)f/ 1_[ {(1 _ p].?)l(t tk)(l _ plf)l(t_tk)} tj—dt’ (3)
t Vi <t<t; [, f(oydt

where the function /(‘expression’)is a logical function that takes the value 1 if

the argument is true, and O if it is false, and where I,,/};%is the probability
L f(dt

density function for time of maturation given that maturation occurred between ¢,

and 7; .
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Hence, by expansion of Eq. 4 we get

Vk:it; <t <t;

as_ L E/ A B
T fwd ™ il 1
{1 = pH 0 = ppy1 =} f @)t ©)

The integral in the above expression cannot be solved analytically when using
reasonable functions for survival and maturation (see below). Some numerical solu-
tions are outlined in Section 2.5 below.

The functions f(¢), ¢§}_)S2 and ¢£ _5, depend on hyperparameters, and various
functional forms are discussed below. The main aim of the modeling is to estimate
these hyperparameters. In principle, it should also be possible to estimate an ‘instan-
taneous’ cost of reproduction by including such a parameter in w;; (Eq. 5). However,

we do not consider such a model in this paper.

2.4 Maturation and Survival Functions

Several functional forms for the latent distribution of time of maturation (or, gener-
ally, any irreversible state transition), f(¢), and survival probabilities, ¢ff_>52, are
possible. The choice depends on the application. When modeling time of matu-
ration or reproduction (e.g., time of first reproduction after the winter season), it
may be reasonable to use a symmetric distribution for f(¢), such as the normal
distribution or logistic distribution, but skewed, or even bimodal, distributions may
also be applied. When modeling age (rather than time) of state transition, it may be
necessary to use a probability distribution with a lower bound of zero. If the model is
used to estimate the temporal distribution of individual infection by diseases or para-
sites (or the corresponding infection hazard rates), exponential, Weibull or gamma
distributions may be natural candidates. In principle, the distribution can also be
made discrete, for example at yearly intervals, to estimate the latent age at first time
reproduction in long-lived species (e.g. Cam et al. 2005).

Continuous time variation in survival rates is best modeled by using mortality
hazard functions, h(t), defined as h(t)dt = Pr (t < timeofdeath < t +
dt|time of death > 7) . The probability of an individual of state X surviving from
time s; to s is then simply the exponent of the negative cumulative hazard during
the time interval, _

¢x — I} hX(t)dI.

S1—>5

The state-specific hazard rates h* () should be > 0 for all values of ¢ and the
cumulative hazard rates should become infinite over infinite time (e.g. not of the
form ¢#’" which integrates to 1/8% overt =0...00).

When modeling hazard rates as a function of age, and if effects of environmental
variability are negligible, it may be reasonable to assume hazard rates that increase
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or decrease monotonically with age. In such cases one may use a hazard function
of the form h(a,) = aka;’_l, where a, is age at time 7. This hazard function
corresponds to survival function d)a% a, = oM, 4 ), and age at death will follow
a Weibull distribution (exponential distribution in the special case when o = 1 and
the hazard rate is constant).

In other applications, survival will be largely influenced by random environ-
mental events, as is the case for, e.g., small rodents that are heavily predated. One
will then need a flexible hazard function that guarantees positive hazards, and it
is desirable that the function can be integrated to find an analytical expression for
the survival probabilities. In the Case Study on field voles below we used a hazard
function composed as a sum of Gaussian curves parameterized as

h(t) = eal—bf(t—c])z + eaz—bﬁ(t—cz)2 4ot ean—bf,(t—cn)z. 7

Survival probabilities corresponding to this hazard function can be found analy-
tically by the use of the erf-function of the cumulative normal. Note that /() in this
case does not integrate to infinity over infinite time. The function can nevertheless
be used as a curve-fitting tool as long as extrapolations are not made. Proportional
hazard rates among groups and states can be specified by using the same b- and
c-parameters for different groups while constraining the a-parameters to additive
differences among terms and groups (exponents of common components of the
a-parameters can be factored out of the sum). One way to use this function is to
fix the c-parameters to regular time-points over the study period (including the end
points) and further constrain the b-parameters to be the same for all terms. Less
constrained models can, in our experience, lead to strong correlations between the
parameters and hence cause problems when fitting the model (this is especially
the case when there is little temporal overlap in the presence of the two states in
the population — see the Case Study below).

2.5 Implementation and Numerical Optimization

The model was implemented in Matlab® 7.1 in a way that the probability density
functions for time of state-transition, f(¢) , and mortality hazard functions, A(¢) , can
readily be replaced and where the state, group and occasion specific hyperparame-
ters can be constrained by design matrices and link-functions. Optimization of the
log-likelihood was done by using the quasi-Newton gradient method implemented
in the ‘fminunc’ function of the Matlab Optimization Toolbox Version 3.0.3. The
variance—covariance matrix of the maximum likelihood estimates was estimated
as the inverse of the finite-difference approximation to the Hessian matrix at the
optimum. The Matlab code be will shared upon request to the first author.

The integral in the expression for 71{?3 in Eq. 6 cannot be solved analytically
when using reasonable functions for survival and maturation. Several numerical
integration (quadrature) methods are implemented in programming environments
such as Matlab®and R (http://www.r-project.org/). The Matlab function ‘quadl’
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performed well in our implementation. However, the optimization can sometimes be
made more efficient by discretizing Eq. 6 directly. By dividing the interval between
capture session i and j into M short sections (e.g. days) in such a way that none
of the capture sessions are included within the sections (captures only at section
borders) and breaking down w;; (Eq. 5) into a sum of probabilities conditional on
maturation during each of the time sections, and further assuming that maturation
can only take place at specific points within each time section (e.g. at a given time
of the day), we get

1 M
mf = ————— > et el L. [ {a-pD)
! - fﬁoo f)de ! m=1 , y Vkit; <t < T
Im+1
[T {a-pD} | rwdri, @®)
Vk:t, <t <t; T

where #,,and #,, | are the beginning and the end points of time section m, and where
Im = Tm =< tm41 (e-g-’ Tm = (tm + lm+])/2 )

In the simulation study presented below we used a Normal distribution for the
individual latent time of maturation, f(f), and time-independent mortality hazard
rates, h(t) (implemented as a Weibull hazard and fixing the shape parameter,
o, to 1). For the Case Study we used a logistic distribution for f(¢) and the sum of
Gaussian terms described above (Eq. 7) for 4(¢). The denominator in the expression
of o;; (Eq. 1) and in the expression of rrl./j‘.B (Egs. 6 and 8) can potentially become
numerically zero when the cumulative f(¢) approaches one (more likely to happen
for the Normal distribution which has lighter tails than the logistic distribution).
This problem can be avoided by constraining the upper limit of the cumulative to
one minus a very small number (e.g., 1 — le™!?).

The recapture probabilities, p’s, can be state, group and occasion specific and
were constrained to the (0, 1) interval by a logistic link-function. An identity link
was used for the group specific mean latent maturation-time parameters, while the
standard deviation of the maturation distribution was forced to be positive with a
log-link (hence modeling multiplicative effects). The hazard function in Eq. 7 is
always positive, but the b-parameters were still forced to be positive with a log-link
to avoid symmetry around b = 0. A log-link was also used on the parameters of the
Weibull mortality hazard function. The parameters of the mortality hazard functions
can be state and group specific, and the hazard rates of the different states and groups
can be constrained to be proportional (i.e., parallel over time on a log-scale).

3 Individual Heterogeneity and Simulation Results
In the formulation of this model we have specifically addressed individual hetero-

geneity in latent time of maturation (or any irreversible state transition). However,
we have made the simplifying assumption that mortality hazard rates within groups
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do not vary among individuals. This is a potentially critical condition that may not
be met. Individual heterogeneity is ubiquitous in animal populations due to varia-
tion in individual quality and the resources they possess (Lomnicki 1988). Further-
more, correlations in individual life-history traits exist due to life-history strategies
and trade-offs (Roff 2002). For example, animals that reproduce early may face a
higher mortality hazard due to the costs of accumulating resources, or, alternatively,
animals in good condition may be able to both reproduce early and avoid mortality
risks.

