
Chapter 3

THE LABEL-CONSTRAINED MINIMUM
SPANNING TREE PROBLEM

Yupei Xiong
Sysmind LLC
38 Washington Road, Princeton Junction, NJ 08550, USA
yupei72@yahoo.com

Bruce Golden
R.H. Smith School of Business, University of Maryland
College Park, MD 20742, USA
bgolden@rhsmith.umd.edu

Edward Wasil
Kogod School of Business, American University
Washington, DC 20016, USA
ewasil@american.edu

Si Chen
College of Business and Public Affairs, Murray State University
Murray, KY 42071, USA
si.chen@murraystate.edu

Abstract Given a positive integer K and a connected, undirected graph G whose edges are
labeled (or colored) and have weights, the label-constrained minimum spanning
tree (LCMST) problem seeks a minimum weight spanning tree with at most K
distinct labels (or colors). In this paper, we prove that the LCMST problem is
NP-complete. Next, we introduce two local search methods to solve the prob-
lem. Then, we present a genetic algorithm which gets comparable results, but
is much faster. In addition, we present two mixed integer programming for-

40 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

mulations for the LCMST problem. We compare these on some small problem
instances. Finally, we introduce a dual problem.

Keywords: Local search; genetic algorithm; NP-complete; spanning trees; mixed integer
programming.

1. Introduction
Computing a minimum weight spanning tree (MST) is one of the fundamen-

tal and classic problems in graph theory. Given an undirected graph G with a
nonnegative weight on each edge, the MST of G is the spanning tree of G with
the minimum total edge weight among all possible spanning trees [1]. This
problem and many variants such as the k shortest spanning tree problem [3],
the problem of updating a minimum spanning tree [7], the minimum diame-
ter spanning tree problem [5], and the most and least uniform spanning trees
problem [1, 4] have been studied extensively. Spanning tree problems have
applications in many areas, including network design, VLSI, and geometric
optimization.

The minimum label spanning tree (MLST) problem was defined in [2]. In
the MLST problem, we are given an undirected graph with labeled (or colored)
edges as input. Each edge has a single label (or color) and different edges can
have the same label (or color). The goal is to find a spanning tree with the
minimum number of distinct labels. In other words, in the MLST problem,
we seek to construct a spanning tree whose edges are as similar as possible.
The MVCA (Maximum Vertex Covering Algorithm) heuristic was developed
to solve the MLST problem [6] and its worst-case performance has been ex-
amined [6, 8, 10]. In addition, two effective genetic algorithms were used to
solve the MLST problem [9, 11].

In communications networks, there may be many types of communications
media including fiber optics, cable, microwave, and telephone lines. Com-
munication along each edge requires a pre-specified media type. If we can
reduce the number of different media types in the spanning tree, we reduce the
complexity of the communications process. On the other hand, there is also a
weight (or distance) associated with each edge. In the label-constrained min-
imum spanning tree (LCMST) problem, we are trying to find a spanning tree
that has minimum total weight while using at most K distinct types of com-
munications media. This is somewhat more realistic than the MLST problem,
since the LCMST problem considers the total weight as well as the number of
labels in the spanning tree. We now formally define the problem.

Definition (LCMST problem). Given an undirected labeled graph G =
(V,E, L), where V is the set of nodes, E is the set of edges, and L is the
set of labels, a weight function w(e) for all e ∈ E, and a positive integer K,

The Label-Constrained Minimum Spanning Tree Problem 41

find a spanning tree T of G such that the total weight WT =
∑

e∈T w(e) is
minimized and the number of distinct labels of T , denoted by |LT |, is no more
than K.

In the next section, we show that the LCMST problem is NP-complete. In
Section 3, two local search methods are developed and applied to solve the
LCMST problem. In Section 4, a genetic algorithm is proposed. In Section 5,
computational results are presented and analyzed. In Section 6, a dual problem
is discussed. Concluding observations and remarks are provided in Section 7.

2. NP-completeness
Theorem 1. The Label-Constrained Minimum Spanning Tree (LCMST) prob-
lem is NP-complete.

Proof. We first show that LCMST belongs to NP. Given an instance of the
problem, we consider an arbitrary spanning tree T . The verification algorithm
checks that T contains at most K labels and that the total cost of T is no
more than a given positive number C. This process can certainly be done in
polynomial time.

To prove that LCMST is NP-complete, we show that MLST ≤P LCMST,
which means that MLST is polynomial-time reducible to the LCMST problem.
The MLST problem is known to be NP-complete [2]. Let G = (V,E, L) be an
instance of the MLST problem. It has a minimum label spanning tree T with
K labels. We construct an instance of the LCMST problem as follows. We
extend G to the complete graph G′ = (V, E′, L′), where E′ contains E and
L′ contains L. For each e ∈ E, we define its weight w(e) to be 0. For each
e /∈ E, we define its weight w(e) to be 1. For each e /∈ E, we also define its
label to be different from all other labels in G′.

We now show that graph G has a minimum label spanning tree with K
labels if and only if graph G′ has a minimum weight spanning tree with K
labels. Suppose that graph G has a minimum label spanning tree T with K
labels. Then, each edge in T has weight 0 in G′. Thus, T has total weight of 0.
This tree T is the minimum weight spanning tree in G′. Conversely, suppose
that graph G′ has a minimum weight spanning tree T with K labels and total
weight 0, then all the edges in T are contained in E. Thus, T is also a spanning
tree in G with K labels.

