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Summary. In one-to-one Pickup and Delivery Problems (PDPs), the aim is to de-
sign a set of least cost vehicle routes starting and ending at a common depot in
order to satisfy a set of pickup and delivery requests between location pairs, subject
to side constraints. Each request originates at one location and is destined for one
other location. These requests apply to the transportation of goods or people, in
which case the problem is often called the dial-a-ride problem. In recent years, there
have been several significant developments in the area of exact and heuristic algo-
rithms for PDPs. The purpose of this chapter is to report on these developments.
It contains two main sections devoted to single vehicle and multi-vehicle problems,
respectively. Each section is subdivided into two parts, one on exact algorithms and
one on heuristics.
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1 Introduction

In one-to-one Pickup and Delivery Problems (PDPs), the aim is to design a
set of least cost vehicle routes starting and ending at a common depot in order
to satisfy a set of pickup and delivery requests between location pairs, sub-
ject to side constraints. These problems are called “one-to-one” because each
request originates at one location and is destined for one other location (see
Hernández-Pérez and Salazar-González [35]). In some contexts, like in courier
services, these requests apply to the transportation of goods, whereas in other
contexts, like in dial-a-ride problems (DARPs), they apply to the transporta-
tion of people. One-to-one PDPs differ from one-to-many-to-one problems in
which each customer receives a delivery originating at a common depot and
sends a pickup quantity to the depot (see, e.g., Gribkovskaia and Laporte
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[33]). They also differ from many-to-many problems in which a commodity
may be picked up at one of many locations, and also delivered to one of many
locations (see, e.g., Hernández-Pérez and Salazar-González [36]). These three
problem structures are depicted in Figures 1, 2, and 3, respectively.

Formally, PDPs are defined on a directed graph G = (V, A), where V
is the vertex set and A is the arc set. The vertex set is partitioned into
{P, D, {0, 2n + 1}}, where P = {1, . . . , n} is a set of pickup vertices, D =
{n + 1, . . . , 2n} is a set of corresponding delivery vertices, and {0, 2n + 1}
contains two copies of the depot, serving as the starting and ending points of
m vehicle routes. The set of vehicles is denoted by K = {1, . . . , m}, and Qk

is the capacity of vehicle k. The arc set is defined as A = {(i, j) : i = 0, j ∈ P,
or i, j ∈ P ∪ D, i �= j and i �= n + j, or i ∈ D, j = 2n + 1}.

With each arc (i, j) are associated a travel time tij and a travel cost cij ,
or ck

ij if one wishes to stress that the cost is vehicle-dependent. The maximum
allowed duration of the route traveled by vehicle k is denoted by Tk. With
each vertex i ∈ V are associated a load qi and a service duration di satisfying
q0 = q2n+1 = 0, qi > 0 for i ∈ P , qi = −qi−n for i ∈ D, di ≥ 0 for i ∈ P ∪ D,
and d0 = d2n+1 = 0. A time window [ei, �i] is associated with each vertex
i ∈ V , where ei and �i are the earliest and latest time service may start at
vertex i. In passenger transportation, it is common to impose a ride time
limit L equal to the maximum time a passenger may spend in the vehicle.
Pickup and delivery problems consist of designing m vehicle routes of least
total cost, starting and ending at the depot, in order to perform all delivery
requests subject to the following constraints: vertex i is visited before vertex
n + i (precedence), and both of these vertices are visited by the same vehicle
(pairing), each vertex is visited within its time window, vehicle capacities are
never exceeded, and in some contexts, ride time constraints are satisfied.

Applications of PDPs to goods transportation have been described by Shen
et al. [70] in the context of courier services, and by Fisher and Rosenwein [31],
Christiansen and Nygreen [12, 13] and Brønmo et al. [7] in the context of
bulk product transportation by ship, a sector in rapid expansion. Solanki and
Southworth [72] and Rappoport et al. [57, 58] have studied PDP applications
to military airlift planning. Dial-a-ride planning systems have been described
by a number of authors. Madsen et al. [48] have constructed a system ca-
pable of handling in a dynamic fashion 50,000 requests per year in the city
of Copenhagen. Toth and Vigo [74, 75] have developed a parallel insertion
heuristic which has been applied to a complex DARP involving taxis and
minibuses in Bologna. Borndörfer et al. [6] have proposed a set partitioning
based heuristic which can solve a problem containing between 1,000 and 1,500
transportation requests per day in Berlin. More recently, Rekiek, Delchambre
and Saleh [60] have developed a genetic algorithm for the DARP and have
tested their system on real data provided by the City of Brussels. This in-
stance contains 164 requests and 18 vehicles. An important DARP variant
is the dial-a-flight problem, faced by about 3,000 businesses offering charter
flight services in the United States (Cordeau et al. [20]). Recent survey articles
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Fig. 1. One-to-many-to-one problem. Vertex label (x,−y) means that the vertex
supplies x units and demands y units. Arc labels indicate vehicle load.
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Fig. 2. Many-to-many problem. A positive vertex label x means that the vertex
supplies x units; a negative vertex label −y means that the vertex demands y units.
Arc labels indicate vehicle load.
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Fig. 3. One-to-one problem. Vertex label z means that the vertex supplies com-
modity z; vertex label −z means that the vertex demands commodity z. Arc labels
show the commodities carried by the vehicle.
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on the PDP and its applications are those of Desaulniers et al. [23], Cordeau
et al. [20], and Berbeglia et al. [3].

The early research efforts on PDPs can be traced back to the work of
Wilson et al. [78, 79] who developed scheduling algorithms for the DARP.
Since then several exact and heuristic algorithms have been proposed for PDPs
associated with the transportation of goods or people. Significant progress has
occurred in the past five years, with the development of new exact and approx-
imate algorithms for several types of PDPs. These exact algorithms employ
decomposition techniques such as branch-and-cut and branch-and-cut-and-
price, while the new heuristics are based on tabu search, simulated annealing
and variable neighbourhood search. While all these algorithmic techniques
have now been known for some time, their massive application to PDPs is
significant and has enabled researchers to break new grounds in the difficulty
and size of problems that can be tackled. Our aim is to report on these new
and exciting developments.

Because our focus is on recent contributions, we do not claim to provide
a comprehensive and systematic coverage of the field, but rather a selective
coverage of some of the most significant new algorithmic ideas. This chapter
contains two main sections devoted to single vehicle and multi-vehicle prob-
lems, respectively. Each section is subdivided into two parts, one on exact
algorithms and one on heuristics. Conclusions follow.

2 Single Vehicle Pickup and Delivery Problems
(SVPDPs)

While most routing problems arising in practice involve several vehicles, the
single vehicle case is instrumental in developing insights into the problem
structure and in putting forward new algorithmic concepts. As a case in point,
several exact and approximate algorithms for the Classical Vehicle Routing
Problem (VRP) (see, e.g., Toth and Vigo [76]), are rooted in concepts that
were first developed for the Traveling Salesman Problem (TSP), (see, e.g.,
Lawler et al. [42]). All known algorithmic approaches for single-vehicle PDPs
stem from TSP algorithms, and may be instrumental in the development of
algorithms for multi-vehicle PDPs.

In all versions of the SVPDP discussed in this section, the vehicle capacity
is not binding, there are no time windows and no ride time limits. There exist
meaningful applications where such constraints may be present. These can
sometimes be treated as special cases of multi-vehicle PDPs.

