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Preface

Theoretical research and practical applications in the field of vehicle routing
started in 1959 with the truck dispatching problem posed by Dantzig and
Ramser [1]: find the “. . . optimum routing of a fleet of gasoline delivery trucks
between a bulk terminal and a large number of service stations supplied by
the terminal.” Using a method based on a linear programming formulation,
their hand calculations produced a near-optimal solution with four routes to
a problem with twelve service stations. The authors proclaimed: “No practical
applications of the method have been made as yet.”

In the nearly 50 years since the Dantzig and Ramser paper appeared,
work in the field has exploded dramatically. Today, a Google Scholar search
of the words vehicle routing problem (VRP) yields more than 21,700 entries.
The June 2006 issue of OR/MS Today provided a survey of 17 vendors of
commercial routing software whose packages are currently capable of solving
average-size problems with 1,000 stops, 50 routes, and two-hour hard-time
windows in two to ten minutes [2]. In practice, vehicle routing may be the
single biggest success story in operations research. For example, each day
103,500 drivers at UPS follow computer-generated routes. The drivers visit
7.9 million customers and handle an average of 15.6 million packages [3].

While much has been documented about the VRP in major studies that
have appeared from 1971 (starting with Distribution Management by Eilon,
Watson-Gandy, and Christofides) to 2002 (ending with The Vehicle Routing
Problem by Toth and Vigo), there are important advances and new challenges
that have been raised in the last five years or so due to technological innova-
tions such as global positioning systems, radio frequency identification, and
parallel computing. The portfolio of techniques for modeling and solving the
standard, capacitated VRP and its many variants has advanced significantly.
Researchers and practitioners have developed faster, more accurate solution
algorithms and better models that give them the ability to solve large-scale
problems.

The papers in this edited volume seek to build on the legacy of published
VRP studies in three ways. They summarize the most significant results for
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the VRP and its variants since 2000. They present significant methodological
advances or new approaches for solving existing vehicle routing problems.
They present novel problems that have arisen in the vehicle routing domain
and highlight new challenges for the field.

This volume is organized into three sections: overviews and surveys (nine
papers), new directions in modeling and algorithms (eleven papers), and prac-
tical applications (five papers). We hope that the academic community (es-
pecially new and young researchers entering the field) and practitioners in
industry will find all twenty-five papers in this volume interesting, informa-
tive, and useful.

We thank all of the authors for their participation in producing a first-rate
volume. We also thank Gary Folven, senior editor at Springer, and Ramesh
Sharda and Stefan Voß, series editors, for their encouragement and support.

College Park, MD and Washington, DC Bruce Golden
November 2007 S. Raghavan

Edward Wasil
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Routing a Heterogeneous Fleet of Vehicles

Roberto Baldacci, Maria Battarra, and Daniele Vigo

DEIS, University of Bologna
via Venezia 52, 47023 Cesena, Italy
{rbaldacci, mbattarra, dvigo}@deis.unibo.it

Summary. In the well-known Vehicle Routing Problem (VRP) a set of identical
vehicles, based at a central depot, is to be optimally routed to supply customers
with known demands subject to vehicle capacity constraints.

An important variant of the VRP arises when a fleet of vehicles characterized
by different capacities and costs is available for distribution activities. The problem
is known as the Mixed Fleet VRP or as the Heterogeneous Fleet VRP.

This chapter gives an overview of approaches from the literature to solve het-
erogeneous VRPs. In particular, we classify the different variants described in the
literature and, as no exact algorithm has been presented for any variants of hetero-
geneous VRP, we review the lower bounds and the heuristic algorithms proposed.
Computational results, comparing the performance of the different heuristic algo-
rithms on benchmark instances, are also discussed.

Key words: Heterogeneous vehicle routing problem.

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial
optimization problems and is concerned with the optimal design of routes
to be used by a fleet of vehicles to serve a set of customers. Since it was
first proposed by Dantzig and Ramser [15], hundreds of papers have been
devoted to the exact and approximate solution of the many variants of this
problem, such as the Capacitated VRP (CVRP), in which a homogeneous
fleet of vehicles is available and the only constraint is the vehicle capacity,
or the VRP with Time Windows (VRPTW), where customers may be served
within a specified time interval and the schedule of the vehicle trips needs to
be determined.

More recently, greater attention has been devoted to more complex vari-
ants of the VRP, sometimes named “rich” VRPs, that are closer to the prac-
tical distribution problems that the VRP models. In particular, these variants
are characterized by multiple depots, multiple trips to be performed by the

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 1, c© Springer Science+Business Media, LLC 2008
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vehicles, multiple vehicle types or other operational issues such as loading
constraints. Trying to systematize such a huge literature is a challenging and
useful activity that has attracted considerable efforts in the scientific commu-
nity. Among the various surveys on the VRP are the book by Toth and Vigo
[55] and the more recent update by Cordeau et al. [14]. Specific surveys of
rich VRPs may be found in Bräysy et al. [6].

This chapter considers an important variant of the VRP, in which a fleet
of vehicles characterized by different capacities and costs, is available for the
distribution activities. The problem is known as the Mixed Fleet VRP or as
the Heterogeneous Fleet VRP and was first considered in a structured way in
Golden et al. [30].

We examine the basic problem including capacity constraints only, which
has received greater attention in the literature, as well as the more recently
studied variants including time window constraints. Moreover, we briefly re-
view a related variant known as the Site-Dependent VRP (SDVRP), where
there are compatibility relations between customers and vehicle types. Ad-
ditional case studies and applications related to the solution of Heteroge-
neous VRPs can be found in Semet and Taillard [48], Rochat and Semet [45],
Brandão and Mercer [5], Prins [43], Wu et al. [57] and Tavakkoli-Moghaddam
et al. [53]. In addition, Engevall et al. [19] use a game-theoretic approach to
model the problem of allocating the cost of the heterogeneous fleet to the
customers.

This chapter is organized as follows. The next section introduces the nota-
tion used throughout the chapter and describes the variants of heterogeneous
VRPs with capacity constraints studied in the literature. Section 3 presents
the main integer programming formulations and discusses lower bounding ap-
proaches. Section 4 reviews heuristics and metaheuristics and reports on their
performances. Finally, the last section offers conclusions and suggestions for
future research.

2 Notation and Problem Variants

A directed graph G = (V, A) is given, where V = {0, 1, . . . , n} is the set of
n + 1 nodes and A is the set of arcs. Node 0 represents the depot, while the
remaining node set V ′ = V \{0} corresponds to the n customers.

Each customer i ∈ V ′ requires a supply of qi units from the depot (we
assume q0 = 0). A heterogeneous fleet of vehicles is stationed at the depot and
is used to supply the customers. The vehicle fleet is composed by m different
vehicle types, with M = {1, . . . , m}. For each type k ∈ M , mk vehicles are
available at the depot, each having a capacity equal to Qk. Each vehicle type
is also associated with a fixed cost, equal to Fk that models rental or capital
amortization costs. In addition, for each arc (i, j) ∈ A and for each vehicle
type k ∈ M , a non-negative routing cost, ck

ij , is given.
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A route is defined as the pair (R, k), where R = (i1, i2, . . . , i|R|), with
i1 = i|R| = 0 and {i2, . . . , i|R|−1} ⊆ V ′, is a simple circuit in G containing
the depot, and k is the type of vehicle associated with the route. R is used
to refer both to the visiting sequence and to the set of customers (including
the depot) of the route. A route (R, k) is feasible if the total demand of the
customers visited by the route does not exceed the vehicle capacity Qk (i.e.,
|R|−1∑
h=2

qih
≤ Qk). The cost of a route corresponds to the sum of the costs of

the arcs forming the route, plus the fixed cost of the vehicle associated with

it (i.e.,
|R|−1∑
h=1

ck
ihih+1

+ Fk).

The most general version of the Heterogeneous VRP consists of designing
a set of feasible routes with minimum total cost, such that:

i) each customer is visited by exactly one route;
ii) the number of routes performed by vehicles of type k ∈ M is not greater

than mk.

Two versions of the problem naturally arise: the symmetric one, when
ck
ij = ck

ji, for every pair i, j of nodes and for each vehicle type k ∈ M , and the
asymmetric version, otherwise. In addition, several variants of these general
problems have been presented in the literature, depending on the available
fleet and the type of costs. In particular, the following problem characteristics
were modified:

i) the vehicle fleet is composed by an unlimited number of vehicles for each
type, i.e., mk = +∞, ∀k ∈ M ;

ii) the fixed costs of the vehicles are not considered, i.e., Fk = 0, ∀k ∈ M ;
iii) the routing costs are vehicle-independent, i.e., ck1

ij = ck2
ij = cij , ∀k1, k2 ∈

M , k1 �= k2, and ∀(i, j) ∈ A.

A related problem that has received some attention in the literature is the
Site-Dependent VRP (SDVRP), in which there is a limited heterogeneous
fleet available for the service, no vehicle fixed costs are considered, routing
costs are vehicle-independent, and each customer may include restrictions on
the vehicle types that may visit it. Observe that the SDVRP is a special case
of the general Heterogeneous VRP described above, where the routing cost
ck
ij of all arcs entering node j is set to infinity for all vehicles types k that are

incompatible with node j.
Table 1 summarizes the different problem variants that have been consid-

ered in the literature, together with the corresponding references. The differ-
ent problem variants have been referred to in the literature using different
names. However, there is a certain homogeneity towards calling Heterogenous
VRPs the variants with limited number of vehicles, and Fleet Size and Mix
those with unlimited ones. Therefore, we adopt a unified naming convention,
that uses two acronyms (HVRP and FSM) and adds two letters that indicate



6 Baldacci, Batarra, and Vigo

whether fixed or routing costs are considered. We used “F” for fixed costs and
“D” for vehicle dependent routing costs.

Thus, in this chapter, we refer to the problem variants as follows (see
Table 1):

(a) Heterogeneous VRP with Fixed Costs and Vehicle Dependent Routing
Costs (HVRPFD);

(b) Heterogeneous VRP with Vehicle Dependent Routing Costs (HVRPD);
(c) Fleet Size and Mix VRP with Fixed Costs and Vehicle Dependent Routing

Costs (FSMFD);
(d) Fleet Size and Mix VRP with Vehicle Dependent Routing Costs (FSMD);
(e) Fleet Size and Mix VRP with Fixed Costs (FSMF).

For the SDVRP we kept the original acronym that is used consistently in
the literature. Moreover, for each problem, the variants with time windows
are denoted by adding TW to the acronym of the specific problem. All the
problems described above are NP-hard as they are natural generalizations of
the Traveling Salesman Problem (TSP).

For the FSMF, a usual assumption on the vehicle types in M imposes
that they are undominated, i.e., ordered so that Q1 < Q2 < . . . < Qm and
F1 < F2 < . . . < Fm.

3 Mathematical Formulations and Lower Bounds

In this section, we describe some of the mathematical formulations and lower
bounds presented in the literature for heterogeneous VRPs. As far as we are
aware, no exact algorithm has ever been developed for any of the different
versions of the heterogeneous VRPs described in the previous section and for
the SDVRP.

Most integer programming formulations of the basic VRP use binary vari-
ables as vehicle flow variables to indicate if a vehicle travels between two
customers in the optimal solution. In this way, decision variables combine
assignment constraints, modeling vehicle routes, with commodity flow con-
straints, modeling movements of goods. Formulations of this type were first
proposed by Garvin et al. [22] to model an oil delivery problem and later
extended by Gavish and Graves [24].

Gheysens et al. [27] formulate the FSMF using three-index binary variables
xk

ij as vehicle flow variables that take value 1 if a vehicle of type k travels
directly from customer i to customer j, and 0 otherwise. In addition, flow
variables yij specify the quantity of goods that a vehicle carries when it leaves
customer i to service customer j. The formulation, for the HVRPFD which is
the most general variant, is as follows:
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(F1) z(F1) = Min
∑
k∈M

Fk

∑
j∈V ′

xk
0j +

∑
k∈M

∑
i,j∈V
i�=j

ck
ijx

k
ij (1)

s.t.
∑
k∈M

∑
i∈V

xk
ij = 1, ∀j ∈ V ′ (2)

∑
i∈V

xk
ip −

∑
j∈V

xk
pj = 0, ∀p ∈ V ′, ∀k ∈ M (3)

∑
j∈V ′

xk
0j ≤ mk, ∀k ∈ M (4)

∑
i∈V

yij −
∑
i∈V

yji = qj , ∀j ∈ V ′ (5)

qjx
k
ij ≤ yij ≤ (Qk − qi)xk

ij , ∀i, j ∈ V, i �= j, ∀k ∈ M (6)

yij ≥ 0, ∀i, j ∈ V, i �= j (7)

xk
ij ∈ {0, 1} , ∀i, j ∈ V, i �= j, ∀k ∈ M (8)

In the above formulation, constraints (2) and (3) ensure that a customer
is visited exactly once and that if a vehicle visits a customer, it must also
depart from it. The maximum number of vehicles available for each vehicle
type is imposed by constraints (4). Constraints (5) are the commodity flow
constraints: they specify that the difference between the quantity of goods a
vehicle carries before and after visiting a customer is equal to the demand
of that customer. Finally, constraints (6) ensure that the vehicle capacity is
never exceeded.

Golden et al. [30] proposed a formulation for the FSMF similar to formu-
lation F1 where the capacity and subtour elimination constraints are modeled
with an extension of the Miller-Tucker-Zemlin (MTZ) inequalities for the TSP
(see Miller et al. [35]). Other mathematical formulations for FSMF were pre-
sented by Yaman [58], who described six different formulations: the first four
based on the use of MTZ inequalities to model subtour elimination and the
last two based on flow variables.

Another important type of formulation for Heterogeneous VRPs can be
obtained by extending the Set Partitioning (SP) model of the VRP, origi-
nally proposed by Balinski and Quandt [2], which associates a binary variable
with each feasible route. The formulation, again written for HVRPFD, can
be described as follows.

Let Rk be the index set of all feasible routes for a vehicle of type k ∈ M .
Each route � ∈ Rk has an associated cost d�k. Let Bik ⊂ Rk be the index
subset of the routes for a vehicle of type k covering customer i ∈ V ′. In
the following we will use R� to indicate the subset of vertices (i.e., R� =
{0, i1, i2, . . . , ih}, {i1, i2, . . . , ih} ⊆ V ′) visited by route �.

Let ξ�k be a binary variable that is equal to 1 if and only if route � ∈ Rk

belongs to the optimal solution. The set partitioning model is as follows:
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(F2) z(F2) = min
∑
k∈M

∑
�∈Rk

d�kξ�k (9)

s.t.
∑
k∈M

∑
�∈Bik

ξ�k = 1, ∀i ∈ V ′ (10)

∑
�∈Rk

ξ�k ≤ mk, ∀k ∈ M (11)

ξ�k ∈ {0, 1}, ∀� ∈ Rk, ∀k ∈ M. (12)

Constraints (10) specify that each customer i ∈ V ′ must be covered exactly
by one route and constraints (11) require that at most mk routes are selected
for a vehicle of type k ∈ M .

Note that in the case of FSMF, each route �1 ∈ Rk1 is dominated by
another route �2 ∈ Rk2 , if k1 > k2 and R�1 = R�2 . This happens since for
FSMF we have an unlimited number of vehicles of type k2 and d�2k2 < d�1k1 .
Thus, sets {Rk} can be redefined as the sets of undominated feasible routes.

Mathematical formulations for the time windows variants of the problem
were described in Ferland and Michelon [20], Dell’Amico et al. [16] and Bräysy
et al. [7]. Moreover, we are not aware of specific models, lower bounding proce-
dures, or exact algorithms for the SDVRP, although, as previously mentioned,
the SDVRP may be modeled as a special case of the HVRPD.

3.1 Lower Bounds

Lower bounds for the FSMF were proposed by Golden et al. [30], Yaman [58]
and Choi and Tcha [9]. These latter authors also described lower bounds for
the FSMFD and the FSMD. In this section, we present the lower bound of
Golden et al. [30], and we briefly examine those proposed by Choi and Tcha
[9] and by Yaman [58].

Let us consider the FSMF problem and suppose (without loss of generality)
that the customers are numbered according to decreasing distance from the
depot (i.e., c01 ≥ c02 ≥ . . . ≥ c0n). Given a route (R, k), the pivot of a route
is defined as the vertex i∗ ∈ R such that c0i∗ = max

j∈R\{0}
{c0j} (i.e., i∗ is the

customer of the route located farthest from the depot). In those cases where
more than one vertex produces the maximum of the expression, we call the
pivot of route (R, k) the vertex having the smallest index.

Using the definition of a pivot, the set of routes Rk can be partitioned as
R1k∪R2k∪. . .∪Rnk, where Rik is the index set of all routes having as a pivot
the customer i ∈ V ′ and using a vehicle of type k ∈ M . Let us denote the
cost of a route � ∈ Rik as di

�k. Moreover, let Bjik ⊂ Rik be the index subset
of the routes for a vehicle of type k, for the pivot i and covering customer
j ∈ V ′. Finally, let ξi

�k be a binary variable that is equal to 1 if and only if
route � ∈ Rik belongs to the optimal solution. Starting from F2, the FSMF
can be formulated as follows:
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(F3) z(F3) = min
∑
k∈M

∑
i∈V ′

∑
�∈Rik

di
�kξi

�k (13)

s.t.
∑
k∈M

∑
i∈V ′

∑
�∈Bjik

ξi
�k = 1, ∀j ∈ V ′ (14)

ξi
�k ∈ {0, 1}, ∀� ∈ Rik, ∀k ∈ M, ∀i ∈ V ′. (15)

Note that in the case of the FSMF, constraints (11) of formulation F2 are
redundant as mk = +∞, ∀k ∈ M .

If the cost matrix {cij} is symmetric and satisfies the triangle inequality, a
lower bound to the FSMF can be obtained from formulation F3 by computing
the cost di

�k as di
�k = 2c0i +Fk, i.e., by approximating the route cost with the

radial component associated with the pivot of the route, plus the fixed cost
of the vehicle assigned to it.

The above observation leads to the following relaxation of formulation
F3. Let ξik be a binary variable which is equal to 1 if and only if a route
for the pivot i, using a vehicle of type k, is in the solution, and 0 otherwise.
In addition, let xijk, with j ≥ i, be a binary variable which is equal to 1 if
and only if customer j is served by a route having pivot i and vehicle type
k. Then, the optimal solution of the following mixed integer programming
problem gives a valid lower bound to the FSMF:

(LB1) z(LB1) = min
∑
k∈M

∑
i∈V ′

(2c0i + Fk)ξik (16)

s.t.
∑
k∈M

∑
i∈V ′

xijk = 1, ∀j ∈ V ′ (17)

∑
j∈V ′

qjxijk ≤ Qkξik, ∀i ∈ V ′, ∀k ∈ M (18)

xijk ∈ {0, 1}, ∀i, j ∈ V ′, j ≥ i, ∀k ∈ M (19)
ξik ∈ {0, 1}, ∀i ∈ V ′, ∀k ∈ M. (20)

Constraints (17) state that each customer must be assigned to a pivot, while
constraints (18) impose the vehicle capacities. Note that the definition of
variables {xijk} implies ξ1k = 1, for some k ∈ M .

A relaxation of lower bound LB1 can be obtained if the integrality con-
straints (19) are relaxed and variables {ξik} are assumed to be general integer
(i.e., a customer can be a pivot of more than one route). In addition, let sk

be the sum of demands of customers for which vehicle type k is the smallest
one that can service the demand, and define sm+1 = 0. Then, the optimal
solution of the following mixed integer programming problem gives a valid
lower bound to the FSMF:

(LB2) z(LB2) = min
∑
k∈M

∑
i∈V ′

(2c0i + Fk)ξik (21)

s.t. (17), (18) and
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∑
j∈V ′

qjxijk ≥ sk −
m∑

h=k+1

(
∑
j∈V ′

qjxijh − sh), ∀k ∈ M (22)

0 ≤ xijk ≤ 1, ∀i, j ∈ V ′, j ≥ i, ∀k ∈ M (23)
ξik ≥ 0 integer , ∀i ∈ V ′, ∀k ∈ M. (24)

Constraints (22) impose that the sum of the customer demands served by all
the vehicles of type k ∈ M must be greater than or equal to sk, minus the
demand which can be served by all vehicles having capacities greater than
Qk. Note that the demand of a customer can be split among the pivots which
are selected in the solution of lower bound LB2.

Lower bound z(LB2) can be efficiently computed by using the procedure
proposed by Golden et al. [30] which can be described as follows.

Let Dtot =
∑

i∈V ′ qi be the total customer demand, and let Ĝ = (V̂ , Â)
be a directed graph where V̂ = {0, 1, . . . , Dtot}. Associate with each vertex
q ∈ V̂ \ {Dtot} the cost C(q) = 2c0h, where the index h is such that the
following inequalities are satisfied:

h−1∑
j=0

qj ≤ q <

h∑
j=0

qi. (25)

The set Â of arcs of graph Ĝ is composed by the following arcs: for each vehicle
of type k ∈ M , there is an arc from node q ∈ V̂ to min{Dtot, q+Qk} with cost
equal to C(q) + Fk if and only if q ≥

∑m+1
h=k+1 sh. Note that in graph Ĝ, the

first sm vertices represent the demands that require the largest vehicle type.
On the other hand, the first q1 vertices represent the demand of the farthest
customer.

The cost of the shortest path in graph Ĝ from vertex 0 to vertex Dtot gives
lower bound z(LB2). Note that, each arc used in the shortest path corresponds
to a pivot i and to a vehicle type k, i.e., to a variable ξik of formulation LB2.

Yaman [58] proposed several lower bounds based on cutting-plane tech-
niques used to strengthen the LP relaxation of six mathematical formulations
of the FSMF. Also in Yaman [58], a comparison among the LP relaxation of
the different mathematical formulations is reported. The following families of
valid inequalities were considered to improve the lower bounds given by the
different LP relaxations: covering type inequalities, subtour elimination in-
equalities, generalized large multistar inequalities and valid inequalities based
on the lifting of the MTZ constraints.

Choi and Tcha [9] proposed lower bounds for the FSMFD, the FSMD and
the FSMF, based on the set partitioning formulation F2, which were computed
using a column generation technique. More precisely, the lower bounds were
derived from the relaxation of the partitioning formulation F2 into a covering
formulation, where the set partitioning columns correspond to the set of q-
routes (see Christofides et al. [10]), where a q-route is a (not necessarily simple)
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Table 2. Lower bounds for the FSMF using the G12 instances.

Golden et al. [30] Yaman [58] Choi and Tcha [9]
Problem n UB LB %LB LB %LB LB %LB

3E 20 961.03 791.91 82.40 931.05 96.88 951.61 99.02
4E 20 6437.33 6265.26 97.33 6387.76 99.23 6369.15 98.94
5E 20 1007.05 876.23 87.01 957.70 95.10 988.01 98.11
6E 20 6516.47 6385.47 97.99 6466.94 99.24 6451.62 99.00

13E 50 2406.36 2118.49 88.04 2365.78 98.31 2392.77 99.44
14E 50 9119.03 8873.58 97.31 8943.94 98.08 8748.57 95.94
15E 50 2586.37 2327.46 89.99 2503.61 96.80 2544.84 98.39
16E 50 2720.43 2440.41 89.71 2650.76 97.44 2685.92 98.73
17E 75 1744.83 1380.03 79.09 1689.93 96.85 1709.85 98.00
18E 75 2371.49 2001.71 84.41 2276.31 95.99 2342.84 98.79
19E 100 8661.81 8290.01 95.71 8574.33 98.99 8431.87 97.35
20E 100 4039.49 3607.86 89.31 3931.79 97.33 3995.16 98.90

Avg. 89.86 97.52 98.38

circuit covering the depot and a subset of customers, whose total demand is
equal to q.

The computational testing for the FSMF, is generally performed by using
a set of 20 symmetric instances proposed by Golden et al. [30] (in the follow-
ing, referred to as the G20 instances), that are extensions to the FSMF of
classical VRP test instances. In addition, some authors considered only the
12 instances that are defined by using Euclidean distances (referred to as the
G12 instances).

Table 2 reports a comparison on the quality of the lower bounds obtained
for the FSMF by Golden et al. [30], Yaman [58] and Choi and Tcha [9].
The table reports the lower bounds on the G12 set, which were used in both
Yaman [58], and Choi and Tcha [9]. In particular, in order to make a fair
comparison among the different lower bounds, we computed the lower bound
of Golden et al. [30] using real-valued distance data, and the lower bound
values produced by the best formulation proposed by Yaman [58]. In the table,
columns labeled LB report the lower bound values, while columns labeled
%LB report the percentage ratio of lower bounds computed with respect to
the best upper bound known in the literature, reported in column UB (i.e.,
%LB = 100 LB/UB).

Table 2 shows that on average the Choi and Tcha [9] lower bound is best.
On the G12 instances, the lower bound of Yaman [58] dominates the lower
bound of Golden et al. [30] and it is not dominated by the lower bound of
Choi and Tcha [9] (see instances 4E, 6E, 14E and 19E). Furthermore, the
lower bound of Golden et al. [30] is not dominated by the lower bound of
Choi and Tcha [9] (see instance 14E).
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4 Heuristic Algorithms

Due to the intrinsic difficulty of this family of routing problems, all solution
approaches presented so far in the literature are heuristic algorithms. In addi-
tion, they generally are adaptations or extensions of the methods proposed in
the last decades for the basic VRP variants, such as the CVRP and the VRP
with Time Windows.

In this section, we briefly review the main contributions to the approx-
imate solution of Heterogeneous VRPs. We separately examine traditional
construction heuristics and metaheuristics and we provide, where available,
information about their computational performance. To this end, for each
approach we report the average percentage gaps of the published heuristic
solution values with respect to the current best-known values, as well as the
average computing time required, expressed in seconds of various CPUs. The
published results are summarized in Tables 3 to 7.

The detailed results for the instances proposed by Golden et al. [30] are
reported in two tables: Table 3 collects all the results obtained by consid-
ering integer-valued distances, whereas Table 4 gives results for real-valued
distances.

As to the variants with vehicle-dependent routing costs, namely the
HVRPD and the FSMD, the computational testing is generally performed
by using an adaptation of eight instances of the G12 set, as proposed by
Taillard [50], referred to as the T8 instance set. The detailed results for in-
stance set T8 can be found in Tables 5 and 6. The data of all instances and
more details on the published results for the HVRP variants can be found at
http://or.ingce.unibo.it/research/hvrp.

Finally, SDVRP testing is performed by considering three set of test in-
stances. The first one includes the 6 instances proposed by Nag [36]. The
second set is described in Chao et al. [8] and is made up by 12 new regularly
shaped instances and 5 instances derived from standard CVRP instances,
whereas the last set, proposed by Cordeau and Laporte [12], includes 12 in-
stances with time windows constraints. The detailed results for this problem
are reported in Table 7.

Tables 3 to 7 report for each instance, the problem name, the number of
customers n, the number of vehicle types m and the value of the best solution
found in the literature. The last two lines of each table report the average
percentage gap and the number of the best-known solutions found by the
corresponding heuristic, respectively. Given the value z of a heuristic solution
and the best upper bound known zbest for the corresponding instance, the
percentage gap is computed as 100(z − zbest)/zbest.

4.1 Construction Heuristics

The first comprehensive study of Heterogeneous VRPs (especially the FSMF)
is due to Golden et al. [30]. They presented both the formulation and the lower

http://or.ingce.unibo.it/research/hvrp
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bounding procedure described in Section 3. Moreover, Golden et al. [30] pro-
posed constructive heuristics that adapted to the FSMF the savings and giant-
tour based approaches for VRP (see Clarke and Wright [11] and Beasley [4],
respectively).

As to savings approaches, four different expressions were proposed to in-
corporate the heterogeneous fleet concept in the savings computation and
enhance the algorithm performance. As reported by Golden et al. [30], the
direct adaptation of the Clarke and Wright [11] algorithm (CW) produces
solutions with an average percentage gap equal to 14.31% with respect to
the current best-known integer solutions for the G20 set. Combined Savings
(CS) includes in the savings formula the variation of the fixed costs associ-
ated with the route merging: the resulting average improvement on CW is
4.25%. Optimistic and Realistic Opportunity Savings (denoted as OOS and
ROS, respectively) add to CS two different terms that favor the opportunity
of having residual capacity on the vehicle used to service the merged routes.
In this case, the improvement to CW is 1.15% and 5.75%, respectively. Fi-
nally, ROS-γ adds to ROS the route shape parameter proposed by Gaskell
[23], and Yellow [59]. This latter approach is used in a multi-start fashion, by
considering 31 different values of γ parameter between 0 and 3. The result-
ing percentage gap with respect to the best-known solution values is equal
to 3.79%, corresponding to an improvement in CW as high as 8.18% (see
Table 3).

Desrochers and Verhoog [17] further extended savings-based approaches
to the FSMF by adopting the matching-based savings heuristic proposed by
Altinkemer and Gavish [1] for the VRP. The basic savings expression consid-
ers the cost difference of the TSPs associated with the routes involved in the
current merging, rather than the simpler classical one. Various extensions of
the savings formula, similar to those proposed by Golden et al. [30], are con-
sidered. At each iteration, the pair of routes to be merged is chosen as that
corresponding to the largest savings in the solution of a matching problem
over the current savings matrix. As reported in Table 3, the two proposed
savings expressions, called ROM-ρ and ROM-γ, produced solutions with an
average percentage gap equal to 1.70% and 2.01% on the G20 instances, re-
spectively, corresponding to improvements to the CW results by 10.05% and
9.80%, respectively.

The giant-tour based approaches proposed by Golden et al. [30] are two-
phase algorithms. First a TSP over all the nodes is, heuristically solved to
obtain an uncapacitated tour. In the second phase, this tour is partitioned
into the final capacitated set of routes. Two different ways of defining the
initial giant tour were adopted, namely with and without the depot in the
tour. In the latter case, which on average produced slightly better results, the
partitioning is obtained by solving a suitably defined shortest path problem.
Also in this case, a multi-start framework is obtained by applying the parti-
tioning step to different initial tours. The best obtained solutions were refined
by using 2-opt and OR-opt procedures (see Lin [33] and Or [40]). As shown in
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Table 3, this approach, called MGT+Or-opt, produced solutions within 1.21%
from the best integer known ones on the G20 test instances.

A different giant-tour based approach for the FSMF was introduced by
Gheysens et al. [26], in which a penalty function that allows for a limited
capacity violation in the tour partitioning step is used, so as to favor the
presence in the routes of some empty space that may be possibly exploited in
the refining step. This method has been tested on the 16 smallest instances
of the G20 set allowing for an average percentage gap of 1.35% (see column
“Penalty” of Table 3). More recently, Teodorovic et al. [54] used a giant-tour
approach to solve the stochastic version of the HFVRP, where customer’s
demand may vary stochastically and the initial tour is obtained through the
Bartholdi and Platzman [3] spacefilling curves heuristic for the TSP.

Gheysens et al. [27] and Gheysens et al. [28] developed an extension to
the FSMF of the well-known Fisher and Jaikumar [21] algorithm for VRP,
where the initial fleet is determined through the lower bounding procedure of
Golden et al. [30]. Gheysens et al. [27] report an average percentage gap of
0.68% on the 15 smallest instances of the G20 set (see column “LB(5)+VRP”
of Table 3).

Ferland and Michelon [20] introduced three different heuristic methods to
solve the FSMFD with Time Windows. The first one directly uses the three-
index mathematical formulation of the problem and simplifies it by discretiz-
ing the time windows, so as to obtain a possibly solvable integer problem. The
two remaining heuristics are construction approaches in which the solution is
obtained by iteratively assigning customers to the routes through the solution
of either a matching or a transportation problem. No computational testing
of the proposed methods was reported by the authors.

Salhi and Rand [47] described a heuristic for the FSMF that starts from a
solution obtained by heuristically solving a VRP with a single vehicle capacity,
selected among the available ones. This starting solution is then iteratively
improved by several procedures that attempt, in turn, to change the vehicle
type assigned to each route, merging or removing routes and moving customers
from one route to another. The average percentage gap of this method is equal
to 0.59%, whereas the average computing time of a VAX 8700 computer is
equal to 2 seconds. Osman and Salhi [41] extended the heuristic proposed
by Salhi and Rand [47] by (i) enlarging the neighborhood size by allowing
moves which can lead to a utilization of a larger-sized vehicle and (ii) using
a multi-start technique to restart the heuristic with the best solution found
at the end of the previous iteration. Osman and Salhi [41] used real-valued
distances, hence their results cannot be compared directly with those obtained
by Salhi and Rand [47]. The average percentage gap is equal to 0.90% (see
column “MRPERT” of Table 4) and the average computing time is equal to
5.65 seconds on a VAX 4500 computer.

Taillard [50] proposed a heuristic column generation method for the FSMF,
the FSMD and the HVRPD. In this approach, a large set of routes is initially
obtained by solving homogeneous fleet VRPs for each vehicle type. Then the
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final set of routes is selected by solving a set partitioning problem to ensure
that each customer is served by exactly one route. This method, tested for the
FSMF on the 8 largest instances in G20, produces very good results: in fact
the average percentage gap is equal to 0.14% and the average computing time
over five runs is 2648 seconds on a Sun Sparc work station (50 MHz). The
results obtained with the T8 set for the HVRPD, show an average percentage
gap of 0.93%, and an average computing time around 2000 seconds on the
same machine. For the FSMD, the percentage gap is equal to 0.77%, requiring
about the same amount of time. A similar approach is used by Renaud and
Boctor [44] to solve the FSMF, where the set of routes is obtained by using
problem-specific extensions of the sweep algorithm for the VRP (see Gillett
and Miller [29]). The average percentage gap of the best solutions found out
of several runs on set G20 is equal to 0.47%.

More recently, Choi and Tcha [9] proposed a heuristic approach based on a
column generation technique, to derive high quality heuristic solutions for the
FSMD and the FSMF. More precisely, they (i) computed a lower bound to the
FSMD and to the FSMF as the optimal solution value of the LP relaxation of
the covering relaxation of formulation F2 and (ii) solved, using a branch-and-
bound algorithm, a restricted Set Partitioning problem obtained by limiting
the set of all feasible routes to the set of routes generated by the column
generation algorithm in computing the lower bound. The FSMD method has
been tested on the T8 instances obtaining the best-known solutions, requiring
on average 81 seconds on a Pentium IV 2.6GHz processor. With respect to
the FSMF, this method produces on the G12 instances an average percentage
gap equal to 0.004%, with an average computing time of 150 seconds on the
same machine.

We now briefly examine the heuristics proposed for the time window vari-
ant of the FSMF, denoted by FSMFTW. We consider the two construction
heuristics that were developed by Liu and Shen [34]. They proposed a two-
phase algorithm in which an initial solution is obtained through a savings
algorithm that evaluates the insertion of complete routes in all possible in-
sertion places of the other routes, and also takes into account the vehicle
scheduling component associated with the time windows. In the second phase,
an improvement procedure is then applied to several best fleet solutions found
during the first stage: intra-route customer shifting and inter-route customer
exchanges are performed. Computational results were performed on a set of
168 test instances, hereafter called LS168, derived from the Solomon [49]
VRPTW test set. The proposed algorithm was also used to solve the G20
FSMF instances and obtained an average percentage gap equal to 0.96%.

Dullaert et al. [18] extended to the FSMFTW the sequential insertion algo-
rithm proposed by Solomon [49] for the VRPTW. In particular, the adopted
insertion criterion combines standard insertion cost evaluations used in the
VRPTW with a new term that incorporates the Golden et al. [30] modified
saving expressions. Dullaert et al. [18] reported in their tables only the com-
ponent of the objective function relative to the schedule times. Thus, their
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Table 5. Comparison of the best-known results for HVRPD with real distances.

Taillard Tarantilis Tarantilis Li et al.
(1999) et al.(2003) et al.(2004) (2006)

Problem n m Best LBTA

13E 50 6 1517.84 1518.05 1519.96 1519.96 1517.84
14E 50 3 607.53 615.64 612.51 611.39 607.53
15E 50 3 1015.29 1016.86 1017.94 1015.29 1015.29
16E 50 3 1144.94 1154.05 1148.19 1145.52 1144.94
17E 75 4 1061.96 1071.79 1071.67 1071.01 1061.96
18E 75 6 1823.58 1870.16 1852.13 1846.35 1823.58
19E 100 3 1117.51 1117.51 1125.64 1123.83 1120.34
20E 100 3 1534.17 1559.77 1558.56 1556.35 1534.17

Average % 0.93 0.79 0.62 0.03
# of best sol. 1 0 1 7

results cannot be compared with the results of the heuristics reporting the
fixed cost component.

The first attempt to solve the SDVRP is due to Nag et al. [37] who de-
veloped four different heuristics. The first one, considers one vehicle type at
a time and constructs the routes by means of a sweep algorithm. In this step,
route capacity is slightly enlarged. Later, the route feasibility is obtained by
moving customers to other compatible routes by using a savings criterion.
The remaining three heuristics are adaptations of the Fisher and Jaikumar
[21] approach differing in the seed selection criteria adopted in each of them.
The average percentage gap of the best of these heuristics on the six Nag
instances is equal to 14.64%.

Chao et al. [8] proposed a heuristic for the SDVRP in which an initial
assignment of customers to vehicle types is performed by solving a relaxed
ILP with the objective of minimizing the total load fraction for each vehicle
type, and vehicle routes are determined through a savings algorithm. Then,
seed customers are extracted from the routes by considering geographical and
load considerations. The relaxed ILP is then run again, with the additional
objective of minimizing the routing cost in the assignment of each customer
to the seeds and again routes are determined by using a savings algorithm.
This process is iterated by perturbing the choice of seed points and by using
three local search improvement procedures. The average percentage gap of
this algorithm over the Nag and Chao instances is equal to 5.76 % with an
average computing time of 449 seconds on a 166MHz Pentium PC.

4.2 Metaheuristics

Since the 1990s metaheuristic approaches started to be applied to the solution
of heterogeneous VRPs as well.
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Table 6. Comparison of the best-known results for the FSMD with real distances.

Taillard Gendreau Wassan and Choi and
(1999) et al.(1999) Osman (2002) Tcha (2006)

Problem n m Best

13E 50 6 1491.86 1494.58 1491.86 1499.69 1491.86
14E 50 3 603.21 603.21 603.21 608.57 603.21
15E 50 3 999.82 1007.35 999.82 999.82 999.82
16E 50 3 1131.00 1144.39 1131.00 1131.00 1131.00
17E 75 4 1038.60 1044.93 1038.60 1047.74 1038.60
18E 75 6 1801.40 1831.24 1801.40 1814.11 1801.40
19E 100 3 1105.44 1110.96 1105.44 1108.98 1105.44
20E 100 3 1530.43 1550.36 1541.19 1530.43 1530.43

Average % 0.77 0.09 0.41 0.00
# of best sol. 1 7 3 8

One of the first such algorithms is the genetic approach proposed by Ochi
et al. [38] for the FSMF that creates an initial population by means of a
sweep-based heuristic. The same algorithm is tested in a parallel framework
in Ochi et al. [39], but both papers do not report details of the computational
testing.

Tabu search approaches for this problem family were developed by Osman
and Salhi [41], Gendreau et al. [25], and Wassan and Osman [56]. All these
algorithms were extensions to the FSMF and to the HVRPD of approaches
already proposed for the VRP, using the problem-specific feasibility check and
objective function evaluation.

In particular, Osman and Salhi [41] used a 1-interchange neighborhood
together with a simple tabu list mechanism, whereas Wassan and Osman
[56] mix several effective strategies to improve the overall quality of the al-
gorithm. Reactive and variable-neighborhood search mechanisms based on λ-
interchange neighborhoods are combined with efficient data management tech-
niques for handling tabu lists and hashing functions. Finally, the tabu search
of Gendreau et al. [25] embeds a classical algorithm based on the GENIUS
neighborhoods with the adaptive memory mechanism of Rochat and Taillard
[46]. The Osman and Salhi [41] algorithm performance on the G20 instances
shows an average percentage gap of about 0.68% (see column “TSVFM” of
Table 4) with respect to the best-known solutions. The Gendreau et al. [25]
algorithm was tested on the G12 test instances, obtaining an average percent-
age gap of 0.24%, with an average computing time of 765 seconds on a Sun
Sparcstation 10. The algorithm was also tested on the T8 instances, obtaining
an average percentage gap of 0.09% within an average computing time of 1151
seconds. The Wassan and Osman [56] tabu search produces good results: on
the G20 test bed, the average percentage gap is 0.41% and on T8 this gap is
0.47%, but the average computing time increases to 1215 seconds and to 2098
seconds, respectively, using a Sun Sparc server 1000.
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Table 7. Comparison of the best-known results for the SDVRP and the SDVRPTW.

Nag et al. Chao et al. Cordeau & Pisinger &
(1988) (1999) Laporte Ropke

Problem n m Best (2001) (2007)

1Nag 50 3 640.32 746.4 668.58 642.66 640.32
2Nag 50 2 598.1 624.3 610.04 598.1 598.1
3Nag 75 3 957.04 1169.6 1002.45 959.36 957.04
4Nag 75 2 854.43 944.4 900.93 854.43 854.43
5Nag 100 3 1003.57 1203.4 1071.54 1020.22 1003.57
6Nag 100 2 1028.52 1175.2 1080.89 1036.02 1028.52

7Chao 27 3 391.3 – 391.3 391.3 391.3
8Chao 54 3 664.46 – 664.46 664.46 664.46
9Chao 81 3 948.23 – 948.23 948.23 948.23

10Chao 108 3 1218.75 – 1252.57 1223.88 1218.75
11Chao 135 3 1463.33 – 1526.6 1464.98 1463.33
12Chao 162 3 1678.4 – 1854.82 1695.67 1678.4
13Chao 54 3 1194.18 – 1205.53 1196.73 1194.18
14Chao 108 3 1960.62 – 2092.68 1962.66 1960.62
15Chao 162 3 2685.09 – 2966.77 2751.45 2685.09
16Chao 216 3 3396.36 – 3710.96 3491.18 3396.36
17Chao 270 3 4085.61 – 4441.53 4230.96 4085.61
18Chao 324 3 4755.5 – 5085.28 4929.71 4755.5
19Chao 100 3 846.07 – 878.58 850.39 846.07
20Chao 150 3 1030.78 – 1126.8 1046.14 1030.78
21Chao 199 3 1271.75 – 1420.85 1337.83 1271.75
22Chao 120 3 1008.71 – 1150.13 1012.87 1008.71
23Chao 100 3 803.29 – 837.98 818.75 803.29

1Cordeau 48 4 1380.77 – – 1384.15 1380.77
2Cordeau 96 4 2311.54 – – 2320.97 2311.54
3Cordeau 144 4 2602.13 – – 2623.31 2602.13
4Cordeau 192 4 3474.01 – – 3500.79 3474.01
5Cordeau 240 4 4416.38 – – 4479.34 4416.38
6Cordeau 288 4 4444.52 – – 4546.79 4444.52
7Cordeau 72 6 1889.82 – – 1955.11 1889.82
8Cordeau 144 6 2977.50 – – 3082.32 2977.5
9Cordeau 216 6 3536.20 – – 3664.22 3536.2

10Cordeau 288 6 4648.76 – – 4739.43 4648.76
11Cordeau 1008 4 12719.65 – – 13227.96 12719.65
12Cordeau 720 6 9388.07 – – 9621.99 9388.07

Average % 14.64 5.76 1.48 0
# of best sol. 0 3 5 35
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Tarantilis et al. [51, 52] developed two list-based threshold accepting meta-
heuristics for the HVRPD: both methods start with an initial solution gen-
erated by a construction heuristic, followed by an iterative threshold accept-
ing phase. In this phase, a solution is iteratively randomly generated in the
neighborhood of the current one and its threshold value, defined as the rela-
tive improvement with respect to the current solution value, is computed. The
new solution is accepted as new current one by comparing its threshold value
with those stored in a list which includes the M best threshold values found
during the search. Different ways of updating the threshold list are considered
in the two papers. The method in Tarantilis et al. [51] was tested on the T8
test instances and produces results on average 0.79% (see column “LBTA”
of Table 5) from the best-known solutions within an average of 223 seconds
on a Pentium III, 550 MHz PC. The results using the method in Tarantilis
et al. [52] are slightly better on the T8 instances with an average gap of 0.62%
within an average computing time of 607 seconds on a Pentium II/400 PC.

Li et al. [32] considered a similar approach based on a record-to-record
algorithm: a deterministic variant of the simulated annealing metaheuristic.
Their method was tested on T8 instances and on five large-scale instances
with 200 to 360 customers from Golden et al. [31]. On the T8 problems, they
obtained an average percentage gap of 0.03% and an average computing time
of 286 seconds on an Athlon 1 GHz Pc.

Dell’Amico et al. [16] proposed a ruin-and-recreate approach for the
FSMFTW. In particular, a parallel insertion procedure is used both to obtain
the initial solution and to possibly complete partial ones that are produced
during the ruin step. This step is performed by selecting a target route to be
ruined according to a criterion which is inspired by one used in metaheuristics
that solve bin packing problems. The proposed approach outperformed both
the Liu and Shen [34] and Dullaert et al. [18] algorithms on the LS168 test
instances.

Bräysy et al. [7] proposed a new deterministic annealing metaheuristic for
the FSMFTW. The metaheuristic is based on three phases: (i) initial solutions
are generated by means of a savings-based heuristic combining diversification
strategies with learning mechanisms, (ii) an attempt is made to reduce the
number of routes in the initial solution with a new local search procedure and
(iii) the solution from the second phase is further improved by a set of four
local search operators that are embedded in a deterministic annealing frame-
work to guide the improvement process. The computational experiments on
the LS168 benchmark instances show that the suggested method outperforms
the previously published results and improves almost all the best-known so-
lutions.

Finally, we can mention two metaheuristics for the SDVRP both based
upon its transformation into more general routing problems. The first one
is the tabu search procedure proposed by Cordeau and Laporte [12] for the
variant including time windows constraints. The problem is reduced to a Pe-
riod Vehicle Routing Problem (PVRP) by associating each vehicle type to a
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different day and imposing that each customer requires a single visit in one
of the days corresponding to compatible vehicles. The problem is then solved
by using the tabu search procedure proposed in Cordeau et al. [13]. The av-
erage percentage gap is equal to 1.48 %, with an average computing time of
12 seconds on a Sun Ultra 2 (300 MHz).

The second metaheuristic algorithm for the SDVRP is due to Pisinger
and Ropke [42]. They transformed the SDVRP into a Rich Pickup and Deliv-
ery Problem with Time Windows (RPDPTW) which is then solved using an
Adaptive Large Neighborhood Search algorithm. Their method outperforms
all the previously proposed ones, producing the best-known solutions for all
the test instances in the literature, with an average computing time of 162
seconds on a 3 GHz Pentium 4 PC.

5 Conclusions and Future Research

In this chapter, we reviewed the main solution approaches proposed for the
VRP with Heterogeneous Fleet. First, we classified the five main problem
variants studied in the literature and introduced a unified naming scheme
for them. We then reported some general problem formulations and lower
bounding procedures and discussed their overall quality. The heuristic and
metaheuristic approaches proposed in the literature are briefly described and
their performances are summarized.

Two general considerations arise as a conclusion of this work. First, we
may note that even if most of the proposed algorithms are adaptations of
known approaches developed for other VRP variants, their performances are
often very good on the existing sets of test instances. It would be interesting
to introduce more difficult set of test instances that may motivate further
improvement in the development of heuristics.

The second consideration refers to the fact that the quality of the lower
bounds for this problem family suggest that exact solution approaches could
be successful in solving medium-size instances. We conclude that there is the
possibility of significant research activities in this specific field. The results of
this research may provide insight into the heuristic solution of this important
problem family.
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7. O. Bräysy, W. Dullaert, G. Hasle, D. Mester, and M. Gendreau. An
effective multi-restart deterministic annealing methauristic for the fleet
size and mix vehicle routing problem with time windows. Transportation
Science, to appear, 2006.

8. I.M. Chao, B.L. Golden, and E. Wasil. A computational study of a new
heuristic for the site-dependent vehicle routing problem. INFOR, 37:3:
319–336, 1999.

9. E. Choi and D. W. Tcha. A column generation approach to the heteroge-
neous fleet vehicle routing problem. Computers & Operations Research,
34:2080–2095, 2007.

10. N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle
routing problem based on spanning tree and shortest path relaxation.
Mathematical Programming, 10:255–280, 1981.

11. G. Clarke and J. Wright. Scheduling of vehicles from a central depot to
a number of delivery points. Operations Research, 12(4):568–581, 1964.

12. J.-F. Cordeau and G. Laporte. A tabu search algorithm for the site
dependent vehicle routing problem with time windows. INFOR, 39:292–
298, 2001.

13. J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for
periodic and multi–depot vehicle routing problems. Networks, 30:105–119,
1997.

14. J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, and D. Vigo. Vehicle
routing. In C. Barnhart and G. Laporte, editors, Transportation, Hand-
books in Operations Research and Management Science, volume 14, pages
367–428. Elsevier, Amsterdam, 2007.

15. G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Manage-
ment Science, 6(1):80–91, 1959.

16. M. Dell’Amico, M. Monaci, C. Pagani, and D. Vigo. Heuristic approaches
for the fleet size and mix vehicle routing problem with time windows.
Transportation Science, 2007. To appear.

17. M. Desrochers and T.W. Verhoog. A new heuristic for the fleet size and
mix vehicle-routing problem. Computers & Operations Research, 18(3):
263–274, 1991.



Routing a Heterogeneous Fleet of Vehicles 25

18. W. Dullaert, G.K. Janssens, K. Sörensen, and B. Vernimmen. New heuris-
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Summary. Arc Routing is the arc counterpart to node routing in the sense that fo-
cus regarding service and resource constraints are on the arcs and not on the nodes.
The key problem within this area is the Capacitated Arc Routing Problem (CARP),
which is the arc routing counterpart to the vehicle routing problem. During the last
decade, arc routing has been a relatively active research area with respect to lower
bounding procedures, solution approaches and modeling. Furthermore, several in-
teresting variations of the problem have been studied. We survey the latest research
within the area of arc routing focusing mainly on the CARP and its variants.

Key words: Arc routing; CARP; recent research.

1 Introduction

The Capacitated Arc Routing Problem is the problem of servicing a set of
streets in a street network using a fleet of capacity constrained vehicles initially
located at a central depot. The objective of the problem is to minimize the
total routing cost. Theoretically, the CARP is an arc routing counterpart to
the Vehicle Routing Problem and has been proved to be NP-hard.

In practice, the CARP and its variants occur in many aspects of both pub-
lic and private businesses, where street segments rather than specific points
need service. Often several extra constraints must be taken into account, ex-
amples of which are a heterogeneous fleet of vehicles, service time restrictions,
prohibited U-turns, and one-way streets. For details, we refer the reader to
Assad and Golden, [10], and Dror, [37].

Two of the earliest real life problems studied in an arc routing setting are
the Street Sweeping problem and the Electric Meter Reading problem. The
problem of Refuse Collection can be modeled as a CARP where the goal is to
spread the load evenly among the tours. Various aspects of Refuse Collection
have been considered recently in [3, 4, 8, 14, 55, 60, 81].

The problem of spreading salt or sand on streets for the purpose of ice
control is called the Winter Gritting problem. This problem can be modeled
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as a CARP with multiple depots, [29], and in some cases may include time
windows or other complicating constraints. For a recent review of Winter
Gritting and Snow Removal problems, the reader is referred to [27, 28]. The
arc routing problem of monitoring a road network is considered in [78]. The
problem of planning the monitoring is modeled as a directed CARP, where
the authors consider the problem of re-planning when tours are not completed
due to unexpected events.

During the last decade, the CARP and its variants have been extensively
studied. In this chapter we offer a survey of this research. Even though the
main emphasis will be on the recent research, earlier work will be included
whenever this is appropriate for completeness. We hope that this will help
researchers to quickly obtain an overview of the problem and to guide them
to explore new and untested aspects of the field of research.

The remainder of this chapter is organized as follows: In Section 2, we give
a historical overview of arc routing and formally define the most important
arc routing problems. We also state some complexity results and point out the
relation among various problems. In Section 3, we consider the classical CARP
with respect to heuristics, lower bounds, and exact optimization. Section 4
covers different variants and extensions of the CARP, all of which can be
justified in real life applications of the problem. These include a multi-depot
version of the problem, alternative objective functions, and the inclusion of
time windows. Finally, in Section 5, we offer our directions for future research
within the area of capacitated arc routing.

2 A Historical Perspective and Problem Definitions

The study of arc routing problems began on August 26, 1735 when Leonhard
Euler presented his solution to the Königsberg bridge problem, [86]. Theo-
retically, the problem, now known as the Euler Tour Problem, is as follows.
Given a connected graph G = (N, E) find a closed tour that visits every edge
in E exactly once, or determine that no such tour exists. Euler proved that
an Euler Tour exists if and only if every node in G has even degree and many
years later Fleury presented an algorithm for constructing an Euler Tour [51].

The next arc routing problem to be studied was the Chinese Postman
Problem (CPP) first suggested by the Chinese mathematician Kwan Mei-Ko
in 1962, [82]. The problem is formally stated as follows: Given a connected
graph G = (N, E, C), where C is a distance matrix, find a tour which passes
through every edge at least once and does this in the shortest possible way.
When G is completely directed or completely undirected, the CPP can be
solved in polynomial time, [39, 31], but when G is a mixed graph, the problem
becomes NP-hard, [85]. Many variants of the problem have been studied,
including the Windy Postman Problem, [83], and the Hierarchical Postman
Problem, [38]. For a survey on the Chinese Postman Problem and some of its
variants we recommend [44].
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In 1974, Orloff suggested the Rural Postman Problem (RPP), [84], which
is formally stated as follows: Given an undirected graph G = (N, E, C),
where C is the cost matrix for the edges, find a minimum cost tour, which
passes through every edge in a subset R ⊆ E at least once. The RPP is
NP-hard, [68], where the hardness comes from determining how the tour
should connect the various components of edges in R. It can be shown that
the class of RPP and the class of Traveling Salesman Problems are equivalent.
A 3/2-approximation algorithm for the RPP is given in [67] where it is also
noted that the problem can be solved to optimality in polynomial time if the
graph spanned by the set R consists of only a fixed number of components.
Several heuristics and methods for solving the problem to optimality have
been presented in the literature, see [61] for a recent update. Many variants
of the problem have been considered, e.g. the Rural Postman Problem with
Deadline Classes, [41], in which the set R of required edges are partitioned
into several sets, which in turn are ordered so that all the edges in an earlier
set must be traversed before any of the edges in a later set are traversed. For
a survey on the RPP we recommend [45].

The Min-Max k-Chinese Postman Problem (MM k-CPP), was suggested
by Frederickson et al. in 1978, [53], and is formally stated as follows: Given a
connected undirected graph G = (N, E, C), where C is a distance matrix, with
a special depot node, find k tours, starting and ending in the depot node, such
that every edge is covered by at least one tour and the length of the longest
tour is minimized. It should be noted that for this problem the objective
is to minimize the makespan, whereas most other problems with multiple
postmen seek to minimize the total distance traveled. A 2−1/k- approximation
algorithm is given for the MM k-CPP in [53].

The Capacitated Arc Routing Problem, which was first suggested by
Golden and Wong in 1981, [58], is formally stated as follows: Given a con-
nected undirected graph G = (N, E, C, Q), where C is a cost matrix and Q
is a demand matrix, and given a number of identical vehicles each with ca-
pacity W , find a number of tours such that 1) Each arc with positive demand
is serviced by exactly one vehicle, 2) The sum of demand of those arcs ser-
viced by each vehicle does not exceed W , and 3) The total cost of the tours is
minimized. The Capacitated Chinese Postman Problem (CCPP), which is a
variation of the CARP where every edge in the graph has a strictly positive
demand was first suggested by Christofides in 1973, [31]. Both the CARP and
the CCPP are NP-hard, [58], and it can be proved that even obtaining a
3/2-approximation of either of the two problems is NP-hard, [58].

It can be shown that the Vehicle Routing Problem (VRP) can be trans-
formed into the CARP, [58], and that the CARP can be transformed into
the VRP, [11, 13, 35], making the two classes of problems equivalent. For all
three transformations of the CARP into the VRP, the resulting VRP instance
requires either fixing of variables or the use of edges with infinite cost. More-
over, the resulting VRP graph is a complete graph of larger size. Therefore
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the problem size increases and the planar structure of a usual CARP graph
is lost.

Somewhere between node routing and arc routing we find the so-called
Stringed VRP, in which customers are to be serviced as in the VRP, but some
of these customers are located along the streets as in the refuse collecting
problem. From an arc routing point of view these customers would be consid-
ered as demand of an arc and must be serviced together, but in the Stringed
VRP they need not be serviced by the same vehicle. The Stringed VRP has
been considered by [80], where the authors use aggregation of these special
customers and solve the problem to near optimality using a Tabu Search al-
gorithm.

3 The Classical CARP

In this section, we consider the Capacitated Arc Routing Problem in the classi-
cal setup as defined in the previous section. In Section 3.1, we consider heuris-
tics suggested for solving the CARP during the last decade. This includes a few
problem specific heuristics and numerous metaheuristic approaches. A survey
of the various lower bounding procedures presented for the CARP is given in
Section 3.2. Finally, an overview of exact solution approaches used to solve the
CARP is given in Section 3.3. This order of presentation is motivated by the
historical development, which started with simple problem specific heuristics,
whereas methods for solving the problem exactly were suggested much later.

Four sets of benchmark test instances are used for computational experi-
ments for the CARP. These are usually referred to as the Gdb, [12], Val, [22],
Kshs, [69], and Eglese, [43] instances, and can be downloaded from [16].

3.1 Heuristics for the CARP

During the 1980s, problem specific heuristics were the common method for
solving the CARP. These classical algorithms include the Construct-Strike
algorithm, the Path-Scanning method, and the Augment-Merge algorithm.
For a survey on these classical algorithms we refer the reader to [37, 92]. The
performance of the classical problem specific heuristics are generally 10 to 40
percent above the optimal solution.

More recently other problem specific heuristics have been proposed. These
include the Double Outer Scan heuristic, [92], which combines the Augment-
Merge algorithm and the Path Scanning method, and the Node Duplication
heuristic, [92], which uses ideas similar to those in the Node Duplication Lower
Bound, [65]. The former is illustrated in Figure 1, where the idea in the con-
struction of one tour is shown. In the latter, a Node Duplicated network is
constructed and the edges of a minimum cost perfect matching are added to
the demand edges. These edges together now form an Euler tour. Methods for
partitioning this tour into feasible vehicle tours include simple forward and
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Depot

Fig. 1. Illustration of the Double Outer Scan heuristic.
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Fig. 2. Illustration of the Node Duplication heuristic.

optimal partitioning. This algorithm is illustrated in Figure 2, where A shows
the original graph with numbers on the edges indicating the cost. Node 0 is
the depot node, the five edges have unit demand, and the vehicle capacity is
2. B shows the node duplicated network. The total cost of the demand edges
is 13. Finally, C gives a minimum cost perfect matching of cost 9. Combining
B anc C results in an Euler Tour {0 1-2-3-1-0 2-0 1 0} of cost 22, where ’-’
indicates service. This tour is partitioned into three vehicle tours, {0 1-2-3 1
0}, {0 1 3-1-0}, and {0 2-0}, with total cost 12 + 8 + 6 = 26.

The A-ALG algorithm by Wøhlk, [92], is an 7
2 −

3
W -approximation algo-

rithm for the CARP, where W is the vehicle capacity. The idea is to use the
3
2 -approximation algorithm for the RPP by Frederickson, [52], to construct a
giant tour, which is partitioned into vehicle tours using optimal partitioning.
Both the Node Duplicated Heuristic and the A-ALG are highly competitive
to the classical problem specific heuristics.

During the last decade, most advances in the development of heuristics for
the CARP have dealt with metaheuristics. For a general description of the
various metaheuristics we refer the reader to [57].

Eglese, [40], considers a winter gritting problem, which is modeled as a
CARP with extra complicating constraints specific to the case studied. He
solves this problem using a Simulated Annealing algorithm. Wøhlk, [92], sug-
gests a Simulated Annealing algorithm for the classical CARP, where the order
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of the edges on a giant tour is changed during the algorithm, and at each step
the optimal partitioning of the tour is calculated.

Several Tabu Search algorithms have been constructed for the CARP. The
first Tabu Search algorithm called CARPET, [62], was suggested by Hertz
et al. in 2000. Here infeasible solutions are allowed but penalized in the ob-
jective function. This algorithm outperformed the existing algorithms at that
time and is still one of the best performing algorithms for the CARP. For the
Multi Depot version of the CARP, a Tabu Search algorithm, has been sug-
gested by Amberg et al., [6], in 2000. In 2003 Greistorfer, [59], combined Tabu
Search with Scatter Search to construct a Tabu Scatter Search for the CARP.
Finally a completely deterministic Tabu Search algorithm has recently been
suggested by Brandâo and Eglese, [26], which, with varying extent, penalizes
infeasible solutions in the objective function and alternates between different
neighborhood structures.

Lacomme et al. presented a Genetic Algorithm in 2001, [71], and a Memetic
Algorithm in 2004, [74]. In both algorithms crossover is performed on a giant
tour, and fitness of a chromosome is based on the partitioning of the tour into
vehicle tours. Currently these algorithms are among the very best performing
for the CARP. Chu et al., [34], presented a Scatter Search algorithm for a
periodic version of the CARP. When tested on instances of the classical CARP
their algorithm is competitive to CARPET, but with longer computation
times.

One of the younger generations of metaheuristics is that of an Ant Colony
System. Lacomme et al., [77], propose such an algorithm where two types
of ants are used, elitist ants which make the solution converge towards a
minimum cost solution and non-elitist ants which ensure diversification to
avoid getting trapped in a local minimum. This algorithm works on a graph
where edges are replaced by two directed arcs. The authors report results
competitive to the best algorithms with respect to solution quality but with
longer computation times. Doerner et al., [36], applied an Ant Colony System
to the CARP where they worked directly on the undirected graph. The authors
report limited success.

A Guided Local Search algorithm has been presented for the CARP by
Beullens et al., [23], in 2003, where the distance of each edge is penalized ac-
cording to some function which is adjusted throughout the algorithm. Com-
putational experiments show that this approach is promising.

A Variable Neighborhood Descent algorithm has been presented by Hertz
and Mittaz, [64]. They suggest the first neighborhood to be based on the
procedures ADD and DROP, whereas the remaining neighborhoods are based
on merging a number of tours succeeded by a sequence of SWITCH steps and
completed by CUT and SHORTEN, all of which are well-known procedures
originally suggested by Hertz et al., [63]. The reported results are among the
best to date.
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Fig. 3. Relationships among lower bounds for the CARP.

3.2 Lower Bounds for the CARP

There is a tradition for using combinatorial lower bounds based on minimum
cost perfect matchings for the CARP. In Figure 3, the relationship is shown
among the various lower bounds for the CARP. Here an arrow from bound x
to y indicates that bound x outperforms bound y, i.e., it has been proved that
x(σ) ≥ y(σ) for any instance σ of the problem. It should be noted that the
Hierarchical Relaxations Lower Bound (HRLB) has only been experimentally
compared with the other bounds, so even though it performs well on the
instances tested, to our knowledge, it has not been proved to outperform any
of the other bounds for all instances, which explains its position in the figure.

The first lower bound to be proposed for the CARP is the Matching Lower
Bound (MLB) in 1981, [58]. Next, the Node Scanning Lower Bound (NSLB)
was suggested in 1987. It is based on logic arguments that bound the length
of the path the vehicles must traverse in the beginning and end of its tour.
Combining the bounds gives us the Matching - Node Scanning Lower Bound
(MNSLB). In 1992 an improvement of the MLB, called the LB1, was sug-
gested. The Node Duplication Lower Bound (NDLB) from 1992 is based on
a matching in a network where the nodes are duplicated and connected by
the shortest paths if the combination of the corresponding demand edges is
possible in a legal vehicle tour.

The five lower bounds, MLB, NSLB, MNSLB, NDLB, and LB1 all estimate
the number of vehicles needed to service the graph based on the cut ({1}, G \
{1}), where node 1 is the depot. In [90] it is suggested to consider not only
one cut as in the previous bounds, but a whole family of disjoint cuts. This
method increases the complexity of the algorithms but gives stronger results.
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The next couple of lower bounds for the CARP are based on that idea. Let U
be a set of nodes that includes the depot and let G(U) be the graph induced
by U . For each set of cuts, (U, U) a lower bound on the cost of the edges in
G(U) and an estimate of the cost of the edges in G \ G(U) is calculated. In
[90], estimates of the cost of the edges in G(U) is made by a construction
similar to the one used in MLB. The LB2 algorithm improves this aspect by
estimating the cost using the LB1 algorithm.

For instances of the CARP where the number of vehicles used is fixed, the
two lower bounds, LB3 and LB4 have been suggested. For description of the
above mentioned lower bounds we refer the reader to [1, 92], where references
are also given to the original papers.

The Hierarchical Relaxation Lower Bound (HRLB), presented by Amberg
and Voß in 2002, [7], is an iterative bound like LB2 but here the cuts that are
iterated over are not disjoint. HRLB starts out by solving the CPP relaxation
of the CARP. In each iteration more constraints are added to the problem, the
cut set is extended and the relaxation is solved again. No relationships have
been proved between HRLB and the other bounds, but in practice HRLB has
shown to perform very well.

The Multiple Cuts Node Duplication Lower Bound (MCNDLB), suggested
by Wøhlk in 2006, [93], uses the same disjoint cuts strategy as LB2, but at
each iteration a stronger matching network, which is similar to the one used
in the NDLB, is used to estimate the cost of servicing the edges in G \G(U).
MCNDLB was proved to be stronger than both LB2 and NDLB. In [1], Ahr
improved the MCNDLB by considering more cuts than the successive disjoint
ones considered in LB2 and MCNDLB. This is done by adding the nodes
to be added to U in each iteration one by one, while calculating the cost
of a matching in the new G \ G(U) for each of these nodes. The algorithm
with this modification is called MCNDLB+MOD. Computational experiments
show that for some instances these extra calculations result in better bounds.

3.3 Exact Methods for the CARP

Since the mathematical formulation of the CARP by Golden and Wong in
1981, [58], several different formulations have been proposed for the problem,
ranging from dense, to sparse to supersparse. We refer the interested reader
to [42] for details on these formulations and to [21] for an overview of valid
inequalities and separation routines.

The first attempt to solve the CARP exactly was by Hirabayashi et al.,
[66], in 1992 by the use of Branch-and-Bound, where the Node Duplication
Lower Bound was used to calculate lower bounds for the subproblems and
branching was performed on a single edge of the node duplicated network.
Using this algorithm, the authors are able to solve a set of CARP instances
with from 15 to 50 demand edges to optimality.

In [19], Belenguer and Benavent present a Cutting Plane algorithm for the
CARP, which is partly based on several classes of valid inequalities presented
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earlier by the same authors, [18]. Using their algorithm, the authors are able
to reach the best existing lower bound for all test instances, and can improve
the existing lower bounds for several instances. They reduce the average gap
between upper and lower bounds to less than one percent for the Gdb, Kshs,
and Val instances and less than 2.4 percent for the Eglese instances.

Both Baldacci and Maniezzo, [13], and Aragão et al., [35], propose an exact
solution strategy for the CARP which is based on transforming the problem
to a corresponding node routing problem (VRP), which is in turn solved by
state-of-the-art algorithms. The transformation used in these papers is very
similar to the one used in the network construction for the node duplicated
lower bound, except for duplication of the depot. In both papers, the resulting
VRP requires fixing a set of edges to belong to the solution set. Both papers
report computational results that are highly competitive to the existing ones.

A Branch-Price-and-Cut algorithm is suggested for the CARP by Be-
lenguer et al. in [20]. Only the average performance of the algorithm is
given and compared with the Cutting Plane algorithm given in [19]. With
the Branch-Price-and-Cut algorithm the average lower bound is 0.07, 0.39,
and 2.36 percent below the best known solution for the Gdb, the Val, and
the Eglese instances, respectively. These results are better than the average
lower bounds obtained in [19], but not as good as the ones obtained with the
method presented in [35]. No comparison of the running time is reported.

Exact solution using a Branch-Price-and-Cut algorithm is also considered
by Letchford and Oukil, [79]. Their goal is to use the fact that CARP networks
are very sparse since they represent street networks. A column generation
approach is used, and the pricing problem is considered in two versions. The
first one allows non-elementary tours and is solved by a dynamic programming
type of algorithm. The second one only allows elementary tours, which is
an NP-hard problem, and is solved with a Cut-and-Branch algorithm. The
algorithms are currently being tested and compared to existing work.

When using column generation to solve the CARP, the subproblem be-
comes the problem of finding a tour which starts and ends at the depot, does
not exceed the vehicle capacity and minimizes the total cost in a graph where
some demand edges have negative cost since the cost in this graph corresponds
to the reduced cost of the edge. Ignoring the capacity constraint and invert-
ing the cost structure, this problem is the Privatized Rural Postman Problem
(PRPP), [9], which could also be called the Prize Collecting Arc Routing Prob-
lem, and is formally stated as follows: Given an undirected graph G = (N, E),
with a special depot node, d. Let ce be the cost of traversing the edge e and
let be be the profit obtained the first time the edge e is traversed. Let te be an
integer indicating the number of traversals of the edge e. The goal is to find a
single tour, T , starting and ending in d, which maximizes

∑
e∈T (be − tece),

i.e., which maximizes the total profit.
This problem can intuitively be considered as an arc version of the Prize

Collecting Traveling Salesman Problem, which is a node routing problem. To
illustrate the problem, imagine a computer game where the goal is to traverse
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a street network with the purpose of collecting treasures, maybe even in a
stochastic setup. In [9], Aráoz et al. give several mathematical models for the
PRPP, prove dominance relations among these, and deal with preprocessing
aspects of their final model. Furthermore, they give polynomial time algo-
rithms for the PRPP on a tree and a cactus, i.e., a graph where each edge is
contained in at most one cycle.

4 Variations of the CARP

In this section, we consider variations of the classical CARP. Each of the vari-
ations considered reflects situations occurring in real life applications. In Sec-
tion 4.1, we consider CARP defined on directed or mixed graphs, whereas in
Section 4.2, we deal with alternative objective functions including Min-Max
k-CPP, which is a CARP like problem with several vehicles but excluding
capacity constraints. We consider the problem of including time window con-
straints in Section 4.3. Sections 4.4 and 4.5 deal with CARP with multiple
depots and with mobile depots, respectively. A version of the problem, where
not all vehicles are able to service all edges is considered in Section 4.6. The
periodic CARP is considered in Section 4.7, and finally Section 4.8 considers
a stochastic version of the problem.

4.1 CARP on Directed or Mixed Graphs

The classical CARP is defined on an undirected graph but several real life
applications of the problem must take into account the existence of one-way-
streets and streets where the two sides must be serviced in parallel. This re-
quires the definition of the CARP on a directed and mixed graph respectively.
These variations of the problem are referred to as DCARP and MCARP.
Benchmark instances for the MCARP are available in [17].

The mixed CARP is considered extensively by Belenguer et al. in [15],
where three problem specific heuristics, Augment-Merge, Path-Scanning, and
Ulusoy’s heuristic, are improved and changed to fit the problem and to in-
clude extra complications such as windy edges, prohibited turns, and several
dumping sites. Furthermore, the Memetic Algorithm by Lacomme et al., [74],
is adapted to the MCARP. Finally, the authors give a supersparse LP formu-
lation of the MCARP, which is used in a Cutting Plane algorithm to obtain
strong lower bounds for the problem. Computational experiments show that
the gap between the lower bound and their Memetic algorithm is less than
one percent for the test instances in [17].

A directed version of the CARP has been considered by Welz, [89], in
order to derive optimal solutions. The author presents valid inequalities and
separation algorithms for an ILP formulation of this problem. Lacomme et
al., [72], consider an extension of the CARP, where mixed graphs, prohibited
turns, and non-trivial cost structures are included. A mathematical model
that includes these considerations is suggested for this problem.
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4.2 CARP with Alternative Objective Functions

The usual objective in routing problems is to minimize the total distance tra-
versed. But in several real life applications other objectives are just as impor-
tant. This could be minimizing the total number of vehicles used, equalizing
the load of the tours, or minimizing the length of the longest tour.

In [88], Ulusoy considers a version of the CARP where a vehicle includes
a fixed cost if it is used and where the vehicles differ in capacity. Therefore,
the objective function is to minimize the total travel cost plus the total fixed
cost incurred by the use of vehicles. Both the case with an unlimited number
of each vehicle type and the case where the number of each vehicle type is
bounded are considered. A heuristic is presented which first constructs a giant
tour and then splits the tour by solving a Shortest Path Problem which takes
vehicle capacities and costs into account.

Lacomme et al., [75, 76], consider the Multi Objective CARP defined as the
classical CARP where the objective is not only to minimize the total routing
cost, but also to minimize the makespan, i.e., the length of the longest tour.
With this objective the problem can be viewed as a mix between the CARP
and the Min-Max K-Chinese Postman Problem, [53]. The authors present a
generic algorithm for solving the Multi Objective CARP.

The Min-Max k-Chinese Postman Problem, [53], can be considered as a
CARP where the vehicle capacity is infinite and the goal is to minimize the
length of the longest tour. The problem is extensively studied by Ahr in [1].
The first heuristic for the MM k-CPP, which is presented by Frederickson et al.
in [53], is based on constructing a giant tour which is subsequently partitioned
into k tours of roughly equal length. In [1], Ahr presents a heuristic based on
the Augment-Merge algorithm for the CARP along with a new algorithm
based on the cluster first - route second idea. A Tabu Search algorithm is
presented for the MM k-CPP by Ahr and Reinelt in [2]. This algorithm is
tested on a huge set of test instances with up to 392 edges. Computational
testing shows that the results obtained by this algorithm is up to 30 percent
better than the ones obtained with the construction heuristics and reduces
the gap to the best lower bound to less than 10 percent (20 percent for a
few instances). Two simple lower bounds are given directly for the MM k-
CPP by Frederickson et al. in [53]. In [1], many of the combinatorial lower
bounds originally presented for the CARP are adapted to work for the MM
k-CPP using a modified notion of forbidden edges and the required number
of postmen needed for a node set. The same text presents a Branch-and-Cut
algorithm for the MM k-CPP using a new set of valid inequalities, which
improved the lower bound obtained by about 5 percent on average.

A version of the directed CARP where the cost incurred by each arc de-
pends on the time of service is considered by Gendreau et al. in [54] and is
referred to as the CARP with Time-Dependent Service Costs. For real world
problems such as winter gritting it can be argued that the CARP with this
type of cost structure is more realistic than imposing hard time windows. In
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[54] the problem is solved to optimality by converting it to an equivalent node
routing problem with Time-Dependent Service Costs. Since the problem is
directed, this transformation can be performed without a large increase in
the problem size. The resulting node routing problem is solved by column
generation, where a labeling algorithm is used to generate columns.

4.3 CARP with Time Windows

The CARP with Time Windows (CARPTW) is defined as the classical CARP
with the extra requirement that the service of each demand edge must be-
gin within some pre-specified time window. Benchmark instances for the
CARPTW can be downloaded from [91].

CARPTW occurs in some of the applications of arc routing. Flight legs in
Airline Scheduling have a fixed departure time and can therefore be considered
as having a time window of zero length or a very short time window if some
flexibility is allowed. Street Sweeping, [25], has restrictions with respect to
the time during which the sweeping may be performed, and routing of winter
gritters, [40], where some streets must be serviced within two hours, others
within four etc. can be considered as CARPTW where the time windows are
rather wide.

Various aspects of the CARPTW are considered by Wøhlk in [92]. Two
mathematical models are given for the problem, one based on constructing a
node duplicated network on which the ILP model is built and one based on a
transformation to the equivalent node routing problem, the VRPTW. Wøhlk
shows how to improve the lower bound, MCNDLB for the classical CARP,
[93], when used for the CARPTW.

In [92], a version of the Path-Scanning algorithm which chooses edges
based on their time windows is presented and a new heuristic, the Preferable
Neighbor heuristic is suggested. This algorithm is based on constructing a
set of feasible vehicle tours that looks promising due to some pre-specified
criteria, and the set covering problem defined by these tours is then solved to
optimality. Computational testing indicates that the results obtained with this
algorithm are on average 1.2 percent above the lower bound for the instances
given in [91]. A Greedy Randomized Adaptive Search Procedure (GRASP)
with Path Relinking is suggested for the CARPTW by Labadi et al. in [70].
The algorithm is based on a Randomized Path-Scanning heuristic and a new
heuristic based on a route first - cluster second idea. Local search is used to
improve each solution found using OR-OPT, SWAP, and 2-OPT, and Path
Relinking is used to lead a solution towards structures that seem favorable.
Computational results show that this algorithm obtains results that are on
average 0.8 percent above the lower bound.

4.4 Multi Depot CARP

The Multi Depot CARP (MD-CARP) is defined as the classical CARP, where
each vehicle is located in one of several depots from which it must start and
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end its tour. The most common variation of MD-CARP is where each vehicle
must return to the depot from which it originated, but one could also consider
the case where each vehicle just has to return to some depot independently of
its starting location. Often a heterogeneous fleet of vehicles is considered in
the MD-CARP. The MD-CARP frequently occurs in practice in mail delivery,
winter gritting, and refuse collection. Some theoretical aspects of the MD-
CARP are considered by Wøhlk in [92], whereas Cattrysse et al., [29, 30],
consider the long term planning problem of dividing the area into districts
with one depot.

The problem of assigning streets to depots and constructing vehicle tours
simultaneously is considered by Amberg et al. in [6]. Their solution strategy
is quite unique for arc routing as the authors, after constructing a giant tour,
transform the problem into an Arc-Constrained Capacitated Minimum Span-
ning Tree Problem (CMST). This problem is then solved heuristically, and
the solution is improved by Local Search. Finally, a MD-CARP solution is
derived from the CMST solution, and the resulting tours are improved by a
simple route optimization procedure.

Ghiani et al., [56], consider a variation of the MD-CARP, referred to as the
Capacitated Arc Routing Problem with Intermediate Facilities (CARP-IF).
The problem is defined as the CARP with one depot, but has a set of nodes
known as intermediate facilities, IF. The vehicles start and end at the depot
but they can recharge their capacity in any of the intermediate facilities. For
practical purposes the IFs can be dump sites for refuse or storage halls for salt
for winter gritting and the like. The authors present two lower bounds and
two heuristics for the CARP-IF. The first lower bound is based on the fact
that the RPP is a special case of the CARP-IF, and therefore uses a relatively
tight RPP lower bound based on Branch-and-Cut to bound the CARP-IF. The
second lower bound is a relaxation lower bound of an ILP formulation based
on dead-heading variables. The first heuristic they present for the problem is
based on constructing an RPP-tour and splitting the tour into appropriate
portions while connecting to the intermediate facilities. The second heuristic
is based on solving the classical CARP in a modified network, transforming
the solution to a CARP-IF solution in the original network and making some
adjustments to restore feasibility.

4.5 CARP with Mobile Depots

Filippi and Del Pia, [46], consider a version of the CARP with two different
types of servicing vehicles, where only one of them unloads at the depot. The
other type of vehicle unloads onto the first type. With this setup, besides
the routing of each type of vehicles, it must be decided at what time two
vehicles must meet at some node in order to perform this unload action. This
problem is encountered in a real life refuse collection problem, where satellite
vehicles with small capacity unload into one of several large vehicles, which in
turn are the only ones to unload at the depot. The authors solve the problem
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with a modified version of the Variable Neighborhood Descent algorithm first
presented by Hertz and Mittaz, [64].

The CARP with Refill Points (CARP-RP) could be considered to be a
Multi Depot CARP where the depots are traveling to the vehicles to refill,
[5]. In this problem, two types of vehicles are given. The usual service vehicles
that service the edges by traversing them, and the refilling vehicles that can
meet the service vehicle at any point in the graph for refilling purposes. A
mathematical model is given for the CARP-RP and a Cutting Plane algorithm
for solving the problem is suggested by Amaya in [5].

4.6 CARP with Vehicle/Site Dependencies

The CARP with Vehicle/Site Dependencies, studied by Sniezek in [87], is a
variation of the CARP with several types of vehicles. The problem is defined
such that not all edges can be serviced or traversed by all types of vehicles. Ball
et al., [14], suggest a vehicle decomposition algorithm for solving an instance
of this problem which they encountered in a refuse collection application. In
[24], Bodin and Sniezek propose a solution procedure for the problem, which is
based on a composite approach consisting of an Initial Fleet Mix Generator, a
Mathematical Programming Procedure, and a Measure of Goodness function.