Therefore, LCMST is NP-complete.

3. Local Search Methods
In this section, two local search methods are introduced. Given a labeled

graph G with a weight for each edge, G has a minimum label spanning tree
T1 and a minimum weight spanning tree T2. Suppose T1 has n1 distinct labels

42 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

and T2 has n2 distinct labels. In the LCMST problem, a positive number K is
given. If K < n1, then the LCMST problem has no solution. If K > n2, then
the optimal solution to the LCMST problem is T2, which can be obtained in
polynomial time. So, in this paper, we will assume that n1 ≤ K ≤ n2.

3.1 Encoding
The solution to the LCMST problem is a spanning tree. Each spanning

tree has a label set. Conversely, given any label set A ∈ 2L, we can obtain a
subgraph GA of G induced by A. If the subgraph GA is connected and spans
all the nodes in V , a minimum weight spanning tree can be found by Prim’s
algorithm in polynomial time. From this, we can determine the total weight
of the spanning tree. In the subgraph GA, the minimum weight spanning tree
may not be unique, but the total weight is unique. Thus, we can build a map
f : 2L → R as follows. For any A ∈ 2L, if GA is connected and spans
V , then f(A) is the total weight of a minimum weight spanning tree of GA;
otherwise, f(A) = ∞. In Figure 3.1, an example which illustrates how the
function f works for different label sets in 2L is presented. In particular, an
input graph and three label sets with their corresponding f values are shown.
Let LK ⊂ 2L represent the collection of all label sets with K labels. We
restrict f to LK . Then the goal of the LCMST problem is to find A∗ ∈ LK ,
such that f(A∗) = minA∈LK

f(A). By this well-defined map f , it is sufficient
to consider a label set A ∈ LK as a solution to the LCMST problem.

3.2 Local Search 1 (LS1)
In local search 1 (LS1), we begin with an arbitrary label set A ∈ LK .

Suppose A = {a1, a2, . . . , aK}. Then, we start a replacement loop as fol-
lows. We first replace a1 by some label b1 ∈ L − A. To do this, we check
each label in L − A. If we can make an improvement, then we find b1 such
that f(A − {a1} + {b1}) = minb∈L−A f(A− {a1}+ {b}). Then, we set
A = A − {a1} + {b1}. Otherwise, we set b1 = a1. Next, we seek to re-
place a2 by some label b2 ∈ L − A. To do this, we check each label in
L−A and, if we can make an improvement, we obtain f(A−{a2}+ {b2}) =
minb∈L−A f(A− {a2}+ {b}). Then, we set A = A − {a2} + {b2}. Oth-
erwise, we set b2 = a2. We continue with this replacement routine until we
replace aK by some suitable bK (possibly, bK = aK). After one replacement
loop, we improve the label set to A = {b1, b2, . . . , bK}. We repeat until no
improvement can be made between two consecutive replacement loops.

3.3 Local Search 2 (LS2)
In local search 2 (LS2), we begin with an arbitrary label set A ∈ LK . Sup-

pose A = {a1, a2, . . . , aK}. Then, we start a replacement loop as follows.

The Label-Constrained Minimum Spanning Tree Problem 43

Input graph

5

1

2
2

2

4

4
3

Labels

a

b

c

d

5

2

4

4
1

A = {a,b,c} B = {a,c,d} C = {b,d}

f(A) = 13 f(B) = 12 f(C) = infinity

5

1

2

2
3

5

1

2
2

4
3

2

4

Figure 3.1. An example of encoding

For each b ∈ L − A, we first set A = A + {b} and let aK+1 = b. So, A
now has K + 1 labels. To maintain K labels, we have to remove one label
from A. We check all the labels ai for 1 ≤ i ≤ K + 1 and find aj such that
f(A−{aj}) = min1≤i≤K+1 f(A− {ai}). Then, we set A = A−{aj}. After
one replacement loop, we observe, hopefully, some improvement in the label
set A. We repeat until no improvement can be made between two consecutive
replacement loops.

If we compare the two methods of local search, we obtain the following re-
sult.

Theorem 2. A label set A cannot be improved by LS1 if and only if A cannot
be improved by LS2.

Proof. Suppose a label set A cannot be improved by LS1. Then, for any label
a ∈ A and b /∈ A, we know f(A − {a} + {b}) ≥ f(A). If we apply LS2
to the label set A, we first add a label b /∈ A, and then remove some label
a ∈ A. We obtain the label set A + {b} − {a} = A − {a} + {b}. We still
have f(A + {b} − {a}) = f(A− {a}+ {b}) ≥ f(A). So, the label A cannot

44 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

be improved by LS2. Conversely, if a label set A cannot be improved by LS2,
from the above logic, since A + {b} − {a} = A − {a} + {b}, we also know
that A cannot be improved by LS1.

3.4 Running Time Analysis
In the LCMST problem, we are given a labeled graph G = (V, E,L) and

a positive integer K. Let |V | = n, |E| = m, and |L| = `. We consider only
complete graphs here. So, m = O(n2). For each A ∈ 2L, we use Prim’s
algorithm to find a minimum weight spanning tree in the subgraph GA. Prim’s
algorithm requires O(m + n lg n) = O(n2) running time. So, f(A) requires
O(n2) running time. Both LS1 and LS2 run f(A) at most K|L| = K` times
in each replacement loop. Thus, the running time of each replacement loop in
LS1 and LS2 is O(K`n2).