2.1 Exact Algorithms for the SVPDP

The first algorithms developed for the SVPDP and its variants, including
the Traveling Salesman Problem with Precedence Constraints (TSPPC), were
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based on branch-and-bound (Kalantari, Hill and Arora [38]), dynamic pro-
gramming (Desrosiers, Dumas and Soumis [25], Bianco, Mingozzi and Ric-
ciardelli [4]), and branch-and-cut (Balas, Fischetti and Pulleyblank [1]). In
addition, Fischetti and Toth [30] have developed an additive lower bounding
procedure which can be embedded within a branch-and-bound framework,
and have applied this methodology to the solution of the TSPPC.

A Branch-and-cut Algorithm for the SVPDP

The most popular methodology for the solution of the SVPDP is now branch-
and-cut. The two key components of this method are the generation of valid
inequalities and the design of separation procedures. Our emphasis is on the
modeling aspects. Recent branch-and-cut algorithms for single vehicle PDPs
are rooted in the work of Ruland [65] and Ruland and Rodin [66]. These
authors have considered the undirected case, i.e., when the problem is defined
on a graph G = (V, E) where E = {(i, j) = (j, i) : i, j ∈ V, i < j} is an edge
set, and the solution is a Hamiltonian cycle.

In addition to the notation already introduced, define S̄ = V \S for S ⊆ V ,
π(S) = {i ∈ P : n + i ∈ S} as the set of predecessors of S ⊆ V \{0}, and
σ(S) = {i ∈ D : i − n ∈ S} as the set of successors of S ⊆ V \{2n + 1}. Let
δ(S) = {(i, j) : i ∈ S, j /∈ S} be the set of edges with exactly one end-vertex
in S ⊆ V . For simplicity, we write δ(i) instead of δ({i}). For S, T ∈ V , let
(S : T ) = {(i, j) : i ∈ S, j ∈ T } be the set of edges with one end-point in S,
and one in T . The single-vehicle PDP can be formulated with binary variables
xij equal to 1 if and only if edge (i, j) belongs to the cycle. For E′ ⊆ E, let
x(E′) =

∑

(i,j)∈E′
xij ; for S ⊆ V , let x(S) =

∑

i,j∈S

xij . We write x(S : T ) instead

of x ((S : T )). The model proposed by Ruland is then as follows.

(SVPDP)

Minimize
2n∑

i=0

2n+1∑

j=i+1

cijxij (1)

subject to

x0,2n+1 = 1 (2)
x(δ(i)) = 2 (i ∈ V ) (3)
x(S : S̄) ≥ 2 (S ⊂ V ) (4)
x(U : Ū) ≥ 4 (U ∈ U) (5)
xij = 0 or 1 ((i, j) ∈ E) , (6)

where U is the collection of all sets U ⊂ P ∪ D satisfying 3 ≤ |U | ≤ |V | − 2,
0 ∈ U , 2n + 1 /∈ U and there exists i ∈ P\U with n + i ∈ U . In this model,
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(3) are the degree constraints, (4) are the connectivity constraints, and (5)
are the precedence constraints. Indeed, any feasible solution must contain a
chain between each of the following four vertex pairs: 0 and i, i and n + i,
n + i and 2n + 1, 2n + 1 and 0, and each of these chains contains an edge
connecting U and Ū . This model can be reinforced through the introduction of
valid inequalities. Each family of valid inequalities gives rise to another family
by interchanging the roles of pickup and delivery vertices, and the roles of the
two depots.

Generalized order constraints (Ruland and Rodin [66])

Let S1, . . . , Sh ⊂ P ∪ D be disjoint sets such that Si ∩ σ(Si+1) �= ∅ (i =
1, . . . , h), where Sh+1 = S1. Then the inequality

h∑

i=1

x(Si) ≤
h∑

i=1

|Si| − h − 1 (7)

is valid for the SVPDP.
Similar constraints called precedence cycle breaking inequalities, were pro-

posed by Balas, Fischetti and Pulleyblank [1].

Order-matching constraints (Ruland and Rodin [66], Dumitrescu et al. [29])

For i1, . . . , ih ∈ P and H ⊆ (P∪D)\{n+i1, . . . , n+ih} such that {i1, . . . , ih} ⊆
H , then the inequality

x(H) +
h∑

j=1

xij ,n+ij ≤ |H | (8)

is valid for the SVPDP.
Ruland and Rodin [66] proved this result for h even. Dumitrescu et al. [29]

have shown that it also holds for h odd.

Generalized order matching constraints (Cordeau [14])

For i1, . . . , ih ∈ P, H ⊆ V \{0, 2n + 1}, Tj ⊂ P ∪ D (j = 1, . . . , h) such that
{ij, n + ij} ⊆ Tj , Ti ∩ Tj = ∅ (i �= j) and H ∩ Tj = {ij} (j = 1, . . . , h), the
inequality

x(H) +
h∑

j=1

x(Tj) ≤ |H | +
h∑

j=1

|Tj | − 2h (9)

is valid for the SVPDP.
Constraints (9), which generalize (8), were proved by Cordeau in the con-

text of the DARP but they also apply to the SVPDP.
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σ-inequalities (Balas, Fischetti and Pulleyblank [1])

For S ⊆ V \{0}, the inequality

x
(
S\σ(S) : S̄\σ(S)

)
≥ 1 (10)

is valid for the SVPDP.
These inequalities were introduced by Balas, Fischetti and Pulleyblank [1]

in the context of the TSPPC.

Lifted subtour elimination constraints (Dumitrescu et al. [29])

Let S ⊆ P ∪ D be such that there exists i ∈ P such that i ∈ S, n + i ∈ S.
Then the inequality

x(S) +
∑

j∈P∩S,n+j∈S̄

xi,n+j ≤ |S| − 1 (11)

is valid for the SVPDP.
Dumitrescu et al. [29] also prove the following generalization of (11).

Generalized lifted subtour elimination constraints (Dumitrescu et al. [29])

Let S ⊂ P ∪ D be such that there exists i ∈ P ∩ S with n + i ∈ S. Let
Tk ⊂ P ∪ D, k = 1, . . . , p, be p sets such that there exists ik ∈ P ∩ S
and n + ik ∈ Tk, Tk ∩ S = {i} for k = 1, . . . , p, and Tj ∩ Tk = {i} for all
j, k = 1, . . . , p, j �= k. Then the inequality

x(S) +
p∑

k=1

x(Tk) ≤ |S| − 1 +
p∑

k=1

(|Tk| − 2) (12)

is valid for the SVPDP.

Terminal inequalities (Dumitrescu et al. [29])

Let S ⊂ V and T ⊂ D be such that 0 ∈ S, 2n + 1 ∈ S̄, S ∩ T = ∅ and
π(T ) ∩ S = ∅. Then the inequality

2x(S) + x(S : T ) ≤ 2(|S| − 1) (13)

is valid for the SVPDP.
Dumitrescu et al. [29] also provide a number of other more complicated

valid inequalities for the SVPDP. It is worth noting that constraints (7) are
not in general facet defining for the SVPDP polytope, constraints (8) are facet
defining for H = {i1, . . . , ih}, and precedence constraints (5) are sometimes
facet defining.
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The branch-and-cut algorithm of Dumitrescu et al. [29] embeds exact sep-
aration procedures for constraints (4) and (5) used by Ruland and Rodin [66],
as well as exact separation procedures for constraints (7) with h = 2, for con-
straints (8) with h = 2 or 3, and for constraints (11). It also contains heuristic
separation procedures for constraints (7) with h ≥ 3, and for constraints (9),
(10), (12) and (13). The algorithm branches on the xij variables. The algo-
rithm uses strong branching and a best-bound node selection strategy.