4.7 Periodic CARP

The Periodic CARP (PCARP) is defined as the CARP where a long time
horizon is considered such that each demand edge requires service more than
once. This situation sometimes occurs in refuse collection where each house-
hold is serviced two or three times a week on a rolling schedule. Here, it must
be taken into account that the problem may require a minimum and maxi-
mum number of days between each service of the same street. A mathematical
formulation of the problem is given by Chu et al. in [33], where three heuris-
tics are also suggested for obtaining feasible solutions. Lacomme et al., [73],
suggests a Generic Algorithm for solving the problem. This algorithm is an
extension of the algorithm presented by the same authors in [71]. A Scatter
Search algorithm for PCARP is suggested by Chu et al., [34], and two lower
bounds are given by the same authors in [32]. Both of these are based on lower
bounds for the classical CARP defined on a transformed graph.

4.8 Stochastic CARP

The Stochastic CARP (SCARP), first suggested by Fleury et al., [48, 50], is
identical to the classical CARP except that the demand on the edges is a
random variable. This problem occurs in practice in Refuse Collection, Mail
Delivery, and Snow Removal where the exact demand is not known. In [49],
Fleury et al. study the quality of solutions for the SCARP when the so-
lutions are obtained with algorithms for the classical deterministic CARP.
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They explore how the robustness of the solutions change when the determin-
istic problem is solved with a slightly smaller vehicle capacity. In [47], Fleury
et al. present a Memetic Algorithm for the SCARP, which is an extension of
the algorithm suggested by Lacomme et al. in [74]. The results obtained are
compared to the results generated by algorithms for the classical CARP based
on the average demand.

5 The Next Decade of Capacitated Arc Routing

In the preceding two sections, we have given an overview of the latest research
on the Capacitated Arc Routing Problem and its extensions. In this section,
we will offer our directions for future research within the area.

In general, there are two directions for future research. The first one goes
toward size, speed, and quality, and the second one goes toward flexibility.
Even though the ultimate goal is to attain the two goals simultaneously, we
will elaborate on them separately.

In other words, the goal in the first direction is the development of faster
algorithms to obtain better results for larger problem instances. As we have
pointed out, the past decade has seen many contributions within the area of
metaheuristics. Several of these can be used to obtain solutions that are within
a few percent of the optimum for the existing benchmark instances. The new
challenge is to use huge instances so that it will be possible to identify the new,
better contributions with respect to quality and speed. Few attempts have
been made to solve the CARP exactly, where some are based on converting
the problem into node routing. This has lead to the development of several
classes of cuts and separation routines. To reach the goal of obtaining exact
solutions of larger instances in shorter time, new cuts need to be explored and
the construction of exact methods that exploit the network structure of the
problem might be beneficial.

In the previous section we have seen that most of the real life applications
of the CARP contain different kinds of additional constraints such as vehi-
cles of various sizes, time windows, or several resource types. The direction of
flexibility is closely linked to a goal of usefulness for such real life problems.
Some of the research in the area has already dealt with this aspect - in par-
ticular from a heuristic point of view, but the area is still open for further
exploration, in particular with respect to exact methods. Moreover, with a
few exceptions, all published material on the CARP deals with a determinis-
tic and static setup. It is well known that many real life arc routing problems
are either stochastic or dynamically changing, and therefore we recommend
that these issues be further explored.
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Summary. In this chapter, we introduce inventory routing problems. Inventory
routing problems are among the more important and more challenging extensions
of vehicle routing problems, in which inventory control and routing decisions have
to be made simultaneously. The objective is to determine distribution policies that
minimize the total cost, i.e., the sum of inventory holding and transportation costs,
while avoiding stock-outs and respecting storage capacity limitations. All inven-
tory routing problems have some common characteristics, but they may also have
a number of significantly different characteristics. As a result, a variety of solution
approaches has been developed. We discuss the various characteristics of inventory
routing problems in order to create an understanding of and instill an appreciation
for the complexities of inventory routing problems.

Key words: Logistics; supply chain management; inventory routing survey.

1 Introduction

The class of inventory routing problems (IRPs) is large and the number of
solution approaches that have been proposed for their solution is even larger.
Inventory routing problems all share some basic characteristics. They all con-
sider environments in which products are shipped from a supplier to one or
more customers by means of, usually capacitated, vehicles. Costs are incurred
for the distance traveled by the vehicles and those costs are included in the
objective function. This characteristic explains the word routing in the name
of the problem class. What makes this class of problems significantly different
from most other classes of routing problems is the presence of an inventory
component, which explains the word inventory in the name of the problem
class. The inventory component arises because customers consume product
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over time and have only limited storage capacity. The supplier has to manage
product inventory at customers to ensure that customers do not experience
a stock-out. The inventory component thus adds a time dimension to the
traditional spatial dimension of routing problems. The presence of inventory
complicates the routing decisions in two fundamental ways. First, the limited
inventory holding (storage) capacity at the supplier and/or at the customers
has to be taken into account when deciding on delivery quantities. Second,
inventory holding costs, at the supplier or at the customers, may be incurred
which has to be accounted for in the objective function.

Beyond these basic characteristics, there is a variety of other characteristics
that may significantly change the structure of a particular inventory routing
problem, such as

• the planning horizon can be finite or infinite;
• inventory holding costs may or may not be considered;
• inventory holding costs may be charged at the supplier only, at the supplier

and the customers, or at the customers only;
• the production and consumption rates can be deterministic or stochastic;
• production and consumption take place at discrete time instants or take

place continuously;
• production and consumption rates are constant over time or vary over

time;
• the optimal delivery policy can be chosen from among all possible policies

or has to be chosen from among a specific class of policies.

In this chapter, we consider only inventory routing problems involving
the distribution of a single product over a finite planning horizon with de-
terministic and stationary production and consumption rates. This simple,
yet surprisingly complex, setting allows us to introduce the reader to some
of the issues arising in inventory routing. Section 2 focuses on the impact of
inventory holding costs and storage capacities on delivery policies in a dis-
crete time setting. Section 3 focuses on the impact of consumption rates and
storage capacities on delivery policies in a continuous setting. In Section 4 we
provide a brief overview of the literature on inventory routing problems.

We start by introducing notation for the elements that are common to the
inventory routing problems we discuss in Sections 2 and 3. Inventory routing
problems are defined on a graph G = (V, E), where V = {S, 1, . . . , n} is the
set of vertices and E is the set of edges. Vertex S represents the supplier and
vertices 1, . . . , n represent the customers. A travel time tij and a cost cij are
associated with edge (i, j) ∈ E. The capacity of each vehicle is Q. If time is
discrete, we denote by qi the quantity of product consumed per unit of time by
customer i. If time is continuous, we denote by ui the usage or consumption
rate. The initial inventory level at the supplier is denoted by I0

S . The initial
inventory at customer i is denoted as I0

i . Initial inventories can either be given
or be decision variables. Considering initial inventories as decision variables
may significantly improve the quality of the solution.
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We denote by It
i and It

S the inventory level at customer i and at the
supplier at time t, respectively. The inventory holding capacity at customer i
is Ci and at the supplier is CS . The inventory holding cost at the supplier is
hS and at customer i is hi. Whenever a cost is not considered in a particular
variant, its value is assumed to be 0. The length of the planning horizon is
denoted by H .

The decisions to be made are (1) when to deliver to each customer, (2) how
much to deliver to each customer each time it is served, and (3) how to route
the vehicles so as to minimize the total cost. The total cost always includes the
transportation costs incurred by the vehicles and may or may not include the
holding costs incurred at the supplier and the customers. A delivery policy
has to ensure that the supplier and the customers do not experience any
stock-outs, that storage capacities at the supplier and the customers are not
exceeded, and that the vehicle capacity limit is respected.

The routing component of inventory routing problems by itself already
makes the problems hard. In fact, the problems reduce to the traveling sales-
man problem when the planning horizon is one, the inventory costs are zero,
the vehicle capacity is infinite, and all customers need to be served. Fur-
thermore, even when only one customer is considered, some variants remain
computationally hard (see Speranza and Ukovich [55]).

We will not provide a detailed survey of the vast number of papers on in-
ventory routing problems that have been published in the literature. A number
of surveys already exist (e.g., [21, 30, 34]) and we refer the reader to these
surveys for an in-depth overview of this fertile area of research. Instead, we
focus on a few variants and hope to generate an appreciation for the variety
and richness of inventory routing problems and for the challenges and pit-
falls encountered when trying to construct optimal or high quality solutions,
and to stimulate a desire to delve deeper into these fascinating problems. To
facilitate such investigations, we briefly summarize the literature on IRPs in
Section 4.

2 Inventory Holding Capacity and Costs

In this section, we consider a discrete time setting. We take the example intro-
duced by Bell et al. [9] and investigate several simple modifications, involving
inventory holding capacity and inventory holding costs, to demonstrate the
impact of the presence of inventory on the routing decisions. We first inves-
tigate the case in which only the transportation costs are included in the
objective function, then the case in which inventory holding costs are added
to the transportation costs. In both these cases the initial inventory levels are
fixed. Then, we study the case in which inventory holding costs are charged,
together with the transportation costs, and the initial inventory levels are
decision variables.
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Fig. 1. Bell et al. example.

In the example of Bell et al. [9] there are four customers to be served by
a single supplier. Time is discrete. Let I = {A, B, C, D} be the index set of
the customers. Figure 1 shows the available connections with their associated
travel costs. The capacity Ci and quantity qi of each customer i ∈ I are given
in Table 1.

The initial inventory level of each customer i is equal to its holding ca-
pacity, that is I0

i = Ci for all i ∈ I. There is an unlimited number of vehicles
with capacity Q = 5000. In the original description of the example, nothing
is specified about the supplier. It is understood that there are no limitations
on product availability, i.e., CS = ∞. The objective is to find a periodic dis-
tribution policy that minimizes the total cost, that does not cause a stock
out at any of the customers, and that does not exceed the storage capacity at
the customers and the vehicle capacity. The periodicity of the policy implies
that the inventory levels at the end of the period must be equal to the initial
levels. The horizon is implicitly assumed to be infinity; the periodic policy is
repeated over and over. From Figure 1 it is easy to see that a natural distri-
bution policy is to combine the two pairs of close customers A and B and C
and D, and serve each pair with a separate vehicle. The daily cost is 420. A
better distribution policy repeats every two days. On the first day, A and B
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Table 1. Capacity and consumption in the Bell et al. example.

Customer i Capacity Ci Consumption qi

A 5000 1000
B 3000 3000
C 2000 2000
D 4000 1500

are served together with one vehicle and C and D are served together with
another vehicle. A quantity 2000 (twice the daily consumption) is delivered
to A, 3000 (the daily consumption) to B, 2000 (the daily consumption) to C
and 3000 (twice the daily consumption) to D. Both vehicles fully utilize their
available capacity. Since customers B and C have to be served daily, due to
their storage capacity and daily consumption, on the second day customers B
and C are served together in a tour, delivering a quantity of 3000 to B and
of 2000 to C, while A and D are not visited. The average daily cost is 380.
This solution has been proven to be optimal by Adelman [1] and Song and
Savelsbergh [53].

Observe that the actual timing of deliveries during the day is not consid-
ered. Customer B consumes 3000 units of products per day and receives 3000
units of product per day. Implicitly, it is assumed that on any day delivery
takes place after the inventory of 3000 units has been consumed. The inven-
tory level is calculated at the end of the day, after consumption and delivery
have taken place. A similar situation occurs at customer C.

Alternatively, we can assume that the initial inventories are zero, and that
delivery takes place before consumption. The optimal delivery policy remains
the same. For the remainder, this is the setting we consider, i.e., at each time
instant delivery takes place before consumption and the inventory level is
observed after that.

Next, we introduce various simple modifications to the example of Bell et
al. and study the impact on the optimal solution. The length of the planning
horizon H is four days. The initial inventory I0

i at each customer i is either zero
or a decision variable. The inventory holding cost may or may not be accounted
for in the objective function. In case it is, it can be either the inventory holding
cost at the supplier, the inventory holding cost at the customers, or the sum
of the inventory holding costs at the supplier and at the customers. The first
papers that consider holding costs in the objective function are Blumenfeld et
al. [19] for the case with continuous time and Speranza and Ukovich [54] for
the case with discrete time. The following unit inventory costs are considered
for both the supplier and the customers: 0, 0.01, and 0.1. If the inventory cost
at the supplier is accounted for in the objective function, then the production
rate at the supplier is assumed to be equal to the sum of the consumption
rates at the customers, i.e., 7500, and the initial level of the inventory at the
supplier I0

S is either zero or a decision variable of the problem. Deliveries can
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be performed at the discrete time instants t ∈ {1, . . . , H} by an unlimited
fleet of vehicles. The sets of customers that can be served on a single route
are: R1 = {A}, R2 = {B}, R3 = {C}, R4 = {D}, R5 = {A, B}, R6 = {B, C},
R7 = {C, D}. The routes considered are the direct routes to a customer and
the routes that serve adjacent customers. Let k ∈ K = {1, 2, . . . , 7} be an
index of the routes and let rik be an indicator equal to 1 if customer i is
served on route k and 0 otherwise. We assume, for the sake of simplicity, that
each route can be performed at most once per day. The cost ck of route k is
the cost of the corresponding optimal traveling salesman problem.

We analyze different environments and show, for each of them, the optimal
solution over the planning horizon of 4 days. The solutions are obtained by
solving mixed integer linear programming models. These models are not repre-
sentative of the models proposed to solve large, real-life instances of inventory
routing problems. They are introduced here only to obtain optimal solutions
for the examples used in the chapter. The optimal solutions are shown in
figures. Each figure is organized in one or more rows. Each row shows four
boxes, one for each day. Each box shows the routes traveled by the vehicles,
the quantity delivered to each customer, and the level of the inventory at each
customer at the end of the day (in the lower left corner; each small rectangle
represents 500 units of product). If more than one row is shown, each corre-
sponds to a different environment, labeled with a letter, starting from the top
row.

Transportation cost only. We first analyze the case in which only transporta-
tion cost is considered in the objective function. This case corresponds to
an environment in which the transportation cost represents the major cost
component, for example due to the fact that the supplier and the consumers
represent entities of one and the same company (e.g., a distribution center
and retail outlets) and the differences in inventory holding costs at the sup-
plier and the consumers are negligible. Inventory levels at the customers still
have to be controlled to avoid a stock-out and to respect the holding capacity
limits. Let I0

i = 0, ∀i, let xt
ik be the quantity shipped to customer i at time

t using route k, and let yt
k be equal to 1 if route k is used at time t and 0

otherwise. The optimal solution is obtained by solving the following mixed
integer linear programming model:

min
1
H

∑
t∈T

∑
k∈K

ckyt
k (1)

∑
i∈I

xt
ik ≤ Qyt

k t ∈ T k ∈ K (2)

xt
ik ≤ Qrik t ∈ T i ∈ I k ∈ K (3)

It
i = I0

i +
t∑

s=1

∑
k∈K

xs
ik − tqi i ∈ I t ∈ T (4)
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Table 2. Optimal costs with different transportation capacity.

Q Ci given Ci = +∞
5000 380.0 340.0
10000 377.5 190.0
15000 377.5 152.5
20000 377.5 105.0

It
i + qi ≤ Ci i ∈ I t ∈ T (5)

It
i ≥ 0 i ∈ I t ∈ T (6)

xt
ik ≥ 0 t ∈ T i ∈ I k ∈ K (7)

yt
k ∈ {0, 1} t ∈ T k ∈ K. (8)

The objective function (1) expresses the minimization of the average daily
transportation cost. The constraints (2) guarantee that the total quantity
delivered by each vehicle is not greater than its capacity. The constraints
(3) guarantee that a delivery to customer i on route k only takes place if
customer i is visited on route k. The constraints (4) define the level of the
inventory of each customer i for each time instant t. The constraints can be
also written as It

i = It−1
i +

∑
k∈K xt

ik− qi. The constraints (5) guarantee that
the storage capacity of each customer is never exceeded. The constraints (6)
guarantee that no stock–out occurs at any customer i during the planning
horizon. Finally, the constraints (7)–(8) define the decision variables of the
problem.

Figure 2 shows the optimal solutions obtained in two different environ-
ments. The first row corresponds to the environment in which the storage
capacity Ci at each customer i has to be respected and cannot be exceeded,
while the second row corresponds to the environment in which there are no
storage capacities at customers, i.e., Ci = +∞ for all i ∈ I. In other words,
we show the effect of relaxing constraints (5). In the first case, the costs are
380, while in the second case the costs are 340. In both situations, the vehicle
capacity is fully utilized in all tours.

Next, we examine what happens when the vehicle capacity is increased.
The values of the optimal solutions are shown in Table 2 for Q = 5000, 10000,
15000, and 20000. In the case with holding capacities at customers, shown in
Column 2, the cost decreases from 380 to 377.5. This happens for Q ≥ 7000. In
the case without holding capacities at the customers, shown in Column 3, the
cost decreases from 340 to 105. This value is obtained for Q ≥ 16000. As ex-
pected, the impact of the vehicle capacity on the optimal cost is substantially
higher in the case without holding capacities at customers.

Transportation and inventory holding costs. When inventory holding costs at
the customers are taken into account in the objective function, the total cost



56 Bertazzi, Savelsbergh, and Speranza

Fig. 2. Minimizing transportation costs only. a) With maximum inventory holding
capacity at the customers: 380. b) Without maximum inventory holding capacity at
the customers: 340.

of an optimal solution will obviously increase. An optimal solution can be
obtained by solving the following mixed integer programming problem:

min
1
H

(∑
t∈T

∑
k∈K

ckyt
k +
∑
i∈I

∑
t∈T

hiI
t
i

)

subject to (2)–(8).
Figure 3 shows the solutions for two environments that differ only in terms

of the inventory holding costs charged at the customers (storage capacity is
limited at the customers). The first row shows the solution for the environment
in which the inventory holding cost is small, hi = 0.01 for all i ∈ I, while the
second row shows the solution for the environment in which the inventory
holding cost is large, hi = 0.1 for all i ∈ I. It is interesting to observe that
with higher inventory holding costs the optimal solution visits customers more
frequently. Moreover, in this setting available vehicle capacity is no longer used
fully.

To take inventory holding costs at the supplier into account, a term∑
t∈T hSIt

S needs to be incorporated in the objective function that becomes
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Fig. 3. Minimizing transportation cost and inventory cost at the customers. a) With
hi = 0.01: 380 + 12.5 = 392.5. b) With hi = 0.1: 420 + 0 = 420.

min
1
H

∑
t∈T

∑
k∈K

ckyt
k +
∑
t∈T

hSIt
S .

The following constraints need to be added to the constraint set

It
S = I0

S +
∑
i∈I

tqi −
t∑

s=1

∑
i∈I

∑
k∈K

xs
ik t ∈ T (9)

It
S ≥ 0 t ∈ T. (10)

Constraints (9) state that the inventory level at the supplier at time t is
obtained by the initial level increased by the production up to t and decreased
by the quantity delivered to the customers up to t.

Figure 4 shows the solutions for environments in which, in addition to
the transportation costs, inventory holding costs at customers only, at the
supplier only, and at both customers and the supplier are taken into account,
respectively (storage capacity is limited at the customers). In the figure, the
inventory level of the supplier is also shown. While in the first environment the
vehicles travel with full loads, in the second and the third environments this is
no longer the case and, furthermore, each customer is served daily. Note that
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Fig. 4. a) Minimizing transportation cost and inventory holding cost at the cus-
tomers, hi = 0.01: 380 + 12.5 = 392.5, b) Minimizing transportation cost and
inventory holding cost at the supplier, hS = 0.01: 420 + 0 = 420, c) Minimizing
transportation cost and inventory holding costs at the supplier and the customers,
hi = 0.01 and hS = 0.01: 420 + 0 + 0 = 420.

in the second and third environments the total inventory is always equal to
zero. This is due to the fact that the total inventory is constant over time and
that the initial inventory level is equal to zero both at the supplier and the
customers. As a consequence, in an optimal policy we have

∑
k∈K xt

ik = qi,
t ∈ T . In general, given that the total inventory is constant over time and
equal to

∑
i∈I I0

i + I0
S , if the initial inventory levels are given and hi = hS , ∀i,

then the inventory holding costs can be ignored and only transportation costs
need to be minimized. Therefore, the problem with inventory holding costs is
interesting only when the inventory holding costs are different.

Transportation and inventory holding costs, variable initial inventory levels.
Next, we consider the case in which inventory holding costs are charged both
at the supplier and at the customers and the initial inventory levels are not
fixed, but are to be determined by the optimization. In this case it is necessary
to include so–called demand constraints in the model, that is constraints that
guarantee that the total quantity shipped to each customer is equal to the
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corresponding total consumption over the planning horizon:

min
1
H

(∑
t∈T

∑
k∈K

ckyt
k +
∑
i∈I

∑
t∈T

hiI
t
i +
∑
t∈T

hSIt
S

)

subject to (2)–(8), (9)–(10) and the following constraints:∑
t∈T

∑
k∈K

xt
ik = qiH i ∈ I (11)

I0
i ≥ 0 i ∈ I (12)

I0
S ≥ 0. (13)

Figure 5 shows, in the first row, the optimal solution for the situation in
which holding capacity is limited at the customers, and, in the second row,
the optimal solution when there are no limits on the holding capacity at the
customers (storage capacity is limited at the customers). We have seen that
in the situation where the initial inventory is given and assumed to be 0, the
optimal solution value is 420 (see the third row of Figure 4). The solution in
the first row of Figure 5 has a value of 405. The savings are a result of the
additional flexibility, i.e., the choice of initial inventory levels. The optimal
initial inventory level is 0 for customers B and C and 1000 and 1500 for
customers A and D, respectively. As a consequence, the total inventory is
always equal to 2500 during the planning horizon. When we compare this
solution to the solution shown in the second row of Figure 5, when there are
no limits on the storage capacities at customers, we observe that the optimal
initial inventory level is 0 for customers A, B and D and 2000 for customer C,
the optimal initial level at the supplier is 2500. The total inventory is always
4500 during the planning horizon and the costs decrease even further to 390.
The darker customers shown in Figure 5 indicate the customers that have an
initial inventory in the optimal solution. The others have no initial inventory.

The models used in the above examples are built on the basis of a pre-
selected set of routes. The models studied in the literature include the routes
creation in the set of decisions to be taken. The only exact approach available
for the solution of an inventory routing problem can be found in Archetti et al.
[7]. In Bertazzi et al. [13] heuristics are used to study the impact of different
objective functions on the solution of an inventory routing problem.

Figure 6 compares the optimal solution obtained in the case with equal
inventory holding cost at the supplier and the retailers with respect to the
case of unequal inventory holding costs. The first row shows the case with
hS = hi = 0, ∀i, in which the sum of the transportation and inventory costs
both at the supplier and the retailers is minimized, the initial inventory level
at the supplier and the retailers is variable and with inventory holding capacity
at the retailers. The second row shows the same case with the only exception
of the inventory holding costs, which are hS = 0.1 and hi = 0, ∀i, respectively.
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Fig. 5. Minimizing transportation cost and inventory holding costs at the supplier
and customers; holding costs hi = 0.01 and hS = 0.01; variable initial inventory
level. a) With inventory holding capacity at the customers: 380 + 12.5 + 12.5 = 405
(I0

A = 1000, I0
D = 1500). b) Without inventory holding capacity at the customers:

345 + 32.5 + 12.5 = 390 (I0
S = 2500, I0

C = 2000).

We note that in each time instant the quantity produced at the supplier is
shipped to the retailers, even if not needed, in order to always have zero
inventory levels at the supplier. Finally, the third row shows the case with
hS = 0 and hi = 0.1, ∀i. We note that, in order to always have zero inventory
levels at the retailers, the quantity delivered to each retailer in each day is
equal to the quantity consumed by the retailer per time unit.

3 Continuous Production and Consumption

In the previous section, we focused on the impact that inventory holding costs
had on delivery policies. We chose to work with a model in which deliveries
take place at discrete time instants t ∈ T = {1, 2, 3, 4}, i.e., at the beginning of
time periods [t, t+1), and consumption takes place afterwards. The model as-
sumes that (1) each vehicle performs exactly one delivery route during a time
period, and that (2) the exact timing of the delivery during a time period is
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Fig. 6. Equal vs unequal inventory holding costs: a) hS = hi = 0: 380 + 12.5 + 12.5
= 405 (I0

A = 1000, I0
D = 1500). b) hS = 0.1, hi = 0: 415 + 0 + 0 = 415 (I0

A = 1000,
I0

D = 1500). c) hS = 0, hi = 0.1: 420 + 0 + 0 = 420.

not important. Although this type of discrete time model is frequently used
for inventory routing problems, it is too restrictive for many environments,
for example environments in which customers use product continuously. In
these environments the timing of deliveries is important as the available stor-
age capacity, and thus the maximum delivery quantity, depends on the time
of delivery. If product usage rates and storage capacities vary significantly
among customers, then a mix of short and long routes may be inevitable, and
the “single delivery route per vehicle per period” assumption may no longer
be appropriate. In situations where there are customers with small storage
capacities and high usage rates that require one or more deliveries per time
period, the timing of such deliveries becomes important as the time of delivery
determines the available storage capacity.

In this section, we will concentrate on environments with continuous prod-
uct usage and, for convenience, we will ignore inventory holding costs.

We start by observing that when the number of vehicles is greater than
the number of customers and the storage capacity at each customer is larger
than the vehicle capacity, the problem is easy. Why? Because in that case, the
optimal distribution strategy is to dispatch a vehicle to a customer in such a
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SS

1

2

cS,1 c1,2

cS,2

C1 < Q

C2 > Q

Fig. 7. IRP environment with a single supplier and two customers.

way that the vehicle arrives at the customer right at the time the customer
is about to run out of product and to deliver an entire vehicle load. This
minimizes the number of deliveries to a customer over the planning horizon
and, at the same time, minimizes the distance traveled to do so.

As soon as the number of vehicles is smaller than the number of customers,
the distribution strategy described above may no longer be optimal, because
it may no longer be feasible; there may be a point in time when we need more
vehicles than are available. As soon as the storage capacities at customers
are smaller than the vehicle capacity a distribution strategy with only out-
and-back trips to customers may be feasible, but is almost guaranteed to
be non-optimal. We are not fully using the available vehicle capacity and
are therefore likely missing opportunities to reduce transportation costs. The
simplest example of such a situation involves two customers. Suppose two
customers are located next to each other, each with a storage capacity that
is half the size of the vehicle capacity. It is clear that it is advantageous to
deliver to both customers each time one of them is visited, as no extra costs
are incurred by doing so and the total number of visits is reduced.

The above discussion highlights the fact that storage capacities less than
the vehicle capacity cause the inventory routing problem to become signifi-
cantly more difficult. This complexity manifests itself in various ways. First,
it may be advantageous to visit more than one customer on a single route.
Deciding which customers to put together on route is non-trivial, among other
reasons because evaluating the distance traveled on a route involves solving
a traveling salesman problem. Second, because the available storage capacity
at customers changes over time, because of product usage, deliveries need to
be coordinated in time to be able to fully exploit available vehicle capacity.

Consider the distribution environment depicted in Figure 7, i.e., a single
supplier and two customers. Since C1 < Q, whenever a truck goes to customer
1 with a full load, at least Q − C1 of product is left after the delivery at
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customer 1. That leftover product can be used to satisfy the need for product
at customer 2. Is that needed? Is that cost effective? Suppose that the total
product usage over the planning horizon is U1 for customer 1 and U2 for
customer 2. To deliver U1 to customer 1, at least U1

C1
deliveries have to be made.

Therefore, at least U1
C1

(Q − C1) leftover product is available for delivery at
customer 2. If the leftover product is used to satisfy product need of customer
2, then Q

Q−C1
trips with leftover product are necessary to deliver a quantity

of Q to customer 2. Whenever leftover product is delivered to customer 2, an
additional cost of c12 + cS2 − cS1 is incurred. Therefore, the cost incurred to
deliver Q to customer 2 with leftover product from customer 1 is Q

Q−C1
(c12 +

cS2 − cS1). The cost incurred to deliver Q to customer 2 directly from the
supplier is 2cS2. Consequently, if Q

Q−C1
(c12 + cS2− cS1) < 2cS2, it is better to

use leftover product at customer 1 to satisfy the product need of customer 2.
For the remainder, assume that this is the case, i.e., Q

Q−C1
(c12 + cS2− cS1) <

2cS2. Two cases have to be considered: (1) the leftover product is sufficient
to satisfy customer 2’s needs, and (2) the leftover product is insufficient to
satisfy customer 2’s needs.
Case 1 : If U1

C1
(Q−C1) ≥ U2, then a cost of at least U2

Q−C1
(cS1 + c12 + cS2) +

U1− U2
Q−C1

C1

C1
2cS1 is incurred.

Case 2 : If U1
C1

(Q − C1) < U2, then a cost of at least U1
C1

(cS1 + c12 + cS2) +
U2− U1

C1
(Q−C1)

Q 2cS2 is incurred.
Note that the analysis above, although insightful, only considers the stor-

age capacities at the customers; it ignores the timing of deliveries. It is not at
all guaranteed that the suggested delivery scheme can be executed in practice
as the quantity that can be delivered to a customer depends on the time of de-
livery. This reflects the intricate and complex relationship between customer
usage rates and delivery route travel times. Thus, the analysis only provides
a lower bound on the delivery costs incurred. A detailed discussion on com-
puting lower bounds for inventory routing problems can be found in Song and
Savelsbergh [53].

Two factors other than limited storage capacity at customers impact the
complexity of the inventory routing problem: the ratio of the usage rate and
storage capacity at a customer, i.e., ui

Ci
, which defines the maximum time

between two consecutive visits to a customer, and, in situations with a fi-
nite planning horizon, the ratio of initial inventory and product use over the
planning period, i.e., I0

i

Hui
, which represents the percentage of total product

consumed during the planning horizon that can be served from initial inven-
tory. Typically, the need to make frequent deliveries to customers increases the
complexity, especially when these customers have limited storage capacities.

We have mentioned a few times already in this section that the maximum
quantity that can be delivered to a customer depends on the time of delivery.
Consequently, the selection of actual delivery times, between the earliest and
latest delivery times, will affect the total volume deliverable on a trip. Because
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Fig. 8. Maximum delivery quantities at two customers as a function of delivery
times.

the customer consumes product over time, the later a vehicle arrives, the
more inventory holding capacity is available and the more product can be
delivered. On the other hand, delivery is typically not instantaneous, but
depends on the size of the delivery. Furthermore, when a vehicle arrives later
at a customer, less time may be available for making a delivery due to delivery
time restrictions of customers to be visited later on the trip. These two dueling
effects make determining an optimal delivery schedule for a given sequence of
customer visits on a trip not as easy as it may seem at first glance.

As an example consider the situation depicted in Figure 8. It shows the
maximum delivery quantity as a function of delivery time for two consecutive
customers on a route; the first part of the graph, between times 8 and 22,
relates to the first customer and the second part of the graph, between times
23 and 37, relates to the second customer. The earliest delivery time for the
first customer is 8 and the latest delivery time is 22. The earliest delivery time
for the second customer is 23 and the latest delivery time is 37. The slope of
the line between times 8 and 18 is 0.8, the usage rate of the first customer,
and the slope of the line between times 23 and 28 is 0.4, the usage rate of
the second customer. The slope of the lines between times 18 and 22 and
28 and 37 is -1, corresponding to the rate at which product is discharged at
the customers. The travel time between the first and second customer is 5.
Initially, the amount of product that can be delivered to a customer increases,
because product is consumed and the available storage capacity increases. The
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Fig. 9. Deliver as late as possible.

amount of product that can be delivered reaches a peak when the discharge
time plus the travel time will be just enough to reach the next customer in
time to make a delivery there. After the peak, the amount of product that
can be delivered to a customer decreases with the discharge rate. The peak
for the first customer is at time 18, since 18 plus 14 (the discharge time) plus
5 (the travel time to the second customer) is 37 (the latest delivery time at
the second customer). We want to select the delivery times that result in the
maximum total delivery quantity at both customers. Below we consider a few
options. First, we consider delivering to both customers as late as possible.
This situation is shown in Figure 9. The total quantity delivered is 11 (10
at the first customer and 1 at the second customer). Second, we consider
delivering the maximum possible to the customer with the highest usage rate.
This situation is shown in Figure 10. The total quantity delivered is 15. Finally,
in Figure 11 we show the optimal delivery times, i.e., deliver 10 units at the
first customer at time 13 and deliver 10 units at the second customer at time
28 (13 + 10 + 5) for a total quantity of 20.

A detailed discussion of how to maximize the delivery volume on a route
in the context of inventory routing problems can be found in Campbell and
Savelsbergh [24]. This simple example illustrates that few decisions are easy
in inventory routing problems.
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Fig. 10. Deliver maximum at the customer with highest usage rate.

4 The Literature

In this section, we briefly summarize the literature on IRPs. There are several
surveys of inventory routing problems, and we point the user to these for
more detailed information [21, 30, 34]. There is such a variety of problems and
solution approaches that even structuring a literature review is challenging.
We have adopted the following scheme. We start with the pioneering papers in
the eighties that generated the initial interest in inventory routing problems.
Next, we group papers according to two basic characteristics: whether or not
inventory costs are considered in the objective, and whether or not product
usage is deterministic or stochastic. Finally, we mention a few papers that
are related, but do not clearly belong to one of the four categories that we
created.

As mentioned, the first papers on inventory routing problems appeared in
the nineteen eighties. These papers, in most cases, discuss and are inspired by
applications in which both inventory and distribution have to be considered.
For example, Bell et al. [9], Blumenfeld et al. [19], Burns et al. [20], Chien et
al. [29], Dror and Ball [32], Dror et al. [33], Federgruen and Zipkin [35], Fisher
et al. [36], Golden et al. [40], and Hall [41].

The four categories described next contain a more varied class of papers,
as the papers discuss applications, solution approaches, and worst-case and
asymptotic analysis.
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Fig. 11. Optimal delivery times.

We first consider papers covering inventory routing problems with deter-
ministic product usage in which inventory holding costs are considered in the
objective function. This category contains papers concerned with supplying
just a single retailer as well as papers concerned with supplying multiple re-
tailers. Starting with the paper by Speranza and Ukovich [54], in which the
single retailer case with given discrete shipping frequencies was introduced
and modeled, several papers have appeared studying computational complex-
ity, analysis of shipping policies, and heuristic and exact solution approaches,
e.g., Bertazzi et al. [11, 18], Bertazzi and Speranza [15, 16] and Speranza and
Ukovich [55]. The case of multiple retailers has been studied by Archetti et
al. [7], Bertazzi [10], Bertazzi et al. [13, 14, 17], Cousineau-Ouimet [31] and
Rabah and Mahmassani [49]. Bertazzi [10], Gallego and Simchi-Levi [37, 38],
and Hall [42] study the performance of direct shipping policies. Anily [6], Anily
and Federgruen [3, 4, 5], Chan et al. [26, 27] and Chan and Simchi-Levi [28]
analyze the asymptotic performance of certain policies. Other papers in this
category include Herer and Roundy [43] and Viswanathan and Mathur [57].

Next, we consider papers covering inventory routing problems with stochas-
tic product usage in which inventory holding costs are considered in the ob-
jective function. This category contains the work by of Kleywegt et al. [45, 46]
and the work of Minkoff [48] on Markov Decision Process models and solution
approaches.

Next, we consider papers covering inventory routing problems with de-
terministic product usage in which no inventory holding costs are considered
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in the objective function. This category contains a variety of papers. Savels-
bergh and Song [51] compute lower bounds on the optimal distribution costs.
Campbell and Savelsbergh [23, 24, 25] as well as Gaur and Fisher [39] study
time-indexed formulations. Jaillet et al. [44] and Trudeau and Dror [56] ana-
lyze d-day policies and use this analysis to develop rolling-horizon approaches.

Next, we consider papers covering inventory routing problems with stochas-
tic product usage in which no inventory holding costs are considered in the
objective function. This category contains the work by Adelman [1, 2] on price-
directed approaches and the work of Berman and Larson [12] on stochastic
dynamic programming.

Finally, we list papers that cannot clearly be associated with one of the
above categories. Campbell and Hardin [22] study periodic delivery policies.
Savelsbergh and Song [52] and Song and Savelsbergh [53] consider inventory
routing problems with continuous moves, i.e., where vehicles do not return
to a designated depot, but following multi-day tours visiting many supply
and demand points along the way. Bard et al. [8] consider satellite facilities
for temporary storage of product. Webb and Larson [58] study the strategic
inventory routing problem where the goal is to determine the fleet size neces-
sary to deliver a set of customers from a single depot. Reiman et al. [50] use
queueing control problems to model and analyze stochastic inventory routing
problems. Lau, Liu, Ono [47] combine ideas from local search and network
flows to solve inventory routing problems.

5 Conclusions

We have illustrated the trade-off between transportation and inventory hold-
ing costs, and the impact of inventory holding capacity and time-dependent
delivery quantities on distribution strategies. Our goal was to familiarize our
readers with the type of issues and challenges encountered when studying or
solving inventory routing problems. We hope these examples demonstrate the
richness of the class of inventory routing problems and the many opportunities
they offer for exciting high impact research. The summary of the literature is
a showcase of most of the work that has already been done in this area and
the interested reader should take the time to study these in more detail. It
will be a rewarding experience.
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Summary. This chapter presents an overview of the Period Vehicle Routing Prob-
lem, a generalization of the classic vehicle routing problem in which driver routes
are constructed over a period of time. We survey the evolution of the PVRP and
present a synopsis of modeling and solution methods, including classical heuristics,
metaheuristics, and mathematical programming based methods. We review three im-
portant variants of the problem: the PVRP with Time Windows, the Multi-Depot
PVRP, and the PVRP with Service Choice. We present case studies and highlight
related implementation issues, including metrics that quantify the operational com-
plexity of implementing periodic delivery routes. Finally, we discuss potential direc-
tions for future work in the area.

Key words: Vehicle routing; periodic distribution problems.

1 Introduction

With rising fuel costs and increased competitiveness among supply chains,
vehicle delivery operations have come under greater scrutiny. Particularly, in
periodic delivery operations, where deliveries are made to a set of customers
over multiple days, optimizing these repetitive operations can add up to sig-
nificant cost savings. Periodic deliveries occur in a wide range of applications,
including courier services, elevator maintenance and repair, vending machine
replenishment, the collection of waste and the delivery of interlibrary loan ma-
terial. These problems can be modeled as Period Vehicle Routing Problems

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 4, c© Springer Science+Business Media, LLC 2008
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(PVRP). The PVRP was introduced in the seminal paper by Beltrami and
Bodin in 1974 and has evolved into a significant body of work with several
exciting variants and applications arising in recent years.

The PVRP is a generalization of the classic vehicle routing problem in
which vehicle routes must be constructed over multiple days (we use “day”
as a general unit of time throughout this chapter). During each day within
the planning period, a fleet of capacitated vehicles travels along routes that
begin and end at a single depot. The underlying graph G=(N,A) is assumed
to be a complete network with known travel costs along the set of arcs, A. The
set of nodes, N , includes the depot and customers that are visited with pre-
determined frequency over the planning period. The objective of the PVRP
is to find a set of tours for each vehicle that minimizes total travel cost while
satisfying operational constraints (vehicle capacity and visit requirements).

Let D be the set of days, indexed d ∈ D, that constitute the planning
period. We define the following:

A schedule is a collection of days within the planning period in which
nodes receive service. Allocating a node to a schedule implies that
the node will receive service in every day of that schedule.

Denote the set of all schedules by S and index this set by s ∈ S. Each
schedule in S is fully described by a vector asd such that:

asd =
{

1 If day d ∈ D belongs in schedule s ∈ S
0 Otherwise (1)

The PVRP is defined as follows:

Given: A complete network graph G=(N,A) with known arc costs
cij , ∀(i, j) ∈ A; a planning period of |D| days indexed by d; a
depot node indexed i = 0; a set of customer nodes Nc = N\{0}
with each node i ∈ Nc having a total demand of Wi over the
planning period, and requiring a fixed number of visits fi; a set of
vehicles K each with capacity C; a set of schedules S.

Find: An allocation of customer nodes to schedules such that each
node is visited the required number of times; a routing of vehicles
for each day to visit the selected nodes during that day; with

Objective: Minimum cost of visiting the nodes.

From the above definition, it can be seen that PVRP involves three simulta-
neous decisions:

• Select a schedule from a candidate set of schedules for each node
• Assign a set of nodes to be visited by each vehicle on each day
• Route the vehicles for each day of the planning period

Note that in the classic VRP, only the last two decisions need to be made,
and over a single day only. In the PVRP, each node requires a number of visits
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fi during the planning period. Hence, for each node i ∈ Nc, the PVRP must
choose a schedule from a non-empty subset of candidate schedules Si ⊆ S
such that:

Si = {s ∈ S :
∑
d∈D

asd = fi}. (2)

Note that if |Si| = 0 for any i ∈ Nc, there is no feasible solution to the
problem, as no schedule can satisfy the visit requirements of node i. Further,
if |Si| = 1, ∀i ∈ Nc, each node has only one possible schedule that can satisfy
its visit requirement. In this case, the exact allocation of nodes to schedules
is known and the problem decomposes into |D| separate VRP problems.

Sometimes additional constraints may be imposed. Some formulations con-
strain the maximum length (distance or time) to a maximum length, L. In
the PVRP literature, it is assumed that a fraction 1/fi of the total demand
has to be delivered to customer i in each visit. Hence at each visit, a demand
of wi = Wi/fi is delivered.
The following decision variables are used in various formulations of the PVRP:

xd
ijk =

{
1 If vehicle k ∈ K traverses arc (i, j) ∈ A on day d ∈ D
0 Otherwise (3a)

ys
ik =

{
1 If vehicle k ∈ K visits node i ∈ Nc on schedule s ∈ S
0 Otherwise (3b)

Some formulations use aggregated versions of the above variables as follows:

x̃d
ik =

∑
j∈N

xd
ijk =

{
1 If vehicle k ∈ K visits node i ∈ Nc on day d ∈ D
0 Otherwise

(3c)

zs
i =
∑
k∈K

ys
ik =

{
1 If node i ∈ Nc is visited on schedule s ∈ S
0 Otherwise (3d)

Section 2 traces the evolution of the PVRP in the literature and the vari-
ous solution methods proposed for this problem. The above notation is used to
present some PVRP formulations in Section 2.2. Section 3 presents important
variants of the PVRP. Section 4 discusses some issues that arise in the imple-
mentation of the PVRP. We review papers that describe the implementation
of the PVRP in Section 4.1 and describe metrics that quantify operational
complexity in Section 4.2. Finally, Section 5 examines possible future research
directions for the PVRP.

2 Evolution of PVRP Models and Solution Methods

Figure 1 presents an overview of this section, in which we survey the de-
velopment of the PVRP from identification to definition to select literature
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Fig. 1. Evolution of models and solution methods for the PVRP.

regarding solution methods. In particular, we focus on two papers that define
the PVRP from different viewpoints – the Assignment Routing Problem that
emphasizes the difficulty of the assignment decision (as in Russell and Igo
[52]), and the Period Routing Problem that emphasizes the difficulty of the
related routing problem (as in Christofides and Beasley [16]). Two different
formulations of the PVRP are presented. Finally, we survey the literature that
led to the development of current solution methods for the PVRP.

2.1 Motivating Problems

The first problem motivating the PVRP is introduced by Beltrami and Bodin
[8] for assigning hoist compactor trucks in municipal waste collection. The
authors describe a situation in which garbage sites need to be visited with
different frequencies. They propose heuristics to solve the problem, but do
not formulate or define the problem formally; however, they do include a
good exposition of the difficulty of the PVRP, as compared to the standard
VRP.

The example in Beltrami and Bodin [8] has nodes of two types: those
demanding service three days a week and those demanding service six days a
week. They allow two schedules MWF (Monday-Wednesday-Friday visits) and
TRS (Tuesday-Thursday-Saturday) that visit nodes at the same frequency of
three visits per week. Nodes with desired frequency of fi = 6 are duplicated;
each node and its copy are assigned to different three-day schedules. Thus
three different service options are created while operating only two schedules.

In the paper, Beltrami and Bodin adopt a cluster-first, route-second ap-
proach since the agency operating the vehicles “decided a priori the day as-
signment for each site”. After such an a priori assignment, the nodes to be
visited on each day of the week are known and independent VRPs are solved
for each day of the week. In fact, given this assignment for the problem in
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Beltrami and Bodin [8], only two VRPs need to be solved – one for the MWF
days and another for the TRS days.

In Foster and Ryan [27], the authors discuss a periodic variant of the Ve-
hicle Scheduling Problem (VSP) that does not address the issues of schedules
and visit frequency directly. This periodic VSP is found as the first stage of
many cluster-first, route-second approaches to the PVRP. Foster and Ryan en-
vision the VSP as a vehicle routing problem with some additional constraints
such as: visiting customers on specified days; evenly spaced deliveries during
the planning period; balancing the load between multiple visits to the same
customer; routes capacitated by a maximum route duration; and prevent-
ing extreme variations in the fleet size. The authors handle these constraints
by designing suitably restricted “feasible routes”, designed using a modified
shortest path algorithm.

2.2 Defining the PVRP

Russell and Igo [52] provide a formal definition of the PVRP as the “Assign-
ment Routing Problem”. Here the authors specifically examine the difficulties
of choosing a schedule for each node together with solving the routing problem,
which is not directly addressed in the first two papers. The authors consider
the Assignment Routing Problem as a mixed integer problem, imposing con-
straints on the vehicle capacity as well as the maximum duration of any route.
Additionally, each node has a set of permissible “day assignments” which is
similar in spirit to the set Si defined in eq. (2). The authors do not formulate
the problem or attempt to solve it optimally, but propose three heuristics in-
stead. The viewpoint presented in Russell and Igo [52] is that the problem is
one of picking a valid day combination for a specified service frequency.

Christofides and Beasley [16] present the first formulation of the PVRP.
They define the PVRP as the problem of designing a set of routes for each
day of a given |D|−day planning period to meet the required customer visit
frequency. They present an integer programming formulation of the PVRP
using two sets of decision variables – one for the assignment of customers
to schedules, and another for the routing of a given vehicle on a given day.
The formulation follows the VRP formulation of Golden et al. [35]. Their
formulation is presented below with modified notation. They use three decision
variables: xd

ijk defined in eq. (3a), zs
i defined in eq. (3d), and a binary aggregate

decision variable vd
i which takes value 1 if node i ∈ Nc is visited on day d ∈ D,

and value 0 otherwise.
The formulation for the PVRP by Christofides and Beasley [16] is:

min
∑
d∈D

∑
(i,j)∈A

∑
k∈K

cijx
d
ijk (4a)

subject to
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s∈Si

zs
i = 1 ∀i ∈ Nc (4b)

vd
i =
∑
s∈Si

zs
i asd ∀d ∈ D; i ∈ Nc (4c)

∑
k∈K

xd
ijk ≤

vd
i + vd

j

2
∀d ∈ D; i, j ∈ Nc(i �= j) (4d)

∑
j∈Nc

xd
ijk =

∑
j∈Nc

xd
jik ∀i ∈ N ; k ∈ K; d ∈ D (4e)

∑
k∈K

∑
i∈N

xd
ijk =

{
vd

j ∀j ∈ Nc

|K| j = 0
∀d ∈ D (4f)

∑
i,j∈Q

xd
ijk ≤ |Q| − 1 ∀Q ⊆ Nc; k ∈ K; d ∈ D (4g)

∑
j∈Nc

xd
0jk ≤ 1 k ∈ K; d ∈ D (4h)

∑
i∈Nc

wi

∑
j∈N

xd
ijk ≤ C ∀k ∈ K; d ∈ D (4i)

∑
(i,j)∈A

cijx
d
ijk ≤ L ∀k ∈ K; d ∈ D (4j)

zs
i ∈ {0, 1} ∀i ∈ Nc; s ∈ Si (4k)

xd
ijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K; d ∈ D (4l)

The objective function (4a) minimizes the arc travel costs. Constraints
(4b) ensure that a feasible schedule is chosen for each node, while constraints
(4c) define vd

i on the days within the assigned schedule. Constraints (4d) allow
arcs only between customers assigned for delivery on day d ∈ D. Constraints
(4e) are the flow conservation constraints. Constraints (4f) ensure that nodes
are included on routes for days within their assigned schedule. Constraints
(4g) are the subtour elimination constraints. Constraints (4h) ensure that
a vehicle is used no more than once a day. Constraints (4i) and (4j) are
the physical capacity constraints and route length constraints, respectively.
Finally, constraints (4k) and (4l) define the sets of variables.

Christofides and Beasley [16] do not attempt to solve the PVRP to opti-
mality given the complexity of the problem. They propose the use of a median
relaxation to approximate the PVRP cost as the sum of the radial distances
between nodes and the depot; however, Christofides and Eilon [17] show that
such a metric is a good estimator of the total distance for problem instances
which have |N | � κ2, where κ is the average value of the maximum number
of customers on a route.

Tan and Beasley [56] summarize the results of Beltrami and Bodin [8],
Russell and Igo [52], and Christofides and Beasley [16] and propose a problem
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that can be solved more simply than the PVRP itself. Their formulation is of
interest because it attempts to circumvent the computationally difficult rout-
ing constraints. The authors use a simplified representation of the Fisher and
Jaikumar [26] VRP formulation that does not explicitly specify the routing
constraints.

Tan and Beasley define a cost measure θikd that indicates the distance
or cost of visiting node i ∈ Nc with vehicle k ∈ K on day d ∈ D. In their
formulation, they use the decision variables x̃d

ik defined in Equation (3c) and
zs

i defined in Equation (3d). They formulate the PVRP as:

min
∑
i∈Nc

∑
k∈K

∑
d∈D

θikdx̃d
ik (5a)

subject to∑
s∈Si

zs
i = 1 ∀i ∈ Nc (5b)

∑
k∈K

x̃d
ik =

∑
s∈Si

asdz
s
i ∀i ∈ Nc, d ∈ D (5c)

∑
i∈Nc

wix̃
d
ik ≤ C ∀k ∈ K, d ∈ D (5d)

x̃d
ik ∈ {0, 1} ∀i ∈ Nc, k ∈ K, d ∈ D (5e)
zs

i ∈ {0, 1} ∀i ∈ Nc, s ∈ Si (5f)

The objective function (5a) minimizes the cost of service as specified by θikd.
Constraints (5b) assign each node to one schedule. Constraints (5c) ensure
that vehicles are routed on the appropriate day to visit the corresponding
schedule. Constraints (5d) ensure that assignments to vehicles do not violate
capacity restrictions. Constraints (5e) and (5f) define the binary assignment
variables. The above model describes a problem that is clearly more complex
than a multi-day VRP assignment, as constraints (5b) and (5c) do not allow
the problem to be decomposed by days.

Given the difficulty of solving this problem, Tan and Beasley suggest that
the assignment of nodes to vehicles be neglected to reduce the size of the
problem. They make the decision of allocating nodes to days in the first phase
and the routing decision for each day in the second phase. They propose an
aggregated cost measure, Θd

i , which represents the distance cost of visiting
node i ∈ Nc by any vehicle route on day d ∈ D. They solve an assignment
problem, assigning nodes to days and ensuring that the total demand in each
day does not exceed the total vehicle capacity (C · |K|). The objective of the
assignment problem is to minimize the distance cost of traveling between the
nodes. Their modified formulation is as follows:

min
∑
i∈Nc

∑
d∈D

∑
s∈Si

Θd
i asdz

s
i (6a)
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subject to∑
s∈Si

zs
i = 1 ∀i ∈ Nc (6b)

∑
i∈Nc

∑
s∈Si

wiasdz
s
i ≤ C · |K| ∀d ∈ D (6c)

zs
i ∈ {0, 1} ∀i ∈ Nc, s ∈ Si (6d)

The objective function (6a) minimizes the cost of routing as measured by Θd
i .

Constraints (6b) assign each node to one schedule. Constraints (6c) ensure
that the assignment does not exceed the total capacity available on any given
day. Constraints (6d) define the binary assignment variables. After this stage
of the problem, they solve |D| independent VRPs for each day d ∈ D. This
method depends heavily on evaluating the contribution matrix Θd

i correctly.
Unfortunately, evaluating Θd

i accurately requires solving VRPs for all possible
route and day combinations for each node i ∈ Nc.

In summary, two viewpoints have emerged in defining the PVRP: Russell
and Igo [52] and Tan and Beasley [56] approach the problem as an extension of
the assignment problem with a routing component; Christofides and Beasley
[16] formulate the PVRP as a routing problem with a selection decision in-
volved. In the following sections, we review solution methods based on these
two viewpoints.

2.3 Solution Methods

Two-phase solution methods similar to that of Beltrami and Bodin [8] are
commonly found in early heuristics for the PVRP. Recent PVRP literature
has focused on metaheuristic methods of solving the problem that can escape
the trap of local optimality that plagues conventional heuristics. In this sec-
tion, we review the classical heuristics, the metaheuristics, as well as recent
mathematical programming based approaches to solving the PVRP.

Classical Heuristics

Russell and Igo [52] present three heuristics to solve the PVRP: an improve-
ment heuristic, and two construction heuristics. The first heuristic involves
creating route clusters for all days using nodes whose day assignments are
fixed, i.e. all nodes i ∈ Nc such that |Si| = 1. In the refuse-collection ap-
plication described in their paper, these are nodes that require daily service
and nodes that require service on fixed days. Then, the remaining unallo-
cated nodes are assigned in descending order of required visit frequency. This
allocation of nodes to days is made according to metrics that relate average
distance of the node to route clusters. After initial construction, an improve-
ment phase attempts to reassign nodes to other schedules. The authors note
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that the heuristic does not perform well as it is dependent on problem-specific
metrics to construct routes and suggest its use only to obtain feasible starting
solutions for other heuristics.

Their second heuristic is an improvement heuristic that reoptimizes the al-
location and routing of nodes. It is a modified version of the MTOUR heuristic
for the VRP (Russell [50]) which is itself based on a similar heuristic for the
TSP (Lin and Kernighan [43]).

The third heuristic is an implementation of the Clarke-Wright savings
method, similar to that of Beltrami and Bodin [8], with additional conditions
to ensure that any proposed savings move results in a feasible allocation of
nodes to days. For large problem instances (|N | > 700 nodes), savings moves
are only considered within restricted neighborhoods of nodes, thus reducing
computational effort.

Christofides and Beasley note that even their proposed relaxations of the
PVRP (into a median problem and a periodic TSP) are hard. They do not
attempt to solve either the relaxations or the PVRP optimally. They propose
a two-stage heuristic method: first, they allocate nodes to days; second, they
attempt node exchanges with the aim of minimizing the vehicle routing costs.
An interesting point in their approach is that they have a merit order of nodes
according to which they make initial allocations. For instance, nodes with fixed
delivery combinations are allocated first and the remaining nodes are allocated
in descending order of demand per visit. The idea is to reduce the possibility
of infeasible solutions. This general heuristic is modified to provide solutions
to the PVRP, the median problem and the periodic TSP. Routes developed
from the relaxations tend to be inferior to the PVRP solutions given directly
by their heuristic. Between the two relaxations, the routes developed from the
periodic TSP relaxation tend to be superior to the routes developed from the
median relaxation.

As discussed in Section 2.2, Tan and Beasley [56] also solve the PVRP in
two stages: First, they determine the allocation of nodes to schedules using
an assignment problem; Second, they solve independent VRPs for each of the
days. It is clear that the performance of the method depends crucially on
the cost measure Θd

i . While it is not desirable to find the cost measure by
evaluating routes, the measure must still be a reasonable representation of
the actual cost of serving routes on days associated with the schedule. The
authors propose to do this by finding |K| · |D| seed points and associating each
seed point with a day. They create a measure to determine the desirability of
associating each seed point with a given day and solve an assignment problem
to find the best possible allocation so that there are |K| seed points in each
day.

Russell and Gribbin [51] propose a solution method that consists of an
initial route design using a network approximation, followed by three im-
provement phases. Their network flow model is similar to the formulation
of Tan and Beasley, except that it has only one seed point for each day
rather than |K| seed points. As before, the cost metric is difficult to calculate;
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however, Russell and Gribbin make a simple approximation of this cost met-
ric as a sum of insertion costs into the round-trip tour between the depot
and the appropriate seed points. This approximation considerably speeds up
the construction phase. The first improvement heuristic uses the interchange
method of Christofides and Beasley [16] to make improvements in individual
tours. The second heuristic applies this interchange idea at the vehicle routing
level. Finally, the authors propose a binary integer program to further refine
the proposed solution. This phase assesses the possible reassignment of nodes
between delivery combinations; however, the authors state that only slight
improvements are observed in this phase.

Gaudioso and Paletta [31] suggest an alternative heuristic for the tactical
problem of minimizing fleet size, rather than the operational problem of re-
ducing distance. They impose constraints on the maximum route duration as
well as the vehicle capacity. Gaudioso and Paletta do not impose a schedule
set from which to choose day combinations, but instead place restrictions on
the minimum and maximum number of days between visits for each node.
This tactical version of the PVRP is shown to be NP−hard by reduction
to the bin packing problem. Their heuristic adopts a construction phase that
allocates nodes to delivery combinations one at a time. The authors propose
a number of improvement schemes to post-process the routes constructed by
their method. They note that the distance cost of their solution is usually
greater than other PVRP solution methods for two possible reasons: one,
their objective is to minimize fleet size and not distance; and, two, they use
a simple algorithm to solve the embedded TSP to optimize the routes after
nodes have been allocated to delivery combinations.

According to the classification scheme of Cordeau et al. [20], all of these
heuristics are construction-improvement, single-thread (no parallel process-
ing).

Metaheuristics

Chao et al. [14] develop a special-purpose, metaheuristic method to solve
the PVRP. This method generates an initial feasible solution to the PVRP
and then iteratively uses improvement steps to progress towards the optimal
solution to the problem. The initial feasible solution is obtained using the
formulation of Christofides and Beasley [16]. They solve a linear relaxation of
the assignment problem of allocating nodes to delivery days, while minimizing
the maximum load carried in any given day. While the resulting solution may
not be capacity feasible, it is still useful as an initial starting point.

In the next stage of the metaheuristic, the authors use the concept of fea-
sible schedules (defining node-specific feasible sets Si) like most of the PVRP
literature. Attempts are made to improve the solution by moving a node from
one schedule to another. If the proposed movement is valid for that node (i.e.
moving node i to a schedule s such that s ∈ Si) and if the move reduces
the total distance, then the movement is immediately accepted. If there is an
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increase in the total distance, then the move is accepted if it is less than a
certain threshold value. Otherwise, the node is not moved from its initial al-
location. This process is continued and the threshold gradually reduced. The
iterations terminate when it is no longer possible to make movements with
positive cost savings. Chao et al. [14] also describe methods to improve this
heuristic through capacity relaxation and post processing.

In terms of the metaheuristic classification scheme of Cordeau et al. [20],
this metaheuristic is construction-improvement, single thread (no parallel pro-
cessing). With respect to the Blum-Roli classification (see Blum and Roli [10]),
it is single-point search (i.e. from a single trial solution and not a population of
solutions), static objective function, single neighborhood, memoryless method.

Cordeau et al. [21] present a Tabu search method for solving several dif-
ferent routing problems, including the PVRP. Their Tabu search method has
been modified to use specific insertion and route improvement techniques de-
veloped by the authors; however, there is no significant change to the core of
the Tabu search technique that is specific to the PVRP.

The objective function is a weighted combination of travel cost and over-
capacity penalties (thus intermediate solutions may violate capacity and time
constraints). The method begins at a feasible solution and iterates by ex-
perimenting with moves (insertion of a node into a different schedule). The
insertion process used is the GENI procedure (least-cost insertion) of Gen-
dreau et al. [33]. The GENI procedure can also be applied to choose a node
for removal from its current route. No additional reoptimization of the tour is
required as 4−opt route modifications are incorporated into the GENI proce-
dure. The neighborhood of possible moves is the set of all solutions obtained
by moving any customer i to another route and to any other schedule in its
feasible set Si. Initially, the method permits some infeasible movements that
may cause violations of the capacity and route duration constraints.

In order to diversify the exploration of the solution space, the authors uti-
lize a diversification stage in the Tabu search. This stage adds an additional
penalty to the objective value of solutions that contain frequently added move-
ments. The authors do not employ the final intensification stage that performs
detailed exploration of the neighborhood of the best-known solutions. The
overall method is seen to produce good solutions for the PVRP, improving on
or producing comparable results to those of Chao et al. [14].

This metaheuristic can be classified as a single-construction, multiple im-
provement thread heuristic (Cordeau et al. [20]). The Blum-Roli classifica-
tion is single-point search, dynamic objective function, single neighborhood,
memory-usage method.

Drummond et al. [23] propose a metaheuristic based on a combination of
genetic algorithm concepts and local search heuristics. This metaheuristic is
a parallel-thread population mechanism heuristic (Cordeau et al. [20]). The
Blum-Roli classification is population-based search, static objective function,
single neighborhood, memory-usage method. Their method is an implementa-
tion of genetic algorithms (see Baker and Ayechew [5] and Reeves and Rowe
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[48] for an overview) on a parallel computing framework together with modi-
fied local search methods.

The chromosome used specifies the days on which each customer is visited
and the corresponding demand accumulation at each customer location on
each day. The fitness level of each chromosome corresponds to the PVRP
travel cost, and is calculated by solving a set of VRPs for each day using
a Clarke and Wright [19] savings method. Subsequently standard crossover
and mutation operations are used to create a diverse, evolving population of
solutions.

Although their method is computationally intensive, the proposed parallel
computing version converges rapidly. Further, the authors claim that their
method is fairly robust for a broad range of heuristic parameters and may not
require exhaustive tuning. They present a numerical study, comparing their
solutions to those of Cordeau et al. [21], providing improved solutions to some
problem instances. The authors discuss the implications of simultaneously
evolving different groups of populations due to the parallel computational
framework and the possibility of “migrating” solutions between different pop-
ulations.

All three papers show numerical studies on a set of 20 test cases that are
commonly used in the PVRP literature, shown in Table 1. Instances 1-10,
from Christofides and Beasley [16], are based on VRP instances in Eilon et al.
[24], with visit frequencies determined by demand at the nodes. Instance 11,
from Russell and Igo [52], represents aggregated data from a industrial refuse
application. Instances 12 and 13 are generated by Russell and Gribbin [51],
with instance 12 drawn from a refuse collection application and instance 13
from a fast food application. Instances 14 - 20 are created by Chao et al. [14]
according to two location distribution models: windmill and Star of David.
Tables 1 and 2 summarize the relative performance of these metaheuristics in
terms of solution time and relative solution quality.

In Table 1, the first column is the PVRP instance number. Columns 2-5
are characteristics of the test instance: the number of nodes; the number of
vehicles; the number of days; and the vehicle capacity, respectively. Column
6, labeled CGW, shows the solution time for the Chao et al. [14] heuristic.
Column 7 and 8, labeled CGL(T*) and CGL(T), shows the solution time for
the Cordeau et al. [21] heuristic to find the best solution, and the overall
solution time, respectively. Column 9, labeled DOV, shows the solution time
for the parallel computing version of the Drummond et al. [23] heuristic.
It is difficult to make direct comparisons of computing time as the authors
use different computing software and hardware. Blank cells indicate that no
solution is reported for that instance and metaheuristic.

Table 2 compares the objective value of the best solution obtained from
the three metaheuristics with the values obtained from the classical heuris-
tics. Column 1 refers to the same instance numbers as Table 1. Columns 2-4,
labeled CB, TB, and RG, list the objective values obtained using Christofides
and Beasley [16], Tan and Beasley [56], and Russell and Gribbin [51] respec-
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Table 1. Comparison of solution times (in minutes) for PVRP metaheuristics.

Instance |N | |K| |D| C CGW CGL(T*) CGL(T) DOV

1 50 3 2 160 1.1 0.91 3.39
2 50 3 5 160 6.8 0.6 4.06 0.61
3 50 1 5 160 0.6 3.18 3.73 0.09
4 75 6 5 140 7.7 4.74 5.19 1.76
5 75 1 10 140 5.4 7.46 7.48 2.77
6 75 1 10 140 3 6.87 7.84 0.27
7 100 4 2 200 5.5 6.6 7.63 6.04
8 100 5 5 200 13.5 8.97 10.7 10.11
9 100 1 8 200 4.6 6.7 10.03 3.39
10 100 4 5 200 14.7 5.57 9.68 15.84
11 126 4 5 235 205.4 9.72 14.17 23.59
12 163 3 5 140 11.9 11.51 18.37 97.41
13 417 9 7 2000 33.7 57.74 59.98 2.82
14 20 2 4 20 0.2 0.01 1.15 0.07
15 38 2 4 30 0.5 0.04 2.58 0.34
16 56 2 4 40 0.3 0.34 4.28 1.45
17 40 4 4 20 5.3 0.07 3.01 0.57
18 76 4 4 30 11.1 4.84 6.46 3.59
19 112 4 4 40 60.6 9.08 11.9 20.09
20 184 4 4 60 150.5 6.34 23.44 90.73

tively. Columns 5-7, labeled CGW, CGL, and DOV, list the objective values
obtained using Chao et al. [14], Cordeau et al. [21], and Drummond et al.
[23] respectively. As before, a blank cell indicates that no data is available
for that instance-heuristic pair. Solution methods based on the metaheuristic
approach produce the best known results for the PVRP. This is expected,
as metaheuristics have been proven to be particularly effective for VRP-like
problems (see Gendreau et al. [34] for an overview of metaheuristics for the
VRP).

Mathematical Programming Based Approaches

Francis et al. [29] develop an exact solution method based on Lagrangian
relaxation of an integer programming formulation of the PVRP. We present
this formulation in Section 3.3. Although this is a formulation for an extended
problem, it contains the PVRP as a special case. Their formulation is a multi-
dimensional extension of Fisher and Jaikumar [26] and contains two sets of
decisions variables: xd

ijk defined in eq. (3a) and ys
ik defined in eq. (3b).

The authors show that the dimensions of the problem can be reduced
when the set of schedules S is such that one schedule contains all days in the
planning period (a “daily” schedule) and all other schedules are disjoint from
each other such that no day occurs in more than one schedule (besides the
daily schedule). Under these conditions, there are at most |S| − 1 different
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Table 2. Relative performance of heuristic techniques on the PVRP test set.

Instance CB TB RG CGW CGL DOV

1 547.4 537.3 524.6 524.6
2 1,443.1 1,481.3 1,355.4 1,337.2 1,330.1 1,291.1
3 546.7 524.6 524.6 533.9
4 843.9 867.8 860.9 837.9 871.7
5 2,187.3 2,192.5 2,141.3 2,089.0 2,061.4 2,089.3
6 938.2 881.1 840.3 770.8
7 839.2 833.6 832.0 829.4 844.7
8 2,151.3 2,281.8 2,108.3 2,075.1 2,054.9 2,113.0
9 875.0 829.9 829.5 836.7
10 1,674.0 1,833.7 1,638.5 1,633.2 1,630.0 1,660.9
11 847.3 878.5 820.3 817.6 775.9
12 1,312.0 1,237.4 1,239.6 1,215.4
13 3,638.1 3,629.8 3,602.8 4,604.7
14 954.8 954.8 864.1
15 1,862.6 1,862.6 1,792.1
16 2,875.2 2,875.2 2,749.7
17 1,614.4 1,597.8 1,613.7
18 3,217.7 3,159.2 3,143.2
19 4,846.5 4,902.6 4,792.2
20 8,367.4 8,367.4 8,299.7

routes for each vehicle. Further, the dimension on the routing variables can
be reduced from the full set of days d ∈ D to a reduced set of representative
days, one for each schedule in the set S. Their Lagrangian relaxation phase
removes the constraints that link the two sets of decision variables, and the
problem decomposes into a capacitated assignment subproblem and a number
of prize-collecting traveling salesman subproblems. Any remaining gaps are
closed using a branch-and-bound phase. A heuristic variation of this approach
truncates the branch-and-bound phase within δ% of the optimal. Using this
variation, problem instances with up to 50 nodes are solved to within δ =
2% of optimality. This provides the first known exact solution method, a
heuristic method with a bounded gap, and a lower bound for the PVRP class
of problems.

Mourgaya and Vanderbeck [45] solve a tactical version of the PVRP in
which visit schedules and customer assignments to vehicles are solved simul-
taneously. The sequencing of customers within vehicle routes is determined
in an operational problem. The authors consider two objectives: a “workload
balancing” objective that ensures an equal distribution of customers among
vehicles and a “regionalization” objective that clusters customers geographi-
cally as a proxy for tour length (similar in spirit to the tour length estimation
approach taken by Tan and Beasley [56]). Focusing solely on the tactical prob-
lem facilitates the solution of larger problem instances.
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The authors use the term “scenarios” to denote sets of schedule options.
Customers are assigned to a scenario that is feasible given their visit require-
ments. Their formulation of the tactical PVRP uses a binary decision variable,
X̂d

ij which equals 1 if nodes i ∈ Nc and j ∈ Nc are visited by the same vehicle
on day d ∈ D. The problem can then be written as follows:

min
∑
d∈D

∑
i∈Nc

∑
j∈Nc

cijX̂
d
ij (7a)

subject to ∑
s∈Si

zs
i ≥ 1 ∀i ∈ Nc (7b)

∑
k∈K

x̃d
ik −

∑
s∈Si

asdz
s
i = 0 ∀i ∈ Nc; d ∈ D (7c)

x̃d
ik + x̃d

jk − X̂d
ij ≥ 1 ∀i ∈ Nc; j ∈ Nc; d ∈ D; k ∈ K (7d)

∑
i∈Nc

wix̃
d
ik ≥ C ∀k ∈ K; d ∈ D (7e)

x̃d
ik ∈ {0, 1} ∀i ∈ Nc; k ∈ K; d ∈ D (7f)

X̂d
ij ∈ {0, 1} ∀i ∈ Nc; j ∈ Nc; d ∈ D (7g)

zs
i ∈ {0, 1} ∀i ∈ Nc; s ∈ S (7h)

The objective function (7a) is an estimate of the travel cost (the authors do
not specify how they compute the measure cij). Constraints (7b) ensure that
each node is assigned to a feasible scenario. Constraints (7c) link the scenario
assignment and vehicle visit variables. Constraints (7d) check if two nodes are
visited by the same vehicle. Constraints (7e) are vehicle capacity constraints.
Finally, constraints (7f)-(7h) are variable definition constraints.

The authors note that this formulation suffers from a weak linear pro-
gramming relaxation. Also, as has been noted by Tan and Beasley [56], the
value of such a formulation depends greatly on being able to estimate the cost
measure accurately. To circumvent both these problems, the authors present a
Dantzig-Wolfe reformulation of the problem where the decisions are assigning
scenarios to customers and customers to “clusters” (sets of customers to be
visited together on a given day), thus ignoring assignments of customers to
specific vehicles.

This reformulated problem can be solved using a column generation
method. The objective is to minimize the cost of serving chosen clusters,
where the cost of serving a particular cluster is determined by a pricing sub-
problem. The pricing subproblem, used to identify suitable clusters, includes
constraints (7d) and (7e) and is hence hard to solve precisely. Simple heuris-
tics are used to generate columns at each iteration, and the subproblems are
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Fig. 2. Variants of the PVRP.

solved either exactly or through heuristics. The heuristics used for creating
these subproblems can thus be tailored to achieve balanced workloads for
all clusters. On the other hand, the minimum cost objective function tends
to favor denser clusters, hence satisfying the balancing and regionalization
objectives at the same time.

The authors report gaps of 14%-30% on average, depending on the heuris-
tics used. More importantly, they present a first look at the difficulty of mod-
eling and optimizing measures other than travel cost in the PVRP setting.
The authors also comment on the poor performance of Lagrangian bounds for
the tactical PVRP, echoing similar statements by Francis et al. [29] on the
poor performance of the Lagrangian lower bound for the PVRP in general.

To summarize, the PVRP literature relating to solution methods recog-
nizes that the problem is computationally hard. Research in this area has
focused on heuristics for the PVRP. Of the heuristics reviewed, the classi-
cal heuristics tend to solve the assignment and routing decisions sequentially.
More recent work has focused on metaheuristics and mathematical program-
ming based approaches, recognizing the need to take an integrated approach
to the PVRP problems.

3 PVRP Variants

Figure 2 outlines the literature relating to three important PVRP variants.
We review these variants in this section. First, Section 3.1 reviews the multi-
depot version of the PVRP (MDPVRP), in which periodic deliveries are made
using a fleet of vehicles that are based across a number of depots. Also notable
is the existence of a similar problem, the PVRP with Intermediate Facilities
(PVRPIF), where the vehicles are based in a single depot, but capacity replen-
ishment is possible at points along the routes. Second, Section 3.2 examines
the PVRP with Time Window constraints (PVRPTW), in which customers
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may be visited only at certain times during the planning period. Finally, Sec-
tion 3.3 shows the PVRP with Service Choice (PVRP-SC) which extends the
PVRP to make visit frequency an endogenous decision of the problem.

All these variants have analogs in single-visit VRP models. The MDPVRP
has an analog in the Multi-Depot VRP (MDVRP). Incidentally, Cordeau et al.
[21] show that the MDVRP is a special case of the PVRP. The PVRPTW has
an analog in the well-studied VRPTW (Solomon [55]). Finally, the PVRP-SC
is similar to the class of problems called Vehicle Routing Problem with Profits
(which includes the Team Orienteering Problem of Chao et al. [15]) in which
the service frequency of a node can be 0 (not visited) or 1 (visited).

Note that there is currently no known dynamic variant of the PVRP in
the literature. The closest work is the Dynamic Multi-Period Routing Problem
(DMPRP) of Angelelli et al. [1]. The authors consider a distribution system in
which customer orders arise dynamically, and orders arising in a certain day
can be served either in the same day or the next. This model differs from the
PVRP as there is no periodicity in customer demand in the DMPRP model
– customers need to be visited only once during the planning period and a
single order triggers only a single visit.

3.1 MDPVRP

Cordeau et al. [21] present a formulation of the PVRP and show that the
Multi-Depot Vehicle Routing Problem (MDVRP) is a special case by associ-
ating depots with days. In their paper, Hadjiconstantinou and Baldacci [37]
combine the ideas of periodicity and multiple-depots, extending the PVRP to
include multiple depots. This greatly increases the difficulty of the resulting
problem as it involves the additional decisions of assigning vehicles to depots
as well as customer nodes to depots. Their Multi-Depot Period Vehicle Rout-
ing Problem (MDPVRP) is the problem of designing a set of routes for each
day of a given |D|−day planning period. Each route of day d ∈ D must be
executed by one of a homogenous fleet of |K| vehicles (service teams visit-
ing customers) based at a certain depot (i.e., it must start and finish at its
assigned depot). Their heuristic is as follows:

1. Assign each node to its nearest depot.
2. At each depot:

a) Arrange the nodes according to some chosen order (say, decreasing
visit frequency).

b) Using this ordered list, use least-cost insertion to add nodes to routes
such that their visit frequency fi is satisfied.

c) When all nodes have been assigned to feasible route combinations,
solve VRPs for each day of the planning period using Tabu search.

3. Attempt to improve the overall solution by interchanging customer routes
and/or assignments.
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The heuristic is repeated several times by changing the ordering rule in Step
2(a). This idea is similar to the ordering rule of Christofides and Beasley
[16]. Infeasible vehicle assignments (that violate the capacity constraints or
fleet size) are not permitted. Note that in solving the MDPVRP, the heuris-
tic assigns customers to be visited by particular depots, effectively defining
geographical “boundaries” or “service territories” for each depot.

The authors introduce the notion of changing the customer service levels as
defined by average frequency of visits (as in the PVRP), but do not incorporate
this decision into their model. Instead, they use this idea to develop a strategic
decision-making tool, solving the MDPVRP with different service frequency
combinations, and constructing cost-benefit tradeoff curves. While this limits
the number of service combinations that can be considered, this approach
yields good results for their problem instance. The authors present illustrative
tradeoff curves between increasing service level and rising travel costs and fleet
size.

The PVRP with Intermediate Facilities (PVRPIF) is similar to the MD-
PVRP. While Angelelli and Speranza [2] do not allow multiple vehicle depots,
they do use the idea of “drop-off points”, or intermediate facilities, at which
vehicle can stop along their vehicle routes, allowing them to replenish their
capacities. Vehicles start and end their routes at their own depots, but visit
these intermediate facilities along the way. Such problems arise in applica-
tions like waste collection with recycling facilities or goods collection with
warehouse facilities. The authors solve the resulting extended PVRP problem
using a Tabu search method.

3.2 PVRPTW

Cordeau et al. [22] extend the earlier work by Cordeau et al. [21] includ-
ing time-windows. Their method provides a Tabu search method for the
PVRPTW, which can be used to solve the VRPTW and MDVRPTW as
special cases (recall that Cordeau et al. [21] show that the VRP and the
MDVRP are special cases of the PVRP). The PVRPTW is the problem of
designing |K| different vehicle routes such that all customers are visited with
their desired service frequency over the planning period, and each visit lies
within a specified time interval. In order to solve this complex problem, the
authors modify the Tabu search heuristic presented in Cordeau et al. [21]. The
change to the heuristic is minor, principally requiring an additional penalty
term to be added to the objective function for violations of time window con-
straints. The authors also create a set of new instances for the PVRPTW
and MDVRPTW, and present numerical solutions, although the quality of
the solutions cannot be specifically gauged in the absence of optimal solutions
or lower bounds. The authors do provide a comparison of the performance of
their heuristic on the Solomon VRPTW test instances (Solomon [55]), where
it performs favorably when compared to the best known solution.
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3.3 PVRP-SC

Francis et al. [29] extend the PVRP to make visit frequency a decision of
the problem. The extended problem is called the PVRP with Service Choice
(PVRP-SC). This increases the difficulty of solving the problem in two ways:
first, there is the added complexity of determining the service frequency; sec-
ond, the vehicle capacity requirement when visiting a node also becomes a
decision of the model. We review the formulation of the PVRP-SC from Fran-
cis et al. [29]. Each schedule has an monetary benefit αs. A weight β ≥ 0
converts vehicle travel and stopping time into comparable costs in the objec-
tive function. Note that the demand accumulated between visits, ws

i , depends
on the demand of the node i ∈ Nc and the frequency of schedule s ∈ S,
but is approximated by the maximum accumulation between visits. The stop-
ping time has a variable component τs

i . The decision variables used in this
formulation are xd

ijk and ys
ik (eqns. 3a and 3b).

The formulation for PVRP-SC by Francis et al. [29] is:

min
∑
k∈K

⎡
⎣∑

d∈D

∑
(i,j)∈A

cijx
d
ijk +

∑
s∈S

∑
i∈Nc

γsτs
i ys

ik − β
∑
s∈S

∑
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Wiα
sys

ik

⎤
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subject to∑
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∑
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γsys
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∑
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∑
k∈K
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i asdy

s
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j∈N
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∑
s∈S

asdy
s
ik ∀i ∈ Nc; k ∈ K; d ∈ D (8e)

∑
j∈N

xd
ijk =

∑
j∈N

xd
jik ∀i ∈ N ; k ∈ K; d ∈ D (8f)

∑
i,j∈Q

xd
ijk ≤ |Q| − 1 ∀Q ⊆ Nc; k ∈ K; d ∈ D (8g)

ys
ik ∈ {0, 1} ∀i ∈ Nc; k ∈ K; s ∈ S (8h)

xd
ijk ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K; d ∈ D (8i)

The objective function (8a) is a weighted combination of travel and stop-
ping costs net of service benefit. (see Francis and Smilowitz [28] for an anal-
ysis of the impact of the value of α on the resulting solution). Constraints
(8b) ensure that the visit requirements for each node are satisfied, while con-
straints (8c) ensure that each node is assigned to a single schedule and vehicle.
Constraints (8d) are capacity constraints, and constraints (8e) link the two
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sets of variables. Constraints (8f) and (8g) are flow conservation and sub-
tour elimination constraints. Note that the PVRP-SC includes the PVRP as
a special case by fixing constraints (8b) to equality and hence this is an IP
formulation for the PVRP as well. The constraints (8b) may be alternatively
expressed as

∑
k∈K

∑
s∈Si

ys
ik = 1, ∀i ∈ Nc with the redefinition of Si as

Si = {s ∈ S :
∑

d∈D asd ≥ fi}.
Francis et al. [29] solve this problem using the Lagrangian relaxation

method, combined with branch and bound procedure, described in Section
2.3. The authors present solutions for their motivating problems and for a
standard test case from Christofides and Beasley [16]. Instances of up to 50
nodes can be solved within 2% of optimality. Results from Francis et al. [29]
indicate that the magnitude of the savings obtained by introducing service
choice in the PVRP for a given instance depends on geographic distribution
of nodes (in particular, nodes of highest visit requirements).