4. Genetic Algorithm
Given previous success in applying genetic algorithms to the MLST prob-

lem [9, 11], we thought a genetic algorithm might also work well for the
LCMST problem. In this section, we introduce a genetic algorithm (GA) to
solve the LCMST problem. The encoding of the GA is the same as that in
local search. Each chromosome is a label set in LK . Each label is a gene.

4.1 Crossover
Given two parent chromosomes P and Q, one child C is created by the

crossover operation. First, we set R = P
⋃

Q and we get a subgraph GR

induced by R. We also set C = φ. Second, we apply Prim’s algorithm to the
subgraph GR. In Prim’s algorithm, we begin with a random node v ∈ V . Then,
we grow a tree by adding the least-weight edge, one at a time, until the tree
spans all the nodes in GR. Each time we add edge e, e has a label c. If c /∈ C,
we set C = C

⋃{c}. So, as the tree is growing, so is the label set C. Once
|C| reaches K, the label set is restricted to C and Prim’s algorithm is applied
over the induced subgraph GC . Finally, we obtain the output, child C, and the
minimum weight spanning tree in the subgraph GC . Of course, C may not be
a feasible solution. If an infeasible solution is obtained, we select another start
node and run Prim’s algorithm again to find another child. If each start node
results in infeasibility, f(C) = ∞. If K is large, the child C is more likely
to be feasible. Crossover is illustrated in Figure 3.2. In this figure, the two
parents are P = {a, b, c} and Q = {a, d, e} and K = 3. Note that f(P) = 23,
f(Q) = 21. The union of the two parents is R = {a, b, c, d, e}. In Figure 3.3,
Prim’s algorithm starts at the right-most node. The output child is a feasible
solution C = {b, c, e} and f(C) = 17. In Figure 3.4, Prim’s algorithm starts

The Label-Constrained Minimum Spanning Tree Problem 45

55
4

4

2

1

2 55

2

3

1

3

55
4

4

2

2

2

1

3

1

4

3

3

4 4

4

P = {a,b,c} Q = {a,d,e}

R = {a,b,c,d,e}
a

b
c
d
e

Figure 3.2. An example of crossover: f(P) = 23, f(Q) = 21.

55
4

4

2

2

2

1

3

1

4

3

4

55
4

4

2

2

2

1

3

4

3

4

55
4

4

2

2

2

1

3

1

4

3

4

4

2

2

1

3

1

a

b
c
d
e

C = {c} C = {c,e} C = {b,c,e}

4

4

2

2

1

3

1

4

C = {b,c,e} Final Spanning Tree

1

4

start

Figure 3.3. Prim’s algorithm to get a feasible solution C and f(C) = 17, where K = 3.

at the left-most node. The output child is an infeasible solution C = {b, d, e}
and f(C) = ∞. The crossover operation is very fast with a running time that
is the same as that of Prim’s algorithm.

To make the procedure more efficient, we implement the queen-bee crossov-
er in our GA. In each generation, we find the best chromosome QB and des-
ignate it the queen-bee chromosome. Then, we only allow crossover between
QB and other chromosomes.

46 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

55
4

4

2

2

2

1

3

1

4

3

4

55
4

4

2

2

2

1

3

4

3

4

55
4

4

2

2

2

1

3

1

4

3

4

a

b
c
d
e

C = {e} C = {b,e} C = {b,d,e}

C = {b,d,e}

1

4

4

2

2

2

1

3

3

start

Figure 3.4. Prim’s algorithm to get an infeasible solution C and f(C) = ∞, where K = 3.

55
4

4

2

2

2

1

3

1

4

3

4

a

b
c
d
e

P = {b,c,e}

Q = {c,d,e}

2

2

1

3

1

4

3

Figure 3.5. An example of mutation: f(Q) = 16.

4.2 Mutation
Given one chromosome P , the mutation operation creates a new chromo-

some Q. Suppose P = {p1, p2, . . . , pK}. First, we randomly select b ∈ L−P .
Second, we check each pi for 1 ≤ i ≤ K to see if the replacement of pi by b
obtains a better solution. If it does for some pi, then we set Q = P−{pi}+{b}.

The Label-Constrained Minimum Spanning Tree Problem 47

If it does not, then we set Q = P . We take the child from Figure 3.3 and de-
note it as the input P in Figure 3.5. We note that f(P) = 17. In Figure 3.5,
we illustrate mutation. Here, label b is replaced by label d and we obtain an
improved solution Q = {c, d, e} with f(Q) = 16. The mutation operation
requires that Prim’s algorithm is run at most K times. It is, therefore, slower
than the crossover operation.

4.3 Building Each Generation
Suppose the population size is p (we set p = 20 in our computational tests).

It is easy to randomly generate p chromosomes as the initial generation. To be
more specific, we randomly generate K labels and check to see if the induced
subgraph is connected and spans V . If it is, then we have a feasible chromo-
some. If it is not, then we try again. This process continues until we obtain
p feasible chromosomes. (Randomness seems to ensure a sufficient level of
diversity in the starting population.) To build the next generation, we find the
queen-bee chromosome in the current generation. Then, we perform crossover
between QB and the p − 1 other chromosomes. The crossover of QB and
another chromosome P outputs a solution Q. This solution may be infeasible
since Prim’s algorithm may select the “wrong” labels. For example, in Figure
3.4, labels e, b, and then d are chosen in Prim’s algorithm. Since the induced
subgraph GC where C = {b, d, e} does not span V , f(C) = ∞. The better
solution of P and Q becomes the child, which is feasible. Then, we perform
mutation for each of the children and obtain p − 1 “mutated” children. These
children, along with QB, comprise the p chromosomes for the next generation.
We stop building generations if the queen-bee chromosome of three consecu-
tive generations does not change. After the last generation, we make a final
improvement. We find the queen-bee chromosome QB and execute one re-
placement loop of LS1 on QB. From the above discussion, we observe that
the population size p is the only parameter of GA.