To investigate the assumption of individual homogeneity within groups we fitted
the model to simulated data with variable degrees of individual heterogeneity in
mortality hazard rates and correlations between individual mortality hazard and
latent time of state transition. Individual combinations of log(mortality hazard) and
time of maturation were drawn from multivariate normal distributions, and capture
histories were simulated based on Bernoulli trials of survival and capture. We used
11 capture occasions at regular intervals along a time-line from —1 to 1. Capture
probability was set to 0.5 for all animals at all occasions, mean time of maturation
was 0, and the standard deviation in time of maturation was 0.2 . Median hazard
rate in the immature stage was 1 (corresponding to an expected lifetime of 1), and
the individual hazard rate doubled when the animal reached the mature stage. In
different runs of the simulations we varied the standard deviation of log(hazard rate)
from O to 1. A standard deviation in log-hazard of 1 means that the 97.5% quantile of
the distribution is 50 times higher than the 2.5% quantile, which is a very substantial
heterogeneity.

Results of simulations where individual hazard rate and latent time of maturation
were uncorrelated are presented in Fig. 1. The bias in the estimators of mean (it)
and standard deviation (&) of the maturation distribution is very moderate. Even
with the highest degree of heterogeneity, the bias in & is less than 2% and the bias
in 1 is less than 6% of the true value of o. There is however a very substantial
bias in the estimated hazard ratios when heterogeneity increases. When the standard
deviation of log-hazard rate is one, the hazard in the mature stage relative to the
immature stage is underestimated by 56% (the mature stage is estimated to have
11% lower hazard rate than the immature stage even though the data were simulated
with a doubling of the hazard rate after maturity). This bias is due to the fact that
individuals with a low survivability (high hazard rate) will have a higher probability
of dying before they mature, and since the hazard estimates of mature animals are
based on only individuals that are alive at maturity, the survival cost of reproduction
for the total population will be underestimated.

There was also a slight upward bias in the estimates of mortality hazard rates at
the immature stage. However, when data were simulated with no difference in the
mortality hazard rates of the two stages and fitted with the corresponding model (not
shown), there was a downward bias in the estimates of the overall hazard rate, and no
detectable bias in 11 and &. The observation that the estimates of hazard rates under-
estimate even median hazard rate when adding heterogeneity may seem odd given
that log-normal heterogeneity increases mean hazard rate relative to the median.
However, log-normal heterogeneity in hazard rates will increase mean survival and
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Fig. 1 Bias in the parameter estimates (y-axes) from the model fitted to simulated data with
various degrees of log-normal heterogeneity in the mortality hazard rates (x-axis). Points with
95% confidence bars are from simulations with 1000 individuals released at the initial occasion
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life-expectancy even though mean hazard rate also increases (see text of Fig. 1).
Also note that, in the presence of heterogeneity in hazard rates, the hazard rates
for both states will be biased downwards for the same reason that the hazard ratio
representing cost of reproduction was underestimated: a cohort will be more and
more overrepresented by high quality individuals (those with low mortality hazards)
as time goes by (see Cam et al. (2002); Zens and Peart (2003); Cam et al. (2005)).
Hence, if only studying population level hazard rates it may look as if survival rate
increases after reproduction even when reproduction has a very substantial survival
cost for the individuals, as is seen in this simulation study.

Note that biased estimation of survival (or mortality hazards) due to individual
heterogeneity in mortality hazards is not specific to the model presented here. Any
method for estimation of survival rates will overestimate survival if individual
heterogeneity is not fully accounted for in the analysis (Zens and Peart 2003).
However, the simulations show that, although we get severe bias in estimates of
survival parameters, we retain fairly robust estimation of the latent maturation
distribution even when there is rather extreme individual heterogeneity in mortality
hazards.

Even though we obtain fairly robust estimation of the latent time of maturation
distribution in the presence of high heterogeneity in the mortality hazard rates, the
situation is very different when individual hazard rate and latent time of maturation
are correlated (Fig. 2). When individuals that mature late tend to have a lower hazard
rate (i.e., a negative correlation), the estimated mean time of maturation will be posi-
tively biased, while the bias in the hazard-rate estimators are reduced compared to
the case when the parameters are uncorrelated. When there is a positive correlation
between the parameters, the situation is the opposite: a negative bias in the estima-
tors of mean time of maturation, and increased bias in the estimators of hazard rates.
Standard deviation of the latent maturation distribution is negatively biased when the
correlation between the parameters is strong, but is quite accurately estimated when
the correlation between the parameters is within +0.5.

Fig. 1 (continued) (one simulation per point), while the crosses are from simulations with 500,000
initial releases (details in text). The panels from top to bottom represent: (1) Mortality hazard
rate of immatures (1); (2) Hazard ratio (ef = pmawre/immaturey (3 Recapture probability (p);

(4) Mean latent time of state transition (©); and (5) Standard deviation in individual latent time
of state transition (o). Parameter estimates E , P, and ¢ are expressed in relation to the true
fixed value used in the simulations (subscripts ‘T’), while % is expressed in relation to the expected
median of the simulated hazard rates. The upper dashed line in the top panel shows the mean
expectations of the simulated hazard rates (E[A] = exp(i + 02/2) , where i and o are the mean
and standard deviation of log(4)), which increases to 1.65 at SD (log(A)) = 1. The solid black line
shows the hazard rate corresponding to the mean expectation of survival rate, — log(E[exp(—21)]),
(found numerically). The lower dashed line shows the hazard rate corresponding to the mean life-
time expectancy, E[A7!]7! = exp(u — 0%/2)
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4 Case Study

We here illustrate the use of the model with a case study on timing of spring
reproduction and associated survival costs in field voles (Microtus agrestis) from a
cyclically fluctuating population in northern England. Onset of spring reproduction
in this study area varies by more than 2 months among years and locations, and
this variation is strongly correlated with population densities in the previous spring,
but not with present densities (Ergon 2003). Capture—recapture data with records of
individual reproductive state were collected at 2-week intervals from four study sites
following a translocation experiment (Ergon et al. 2001) in order to study the effects
of the present and past environment of the individuals on life-history traits among
the overwintering animals. Analyses of these data are also presented by Ergon et al.
(2004) and Ergon (2007).

In the analysis presented here we will apply our model to estimate latent distri-
bution of time of first parturition in the season and survival costs of reproduction
at the four study sites. It is of particular interest to look at the correlation between
mean maturation date and survival costs of reproduction across the four sites; higher
survival costs where reproduction commences late in the season could indicate
correlated effects of the environment on both timing and costs of reproduction,
whereas a higher survival cost at the sites where reproduction takes place early in
the season could indicate an adaptive life-history trade-off as a response to fluc-
tuations in the environment (Ergon 2007). An analysis of the data by the use of
traditional multi-state models (see Discussion) is presented by Ergon (2007). There
are however a couple of differences in the data. First, data from an additional trap-
ping occasion in the beginning of the study are now included. This trapping occasion
was excluded in the previous analysis because the length of the first interval varies
among sites, and since transition probabilities are not scaled according to the length
of the intervals in the traditional multi-state model (but transitions are, unrealisti-
cally, assumed to always occur instantaneously at the end of an interval between
trapping sessions) it was difficult to make use of these data in the previous analysis.
Secondly, to simplify the presentation, we now only include females in the analysis.
We also ignore the history of the individuals prior to translocation, as this has been
shown to be unimportant (Ergon et al. 2001). The aim here is primarily to show how
inferences can be made from fitting the model to data, and a thorough analysis is
beyond the scope of this paper.

The data include records of 354 individuals (from 45 to 115 within each site) at
7 trapping occasions, and the effective sample size (number of releases) was 763.
The data, summarized in multi-state m-arrays are given in the Appendix.