4 Implementation Issues

As with the VRP, implementations of the PVRP pose particular challenges.
Given the difficulty of the problems, it is practically impossible to incorporate
every real-world constraint into the model. As a result, the solution obtained
from such models does not always capture the needs of the system designers.
Significant post-processing may be required to convert the solution into a prac-
tical routing implementation. In Section 4.1, we present case studies in which
real-world constraints are combined with PVRP models to produce routing
solutions appropriate to the problem instance. In Section 4.2, we present an
approach that seeks to quantify the operational complexity of PVRP solutions
by defining metrics suitable for periodic delivery operations.

4.1 Case Studies

Banerjea-Brodeur et al. [6] describe a situation in which the PVRP is used to
plan the deliveries of linen to 58 different clinics within a hospital. Deliveries
are required at preset service frequencies to each clinic, using a fixed fleet
of carts. Although the number of carts is small, the carts can make multiple
trips during the course of the day, thus effectively increasing the fleet size.
The problem is solved using the Tabu search method of Cordeau et al. [21].

This implementation highlights several practical features relating to PVRP
modeling. First, the authors report that they do not explore the entire solution
space due to the layout of the hospital – the underlying graph is not a complete
network. Second, allowances are made for elevator transfers in computing
the distance matrix to account for waiting time and elevator travel time, in
addition to the physical walking distance. Third, the hospital places a high
premium on the stability of the solution to allow hospital agencies to plan
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operations around the deliveries. Finally, producing a balanced work schedule
is considered to be important.

Blakely et al. [9] describe an application of the PVRP to control the rout-
ing and scheduling of service teams for preventive maintenance of elevators
at customer locations. Each customer has a pre-specified service frequency
depending on the type of elevator present at their location. The authors use a
weighted multi-objective function which includes total travel costs, overtime
costs, penalties for violating time windows, as well as a penalty for imbalanced
loads.

The authors formulate the problem as a mathematical model, but do not
solve it optimally. Rather, they solve the problem using a multi-stage heuris-
tic. First, an initial solution is built by clustering together nodes that are
geographically close, and assigning each cluster to one service team (recall
the Tan and Beasley [56] method of using seed points). Second, the solution
is improved by considering service times at each node, and real travel times
between the nodes. Attempts are made to improve the solution by iteratively
changing the cluster assignments between nodes. These improving moves are
guided by a Tabu search metaheuristic. Third, when no further improvements
are possible through such assignment changes, the routes are formed for each
service team (vehicle) for each day of the week. At this stage, the heuristic
takes into account customer visit frequency, time windows, service duration,
and individual characteristics of the service team.

The authors highlight several important modeling considerations. First,
they impose a fixed stopping time at nodes to account for service “set-ups”
such as parking, regardless of service duration and in addition to travel time.
Second, the street network data used did not use inter-modal links such as
ferry crossings; in effect the underlying network had to be augmented by
adding phantom road links that represented ferry service. Third, the fleet of
service teams is not homogenous as service technicians had different equipment
repair skill sets. Fourth, in some cases, it is required to pre-assign a service
team to a particular customer. Finally, as with the linen delivery case, it is
important to balance the work schedule between teams.

Hemmelmayr et al. [38] investigate the periodic delivery of blood products
to hospitals by the Austrian Red Cross. In this case, the regularity of deliveries
is of paramount importance. The authors model the problem as a detailed
integer program with specific constraints and a fixed set of routes, and also as
a PVRP with tour length constraints. They solve the integer program using
a commercial IP solver, and the PVRP with a Variable Neighborhood Search
heuristic. The authors show an average improvement in operating cost of
about 30% with either method. They note that the vehicles are not capacity-
constrained due to the small size of the deliveries, but only time-constrained
by the perishability of the product.

An interesting note in their implementation is that using their peri-
odic delivery solution requires negotiation with the hospitals involved to get
them to accept the delivery schedule. Such considerations often arise in the
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implementation of periodic deliveries where the service provider is transition-
ing to a scheme in which they, rather than the customer, decide the service
frequency (periodic delivery to Vendor-Managed Inventory, for instance). This
underscores the importance of recognizing and appropriately modeling cus-
tomer requirements that might make them averse to such changes.

Many other case studies have appeared in the literature, reflecting the
growing popularity of the PVRP model for solving real-world problems. In
the rest of this section, we briefly review some recent applications and imple-
mentations.

le Blanc et al. [42] use the PVRP as the basis for modeling periodic de-
liveries. The authors examine a special supply chain network called Factory
Gate Pricing in which a number of suppliers are periodically visited by trans-
port vehicles. They use a classical construction-improvement PVRP heuristic
to solve their problem, similar to the third heuristic of Russell and Igo [52].
The PVRP may also be contained as a subproblem in more complex prob-
lems. Parthanadee and Logendran [46] consider a multi-product, multi-depot
periodic distribution problem that contains the PVRP as a subproblem. They
solve their problem using Tabu search heuristics.

Periodic delivery problems are also found in the general logistics litera-
ture. Golden and Wasil [36] survey vehicle routing problems arising in the
soft drink industry, particularly the problem of driver-sell in which the driver
visits retail locations periodically to replenish customer demand. The authors
describe desirable features of routing systems for such an application such as
the ability to accept predefined driver territories or generate new territorial
boundaries, the ability to determine service frequency (as in the PVRP-SC),
and to balance driver workloads. An existing routing software for a soft drink
distributor is also described. Carter et al. [12] consider a complex periodic
distribution problem arising in grocery delivery. The problem is solved using
a Lagrangian heuristic. Gaur and Fisher [32] describe the development of a
system to solve a vehicle routing and delivery scheduling problem for a Eu-
ropean supermarket chain that includes the PVRP as a subproblem. They
solve their problem using a combination of clustering heuristics to solve the
scheduling problem and Lagrangian relaxation for truck routing. Claassen and
Hendriks [18] model a milk collection problem arising in the dairy industry
with emphasis on generating a stable collection schedule. The authors ignore
the routing decision (following the idea of Tan and Beasley [56] and Mourgaya
and Vanderbeck [45]) and focus on assigning schedules to customers and clus-
ters of customers to vehicles. This problem is then further reduced by using
some special properties of their application, and can be solved exactly.

Recycling and waste collection applications have been modeled using the
PVRP since the seminal paper by Beltrami and Bodin [8]. Recently, a number
of case studies have appeared in this area that solve problems of larger size,
and incorporate more complex constraints. Shih and Lin [54], Shih and Chang
[53], and Pontin et al. [47] consider the problem of collecting infectious waste
from multiple medical facilities to a single disposal location. Shih and Lin [54]
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and Shih and Chang [53] both use a two-phase heuristic in which sets of pos-
sible routes are generated in the first phase and visit periods are determined
in the second phase based on the identified routes. Pontin et al. [47] propose
a genetic algorithm approach similar to Drummond et al. [23]. Bommisetty
et al. [11] considers a similar problem of collecting recyclable material in a
college campus. Baptista et al. [7] examines the problem of recycling paper
containers in a Portuguese city. Their solution method is a simple extension
of Christofides and Beasley [16]. Teixeira et al. [57] also address a problem
arising in waste collection. This paper is notable among PVRP case studies
as it deals with multiple products (three different types of waste). The au-
thors use a cluster-first route-second heuristic to solve their problem, such
that the delivery regions and product mix are already decided when the route
sequencing decisions have to be made for each day.

Finally, in the service operations literature, Jang et al. [39] examine the
problem of routing lottery sales representatives to visit lottery retail locations
for the Missouri Lottery system. They also solve their problem using a cluster-
first route-second heuristic. Workload balance is an important criterion in
their models, besides the conventional objective of routing efficiency. Hence,
they use the idea of seeding their construction phase in a manner similar to
Fisher and Jaikumar [26], with the seed points being chosen from historical
routes.

In the next section, we examine metrics that can quantify operational com-
plexity, from the perspective of the service provider as well as the customer.

4.2 Operational Complexity

Francis et al. [30] explicitly consider the trade-offs between operational flexi-
bility and operational complexity in a PVRP setting. Operational flexibility
is defined as the ability to make changes to operating conditions. For exam-
ple, the ability to determine the frequency of service provided to customers
(as in the PVRP-SC), or to have different drivers visit customers rather than
committing to a single driver (as is the case in Blakely et al. [9]). The authors
show that having such flexibility leads to gains in terms of vehicle routing costs
and improved customer service, but at the expense of increases in operational
complexity.

The authors define operational complexity as the difficulty of a imple-
menting a solution, either from the perspective of the service provider, or its
customers. Complex solutions are characteristically those that are hard to
convey to drivers without complex mapping, involve a high degree of driver
learning, and tend to cause dissatisfaction among drivers and customers.

Francis et al. [30] introduce a set of metrics to quantify the operational
complexity in a periodic distribution solution resulting from a PVRP/PVRP-
SC. They define three measures:

1. Driver coverage expresses the service region visited by a driver over the
planning period as a percentage of the total area.
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2. Arrival span is the variability in the time of day when customers are visited
over the planning period.

3. Crewsize is the number of different drivers seen by a customer over the
planning period.

The driver coverage metric is defined for each driver, and is averaged over all
drivers. The authors motivate this metric with the learning/forgetting model
of Zhong et al. [58] that shows improved driver performance due to increased
geographic familiarity resulting from consistent dispatches. A small driver cov-
erage area is also consistent with geographical clustering approaches currently
in practice (see Blakely et al. [9], for example). The arrival span and crew-
size are defined for each customer, and averaged across all customers in the
region. These measures are motivated by the need to provide better customer
service by establishing consistent arrival times (small arrival span) and build-
ing relationships between customers and drivers (small crewsize). Further,
the authors describe situations in which improvements in these measures help
customers reduce staffing requirements, address security/access concerns, or
obtain time-sensitive material (such as the blood products in Hemmelmayr
et al. [38]).

The authors develop a set of randomized test cases in four different configu-
rations representing different demand patterns, such as Traditional City (TC)
configuration where the high demand nodes are located in the city center,
to the Vanishing City (VC) configuration where the high demand is located
in the outlying areas. They solve the PVRP and PVRP-SC for these test
cases with a range of flexibility options, including different schedule choice,
constraints on service choice and crewsize. They use a Tabu search heuristic
based on that of Cordeau et al. [21] with changes to incorporate the oper-
ational flexibility options. After the solution is obtained, they calculate the
value of the three complexity metrics. To correctly calculate the metrics, the
authors develop an integer program to assign drivers to vehicle routes each
day. The objective of this IP is to minimize the total driver coverage, and
is similar in spirit to industry practice in which dispatchers assign drivers to
familiar areas.

The authors show that introducing flexibility tends to increase the oper-
ational complexity of the resulting solutions, although the increase in com-
plexity depends on the type of operational flexibility being introduced (for
instance, restricting crewsize has little impact on the objective function, but
reduces operational complexity significantly). The authors also note the im-
portance of geographic distribution on the value of introducing operational
flexibility, with greater returns obtained when the high frequency nodes are
located closer to the depot.

Although the authors do not incorporate these operational metrics into
their objective function, this can be accomplished by the use of penalties.
Such an approach is clearly desirable in real applications of periodic distri-
butions, although the weights to be applied on various terms of the objective
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function are not easily determined. Blakely et al. [9] present one way to work
around such a situation. Their routing software optimizes a weighted multi-
objective function. Rather than impose a fixed set of weights in the objective
function, the software allows local supervisors to vary the weights on travel
cost, workload balance, and other factors. The supervisors can thus obtain
routing solutions that have appropriate operational complexity for their local
business needs.

5 Future Research Directions

Future research into newer variants and solution methods for the PVRP is
a rich and fertile area. With increase in computational capabilities, models
for periodic delivery operations have become more complex, and capable of
modeling problem instances in greater detail. The improvement in computa-
tional complexity could be exploited to create a dynamic variant of the PVRP,
building on the work done by Angelelli et al. [1]. Older modeling techniques
are being refreshed with the use of modern heuristics and solution methods.
For instance, the vehicle scheduling problem of Foster and Ryan [27] has been
revisited by Kang et al. [40], who provide an exact algorithm for the periodic
version of the problem. Work on mathematical programming based approaches
to these problems, such as the ongoing work of Mingozzi and Valletta [44] for
solving the PVRP and MDVRP, provides faster and better quality solutions
for the use of researchers and industry planners.

One possible area of interest is the pricing of periodic delivery services.
Francis et al. [29] show that if customers are flexible in the frequency of
service that they receive, then the cost savings can be achieved by giving
customers a level of service appropriate to their geographic location as well as
their willingness to pay. Francis and Smilowitz [28] model a tactical version
of the PVRP-SC to allow managers of such services to analyze the effect of
price and service schedule changes.

Another area of future research is the incorporation of multiple objectives
in the optimization of periodic deliveries as discussed in Section 4. Mourgaya
and Vanderbeck [45] present multiple objectives besides simple travel cost
minimization. Other potential objectives that might be considered could be:
monetary, such as the minimization of long term fleet acquisition and depre-
ciation costs; partly-monetary, such as union-mandated balancing of driver
workloads; or non-monetary, such as maximization of customer service as-
pects.

Francis et al. [30] introduce operational complexity measures that can be
considered either endogenously through variable and parameter definitions or
exogenously in post-processing. Future work could focus on adding complexity
measures into the objective function of the PVRP and its variants, thereby
allowing the solution method to choose the appropriate balance between com-
plexity and flexibility. Cordeau et al. [22] extend the notion of time windows
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into periodic deliveries through the PVRPTW. In the routing literature, time
windows for node visits have been incorporated with soft penalties for viola-
tions, which could form the basis for adding soft penalties for variations in
visit times for nodes across days in the PVRP. Here too, we encounter the
issue of pricing time window violations relative to the travel costs. Multi-stage
solution methods could be conceived in which tactical versions of the PVRP
could be used for high-level planning and pricing purposes (such as the ap-
proximation model of Francis and Smilowitz [28]), and the results of which
could be used in detailed routing models. Research in this area would involve
parametric analysis of the relative weighting of complexity costs to operational
benefits and determining a frontier of efficient solutions for different levels of
complexity.

The PVRP-SC is also closely related to another class of periodic delivery
problems, the Inventory Routing Problem (IRP), which also determines visit
frequency, route configuration, and delivery quantity. We refer the reader to
Anily and Federgruen [4], Chan et al. [13], Federgruen and Simchi-Levi [25],
Anily and Bramel [3], and Kleywegt et al. [41]. Some modeling differences exist
such as service-related costs (PVRP-SC) versus unit holding costs (IRP) and
delivery amount determined by schedule choice and delivery policies (PVRP-
SC) versus being modeled as direct decision variable (IRP). Rusdiansyah and
Tsao [49] model the IRP as an integrated IRP/PVRP with Time Windows.
Francis et al. [30] explore connections between the PVRP-SC and the IRP,
and suggests modeling the PVRP-SC as an IRP with deterministic demand.
Exploration of the relationship between these two distribution problems is an
important area of new research.

As discussed in this chapter, the PVRP is being used successfully to plan
and operate periodic delivery operations in a wide range of applications. Fu-
ture research in this area could focus on the incorporation of real-world con-
straints and operational complexity measures into PVRP models, as well as
the development of models and solution methods for the dynamic version
of the PVRP. With increasing price-competitiveness between supply chains,
the ability to run “last-mile” delivery operations efficiently is likely to be a
significant operational advantage.
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Summary. In the classical Vehicle Routing Problem (VRP) a fleet of capacitated
vehicles is available to serve a set of customers with known demand. Each customer
is required to be visited by exactly one vehicle and the objective is to minimize the
total distance traveled. In the Split Delivery Vehicle Routing Problem (SDVRP) the
restriction that each customer has to be visited exactly once is removed, i.e., split
deliveries are allowed. In this chapter we present a survey of the state-of-the-art on
the SDVRP.
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plexity; algorithms.

1 Introduction

In the Split Delivery Vehicle Routing Problem (SDVRP) a fleet of capacitated
homogeneous vehicles is available to serve a set of customers. Each customer
can be visited more than once, contrary to what is usually assumed in the
classical Vehicle Routing Problem (VRP), and the demand of each customer
may be greater than the vehicle capacity. Each vehicle has to start and end its
tour at the same depot. The problem consists in finding a set of vehicle routes
that serve all the customers such that the sum of the quantities delivered in
each tour does not exceed the capacity of a vehicle and the total distance
traveled is minimized.

The SDVRP was introduced in the literature nearly twenty years ago by
Dror and Trudeau ([13] and [14]) who motivated the study of the SDVRP
by showing that there can be savings generated by allowing split deliveries.
Archetti, Savelsbergh and Speranza [3] analyze the maximum possible savings
obtained by allowing split deliveries, while in [4] the same authors present a
computational study to show how the savings depend on the characteristics
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of the instance. Valid inequalities for the SDVRP are described by Dror, La-
porte and Trudeau [12], while Belenguer, Martinez and Mota [8] propose a
lower bound for the case where the demand of each customer does not exceed
the vehicle capacity. Archetti, Mansini and Speranza [2] analyze the com-
putational complexity of the SDVRP and the case of small capacity of the
vehicles.

Exact approaches for the SDVRP are proposed by Lee et al. [21] and Jin,
Liu and Bowden [20] (this last work is an extension of the work by Liu [23]).
Both approaches are able to solve only very small instances. Better results are
obtained for the SDVRP with Time Windows (SDVRPTW) by Gueguen [19]
and by Gendreau et al. [17]. In this last work the exact approach proposed is
able to solve instances with up to a hundred customers.

The first heuristic algorithm for the SDVRP is a local search and is in-
troduced by Dror and Trudeau [13], [14]. A tabu search and an optimization-
based heuristic have been more recently proposed by Archetti, Hertz and
Speranza [1] and Archetti, Savelsbergh and Speranza [5]. A new heuristic al-
gorithm is proposed by Chen, Golden and Wasil [9] which shows to be very
effective especially on instances where customers have large demands. Frizzel
and Giffin [16] present a mathematical formulation and a heuristic algorithm
for the SDVRP with grid network distances and time windows constraints.

Real applications of split deliveries can be found in the work by Mullaseril,
Dror and Leung [25] where the authors consider the problem of managing a
fleet of trucks for distributing feed in a large livestock ranch and formulate
it as a split delivery capacitated rural postman problem with time windows.
Sierksma and Tijssen [27] consider the problem of determining the flight sched-
ule for helicopters to off-shore platforms for exchanging crew people employed
on these platforms. In [6] Archetti and Speranza consider a waste collection
problem where vehicles have a small capacity and customers can have demands
greater than the vehicle capacity. A number of constraints are considered such
as time windows, different types of wastes, customer priorities and different
types of vehicles. A similar problem, called Rollon-Rolloff Vehicle Routing
Problem (RRVRP), is analyzed by Ball et al. [7] and by De Meulemeester et
al. [10]. The SDVRP with pickup and delivery is studied by Nowak [26].

The chapter is organized as follows. In Section 2 we provide a mathematical
programming formulation of the SDVRP. Computational complexity results
and properties of the problem are summarized in Section 3. In Section 4 we
review the contributions that can be useful for the design of an exact algo-
rithm and we provide a description of the exact approaches proposed in the
literature. The issue of estimating the maximum savings that can be obtained
by allowing split deliveries is discussed in Section 5. Finally, in Section 6 we
review the heuristic algorithms proposed for the SDVRP and compare them
on the basis of a set of test instances.
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2 Problem Formulation

The SDVRP can be defined over a graph G = (V, E) with vertex set V =
{0, 1, ..., n}, where 0 denotes the depot and the other vertices represent the
customers, and E is the edge set. The traversal cost (also called length) cij of
an edge (i, j) ∈ E is assumed to be non-negative and to satisfy the triangle
inequality. An integer demand di is associated with each customer i ∈ V −{0}.
An unlimited number of vehicles is available, each with capacity Q ∈ Z+. We
assume that an upper bound m on the number of vehicles needed to serve the

customers is available. For example, one can use m =
n∑

i=1

di

Q �. Each vehicle

must start and end its route at the depot. The demands of the customers
must be satisfied, and the quantity delivered in each tour cannot exceed Q.
The objective is to minimize the total distance traveled by the vehicles. We
provide below a mixed integer programming formulation (P ) for the SDVRP
(see Archetti, Hertz and Speranza [1]). We use the following notation:

xv
ij is a binary variable which takes value 1 if vehicle v travels directly

from i to j, and 0 otherwise,
yiv is the quantity of the demand of i delivered by the vehicle v.

The SDVRP can be formulated as follows:

Min

n∑
i=0

n∑
j=0

m∑
v=1

cijx
v
ij (1)

subject to:

n∑
i=0

m∑
v=1

xv
ij ≥ 1 j = 0, ..., n (2)

n∑
i=0

xv
ip −

n∑
j=0

xv
pj = 0 p = 0, ..., n; v = 1, ..., m (3)

∑
i∈S

∑
j∈S

xv
ij ≤ |S| − 1 v = 1, ..., m; S ⊆ V − {0} (4)

yiv ≤ di

n∑
j=0

xv
ij i = 1, ..., n; v = 1, ..., m (5)

m∑
v=1

yiv = di i = 1, ..., n (6)

n∑
i=1

yiv ≤ Q v = 1, ..., m (7)
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xv
ij ∈ {0, 1} i = 0, ..., n; j = 0, ..., n; v = 1, ..., m (8)

yiv ≥ 0 i = 1, ..., n; v = 1, ..., m. (9)

Constraints (2)-(4) are the classical routing constraints. Constraints (2)
impose that each vertex is visited at least once, (3) are the flow conservation
constraints and (4) are the subtours elimination constraints. Constraints (5)-
(7) concern the allocation of the demands of the customers among the vehicles.
Constraints (5) impose that customer i is served by vehicle v only if v passes
through i, constraints (6) ensure that the entire demand of each vertex is
satisfied, while constraints (7) guarantee that the quantity delivered by each
vehicle does not exceed the vehicle capacity.

It has been shown by Archetti, Hertz and Speranza [1] that there always
exists an optimal integer solution to (P ).

Theorem 1. [1] If (P ) has feasible solutions, then there always exists an op-
timal solution where variables yiv ∈ Z+.

3 Complexity and Properties

In this section we summarize the contributions to the computational com-
plexity of the SDVRP. We also show some properties of the SDVRP that are
useful to reduce the dimension of the solution space and thus can be used to
speed-up a solution algorithm.

Theorem 2. [2] The SDVRP with Q = 2 can be solved in polynomial time.

Theorem 3. [2] The SDVRP where each customer has unitary demand is
NP-hard for Q ≥ 3.

In the SDVRP the customers demand may be greater than the vehicle
capacity. There exists a class of instances where we know how to optimally
serve the part of demand exceeding the vehicle capacity.

Definition 1. A SDV RP instance is reducible if an optimal solution exists
such that each vertex is served by as many direct trips as possible from the
depot to the vertex, with full load in each trip, until the demand of each vertex
is lower than the vehicle capacity Q.

When an instance of the problem is reducible, we call reduced the instance
that is obtained by changing the demand di of customer i with (di mod Q) and
deleting the vertices, and related arcs, when (di mod Q) = 0. The reduction
of the original instance requires a linear time in the number of vertices n.

Theorem 4. [2] The SDVRP with Q = 2 is reducible.
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Fig. 1. A 3-split cycle

Unfortunately, it is not possible to extend this interesting result to other
classes of instances. In the work by Archetti, Mansini and Speranza [2] it
is shown that, even in the case of Euclidean distances, the SDVRP is not
reducible for Q ≥ 3.

Dror and Trudeau [13] have shown an interesting property of optimal so-
lutions. To understand their result we first need the following definition.

Definition 2. Consider a set C = {i1, i2, ..., ik} of customers and suppose
that there exist k routes r1, ..., rk, k ≥ 2, such that rw contains customers
iw and iw+1, w = 1, ..., k − 1, and rk contains customers i1 and ik. Such a
configuration is called a k-split cycle.

An example of a 3-split cycle can be found in Figure 1. Dror and Trudeau
have shown that, if the distances satisfy the triangle inequality, then there
always exists an optimal solution to the SDVRP which does not contain k -
split cycles, k ≥ 2.

Theorem 5. [14] If the costs cij satisfy the triangle inequality, then there
exists an optimal solution to the SDVRP that does not contain any k-split
cycle (for any k).
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This result is of great importance since it allows a remarkable reduction
of the number of solutions to be explored to find the optimum, as shown in
the following corollary.

Corollary 1. [14] If the costs cij satisfy the triangle inequality, then there
exists an optimal solution to the SDVRP where no two routes have more than
one customer with a split delivery in common.

Another structural property of optimal solutions to the SDVRP is derived
by Archetti, Savelsbergh and Speranza [3] which relates the number of splits to
the number of routes. Let ni be the number of deliveries received by customer
i, i.e., the number of routes that visit customer i. We say that customer i
is a customer with a split delivery if ni > 1 and that the number of splits
at customer i is ni − 1. Therefore, the total number of splits is equal to∑n

i=1(ni − 1).

Theorem 6. [3] If the costs cij satisfy the triangle inequality, then there exists
an optimal solution to the SDVRP where the number of splits is less than the
number of routes.

4 Valid Inequalities, Lower Bounds and Exact
Approaches

In this section we review a set of valid inequalities proposed by Dror, Laporte
and Trudeau [12] and a lower bound for the SDVRP proposed by Belenguer,
Martinez and Mota [8]. At the end of the section, we also provide a description
of the exact algorithms proposed in the literature to solve the SDVRP and
the SDVRPTW.

In [12] Dror, Laporte and Trudeau analyze the valid inequalities for the
VRP to check whether they are valid also for the SDVRP. First of all, they
analyze the subtour elimination constraints for the VRP. Denoting by N(S)
the minimum number of vehicles needed to serve all the vertices in S, they
observe that, while the subtour elimination constraints written in the following
form

m∑
v=1

∑
i∈S

∑
j∈S

xv
ij ≤ |S| −N(S) S ⊆ V − {0} ; |S| ≥ 2

are not valid for the SDVRP, in the equivalent form

m∑
v=1

∑
i∈S

∑
j∈V −S

xv
ij ≥ N(S) S ⊆ V − {0} ; |S| ≥ 2 (10)

they represent valid inequalities for the SDVRP. The following class of valid
inequalities are derived from (10)
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m∑
v=1

∑
i∈S

∑
j∈S

xv
ij ≤

∑
i∈S

bi −N(S) S ⊆ V − {0} ; |S| ≥ 2. (11)

where

bi =
m∑

v=1

n∑
j=0

xv
ij .

A class of constraints, called fractional cycle elimination constraints, is also
presented by Dror, Laporte and Trudeau [12] and represent valid inequalities
for the SDVRP

∑
i∈S

∑
j∈V −S

xv
ij ≥

∑
i∈S

∑
j∈S xv

ij

|S| − 1
S ⊆ V − {0} ; |S| ≥ 2; v = 1, ..., m (12)

xv
ij ≤

∑
k �=i

xv
jk i = 1, .., n; j = 1, .., n; v = 1, ..., m. (13)

The effectiveness of inequalities (10)-(13) is shown in Dror, Laporte and
Trudeau [12] by comparing the value of the LP relaxation of the problem
before and after the introduction of the inequalities with an upper bound. The
upper bound used is the value of the solution of the algorithm proposed by
Dror and Trudeau [13]. The computational results show that the gap between
the value of the LP relaxation and the upper bound is always below 9% when
the valid inequalities are added to the model, while it can be above 50% if the
inequalities are not introduced.

Belenguer, Martinez and Mota [8] studied the polyhedron of the SDVRP
and found valid inequalities that define facets. The facets were used in a cut-
ting plane algorithm to find a lower bound for the SDVRP. Computational
experiments to test the effectiveness of the lower bound were run on instances
from the TSPLIB and on randomly generated instances. To measure the per-
formance of the lower bound, the authors computed the gap between the
lower bound and an upper bound obtained by solving the instances through a
heuristic algorithm for the VRP. The computational results show that the av-
erage gap with respect to the upper bound is 3.05% for the TSPLIB instances
and 7.81% for the randomly generated instances.

To the best of our knowledge, three exact approaches were proposed for
the SDVRP. One is proposed by Lee et al. [21] who formulate the SDVRP as a
dynamic programming problem. The computational tests show that the algo-
rithm is able to solve instances with up to 7 customers in a reasonable amount
of time. Liu [23] and Jin, Liu and Bowden [20] propose instead a two-stage
exact approach to solve the SDVRP. In the first stage an assignment problem
is solved to determine clusters of customers served by the same vehicle. The
first stage provides a lower bound. The second stage consists in solving a TSP
for each cluster thus determining an upper bound. This upper bound is used
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to generate valid inequalities which are inserted in the assignment problem of
the first stage at the next iteration. The procedure is iterated until upper and
lower bounds coincide. Computational tests show that this approach is able
to solve instances with up to 22 customers using a quite large computational
time (more than 13 hours for instances with more than 20 customers). The
algorithm proposed by Jin, Liu and Bowden [20] assumes a fixed number of ve-
hicles. For the case where the number of vehicles is variable, Liu [23] proposes
a branch and price algorithm and compares this approach with the cutting
plane algorithm proposed by Belenguer, Martinez and Mota [8]. The compari-
son is made on the basis of the gap between the upper and lower bound at the
end of the running time. The branch and price algorithm produces a better
gap than the cutting plane algorithm in 5 instances over a total of 17 tested
instances.

Finally, Gendreau et al. [17] propose an exact algorithm for the SDVRP
with time windows that is based upon a set covering formulation of the prob-
lem and a column generation approach. The column generation scheme is
included in a branch and bound tree to obtain a branch and price exact algo-
rithm. The algorithm is introduced by Gueguen [19] where instances with up
to 25 customers are solved. In the work by Gendreau et al. [17] the algorithm
solves almost all instances with up to 50 customers and a subset of instances
with 100 customers. The set covering formulation proposed by Gendreau et
al. [17] can be applied also to solve the SDVRP without time windows; it is, in
fact, the formulation used in the optimization-based heuristic for the SDVRP
described in Section 6.3. Moreover, the column generation scheme proposed
by Gendreau et al. [17] can be easily adapted to solve the SDVRP, as shown
by the same authors in [15].

5 SDVRP vs VRP

The interest in the SDVRP comes from the fact that costs can be reduced with
respect to the costs of the VRP by allowing split deliveries. In this section, we
discuss the amount of the saving. This is an important information in practice,
because of the additional organizational difficulties deriving from the multiple
visits to the same customer. We consider both the case where the demand of
each customer is lower than or equal to the capacity Q and the case where
the demand of at least a customer is greater than Q. For this latter case there
is the need to define a variant of the classical VRP as, when the demand of a
customer is greater than the vehicle capacity, the customer has to be visited
more than once. In order to distinguish the cases, in this section we define
as extended VRP the problem where each customer is visited the minimum
number of times and extended SDVRP the problem where this restriction is
relaxed. We indicate as
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• V RP the problem of finding the optimal routes when the demand of each
customer is lower than or equal to Q and each customer is visited exactly
once. z(V RP ) is the value of the optimal solution;

• SDV RP the problem of finding the optimal routes when the demand of
each customer is lower than or equal to Q and each customer can be visited
any number of times. z(SDV RP ) is the value of the optimal solution;

• V RP+ (extended VRP) the problem of finding the optimal routes when
the demand of at least a customer is greater than Q and each customer
is visited exactly the minimum possible number of times, i.e., ti = di

Q �,
where ti is the number of visits to customer i. z(V RP+) is the value of
the optimal solution;

• SDV RP+ (extended SDVRP) the problem of finding the optimal routes
when the demand of at least a customer is greater than Q and each cus-
tomer is visited any number of times. z(SDV RP+) is the value of the
optimal solution.

Note that in the extended VRP any customer with demand not greater
than the vehicle capacity is visited exactly once.

For both extended problems we present the performance of the following
heuristic algorithm: Make full truckload deliveries using out-and-back tours to
customers with demand greater than the vehicle capacity until their remaining
demand is less than or equal to the vehicle capacity. Then, solve a VRP
(obtaining a heuristic for the V RP+) or an SDVRP (obtaining a heuristic for
the SDV RP+) to find a minimum cost set of routes serving the remaining
demands of all customers. We indicate as:

• HV RP+
the heuristic for the V RP+ and z(HV RP+

) the value of the cor-
responding solution;

• HSDV RP+
the heuristic for the SDV RP+ and z(HSDV RP+

) the value of
the corresponding solution.

5.1 Worst-case Analysis

The cost of an optimal VRP solution is compared with the cost of an optimal
SDVRP solution by computing an upper bound on the ratio between the value
of the VRP solution and the value of the SDVRP solution. In the work by
Archetti, Savelsbergh and Speranza [3] it is shown that

z(V RP )
z(SDV RP )

≤ 2

and that this bound is tight, i.e., there exists an instance where the optimal
VRP solution has a value that is twice as large as the value of the optimal
SDVRP solution. This result says that, with respect to a VRP solution, split
deliveries can save up to 50% of the cost.
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For the case where the demand of at least a customer is greater than Q,
the upper bound on the ratio remains the same (see Archetti, Savelsbergh and
Speranza [3]), i.e.,

z(V RP+)
z(SDV RP+)

≤ 2

and also this bound is tight.
Nowak [26] obtained a similar result for the pickup and delivery case, i.e.,

also in this case the value of the solution without split loads can be twice as
large as the value of the solution with split loads.

Archetti, Savelsbergh and Speranza [3] also studied the performance ratio
of heuristics HV RP+

and HSDV RP+
. They found that

z(HV RP+
)

z(V RP+)
≤ 2,

z(HSDV RP+
)

z(SDV RP+)
≤ 2

and that both bounds are tight. Both in the case of the extended VRP and of
the extended SDVRP, making out-and-back tours to the customers to reduce
the demand of the customers to a value lower than the vehicle capacity and
then solving the reduced problem optimally may cost up to twice the cost of
an optimal solution.

The instances used to demonstrate the tightness of the above bounds all
have a large vehicle capacity. Thus, it is interesting to analyze a case with
small vehicle capacity. In Archetti, Savelsbergh and Speranza [3] it is shown
that, when the capacity is Q = 3, then z(V RP )

z(SDV RP ) ≤
3
2 and z(V RP+)

z(SDV RP+) ≤
3
2

and that these bounds are tight.
One benefit, maybe the most evident benefit, of allowing split deliveries is

a reduction in the number of delivery routes required to satisfy all demand.
To quantify this benefit, in Archetti, Savelsbergh and Speranza [4] the au-
thors studied the ratio r(V RP )

r(SDV RP ) , where r(V RP ) and r(SDV RP ) denote the
minimum number of delivery routes required to satisfy customers demand in
a solution to the VRP and the SDVRP, respectively. They have shown that

r(V RP )
r(SDV RP )

≤ 2

and that the bound is tight. This means that allowing split deliveries may
also save up to 50% of the delivery routes.

For the case where a limited fleet of vehicles is available, Gueguen [19]
shows that the savings obtained by allowing split deliveries can be much larger.
In fact, the ratio between the optimal solution of the VRP and the optimal
solution of the SDVRP can go to infinity.
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Fig. 2. Ratio r(V RP )
r(SDV RP )

as a function of d for an instance with 149 customers and
vehicles with capacity 149.

5.2 Computational Analysis

Whereas the worst-case results discussed above are of theoretical relevance
and certainly justify the interest into split deliveries, important additional
information can be obtained from an empirical study of the ratios r(V RP )

r(SDV RP )

and z(V RP )
z(SDV RP ) .

In Figure 2 (taken from Archetti, Savelsbergh and Speranza [4]) the ratio
r(V RP )

r(SDV RP ) is reported as a function of the demand of the customers for an
instance where n = Q = 149 and where all customers share the same location
and the same demand. The ratio reaches its maximum value of 1.987 for de-
mand size 75, i.e., when d = Q

2 �. In this case, an optimal VRP solution serves
each customer with an out-and-back tour and thus needs 149 routes, whereas
in the SDVRP solution the demands of two customers can be combined in
a single route leaving only one unit of demand to be picked up by another
route. In this case, a total of 75 routes are used, resulting in a ratio of 1.987.
The other peaks of the ratio are reached for values of d equal to Q

k �, k ∈ N ,
k > 2.
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Archetti, Savelsbergh and Speranza [4] study the ratio between costs, i.e.,
z(V RP )

z(SDV RP ) , also to see whether it is strictly related to the ratio r(V RP )
r(SDV RP ) .

They analyze the main characteristics of the instances that influence both
ratios, focusing on three aspects:

• location of the customers;
• mean demand of the customers;
• variance of the demands of the customers.

Studying the ratio z(V RP )
z(SDV RP ) for reasonable size instances can only be done

using heuristics, as both the VRP and the SDVRP are NP-hard. For their
computational study, Archetti, Savelsbergh and Speranza [4] used state-of-
the-art meta-heuristics. The VRP solution is obtained using the granular tabu
search heuristic of Toth and Vigo [28]. The SDVRP solution is obtained using
the tabu search heuristic developed by Archetti, Hertz and Speranza [1].

The computational study, carried out on a set of randomly generated in-
stances, confirmed that allowing split deliveries can result in substantial ben-
efits, but also shows that these substantial benefits occur for instances with
specific characteristics. The benefits mainly depend on the relation between
mean demand and vehicle capacity and on demand variance; there does not
appear to be a dependence on customer locations. The largest benefits are
obtained when the mean demand is greater than half the vehicle capacity but
less than three quarters of the vehicle capacity and the demand variance is
relatively small.

6 Heuristics for the SDVRP

In this section we describe and compare the heuristic algorithms proposed in
the literature to solve the SDVRP in the case of an unlimited fleet of vehicles:
A local search heuristic by Dror and Trudeau [13], a tabu search heuristic
by Archetti, Hertz and Speranza [1] and an optimization-based heuristic by
Archetti, Savelsbergh and Speranza [5]. Recently, Mota, Campos and Cor-
beran [24] presented a scatter search algorithm for the SDVRP with the ad-
ditional constraint of a number of vehicles available equal to the minimum

needed, i.e., 
∑

n

i=1
di

Q �. This constraint may significantly affect the perfor-
mance of the heuristic when compared with any of those designed for an
unlimited fleet of vehicles. Another recent heuristic algorithm is proposed by
Chen, Golden and Wasil [9]. Their approach works as follows. First, an initial
feasible solution is created by means of the classical Clarke and Wright algo-
rithm for the VRP (they consider instances where di ≤ Q for any i). Then,
a MIP problem is optimally solved which re-assigns endpoints of each route
to different routes if this causes savings. Finally, a record-to-record travel
algorithm is applied which improves the routes constructed. Computational
results on different types of tests are provided that suggest the effectiveness
of the approach.
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6.1 Dror and Trudeau’s Heuristic

We provide a short description of the algorithm proposed by Dror and Trudeau
for the SDVRP [13]. The algorithm is designed only for the case where the
demand of each customer is lower than the vehicle capacity. The heuristic is a
local search algorithm and is composed of the following two main procedures.

K-split interchange

Consider a vertex i and its total demand di :

1. remove vertex i from all the routes where it is visited;
2. consider all subsets R of routes such that the total residual capacity is

greater than or equal to di. For each such subset R compute the total
insertion cost of i into all routes of R. Choose the subset R that leads to
the least insertion cost and insert i into all routes of R.

Route addition

Consider a customer i which appears in at least two routes r1 and r2. Eliminate
the split of i on these two routes and create a new route in the following way:

1. preserve the four principle route segments on r1 and r2 (from the depot
to the vertex preceding i and from the vertex succeeding i to the depot);

2. create three routes considering all the possible combinations between the
principle route segments and i (which must not be split) and choose the
best one.

There are 9 possible combinations (for details see Dror and Trudeau [13]).
The same procedure is considered when customer i is split among 3 different
routes. In this case there are 19 possible combinations to be considered. If a
vertex is visited by more than 3 routes, the algorithm considers all the possible
combinations of 2 and 3 routes.

Moreover, Dror and Trudeau use the following classical improvement pro-
cedures which have been developed for the capacitated VRP.

Node interchanges This procedure is based on one-node moves and two-node
swaps between routes and is described in detail in Dror and Levy [11].

2-opt This is the classical 2-opt procedure for the TSP (Lin [22]).

Defining boolean variables split impr and add impr, the main algorithm
works as follows.
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Dror and Trudeau’s algorithm

1. Construct a feasible VRP solution.
2. Node interchanges: execute all node interchange improvements.
3. 2-opt: execute all 2-opt route improvements.
4. Set split impr = “false” and add impr = “false”.
5. K-split interchange: execute all k-split interchange improvements. If there

is at least one improvement then set split impr = “true”.
6. Route addition: execute all route addition improvements. If there is at

least one improvement then set add impr = “true”.
7. If add impr = “true” then go to step 5. Otherwise, if split impr = “true”

go to step 2 else STOP.

6.2 Tabu Search Heuristic

In Archetti, Hertz and Speranza [1] a tabu search algorithm for the SDVRP,
called SPLITABU, is presented and tested. Only two parameters are to be set:
the length of the tabu list and the maximum number of iterations the algo-
rithm can run without improvement of the best solution found. The algorithm
is composed of the three following phases:

• Phase 1: Construction of an initial feasible solution. Initially, the instance
is reduced by making as many full load out-and-back tours as possible from
the depot to each customer. Then, a traveling salesman problem is solved
on the reduced instance by means of the GENIUS algorithm proposed by
Gendreau, Hertz and Laporte [18]. Finally, the giant tour is cut into pieces
so that the capacity constraint is satisfied.

• Phase 2: Tabu search phase. In this phase, a move from a solution s to a
neighbour solution s′ is performed by inserting a customer i into a route
r and by removing i from a subset U of routes visiting i. The subset U is
determined on the basis of the savings caused by removing i. The insertion
of a customer i into a route r is made with the classical cheapest insertion
method. Customer i can be totally or partially removed from each route in
U . The route r, where customer i is inserted, can be a route which already
visits i or not, and can be also a new route. When a customer i is added
to a route r it can not be removed for a number of iterations. Similarly,
when a customer i is removed from a route u it can not be added for a
number of iterations.

• Phase 3: Final improvement of the solution found by the tabu search phase.
The final solution of Phase 2 is improved by deleting all k-split cycles and
by applying the GENIUS algorithm to each individual route.

6.3 Optimization-based Heuristic

The heuristic proposed in Archetti, Savelsbergh and Speranza [5] makes use of
information provided by the tabu search described in the previous section in



The Split Delivery Vehicle Routing Problem: A Survey 117

order to construct a set of good routes. These routes are then passed to a MIP
program which determines the best ones. The idea underlying this solution
approach is to first identify “good” parts of the solution space, i.e., parts
that are likely to contain high quality solutions, by means of the information
provided by the tabu search algorithm. Then, these parts are deeply explored
by a MIP optimizer.

Thus, the first phase consists in extracting information from the tabu
search process. This phase consists in two parts.

The first part is the identification of a set C′ of customers which are
likely to be served by a single vehicle in high-quality SDVRP solutions. The
identification of the set C′ is based on the number of times each customer is
split in the solutions encountered by the tabu search. If the total (over all the
solutions) number of splits to a customer is less than 10% of the maximum
total number of splits over all customers and the customer is not split in the
final solution of the tabu search, then the customer is inserted in C′.

The second part is the construction of high quality routes. This construc-
tion is based on the identification of “good” edges which, as before, is made
through an analysis of the solutions encountered by the tabu search. If an
edge is never or rarely traversed by the solutions encountered during the en-
tire tabu search running, then it is excluded from the construction of routes.
In this way, the set of edges used to construct promising routes is reduced and
includes only promising edges. On the basis of this restricted set of edges, a
large set of high quality routes is constructed.

Once the first phase is concluded and the set of promising routes is identi-
fied, the MIP program will optimize over this set to find the best routes. We
now describe the route-based model for the SDVRP presented in Archetti,
Savelsbergh and Speranza [5]. A similar model has been independently devel-
oped and presented in Gendreau et al. [17] for the SDVRP with time windows.
Let R represent a set of routes and let cr denote the cost of route r. The for-
mulation has two sets of variables. The variable xr represents the number of
times a route is executed in an optimal solution. For routes that visit more
than one customer the variable xr can be assumed to be binary, as it is never
optimal to execute such a route more than once (Theorem 5). When instead
a route visits a single customer, the variable xr has to be a non-negative in-
teger to accommodate situations in which there are customers with demand
greater than the vehicle capacity. The continuous variable yi

r represents the
quantity delivered to customer i on route r. The integer programming model
is presented below.

min
∑
r∈R

crxr (14)

∑
i∈r

yi
r ≤ Qxr r ∈ R (15)
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r∈R:i∈r

yi
r ≥ di i ∈ V − {0} (16)

xr ∈ {0, 1} r ∈ R (17)

yi
r ≥ 0 r ∈ R; i ∈ V − {0}. (18)

The objective function (14) minimizes the total cost of the selected routes.
Constraints (15) impose that a delivery to a customer i on route r can only
take place if route r is selected and that the total quantity delivered on a
selected route cannot exceed the vehicle capacity. Constraints (16) ensure
that the demand di of customer i is completely satisfied. This formulation
is strengthened in Archetti, Savelsbergh and Speranza [5] with additional
constraints.

6.4 Computational Results

In Archetti, Hertz and Speranza [1] Dror and Trudeau’s algorithm and the
tabu search heuristic are compared and in Archetti, Savelsbergh and Speranza
[5] the improvements obtained by the optimization-based heuristic upon the
tabu search heuristic are reported. However, the comparisons are made on
different sets of instances. We compare here the three algorithms on the same
set of instances. This set is formed by 49 instances (available at the web site
www-c.eco.unibs.it/∼archetti/sdvrp.zip) which are derived from seven basic
instances. Such basic instances vary in terms of the number of customers
(ranging from 50 to 199) and in terms of vehicle capacity (ranging from 140
to 200). Six additional sets of instances were created by changing the demand
of the customers in the basic instances and maintaining all the other charac-
teristics. Each of the new sets of instances is characterized by a lower bound
α and by an upper bound γ on the demand of the customers, expressed as a
fraction of the vehicle capacity Q, i.e., α, γ ∈ [0, 1] with α ≤ γ. The demand
di of customer i is set to

di = �αQ + δ (γ − α)Q�

for some random δ in [0,1], i.e., the demand di of customer i is randomly chosen
in the interval [αQ, γQ]. The six additional sets of instances were created with
the following lower and upper bound combinations (α, γ): (0.01,0.1), (0.1,0.3),
(0.1,0.5), (0.1,0.9), (0.3,0.7) and (0.7,0.9) (following Dror and Trudeau [13]).
Note that customers demands are always lower than the vehicle capacity. The
reason is that Dror and Trudeau’s algorithm is designed for this case only.
Therefore, we can compare the three algorithms on this case only.

The results are shown in Table 1. When α = γ = 0 the demands of the
original instance are taken. From Table 1, we see that the tabu search heuristic
(SPLITABU) outperforms Dror and Trudeau’s heuristic (DT) in 41 cases
over 49 and that the optimization-based heuristic improves the tabu search
solution in 41 cases over 49. As observed in Archetti, Hertz and Speranza
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Table 1. Computational Results

SPLITABU Optimization-based heuristic
Instance n α γ % impr. on DT % impr. on SPLITABU % impr. on DT
p01.cri 50 0 0 10.53 0.59 11.18
p02.cri 75 0 0 4.75 0.08 4.83
p03.cri 100 0 0 7.24 0.01 7.24
p04.cri 150 0 0 5.59 0.68 6.31
p05.cri 199 0 0 2.64 0.15 2.79
p10.cri 199 0 0 2.64 0.15 2.79
p11.cri 120 0 0 2.58 0.00 2.58
p01.cri 50 0.01 0.1 5.83 0.00 5.83
p02.cri 75 0.01 0.1 4.00 0.00 4.00
p03.cri 100 0.01 0.1 7.46 0.00 7.46
p04.cri 150 0.01 0.1 9.95 0.00 9.95
p05.cri 199 0.01 0.1 3.33 0.07 3.40
p10.cri 199 0.01 0.1 3.33 0.07 3.40
p11.cri 120 0.01 0.1 1.94 0.00 1.94
p01.cri 50 0.1 0.3 6.23 0.00 6.23
p02.cri 75 0.1 0.3 2.32 0.99 3.34
p03.cri 100 0.1 0.3 1.32 0.54 1.86
p04.cri 150 0.1 0.3 2.75 0.24 3.00
p05.cri 199 0.1 0.3 1.78 0.10 1.88
p10.cri 199 0.1 0.3 1.78 0.10 1.88
p11.cri 120 0.1 0.3 1.38 0.83 2.22
p01.cri 50 0.1 0.5 2.19 0.17 2.37
p02.cri 75 0.1 0.5 3.12 0.48 3.62
p03.cri 100 0.1 0.5 3.38 1.41 4.84
p04.cri 150 0.1 0.5 1.76 0.33 2.10
p05.cri 199 0.1 0.5 1.53 0.49 2.03
p10.cri 199 0.1 0.5 1.53 0.49 2.03
p11.cri 120 0.1 0.5 2.69 0.12 2.81
p01.cri 50 0.1 0.9 1.68 0.00 1.69
p02.cri 75 0.1 0.9 2.57 0.03 2.60
p03.cri 100 0.1 0.9 1.75 0.44 2.19
p04.cri 150 0.1 0.9 1.65 0.25 1.90
p05.cri 199 0.1 0.9 2.26 0.05 2.32
p10.cri 199 0.1 0.9 2.26 0.05 2.32
p11.cri 120 0.1 0.9 -1.50 1.48 -0.03
p01.cri 50 0.3 0.7 4.12 0.13 4.25
p02.cri 75 0.3 0.7 4.90 1.06 6.01
p03.cri 100 0.3 0.7 2.40 0.50 2.92
p04.cri 150 0.3 0.7 2.73 0.68 3.43
p05.cri 199 0.3 0.7 3.70 0.31 4.02
p10.cri 199 0.3 0.7 3.70 0.31 4.02
p11.cri 120 0.3 0.7 -0.52 0.58 0.06
p01.cri 50 0.7 0.9 0.92 0.06 0.97
p02.cri 75 0.7 0.9 -0.81 0.34 -0.47
p03.cri 100 0.7 0.9 -0.94 0.29 -0.65
p04.cri 150 0.7 0.9 -0.33 0.30 -0.03
p05.cri 199 0.7 0.9 -1.62 0.44 -1.18
p10.cri 199 0.7 0.9 -1.62 0.44 -1.18
p11.cri 120 0.7 0.9 -3.53 1.17 -2.40

[1], the tabu search heuristic produces better results when the demands are
small with respect to the vehicle capacity. In Table 2 the computational times
required by the three heuristics are shown. Times are expressed in seconds.
The computational times required by the two most effective heuristics are
much higher than the time required by the local search heuristic. Moreover,
the tabu search heuristic needs much more time to solve instances with large
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demands. The reason is that in this case the number of moves to be evaluated
at each iteration is very large. Some comments are in order on these results.
First, in Archetti, Hertz and Speranza [1] the authors presented computational
tests letting the tabu search heuristic run for one minute only and showing that
also in this case it is much more effective than Dror and Trudeau’s heuristic. In
the experiments reported in Table 1 the tabu search is run until the natural
end. Second, whereas the results presented here concern a single version of
the optimization-based heuristic, in Archetti, Savelsbergh and Speranza [5]
different variants of the algorithm were tested and, by taking the best result
over the variants for each instance, it was possible to improve further the
quality of the solutions. Finally, the performance of the tabu search heuristic
is slightly different from what is reported in Archetti, Hertz and Speranza [1]
mainly because in Archetti, Hertz and Speranza [1] five different runs were
made on each instance for the tabu search. Here we tested a single run of the
tabu search heuristic.

Conclusions

In this survey we have summarized the contributions on the Split Delivery
Vehicle Routing Problem. The cost savings that can be obtained by allowing
split deliveries can be relevant and justify the interest that this problem has
raised. The complexity of the problem and structural properties of the optimal
solution are known. However, whereas some effective heuristics have been
designed and tested, the exact algorithms proposed until now can solve only
very small instances.
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Summary. An a priori route is a route which specifies an ordering of all possi-
ble customers that a particular driver may need to visit. The driver may then skip
those customers on the route who do not receive a delivery. Despite the preva-
lence of a priori routing, construction of these routes still presents considerable
challenges. Exact methods are limited to small problem sizes, and even heuristic
methods are intractable in the face of real-world-sized instances. In this chapter, we
will review some of the ideas that have emerged in recent years to help solve these
larger instances. We focus on the probabilistic traveling salesman problem and the
recently introduced probabilistic traveling salesman problem with deadlines and dis-
cuss how objective-function approximations can reduce computation time without
significantly impacting solution quality. We will also present several open research
questions in a priori routing.

Key words: Stochastic routing; a priori routing.

1 Introduction

For many delivery companies, only a subset of their customers require a pickup
or delivery each day. Information may be not available far enough in advance
to create optimal schedules each day for those customers that do require a
visit or the cost to acquire sufficient computational power to find such solu-
tions may be prohibitive. Companies have long used a priori routes to help
overcome these difficulties. An a priori, or pre-planned, route is a route which
specifies an ordering of all possible customers that a particular driver may
need to visit. The driver may then skip those customers on the route who do
not receive a delivery. A priori routes are used routinely in the package express
industry to sequence the many potential stops in each driver’s assigned terri-
tory. These routes create a regularity of service that can be beneficial for both
the customers and the drivers. Customers will be served at roughly the same
time each day they require service, and the drivers can become very familiar

B. Golden et al. (eds.), The Vehicle Routing Problem,
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with their routes. If there is time available on the day of service, starting from
an a priori tour can be useful, too, as a starting point for reoptimization.

The best known a priori routing problem is the probabilistic traveling
salesman problem (PTSP). Formally, the PTSP is the problem of finding a
minimum expected cost tour through a set of customers N = {i | 1, . . . , n}
with probabilities P = {pi | 1, . . . , n} of requiring service on any given day.
The travel time between any two customers i and j is given by di,j , where
di,j = dj,i.

Despite the prevalence of a priori routing, construction of these routes still
presents considerable challenges. Exact methods are limited to small problem
sizes, and even heuristic methods are intractable in the face of real-world-sized
instances. In this chapter, we will review some of the ideas that have emerged
in recent years to help solve these larger instances. These ideas are focused on
approximating the computationally expensive PTSP objective function using
various techniques.

Even though the PTSP is a challenging problem by itself, many delivery
companies are faced with a more complicated routing problem due to increas-
ing just-in-time business practices. These just-in-time considerations usually
come in the form of delivery deadlines. The most common example of these
services is next-day package delivery featured by United Parcel Service (UPS)
and FedEx. Next-day delivery providers usually offer a choice of deadlines
such as 10 am, noon, or 3 pm. Such time-definite services have grown from
just 4% of the parcel delivery market in 1977 to over 60% in 2002 [59]. The
market for all time-definite cargo was expected to grow by 7.6% in 2006 alone
[25], and the growth is expected to continue.

In the case of a priori routing with deadlines, the problem is known as the
probabilistic traveling salesman problem with deadlines (PTSPD). The prob-
lem definition for the PTSPD is the same as the PTSP except that associated
with each customer i ∈ N is a known deadline li. The PTSPD can alternately
be considered a version of the PTSP with time windows, but the opening
time of all windows is set to zero. Unfortunately, due to how the deadlines
impact the problem, the same techniques used to help solve large instances
of the PTSP are often not applicable for the PTSPD. In this chapter, we will
also review new approximation techniques that have proven successful for the
PTSPD and discuss instance characteristics that influence the performance of
these approaches.

This chapter is structured as follows. Section 2 provides a basic literature
review of a priori routing, where Section 3 and Section 4 delve into solution
approaches for the PTSP and PTSPD, respectively. Section 5 presents several
open research questions in a priori routing.
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2 Literature Review

One of the first appearances of a priori routing in the literature is in [1],
where the authors develop a priori tours for use in meals-on-wheels routing.
Jaillet [41] formally introduces the PTSP and demonstrates some interesting
properties of optimal tours including the fact that such a tour may intersect
itself. Jaillet [42] provides a formulation for the expected value of a tour and
bounds the relationship between optimal PTSP and TSP solutions. Berman
and Simchi-Levi [7] focus on instances of the PTSP with heterogeneous prob-
abilities, where most of Jaillet’s results involve homogeneous probabilities.
They establish a lower bound for such instances and explain how to combine
this bound with a branch-and-bound algorithm to find an optimal a priori
tour. Bowler et al. [17] offers additional characterizations of the problem.

Related to the PTSP is the Noisy Euclidean Traveling Salesman Problem
(NTSP). This problem was introduced in [20] and further studied in [45].
The NTSP is based on the idea that some neighborhoods within the service
area will have a higher probability of requiring service than others, and these
densities can be exploited to create an a priori route or “trajectory”. In this
way, each node in the resulting TSP can be thought of as being sampled from a
probability distribution, where in the PTSP the customer locations are known
with certainty.

While the literature contains research into many constrained versions of
the TSP, there is limited research into constrained versions of the PTSP. The
best known of the constrained versions is the stochastic vehicle routing prob-
lem (SVRP). The SVRP requires the consideration of vehicle capacity in the
formation of the tours, and rather than customer presence, customer demand
is usually the stochastic element of the problem. The first mention of this prob-
lem can be found in [58]. Bertsimas [8] introduces an analytical framework
and bounds for the SVRP. Other work can be divided into chance-constrained
and recourse model formulations (see [26; 27] and [16] for an overview of the
two types of formulations). Stewart and Golden [55], Laporte et al. [43], and
Bastian and Rinnooy Kan [3] provide chance-constrained formulations and
show how the problems can be transformed into deterministic problems. Dror
et al. [33], Dror [31], and Gendreau et al. [35] present stochastic programming
solutions to various recourse models for the SVRP. Dror and Trudeau [32],
Bramel et al. [18], Bertsimas et al. [11], Savelsbergh and Goetschalckx [54],
Gendreau et al. [37], and Yang et al. [62] offer various heuristics for the SVRP.
Gendreau et al. [37] provides comparisons of CPU times between their exact
solution approaches in [35] and their heuristics in [37]. For different scenar-
ios involving 11 stochastic customers, they demonstrate that exact solution
approaches may require solution times a thousandfold greater than the solu-
tion times of the proposed TABUSTOCH heuristic. Larger instances where
all customers are stochastic are not evaluated.

Campbell and Thomas [22] introduce the PTSPD, providing two recourse
models and a chance-constrained model for the problem. In addition, compu-
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tational experiments demonstrate situations in which it is important to model
the problem stochastically versus situations in which deterministic models are
sufficient.

The authors know of only a few other papers that address routing under
uncertainty with time constraints. These papers consider time constraints in
the context of stochastic travel times rather than in the context of random
customers as is discussed in this chapter. Teng et al. [57] apply the L-shaped
algorithm to the time-constrained traveling salesman problem (TCTSP) with
stochastic travel and service times. In the TCTSP, the time constraint is
on the length of the tour, which contrasts with the PTSPD where the time
constraints control when individual customers can be visited. Wong et al. [61]
introduce a 2-stage stochastic integer program with recourse for a problem
in which travel times are stochastic, all customers must be visited, and each
customer has an associated time window.

The value of a priori versus daily optimized or variable routes has been
explored in the context of the SVRP. Haughton [39, 40] introduce metrics for
determining the value of reoptimization versus a priori routes. Waters [60],
Benton and Rosetti [5], and Savelsbergh and Goetschalckx [54] discuss cir-
cumstances in which a priori routes can be cost-competitive alternatives to
reoptimization. For example, Benton and Rosetti [5] experiment with different
customer realization probabilities and route rescheduling costs. Their exper-
iments reveal that reoptimization is preferred when route scheduling costs
are low and few customers are realized. Interestingly, they also comment that
there are “a great deal of hidden costs associated with variable routes” and
suggest this is why a priori routes are often preferred. These hidden costs can
include consistency considerations and management overhead as well as cus-
tomer relationships associated with a driver visiting a customer at relatively
the same time everyday. A detailed discussion of consistency in route design
can be found in [64] and [63] which introduce a driver learning model to cap-
ture the importance of a driver consistently working in a particular geographic
area.

3 Solution Approaches for the PTSP

In this section, we formulate the PTSP, provide background on solution meth-
ods for the PTSP, and highlight two techniques for approximating the objec-
tive function.

3.1 Problem Formulation

In a solution to the PTSP, all of the customers are sequenced on one tour. On
the day of service, when all demands are known, the customers that have been
realized can be visited in the sequence defined by this a priori tour. Solution
methods for the PTSP focus on minimizing the expected cost of these final
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tours. The expected cost associated with a particular sequence of customers
1 . . . n can be evaluated by Equation 1 [8]:

n−1∑
i=1

n∑
j=i+1

pipjdi,j

j−1∏
k=i+1

(1−pk)+
n∑

i=2

i−1∑
j=1

pipjdi,j

n∏
k=i+1

(1−pk)
j−1∏
l=1

(1−pl). (1)

The first part of the equation represents the expected cost associated with us-
ing each arc (i, j) in a forward direction while the second part is the expected
cost associated with using each arc in the reverse direction to complete the
tour. The expected cost of an arc is based on the probability that the cus-
tomers at both end points of the arc are realized, the probability that the none
of the customers in between these on the tour are realized, and the length of
the arc.

3.2 Background

An exact approach for the PTSP was introduced by Laporte et al. [44],
but computational tests indicate success only with instances of 50 customers
or less. Consequently, much of the PTSP literature focuses on heuristic ap-
proaches. The authors found that among the instances studied, it was much
harder to solve instances with low individual probability values.

Rossi and Gavioli [53] discuss how to modify construction heuristics for
the TSP specifically to solve the PTSP. Their heuristics are based on Clarke
and Wright and nearest neighbor techniques and do not include any local im-
provement. The expected costs of the resulting solutions are compared with
those found using basic TSP heuristics. Based on their computational exper-
iments, the authors conclude that it is important to use solution techniques
specifically developed for the PTSP if the number of customers is greater than
50 and the probability of each customer requiring a visit is less than 60%.

Bertsimas et al. [10] discuss space-filling curve and iterative heuristics.
Bertsimas and Howell [9] and Chervi [28] explore the use of TSP heuristics
for solving the PTSP and propose algorithms for the PTSP based on con-
structing an initial solution using the space-filling curve heuristic [2] followed
by local search. Variations of the 2-OPT and 1-Shift techniques developed for
the TSP in [46] are introduced that compute the change in objective in an
expected value sense. The equations presented by Bertsimas and Howell [9]
and Chervi [28] have been shown to have small errors, corrected in [15]and
[12], but even with these small errors, the authors are able to show improve-
ment based on expected value becomes more important as n becomes large.
These key instances, though, prove to be very difficult for them to solve. For
example, [11] reports runtimes of half an hour to a full hour of CPU time for
their simplest improvement heuristics to converge with 50-customer PTSPs.
Bertsimas and Howell [9] also report that expected value based local improve-
ment is particularly important when probability values are significantly less
than 1. This confirms the results established by Rossi and Gavioli [53]. Beraldi
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et al. [6] extend the efficient evaluation methods of Bertsimas and Howell [9]
and Chervi [28] to the probabilistic pickup and delivery traveling salesman
problem.

Various metaheuristic approaches have also been applied to the PTSP.
Bianchi et al. [14, 13] introduce an ant-colony optimization approach. They
demonstrate that the ant-colony approach outperforms a radial-sort heuristic
and a random best heuristic for the PTSP. Building upon work presented in
[51], Rosenow [52] develops a genetic-algorithm approach which uses crossover
operators first proposed by Grefenstette et al. [38] for the traveling salesman
problem. The tests are limited and show only that the genetic algorithm out-
performs a branch-and-bound scheme for the PTSP. Bowler et al. [17] uses
the PTSP as a testbed to demonstrate the effectiveness of stochastic anneal-
ing. As a result of their tests on the PTSP, the authors hypothesize that a
priori tours perform at most 14% worse than reoptimization strategies for the
PTSP.

3.3 Approximation Approaches

The above research on solution techniques for the PTSP concludes that it is
particularly important to solve instances of the PTSP using an expected value
approach when the size of the instances are large and when probability values
are not close to 1. This represents most instances of the PTSP that would
be solved in practice, such as those at package delivery companies. Even with
sophisticated metaheuristic approaches and significant increases in comput-
ing power, such large instances are still considered intractable because they
involve repeated evaluations of Equation 1. This objective function is much
more time consuming to evaluate than with the TSP. The PTSP objective
function includes the cost of every arc that could potentially be used in the
solution, leading to its O(n3) complexity rather than the TSP’s O(n) complex-
ity. Thus, evaluating the cost of a small change in a PTSP route, such as in
a heuristic search approach, is also potentially computationally expensive. In
the TSP, the change in cost can be computed based on the neighbors directly
impacted by the change. Due to the probabilistic nature of the objective func-
tion, computing a small change in an a priori route can easily be as expensive
as evaluating the cost of the full objective function. Some of the more promis-
ing ideas that have emerged in recent years for solving the PTSP involve
approximating the objective function and using this approximation in various
search methods. These ideas differ from the existing solution approaches that
rely on exact computation of expected solution values, even when they are
obtained using heuristics. We will consider two types of approximation here:
one where the number of terms in the original objective function is truncated
and one where customers are aggregated.



Challenges and Advances in A Priori Routing 129

Truncation and Approximation Function

The first of these approximation ideas for the PTSP was presented in detail
in [56]. The objective function considered is slightly different than Equation 1
because the authors assume the tour begins at the depot (customer 0) which
is present with a probability value of 1. The authors also do not consider the
cost of a return trip to the depot which removes the second part of Equation 1.

The approximation is based on truncating the calculations used in com-
puting the cost of adding a customer to the tour. For example, suppose the
cost to add a customer j to the end of an arbitrary partial tour is initially
computed by:

pj−1pjdj−1,j +pj−2pjdj−2,j(1−pj−1)+ · · ·+p0pjd0,j(1−p1) · · · (1−pi). (2)

Equation 2 could be replaced by:

pipjdi,j +pi−1pjdi−1,j(1−pi)+ · · ·+pi−K+1pjdi−K+1,j(1−pi−K+2) · · · (1−pi)
(3)

where K ∈ (0, i) is a truncation parameter. Thus, K terms at most are used
in the equation that evaluates the cost of adding j. The idea is that the
cost of adding j is most impacted by the customers closest to j on the tour.
Customers more than K stops ahead of j, for example, will be unlikely to
directly precede j on the resulting tour, so the cost of using that direct arc is
highly discounted in the cost computation and can reasonably be truncated.

The idea of truncating expected cost expressions was introduced prior to
[56] in [36]. In [36], the authors develop approximations for the vehicle routing
problem with stochastic customers and stochastic demand. The part of their
approximation related to the existence of stochastic customers is quite similar
to the simple truncation proposed above.

Due to the truncation, Equation 3 will always underestimate the true costs.
Tang and Miller-Hooks [56] refine this approximation approach by proposing
the use of a function f(K) to estimate this underestimation, changing and
generalizing Equation 3 to:

n−1∑
i=j−K

pidi,j

j−1∏
k=i+1

(1− pk) + f(K)pj . (4)

Such an expression, after defining f(K), can clearly be used to speed up
a construction heuristic for the PTSP. Equation 4 can also be used in ap-
proximating the full function evaluation, enabling truncation to be used with
various improvement approaches.

The amount of speedup and the quality of such an approach is depen-
dent on the choice of K and the approximation function f(K). Equation 4
will be more accurate the higher K is, but it will also be more expensive
to evaluate. Tang and Miller-Hooks [56] propose choosing K based on a set
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of trial experiments. They propose a series of computationally efficient func-
tions to use for f(K) involving coefficients that are tuned to the particular
problem instances. For many choices of K and f(K), the evaluation of the
objective becomes O(n), which is the same complexity as the objective of the
deterministic TSP.

To overcome the sensitivity to the choice of K, Tang and Miller-Hooks
[56] propose a progressive enhancement idea where K can be increased over
the course of the improvement procedure. As the solution improves and less
improvements are possible with the current choice of K, K is increased and
f(K) is improved to make the approximation more accurate. This gives the
power of the speedup without a loss in quality of the final solution. It also
makes the solution method less sensitive to a poor initial choice of K.

Tang and Miller-Hooks [56] experiment with datasets involving 50, 75, and
100 customers. The computational experiments reveal that is possible to tackle
large sized PTSP instances with significantly reduced computational effort
but not reduced solution quality. Using a 2-OPT improvement scheme, for
example, instances with 100 customers that originally took over 2100 seconds
on average to converge, take on average 17.5 seconds with approximation. For
these instances, the solutions found with approximation were on average 0.5%
better than those found using exact objective evaluations.

We note that both Branke and Guntsch [19] and Liu [47] experiment with
truncation-based approximate function evaluations within their ant-colony
and scatter-search metaheuristics, respectively. Branke and Guntsch [19] con-
sider instances as large as 1379 customers and demonstrate that an approxi-
mate function evaluation embedded in ant-colony optimization reduces com-
putation time by almost 30% relative to a full evaluation. Interestingly, they
found better speedup when using the approximation with heuristic search
methods other than ant colony optimization. On instances with up to 100
customers, results in [47] indicate that approximate function evaluation em-
bedded in scatter search is capable of finding good solutions while reducing
computation time by as much as 86%. Unfortunately, direct comparisons be-
tween [56], [19], and [47] do not exist.

Approximation by Aggregation

The second idea we examine in approximating the PTSP is to aggregate cus-
tomers into regions. By using regions in place of individual customers in Equa-
tion 1, there is an obvious opportunity for speedup in evaluating the objective
function. This idea is examined in detail in [21]. Aggregation in this context
refers to grouping customers together and then representing them by one point
spatially and with a single probability value. In aggregating customers, there
are many choices in terms of how to divide customers into regions and how
many regions to create.

Customer aggregation is common in the literature, but primarily in the
context of location problems (see [29; 34], for examples) and not in a routing
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context. There has been little analysis, theoretical or computational, on how
aggregation can be used in solving routing problems or how aggregation can
impact solution quality, especially in a probabilistic context. In [4], for exam-
ple, the authors aggregate deliveries by postal codes before designing routes,
but there is no discussion of how this aggregation impacts solution quality
and speed.

If aggregation is used in the context of the PTSP, the a priori tour becomes
a tour through regions rather than customers. This requires a modification of
Equation 1. If the n customers are each assigned to one of r regions, a new
probability value is required for each region as well as new distance costs.
The probability associated with each region S will need to reflect all of the
customers assigned to this region. Since a tour will travel to each region only
once, Campbell [21] proposes defining pS as the probability that region S will
require a visit. Computation of pS is then:

pS = 1−
∏
i∈S

(1 − pi). (5)

Equation 5 is the probability that region S will have at least one realized de-
mand given that customer orders are independent events. Next, to compute
Euclidean distances between regions, a spatial location is needed to represent
each region. Campbell [21] proposes computing the centroid of the customers
in a region, where the weights on the customers are based on their individ-
ual probabilities. These centroid coordinates can be used to compute the Eu-
clidean distance between each pair of regions. Equation 1 can then be replaced
by the aggregated a priori expected value equation found in Equation 6:
r−1∑
S=1

r∑
T=S+1

pSpT dS,T

T−1∏
U=S+1

(1 − pU ) +
r∑

S=2

S−1∑
T=1

pSpT dS,T

r∏
U=S+1

(1 − pU )
T−1∏
V =1

(1 − pV )

(6)

where dS,T represents the distance between regions S and T . Equation 6
resembles Equation 1, but the number of terms here can be several orders of
magnitude smaller than Equation 1 because of aggregation.

Note, unlike with truncation, this approximation does not necessarily un-
derestimate the full objective function. Because in most cases it will, Campbell
[21] proposes a series of functions that can be added to Equation 6 similar to
the f(K) functions in [56].

As stated earlier, the primary literature on aggregation comes from lo-
cation theory, and there are a variety of ways suggested to group customers
together based on distance. Yet with the PTSP, probability offers an impor-
tant additional consideration. Grouping customers strictly based on location
may lead to regions, for example, with very different probabilities of requiring
a visit. Likewise grouping customers so that each region is equally likely to
require a visit may create regions of very different size and shape. The study
in [21] uses simple distance and probability-based aggregation approaches to
build insight into what creates a successful aggregation scheme for PTSP
problems.
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The distance-based aggregation scheme is a grid-based approach, such as
those discussed in many location papers [50]. For a given parameter g, the
customer service area will be divided evenly into g segments along the x axis
and g segments along the y axis to create a total of g2 regions of equal area.
If customers are uniformly distributed, each region should have roughly the
same number of customers. The potential downfall of such an approach lies
in the fact that not all customers are evenly distributed over the service area
in real world applications.

The second form of aggregation is to divide the customer service area
into regions of roughly equal probability. This may help remedy some of the
possible negative issues with grids since customers should be fairly evenly dis-
tributed among the regions, but now the regions will clearly not be of the same
size. To divide potential customers into regions based on probability, Camp-
bell [21] defines a parameter maxp that represents the maximum likelihood
of requiring a visit in a region. Starting from an initial region that includes
all of the customers, regions are repeatedly divided into smaller regions un-
til all regions have probability less than or equal to maxp. The approach is
similar to Voronoi Diagram/Delaunay Triangulation ideas [30]. The shape of
the current region is used to guide the division process in order to preserve
some of the advantages of the grid approach and keep the regions from being
extremely tall or wide which would distort distance calculations.

Computational experiments involve datasets ranging from 100-1000 cus-
tomers and various customer probabilities. Following the structure of [9], ini-
tial solutions were constructed using a space-filling curve heuristic and several
improvement schemes were tested, including TSP techniques such as 2-OPT
and 1-Shift and expected value versions of 2-OPT and 1-Shift. Using aggre-
gation, search procedures for even the 1000 customer datasets were able to
converge within the 120 second time limit, and the final solutions were usually
better than those found without aggregation. Both uniformly and clustered
datasets were used to see how the geographical distribution of customers im-
pacts the performance of the aggregation approaches. The results indicate
that, as expected, using grid versus probability based aggregation makes little
impact on uniform datasets, but can have significant impact when datasets
are clustered. Campbell [21] found that quite coarse levels of aggregation can
lead to good objective value estimates, but aggregation needs to become finer
as the customer probabilities increase. The proposed general rule is to divide
customers into regions such that the total expected demand in a region is
no more than 0.5 deliveries in order to achieve an estimate within 90% of
the full objective value. The experiments also indicate that there are many
research opportunities concerning the solution of the PTSP when data is not
uniformly distributed. Most of the previous publications, and thus the conclu-
sions about solving the PTSP, were based on uniformly distributed datasets,
but Campbell [21] found the relative performance of various heuristics to be
very different for clustered datasets.



Challenges and Advances in A Priori Routing 133

4 Solution Approaches for the PTSPD

In this section, we formulate the PTSPD, discuss why different approximation
techniques are needed than those for the PTSP, and introduce two approxi-
mation techniques appropriate for the PTSPD.

4.1 Problem Formulation

In a solution to the PTSPD, all of the customers are sequenced on one tour,
just like the PTSP. Because of the deadlines, the PTSPD is modeled with a
depot (customer 0), and the tour departs the depot at time 0. As in [56], the
depot exists with a probability value of 1, but, unlike [56], the model includes
a return to the depot in the cost evaluation. There are several choices on how
the deadlines will impact the costs in the model. We will follow the same
structure as [23], introduced in [22], where the vehicle is allowed to visit each
customer i after the delivery deadline has passed, but incurs a per-unit-time
penalty, λi, for doing so. If Ti is the latest time that customer i can be reached
and g(i, t) is the probability that customer i is reached at time t, then the
expected cost of a tour is:

n∑
j=1

pjd0,j

j−1∏
k=1

(1 − pk) +

n−1∑
i=1

n∑
j=i+1

pipjdi,j

j−1∏
k=i+1

(1 − pk) +

n∑
i=1

pidi,0

n∏
k=i+1

(1 − pk)

+
n∑

i=1

pi

Ti∑
t=li+1

λig(i, t)(t − li).

The probability g(i, t) can be computed recursively using the following equa-
tions. When t < d0,i, g(i, t) values will always be zero, since arrival cannot
occur any earlier than with a direct trip from the depot. When t = d0,i, arrival
at t can occur if no prior customers are realized:

g(i, t) =
i−1∏
k=1

(1− pk). (7)

When t > d0,i, arrival at i is based on all of the possible preceding customers
and their possible departure times:

g(i, t) =
i−1∑

h=1,t>(dh,i+d0,h)

phg(h, t− dh,i)
i−1∏

k=h+1

(1− pk). (8)

The complexity of the function evaluation is dominated by the computation
of the g values and is O(n2 maxi{Ti}).

4.2 Approximation Approaches

As indicated in Section 2, the PTSPD was only recently introduced in [22].
While Campbell and Thomas [22] demonstrate the expected savings possible
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from modeling a time-constrained a priori routing problem probabilistically,
they also show that, like with the PTSP, the probabilistic model requires sig-
nificant additional computation time to solve. Given the recent developments
for the PTSP, the obvious solution is to use one of the approximation ap-
proaches from Section 3. Unfortunately, simply implementing the truncation
and aggregation ideas proposed for the PTSP with the PTSPD is unlikely
to be successful for two reasons. First, the computational experiments in [22]
reveal, in line with the worst case complexity analysis, that the run time for
solving the PTSPD is dominated by the g values. Thus, truncating only the
distance portion of the objective function will make little difference in the run-
times. We will discuss in Section 4.2 how Campbell and Thomas [23] propose
truncating the calculation of the g terms. Second, the aggregation schemes
discussed for the PTSP no longer make sense when the customers have differ-
ent deadlines. Since the expense of the g terms is due to the potentially high
Ti values, Campbell and Thomas [23] propose discretizing time into larger
units to reduce the computational burden in a way that behaves similar to
customer aggregation. This discretization idea is referred to as temporal ag-
gregation in Section 4.2. It is important to note that these approximations
methods are not specific to the PTSPD, but, rather, they have application in
any discrete-time problem in which the timing of events is stochastic.

Truncation Approximation

In the PTSPD, even a small change in the tour involving position i will im-
pact the expected arrival times, and thus expected penalties, at all customers
succeeding i on the route. Like with the PTSP, the change in penalty will be
“felt” the strongest by the customers that are served just after i on the tour.
Thus, Campbell and Thomas [23] propose evaluating the change in the penalty
portion of the objective associated with a local search move by considering
only the q nearest neighbors to each customer.

The truncation approximation in [23] involves new equations for comput-
ing the g values. We will refer to the new g values by g∗. A value for g∗(i, t)
will be computed when t = d0,i only if i ≤ q. In other words, for t = d0,i and
i > q, we will set g∗(i, t) = 0. If i ≤ q, Equation 7 is used. Next we modify
Equation 8 to only consider the closest q customers to i:

g∗(i, t) =
i−1∑

h=max (i−q,1),t>(dh,i+d0,h)

phg∗(h, t− dh,i)
i−1∏

k=h+1

(1− pk). (9)

With this approximation, no g∗(i, t) calculation requires more than O(q) com-
plexity, assuming that the products are stored and computed ahead of time.
Now the full penalty cost can be computed in O(nq maxi{Ti}) time rather
than O(n2 maxi{Ti}). Depending on the relative size of q and n, Equation 9
can lead to a significant speedup in the calculations.
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The choice of q is important. Since this approximation scheme is based on
the idea that the truncated terms will have a value close to zero due to all
of the multiplied (1− pk) probabilities involved, the initial choice of q should
be based on the probabilities involved in a particular instance or dataset.
For example, when the average probability values are near 0.1, the initial q
can be set higher than when probabilities values average near 0.9. As with
the progressive enhancement idea from Section 3.3, the choice of q can be
incremented based on the progress of the local search procedure, overcoming
the potential difficulty of parameter setting.

Computational experiments include instances with 40, 60, and 100 cus-
tomers, varied probabilities, varied penalties, and varied deadlines. The ap-
proximation is embedded within a steepest descent local search algorithm with
a 1-Shift neighborhood. The results indicate that, in most cases, truncation
returns quality solutions more quickly than a similar search heuristic in which
the cost of neighboring solutions is computed without approximation. For ex-
ample, on 60-customer instances in which all customers have a low probability
of being realized, truncation reduces runtime by as much as 72% compared
to the direct computation. Tests show that truncation has the most value
when customer probabilities are low and deadlines are tight. The truncation
approach performs poorly in terms of runtime in the case where all customers
have a high probability of requiring service.