5. Computational Results
5.1 Small Cases

In this section, we report on computational results for small problem in-
stances. For each of these instances, we solve a Mixed Integer Program (MIP)
to obtain the optimal solution. This MIP is presented in detail in Appendix A.
The computational results for n = 20, 30, 40, and 50 are presented in Tables
3.1 to 3.4. The coordinates of the nodes and the label matrix for the instance
examined in Table 3.1 are provided in Appendix B.

48 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Table 3.1. Computational results for a graph with n = ` = 20

K MIP Value MIP Time(sec) LS1 Gap(%) LS2 Gap(%) GA Gap(%)
2 6491.35 3.30 0.00 0.00 0.00
3 5013.51 7.70 0.00 0.00 0.00
4 4534.67 81.20 0.00 0.00 0.00
5 4142.57 277.56 0.00 0.00 0.00
6 3846.50 216.00 0.00 0.00 0.00
7 3598.05 97.97 0.00 0.00 0.00
8 3436.57 65.56 0.00 0.00 0.00
9 3281.05 74.36 0.00 0.00 0.00
10 3152.05 30.34 0.00 0.00 0.00
11 3034.01 9.77 0.00 0.00 0.00

LS1, LS2, and GA are implemented on a Pentium 4 PC at 1.80 GHz with
256 MB RAM. The MIP formulation is implemented using OPL Studio 3.7 on
a Pentium 3 PC at 993 MHz with 512 MB RAM.

For each instance, we test all possible K values. For each combination
of instance and K value, we report the MIP (optimal) solution value and the
percent gap (i.e., percent above optimality) for LS1, LS2, and GA. We point
out that the gap tends to be larger when K is small. This is because there
are a relatively small number of feasible solutions for small K. For larger K,
all three heuristics work very well. They obtain the optimal solution or the
gap is about 1%. For each input, we run LS1 five times and output the best
result. The same is true for LS2. Both LS1 and LS2 are very fast on small
instances. They each require about one second, on average, for each input (i.e.,
five runs). The GA is faster; it requires less than half a second for each input
(i.e., a single run). The MIP running times are provided in Tables 3.1 to 3.4.
When n = ` = 50 (in Table 3.4), these running times are already quite large
(we stopped at K = 8 because for K > 8 the MIP could not find the optimal
solutions within 72 hours). We are unable to solve the MIP for instances with
more than 50 nodes.

5.2 Large Cases
In this section, we report on computational results for large problem in-

stances (n ≥ 100). We consider at most two values of K for each combination
of n and `. In particular, we use K = 20 and K = 40. For each instance,
we run LS1 and LS2 five times and output the best result. The results are pre-
sented in Table 3.5. The GA gap is the percent above the better of LS1 and
LS2 for each problem. Running times are presented in Table 3.6. From these
two tables, we observe that GA is much faster than LS1 and LS2. Although
the solution quality of GA is not as high as that of LS1 and LS2, the gap is,
typically, under 1%.

The Label-Constrained Minimum Spanning Tree Problem 49

Table 3.2. Computational results for a graph with n = ` = 30

K MIP Value MIP Time(sec) LS1 Gap(%) LS2 Gap(%) GA Gap(%)
3 7901.81 20.83 0.00 0.00 0.00
4 6431.58 38.89 0.00 0.00 0.00
5 5597.36 30.47 0.00 0.00 0.00
6 5106.94 174.20 0.00 0.00 0.00
7 4751.00 464.30 0.00 0.46 0.00
8 4473.11 1229.48 0.00 0.00 0.00
9 4196.71 579.63 0.00 0.00 0.00
10 3980.99 931.83 0.52 0.52 0.00
11 3827.23 279.73 0.00 0.00 1.41
12 3702.08 297.36 0.00 0.23 0.00
13 3585.42 90.78 0.00 0.00 0.00

Table 3.3. Computational results for a graph with n = ` = 40

K MIP Value MIP Time(sec) LS1 Gap(%) LS2 Gap(%) GA Gap(%)
3 11578.61 9651 0.00 0.00 0.00
4 9265.42 5305 1.72 2.56 1.72
5 8091.45 5841 0.00 0.00 0.75
6 7167.27 1844 0.00 0.00 2.53
7 6653.23 2904 0.13 0.00 0.13
8 6221.63 10744 0.00 0.00 0.00
9 5833.39 16487 0.00 0.00 0.48
10 5547.08 8830 0.00 0.00 0.00
11 5315.92 13641 0.00 0.00 0.00
12 5164.14 109284 0.00 0.00 0.00