4.1 Choice of Model Constraints and Model Selection

The data cover the entire spring season in which the voles commence reproduction
after the winter; in the beginning of the study all animals were non-reproductive,
and by the end of the study all animals known to be alive had started to reproduce.
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In the beginning of the study, the populations within sites were fairly homogeneous;
most individuals were animals that were born late in the previous breeding season
and had suspended growth and delayed maturation before the winter. Age or cohort
effects are thus not of any concern. Survival may, however, vary quite unpredictably
over time because the voles are heavily predated by mobile predators (mustelids,
birds of prey and foxes), that may occupy the study area for a longer or shorter
period of time. Accordingly, it is desirable to use a rather flexible model for the
time-variation in the hazard rate, and there may be support for models with different
time-effects at the different sites (a ‘time x site’ interaction). We used the hazard
function composed as a sum of Gaussian terms described above (Eq. 7), and we also
considered models with constant hazard rates over time.

The trapping followed a standardized protocol and previous analysis has shown
that recapture probability mainly varied according to reproductive state (Ergon
2007). We thus only considered models with a ‘state’ effect on the recapture
probabilities. The main aim of the analysis was to study the association between
mean latent time of parturition and survival costs or reproduction among the study
sites. Hence a ‘state x site’ interaction effect on mortality hazard and mean time
of state transition was included in all models. The ‘time x site’ and ‘state x site’
effects on mortality hazard was made additive on a log-scale, so that the hazard rates
of the two states within sites will remain proportional over time. For simplicity, we
only present models including the same within-site variance in the latent maturation
distribution (models with different variances of the distribution at the different
sites were not supported by the data). Model statistics for 5 candidate models are
presented in Table 2.

4.2 Results

Ranking the candidate models according to their AIC, model-selection criteria
(Burnham and Anderson 2002) revealed that two different models were supported

Table 2 Model statistics for 5 models with different mortality hazard functions fitted to the
vole data. The distributions of individual latent maturation dates within sites were modelled as
logistic distributions with a different mean for each site (4 parameters) and a common variance
(1 parameter). All models include a different recapture probability for each state (2 parameters), but
recapture probabilities are assumed to not differ among sites. The label ‘time(G2)’ means a hazard
function constructed as a sum of two Gaussian curves (Eq. 7) with the same width (b-parameters)
where the means (c-parameters) are fixed to each of the endpoints of the study period (the heights of
the curves (a-parameters) vary freely). Models labeled ‘time(G3)’ include an additional Gaussian
curve at the centre point of the study period. All models have a proportional difference between
mortality hazard rates of immature and mature animals within sites. See text for the meaning of
the other labeling

Hazard model Total no. parameters Deviance Dev. DF A AIC,
state X site 15 368.86 82 0.00
state x site + time(G2) x site 20 358.40 77 0.03
state x site + time(G2) 17 366.84 80 2.16
state x site + time(G3) 18 365.99 79 3.41

state x site + time(G3) x site 24 355.12 73 5.25
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equally well by the data (Table 2). One of the models had a constant hazard rate
within sites and states (15 parameters in total), and the other more complex model
(20 parameters) had a different hazard curve over time for each of the four sites.
Estimates of hazard ratios, recapture probabilities, and the means and standard devi-
ations of the latent maturation distributions based on both these models are given
in Table 3. The estimates of recapture probabilities and maturation distributions
are virtually identical for the two models. The estimates of the hazard ratios of
the two states are however rather different. The model with constant hazard rates
shows a large difference between the sites in the hazard ratios representing cost
of reproduction. In the more complex model, the confidence intervals are too wide
to support any conclusions. The discrepancies can be understood from looking at
plots of the estimated hazard curves (Fig. 3); there is only a rather short period of
time when animals of both states are present in the same population. Hence, it is
difficult to separate the effects of ‘state’ and ‘time’ (part of the ‘state’ effect may be
absorbed by the ‘time’ effect or vice versa). The problem of separating these two
effects is also evident from the sampling correlations between the log of the hazard
ratios and the height of the second Gaussian component relative to the height of
the first component; this correlation was respectively —0.95, —0.90, —0.57, and
—0.89 for site A, B, C, and D. This illustrates a general potential problem when
estimating survival costs associated with state transition if there is little temporal
overlap between the animals of the two states in the population and when there is
little a priori knowledge about the shape of the temporal change in hazard rates.
Plotting the estimated hazard ratios from the model with time-independent
hazard rates against the estimates of the mean time of latent maturation (Fig. 4)
shows that estimated cost of reproduction is higher in the sites where reproduc-

Table 3 Estimates from the two top (AICc-best) models in Table 2. Differences in mortality hazard
rates of animals in the immature and mature state (the cost of reproduction) are expressed as hazard
ratios (hazard rate of the mature state divided by hazard rate of the immature state), which is the
same as the ratio of log(survival) over an interval. Values within brackets show 95% confidence
intervals

Hazard model

state x site

state x site + time(G2) x site
Survival cost of reproduction (hazard ratio)
Site A 2.43 [1.05, 5.65] 8.56 [0.73, 99.92]
Site B 0.35[0.14, 0.89] 0.82[0.10, 6.64]
Site C 1.79[0.82,3.91] 0.74 [0.26, 2.09]
Site D 0.5510.22, 1.40] 0.65 [0.09, 4.66]

Recapture probability

Immature 0.80[0.73, 0.85]

Mature

Mean latent parturition date (day of year)

0.87[0.80, 0.92]

0.80[0.73, 0.85]
0.87[0.80, 0.92]

Site A 113.2[108.8, 117.6] 112.8 [108.3, 117.3]
Site B 93.9[90.2,97.7] 93.9[89.9,97.9]
Site C 109.5[106.2, 112.8] 109.9 [106.6, 113.2]
Site D 97.5[94.0, 101.0] 97.5[93.9, 101.1]

SD latent parturition date (days)

Within all sites

8.5[6.8,10.5]

8.5 [6.8,10.6]
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Fig. 3 Mortality hazard rates on a one-day time-scale according to model ‘state x site +
time(G2) x site’ plotted on a log-scale as a function of day of year for each of the four sites.
Dashed curves show the hazard rates for the immature state, and solid curves represent the mature
state. Grey vertical lines show the mean & 2SD of the estimated distribution for latent time of
maturation. The curves for the immature state are plotted from the first trapping session to the
97.5% quantile of the maturation distribution, and the curves for the mature state are plotted from
the 2.5% quantile of the distribution to the last trapping session at the site

tion commenced late, which indicates correlated effects of the environment on both
timing and costs of reproduction. That the voles in site B and D show a decrease
in the hazard rates after parturition is not surprising when considering the fact that
mortality is confounded with dispersal; voles may disperse prior to reproducing,
but they will obviously not leave the site while they are nursing young in the nest —
illustrating yet another potential problem in estimating survival cost of reproduction.
Finally, we should also keep in mind the lesson from the simulation study above, that
individual heterogeneity in mortality hazard rates can lead to substantial bias in the
estimates of cost of reproduction.

5 Discussion

Age at first reproduction has long been known to be an important life history compo-
nent with substantive consequences for fitness (Cole 1954; Roff 1992; Stearns
1992). Age at first reproduction is also a component of several so-called life history
invariants (Charnov 1993), and predictions about age at maturity ‘probably represent
the most successful empirical area of evolutionary life history theory’ (Charnov
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Fig. 4 Survival costs of reproduction plotted as hazard ratios (y-axis has a logarithmic scale)
against the mean of the estimated distribution for latent maturation date (x-axis) at each of the
study sites. Error bars show 95% confidence intervals of the estimates. Estimates were obtained
from the ‘state x site’ model of Table 2. The estimates of monthly (30 days) survival rates of
immature/mature voles (95% c.i.) from this model were: Site A: 0.63 (0.50, 0.74)/0.32 (0.10, 0.57);
Site B: 0.50 (0.36, 0.63)/0.79 (0.57, 0.90); Site C: 0.75 (0.66, 0.81)/0.59 (0.37, 0.76); Site D: 0.63
(0.51, 0.73)/0.77 (0.57, 0.89)

1989, p. 237). Changes in survival probability that might accompany an animal’s
transition from an immature to a reproductively mature state are also relevant to
theory about life history trade-offs and costs of reproduction (Roff 1992; Stearns
1992). Despite the central role of age at maturity in ecological and evolutionary
theory, empirical work lags behind theory, and approaches for estimation of age at
maturity for natural animal populations in the face of imperfect detection have been
relatively recent.