Temporal Aggregation

If penalties are assessed based on the number of minutes that a delivery is
late, it is necessary for accuracy to compute the g(i, t) values with t indices
representing minutes. If there are a large number of customers or if the travel
times between some customers are quite long, the Ti values can easily become
exponential in n.

In a local search scheme, it is typical to choose the change to the current
solution that makes the largest improvement in the objective value. In this
context, we can think of changes that reduce the lateness at customers by
hours rather than minutes as the type of improvements we would want to look
for first. This is the idea behind the temporal aggregation scheme proposed
in [23]. Instead of making the t values represent minutes, or whatever the
final time discretization that is required for the penalty calculation, larger
time discretizations are used and are gradually refined until the final time
discretization is reached.

Temporal aggregation has been applied in economic models [48] and in
integer programming [49]. Most applications of temporal aggregation in inte-
ger programming are based on increasing the size of time periods for which
decisions are made in an attempt to reduce the number of decision variables.

One key decision here is size of the time units that will be used in eval-
uating the penalty function. The selected time discretization should be large
enough to gain computational advantage in the penalty calculation, but small
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enough such that penalty improvements can be found. If the original time dis-
cretization is in minutes, the larger discretization does not need to be hours
but could be, for example, 3 minutes, 40 minutes, or 180 minutes. The choice
of time discretization will vary and will clearly have a relationship to the
customer dataset being considered.

For the temporal aggregation scheme proposed in [23], the units for the
Ti, li, and d values will all need to be changed to reflect the new level of
discretization. These new values will be referred to by T ∗

i , l∗i , and d∗, respec-
tively. Since the l∗i values are used as indices in the g functions, they must
obtain integer values. Thus, a simple transformation using a particular time
discretization v is to round each li

v to its nearest integer to obtain l∗i . Similarly,
the same process is repeated to create the new distance values d∗, and these
new distances are used to compute the T ∗

i values. Note that Equation 7 does
not change, just the value of d0,i to d∗0,i. Equation 8 becomes:

g∗(i, t) =
i−1∑

h=1,t>(d∗
h,i+d∗

0,h)

phg(h, t− d∗h,i)
i−1∏

k=h+1

(1− pk).

Campbell and Thomas [23] offer a general suggestion for the choice of the
largest time discretization. Since the complexity of evaluating the objective
function is potentially non-polynomial in n due to the T values, the recom-
mendation is to use time units of size v where v = maxi{Ti}

n . The largest T ∗
i

value can be is maxi{Ti}
v which is now n, making a function evaluation possible

in O(n3) time.
The final step in designing a temporal aggregation scheme is to decide if

and when the level of discretization should be changed. This choice can be
based on the progress of the local search, as in a progressive enhancement
procedure. For example, the user can begin with a choice of v that makes the
function polynomial to evaluate and reduce v when the local search converges.

Using the same experiments as with the truncation approximation, com-
putational results for the temporal approximation reveal that temporal ap-
proximation provides the same quality solutions as truncation. Like the trun-
cation approach, temporal aggregation performs poorly in terms of runtime
on instances in which the probability of all customers requiring service is
high. Temporal aggregation offers better runtimes relative to truncation on
40-customer datasets. However, temporal aggregation requires much longer
runtimes on the 100-customer datasets.

5 Open Questions

There are many remaining questions. It is not clear what are the best search
methods in which these approximation ideas should be embedded and how the
approximation parameters should be tuned in the solution process for these
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problems. It would also be interesting to determine if there would be benefits
from using some of these approximation ideas in conjunction with each other.
It is also not clear if the answers to these questions will be different depending
on the geographical distribution of the customers and/or the distribution of
the customer deadlines. Further, it would be interesting to see if the approx-
imation techniques can be used in conjunction with vehicle capacity, as in
the stochastic vehicle routing problem [36] and the stochastic vehicle routing
problem with deadlines [24].

Although this chapter focuses on approximation techniques for a priori
routing problems, it is also important to note that there are many variations
of the PTSP that are not well-studied, but are applicable in real-world appli-
cations. These variants offer important areas of future study, especially if the
approximation approaches presented here aid empirical study. One variant of
interest is the case of travel distances which are not Euclidean distances but
are road network distances. This variant is motivated by the fact that most
real-world applications of the PTSP involve traveling on road networks. A sec-
ond area of future research involves problems in which the probabilities that
customers require service are not necessarily independent. These problems
have been ignored due to the technical difficulties, but in many applications,
these probabilities are often correlated. Third, the obvious extension to the
PTSPD is to consider the situation where customers have delivery time win-
dows and not just delivery deadlines. Known as the PTSP with time windows,
this variant requires consideration of the possibility that vehicles must wait
before the opening of window. This possibility greatly complicates the prob-
lem formulation and also raises questions about whether it should be possible
to make deliveries early, but incur a penalty for doing so. Fourth, related to
the PTSPD is the problem where only a subset of customers have a deadline,
and this deadline is the same for those customers. This variant reflects the
difficulties that some delivery providers have in offering an “express” service
and might be more amenable to more specialized solution techniques.
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1 Introduction

This chapter is a categorized bibliography of applications of metaheuristics
for the Vehicle Routing Problem (VRP) and its extensions. It is basically a

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 7, c© Springer Science+Business Media, LLC 2008
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structured list of references based on the various metaheuristics and problem
types.

In the early years, specialized heuristics were typically developed for solv-
ing complex combinatorial optimization problems, like the VRP. Then, more
generic solution schemes, called metaheuristics by Fred Glover in 1986, were
designed [5, 11, 13]. The challenge is then one of adapting those generic solu-
tion schemes to the problems at hand. This exercise typically requires much
less work than developing a specialized heuristic from scratch. Furthermore,
a good metaheuristic implementation can provide near-optimal solutions in
reasonable computation times. Vehicle routing problems, in particular, exhibit
an impressive record of successful metaheuristic implementations.

In this chapter, we focus on the most popular types of metaheuristics.
They are introduced in the sections that follow.

1.1 Ant Colony Optimization

This metaheuristic is inspired from a natural metaphor, namely the commu-
nication and cooperation mechanisms among real ants that allow them to find
short paths from their nest to food sources. The communication medium is a
chemical compound, known as pheromone, which is laid down on the ground.
While an isolated ant would more or less wander randomly, an ant detecting
a pheromone path will follow it, with some probability, and will strengthen
it with its own pheromone. Thus, the probability that other ants will follow
a given path in the future increases with the number of ants that previously
followed it. This leads to the emergence of shortest paths, since pheromone
tends to accumulate faster on those paths. In the artificial metaphor known
as Ant Colony Optimization (ACO) [4], a number of artificial ants construct
solutions in a randomized and greedy way at each cycle. Each ant chooses
the next element to be incorporated into its current partial solution based on
some heuristic evaluation of that element and the amount of pheromone, repre-
sented by a weight, associated with it. The pheromone represents the memory
of the system and is related to the presence of that element in good solutions
previously constructed by the ants. ACO has quite naturally been applied to
the Traveling Salesman Problem (TSP), where a shortest Hamiltonian cycle
must be found over a complete graph. However, the ACO metaheuristic has
also been adapted to the VRP and some of its extensions.

1.2 Genetic Algorithms

Evolutionary algorithms are a wide class of metaheuristics, also inspired from
a natural metaphor, with Genetic Algorithms (GAs) [14] being one of the best
known. Basically, they mimic the way species evolve and adapt to their envi-
ronment, according to the Darwinian principle of natural selection. Under this
paradigm, a population of solutions (often encoded as bit or integer strings,
known as chromosomes) evolves from one generation to the next through the
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application of operators that are similar to those found in nature, like se-
lection of the fittest, genetic crossover and mutation. Through the selection
process, only the best solutions are allowed to become parents and to gener-
ate offspring. The mating process, known as crossover, then takes two selected
parent solutions and combines their most desirable features to create one or
two offspring solutions. This is repeated until a new population of offspring is
obtained. Finally each offspring is randomly perturbed by a mutation oper-
ator. Starting from a randomly or heuristically generated initial population,
this cycle is repeated for a number of generations, and the best solution found
is returned at the end. When applied to vehicle routing problems, the classical
GA solution scheme is often modified. In particular, the encoding of solutions
into chromosomes is either completely ignored (by applying the various oper-
ators directly on the solutions) or designed in a very particular way to take
advantage of specialized crossover and mutation operators.

1.3 Greedy Randomized Adaptive Search Procedure

The basic idea of the Greedy Randomized Adaptive Search Procedure (GRA-
SP) [18] is to use a randomized greedy construction heuristic within a multi-
start procedure to generate a variety of solutions. At each step of the greedy
construction heuristic, the elements not yet incorporated into the current par-
tial solution are evaluated with a heuristic function, and the best elements are
kept in a restricted candidate list. One element is then randomly chosen from
that list and incorporated into the partial solution. When the construction
process is completed, the solution is further improved with a local search.
The best solution obtained after a certain number of restarts is then returned
at the end.

1.4 Simulated Annealing

This metaheuristic is a randomized local search method, where a modifica-
tion to the current solution that leads to an increase in solution cost can be
accepted with some probability. This mechanism allows the method to escape
from bad local optima. Simulated Annealing (SA) [16] comes from an analogy
with the physical annealing process aimed at generating solids with low-energy
states. In condensed matter physics, annealing is a process in which a solid
is first melted by increasing its temperature. This is followed by a gradual
temperature reduction to recover a solid state of low energy. A careful an-
nealing through a series of temperature levels, where the temperature is held
long enough at each level to allow the system to reach equilibrium, leads to
the more regular structures associated with solids with low-energy states. In
a vehicle routing context, a solution or set of routes corresponds to a state
and the solution cost to its energy. At each iteration, the current solution is
modified by randomly selecting a modification based on a particular class of
modifications that defines the neighborhood structure. If the new solution is
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better than the current one, it becomes the current solution. Otherwise, the
new solution is accepted according to a probabilistic criterion, where a mod-
ification is more likely to be accepted if a parameter called the temperature
(by analogy with the physical process) is high and the cost increase is low.
During the procedure, the temperature parameter is progressively lowered ac-
cording to some predefined cooling schedule, and a number of iterations is
performed at each temperature level. When the temperature is sufficiently
low, only improving modifications can be accepted and the method stops in a
local optimum. As opposed to most metaheuristics, it has been shown that SA
asymptotically converges to a global optimum. The success of SA has sparked
the development of deterministic analogs whose performance has been quite
similar to that of SA: Threshold Accepting [7], Record-to-record Travel [6],
and the Great Deluge Algorithm [6]. In these methods, as in SA, the ac-
ceptance of deteriorating solutions becomes progressively less frequent as the
algorithm unfolds.

1.5 Tabu Search

Like SA, Tabu Search (TS) [12] is a local search-based metaheuristic where, at
each iteration, the best solution in the neighborhood of the current solution is
selected as the new current solution, even if it leads to an increase in solution
cost. Through this mechanism, the method can thus escape from bad local
optima. A short-term memory, known as the tabu list, stores recently visited
solutions (or attributes of recently visited solutions) to avoid short-term cy-
cling. The search stops after a fixed number of iterations or after a number of
consecutive iterations have been performed without any improvement to the
best known solution.

1.6 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [15] is another local search-based meta-
heuristic which exploits many different transformation classes, or neighbor-
hoods, to escape from bad local optima. When a local optimum is reached
with regard to a given neighborhood, another neighborhood is selected and
used in the following iterations. More precisely, given a set of (often nested)
neighborhoods, a solution is randomly generated in the first neighborhood of
the current solution, from which a local descent is performed (possibly based
on a completely different neighborhood structure). If the local optimum ob-
tained is not better than the current solution, then the procedure is repeated
with the next neighborhood in the nested structure. The search restarts from
the first neighborhood when either a solution which is better than the current
solution is found or all neighborhoods have been tried. A well-known variant
is the Variable Neighborhood Descent (VND) where the best neighbor of the
current solution is considered instead of a random one. Also, no local descent
is performed on this neighbor. Rather, the latter becomes the new current
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solution if it provides an improvement. The search is then restarted from the
first neighborhood. Otherwise, the next neighborhood is considered.

1.7 Other Methods

The category Others groups together the remaining metaheuristics, including
hybrids.

1.8 Problems

The problems considered are the VRP, the VRP with time windows (VRPTW),
the VRP with backhauls (VRPB), the VRP with pick-ups and deliveries
(VRPPD), the VRP with multiple use of vehicles, the VRP with multiple
depots (MDVRP), the vehicle fleet size and mix VRP (FSMVRP) (including
the VRP with trailers – VRPT) and the dynamic VRP. Note that within each
subsection, entries are given in chronological order.

1.9 Selection of Papers

We have chosen to restrict this to papers published in journals and conference
proceedings. We exclude working papers, dissertations, and theses, because
these are often difficult to obtain. Considering the large number of papers
that have been devoted to the application of metaheuristics to vehicle routing
problems, we could not include in this bibliography all published papers. We
emphasize more recent papers, and have tried to include all papers that have
had a major impact on the development of the field. We apologize to the
authors whose papers have been left out.

2 Vehicle Routing Problem

The VRP [19] can be formally defined as follows. Let G = (V, A) be a graph
with A the arc set and V = {1, ..., n} the vertex set, where vertex 1 is the
depot and the other vertices are cities or customers to be served. With every
arc (i, j), i �= j, is associated a non-negative distance matrix D = (dij), where
dij can be interpreted either as a true distance, a travel time or a travel
cost. Note that the undirected version of the VRP is obtained when D is
symmetric. A fleet of vehicles, based at the depot, is available for serving
the vertices. Usually, the number of vehicles is variable, and a fixed cost f is
incurred each time a new vehicle is used. It can also happen that the number
of vehicles is fixed or upper bounded. A non-negative weight or demand qi

is associated with each vertex i > 1 and the sum of demands on any vehicle
route should not exceed the vehicle capacity. The capacity and fixed cost can
be the same for all vehicles (homogeneous fleet) or not (heterogeneous fleet).



148 Gendreau, Potvin, Bräysy, Hasle, and Løkketangen

In some variants, the total travel distance or total travel time of each vehicle
is also constrained. The problem is to find a set of least-cost vehicle routes
such that:

• each vertex in V − {1} is served exactly once by exactly one vehicle;
• each vehicle route starts and ends at the depot;
• all side constraints are satisfied (capacity, maximum travel distance or

maximum travel time).

Note that this section also covers methods developed to solve Open VRP
(OVRP), in which each route is a Hamiltonian path instead of Hamiltonian
cycle; this difference comes from the fact that vehicles do not return to the
starting depot or, if they do so, they must follow the same path backwards.
Problems with multiple objectives are also considered.

The reader is referred to [9] for a general survey about metaheuristics
for the classical VRP with capacity constraints. References on specific meta-
heuristics are found in the following subsections.
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D. Mester and O. Bräysy. Active guided evolution strategies for large-scale
capacitated vehicle routing problems. Computers & Operations Research,
34:2964-2975, 2007.

2.3 Greedy Randomized Adaptive Search Procedure

B.M. Baker and C.A.C. Carreto. A visual interactive approach to vehicle
routing. Computers & Operations Research, 30:321–337, 2003.

2.4 Simulated Annealing

I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.

I. Zeng, H.L. Ong and K.M. Ong. An assignment-based local search method
for solving vehicle routing problems. Asia-Pacific Journal of Operational Re-
search, 22:85–104, 2005.

2.5 Tabu Search

I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.
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15. P. Hansen and N. Mladenović. Variable Neighborhood Search. Chapter 6 in

Handbook of Metaheuristics, F. Glover and G.A. Kochenberger, eds., Kluwer,
145–184, 2003.

16. P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Ap-
plications. Springer, Dordrecht, 1987.



Metaheuristics for the Vehicle Routing Problem 169

17. H.N. Psaraftis. Dynamic Vehicle Routing Problems. Chapter 11 in Vehicle Rout-
ing: Methods and Studies, B.L. Golden and A.A. Assad, eds., North-Holland,
Amsterdam, 223–248, 1988.

18. M.G.C. Resende and C.C. Ribeiro. Greedy Randomized Adaptive Search Pro-
cedures. Chapter 8 in Handbook of Metaheuristics, F. Glover and G.A. Kochen-
berger, eds., Kluwer, 219–249, 2003.

19. P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia, PA, 2002.

20. P. Toth and D. Vigo. VRP with Backhauls, Chapter 8 in The Vehicle Routing
Problem, P. Toth and D. Vigo, eds., SIAM Monographs on Discrete Mathematics
and Applications, Philadelphia, PA, 195–224, 2002.



Parallel Solution Methods for Vehicle Routing
Problems

Teodor Gabriel Crainic

Department of Management and Technology
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Summary. Parallel solution methods contribute to efficiently address large and
complex combinatorial optimization problems, vehicle routing problems in partic-
ular. Parallel exact and heuristic methods for VRP variants are increasingly being
proposed, and the pace seems to increase in recent years. “New” strategies have
been proposed and many of the best known solutions to classical formulations have
thus been obtained. This chapter describes and discusses the main strategies used to
parallelize exact and metaheuristic solution methods for vehicle routing problems.
It also provides an up-to-date survey of contributions to this rapidly evolving field
and points to a number of promising research directions.

Key words: Parallel computation; parallelization strategies; branch-and-bound;
metaheuristics; vehicle routing problems.

1 Introduction

The Vehicle Routing Problem (VRP) is one of the core operations research
and combinatorial optimization problem classes with numerous applications
in transportation, telecommunications, production planning, and so on. The
basic VRP may be briefly described as follows. Given one or more depots, a
fleet of vehicles, homogeneous or not, and a set of customers with known or
forecast demands, find a set of closed routes, originating and, generally, ending
at one of the depots, to service all customers at minimum cost, while satisfy-
ing vehicle and depot capacity constraints. Other characteristics and require-
ments may be considered, such as service and travel time restrictions, multiple
commodities with different transportation requirements, time-dependent and
uncertain demands or travel times, etc., yielding a rich set of VRP variants.

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 8, c© Springer Science+Business Media, LLC 2008
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Vehicle routing problems have been the object of numerous studies and a
very large number of papers propose solution methods. Because most VRP
variants are NP-Hard, exact solution methods are confined to limited-size
problem instances. Heuristics, metaheuristics principally, are thus proposed in
most cases. Contributions are continuously being made to VRP methodology
and practice alike. Yet, despite the progress the field has seen in recent years,
many challenges still stand and new ones are emerging.

Problem instances of interest are becoming larger. More importantly, prob-
lems are becoming more complex in terms of “new” constraints and objectives
that are added to the generic formulations the community usually focuses on.
The term rich vrp has been coined to identify these new and challenging
problem variants. Two additional trends may be observed that contribute to
making VRP a challenging and interesting field. On the one hand, the time
available to reach a decision is limited for several problem settings, such as
the real-time routing and re-routing problems. These settings require therefore
solution methods displaying high computational efficiency without a decrease
in solution quality. On the other hand, there is the need for “simpler” but
efficient and robust methods, that is, solution approaches that do not re-
quire complex and extensive calibration procedures, while still offering high
performance over a broad range of problem instances. Beyond their intrinsic
elegance, such methods provide for added flexibility in practical use.

Parallel optimization contributes toward meeting these challenges. As il-
lustrated by the survey papers indicated further in this Introduction, parallel
exact, e.g., branch-and-bound, and metaheuristic methods have been success-
fully applied to many diverse combinatorial optimization problems. One is
surprised to realize, however, that relatively few developments have targeted
vehicle routing problems, most of those that do having been proposed from the
turn of the millennium on. This is certainly the case for parallel branch-and-
bound methods. The author is not aware of any contribution related to VRP
published before the year 2000 and of very few published after that (Section
3). The case is not as extreme regarding parallel metaheuristics. Even though
the contributions related to VRP published before the year 2000 are not as
numerous as for other combinatorial optimization problems [21], a few partic-
ular ones have had a significant impact on the field (e.g., the adaptive memory
concept - see Section 4). Yet, a much larger number of contributions have been
proposed starting around the turn of the millennium. “New” strategies have
been proposed and many of the best known solutions to classical formulations
have been obtained by applying them.

The objective of this chapter is twofold. First, to describe and discuss the
main strategies used to parallelize exact and metaheuristic solution methods
for vehicle routing problems. Second, to provide an up-to-date survey of con-
tributions to this rapidly evolving field and point to a number of promising
research directions.

This chapter is organized as follows. Section 2 recalls basic concepts in
parallel computing and indicates a number of general references. Section 3
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introduces parallel tree-search based algorithms and surveys the few VRP
applications proposed so far. Section 4 presents parallel metaheuristic strate-
gies, while Section 5 surveys recent parallel metaheuristic contributions to
VRP variants. Section 6 concludes the chapter.

2 A Very Brief Tour of Parallel Computing

To limit the length of this chapter, we restrict to a minimum the discussion
of general parallel computing issues (see, e.g., [10] for a more in-depth presen-
tation), as well as the presentation of general parallel branch-and-bound and
metaheuristic strategies (Sections 3 and 4, respectively).

Parallel/distributed computing applied to problem solving means that sev-
eral processes work simultaneously on several processors with the common
goal of solving a given problem instance. Parallelism thus follows from a de-
composition of the total workload and the distribution of the resulting tasks
to the available processors. The decomposition may concern the algorithm or
the problem-instance data. In the former case, denoted functional parallelism,
different tasks, possibly working on the “same”’ data, are allocated to dif-
ferent processors and run in parallel, possibly exchanging information. The
latter is denoted data parallelism or domain decomposition and refers to the
case where the feasible domain of the problem considered is partitioned and a
particular solution methodology is used to address the problem on each of the
components of the partition. According to how “large” the tasks are, a few in-
structions or a sizable part of the algorithm, the parallelization is called fine-
or coarse-grained, respectively. When the tasks are independent or weakly cor-
related (e.g., partitioning two matrices to speed up their multiplication), the
same work is performed in parallel and in sequential, but the former is faster,
the wall-clock time being reduced proportionally to the average number of
tasks that are run concurrently during the computation.

There are very few cases of such “pure” parallelism in optimization, how-
ever. Consequently, the volumes of work performed by the sequential and par-
allel versions of a solution method, are different in all but the simplest cases,
e.g., low-level parallelism where only the work of computing-intensive tasks,
such as the computation of a bound or the evaluation of a neighborhood, is
decomposed. This is particularly true when the parallel method implements a
multi-search strategy rather than a direct parallelization of a given algorithm.
In case, several search methods, including but not restricted to branch-and-
bound and metaheuristics, explore simultaneously the solution space of the
same problem instance. The methods proceed independently but may en-
gage in various types of communication and information sharing, the inten-
sity, scope, and form of communication defining the particular multi-search
strategy.

Information must be exchanged among tasks to provide the necessary
data for computations or the estimation of the global status of the search.
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Communications may be performed synchronously and asynchronously. In
the former case, all concerned tasks have to stop and engage in some form of
communication and information exchange at moments (number of iterations,
time intervals, specified algorithmic stages, etc.) exogenously determined, ei-
ther hard-coded or determined by a control (master) task. In the latter case,
each task is in charge of establishing communications with other tasks, ac-
cording to its internal logic. The frequency of communication and the volume
of exchanged information vary with the particular solution method and paral-
lelization strategy, and are often central to the success of the parallel method.
Communications must be carefully controlled, however, to avoid that the as-
sociated search overhead obliterates the gains of decomposition.

Recall that the traditional goal when designing parallel solution methods is
to reduce the time required to “solve”, exactly or heuristically, given problem
instances or to address larger instances without increasing the computational
effort. For exact solution methods run until the optimal solution is obtained,
this translates into the well-known speedup performance measure, computed
as the ratio between the wall-clock time required to solve the problem instance
in parallel with p processors and the corresponding solution time of the best-
known sequential algorithm; A somewhat less restrictive measure replaces the
latter with the time of the parallel algorithm run on a single processor). See
[6] for a detailed discussion of this issue, including additional performance
measures. Speedup measures are more difficult to define when the optimal
solution is not guaranteed or the exact method is stopped before optimality is
reached. Indeed, for most parallelization strategies, the sequential and parallel
versions of a heuristic yield solutions that are different in value, composition,
or both. Thus, an equally important objective when parallel heuristics are
contemplated is to design methods that outperform their sequential counter-
parts in terms of solution quality and, ideally, computational efficiency (i.e.,
the parallel method should not require a higher overall computation effort
than the sequential method or should justify the effort by higher quality so-
lutions). Search robustness is another characteristic increasingly expected of
parallel heuristics. Robustness with respect to a problem variant is meant
here in the sense of providing “equally” good solutions to a large and varied
set of problem instances, without excessive calibration, neither during initial
development, nor when addressing new problem instances. See [22, 23] for a
discussion of these issues.

The reader may consult a number of surveys, taxonomies, and synthe-
ses of parallel metaheuristics, some addressing methods based on particular
methodologies, while others address the field in more comprehensive terms.
Two recent books [1, 77] collect chapters on many issues in parallel computing
for combinatorial optimization. Syntheses of strategies for parallel branch-and-
bound and branch-and-cut may be found in [19] and [63], respectively, while
[4], [46, 45], and [67] address parallel simulated annealing; [13], [52], [54], and
[73] parallel evolutionary and genetic algorithms; [25], [18], [43], and [80] par-
allel tabu search; [33] and [12] ant-based methods; and [53] parallel Variable
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Neighborhood Search (VNS). Surveys and syntheses that address more than
one methodology may be found is [17], [22, 23], [21], [26], [47], [59], and [79].

3 Exact Search Methods

Research into exact methods for vehicle routing problems is advancing at
a steady pace focusing on branch-and-bound methods with column gener-
ation (branch-and-price) plus, eventually, the addition of valid inequalities
to strengthen the formulations and the bounds (branch-and-cut and branch-
and-cut-and-price). Yet, very few efforts have been dedicated to developing
parallel algorithms for VRP and variants. This is in contrast to many other
combinatorial optimization areas for which a rather rich literature on parallel
branch-and-bound exists. (For the sake of simplicity of presentation, unless
otherwise specified, we discuss issues from the point of view of branch-and-
bound search.) Still, we chose to address this topic because we believe it offers
interesting perspectives in terms of efficient vehicle routing problem solving,
either by itself or combined to the cooperative metaheuristics described in
Section 4. We initiate the section by briefly discussing sources of parallelism
in branch-and-bound methods, and conclude with the presentation of recent
results.

Two basic, by now classic, approaches are known to accelerate the branch-
and-bound search: node and tree-based strategies. Domain decomposition is
not mentioned in the parallel branch-and-bound literature because, in fact, it
may be seen as a particular tree-based strategy in which branching at the root
node of the tree partitions the problem domain. As for multi-search strategies,
even though the topic is often mentioned as an interesting research direction,
significant research efforts have yet to be dedicated to their development.

Node-based strategies aim to accelerate the branch-and-bound search by
executing concurrently operations associated to a subproblem (a node) of
the tree: evaluation, bounding, and branching. The operations contemplated
range from “simple” numerical tasks (e.g., matrix inversion), to the decom-
position of computing-intensive tasks (e.g., the generation of cuts), to parallel
mathematical programming (e.g., simplex, Lagrangian relaxation, capacitated
multicommodity network flow) and metaheuristic (e.g., tabu search) methods
used to compute lower bounds and to derive feasible solutions. This class of
strategies has also been identified as low-level (or type 1 ) parallelization, be-
cause it does not aim to modify the search trajectory, the dimension of the
branch-and-bound tree, or its exploration.

Most parallel branch-and-bound algorithms implement some form or an-
other of tree exploration in parallel. The fundamental idea is that, since in
most applications of interest the size of the branch-and-bound tree grows
rapidly to unmanageable proportions, distributing the tree-exploration work
among several concurrent processes would reduce the total computation time.
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Recall that sequential branch-and-bound is fundamentally a procedure
that first selects and extracts a subproblem, a node, from a data structure, the
pool. It then performs a series of operations, evaluation, computation of upper
bound, branching, and so on, to finally complete the loop by inserting into
the pool one or several nodes, the new subproblems yielded by the branching
operation. Subproblems in the pool are usually kept and accessed according
to their priority based on node attributes (e.g., lower-bound value) and the
search tree exploration strategy (e.g., best or depth first). An evident property
of sequential branch-and-bound is that each node-selection decision is taken
with a complete knowledge (information) regarding the status of the search,
that is, with the global view of all the nodes generated so far. In a parallel
environment, both the search decisions and information may be distributed.
Relative to the former, different processors may decide more or less simultane-
ously what node to select and process next. The main source of information,
the pool, may also be distributed. Consequently, not all the relevant informa-
tion may be available at the time and place (i.e., the processor) a decision is
taken. Moreover, work may come in short supply for some processors, while
others experience excessive loads, which requires a load balancing procedure to
be undertaken. Parallel tree exploration methods may therefore be described
in terms of search control (or scheduling) strategies made up of decision and
pool management rules, respectively.

The pool of nodes is the main source of knowledge and may be kept in
a unique data structure, a centralized pool, and thus be made available to
all associated processors. Alternatively, the pool may be distributed, in which
case a processor or a group of processors has direct access to its local pool
only. We may then define the search knowledge of a given processor as the
available information relative to the pool of nodes with their priorities (plus
the incumbent value and the other global status variables of the search). We
define also the workload knowledge as the information available to a given
processor regarding the load factors of all relevant processors involved in the
search. When branch-and-cut methods are contemplated, similar concepts are
introduced for the sets (pool) of local and global cuts.

The control of a branch-and-bound search is made up of a number of de-
cisions: node selection, allocation of node work (i.e., the operations related to
subproblem evaluation and bound computation), incumbent update, termina-
tion determination and, for distributed-pool-based strategies, load balancing.
Search control is then primarily defined by the number of processors that
collaborate to guide the search and the quantity of available information.
Generally speaking, decision-making may be centralized or distributed and
may be based on complete or partial knowledge.

A centralized search control refers to the case when a single processor,
the so-called “master”, makes all the search decisions, based on the complete
search and workload knowledge given by a centralized pool, but distributes
node work to a number of processors. It is the classical master-slave strategy.
We refer to distributed-search control when the node selection decision is
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distributed among several processors. Providing complete information in this
case is very difficult and usually involves significant search overheads in terms
of synchronization and information exchange. Thus, most distributed-search
control strategies are associated to distributed node pools, partial information,
and asynchronous communication schemes. The term “collegial” is often used
to denote such strategies. Of course, load balancing mechanisms, based on the
currently available workload knowledge, have to be included into the parallel
algorithm design to avoid processor idle time due to lack of work or processors
performing unnecessary work due to the poor quality of the nodes in their local
pools.

Few parallel branch-and-bound algorithms targeted vehicle routing prob-
lems. This has started to change recently, with the VRP being used as one of
the testbeds in the development of strategies and libraries (Ralphs, Ladány,
and Saltzman [66]) for parallel branch-and-cut (and price) algorithms (Ralphs
[64], Ralphs, Ladány, and Saltzman [65]). The current implementation uses a
centralized pool of nodes, as well as a centralized pool of cuts. This provides
for complete knowledge during the search. A master processor than guides
the branch-and-bound search, dispatching node-related work to a number of
other processors. An alternate strategy making use of multiple cut pools has
also been tested. The advantage of this approach is to limit the number of
“slave” processors a cut pool must service when nodes are examined, which
makes for a more scalable algorithm. Furthermore, multiple pools also make
for a more efficient procedure to scan the cuts and verify whether they apply
to a given node and facilitate the utilization of local nodes (local to a node
and its descendants). Extensive experimental work showed that, as expected,
the centralized-knowledge strategy preserves the logic of the sequential tree
exploration and avoids most redundant work. On the other hand, the proce-
dure was efficient on a limited number of processors, only. The authors are
thus developing tools to implement hierarchical parallel strategies where, at
the first level a number of processors collegially explore the tree (a “mas-
ter” is in charge of load balancing) while, at the second level, each of these
processors distributes node-related work to several other “slave” processors.
Asynchronous communications, distributed node pools (first level) and mul-
tiple cut pools are part of the in-development design.

4 Parallel Metaheuristics

Given the difficulty of routing problems, most solution methods that are pro-
posed are based on heuristics and metaheuristics. It is therefore not surprising
that most parallel solution methods proposed are based on metaheuristics as
well. This section recalls and briefly discusses the principal parallel meta-
heuristic strategies proposed in the literature. Applications to VRP and vari-
ants published before 2000 are also indicated.
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To describe parallel metaheuristic strategies, we adopt the classification
of Crainic and Nourredine [21], which generalizes that of Crainic, Toulouse,
and Gendreau [25] (see also [17], [22], and [23]; Verhoeven and Aarts [79]
and Cung et al. [26] present classifications that proceed of the same spirit).
This classification is sufficiently general to encompass all metaheuristic classes,
while avoiding a level of detail incompatible with the scope and dimension
limits of the chapter. The classification and parallel metaheuristic strategies
will be used in Section 5 to analyze recent contribution to VRP and variants.

The three dimensions of the classification indicate how the global problem-
solving process is controlled, how information is exchanged among processes,
and the variety of solution methods involved in the search for solutions, respec-
tively. The first dimension, Search Control Cardinality, thus examines how the
global search is controlled: either by a single process or collegially by several
processes that may collaborate or not. The two alternatives are identified as
1-control (1C) and p-control (pC), respectively. The second dimension, rela-
tive to the type of Search Control and Communications, addresses the issue
of information exchange according to four classes to reflect the quantity and
quality of the information exchanged and shared, as well as the additional
knowledge derived from these exchanges (if any): Rigid (RS) and Knowledge
Synchronization (KS) and, symmetrically, Collegial (C) and Knowledge Col-
legial (KC).

Because more than one solution method or variant (e.g., different parame-
ter settings) may be involved in a parallel metaheuristic, the third dimension
indicates the Search Differentiation: do search threads start from the same or
different solutions and do they make use of the same or different search strate-
gies? The four cases considered are: SPSS, Same initial Point/Population,
Same search Strategy; SPDS, Same initial Point/Population, Different search
Strategies ; MPSS, Multiple initial Points / Populations, Same search Strate-
gies ; MPDS, Multiple initial Points / Populations, Different search Strate-
gies. Obviously, one uses “point” for neighborhood-based methods such as
Simulated Annealing, Tabu Search, Variable Neighborhood Search, GRASP,
Guided Local Search, etc., while “population” is used for Evolutionary meth-
ods (e.g., Genetic Algorithms), Scatter Search, and Ant Colony methods.

Typically, 1-control strategies implement a classical master-slave approach
that aims solely to accelerate the search. Here, a “master” processor executes
a sequential metaheuristic but dispatches computing-intensive tasks to be ex-
ecuted in parallel by “slave” processes. The master receives and processes the
information resulting from the slave operations, selects and implements moves
or, for population-based methods, selects parents and generates children, up-
dates the memories (if any) or the population, and decides whether to activate
different search strategies or stop the search.

In the context of neighborhood-based search, the operation most widely
targeted in such approaches is the neighborhood evaluation. At each iteration,
the possible moves in the neighborhood of the current solution are partitioned
into as many sets as the number of available processors and the evaluation is
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carried out in parallel by slave processes (e.g., the master-slave parallelization
scheme of Garcia, Potvin, and Rousseau [37] for the VRP with time-window
constraints). For population-based methods, it is the fitness evaluation that
is most often targeted in 1C/RS/SPSS strategies.

Probing or look-ahead strategies belong to the 1C/KS class with any of the
search differentiation models identified previously. For neighborhood-based
methods, such an approach may allow slaves to perform a number of iterations
before synchronization and the selection of the best neighbor solution from
which to proceed (one may move directly to the last solution identified by the
slave process or not). For population-based methods, the method may allow
each slave process to generate child solutions, “educate” them through a hill
climbing or local search procedure, and play out a tournament to decide who
of the parents and children survive and are passed back to the master.

The impact of such “low level”, 1-control strategies has proved limited,
however. The search trajectory of the parallel procedure is quite similar to
that of its sequential counterpart (it is the same, for 1C/RS/SPSS strategies).
Of course, when neighborhoods are large or neighbor-evaluation procedures
are costly, the corresponding gain in computing time may prove interesting.
Then, when a sufficiently large number of processors is available, it might
prove worthy to combine such an approach to more sophisticated strategies
into hierarchical solution schemes (e.g., Rego and Roucairol [68] who used low-
level parallelism to accelerate the move evaluations of the individual searches
engaged into an independent multi-thread procedure for the VRP).

Multi-search or multi-thread parallel strategies for metaheuristics have
generally offered better performances, in terms of solution quality and com-
puting times, than the methods introduced above. Historically, independent
and synchronous cooperative multi-search methods were proposed first. The
emphasis currently is on asynchronous communications and cooperation. Most
applications of such strategies fall into the pC category.

Independent multi-search methods belong to the pC/RS class of the tax-
onomy. Most implementations start several independent search processes, all
using the same search strategy, from different, randomly generated, initial
configurations. No attempt is made to take advantage of the multiple threads
running in parallel other than to identify the best overall solution once all
processes stop. This earns independent search strategies their rigid synchro-
nization classification. This parallelization of the classic sequential multi-start
heuristic is easy to implement and may offer satisfactory results, as has been
demonstrated by Rego and Roucairol [68] for the VRP. Each thread imple-
mented their ejection-chain-based tabu search with a different set of parameter
settings but the same initial solution. The pC/RS/SPDS method was imple-
mented such that each thread executed a complete sequential tabu search.
The overall-best solution was then selected, the threads using it as initial so-
lution for a new search. Low-level parallelism was used to accelerate the move
evaluations of the individual searches, as well as in a post-optimization phase.
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Experiments showed the method to be competitive on a set of standard VRP
problems [14].

Cooperative strategies often offer superior performances compared to in-
dependent search. pC/KS cooperative strategies adopt the same general ap-
proach as in the independent search case but attempt to take advantage of
the parallel exploration by synchronizing processors at pre-determined inter-
vals. An information exchange mechanism then determines the best current
overall solution and the search is restarted form that point. The mechanism
may use a designated process to gather information, extract the best solution,
and broadcast it to all search processes. Alternatively, each search process
may be empowered to initiate synchronization (e.g., using a broadcast) of
all or a pre-specified subset of processes (e.g., processes that run on neigh-
boring processors). Here, as in the more advanced cooperation mechanisms
indicated bellow, migration is the term used to identify information exchanges
in population-based parallel algorithms.

Asynchronous cooperative multi-thread search methods belong to the
pC/C or pC/KC classes of the taxonomy according to the quantity and quality
of the information exchanged and, eventually, the “new” knowledge inferred
based on these exchanges. Cooperative multi-thread strategies exchanging
“good” solutions only and implementing simple strategies to extract solutions
from the pool belong to the PC/C class of methods. When procedures are
added to extract information or create new information and solutions based
on the solutions exchanged, the corresponding methods are said to belong to
the pC/KC class.

The design of the information communication and exchange mechanism is
a key element to the good performance of multi-thread parallel metaheuristics.
Questions relative to what information to exchange, when to exchange it and
among what processors, as well as what to do with the received information
are of the highest importance when designing parallel metaheuristics. Paral-
lelism in general, and multi-thread strategies in particular, imply that both
the individual searches and the resulting global search proceed most of the
time with incomplete knowledge regarding the status of the search. Synchro-
nization has been seen as a means to re-create a state of complete knowledge
to share among all participating search threads. It was hopped that perfor-
mances, in terms of computing efficiency and solution quality, would be im-
proved. This did not materialize, however. In fact, compared to independent
and most asynchronous search strategies, synchronous methods display larger
computational overheads, appear less reactive to the evolution of the search,
and conduct to the premature convergence of the dynamic process represent-
ing the parallel search. The issue is also relevant for cooperative search. It has
been shown, for example, that frequent broadcasting of new solutions that
stop individual threads from continuing to explore improving sequences leads
to either a random search or premature convergence. Controlled, parsimo-
nious, and timely exchanges of meaningful information are thus characteristic
of successful cooperative multi-thread metaheuristics.
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Fig. 1. Many-to-many Direct Communication Scheme

Communications may be undertaken either directly or indirectly. Strate-
gies based on the evolutionary paradigm generally use direct communications.
The population is divided into subsets, each assigned to a processor (alter-
natively, relatively small populations are generated for each processor), and
a genetic algorithm runs on each. An individual population and genetic al-
gorithm forms a so-called island. Each island may potentially communicate
with any of the other islands, as illustrated in Figure 1. Then, according to an
exchange protocol (e.g., on demand from an island with low population diver-
sity), it sends a “good” individual to another island. This exchange mechanism
is called migration and the parallel strategy is known as coarse grained. Is-
lands (processors) may also be allowed to communicate with a limited number
of other islands (processors), as illustrated in Figure 2. Such limitations are
generally the result of particular topologies of the processor network (e.g.,
hypercube, torus, and so on). Communications then take place only among
adjacent processors according to a so-called diffusion mechanism. Notice that,
in this case, islands tend to have very small populations and the strategy to
be denoted fine grained. When populations are down to single individuals, the
genetic operators are applied to individuals on adjacent islands.

Most cooperative multi-thread developments outside the evolutionary
community are based on indirect communications and, currently, the largest
number use some form of memory for inter-thread communications (the terms
pool and solution warehouse are also used; due to the role assigned to the el-
ements it contains, the terms “reference” and “elite set” are also sometimes
used, while the artificial intelligence community uses a similar concept un-
der the name “blackboard”). The individual searches are generally assigned
each to a processor, as illustrated in Figure 3. A search tread either heuristi-
cally constructs new solutions, or executes a neighborhood-based improving
metaheuristic, or implements a population-based metaheuristic, or performs
post-optimization procedures on solutions in the pool. Improving metaheuris-
tics aggressively explore the search space, while population-based methods
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contribute toward increasing the diversity of solutions exchanged among the
cooperating methods. When the same metaheuristic is used by several search
threads, the initial solution and particular setting of a number of important
search parameters differentiate each search thread from the others.

The cooperation aspect of the parallelization scheme is achieved through
asynchronous exchanges of information through the pool (which could be as-
signed to a different processor or could share one with an individual search
thread). Whenever a thread desires to send out information (e.g., when a new
local optimum is identified), it sends it to the pool. Similarly, when a thread
accesses outside information (to diversify the search, for example), it reaches
out and takes it from the pool. Communications are initiated exclusively by
the individual threads, irrespective of their role as senders or receivers of in-
formation. No broadcasting is taking place and there is no need for complex
mechanisms to select the threads that will receive or send information and
to control the cooperation. The solution warehouse is thus an efficient im-
plementation device that allows for a strict asynchronous mode of exchange,
with no predetermined connection pattern, where no process is interrupted
by another for communication purposes, but where any thread may access at
all times the data previously sent out by any other search thread.
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The information exchanged among cooperating procedures has to be mean-
ingful, in the sense that it has to be useful for the decision process of the
receiving threads or the evolution of the shared data (and thus the evolu-
tion of the global search). Information indicative of the current status of the
global search or, at least, of some individual search thread is, in this sense,
meaningful. The information exchanged may be simply a “good” solution, a
solution and its context (e.g., memories recording recent behavior of solution
attributes), or a comprehensive history search. Memories recording the per-
formance of individual solutions, solution components, or even search threads
may be added to the pool and statistics and guidance mechanisms may be
gradually built.

Historically, two main classes of cooperation mechanisms are found in
the literature, based on partial and complete solutions, respectively. Adap-
tive memory methods (Rochat and Taillard [71]) store partial elements of
good solutions and combine them to create new complete solutions that are
then improved by the cooperating threads. Central memory approaches ex-
change complete elite solutions among neighborhood and population-based
metaheuristics (Crainic, Toulouse, and Gendreau [24], Crainic and Toulouse
[23], Crainic [17]). The differences between the two approaches tend to become
somewhat blurred, however.

A different approach to cooperation has been proposed recently by Toul-
ouse, Thulasiraman, and Glover [78]. The mechanism is called multi-level co-
operative search, belongs to the pC/KC with potentially any search differen-
tiation strategy (the authors used MPSS), and is based on the principle of
controlled diffusion of information. Each search thread works at a different
level of aggregation of the original problem (one processor works on the orig-
inal problem) and communicates exclusively with the processes working on
the immediate higher and lower aggregation levels. Improved solutions are
exchanged asynchronously at various moments dynamically determined by
each process according to its own logic, status, and search history. Received
solutions are used to modify the search at the receiving level. An incoming
solution will not be transmitted further until a number of iterations have been
performed, thus avoiding the uncontrolled diffusion of information. No appli-
cation to vehicle routing problems has been proposed yet, but excellent results
have been obtained for graph and hypergraph partitioning problems [57, 58],
network design [20], feature selection in biomedical data [56], and covering
design [28]. It all these cases, the proposed method is either the current best
or is on the par with the best metaheuristics for the problem.

We complete this section with two notes. The first concerns the decom-
position of the problem domain. Despite its interest when problem instance
are very large, relatively few contributions can be found. For routing prob-
lems, Taillard [75] proposed a pC/KS/MPSS parallel tabu search where the
domain was partitioned and vehicles were allocated to the resulting regions.
Once the initial partition was performed, each subproblem was solved by an
independent tabu search. All processors stopped after a number of iterations
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that varied according to the total number of iterations already performed.
The partition was then modified by an information exchange phase, during
which tours, undelivered cities, and empty vehicles were exchanged between
adjacent processors (corresponding to neighboring regions). At the time, this
approach did allow to address successfully a number of problem instances,
but the synchronization inherent in the design of the strategy hindered its
performance, however. Clearly, more work is required on how to best combine
domain decomposition and the other parallelization strategies, cooperation in
particular. We report in the next section on some contributions that address
this issue.

The second note is related to the so-called hybrid methods. The term is
much used but its meaning varies widely. In a strict sense, all metaheuristics
are hybrids since they involve at least two methods. Closer to most applica-
tions, a hybrid involves at least two methods that belong to different method-
ological approaches. Thus, for example, using genetic operators to control the
temperature evolution in a parallel simulating annealing method yields a hy-
brid. Notice, however, that by this definition, all population-based methods
that include an “educational” component, that is, an enhancement of new
solutions through a hill climbing, a local search, or even a full-blown meta-
heuristic, are hybrids. Most cooperative parallel strategies could be qualified
as hybrids as well. Yet, since, other than “more than one method is used”, the
term does not offer any fundamental insight into the design of parallel strate-
gies for metaheuristics, we do not use it to qualify the contributions reviewed
in this chapter.

5 Parallel Metaheuristics for the VRP

This section is dedicated to a review of recent parallel metaheuristic contri-
butions to vehicle routing problems. “Recent” means that we focus on the
period since the change of millennium, except when the contribution is still
of significant interest. The contributions are presented according to the VRP
variant concerned.

5.1 The Vehicle Routing Problem

Drummond, Ochi, and Vianna [34, 35] (see also Ochi et al. [55]) proposed a
pC/KS/MPSS coarse-grained parallel genetic algorithm based on the island
model for the VRP with heterogeneous fleet. A petal decomposition procedure
was used to build the initial population, which was then divided into several
disjoint subpopulations. Each genetic thread evolved a subpopulation and
triggered migration when subpopulation renewal was necessary. An island in
this case would broadcast its need and receive the best individual of every
other island. The incoming individuals would replace the worst individuals of
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the receiving population. Computational tests showed encouraging results in
terms of solution quality and computing effort.

Alba and Dorronsoro [2] addressed the VRP in which routes have to
be limited by a predefined travel time and proposed a fine-grained, cellular
parallel genetic algorithm. The population was arranged in a 2-dimensional
toroidal grid, each individual having 4 neighbors. Binary tournament selec-
tion was applied when selecting the mate for the first parent. Crossover was
applied for these parents, then mutation and local search for the offspring.
Two local search procedures were tested, 2-opt and 2-opt+λ-Interchange,
with λ ∈ {1, 2}. Elitist replacement was used. The authors compared their
algorithm to several heuristics, parallel or not: the tabu search of Rochat and
Taillard [71], the genetic algorithms of Prins [62] and Berger and Barkaoui [8],
the ant algorithms of Bullnheimer, Hartl, and Strauß[11] and Reimann, Do-
erner, and Hartl [69]. Computational results on benchmark problem instances
showed high performance quality for both local search versions. Best perfor-
mance (solution quality and rapidity) was observed for 2-opt+1-Interchange.

Jozefowiez, Semet, and Talbi [49, 36] addressed a vehicle routing problem
in which the total length of routes is to be minimized, as well as the balance of
route lengths, that is the difference between the maximal and minimal route
lengths. The authors proposed an island method where each island had its
own population and run the multi-objective pareto genetic algorithm NSGA
II [29] enhanced with an elitist feature for greater diversity. The islands were
organized into a ring network. Communications took place at regular intervals,
determined by the number of iterations. Each island synchronously exchanged
information with its two neighbors by sending its best solutions (the number
of solutions was pre-defined) and receiving the best solutions of its neighbors.
The imported solutions replaced the worst ones in the receiving population.
Experiments on the Christofides, Mingozzi, and Toth problem instances [14]
showed the parallel versions to outperform the sequential one, even though
increasing the number of processors over the 4 to 8 range did not seem bene-
ficial.

From a parallel computing point of view, ant-based methods may be
viewed as a particular form of population-based methods, the ant colony be-
ing made up of a population of ants and the update of the pheromone matrix
taking the place of the usual evolutionary operators. Parallel ant-based meth-
ods start to be proposed based on these ideas, some of which are dedicated
to vehicle routing problems. Doerner et al. [31] (see also Doerner et al. [30]
and Benkner et al. [7]) studied fine and coarse-grained 1C/KS/MPDS paral-
lelizations with synchronous communications for their savings-based heuristic
(Reimann, Stummer, and Doerner [70]). In the fine-grained approach, the ant
colony was partitioned into small sub-colonies (the sparsely populated islands
of parallel genetic algorithms) and the savings-based heuristic was executed
on each. The same pheromone matrix was used for all sub-colonies, but was
replicated to decrease communications. Once all ants found their solutions,
the local best for each sub-colony was found. Best solutions were sent to a
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“root” node, which determined the global best and an elite set of ants that
were broadcasted back to the sub-colonies.

Two coarse-grained strategies were also studied. The first is a classi-
cal pC/RS/MPDS independent multi-colony approach. The second follows a
pC/KS/MPDS cooperation scheme where several independent colonies com-
municate at regular intervals (pre-defined number of iterations). To speed up
computations, a hierarchical strategy was used, in which a number of proces-
sors were allocated to each colony to implement the fine-grained paralleliza-
tion described above. The authors compared several strategies with respect
to shared information: the global-best solution, the global best solution plus
the elite solutions, each of the first two data sets plus the re-initialization
of the pheromone matrix, and the global-best solution plus the correspond-
ing pheromone matrix. Experimentations were performed on the four largest
problem instances of [14] (single depot, 150 or 199 customers, limits on vehicle
capacity and tour length (2 problems), zero service time at all customers) and
on four of the largest problem instances of [44] (single depot, between 320 or
480 customers, various customer distributions). Two colonies were used for
the experiments.

Computational results showed, yet again, the cooperative strategy outper-
forming the independent search method. The comparison of the information-
sharing strategies also showed that the knowledge relative to parallel meta-
heuristics accumulated in the last ten years is equally valid when the par-
allelization of ant-colony methods is concerned. Thus, sharing the elitist so-
lutions outperformed the strategy where only the global best was shared.
Further improvements were obtained by also re-initializing the pheromone
matrix. On the other hand, broadcasting the pheromone matrix of the best
performing sub-colony (the one that identified the current global best solu-
tion) was detrimental to performance due to the premature “convergence” of
the dynamic process. As for the fine-grained strategy, as expected, intensive
communications were required to keep the pheromone matrix up to date. This
makes the approach not really suitable when the number of processors (and
ants) increases, but may contribute to hierarchical approaches.

In the same paper [31] (see also Doerner, Hartl, and Lucka [32]), the au-
thors examined a parallelization of their D-Ants algorithm (Reimann, Do-
erner, and Hartl [69]), which applies the domain-decomposition ideas of Tail-
lard [75] to the savings-based heuristic (Reimann, Stummer, and Doerner
[70]) significantly improving its performance. A hierarchical coarse-grained
approach similar to that described previously was proposed. Two or four sub-
problems were defined, and the parallel savings algorithm was used on each,
thus implementing the fine-grained parallel strategy described previously. In
all their developments, the authors aimed for parallel strategies that sped up
computations but did not change the behavior of the corresponding method.
Strict synchronization communication schemes were imposed to this effect.
Consequently, in all experiments, solution quality was sensibly the same and
moderate speed ups were observed. To conclude, the authors point out to the
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need to develop more sophisticated parallel strategies based on asynchronous
cooperation mechanisms.

5.2 Vehicle Routing with Time Constraints

Also known as the Vehicle Routing Problem with Time Windows (VRPTW ),
this problem specifies that service at customer sites must take place within
given time intervals. Most time constraints specify that service cannot begin
before a certain moment (but vehicles may wait “outside”, in most cases) and
must be over by a given deadline. In soft-constrained versions, the time limits
may be violated at a penalty.

Czech and Czarnas [27] proposed a pC/KS/MPSS cooperative multi-
thread parallel simulated annealing implemented on a master-slave platform.
The master sent the initial solution to the salves. It was also in charge of
controlling the annealing temperature schedule, collecting the best local so-
lution from each slave after n2 iterations for each temperature level (n was
the number of customers) and updating the global best solution. Each slave
run a simulated annealing algorithm with the same parameters. Each slave
j cooperated with slaves j − 1 and j + 1 (slave 1 cooperated with slave 2
only) by exchanging best solutions. Cooperation was triggered every n iter-
ations. Computational tests with few (five) processors showed good perfor-
mance, in terms of solution quality, compared to the best-known solutions of
the Solomon benchmarks.

Berger and Berkaoui [9] presented a low-level parallel hybrid genetic
method that used two population. The first aimed to minimize the total trav-
eled distance, while the second aimed to minimize the violation of the time
window constraints. A different fitness function was associated with each pop-
ulation. A master-slave platform was applied, where the master controlled
the execution of the algorithm and coordinated the genetic operations. The
slave concurrently executed the reproduction and mutation operators. Com-
putational tests were conducted on a cluster of heterogeneous machines (19
computers). The authors compared their algorithm to the best-known meth-
ods in the literature for Solomon’s benchmark. Their results showed that the
proposed technique was very competitive.

Polacek et al. [60] focused on parallel algorithms for the multi-depot
VRPTW, starting from a Variable Neighborhood Search (VNS) metaheuristic
proposed earlier on [61]. The authors studied two approaches, both based on
cooperation and asynchronous exchanges through a central memory. The first
approach implemented full VNS threads, each searching through a limited
number of neighborhoods. The VNS threads collaborated through exchanges
of best solutions via the central memory. Each VNS sent its best solutions.
When the overall best was improved, it was broadcasted to all. In the second
approach, the VNS threads sent their best solutions to the central memory
(functioning as a “master”) at regular intervals (number of iterations). The
objective was to reproduce the behavior of the sequential method only faster.
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Performance was good, best known solutions being reached or improved. The
first, full cooperation methods performed best due, in particular, to its higher
adaptability to the problem instance.

Gehring and Homberger [38, 39] proposed a pC/KS/MPDS cooperative
parallel strategy where concurrent searches were performed with differently
configured two-phase metaheuristics. The first phase tried to minimize the
number of vehicles by using an evolutionary metaheuristic, while the second
phase aimed to minimize the total traveled distance by means of a tabu search.
The parallel metaheuristic was initiated on different threads with different
starting points and values for the search time available for the first and second
search phases. Threads cooperated by exchanging solutions asynchronously
through a “master” process according to the central-memory concept. Notice
that this is different from most evolutionary-based parallel metaheuristics
proposed in the literature. For now, this approach has produced, on average,
the best solutions for the Solomon problems with respect to, first, the number
of vehicles and, second, the total distance. Results were also presented on
larger instances, generated similarly to the original Solomon problems, but
varying in size from 200 to 1000 customers. It is worth mentioning, however,
that this method is rather time consuming compared to other metaheuristics,
tabu search in particular.

Rochat and Taillard [71] proposed what may be considered as the first
fully developed adaptive memory-based approach for the VRPTW. The adap-
tive memory contained tours of good solutions identified by the tabu search
threads. The tours were ranked according to attribute values, including the
objective values of their respective solutions. Each tabu search process then
probabilistically selected tours in the memory, constructed an initial solution,
improved it, and returned the corresponding tours to the adaptive memory.
Despite the fact that it used a rather simple tabu search, this method produced
many new best results at publication time. Taillard et al. [76] and Badeau et
al. [5] refined this method by enriching the neighborhood and the intensifica-
tion phase and by adding a post-optimization procedure. A similar approach
was used with good results by Schulze and Fahle [72]. The routes generated
by the tabu search threads were collected in a pool, and were recombined by
solving a set covering heuristic whenever a new solution was needed. Badeau
et al. [5] also reported that their method run significantly faster when using
more search processes than the number of available processors, because this
allowed to overcome the bottlenecks created when several threads attempted
to access the memory simultaneously. Furthermore, computational evidence
showed that running a search thread concurrently with the adaptive memory
management procedure on the same processor was not a good idea, because
it contributed to block the access to the memory.

Le Bouthiller and Crainic [50] and Le Bouthiller, Crainic, and Kropf [51]
aimed to study central memory cooperative mechanisms enhanced with strate-
gies to guide the global search. Le Bouthiller and Crainic proposed a central
memory pC/KS/MPDS cooperative parallel method for the VRPTW based
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on the mechanism presented at Section 4 and illustrated in Figure 4. The
cooperation involved two tabu search methods that perform well sequentially,
the Unified Tabu of Cordeau, Laporte, and Mercier [15] and Taburoute of
Gendreau, Hertz, and Laporte [41], two simple evolutionary algorithms with
order and edge recombination crossovers, respectively, as well as a number
of post-optimization methods (2-opt, 3-opt, or-opt, and ejection chains) that
were used to reduce the number of vehicles and the total traveled distance.
Four simple construction algorithms were used to provide initial solutions to
the population. The threads shared information about their respective good
solutions identified so far. When a thread improved the solution, it sent it to
the post-optimization algorithms present in the central memory. These solu-
tions were considered in-training until they were post-optimized and identified
as adult solutions. The pool of solutions formed an elite population from which
the independent procedures required solutions when needed. The Unified Tabu
requested a new solution at regular intervals, while Taburoute did so at di-
versification time. The adult solutions in memory formed the population for
the genetic operators. This algorithm, without any calibration or tailoring,
proved to be competitive with the best metaheuristics of its day.

The goal of Le Bouthiller, Crainic, and Kropf [51] was to improve upon
this simple cooperating scheme by extracting new knowledge from the infor-
mation exchanged, in order to guide the individual threads and, hopefully,
yield a more efficient global search. Moreover, the authors aimed for a guid-
ance mechanism independent of particular features of the problem class at
hand, such as the routes in vehicle routing problems. They selected therefore
to work with one of the atomic elements of the problem: the arc.

The basic idea was that an arc that appears often in good solutions and
less frequently in bad solutions may be worthy of inclusion in a tentative
solution, and vice versa. To implement this idea, the authors considered the



190 Crainic

frequency of inclusion of arcs in three subsets of solutions in the pool, the
elite (e.g., the 10% best), average (between the 10% and 90% best), and worst
(the last 10%) groups of solutions. An arc with a high frequency in a given
group signals that the metaheuristics participating to the cooperation have
often produced solutions that include that arc. Patterns of arcs were then
defined, representing subsets of arcs with similar frequency of inclusion or not
in particular population groups. Guidance was obtained by transmitting arc
patterns to the individual threads indicating whether the arcs in the pattern
should be “fixed” to intensify the search or, on the contrary, they should be
prohibited to diversify the search (“fix” and “prohibit” were performed by
using the patters to bias the selection of arcs during moves or reproduction).
The computing time allocated to the cooperative method was divided into four
phases: Two phases of diversification at the beginning to broaden the search,
followed by two intensification phases to focus the search around promising
regions. Figure 4 illustrates the flow of information and guidance indications.

Experiments were carried out on the standard set of 100-customer test
problems proposed by Solomon [74], as well as on the extended set produced
by Homberger and Gehring [48] with 300 problem instances that vary from
200 to 1000 customers. Runs of 12 min wall-clock time were performed by the
cooperative metaheuristic for each of the 100 city problems. Longer running
times, equal to those reported by Homberger and Gehring were allowed for
the larger problem instances. These times go up to 50 min wall-clock time for
the 1000-city problem. Comparisons were carried on with the best performing
methods and the results were very good. In linear speed up and without any
calibration, the guided cooperative search was globally performing on a par
with the best. This is very encouraging, because patterns of attributes may
be constructed for many problem classes, independently of particular solution
structures.

5.3 Dynamic Problems

Gendreau, Laporte, and Semet [42] addressed the deployment problem for a
fleet of emergency vehicles and proposed a 1C/KS/MPSS parallel tabu search
method based on domain decomposition. In this problem, when a call is re-
ceived, an ambulance is assigned to it according to relatively simple dispatch-
ing rules. Then, the remaining available ambulances can be relocated to other
waiting sites to provide a better coverage of the expected demand. The paral-
lel algorithm was based on a pure master-slave scheme. The master managed
global data structures with pre-calculated information on each ambulance and
sent the relocation problems to the slaves. The time allotted to slaves was con-
trolled by fixing the number of iterations in the tabu search. Computational
tests showed high solution quality as indicated by territory coverage measures.

Attanasio et al. [3] addressed the multi-vehicle dial-a-ride-problem and
proposed multi-thread tabu search parallel strategies following pC/KS/SPDS
and pC/KS/MPSS frameworks. In the former, each processor run a different
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tabu search strategy from the same initial solution. Once a processor found a
new best solution, it broadcast it. Re-initialized searches were then launched.
Every κ iterations, a diversification procedure was applied to the first half of
the processors, while an intensification was run on the remaining half. The
pC/KS/MPSS strategy consisted in running a tabu search algorithm from
different starting points. Each processor run the same tabu search algorithm
with the best known parameter settings. Every η iterations, processors ex-
changed information in order to perform a diversification procedure. Accord-
ing to the computational results, both strategies outperformed the sequential
tabu search of Cordeau and Laporte [16].

Gendreau et al. [40] proposed a cooperative multi-thread parallel tabu
search method for real-time routing and vehicle dispatching problems. The
problem was motivated by courier services where customer requests for the
transportation of small items must be accommodated in real-time and in-
corporated into the current planned routes of a fleet of vehicles. Due to the
presence of soft time constraints for servicing a customer, the problem was
modeled as an Uncapacitated Vehicle Routing Problem with Soft Time Win-
dows. The objective function to be minimized related to the total distance
traveled (or total travel time) for servicing the customers plus penalties for
lateness at customer locations. The authors followed the cooperative adaptive
memory approach championed by Taillard et al. [76] and Badeau et al. [5].
The dynamic problem was addressed as a series of static problems, a new one
being defined each time a new request was received. A two-level paralleliza-
tion scheme was proposed to implement this problem-solving framework. At
the first level, a pC/KC/MPSS cooperating adaptive memory scheme was im-
plemented. At the second level, each individual tabu search thread benefited
of the work of several slave processors and the route decomposition of Tail-
lard [75] was implemented. The results showed that the proposed procedure
provides substantial benefits over simpler dispatching approaches.

6 Perspectives

We have presented a survey of exact and parallel metaheuristic methods ap-
plied to vehicle routing problems. Also not necessarily comprehensive, it in-
cludes the major contributions and trends in the field, most of which have
been proposed from 2000 onwards.

We found few contributions to parallel exact methods for VRP and vari-
ants. The proposed branch-and-price parallelization schemes are not very so-
phisticated yet, but we expect them to represent initial steps on what promises
to be a very fruitful research road.

The parallel metaheuristic field is much richer, of course, as illustrated
by he number of contributions and by the increasing variety of the method-
ologies used. This richness notwithstanding, the survey points out that not
all VRP variants have been addressed with comparable fervor. Indeed, many
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important topics have seen only a few of contributions, if at all. Moreover,
even for topics for which the number of contributions is larger, these are not
evenly distributed among metaheuristic classes. Interesting research avenues
and promising developments may thus go unexplored, and appropriate tools
may be missing in some areas. It should be a challenge of the profession
to explore as comprehensively as possible as many problem variants, search
methodologies, and parallelization strategies as possible. While taking up this
challenge, one should make sure that methods are compared across method-
ological approaches and that such comparisons are performed fairly, that is,
all algorithmic developments are at the same level of sophistication.

To sum up the observations relative to parallel metaheuristics it appears
that methods based on asynchronous cooperation mechanisms display the
most interesting performance, independently of the methodology used in the
initial sequential method. This conclusion is strongly supported by the results
obtained by multi-thread cooperative strategies. It also appears that one can
build simple but meaningful statistics and indicators to learn from the solu-
tions already explored and to globally guide the search. This research direction
is at the very beginning but should yield interesting results.

To conclude, parallel exact and metaheuristic solution methods offer ver-
satile, robust, and powerful tools to address large and complex vehicle rout-
ing problems. Many fascinating research avenues are still open for investiga-
tion, however. Other than those indicated above, we may mention applying
more sophisticated branch-and-bound parallelization strategies to VRP vari-
ants, studying cooperation mechanisms based on multi-level concepts, combin-
ing branch-and-bound and metaheuristic threads within a cooperative search
framework, developing enhanced guidance mechanisms, and applying these
solution methods to new problem classes. We hope that this chapter has con-
tributed to illustrate these opportunities and challenges.
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Real-Time Vehicle Routing and Dispatching. Transportation Science, 33(4):381–
390, 1999.

41. Gendreau, M., Hertz, A., and Laporte, G. A Tabu Search Heuristic for the
Vehicle Routing Problem. Management Science, 40:1276–1290, 1994.

42. Gendreau, M., Laporte , G., and Semet, F. A Dynamic Model and Parallel
Tabu Search Heuristic for Real-time Ambulance Relocation. Parallel Comput-
ing, 27(12):1641–1653, 2001.

43. Glover, F. and Laguna, M. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, 1997.

44. Golden, B.L., Wasil, E.A., Kelly, J.P., and Chao, I.M. Metaheuristics in Vehi-
cle Routing. In T.G. Crainic and G. Laporte, editors, Fleet Management and
Logistics, pages 33–56. Kluwer Academic Publishers, Norwell, MA, 1998.

45. Greening, D.R. Asynchronous Parallel Simulated Annealing. Lectures in Com-
plex Systems, 3:497–505, 1990.

46. Greening, D.R. Parallel Simulated Annealing Techniques. Physica D, 42:293–
306, 1990.

47. Holmqvist, K., Migdalas, A., and Pardalos, P.M. Parallelized Heuristics for
Combinatorial Search. In A. Migdalas, P.M. Pardalos, and S. Storoy, editors,
Parallel Computing in Optimization, pages 269–294. Kluwer Academic Publish-
ers, Norwell, MA, 1997.

48. Homberger, J. and Gehring, H. Two Evolutionary Metaheuristics for the Vehicle
Routing Problem with Time Windows. INFOR, 37:297–318, 1999.

49. J.M. Guervos et al., editor. Parallel and Hybrid Models for Multi-objective Op-
timization: Application to the Vehicle Routing Problem, volume 2439 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2002.



196 Crainic

50. Le Bouthillier, A. and Crainic, T.G. A Cooperative Parallel Meta-Heuristic for
the Vehicle Routing Problem with Time Windows. Computers & Operations
Research, 32(7):1685–1708, 2005.

51. Le Bouthillier, A., Crainic, T.G., and Kropf, P. Towards a Guided Cooper-
ative Search. Publication CRT-05-09, Centre de recherche sur les transports,
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Summary. This chapter examines the evolution of research on dynamic vehicle
routing problems (DVRP). We define the DVRP and show how it is different from
the traditional static vehicle routing problem. We then illustrate the technological
environment required. Next, we discuss important characteristics of the problem,
including the degree of dynamism, elements relevant for the system objective, and
evaluation methods for the performance of algorithms.The chapter then summarizes
research prior to 2000 and focuses on developments from 2000 to present. Finally,
we offer our conclusions and suggest directions for future research.

Key words: Networks; transportation; dynamic vehicle routing problems.

1 Introduction

Supply chains have become a competitive weapon in the global economy. The
remarkable advances in telecommunications and information technology have
enabled companies to focus on velocity and timeliness throughout the supply
chain. To achieve these competitive advantages, they must be able to make
effective use of the vast amount of real-time information now available to
them. The Dynamic Vehicle Routing Problem (DVRP) is a prime example
of a distribution context where intelligent use of real-time information can
differentiate one company from another by means of superior on-time service.

The DVRP is the dynamic counterpart of the generic vehicle routing prob-
lem (VRP). In the latter problem the objective is generally to minimize
the travel cost for several vehicles that must visit and service a number of
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customers. Constraints specifying capacity restrictions, time windows within
which to start service at customers, and additional requirements on the drivers
and vehicles restrict the optimization space. In the VRP all routing and de-
mand information is known with certainty prior to the day of operations, so
routes can be planned ahead. In contrast, in the DVRP part or all of the
necessary information becomes available only during the day of operation.
In other words, not all information relevant to the planning of the routes is
known by the planner when the routing process begins and information can
change after the initial routes have been constructed.

The practical significance of the DVRP is highlighted by the variety of en-
vironments it can model. An important application is the pickup and delivery
of overnight mail. Other scenarios include the distribution of heating oil or liq-
uid gas to private households, residential utility repair services, such as cable
and telephone, and appliance repair. Additional settings are the transporta-
tion of the elderly and physically disabled, taxi cab services, and emergency
services, such as police, fire, and ambulance dispatching.

This chapter is organized as follows. In section 2 we illustrate the techno-
logical environment required for the DVRP. Next, section 3 discusses different
characteristics of the DVRP, including the degree of dynamism, elements rel-
evant for the system objective, and evaluation methods for the performance
of algorithms. Then, in section 4 we review the most important research con-
ducted until the year 2000. In the following section, section 5, we focus on
developments from 2000 to present. Finally, in section 6 we offer our conclu-
sions and suggest directions for future research.

2 Technological Environment

In this section we present some of the essential technologies needed for dy-
namic vehicle routing environments.

2.1 Communication and Positioning Equipment

The communication between the vehicle drivers and the dispatching center
is essential in order to feed the most up-to-date information into the routing
system. We briefly describe below the equipment for determining the current
position of the vehicles and the communication equipment for transferring
information between the dispatching center and the vehicle drivers.

A simple vehicle positioning strategy is to have the driver report back to
the dispatching center every time a customer has been serviced. To give the
planner much more information, more sophisticated alternatives make use of
positioning equipment like the GPS (Global Positioning System). The GPS
is a constellation of more than two dozen GPS satellites orbiting the Earth
that constantly send out signals giving their positions and time. Signals from
a number (usually three) of different satellites at any given time can provide
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receivers on the ground with enough information to calculate their precise
location within a few meters depending on which version of the GPS system is
used. For further reading on the GPS system the reader should refer to Collins
[18]. Over the last decade GPS receiver prices has dropped considerably and
today literally all high-end passenger cars as well as all service vehicles such
as trucks, delivery vans and pick-ups have GPS equipment installed from the
manufacturer.

The communication equipment between the vehicle and the dispatching
center is another essential element for the routing system. Mobile telephone
communication systems are one example of a technology capable of providing
this information. Another technology is a dedicated radio based communica-
tions system. The main difference between these technologies is in terms of ini-
tial and operating costs. Although the competition is fierce within the mobile
telephone communication market, operating costs are still considerable. Usu-
ally these systems are based on text messaging or newer technologies such as
GPRS (General Packet Radio Service) and 3G (third generation) cell phones.
For a text messaging based system, a message should be sent every time a
position update is required. In case the day of operation is eight hours and the
position should be updated every 10th second this means that almost 3000
text messages per vehicle should be sent every day. On the other hand, the
initial costs of implementing a radio based communications system are very
high because transmission masts will have to be put up and relatively expen-
sive radio equipment must be installed in every vehicle. In all, a radio based
communication system has very high initial costs, while the operating costs
are almost negligible. However, the radio based system does not offer the same
flexibility as does its mobile telephone communications system counterpart.
This factor may be important in cases where service providers are considering
servicing a new area where transmission masts have not been installed.

In Figure 1 the basic information flows between the vehicle and the dis-
patching center are shown. Ideally, the dispatching center will know in which
state the vehicle and the driver are at any given point in time. However, as
the above discussion indicated, this may prove to be unreasonable for some
applications due to the operating costs of this method. Generally, within a
real-world setting the positioning information is transmitted at fixed intervals
and an interpolation scheme is employed in order to estimate the positions of
the vehicles. Alternatively, the driver sends a message about his current status
and position to the dispatch center each time he/she finishes the service at a
customer. Obviously, this approach does not offer the same level of information
for the dispatcher to support his/her decision as to which vehicle to dispatch
to the next customer to be served. If the new information provided by the
now idle driver/vehicle makes the dispatcher alter the current planned routes,
he/she will have to call the other drivers directly to inform them about the
changes in the current routes. Overall a thorough analysis must be performed
to determine which approach to choose when designing a system. As we have
witnessed, the cost of communication has decreased rapidly over the years.
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Fig. 1. Sketch of the information flow in a GPS based vehicle routing system.

It is not surprising that this has been the motivation for most companies to
deploy more and more sophisticated telecommunications systems.

2.2 Geographical Information Systems

The advances in digital road maps and geographical information systems
(GIS) have also been considerable over the last decade. Most industrialized
countries now have almost fully detailed road network databases. In Denmark,
DAV (Dansk Adresse og Vejdatabase - Danish Road and Address Database)
offers a digital road database which is connected to detailed information on
every address in the country. The DAV database includes information on the
zip codes, official street names, route numbers, road classification, highest and
lowest street number on both sides of the streets. However, for the time being
DAV still needs to include restrictions on turning and information on one-way
streets.

Naturally, in a real-world application it is vital that the chosen solution
algorithm is capable of processing large amounts of geographical information
fast enough to solve the problem online. Issues related to the computation
of the shortest paths in a road network become extremely important when
implementing end user online routing applications.

The advanced GPS/GIS systems discussed above enable companies to keep
track of the position and status of their fleet of vehicles at any given time. Such
advanced distribution planning systems based on the DVRP are beginning to
be embedded in Enterprise Resource Planning (ERP) systems allowing to link
their routing data with inventory and other important information.
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3 The Dynamic Vehicle Routing Problem

As discussed above the DVRP is the dynamic counterpart of the classic VRP.
Psaraftis [48], [49] discusses a number of dimensions that makes the DVRP dif-
ferent from the VRP. Psaraftis [49] also differentiates the two problem classes
in terms of attributes of the information used as input for the respective prob-
lem types. In addition, Powell et al. [46] distinguish between dynamism within
a problem, a model and the application of a model.

In the DVRP, vehicles must service two types of requests: advance re-
quests and immediate requests. The former are requests of static customers
that have placed them before the routing process was begun. The latter re-
quests are received from dynamic customers and arise in real-time during the
day of operations. The insertion of immediate request customers into already
planned routes is usually a complicated task that leads to either partial or
full re-planning of the non-visited parts of the routes. The complexity of a
routing problem directly affects the difficulty of inserting dynamic customers.
For example the presence of time windows will usually increase the insertion
difficulty. This can lead to immediate request customers being denied service.

3.1 The Degree of Dynamism

The complexity of a dynamic vehicle routing system is a function of the num-
ber of customers and their spatial distribution, just like the VRP, but more
importantly it also depends on the number of dynamic events and their tem-
poral distribution.

Dynamism without Time Windows

In a system without time windows three important parameters are: the num-
ber of static customers, the number of dynamic customers and the arrival
times of the dynamic customers. The first two dimensions are captured by
the degree of dynamism concept introduced by Lund et al. [39]. It is the ratio,
denoted dod, of the number of immediate requests, nimm, relative to the total
number of requests, ntot. Formally:

dod =
nimm

ntot
(1)

For example in a system with ten customers, if two customers arrive while the
system is on-line, the degree of dynamism is 20 % . The degree of dynamism
mirrors many practical environments. Generally, some information is available
before the day of operations begins while the rest is received in real-time
during the day. The extent of the information received in real-time relative to
the total system information provides insights into how dynamic the routing
system really is.
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Fig. 2. Arrival time of immediate requests.

However, this basic measure does not take the arrival times of the imme-
diate requests into account. This means that two systems, one in which the
immediate requests are received at the beginning of the planning horizon and
the other in which they occur late during the day, are perceived as equiva-
lent. Naturally, in real-life routing settings these two scenarios are however
very different. Figure 2 illustrates two DVRP scenarios in which the times for
receiving immediate requests differ considerably.

In Scenario A all six immediate requests are received relatively early dur-
ing the planning horizon. In Scenario B the requests are distributed almost
evenly throughout the planning horizon. We suggest that the planner would
prefer the former scenario to the latter, since having the highest number of
requests in the pool of waiting requests improves the solution quality with re-
spect to the objective of minimizing the total distance driven. Hence, the ex-
pected length of the route should be shorter in Scenario A than in Scenario
B since time t6 occurs much earlier in the former scenario than in the latter.
Formally, this is captured by the effective degree of dynamism introduced by
Larsen et al. [36]. Let the time the i’th immediate request is received be de-
noted by ti and the entire planning horizon be denoted by [0, T ]. Then the
effective degree of dynamism, denoted by edod, is defined as:

edod =

nimm∑
i=1

(
ti
T

)

ntot
(2)

This measure takes the arrival times of the immediate requests into account
and is a natural extension of the dod. It is apparent that Scenario A has a
smaller edod than Scenario B.
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Fig. 3. The reaction times of two dynamic customers in a DVRP with time windows.

Dynamism and Time Windows

The measures defined above can be refined to allow for time windows to
be taken into consideration. We do this by means of the reaction time. The
reaction time is defined as the temporal distance between the time the request
is received and the latest possible time at which the service of the requests
could begin. Formally, the earliest time that service can begin (i.e., the start
of the time window) is denoted by ei while the latest possible time that service
could begin is denoted by li. The reaction time of the i’th immediate request
is denoted by ri and ri = li − ti. Figure 3 shows this graphically.

The effective degree of dynamism when customers impose time windows
(Larsen et al. [36]), denoted by edodtw, can be defined as follows:

edodtw =
1

ntot

nimm∑
i=1

(1− ri

T
) (3)

In a static system edodtw = 0 and in general 0 ≤ edodtw ≤ 1. When
there are no time windows the edodtw simplifies to the edod. According to
this measure, the smaller the reaction times, the more dynamic the system is.

3.2 Determining the Objectives

The traditional objective for the static VRP has been to minimize the overall
distribution costs. For the DVRP additional measures come into play. In par-
ticular, the level of service offered to the customers is important for the overall
performance of the system. Often the multiple objectives encountered in the
DVRP may be conflicting. Naturally, objectives may differ from one applica-
tion to the other. Nevertheless, a few measures are almost always relevant to
consider. These are: travel costs, service level, and throughput maximization.
As for the static VRP, the distribution costs should be considered since they
represent a true cost for the distribution company. The service level measure
of system performance is generally in conflict with the objective of minimiz-
ing the distribution costs since a fast response to a new immediate request
for service may imply that the vehicles will have to travel longer distances.
Throughput optimization considers the ability to serve as many customers as
possible. For some dynamic problems this is the most important objective. As
an example, the maximization of the expected number of serviced requests is
the main objective in the taxi cab business.
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3.3 Measuring Algorithmic Performance

The most accepted framework for measuring the performance of on-line al-
gorithms is competitive analysis introduced by Sleator and Tarjan [50]. For a
minimization problem the competitive ratio, crA, can be defined as:

crA = sup
I

z(A, I)
z∗(I)

(4)

where z(I) is the cost of the solution found by algorithm A for instance
I and z∗ is the optimal cost found by an (ideal) offline algorithm which had
access to the entire instance I, including dynamic requests, beforehand. The
competitive analysis framework offers a measure for evaluating the perfor-
mance of a certain on-line routing policy based on the worst-case ratio between
this policy and the optimal offline policy. In other words, for each policy ex-
amined this ratio quantifies the loss of cost-efficiency stemming from the lack
of full information.

The competitive analysis framework provides a strong basis for studies of
the performance of on-line algorithms which have produced interesting ana-
lytical results and insights. However, only very simple versions of the DVRP
can be treated using this framework. Important real-world constraints such as
time windows have so far proved to be too complex to be considered in this
framework. Furthermore, in most real-world situations it is indeed possible
to achieve an average performance which is considerably better than the one
suggested by the competitive ratio.