Table 3.4. Computational results for a graph with n = ` = 50

K MIP Value MIP Time(sec) LS1 Gap(%) LS2 Gap(%) GA Gap(%)
3 14857.09 3285 0.00 0.00 3.08
4 12040.89 5894 0.00 0.00 0.00
5 10183.95 2750 0.00 0.00 0.00
6 9343.69 11820 0.00 0.00 0.00
7 8594.36 74138 0.00 0.00 1.51
8 7965.52 303389 0.00 0.00 0.00

50 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Table 3.5. Computational results for large cases (best solutions in bold)
Cases LS1 LS2 GA GA Gap(%)

n = 100, ` = 50, K = 20 8308.68 8308.68 8335.75 0.33
n = 100, ` = 100, K = 20 10055.85 10055.85 10138.27 0.82
n = 100, ` = 100, K = 40 7344.72 7335.61 7335.61 0.00
n = 150, ` = 75, K = 20 11882.62 11846.80 11854.17 0.06
n = 150, ` = 75, K = 40 9046.71 9046.71 9047.22 0.01
n = 150, ` = 150, K = 20 15427.54 15398.42 15688.78 1.89
n = 150, ` = 150, K = 40 10618.58 10627.36 10728.93 1.04
n = 200, ` = 100, K = 20 14365.95 14365.95 14382.65 0.12
n = 200, ` = 100, K = 40 10970.94 10970.94 10970.94 0.00
n = 200, ` = 200, K = 20 18951.05 18959.37 18900.25 -0.27
n = 200, ` = 200, K = 40 12931.46 12941.85 12987.29 0.43
n = 500, ` = 500, K = 40 34320.00 34138.61 35117.61 2.87

Table 3.6. Running times for large cases (in seconds)
Cases LS1 LS2 GA

n = 100, ` = 50, K = 20 8 8 7
n = 100, ` = 100, K = 20 13 16 3
n = 100, ` = 100, K = 40 24 26 5
n = 150, ` = 75, K = 20 30 37 12
n = 150, ` = 75, K = 40 52 57 41
n = 150, ` = 150, K = 20 65 56 7
n = 150, ` = 150, K = 40 140 145 13
n = 200, ` = 100, K = 20 72 63 30
n = 200, ` = 100, K = 40 176 222 35
n = 200, ` = 200, K = 20 125 166 29
n = 200, ` = 200, K = 40 342 333 35
n = 500, ` = 500, K = 40 9063 7440 672

In one case, GA outperforms both LS1 and LS2. The largest instance stud-
ied has n = ` = 500 and K = 40. In this case, the GA solution is 2.87%
higher than the LS2 solution. However, LS1 and LS2 require more than 10
times as much running time as GA. We point out that if LS1 and LS2 were run
a single time (rather than five), then they would underperform GA in the vast
majority of cases. This point is illustrated in Table 3.7.

Additional computational results are presented in Appendix C. These tests
also demonstrate the ability of LS1, LS2, and GA to obtain optimal or near-
optimal solutions to large problem instances of the LCMST problem.

6. A Related Problem
In the LCMST problem, the primary concern is with the total cost and there

is an upper bound on the number of labels. In a related problem, the primary

The Label-Constrained Minimum Spanning Tree Problem 51

Table 3.7. Computational results for a graph with n = ` = 30, with a single run of LS1 and
LS2

K MIP Time(sec) LS1 Gap(%) LS2 Gap(%) GA Gap(%)
3 7901.81 20.83 7.42 0.67 0.00
8 4473.11 1229.48 0.03 0.03 0.00

10 3980.99 931.83 1.61 0.52 0.00
12 3702.08 297.36 0.23 0.23 0.00

concern is with the number of labels and there is an upper bound on the total
cost. We refer to this problem as the cost-constrained minimum label spanning
tree (CCMLST) problem. Given a labeled graph G = (V, E, L) and a positive
number C, the goal of the CCMLST problem is to find a spanning tree with
the smallest number of labels and a total cost of no more than C.

There is an easy way to obtain good solutions to the CCMLST problem by
using algorithms to solve the LCMST problem. Let ALG represent an algo-
rithm (e.g., LS1, LS2, or GA) to solve the LCMST problem. The input for
ALG is a labeled graph G and a positive integer K and the output is a label set
X . Let k represent the number of labels in a minimum weight spanning tree
of G. Then, we can use a bisection search method to find the solution to the
CCMLST problem. To begin, the lower bound is lower = 1 and the upper
bound is upper = k. We run ALG for mid = lower+upper

2 labels. If the solu-
tion has a cost greater than C, we need more labels and we set lower = mid.
If the solution has a cost less than C, then we need fewer labels and we set
upper = mid. A detailed description of the method is shown next.
Input: A labeled graph G and a positive number C.

CCMLST(G,C)

1 Set lower = 1 and upper = k

2 if (upper − lower) ≥ 1 do

3 mid = lower+upper
2

4 X=ALG(G,mid)

5 if f(X) > C do lower = mid

6 else do upper = mid

7 end do

8 Output X

52 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

7. Conclusions
In this paper, we introduced and motivated the LCMST problem. We proved

that the LCMST problem is NP-complete. Next, we proposed three heuris-
tics (two local search methods and a genetic algorithm) to solve the LCMST
problem and we formulated the problem as a MIP. Extensive computational
experiments were performed. In all of these tests, the three heuristics gener-
ated high-quality solutions. Finally, a related problem was introduced and a
solution approach was presented.

References
[1] P.M. Camerini, F. Maffinoli, S. Martello, and P. Toth. Most and least uniform spanning

tree. Discrete Appl. Math, 15:181–197, 1986.