Clobert et al. (1994) developed a capture-recapture approach to inferences about
age at first reproduction for species that are available for detection as young at a
breeding colony and are then unobservable until they return to breed for the first
time. Subsequent recognition that this problem fits naturally within the framework
of multi-state models (Arnason 1972, 1973; Brownie et al. 1993; Schwarz et al.
1993) led to the direct estimation and modeling of age-specific probabilities of tran-
sition between pre-breeding and breeding states (e.g., Lebreton et al. 1999, 2003;
Pradel and Lebreton 1999; Fujiwara and Caswell 2002; Spendelow et al. 2002;
Kendall et al. 2003; Crespin et al. 2006; Hadley et al. 2006).

This work using multi-state models as the basis for inference about age at first
reproduction deals primarily with organisms that reproduce, at most, once a year,
and that can be sampled during the reproductive season each year. Existing multi-
state modeling approaches do not permit inference about the precise timing of pre-
breeder to breeder transition during the interval between sample occasions and do
not account for the different state-specific survival rates that may apply during inter-
vals of transition. Conroy et al. (1996) and Hestbeck (1995) noted the potential for
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biased inferences about survival arising because of unknown times of transition. Joe
and Pollock (2002) considered multi-state models in which the probability distribu-
tion of the time of state transition within an interval was known (e.g., uniform or beta
distributions), and found that these models performed fairly well when evaluated in
terms of relative bias of survival, transition and capture probability estimators.

In this paper, we use a latent variable modeling approach (e.g., Skrondal and
Rabe-Hesketh 2004) on multi-state capture-recapture data to address questions
about age at first reproduction in organisms for which the reproductive season
cannot be readily viewed as a single discrete period (e.g., Fairbairn 1977; Ergon
et al. 2001; and Ergon 2007). Our approach focuses on the latent probability distri-
bution for time at maturation or, equivalently, the hazard function associated with
this distribution. This probability distribution is not conditional on survival, whereas
realized (i.e., observable) times of maturation represent functions of survival and
conditional probabilities of maturation. For studies of responses to selection, life-
history trade-offs and phenotypic correlations (e.g. Roff 2002), estimates of the
latent trait distributions are generally more relevant than estimates of the realized
distribution. Also in studies of density-dependence in timing of seasonal reproduc-
tion (e.g., Smith et al. 2006), it will be more informative to study density depen-
dence on the latent times of reproduction than the observable times which will be
influenced by (perhaps density-dependent) variation in survival.

Using this model to analyze variation in maturation and survival rates in field
voles, we found evidence that the survival cost of reproduction (estimated as
mortality hazard ratios of mature vs. immature voles) was higher at sites for which
maturation was later, suggestive of correlated effects of environmental conditions
on both time of maturation and survival, which is consistent with previous analyses
of the study system (Ergon et al. 2001; Ergon et al. 2004; Ergon 2007). The survival
differences between immature and mature voles were relatively large, again arguing
for models such as these that permit the partitioning of between-sample intervals
based on time of maturation.

In our example analysis, it was difficult to discriminate between models with
time-constant versus time-varying mortality hazard rates. This difficulty was largely
a result of synchronous maturation, such that most voles were immature for one set
of time intervals and mature for another set of intervals, with few sample intervals
containing sufficient numbers of both mature and immature voles. This seasonality
in our example leads to the recommendation that sampling should be most intense
during periods for which numbers of animals can be found in both immature and
mature states. Increased synchronization of maturation should lead to an increase in
the focus of sampling intensity on transition periods, especially if large time vari-
ation in mortality hazard rates can be expected. In the case of highly synchronous
maturation, it will be difficult to separate temporal trends in survival from true costs
of reproduction.

The simulation study provided evidence of the sensitivity of estimates of repro-
ductive costs to heterogeneity in individual mortality hazards. Estimation of the
latent time of maturation distribution was found to be fairly robust to heterogeneity
of hazard rates. However, when there were strong correlations between individual
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mortality hazard and time of maturation (e.g., individuals that mature late tend to
have lower mortality hazard rate), then estimates of the maturation distribution tend
to be biased.

These latter observations about potential bias in the face of correlated mortality
hazards and time at maturation lead to clear recommendations for future work.
Our models assume independence of the two demographic processes, transition
to reproductive state and survival. Individual quality can lead to positive corre-
lations between survival and reproductive parameters estimated at the population
level (Cam et al. 2002; Weladji et al. 2006), even if reproductive costs are expected
to lead to negative correlations within individuals. Indeed, it is a major empirical
question to determine the relative importance of these two factors, and how they
can be affected by environmental variability (see Ergon (2007)). One major future
development will be to incorporate such correlation in the model.

The focus of this paper has been on the transition from immature to mature,
but we see applications for modeling of other ecological processes as well. For
example, in disease ecology, the state transition from uninfected to infected and
the mortality hazard ratio for these two states (i.e., lethality) are of primary impor-
tance (e.g. Begon et al. 2002; Telfer et al. 2002; Burthe et al. 2006; Oli et al.
2006). Because infection will frequently produce large differences in state-specific
mortality hazards, bias resulting from failure to deal adequately with transition
times would be expected to be substantial. Indeed failure to re-observe animals
that become infected during the interval between sample periods (because of death)
will result in underestimation of the lethality as well as the rate of infection
(especially if lethality is high). The model presented in this paper will remedy
these problems and yield estimates of infection rates and lethality that are not
biased by background mortality. However, it should be noted that when changing
the focus from the latent distribution for time of state-transition to the corre-
sponding transition hazard rates, it is assumed that the variation in time of tran-
sition (infection) is solely due to stochasticity and there is no individual hetero-
geneity in the infection hazards (susceptibility). Hence, individual heterogeneity
in the infection susceptibility (other than what can be accounted for by group
variables, age or time) is not accounted for in the current model and may lead
to biases.
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Appendix - Case Study Data

The data used in the Case Study, represented as multi-state m-arrays (See Table 1),
are given in Tables 4-7 below. Times of trapping session at each site, expressed
as day of year, are given in the caption of each table. These should be rescaled to
have absolute values less than ~1 to avoid numerical problems when using some
mortality hazard functions. Note that site A and site C have 7 trapping sessions,
while site B and site D have 6 trapping sessions.



Table 4 Multi-state m-array Site A. Trapping sessions on days 1:41, 2:69, 3:84, 4:98, 5:112, 6:127,
7:139

Session of first recapture ()
State of recapture

Session of  State of 2 3 4 5 6 7 never
release (i) release A A B A B A B A B A B

1 A 18 0 1 0 0O 0 0 O 0 0 0 0 16
1 B 0 0 0 0 0O 0 0 o0 0 0 0 0 0
2 A 14 0 1 0 0 2 0 0 0 0 7
2 B 0 0 0O 0 0 o0 0 0 0 0 0
3 A 13 0 1 1 0 0 0 0 0
3 B o0 0 O 0 0 0 0 0
4 A 8 4 0 0 0 0 3
4 B 0 0 0 0 0 0 0
5 A 0 5 0 2 2
5 B 0 4 0 0 3
6 A 0 0 0
6 B 0 3 7

Table 5 Multi-state m-array Site B. Trapping sessions on days 1:21, 2:76, 3:92, 4:106, 5:119,
6:134

Session of first recapture ()
State of recapture

Session of  State of 2 3 4 5 6 never
release (i) release A B A B A B A B A B

1 A 4 0 0 1 0 0 0 0 0 0 23
1 B 0 0 0 O 0 0 0 0 0 0 0
2 A 13 8 0 1 0 0 0 0 7
2 B 0 0 0 0 0 0 0 0 0
3 A 2 13 0 2 0 0 1
3 B 0 10 0 1 0 0 2
4 A 0 3 0 0 0
4 B 0 28 0 0 2
5 A 0 0 0
5 B 0 27 13