For more complex versions of the problem algorithmic performance has
been evaluated through empirical studies. This has usually been done by
discrete-time simulation. This type of analysis can be extended so that the
performance of a certain algorithm is evaluated by running the algorithm on
both the original dynamic instances and on the instances in which the imme-
diate requests are changed into static data. This provides an estimate of the
competitive ratio of the algorithm to go along with its average performance.

4 Research Prior to 2000

Early research has considered a number of dynamic and/or stochastic elements
in vehicle routing. The problems addressed include the Probabilistic Travel-
ing Salesman Problem (PTSP) and the Probabilistic Vehicle Routing Problem
(PVRP), the Stochastic Vehicle Routing Problem (SVRP), the Dynamic Trav-
eling Salesman Problem (DTSP), the Dynamic Traveling Repairman Prob-
lem (DTRP), the Dynamic Vehicle Routing Problem (DTSP), the Dynamic
Dial-A-Ride Problem (DARP), the Dynamic Pick-Up and Delivery Problem
(DPDP), and the dynamic version of the Vehicle Routing Problem with Time
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Windows (DVRPTW). Other variants include the Time-Dependent Travel-
ing Salesman Problem (TD-TSP) and the Time-Dependent Vehicle Routing
Problem (TD-VRP). In contrast to the DVRP defined above, the PVRP is a
VRP where each customer has a given probability of requiring a visit. In the
SVRP customers are present at locations with some probabilities and their
demands are random. In the TD-VRP the travel time between two customers
is a function of the departure time from the first one.

Figure 4 gives a chronological overview of some of the most important work
on dynamic and stochastic vehicle routing problems prior to the year 2000. A
virtual line through the middle of the illustration divides the literature in two
sides: the left-hand one embracing a-priori optimization based models and
the right-hand one embracing real-time optimization based models. Within
the vehicle routing context a-priori based solutions mean that the planner
determines one or more routes based on probabilistic information on future
requests for service, customers demands, travel times or other parameters.
Within this setting routes will be planned before the vehicles leave the depot.
Real-time optimization models construct routes during the day of operation
while the vehicle is in-route. Horizontally, the illustration is organized so that
the basic models, as for instance the DTRP and PTSP, are located in the
middle of the illustration corresponding to the axis of complexity shown at
the bottom of the figure. Similarly the DVRPTW is placed at the very right
to represent the high complexity of this problem.

The a-priori optimization based methods have been used for the PVRP
and SVRP which are static by nature. They are generally not applicable in
a real-world on-line DVRP context since the dynamic environment leads to
very high computation times. Furthermore, it may not be worth the compu-
tational effort to try to find an optimal or near-optimal solution in a real-time
setting, because new requests may render the solution sub-optimal. Using re-
optimization each time a new request appears only seems computationally
tractable in cases where the degree of dynamism is quite low. Finally, these
algorithms require extensive a-priori information such as the probability of
a certain customer requiring service upon a certain day and time. In most
dynamic cases such detailed information will not be available.

Real-time optimization based methods have been used for problems that
are dynamic by nature, such as the DTSP and the DTRP. Extensive theoreti-
cal work on the DTRP has been conducted by Bertsimas and Van Ryzin ([12],
[13] and [14]). More complex DVRP problems have been tackled empirically.
The parallel implementation of the tabu search proposed by Gendreau et al.
[23] exemplifies this type of approaches.

5 Developments from 2000 to Present

Recently we have witness an ever growing body of research on the DVRP and
many of its variants. To maintain focus we will only consider advances for the
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Fig. 4. Chronological overview of important literature prior to 2000.
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DVRP. Ghiani et al. [27] provide and excellent earlier review of the field and
address the role of parallel computing strategies in this context.

5.1 A Priori Knowledge, Waiting and Relocation in Partially
Dynamic Problems

One stream of research has addressed the DVRP with various degrees of dy-
namism. Larsen et al. [36] proposed a framework for dynamic routing sys-
tems based on their degree of dynamism. Systems are partitioned in weakly,
moderately, and strongly dynamic depending on whether their degree of dy-
namism is below 20-30 %, between 30 and 80 % or over 80 %, respectively.
Recently, Larsen et al. [38] have refined their three-echelon classification of
dynamic vehicle routing systems based on the degree of dynamism and the
system objective. They also discuss methods for evaluation of the perfor-
mance of algorithms that solve on-line routing problems and list some of the
most important issues to include in the system objective. Larsen et al. [36]
then describe and test several dynamic policies to minimize routing costs for
the Partially Dynamic Traveling Repairman Problem (PDTRP) with vari-
ous degrees of dynamism. Later, Bent and Van Hentenryck [7] considered
moderately dynamic DVRPTW with stochastic customers. They proposed
a multiple scenario approach that continuously generates routing plans for
scenarios including advanced and immediate requests to maximize the num-
ber of serviced customers. Computational results on problems adapted from
the Solomon benchmarks highlight the effectiveness of their approach which
increases with the degree of dynamism.

Larsen et al. [37] proposed real-time solution methods for the Partially Dy-
namic Traveling Salesman Problem with Time Windows (PDTSPTW) that
minimize lateness. One method requires the vehicle, when idle, to wait at the
current customer location until it can service another customer without being
early. Other algorithms, called relocation policies, may reposition the vehicle
at a location different from that of the current customer based on a priori infor-
mation on future requests. The results obtained on both randomly generated
data and on a real-world case study indicated that all policies significantly
reduced lateness at the expense of only small distance increases. The basic
policy outperformed the other methods primarily when lateness and distance
were equally minimized and proved very robust in all environments studied.
When only lateness was considered, the policy to reposition the vehicle at a
location near the current customer generally provided the largest reductions in
average lateness and the number of late customers. It also produced the least
extra distance to be traveled among the relocation policies. where waiting
and relocation points are defined a priori using knowledge of the distribution,
clustering of the customers, and heuristics.

While Larsen et al. [37] defined waiting and relocation points a priori using
heuristics that exploit knowledge of the distribution and clustering of the cus-
tomers, Bent and Van Hentenryck [8] allowed the vehicle to wait or relocate
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anywhere and at any time during the algorithm execution. Computational re-
sults indicate that these two strategies were very effective in maximizing the
number of customer served, particularly for high dod problems that contain
many late requests. Vehicle relocation is also addressed by van Hemert and
La Poutre [55] in a DVRP context where loads generated throughout the day
must be picked up and returned to a depot within a specified time interval.
The authors analyze the benefit of anticipatory vehicle moves within regions
that have a high potential of generating loads. They propose a self-adaptive
evolutionary algorithm and examine under what conditions such moves im-
prove its effectiveness in terms of the ratio of the loads successfully delivered
to the total number of loads made available for transport.

Ichoua et al. [32] also propose a strategy that exploits probabilistic knowl-
edge about future request arrivals. Forecasted requests are incorporated as
dummy customers in vehicle routes. The routes are constructed by a modified
version of the tabu heuristic of Gendreau et al. [23]. Earlier, Ichoua et al. [31]
extended the method proposed by Gendreau et al. [23] to incorporate diver-
sion. That involves allowing a vehicle to be diverted from its predetermined
destination. Rather than using local or myopic strategies where a new request
for service impacts only one vehicle, the authors took a global view where
several vehicles may be affected. The above papers have been motivated in
part by the DVRP faced by courier service companies. The same environment
is examined in Angelelli et al. [1] where customer requests with service time
windows have to be serviced in real time by a fleet of vehicles. The authors
consider both pick-up and delivery requests and assume that customer re-
quests cannot be refused but can be postponed to future shifts. A heuristic
algorithm based on local search is proposed.

Branke et al. [15] have further analyzed waiting policies that maximize the
probability of being able to service an additional immediate request customer.
For the single vehicle case, a ”no wait” or drive without waiting policy was
shown to be optimal. However, for the multiple vehicle case, it proved to be
the worst among eight waiting policies for a vehicle starting or restarting
from the depot. A ”variable” policy proved the best. Specifically, each vehicle
drives without waiting until the time to drive the remaining distance to the
depot is equal to the slack time. Then the available waiting time is distributed
to the remaining customers in proportion to the remaining driving distances.
Independently, Mitrovic-Minic and Laporte [41] have examined similar policies
for the pickup and delivery problem with time windows. Whether to wait and
for how long is also addressed by Potvin et al. [45]. The authors consider
the impact of dynamic events in the form of travel time and customers on
the partially dynamic DVRPTW. They show that policies based on a certain
amount of waiting, that is, a certain tolerance for changes in the current
planned routes leads to better overall results.

Other novel research includes that of Montemanni et al. [42] solved a
DVRP problem using the Ant Colony System paradigm. The algorithm was
tested on simulated environments and also applied to a real-world case study



Recent Developments in Dynamic Vehicle Routing Systems 211

in the city of Lugano, Switzerland. Hvattum et al. [30] addressed a DVRP
problem that also had stochastic elements. Based on an actual application,
the authors used historical data to generate probability distributions for the
attributes of the dynamic customers. They formulate the problem as a multi-
stage stochastic programming problem with recourse and propose a heuristic
that gradually builds the routes by exploiting the information gathered on
future customer demand. The computational results illustrate the superiority
of the this method over a more standard pure dynamic heuristic that resolves
the problem at the beginning of a number of consecutive time intervals. Chen
and Xu [17] used an optimization-based dynamic approach to minimize the
total distance traveled for a dynamic vehicle routing problem with hard time
windows. At each decision epoch, the authors solve by column-generation a
static Vehicle Routing Problem with Time Windows (VRPTW) consisting of
all the known orders that have not been satisfied up to that point. Columns
are generated dynamically over time by alternately solving a linear program
and applying a fast local-search-based heuristic. The authors report that their
approach outperformed an insertion-based heuristic on most test problems
generalized from Solomon’s problems.

5.2 The Dynamic Pick-up and Delivery Problem

Another stream of research has focused on the dynamic pick-up and delivery
problem. Attanasio et al. [4] consider the dynamic DARP where as many as
possible of the requests received throughout the planning horizon must be
satisfied. They present parallel implementations of a tabu search method de-
veloped earlier by Cordeau and Laporte for the DARP. The authors report
that the proposed algorithms are capable of a high service level as measured
by the percentage of satisfied requests. Thomas and White [54] considered the
single vehicle pickup and delivery problem where the origin and destination are
known. Immediate request customers may demand service while the vehicle is
in transit with a known probability. The authors seek a strategy to construct
routes that minimize the expected travel time and lateness penalty incurred
at the destination if the cutoff time is exceeded. Using a finite-horizon Markov
decision process model they propose a policy that optimally build routes that
consider anticipated immediate request customers. This policy is computa-
tionally compared to an industry standard reactive strategy where there is
no information about an immediate request until this actually occurs for a
very small number of anticipated requests. It seems that anticipatory routing
outperformed the reactive strategy, especially when the immediate requests
are likely to occur late during the day of operations.

Coslovich et al. [19] considered a dynamic DARPTW where customers can
ask the vehicle driver for a trip at a vehicle stop. They proposed a two-phase
insertion heuristic based on route perturbations consisting of 2-opt arc swaps.
One phase is off-line and produces a feasible neighborhood of the current
route and the other phase is on-line where an attempt is made to insert the
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unexpected customer in the planned route. The objective considered was to
minimize the overall inconvenience of the advance customers. The authors re-
port computational results that indicate that their solution was quite close to
the static one and the number of unexpected requests that were not accepted
was negligible. Gendreau et al. [22] examined a different dynamic DARPTW
faced by courier services for the same-day local pick-up and delivery of small
sized packages. The authors developed a tabu search heuristic where the neigh-
borhood structure was based on ejection chains. Their experiments conducted
in a parallel computing environment indicated that their method was superior
to insertion based methods, even in highly dynamic scenarios.

Recently, Mitrovic-Minic and Laporte [41] have examined the benefits of
waiting strategies in the context of a pickup and delivery problem with time
windows. While Branke et al. [15] focused on maximizing the probability of
being able to service an additional customer, Mitrovic-Minic and Laporte [41]
sought waiting policies that can decrease the total detour and the number of
required vehicles. When a new request arrives, if the vehicle assigned to it waits
as long as possible before moving the total insertion cost can be reduced at
the expense of more vehicles. If, on the other hand, the vehicle travels as soon
as possible, the total number of vehicles is decreased but longer detours are
experienced. The authors propose an intermediate strategy, called advanced
dynamic waiting, that involves partitioning the overall tour into service zones
and allocating the total time available for waiting proportionally to the time
necessary to service each service zone. This method was able to simultaneously
decrease the total detour and the required number of vehicles. Mitrovic et al.
[40] further this line of research by proposing a double-horizon heuristic for
the dynamic PDPTW. The short term horizon, the next two hours, accounts
for immediate increase in routing cost created by the insertion of an imme-
diate request. The long-term horizon, the rest of the day of operations, deals
with the decrease in vehicle slack time. The authors propose a constructive
heuristic, which is used for every immediate request, in conjunction with a
tabu search heuristic which is called periodically.

Fleischmann et al. [21] propose a planning framework for the dynamic
PDPTW. The authors then suggest three event-based dispatching policies
which differ in the length of the planning horizon per event. Using dynamic
travel time information, the procedures are compared on real-world data from
an urban traffic management center and a logistics service provider. Finally,
Yang et al. [56] address a real-time multivehicle truckload pickup and delivery
problem. They present a mixed-integer programming formulation for the of-
fline version of the problem and propose a new rolling horizon reoptimization
strategy for the real-time version. This policy is compared with another previ-
ously introduced reoptimization policy and three other known heuristic rules.
The results of a simulation study that considered varying traffic intensities,
degrees of advance information, and degrees of flexibility for job-rejection deci-
sions indicate that the new reoptimization policy systematically outperformed
the others.
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5.3 Emergency Service Systems

Yet another stream of research has dealt with emergency service systems. Due
to its importance, this application has received substantial attention from the
scientific community since the early 1970s. These systems are truly strongly
dynamic since no requests are known in advance of the day of operation. The
quality of an emergency system is generally measured by its response time.
The emergency service providers and the public administration agree on a
certain level of service which for instance defines that 90% of the calls should
be served within 5 minutes whereas the remaining 10% of the calls should be
served within 8 minutes.

Often, the quality of a-priori information such as the potential location of
the next request is often quite poor. If, on the other hand, a-priori informa-
tion on future requests is available it could potentially improve the solution
quality. For example, this could involve moving an idle vehicle currently sit-
uated in a low demand area to a central location. This idea was explored by
Gendreau et al. [25] who proposed a model for real-time relocation of ambu-
lances. For a survey of emergency vehicle location and relocation problems,
see Brotcorne et al. [16]. Recently, Gendreau et al. [26] proposed a dynamic
relocation strategy for emergency vehicle waiting sites that maximizes the ex-
pected covered demand and controls the number of waiting site relocations.
They formulate the problem as an integer linear program and solve it within
reasonable computing time when the number of vehicles is relatively small.
Simulations conducted with real-world emergency medical services data from
the Montreal area confirm the feasibility of the proposed approach.

5.4 Competitive Analysis

A different stream of research has examined the DVRP using competitive
analysis. Following Bertsimas and Van Ryzin [12], [13] and [14] who were
the first to use it in this context, Ausiello et al. [5] have studied the on-line
version of the classical Traveling Salesman Problem (TSP) using this type
of analysis. The authors examine two versions of the problem and provide
lower bounds for the competitive ratio. Recently, Jaillet and Wagner [34]
have examined online versions of the TSP and TRP where each request has
a disclosure date. This is the time when the location and release date of a
request become known. This measure is similar to the reaction time introduced
by Larsen et al. [37] except it utilizes release times instead of due dates. The
authors propose online algorithms for a variety of scenarios and show that this
advanced information leads to better competitive ratios. They also provide a
general result on polynomial-time online algorithms for the online TSP.

Complexity results and competitive analysis for vehicle routing problems
are the subject of the PhD-thesis by Paepe [43]. Paepe gives a thorough anal-
ysis of the on-line version of the Dial-a-ride problem in which a single capac-
itated vehicle serves a set of customers that requests to be picked-up at some
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geographical location and to be transported to another location. The requests
appear in real-time and Paepe derives the competitive ratios of a number of
routing policies. Angelelli et al. [2], [3] studied a dynamic multi-period routing
problem. Here, the orders arriving during a period have to be completed either
in that period or the next. This means that the system will hold customers
that are to be served right away as well as customers that will have to wait
to be served. The authors introduce simple routing policies and analyze these
by examining their competitive ratios.

Other streams of research have been directed at problems related to the
DVRP. These include the Dynamic Assignment Problem (see Spivey and Pow-
ell [51]), the Dynamic Vehicle Scheduling Problem (see Huisman et al. [29])
and the VRP and its variants with time dependent travel times (see Taniguchi
and Shimamoto [53], and Haghania and Jung [28]). Their discussion is beyond
the scope of this chapter.

6 Conclusions and Directions for Future Research

This chapter has highlighted the evolution of research on dynamic vehicle
routing problems. We introduced the DVRP and illustrated how it is differ-
ent from the generic VRP. We then examined the technological environment
required. Next, we delineated the salient problem dimensions, including the
degree of dynamism, the potential components to be considered in the system
objective, and theoretical and empirical evaluation methods for the perfor-
mance of algorithms. We then looked back at the research conducted prior
to 2000 and discussed the many developments from 2000 to present. Several
themes for future research have emerged from this discussion.

The level of dynamism of a system has a strong impact on the type of
algorithm to be used. Therefore, one direction for future work should consider
the design of more encompassing measures to determine the level of dynamism
of a given system. We discussed natural extensions of the basic dod measure,
edod and edodtw, which capture information on when the immediate requests
are received by the dispatcher. Other than the initial research done by Jaillet
and Wagner [34] the edod, edodtw or similar measures have yet to be considered
in system classification or algorithmic design. While the edod and edodtw

are improvements over the definition of the dod there are still many subtle
interactions in the way requests arrive that will elude analysis for the time
being, thus making it hard to characterize the difficulty of dynamic routing
problems.

The above ideas are part of a broader theme which seeks to exploit knowl-
edge about future request arrivals and/or consider vehicle relocation and wait-
ing. The research of Larsen et al. [37], Ichoua et al. [32], Jaillet and Wagner
[34], Bent and Van Hentenryck [8], and van Hemert and La Poutre [55], among
others, has paved the way for future approaches. In particular, consider the
issue of choosing where vehicles should idle in anticipation of future requests.
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When determining the attractiveness of each idle point, an algorithm may
take the arrival intensities of not only a given subregion but also neighboring
ones into consideration. More sophisticated methods, such as location analy-
sis, should be investigated.

Other interesting research directions should consider robustness considera-
tions with regards to unforeseen events (e.g., vehicle failures, traffic congestion
and others) and the integration of industry practices (e.g., the use of bicycles
in highly congested areas, load consolidation, and others) in the models used.

We believe a new generation of DVRP algorithms will blend the effec-
tiveness of advanced methods, tailored to take advantage of special problem
structures and advanced knowledge, with the efficiency of parallel implementa-
tions, and the ever growing computing power of workstations to solve increas-
ingly larger and more realistic problems. The overnight courier mail service
provider environment represents a good model for the use of such new hybrid
approaches. The morning subproblem is often weakly dynamic while the after-
noon one is moderately dynamic. Therefore, a reoptimization algorithm could
first plan a set of morning delivery routes. In case of urgent call-in requests,
the algorithm could insert the new requests into the predetermined delivery
routes. In turn, the afternoon pickup problem, would use fast algorithms for
online routing that would take advantage of a priori information on future
requests.

As companies are continuing the computer integration of their operations
through ERP systems, much more information is being transferred between
logistics and other functional areas. Implementations of advanced distribution
planning systems based on DVRPs is starting to be seen in medium sized
companies; small enterprises are next in line. This will likely be accelerated
during the coming years by the ever growing number of just-in-time global
supply chains. An example of this could be the transportation of the elderly
and handicapped. Hence, the interface between DVRP models and algorithms
and other parts of the supply chain such as warehousing and manufacturing
is an important research direction that has yet to be tapped.

We hope that this chapter has offered an insightful perspective on this
rapidly moving field. While the DVRP has reached a certain level of ma-
turity, many important problems remain open. We can only hope that this
chapter has steered sufficient interest that many of its readers will embark on
or continue their research in this field.
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Summary. We consider online Vehicle Routing Problems (VRPs). The problems
are online because the problem instance is revealed incrementally. After providing
motivations for the consideration of such online problems, we first give a detailed
summary of the most relevant research in the area of online VRPs. We then con-
sider the online Traveling Salesman Problem (TSP) with precedence and capacity
constraints and give an online algorithm with a competitive ratio of at most 2. We
also consider an online version of the TSP with m salesmen and we give an online
algorithm that has a competitive ratio of 2, a result that is best possible. We also
study polynomial-time algorithms for these problems. Finally, we introduce the no-
tion of disclosure dates, a form of advanced notice which allows for more realistic
competitive ratios.

Key words: Online optimization; competitive analysis; routing; transportation.

1 Introduction

The Traveling Salesman Problem (TSP) is a very important problem in Op-
erations Research; TSP solutions are valuable in their own right as well as in
the solution of more complicated problems. In a common version of the TSP,
we are given a metric space and a set of points in the space, representing
cities. Given an origin city, the task is to find a tour of minimum total length,
beginning and ending at the origin, that visits each city at least once. Assum-
ing a constant speed, we can interpret this objective as minimizing the time
required to complete a tour. We may also incorporate release dates, where a
city must be visited on or after its release date; in this case the problem is
known as the “TSP with release dates.”

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 10, c© Springer Science+Business Media, LLC 2008
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Additional constraints can be added to the above salesman problems. We
will consider several in this chapter. The salesman can be considered a vehi-
cle/server that transports packages and/or people. We can introduce prece-
dence constraints where some cities must be visited before others. Precedence
constraints are appropriate, for example, if packages/people have to be picked
up at one location and delivered to another location. It is also natural to
introduce a capacity for the server; in other words, a server can visit only a
subset of all cities in a given tour and must traverse multiple tours. Finally,
we consider the case where we have multiple servers to manage.

The Traveling Repairman Problem (TRP) is defined similarly, only that we
are interested in minimizing the weighted sum of city completion times, where
a city’s completion time is the first time that a city is visited; this objective
is also referred to as the latency. These two objectives embody important
but very different managerial measures. The TSP objective is closely related
to the notion of makespan, the maximum completion date of all cities; this
measure is traditionally used if one were to optimize with the servers interest
in mind. Alternatively, the latency is closely related to the (weighted) average
completion date of all cities, which clearly has the customers interest in mind.

It is well established that the assumption that problem instances are com-
pletely known a priori is unrealistic in many applications. There exist nu-
merous approaches for solving optimization problems under uncertainty. As-
suming a probabilistic distribution or process for the problem data leads to
stochastic and dynamic programming formulations. However, this approach
generally requires accurate probabilistic distributions. In practice, there might
not be sufficient data to estimate these distributions accurately. This is par-
ticularly the case when one considers a new market or industry, or even when
a known industry is in a period of upheaval. Therefore, more conservative ap-
proaches are needed. A popular approach to optimization under uncertainty is
robust optimization (e.g., see Ben-Tal and Nemirovski [12]). The basic frame-
work of robust optimization is to introduce sets for uncertain problem param-
eters, rather than distributions. Attempts to make robust optimization less
conservative have also been successful (e.g., see Bertsimas and Sim [13]). On-
line optimization is a different approach to optimization under uncertainty,
which is more appropriate for sequential decision making problems where
probabilistic distributions are not available and/or not reliable. For exam-
ple, taxi services, buses and courier services require an online model in which
locations to be visited are revealed over time, while the server is en route
serving previously released requests. Since online optimization is also a con-
servative approach, we do make attempts to relax this aspect by considering
the availability of advanced information.

In this chapter we are concerned with online versions of the above men-
tioned routing optimization problems. In our framework, the problem data is
revealed dynamically over time, independent of the server’s location, at release
dates. More specifically, in the context of the online TSP, a city’s existence
and location are only revealed at the city’s release date. The salesman must



Online Vehicle Routing Problems: A Survey 223

incorporate new cities in real-time into his tour, hence the need for dynamic
flexible algorithms (in contrast with classic static algorithm design).

The focus of our chapter is on studying algorithms for a variety of online
routing problems. They are evaluated using the competitive ratio criteria,
which is defined as the worst case ratio of the online algorithm’s cost to the
cost of an optimal offline algorithm, where all data are known a priori. In
most cases, the cost of an algorithm will be the time required to visit all cities
and return to the origin. We also say that an algorithm is c-competitive if the
competitive ratio of the algorithm is at most c. We call an online algorithm (or
competitive ratio) best-possible if there does not exist another online algorithm
with strictly smaller competitive ratio.

The competitive ratio is a conservative worst case measure, but it does
provide a guarantee of a minimal level of performance. From a practitioner’s
point of view, a competitive ratio can provide a benchmark from which to
compare other solution approaches. We do not claim that our approach is ap-
propriate for solving all routing problems under uncertainty, but we do believe
it is appropriate for problems where there is little information to characterize
the uncertainty. The research in this chapter also serves as a starting point for
routing optimization problems under partial uncertainty. For example, there
might exist an underlying distribution for the problem data, but we only know
the mean of the distribution. Similar approaches have been taken in the rev-
enue management and supply chain literature; see Ball and Queyranne [10],
Ball, Gao, Lan, Karaesmen [34] and Perakis and Roels [37, 38].

We provide online algorithms for new online routing problems and we de-
rive new competitive ratio bounds. A number of our competitive ratio results
are best-possible. We also study the effect of providing advanced information
to the server(s) in the form of disclosure dates. The disclosure dates are intro-
duced to offset the otherwise pessimistic nature of competitive ratios: we may
be able to preclude the (usually) pathological worst-case examples that induce
competitive ratios. With advanced information in place, we derive improved
competitive ratios. We also derive lower bounds for competitive ratios with or
without the advanced information; in many cases our lower bounds are tight,
implying best-possible competitive ratios.

In Section 2 we detail a number of situations where online optimization is
an appropriate solution approach and in Section 3 we provide a comprehen-
sive literature review along with in-depth presentations of the most relevant
articles. In Sections 4 and 5, we present detailed models and results for single
and multiple server online routing problems, respectively. In Section 6 we dis-
cuss a relaxation of the online optimization approach by utilizing the notion of
disclosure dates. In Section 7 we discuss possible directions for future research
and in Section 8 we conclude the chapter.
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2 Applications of Online Optimization

In this section, we discuss a number of applications of online optimization
and the related discipline of real-time optimization. Real-time optimization
studies the same type of problems that are studied in online optimization, but
from a less theoretical point of view. Essentially, real-time optimization solves
problems where the problem instance is also revealed incrementally, but the
focus is on (fast) practical algorithms and heuristics that solve quickly and
give good solutions, but without theoretical performance guarantees.

FedEx and other courier companies offer many real-time services. For ex-
ample, FedEx provides same day pickup and delivery. In many cases, there ex-
ist data for customers that request these services and forecasts can be created
to help in designing routes. However, in the case where FedEx is beginning
service in a new area, online and real-time optimization is a more appropri-
ate approach until data can be gathered about the customer base. Another
application is in the real-time fleet management where real-time information
is used to manage a fleet of vehicles; see Yang, Jaillet and Mahmassani [43].
A third example comes from a rather new industry: Jet Taxis. A jet taxi is
a small jet that serves regional airports; customers can request transporta-
tion from one airport to another in real-time. Since this is a new industry,
data is not yet available to create forecasts of customer demand, so online
and real-time optimization is again appropriate for analyzing these problems.
Management of a fleet of taxis can also benefit from online analysis.

There are also a number of applications of online optimization in computer
science. For example, paging in a memory system is one of the first applica-
tions of online optimization. Searching an unknown domain for a prize is also
popular (e.g., see Jaillet and Stafford [23]); this latter problem has applica-
tions in robotics. Routing and call admission in communications networks are
also popular areas of research in online optimization.

3 Literature Review

The literature for the TSP is vast. The interested reader is referred to the
books by Lawler, Lenstra, Rinnooy Kan, Shmoys [35] and Korte and Vygen
[30] for comprehensive coverage of results concerning the TSP. Probabilistic
versions of the TSP, where a different approach is used to represent limited
knowledge of the problem instance, have also attracted interest (e.g., see Jaillet
[22] and Bertsimas [14]). Offline routing problems with release dates can be
found in Psaraftis, Solomon, Magnanti, Kim [39] and Tsitsiklis [42].

A systematic study of online algorithms was given by Sleator and Tarjan
[41], who suggested comparing an online algorithm with an optimal offline
algorithm. Karlin, Manasse, Rudolph, Sleator [29] introduced the notion of
a competitive ratio. Online algorithms have been used to analyze paging in
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computer memory systems, distributed data management, navigation prob-
lems in robotics, multiprocessor scheduling, etc.; see the books of Borodin and
El-Yaniv [17] and Fiat and Woeginger [19] for more details and references.

Research concerning online versions of the TSP and TRP have been intro-
duced relatively recently. Kalyanasundaram and Pruhs [28] have examined a
unique version of an online traveling salesman problem where new cities are
revealed locally during the traversal of a tour (i.e., an arrival at a city reveals
any adjacent cities that must also be visited). Angelelli, Savelsbergh, Sper-
anza [3, 4] study related online routing problems in a multi-period setting.
More related to our chapter is the stream of works which started with the
paper by Ausiello, Feuerstein, Leonardi, Stougie, Talamo [9]. In this paper,
the authors studied the online TSP, which is a special case of the problems
we consider here; they analyzed the problem on the real line and on general
metric spaces, developing online algorithms for both cases and achieving a
best-possible online algorithm for general metric spaces, with a competitive
ratio of 2. These authors also provide a polynomial-time online algorithm,
for general metric spaces, which is 3-competitive. Subsequently, the paper by
Ascheuer, Krumke, Rambau [5] implies the existence of a polynomial-time
algorithm, for general metric spaces, which is 2.65-competitive as well as a
(2 + ε)-competitive (ε > 0) algorithm for Euclidean spaces. Lipmann [36] de-
veloped a best-possible online algorithm for the real line, with a competitive
ratio of approximately 1.64. Blom, Krumke, de Paepe, Stougie [15] gave a
best-possible online algorithm for the non-negative real line, with a competi-
tive ratio of 3

2 . This last paper also considers different adversarial algorithms
in the definition of the competitive ratio.

Considering the online TRP, Feuerstein and Stougie [18] gave a lower
bound of (1 +

√
2) for the competitive ratio and a 9-competitive algorithm,

both for the online TRP on the real line. Krumke, de Paepe, Poensgen, Stougie
[33] improved upon this result to give a (1+

√
2)2-competitive deterministic al-

gorithm for the online TRP in general metric spaces as well as a Θ-competitive
randomized algorithm, where Θ ≈ 3.64; in [24], the authors correct this result
to Θ ≈ 3.86 (see also [32]).

There has also been work on generalizing the basic online TSP framework.
The paper by Feuerstein and Stougie [18] considers the online Dial-a-Ride
problem, where each city is replaced by an origin-destination pair. The authors
consider both the uncapacitated case, giving a best-possible 2-competitive al-
gorithm, and the capacitated case, giving a 2.5-competitive algorithm. The
paper by Ascheuer et al. [5] also gives a 2-competitive online algorithm and
a (1 +

√
1 + 8ρ)/2-competitive polynomial-time online algorithm for the un-

capacitated online Dial-a-Ride problem (ρ being the approximation ratio of a
simpler but related offline problem). Their algorithm is generalizable to the
case where there are multiple servers with capacities; this generalization is
also 2-competitive. Other groups of researchers have generalized the online
TSP in other ways: Ausiello, Bonifaci and Laura [7] have studied the online
Asymmetric TSP, Ausiello, Demange, Laura, Paschos [8] have studied the
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online Quota TSP and Blom, Krumke, de Paepe, Stougie [15] have considered
the online TSP under different adversarial models.

Considering multiple vehicle online routing problems, there has been lim-
ited work. As mentioned previously, Ascheuer et al. [5] give a 2-competitive
online algorithm for the online Dial-a-Ride problem with multiple servers and
capacity constraints. Bonifaci and Stougie [16] study the online TSP with m
salesmen. For the case where all cities are on the real line, these authors give
an asymptotically (as m →∞) optimal online algorithm. These authors also
focus on resource augmentation with respect to the number of vehicles: the
online algorithm has m salesmen and the offline algorithm has m∗ ≤ m sales-
men. These authors give an online algorithm that is (1+

√
1 + 1/2�m/m∗�−1)-

competitive. Ausiello, Allulli, Bonifaci, Laura [6] also consider the behavior of
online routing algorithms as a function of the number of servers.

In general, resource augmentation for online problems was introduced by
Sleator and Tarjan [41]. These authors show that it is possible for an online
paging algorithm to have a constant competitive ratio if it is given a con-
stant fraction more cache locations than the offline algorithm. Server resource
augmentation was considered by Young [44] for the k-server problem and
Kalyanasundaram and Pruhs [26] for the online weighted matching problem.
Kalyanasundaram and Pruhs [27] consider speed and processor augmentation
in online machine scheduling. In Jaillet and Wagner [24], information aug-
mentation is present in the form of disclosure dates for single server problems;
a similar approach was taken by Allulli, Ausiello, Laura [1] in the form of
a lookahead. In Jaillet and Wagner [25], disclosure dates are considered for
multiple server problems; additionally, server and speed augmentation as well
as asymptotic analysis of online routing problems are studied. Other frame-
works for addressing the limitations of the competitive ratio have also been
introduced; see Ben-David and Borodin [11], Koutsoupias and Papadimitriou
[31] and Raghavan [40].

We now present in more depth some of the research that is most relevant
to our chapter.

3.1 Ausiello et al. [9]

This paper is one of the most important in online routing. The authors were
the first to consider the online TSP in a general metric space. They designed
a best-possible algorithm for the general metric case. They also gave online
algorithms for the case where the cities all lie on the real line as well as a
polynomial-time online algorithm for general metric spaces. We present their
best-possible online algorithm Plan-At-Home (PAH). We let o designate the
origin of the metric space and d(·, ·) a distance metric.

Algorithm 1 : PAH

(1)Whenever the salesman is at the origin, it starts to follow an optimal route
that serves all the requests yet to be served and goes back to the origin.
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(2) If at some time a new request is presented at point l, then the salesman
takes one of two actions depending on its current position p:
(2a) If d(l, o) > d(p, o), then the salesman immediately goes back to the

origin where it appears in a Case 1 situation.
(2b)If d(l, o) ≤ d(p, o), then the salesman ignores it until it arrives at the

origin, where again it re-enters Case 1.

Theorem 1 ([9]). The competitive ratio of PAH is 2. Furthermore, there does
not exist another online algorithm with a strictly smaller competitive ratio.

In order to give an idea of how results of this type are proved, we provide
a partial proof of Theorem 1.

Proof (The competitive ratio of PAH is at most 2).
For simplicity, let r denote the time of the final request and l the position

of this request. Let p(t) denote the location of the salesman at time t. Finally,
let Z∗ denote the optimal cost of the offline problem, the TSP with release
dates (where all data are known a priori) and LTSP the optimal offline cost
when all release dates are zero. We show that in each of the Cases (1), (2a)
and (2b), PAH is 2-competitive.

Case (1): PAH is at the origin at time r. Then it starts an exact tour
that serves all the unserved requests. The time needed by PAH is at most
r + LTSP ≤ 2Z∗.

Case (2a): We have that d(o, l) > d(o, p(r)). PAH returns to the origin,
where it will arrive before time r + d(o, l). After this, PAH computes and
follows an exact tour through all the unserved requests. Therefore, the online
cost is at most r + d(o, p(r)) + LTSP < r + d(o, l) + LTSP . Noticing that
r + d(o, l) ≤ Z∗, we have that the online cost is at most 2Z∗.

Case (2b): We have that d(o, l) ≤ d(o, p(r)). Suppose PAH is following a
route R that had been computed the last time it was at the origin. Note that
R ≤ LTSP ≤ Z∗. Let Q be the set of requests temporarily ignored since the
last time PAH was at the origin; Q is not empty since it contains l. Let lq be
the location of the first request in Q served by the offline algorithm and let rq

be the time at which lq was released. Let PQ be the shortest path that starts
at lq, visits all the cities in Q and ends at the origin. Clearly, Z∗ ≥ rq + PQ
and Z∗ ≥ d(o, lq) + PQ.

At time rq, the distance that PAH still has to travel on the route R
before arriving at the origin is at most R− d(o, lq), since d(o, p(rq)) ≥ d(o, lq)
implies that PAH has traveled on the route R a distance not less than d(o, lq).
Therefore, it will arrive at the origin before time rq +R− d(o, lq). After that
it will follow an exact tour TQ that covers the set Q. Hence, the completion
time will be at most rq +R− d(o, lq)+ TQ. Since TQ ≤ d(0, lq)+PQ, we have
that the online cost is at most

rq +R− d(o, lq) + d(0, lq) + PQ = (rq + PQ) +R
≤ Z∗ + Z∗

= 2Z∗. �
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Note that PAH is not a polynomial-time algorithm as a subroutine requires
the solution to the classic TSP problem.

We briefly mention some of the other results that the authors obtained: An
upper bound on the competitive ratio of the polynomial-time online algorithm
for general metric spaces is 3 and the competitive ratio of their algorithm
where all cities lie on the real line is 1.75. The authors also consider the case
where the salesman is not required to return to the origin after serving all
cities.

3.2 Lipmann [36]

Lipmann [36] considers the online TSP where all cities are on the real line.
Lipmann designs a rather complicated online algorithm that is best-possible
with a competitive ratio of (9 +

√
17)/8 ≈ 1.64.

3.3 Blom et al. [15]

Blom et al. consider the online TSP when all cities are on the non-negative real
line. They also consider different types of adversaries. In other words, instead
of comparing the cost of an online algorithm to that of an optimal offline
algorithm, the online cost is compared to the cost of another weaker algorithm.
In this way, the competitive ratio results are not as pessimistic and more
realistic since many times the competitive ratio is induced by rather contrived
problem instances. We conclude our summary of these authors’ work with a
presentation of their best-possible online algorithm Move-Right-If-Necessary
(MRIN) for the online TSP on the real line, where the competitive ratio is
3/2.

Algorithm 2 : MRIN

(1) If there is an unserved city to the right of the salesman, he moves towards
it at unit speed.

(2) If there are no unserved cities to the right of the salesman, he moves back
towards the origin at unit speed.

(3)Upon reaching the origin, the salesman becomes idle.

3.4 Jaillet and Wagner [24, 25]

In [24], the authors introduce the notion of a disclosure date, which is a
form of advanced notice for the online salesman. The authors quantify the
improvement in competitive ratios as a function of the advanced notice for
the online TSP and online TRP. More details on disclosure dates will be given
in a later section.

In [25], the authors consider generalized online routing problems, that
allow for precedence constraints, capacity constraints and multiple vehicles.
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Proofs of results in the sequel can be found in [25]. Furthermore, the authors
consider disclosure dates for multiple server problems as well as other forms
of resource augmentation, such as increasing the number of vehicles available
and increasing the speed of vehicles. Additionally, the authors study these
routing problems from an asymptotic point of view.

3.5 Allulli et al. [1]

In Allulli et al. [1], the authors define the notion of a lookahead, similar to
the disclosure date notion mentioned above. A lookahead Δ allows an online
algorithm to foresee all requests that will arrive during the next Δ time units.
The authors investigate the effect of the lookahead on many different online
vehicle routing problems.

4 Single Server Routing Problems

We first consider routing problems where a single server must service a se-
quence of requests. The following model is sufficiently general to allow for
the modeling of realistic routing problems that incorporate precedence con-
straints (e.g., taxi passengers must be picked up before they are delivered to
their location) and capacity constraints (e.g., the physical capacity of a FedEx
truck). The data for our problems is a set of points (li, ri,di), i = 1, . . . , n,
where n is the number of requests and k(i) is the number of cities in request i:
li = (l1i , l

2
i , . . . , l

k(i)
i ) and di = (d1

i , d
2
i , . . . , d

k(i)
i ). The quantity lji ∈ M, M an

arbitrary metric space, is the location of the jth city in the ith request. The
quantity ri ∈ R+ is the ith request’s release date; i.e., ri is the first time after
which that cities in request i will accept service. We assume, without loss of
generality, that r1 ≤ r2 ≤ · · · ≤ rn. The quantity dj

i ∈ R+ is the demand
of city lji . The server has a capacity3 Q; the sum of city demands visited on
any given tour can be at most Q and we assume dj

i ≤ Q for all i, j. Prece-
dence constraints exist within a request; i.e., for a fixed i, arbitrary precedence
constraints of the form lji � lki (lji must be visited before lki ) for any j �= k.
The service requirement at a city is zero. Unless stated otherwise, the server
travels at unit speed or is idle. The problem begins at time 0, and the server
is initially at a designated origin o of the metric space. The objective is to
minimize the time required to visit all cities and have the server return to the
origin. We also let N = {1, . . . , n}.

From the online perspective, the total number of requests, represented by
the parameter n, is not known, and request i only becomes known at time
ri. ZA

n (Q) denotes the cost of online algorithm A on an instance of n cities

3 It is possible to generalize our capacity model to allow positive and negative
demands as well as different types of products being transferred. However, we
study the current problem to limit the complexity of the analysis.
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with server capacity Q and Z∗
n(Q) is the corresponding optimal offline cost

where all data is known a priori. Zr=0
n (Q) is the optimal cost when all release

dates are equal to zero; clearly, Zr=0
n (Q) ≤ Z∗

n(Q). The problem instance
underlying Zr=0

n (Q), ZA
n (Q) and Z∗

n(Q) will be clear from context. At times,
the n term will be suppressed. Finally, define LTSP as the optimal TSP tour
length through all cities in an instance; i.e., LTSP = Zr=0(∞).

We measure the performance of online algorithms using the competi-
tive ratio and the asymptotic competitive ratio. The competitive ratio is
defined as the worst-case ratio, over all problem instances, of online to of-
fline costs: maxinstances ZA(Q)/Z∗(Q). An online algorithm is also said to
be c-competitive if its competitive ratio is at most c. An online algorithm
is asymptotically c-competitive if there exists n0 such that for all n ≥ n0,
ZA

n (Q)/Z∗
n(Q) ≤ c. An online algorithm is said to be best-possible if there

does not exist another online algorithm with a strictly smaller competitive
ratio.

We give an online algorithm that generalizes PAH, which was given by
Ausiello et al. [9]; we denote our algorithm Plan-At-Home-Generalized (PAH-
G). Note that the competitive ratio of the original PAH is 2.

Algorithm 3 : PAH-G

(1)Whenever the server is at the origin, it calculates and implements a ρ-
approximate solution to Zr=0(Q) over all requests whose release dates have
passed but have not yet been served completely.

(2) If at time ri, for some i, a new request is presented, the server takes one of
two actions depending on the server’s current position p and the farthest
location in the current request l∗i :

l∗i = arg max
{lji | 1≤j≤k(i)}

d(o, lji ) :

(2a)If d(l∗i , o) > d(p, o), the server goes back to the origin where it appears
in a Case (1) situation.

(2b)If d(l∗i , o) ≤ d(p, o), the server ignores request i until it completes the
route it is currently traversing, where again Case (1) is encountered.

Theorem 2. Algorithm PAH-G is 2ρ-competitive.

Proof. See [25].

Theorem 2 generalizes Theorem 1 on a number of levels. First, online
algorithm PAH-G is a polynomial-time algorithm whereas PAH requires a
subroutine that provides the exact solution to the classic offline TSP. Fur-
thermore, PAH-G can be applied to solve a class of online routing problems,
in contrast with PAH, which is only appropriate for the online TSP.

As an example, if we consider the online capacitated TSP without prece-
dence constraints, we can apply the Iterated Tour Partition (ITP) heuristics
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given by Altinkemer and Gavish [2] and Haimovich and Rinnooy Kan [21].
If dj

i = 1 for all i, j, there exists a ITP heuristic with approximation ratio
ρ ≤ (5/2 + 3/2Q). If demands are arbitrary, there exists a ITP heuristic with
approximation ratio ρ ≤ (7/2− 3/Q).

This result shows interesting properties. First, it is possible to relate the
competitive ratio of PAH-G to the approximation ratio of a simpler but related
optimization problem Zr=0(Q). Also, if we have access to exact algorithms for
Zr=0(Q), adding capacity and precedence constraints results in no increase in
the competitive ratio, with respect to the online TSP.

5 Multiple Server Routing Problems

We now consider routing problems with m identical servers. We do not con-
sider capacity or precedence constraints. The data for our multiple server
problems is closely related to that of the single server problems: the data is
a set of points (li, ri), i = 1, . . . , n where li ∈ M (ri ∈ R

+) is the location
(release date) of the i-th request. We again assume, without loss of generality,
that r1 ≤ r2 ≤ · · · ≤ rn. The service requirement at a city is again zero. Un-
less stated otherwise, the servers travel at unit speed or are idle. The problem
begins at time 0, and all servers are initially at a designated origin o of the
metric space. The objective is to minimize the time required to visit all cities
and have all servers return to the origin.

ZA
n (m) denotes the cost of online algorithm A on an instance of n cities

with m identical servers and Z∗
n(m) is the corresponding optimal offline cost

where all data are known a priori; we assume n ≥ m. Zr=0
n (m) is the optimal

cost when all release dates are equal to zero; clearly, Zr=0
n (m) ≤ Z∗

n(m).
Note that Zr=0

n (m) is equivalent to the problem of finding a set of m tours,
that collectively visit all locations, such that the maximum tour length is
minimized; e.g., see [20]. The problem instance underlying Zr=0

n (m), ZA
n (m)

and Z∗
n(m) will be clear from context. Finally, note that LTSP = Zr=0(1).

The competitive ratio and (asymptotic) competitiveness are defined similarly
to the single server case.

We again give an online algorithm that generalizes PAH, which was given
by Ausiello et al. [9]; we denote our algorithm Plan-At-Home-m-Servers (PAH-
m).

Algorithm 4 : PAH-m

(1)Whenever all servers are at the origin, they calculate and implement a
ρ-approximate solution to Zr=0(m) over all requests whose release dates
have passed but have not yet been served.

(2) If at time ri, for some i, a new request is presented, the servers take one of
two actions depending on the request’s location li and the farthest server’s
current position p∗ (ties broken arbitrarily):
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p∗ = arg max
{pi | 1≤i≤m}

d(o, pi) :

(2a)If d(li, o) > d(p∗, o), all servers go back to the origin where they appear
in a Case (1) situation.

(2b)If d(li, o) ≤ d(p∗, o), all servers except p∗ return to the origin; server
p∗ ignores request i until it completes the route it is currently traversing,
where again Case (1) is encountered.

Theorem 3. Algorithm PAH-m is 2ρ-competitive.

Proof. See [25].

Corollary 1. If we use an exact algorithm in step(1) for calculating an op-
timal offline Zr=0(m), the competitive ratio of PAH-m is 2 and this result is
best-possible.

Again, it is possible to relate the competitive ratio to the approximation
ratio of a simpler but related optimization problem Zr=0(m). As an example,
we can apply the approximation algorithm for Zr=0(m) given by Frederickson,
Hecht and Kim [20] that has an approximation ratio ρ ≤ 5/2− 1/m. Finally,
if we have access to exact offline algorithms for Zr=0(m), adding extra vehi-
cles results in no change (increase or decrease) in the competitive ratio, with
respect to the online TSP.

6 Value of Advanced Information

In this section, we investigate the value of advanced information, as introduced
by Jaillet and Wagner [24], for the multiple server case. In [24], disclosure dates
were introduced: qi is the disclosure date of request i. We let qi be the time
when request i’s data is revealed to the online algorithm; we require that
qi ≤ ri. In other words, the online algorithm receives a “heads-up” that a
request is coming in the near future. For example, a customer can call for a
taxi at 3pm and request a pickup at 3:30pm. The half hour difference between
the customer’s calling a taxi and pickup is the advanced notice.

We consider a special case where there exists a constant a > 0 such that
qi = (ri − a)+, where (x)+ = max{0, x}. We define an appropriate algorithm
to take advantage of the disclosure dates, which we denote Plan-At-Home-
m-servers-disclosure-dates (PAH-m-dd), and we quantify the improvement in
competitive ratio as a function of requests’ advanced notice.

Algorithm 5 : PAH-m-dd

(1)Whenever all servers are at the origin, they calculate and implement an ex-
act solution to Z∗(m) over all requests whose disclosure dates have passed
but have not yet been served completely.
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(2) If at time qi, for some i, a new request is presented, the servers take one of
two actions depending on the request’s location li and the farthest server’s
current position p∗ (ties broken arbitrarily):

p∗ = arg max
{pi | 1≤i≤m}

d(o, pi) :

(2a)If d(li, o) > d(p∗, o), all servers go back to the origin where they appear
in a Case (1) situation.

(2b)If d(li, o) ≤ d(p∗, o), all servers except p∗ return to the origin; server
p∗ ignores request i until it completes the route it is currently traversing,
where again Case (1) is encountered.

Theorem 4. Algorithm PAH-m-dd is (2 − α

1 + α
)-competitive, where α =

a/Zr=0(m).

Proof. See [25].

We now give a general lower bound.

Theorem 5. When both online and offline algorithms have access to m
servers, any ρ-competitive algorithm serving requests on a metric space M,
with qi = (ri − a)+, i ∈ N , has

ρ ≥ 2
1 + α

,

where α = a/Zr=0(m).

We conclude this section by commenting on the results presented. The
concepts of advanced notice and disclosure dates are useful in modeling real-
istic situations, as seen from our taxi example at the beginning of the section.
We have seen that, with advanced notice, we are able to prove a performance
guarantee that is strictly better than the case where we do not have advanced
notice. However, we have also shown a limit on how much advanced noticed
can improve the performance guarantee. Therefore, we are able to provide a
quantifiable range of the benefit of having advanced notice. This information
is useful in realistically deciding to require or purchase advanced information.

7 Future Research

There are a number of directions that the research in this chapter can be
extended. We mention a few here.

• Consider the online TSP. The first interesting question to ask is what
happens if we are not required to visit all cities in an instance. In other
words, we allow for accept and reject decisions. This creates new difficulties
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however – it is easy to create (small) instances that induce an infinite
competitive ratio. Therefore, we are at a loss for how to evaluate algorithms
that allow for accept and reject decisions. New measures are needed and
this is an interesting research question in its own right. If successful in
creating a meaningful measure, it would also make sense to introduce prices
for the cities. In other words, we can ask at what price are we willing to
visit a city. This opens the door to online revenue management. Also,
clearly, this approach is not only limited to the online TSP.

• Another interesting idea is to combine an online problem explicitly 4 with
game theory. Consider the situation where we have multiple salesmen that
compete for cities. Whichever salesman arrives first to a dynamically re-
vealed city receives a reward for that city. Interesting questions can be
asked: What is an optimal strategy? Does a Nash Equilibrium exist? This
research problem was first discussed with Nicolas Stier.

• We can also study questions about the value of varying degrees of informa-
tion about the problem instance. Consider the online TSP where each city
i requires service that takes a certain amount of time si. Many different
online problems can be defined: (1) si is revealed at a city’s release date,
(2) Arrival at a city reveals si, (3) Arrival at a city reveals a probabilistic
distribution for si and (4) The value of si is not known until the salesman
has finished service. Additionally, preemption can also be introduced in a
number of ways (e.g., preempt and resume where the salesman left off or
preempt and start over). Another variant of the online TSP is to give a
distribution for the city location at the city’s disclosure date (the city’s
actual location is revealed at the release date).

• Finally, online optimization has traditionally been a tool of computer sci-
ence and its use in operations research is rather new. It would be interesting
to apply online optimization to other classic operations research problems.

8 Conclusions

The focus of this chapter has been on online VRPs, particularly generalizations
of the online TSP that allow for precedence constraints, capacity constraints,
and multiple vehicles. We presented competitive ratio results for these online
problems, several being best-possible. We then considered disclosure dates,
where we give the online servers advanced information in order to offset the
powerful offline adversary and we presented improved competitive ratios.
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Summary. Capacitated vehicle routing problems (CVRPs) form the core of logis-
tics planning and are hence of great practical and theoretical interest. This chapter
considers the CVRP on trees (TCVRP), a problem that often naturally arises in
railway, river, and rural road networks. Our objective is to build high-quality mod-
els that exploit the tree structure of the problem that can also be easily implemented
within the framework of a modeling language (a feature desired by practitioners)
like AMPL, GAMS, or OPL. We present two new integer programming models for
the TCVRP that explicitly take advantage of the tree structure of the graph. The
two models are implemented using the AMPL model building language, and com-
pared along several metrics—computation time, quality of the linear programming
relaxation, and scalability—to examine their relative strengths.

Key words: Capacitated vehicle routing on trees; integer linear programming for-
mulations; high-level modeling languages.

1 Introduction

The capacitated vehicle routing problem (CVRP) is a fundamental problem
in combinatorial optimization with wide-ranging applications in practice. It
forms the core of logistics planning and has been extensively studied by the
operations research community. The last two decades have seen enormous
improvements in the research community’s ability to solve these problems,
due to better algorithms as well as better computational capabilities. Toth
and Vigo [11] provide an upto date survey of problem variants, exact solution
techniques, and heuristics for the vehicle routing problem.

B. Golden et al. (eds.), The Vehicle Routing Problem,
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In this chapter, we consider a special case of the CVRP introduced by
Labbé et al. [8], in which the network is a tree and routes are constrained
only by vehicle capacity. The problem, referred to as the capacitated vehicle
routing problem on trees (TCVRP), may be stated as follows. Given a tree
T = (N0, E) with vertex set N0 and edge set E, non-negative distances for
the edges in E, a depot node in N0 with a fleet of homogeneous vehicles of
capacity C (the size of the fleet is a decision variable), and non-negative integer
node demands (representing customer demands); find a collection of routes
starting and ending at the depot that (i) ensures that the demand serviced
by a vehicle does not exceed its capacity C, (ii) ensures that a customer’s
demand is serviced by exactly one vehicle, and (iii) minimizes a cost function
that is a linear combination of the total distance traveled by these vehicles
and the number of vehicles. Note that in the TCVRP, each vehicle route is a
tree, and a vehicle may pass through nodes that are served by another vehicle.

The TCVRP arises naturally in situations where access construction costs
far exceed routing costs, for example in river networks and pit mine rail net-
works [8]. An application arising in the flexible manufacturing environment
can also be modeled as a TCVRP [2]. Also, some general CVRPs may be
approximated as a TCVRP by clustering groups of customers to reduce the
network to a tree, as shown in Figure 1. In particular, Basnet et al. [1] describe
an application to routing milk tankers in rural New Zealand where building
roads are costly due to the mountainous terrain, resulting in small hamlets of
a few farms connected to each other by a sparse network.

In addition to its applications in practice, the TCVRP is compelling from
a theoretical perspective. Several hard graph problems such as facility location
are easy to solve on trees; therefore, an interesting question is whether the
TCVRP can be solved more efficiently than the general CVRP. The TCVRP
was shown to be NP–hard by a reduction from the bin-packing problem [8].
Hence, we must look to means such as integer programming or branch-and-
bound algorithms that have proven effective for solving the general CVRP,
while adapting these techniques to take advantage of the tree structure of
the network. Previous work on exact solutions to the capacitated vehicle
routing problem on trees is sparse. Labbé et al. [8] describe a branch-and-
bound approach to the problem based on bin-packing lower bounds, and a
2-approximation algorithm for the problem that takes advantage of the tree
structure of the network-. Mbaraga et al. [9] extend the branch-and-bound
approach to the distance-constrained vehicle routing problem on trees and
the distance-constrained capacitated vehicle routing problem on trees. They
introduce a mathematical programming solution approach based on a set cov-
ering formulation, which is solved using a column generation technique. They
also introduce the heterogeneous capacitated vehicle routing problem on trees
(all vehicles do not have the same capacity) and use the set covering approach
to solve this problem.

The previous mathematical programming techniques do not explicitly take
advantage of the tree structure of the underlying graph. Further, these solution
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Depot

Fig. 1. General VRPs can sometimes be represented as a TCVRP by clustering
certain nodes (clusters shown enclosed by dotted circles).

techniques require specialized implementation, which may be an impediment
to adoption in practice. We elaborate on this point further, as it is related
to one of our main motivations and contributions of this work. There have
been many developments in exact optimization techniques for the CVRP (see
Toth and Vigo [11]). Consequently, it is not uncommon to see CVRP problems
solved to optimality using branch-and-cut or branch-and-price (i.e., column
generation) techniques. In branch-and-cut techniques, the underlying formu-
lations have an exponential number of constraints which are implemented by
dynamically adding these constraints when needed (using so-called separa-
tion routines). Column generation techniques have an exponential number of
variables, and are implemented by dynamically adding variables to the formu-
lation as needed (by solving the underlying pricing problem). Both of these
techniques require significant mathematical sophistication to implement. Con-
sequently, these techniques are sometimes beyond the domain of practitioners.

On the other hand, over the past 10 years, there has been an increased
use of high-level modeling languages in practice (see, for example, Kallrath
[7]). Modeling languages make optimization packages like CPLEX, OSL, and
XPRESS (that solve linear, integer, and mixed-integer programs) quite easily
accessible to practitioners. They do not require the mathematical and pro-
gramming sophistication that is required to implement specialized techniques
in the optimization language. Of course, the downside is that solution tech-
niques developed in high-level modeling languages are likely to be significantly
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slower than those developed in the native code of the optimization software.
However, the fact remains that models and methodologies that can be easily
implemented in a high-level modeling language are more likely to be imple-
mented in practice, than specialized algorithms, that require sophisticated
implementation.

Consequently, our study should not be viewed as an attempt to solve the
problem in the shortest amount of time; rather, it is an attempt to solve the
problem as efficiently as possible while working within the degrees of freedom
offered by general purpose commercial solvers and modeling languages. To
this end we propose two integer programming formulations for the TCVRP
that exploit the tree structure of the underlying network and are easy to
build in a high-level modeling language. Our main contribution is that we
develop models that take advantage of the tree structure of the problem with
a performance that is competitive with solution methods that use special
purpose code.

The rest of the chapter is organized as follows. In Section 2 we introduce
notation and state our assumptions. In Section 3, we present our first formu-
lation that is based on a depth first indexing of nodes in the tree. In Section
4, we present our second integer program that is based on the observation
that all vehicle routes for the TCVRP may be modeled as trees. In Section 5,
we describe an approximation algorithm for the problem that combines the
approaches of Labbé et al. [8] and Basnet et al. [1]. In Section 6, we discuss our
computational experience with these formulations. In Section 7, we present
our conclusions.

2 Preliminaries

Given a rooted tree T = (N0, E), the root of T (representing the depot) is a
unique node in N0. The set of nodes other than the depot is denoted by N . If
[i, j] ∈ E and i is closer to the root than j, then i is the parent of j and j is a
child of i. Node i is an ancestor of node j (and j is a descendant of node i) if i
lies on the unique simple path from the root to j. We will use the convention
that the tree is represented topologically “downward”. Therefore, a node is
“below” its ancestors and “above” its descendants. A leaf node of the graph
is a node that does not have children. A sub-tree S is a connected sub-graph
of T . The root of a sub-tree S, denoted by rS , is the node in S that is closest
to the depot. Given a node i, the tree “below” node i denoted by T (i) is the
sub-tree induced by node i and its descendants. The weight of a sub-tree is
the sum of weights of the edges in the sub-tree.

Given a subset of nodes L ⊆ N0, the minimal covering sub-tree (henceforth
referred to as the covering sub-tree) is the union of all (unique) paths from
each node in L to the depot. Observe that the covering sub-tree is rooted at
the depot. The covering sub-tree is the minimum set of edges that need to be
traversed in order to visit each node in L.
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Depot

Fig. 2. A tree in which the degree of the depot is greater than 1 can be split into
multiple sub-trees.

Without loss of generality, we assume that the degree of the depot is
1. First, consider the situation where there is no fixed cost associated with
the use of a vehicle. Observe that a route that includes the depot as a non-
terminal node can be broken up into multiple routes—each route originating
and terminating at the depot—with no change in the objective value. Thus, in
this situation, the problem may simply be decomposed into multiple smaller
problems—one for each subtree incident to the depot node. Figure 2 illustrates
this situation. On the other hand, when there is a fixed cost associated with
a route (such as a loading/unloading cost), we add a new node and connect
it to the depot by an edge whose cost equals the fixed cost. We make this
new node the depot (observe that this node has degree 1). Finally, we set the
demand of the old depot node to zero and solve the TCVRP on this network
(where the depot has degree 1).

3 Depth First Ordered Formulation

Our first formulation exploits Lemma 1, which is illustrated in Figure 3.

Lemma 1. Suppose the nodes in a tree are indexed in depth-first order. Then,
given a set of nodes in a vehicle’s route, a minimum cost route is obtained by
visiting the nodes in increasing order of index.

Proof. Given a set of nodes and the corresponding covering sub-tree, the ve-
hicle must traverse each edge in the sub-tree at least twice — once going away
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Fig. 3. Idea behind the DFS formulation. Given a set of nodes serviced by a vehicle
(3, 4, and 8), the distance-minimizing tour for the vehicle is obtained by visiting
nodes in order of increasing index when nodes are indexed by a depth-first ordering.

from the depot and once towards. Therefore, a lower bound on the tour length
is twice the weight of the covering sub-tree.

Suppose we construct a tour by visiting nodes in order of depth first order.
Given a covering sub-tree S, let T (i) be a sub-tree of S rooted at node i. For
any i in S, the lowest indexed node in T (i) is i (due to depth-first ordering of
nodes).

For every i in S, the vehicle enters the sub-tree T (i), and services all nodes
in T (i). The key observation is that once the vehicle leaves T (i) it never returns
since nodes are being serviced in increasing order of index. Therefore, for all
i in S, the edge from i to its parent is traversed at most twice — once into
the sub-tree and once out of it. This yields a feasible tour of length twice the
weight of the covering sub-tree.

Since the feasible tour length is equal to the lower bound, it must be
optimal. ��

A tour for each vehicle consists of a path from the depot to the first (lowest
indexed) node in the vehicle tour, a set of arcs connecting nodes in the vehicle
tour in increasing order of node index, and a path from the last (highest
indexed) node in the tour back to the depot.

We introduce the following four sets of binary variables in our formulation.
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Decision Variables

xij =
{

1 if node i immediately precedes node j in the vehicle tour;
0 otherwise.

yij =
{

1 if nodes i and j are visited by the same vehicle;
0 otherwise.

wi =
{

1 if node i is the first node visited in the vehicle tour;
0 otherwise.

zi =
{

1 if node i is the last node visited in the vehicle tour;
0 otherwise.

Our model uses the following data that is available as input.

Input Parameters
Di Demand at node i
Lij Shortest path distance between nodes i and j
Si Shortest path distance between the node i and the depot
N Set of all nodes other than the depot; N = {1, .., n}
C Capacity of each vehicle

V min
k A lower bound on the number of vehicles required to service nodes

{k, . . . , n}

We may now state our formulation as follows, assuming that nodes are
indexed in depth first order.

Minimize
n∑

i=1

Si(wi + zi) +
n−1∑
i=1

n∑
j=i+1

Lijxij (1)

Subject to Di +
n∑

j=i+1

Djyij ≤C ∀ i ∈ N (2)

yij + yjk − yik≤1 ∀ i, j, k ∈ N : i < j < k (3)
xij − yij ≤0 ∀ i, j ∈ N (4)

wj +
j−1∑
i=1

xij =1 ∀ j ∈ N (5)

zi +
n∑

j=i+1

xij =1 ∀ i ∈ N (6)

wi, xij , yij , zi ∈ {0, 1} ∀ i, j ∈ N : i < j (7)

The objective function is to minimize the distance of all traversed arcs
(leaving and entering the depot and those in-between). Constraint (2) is the
vehicle capacity constraint. Although there is no explicit concept of a vehicle
in this formulation, capacity constraints are captured by summing demand
over nodes that are in the same vehicle. Constraint (3) creates a clique among
nodes in the same vehicle—if nodes i and j are in the same vehicle, and nodes
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j and k are in the same vehicle, then nodes i and k must be in the same
vehicle. Constraint (4) enforces that node i cannot precede node j unless
they are both in the same vehicle. Constraints (5) and (6) force the demand
at a node to be served by exactly one vehicle. Constraint (7) enforces that
all variables are binary. An interesting observation is that the integrality of
x, w, and z variables can be relaxed (i.e., 0 ≤ x, w, z ≤ 1) without affecting
the integrality of the solution. However, we observed that in practice, the
problem was solved faster if all variables were specified to be binary. Note
that the number of integer variables in the DFS formulation is O(|N |2) and
the number of constraints is O(|N |3).

3.1 Valid Inequalities

We now describe some valid inequalities to improve the strength of our for-
mulation.

The number of vehicles that service the set of nodes {k, . . . , n} is the
number of vehicles that enter this set directly from the depot plus the number
of vehicles that enter the set from a lower indexed node in {1, . . . , k − 1}.
Our first valid inequality states that the number of vehicles servicing nodes
{k, . . . , n} is at least some lower bound V min

k .

n∑
j=k

(
wj +

k−1∑
i=1

xij

)
≥ V min

k ∀ k ∈ {1, . . . , n} (8)

The lower bound may be obtained, for example, by solving a bin-packing
problem with the node demands. Since the bin-packing problem is itself not
trivially solved and our objective is ease and speed of implementation, we
use an O(|N |2) procedure, developed by Labbé et al. [8], to compute a lower
bound on the bin-packing solution.3

The next set of valid inequalities are the following: two vehicles whose
cumulative demand exceeds the vehicle capacity cannot be in the same vehicle.
This can be stated as follows.

yij = 0 ∀ i, j ∈ N : i < j, Di + Dj > C (9)

3 The bound relies on the fact that at most one node with demand greater than
C/2 and at most two nodes with demand in (C/3, C/2] can belong to the same
vehicle. First, nodes with demand > C/2 are assigned to separate vehicles. An
attempt is then made to assign the nodes with demand in (C/3, C/2] to these
vehicles according to a first-fit procedure [4], i.e., by assigning the remaining
node with smallest demand to the vehicle with the least remaining capacity (ties
are broken arbitrarily) At most one node with demand in (C/3, C/2] can fit in
each of these bins. Let K be the number of nodes with demand in (C/3, C/2] that
cannot be assigned to a vehicle through this process. Then, at least �K/2� vehicles
are needed. A lower bound on the packing problem is then generated using the
vehicles assigned so far, �K/2�, and remaining nodes with demand ≤ C/3.
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Fig. 4. Idea behind the treeroute formulation. Given a set of nodes serviced by a
vehicle (3, 4, and 8), the distance-minimizing tour for the vehicle is a tree.

Note that this inequality is a restricted case of cover inequalities (see, for
example, Nemhauser and Wolsey [10]). We do not explicitly add any more
cover inequalities since there are an exponentially large number of them, and
integer programming software systems have built-in algorithms for adding
these cuts efficiently.

4 Treeroute Formulation

In this formulation, we exploit the fact that the route of a vehicle is a tree.
We replace the edges in the tree with arcs pointing “downwards” to eliminate
ambiguity in the parent-child relationship of the nodes in an edge—given an
arc (i, j), i is the parent and j is the child. The route is constructed for
each vehicle by “building upwards” from every node serviced by the vehicle
towards the depot. This generates the covering sub-tree of the nodes, and will
henceforth be referred to as the route-tree of that vehicle. This is shown in
Figure 4.

We introduce the following binary variables in our model.

Decision Variables

xijv =
{

1 if arc (i, j) is in the route of vehicle v;
0 otherwise.

yiv =
{

1 if vehicle v services node i;
0 otherwise.

Our model uses the following data that is available as input.
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Input Parameters
Lij Distance from node i to node j
Di The demand at node i
Pi The parent node of i
V The set of vehicles
N The set of nodes other than the depot
C Capacity of each vehicle

c(i) Set of children of i
T (i) Sub-tree rooted at node i

A The set of all arcs (directed downwards) in the tree
V min

i A lower bound on the number of vehicles required to service all nodes
in T (i).

We may now formulate our model as follows.

Minimize 2
∑

(i,j)∈A

Lij

∑
v∈V

xijv (10)

Subject to xPiiv ≥xijv ∀ v ∈ V, i ∈ N : c(i) �= φ, j ∈ c(i) (11)
xPiiv ≥ yiv ∀ i ∈ N, v ∈ V (12)∑

i∈N

yivDi≤C ∀ v ∈ V (13)

∑
v∈V

yiv =1 ∀ i ∈ N (14)

yjv, xijv ∈ {0, 1} ∀ (i, j) ∈ A, v ∈ V (15)

The objective is to minimize the weighted sum over all arcs of the number
of vehicles that use each arc. Constraint (11) ensures that if an arc (i, j) is in
the vehicle route tree, then the unique preceding arc (Pi, i) must also exist in
the route tree. Constraint (12) ensures that, in order to service a particular
node, a vehicle must travel along the unique arc leading to that node. Con-
straint (13) is the vehicle capacity constraint. Constraint (14) enforces that
the demand at every node is completely satisfied by exactly one vehicle.

We note that the x variables may be relaxed without affecting integrality
of the solution; however, our initial computations indicated that the problem
was solved faster if all variables were defined to be binary. Also, observe that
the number of integer variables in the treeroute formulation is O(|N ||V |), and
the number of constraints is O(|N ||V |).

4.1 Valid Inequalities

We now discuss valid inequalities for the treeroute formulation.
As the model stands it suffers from symmetry, i.e., exchanging the set of

customers between any two vehicles produces an alternative optimal solution.
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Table 1. Two solutions that are feasible to the first set of symmetry cuts. Only
solution 2 is feasible to the second set.

Solution 1 Solution 2

Vehicle Customers Vehicle Customers

2 5, 7, 9 2 4, 6, 8
3 4, 6, 8 3 5, 7, 9

This phenomenon increases run-time by expanding the search space of solu-
tions. To get rid of the symmetry in the problem we introduce the following
two sets of valid inequalities.

The first set of symmetry cuts forces each node to be serviced by a vehicle
whose index is not greater than the index of the node. Node 1 is in vehicle 1,
node 2 is in vehicles 1 or 2, node 3 is in vehicles 1, 2, or 3, and so on. This
can be stated as follows.

i∑
j=1

yij = 1 ∀ i ∈ {1, . . . , |V |} (16)

The second set of symmetry cuts force the lowest indexed node in each
vehicle to increase with vehicle index. This is stated as follows.

yi,i−k+3 ≤
k−2∑
j=1

yi−j,i−k+2 ∀ i ∈ {k, .., |V |}, k ∈ {3, .., |V |} (17)

Consider the solutions in Table 1 that are feasible to constraint (16). In
the first solution, the lowest indexed node of vehicle 2 is greater than the
lowest indexed node of vehicle 3. Thus, the first solution violates constraint
(17) while the second solution is feasible.

The next set of inequalities stipulates that two nodes whose cumulative
demand is greater than the capacity cannot be in the same vehicle.

yiv + yjv ≤ 1 ∀ i, j ∈ N : Di + Dj > C, v ∈ V (18)

In our computational experiments we found that the above valid inequal-
ities improve the LP relaxation when the node demands are large (the mean
node demand is comparable to half the vehicle capacity). To address the situ-
ation when the node demands are low we develop additional valid inequalities.

Our next set of valid inequalities places a lower bound on the number of
vehicles that use an arc. For each arc, such a bound could be obtained by
solving a bin-packing problem on the nodes of the sub-tree below that arc.
The constraint, illustrated in Figure 5, is stated as follows.∑

v∈V

yPiiv ≥ V min
i ∀i ∈ N (19)
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Fig. 5. The solution to the bin-packing problem on demands in T (i) is a lower
bound on the number of vehicles that travel along arc (Pi, i).

The lower bound we use is the bin-packing lower bound developed by
Labbé et al. [8].

The final valid inequality stipulates that if a vehicle travels down an arc
but does not service the node at the end of that arc, it must service some
node below that arc in the tree. This constraint is illustrated in Figure 6.∑

j∈c(i)

xijv ≥ xPiiv − yiv ∀ v ∈ V, i ∈ N, c(i) �= φ (20)

5 Approximation Algorithm

In this section we describe an approximation algorithm that is a combination
of the algorithms of Labbé et al. [8] and Basnet et al. [1]. We will later use
the upper bound distance from this algorithm to obtain an upper bound on
the fleet size.

i

i

xP(i),i,v = 1

yi,v = 0

P

Fig. 6. If a vehicle travels along arc (Pi, i) but does not service node i, then it
must service some node below i.
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The heuristic of Labbé et al. [8] proceeds as follows. At each iteration, an
arbitrary leaf node is chosen, and an attempt is made to merge the node with
its parent. If the cumulative demand of the leaf node and its parent is less than
or equal to the vehicle capacity, the demand of the leaf node is added to that
of its parent, and the leaf node is removed from the tree. When the merger is
not possible due to the cumulative demand exceeding vehicle capacity, there
are two cases. If the leaf node has greater demand than that of its parent, a
new vehicle route is created to the leaf node, and the leaf node is eliminated
from the tree. Otherwise, a new route is created to the parent, the demand
at the parent is replaced by that of its child, and the leaf node is eliminated.
The process terminates since a leaf node is eliminated from the tree at each
iteration.

The heuristic of Basnet et al. [1] could be viewed as a savings heuristic
(Clarke and Wright [3]) specifically adapted to trees. Their heuristic proceeds
as follows (the description provided here is different from the one in their
paper). Define a non-grandparent node to be one that has only leaf nodes as
children. At each iteration, the heuristic picks a non-grandparent node i that
is farthest from the root. It then picks an arbitrary child j of this node i, and
attempts to merge it with another child of node i. If i has multiple children,
then j is merged with another child of i, say k, with the greatest demand
such that Dj + Dk ≤ C. While Basnet et al.[1] did not provide any worst case
analysis, they showed that, in practice, their algorithm was better than that
of Labbé et al. [8] over a wide range of problem instances.

Our algorithm proceeds as follows. At each stage, we pick a non-grandpare-
nt node i. We then pack the sub-tree T (i) = c(i) ∪ {i} into a minimal set of
bins using a bin-packing heuristic. This creates possibly several bins, each
with some total demand not exceeding the vehicle capacity. The nodes in
the subtree T (i) are then removed from the graph and are replaced by nodes
representing the packed bins (one node for each packed bin), which are added
to the tree as the children of Pi (parent of node i). This procedure continues
until the depot is reached.

Our heuristic could be viewed as a combination of the heuristics of Labbé
et al. [8] and Basnet et al. [1] in the following sense. While the former heuris-
tic attempts to pack the demand of an arbitrary leaf node and its parent,
and the latter attempts to pack the demand of all children of the farthest
non-grandparent node from the depot, our algorithm picks an arbitrary non-
grandparent node and attempts to pack its demand and those of its children.
What sets our heuristic apart is that it simultaneously considers several nodes
for merging, instead of merging nodes in a pair-wise fashion.

Figure 7 illustrates the algorithm. The sample problem is shown in Figure
7(a). In the first iteration, the nodes with demands 40, 50 and 70 are packed.
This results in two nodes—one with demand 90 and one with demand 70. In
the next iteration (see Figure 7(b)), nodes with demand 5, 10, 20, 70 and 90
are packed to give two nodes—one with demand 100 and one with demand 95.
Since the depot has been reached (in Figure 7(c)), the algorithm stops. The
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Fig. 7. (a) Initial tree, (b) and (c) Tree after packing operations, (d) Feasible
solution obtained from the approximation algorithm.

solution is shown in Figure 7(d). The pseudocode for the algorithm is given
in Figure 8.

Lemma 2. Approx-TCVRP, described in Figure 8, is a 2-approximation algo-
rithm.

Proof. Our proof is similar to that of Labbét al. [8]. At each iteration, a
node i is chosen and the set of nodes c(i) ∪ {i} is packed. The result of this
packing generates a set of bins such that at most one bin carries demand
not exceeding half the vehicle capacity (if two bins each carried demand less
than or equal to half the vehicle capacity, they would be merged into one
vehicle). Thus, the number of vehicles that travel down the arc (Pi, i) is at
most (

∑
j∈T (i) Di)/(C/2)�. The number of vehicles required to service T (i)

is at least (
∑

j∈T (i) Di)/C�. Thus, the number of vehicles that travel on arc
(Pi, i) from the algorithm is at most twice the lower bound. Summing over all
arcs in the tree, the total distance traveled by all vehicles in the algorithm is
at most twice that of the lower bound, and thus at most twice the optimal
distance. ��

The algorithm has as many iterations as there are non-leaf nodes. Hence,
the complexity of the algorithm is essentially the complexity of the packing
function times the number of non-leaf nodes. If we choose a “simple” pack-
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/* This function computes an upper bound on the optimal TCVRP dis-
tance.*/

Notation:

N Set of nodes in the tree.
A Set of arcs in the tree.
Pi Parent of node i.

c(i) Set of children of node i.
C Vehicle capacity.
z The total distance of the feasible solution.

BinPack A function that takes as input a set of demand
nodes, packs them into bins of capacity C, and
returns the set of packed bins.

function approx-TCVRP:
begin

z ← 2
∑

i∈N
Si;

while ∃ i ∈ N : (i 
= Depot)∧ (c(i) 
= φ)∧ (c(j) = φ ∀j ∈ c(i)) do
R ← c(i) ∪ i;
Q ← BinPack(R);
z ← z − Si (|R| − |Q|);
Pj ← Pi ∀ i ∈ Q;
N ← N ∪ Q \ R;
A ← A ∪ {(Pi, i) ∀j ∈ Q} \ {(i, k) ∀k ∈ c(i)} \ {(Pi, i)};

end

Fig. 8. The approx-TCVRP algorithm.

ing heuristic such as the first fit decreasing heuristic which has complexity
O(|N |2), the overall complexity of the approximation algorithm is O(|N |3).

6 Computational Experiments

6.1 Enhancements to the Treeroute Formulation

We now discuss some details of the implementation of the treeroute formula-
tion that significantly affect its performance.

Upper bound on the fleet size

The treeroute formulation requires the maximum number of vehicles to be
specified. An upper bound on the number of vehicles (see Section 5) is given
by

|V | ≤
⌈

2
∑

i∈N Di

C

⌉
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However, we would like to have a tighter upper bound on the number of vehi-
cles to reduce the number of variables in the formulation. Let ẑ be a heuristic
upper bound on the optimal distance. Consider the optimization problem ob-
tained by taking the constraints in the treeroute formulation, placing a bound
on the objective function, and maximizing the number of vehicles leaving the
depot

Maximize
∑
v∈V

x0c(0)v (21)

Subject to 2
∑

(i,j)∈A

∑
v∈V

Lijxijv ≤ ẑ (22)

and (11)− (20)

The objective function maximizes the number of vehicles leaving the depot.
Clearly, an optimal solution to this optimization problem will be an upper
bound on the number of vehicles in the optimal solution to the TCVRP.
However, since this integer program is as hard to solve as the original TCVRP,
we solve the linear programming relaxation of this optimization problem and
round down the optimal objective function value to obtain an upper bound
on the fleet size. The time taken to solve this LP is negligible, and in our
experiments gave very tight upper bounds (within 5-10% of optimal) on the
fleet size.

Node ordering

In its basic form, the LP relaxation is quite poor. This is because the LP
relaxation tends to split demands between vehicles. In initial experiments, we
found that the ordering of nodes (order in which nodes are indexed) affects
performance. The node indexing scheme that we found to improve perfor-
mance the greatest was to order nodes in order of decreasing demand. This
makes use of the symmetry cuts early on to “fill up” lower indexed vehicles
(which leads to less unused capacity). There is less opportunity to split the
demand of a high-indexed node among the low indexed vehicles.

Variable branching order

Finally, we consider the order of branching of variables in the branch-and-
cut procedure. Most software packages for solving integer linear programs
allow the user flexibility in specifying the branching order of variables. Since
the lower indexed nodes have fewer vehicles available to them, we branch on
these variables first (to prevent splitting early on in the branch-and-cut tree).
Thus, yiv is branched on before yjv for all i < j. Given a node, the order of
branching among the different vehicles is left to the default strategy of the
solver.
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6.2 Experimental Setup

We tested the formulations on networks with 20, 40, 60, 80, and 100 nodes. We
forced the degree of the depot to 1 in all our test instances. In reality, since the
degree of the depot need not be 1, it is conceivable that substantially larger
problems than the ones listed in this section can be solved (recall problems
with depot degree k can be decomposed into k separate problems).

We generated test problems as in Labbé et al. [8] and Mbaraga et al. [9].
The arc distances were integers uniformly distributed in [1,100]. The vehi-
cle capacity for all vehicles was set to be 100 units. Each node in the tree
(apart from the depot) had between 1 and 5 children (distributed uniformly).
Node demands were integers uniformly distributed between a lower and up-
per bound, which were varied to create 10 instance classes with the following
demand bounds: [1,100], [10,90], [20,80], [30,70], [1,50], [1,30], [1,10], [30,30],
[20,20], and [10,10].