The algorithm was run on an AMD Opteron 250 computer (2.4 GHz)
running Linux, using CPLEX 10.0 and the Concert library. It was tested on
random Euclidean instances with vertices generated in [0, 1000]2, and contain-
ing between 5 and 30 requests (between 12 and 62 vertices), as well as on the
Renaud, Boctor and Laporte [61] instances which were adapted from some
TSPLIB instances (Reinelt [59]), and contain up to 50 requests. Results show
that the lower bound at the root of the search tree after the generation of con-
nectivity constraints (4) and precedence constraints (5) is on average over 85%
of the optimal solution value. Generating valid inequalities (7) to (13) closes
between 47% and 74% the residual gap, depending on the type of instances.
The largest instance solved to optimality within two hours of computing time
contain 30 requests (62 vertices).

A Branch-and-cut Algorithm for the SVPDP with LIFO
Constraints

An interesting variant of the SVPDP arises when a last-in-first-out (LIFO)
rule is imposed on the pickup and delivery operations. This means that when
a load is picked up, it is placed on top of a stack and can only by unloaded
when it is in that position. This problem, abbreviated as SVPDPL, was re-
cently modeled and solved by Cordeau et al. [16]. It arises naturally in the
transportation of heavy or fragile goods which are loaded linearly into a ve-
hicle equipped with a single back door. Levitin and Abezgaouz [43] describe
another application encountered in the operations of multi-load automated
guided vehicles operating in a LIFO fashion. The first exact algorithms pro-
posed for this problem used branch-and-bound (Pacheco [54]). An additive
branch-and-bound algorithm combining lower bounds based on the assign-
ment and shortest spanning r-arborescence relaxations was also recently de-
veloped by Carrabs, Cerulli and Cordeau [9].

The structure of a feasible SVPDPL solution (i1 = 0, i2, . . . , i2n+2 =
2n + 1) is such that if the solution is arranged on a line, and the origin of
each request is linked to its destination by an arc, then no arcs will cross. Put
differently, if vertex n + i is relabeled i, then the solution consists of nested
palindromes.

Cordeau et al. [16] have proposed three formulations for the SVPDPL.
We only report the third one which is the most compact in terms of the
decision variables, and also yields the best performance. Because the SVPDPL
is naturally directed, it is defined on a graph G = (V, A), where A = {(i, j) :
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i, j ∈ V, i �= j} is the arc set. Binary variables xij take the value 1 if and only if
arc (i, j) belongs to the optimal circuit. The sets δ+(i) = {(i, j) : j ∈ V \{i}}
and δ−(i) = {(j, i) : j ∈ V \{i}} contain the arcs leaving and entering i,
respectively. The model is the following.

(SVPDPL)

Minimize
∑

i∈V

∑

j∈V

cijxij (14)

subject to

x(δ+(i)) = 1 (i ∈ V \{2n + 1}) (15)

x(δ−(i)) = 1 (i ∈ V \{0}) (16)
x(S) ≤ |S| − 1 (S ⊆ P ∪ D, |S| ≥ 2) (17)
x(S) ≤ |S| − 2 (S ∈ U) (18)
x(i : S) + x(S)

+ x(S : n + i) ≤ |S| (S ∈ W , i, n + i /∈ S, i ∈ P ) (19)
xij = 0 or 1 ((i, j) ∈ A) , (20)

where W is the collection of all subsets S ⊂ P ∪ D for which at least one
request (j, n+ j) is such that j ∈ S and n+ j /∈ S, or j /∈ S and n+ j ∈ S, and
U has been defined in Section 2.1. In this model, constraints (15) and (16) are
degree constraints, while connectivity, precedence and LIFO restrictions are
enforced through constraints (17), (18), and (19), respectively.

Since the SVPDPL is a restriction of the SVPDP, any inequality valid for
the SVPDP is also valid for the SVPDPL. In addition, Cordeau et al. [16]
show that the following inequalities are valid for the SVPDPL.

Incompatible successor inequalities (Cordeau et al. [16])

Let Sn+j(i, j) = {n + i} ∪ (P\{i}) be the set of possible successors of vertex
n + j if arc (i, j) is used. Then the inequality

xij +
∑

�/∈Sn+j(i,j)

xn+j,� ≤ 1 (i, j ∈ P, i �= j) (21)

is valid for the SVPDPL.

Incompatible predecessor inequalities (Cordeau et al. [16])

Similarly, let Pi(n + i, n + j) = {j} ∪ (D\{n + j}) be the set of possible
predecessors of vertex i if arc (n + i, n + j) is used. Then the inequality

xn+i,n+j +
∑

�/∈Pi(n+i,n+j)

x�i ≤ 1 (i, j ∈ P, i �= j) (22)

is valid for the SVPDPL.
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Hamburger inequalities (Cordeau et al. [16])

The inequality

xij + xn+i,n+j + xn+j,i + xn+i,j ≤ 1 (i, j ∈ P, i �= j) (23)

is valid for the SVPDPL. Also, let k ≥ 3 and consider an ordered subset of
requests defined by the indices {i1, . . . , ik}, where ik+1 = i1 and i0 = k. Then
the inequality

k∑

j=1

xij ,ij+1 +
k∑

j=1

xn+ij ,n+ij+1 +
k∑

j=1

xn+ij ,ij−1 ≤ k − 1 (24)

is valid for the SVPDPL.

Incompatible path inequalities (Cordeau et al. [16])

Let Pij be the arc set of a path from i to j not containing vertex n + i.
Similarly, let Pn+i,n+j be the arc set of a path from n + i to n + j. Then the
inequality

∑

(h,k)∈Pij

xhk +
∑

(h,k)∈Pn+i,n+j

xhk ≤ |Pij | + |Pn+i,n+j | − 1 (25)

is valid for the SVPDPL.
Cordeau et al. [16] have devised a branch-and-cut algorithm for the

SVPDPL, incorporating these inequalities. Exact procedures are used for the
separation of constraints (17), (18), and (19), while heuristics are used for the
remaining valid inequalities. The algorithm uses standard CPLEX parame-
ters. The algorithm was tested on 36 benchmark instances containing at most
25 requests (52 vertices). Twenty-nine of these instances could be solved to
optimality within an hour on a Pentium IV 3 GHz, using CPLEX 9.0 as ILP
solver. The percentage gap at the root was only 1.82%.

2.2 Heuristics for the SVPDP

A number of heuristics have also been proposed for several versions of the
SVPDP. The most common version, involving time windows, has been solved
by local search (Van der Bruggen, Lenstra and Schuur [77]), tabu search (Lan-
drieu, Mati and Binder [40]), and genetic search (Pankratz [55]). A perturba-
tion heuristic was also proposed by Renaud, Boctor and Laporte [61] for the
SVPDP without time windows. A recent article by Cordeau and Laporte [18]
surveys the single vehicle DARP literature.
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A Heuristic for the SVPDPL

Carrabs, Cordeau and Laporte [10] have developed a variable neighbourhood
search (VNS) heuristic for the SVPDPL. This technique, put forward by
Mladenović and Hansen [51], is a local search framework in which the neigh-
bourhood structure is allowed to vary during the search.