Table 6 Multi-state m-array Site C. Trapping sessions on days 1:13, 2:67, 3:82, 4:96, 5:110, 6:124,
7:137

Session of first recapture (j)
State of recapture

Session of ~ State of 2 3 4
release (i) releass A B A
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Table 7 Multi-state m-array Site D. Trapping sessions on days 1:30, 2:74, 3:89, 4:103, 5:117,
6:131

Session of first recapture (j)
State of recapture

Session of  State of 2 3 4
release (i) release A B A
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Inferences About Landbird Abundance
from Count Data: Recent Advances
and Future Directions

James D. Nichols, Len Thomas, and Paul B. Conn

Abstract We summarize results of a November 2006 workshop dealing with recent
research on the estimation of landbird abundance from count data. Our concep-
tual framework includes a decomposition of the probability of detecting a bird
potentially exposed to sampling efforts into four separate probabilities. Primary
inference methods are described and include distance sampling, multiple observers,
time of detection, and repeated counts. The detection parameters estimated by these
different approaches differ, leading to different interpretations of resulting estimates
of density and abundance. Simultaneous use of combinations of these different infer-
ence approaches can not only lead to increased precision but also provides the ability
to decompose components of the detection process. Recent efforts to test the efficacy
of these different approaches using natural systems and a new bird radio test system
provide sobering conclusions about the ability of observers to detect and localize
birds in auditory surveys. Recent research is reported on efforts to deal with such
potential sources of error as bird misclassification, measurement error, and density
gradients. Methods for inference about spatial and temporal variation in avian abun-
dance are outlined. Discussion topics include opinions about the need to estimate
detection probability when drawing inference about avian abundance, methodolog-
ical recommendations based on the current state of knowledge and suggestions for
future research.

1 Introduction

For decades, the majority of inferences about landbird abundance and density have
been based on counts conducted by investigators, either stationed at points (e.g.,
Blondel et al. 1970) or walking along line transects (Emlen 1971; Jarvinen and
Vaisanen 1975). Counts resulting from point and transect sampling have been
treated frequently as indices to abundance, in the sense that the expected counts
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have been assumed to represent an unknown, yet relatively constant, proportion of
the sampled population. Early on, some investigators argued that the proportionality
assumption is not likely to be widely met, or at least merits testing, and advocated
the collection of supplemental data with counts that permit inference about the
detection probabilities of individual birds and thus about true abundance and density
(e.g., Ramsey and Scott 1979; Burnham et al. 1980, 1981). Debate about approaches
for drawing inferences about population size and dynamics from avian count data
has motivated symposia and workshops over the years (Ralph and Scott 1981; Ralph
et al. 1995) and has persisted through the present time (e.g., Anderson 2001; Hutto
and Young 2002, 2003; Rosenstock et al. 2002; Thompson 2002b; Ellingson and
Lukacs 2003).

The past 5 years have been a period of especially active research on inference
methods for avian count data. Such research has included development of new esti-
mation methods, application of these and previous methods in investigations of rela-
tively large scale, and serious testing of existing methods using novel experimental
approaches. These developments are sufficiently recent that it has been difficult
for investigators to keep up with progress that has been made. Thus, we hosted a
small workshop at Patuxent Wildlife Research Center, Maryland USA, inviting 19
biometricians and avian population ecologists (see Acknowledgements) who have
played large roles in the recent research. The purposes of the workshop were to
obtain a synthesis of the current “state of the art” in methods for estimating landbird
abundance from point count and related data, to highlight future research needs, and
to determine how best to bridge the gap between statisticians and practitioners. This
paper represents an effort to summarize some of the central conclusions and points
of discussion from the workshop.

2 Conceptual Framework

2.1 Basic Framework

Discussions of use of count data as a basis for inference about animal populations
frequently begin with 2 facts about sampling animal populations (e.g., Lancia et al.
1994, 2005; Borchers et al. 2002; Williams et al. 2002):

(1) Interest is frequently in areas that are sufficiently large that animals cannot be
counted over the entire area for which inference is desired;

(2) At locations where investigators do obtain counts of animals by whatever
means (counts of animals seen, heard, captured, etc.), these counts seldom
include all animals at the sampled location.

Fact 1 is common to many areas of statistics, and traditional design-based
sampling approaches are applicable (e.g., Cochran 1977; Thompson 2002a). These
sampling approaches are designed to use data from locations at which counts
are made to draw inferences about locations where counts are not made. In
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design-based sampling, the key to such extrapolation is to sample locations in such
a manner that all locations about which inference is desired have some known,
non-negligible probability of being included in the sample. These probabilities
(sometimes called “coverage” probabilities) are determined by the type of design
(e.g., random sampling, stratified random sampling, systematic sampling, adap-
tive cluster sampling), and can be computed based on a knowledge of the design
(including desired sample size). Model-based sampling represents a somewhat
different approach in which covariate relationships estimated from data on loca-
tions that are visited are assumed to apply to locations that are not visited. If this
assumption holds, then as long as covariate information is available for all locations
of interest, inferences about animal abundance can be made even from locations at
which no counts are made. Although geographic variation and spatial sampling were
not the primary foci of the workshop, discussion of these topics arose frequently, as
their importance was clearly recognized.

Fact 2 involves detectability, and the workshop focused on approaches for dealing
with this issue. Traditional discussions of detectability view counts of animals (C;
for location 7) as random variables, the expectation of which can be written as the
product of the true number of animals at the location at the time of the survey (&;)
and the detection probability (p;), the probability that a member of N; appears in C;:

E(Ci) = Nip; . ey

In the context of the workshop, counts were usually the numbers of birds seen or
heard, and discussion focused on how to translate these counts into inferences about
true abundance or density.

For some purposes, estimates of true abundance or density are required, and can
be obtained as:

Ni=—. 2
Pi
In many cases, we can view location i as corresponding to an individual sampling
unit selected from a large area for which an abundance estimate, N , is desired.
In an effort to deal with facts 1 and 2 listed above, we define p.; as the coverage
probability of sample i within this large area and estimate N as:

F=3" G 3)

~
i PiPc,i

More frequently, inferences of interest involve not abundance itself, but ratios of
abundance over space (often termed relative abundance) or time (often termed trend
or rate of population change). One approach to inference about ratios of abundance
is to standardize data collection procedures in hopes of obtaining similar detection
probabilities for the different times or locations to be compared. If similar detection
probabilities can be obtained, then ratios of the counts themselves provide reason-
able estimates of ratios of abundances. Another approach is to hope that most of
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the relevant temporal and spatial variation in detection probability is associated with
recorded covariates that have no possibility of also being associated with variation in
true abundance. For example, observer identity is such a covariate and can be incor-
porated into analyses that use raw count data (e.g., Link and Sauer 1997). Those
who do not believe it is safe to rely on standardization and covariate identification
typically advocate collection of data needed to draw direct inference about detection
probability and its variation. Given such data, it is possible to compare alternative
models that express different hypotheses about how detection probability varies as
a function of time, space, or recorded covariates. The workshop included discus-
sion of the relative efficacy of these 2 general approaches: (1) use of raw counts
with assumptions about relevant sources of variation in detection probability, versus
(2) collection of data needed to draw inferences about variation in detection proba-
bilities, using methods that also require assumptions about the detection process.

2.2 Decomposition of Coverage and Detection Probabilities

K.H. Pollock presented a conceptual framework for the workshop that extended the
ideas presented above to include different components of detection (also see Pollock
et al. 2002; Farnsworth et al. 2002, 2005). Specifically, he noted that detection can
be broken into components associated with availability and detection given avail-
ability. The issue of availability has been discussed, mainly with respect to aquatic
organisms that may be submerged at the time of the survey and thus not exposed to
surface survey methods (e.g., Marsh and Sinclair 1989; Laake and Borchers 2004;
Okamura et al. 2006). In an auditory survey, a bird that does not vocalize during
the survey period is not available to be detected. A bird that does vocalize is avail-
able and may or may not be detected depending on the probability of detection
given availability. During the course of the workshop, there was also discussion of
temporary emigration and the possibility that a bird that sometimes uses a particular
sampled site (i.e., the site is included in the bird’s territory or home range) may not
be present on the site at the time of the survey.