[2] R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees. Inform. Process. Lett.,
63(5):277–282, 1997.

[3] D. Eppstein. Finding the k smallest spanning trees. BIT, 32:237–248, 1992.

[4] Z. Galil and B. Schieber. On finding most uniform spanning trees. Discrete Appl. Math.,
20:173–175, 1988.

[5] J.-H. Ho, D.T. Lee, C.-H. Chang, and C.K. Wong. Minimum diameter spanning trees and
related problems. SIAM J. Comput., 20:987–997, 1991.

[6] S.O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem. Inform.
Process. Lett., 66(2):81–85, 1998.

[7] X. Shen and W. Liang. A parallel algorithm for multiple edge updates of minimum
spanning trees. Proc. 7th Internet. Parallel Processing Symp., pages 310–317, 1993.

[8] Y. Wan, G. Chen, and Y. Xu. A note on the minimum label spanning tree. Inform.
Process. Lett., 84:99–101, 2002.

[9] Y. Xiong, B. Golden, and E. Wasil. A one-parameter genetic algorithm for the mini-
mum labeling spanning tree problem. IEEE Transactions on Evolutionary Computation,
9(1):55–60, 2005.

[10] Y. Xiong, B. Golden, and E. Wasil. Worst-case behavior of the MVCA heuristic for the
minimum labeling spanning tree problem. Operations Research Lett., 33(1):77–80, 2005.

[11] Y. Xiong, B. Golden, and E. Wasil. Improved heuristics for the minimum label spanning
tree problem. IEEE Transactions on Evolutionary Computation, 10(6):700–703, 2006.

Appendix: A: MIP Formulations for the LCMST Problem
In this section, we provide two mixed integer programming formulations for the LCMST

problem and compare their performances. The first one uses the single-commodity flow model
while the second uses the multi-commodity flow model. For small instances of the LCMST
problem, we are able to obtain optimal solutions from both formulations. This enables us to
compare solution values found using LS1, LS2, and GA with optimal solution values.
Notation and Variables

In the LCMST problem, we assume that L is the set of all labels, E is the set of all edges,
V = {1, 2, · · · , n} is the set of all nodes, |V | = n is the total number of nodes, and K is the

The Label-Constrained Minimum Spanning Tree Problem 53

maximum number of labels allowed in a solution. Let Ek be the set of all the edges with color
k. Additionally, let A be the set of all arcs. In particular, for every edge (i, j) in E, there are
two corresponding arcs < i, j > and < j, i > in A. For any 1 ≤ i, j ≤ n and i 6= j, we define
cij to be the cost or weight of edge (i, j). We define the variables eij , xij , and yk as follows:

eij =

{
1 if edge (i, j) is used
0 otherwise

xij =

{
1 if arc < i, j > is used
0 otherwise

yk =

{
1 if label k is selected
0 otherwise.

MIP Formulation using the Single-Commodity Flow Model (F1)
In this subsection, we formulate the LCMST problem as a single-commodity flow problem.

min
∑

(i,j)∈E

cijeij (3.A.1)

subject to
∑

(i,j)∈E

eij = n− 1 (3.A.2)

∑

i:(i,j)∈A

fij −
∑

l:(j,l)∈A

fjl = 1 ∀j ∈ V − {1} (3.A.3)

∑

i:(i,1)∈A

fi1 −
∑

l:(1,l)∈A

f1l = −(n− 1) (3.A.4)

fij + fji ≤ (n− 1) · eij ∀(i, j) ∈ E (3.A.5)∑

(i,j)∈Ek

eij ≤ (n− 1) · yk ∀k ∈ L (3.A.6)

∑

k∈L

yk ≤ K (3.A.7)

eij , yk ∈ {0, 1} ∀(i, j) ∈ E ∀k ∈ L (3.A.8)

fij ≥ 0 ∀(i, j) ∈ A. (3.A.9)

The objective function (3.A.1) seeks to minimize the total cost or weight of the spanning
tree. Constraint (3.A.2) ensures that the tree contains n − 1 edges. The flow variables fij are
included to guarantee connectivity. They work as follows: select one node (say, node 1) out of
the set V and think of it as the root node. Create a supply of n − 1 units of flow at this node.
For all other nodes, create a demand of one unit of flow. Send one unit of flow from the root
node to all other nodes in order to satisfy their demands. The above notion of connectivity is
represented by the flow balance constraints (3.A.3) and (3.A.4). Constraints (3.A.5) ensure that
if flow is sent along an edge, then that edge must be in the tree. Constraints (3.A.6) ensure that
if an edge with label k is used, then this label must be counted. Finally, an upper bound on the
number of labels is imposed in constraint (3.A.7).