The times reported in this section are CPU times. The formulations were
coded in AMPL [5] and solved using CPLEX 9.0 [6] on a PC with 3.06 GHz
processor and 512 MB of RAM. The data for all the problems requires some
pre-processing (node ordering, finding lower and upper bounds on the num-
ber of vehicles, generating arc minimum-traversal constraints) but the time
required to perform this computation is insignificant (of the order of seconds)
compared to the time to solve the IP, and is not included under the solving
time listed.

6.3 Experimental Results

Computational results are presented in Tables 2 through 6, which contain the
following information/notation.
1. Solved — Number of instances (out of 10) that were solved to optimality

within 3600 CPU seconds.
2. Time — The CPU time averaged only over solved instances.
3. LP/IP — Ratio of the linear programming relaxation to the optimal dis-

tance, averaged only over solved instances.
4. LP∗/IP — Ratio of linear programming relaxation without valid inequali-

ties (constraints (2)–(6) for the DFS formulation and constraints(11)–(14)
for the treeroute formulation) to the optimal distance, reported only for
the 20-node instances.

5. Gap — This is defined as (U − L)/L, where U is the best solution found
at termination, and L is the bound at termination (3600 seconds). This
is averaged only over unsolved instances.
We observe that for the 20 node instances, the treeroute formulation per-

forms extremely well, while the DFS formulation performs well on all but three
instance classes, i.e., when the demands are in [1, 50], [1, 30], and [30, 30]. This



256 Chandran and Raghavan

Table 2. Results for 20 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP LP∗/IP Gap

[1,100] 1310 380 10 0.26 185 0.980 0.690 -

[10,90] 1310 380 10 0.37 274 0.977 0.662 -

[20,80] 1304 380 10 0.17 10 0.973 0.652 -

[30,70] 1297 380 10 0.07 3 0.980 0.602 -

[1,50] 1216 380 9 267.45 66492 0.983 0.738 0.012

[1,30] 1216 380 10 50.97 2568 0.990 0.839 -

[1,10] 1216 380 10 0.06 0 1.000 0.932 -

[30,30] 1216 380 5 1678.45 524860 0.965 0.667 0.029

[20,20] 1216 380 10 1.33 30 1.000 0.738 -

[10,10] 1216 380 10 2.92 16 1.000 0.953 -

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP LP∗/IP Gap

[1,100] 655 456 10 0.03 10 0.979 0.447 -

[10,90] 644 456 10 0.06 44 0.977 0.481 -

[20,80] 668 475 10 0.07 21 0.972 0.491 -

[30,70] 631 448 10 0.08 54 0.980 0.439 -

[1,50] 319 224 10 1.36 1251 0.982 0.700 -

[1,30] 214 144 10 0.06 49 0.990 0.818 -

[1,10] 129 76 10 0.00 0 1.000 0.930 -

[30,30] 368 266 10 18.26 19791 0.960 0.633 -

[20,20] 220 152 10 0.02 1 1.000 0.710 -

[10,10] 129 76 10 0.01 0 1.000 0.943 -

difference in performance occurs in spite of the LP relaxations being compa-
rably strong. Note that the valid inequalities significantly improve the quality
of the LP-relaxation for both formulations.

As the problem sizes increase, the DFS formulation starts to perform very
poorly except on the [20, 80] and [30, 70] instances. Interestingly, although the
time taken by the treeroute formulation on these instances is less than the
DFS formulation, the number of branch-and-bound nodes explored by the
DFS formulation is much smaller. This suggests that the DFS formulation
performs a lot of work solving the successive linear programs, which is not
surprising given the huge number of constraints.

In all of the instances, the termination gap for the treeroute formulation
is very small (almost always less than 2%, and often less than 1%), which is
a sufficiently high accuracy in most practical situations.
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Table 3. Results for 40 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 10433 1560 5 90.02 4859 0.993 0.016

[10,90] 10375 1560 6 944.99 29622 0.972 0.013

[20,80] 10390 1560 8 38.26 648 0.960 0.015

[30,70] 10369 1560 10 5.63 82 0.968 -

[1,50] 10036 1560 0 - - - 0.023

[1,30] 10036 1560 2 61.04 16 1.000 0.011

[1,10] 10036 1560 10 283.61 86 0.998 -

[30,30] 10036 1560 0 - - - 0.024

[20,20] 10036 1560 4 932.21 1920 1.000 0.000

[10,10] 10036 1560 4 1251.99 408 1.000 0.001

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 2544 1864 10 1.65 319 0.979 -

[10,90] 2447 1794 10 14.31 2481 0.968 -

[20,80] 2594 1888 10 135.30 30969 0.959 -

[30,70] 2516 1833 9 70.75 13905 0.969 0.003

[1,50] 1205 913 5 356.74 38562 0.998 0.023

[1,30] 743 554 10 113.93 43781 0.996 -

[1,10] 346 226 10 0.04 6 0.998 -

[30,30] 1389 1061 4 321.46 13011 0.982 0.012

[20,20] 836 624 10 18.35 1187 1.000 -

[10,10] 459 320 10 0.96 176 0.999 -

The DFS formulation appears to perform best on instances where the de-
mand is in [30, 70]. This is because the size of the cliques created are relatively
small. The DFS formulation does extremely poorly when the demand is small
(packing problem is more complex). The treeroute formulation, on the other
hand, does poorly on the [30, 70] and [20, 80] instances and does well when the
demands are relatively small. Although the LP relaxation is very strong, the
treeroute formulation struggles on some instances due to problem symmetry.

7 Conclusions

In this chapter we presented two integer linear programming formulations
and valid inequalities for the capacitated vehicle routing problem on trees.
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Table 4. Results for 60 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 35327 3540 3 811.53 9978 0.977 0.022

[10,90] 35373 3540 3 710.26 10341 0.981 0.023

[20,80] 35306 3540 7 605.51 2928 0.973 0.006

[30,70] 35260 3540 9 316.52 2 0.971 0.002

[1,50] 34456 3540 0 - - - 0.030

[1,30] 34456 3540 0 - - - 0.018

[1,10] 34456 3540 7 399.91 0 1.000 0.024

[30,30] 34456 3540 0 - - - 0.039

[20,20] 34456 3540 0 - - - 0.000

[10,10] 34456 3540 0 - - - 0.012

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 5744 4283 9 100.97 7757 0.971 0.010

[10,90] 5965 4437 7 34.52 2939 0.977 0.005

[20,80] 5843 4342 7 736.61 58913 0.975 0.003

[30,70] 5787 4295 9 230.44 20653 0.974 0.004

[1,50] 2829 2171 0 - - - 0.026

[1,30] 1630 1251 4 382.15 11975 0.998 0.004

[1,10] 707 496 10 0.34 18 0.999 -

[30,30] 3127 2407 0 - - - 0.015

[20,20] 1831 1416 5 474.45 5578 1.000 0.000

[10,10] 1063 791 6 444.46 28984 1.000 0.004

The formulations proposed exploit the tree structure of the graph to achieve
high quality solutions for the TCVRP.

While it is difficult to compare the results of Mbaraga et al. [9] to ours
due to differences in testing methodology (restricting the degree of the depot,
different cutoff time limits, different computing resources), we were able to
solve problems of comparable size to those in their study (they tested and
were able to solve problems of up to 140 nodes). Our key contribution is
that the performance of these formulations is competitive with other special
purpose code developed for the problem, and can be implemented easily using
off-the-shelf software for modeling and solving integer programs. This is a
significant benefit to practitioners, who may not have the mathematical and
programming sophistication to implement branch-and-cut, branch-and-price,
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Table 5. Results for 80 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 83897 6320 0 - - - 0.042

[10,90] 83956 6320 0 - - - 0.037

[20,80] 83993 6320 3 1622.71 326 0.974 0.024

[30,70] 84062 6320 6 2016.72 1 0.976 0.028

[1,50] 82476 6320 0 - - - 0.023

[1,30] 82476 6320 0 - - - 0.018

[1,10] 82476 6320 0 - - - 0.003

[30,30] 82476 6320 0 - - - 0.047

[20,20] 82476 6320 0 - - - 0.002

[10,10] 82476 6320 0 - - - 0.008

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 9670 7173 4 896.29 30387 0.975 0.009

[10,90] 10167 7616 4 1526.81 59840 0.969 0.009

[20,80] 10671 7853 4 719.30 17443 0.968 0.011

[30,70] 10941 8105 7 167.33 7033 0.977 0.004

[1,50] 4472 3460 0 - - - 0.023

[1,30] 2880 2244 1 3489.74 14669 1.000 0.014

[1,10] 1110 806 10 4.03 183 1.000 -

[30,30] 5715 4440 0 - - - 0.024

[20,20] 3280 2544 1 245.37 876 1.000 0.002

[10,10] 1767 1359 3 899.29 12397 1.000 0.005

or even native optimization code (i.e., code directly using the callable library
of the optimization package).

The formulations were tested on a large set of instances with varying num-
ber of nodes and demand patterns. As shown by the results in Table 2, the
proposed valid inequalities significantly improve the strength of both formu-
lations. It is found that the DFS formulation performs well on small problems
where the demands exhibit low variance and average demand is large. The
DFS formulation performs poorly when the packing problem is complex (if
there exist demands that are much smaller than the vehicle capacity). The
treeroute formulation performs well on instances where the average demand is
large and the demands show considerable variance, due to a lack of symmetry
in these problems. In general, both formulations have tight LP relaxations,
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Table 6. Results for 100 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 164495 9900 0 - - - 0.043

[10,90] 164450 9900 0 - - - 0.044

[20,80] 164540 9900 0 - - - 0.039

[30,70] 164491 9900 1 3480.01 0 0.972 0.035

[1,50] 162096 9900 0 - - - 0.041

[1,30] 162096 9900 0 - - - 0.020

[1,10] 162096 9900 0 - - - 0.005

[30,30] 162096 9900 0 - - - 0.048

[20,20] 162096 9900 0 - - - 0.003

[10,10] 162096 9900 0 - - - 0.005

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 15357 11484 1 128.74 5743 0.982 0.007

[10,90] 16022 12019 1 16.74 54 0.971 0.008

[20,80] 16530 12296 2 475.99 30570 0.981 0.009

[30,70] 16739 12474 2 30.87 672 0.975 0.010

[1,50] 7882 6158 0 - - - 0.041

[1,30] 4457 3524 0 - - - 0.015

[1,10] 1717 1287 8 53.56 867 0.999 0.001

[30,30] 9088 7088 0 - - - 0.026

[20,20] 5080 4019 0 - - - 0.003

[10,10] 2728 2119 1 57.79 285 1.000 0.003

but the treeroute formulation often out-performs the DFS formulation and
should be the model of choice.

Recall, the number of integer variables in the DFS formulation is O(|N |2)
and for the treeroute formulation is O(|N ||V |). Further, the number of con-
straints in the DFS model is O(|N |3), while that in the treeroute formulation
is O(|N ||V |). Hence, the treeroute formulation is more scalable than the DFS
formulation, which is one reason for its better performance. We should also
note that the 2-approximation algorithm described in Section 5 gives very
tight upper bounds (usually within 2% of optimal).

The treeroute formulation can be extended to the heterogeneous vehicle
routing problem introduced by Mbaraga et al. [9]. This is done by eliminating
the symmetry cuts and modifying the capacity constraint (13) to
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i∈N

yivDi ≤ Cv ∀ v ∈ V, (23)

where Cv is the capacity of vehicle v.
In summary, we have developed strong models that exploit the structure

of the underlying graph, and a heuristic procedure, for the TCVRP problem.
Our motivation, was to develop models within the framework afforded by high-
level optimization modeling languages like AMPL, GAMS, and OPL, with a
view to easy implementation for the practitioner. To that end, we believe
we have successfully demonstrated that by cleverly exploiting the structure of
the underlying graph, it is possible to solve large-scale versions of the TCVRP
even while using a high-level modeling language. We hope this research will
spur further discussion of specialized models for VRP (and other network
problems), with a greater focus on the use of the models within a high-level
modeling language (as is often the case in practice).
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Summary. In this chapter, we use genetic algorithms (GAs) to solve the general-
ized orienteering problem (GOP). In the orienteering problem (OP), we are given a
transportation network in which a start point and an end point are specified, and
other points have associated scores. Given a fixed amount of time, the goal is to
determine a path from start to end through a subset of the other locations in order
to maximize the total path score. In the GOP, each point has a score with respect
to a number of attributes (e.g., natural beauty, historical significance, cultural and
educational attractions, and business opportunities) and the overall objective func-
tion is nonlinear. The GOP is more difficult than the OP, which is itself NP-hard.
An effective heuristic using artificial neural networks (ANNs), however, has been
designed to solve the GOP. In this chapter, we show that a straightforward GA can
yield comparable results.

Key words: Generalized orienteering problem; genetic algorithm.

1 Introduction

The orienteering problem has been studied extensively in the literature since
the early 1980s. In the orienteering problem (OP), we are given a transporta-
tion network in which a start point and an end point are specified, and other
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points have associated scores. Given a fixed amount of time, the goal is to
determine a path from start to end through a subset of the other locations
in order to maximize the score of the total path. In the GOP, each point
has a score with respect to a number of attributes and the overall objective
function is nonlinear. The GOP is more difficult than the OP, which is itself
NP-hard [6]. Therefore, researchers have proposed a variety of heuristics for
these two problems. Wang et al. [6, 7] applied artificial neural networks to
obtain high-quality solutions to the OP and GOP in a reasonable amount
of time. Chao et al. [1] applied deterministic annealing to the OP and also
obtained high-quality results. Gendreau et al. [3] applied tabu search to the
OP and obtained near-optimal solutions to instances with up to 300 nodes.
Laporte and Rodŕıquez-Mart́ın [4] present a recent overview.

Now consider the following hypothetical problem. A traveler comes to
China and has time to visit several cities. The traveler has multiple goals in
mind (e.g., enjoy the natural beauty of the country, visit sites of historical
interest, attend some major cultural events, and identify promising business
opportunities). Since travel between Chinese cities is expensive and our trav-
eler must adhere to a budget restriction, we impose a limit on the overall
distance that the journey can take. Given this distance constraint, the trav-
eler seeks to do well (in terms of score) with respect to each goal. This problem
is the generalized orienteering problem.

Other potential applications of the GOP involve military scenarios. For
example, suppose that a submarine or an unmanned aircraft is involved in
surveillance activities in which it must visit and photograph a subset of points
(each with multi-dimensional benefits) and return to its base subject to a
fuel/time constraint.

The main difference between the GOP and the OP lies in the objective
function. In the OP, the total score is obtained by summing the scores associ-
ated with each point along the path from start to end, while in the GOP, the
total score is a more complicated (nonlinear) function of the points visited.

The motivation for the objective function is based on the following ob-
servation. The Tai Mountain is quite beautiful and its score with respect to
natural beauty might be 8. The Huang Mountain, however, is the most beauti-
ful in all of China; its score might be 10. If one visits the Tai Mountain alone, a
score of 8 is achieved. Visiting both mountains, however, might lead to a score
of less than 18. The GOP is, therefore, a combinatorial optimization problem
with multiple goals and a nonlinear objective function to be maximized. The
outline of this chapter is as follows. We formulate the GOP and describe a
GA approach in Section 2. In Section 3, we solve a problem with 27 Chinese
cities and compare the results produced by our GA to the results produced
by the ANN of Wang et al. [7]. Conclusions are presented in Section 4.
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2 Problem Description

Let G(V, E) be a complete graph with n points (or cities), where V is the set
of points and E is the set of edges in the graph. The cost d(i, j) is the distance
or travel time between points i and j. We assume that distances satisfy the
triangle inequality. Both the start and end points are the same (point 1) in
this chapter, although this need not be the case. Each point in V has a score
vector S(i) = (S1(i), S2(i), ..., Sm(i)), where m is the number of independent
goals, and Sg(i) is the score of point i with respect to goal g.

Now we discuss the objective function that we want to maximize. We de-
fine the total score of a path P starting and ending at point 1 as

Z̄ =
m∑

g=1

Wg[{
∑
i∈P

[Sg(i)]k}1/k], (1)

where Wg is the weight that the traveler attaches to goal g. It can be shown
that as k grows very large, Z̄ approaches Z, where

Z =
m∑

g=1

Wg

{
max
i∈P

(Sg(i))
}

. (2)

If k = 1 and m = 1, (1) is the objective function of the OP. Therefore, the
OP is a special case of the GOP. Since the OP is an NP-hard problem, the
GOP is at least as hard. The key constraint is

Total path length ≤ Dlim (3)

where Dlim is the pre-defined distance limit. So the goal is to maximize (1)
subject to (3). In other words, the total distance of the path cannot exceed
the maximum distance Dlim.

2.1 Structure of the GA

Genetic algorithms make use of a vocabulary borrowed from the theory of evo-
lution and natural selection. There is a population of individuals. These indi-
viduals are often referred to as chromosomes. Chromosomes typically contain
a linear sequence of genes. Each gene represents a piece or part of a solution.
An evolutionary process run on a population of chromosomes corresponds to
a search over the space of potential solutions. GAs have been applied to a
variety of combinatorial optimization problems including the vehicle routing
problem and the traveling salesman problem [5, 8]. We now describe a GA for
solving the GOP. The full details of our implementation are given later in the
chapter.

Input: Distance matrix, Point locations, Score vector (S) , Weight vector
(W ), Distance limit (Dlim), Max step, Population size (POP ), Probability of
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crossover (PC), Probability of mutation (PM). Output: Best Z̄-score, Best
path, Total distance of the best path.

Step 0: Initialize a population of paths, where each path starts and ends
at point 1. Set the initial generation i = 1.

Step 1: For generation i, perform queen-bee crossover and two-opt muta-
tion on all paths, regardless of feasibility.

Step 2: Given the distance limit, transform each path into a feasible path
and select the next generation based on proportional fitness. Increase i by
one.

Step 3: Go to step 1 for another pass. Terminate the algorithm if the
number of generations reaches Max step, or the current best solution stays
the same for up to five passes, and output the best solution.

2.2 Algorithm Details

Now we explain the steps in detail.
Step 0. Initialization
Each chromosome is a path (tour) starting from and ending at city 1.

The initial population is of size POP (POP = 51). Each path contains all
27 cities and each city (except the first) is visited exactly once. Start with
city 1. Choose the closest city with probability 0.4, the second closest with
probability 0.3, and the third closest with probability 0.3. When there are two
cities left, we select the closest city with probability 0.6 and the second closest
with probability 0.4. We select the last city with probability 1 and return to
city 1. Do this 50 times. Each time, save the (forward) tour and the reverse
tour, which yields 100 tours. From each tour, we extract a feasible path by
removing the fewest consecutive cities at the end of the tour (other than city
1) such that the remaining path is still feasible. (As a result, the forward and
reverse tours will typically have different objective function values.) We then
select the best 51 feasible paths to serve as the initial generation.

Step 1. Evolution
Continue until the number of generations reaches Max step (Max step =

50), or the current best solution stays the same for up to five passes.
Crossover
Here we use queen-bee selection and edge recombination crossover (ERC)

[8]. The current best path is called the Queen and we select 25 other paths by
proportional fitness to mate with the Queen. Suppose path I is the Queen and
path J is one of these other 25 paths. We now define the adjacency matrix A.
The dimension of A is 27 by 4. In row i, the first two components are successor
and predecessor of city i on path I, and the next two components are successor
and predecessor of city i on path J . With PC = 0.95, we generate new paths
I ′ and J ′ from A in the following way.

For simplicity, we consider an example with eight cities. Suppose the parent
paths are I = [1, 3, 4, 6, 7, 2, 5, 8, 1] and J = [1, 4, 7, 6, 2, 3, 5, 8, 1]. In matrix A,
we have ai1 = successor of city i on path I, ai2 = predecessor of city i on path
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I, ai3 = successor of city i on path J , and ai4 = predecessor of city i on path
J . Because one city has at most four different neighbors on the two paths, the
resulting adjacency matrix A is of dimension 8 by 4 and is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 8 4 0
5 7 3 6
4 0 5 2
6 3 7 0
8 2 0 3
7 4 2 0
2 6 0 4
0 5 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first row of A is (3, 8, 4, 0), since 3 follows 1 and 8 precedes 1 on path
I and 4 follows 1 and 8 precedes 1 on path J . Since 8 appears twice, we set
ai4 = 0 instead of ai4 = 8. Hence, the “close” neighbors of city 1 on path I
and J are (3, 8, 4, 0), the “close” neighbors of city 2 are (5, 7, 3, 6), and so on.
The matrix A does not include city 1, since city 1 is the starting point. We
begin by selecting a city to follow city 1.

To generate path I ′, we start from city 1. We choose a successor from the
list of, at most, four close neighbors. Since the edge distances are known, we
select the closest neighbor with probability one half. If this city is not selected,
we select one of the remaining close neighbors with equal probability. (If there
is only one neighbor, we select it with certainty.) Suppose city 4 is selected in
row one of A.

We now repeat the process from city 4. Suppose city 3 is selected as the
next city to visit, and then city 5. From city 5, city 8 is chosen. Since city 8
has only city 5 as a close neighbor and it is already on our path, we randomly
choose a remaining unselected city. Suppose this is city 6. From city 6, we
select city 7 and then city 2. This yields I ′ = [1, 4, 3, 5, 8, 6, 7, 2, 1]. Path J ′ is
generated in a similar way.

To avoid selecting the same city more than once, we delete a city from
matrix A as soon as it is selected. An advantage of ERC is that some of the
path segments of parents are inherited by their offspring.

Each crossover operation begins with two parents and leads to two off-
spring. The total number of offspring computed from crossover per generation
is 25×2×2 = 100, since each offspring is stored in forward and reverse order.

Two-Opt Mutation
On every path in the population, with probability PM , we search between

two cities other than city 1, and apply two-opt to obtain an improved sequence
of these cities. Namely, we select two cities α and β and reverse the sequence
of cities on the path from α to β in the tour. We accept the new path if the
score is improved (increased). We continue this procedure in a systematic way
until we can no longer improve the score of the path [5]. We set PM to 0.5 to
maintain the necessary variability. Of course, the paths generated by crossover
and mutation may not be feasible GOP paths. In particular, the total distance
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may exceed the pre-specified limit. In Step 2, we determine whether the path
is feasible. If it is not, we repair it so that it becomes feasible.

Step 2. Selection
Again, we point out that the crossover and mutation operations are per-

formed on the non-truncated tours, without regard to feasibility. GA selection
in the GOP consists of two parts. Given the upper bound on total distance,
we first test the feasibility of each path and delete some cities if including
them results in the violation of this constraint. In the second part, we select
the next generation of paths based on proportional fitness.

Part I. Feasibility Check
If a path is infeasible, then we modify it to restore feasibility. Specifically,

given a path of cities, we accumulate the distances between consecutive cities
until the total distance exceeds the distance limit. Next, we remove the last
city (other than city 1) at the end of the path such that the remaining path
is still feasible. Finally, we calculate the objective function Z̄ of each path.

Part II. Proportional Fitness Selection
We select the next generation by proportional fitness. Each path has a fit-

ness equal to its Z̄-score (since we seek to maximize Z̄-score). Therefore, the
larger the Z̄-score, the more likely the corresponding path is to survive to the
next generation. Specifically, we have Prob{select path i} = Z̄i/(

∑POP
i=1 Z̄i).

In addition, we always retain the best path found from one generation to the
next. This makes the process an elitist genetic algorithm (EGA) [2], which
ensures that the quality of the population will not degenerate from one gen-
eration to the next. In each generation, we check forward and reverse paths.
Each path is available for selection according to its fitness. Since there are
100 intermediate paths from crossover, 100 intermediate paths from muta-
tion, and 102 parent paths, we actually select 51 paths from 302 candidate
paths. In particular, we retain the best path and select 50 others based on pro-
portional fitness. We note that feasibility with respect to distance is ignored
during crossover and mutation in order to promote diversity. Only during the
selection step do we focus on feasibility.

In terms of parameter values, we started with POP = 51. In preliminary
experiments in which we tried larger values, we observed that running times
increased significantly, but the performance of EGA did not. PC and PM
were set to common values (0.95 and 0.5) reflecting the relative importance
of crossover and mutation within EGA.

3 Computational Results

We use the 27 cities in China for our experiments. Table 1 includes the longi-
tudes, latitudes, and scores for each of these cities. Each city has four scores
(S1, S2, S3, and S4) which represent natural beauty, historical significance,
cultural and educational attractions, and business opportunities, respectively.
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These scores are scaled from 1 to 10. The higher the score, the more attrac-
tive the city. The distance between cities i and j is calculated over a spherical
surface and the average radius of the earth (6371 kilometers) is used in these
calculations (see the Appendix for details). In addition, the distance matrix
is available at http://www.rhsmith.umd.edu/faculty/bgolden/vrp data.htm.

In this section, we compare our GA with a sophisticated artificial neural
network model (ANN) [7]. The ANN is a modified, continuous Hopfield neural
network which uses discrete-time dynamics and gradient descent to update
intermediate solutions.

The ANN was coded in C. Our GA was coded in MATLAB. Both codes
were run on a Windows XP, Pentium-III PC with 1.0 GHz speed and 384MB
of memory.

We use five different values of k in our experiments. In particular,
if k = 1, Z̄ =

∑m
g=1 Wg[

∑
i∈P [Sg(i)]];

if k = 3, Z̄ =
∑m

g=1 Wg[{
∑

i∈P [Sg(i)]3}1/3];
if k = 4, Z̄ =

∑m
g=1 Wg[{

∑
i∈P [Sg(i)]4}1/4];

if k = 5, Z̄ =
∑m

g=1 Wg[{
∑

i∈P [Sg(i)]5}1/5];
if k = 10, Z̄ =

∑m
g=1 Wg[{

∑
i∈P [Sg(i)]10}1/10].

Each comparison involves a combination of weight vectors and a distance
limit. In each case, Beijing is both the origin and destination. The weight vec-
tors used in our experiments are W0 = (0.25, 0.25, 0.25, 0.25), W1 = (1, 0, 0, 0),
W2 = (0, 1, 0, 0), W3 = (0, 0, 1, 0), and W4 = (0, 0, 0, 1). W0 gives equal weight
to each of the four goals. Weight vectors W1, W2, W3, and W4 emphasize a
single goal, respectively. The two distance limits are 5000 km and 11,000 km.
The computational results are presented in Tables 2 through 6.

In each of the five tables of computational comparisons, there are six cases.
Out of the 30 cases in total, EGA outperforms ANN (with respect to score)
in eight cases, ANN beats EGA in four cases, and ANN and EGA are tied
in 18 cases. Despite the fact that ANNs are specifically designed to handle
highly nonlinear data (which is what we have here) and GAs are not, the GA
slightly outperforms the ANN in an overall sense. In addition, it is faster.

4 Conclusions

The impact of k on the results is clear. If k = 1, then the objective function is
the sum of the relevant individual scores. The larger the value of k, the larger
the effect of high individual scores on the overall objective function. The value
of the objective function decreases to the highest score of the city on the path
as k goes to infinity. Setting k = 5 is a reasonable compromise, in that the
total score is still heavily influenced by the city with the highest score on a
path, but not exclusively so.

In comparing EGA against ANN, we observe the following key points.
First, the running times of EGA are generally smaller than those of ANN.
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This is despite the fact that ANN is coded in C and EGA is coded in (the
much slower) MATLAB. Secondly, ANN is a code specifically designed to
handle nonlinear problems (such as the GOP), whereas EGA is not. EGA
is comparable to ANN with respect to solution quality and it is faster. Our
results demonstrate that genetic algorithms can perform well on the GOP and
should perform well on other nonlinear combinatorial optimization problems.

Table 1. Locations and Scores of 27 Cities in China

City Lon. Lat. S1 S2 S3 S4 City Lon. Lat. S1 S2 S3 S4

1 Beijing 116.40 39.91 8 10 10 7 15 Wuhan 114.30 30.55 6 6 8 6

2 Tianjin 117.18 39.16 6 5 8 8 16 Changsha 113.00 28.20 6 6 6 5

3 Jinan 117.00 36.67 7 7 5 6 17 Guangzhou 113.15 23.15 6 6 5 10

4 Qingdao 120.33 36.06 7 4 5 7 18 Haikou 110.35 20.02 7 3 4 8

5 Shijiazhuang 114.50 38.05 5 4 5 5 19 Guilin 110.29 25.28 10 4 4 4

6 Taiyuan 112.58 37.87 5 6 5 5 20 Xi’an 108.92 34.28 5 9 8 6

7 Huhehaote 111.70 40.87 6 6 5 5 21 Yinchuan 106.27 38.48 5 7 5 5

8 Zhengzhou 113.60 34.75 5 6 5 5 22 Lanzhou 103.80 36.03 7 6 5 6

9 Huangshan 118.29 29.73 9 3 2 2 23 Chengdu 104.07 30.66 6 7 6 5

10 Nanjing 118.75 32.04 7 8 8 6 24 Guiyang 106.70 26.59 8 5 4 5

11 Shanghai 121.45 31.22 5 4 9 9 25 Kunming 102.80 25.05 9 7 7 6

12 Hangzhou 120.15 30.25 9 8 7 6 26 Shenyang 123.40 41.80 5 8 5 6

13 Nanchang 115.88 28.35 7 6 5 5 27 Dalian 121.60 38.92 7 5 6 7

14 Fuzhou 119.30 26.10 6 5 5 7

Table 2. EGA vs. ANN (k = 1)

Total Time
W Dlim Alg. Distance Score Path (sec)

W0 5000 EGA 4987.5 99.50 1-2-5-6-8-15-13-9-11-12-10-3-4-27-26-1 32.5
ANN 4987.5 99.50 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 61.2

W1 5000 EGA 4962.7 105.00 1-2-27-4-10-11-12-9-14-13-16-15-8-6-5-3-1 37.7
ANN 4811.7 105.00 1-7-6-5-3-8-15-16-13-9-12-11-10-4-27-2-1 36.0

W2 5000 EGA 4987.5 97.00 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 24.8
ANN 4987.5 97.00 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 34.8

W3 5000 EGA 4987.5 102.00 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 34.2
ANN 4987.5 102.00 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 40.8

W4 5000 EGA 4953.4 96.00 1-2-3-5-6-8-15-16-13-14-9-12-11-10-4-27-1 36.9
ANN 4953.4 96.00 1-27-4-10-11-12-9-14-13-16-15-8-6-5-3-2-1 100.2

W0 11000 EGA 10960.5 164.75 1-2-27-26-4-3-5-6-7-21-22-20-23-25-24- 38.1
-19-18-17-16-13-14-9-12-11-10-15-8-1

ANN 10516.5 164.75 1-26-27-4-10-11-12-9-14-13-15-16-17- 70.8
-18-19-24-25-23-20-22-21-7-6-5-8-3-2-1
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Table 3. EGA vs. ANN (k = 3)

Total Time
W Dlim Alg. Distance Score Path (sec)

W0 5000 EGA 4976.7 16.58 1-2-3-5-8-20-15-16-13-9-10-12-11-4-27-1 21.2
ANN 4987.5 16.76 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 100.8

W1 5000 EGA 4987.7 17.95 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 38.2
ANN 4987.7 17.95 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 51.0

W2 5000 EGA 4987.9 17.04 1-2-3-10-12-9-13-15-8-20-22-21-7-6-5-1 24.1
ANN 4862.7 16.87 1-2-3-10-11-12-9-13-15-8-20-22-21-6-5-1 51.0

W3 5000 EGA 4987.5 17.45 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 32.8
ANN 4987.5 17.45 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 30.0

W4 5000 EGA 4999.0 16.67 1-2-27-4-10-11-12-14-17-15-8-6-5-1 21.2
ANN 4941.3 16.67 1-27-4-11-12-14-17-16-15-8-3-5-1 81.0

W0 11000 EGA 10505.7 19.55 1-5-6-7-21-22-20-23-25-24-19-18-17-16- 23.8
-15-13-14-9-12-11-10-8-3-4-27-26-2-1

ANN 10428.3 19.55 1-2-26-27-4-10-11-12-9-14-13-15-16-17- 60.0
-18-19-24-25-23-22-21-20-8-3-5-6-7-1

Table 4. EGA vs. ANN (k = 4)

Total Time
W Dlim Alg. Distance Score Path (sec)

W0 5000 EGA 4972.8 13.66 1-2-3-5-6-20-15-13-9-12-11-10-4-27-26-1 23.4
ANN 4901.4 13.71 1-2-3-4-10-11-12-9-13-17-19-16-15-8-5-1 70.2

W1 5000 EGA 4999.6 14.60 1-2-3-4-10-12-9-13-16-19-24-23-6-1 24.1
ANN 4946.0 14.69 1-2-7-4-10-12-9-13-16-19-24-8-3-1 51.0

W2 5000 EGA 4974.6 13.96 1-2-26-27-4-10-12-9-13-16-15-20-8-3-1 24.5
ANN 4983.5 13.87 1-2-3-8-20-15-13-9-12-11-10-4-27-26-1 34.8

W3 5000 EGA 4996.8 14.29 1-2-27-4-10-11-12-9-13-16-15-8-20-6-5-3-1 20.7
ANN 4987.5 14.29 1-27-4-10-11-12-9-13-16-15-8-20-6-5-3-2-1 34.8

W4 5000 EGA 4845.2 13.78 1-2-27-4-10-11-12-14-17-16-15-3-1 24.4
ANN 4970.8 13.78 1-27-4-10-11-12-9-14-17-16-15-3-2-1 70.8

W0 11000 EGA 10985.8 15.31 1-2-26-27-4-9-11-12-10-15-16-13-14-17- 29.1
-18-19-24-25-23-22-21-20-8-3-5-6-7-1

ANN 10428.3 15.31 1-2-26-27-4-3-8-10-11-12-9-14-13-15-16- 60.0
-17-18-19-24-25-23-20-22-21-7-6-5-1
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Table 5. EGA vs. ANN (k = 5)

Total Time
W Dlim Alg. Distance Score Path (sec)

W0 5000 EGA 4833.5 12.28 1-2-3-10-15-16-19-17-13-9-12-11-4-1 32.4
ANN 4993.4 12.38 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 61.2

W1 5000 EGA 4943.9 13.08 1-2-27-4-10-12-9-13-16-19-24-3-1 21.9
ANN 4987.7 13.05 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 46.2

W2 5000 EGA 4875.6 12.51 1-2-3-5-6-8-20-15-9-12-10-4-27-1 22.1
ANN 4875.1 12.51 1-2-26-27-3-10-11-12-9-13-15-20-6-5-1 40.2

W3 5000 EGA 4996.8 12.78 1-2-27-4-10-11-12-9-13-16-15-8-20-6-5-3-1 29.8
ANN 4987.5 12.78 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 46.2

W4 5000 EGA 4954.0 12.40 1-2-27-4-10-11-12-14-17-15-8-3-1 21.1
ANN 4989.8 12.36 1-2-3-10-9-13-16-17-14-12-11-4-27-1 90.0

W0 11000 EGA 10825.2 13.35 1-2-26-27-4-10-11-12-9-14-13-16-17-18- 20.9
-19-24-25-23-22-21-20-15-8-3-5-6-7-1

ANN 10428.3 13.35 1-7-6-5-3-8-20-21-22-23-25-24-19-18-17- 100.2
-16-15-13-14-9-12-11-10-4-27-26-2-1

Table 6. EGA vs. ANN (k = 10)

Total Time
W Dlim Alg. Distance Score Path (sec)

W0 5000 EGA 4999.2 10.54 1-2-3-4-10-11-12-9-13-17-19-20-1 24.2
ANN 4993.4 10.53 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 100.2

W1 5000 EGA 4891.0 10.75 1-3-24-19-13-9-12-10-4-27-2-1 24.0
ANN 4893.3 10.73 1-2-3-10-11-12-9-13-16-19-24-15-8-5-1 49.8

W2 5000 EGA 4945.3 10.57 1-5-6-21-20-15-9-12-10-3-26-1 23.8
ANN 4951.1 10.56 1-2-26-27-3-10-11-12-9-15-8-20-6-5-1 49.8

W3 5000 EGA 4728.0 10.62 1-2-5-6-8-20-15-16-13-9-12-11-10-4-27-1 23.8
ANN 4762.3 10.62 1-2-27-4-10-11-12-13-16-15-20-8-3-5-1 36.0

W4 5000 EGA 4980.1 10.48 1-2-27-4-10-11-12-9-14-17-16-15-3-1 25.2
ANN 4785.1 10.47 1-27-4-11-12-14-17-13-9-10-3-2-1 79.8

W0 11000 EGA 10847.6 10.70 1-3-8-21-22-20-23-24-25-18-17-19-13- 26.4
-16-15-14-11-12-9-10-4-26-27-2-1

ANN 10751.8 10.70 1-2-26-27-4-3-8-20-15-10-11-12-9-14-13- 100.2
-16-19-17-18-24-25-23-22-21-7-6-5-1
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Appendix

MATLAB Code for Computing Distances

Input
a1 = Longitude of node 1,
b1 = Latitude of node 1,
a2 = Longitude of node 2,
b2 = Latitude of node 2,

The function returns the distance (in km) between node 1 and node 2.

function d=dist(a1,b1,a2,b2)
R = 6371;
a1 = a1 ∗ 3.1416/180;
b1 = (90− b1) ∗ 3.1416/180;
a2 = a2 ∗ 3.1416/180;
b2 = (90− b2) ∗ 3.1416/180;
c = a1− a2;
d = b1− b2;
e = b1 + b2;
x1 = cos(d ∗ 0.5)/cos(e ∗ 0.5)/tan(0.5 ∗ c);
x2 = sin(d ∗ 0.5)/sin(e ∗ 0.5)/tan(0.5 ∗ c);
f = atan(x1) + atan(x2);
g = asin(sin(c) ∗ sin(b1)/sin(f));
% Output the distance
d = R ∗ g;
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Summary. In this chapter we address the classical Vehicle Routing Problem
(VRP), where (at most) k minimum-cost routes through a central depot are con-
structed to cover all customers while satisfying, for each route, both a capacity and
a total-distance-traveled limit. We present a Local Search algorithm for VRP, based
on the exploration of an exponential neighborhood by solving an Integer Linear Pro-
gramming (ILP) problem. Our starting point is the following refinement heuristic
procedure proposed by De Franceschi et al.: given an initial solution to be possibly
improved, (a) select several customers from the current solution, and build the re-
stricted solution obtained from the current one by extracting (i.e., short-cutting) the
selected customers; (b) reallocate the extracted customers to the restricted solution
by solving an ILP problem, in the attempt of finding a new improved solution. We
present a generalization of the neighborhood proposed in this method, and investi-
gate the Column Generation Problem associated with the Linear Programming (LP)
relaxation of the ILP formulation corresponding to the neighborhood. In particular,
we propose a two-phase approach for the neighborhood exploration, which first re-
duces the neighborhood size through a simple heuristic criterion, and then explores
the reduced neighborhood by solving the corresponding ILP formulation through
the (heuristic) solution of the Column Generation Problem associated with its LP
relaxation. We report computational results on capacitated VRP instances from the
literature (with/without distance constraints), which are usually used as benchmark
instances for the considered problem. In several cases, the proposed algorithm is able
to find the new best-known solution in the literature.

Key words: Distance constrained capacitated vehicle routing problem; local search;
exponential neighborhood; integer linear programming; column generation.

1 Introduction

In this chapter we address the classical Vehicle Routing Problem (VRP). We
are given a central depot and a set of n customers, which are associated with
the nodes of a complete undirected graph G = (V, E) (where V = {0, 1, . . . , n},
node 0 represents the depot and V \ {0} is the set of customers). Each edge

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 13, c© Springer Science+Business Media, LLC 2008
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e ∈ E has an associated finite cost ce ≥ 0. Each node v ∈ V has a demand
dv ≥ 0 and a service time tv ≥ 0 (with d0 = 0 and t0 = 0). The customers
must be served by at most k cycles (routes) passing through the depot, where
k is fixed in advance. Each route must have a total duration (computed as
the sum of the edge costs in the route plus the sum of the customer service
times in the route) not exceeding a given limit D, and can visit a subset S of
customers whose total demand

∑
v∈S dv does not exceed a given capacity C.

The problem consists of finding a feasible solution covering exactly once all
the customers and having a minimum overall cost; see, e.g., [32]. Note that
the service times can be added to the edge costs, i.e., by setting, for each edge
e = (v, w) ∈ E, ce := ce + tv/2 + tw/2, thus leading to an equivalent VRP
with service time tv = 0 for any v ∈ V . In the following we assume tv = 0 for
any v ∈ V .

VRP is NP-hard in the strong sense, and a huge number of works have
been proposed in the literature for this problem. Exact methods usually deal
with the capacitated problem with no distance constraints and no empty
routes allowed (i.e., customers must be served by exactly k routes and D =
∞). Heuristic and metaheuristic algorithms usually take into account both
capacity and distance constraints, and often consider the number of routes
as a decision variable. For a comprehensive survey on solution techniques for
the Vehicle Routing Problem we refer the reader to [4, 5, 34]. Recent exact
algorithms have been proposed by Augerat et al. [1], Hadjiconstantinou et al.
[13], Ralphs et al. [24], Baldacci et al. [2], Lysgaard et al. [18], Fukasawa et al.
[8]. Effective metaheuristic algorithms have been recently proposed by Osman
[21], Taillard [30], Gendreau et al. [10], Rochat and Taillard [27], Rego and
Roucairol [25], Xu and Kelly [37], Berger and Barkaoui [3], Toth and Vigo
[33], Prins [23], Reimann et al. [26], Li et al. [17], Tarantilis [31], Wassan [36],
Kytöjoki et al. [16], Mester and Bräysy [20], Pisinger and Ropke [22].

In this chapter we present a Local Search algorithm for VRP, which is
based on the exploration of an exponential neighborhood by solving an Inte-
ger Linear Programming (ILP) problem. Our starting point is the refinement
heuristic procedure proposed by De Franceschi et al. [7]. Given an initial so-
lution to be possibly improved, this procedure performs the following steps:
(a) select several customers from the current solution, and build the restricted
solution obtained from the current one by extracting (i.e., short-cutting) the
selected customers; (b) reallocate the extracted customers to the restricted so-
lution by solving an ILP problem (denoted as Reallocation Model), in the at-
tempt of finding a new improved solution. To explore different neighborhoods
of the same solution, customers are selected by means of different selection
criteria. This method often provides an improvement of the initial solution,
but is rather expensive in terms of computing time. To get a more effective
and deeper exploration of the solution space, we present a generalization of
the neighborhood proposed in [7] and investigate the corresponding ILP for-
mulation. Since the Reallocation Model has a number of variables exponential
in the number of the extracted customers, the solution of its LP relaxation
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has to be handled by using pricing and column generation techniques. In [7],
such a relaxation was heuristically solved through an intensive pricing loop,
in which a huge number of variables were iteratively generated and added to
the model only if their reduced costs were under a fixed threshold. Variable
generation was driven by heuristic criteria (see [7] for details). In this chap-
ter we investigate the Column Generation Problem associated with the LP
relaxation of the Reallocation Model, which is shown to be NP-hard, and
propose a two-phase approach for the neighborhood exploration, which first
reduces the neighborhood size through a simple heuristic criterion, and then
explores the reduced neighborhood by solving the corresponding Reallocation
Model formulation through the (heuristic) solution of the Column Generation
Problem associated with its LP relaxation.

The chapter is organized as follows. In Section 2 the exponential neigh-
borhood we propose for VRP is described, and the ILP formulation corre-
sponding to the neighborhood exploration is presented. The implementation
of the Local Search algorithm is given in Section 3, while Sections 4, 5 and 6
describe in detail the basic steps of the method. In particular, Section 4 de-
scribes the heuristic criteria for selecting the customers to be extracted (i.e.,
the neighborhood to be explored), Section 5 presents the heuristic procedure
we propose for reducing the neighborhood size, while Section 6 presents the
Column Generation Problem associated with the LP relaxation of the Real-
location Model. Computational experiments on benchmark capacitated VRP
instances from the literature (with/without distance constraints) are reported
in Section 7, comparing the proposed method with the approach presented in
[7], and with the most effective metaheuristic techniques proposed for VRP.
Some conclusions are finally drawn in Section 8.

2 Exponential Neighborhood

Let Z be the set of all the feasible solutions of the VRP defined on G. For
any given solution z0 ∈ Z and node subset F ⊆ V \ {0}, we define z0(F) as
the restricted solution obtained from z0 by extracting (i.e., by short-cutting)
all the nodes v ∈ F . Let I = I(z0,F) denote the set of all the edges in z0(F),
and S = S(F) the set of all the sequences which can be obtained through the
recombination of nodes in F (i.e., the set of all the paths in F). Each edge
i ∈ I is viewed as a potential insertion point which can allocate one or more
nodes in F through at most one sequence s ∈ S.

With the above notation, for each z0 ∈ Z and F ⊆ V \ {0}, we define
the neighborhood N(z0,F) as the set of all the feasible solutions z ∈ Z
which can be obtained through the reallocation of all the extracted nodes
v ∈ F to the restricted solution z0(F). This is obtained by allocating some
sequences s ∈ S to some insertion points i ∈ I, so that each node v ∈ F
is covered exactly once by the allocated sequences and each insertion point
i ∈ I allocates at most one sequence s ∈ S. We say that the insertion point
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i = (a, b) ∈ I allocates the nodes {vj ∈ F : j = 1, . . . , h} through the sequence
s = (v1, v2, . . . , vh) ∈ S, if the edge (a, b) in the restricted solution is replaced
by the edges (a, v1), (v1, v2), . . . , (vh, b) in the new feasible solution.

N(z0,F) is an exponential neighborhood of the given solution z0 which
can be viewed as an extension of the neighborhood proposed by Sarvanov
and Doroshko [28], and, independently, by Gutin [12], for the pure Traveling
Salesman Problem (see [7] for details). Of course, N(z0,F) depends on the
choice of F , and in particular N(z0, ∅) = {z0}, while N(z0, V \{0}) = Z for any
z0 ∈ Z, since any empty route in z0(F) is viewed as an insertion point (0, 0).
In the general case, N(z0,F) can be explored by solving a set-partitioning
model (denoted as the Reallocation Model) which is theoretically NP-hard,
but effectively solvable in practice. The reallocation model corresponding to
z0 and F can be described as follows.

Let R denote the set of routes in the restricted solution. For any sequence
s ∈ S, let V (s) be the node set of s, c(s) the sum of the costs of the edges in
the sequence, and d(s) the sum of the demands dv associated with the nodes
v ∈ V (s). For any node v ∈ F , let S(v) := {s ∈ S : v ∈ V (s)} denote the set of
sequences s ∈ S containing node v. For each insertion point i = (a, b) ∈ I and
for each sequence s = (v1, v2, . . . , vh) ∈ S we define γsi as the extra-distance
(i.e., the extra-cost) for assigning sequence s to insertion point i in its best
possible orientation (i.e., γsi := c(s) − cab + min{cav1 + cvhb, cavh

+ cv1b}).
For each route r ∈ R, let I(r) denote the set of insertion points (i.e., edges)
associated with r, while let d̃(r) and c̃(r) denote, respectively, the total de-
mand and distance computed for route r, still in the restricted solution. With
the above notation, the Reallocation Model is an Integer Linear Programming
(ILP) problem based on the decision variables

xsi =
{

1 if sequence s ∈ S is allocated to insertion point i ∈ I
0 otherwise (1)

and reads as follows:

∑
r∈R

c̃(r) + min
∑
s∈S

∑
i∈I

γsixsi (2)

subject to:

∑
s∈S(v)

∑
i∈I

xsi = 1 v ∈ F , (3)

∑
s∈S

xsi ≤ 1 i ∈ I, (4)

∑
s∈S

∑
i∈I(r)

d(s)xsi ≤ C − d̃(r) r ∈ R, (5)
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s∈S

∑
i∈I(r)

γsixsi ≤ D − c̃(r) r ∈ R, (6)

xsi ∈ {0, 1} s ∈ S, i ∈ I. (7)

The objective function (2), to be minimized, gives the cost of the final VRP
solution. Constraints (3) impose that each extracted node belongs to exactly
one of the selected sequences, i.e., that it is covered exactly once in the final so-
lution. Note that, if the costs satisfy the triangle inequality, one could replace
= by ≥ in (3), thus obtaining an ILP having the structure of a set-covering
(instead of a set-partitioning) problem with side constraints. Constraints (4)
avoid to allocate two or more sequences to an insertion point. Finally, con-
straints (5) and (6) impose that each route in the final solution fulfills the
capacity and distance restrictions, respectively.

Solving the reallocation model to optimality corresponds to the complete
exploration of the neighborhood N(z0,F). However, for some choices of F ,
the neighborhood can be too large and cannot be completely explored with
an acceptable computational effort (note that the number of variables xsi is
exponential in the number of nodes in F). Moreover, the quality of the feasible
solutions in N(z0,F) depends on the choice of F . Indeed, in order to explore
the solution space close to z0 in an effective way, three different aspects have
to be considered:

(a) different neighborhoods N(z0,F) have to be explored, using different sets
F , selected by using different selection criteria;

(b) it is of crucial importance to reduce the neighborhood to explore without
loosing possible improvements of the current solution z0;

(c) even the reduced neighborhood can be too large and has to be explored
only in a partial way.

3 Local Search Algorithm

The choice of the extracted node set F is a key factor of the proposed ap-
proach. In particular, wrong choices of F lead to bad neighborhoods which
contain no improved solutions with respect to z0, even if z0 is not a “good”
quality solution. To get promising neighborhoods, we apply an iterative local
search algorithm: at each iteration, a different neighborhood N(z0,F) is ex-
plored, using a different set F of extracted nodes, determined according to
different selection criteria (see Section 4).

Moreover, as previously mentioned, the neighborhood N(z0,F) could be
too large and its complete exploration could not be performed in a reasonable
computing time. Therefore, at each iteration of the local search algorithm,
we first determine a reduced neighborhood N(z0,F , λ) ⊆ N(z0,F) and its
corresponding Reduced Reallocation Model (see Section 5), and then we per-
form only a partial exploration of the current reduced neighborhood, which
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corresponds to the selection of a small subset of all the potential variables xsi,
with (s, i) ∈ S × I, for the Reduced Reallocation Model (see Section 6).

Given an initial feasible solution z0 for VRP (taken from the literature or
found by any heuristic method), the proposed Local Search Algorithm (LSA)
works as follows:

1. (Initialization). Initialize a list Θ of all the available selection criteria.
2. (Selection). Apply the next selection criterion in Θ to determine the set
F of nodes to be extracted.

3. (Extraction). Extract the nodes selected in the previous step and
construct the corresponding restricted VRP solution obtained by short-
cutting the extracted nodes.

4. (Reduction). Determine a reduced neighborhood N(z0,F , λ) ⊆ N(z0,F)
and build the continuous relaxation of the corresponding Reduced Real-
location Model with an initial empty set of variables.

5. (Construction). Populate the Reduced Reallocation Model with a
promising subset of variables, determined by using pricing and column
generation techniques.

6. (Reallocation). “Freeze” the current set of variables, add the integral-
ity requirements to the variables and solve the corresponding Reduced
Reallocation Model by using a general-purpose MIP solver. Once an (al-
most) optimal ILP solution has been found, construct the corresponding
new VRP solution and possibly update the incumbent solution. If the in-
cumbent solution has been updated, then process each route in the new
solution through a 3-OPT exchange heuristic (in the attempt of further
improving it) and repeat from step 1.

7. (Termination). If the list Θ is empty, then STOP; otherwise repeat from
step 2.

4 Node Selection Criteria

Selection criteria determine the set F of extracted nodes, and therefore the
neighborhood N(z0,F) to explore. Several deterministic criteria have been
considered and experimentally evaluated, but none of them seems to work
better than randomized criteria. Therefore we use the same randomized se-
lection criteria proposed by De Franceschi et al. in [7]. They can be briefly
described as follows.

– Random-Alternate scheme: this criterion is akin to the Sarvanov and
Doroshko [28] scheme for the pure Traveling Salesman Problem: for each
route all the nodes in even position or all the nodes in odd position are
selected, the position parity being randomly-determined (with equal prob-
ability) for any route.
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– Scattered scheme: each node has a probability p of being extracted,
where p is a fixed parameter; this scheme allows for the removal of con-
secutive nodes, i.e., of route subsequences.

– Neighborhood scheme: given a seed node v∗, then v∗ is selected and
each other node v is selected with a probability inversely proportional to
the distance cvv∗ of v from v∗ (such that a given percentage p of the nodes
are selected on average). At the beginning of the computation a list N
containing all the customer nodes is created, associating with each node
v∗ a score equal to the average distance from v∗ of the 10 nodes nearest
to v∗ and sorting the list N by increasing scores. At each application of
the scheme, the next node v∗ in the list (in a circular way) plays the role
of the seed node.

Random-Alternate and Scattered schemes appear particularly suited
to improve the first solutions, and they seem to be useful even to improve new
solutions obtained by the application of the Neighborhood scheme. On the
contrary, the Neighborhood scheme seems more appropriate to improve
good quality solutions, whereas the other schemes fail. Therefore, in step 1
we initialize the list Θ as Θ := {R(3), S(3), N(n)} with the following mean-
ing: we first apply 3 times the Random-Alternate scheme, then we apply
3 times the Scattered scheme, and afterwards the Neighborhood scheme
is applied for each customer node. In this way, in the first iterations we look
for “global” improvements by using completely randomized selection criteria,
and afterwards we concentrate on the neighborhoods of different customers
looking for “local” improvements.

5 Neighborhood Reduction

Concerning the Reallocation Model (2)–(7), for each sequence s ∈ S and
for each insertion point i ∈ I, we say that s is feasible for i if s can be
allocated to i without violating capacity and distance constraints for the route
ri containing i. With the same notation, we say that each node v ∈ F is
feasible for i ∈ I if the sequence (v) is feasible for i. Then we define F∗

i :=
{v ∈ F : v is feasible for i} and I∗v := {i ∈ I : v ∈ F∗

i }.
During the neighborhood construction, whenever we have to find a new

variable xsi for a given insertion point i ∈ I, we are required to generate a new
sequence s by considering all the sequences in S. However, many sequences
in S may be infeasible for i, and many feasible sequences can have a too high
insertion cost γsi with respect to other feasible sequences. Removing a priori all
the infeasible sequences and all the “bad” sequences (i.e., the sequences with a
too high insertion cost) would lead to a strong reduction of the computational
effort needed for the generation of new variables. To this end, for each i ∈ I we
determine a reduced node subset Fi ⊆ F . All the sequences generated for i are
sequences s ∈ Si, where Si := {s ∈ S : V (s) ⊆ Fi}. Associating each insertion
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point i ∈ I only with a reduced node subset Fi ⊆ F corresponds to reduce the
neighborhood N(z0,F) of all the feasible solutions that can be reached from
z0. With the above reduction, we get a reduced neighborhood which can be
explored by solving a Reduced Reallocation Model (RRM), which is similar
to the original Reallocation Model (2)–(7) and reads as follows:

∑
r∈R

c̃(r) + min
∑
s∈S

∑
i∈Is

γsixsi (8)

subject to:

∑
s∈S(v)

∑
i∈Is

xsi = 1 v ∈ F , (9)

∑
s∈Si

xsi ≤ 1 i ∈ I, (10)

∑
s∈S

∑
i∈Is(r)

d(s)xsi ≤ C − d̃(r) r ∈ R, (11)

∑
s∈S

∑
i∈Is(r)

γsixsi ≤ D − c̃(r) r ∈ R, (12)

xsi ∈ {0, 1} s ∈ S, i ∈ Is, (13)

where, for each s ∈ S and each r ∈ R, Is := {i ∈ I : s ∈ Si} and Is(r) :=
Is∩I(r). Of course, the approach is effective only if we are able to find a smart
reduction without loosing any potential improvement of z0 in N(z0,F).

Assuming that the triangle inequality holds, a first exact reduction can
be performed by setting Fi := F∗

i for any i ∈ I. Since any feasible sequence
s for i has to be a path in F∗

i , the above setting is not a true reduction
of the neighborhood N(z0,F), but it corresponds to a strong reduction of
the solution space of the continuous relaxation of the Reallocation Model. In
addition, we perform a true neighborhood reduction based on the following
heuristic assertion: if an extracted node v ∈ F has to be allocated to a certain
route r ∈ R, then it will probably be allocated to one of the insertion points
i ∈ I(r) nearest to v. Therefore, an effective problem reduction has to satisfy
the following requirements:

(a) any node v has to be associated with its pivot iv (i.e., the insertion point v
was extracted from). In this way we can always get z0 as the new solution;

(b) any node v has to be associated with at least one insertion point i ∈ I(r)
for each route r ∈ R;

(c) if the insertion cost of the sequence (v) in the insertion point i is “too
high”, then v can be removed from Fi (i.e., any sequence s containing v is
removed from Si).
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For each v ∈ F and for each i ∈ I∗v , let γvi denote the insertion cost of the
sequence (v) in i. For each r ∈ R and for each v ∈ F , we define δvr as the
average insertion cost of the sequence (v) in the route r, computed as

δvr :=

∑
i∈I(r)∩I∗

v
γvi

|I(r) ∩ I∗v |
. (14)

With the above notation, assuming that the triangle inequality holds, for each
i ∈ I we set

Fi := {v ∈ F∗
i : γvi ≤ λ δvri} ∪ {v ∈ F : i = iv} (15)

where λ is a fixed parameter. We denote the reduced neighborhood corre-
sponding to the Reduced Reallocation Model (8)–(13) with N(z0,F , λ). Note
that ∀ λ ≥ 0, N(z0,F , λ) ⊆ N(z0,F), and lim

λ→∞
N(z0,F , λ) = N(z0,F).

6 Neighborhood Construction

Once the reduced neighborhood N(z0,F , λ) has been built, it could be en-
tirely explored by solving the Reduced Reallocation Model (RRM) (8)–(13)
to optimality. As mentioned before, for computing time reasons we decide to
explore this neighborhood only in a partial way. Therefore we initialize RRM
with a small subset of variables which ensure the model to be feasible, and
then we solve its continuous relaxation adding other variables by using column
generation techniques. When no other variable with small (say) reduced cost
can be added to the model, we “freeze” the current set of variables and we
add the integrality requirements. The Partial Reduced Reallocation Model we
get in this way corresponds to a partial reduced neighborhood which can be
explored by solving the model through a general purpose MIP solver.

Let C(RRM) denote the Linear Programming relaxation of RRM. Then let
SB denote the set of all the basic sequences in S extracted from the incumbent
solution z0 (we say that s ∈ S is a basic sequence if it belongs to z0 and no
other sequence in S belonging to z0 contains s). For each s ∈ SB let is ∈ I
denote the pivot insertion point the basic sequence s has been extracted from.
Finally, let VP and SP denote the variable pool and the sequence pool, which
contain, respectively, all the variables and all the sequences generated so far.
With the above notation, the Neighborhood construction can be described in
detail through the following steps:

1. (Initialization). Set SP := SB and VP := {xsi : s ∈ SB , i = is}. For
each insertion point i ∈ I, construct a small number of new sequences
s ∈ Si that “fit well” with i (i.e., that have a small insertion cost with
respect to i), add these sequences to SP and the corresponding variables
to VP . After this step, a feasible solution for RRM exists (e.g., the current
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solution z0) and we can use reduced costs for evaluating the “goodness”
of the other variables.

2. (Pricing). Apply a fast Pricing step with the sequences generated so far
to reduce the computational effort required for the Column Generation
step:
a) add to SP all the sequences s ∈ S with cardinality 1 and 2;
b) solve C(RRM);
c) ∀i ∈ I and ∀s ∈ SP ∩ Si, if the reduced cost rcsi of the variable xsi

does not exceed a given threshold RCmax (i.e., rcsi ≤ RCmax), then
add xsi to VP ;

d) if at least one variable has been added, repeat from step 2b.
3. (Column Generation). Look for “good” variables by (heuristically)

solving the Column Generation Problem associated with each insertion
point in C(RRM):
a) for each i ∈ I, try to solve the Column Generation Problem associated

with i finding as many variables with small reduced cost as possible;
b) if at least one variable has been found, add all the variables to VP ,

solve C(RRM) and repeat from step 3a.

The Column Generation step represents the crucial step of the Neighbor-
hood construction phase, and is described in Section 6.1. This is the most
time consuming step, but it often allows to improve even good quality initial
solutions. However, preliminary computational experiments showed that the
Initialization and the Pricing steps are important as well, since they provide
an initial nice structure for the Reduced Reallocation Model. If we initialize
the variable pool as VP := {xsi : s ∈ SB , i = is} and then apply only the Col-
umn Generation step, we generally find the same final solution but in a much
higher computing time, since in the first iterations of the Column Generation
step a huge number of useless variables are generated and added to the vari-
able pool. Moreover, during all the steps of the Neighborhood construction
phase, hashing techniques are used to handle the variable and sequence pools
to avoid the generation of duplicated variables.

6.1 The Column Generation Problem

Consider the Linear Programming relaxation C(RRM) of the Reduced Re-
allocation Model, and let π1

v , π2
i , π3

r and π4
r be the dual variables associ-

ated, respectively, with constraints (9), (10), (11) and (12) in C(RRM), where
v ∈ F , i ∈ I and r ∈ R. Then, for any (s, i) ∈ {(s, i) ∈ S × I : i ∈ Is}, with
s = (v1, . . . , vh) and i = (ai, bi), the reduced cost rcsi of variable xsi is defined
by

rcsi := γsi −
∑

v∈V (s)

π̃1
v − π̃2

i − d(s)π̃3
ri
− γsiπ̃

4
ri

(16)
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where π̃ = (π̃1
v , π̃2

i , π̃3
r , π̃4

r) denotes the optimal dual solution of C(RRM). Let
P (s, i) = (VP , EP ) denote the path (ai, v1, . . . , vh, bi) in G corresponding to
variable xsi, where VP := {v1, . . . , vh} ⊆ V and EP := {(ai, v1), . . . , (vh, bi)} ⊆
E. We can rewrite the reduced cost of variable xsi as

rcsi := −π̃2
i − ci(1− π̃4

ri
) +
∑

e∈EP

ce(1 − π̃4
ri

) +
∑

v∈VP

−(π̃1
v + dvπ̃

3
ri

) (17)

where ci denotes the cost of edge i = (ai, bi). Now consider the graph G(i, π̃) =
(Vi, Ei), with Vi := {ai, bi}∪Fi and Ei := E(Vi)\(ai, bi), where E(Vi) denotes
the set of edges in E having both endpoints in Vi. Associate with each edge
e ∈ Ei a cost c′e = ce(1 − π̃4

ri
) and a weight ce, and associate with each node

v ∈ Fi a cost d′v = −(π̃1
v + dvπ̃

3
ri

) and a weight dv. We say that a path
P = (VP , EP ) from ai to bi in G(i, π̃) is a feasible path if∑

v∈VP

dv ≤ C − d̃(ri), (18)

∑
e∈EP

ce ≤ D − c̃(ri) + ci, (19)

and its cost is

c′(P ) =
∑

e∈EP

c′e +
∑

v∈VP

d′v. (20)

With the above definitions the following proposition holds:

Proposition 1. For any i ∈ I, the Column Generation Problem associated
with i in C(RRM) is the problem of finding a feasible path P from ai to bi in
G(i, π̃), with cost c′(P ) < π̃2

i + ci(1 − π̃4
ri

).

Proof. For any i ∈ I, the Column Generation Problem associated with i
in C(RRM) is the problem of finding a variable xsi with negative reduced
cost, such that d(s) ≤ C − d̃(ri), γsi ≤ D − c̃(ri), and s ∈ Si. For any
s = (v1, . . . , vh) ∈ Si, let P = (ai, v1, . . . , vh, bi) be the corresponding path in
G(i, π̃). xsi fulfills both capacity and distance constraints if and only if P is
feasible. Moreover, the reduced cost of xsi is given by rsi = c′(P )− π̃2

i −ci(1−
π̃4

ri
).

As described above, the Column Generation Problem for C(RRM) asso-
ciated with any insertion point i ∈ I is a Shortest Path Problem with side
constraints (i.e., feasibility constraints) defined on a graph G(i, π̃), whose size
strictly depends on |Fi|. Note that the Neighborhood Reduction described in
Section 5 corresponds to reducing the size of G(i, π̃) for any insertion point
i ∈ I. In the general case, G(i, π̃) contains negative cycles (i.e., cycles in which
the sum of the costs c′e associated with the edges and the costs d′v associated
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with the nodes is negative): indeed, while dual variables π2
i , π3

r , π4
r are non

positive, dual variables π1
v are free and usually assume positive values (note

that they are always non negative if the triangle inequality holds). Positive
values of variables π1

v usually lead to negative node costs d′v and to nega-
tive cycles in graph G(i, π̃). Therefore, the Column Generation Problem in
C(RRM) is strongly NP-hard.

Since the aim of the Neighborhood Construction phase is to find promising
variables for the Reduced Reallocation Model in a short computing time, we
solve the Column Generation Problem through a simple heuristic, whose aim
is to find as many variables with small reduced cost as possible. For any given
graph G(i, π̃), the algorithm works as follows:

1. Find an initial feasible path P = (ai, v, bi), with v ∈ Fi (such a path
always exists if Fi �= ∅).

2. Evaluate all the 1-1 feasible exchanges between each node w ∈ Fi \VP and
each node v ∈ VP , and select the best one (with respect to the cost of the
corresponding path); if this exchange leads to an improvement, perform
it and repeat from step 2.

3. Evaluate all the feasible insertions of each node w ∈ Fi \ VP in each
edge (v1, v2) ∈ EP and select the best one; if no feasible insertion exists,
terminate; otherwise, force such an insertion even if it leads to a worse
path and repeat from step 2.

Whenever a new path is generated, the corresponding variable is added
to the variable pool VP if its reduced cost is smaller than a given threshold
RCmax (say).

7 Computational Results

The performance of the Local Search Algorithm (LSA) proposed in the pre-
vious sections was evaluated by considering two classes of experiments, cor-
responding to two different possibilities for finding the initial solutions to be
possibly improved. In Class 1, the initial solution is obtained by means of
the C code corresponding to the Granular Tabu Search algorithm proposed
by Toth and Vigo [33]. In this way we get a self-contained algorithm which
requires no initial solution to be given. In several cases, the Granular Tabu
Search algorithm provides very good initial solutions, while in other cases it
provides solutions which are quite far from the best-known ones reported in
the literature. In Class 2, we start from an extremely-good feasible solution
(in several cases, the best-known solution reported in the literature), with the
aim of improving it (this is of course possible only if the initial solution is not
optimal, as it is the case for some of them).

Our computational analysis considers two well known sets of Euclidean
instances from the literature, that are generally used as standard benchmarks
for the considered problem. The first set consists of the 14 instances (with |V |
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varying from 51 to 200) proposed by Christofides, Mingozzi and Toth [6] (CMT
instances). Both real costs and rounded-integer costs have been considered for
these instances. The second set consists of the 20 large-scale instances (with
|V | varying from 201 to 484) proposed by Golden, Wasil, Kelly and Chao
[11] (GWKC instances). Only real costs have been considered for the GWKC
instances in the literature. For the second class of experiments we consider,
in addition, instance E101-14u (also called E-n101-k14), with rounded-integer
costs, from Vigo’s web page [35], and the large-scale instance tai385, with
real costs, from Taillard’s web page [29]. All the instances but tai385 (with
386 nodes and 47 routes) are denoted as Tn-kx, according to the notation
adopted by Toth and Vigo [32], where “T” is equal to “E” for VRP instances
with capacity constraints only and “D” for VRP instances with both capacity
and distance constraints, “n” and “k” indicate, respectively, the number of
nodes and the maximum number of routes, and “x” refers to the paper where
the instance was proposed.

Cordeau et al. [5] provide a computational comparison of recent VRP
heuristics on the CMT and the GWKC instances with real costs. On the CMT
instances, the best solutions are obtained by Taillard [30] in 12 cases out of 14,
Rochat and Taillard [27] for all the instances but E200-17c, Mester and Bräysy
[20] for all the instances but D200-18c. On the GWKC instances, the best
solutions are obtained by Mester and Bräysy [20] for all the 20 instances but
D281-08k, D361-09k and E400-18k, Prins [23] for instance D281-08k, Pisinger
and Ropke [22] for instance D361-09k and De Franceschi et al. [7] for instance
E400-18k. If the two instance sets are considered together, the best performers
in terms of accuracy and computing time are Mester and Bräysy [20] and Prins
[23]. It should be noted that these two methods combine population search
and local search approaches, thus allowing for a broad and deep exploration of
the solution space. Results on VRP instances with rounded-integer costs are
less reported in the papers considering heuristic methods. The best solutions
on the CMT instances are obtained by Gendreau et al. [9], Xu and Kelly
[37] and Wassan [36]. We refer the reader to [5, 20, 34] for a deeper analysis
of the most effective heuristic and metaheuristic techniques proposed in the
literature for VRP.

LSA has been tested on a Pentium M 1.86 GHz notebook with 1 GByte
RAM, running under Microsoft Windows XP Operative System, and has been
coded in C++ with Microsoft Visual C++ 6.0 compiler. The ILP solver used
in the experiments is ILOG Cplex 10.0 [15] with a limit of 30,000 branching
nodes. In the Reallocation step we provide to the ILP solver the feasible
solution corresponding to the current incumbent VRP solution, where each
basic sequence is just reallocated to its corresponding pivot insertion point. In
this way the ILP solver can immediately initialize its own incumbent solution,
so every subsequent update (if any) corresponds to an improved VRP solution
(the run being interrupted as soon as the internal ILP lower bound gives no
hope to find an improvement).
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LSA setting depends on the parameters RCMAX , p and λ, which are re-
lated to the neighborhood size. Although RCMAX could be tuned considering
the edge costs of the tested instances, we prefer to run all the experiments
with a fixed value of RCMAX , and we fix RCMAX = 1. For the CMT instances
we fix p = 0.5 and consider two different settings for λ, namely λ = 1 (strong
reduction) and λ = ∞ (feasibility reduction). For the GWKC instances we fix
p = 0.3 and λ = 1, in order to reduce the number of variables generated for the
Reallocation Model (in some GWKC instances, if λ = ∞ we cannot handle
the Reallocation Model, because of the excessive memory requirement).

Tables 1 and 2 report the results obtained by algorithm LSA for the CMT
instances, with rounded-integer cost and real costs, respectively. The initial
solutions are found by applying the Granular Tabu Search algorithm [33],
and two different settings of λ are compared (i.e., λ = ∞ and λ = 1). The
columns in the tables have the following meaning:

- Prev. best is the previously best known solution value from the literature;
provable optimal values are marked by ∗;

- Start is the value of the initial solution;
- Final is the value of the solution found by LSA (the number of used routes

is given if it is smaller than the maximum one);
- Time is the total computing time (in seconds) required by LSA to termi-

nate the search process.

For each instance, the best solution value reported in the table is represented in
bold face. All the provably optimal solution values are obtained by Fukasawa
et al. [8] for instances with rounded-integer costs, while instance E051-05e with
real costs has been solved to optimality by Hadjiconstantinou et al. [13].

The two tested configurations always provide the same final solution value,
but strong reduction (λ = 1) outperforms feasibility reduction (λ = ∞) in
terms of computing time. The results show that LSA is able to improve sub-
stantially the initial solution, even for the instances for which the Granular
Tabu Search algorithm provides very good-quality solutions. Table 1 shows
that, with rounded-integer costs, LSA improves the initial solution in 12 cases
out of 14 (failing, of course, for instances E-051-05e and E101-10c, where the
initial solution is proved to be optimal). In particular, in 7 cases out of 12,
LSA is able to reach the best-known solution (which in 2 cases is optimal),
and in 3 cases out of 12 it improves the previous best-known solution. Table
2 shows that, with real costs, LSA improves the initial solution in 10 cases
out of 14 (i.e., whenever the initial solution is not the best-known one) and
in 3 cases it is able to reach the best-known solution. Note that, for instance
E200-17c, with both rounded-integer costs and real costs, LSA is able to find
a solution with an empty route (i.e., it is able to reduce the number of used
routes from 17 to 16). In order to find feasible solutions for this instance
using the maximum number of available routes, we ran LSA by associating
an infinite cost with the empty routes (i.e., with the insertion points (0,0)).
With rounded-integer costs, we found a solution of value 1288 in 3992 seconds,
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Table 1. Computational results for the 14 CMT instances with rounded-integer
costs. Initial solutions obtained by means of the C code of Toth and Vigo [33]. (∗)
provable optimal solution value.

LSA (λ = ∞) LSA (λ = 1)

Instance Prev. best Start Final Time Final Time

D051-06c 548 551 548 15 548 10
D076-11c 905 915 905 146 905 133
D101-09c 856 858 856 66 856 52
D101-11c 865 866 865 506 865 67
D121-11c 1526 1536 1524 795 1524 670
D151-14c 1147 1162 1146 441 1146 281
D200-18c 1392 1422 1392 1826 1392 1001

E051-05e ∗ 521 521 — 7 — 5
E076-10e ∗ 830 836 832 66 832 57
E101-08e ∗ 815 817 815 85 815 66
E101-10c ∗ 820 820 — 56 — 20
E121-07c ∗ 1034 1036 1034 95 1034 62
E151-12c 1015 1026 1024 1298 1024 367
E200-17c 1289 1304 (16)1285 3431 (16)1285 1959

Table 2. Computational results for the 14 CMT instances with real costs. Initial
solutions obtained by means of the C code of Toth and Vigo [33]. (∗) provable
optimal solution value.

LSA (λ = ∞) LSA (λ = 1)

Instance Prev. best Start Final Time Final Time

D051-06c 555.43 555.43 — 8 — 6
D076-11c 909.68 920.72 912.49 123 912.49 113
D101-09c 865.94 869.48 865.94 128 865.94 91
D101-11c 866.37 866.37 — 975 — 83
D121-11c 1541.14 1545.51 1543.73 646 1543.73 601
D151-14c 1162.55 1173.12 1164.12 453 1164.12 441
D200-18c 1395.85 1435.74 1403.71 6458 1403.71 3370

E051-05e ∗ 524.61 524.61 — 8 — 6
E076-10e 835.26 838.60 835.32 53 835.32 37
E101-08e 826.14 828.56 826.14 81 826.14 77
E101-10c 819.56 819.56 — 66 — 41
E121-07c 1042.11 1042.87 1042.11 136 1042.11 92
E151-12c 1028.42 1033.21 1031.71 1157 1031.71 458
E200-17c 1291.29 1318.25 (16)1301.52 6202 (16)1301.52 2718
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Table 3. Computational results for the 20 large-scale GWKC instances. Initial
solutions obtained by means of the C code of Toth and Vigo [33].

LSA (λ = 1)

Instance Prev. best Start Final Time

D201-05k 6460.98 6697.53 6654.00 421
D241-10k 5627.54 5736.15 5728.91 373
D281-08k 8412.80 8963.32 (7)8535.35 1080
D321-10k 8447.92 8553.03 8459.73 1444
D361-09k 10181.75 10547.44 10276.81 4043
D401-10k 11036.22 11402.75 11115.95 2819
D441-11k 11663.55 12036.24 11847.68 3357
D481-12k 13624.52 14910.62 (10)13886.64 4921

E241-22k 707.79 711.07 709.23 5636
E253-27k 859.11 868.80 (26)862.84 25439
E256-14k 583.39 593.35 586.85 27257
E301-28k 997.52 1016.83 (27)1000.39 11495
E321-30k 1081.31 1096.18 1087.48 18330
E324-16k 741.56 751.66 743.35 50386
E361-33k 1366.86 1400.96 1372.38 68445
E397-34k 1345.23 1369.44 (33)1347.03 26492
E400-18k 918.42 936.04 927.96 86323
E421-41k 1820.09 1915.83 (38)1836.54 46219
E481-38k 1622.69 1652.32 (37)1623.52 80819
E484-19k 1107.19 1147.14 1132.75 58321

while, with real costs, we found a solution of value 1301.79 in 5420 seconds.
Finally, we ran LSA with an unlimited number of iterations (i.e., when the list
Θ of the available selection criteria is empty we restart from the Initializa-

tion step) and a time limit of 10 hours, looking for possible better solutions.
With rounded-integer costs, LSA found a solution of value 1145 after 1141
seconds for instance D151-14c, and a solution of value 1378 after 11006 sec-
onds for instance D200-18c. (Note that these solutions correspond to a further
improvement on the corresponding previous best-known solutions.) With real
costs, LSA found a solution of value 1162.99 after 1791 seconds for instance
D151-14c, and a solution of value 1399.92 after 15676 seconds for instance
D200-18c.

Table 3 reports the results obtained by algorithm LSA for the 20 large-
scale GWKC instances. The columns have the same meaning as in the previous
tables.

For these instances, the initial solutions found by the C code of Toth and
Vigo [33] are quite far from the best-known solutions from the literature.
The table shows that LSA always improves substantially the initial solutions,
but it never reaches the best-known ones (although in some cases it reduces
the number of used routes). This is probably due to the regular structure
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of these instances, which allows LSA to find only small improvements of the
incumbent solution, and to the value of parameter p which is fixed to 0.3 (i.e.,
at each iteration only 30% of the customers are extracted on average from the
incumbent solution) to avoid an excessive memory requirement.

For the second class of experiments, in which we start from a good feasible
solution taken from the literature, we selected the same initial solutions as in
De Franceschi et al. [7]. In this way, we can compare LSA with the method
proposed in [7]. Computational results for this class of experiments, concerning
the 14 CMT instances with both rounded-integer costs and real costs, the 13
large-scale instances with only capacity constraints, and instance E101-14u,
are reported in Table 4. The columns have the same meaning as in the previous
tables. We also report the computational results taken from [7] (algorithm
SERR), which were obtained on an AMD Athlon XP 2400+ PC with 1 GByte
RAM, using ILOG Cplex 8.1 [14] as ILP solver. The computing times refer
to machines with similar performance, and can be used for comparing the
two approaches. In addition, we report the font of the initial solution we
start from (Source), and, in the last column, all the new best-known solution
values found by LSA (New best). Note that for instance E151-12c, with
rounded-integer costs, the initial solution (taken from [29]) corresponds to
instance M-n151-k12, which is the same as E151-12c with a different order of
the nodes.

The table shows that LSA clearly outperforms the method proposed in
[7] in terms of the quality of the solution found. Moreover, in many cases,
the computational effort for finding the final solution is strongly reduced.
Finally, concerning the large-scale VRP instances, when starting from very
good solutions, LSA is able to improve the best-known solution from the
literature in 7 cases out of 13.

8 Conclusions and Future Research Directions

We presented a Local Search algorithm for the classical Vehicle Routing Prob-
lem (VRP), based on an exponential neighborhood which is explored by solv-
ing an NP-hard ILP problem. We investigated the neighborhood structure
and the Column Generation Problem associated with the LP relaxation of
the ILP formulation used for the neighborhood exploration. We showed that
the Column Generation Problem is NP-hard, and we proposed a two-phase
approach for an effective neighborhood exploration, which first reduces the
neighborhood size through a simple heuristic procedure, and then explores
the reduced neighborhood by solving the corresponding ILP problem through
the (heuristic) solution of the Column Generation Problem associated with
its LP relaxation.

Computational results on 50 capacitated VRP instances from the litera-
ture (with/without distance constraints) showed that the proposed method
can be used as a profitable tool for improving existing VRP solutions, and
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Table 4. Comparison on benchmark instances with “good” CVRP/DCVRP initial
solutions from the literature. (∗) provable optimal solution value. (1) solution with
an empty route; for the same instance LSA finds a solution of value 1288 with
no empty routes. (2) solution obtained starting from a different solution of value
24431.44 as reported in [7].