These ideas about geographic sampling and detection probability cause us to
further subdivide the coverage and detection probabilities of Section 2.1 and view
the probability that a bird in some large area of interest is actually detected during
a survey within that area as the product of 4 conceptually distinct probabilities. We
begin by considering all birds whose territories or home ranges lie at least partially
within the large area about which inference is to be drawn. We refer to this number
as superpopulation size, N*, indicating that these birds have some probability of
being exposed to sampling efforts at any given survey time. We are not necessarily
interested in estimating N*, but we simply identify members of N* as the individuals
that may appear in our sample counts. We then consider a randomly chosen bird
from the superpopulation N* and consider its probability of being counted during a
survey.

One way to define coverage probability is the probability that the location of
the bird is within a sampling unit (location at which a survey count is conducted)
at the time of the survey. It is helpful to decompose coverage probability into two
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parts. The first is the probability that the bird’s home range or territory at least
partly overlaps a sampling unit. We denote this probability as p,, and associate it
with spatial sampling (Cochran 1977; Thompson 2002a). This probability depends
on the spatial sampling design (how are sampling units selected, what are the sizes
of the units) and on the size and shape of the bird’s home range, or of the portion
of it lying within the large area of interest. Conditional on a bird’s home range
overlapping at least one selected sample unit, the second probability of interest is the
probability that a bird is present at a sample unit during the survey period (the time
spent surveying at that unit). We refer to this as the probability of presence, p), as it
indicates the probability that the bird is within the area exposed to sampling efforts
for at least some of the survey period. For ease of extrapolation and discussion,
we assume the simple case in which the range of a single bird can overlap at most
a single selected sample unit, although more complicated situations are certainly
possible. Decomposing coverage probability into these two components allows us
to account for temporary emigration of birds from a sampling unit during the time
of the survey; this occurs with probability (1—p)).

We now decompose detection probability into two parts. If a bird is located
within the sample unit during the survey period, we still consider the possibility
that the bird is not available for detection during that time. For example, in an
auditory survey, a bird that fails to vocalize during the survey period is essentially
unavailable for detection despite being present in the surveyed area. We use the
term availability for this detection component and denote the associated probability
as p,. We further note that the methods we consider focus on birds for which p,>0.
For example, if females of some species are simply invisible in the general period
during which surveys are conducted, then none of our estimation approaches will be
useful for them. Finally, we consider the probability of detection given presence and
availability, p,. In an auditory survey, this probability corresponds to the observer
actually hearing a bird and being able to identify the species. This component of
detection probability is likely to vary as a function of such factors as observer skill
and sensory (e.g., hearing) abilities, vocalization characteristics of the bird species,
habitat structure, and distance from the observer.

All of these probabilities are viewed as components of the process generating the
count data, and their identification and specification during the workshop hopefully
led to clear thinking and discussion of the various methods used to estimate bird
numbers and density. In particular, we note that most of the estimation methods
discussed at the workshop incorporate some sort of parameter representing detection
probability. We will use the terms “detection probability” to describe the parame-
ters estimated by different approaches, and we reserve the notation p, for detec-
tion conditional on presence and availability. The nature of the detection probability
parameter varies among the different methods, as it can reflect only p,, the product
PaDa, or even the product p,p,ps. Combinations of methods provide opportunities
for estimating these components separately and in some cases such decomposition
may be useful. We believe that it is especially important that the investigator be
aware of which detection parameter applies to a particular method, as this deter-
mines the population about which inferences are being made. We discuss this further
when introducing each method, below.
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Note that for ease of presentation and interpretation, the above components of
the detection process are listed as single parameters, implying that every individual
in the population of interest shares these common parameters. In reality, at least
some of these components will vary by individual, such that these parameters are
best viewed as averages. In some cases, these probabilities are best viewed at the
level of the individual and modeled as a function of individual-level covariates.

2.3 Closed Populations and Open Fields

Frequently, we will express interest in inferences about a closed population of size N
in a known area of size A. While this conceptualization is directly applicable in some
circumstances, for example an island population, it is often the case that the survey
boundaries are not closed to animal movement, so that population size is not a fixed
quantity but varies even over short time intervals. The inclusion of p, as a component
of the detection process in the framework presented above reflects a recognition of
this reality. Further, there are some circumstances when the area of inference A is not
well defined, although these are often associated with circumstances where there is a
poor survey design. M.G. Efford (collaborating with D.K. Dawson) made a presen-
tation, part of which described an alternative perspective to the “closed population”
paradigm, which he called an “open field”. In this perspective, detectors are located
within some area of interest and the focus is on estimating animal density, defined
as the local intensity of a spatial point process.

2.4 Index Methods

In certain situations, it may be possible to diagnose population trends without explic-
itly estimating detection probabilities, treating counts as indices to abundance. In a
recent survey of 224 papers using field counts of landbirds, Rosenstock et al. (2002)
found that 95% viewed the counts as indices for inference about variation in abun-
dance. Index methods traditionally assume constant detectability, so that changes in
raw counts over time or space are viewed as representing changes in the popula-
tion of interest. Use of indices can also involve covariates hypothesized to influence
detection probability but not true abundance or density. Such analyses require that
all systematic changes in detectability can be explained and modeled with covari-
ates (e.g., Link and Sauer 1997). At the workshop, W.A. Link and D.H. Johnson
gave provocative presentations that focused on the key points of consideration when
making decisions about whether to use an index approach to point counts or to
instead try to model and/or estimate detection probabilities. W.A. Link maintained
that covariates influencing detectability can often be controlled for, and that it was
indeed possible to make inferences about population trends without explicit estima-
tion of detection probability. Both presenters argued that index approaches to moni-
toring, such as the BBS, have provided valuable information on population trends, and
have helped to identify species of concern whose status warrants further investigation.
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Subsequent discussion of index methods largely focused on the tenability of
model assumptions. Workshop participants reached consensus that the assump-
tion of constant detectability needed for index methods was sometimes overstated.
Rather, it would suffice that expected detection probability, E(p), is constant over
time (e.g., Nichols et al. 2000; Yoccoz et al. 2001; Conn et al. 2004). D. H. Johnson
argued that even if there is a small trend in detectability, index methods may still be
sufficient to diagnose large scale changes in abundance. The same general comments
apply to covariate analyses of index data, although the interpretation of E(p) is in
this case changed to the expected detection probability after available covariates
have been used to control for variation in detectability.

Index-based methods are inherently attractive when their assumptions are met;
they require fewer data to be collected and avoid potentially problematic assump-
tions about the functional form of individual heterogeneity in detection probability
(Link 2003). On the other hand, when index assumptions are sufficiently violated,
they may lead to erroneous inferences. When trends are estimated as ratios of raw
counts or as regressions of counts on time, undetected trends in detection proba-
bility can either mask changes in abundance or cause one to observe a spurious
trend in abundance. Use of appropriate covariates can correct for some of the factors
influencing detection probability. For instance, Link and Sauer (1998) were able to
detect, and correct for, changes in the competency of bird point count participants
over time. However, these approaches cannot be used to correct for unrecorded
covariates that influence detection, nor for covariates that may be associated with
trends in abundance. For instance, decibel level has undoubtedly increased along
roads in the United States over the past several decades, but historically has not been
recorded at U. S. Breeding Bird Survey (BBS) point counts. Decibel level appears to
be inexorably linked with the auditory detection process (Simons et al. 2007), and so
may have led to unmodeled trends in detectability in BBS analyses. Even if decibel
level had been recorded, this covariate is likely related to land use and proximity
of human development, variables that may influence actual bird abundance. Global
warming, succession, and introduction of invasive species are some of the examples
proposed by workshop participants that might simultaneously influence both abun-
dance and detectability. If these factors have large influences on expected detection
probability, index methods will not be adequate for the analysis of population trends.
In these cases, methods designed to explicitly estimate detection probability are
needed.