Suppose we want to formulate the CCMLST as an MIP. The objective function would be-
come

min
∑

k∈L

yk

and the constraints would include (3.A.2) to (3.A.6), (3.A.8), (3.A.9), and the new constraint
∑

(i,j)∈E

cijeij ≤ C. (3.A.7′)

54 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

MIP Formulation using the Multi-Commodity Flow Model (F2)
Alternatively, we can formulate the LCMST problem as a multi-commodity flow problem as

follows.
min

∑

(i,j)∈E

cijeij (3.A.10)

subject to
∑

(i,j)∈E

eij = n− 1 (3.A.11)

∑

i:(i,h)∈A

fh
ih −

∑

l:(h,l)∈A

fh
hl = 1 ∀h ∈ V − {1} (3.A.12)

∑

i:(i,1)∈A

fh
i1 −

∑

l:(1,l)∈A

fh
1l = −1 ∀h ∈ V − {1} (3.A.13)

∑

i:(i,j)∈A

fh
ij −

∑

l:(j,l)∈A

fh
jl = 0 ∀h ∈ V − {1}, ∀j 6= h (3.A.14)

fh
ij ≤ xij ∀(i, j) ∈ A, ∀h ∈ V − {1} (3.A.15)

xij + xji ≤ eij ∀(i, j) ∈ E (3.A.16)
∑

(i,j)∈Ek

eij ≤ (n− 1) · yk ∀k ∈ L (3.A.17)

∑

k∈L

yk ≤ K (3.A.18)

eij , yk ∈ {0, 1} ∀(i, j) ∈ E ∀k ∈ L (3.A.19)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.A.20)

fh
ij ≥ 0 ∀(i, j) ∈ A, ∀h ∈ V − {1}. (3.A.21)

The objective function is the same as in (3.A.1). Constraint (3.A.11) ensures that the tree
contains n− 1 edges. The flow variables fh

ij are included to guarantee connectivity. They work
as follows: select one node (say, node 1) out of the set V and think of it as the root node. Create
a supply of 1 unit of flow h for every node h (h ∈ V − {1}) at node 1. For every node h,
create a demand of one unit of flow h. Send one unit of flow h from the root node to every h
node in order to satisfy their demands. The above notion of connectivity is represented by the
flow balance constraints (3.A.12), (3.A.13), and (3.A.14). Constraints (3.A.15) and (3.A.16)
ensure that if flow is sent along an edge, then that edge must be selected in the tree. Constraints
(3.A.17) ensure that if an edge with label k is used, then this label must be counted. Finally, an
upper bound on the number of labels is imposed in constraint (3.A.18).

Suppose we want to formulate the cost-constrained minimum label spanning tree (CCMLST)
as an MIP. The objective function would become

min
∑

k∈L

yk

and the constraints would include (3.A.9) to (3.A.17), (3.A.19) to (3.A.21), and the new con-
straint

∑

(i,j)∈E

cijeij ≤ C. (3.A.18′)

The Label-Constrained Minimum Spanning Tree Problem 55

Table 3.A.1. Comparison of two MIP formulations based on a graph with n = ` = 50

F1 Time F2 Time
K (sec) (sec)
4 12040.89 NA
5 10183.95 67473.37
6 9343.69 186148.83
7 8594.36 59783.95
8 7965.52 15869.49
9 NA 6380.30

10 NA 3418.46
11 NA 5133.17
12 NA 20199.94

Table 3.B.1. Coordinates of nodes for the graph with n = ` = 20

node 1 2 3 4 5 6 7 8 9 10
x 41 334 169 478 962 705 281 961 995 827
y 467 500 724 358 464 145 827 491 942 436

node 11 12 13 14 15 16 17 18 19 20
x 391 902 292 421 718 447 771 869 667 35
y 604 153 382 716 895 726 538 912 299 894

Comparison of MIP Models
We compare the performance of F1 and F2 based on a graph with 50 nodes. The formulations

are implemented using OPL Studio 3.7 on a Pentium III PC with 993MHz and 512MB RAM.
The results are shown in Table 3.A.1, where the time to reach optimality is recorded for each
model. NA indicates no optimal solution can be found after 72 hours. As we can see, F2 seems
to work better for K > 8, while F1 does better for K ≤ 8. We also conduct experiments on
larger examples (graphs with 100 nodes) using F2. However, it fails to find solutions due to a
lack of memory.

We point out that constraints (3.A.6) and (3.A.17) can be written in disaggregate form. This
increases the number of constraints. In our experiments, the disaggregated formulations did not
solve as quickly as F1 and F2.

Appendix: B: A Small Sample Graph for the LCMST Problem
We give a small instance of the LCMST problem. This instance is a complete graph of 20

nodes and 20 labels, where V = {1, 2, . . . , 19, 20} and L = {1, 2, . . . , 19, 20}. For each
node, its (x, y) coordinates are randomly selected integers from [0, 999]. The label matrix of
the graph is symmetric. Each entry is randomly selected from L. Computational results for this
problem are shown in Table 3.1. In Table 3.B.1, the (x, y) coordinates are provided and the
label matrix is given in Table 3.B.2.

Appendix: C: A Special Family of Graphs
We construct a special family of graphs for which we know a reasonably good solution to

the LCMST problem. When we run LS1, LS2, and GA on these graphs, we can then compare
the solution values to the reasonably good (known) solution values.