The search procedure applies eight operators. The first four were intro-
duced by Cassani and Righini [11], the next three are due to Carrabs, Cordeau
and Laporte [10], and the last one calls four of the seven first operators. When
implementing these operators one must ensure that the LIFO property of the
solution remains satisfied. In several cases, preserving LIFO feasibility requires
carrying out complicated checks and handling appropriate data structures in
order to maintain a low complexity. Here is a short description of these oper-
ators.

1) Couple-exchange: Select two requests (i, n+ i) and (j, n+ j). Swap the
positions of i and j and of n + i and n + j.

2) Block-exchange: A block Bi is the path (i, . . . , n + i). This procedure
works like the previous one, except that it swaps blocks Bi and Bj , instead
of just their extremities.

3) Relocate-block: This procedure relocates a block Bi in the best possible
position.

4) Relocate-couple: This operator relocates a request (i, n+ i) in the best
position.

5) Multi-relocate: This operator works like relocate-couple, except that
it first computes the cost of relocating each request and implements the
best move. However, it saves in a queue every request whose relocation
produces a better tour to relocate the best request identified, and then
attempts to relocate as many requests as possible to further improve the
tour.

6) 2-opt-L: Denote a solution by (i1 = 0, . . . , i2n+2 = 2n + 1). This proce-
dure is an adaptation of the classical 2-opt operator for the TSP (Croes
[21]). It substitutes two arcs (ij , ij+1) and (ik, ik+1) with two other arcs
(ij , ik) and (ij+1, ik+1) and reverses the path (ij+1, . . . , ik).

7) Double-bridge: This operator is used to perturb the solution during the
VNS algorithm. It works as the classical double-bridge operator (Lin and
Kerninghan [45]). It replaces the arcs (ij , ij+1), (ik, ik+1), (i�, i�+1) and
(ih, ih+1) with (ij , i�+1), (ik, ih+1), (i�, ij+1) and (ih, ik+1).

8) Shake: This is another perturbation operator which randomly calls
couple-exchange, block-exchange, relocate-couple, or relocate-block.

Procedures 1, 2, 3, 6, 7 were implemented to run in O(n2) time while
procedures 4 and 5 require O(n3) time. In the VNS heuristic, local search is
applied to a starting solution s until a local minimum s1 has been reached,
and is perturbed into another solution s2. Local search is again applied to s2

until a local minimum s3 is reached. Finally, a decision criterion is applied to



338 Cordeau, Laporte, and Ropke

determine whether the search should restart from s3 or from the incumbent
s∗. The larger the cost of s3 and the number of different arcs between s3 and
s∗, the lower is the probability of restarting from s3.

The starting solution is obtained through one of the eight constructive
procedures described by Cassani and Righini [11]. The neighbourhoods couple-
exchange, block-exchange, relocate-block, 2-opt-L and multi-relocate are then
applied in one of two possible orders. To perturb the solution, the double-
bridge and shake operators are applied, with a tabu mechanism in the latter
case.

Tests were performed on 42 instances derived from TSP instances of
TSPLIB (Reinelt [59]), and containing between 12 and 350 requests. All in-
stances were solved using the VNS heuristic and the variable neighbourhood
descent (VND) heuristic of Cassani and Righini [11]. In all cases, VNS pro-
duced better solutions than VND, at the expense of an increase in computing
time. In half the cases the difference in solution costs between the two algo-
rithms was in excess of 5%. Tests were also performed to study the individual
impact of each operator by successively removing each of them. The multi-
relocate operator proved to be the most useful, while couple-exchange and
2-opt-L were the least useful. Comparisons with the optimal values of the
Cordeau et al. [16] algorithm show that on instances with 7 ≤ n ≤ 25, the
VNS heuristic yields solutions whose values lie on average within 0.19% of the
optimum (Carrabs [8]).

3 Multi-vehicle Pickup and Delivery Problems
(MVPDPs)

Most of the research effort on PDPs is related to the multi-vehicle case. In
what follows we present some of the most recent exact and approximate algo-
rithms for MVPDPs.

3.1 Exact Algorithms for the MVPDP

The most popular exact algorithms for static MVPDPs are based on column
generation (Dumas, Desrosiers and Soumis [27], Savelsbergh and Sol [68]).
Within a very short time span, three new exact algorithms have been put
forward for two basic variants of the MVPDP, and each improves upon its
predecessors. The first two use classical branch-and-cut, while the third also
embeds a pricing mechanism.

A Branch-and-cut Algorithm for the DARP

Cordeau [14] formulates the DARP on a directed graph G = (V, A), using
binary three-index variables xk

ij equal to 1 if and only if arc (i, j) is traversed
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by vehicle k. For S ⊆ P ∪ D, let q(S) =
∑

i∈S

qi. In addition, let uk
i be the

time at which vehicle k starts servicing vertex i, wk
i the load of vehicle k

upon leaving vertex i, and rk
i the ride time of user i (corresponding to request

(i, n + i) on vehicle k). The model is then as follows.

(DARP)

Minimize
∑

k∈K

∑

i∈V

∑

j∈V

ck
ijx

k
ij (26)

subject to

∑

k∈K

∑

j∈V

xk
ij = 1 (i ∈ P ) (27)

∑

i∈V

xk
0i =

∑

i∈V

xk
i,2n+1 = 1 (k ∈ K) (28)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j = 0 (i ∈ P, k ∈ K) (29)

∑

j∈V

xk
ji −

∑

j∈V

xk
ij = 0 (i ∈ P ∪ D, k ∈ K) (30)

uk
j ≥ (uk

i + di + tij)xk
ij (i, j ∈ V, k ∈ K) (31)

wk
j ≥ (wk

i + qj)xk
ij (i, j ∈ V, k ∈ K) (32)

rk
i ≥ uk

n+i − (uk
i + di) (i ∈ P, k ∈ K) (33)

uk
2n+1 − uk

0 ≤ Tk (k ∈ K) (34)

ei ≤ uk
i ≤ �i (i ∈ V, k ∈ K) (35)

ti,n+i ≤ rk
i ≤ L (i ∈ P, k ∈ K) (36)

max{0, qi} ≤ wk
i ≤ min{Qk, Qk + qi} (i ∈ V, k ∈ K) (37)

xk
ij = 0 or 1 (i, j ∈ V, k ∈ K). (38)

In this formulation, constraints (27) and (29) ensure that each request is served
once by the same vehicle, while constraints (28) and (30) guarantee that each
vehicle starts and ends its route at the depot. Constraints (31) to (33) define
starts of service times, vehicle loads and user ride times, respectively, while
constraints (34) to (37) ensure that these will be feasible.

The uk
i variables can be aggregated into vehicle-independent ui variables

for i ∈ P ∪ D. Constraints (31) and (32) can be linearized using standard
techniques. These linearized constraints, as well as constraints (35) and (37)
can be lifted as in Desrochers and Laporte [24].