3 Basic Inference Methods

3.1 Distance Sampling

L. Thomas presented to the workshop an overview of “conventional” distance
sampling (CDS) methods (Burnham et al. 1980; Buckland et al. 1993, 2001). There
are two main variations: line transects, where the survey is performed from a set
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of randomly located lines, and point transects, where it is from a set of randomly
located points. The basic idea is the same for both. Observers record the distance
from the line or point to all birds detected within some truncation distance, w (which
in practice may be infinity, i.e., all detections are recorded, but some finite truncation
distance is almost invariably specified at the analysis stage). The sample units are
therefore a set of strips (line transects) or circles (point transects) of known size.
Not all birds within the sample units are detected, but a fundamental assumption of
the conventional methods is that all birds at zero distance are available and detected.
Intuitively, one would expect that birds become harder to detect on average with
increasing distance from the line or point. The key to distance sampling is to use the
distribution of the observed distances to estimate the “detection function”, denoted
g(y) —that is the probability of detecting a bird, given it is at distance y. This function
can then be used to estimate the average probability of detecting a bird given that it is
within a sample unit and available for detection —i.e., p;. Note that the conventional
methods are not designed to estimate availability, p, — if this is <1 then additional
data are required. Given an estimate of detection probability, py, it is straightfor-
ward to estimate density using design-based methods such as equation (3), since
coverage probability is known by design. Let N, represent the total number of birds
whose home ranges overlap the set of sample units surveyed by the two observers.
Because distance sampling estimates p;, abundance estimates obtained using this
approach are associated with the birds present at the sample locations during the
sample period and available to be detected during that time. If ranges of individual
bird do not overlap multiple surveyed sample units, then E(N,) ~ N, p »Da-
Assumptions of CDS used in estimating p, are (1) animals are distributed inde-
pendently of the line or point locations; (2) all birds at zero distance are detected;
(3) distances are measured without error; (4) observations at a line or point take
place at an instant in time, so that animal movement is negligible. Assumption 1
(independent animal distribution) is true by design if a large number of sample units
are located at random within the study area, and may be violated if there is non-
random sample unit placement such as surveys along roads or trails. Substantial
violation can lead to substantial bias in the estimator of abundance. Assumption
2 (g(0)=1) may be violated due to “availability bias” (i.e., non-availability of a
component of the population, such as female birds not vocalizing in an aural survey)
or “perception bias” (birds that are available being missed at zero distance). In
both cases, additional information is required to estimate the proportion missed,
either through a separate survey (e.g., observations of radiomarked or colormarked
birds to directly estimate availability, Section 4.3) or more complex mark-recapture
distance sampling methods (Section 3.7). Assumption 3 (no measurement error)
may be more easily met in visual surveys, where laser rangefinders can be used to
provide accurate distances, but is more problematic in aural surveys, as we discuss
later. We also discuss methods designed to correct for bias caused by measurement
error in cases where the measurement error process is relatively simple and well
understood. Assumption 4 (no animal movement) can also be problematic in some
field situations. Responsive movement of animals, such as attraction of birds to the
observer before detection, can cause substantial bias, and even random movement
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can cause significant bias for point transects. One reason that bias tends to be worse
in point transects is that the observer is (more or less) stationary; short survey
periods (perhaps 3 min) can minimize the problems, but a preferable protocol is a
“snapshot” method where only known locations of birds at a pre-defined instant are
recorded — see Buckland (2006) for a more detailed description. Another potential
solution is to use cue-counting methods, where distances to individual cues such
as song bursts are recorded, rather than individual birds. Cue production rate is
estimated in a separate survey, and used to convert an estimate of the abundance of
cues back to abundance of animals. If possible, estimation of cue production rate is
carried out at the same time/place of the actual survey. Detailed advice on survey
design and field methods is given in Buckland et al. (2001, Chapter 7) and Strind-
berg et al. (2004), and recommendations specifically oriented to landbird studies
are given in Buckland (2006). A fifth assumption, that each bird detection is an
independent event, is not as important in practice.

While not strictly assumptions, there are some additional requirements for robust
estimation. First, the detection function should have a “shoulder” — i.e., the prob-
ability of detection should remain at or close to 1 initially as distance from the
line or point increases. This is often referred to as the “shape criterion”. Second,
the detection function should be smooth. Third, the models used for g(y) should
be flexible, in the sense that they can take a wide variety of plausible shapes, so
that they will be a good approximation to the true detection function given a large
sample size. Such models are termed “model robust”. Fourth, an adequate sample
size of distances is required. “Adequate” is hard to define unambiguously, since
more samples are required for “difficult” detection functions (e.g., small shoulder or
steep fall-off in detectability), however Buckland et al. (2001, Section 7.2.2) recom-
mend at least 60-80 observations for line transect studies and 75-100 for point
transect studies. Under these conditions, the estimators of abundance are “pooling
robust”, meaning that even large variations among individuals in probability of
detection due to observer, habitat, etc. cause little bias in the estimate of pg and
hence abundance. Thomas presented simulations that demonstrated this, but which
also showed when heterogeneity in detectability is extreme (e.g., singing males and
cryptic females), significant bias can arise (Thomas et al. in prep.). One potential
solution to extreme heterogeneity is to include the factors causing the heterogeneity
as additional covariates in the detection function model (Marques et al. 2007). This
approach may also offer a partial solution to the sample size requirements if rarer
species can be combined with more common ones and species used as a detection
function covariate (Alldredge et al. 2007b). A fifth requirement is of an adequate
sample of lines or points (minimum 10-20, Buckland et al. 2001, Section 7.2.1) for
reliable estimation of the spatial component of variance of the abundance estimate.

3.2 Multiple Observers

M.W. Alldredge presented the basic ideas underlying models based on multiple
observers and time of detection. The multiple-observer approach requires that 2 or
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more observers either sample a point together or traverse a line transect together,
keeping track of observer-specific detections of individual birds. The approach is
adapted from work by Cook and Jacobson (1979) on estimation approaches for
aerial surveys and is closely related to capture-recapture modeling of closed popu-
lation data (Otis et al. 1978; Seber 1982). Field sampling by multiple observers can
be treated in either of two general ways, labeled dependent and independent. Both
approaches have been used with avian point count data. Our descriptions will be of
point counts, although we note that both approaches can be implemented along line
transects as well.

Under a dependent double-observer approach, at each point one observer is
designated as “primary” and the other as “secondary”. The primary observer identi-
fies all birds detected and communicates each detection to the secondary observer.
The secondary observer records these detections of the primary observer, as well
as additional birds that the primary observer does not detect (e.g., Nichols et al.
2000). Observers switch roles at different points such that each observer serves as
primary observer for about half the sample points. The data for a series of point
counts conducted in this manner by two observers can be summarized as four
sufficient statistics for each species or group of species to be analyzed together:
the number of birds detected by observer i (i=1,2) when that observer was the
primary observer, and the number of extra birds detected by observer i when the
other observer was primary observer. These data can then be used to estimate the
number of birds exposed to sampling efforts at the group of surveyed points under a
general model in which detection probabilities differ between observers and among
species. Reduced-parameter models can then be developed to evaluate hypotheses
about the similarity of detection probabilities for observers and bird species.

The general model for the dependent double-observer approach assumes that
detection probability of an observer does not vary depending on the observer’s role
as primary or secondary. It is assumed that detection and recording of a bird by
the secondary observer does not influence the probability that the primary observer
detects the bird. The approach assumes that all birds of a species found within
the sampled area (frequently defined by a specified fixed radius) at the time of the
sample have the same probability of being detected by an observer (the probabilities
may be different for the two observers). The number of birds exposed to sampling
efforts is assumed to be fixed (population closure), and this assumption may limit
the sample to a very short time period (e.g., 3 min). Nichols et al. (2000) provide a
more detailed discussion of field sampling methods, analysis methods, underlying
model assumptions and field approaches directed at meeting model assumptions.