56 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Table 3.B.2. The label matrix for the graph with n = ` = 20

−
4

12
3

14
14

5
2

12
14

9
8

5
3

18
18

20
4

2
10

4
−

19
17

16
11

3
9

7
1

3
5

9
7

6
11

10
11

11
7

12
19

−
2

14
9

10
4

5
15

17
1

7
17

12
9

5
20

7
4

3
17

2
−

18
19

19
3

10
2

14
16

20
19

5
11

18
7

14
7

14
16

14
18

−
2

6
5

13
11

10
18

14
18

13
7

11
2

17
16

14
11

9
19

2
−

8
16

15
12

13
11

11
2

5
7

11
8

12
8

5
3

10
19

6
8

−
18

18
8

14
4

6
10

10
19

2
9

3
7

2
9

4
3

5
16

18
−

7
11

14
9

1
12

3
16

11
20

5
18

12
7

5
10

13
15

18
7

−
9

4
16

2
3

11
12

17
15

1
17

14
1

15
2

11
12

8
11

9
−

2
9

20
9

5
2

15
14

20
19

9
3

17
14

10
13

14
14

4
2

−
19

1
9

8
8

7
14

9
4

8
5

1
16

18
11

4
9

16
9

19
−

8
2

11
18

14
15

10
17

5
9

7
20

14
11

6
1

2
20

1
8

−
16

12
1

10
20

17
19

3
7

17
19

18
2

10
12

3
9

9
2

16
−

4
5

9
5

10
10

18
6

12
5

13
5

10
3

11
5

8
11

12
4

−
3

16
6

14
4

18
11

9
11

7
7

19
16

12
2

8
18

1
5

3
−

4
8

15
4

20
10

5
18

11
11

2
11

17
15

9
14

10
9

16
4

−
9

1
19

4
11

20
7

2
8

9
20

15
14

14
15

20
5

6
8

9
−

19
1

2
11

7
14

17
12

3
5

1
20

9
10

17
10

14
15

1
19

−
17

10
7

4
7

16
8

7
18

17
19

4
17

19
10

4
4

19
1

17
−

The Label-Constrained Minimum Spanning Tree Problem 57

Table 3.C.1. Computational results for a special family of graphs with r = 80% (best solu-
tions in bold)

Cases T LS1 LS2 GA GA Gap(%)
n = ` = 100, K = 40 8433.69 7418.82 7418.37 7418.82 0.01
n = ` = 120, K = 40 9545.52 8424.78 8424.78 8449.90 0.30
n = ` = 150, K = 40 10120.65 9682.18 9682.18 9682.18 0.00
n = ` = 180, K = 40 10910.71 10539.14 10599.39 10549.64 0.10
n = ` = 200, K = 40 11453.89 11298.40 11298.40 11339.51 0.36

Table 3.C.2. Computational results for a special family of graphs with r = 50% (best solu-
tions in bold)

GA Gap
Cases T LS1 LS2 GA (%)

n = ` = 100, K = 40 7784.84 7234.45 7234.45 7244.37 0.14
n = ` = 120, K = 40 8846.22 8253.57 8253.57 8253.57 0.00
n = ` = 150, K = 40 9300.71 9037.11 9032.54 9045.35 0.14
n = ` = 180, K = 40 10177.16 10131.91 10127.83 10150.17 0.22
n = ` = 200, K = 40 10541.98 10463.57 10463.57 10463.57 0.00

Table 3.C.3. Computational results for a special family of graphs with r = 0% (best solutions
in bold)

Cases T LS1 LS2 GA GA Gap(%)
n = ` = 100, K = 40 6870.59 6870.59 6870.59 6870.59 0.00
n = ` = 120, K = 40 7528.71 7528.71 7528.71 7528.71 0.00
n = ` = 150, K = 40 8343.89 8343.89 8343.89 8343.89 0.00
n = ` = 180, K = 40 9006.14 9006.14 9006.14 9006.14 0.00
n = ` = 200, K = 40 9336.30 9336.30 9336.30 9336.30 0.00

We construct a complete graph G as follows. First, we randomly generate n nodes in the
square [0, 999]× [0, 999]. The cost of each edge (i, j) is the Euclidean distance between i and
j. Then, we sort all the edges by cost, from lowest to highest. A spanning tree requires n − 1
edges. We know that Kruskal’s algorithm obtains a minimum weight spanning tree by selecting
the n − 1 shortest edges, without forming a cycle. In order to find a reasonably good solution
T to the LCMST problem, we set a parameter r with 0 ≤ r < 1. Next, we select r(n − 1)
edges randomly from the 2n shortest edges, without forming a cycle. Then, we select the other
(1 − r)(n − 1) edges by applying Kruskal’s algorithm to the complete graph. Thus, we have
tree T . Next, we need to assign a label to each edge. To do this, we randomly select K distinct
labels from L and call this label subset L1. Let L2 = L − L1. For each edge in T , we assign
it a label from L1, at random; for each edge not in T , we assign it a label in L2, at random.
As a result, we obtain a labeled graph G with a reasonably good spanning tree T which has K
distinct labels.

Computational results for r = 80%, r = 50%, and r = 0% are presented in Tables 3.C.1,
3.C.2 and 3.C.3, respectively. The GA gap is the percentage gap between the GA solution value
and the better solution value of LS1 and LS2. From the three tables, we observe that all three
heuristics obtain a solution that is no worse than T . In most cases, they are better than T . The

58 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

GA gap is always less than 0.4%. Table 3.C.3 gives the computational results for r = 0%. In
this case, T is the minimum weight spanning tree. This is because T is generated entirely from
Kruskal’s algorithm. We observe that all three heuristics obtain the optimal solution. In fact,
given the increasing reliance on Kruskal’s algorithm as we move from Table 3.C.1 to Table 3.C.2
to Table 3.C.3, we expect T to be a very good solution in Table 3.C.2 and a good solution in
Table 3.C.1. Tables 3.C.1, 3.C.2 and 3.C.3 reinforce the conclusion that the three heuristics
obtain very high-quality solutions to the LCMST problem.