SERR [7] LSA (λ = 1)

Instance Prev. best Start Source Final Time Final Time New best
D051-06c 548 548 [9] — — — 5 —
D076-11c 905 907 [9] 905 178 905 30 —
D101-09c 856 856 [9] — — — 48 —
D101-11c 865 866 [9] 865 1274 865 69 —
D121-11c 1526 1529 [9] 1526 26622 1524 337 1524
D151-14c 1147 1180 [9] 1161 44578 1146 734 1145
D200-18c 1392 1404 [9] 1398 4075 1385 1384 1378
E051-05e ∗ 521 521 [9] — — — 5 —
E076-10e ∗ 830 832 [9] 831 279 831 25 —
E101-08e ∗ 815 815 [9] — — — 51 —
E101-10c ∗ 820 824 [9] 820 18 820 38 —
E121-07c ∗ 1034 1035 [9] 1034 89 1034 63 —
E151-12c 1015 1016 [29] 1015 377 1015 283 —
E200-17c 1289 1316 [9] 1307 48488 1292 5940 12851

D051-06c 555.43 555.43 [9] — — — 6 —
D076-11c 909.68 913.23 [9] — — 911.76 40 —
D101-09c 865.94 865.94 [9] — — — 60 —
D101-11c 866.37 866.37 [9] — — — 83 —
D121-11c 1541.14 1551.63 [9] 1546.10 232466 1545.56 871 —
D151-14c 1162.55 1189.79 [9] 1178.02 7431 1164.55 915 —
D200-18c 1395.85 1421.88 [9] 1416.47 42262 1406.47 2759 —
E051-05e ∗ 524.61 524.61 [9] — — — 6 —
E076-10e 835.26 836.37 [9] 835.26 381 835.26 34 —
E101-08e 826.14 826.14 [9] — — — 60 —
E101-10c 819.56 822.85 [9] 819.56 20 819.56 45 —
E121-07c 1042.11 1043.94 [9] 1043.42 115 1042.11 94 —
E151-12c 1028.42 1034.90 [9] 1034.50 397 1031.07 1023 —
E200-17c 1291.29 1311.35 [10] 1305.35 18386 1301.79 1686 —
E241-22k 707.79 707.79 [19] — — — 5225 —
E253-27k 859.11 (26)859.11 [19] — — — 4259 —
E256-14k 583.39 583.39 [19] — — 582.64 19903 582.64
E301-28k 997.52 (27)998.73 [19] — — (27)998.69 9440 —
E321-30k 1081.31 1081.31 [19] — — — 7194 —
E324-16k 741.56 742.04 [19] 741.70 61662 739.53 45516 739.53
E361-33k 1366.86 1366.86 [19] — — 1366.54 12717 1366.54
E397-34k 1345.23 (33)1345.23 [19] — — (33)1343.47 31629 1343.47
E400-18k 918.42 918.45 [19] 918.42 5585 916.62 63207 916.62
E421-41k 1820.09 (38)1821.15 [19] — — (38)1820.94 15721 —
E481-38k 1622.69 (37)1622.69 [19] — — (37)1622.39 36867 1622.39
E484-19k 1107.19 1107.19 [19] — — — 23792 —
E101-14u ∗ 1067 1076 [35] 1067 2866 1067 139 —

tai385 24422.50 24435.50 [29] 24422.502 152287 24421.11 8271 24421.11

that even extremely-good quality solutions found by the most effective meta-
heuristic techniques proposed for VRP can be further improved. In 11 cases,
the proposed method was able to improve the best-known solution reported in
the literature. All the new best-known solutions found are available on request
from the authors.

Future directions of work could involve more sophisticated algorithms for
the Column Generation Problem, which turns out to be the crucial step of
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the entire method, and the extension of the approach to other variants of
Vehicle Routing Problems, as, for example, Vehicle Routing Problems with
heterogenous vehicles and multi-depot Vehicle Routing Problems.

Acknowledgement

Work partially supported by PRIN Project 2005099974 (MUR), Italy. Thanks
are also due to two anonymous referees for their helpful comments and sug-
gestions.

References

1. P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and
G. Rinaldi. Computational results with a branch and cut code for the capac-
itated vehicle routing problem. Techinal Report RR 949-M, Université Joseph
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Summary. This chapter presents techniques for constructing robust Branch-Cut-
and-Price algorithms on a number of Vehicle Routing Problem variants. The word
“robust” stresses the effort of controlling the worst-case complexity of the pricing
subproblem, keeping it pseudo-polynomial. Besides summarizing older research on
the topic, some promising new lines of investigation are also presented, specially
the development of new families of cuts over large extended formulations. Compu-
tational experiments over benchmark instances from ACVRP, COVRP, CVRP and
HFVRP variants are provided.

Key words: Column generation; cutting plane algorithms; extended formulations;
branch-and-bound.

1 Introduction

Branch-and-cut and branch-and-price were established in the 1980’s as two
of the most important techniques in integer programming and combinatorial
optimization. Of course, some people considered the possibility of combining
the strengths of both techniques into a more powerful Branch-Cut-and-Price
(BCP) algorithm. However, for some time this was not considered to be prac-
tical [8], since the new dual variables corresponding to separated cuts would
have the undesirable effect of changing the structure of the pricing subprob-
lem, making it potentially intractable. However, in the late 1990’s, some re-
searchers [7, 15, 26, 27, 37, 38] independently noted that cuts expressed in
terms of variables from a suitable original formulation could be dynamically
separated, translated and added to the master problem. Those cuts would
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not change the structure of the pricing subproblem. This last property de-
fines what Poggi de Aragão and Uchoa called Robust Branch-Cut-and-Price
(RBCP) algorithms [35].

Robustness is a desirable property of a BCP. There is an asymmetry be-
tween the cutting and pricing operations in that kind of algorithm. If the
separation subproblem for some family of cuts happens to be intractable,
heuristics may be used. When the heuristics fail, some violated cuts may have
been missed, but one certainly has a valid dual bound. There is no need to ever
call an exact separation. On the other hand, even with good pricing heuris-
tics, at least one call to the exact pricing is necessary to establish a valid dual
bound. If the addition of cuts changes the structure of the pricing, making
it unpredictably harder, there is a risk of having to solve to optimality an
intractable subproblem. In such a case the whole algorithm would fail.

A RBCP for the Capacitated Vehicle Routing Problem (CVRP) was pre-
sented in Fukasawa et al. [17, 18]. It combined column generation over q-routes
with cuts over the edge CVRP formulation. A q-route is a walk that starts
at the depot vertex, traverses a sequence of client vertices with total demand
at most equal to the capacity, and returns to the depot. While pricing actual
CVRP routes – capacitated elementary cycles – would lead to a strongly NP-
hard problem, q-routes can be priced in pseudo-polynomial time by dynamic
programming. Since the values of new dual variables corresponding to cuts
over the edge variables can be translated into dynamic programming costs,
the pricing is guaranteed to remain tractable in that RBCP. The algorithm
actually showed a steady behavior and could solve all benchmark instances
from the literature with up to 135 vertices, improving significantly upon pre-
vious algorithms. It should be remarked that a RBCP algorithm by Kohl
et al. [27] had already been successful on the Vehicle Routing Problem with
Time Windows (VRPTW), consistently solving tightly constrained instances
(those with narrow time windows) with up to 100 clients.

While it is clear that VRP algorithms have a lot to gain from the com-
bination of cutting and pricing, it is interesting (and somehow surprisingly
to us) to know that successful non-robust BCPs were also proposed recently.
The VRPTW algorithm by Jepsen et al. [24] uses clique and odd-hole cuts
defined over the variables of the master problem. The complicated strongly
NP-hard pricing is tackled by a dynamic programming that tries to avoid the
combinatorial explosion using clever state dominance rules. Some formerly
open instances could be solved with almost no branching, but the algorithm
failed completely on a few other instances already solved by other authors.
The CVRP algorithm by Baldacci et al. [6] also uses cuts over the master
variables, including cliques. Besides having a good dynamic programming to
handle the complicated pricing, there is another crucial idea. A sequence of
cheaper lower bounding procedures produces good estimates of the optimal
dual variable values. The non-robust BCP is called with the dual variables
bounded to be above and close to the estimates, similarly to what is done in
stabilized column generation [14]. Convergence (to a bound slightly below the
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theoretical optimal) is obtained with very few calls to the unpredictably ex-
pensive pricing. The overall algorithm could solve almost all instances solved
by Fukasawa et al., usually taking much less time.

Anyway, this chapter is about Robust BCP algorithms for some VRP vari-
ants with only capacity constraints. The main ideas will be presented in the
Asymmetric Capacitated Vehicle Routing Problem (ACVRP). As shown in
the sequence, a BCP for the ACVRP can be easily adapted to its symmetric
counterpart (CVRP) and also to Open (COVRP), and Heterogeneous Fleet
(HFVRP) VRP variants. Besides presenting techniques similar to those uti-
lized in [17], we also introduce a discussion about promising new families of
cuts defined over a pseudo-polynomially large extended formulation. We may
view those extended cuts as lying at the frontier of robustness, i.e., they are the
most general kind of cuts that can be added without disturbing the dynamic
programming pricing of q-routes.

2 Formulations and Valid Inequalities for the ACVRP

Let G = (V, A) be a directed graph with vertices V = {0, 1, . . . , n} and m =
|A| arcs. Vertex 0 is the depot, other vertices are clients. Each client vertex
i is associated with a positive integer demand d(i). Depot demand d(0) is
defined as zero. Each arc a ∈ A has a nonnegative cost ca. Given a positive
integer C greater than or equal to the maximum demand, the Asymmetric
Capacitated Vehicle Routing Problem (ACVRP) problem consists of finding
a set of routes satisfying the following constraints: (i) each route starts and
ends at the depot, (ii) each client is visited by a single route, and (iii) the
total demand of all clients in any route is at most C. The goal is to minimize
total route cost. In many cases there are lower and/or upper bounds on the
number of routes. We omit those possible additional constraints for sake of
simplicity.

2.1 Arc Formulation

The arc formulation (a.k.a. two-index formulation) for the ACVRP uses binary
variables xa to indicate whether arc a belongs to the optimal solution. Define
V+ = {1, . . . , n} as the set of all clients. For any set S ⊆ V , we let d(S) =∑

i∈S d(i), k(S) = d(S)/C�, A(S) = {(i, j) ∈ A : i, j ∈ S}, δ−(S) = {(i, j) ∈
A : i ∈ V \ S, j ∈ S}, and δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S}. Let
x(A′) =

∑
a∈A′ xa for any A′ ⊆ A. The formulation follows:
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Minimize
∑

a∈A

caxa (1a)

S.t.
x(δ−({i})) = 1 (∀ i ∈ V+), (1b)
x(δ+({i})) = 1 (∀ i ∈ V+), (1c)

x(δ−(S)) ≥ k(S) (∀S ⊆ V+), (1d)
xa ∈ {0, 1} (∀ a ∈ A). (1e)

The in-degree constraints (1b) state that exactly one arc must enter each
non-depot vertex. Similarly, the out-degree constraints (1c) state that exactly
one arc must leave each client vertex. The rounded capacity cuts (1d) state
that at least k(S) arcs must enter each set S. Even for other VRP variants,
inequalities of the form

x(δ−(S)) ≥ K(S) (∀S ⊆ V+), (2)

where K(S) is a lower bound on the minimum number of vehicles necessary
to cover the clients in set S will be called capacity cuts. For example, the path
inequalities for the VRPTW [25, 27] can be viewed as capacity cuts.

The arc formulation can be improved by adding an exponential number of
variables corresponding to the q-routes. Number all possible q-routes from 1
to p. Define qj

a as the number of times arc a appears in j-th q-route and λj

as the positive variable associated to that q-route.

Minimize
∑

a∈A

caxa (3a)

S.t.
p∑

j=1

qj
aλj − xa = 0 (∀ a ∈ A), (3b)

x(δ−({i})) = 1 (∀ i ∈ V+), (3c)
x(δ−(S)) ≥ k(S) (∀S ⊆ V+), (3d)

λj ≥ 0 (j = 1, . . . , p), (3e)
xa ∈ {0, 1} (∀ a ∈ A). (3f)

This formulation includes all variables and constraints from the arc formula-
tion, but new constraints (3b) impose that x must also be a weighted sum
of arc-incidence vectors of q-routes. This restriction leads to a significantly
stronger formulation. Note that out-degree constraints (1c) are implied by
(3b) and (3c).

Pricing the λ variables requires the solution of minimum cost q-route prob-
lems, which can be solved in O(n2C) time. Houck et al. [22] and Christofides
et al. [11] noticed that one can find minimum cost q-routes without 2-cycles
(subpaths i → j → i, i �= 0) without changing this complexity. This immedi-
ately leads to a stronger formulation. Minimum cost q-routes without s-cycles
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can be found in O(s!s2n2C) time [23, 17], which is still pseudo-polynomial
for fixed s. Of course, larger values of s give stronger formulations. Pricing
q-routes without any sub-cycle (i.e., elementary routes) is a strongly NP-hard
problem.

When solving the linear relaxation of (3) by column and row generation,
a more compact Master LP is obtained if every occurrence xa in (3c)–(3d) is
replaced by its equivalent given by (3b). The resulting LP will be referred to
as the Dantzig-Wolfe Master (DWM):

Minimize
p∑

j=1

(
∑

a∈A

caqj
a)λj (4a)

S.t.
p∑

j=1

(
∑

a∈δ−({i})
qj
a)λj = 1 (∀ i ∈ V+), (4b)

p∑
j=1

(
∑

a∈δ−(S)

qj
a)λj ≥ k(S) (∀S ⊆ V+), (4c)

λj ≥ 0 (j = 1, . . . , p). (4d)

The reduced cost of a λ variable is the sum of the reduced costs of the arcs
in the corresponding q-route. Let ω and π be the dual variables associated
with constraints (4b) and (4c), respectively. The reduced cost c̄a of an arc a
is given by:

c̄a = ca − ωj −
∑

S|a∈δ−(S)

πS (∀a = (i, j) ∈ A). (5)

Capacity Cuts are not the only ones that can appear in the DWM. A generic
cut
∑

a∈A αaxa ≥ b can be included as
∑p

j=1(
∑

a∈A αaqj
a)λj ≥ b. This cut

contributes to the computation of c̄a with the value −αaβ, where β is the new
dual variable. The addition of cuts to the DWM affects the reduced costs but
not the structure of the subproblem.

The possibility of adding such extra cuts naturally leads to the question
of which cuts to add. Many cuts valid for the symmetric cost case (CVRP)
are known [1, 2, 3, 4, 12, 28, 33, 32]. They are defined over undirected edge
variables, but can also be used on the ACVRP by replacing each such variable
by the corresponding pair of opposite arcs. There are directed cuts devised
for the VRPTW [25, 31], but, as far as we know, no cuts were specifically
suggested for the ACVRP. However, cuts for the directed arc formulation
of the capacitated minimum spanning tree problem (CMST) [2, 21] can be
applied on the ACVRP. For example, the following cuts, known as root cutsets,
are valid for the ACVRP. Define Sα = {i ∈ V \ S : k(S ∪ {i}) = k(S)} and
Sβ = (V \ S) \ Sα. Note that the depot always belongs to Sα.

k(S)+1
k(S) x(δ−(S) ∩ δ+(Sα)) + x(δ−(S) ∩ δ+(Sβ)) ≥ k(S) + 1 (∀S ⊆ V+).(6)
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Those constraints are actually a strengthening of the rounded capacity cuts,
based on the observation that if one of the routes covering S comes from a
higher demand client in Sβ , at least k(S) + 1 routes must enter S.

Unhappily, computational experiments have shown that adding other
known arc or edge inequalities other than the capacity cuts only improve
bounds modestly. For example, consider the CVRP algorithm in [17]. In that
case, several complex families of cuts known to be effective in a pure branch-
and-cut algorithm [32] were separated: framed capacities, generalized capac-
ities, strengthened combs, multistars, and extended hypotours. Surprisingly,
however, the resulting bounds were not significantly better than those ob-
tained by only separating rounded capacity cuts. A possible explanation is
that most such cuts are already implicitly given by the q-route structure used
in the column generation part. This explanation received some theoretical
support. Letchford and Salazar [30] proved that generalized large multistar
inequalities are indeed implied by the q-route definition.

In order to improve significantly over the bounds given by (4) in a robust
way, we can look for other families of cuts, radically different from those
currently used on the arc or edge formulations.

2.2 Introducing Capacity-Indexed Variables

There is an extended formulation for the ACVRP similar to a formulation by
Picard and Queyranne [34] for the time-dependant TSP. Godinho et al. [19]
used it for the case of unitary demands. Let binary variables xd

a indicate that
arc a = (i, j) belongs to a route and that the total demand of j and of the
vertices following j in the route is exactly d. The arcs returning to the depot
must have d = 0.

Minimize
∑

a∈A

ca

C∑
d=0

xd
a (7a)

S.t. ∑
a∈δ−({i})

C∑
d=1

xd
a = 1 (∀ i ∈ V+), (7b)

∑
a∈δ+({i})

C∑
d=1

xd
a = 1 (∀ i ∈ V+), (7c)

∑
a∈δ−({i})

xd
a −

∑
a∈δ+({i})

x
d−d(i)
a = 0 (∀i ∈ V+; d = d(i), . . . , C),(7d)

xd
a ∈ {0, 1} (∀ a ∈ A; d = 1, . . . , C), (7e)
xd

(i,0) = 0 (∀ i ∈ V+; d = 1, . . . , C). (7f)

Equations (7b) and (7c) are in-degree and out-degree constraints. Equations
(7d) state that if an arc with index d enters vertex i then an arc with index
d−d(i) must leave i. This both prevents cycles and routes with total demand
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greater than C. Variables with index distinct from 0 to the depot can be
removed. Note that variables xd

ij with d > C − d(i) can also be removed. To
provide a more simple and precise notation of this formulation, we define a
directed multigraph GC = (V, AC), where AC contains arcs (i, j)d, for each
(i, j) ∈ A, d = 1, . . . , C−d(i), and (i, 0)0, i ∈ V+. When working with variables
xd

a it is assumed that δ−(S) and δ+(S) are the subsets of arcs in AC , with
any index, entering and leaving S, respectively. Denote by δ−d (S) and δ+

d (S)
the sets of arcs with index d entering and leaving S. For example, equations
(7b) will be written as: ∑

ad∈δ−({i})
xd

a = 1 (∀ i ∈ V+). (8)

The linear relaxation of this formulation yields a weak bound, the same of
a column generation over the q-routes without any cycle elimination (i.e.,
it is equivalent to a formulation with constraints (3b), (3c), (3e), and (3f)).
Therefore, using the capacity-indexed formulation directly in a branch-and-
bound algorithm is not interesting. However, this formulation may be useful
in a branch-and-cut approach. Of course, since xa can be defined as the sum of
the xd

a variables, for all existing d, any inequality valid for the arc formulation
could be used in that algorithm. But the potential advantage of the capacity-
indexed formulation is to allow the derivation and separation of new families
of cuts defined over this pseudo-polynomially large extended variable space.
Anyway, working directly with this formulation is only practical for small
values of capacity, as there are O(mC) variables and O(nC) constraints.

The capacity-indexed formulation can be naturally rewritten in terms of
q-routes. Define qdj

a as the number of arcs a carrying exactly d units of capacity
in the j-th q-route. Also including the rounded capacity cuts, we get:

Minimize
∑

ad∈A

caxd
a (9a)

S.t.
p∑

j=1

qdj
a λj − xd

a = 0 (∀ ad ∈ AC), (9b)

∑
ad∈δ−({i})

xd
a = 1 (∀ i ∈ V+), (9c)

∑
ad∈δ−(S)

xd
a ≥ k(S) (∀S ⊆ V+), (9d)

λj ≥ 0 (j = 1, . . . , p), (9e)
xd

a ∈ {0, 1} (∀ ad ∈ AC). (9f)

It can be noted that equalities (7d) are already implied by the definition of
q-routes together with (9b). Eliminating the x variables, we can write the
Dantzig-Wolfe Master (DWM) as:
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Minimize
p∑

j=1

(
∑

ad∈AC

qdj
a ca)λj (10a)

S.t.
p∑

j=1

(
∑

ad∈δ−({i})
qdj
a )λj = 1 (∀ i ∈ V+), (10b)

p∑
j=1

(
∑

ad∈δ−(S)

qdj
a )λj ≥ k(S) (∀S ⊆ V+), (10c)

λj ≥ 0 (j = 1, . . . , p). (10d)

This LP and (4) are exactly the same. But now it is clear that a generic cut
i over the extended variables ∑

ad∈AC

αd
aix

d
a ≥ bi (11)

can be also included in the DWM as
p∑

j=1

(
∑

ad∈AC

αd
aiq

dj
a )λj ≥ bi. (12)

Suppose that, at a given instant, we have a total of m constraints (possibly
including in-degree and capacity cuts) in the DWM, the i-th constraint having
dual variable βi. The reduced cost of arc a with index d is given by:

c̄d
a = ca −

m∑
i=1

αd
aiβi. (13)

The above reformulation presents some remarkable features in a branch-
cut-and-price context. It allows the introduction of new cuts over the capacity-
indexed variables, even for large values of C, without having to explicitly
introduce any new variables. This means that the size of the LPs that are
actually solved is basically unchanged. Moreover, those new cuts are robust
with respect to the pricing of q-routes. This means that computing a minimum
q-route using reduced costs c̄d

a can still be done in pseudo-polynomial time,
basically by the same dynamic programming algorithm.

2.3 Extended Capacity Cuts

We introduce a family of cuts over the capacity-indexed variables. For each
vertex i ∈ V+ the following balance equation is valid:∑

ad∈δ−(i)

dxd
a −

∑
ad∈δ+(i)

dxd
a = d(i) . (14)

Let S ⊆ V+ be a set of vertices. Summing the equalities (14) corresponding
to each i ∈ S, we get the capacity-balance equation over S:
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ad∈δ−(S)

dxd
a −

∑
ad∈δ+(S)

dxd
a = d(S) . (15)

It can be noted that those equations are always satisfied by the solutions of
(10) (translated to the xd space by (9b)). Nevertheless, they can be viewed as
the source of a rich family of cuts.

Definition 1. An Extended Capacity Cut (ECC) over S is any inequality
valid for P (S), the polyhedron given by the convex hull of the 0-1 solutions of
(15).

The traditional rounded capacity cuts (1d) could be derived only from the
above definition: for a given S relax (15) to ≥, divide both sides by C and
round coefficients up. Remember that δ+(S) contains no arc with capacity C,
so all such coefficients are rounded to zero. All coefficients corresponding to
δ−(S) are rounded to one. Therefore they are ECCs. A slightly more complex
reasoning shows that:

Proposition 1. The root cutset inequalities (6) are ECCs.

Proof. For any S ⊆ V+, the following inequality is clearly valid for P (S):∑
ad∈δ−(S)

dxd
a ≥ d(S). (16)

Define d∗ = d(S) − C(k(S) − 1) − 1. If at least one variable xd
a with d ≤ d∗

is set to one, we still need k(S) additional variables set to one to satisfy (16).
Otherwise, if all variables set to one have d > d∗, we need at least k(S) such
variables to satisfy (16). Hence

k(S) + 1
k(S)

∑
ad∈δ−(S) : d>d∗

xd
a +

∑
ad∈δ−(S) : d≤d∗

xd
a ≥ k(S) + 1 (17)

is also valid for P (S) and dominates (6). ��

An even stronger inequality can be obtained by considering that some arcs
leaving S with a sufficiently large demand index may receive a negative coef-
ficient:

k(S) + 1
k(S)

∑
ad∈δ−(S) : d>d∗

xd
a +

∑
ad∈δ−(S) : d≤d∗

xd
a

− 1
k(S)

∑
ad∈δ−(S) : d≥d′

xd
a ≥ k(S) + 1, (18)

where d′ is the smallest integer such that

d′ ≥ d∗ + 1−min
i∈S

{d(i)} (19)
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and
d′ ≥ C − d∗. (20)

Observe that, in any feasible ACVRP solution, each arc ad1
1 ∈ δ−(S) is associ-

ated to the next arc ad2
2 ∈ δ+(S) in the same route. Then, if at least one pair

of associated arcs has d1−d2 ≤ d∗, we still need k(S) additional entering arcs
to satisfy (15). If a variable xd

a with a ∈ δ+(S) and d ≥ d′ is set to one, then
(19) ensures that the corresponding arc enters S with demand greater than
d∗ and (20) ensures that the difference between the entering and the leaving
arc demands is not greater than d∗. In this case, the coefficient −1/k(S) re-
duces the total contribution of such pair of arcs to the left-hand side of (18)
from (k(S) + 1)/k(S) to 1. This particular ECC (18) will be referred as a
strengthened rounded capacity cut. However, many other kinds of ECCs can
be derived.

The Homogeneous Extended Capacity Cuts (HECCs) are a subset of the
ECCs where all entering variables with the same capacity have the same
coefficients, the same happening with the leaving variables. For a given set S,
define aggregated variables yd and zd as follows:

yd =
∑

ad∈δ−
d (S)

xd
a (d = 1, . . . , C), (21)

zd =
∑

ad∈δ+
d (S)

xd
a (d = 0, . . . , C). (22)

The Capacity-Balance equation over those variables is:

C∑
d=1

dyd −
C∑

d=0

dzd = d(S) . (23)

For each possible pair of values of C and D = d(S), we may define the
polyhedron P (C, D) induced by the integral solutions of (23). The inequalities
that are valid for those polyhedra are HECCs. In Subsection 3.2 we illustrate
how valid cuts can be derived and separated from that equality.

2.4 Triangle Clique Cuts

Let S ⊆ V+ be a set of exactly three vertices. The triangle clique cuts are
a family of cuts defined over the variables xd

a, with ad = (i, j)d ∈ AC and
i, j ∈ S. Let G = (V , E) be the compatibility graph where each vertex of V is
a capacity-indexed arc ad = (i, j)d ∈ AC with i, j ∈ S. In this case, an edge
e = (ad1

1 , ad2
2 ) belongs to E if and only if ad1

1 and ad2
2 are compatible. There

are four cases:

Case 1: if e = ((i, j)d1 , (i, k)d2), then e �∈ E ;
Case 2: if e = ((i, j)d1 , (k, j)d2), then e �∈ E ;
Case 3: if e = ((i, j)d1 , (j, k)d2) and d1 �= d2 + d(j), then e �∈ E ;
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d2
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e3
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2

a

Fig. 1. Part of a fractional solution over the extended variables.

Case 4: if e = ((i, j)d1 , (j, k)d2) and d1 = d2 + d(j), then e ∈ E ;

For any independent set I ⊂ V , it is clear that the following inequality is
valid ∑

ad∈I

xd
a ≤ 1. (24)

This is a well-known clique cut. However G has a nice structure that can be
explored to build a very efficient separation procedure, as will be shown in
Subsection 3.2.

2.5 Cuts over the Arc Variables versus Cuts over the Extended
Variables

We now present an example to illustrate why it can be much easier to find
a violated cut over the capacity-indexed extended variables than over the
traditional arc variables. Figure 1 displays part of a fractional xd

a solution of
a unitary demand instance with C = 4, over a set S = {1, 2, 3}. The set S is
being covered by 3 different q-routes with no cycles, each one with associated
λ variable equal to 1/2. The first q-route enters S at vertex 1 with index 4
(arc a) and leaves the set at vertex 2 (arc d) with index 2. The second q-route
enters at vertex 1 (arc b) with index 2 and leaves the set directly to the depot
(arc h). The third q-route enters at vertex 3 (arc c) with index 2 and also
leaves the set to the depot (arc i). The capacity-balance equality over the
non-zero variables entering and leaving S is:

4x4
a + 2x2

b + 2x2
c − 2x2

d = 3.

As this equation has no 0-1 solution, there must be some violated ECC over S.
For example, relaxing equation (23) to ≥, multiplying by 1/2 and performing
integer rounding, a violated HECC is found:

2y4 + 2y3 + y2 + y1 − z3 − z2 ≥ 2.

The same solution can also be cut by a triangle clique inequality:
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x3
e + x1

f + x1
g ≤ 1.

In fact, taking a maximal independent set in G we can get a stronger lifted
triangle clique:

x3
e +x3

(2,3) +x3
(3,1) +x3

f +x3
g +x3

(2,1) +x1
e +x1

(2,3) +x1
(3,1) +x1

f +x1
g +x1

(2,1) ≤ 1.

On the other hand, it is impossible to cut this fractional solution in the xa

space by only looking at the variables entering and leaving S, and even by also
looking at those inside S. This is true because the incidence vector formed by
xa = xb = xc = xd = xe = xf = xg = xh = xi = 1/2 and all the remaining
variables in (δ−(S) ∪ δ+(S) ∪ A(S)) equal to 0 is a convex combination of
two valid ACVRP solutions: the first with one route covering S using arcs
{b, f, g, i}; the second solution covering S with two routes, using arcs {a, e, d}
and {c, h}. Of course, there must be some violated cut over the xa space. But
such a cut must involve other variables and is likely to be much more complex
to identify and separate.

3 A Robust Branch-Cut-and-Price Algorithm

3.1 Column Generation

Recall that the reduced cost of a λ variable in DWM (10) is the sum of
the reduced costs c̄d

a of the arcs in the corresponding q-route. Those reduced
costs are calculated using equations (13). The pricing subproblem of finding
the q-routes yielding a variable with minimum reduced cost is NP-hard (it
contains the capacitated shortest path problem), but can be solved in pseudo-
polynomial time. The basic data structure is a C × n matrix R. Each entry
R(d, v) represents the least costly walk that starts at vertex v with total
demand exactly d and ends at the depot. The entry contains a label consisting
of the vertex (v), the cost of the walk (denoted by c̄(R(d, v))), and a pointer to
a label representing the walk up to the next vertex. Initially, the only known
label represents an empty path and has cost zero (it can be seen as entry
R(0, 0)); all other entries are initialized with labels representing empty walks
with infinite cost. The dynamic programming recursion given by

c̄(R(d, v)) = min
w∈δ+({v})

{c̄(R(d− d(v), w)) + c̄d
vw}

is used to fill the entries of matrix R. Eventually, we will have the most
negative walk with accumulated demand at most C that arrives at each vertex
v. Extending the walk to the depot (whose demand is zero), we obtain the
corresponding q-route. All negative q-routes thus found (there will be at most
n, one coming from each vertex) are added to the linear program. There are
nC entries in the matrix, and each is processed in O(n) time, so the total
running time is O(n2C).
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Cycle Elimination

To strengthen the formulation, we could look for q-routes without cycles. Since
this problem is strongly NP-hard, we settle for s-cycle-free q-routes, for small
values of s. The algorithm operates as above, using dynamic programming to
fill a C×n matrix with partial walks. Labels retain the exact same meaning as
before, but now each entry in the matrix contains no longer a single label, but
a bucket of labels. Therefore, bucket R(d, v) represents not only the cheapest
s-cycle-free walk with total demand d that ends in v, but also alternative
walks that ensure that all possible extensions from v with exactly s vertices
are considered. Only non-dominated labels are kept. A label � is s-dominated
by a set of labels L if no label in L costs more than � and if every path p of
length s that can legally extend � ( i.e., without creating an s-cycle) can also
extend some label of L.

Houck et al. [22] and Christofides et al. [11] already noted only two labels
must be kept for the case s = 2. Given any three labels in the same bucket,
the one with highest cost will be dominated by one of the others. So in this
case the overall complexity is still O(n2C). For larger values of s, deciding
which labels to keep becomes significantly more complicated, see [23, 17] for
details. It is worth mentioning that buckets must have size at least s!, yielding
a complexity of O(s!s2n2C). The value s = 3 usually gives a good balance
between formulation strength and pricing time.

3.2 Separation Routines

Let λ̄ be a fractional solution of the DWM LP. This solution can be converted
into a x̄ solution over the capacity-indexed arc space using equations (9b).
Violated cuts of form (11) can be separated and added to the DWM as (12).
In this subsection, we describe separation procedures for the families of cuts
discussed previously.

CVRP Cuts

As mentioned before, all cuts known to be valid for the CVRP can be separated
in this ACVRP algorithm. However, there is no point in introducing CVRP
rounded capacity cuts, since they are dominated by inequalities (18). Among
the many other families of CVRP cuts used in [32] and [17], we only separated
strengthened combs. They improve bounds modestly. The other families did
not produced any significant improvement.

Extended Capacity Cuts

Our procedure starts by choosing candidate sets S. Those candidates include:

• All sets S up to cardinality 6 which are connected in the support graph of
the fractional solution x̄, i.e., the subgraph of G containing only the arcs a
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(1,2)3 (2,3)2 (3,1)1

(2,3)3 (3,1)2 (1,2)1

(3,1)3 (1,2)2 (2,3)1

(1,3)3 (3,2)2 (2,1)1

(3,2)3 (2,1)2 (1,3)1

(2,1)3 (1,3)2 (3,2)1

Fig. 2. The compatibility graph G for the example of Figure 1.

where some value x̄d
a is positive. This connectivity restriction prevents an

explosion on the number of enumerated sets. As proved in Uchoa et al. [36],
if an ECC is violated over a set S composed of two or more disconnected
components, there exists another violated ECC over one of those smaller
components.

• The sets with cardinality larger than 6 that are inspected in the heuristic
separation routines of rounded capacity cuts presented in [32]. The ratio-
nale is that if the rounded capacity cut is almost violated for a given set
S, it is plausible that an extended capacity can be violated over that set.
In particular, if the rounded capacity cut is violated, the ECC (18) will be
certainly violated.

So, for each candidate set S, we first check if the strengthened rounded ca-
pacity cut (18) is violated. Then we try to separate HECCs from the equation
(23) over S. In particular, we look for inequalities of the following form:

C∑
d=1

rd�yd −
C−1∑
d=1

�rd�zd ≥ rd(S)� , (25)

where 0 < r ≤ 1. As discussed in [36], at most 0.3C2 rational multipliers r
need to be tried in this integer rounding procedure.

Triangle Clique Cuts

The separation procedure for the triangle clique cuts finds the independent
set I ⊂ V in G that maximizes

∑
ad∈I

x̄d
a. Although the problem of finding

a maximum-weight independent set is strongly NP-hard for general graphs,
such an independent set can be found for G in a linear time by exploiting its
specific structure of chains.

Figure 2 shows that the compatibility graph G for the example of Figure 1
is a set of 6 chains. For example, the arc (1, 2)3 is only compatible with (2, 3)2

in the triangle {1, 2, 3}. The arc (2, 3)2 is compatible with both (1, 2)3 and
(3, 1)1, and (3, 1)1 is only compatible with (2, 3)2. Observe that (1, 2)3 and
(3, 1)1 are not compatible. Our separation procedure uses the following two
facts.
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Fact 1 The graph G is a set of chains for any ACVRP instance.

Fact 2 A set I is a maximum-weight independent set for a set of chains if
and only if it is the union of maximum-weight independent sets for each single
chain.

The maximum weight independent set for a single chain H can be obtained
in a linear time through a simple dynamic programming procedure. Let adi

i

be the ith vertex in H , for i = 1, . . . , |H |. Also, let us define I∗(i, 1) (resp.
I∗(i, 0)) as the maximum independent set for the subchain containing the
first i vertices of H that does (resp. does not) use the ith vertex. Finally, let
c(I) =

∑
ad∈I

x̄d
a. We have the following recurrency:

c(I∗(i, 1)) = x̄di
ai

+ c(I∗(i− 1, 0));
c(I∗(i, 0)) = max{c(I∗(i− 1, 0)), c(I∗(i− 1, 0))}.

It is interesting to add suitable positive perturbations to the values of x̄d
a that

are zero, in order to generate inequalities with as many non-zero coefficients
as possible.

3.3 Branching with Route Enumeration

We branch over the edges of the undirected graph associated to G. We choose
the pair {i, j} such that the value x̄{i,j} =

∑C
d=0(x̄

d
(i,j) + x̄d

(j,i)) is closer to
0.65. On the left branch node we require that x̄{i,j} must be 0, on the right
branch node this must be greater or equal to 1. It can be shown that this is
a valid branching strategy.

However, in order to improve the performance of our algorithm, we com-
bine this traditional branching with a route enumeration technique inspired
by the one described in Baldacci et al. [5]. When the integrality gap, the differ-
ence between the best known feasible solution and the current LP relaxation
is sufficiently small, those authors found that it may be practical to enumerate
all possible relevant elementary q-routes, i.e., all routes that have a chance of
being part of the optimal solution. A route is non-relevant if (i) its reduced
cost (with respect to the current values of (13)) is greater than the gap, or
(ii) there exists another route visiting the same set of clients with smaller cost
(with respect to the original arc costs ca). If the number of relevant routes is
not too large (say, in the range of tenths of thousands), the overall problem
may be solved by feeding a general MIP solver with a set-partition formulation
containing only those routes. If this set-partition can be solved, the optimal
solution will be found and no branch will be necessary. Sometimes this leads
to very significant speedups when compared to traditional branch strategies.
However, it should be remarked that such route enumeration is an inherently
exponential procedure. Its practical performance depends crucially on the gap
value and it is also sensitive to the characteristics of the instance that is being
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solved. There is no guarantee that a combinatorial explosion will not happen,
even for small sized instances.

Our hybrid strategy, devised to provide a robust approach, is to perform
limited route enumerations after each branch-and-bound node is solved. This
means that the enumeration is aborted if more than 80,000 relevant routes
or if more than 800,000 states (partial non-dominated routes) are being kept
by our dynamic programming algorithm. If those limits are not reached, a
set-partition containing all relevant routes is given to a MIP solver. Then,
the original node is declared as solved and no branch will occur. Otherwise,
if the route enumeration fails, then the edge branching is performed and two
more nodes must be solved. Of course, since deeper nodes will have smaller
gaps, at some point the enumeration will work. The overall effect may be a
substantially smaller branch-and-bound tree. For example, where the tradi-
tional branching would need to reach depth 10, the hybrid strategy may not
go beyond depth 5.

Our BCP also uses the route enumeration as an heuristic at the root node.
If the actual gap g of this node is still too large and the limits are reached, we
try the enumeration with a dummy gap of g/2. If this is still not enough, we
try with g/4 and so on. If the enumeration now succeeds, we try an increased
dummy gap of (g/2 + g/4)/2. In short, we perform a sort of binary search to
determine a dummy gap that will yield a set-partition of reasonable size. The
solution of such MIPs may provide very good upper bounds.

Finally, we should remark that the route enumeration is a quite sophisti-
cated dynamic programming procedure, several tricks are necessary to prevent
an early explosion on the number of states.

4 Adapting this RBCP for Related Routing Problems

This section shows how some related problems can be solved by slightly mod-
ifying the solution approach proposed above to the ACVRP.

4.1 Capacitated Open Vehicle Routing Problem

The Capacitated Open Vehicle Routing Problem (COVRP) [29] is a variant
of the classical CVRP where the vehicle needs not to return to the depot once
no more clients need to be visited (or, symmetrically, the vehicle needs not
to start at the depot). This routing problem covers the case where vehicles
are hired for each route job, having a cost model that charges only while the
vehicle is loaded.

The ACVRP approach above described can be easily converted to solve
the COVRP. For this we only need not to charge for the return of the vehicle.
This can be done by setting to zero the cost of all arcs that have as endpoint
the depot.
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4.2 Capacitated Vehicle Routing Problem

Solving the classical CVRP by a ACVRP approach should require no change
other than the input having a symmetric cost matrix. However, this would
lead to allowing two representations for a same route, i.e., the two possible
orientations of its edges. The solution cost is indifferent regarding the orien-
tation of a route (or q-route) and, as a consequence, a convergence difficulty
may appear. Cuts that are asymmetric regarding the arcs that enter (or exit)
a subset of vertices may become not violated by simply changing the orienta-
tion of one or a few routes. In particular, this is the case for all cuts derived
from the extended formulation above.

We can deal with this difficulty by forbidding the generation of equivalent
routes, i.e., the same route in its two senses. This can be achieved by requiring
that every route with more than a single client has its last visited client with
a larger index than its first client. The modification to the column generation
dynamic programming algorithm amounts to adding n cells to each of nC cells
of matrix R, which will now require O(n2C) positions. These extra cells will
be used to store the last client visited (our algorithm constructs the q-route
backwards). Remark that at most n routes will have to be stored. With this
information at hand, one can easily check this anti-symmetry condition.

Although the resulting algorithm has a worst case complexity of O(n3C),
several specific data structures can be used to improve the average case perfor-
mance. This is also the case for the standard dynamic programming algorithm.
They run much faster than their worst case and this symmetry breaking strat-
egy seems to introduce a small factor on the computing time.

4.3 Heterogeneous Fleet Vehicle Routing Problem

We consider the Heterogeneous Fleet Vehicle Routing Problem (HFVRP) as
the generalization of the classical CVRP where there is a set of vehicles types,
with different capacities and fixed costs. This version of the HFVRP is con-
sidered in Yaman [39] and in Choi and Tcha [9].

Three minor modifications are needed to apply the ACVRP approach to
the HFVRP. In all cuts that depend on C, one must use always the maxi-
mum capacity available among the vehicles. The second modification occurs
in the pricing. Now the column generation algorithm executes for the largest
capacity. The reduced cost of q-routes by other vehicles is then obtained by
adding the fixed costs to the appropriate intermediate value in the matrix R.
As in the CVRP, the symmetry breaking strategy should be used. The third
modification is in the route enumeration, that must be performed for each
vehicle type.
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5 Experiments

We tested the resulting algorithm for the ACVRP, COVRP, CVRP and
HFVRP on selected sets of instances from the literature. Our experiments
were executed on a Pentium IV running at 3.0 GHz with 1 GB of RAM.
Linear programs and set-partition IPs were solved by CPLEX 10.0.

5.1 ACVRP

We used the 8 ACVRP instances proposed by Fischetti et al. [16]. As all those
instances have very large capacities (C = 1000) and use very few vehicles (2
or 3), in order to have a more representative benchmark set, we also solved
the same instances by considering capacities 500, 250 and 150. Of course, this
implies using more vehicles.

We first remark that the CVRP algorithm presented in Fukasawa et al. [17]
can be used as an ACVRP algorithm. One only needs to use the asymmetric
arc costs in the dynamic programming pricing. Of course, only CVRP cuts
will be employed. Table 1 allows the evaluation of the impact of introducing
the cuts from the extended formulation in the new BCP algorithm. The first
column contains the name of the instance while the second (k) and third (C)
specify the number and the capacity of the vehicles used, respectively. The
fourth and fifth columns (Fuk.), give the lower bound obtained in the root
node of the BCP algorithm in [17] and the CPU time (in seconds) spent. The
following two columns give this same information for the new BCP showed in
the previous sections, that also uses asymmetric cuts from the extended for-
mulation (New). Next column (Prev UB) gives the optimal solution values
for the original 8 instances with capacity 1000, obtained by [16]. For the re-
maining 24 instances introduced here, this column gives the best upper bound
found by running the first BCP algorithm with a time limit of 10,000 seconds.
Proven optima values appear in boldface. The last column is the best upper
bound found by the new BCP algorithm with a time limit of 10,000 seconds,
proven optima are also in boldface. Blank entries indicate that no feasible
solution was found at within that time limit. We remark that both algorithms
price q-routes with 3-cycle elimination.

It can be seen that the new cuts can indeed reduce gaps substantially,
but this also has a substantial price in terms of computational time. The new
BCP is efficient on the instances with smaller capacities and more vehicles,
but performs poorly on the instances with large capacities and very few ve-
hicles, due to cut and column convergence problems. It could not even finish
the root node of instance a071-03f within the time limit. This behavior is con-
sistent with previous experiences [17]. The instances with only 3 vehicles are
much better solved by the branch-and-bound by Fischetti et al., the solution
times reported in [16] would correspond to less than one second in a modern
machine. We expect that a branch-and-cut over the arc formulation, similar
to the one by Lysgaard et al [32], would also be efficient in those cases.
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Table 1. Bounds on the ACVRP instances.

Instance k C Fuk. Fuk. New New Prev New
LB Time LB Time UB UB

a034-14f 14 150 4046.00 0.8 4046.00 0.2 4046 4046
a036-18f 18 150 5296.00 0.2 5296.00 0.4 5296 5296
a039-20f 20 150 5903.00 0.2 5903.00 0.3 5903 5903
a045-18f 18 150 6365.00 1.2 6374.50 4.7 6399 6399
a048-16f 16 150 4905.61 1.9 4910.82 7.6 4955 4955
a056-17f 17 150 4974.21 2.9 4976.69 25.2 4998 4998
a065-19f 19 150 5972.55 3.9 5986.58 37.0 6014 6014
a071-17f 17 150 4937.41 6.5 4949.08 89.8 5006 5006

a034-08f 8 250 2643.47 1.8 2654.33 23.9 2672 2672
a036-10f 10 250 3306.09 1.9 3313.51 29.2 3338 3338
a039-12f 12 250 3705.00 0.8 3705.00 5.2 3705 3705
a045-11f 11 250 3542.17 1.9 3544.00 12.1 3544 3544
a048-10f 10 250 3298.27 2.9 3306.28 59.3 3325 3325
a056-10f 10 250 3258.57 5.8 3262.08 89.3 3263 3263
a065-12f 12 250 3848.72 8.4 3856.14 150.7 3902 3902
a071-10f 10 250 3415.03 25.1 3423.69 231.5 3486 3486

a034-04f 4 500 1759.41 4.4 1766.52 97.3 1773 1773
a036-05f 5 500 2084.27 4.9 2088.17 67.6 2110 2110
a039-06f 6 500 2270.60 5.5 2277.15 141.8 2289 2289
a045-06f 6 500 2289.81 8.5 2294.55 195.8 2303 2303
a048-05f 5 500 2260.29 11.7 2265.36 213.0 2283 2283
a056-05f 5 500 2144.09 30.9 2152.87 695.9 2165 2165
a065-06f 6 500 2516.90 29.8 2521.69 694.9 2567 2567
a071-05f 5 500 2403.12 94.0 2411.79 1443.3 2475 –

a034-02f 2 1000 1381.12 25.5 1392.41 1388.2 1406 1406
a036-03f 3 1000 1635.27 22.9 1638.46 1009.4 1644 1644
a039-03f 3 1000 1654.00 15.7 1654.00 61.9 1654 1654
a045-03f 3 1000 1740.00 39.2 1740.00 325.5 1740 1740
a048-03f 3 1000 1891.00 106.3 1891.00 825.6 1891 1891
a056-03f 3 1000 1725.28 256.5 1727.60 5441.1 1739 –
a065-03f 3 1000 1956.75 320.3 1969.72 11688.4 1974 –
a071-03f 3 1000 2037.67 1465.7 – – 2054 –

avg gap 0.79% 0.59%
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Table 2. Statistics on the ACVRP instances.

# Root Cuts Root Times
Instance SRCC Rd Clique Col LP Cut Enum # BCP # SP Total

ECC Gen Sep +SP Nodes Nodes Time

a034-14f 0 0 0 0.1 0.1 0.0 0.1 1 1 0.4
a036-18f 2 0 0 0.2 0.1 0.0 0.1 1 1 0.5
a039-20f 0 0 0 0.2 0.0 0.0 0.1 1 1 0.4
a045-18f 13 14 1 2.0 0.2 1.7 0.3 1 1 5.0
a048-16f 40 20 10 2.6 0.3 3.5 1.4 1 175 9.0
a056-17f 50 40 4 8.0 0.4 10.1 1.1 1 1 26.3
a065-19f 39 75 10 12.1 0.5 18.3 1.3 1 1 38.4
a071-17f 113 99 32 36.8 1.1 22.0 43.4 1 596 133.2

a034-08f 56 50 13 12.5 0.7 5.4 0.8 1 1 24.7
a036-10f 77 54 9 11.4 0.6 7.9 0.9 1 14 30.0
a039-12f 58 0 0 2.3 0.3 1.8 0.6 1 1 5.8
a045-11f 18 21 4 8.0 0.4 1.5 1.1 1 1 13.2
a048-10f 78 59 14 34.7 1.1 11.0 2.9 1 1 62.1
a056-10f 53 85 18 51.2 1.5 19.3 2.4 1 1 91.7
a065-12f 70 73 23 76.8 1.7 35.9 263.2 3 118 663.8
a071-10f 147 119 39 141.2 3.7 41.8 641.5 (26.6%) 67 31 10000.0

Detailed statistics on the new algorithm are presented in Tables 2 and 3.
The 2nd, 3rd and 4th columns contain the number of cuts of each type inserted
in the root node. The headers SRCC, Rd ECC and Clique mean strength-
ened rounded capacity cuts, HECCs obtained by integer rounding and triangle
clique cuts, respectively. The following four columns contain the time spent in
the root node with column generation, LP solving, cut separation, and route
enumeration + set-partition solving, respectively. The remaining columns give
information about the complete algorithm: # BCP Nodes is the total num-
ber of BCP nodes solved, # SP Nodes is the total number of nodes used
by CPLEX to solve all set-partition problems, and Total Time is the overall
time.

Some instances were not solved to optimality, in those cases we give an
estimative of how far the algorithm was from finishing. The BCP performs
depth-first search. Every time a leaf node at level l is solved (root level is
0), we consider that 100/2l % of the search tree was solved. Those values
are accumulated. Since our branch rule was devised to yield an statistically
balanced tree, this provides a reasonably good estimate of algorithm progress,
at least after several leaf nodes are solved. For example, instance a071-10f was
halted with 10,000 seconds. We report that the 67 nodes already solved at that
time correspond to 26.6% of the estimated tree size.

5.2 COVRP

We chose a set of 15 instances from the literature. They include most of the
classical E instances from Christofides and Eilon [10] and also some represen-
tative instances from sets A, B and P available at www.branchandcut.org. We
compare our bounds with those obtained by the branch-and-cut by Letchford
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Table 3. Statistics on the ACVRP instances.

# Root Cuts Root Times
Instance SRCC Rd Clique Col LP Cut Enum # BCP # SP Total

ECC Gen Sep +SP Nodes Nodes Time

a034-04f 48 55 21 57.8 1.6 19.2 4.0 1 1 101.3
a036-05f 46 26 15 39.2 1.0 15.2 5.0 1 1 72.6
a039-06f 46 104 10 71.0 1.4 40.0 4.5 1 1 146.4
a045-06f 117 65 21 109.6 2.0 47.1 6.8 1 1 202.6
a048-05f 100 63 28 150.3 3.0 34.9 25.8 1 1 238.8
a056-05f 166 74 30 493.2 7.6 101.9 65.6 1 1 761.5
a065-06f 129 99 28 427.8 8.6 130.0 985.9 (2.3%) 24 9 10000.0
a071-05f 120 135 39 1119.1 31.2 147.0 1311.0 (0.1%) 12 1 10000.0

a034-02f 41 338 18 864.8 8.5 292.3 45.6 1 1 1433.8
a036-03f 91 201 10 555.3 5.9 245.1 22.7 1 1 1032.0
a039-03f 0 0 0 59.8 1.2 0.8 21.0 1 1 82.9
a045-03f 84 0 0 292.5 12.4 14.4 29.4 1 1 354.9
a048-03f 90 0 0 778.8 20.7 17.8 35.1 1 1 860.7
a056-03f 138 411 14 4403.0 118.2 517.9 699.8 (0.0%) 3 0 10000.0
a065-03f 109 312 51 7140.4 80.0 2367.4 1120.6 (0.0%) 1 0 10000.0
a071-03f - - - - - - - (0.0%) 0 0 10000.0

et al. [29], Let. columns. Their times were obtained with a Pentium M 1.6
GHz processor. All such instances are Euclidean, the costs are obtained from
the depot and client coordinates, without rounding. The results are presented
in Tables 4 and 5, analogous to Tables 1 and 2, respectively. The upper bounds
in column Prev UB in Table 4 are from [29] too. As instances E-n101-k8 and
E-n101-k14 had never been solved before, we allowed a little more than 10,000
seconds for their runs.

5.3 CVRP

We used the same 15 instances of the previous experiment. However, as usual
in the CVRP literature, the costs are rounded Euclidean distances, following
the TSPLIB convention. We compare the bounds and root times from the new
BCP with those from the BCP presented in Fukasawa et al. [17]. We remark
that while that algorithm was executed using 3-cycle elimination, our new
algorithm, in this case, used 2-cycle elimination together with route symmetry
breaking. Table 6 is analogous to Table 1, with Fuk. indicating the columns
with results from [17] obtained in a Pentium IV 2.4 GHz machine. Table 7
shows that 5 instances could not be finished by the complete BCP in the
allotted time of 10,000 seconds.

5.4 HFVRP

We used a set of instances proposed in Golden et al. [20], the same set was used
in the experiments in Yaman [39] and Choi and Tcha [9] which are compared
with our approach. Bound comparisons are presented in table 8 where the
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Table 4. Bounds on the COVRP instances.

Instance k C Let. Let. New New Prev New
LB Time(s) LB Time(s) UB UB

A-n63-k10 10 100 745.94 5 775.26 63.2 – 778.46
A-n64-k9 9 100 811.98 4 839.25 208.6 – 848.15
A-n69-k9 9 100 732.27 5 754.53 71.4 757.76 757.76
A-n80-k10 10 100 1019.84 9 1061.90 126.1 – 1067.09

B-n50-k8 8 100 703.57 4 717.05 49.5 – 720.79
B-n68-k9 9 100 694.16 6 701.71 187.4 701.71 701.71

E-n51-k5 5 160 411.48 1 414.32 88.7 416.06 416.06
E-n76-k7 7 220 522.27 10 525.21 245.7 530.02 530.02
E-n76-k8 8 180 529.37 12 534.16 127.2 537.24 537.24
E-n76-k10 10 140 547.83 21 559.62 97.0 – 567.14
E-n76-k14 14 100 602.01 24 621.27 70.0 – 623.55
E-n101-k8 8 200 633.85 6 636.09 423.4 639.74 639.74
E-n101-k14 14 112 692.15 33 704.69 227.8 – 711.58

P-n50-k8 8 120 405.85 2 422.99 26.9 – 436.51
P-n70-k10 10 135 536.04 9 547.51 80.4 – 552.65

avg gap 2.95% 0.80%

Table 5. Statistics on the COVRP instances.

# Root Cuts Root Times
Instance SRCC Rd Clique Col LP Cut Enum # BCP # SP Total

ECC Gen Sep +SP Nodes Nodes Time

A-n63-k10 98 81 23 34.6 3.9 9.4 187.4 1 1 250.6
A-n64-k9 168 144 28 119.5 8.7 27.0 659.6 9 59 1884.1
A-n69-k9 78 148 14 39.4 6.7 10.1 3.8 1 1 75.2
A-n80-k10 77 113 41 76.7 8.9 18.3 458.8 1 5 585.0

B-n50-k8 171 33 14 31.5 4.6 7.3 176.5 1 101 226.0
B-n68-k9 143 138 8 120.2 42.7 12.5 1.3 1 1 188.7

E-n51-k5 45 137 20 45.7 6.5 15.0 5.0 1 1 93.7
E-n76-k7 23 202 33 133.3 12.8 38.6 319.9 17 9 4373.7
E-n76-k8 21 131 26 71.8 5.8 22.1 36.1 1 1 163.3
E-n76-k10 40 171 44 40.4 3.7 24.6 425.9 5 3 996.7
E-n76-k14 56 133 39 29.2 1.9 15.8 167.4 1 1 237.4
E-n101-k8 108 184 35 206.4 48.8 73.9 303.2 49 25 15941.9
E-n101-k14 117 259 82 90.3 10.0 53.5 1290.7 57 47 10335.3

P-n50-k8 63 81 32 9.8 1.2 7.5 933.6 1 1077 960.5
P-n70-k10 90 109 40 33.3 3.0 19.3 269.8 1 1 350.2
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Table 6. Bounds on the CVRP instances.

Instance k C Fuk. Fuk. New New Prev New
LB Time(s) LB Time(s) UB UB

A-n63-k10 10 100 1299.1 136 1299.82 114.9 1314 1314
A-n64-k9 9 100 1385.3 265 1385.21 141.4 1401 1401
A-n69-k9 9 100 1141.4 289 1147.38 151.0 1159 1159
A-n80-k10 10 100 1754.0 1120 1755.14 242.7 1763 1763

B-n50-k8 8 100 1295.0 97 1299.62 46.6 1312 1312
B-n68-k9 9 100 1263.0 260 1264.14 258.8 1272 1272

E-n51-k5 5 160 518.2 51 520.09 141.0 521 521
E-n76-k7 7 220 670.0 264 671.81 216.0 682 682
E-n76-k8 8 180 726.5 277 727.93 177.5 735 735
E-n76-k10 10 140 817.4 354 819.56 131.6 830 830
E-n76-k14 14 100 1006.5 224 1008.67 47.4 1021 1021
E-n101-k8 8 200 805.2 1068 806.01 705.5 815 –
E-n101-k14 14 112 1053.8 658 1056.27 214.7 1067 1067

P-n50-k8 8 120 616.3 102 618.96 28.6 631 631
P-n70-k10 10 135 814.5 292 816.88 131.3 827 827

avg gap 1.26% 1.04%

columns with header t and C contain the number of different types of vehicles
and the largest capacity, respectively. It worth noting that the bounds from
Yaman [39], given in the columns Yam., come from a cutting plane algorithm
on a flow formulation. Her times were obtained in a Sun Ultra 400 MHz ma-
chine. The lower bounds from Choi and Tcha [9], columns Choi, come from a
column generation algorithm on q-routes with 2-cycle elimination. Their times
were obtained in a Pentium IV 2.6 GHz machine. The previous best upper
bounds were also collected from [9]. Our algorithm for the HFVRP executes
as for the CVRP, with 2-cycle elimination and route symmetry breaking. Ta-
ble 9 give detailed statistics on the new algorithm. We allowed more than
10,000 seconds for solving instance c75-18. Those results represent a major
improvement over previous exact algorithms for that problem. We could not
find any work claiming proven optimal solutions even for the instances with
just 20 vertices.

6 Comments

This text presented a RBCP for the ACVRP that was also shown to be
effective on a number of related problems. In particular, the use of cuts defined
over the extended formulation seems very promising and deservers further
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Table 7. Statistics on the CVRP instances.

# Root Cuts Root Times
Instance SRCC Rd Clique Col LP Cut Enum # BCP # SP Total

ECC Gen Sep +SP Nodes Nodes Time

A-n63-k10 198 96 48 56.2 3.4 19.5 316.7 3 16 728.9
A-n64-k9 260 147 55 75.3 5.4 24.7 654.8 55 28 9161.0
A-n69-k9 230 137 65 78.7 5.3 29.7 433.8 5 3 1248.3
A-n80-k10 314 113 69 115.0 10.3 45.3 660.0 3 2 1530.9

B-n50-k8 214 46 19 26.8 2.2 8.0 309.5 (69%) 128 58 10000.0
B-n68-k9 285 149 29 140.4 11.0 31.5 526.5 (25.5%) 52 25 10000.0

E-n51-k5 147 110 46 51.3 4.4 28.8 4.8 1 1 145.8
E-n76-k7 110 93 59 120.7 5.0 43.3 1040.3 (11%) 32 14 10000.0
E-n76-k8 175 95 64 93.1 5.2 41.2 534.0 5 3 1840.1
E-n76-k10 193 78 68 60.8 2.8 35.8 471.5 39 20 5794.4
E-n76-k14 60 90 45 22.0 0.9 12.2 246.3 3 151 479.4
E-n101-k8 659 159 114 270.2 36.5 224.9 1462.3 (0.1%) 20 5 10000.0
E-n101-k14 237 122 95 95.6 3.7 63.1 3469.4 (4.7%) 31 13 10000.0

P-n50-k8 54 90 48 10.5 0.8 8.3 42.0 1 16 70.6
P-n70-k10 126 102 50 54.6 2.1 37.0 399.9 5 23 1112.1

development. The ECCs here utilized, strengthened rounded capacity cuts
and HECCs obtained by simple integer rounding can still be improved and
better separated. Fukasawa, Dash and Gunluk [13] have just characterized
the facets of the polyhedron P (C, D) induced by the integral solutions of
(23). This may immediately lead to the separation of the strongest possible
HECCs for a given set S. Moreover, the current choice of candidate sets for
separation is still naive and could be improved. Another line of research is the
development of cuts from the arc-indexed compatibility graph over sets with
cardinality larger than 3. Odd-hole cuts and even more complex families of
cuts are already known to exist even for sets of cardinality 4 or 5.

The new extended cuts have shown to be particularly powerful on the
HFVRP. While traditional arcs cuts are weakened by the existence of several
capacities, the ECCs and triangle cliques are insensitive to that. In this case,
any arc ad is viewed as bringing d units of capacity, the total capacity of
the vehicles associated to the q-routes that contributed to the value of xd

a is
irrelevant.

We believe that the development of robust BCP algorithms for the VRP,
guaranteeing a pseudo-polynomial pricing complexity, is an important issue.
Some non-robust BCPs are being developed based on the use of clever tech-
niques to solve strongly NP-hard pricing subproblems. They proved to be
quite successful on current typical instances, with up to 100 clients. However
those approaches are much less likely to work on instances with several hun-
dreds of clients (specially those more than a dozen clients per route) that will
certainly arise in the near future.
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Niterói, Brazil, 2003.

19. M. T. Godinho, L. Gouveia, and T. Magnanti. Combined route capacity and
path length models for unit demand vehicle routing problems. In Proceedings
of the INOC, volume 1, pages 8–15, Lisbon, 2005.

20. B. Golden, A. Assad, L. Levy, and F. Gheysens. The fleet size and mix vehicle
routing problem. Computers and Operations Research, 11:49–66, 1984.

21. L. Hall and T. Magnanti. A polyhedral intersection theorem for capacitated
spanning trees. Mathematics of Operations Research, 17, 1992.

22. D. Houck, J. Picard, M. Queyranne, and R. Vegamundi. The travelling salesman
problem as a constrained shortest path problem. Opsearch, 17:93–109, 1980.

23. S. Irnich and D. Villeneuve. The shortest path problem with resource con-
straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:
391–406, 2006.

24. M. Jepsen, S. Spoorendonk, B. Petersen, and D. Pisinger. A non-robust branch-
and-cut-and-price for the vehicle routing problem with time windows. Technical
Report 06/03, University of Copenhagen, 2006.

25. B. Kallehauge, N. Boland, and O. Madsen. Path inequalities for the vehicle
routing problem with time windows. Technical report, Technical University of
Denmark, 2005.

26. D. Kim, C. Barnhart, K. Ware, and G. Reinhardt. Multimodal express pack-
age delivery: A service network design application. Transportation Science, 33:
391–407, 1999.

27. N. Kohl, J. Desrosiers, O. Madsen, M. Solomon, and F. Soumis. 2-Path cuts
for the vehicle routing problem with time windows. Transportation Science,
33:101–116, 1999.

28. A. Letchford, R. Eglese, and J. Lysgaard. Multistars, partial multistars and
the capacitated vehicle routing problem. Mathematical Programming, 94:21–40,
2002.

29. A. Letchford, J. Lysgaard, and R. Eglese. A branch-and-cut algorithm for the
capacitated open vehicle routing problem. Journal of the Operational Research
Society, 2007.

30. A. Letchford and J-J. Salazar. Projection results for vehicle routing. Mathe-
matical Programming, 105:251–274, 2006.

31. J. Lysgaard. Reachability cuts for the vehicle routing problem with time win-
dows. European Journal of Operational Research, 175:210–233, 2006.

32. J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100:
423–445, 2004.



Robust BCP Algorithms for Vehicle Routing Problems 325

33. D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP.
In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, chapter 3, pages
53–84. SIAM, 2002.

34. J. Picard and M. Queyranne. The time-dependant traveling salesman problem
and its application to the tardiness problem in one-machine scheduling. Opera-
tions Research, 26:86–110, 1978.

35. M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust
branch-and-cut-and-price. In L. Wolsey, editor, Annals of Mathematical Pro-
gramming in Rio, pages 56–61, Búzios, Brazil, 2003.

36. E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. Poggi de Aragão, and D. An-
drade. Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming, on-line first, 2007.

37. J. Van den Akker, C. Hurkens, and M. Savelsbergh. Time-indexed formulation
for machine scheduling problems: column generation. INFORMS J. on Com-
puting, 12:111–124, 2000.

38. F. Vanderbeck. Lot-sizing with start-up times. Management Science, 44:
1409–1425, 1998.

39. H. Yaman. Formulations and valid inequalities for the heterogeneous vehicle
routing problem. Mathematical Programming, 106:365–390, 2006.



Recent Models and Algorithms for One-to-One
Pickup and Delivery Problems

Jean-François Cordeau1, Gilbert Laporte2, and Stefan Ropke2

1 Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000,
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Summary. In one-to-one Pickup and Delivery Problems (PDPs), the aim is to de-
sign a set of least cost vehicle routes starting and ending at a common depot in
order to satisfy a set of pickup and delivery requests between location pairs, subject
to side constraints. Each request originates at one location and is destined for one
other location. These requests apply to the transportation of goods or people, in
which case the problem is often called the dial-a-ride problem. In recent years, there
have been several significant developments in the area of exact and heuristic algo-
rithms for PDPs. The purpose of this chapter is to report on these developments.
It contains two main sections devoted to single vehicle and multi-vehicle problems,
respectively. Each section is subdivided into two parts, one on exact algorithms and
one on heuristics.

Key words: Pickup and delivery; one-to-one; dial-a-ride; branch-and-cut; column
generation; tabu search.

1 Introduction

In one-to-one Pickup and Delivery Problems (PDPs), the aim is to design a
set of least cost vehicle routes starting and ending at a common depot in order
to satisfy a set of pickup and delivery requests between location pairs, sub-
ject to side constraints. These problems are called “one-to-one” because each
request originates at one location and is destined for one other location (see
Hernández-Pérez and Salazar-González [35]). In some contexts, like in courier
services, these requests apply to the transportation of goods, whereas in other
contexts, like in dial-a-ride problems (DARPs), they apply to the transporta-
tion of people. One-to-one PDPs differ from one-to-many-to-one problems in
which each customer receives a delivery originating at a common depot and
sends a pickup quantity to the depot (see, e.g., Gribkovskaia and Laporte

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 15, c© Springer Science+Business Media, LLC 2008
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[33]). They also differ from many-to-many problems in which a commodity
may be picked up at one of many locations, and also delivered to one of many
locations (see, e.g., Hernández-Pérez and Salazar-González [36]). These three
problem structures are depicted in Figures 1, 2, and 3, respectively.

Formally, PDPs are defined on a directed graph G = (V, A), where V
is the vertex set and A is the arc set. The vertex set is partitioned into
{P, D, {0, 2n + 1}}, where P = {1, . . . , n} is a set of pickup vertices, D =
{n + 1, . . . , 2n} is a set of corresponding delivery vertices, and {0, 2n + 1}
contains two copies of the depot, serving as the starting and ending points of
m vehicle routes. The set of vehicles is denoted by K = {1, . . . , m}, and Qk

is the capacity of vehicle k. The arc set is defined as A = {(i, j) : i = 0, j ∈ P,
or i, j ∈ P ∪D, i �= j and i �= n + j, or i ∈ D, j = 2n + 1}.

With each arc (i, j) are associated a travel time tij and a travel cost cij ,
or ck

ij if one wishes to stress that the cost is vehicle-dependent. The maximum
allowed duration of the route traveled by vehicle k is denoted by Tk. With
each vertex i ∈ V are associated a load qi and a service duration di satisfying
q0 = q2n+1 = 0, qi > 0 for i ∈ P , qi = −qi−n for i ∈ D, di ≥ 0 for i ∈ P ∪D,
and d0 = d2n+1 = 0. A time window [ei, �i] is associated with each vertex
i ∈ V , where ei and �i are the earliest and latest time service may start at
vertex i. In passenger transportation, it is common to impose a ride time
limit L equal to the maximum time a passenger may spend in the vehicle.
Pickup and delivery problems consist of designing m vehicle routes of least
total cost, starting and ending at the depot, in order to perform all delivery
requests subject to the following constraints: vertex i is visited before vertex
n + i (precedence), and both of these vertices are visited by the same vehicle
(pairing), each vertex is visited within its time window, vehicle capacities are
never exceeded, and in some contexts, ride time constraints are satisfied.

Applications of PDPs to goods transportation have been described by Shen
et al. [70] in the context of courier services, and by Fisher and Rosenwein [31],
Christiansen and Nygreen [12, 13] and Brønmo et al. [7] in the context of
bulk product transportation by ship, a sector in rapid expansion. Solanki and
Southworth [72] and Rappoport et al. [57, 58] have studied PDP applications
to military airlift planning. Dial-a-ride planning systems have been described
by a number of authors. Madsen et al. [48] have constructed a system ca-
pable of handling in a dynamic fashion 50,000 requests per year in the city
of Copenhagen. Toth and Vigo [74, 75] have developed a parallel insertion
heuristic which has been applied to a complex DARP involving taxis and
minibuses in Bologna. Borndörfer et al. [6] have proposed a set partitioning
based heuristic which can solve a problem containing between 1,000 and 1,500
transportation requests per day in Berlin. More recently, Rekiek, Delchambre
and Saleh [60] have developed a genetic algorithm for the DARP and have
tested their system on real data provided by the City of Brussels. This in-
stance contains 164 requests and 18 vehicles. An important DARP variant
is the dial-a-flight problem, faced by about 3,000 businesses offering charter
flight services in the United States (Cordeau et al. [20]). Recent survey articles



One-to-One Pickup and Delivery Problems 329

Fig. 1. One-to-many-to-one problem. Vertex label (x,−y) means that the vertex
supplies x units and demands y units. Arc labels indicate vehicle load.

Fig. 2. Many-to-many problem. A positive vertex label x means that the vertex
supplies x units; a negative vertex label −y means that the vertex demands y units.
Arc labels indicate vehicle load.

Fig. 3. One-to-one problem. Vertex label z means that the vertex supplies com-
modity z; vertex label −z means that the vertex demands commodity z. Arc labels
show the commodities carried by the vehicle.
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on the PDP and its applications are those of Desaulniers et al. [23], Cordeau
et al. [20], and Berbeglia et al. [3].

The early research efforts on PDPs can be traced back to the work of
Wilson et al. [78, 79] who developed scheduling algorithms for the DARP.
Since then several exact and heuristic algorithms have been proposed for PDPs
associated with the transportation of goods or people. Significant progress has
occurred in the past five years, with the development of new exact and approx-
imate algorithms for several types of PDPs. These exact algorithms employ
decomposition techniques such as branch-and-cut and branch-and-cut-and-
price, while the new heuristics are based on tabu search, simulated annealing
and variable neighbourhood search. While all these algorithmic techniques
have now been known for some time, their massive application to PDPs is
significant and has enabled researchers to break new grounds in the difficulty
and size of problems that can be tackled. Our aim is to report on these new
and exciting developments.

Because our focus is on recent contributions, we do not claim to provide
a comprehensive and systematic coverage of the field, but rather a selective
coverage of some of the most significant new algorithmic ideas. This chapter
contains two main sections devoted to single vehicle and multi-vehicle prob-
lems, respectively. Each section is subdivided into two parts, one on exact
algorithms and one on heuristics. Conclusions follow.

2 Single Vehicle Pickup and Delivery Problems
(SVPDPs)

While most routing problems arising in practice involve several vehicles, the
single vehicle case is instrumental in developing insights into the problem
structure and in putting forward new algorithmic concepts. As a case in point,
several exact and approximate algorithms for the Classical Vehicle Routing
Problem (VRP) (see, e.g., Toth and Vigo [76]), are rooted in concepts that
were first developed for the Traveling Salesman Problem (TSP), (see, e.g.,
Lawler et al. [42]). All known algorithmic approaches for single-vehicle PDPs
stem from TSP algorithms, and may be instrumental in the development of
algorithms for multi-vehicle PDPs.

In all versions of the SVPDP discussed in this section, the vehicle capacity
is not binding, there are no time windows and no ride time limits. There exist
meaningful applications where such constraints may be present. These can
sometimes be treated as special cases of multi-vehicle PDPs.

2.1 Exact Algorithms for the SVPDP

The first algorithms developed for the SVPDP and its variants, including
the Traveling Salesman Problem with Precedence Constraints (TSPPC), were
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based on branch-and-bound (Kalantari, Hill and Arora [38]), dynamic pro-
gramming (Desrosiers, Dumas and Soumis [25], Bianco, Mingozzi and Ric-
ciardelli [4]), and branch-and-cut (Balas, Fischetti and Pulleyblank [1]). In
addition, Fischetti and Toth [30] have developed an additive lower bounding
procedure which can be embedded within a branch-and-bound framework,
and have applied this methodology to the solution of the TSPPC.

A Branch-and-cut Algorithm for the SVPDP

The most popular methodology for the solution of the SVPDP is now branch-
and-cut. The two key components of this method are the generation of valid
inequalities and the design of separation procedures. Our emphasis is on the
modeling aspects. Recent branch-and-cut algorithms for single vehicle PDPs
are rooted in the work of Ruland [65] and Ruland and Rodin [66]. These
authors have considered the undirected case, i.e., when the problem is defined
on a graph G = (V, E) where E = {(i, j) = (j, i) : i, j ∈ V, i < j} is an edge
set, and the solution is a Hamiltonian cycle.

In addition to the notation already introduced, define S̄ = V \S for S ⊆ V ,
π(S) = {i ∈ P : n + i ∈ S} as the set of predecessors of S ⊆ V \{0}, and
σ(S) = {i ∈ D : i − n ∈ S} as the set of successors of S ⊆ V \{2n + 1}. Let
δ(S) = {(i, j) : i ∈ S, j /∈ S} be the set of edges with exactly one end-vertex
in S ⊆ V . For simplicity, we write δ(i) instead of δ({i}). For S, T ∈ V , let
(S : T ) = {(i, j) : i ∈ S, j ∈ T } be the set of edges with one end-point in S,
and one in T . The single-vehicle PDP can be formulated with binary variables
xij equal to 1 if and only if edge (i, j) belongs to the cycle. For E′ ⊆ E, let
x(E′) =

∑
(i,j)∈E′

xij ; for S ⊆ V , let x(S) =
∑

i,j∈S

xij . We write x(S : T ) instead

of x ((S : T )). The model proposed by Ruland is then as follows.

(SVPDP)

Minimize
2n∑
i=0

2n+1∑
j=i+1

cijxij (1)

subject to

x0,2n+1 = 1 (2)
x(δ(i)) = 2 (i ∈ V ) (3)
x(S : S̄) ≥ 2 (S ⊂ V ) (4)
x(U : Ū) ≥ 4 (U ∈ U) (5)
xij = 0 or 1 ((i, j) ∈ E) , (6)

where U is the collection of all sets U ⊂ P ∪D satisfying 3 ≤ |U | ≤ |V | − 2,
0 ∈ U , 2n + 1 /∈ U and there exists i ∈ P\U with n + i ∈ U . In this model,
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(3) are the degree constraints, (4) are the connectivity constraints, and (5)
are the precedence constraints. Indeed, any feasible solution must contain a
chain between each of the following four vertex pairs: 0 and i, i and n + i,
n + i and 2n + 1, 2n + 1 and 0, and each of these chains contains an edge
connecting U and Ū . This model can be reinforced through the introduction of
valid inequalities. Each family of valid inequalities gives rise to another family
by interchanging the roles of pickup and delivery vertices, and the roles of the
two depots.

Generalized order constraints (Ruland and Rodin [66])

Let S1, . . . , Sh ⊂ P ∪ D be disjoint sets such that Si ∩ σ(Si+1) �= ∅ (i =
1, . . . , h), where Sh+1 = S1. Then the inequality

h∑
i=1

x(Si) ≤
h∑

i=1

|Si| − h− 1 (7)

is valid for the SVPDP.
Similar constraints called precedence cycle breaking inequalities, were pro-

posed by Balas, Fischetti and Pulleyblank [1].

Order-matching constraints (Ruland and Rodin [66], Dumitrescu et al. [29])

For i1, . . . , ih ∈ P and H ⊆ (P∪D)\{n+i1, . . . , n+ih} such that {i1, . . . , ih} ⊆
H , then the inequality

x(H) +
h∑

j=1

xij ,n+ij ≤ |H | (8)

is valid for the SVPDP.
Ruland and Rodin [66] proved this result for h even. Dumitrescu et al. [29]

have shown that it also holds for h odd.

Generalized order matching constraints (Cordeau [14])

For i1, . . . , ih ∈ P, H ⊆ V \{0, 2n + 1}, Tj ⊂ P ∪ D (j = 1, . . . , h) such that
{ij, n + ij} ⊆ Tj , Ti ∩ Tj = ∅ (i �= j) and H ∩ Tj = {ij} (j = 1, . . . , h), the
inequality

x(H) +
h∑

j=1

x(Tj) ≤ |H |+
h∑

j=1

|Tj | − 2h (9)

is valid for the SVPDP.
Constraints (9), which generalize (8), were proved by Cordeau in the con-

text of the DARP but they also apply to the SVPDP.
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σ-inequalities (Balas, Fischetti and Pulleyblank [1])

For S ⊆ V \{0}, the inequality

x
(
S\σ(S) : S̄\σ(S)

)
≥ 1 (10)

is valid for the SVPDP.
These inequalities were introduced by Balas, Fischetti and Pulleyblank [1]

in the context of the TSPPC.

Lifted subtour elimination constraints (Dumitrescu et al. [29])

Let S ⊆ P ∪ D be such that there exists i ∈ P such that i ∈ S, n + i ∈ S.
Then the inequality

x(S) +
∑

j∈P∩S,n+j∈S̄

xi,n+j ≤ |S| − 1 (11)

is valid for the SVPDP.
Dumitrescu et al. [29] also prove the following generalization of (11).

Generalized lifted subtour elimination constraints (Dumitrescu et al. [29])

Let S ⊂ P ∪ D be such that there exists i ∈ P ∩ S with n + i ∈ S. Let
Tk ⊂ P ∪ D, k = 1, . . . , p, be p sets such that there exists ik ∈ P ∩ S
and n + ik ∈ Tk, Tk ∩ S = {i} for k = 1, . . . , p, and Tj ∩ Tk = {i} for all
j, k = 1, . . . , p, j �= k. Then the inequality

x(S) +
p∑

k=1

x(Tk) ≤ |S| − 1 +
p∑

k=1

(|Tk| − 2) (12)

is valid for the SVPDP.

Terminal inequalities (Dumitrescu et al. [29])

Let S ⊂ V and T ⊂ D be such that 0 ∈ S, 2n + 1 ∈ S̄, S ∩ T = ∅ and
π(T ) ∩ S = ∅. Then the inequality

2x(S) + x(S : T ) ≤ 2(|S| − 1) (13)

is valid for the SVPDP.
Dumitrescu et al. [29] also provide a number of other more complicated

valid inequalities for the SVPDP. It is worth noting that constraints (7) are
not in general facet defining for the SVPDP polytope, constraints (8) are facet
defining for H = {i1, . . . , ih}, and precedence constraints (5) are sometimes
facet defining.
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The branch-and-cut algorithm of Dumitrescu et al. [29] embeds exact sep-
aration procedures for constraints (4) and (5) used by Ruland and Rodin [66],
as well as exact separation procedures for constraints (7) with h = 2, for con-
straints (8) with h = 2 or 3, and for constraints (11). It also contains heuristic
separation procedures for constraints (7) with h ≥ 3, and for constraints (9),
(10), (12) and (13). The algorithm branches on the xij variables. The algo-
rithm uses strong branching and a best-bound node selection strategy.

The algorithm was run on an AMD Opteron 250 computer (2.4 GHz)
running Linux, using CPLEX 10.0 and the Concert library. It was tested on
random Euclidean instances with vertices generated in [0, 1000]2, and contain-
ing between 5 and 30 requests (between 12 and 62 vertices), as well as on the
Renaud, Boctor and Laporte [61] instances which were adapted from some
TSPLIB instances (Reinelt [59]), and contain up to 50 requests. Results show
that the lower bound at the root of the search tree after the generation of con-
nectivity constraints (4) and precedence constraints (5) is on average over 85%
of the optimal solution value. Generating valid inequalities (7) to (13) closes
between 47% and 74% the residual gap, depending on the type of instances.
The largest instance solved to optimality within two hours of computing time
contain 30 requests (62 vertices).

A Branch-and-cut Algorithm for the SVPDP with LIFO
Constraints

An interesting variant of the SVPDP arises when a last-in-first-out (LIFO)
rule is imposed on the pickup and delivery operations. This means that when
a load is picked up, it is placed on top of a stack and can only by unloaded
when it is in that position. This problem, abbreviated as SVPDPL, was re-
cently modeled and solved by Cordeau et al. [16]. It arises naturally in the
transportation of heavy or fragile goods which are loaded linearly into a ve-
hicle equipped with a single back door. Levitin and Abezgaouz [43] describe
another application encountered in the operations of multi-load automated
guided vehicles operating in a LIFO fashion. The first exact algorithms pro-
posed for this problem used branch-and-bound (Pacheco [54]). An additive
branch-and-bound algorithm combining lower bounds based on the assign-
ment and shortest spanning r-arborescence relaxations was also recently de-
veloped by Carrabs, Cerulli and Cordeau [9].

The structure of a feasible SVPDPL solution (i1 = 0, i2, . . . , i2n+2 =
2n + 1) is such that if the solution is arranged on a line, and the origin of
each request is linked to its destination by an arc, then no arcs will cross. Put
differently, if vertex n + i is relabeled i, then the solution consists of nested
palindromes.