The independent multiple-observer approach to point counts requires that two or
more observers independently record detections from the same basic field sampling
point for some specified short period of time (e.g., 3 min). The observers will typi-
cally have a schematic diagram of the surveyed area (concentric circles of different
radii around the sample point) such that detections of a species are recorded on
the diagram with a time of detection. Immediately following the count, observers
confer and compare diagrams with the purpose of matching detections of the same
birds and developing detection histories for every bird detected (Alldredge et al.
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2006). For example, with two independent observers, three detection histories and
associated sufficient statistics can be observed: x;; = number of birds detected by
both observers, xjo = number of birds detected by observer 1 and not observer 2, and
Xo1 = number of birds detected by observer 2 and not observer 1. These data are then
analyzed as closed model capture—recapture data, where time-specific variation in
the capture—recapture context is analogous to observer-specific variation in the point
count context. Observer variation in detection probability can be incorporated into
models, or detection probability can be modeled as a constant for all observers. If
>2 observers conduct the sampling, then finite mixture heterogeneity models (e.g.,
Norris and Pollock 1996; Pledger 2000) can be fit that permit variation among indi-
vidual birds in their probabilities of being detected (Alldredge et al. 2006).

Assumptions underlying the independent multiple observer approach include
population closure and independence of detections among observers. It is further
assumed that detection histories are correct (i.e., that there are no matching errors).
The double observer models assume the same detection probabilities for the
different individuals of the same species within the sample area for each observer.
This homogeneity assumption can be relaxed with >2 observers using finite mixture
heterogeneity models (Alldredge et al. 2006). If limited-radius counts are used, it is
assumed that the observer correctly determines whether each detected bird is inside
or outside of the specified radius.

The detection probabilities estimated using multiple-observer approaches pertain
to the conditional probability of detection, p,, given that the bird is present in the
area exposed to sampling efforts (e.g., located inside the area defined by a fixed
radius) at the time of the sample (probability associated with this event is p,) and
given that it vocalizes or is otherwise available during the sample period (associated
probability is p,). The detection probability is also conditional on the initial proba-
bility that the point count sample unit is overlapped by the home range of a particular
bird (associated probability py), but as this probability is a component of all bird
detections, we will omit it from our discussions of the different detection parame-
ters estimated by the different methods. Let N; represent the total number of birds
whose home ranges overlap the set of sample units surveyed by the two observers.
Because multiple-observer estimation focuses on p,, the abundance estimated using
this approach is associated with the birds present at the sample locations during the
sample period and available to be detected during that time. If ranges of individual
bird do not overlap multiple surveyed sample units, then E(N,) ~ N, DPpPa-

3.3 Time of Detection

The time of detection approach to abundance estimation from avian point counts
requires only a single observer at each sampled point. The duration of the entire
point count is divided into component time intervals (e.g., a 3-minute point count
might be divided into three 1-minute time intervals). The initial development of this
approach focused on the time interval of first detection for each bird detected in the
count (Farnsworth et al. 2002). If we let K denote the total number of time intervals
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in a point count, then the sufficient statistics under this approach are the numbers of
birds detected for the first time in each interval, x, x»,. .. xg.

Modeling of these sufficient statistics requires an abundance parameter, N, and
detection parameters, p. The modeling is identical to that of removal modeling
in capture-recapture literature (Otis et al. 1978; Seber 1982). Estimation is not
possible with interval-specific detection parameters, and these parameters are typi-
cally assumed to be constant over time when all intervals are of equal length.
Farnsworth et al. (2002) also consider the situation where the intervals are of
unequal length. Let # represent the length of interval i expressed in some rele-
vant time unit (e.g., minutes). Then the probability of a bird being detected during
interval i can be written as: p; = 1 —(1 — p)", where p is the probability of detection
for a single unit of time. Under an equivalent continuous time formulation, let ¢;be
the instantaneous rate of detection during interval i, or “Poisson detectability coef-
ficient” (Alldredge et al. 2007a). Then the probability of detection during interval
iis: pj = 1 — e %" Heterogeneity among individual birds at a sample unit can
be modeled using a finite mixture (e.g., Pledger 2000) or other approach (other
estimators for My, of Otis et al. 1978).

It is also possible to treat time of detection data as standard capture-recapture
data, rather than as simply removal data (e.g., Alldredge et al. 2007a). For example,
instead of recording the time interval of first detection, the observer records all inter-
vals of detection for each bird. For example, with two time intervals, three detection
histories and associated sufficient statistics can be observed: x;;= number of birds
detected in both time intervals, x;o = number of birds detected only in the first time
interval, and xp; = number of birds detected only in the second time interval. These
data are then analyzed using standard capture-recapture models for closed popula-
tions, with time interval of detection being equivalent to a sample period in closed
capture—recapture. It seems likely that the initial detection of an individual might
have a different (typically smaller) detection probability than subsequent detections,
in which case analysis would be based on the time intervals of first detection.

Assumptions underlying the time of detection approach include population closure
and independence of detections of an individual among the different sample intervals.
If time of first detection only is modeled then the latter independence assumption is
no longer relevant. The time of detection approach assumes the same detection prob-
abilities for the different individuals of the same species within any sample interval.
This homogeneity assumption can be relaxed with >2 intervals using finite mixture
heterogeneity models. It is assumed that birds are not double-counted (1 bird mistak-
enly counted as 2). The time-of-detection approach is typically applied to sample
plots defined by a fixed radius (fixed distance from the point). If fixed-radius counts
are used, it is assumed that the observer correctly determines whether each detected
bird is inside or outside of the specified radius. A final assumption concerns the circle
defined by the modeling of the availability process and thus of p,. Farnsworth et al.
(2002) initially modeled availability as a random process in the sense that each bird
had an equal probability of vocalizing in any time interval. However, if the process for
individual birds is Markovian, in the sense that vocalization during one interval causes
the probability of vocalization in subsequent intervals to be larger or smaller, then this
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process should be incorporated into the modeling and estimation (e.g., see analogous
situation in capture—recapture with temporary emigration, Kendall et al. 1997).

The detection probabilities estimated using time of detection approaches pertain
to the product of (1) the conditional probability of being available (p,), given pres-
ence in the sample unit at the time of the survey (associated probability p,), and
(2) the conditional probability of bird detection, p,, given presence and availability.
The detection probability estimated by this approach is also conditional on the initial
probability that the point count sample unit is overlapped by the home range of a
particular bird (associated probability p;), but this term is omitted in our develop-
ment as in the example for multiple observers. Let N; once again represent the total
number of birds whose home ranges overlap the set of sampled points. Because esti-
mation based on time of detection focuses on the product p, p,, the abundance esti-
mated using this approach is associated with the birds present at the sample location
during the sample period but is not conditioned on availability. Thus, if ranges of
individual birds do not overlap multiple surveyed sample units, thenE(N,) ~ N, p -

3.4 Repeated Counts

J. A. Royle outlined approaches to the use of repeated count data from the same
locations as a basis for inference. In doing so, he noted that the data arising from
point counts can be viewed naturally in terms of hierarchical models with two basic
components, an observation component and a process component. The observation
component of such models deals with survey methods and avian detection, condi-
tional on true abundance, whereas the process component deals with the distribution
of true abundance over space or survey points. Royle noted that the likelihoods
for the approaches described above (distance sampling, multiple observers, time
of detection) can all be viewed as multinomial observation models in at least
some instances (e.g., distance sampling with data grouped by intervals). He then
specified two other data types resulting from repeated point counts at the same loca-
tions, the replicate counts themselves and the reduced presence—absence (detection—
nondetection) data separating 0 and positive counts.

The sampling protocol involves simple point counts (no necessary collection of
ancillary data on distance, time of detection, etc.) at the same locations at multiple
times. The different sampling occasions are typically close together in time (e.g., 5