Cordeau proposes a number of valid inequalities for this model. Define
xij =

∑

k∈K

xk
ij , x(A′) =

∑

(i,j)∈A′
xij for A′ ⊆ A, and x(S) =

∑

i,j∈S

xij for S ⊆ V .
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σ-inequalities and π-inequalities (Balas, Fischetti and Pulleyblank [1])

The standard subtour elimination constraints x(S) ≤ |S|− 1 (S ⊆ P ∪D) are
of course valid for the DARP. In the directed case, precedence relationships
yield the following liftings:

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij

≤ |S| − 1 (S ⊆ P ∪ D) (39)

and

x(S) +
∑

i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij

≤ |S| − 1 (S ⊆ P ∪ D). (40)

Lifted D+
k and D−

k inequalities (Cordeau [14])

The following subtour elimination constraints are obtained by lifting the so-
called D+

k and D−
k inequalities proposed by Grötschel and Padberg [34] for

the asymmetric TSP. Let S = {i1, . . . , ih} ⊆ P ∪ D, where h ≥ 3. Then the
inequalities

h−1∑

j=1

xij ij+1 + xihi1 + 2
h−1∑

j=2

xij i1 +
h−1∑

j=3

j−1∑

�=2

xij i�

+
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ h − 1 (41)

and

h−1∑

j=1

xij ij+1 + xihi1 + 2
h∑

j=3

xi1ij +
h∑

j=4

j−1∑

�=3

xij i�

+
∑

ip∈S̄∩π(S)

xi1,ip ≤ h − 1 (42)

are valid for the DARP.

Capacity constraints (Laporte, Nobert and Desrochers [41], Cordeau [14])

The standard VRP capacity constraints

x (δ(S)) ≥ 2�q(S)/Q� (S ⊆ P ∪ D) (43)

where Q = max
k∈K

{Qk}, are valid for the DARP.
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Lifted generalized order constraints (Cordeau [14])

Let S1, . . . , Sh ⊂ P ∪ D be disjoint sets and let i1, . . . , ih ∈ P be such that
0, 2n + 1 /∈ S� and i�, n + i�+1 ∈ S� for � = 1, . . . , h, where ih+1 = i1. Then
the generalized order constraints (7), can be lifted as follows in the case of a
directed formulation:

h∑

i=1

x(S�) +
h−1∑

�=2

xi1,i�
+

h∑

�=3

xi1,in+i�
≤

h∑

�=1

|S�| − h − 1 (44)

and
h∑

�=1

x(S�) +
h−2∑

�=2

xn+i1,i�
+

h−1∑

�=2

xn+i1,n+i�
≤

h∑

�=1

|S�| − h − 1. (45)

Infeasible path constraints (Cordeau [14])

The following inequalities make use of the maximum ride time constraints and
are specific to the DARP. Assume the tij satisfy the triangle inequality. Then
for any path (i, k1, . . . , kp, n+i) such that tik1 +dk1+tk1k2 +dk2+. . .+tkpn+i >
L, the inequality

xik1 +
p−1∑

h=1

xkhkh+1 + xkpn+i ≤ p − 1 (46)

is valid for the DARP.
Using the DARP model and the associated valid inequalities, Cordeau

[14] has devised a branch-and-cut algorithm incorporating a preprocessing
phase (time window tightening, arc elimination and variable fixing), as well as
separation heuristics for subtour elimination constraints, capacity constraints,
generalized order constraints and infeasible path inequalities.

The algorithm was implemented in C++ with ILOG Concert 1.3 and
CPLEX 8.1. It was run on a 2.5 GHz Pentium 4 computer. In the branch-and-
cut algorithm additional aggregate variables yk

i =
∑

j∈V xk
ij , i ∈ P, k ∈ K are

added to the model. Valid inequalities are only added at the root node and
whenever all yk

i variables are integer. The algorithm first branches on yk
i vari-

ables and only selects xk
ij variables for branching when all yk

i are integer. The
algorithm was tested on 48 randomly generated instances with 16 ≤ n ≤ 48
(34 ≤ |V | ≤ 98). It is shown that the preprocessing phase played an impor-
tant role in reducing the instance size and in increasing the lower bound at
the root of the search tree. Valid inequalities at the root of the tree helped
increase the lower bound by about 5%. Instances containing up to 30 requests
could be solved optimally within four hours.
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A Branch-and-cut Algorithm for the PDPTW and the DARP

More recently, Ropke, Cordeau and Laporte [62] have proposed two models
and a branch-and-cut algorithm for the PDP with time windows (PDPTW)
and for the DARP, where all vehicles are identical. The PDPTW is a DARP
without the maximum ride time constraints. Here we describe the better of
the two models. It works with a homogeneous fleet of vehicles of capacity
Q and two-index variables xij . In this model, R denotes a path, R is the
set of infeasible paths with respect to time windows and maximum ride time
constraints, and A(R) is the arc set of R. The model is as follows.

(PDPTW-DARP)

Minimize
∑

i∈V

∑

j∈V

cijxij (47)

subject to

∑

i∈V

xij = 1 (j ∈ P ∪ D) (48)

∑

j∈V

xij = 1 (i ∈ P ∪ D) (49)

∑

i,j∈S

xij ≤ |S| − 2 (S ∈ U) (50)

∑

i,j∈S

xij ≤ |S| − max{1, �|q(S)|/Q�} (S ⊆ P ∪ D, |S| ≥ 2) (51)

∑

(i,j)∈A(R)

xij ≤ |A(R)| − 1 (R ∈ R) (52)

xij = 0 or 1 (i, j ∈ V ). (53)

In this model, precedence constraints (50) are the same as (18), con-
straints (51) are capacity constraints, and constraints (52) eliminate infea-
sible paths. An immediate strengthening of this constraint is provided by the
so-called tournament constraints. Let R = (k1, . . . , kr) be an infeasible path,
then

r−1∑

i=1

r∑

j=i+1

xkikj ≤ |A(R)| − 1 (54)

is a valid inequality for the PDPTW. In addition, if R′ = (kr, . . . , k1) is also
infeasible, then

r−1∑

i=1

(
xkiki+1 + xki+1ki

)
≤ r − 1
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is also valid. Finally, if the tij satisfy the triangle inequality and R =
(i, k1, . . . , kr, n+i) violates the time window or ride time constraints, then (46)
is also valid. All valid inequalities developed by Cordeau [14] for the DARP,
except the infeasible path constraints (46), apply directly to the PDPTW.
Some additional valid inequalities have also been proposed for the PDPTW.

Strengthened capacity constraints (Ropke, Cordeau and Laporte [62])

Let S, T ⊂ P ∪ D be two disjoint sets such that q(S) > 0. Also define U =
π(T )\(S ∪ T ). Then the constraint

x(S) + x(T ) + x(S : T ) ≤ |S| + |T | −
⌈

q(S) + q(U)
Q

⌉

(55)

is valid for the PDPTW.

Strengthened infeasible path constraints (Ropke, Cordeau and Laporte [62])

If travel times satisfy the triangle inequality and the two paths (j, i, n+j, k, n+
i, n + k) and (j, i, n + j, k, n + k, n + i) are infeasible, then the solution cannot
contain the path R = (i, n + j, k) and therefore

xi,n+j + xn+j,k ≤ 1 (56)

is valid for the PDPTW. This inequality generalizes to longer paths.

Fork inequalities (Ropke, Cordeau and Laporte [62])

If the path R = (k1, . . . , kr) is feasible but the path (i, R, j) is infeasible for
every i ∈ S and j ∈ T , with S, T ⊂ V , then the inequality

∑

i∈S

xik1 +
r−1∑

h=1

xkhkh+1 +
∑

j∈T

xkrj ≤ r (57)

is valid for the PDPTW.
This inequality can be strengthened into the following outfork inequality.

Let R = (k1, . . . , kr) be a feasible path and S, T1, . . . , Tr ⊂ P ∪ D be subsets
such that kj /∈ Tj−1 for j = 2, . . . , r. If for any integer h ≤ r and any vertex
pair {i ∈ S, j ∈ Th} the path (i, k1, . . . , kh, j) is infeasible, then the inequality

∑

i∈S

xik1 +
r−1∑

h=1

xkhkh+1 +
r∑

h=1

∑

j∈Th

xkhj ≤ r (58)

is valid for the PDPTW.
Similarly, let kj /∈ Sj+1 for j = 1, . . . , r − 1. If for any integer h ≤ r and

any vertex pair {i ∈ Sh, j ∈ T } the path (i, kh, . . . , kr, j) is infeasible, then
the infork inequality

r∑

h=1

∑

i∈Sh

xikh
+

r−1∑

h=1

xkhkh+1 +
∑

j∈T

xkrj ≤ r (59)

is valid for the PDPTW.
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Reachability constraints (Lysgaard [47])

Let i ∈ V , and let A−
i ⊂ A be the minimum arc set such that any feasible path

from 0 to i uses only arcs from A−
i ; similarly, let A+

i ⊂ A be the minimum arc
set such that any feasible path from i to 2n + 1 uses only arcs from A+

i . Let
T ⊂ V be such that each i ∈ T must be visited by a different vehicle. Such
a set is said to be conflicting. Define A−

T = ∪i∈T A−
i and A+

T = ∪i∈T A+
i . For

any S ⊆ P ∪ D and any conflicting vertex set T ⊆ S, the inequalities

x(δ−(S) ∩ A−
T ) ≥ |T | (60)

and

x(δ+(S) ∩ A+
T ) ≥ |T | (61)

are valid for the PDPTW.
Ropke, Cordeau and Laporte [62] have developed a branch-and-cut algo-

rithm for the PDPTW, using the preprocessing steps of Dumas, Desrosiers
and Soumis [27] and of Cordeau [14], as well as several heuristics for the
identification of violated valid inequalities. The algorithm was coded in C++
using ILOG Concert 1.3 and CPLEX 9.0, and run on an AMD Opteron 250
computer (2.4 GHz). Branching was performed on the xij variables and a
best bound node selection strategy was used. The algorithm was tested on
40 PDPTW instances similar to those of Savelsbergh and Sol [68], which con-
tain from 30 to 75 requests, and on two sets of DARP instances created by
Cordeau [14], including maximum ride time constraints, which contain be-
tween 16 and 96 requests. About 75% of the 40 first instances were solved
within two hours and all the Cordeau instances could also be solved within
that time limit. These results clearly outperform those of Cordeau [14] who
could handle instances involving at most 36 requests.

A Branch-and-cut-and-price Algorithm for the PDPTW

Ropke and Cordeau [63] have developed a branch-and-cut-and-price algorithm
for the PDPTW in which all vehicles are identical and have capacity Q. Let
Ω denote the set of all feasible routes r, let cr be the cost of route r, and air

the number of times vertex i ∈ P is visited by route r. Binary variables yr

are equal to 1 if and only if route r belongs to the optimal solution. The set
partitioning formulation of the problem is then

(PDPTW)

Minimize
∑

r∈Ω

cryr (62)

subject to
∑

r∈Ω

airyr = 1 (i ∈ P ) (63)
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yr = 0 or 1 (r ∈ Ω). (64)

In this formulation, constraints (63) ensure that every pickup node is
served once. Since the routes of Ω satisfy pairing, precedence, capacity and
time window constraints, the set partitioning constraints (63) are sufficient to
ensure feasibility.

Formulation (62)–(64) is solved by a branch-and-bound mechanism in
which lower bounds are computed by solving the LP relaxation by column
generation. To improve the lower bounds, violated valid inequalities are intro-
duced in the column generation master problem at each node of the enumer-
ation tree. Branching is performed either on the outflow from the depot (i.e.,
on the number of vehicles used in the solution) or on the outflow from a set of
vertices S when x(δ+(0)) is integer. The branch-and-bound tree is explored
using a depth-first strategy.

Two pricing problems were considered to generate columns of negative
reduced cost: the Elementary Shortest Path Problem with Time Windows,
Capacity, and Pickup and Delivery (ESPPTWCPD), and the non-elementary
relaxation of this problem. In the context of the PDPTW, the elementary
shortest path was first used by Sol [71] while the non-elementary case was
considered by Dumas, Desrosiers and Soumis [27]. Ropke and Cordeau explain
how effective dominance criteria can be employed within these pricing prob-
lems, even when valid inequalities are introduced in the column generation
master problem. Several existing families of valid inequalities are considered:
precedence inequalities (50), infeasible path inequalities (54), (56), fork in-
equalities (58), (59), and reachability inequalities (60), (61). In addition, two
new families of inequalities are introduced.

First, the classical rounded capacity inequalities can be strengthened by
considering predecessor and successor sets π(S) and σ(S). This leads to the
following inequalities which strengthen (43) and (51).

∑

i,j∈S

xij ≤ |S| − max
{

1,

⌈
q(π(S) \ S)

Q

⌉

,

⌈
−q(σ(S) \ S)

Q

⌉}

. (65)

Second, when travel times satisfy the triangle inequality, 2-path inequal-
ities introduced by Kohl et al. (1999) in the context of the Vehicle Routing
Problem with Time Windows can also be adapted and strengthened by consid-
ering precedence relationships between vertices. If it is impossible to identify a
tour serving all vertices in a vertex set S while satisfying precedence, capacity
and time window constraints, then any feasible solution must use at least two
arcs from the set δ+(S). The idea can be taken further by observing that if
a path serves all vertices of S by entering and leaving the set once, then the
vertices π(S)\S must be served by this path before entering S, and vertices of
σ(S)\S must be served after leaving S. If such a path cannot be found, then S
defines a valid inequality of the form x(δ+(S)) ≥ 2 even though there exists a
tour through S satisfying precedence, capacity and time window constraints.
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Ropke and Cordeau show that fork inequalities (58) and (59) and reach-
ability constraints (60) and (61) are in fact implied by the set partitioning
formulation when using the ESPPTWCPD as a pricing subproblem. In ad-
dition, precedence inequalities (5) are also implied by this formulation with
either the ESPPTWCPD or its non-elementary relaxation.

To accelerate the solution of the pricing problems, several heuristics are
used: label heuristics that limit the number of labels created by working on a
reduced graph from which some arcs have been removed, a randomized con-
struction heuristic based on a cheapest insertion criterion, and improvement
heuristics based on the large neighbourhood search (LNS) paradigm (Shaw
[69]). These heuristics are used sequentially until a negative reduced cost path
has been identified. When the pricing heuristics fail to find new columns the
separation procedures are called in order to find violated inequalities. If any
are found then the pricing heuristics and the separation procedures are reap-
plied. The exact pricing algorithm is only called if both the pricing heuristics
and the separation procedures are unsuccessful.

The branch-and-cut-and-price algorithm was tested on the instances in-
troduced by Ropke, Cordeau and Laporte [62] and on those of Li and Lim
[44]. For the first group of instances, all instances with n ≤ 75 could be solved
to optimality in just a few minutes on an Opteron 250 computer (2.4 GHz).
Some larger instances with up to 175 requests were also solved to optimal-
ity within a two hour time limit. For the second group of instances, several
instances with 100 requests were solved to optimality within that time limit.
Computational results have shown that the two pricing problems considered
perform similarly on test instances. Experiments concerning valid inequali-
ties showed that the 2-path cuts were the most successful of the inequalities
tested, and capacity inequalities were useful for instances with tight capacity
constraints. Overall, this branch-and-cut-and-price algorithm outperforms the
branch-and-cut algorithm of Ropke, Cordeau and Laporte [62].

3.2 Heuristics for MVPDPs

Heuristics for MVPDPs make use of insertion procedures (Jaw et al. [37], Lu
and Dessouky [46]), cluster-first, route-second methods (Cullen et al. [22],
Bodin and Sexton [5], Dumas, Desrosiers and Soumis [28], Desrosiers et al.
[26], Toth and Vigo [74], Borndörfer et al. [6]), and tabu search (Toth and
Vigo [75], Nanry and Barnes [52]). The reader is referred to Cordeau and
Laporte [18] for a survey of heuristics specifically designed for the DARP. This
section describes four recent heuristics for the MVPDP. The first three apply
to static problems in which all data are known with certainty when solving
the problem. The fourth applies to dynamic problems in which requests are
gradually revealed over time, and the solution can be updated accordingly.
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A Tabu Search Heuristic for the DARP

Cordeau and Laporte [17] have developed a tabu search (TS) for the DARP.
It is based on the unified tabu search algorithm (UTSA) (Cordeau, Laporte
and Mercier [19]) which adapts easily to a host of routing problems.

Neighbourhood search

The algorithm starts from a possibly infeasible solution s0 and moves at each
iteration t from the current solution st to the best solution in a subset of
its neighbourhood N(st). The algorithm uses attribute based tabu statuses
(Cordeau, Gendreau and Laporte [15]). To avoid cycling, solutions possessing
some attributes of recently visited solution are forbidden, or tabu, for a num-
ber of iterations, unless they improve upon the best known solution possessing
one of these attributes. The algorithm also embeds a mechanism allowing the
exploration of infeasible solutions, a concept introduced by Gendreau, Hertz
and Laporte [32]. Denote by c(s) the routing cost of solution s, and by q(s),
d(s), w(s) and t(s) the violations of vehicle capacity, route duration, time
window and ride time constraints, respectively. The algorithm minimizes the
function f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s), when α, β, γ and τ are
positive weights that self-adjust during the search. If a solution is feasible with
respect to a given constraint, then the corresponding weight is divided by a
factor 1 + δ, with δ > 0; if the solution is infeasible, then it is multiplied by
1 + δ. This process produces a mix of feasible and infeasible solutions, which
turns out to be particularly useful for tightly constrained instances.

Neighbourhood structure

With each solution s is associated an attribute set B(s) = {(i, k) : request i
is served by vehicle k}. The neighbourhood B(s) of s contains all solutions
obtained by removing an attribute (i, k) from N(s) and replacing it with
another attribute (i, k′), where k′ �= k. This means that vertices i and n + i
are removed from route k, which is then reconnected by linking the predecessor
and successor of each deleted vertex, and the two vertices are then inserted
in route k. The best position for i is first sought, and then n + i is inserted in
its best position. A tabu status is imposed on (i, k) for θ iterations.

Diversification mechanism

As suggested by Taillard [73], a frequency-based mechanism is used to diversify
the search. Any solution s̄ ∈ N(s) such that f(s̄) ≥ f(s) is penalized by a
term p(s̄) = λc(s̄)

√
nmρik, where λ is a user-controlled parameter and ρik is

the number of times attribute (i, k) has been added to the solution during the
search.
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Forward time slacks

In order to reduce route durations, the algorithm delays as much possible
vehicle departures from the depot. This can be done by computing the forward
time slack Fi of each vertex i (Savelsbergh [67]) as follows. Consider a route
(i0 = 0, . . . , iq = 2n + 1), and let vi be the waiting time at i and ui the start
of service at i. Then Fi can be computed as

Fi = min
1≤j≤q

⎧
⎨

⎩

∑

i<p≤j

vp + (�j − uj)

⎫
⎬

⎭
. (66)

The departure time of the vehicle from the depot can then be delayed by
F0, which can be computed in O(q) time. In the Cordeau and Laporte [17]
algorithm, the computation of Fi is modified in order not to increase time
window or ride time violations, i.e., Fi is redefined as

Fi = min
1≤j≤q

⎧
⎨

⎩

∑

i<p≤j

vp + (min{�j − uj , L − rj})+
⎫
⎬

⎭
, (67)

where (x)+ = max{0, x}, and rj is the ride time of the user whose destination
is vertex j if j ∈ D, and rj = 0 if j ∈ P .

Other features

The algorithm starts with a solution constructed by randomly assigning each
request (i, n+i) to a vehicle route, and by inserting i and n+i at the end of the
partially constructed route. Route reoptimizations are periodically performed
by means of intra-route exchanges. The algorithm is run for a prefixed number
of iterations.

Three versions of the algorithm were developed. Version 1 minimizes rout-
ing costs but does not minimize route durations; version 2 also minimizes
route durations by computing forward time slacks; version 3 also minimizes
the total ride time.

The algorithm was coded in C++ and tested on 20 randomly generated
instances (24 ≤ n ≤ 144), and on six real-life instances provided by a Dan-
ish consultant (n = 200 and 295). The algorithm was run on a Pentium 4,
2 GHz for 104 iterations. It solved the randomly generated instances within an
average of 5.16, 8.71 and 33.88 minutes, for versions 1, 2 and 3, respectively,
and the Danish instances within 20.99, 34.78 and 166.12 minutes. Considering
computing time and solution quality, version 2 appears to be the best option.

A Hybrid Heuristic for the PDPTW

Bent and Van Hentenryck [2] have developed a two-stage heuristic for the
PDPTW. The first stage applies simulated annealing (SA) to minimize the
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number of routes, while the second stage minimizes the total route length
through LNS (Shaw [69]).

The SA heuristic minimizes a hierarchical objective < f1,−f2, f3 >. The
function f1 represents the number of vehicle routes in the solution; f2 =∑

k∈K

a2
k, where ak is the number of requests in route k; f3 is the total routing

cost of the solution. The SA algorithm is implemented with an aspiration
criterion as is commonly done in TS, and also contains a random selection
mechanism that biases the search toward good moves.

The LNS mechanism uses nested neighbourhoods N1, . . . , Np, where Nj

relocates j requests from the current solution, and p is a user-controlled pa-
rameter. Because several requests are considered at once, a branch-and-bound
mechanism is used to identify the best overall relocation scheme. For larger
instances, the search is truncated and is only applied to a subset of the most
promising relocations. The LNS mechanism only accepts improving moves.

The algorithm was run on a 1.2 GHz AMD Athlon Thunderbird IX7 pro-
cessor running Linux. It was tested on benchmark PDPTW instances: 56
with 100 requests, 60 with 200 requests, and 60 with 600 requests. These
instances, which are described in Li and Lim [44], are downloadable from
http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html.
Five runs were executed for each of the 100- and 200-request instances, and ten
for the 600-request instances. The SA and LNS heuristics were each allowed to
run for a preset time. On the 100-request instances, the algorithm produced
two new best solutions and 54 matches; on the 200-request instances, it pro-
duced 28 new best solutions and 24 matches; on the 600-request instances, it
produced 46 new best solutions and five matches.

An Adaptive Large Neighbourhood Search Heuristic for the
PDPTW

The PDPTW version considered by Ropke and Pisinger [64] arises from the
problem faced by a Danish food manufacturer. Each request (i, n+i) can only
be served by a subset Ki of the vehicles, and not all request are necessarily
served. The objective is to minimize a weighted function f = αf1 +βf2 +γf3,
where f1 is the routing cost, f2 is the total time traveled by all vehicles, and
f3 is the number of unserved requests. It is normal to assign γ a very large
value.

The heuristic proposed by the authors also uses LNS, but it differs from the
Bent and Van Hentenryck [2] heuristic in several respects. Most importantly,
the method uses several simple request removal and insertion procedures to
explore the neighbourhood of the current solution, as opposed to the rather
involved branch-and-bound process proposed by Bent and Van Hentenryck.
In addition, the search mechanism of Ropke and Pisinger is embedded within
an SA framework, whereas Bent and Van Hentenryck used a simple descent
process.

http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks. html
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The LNS heuristic of Ropke and Pisinger applies three removal heuris-
tics (Shaw’s [69] removal procedure, random removal, worst removal), as well
as two insertion heuristics (greedy, and several types of regret-based inser-
tions). The insertion heuristics use the true value of f to evaluate the quality
of a solution, or a perturbed value f + ε, where ε is a randomly generated
noise. During the search, the algorithm maintains a score ϕj which measures
how well heuristic j has performed in the past iterations. At a given iter-
ation, it applies a roulette wheel selection principle, i.e., it selects heuristic
j with probability ϕj/

∑

i

ϕi. Because of this feature, the authors call their

PDPTW heuristic an adaptive large neighbourhood search (ALNS) heuristic.
The heuristic uses an SA-based acceptance rule for neighbour selection and
runs for a preset number of iterations. The algorithm can easily be adapted
to minimize the number of routes. It does so by iteratively deleting a route
and reinserting its requests in other routes.

The algorithm was extensively tested on the 594 Li and Lim [44] in-
stances which contain 100, 200, 400, 600, 800, and 1000 requests. Com-
parisons were made with results reported by Bent and Van Hentenryck
(http://www.cs.brown.edu/people/rbent/pickup-appendix.ps).
These tests showed the advantage of using several removal and insertion
heuristics, they confirmed the superiority of ALNS over LNS, and they also
proved the superiority of ALNS over the Bent and Van Hentenryck heuristic.
The heuristic was later used to solve the Capacitated Vehicle Routing Prob-
lem, the Vehicle Routing Problem with Time Windows, and the Multi-Depot
Vehicle Routing Problem (Pisinger and Ropke [56]).

A Double-horizon Heuristic for the Dynamic PDPTW

Mitrović-Minić, Krishnamurti and Laporte [49] have implemented a double-
horizon heuristic for the dynamic PDPTW in which requests occur in real-
time. The term double-horizon means that the insertion of a new request
takes into account the short term effect, i.e., an immediate increase in rout-
ing cost, and the long term effect, i.e., a decrease in vehicle slack time. The
algorithm combines a constructive heuristic which is applied whenever a new
request occurs, and a tabu search heuristic which is applied periodically. In
the constructive heuristic, the insertion cost of a new request is

c = [(1 − αp)fp + αpgp] + [(1 − αd)fd + αdgd] , (68)

where αp and αd are user-controlled parameters, fp and fd are the route length
increases due to the insertion of a pickup and a delivery, and gp and gd are
the corresponding decreases in vehicle slack times. Three insertion costs were
tested: c1 (with αp = αd = 0), c2 (with 0 < αp < 1 and 0 < αd < 1), and c3

(with αp = αd = 0 if the pickup and delivery both occur within a short term
horizon of length s, and 0 < αp < 1, 0 < αd < 1 otherwise).

(http://www.cs.brown.edu/people/rbent/pickup-appendix.ps)
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The objective function minimized in the tabu search procedure is defined
as

z =
�

s
βqS + (1 − p) ((1 − α)qL + αhL) , (69)

where β is a user-controlled parameter, qS is the total length of the route
portions falling within the short-term horizon, qL is the remaining length of
the routes, hL is the average slack time over all route portions belonging
to the long-term horizon, � is the length of the long-term horizon, and s is
the length of the short-term horizon. Again, three variants were defined: z1

(with α = β = 0, and qL is interpreted as the total route length), z2 (with
0 < α < 1, β = 0, qL is the total route length and hL is the average slack
time of all routes), z3 (with 0 < α < 1 and 0 < β < 1).

The authors have also tested several waiting strategies (Mitrović-Minić
and Laporte [50]). When a new request arrives, the vehicle assigned to it
can drive as soon as possible, yielding a drive-first (DF) strategy, or it can
wait as long as possible before moving, yielding a wait-first (WF) strategy.
An intermediate strategy, called advanced dynamic waiting (ADW), works as
follows. Vehicle routes are partitioned into segments, each containing locations
that are reasonably close to each other, and these segments vary dynamically
during the course of the algorithm. The ADW strategy applies DF as long
as the vehicle remains in the same segment, and the WF strategy when it
reaches the last location of the segment. The ADW strategy proved to be the
best, but its superiority becomes smaller for large instances.

The double-horizon heuristic was tested with the combinations (c1, z1),
(c2, z2) and (c3, z3) for the DF and ADW waiting strategies. Note that only
(c3, z3) yields a true double-horizon heuristic. Computer runs were performed
over three set of 30 instances containing 100, 500 and 1000 requests each.
Statistical tests confirmed the superiority of ADW over DF for all (c, z) com-
binations, and the superiority of (c3, z3) over (c1, z1) and (c2, z2).

Split loads

An interesting variant of the MVPDP is the Pickup and Delivery Problem with
Split Loads (PDPSL) recently investigated by Nowak, Ergun and White [53].
Contrary to what happens in the MVPDP, in the PDPSL customer requests
can be split among several vehicles. The authors show that allowing splits can
yield savings whose value is highly dependent on the load size range [a, b],
meaning that demands are distributed between a% and b% of the vehicle
size Q. When [a, b] = [0.41, 0.50] or [0.81, 0.90] the savings are insignificant.
However, when [a, b] = [0.51, 0.60], they can reach 30%.

4 Conclusions

One-to-one Pickup and Delivery Problems arise in several contexts related to
the transportation of goods and people. In the past few years several new and
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powerful algorithms have been developed to solve these problems. The best
exact solution methodologies are based on branch-and-cut and on branch-
and-cut-and-price. Their success is linked to the identification of strong valid
inequalities and to the development of efficient separation procedures. New
heuristics employ a variety of techniques including tabu search, simulated
annealing, variable neighbourhood search, and large neighbourhood search.
The success of these heuristics is dependent on the design of clever search
mechanisms, some of which are of wide applicability.
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one-commodity pickup-and-delivery traveling salesman problem. Trans-
portation Science 38:245–255
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