Cordeau et al. [16] have proposed three formulations for the SVPDPL.
We only report the third one which is the most compact in terms of the
decision variables, and also yields the best performance. Because the SVPDPL
is naturally directed, it is defined on a graph G = (V, A), where A = {(i, j) :
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i, j ∈ V, i �= j} is the arc set. Binary variables xij take the value 1 if and only if
arc (i, j) belongs to the optimal circuit. The sets δ+(i) = {(i, j) : j ∈ V \{i}}
and δ−(i) = {(j, i) : j ∈ V \{i}} contain the arcs leaving and entering i,
respectively. The model is the following.

(SVPDPL)

Minimize
∑
i∈V

∑
j∈V

cijxij (14)

subject to

x(δ+(i)) = 1 (i ∈ V \{2n + 1}) (15)

x(δ−(i)) = 1 (i ∈ V \{0}) (16)
x(S) ≤ |S| − 1 (S ⊆ P ∪D, |S| ≥ 2) (17)
x(S) ≤ |S| − 2 (S ∈ U) (18)
x(i : S) + x(S)

+ x(S : n + i) ≤ |S| (S ∈ W , i, n + i /∈ S, i ∈ P ) (19)
xij = 0 or 1 ((i, j) ∈ A) , (20)

where W is the collection of all subsets S ⊂ P ∪ D for which at least one
request (j, n+ j) is such that j ∈ S and n+ j /∈ S, or j /∈ S and n+ j ∈ S, and
U has been defined in Section 2.1. In this model, constraints (15) and (16) are
degree constraints, while connectivity, precedence and LIFO restrictions are
enforced through constraints (17), (18), and (19), respectively.

Since the SVPDPL is a restriction of the SVPDP, any inequality valid for
the SVPDP is also valid for the SVPDPL. In addition, Cordeau et al. [16]
show that the following inequalities are valid for the SVPDPL.

Incompatible successor inequalities (Cordeau et al. [16])

Let Sn+j(i, j) = {n + i} ∪ (P\{i}) be the set of possible successors of vertex
n + j if arc (i, j) is used. Then the inequality

xij +
∑

�/∈Sn+j(i,j)

xn+j,� ≤ 1 (i, j ∈ P, i �= j) (21)

is valid for the SVPDPL.

Incompatible predecessor inequalities (Cordeau et al. [16])

Similarly, let Pi(n + i, n + j) = {j} ∪ (D\{n + j}) be the set of possible
predecessors of vertex i if arc (n + i, n + j) is used. Then the inequality

xn+i,n+j +
∑

�/∈Pi(n+i,n+j)

x�i ≤ 1 (i, j ∈ P, i �= j) (22)

is valid for the SVPDPL.
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Hamburger inequalities (Cordeau et al. [16])

The inequality

xij + xn+i,n+j + xn+j,i + xn+i,j ≤ 1 (i, j ∈ P, i �= j) (23)

is valid for the SVPDPL. Also, let k ≥ 3 and consider an ordered subset of
requests defined by the indices {i1, . . . , ik}, where ik+1 = i1 and i0 = k. Then
the inequality

k∑
j=1

xij ,ij+1 +
k∑

j=1

xn+ij ,n+ij+1 +
k∑

j=1

xn+ij ,ij−1 ≤ k − 1 (24)

is valid for the SVPDPL.

Incompatible path inequalities (Cordeau et al. [16])

Let Pij be the arc set of a path from i to j not containing vertex n + i.
Similarly, let Pn+i,n+j be the arc set of a path from n + i to n + j. Then the
inequality ∑

(h,k)∈Pij

xhk +
∑

(h,k)∈Pn+i,n+j

xhk ≤ |Pij |+ |Pn+i,n+j | − 1 (25)

is valid for the SVPDPL.
Cordeau et al. [16] have devised a branch-and-cut algorithm for the

SVPDPL, incorporating these inequalities. Exact procedures are used for the
separation of constraints (17), (18), and (19), while heuristics are used for the
remaining valid inequalities. The algorithm uses standard CPLEX parame-
ters. The algorithm was tested on 36 benchmark instances containing at most
25 requests (52 vertices). Twenty-nine of these instances could be solved to
optimality within an hour on a Pentium IV 3 GHz, using CPLEX 9.0 as ILP
solver. The percentage gap at the root was only 1.82%.

2.2 Heuristics for the SVPDP

A number of heuristics have also been proposed for several versions of the
SVPDP. The most common version, involving time windows, has been solved
by local search (Van der Bruggen, Lenstra and Schuur [77]), tabu search (Lan-
drieu, Mati and Binder [40]), and genetic search (Pankratz [55]). A perturba-
tion heuristic was also proposed by Renaud, Boctor and Laporte [61] for the
SVPDP without time windows. A recent article by Cordeau and Laporte [18]
surveys the single vehicle DARP literature.
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A Heuristic for the SVPDPL

Carrabs, Cordeau and Laporte [10] have developed a variable neighbourhood
search (VNS) heuristic for the SVPDPL. This technique, put forward by
Mladenović and Hansen [51], is a local search framework in which the neigh-
bourhood structure is allowed to vary during the search.

The search procedure applies eight operators. The first four were intro-
duced by Cassani and Righini [11], the next three are due to Carrabs, Cordeau
and Laporte [10], and the last one calls four of the seven first operators. When
implementing these operators one must ensure that the LIFO property of the
solution remains satisfied. In several cases, preserving LIFO feasibility requires
carrying out complicated checks and handling appropriate data structures in
order to maintain a low complexity. Here is a short description of these oper-
ators.

1) Couple-exchange: Select two requests (i, n+ i) and (j, n+ j). Swap the
positions of i and j and of n + i and n + j.

2) Block-exchange: A block Bi is the path (i, . . . , n + i). This procedure
works like the previous one, except that it swaps blocks Bi and Bj , instead
of just their extremities.

3) Relocate-block: This procedure relocates a block Bi in the best possible
position.

4) Relocate-couple: This operator relocates a request (i, n+ i) in the best
position.

5) Multi-relocate: This operator works like relocate-couple, except that
it first computes the cost of relocating each request and implements the
best move. However, it saves in a queue every request whose relocation
produces a better tour to relocate the best request identified, and then
attempts to relocate as many requests as possible to further improve the
tour.

6) 2-opt-L: Denote a solution by (i1 = 0, . . . , i2n+2 = 2n + 1). This proce-
dure is an adaptation of the classical 2-opt operator for the TSP (Croes
[21]). It substitutes two arcs (ij , ij+1) and (ik, ik+1) with two other arcs
(ij , ik) and (ij+1, ik+1) and reverses the path (ij+1, . . . , ik).

7) Double-bridge: This operator is used to perturb the solution during the
VNS algorithm. It works as the classical double-bridge operator (Lin and
Kerninghan [45]). It replaces the arcs (ij , ij+1), (ik, ik+1), (i�, i�+1) and
(ih, ih+1) with (ij , i�+1), (ik, ih+1), (i�, ij+1) and (ih, ik+1).

8) Shake: This is another perturbation operator which randomly calls
couple-exchange, block-exchange, relocate-couple, or relocate-block.

Procedures 1, 2, 3, 6, 7 were implemented to run in O(n2) time while
procedures 4 and 5 require O(n3) time. In the VNS heuristic, local search is
applied to a starting solution s until a local minimum s1 has been reached,
and is perturbed into another solution s2. Local search is again applied to s2

until a local minimum s3 is reached. Finally, a decision criterion is applied to
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determine whether the search should restart from s3 or from the incumbent
s∗. The larger the cost of s3 and the number of different arcs between s3 and
s∗, the lower is the probability of restarting from s3.

The starting solution is obtained through one of the eight constructive
procedures described by Cassani and Righini [11]. The neighbourhoods couple-
exchange, block-exchange, relocate-block, 2-opt-L and multi-relocate are then
applied in one of two possible orders. To perturb the solution, the double-
bridge and shake operators are applied, with a tabu mechanism in the latter
case.

Tests were performed on 42 instances derived from TSP instances of
TSPLIB (Reinelt [59]), and containing between 12 and 350 requests. All in-
stances were solved using the VNS heuristic and the variable neighbourhood
descent (VND) heuristic of Cassani and Righini [11]. In all cases, VNS pro-
duced better solutions than VND, at the expense of an increase in computing
time. In half the cases the difference in solution costs between the two algo-
rithms was in excess of 5%. Tests were also performed to study the individual
impact of each operator by successively removing each of them. The multi-
relocate operator proved to be the most useful, while couple-exchange and
2-opt-L were the least useful. Comparisons with the optimal values of the
Cordeau et al. [16] algorithm show that on instances with 7 ≤ n ≤ 25, the
VNS heuristic yields solutions whose values lie on average within 0.19% of the
optimum (Carrabs [8]).

3 Multi-vehicle Pickup and Delivery Problems
(MVPDPs)

Most of the research effort on PDPs is related to the multi-vehicle case. In
what follows we present some of the most recent exact and approximate algo-
rithms for MVPDPs.

3.1 Exact Algorithms for the MVPDP

The most popular exact algorithms for static MVPDPs are based on column
generation (Dumas, Desrosiers and Soumis [27], Savelsbergh and Sol [68]).
Within a very short time span, three new exact algorithms have been put
forward for two basic variants of the MVPDP, and each improves upon its
predecessors. The first two use classical branch-and-cut, while the third also
embeds a pricing mechanism.

A Branch-and-cut Algorithm for the DARP

Cordeau [14] formulates the DARP on a directed graph G = (V, A), using
binary three-index variables xk

ij equal to 1 if and only if arc (i, j) is traversed
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by vehicle k. For S ⊆ P ∪ D, let q(S) =
∑
i∈S

qi. In addition, let uk
i be the

time at which vehicle k starts servicing vertex i, wk
i the load of vehicle k

upon leaving vertex i, and rk
i the ride time of user i (corresponding to request

(i, n + i) on vehicle k). The model is then as follows.

(DARP)

Minimize
∑
k∈K

∑
i∈V

∑
j∈V

ck
ijx

k
ij (26)

subject to

∑
k∈K

∑
j∈V

xk
ij = 1 (i ∈ P ) (27)

∑
i∈V

xk
0i =

∑
i∈V

xk
i,2n+1 = 1 (k ∈ K) (28)

∑
j∈V

xk
ij −
∑
j∈V

xk
n+i,j = 0 (i ∈ P, k ∈ K) (29)

∑
j∈V

xk
ji −
∑
j∈V

xk
ij = 0 (i ∈ P ∪D, k ∈ K) (30)

uk
j ≥ (uk

i + di + tij)xk
ij (i, j ∈ V, k ∈ K) (31)

wk
j ≥ (wk

i + qj)xk
ij (i, j ∈ V, k ∈ K) (32)

rk
i ≥ uk

n+i − (uk
i + di) (i ∈ P, k ∈ K) (33)

uk
2n+1 − uk

0 ≤ Tk (k ∈ K) (34)

ei ≤ uk
i ≤ �i (i ∈ V, k ∈ K) (35)

ti,n+i ≤ rk
i ≤ L (i ∈ P, k ∈ K) (36)

max{0, qi} ≤ wk
i ≤ min{Qk, Qk + qi} (i ∈ V, k ∈ K) (37)

xk
ij = 0 or 1 (i, j ∈ V, k ∈ K). (38)

In this formulation, constraints (27) and (29) ensure that each request is served
once by the same vehicle, while constraints (28) and (30) guarantee that each
vehicle starts and ends its route at the depot. Constraints (31) to (33) define
starts of service times, vehicle loads and user ride times, respectively, while
constraints (34) to (37) ensure that these will be feasible.

The uk
i variables can be aggregated into vehicle-independent ui variables

for i ∈ P ∪ D. Constraints (31) and (32) can be linearized using standard
techniques. These linearized constraints, as well as constraints (35) and (37)
can be lifted as in Desrochers and Laporte [24].

Cordeau proposes a number of valid inequalities for this model. Define
xij =

∑
k∈K

xk
ij , x(A′) =

∑
(i,j)∈A′

xij for A′ ⊆ A, and x(S) =
∑

i,j∈S

xij for S ⊆ V .
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σ-inequalities and π-inequalities (Balas, Fischetti and Pulleyblank [1])

The standard subtour elimination constraints x(S) ≤ |S|− 1 (S ⊆ P ∪D) are
of course valid for the DARP. In the directed case, precedence relationships
yield the following liftings:

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij

≤ |S| − 1 (S ⊆ P ∪D) (39)

and

x(S) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(S)

xij

≤ |S| − 1 (S ⊆ P ∪D). (40)

Lifted D+
k and D−

k inequalities (Cordeau [14])

The following subtour elimination constraints are obtained by lifting the so-
called D+

k and D−
k inequalities proposed by Grötschel and Padberg [34] for

the asymmetric TSP. Let S = {i1, . . . , ih} ⊆ P ∪D, where h ≥ 3. Then the
inequalities

h−1∑
j=1

xij ij+1 + xihi1 + 2
h−1∑
j=2

xij i1 +
h−1∑
j=3

j−1∑
�=2

xij i�

+
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ h− 1 (41)

and

h−1∑
j=1

xij ij+1 + xihi1 + 2
h∑

j=3

xi1ij +
h∑

j=4

j−1∑
�=3

xij i�

+
∑

ip∈S̄∩π(S)

xi1,ip ≤ h− 1 (42)

are valid for the DARP.

Capacity constraints (Laporte, Nobert and Desrochers [41], Cordeau [14])

The standard VRP capacity constraints

x (δ(S)) ≥ 2q(S)/Q� (S ⊆ P ∪D) (43)

where Q = max
k∈K

{Qk}, are valid for the DARP.
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Lifted generalized order constraints (Cordeau [14])

Let S1, . . . , Sh ⊂ P ∪ D be disjoint sets and let i1, . . . , ih ∈ P be such that
0, 2n + 1 /∈ S� and i�, n + i�+1 ∈ S� for � = 1, . . . , h, where ih+1 = i1. Then
the generalized order constraints (7), can be lifted as follows in the case of a
directed formulation:

h∑
i=1

x(S�) +
h−1∑
�=2

xi1,i�
+

h∑
�=3

xi1,in+i�
≤

h∑
�=1

|S�| − h− 1 (44)

and
h∑

�=1

x(S�) +
h−2∑
�=2

xn+i1,i�
+

h−1∑
�=2

xn+i1,n+i�
≤

h∑
�=1

|S�| − h− 1. (45)

Infeasible path constraints (Cordeau [14])

The following inequalities make use of the maximum ride time constraints and
are specific to the DARP. Assume the tij satisfy the triangle inequality. Then
for any path (i, k1, . . . , kp, n+i) such that tik1 +dk1+tk1k2 +dk2+. . .+tkpn+i >
L, the inequality

xik1 +
p−1∑
h=1

xkhkh+1 + xkpn+i ≤ p− 1 (46)

is valid for the DARP.
Using the DARP model and the associated valid inequalities, Cordeau

[14] has devised a branch-and-cut algorithm incorporating a preprocessing
phase (time window tightening, arc elimination and variable fixing), as well as
separation heuristics for subtour elimination constraints, capacity constraints,
generalized order constraints and infeasible path inequalities.

The algorithm was implemented in C++ with ILOG Concert 1.3 and
CPLEX 8.1. It was run on a 2.5 GHz Pentium 4 computer. In the branch-and-
cut algorithm additional aggregate variables yk

i =
∑

j∈V xk
ij , i ∈ P, k ∈ K are

added to the model. Valid inequalities are only added at the root node and
whenever all yk

i variables are integer. The algorithm first branches on yk
i vari-

ables and only selects xk
ij variables for branching when all yk

i are integer. The
algorithm was tested on 48 randomly generated instances with 16 ≤ n ≤ 48
(34 ≤ |V | ≤ 98). It is shown that the preprocessing phase played an impor-
tant role in reducing the instance size and in increasing the lower bound at
the root of the search tree. Valid inequalities at the root of the tree helped
increase the lower bound by about 5%. Instances containing up to 30 requests
could be solved optimally within four hours.
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A Branch-and-cut Algorithm for the PDPTW and the DARP

More recently, Ropke, Cordeau and Laporte [62] have proposed two models
and a branch-and-cut algorithm for the PDP with time windows (PDPTW)
and for the DARP, where all vehicles are identical. The PDPTW is a DARP
without the maximum ride time constraints. Here we describe the better of
the two models. It works with a homogeneous fleet of vehicles of capacity
Q and two-index variables xij . In this model, R denotes a path, R is the
set of infeasible paths with respect to time windows and maximum ride time
constraints, and A(R) is the arc set of R. The model is as follows.

(PDPTW-DARP)

Minimize
∑
i∈V

∑
j∈V

cijxij (47)

subject to

∑
i∈V

xij = 1 (j ∈ P ∪D) (48)

∑
j∈V

xij = 1 (i ∈ P ∪D) (49)

∑
i,j∈S

xij ≤ |S| − 2 (S ∈ U) (50)

∑
i,j∈S

xij ≤ |S| −max{1, |q(S)|/Q�} (S ⊆ P ∪D, |S| ≥ 2) (51)

∑
(i,j)∈A(R)

xij ≤ |A(R)| − 1 (R ∈ R) (52)

xij = 0 or 1 (i, j ∈ V ). (53)

In this model, precedence constraints (50) are the same as (18), con-
straints (51) are capacity constraints, and constraints (52) eliminate infea-
sible paths. An immediate strengthening of this constraint is provided by the
so-called tournament constraints. Let R = (k1, . . . , kr) be an infeasible path,
then

r−1∑
i=1

r∑
j=i+1

xkikj ≤ |A(R)| − 1 (54)

is a valid inequality for the PDPTW. In addition, if R′ = (kr, . . . , k1) is also
infeasible, then

r−1∑
i=1

(
xkiki+1 + xki+1ki

)
≤ r − 1
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is also valid. Finally, if the tij satisfy the triangle inequality and R =
(i, k1, . . . , kr, n+i) violates the time window or ride time constraints, then (46)
is also valid. All valid inequalities developed by Cordeau [14] for the DARP,
except the infeasible path constraints (46), apply directly to the PDPTW.
Some additional valid inequalities have also been proposed for the PDPTW.

Strengthened capacity constraints (Ropke, Cordeau and Laporte [62])

Let S, T ⊂ P ∪D be two disjoint sets such that q(S) > 0. Also define U =
π(T )\(S ∪ T ). Then the constraint

x(S) + x(T ) + x(S : T ) ≤ |S|+ |T | −
⌈

q(S) + q(U)
Q

⌉
(55)

is valid for the PDPTW.

Strengthened infeasible path constraints (Ropke, Cordeau and Laporte [62])

If travel times satisfy the triangle inequality and the two paths (j, i, n+j, k, n+
i, n + k) and (j, i, n + j, k, n + k, n + i) are infeasible, then the solution cannot
contain the path R = (i, n + j, k) and therefore

xi,n+j + xn+j,k ≤ 1 (56)

is valid for the PDPTW. This inequality generalizes to longer paths.

Fork inequalities (Ropke, Cordeau and Laporte [62])

If the path R = (k1, . . . , kr) is feasible but the path (i, R, j) is infeasible for
every i ∈ S and j ∈ T , with S, T ⊂ V , then the inequality

∑
i∈S

xik1 +
r−1∑
h=1

xkhkh+1 +
∑
j∈T

xkrj ≤ r (57)

is valid for the PDPTW.
This inequality can be strengthened into the following outfork inequality.

Let R = (k1, . . . , kr) be a feasible path and S, T1, . . . , Tr ⊂ P ∪D be subsets
such that kj /∈ Tj−1 for j = 2, . . . , r. If for any integer h ≤ r and any vertex
pair {i ∈ S, j ∈ Th} the path (i, k1, . . . , kh, j) is infeasible, then the inequality

∑
i∈S

xik1 +
r−1∑
h=1

xkhkh+1 +
r∑

h=1

∑
j∈Th

xkhj ≤ r (58)

is valid for the PDPTW.
Similarly, let kj /∈ Sj+1 for j = 1, . . . , r − 1. If for any integer h ≤ r and

any vertex pair {i ∈ Sh, j ∈ T } the path (i, kh, . . . , kr, j) is infeasible, then
the infork inequality

r∑
h=1

∑
i∈Sh

xikh
+

r−1∑
h=1

xkhkh+1 +
∑
j∈T

xkrj ≤ r (59)

is valid for the PDPTW.



344 Cordeau, Laporte, and Ropke

Reachability constraints (Lysgaard [47])

Let i ∈ V , and let A−
i ⊂ A be the minimum arc set such that any feasible path

from 0 to i uses only arcs from A−
i ; similarly, let A+

i ⊂ A be the minimum arc
set such that any feasible path from i to 2n + 1 uses only arcs from A+

i . Let
T ⊂ V be such that each i ∈ T must be visited by a different vehicle. Such
a set is said to be conflicting. Define A−

T = ∪i∈T A−
i and A+

T = ∪i∈T A+
i . For

any S ⊆ P ∪D and any conflicting vertex set T ⊆ S, the inequalities

x(δ−(S) ∩A−
T ) ≥ |T | (60)

and

x(δ+(S) ∩A+
T ) ≥ |T | (61)

are valid for the PDPTW.
Ropke, Cordeau and Laporte [62] have developed a branch-and-cut algo-

rithm for the PDPTW, using the preprocessing steps of Dumas, Desrosiers
and Soumis [27] and of Cordeau [14], as well as several heuristics for the
identification of violated valid inequalities. The algorithm was coded in C++
using ILOG Concert 1.3 and CPLEX 9.0, and run on an AMD Opteron 250
computer (2.4 GHz). Branching was performed on the xij variables and a
best bound node selection strategy was used. The algorithm was tested on
40 PDPTW instances similar to those of Savelsbergh and Sol [68], which con-
tain from 30 to 75 requests, and on two sets of DARP instances created by
Cordeau [14], including maximum ride time constraints, which contain be-
tween 16 and 96 requests. About 75% of the 40 first instances were solved
within two hours and all the Cordeau instances could also be solved within
that time limit. These results clearly outperform those of Cordeau [14] who
could handle instances involving at most 36 requests.

A Branch-and-cut-and-price Algorithm for the PDPTW

Ropke and Cordeau [63] have developed a branch-and-cut-and-price algorithm
for the PDPTW in which all vehicles are identical and have capacity Q. Let
Ω denote the set of all feasible routes r, let cr be the cost of route r, and air

the number of times vertex i ∈ P is visited by route r. Binary variables yr

are equal to 1 if and only if route r belongs to the optimal solution. The set
partitioning formulation of the problem is then

(PDPTW)

Minimize
∑
r∈Ω

cryr (62)

subject to
∑
r∈Ω

airyr = 1 (i ∈ P ) (63)
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yr = 0 or 1 (r ∈ Ω). (64)

In this formulation, constraints (63) ensure that every pickup node is
served once. Since the routes of Ω satisfy pairing, precedence, capacity and
time window constraints, the set partitioning constraints (63) are sufficient to
ensure feasibility.

Formulation (62)–(64) is solved by a branch-and-bound mechanism in
which lower bounds are computed by solving the LP relaxation by column
generation. To improve the lower bounds, violated valid inequalities are intro-
duced in the column generation master problem at each node of the enumer-
ation tree. Branching is performed either on the outflow from the depot (i.e.,
on the number of vehicles used in the solution) or on the outflow from a set of
vertices S when x(δ+(0)) is integer. The branch-and-bound tree is explored
using a depth-first strategy.

Two pricing problems were considered to generate columns of negative
reduced cost: the Elementary Shortest Path Problem with Time Windows,
Capacity, and Pickup and Delivery (ESPPTWCPD), and the non-elementary
relaxation of this problem. In the context of the PDPTW, the elementary
shortest path was first used by Sol [71] while the non-elementary case was
considered by Dumas, Desrosiers and Soumis [27]. Ropke and Cordeau explain
how effective dominance criteria can be employed within these pricing prob-
lems, even when valid inequalities are introduced in the column generation
master problem. Several existing families of valid inequalities are considered:
precedence inequalities (50), infeasible path inequalities (54), (56), fork in-
equalities (58), (59), and reachability inequalities (60), (61). In addition, two
new families of inequalities are introduced.

First, the classical rounded capacity inequalities can be strengthened by
considering predecessor and successor sets π(S) and σ(S). This leads to the
following inequalities which strengthen (43) and (51).

∑
i,j∈S

xij ≤ |S| −max
{

1,

⌈
q(π(S) \ S)

Q

⌉
,

⌈
−q(σ(S) \ S)

Q

⌉}
. (65)

Second, when travel times satisfy the triangle inequality, 2-path inequal-
ities introduced by Kohl et al. (1999) in the context of the Vehicle Routing
Problem with Time Windows can also be adapted and strengthened by consid-
ering precedence relationships between vertices. If it is impossible to identify a
tour serving all vertices in a vertex set S while satisfying precedence, capacity
and time window constraints, then any feasible solution must use at least two
arcs from the set δ+(S). The idea can be taken further by observing that if
a path serves all vertices of S by entering and leaving the set once, then the
vertices π(S)\S must be served by this path before entering S, and vertices of
σ(S)\S must be served after leaving S. If such a path cannot be found, then S
defines a valid inequality of the form x(δ+(S)) ≥ 2 even though there exists a
tour through S satisfying precedence, capacity and time window constraints.
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Ropke and Cordeau show that fork inequalities (58) and (59) and reach-
ability constraints (60) and (61) are in fact implied by the set partitioning
formulation when using the ESPPTWCPD as a pricing subproblem. In ad-
dition, precedence inequalities (5) are also implied by this formulation with
either the ESPPTWCPD or its non-elementary relaxation.

To accelerate the solution of the pricing problems, several heuristics are
used: label heuristics that limit the number of labels created by working on a
reduced graph from which some arcs have been removed, a randomized con-
struction heuristic based on a cheapest insertion criterion, and improvement
heuristics based on the large neighbourhood search (LNS) paradigm (Shaw
[69]). These heuristics are used sequentially until a negative reduced cost path
has been identified. When the pricing heuristics fail to find new columns the
separation procedures are called in order to find violated inequalities. If any
are found then the pricing heuristics and the separation procedures are reap-
plied. The exact pricing algorithm is only called if both the pricing heuristics
and the separation procedures are unsuccessful.

The branch-and-cut-and-price algorithm was tested on the instances in-
troduced by Ropke, Cordeau and Laporte [62] and on those of Li and Lim
[44]. For the first group of instances, all instances with n ≤ 75 could be solved
to optimality in just a few minutes on an Opteron 250 computer (2.4 GHz).
Some larger instances with up to 175 requests were also solved to optimal-
ity within a two hour time limit. For the second group of instances, several
instances with 100 requests were solved to optimality within that time limit.
Computational results have shown that the two pricing problems considered
perform similarly on test instances. Experiments concerning valid inequali-
ties showed that the 2-path cuts were the most successful of the inequalities
tested, and capacity inequalities were useful for instances with tight capacity
constraints. Overall, this branch-and-cut-and-price algorithm outperforms the
branch-and-cut algorithm of Ropke, Cordeau and Laporte [62].

3.2 Heuristics for MVPDPs

Heuristics for MVPDPs make use of insertion procedures (Jaw et al. [37], Lu
and Dessouky [46]), cluster-first, route-second methods (Cullen et al. [22],
Bodin and Sexton [5], Dumas, Desrosiers and Soumis [28], Desrosiers et al.
[26], Toth and Vigo [74], Borndörfer et al. [6]), and tabu search (Toth and
Vigo [75], Nanry and Barnes [52]). The reader is referred to Cordeau and
Laporte [18] for a survey of heuristics specifically designed for the DARP. This
section describes four recent heuristics for the MVPDP. The first three apply
to static problems in which all data are known with certainty when solving
the problem. The fourth applies to dynamic problems in which requests are
gradually revealed over time, and the solution can be updated accordingly.
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A Tabu Search Heuristic for the DARP

Cordeau and Laporte [17] have developed a tabu search (TS) for the DARP.
It is based on the unified tabu search algorithm (UTSA) (Cordeau, Laporte
and Mercier [19]) which adapts easily to a host of routing problems.

Neighbourhood search

The algorithm starts from a possibly infeasible solution s0 and moves at each
iteration t from the current solution st to the best solution in a subset of
its neighbourhood N(st). The algorithm uses attribute based tabu statuses
(Cordeau, Gendreau and Laporte [15]). To avoid cycling, solutions possessing
some attributes of recently visited solution are forbidden, or tabu, for a num-
ber of iterations, unless they improve upon the best known solution possessing
one of these attributes. The algorithm also embeds a mechanism allowing the
exploration of infeasible solutions, a concept introduced by Gendreau, Hertz
and Laporte [32]. Denote by c(s) the routing cost of solution s, and by q(s),
d(s), w(s) and t(s) the violations of vehicle capacity, route duration, time
window and ride time constraints, respectively. The algorithm minimizes the
function f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s), when α, β, γ and τ are
positive weights that self-adjust during the search. If a solution is feasible with
respect to a given constraint, then the corresponding weight is divided by a
factor 1 + δ, with δ > 0; if the solution is infeasible, then it is multiplied by
1 + δ. This process produces a mix of feasible and infeasible solutions, which
turns out to be particularly useful for tightly constrained instances.

Neighbourhood structure

With each solution s is associated an attribute set B(s) = {(i, k) : request i
is served by vehicle k}. The neighbourhood B(s) of s contains all solutions
obtained by removing an attribute (i, k) from N(s) and replacing it with
another attribute (i, k′), where k′ �= k. This means that vertices i and n + i
are removed from route k, which is then reconnected by linking the predecessor
and successor of each deleted vertex, and the two vertices are then inserted
in route k. The best position for i is first sought, and then n + i is inserted in
its best position. A tabu status is imposed on (i, k) for θ iterations.

Diversification mechanism

As suggested by Taillard [73], a frequency-based mechanism is used to diversify
the search. Any solution s̄ ∈ N(s) such that f(s̄) ≥ f(s) is penalized by a
term p(s̄) = λc(s̄)

√
nmρik, where λ is a user-controlled parameter and ρik is

the number of times attribute (i, k) has been added to the solution during the
search.
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Forward time slacks

In order to reduce route durations, the algorithm delays as much possible
vehicle departures from the depot. This can be done by computing the forward
time slack Fi of each vertex i (Savelsbergh [67]) as follows. Consider a route
(i0 = 0, . . . , iq = 2n + 1), and let vi be the waiting time at i and ui the start
of service at i. Then Fi can be computed as

Fi = min
1≤j≤q

⎧⎨
⎩
∑

i<p≤j

vp + (�j − uj)

⎫⎬
⎭ . (66)

The departure time of the vehicle from the depot can then be delayed by
F0, which can be computed in O(q) time. In the Cordeau and Laporte [17]
algorithm, the computation of Fi is modified in order not to increase time
window or ride time violations, i.e., Fi is redefined as

Fi = min
1≤j≤q

⎧⎨
⎩
∑

i<p≤j

vp + (min{�j − uj , L− rj})+
⎫⎬
⎭ , (67)

where (x)+ = max{0, x}, and rj is the ride time of the user whose destination
is vertex j if j ∈ D, and rj = 0 if j ∈ P .

Other features

The algorithm starts with a solution constructed by randomly assigning each
request (i, n+i) to a vehicle route, and by inserting i and n+i at the end of the
partially constructed route. Route reoptimizations are periodically performed
by means of intra-route exchanges. The algorithm is run for a prefixed number
of iterations.

Three versions of the algorithm were developed. Version 1 minimizes rout-
ing costs but does not minimize route durations; version 2 also minimizes
route durations by computing forward time slacks; version 3 also minimizes
the total ride time.

The algorithm was coded in C++ and tested on 20 randomly generated
instances (24 ≤ n ≤ 144), and on six real-life instances provided by a Dan-
ish consultant (n = 200 and 295). The algorithm was run on a Pentium 4,
2 GHz for 104 iterations. It solved the randomly generated instances within an
average of 5.16, 8.71 and 33.88 minutes, for versions 1, 2 and 3, respectively,
and the Danish instances within 20.99, 34.78 and 166.12 minutes. Considering
computing time and solution quality, version 2 appears to be the best option.

A Hybrid Heuristic for the PDPTW

Bent and Van Hentenryck [2] have developed a two-stage heuristic for the
PDPTW. The first stage applies simulated annealing (SA) to minimize the
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number of routes, while the second stage minimizes the total route length
through LNS (Shaw [69]).

The SA heuristic minimizes a hierarchical objective < f1,−f2, f3 >. The
function f1 represents the number of vehicle routes in the solution; f2 =∑
k∈K

a2
k, where ak is the number of requests in route k; f3 is the total routing

cost of the solution. The SA algorithm is implemented with an aspiration
criterion as is commonly done in TS, and also contains a random selection
mechanism that biases the search toward good moves.

The LNS mechanism uses nested neighbourhoods N1, . . . , Np, where Nj

relocates j requests from the current solution, and p is a user-controlled pa-
rameter. Because several requests are considered at once, a branch-and-bound
mechanism is used to identify the best overall relocation scheme. For larger
instances, the search is truncated and is only applied to a subset of the most
promising relocations. The LNS mechanism only accepts improving moves.

The algorithm was run on a 1.2 GHz AMD Athlon Thunderbird IX7 pro-
cessor running Linux. It was tested on benchmark PDPTW instances: 56
with 100 requests, 60 with 200 requests, and 60 with 600 requests. These
instances, which are described in Li and Lim [44], are downloadable from
http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html.
Five runs were executed for each of the 100- and 200-request instances, and ten
for the 600-request instances. The SA and LNS heuristics were each allowed to
run for a preset time. On the 100-request instances, the algorithm produced
two new best solutions and 54 matches; on the 200-request instances, it pro-
duced 28 new best solutions and 24 matches; on the 600-request instances, it
produced 46 new best solutions and five matches.

An Adaptive Large Neighbourhood Search Heuristic for the
PDPTW

The PDPTW version considered by Ropke and Pisinger [64] arises from the
problem faced by a Danish food manufacturer. Each request (i, n+i) can only
be served by a subset Ki of the vehicles, and not all request are necessarily
served. The objective is to minimize a weighted function f = αf1 +βf2 +γf3,
where f1 is the routing cost, f2 is the total time traveled by all vehicles, and
f3 is the number of unserved requests. It is normal to assign γ a very large
value.

The heuristic proposed by the authors also uses LNS, but it differs from the
Bent and Van Hentenryck [2] heuristic in several respects. Most importantly,
the method uses several simple request removal and insertion procedures to
explore the neighbourhood of the current solution, as opposed to the rather
involved branch-and-bound process proposed by Bent and Van Hentenryck.
In addition, the search mechanism of Ropke and Pisinger is embedded within
an SA framework, whereas Bent and Van Hentenryck used a simple descent
process.

http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks. html
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The LNS heuristic of Ropke and Pisinger applies three removal heuris-
tics (Shaw’s [69] removal procedure, random removal, worst removal), as well
as two insertion heuristics (greedy, and several types of regret-based inser-
tions). The insertion heuristics use the true value of f to evaluate the quality
of a solution, or a perturbed value f + ε, where ε is a randomly generated
noise. During the search, the algorithm maintains a score ϕj which measures
how well heuristic j has performed in the past iterations. At a given iter-
ation, it applies a roulette wheel selection principle, i.e., it selects heuristic
j with probability ϕj/

∑
i

ϕi. Because of this feature, the authors call their

PDPTW heuristic an adaptive large neighbourhood search (ALNS) heuristic.
The heuristic uses an SA-based acceptance rule for neighbour selection and
runs for a preset number of iterations. The algorithm can easily be adapted
to minimize the number of routes. It does so by iteratively deleting a route
and reinserting its requests in other routes.

The algorithm was extensively tested on the 594 Li and Lim [44] in-
stances which contain 100, 200, 400, 600, 800, and 1000 requests. Com-
parisons were made with results reported by Bent and Van Hentenryck
(http://www.cs.brown.edu/people/rbent/pickup-appendix.ps).
These tests showed the advantage of using several removal and insertion
heuristics, they confirmed the superiority of ALNS over LNS, and they also
proved the superiority of ALNS over the Bent and Van Hentenryck heuristic.
The heuristic was later used to solve the Capacitated Vehicle Routing Prob-
lem, the Vehicle Routing Problem with Time Windows, and the Multi-Depot
Vehicle Routing Problem (Pisinger and Ropke [56]).

A Double-horizon Heuristic for the Dynamic PDPTW

Mitrović-Minić, Krishnamurti and Laporte [49] have implemented a double-
horizon heuristic for the dynamic PDPTW in which requests occur in real-
time. The term double-horizon means that the insertion of a new request
takes into account the short term effect, i.e., an immediate increase in rout-
ing cost, and the long term effect, i.e., a decrease in vehicle slack time. The
algorithm combines a constructive heuristic which is applied whenever a new
request occurs, and a tabu search heuristic which is applied periodically. In
the constructive heuristic, the insertion cost of a new request is

c = [(1− αp)fp + αpgp] + [(1− αd)fd + αdgd] , (68)

where αp and αd are user-controlled parameters, fp and fd are the route length
increases due to the insertion of a pickup and a delivery, and gp and gd are
the corresponding decreases in vehicle slack times. Three insertion costs were
tested: c1 (with αp = αd = 0), c2 (with 0 < αp < 1 and 0 < αd < 1), and c3

(with αp = αd = 0 if the pickup and delivery both occur within a short term
horizon of length s, and 0 < αp < 1, 0 < αd < 1 otherwise).

(http://www.cs.brown.edu/people/rbent/pickup-appendix.ps)
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The objective function minimized in the tabu search procedure is defined
as

z =
�

s
βqS + (1− p) ((1 − α)qL + αhL) , (69)

where β is a user-controlled parameter, qS is the total length of the route
portions falling within the short-term horizon, qL is the remaining length of
the routes, hL is the average slack time over all route portions belonging
to the long-term horizon, � is the length of the long-term horizon, and s is
the length of the short-term horizon. Again, three variants were defined: z1

(with α = β = 0, and qL is interpreted as the total route length), z2 (with
0 < α < 1, β = 0, qL is the total route length and hL is the average slack
time of all routes), z3 (with 0 < α < 1 and 0 < β < 1).

The authors have also tested several waiting strategies (Mitrović-Minić
and Laporte [50]). When a new request arrives, the vehicle assigned to it
can drive as soon as possible, yielding a drive-first (DF) strategy, or it can
wait as long as possible before moving, yielding a wait-first (WF) strategy.
An intermediate strategy, called advanced dynamic waiting (ADW), works as
follows. Vehicle routes are partitioned into segments, each containing locations
that are reasonably close to each other, and these segments vary dynamically
during the course of the algorithm. The ADW strategy applies DF as long
as the vehicle remains in the same segment, and the WF strategy when it
reaches the last location of the segment. The ADW strategy proved to be the
best, but its superiority becomes smaller for large instances.

The double-horizon heuristic was tested with the combinations (c1, z1),
(c2, z2) and (c3, z3) for the DF and ADW waiting strategies. Note that only
(c3, z3) yields a true double-horizon heuristic. Computer runs were performed
over three set of 30 instances containing 100, 500 and 1000 requests each.
Statistical tests confirmed the superiority of ADW over DF for all (c, z) com-
binations, and the superiority of (c3, z3) over (c1, z1) and (c2, z2).

Split loads

An interesting variant of the MVPDP is the Pickup and Delivery Problem with
Split Loads (PDPSL) recently investigated by Nowak, Ergun and White [53].
Contrary to what happens in the MVPDP, in the PDPSL customer requests
can be split among several vehicles. The authors show that allowing splits can
yield savings whose value is highly dependent on the load size range [a, b],
meaning that demands are distributed between a% and b% of the vehicle
size Q. When [a, b] = [0.41, 0.50] or [0.81, 0.90] the savings are insignificant.
However, when [a, b] = [0.51, 0.60], they can reach 30%.

4 Conclusions

One-to-one Pickup and Delivery Problems arise in several contexts related to
the transportation of goods and people. In the past few years several new and
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powerful algorithms have been developed to solve these problems. The best
exact solution methodologies are based on branch-and-cut and on branch-
and-cut-and-price. Their success is linked to the identification of strong valid
inequalities and to the development of efficient separation procedures. New
heuristics employ a variety of techniques including tabu search, simulated
annealing, variable neighbourhood search, and large neighbourhood search.
The success of these heuristics is dependent on the design of clever search
mechanisms, some of which are of wide applicability.
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51. Mladenović N and Hansen P (1997) Variable neighborhood search. Com-
puters & Operations Research 24:1097–1100

52. Nanry WP and Barnes JW (2000) Solving the pickup and delivery prob-
lem with time windows using reactive tabu search. Transportation Re-
search B 34:107–121

53. Nowak M, Ergun O, and White CC (2006) Pickup and delivery with split
loads. Submitted for publication

54. Pacheco JA (1995) Problemas de rutas con carga y descarga en sistemas
LIFO: Soluciones exactas. Estudios de Economı́a Aplicada 3:69–86

55. Pankratz G (2005) A grouping genetic algorithm for the pickup and deliv-
ery problem with time windows. Operations Research Spectrum 27:21–41

56. Pisinger D and Ropke S (2007) A general heuristic for vehicle routing
problems. Computers & Operations Research 34:2403–2435

57. Rappoport HK, Levy LS, Golden BL, and Toussaint K (1992) A planning
heuristic for military airlift. Interfaces 22(3):73–87

58. Rappoport HK, Levy LS, Toussaint K, and Golden BL (1994) A trans-
portation problem formulation for the MAC airlift planning problem. An-
nals of Operations Research 50:505–523

59. Reinelt G (1991) TSPLIB – A traveling salesman problem library. ORSA
Journal on Computing 3:376–384



356 Cordeau, Laporte, and Ropke

60. Rekiek B, Delchambre A, and Saleh HA (2006) Handicapped person trans-
portation problem: An application of the grouping genetic algorithm. En-
gineering Applications of Artificial Intelligence 19:511–520

61. Renaud J, Boctor FF, and Laporte G (2002) Perturbation heuristics for
the pickup and delivery traveling salesman problem. Computers & Oper-
ations Research 29:1129–1141

62. Ropke S, Cordeau J-F, and Laporte G (2007) Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks
49:258–272

63. Ropke S and Cordeau J-F (2006) Branch-and-cut-and-price for the pickup
and delivery problem with time windows. Submitted to Transportation
Science

64. Ropke S and Pisinger D (2006) An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation Science 40:455–472

65. Ruland KS (1994) Polyhedral solution to the pickup and delivery problem.
Ph.D. Thesis, Sever Institute, Washington University in St.Louis, MO

66. Ruland KS and Rodin EY (1997) The pickup and delivery problem: Faces
and branch-and-cut algorithm. Computers and Mathematics with Appli-
cations 33:1–13

67. Savelsbergh MWP (1992) The vehicle routing problem with time windows:
Minimizing route duration. ORSA Journal on Computing 4:146–154

68. Savelsbergh MWP and Sol M (1998) Drive: Dynamic routing of indepen-
dent vehicles. Operations Research 46:474–490

69. Shaw P (1998) Using constraint programming and local search methods
to solve vehicle routing problems. In: CP-98 (Fourth International Con-
ference on Principles and Practice of Constraint Programming), vol. 1520
of Lecture Notes in Computer Science, pages 417–431

70. Shen Y, Potvin J-Y, Rousseau J-M, and Roy S (1995) A computer assis-
tant for vehicle dispatching with learning capabilities. Annals of Opera-
tions Research 61:189–211

71. Sol M (1994) Column generation for pickup and delivery problems. Ph.D.
Thesis, Technische Universiteit Eindhoven

72. Solanki RS and Southworth F (1991) An execution planning algorithm
for military airlift. Interfaces 21(4):121–131
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Summary. In One-to-Many-to-One Single Vehicle Pickup and Delivery Problems a
vehicle based at the depot must make deliveries and pickups at customers locations
before returning to the depot. Several variants can be defined according to the de-
mand structures and sequencing rules imposed on pickups and deliveries. In recent
years there has been an increased interest in this family of problems. New formu-
lations and efficient heuristics capable of yielding general solutions (unrestricted in
shape) have been proposed. In addition, some new and interesting extensions have
been analyzed, including problems with selective pickups and problems with capac-
itated customers. The purpose of this chapter is to review these developments.

Key Words: Pickups and deliveries; clustered traveling salesman problem; back-
hauls; lasso; double-path; general solutions; reverse logistics; selective pickups; trans-
shipment; capacitated customers.

1 Introduction

One-to-Many-to-One Single Vehicle Pickup and Delivery Problems (1-M-1
SVPDPs) are defined on a graph G = (V, A), where V = {0, 1, . . . , n} is
a vertex set and A = {(i, j) : i, j ∈ V, i �= j} is an arc set. Vertex 0 is a
depot while the remaining vertices are customers. A vehicle of capacity Q is
based at the depot. Each customer i has a pickup demand pi and a delivery

demand di satisfying pi ≥ 0, di ≥ 0,
n∑

i=1

pi ≤ Q and
n∑

i=1

di ≤ Q. A non-

negative cost cij is associated with each arc (i, j). The aim is to construct
a least cost route starting and ending at the depot, and making all pickups
and deliveries without ever exceeding the vehicle capacity. We assume that
pickup and delivery demands are unsplittable and that no transshipments are
allowed.

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 16, c© Springer Science+Business Media, LLC 2008
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In the 1-M-1 SVPDP, the expression “one-to-many-to-one” means that all
delivery demands are initially located at the depot, and all pickup demands
are destined to the depot. Taken collectively, all delivery demands can be
viewed as a single commodity, and all pickup demands can be viewed as a
second commodity. These problems are different from many-to-many (M-M)
problems, like the Swapping Problem (Anily and Hassin [2]) and the One-
Commodity Pickup-and-Delivery Traveling Salesman Problem (Hernández-
Perez and Salazar-González [20, 21]) in which commodities of several types
have to be shifted among vertices, and from one-to-one (1-1) problems, like
the Stacker Crane Problem (Frederickson, Hecht and Kim [12]) in which com-
modities must be moved between specific origin-destination pairs.

Applications of 1-M-1 SVPDPs arise in several reverse logistics operations
involving, for example, the delivery of full bottles and the collection of empty
ones (Dethloff [11], Tang and Galvão [28, 29], Privé et al. [26]), in mail ser-
vices (Wasner and Zäphel [30]), and in the servicing of offshore platforms
(Gribkovskaia, Laporte and Shlopak [18]).

It is convenient to distinguish between two variants of 1-M-1 SVPDPs. In
the first variant, denoted by P/D, and referred to as the SVPDP with single
demands, each customer i has a positive pickup or a positive delivery demand,
but not both, i.e., pi = 0 or di = 0. In the second variant, denoted by P&D,
customers may have positive pickup and delivery demands. We will refer to
this variant as the SVPDP with combined demands.

In recent years, several new algorithms and applications have been pro-
posed for 1-M-1 SVPDPs. A number of interesting properties have also been
identified. While the problems can readily be formulated as mixed integer lin-
ear programs, only relatively small instances can be solved optimally with such
formulations. Most research has therefore been devoted to the development
of heuristics. These include construction and improvement schemes based on
classical mechanisms, and more powerful methods based on metaheuristics,
almost exclusively tabu search. The range of heuristic techniques employed
for the multi-vehicle case is more varied. In a number of cases, approxima-
tion heuristics with a bounded worst-case performance ratio have been put
forward. There also exists an extensive literature on multi-vehicle pickup and
delivery problems. For a recent overview the reader is referred to Berbeglia et
al. [5]

Our purpose is to review these developments with an emphasis on theo-
retical properties and tabu search. The remainder of this chapter is organized
as follows. Sections 2 and 3 are devoted to the SVPDP with single demands
and to the SVPDP with combined demands, respectively. Some extensions of
the models of Section 3 are presented in Section 4, followed by conclusions in
Section 5.
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2 The SVPDP with Single Demands (P/D)

In the SVPDP with single demands, two cases are possible. In the SVPDP
with backhauls, all delivery customers must be visited before pickup customers.
In the mixed SVPDP, no a priori sequence is imposed.

2.1 The SVPDP with Backhauls

The SVPDP with backhauls is more commonly known as the Traveling Sales-
man Problem with Backhauls (TSPB). In this problem, customers with de-
livery demands are called linehaul customers, while customers with pickup
demands are called backhaul customers. The TSPB is essentially a Clustered
TSP (CTSP) (Chisman [6]) with the three clusters: {0}, D = {i ∈ V : di > 0
and pi = 0}, and P = {i ∈ V : pi > 0 and di = 0}. As suggested by Chisman
[6], the CTSP can be transformed into a Traveling Salesman Problem (TSP)
by adding an arbitrarily large constant M to the cost of all arcs linking any
two of the sets {0}, D and P .

We are interested in the case where the costs cij are symmetric, so that
each pair of arcs {(i, j), (j, i)} can be replaced with a single edge (i, j), where
i < j. In the case of symmetric costs satisfying the triangle inequality, Chis-
man’s transformation preserves this property and allows the application of
the Christofides [7] heuristic to the transformed instance. While this heuris-
tic has a worst-case performance ratio of 1.5 for the transformed instance, it
yields a useless bound for the original instance because the numerator and the
denominator each contain a term equal to 3M . However, as shown by Gen-
dreau, Hertz and Laporte [14], an approximation heuristic with a worst-case
performance ratio of 1.5 for the TSPB can still be constructed as follows:

Step 1. Construct a spanning tree S of G whose edge set consists of (1) the
edges of SD, a minimum cost spanning subtree of the graph induced by D,
(2) edge (0, d) with c0d = min

j∈D
{c0j}, (3) edge (0, p) with c0p = min

j∈P
{c0j},

(4) the edges of SP , a minimum cost spanning tree of the graph induced
by P .

Step 2. Let R be the set of odd-degree vertices in S. (Note that 0 /∈ R, |R|
is even, |R ∩D| is odd, and |R ∩ P | is odd). Determine a minimum cost
matching H on the edges of the graph induced by R with respect to the
transformed costs.

Step 3. Construct a Eulerian subgraph using the edges of S ∪H . This graph
contains edges (0, d), (0, p) and a single edge (d̄, p̄) between D and P .
Using a shortcut technique (Christofides [7]), extract from this Eulerian
graph a Hamiltonian chain (d, . . . , d̄) on the graph induced by D, linking
a Hamiltonian chain (p̄, . . . , p) on the graph induced by P . The tour T =
(0, d, . . . , d̄, p̄, . . . , p, 0) is a feasible TSPB solution.
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Gendreau, Hertz and Laporte [14] show that if z is the cost of T and z∗

is the optimal TSPB cost, then z/z∗ ≤ 1.5 and this bound is tight. In a dif-
ferent paper (Gendreau, Hertz and Laporte [13]), the authors have developed
a heuristic based on GENI insertions. They have applied it to randomly gen-
erated instances (100 ≤ n ≤ 1000) and have shown that on instances with
100 ≤ n ≤ 300, it yields average deviations of 3% to 5%. No deviation could be
computed on larger instances because of excessive running times. Mladenović
and Hansen [23] have later improved this value by about 40% by applying a
variable neighbourhood search heuristic to the same instances, at the expense
of a 30% increase in running time.

2.2 The Mixed SVPDP

The mixed SVPDP has been called the TSP with Pickups and Deliveries by
Mosheiov [24], the TSP with Delivery and Backhauls by Anily and Mosheiov
[3], and the Mixed TSP by Nagy and Salhi [25].

An interesting result due to Mosheiov [24] is that a feasible solution of

the mixed SVPDP always exists provided
n∑

i=1

pi ≤ Q and
n∑

i=1

di ≤ Q. Such a

solution can be generated as follows:

Step 1. Construct a Hamiltonian circuit (i1, . . . , in, i1) on the graph induced
by V \{0}, disregarding pickup and delivery demands.

Step 2. Let ir be such that
r∑

t=1
(pit − dit) is maximized.

Step 3. Then, the Hamiltonian circuit (0, ir+1, . . . , in, i1, . . . , ir, 0) is feasible.

Moreover, if a TSP algorithm with a worst-case performance ratio of α
is used in Step 1, then the worst-case performance ratio of the algorithm
just described is 1 + α. The algorithm is called PDαT. If the Christofides
[7] algorithm is used in Step 1 (assuming costs are symmetric and satisfy the
triangle inequality), then the overall approximation algorithm has a worst-case
performance ratio of 2.5.

Mosheiov [24] presented another heuristic, based on that of Golden et al.
[16] with an unbounded worst-case performance ratio but a better empirical
performance. It first constructs a TSP solution on D and then gradually in-
serts the vertices of P using a cheapest insertion criterion, while maintaining
feasibility. It was tested on instances with 8 ≤ n ≤ 201.

Anily and Mosheiov [3] have later proposed another approximation heuris-
tic called 2MST, also making use of the Christofides [7] heuristic. In what fol-
lows, the net demand of a subtree is the total demand of its pickup vertices,
minus the total demand of its delivery vertices.

Step 1. Compute a minimum spanning tree on G.
Step 2. Starting at vertex 0, traverse the tree in a depth-first fashion, visiting

first the subtrees with a positive net demand. Vertices with a delivery
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a) All edges but one are traversed
twice (Q = 2)

b) All edges are traversed once or
three times (Q = 2)

Fig. 1. Two possible solutions (full lines) to the mixed SVPDP on a circular graph.
The pickup and delivery amounts are indicated by (pi, di).

demand are served the first time they are visited, while vertices with a
pickup demand are served after all vertices in the subtree rooted at them
have been served.

Step 3. Construct a Hamiltonian tour by following the tree in a depth-first
fashion and applying shortcuts.

The authors have proved that the solution produced by this heuristic is
always feasible. Moreover, if the cost matrix is symmetric and satisfies the
triangle inequality, then the worst-case performance ratio of heuristic 2MST
is equal to 2.

Another heuristic for the same problem was proposed by Gendreau, La-
porte and Vigo [15]. The authors first consider the SVPDP defined on a cycle,
i.e., the arc set of the graph defines a cycle spanning the vertices of V . They
show that there always exists an optimal solution in which one edge is not
visited and all other edges are visited twice, or all edges are visited once or
three times. In the first case the edge having the highest cost is unvisited. In
the second case, assuming the order of the vertices on the cycle is (0, 1, . . . , n),

then edge (i, i+1) is visited three times if and only if
∑
j≤i

(pj−dj) > Q−
n∑

j=1

dj .

The authors provide a linear time exact algorithm called C, for visiting each
edge the correct number of times. Figure 1 depicts two solutions for the mixed
SVPDP.

Given this, the following O(n2) heuristic, called H , can be applied to a
general graph.

Step 1. Determine a TSP solution on G by means of the Christofides [7]
heuristic.

Step 2. Apply heuristic C to the Hamiltonian cycle corresponding to the TSP
solution.

Step 3. Derive a Hamiltonian solution by applying shortcuts.
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Since the cost of this solution is at most twice that of the TSP solution and
the Christofides heuristic has a worst-case performance ratio of 1.5, heuristic
H has a worst-case performance ratio of 3. While heuristic H has a worst-case
ratio larger than that of the Mosheiov [24] heuristic, it has been shown to have
a better empirical performance as confirmed by tests performed by Gendreau,
Laporte and Vigo [15] on instances containing between 26 and 261 vertices.
These authors have also developed a tabu search heuristic that performs 2-opt
exchanges, which outperformed all previous heuristics at the expense of larger
computing times.

Finally, we mention that Baldacci, Hadjiconstantinou and Mingozzi [4]
have developed an exact branch-and-cut algorithm for this problem, based on
a two-commodity flow formulation. It can solve instances involving up to 200
vertices within one hour of computing time.

3 The SVPDP with Combined Demands (P&D)

We distinguish between two cases of the SVPDP with combined demands. In
the first case, denoted by PD and known as the Traveling Salesman Problem
with Pickup and Deliveries (TSPPD), each customer is visited exactly once
for a combined pickup and delivery operation. It will be shown that this case
reduces to the mixed SVPDP. In the second case, denoted by P-D, and called
the general SVPDP, the pickup and delivery operations may be performed
within the same visit or in two separate visits.

3.1 The Traveling Salesman Problem with Pickup and Deliveries
(PD)

The TSPPD reduces to the mixed SVPDP (Mosheiov [24]). Indeed, if pi > di,
redefine the pickup demand of customer i as p′i = pi − di, and its delivery
demand as d′i = 0; if pi ≤ di, the delivery demand of i becomes d′i = di − pi

and its pickup demand is p′i = 0. Then redefine the vehicle capacity as Q′ =

Q−
n∑

i=1

di. Note that this transformation is only valid under the assumption

that each customer is visited only once, which makes it possible to work with
net demands. All methods of Section 2.2 are applicable to this problem.

3.2 The General SVPDP (P-D)

Gribkovskaia et al. [17] distinguish between four solution shapes for the general
SVPDP: general (G), lasso (L), Hamiltonian (H), and double-path (D). A
general solution is unrestricted in that any customer can be visited once for
a combined pickup and delivery service, or twice if these two operations are
performed separately. In other words, general solutions include all possible
feasible shapes. In a lasso solution, the vehicle first performs deliveries along
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a) General (G) b) Lasso (L)

c) Hamiltonian (H) d) Double path (D)

Fig. 2. Four solution shapes for the general SVPDP with combined demands on a
Euclidean graph.

a path rooted at the depot to a subset S of customers, until it reaches a certain
vertex k. All vertices of (V \{0})\S are then visited once for a combined service
along a loop until the vehicle reaches k again and performs deliveries to the
customers of S by following a path leading to the depot. If S = ∅, the lasso
reduces to a Hamiltonian solution, which yields a TSPDP. If S = V \{0}, the
lasso reduces to a double-path solution. A double-path solution can also be
obtained by solving a TSPB. This is achieved by duplicating the customer
set into the union of a set of linehaul customers with delivery demands di

and zero pickup demands, and a set of backhaul customers with zero delivery
demands and pickup demands pi. The four solution shapes are illustrated in
Figure 2.

Denote by zG, zL, zH and zD the costs of the optimal general, lasso, Hamil-
tonian and double-path solutions, respectively, associated with the same in-
stance. Gribkovskaia et al. [17] prove that if the (cij) matrix satisfies the
triangle inequality, then the following relation holds: zG ≤ zL ≤ zH ≤
zD ≤ 2zG. Figure 3 depicts an instance for which the non-lasso solution
(0, 1, 2, 3, 5, 4, 6, 3, 0) of cost 9 is optimal.

The general SVPDP with combined demands can be formulated as follows.
Let i and i + n be two copies of vertex i, where pi+n = pi and di+n = 0. The
model allows two service possibilities for each customer i. The pickup and
delivery operations may be performed simultaneously, in which case vertex i
is visited and vertex i+n is not visited. Otherwise, customer i is visited twice:
delivery is made at vertex i and pickup at vertex i+n. We define an extended
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Fig. 3. Euclidean instance for which the non-lasso solution (0, 1, 2, 3, 5, 4, 6, 3, 0) is
optimal. The pickup and delivery demands are indicated by (pi, di).

cost matrix C̄ = (c̄ij)(2n+1)×(2n+1) where

cij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cij if i ≤ n and j ≤ n

ci−n,j if i > n and j ≤ n

ci,j−n if i ≤ n and j > n

ci−n,j−n if i > n and j > n.

We also define the following variables:

xij =

⎧⎪⎨
⎪⎩

1, if the vehicle travels directly from i to j(i, j = 0, . . . , 2n;
i �= j; j �= i + n if 1 ≤ i ≤ n; j �= i− n if i > n)

0, otherwise.

yi =

⎧⎪⎨
⎪⎩

1, if pickup and delivery are performed simultaneously at
customer i(i = 1, ..., n)

0, otherwise.

wi = an upper bound on the total pickup amount in the vehicle upon
leaving vertex i(i = 0, . . . , 2n)

zi = an upper bound on the total delivery amount in the vehicle upon
leaving vertex i(i = 0, . . . , 2n).

The general SVRPPD model is to

minimize
2n∑
i=0

2n∑
j=0

c̄ijxij (1)

subject to

2n∑
j=0

xij = 1 (i = 0, . . . , n) (2)

2n∑
i=0

xij = 1 (j = 0, . . . , n) (3)
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2n∑
j=0

xij = 1− yi−n (i = n + 1, . . . , 2n) (4)

2n∑
i=0

xij = 1− yj−n (j = n + 1, . . . , 2n) (5)

w0 = 0 (6)

z0 =
n∑

i=1

di (7)

0 ≤ wi + zi ≤ Q (i = 1, . . . , 2n) (8)
wj ≥ wi + pjyj − (1− xij)Q (i = 0, . . . , 2n; j = 1, . . . , n) (9)
wj ≥ wi + pj(1− yj−n)− (1− xij)Q

(i = 0, . . . , 2n; j = n + 1, . . . , 2n) (10)
zj ≥ zi − dj − (1− xij)Q (i = 0, . . . , 2n; j = 1, . . . , n) (11)

xij ∈ {0, 1} (i, j = 0, . . . , 2n, i �= j; j �= i + n

if 1 ≤ i ≤ n; j �= i− n if i > n) (12)
yi ∈ {0, 1} (i = 1, . . . , n). (13)

In this formulation, constraints (2) and (3) mean that the first vertex
associated with each customer is visited once, either for a single delivery or
for a simultaneous pickup and delivery. Constraints (4) and (5) express the fact
that the second vertex associated with a customer is visited only if a combined
pickup and delivery does not occur at the first vertex. Constraints (6) and (7)
define the vehicle load upon leaving the depot, while constraints (8) guarantee
that the vehicle load will never exceed the vehicle capacity. Constraints (9)
and (10) state that the pickup amount in the vehicle is increased by pj if vertex
j is visited immediately after vertex i and a pickup takes place at that vertex.
Constraints (11) mean that the delivery amount in the vehicle decreases by
dj if vertex j is visited immediately after vertex i. Constraints (12) and (13)
impose the binary conditions on the variables. As in Desrochers and Laporte
[10], constraints (9), (10) and (11) prevent the formation of subtours.

The size of instances that can be solved optimally using this model is
relatively small and heuristics must therefore be used in practice. One such
heuristic is an adaptation of the Unified Tabu Search Heuristic (UTSA) of
Cordeau, Laporte and Mercier [9]. This heuristic has proved to be highly
efficient on a host of vehicle routing problems and it easily adapts to several
situations.

The main features of the tabu search algorithm for the general SVPDP
have been described in Cordeau, Laporte and Mercier [9] and in Gribkovskaia
et al. [17]. Several of these apply directly to most SVPDP variants, namely
the construction of an initial solution, the use of attributes to define tabu
statuses, the aspiration criterion, the diversification mechanism, the use of
periodic reoptimization and the termination criterion. We now describe the
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penalized objective function and the neighbourhood mechanism which will be
referred to in Section 4.

Penalized objective function

In order to allow a mix of feasible and infeasible solutions, the algorithm
works with a penalized function f(s) = c(s) + αq(s), where c(s) is the cost
of solution s, q(s) is the total vehicle capacity violation of s, and α is a
self-adjusting parameter. At each iteration, α is divided by 1 + δ > 1 if the
current solution is feasible, and multiplied by 1 + δ otherwise, where δ is a
user-controlled parameter. This mechanism is identical to that of Cordeau,
Gendreau and Laporte [8].

Neighbourhood structure and attribute set

At each iteration, the neighbourhood N(s) of a solution s is defined as the
set of all solutions reachable from s by changing the number v of visits of a
customer. With s is associated an attribute set B(s) = {(i, v) : i ∈ V \{0} and
v = 1 or 2}. A transition from s to a neighbour s′ is called a move, which can
be defined as the removal of an attribute (i, v) from B(s) and the inclusion of
(i, v′) in B(s′), where v′ �= v. There are two possible moves.

1. If v = 1, a second visit of i is inserted in the current solution so as to yield
the smallest increase of f(s). Visiting i twice will typically increase c(s)
and decrease q(s).

2. If v = 2, the second occurrence of vertex i in the solution is deleted and
its predecessor and successor are linked together. As a result pickup and
delivery are now performed simultaneously at vertex i. Visiting i once will
typically decrease c(s) and increase q(s).

This algorithm was extensively tested by Gribkovskaia et al. [17] on
benchmark instances derived from VRPLIB (http://www.er.deis.unibo.it/

research_pages/ORinstances/VRPLIB/VRPLIB.html) containing between 16 and
101 vertices. It was observed that 38% of all solutions were non-Hamiltonian
and 18% were non-lasso. This shows that it would have been suboptimal to
impose a predefined shape on the solution. The frequency of multiple visits
is higher in instances containing customers located close to the depot and
having a large pickup demand compared with their delivery demand, so that
it is preferable to perform the delivery and pickup operations separately.

4 Extensions of the General SVPDP

There exist several natural and meaningful extensions of the 1-M-1 general
SDVRP, all of which have only received limited attention. We will consider
four such extensions. In these extensions, visiting customers twice may be
dictated by feasibility considerations.

(http://www.er.deis.unibo.it/
research_pages/ORinstances/ VRPLIB/ VRPLIB.html)


One-to-Many-to-One Single Vehicle Pickup and Delivery Problems 369

4.1 Periodic SVPDPs

In periodic problems customer pickup and delivery requirements are spread
over a period of several days and the problem is then to simultaneously deter-
mine a subset of customers and the order of visits for each day. This problem is
encountered in the planning of reverse logistics operations, for example when
new household appliances and furniture such as washing machines, fridges or
mattresses must be delivered and used items must be collected. Alshamrani,
Mathur and Ballou [1] have studied the case where the pickup and delivery
operations may be spread over several days but a maximum time limit is
imposed between the pickup and the delivery operations in order to avoid
product deterioration. The problem studied by these authors is motivated by
the blood distribution system of the American Red Cross.

4.2 SVPDPs with Selective Pickups

An interesting case, also arising in reverse logistics, is where pickups are op-
tional, but generate a profit when performed. An example described by Privé
et al. [26] is the delivery of beverages to supermarkets and convenience stores,
and the collection of empty recyclable containers. This case was recently stud-
ied by Gribkovskaia, Laporte and Shyshou [19]. To handle this variant, the
authors introduce an additional binary variable ui(i = 1, . . . , n) to the model
of Section 3.2, equal to 1 if and only if pickup is performed during the sec-
ond visit to customer i. If the pickup associated with customer i generates a
revenue ri, then the objective becomes

minimize
2n∑
i=0

2n∑
j=0

c̄ijxij −
n∑

i=1

riyi −
2n∑

j=n+1

rj−nuj−n. (14)

The right-hand sides of constraints (4) and (5) become ui−n and uj−n,
respectively. It is also necessary to impose the constraints

ui + yi ≤ 1 (i = 1, . . . , n) (15)

and to modify constraints (10) as follows:

wj ≥ wi + pj−nuj−n − (1− xij)Q
(i = 0, . . . , 2n; j = n + 1, . . . , 2n). (16)

In the tabu search algorithm for this problem, the neighbourhood structure
is similar to that of the general SVPDP, but a status is assigned to each
customer: PD for a simultaneous pickup and delivery, D for a single delivery,
and P-D for a separate pickup and delivery operations. Then,

1) if v = 1, a second visit of i is inserted in the current solution so as to yield
the smallest increase of f(s). In other words, for each vertex with status
PD or D change to status P-D is evaluated;
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Fig. 4. Euclidean instance for which an intermediate drop at the depot is beneficial.
The pickup and delivery demands are indicated by (pi, di).

2) if v = 2, the second occurrence of vertex i in the solution is deleted and its
predecessor and successor are connected. Or, in terms of vertex statuses,
for each vertex with status P-D two possible modifications to the status
PD or D are evaluated and only the modification yielding the smaller
increase of f(s) is considered for each vertex. As a result either pickup
and delivery are performed simultaneously at vertex i or only delivery
demand is satisfied.

In addition local reoptimization is applied whenever a new best feasible
solution is identified. This is done by means of two improvement heuristics,
called SP and RC, which are used every ψth and ϕth iteration, respectively,
where ψ and ϕ are user-controlled parameters. Heuristic SP (shifting pickups)
attempts to improve the solution by delaying the pickup operation of PD cus-
tomers, and thus freeing some space on the vehicle; heuristic RC (resequencing
of customers) attempts to improve the solution by iteratively removing from
the route vertices visited once and reinserting them in the most profitable
position.

Several variants of this algorithm were extensively tested on instance con-
taining between 16 and 101 vertices. One of the best two yielded solutions
within 3.98% of the minimal reachable routing cost, and 0.24% of the optimal
revenue; for the other one, these figures were 3.35% and 0.55%.

Finally, we mention that Süral and Bookbinder [27] have also formulated
and solved a version of the mixed SVPDP with selective pickups. The formu-
lation was solved by CPLEX 5.0. Fifty-three out 72 instances with n ≤ 30
could be solved optimally within times ranging from 0.04 to 5.76 seconds on
an IBM Risc/6000 computer.

4.3 SVPDPs with Intermediate Drops

Another variant of the general SVPDP with combined demands is to allow
drops at intermediate vertices. For example, when the vehicle makes several
passages through the depot, it may make sense to empty part of its content
in order to create extra space and thus allow more flexibility in the remaining
part of the route. In the example of Figure 4, an optimal solution of cost 9 is
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Fig. 5. Euclidean instance for which transshipment at a customer location is ben-
eficial. The pickup and delivery demands are indicated by (pi, di).

(0,1,2,3,5,4,6,3,0) if no intermediate drop at the depot is allowed. However, a
better solution (0,1,0,2,3,5,4,6,0) of cost 8.91 is obtained if the pickup demand
of customer 1 (p1 = 6) is dropped at the depot while the vehicle is travel-
ing from 1 to 2. Another possibility is to allow transshipment at customer
locations along the vehicle route. Consider the example of Figure 5 in which
edge (0,1) is rotated clockwise so that the cost of edge (1,2) becomes 1.97.
Then an optimal solution without intermediate drop is still (0,1,2,3,5,4,6,3,0)
and has a cost of 8.97. Transshipping six demand units at vertex 2 yields a
better solution (0,1,2,3,5,4,6,2,0) of cost 8.90. As far as the authors are aware,
intermediate drops have never been studied in the context of the SVPDP, but
Mitrović-Minić and Laporte [22] have shown the benefits of transshipment in
the context of 1-1 pickup and delivery problems.

4.4 SVPDPs with Capacitated Customers

Finally, another interesting extension of the general SVPDP is the case of
capacitated customers. In some contexts like the servicing of offshore platforms
(Gribkovskaia, Laporte and Shlopak [18]), there is no spare capacity at the
customer locations. When a vehicle (a vessel) arrives at a platform, it may have
to first unload a container from the platform before performing a delivery, but
this is only possible if there is sufficient capacity in the vessel. This situation
is handled by adding the following constraints to the model of Section 3.2.
Let Ci be the available free capacity of customer i at the start of operations
(it is assumed that Ci ≥ di − pi to ensure feasibility). Then

Ci ≥ di − piyi (i = 1, . . . , n) (17)

and

(Q− wi − zi) + Ci ≥ 1 (i = 1, . . . , n) (18)

Constraints (17) ensure that there is sufficient capacity at each customer
location to perform the pickup and delivery services, while constraints (18)
prevent infeasible situations in which the vehicle would arrive fully laden at
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a) Optimal solution without customer
capacities

b) Optimal Hamiltonian solution with
customer capacities

c) Optimal non-Hamiltonian solution with customer capacities

Fig. 6. Instance with capacitated customers. The vehicle capacity is Q = 3. The
pickup and delivery demands are indicated by (pi, di).

a location with no free storage space, and the amounts to be picked up and
delivered would be the same. More specifically, these constraints state that
the amount of free space on the vehicle and at the customer location cannot
both be zero.

Figure 6 depicts a case where Q = 3. In Figure 6a there are no customer
capacities and the solution (0, 1, 2, 3, 0) of cost 4 is optimal. In Figure 6b
customer capacities are imposed and the Hamiltonian solution (0, 2, 1, 3, 0) of
cost 2 + 2

√
2 is optimal. In Figure 6c no Hamiltonian solution is feasible and

the non-Hamiltonian solution (0, 2, 1, 3, 2, 0) of cost 2 + 3
√

2 is optimal.
In order to handle customer capacities, some modifications must be made

to the tabu search algorithm of Section 3.2. Vertices are first classified into
three categories:

category 0: vertices for which Ci = 0 and di = pi;
category 1: vertices for which Ci < di;
category 2: vertices for which Ci ≥ di.
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Vertices of category 0 and 1 can only be visited once for a simultaneous
pickup and delivery, and those of category 0 can only be visited when the
vehicle is not fully laden. This is obvious because these vertices do not have
sufficient available capacity to accept their delivery demand without their
pickup demand being collected. Vertices of category 2 can be visited once or
twice on a route.

Moreover, a solution is said to be load-feasible if the vehicle capacity is
never exceeded. It is storage-feasible if none of the vertices of categories 0 or
1 is visited twice. It is operational-feasible if a fully laden vehicle never serves
a customer with no available capacity (category 0 vertex). Then the following
changes are implemented in the search procedure.

Neighborhood N(s) and definition of a move

The neighborhood N(s) of solution s is defined by all solutions that can be
reached from s by changing the number of visits at one category 2 vertex.

Load feasibility violations

Load feasibility is checked whenever a vertex is visited. The total load infea-
sibility of a route is equal to the sum of load infeasibilities of all its vertices.

Operational feasibility violations

Operational feasibility means that vertices with zero capacity must not be
visited by a fully laden vehicle. The operational feasibility violation of a route
is the number of such vertices.

Storage feasibility violations

Vertex capacity violations are not allowed. Before solving an instance, vertices
that can be visited only once (the number of visits is not dependent on routing)
are identified.

Penalized objective function

For a solution s ∈ S, let c(s) denote the total routing cost, let q(s) denote
the total load violation of the route, and let g(s) denote the operational fea-
sibility violation of the route. Solutions s ∈ S are evaluated with the help of
the penalized cost function f(s) = c(s) + αq(s) + πg(s), where α and π are
positive self-adjusting parameters.

Tests have shown that this modified tabu search algorithm can effectively
solve realistic instances containing 16 and 101 vertices and the best found
solutions are not always Hamiltonian (see Gribkovskaia, Laporte and Shlopak
[18]).



374 Gribkovskaia and Laporte

T
a
b
le

1
.

S
u
m

m
a
ry

o
f
th

e
a
lg

o
ri
th

m
s

d
ev

el
o
p
ed

fo
r

th
e

S
V

P
D

P

D
e
m

a
n
d

st
ru

ct
u
re

R
o
u
te

st
ru

ct
u
re

R
e
fe

re
n
ce

A
lg

o
ri
th

m
R
es

u
lt
s

S
in

g
le

d
e
m

a
n
d
s(

P
/
D

)
S
V

P
D

P
w

it
h

b
a
ck

h
a
u
ls

G
e
n
d
re

a
u
,
H

e
rt

z
a
n
d

L
a
p
o
rt

e
[1

4
]

A
p
p
ro

x
im

a
ti

o
n

h
e
u
ri

st
ic

W
o
rs

t-
c
a
se

p
e
rf

o
rm

a
n
c
e

ra
ti
o

o
f
1
.5

.

G
e
n
d
re

a
u
,
H

e
rt

z
a
n
d

L
a
p
o
rt

e
[1

3
]

H
e
u
ri

st
ic

b
a
se

d
o
n

G
E

N
I

in
se

rt
io

n
s

D
e
v
ia

ti
o
n

fr
o
m

th
e

o
p
ti

m
u
m

b
e
tw

e
e
n

3
%

a
n
d

5
%

(1
0
0
≤

n
≤

3
0
0
).

M
la

d
e
n
o
v
ić
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5 Conclusions

The one-to-many-to-one SVPDP arises in several practical contexts and has
been extensively studied by operations researchers. Several variants of the
problem exist according to whether pickup and delivery operations can or
must be performed separately, and to whether an order is imposed on the
sequencing of these two types of operation. The algorithms described in this
chapter are summarized in Table 1. Allowing general solutions in which no a
priori shape is imposed and customers may be visited once or twice is often
beneficial. Because these problems are rather hard to solve, very few exact
algorithms are available. More often than not, heuristics are the only practical
solution methodology. For some variants of the problem, heuristics with a
bounded worst case performance ratio have been proposed. Several variants
can be solved efficiently by modifying the Unified Tabu Search Algorithm of
Cordeau, Laporte and Mercier [9]. Various extensions of the 1-M-1 SVPDP
have been described. Some of these are relevant to the planning of reverse
logistics operations and to the servicing of offshore oil and gas platforms.
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Summary. In this chapter, we focus on home delivery, and, more specifically, on
attended home delivery, where the consumer must be present for the delivery. To
provide a high service level and to avoid delivery failures as much as possible, it is
customary in attended home delivery services for the company to offer the customer
a choice of narrow delivery time slots. The objective of this chapter is to highlight
and illustrate issues arising in attended home delivery related to these time slots
and to present and discuss promising approaches for addressing some of them. We
will use Peapod, one of the more successful e-grocers, as an illustrative example.

Key words: Consumer direct; home delivery; e-grocery; time slots.

1 Introduction

Internet retailing allows customers to purchase goods online and have them
delivered directly to their front door. Although a “last-mile” delivery ser-
vice is convenient for the customer, it creates significant logistical challenges
for companies. For example, we have seen the rise and subsequent fall of
many e-grocers, including Webvan [11] and Shoplink, who failed to attract
the customer volumes needed to make their distribution models viable. Other
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e-grocers have been more resilient and have shown that it is possible to design
and operate a profitable business, such as Peapod (www.peapod.com) and
Albert.nl (www.albert.nl), and many continue to enter the arena, including
Fresh Direct [13], with their own ideas on how to succeed.

Home delivery, of course, is not exclusively encountered in the e-grocer
space. Many traditional retailers offer an Internet sales channel and home
delivery service alongside their conventional sales and distribution structures.
The Internet sales channel is part of a multi-channel structure, profiting from
synergies such as brand recognition, cross-promotion, purchasing leverage, and
an already existing distribution infrastructure. (For a review of the relevant
literature on the online channel in a multi-channel environment see [3].) Pure
Internet players have entered the market place as well and continue to do so,
including Amazon.com, Overstock.com, and Furniture.com. With total annual
online sales predicted to be $213 billion by 2009 [18], home delivery is quickly
becoming one of the most important business models.

As mentioned above, the Internet sales channel is often part of a ‘bricks-
and-clicks’ multi-channel strategy. In such environments, the delivery compo-
nent of the Internet sales channel can make use of the existing conventional
distribution structure, e.g. using store pick-up points as an alternative method
to bridge the last mile. In this chapter, however, we explicitly focus on home
delivery, and, equally important, on attended home delivery, where the con-
sumer must be present for the delivery. Attended delivery may be necessary
for security reasons (e.g. electronics), because goods are perishable (e.g. gro-
ceries), because goods are physically large (e.g. furniture), or because a service
is performed (e.g. repair or product installation). To provide a high service
level and to avoid delivery failures as much as possible, it is customary in at-
tended home delivery services for the company to offer the customer a choice
of narrow delivery time slots. Furthermore, we do not consider “same-day de-
livery,” but focus on environments in which all orders are known at the time
delivery operations commence.

In addition to traditional routing issues, several novel challenges and op-
portunities arise in developing a successful home delivery strategy. Notably,
the delivery provider can choose the time slots that are offered to the different
customers and the fees associated with deliveries during these time slots, and
these choices can facilitate cost-effective routing. Initial time slotting deci-
sions need to be made prior to actual customer order arrival. On a day-to-day
basis, as delivery routes begin to fill up, the delivery provider may find that
it is impossible to serve a customer in one or more of the offered time slots
and that the costs of serving the customer in one of the remaining time slots
differ widely. E-commerce allows delivery providers, in real time, the unique
opportunity to reduce the number of slots offered to customers and/or change
the fees associated with deliveries during each slot. Both aspects, i.e., deter-
mining a base time slot schedule and dynamically adjusting the base time
slot schedule, intimately tie demand management decisions in attended home
delivery to vehicle routing problems with time windows.
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The objective of this chapter is to highlight and illustrate issues arising
in attended home delivery and to present and discuss promising approaches
for addressing some of them. In doing so, we will focus on e-grocers as their
environment is one of the most challenging when it comes to attended home
delivery due to fierce competition, low profit margins, and perishable bulky
products.

The remainder of the chapter is organized as follows. In Section 2, we
present the typical issues in attended home delivery by discussing the opera-
tions of one of the more successful e-grocers. In Section 3, we discuss service
offerings and the construction of time slot schedules. In Section 4, we exam-
ine the dynamic, day-to-day aspects of managing time slots. In Section 5, we
investigate the use of incentives and penalties to smooth customer demands.
Finally, in Section 6, we discuss important areas for future research.

2 Home Delivery at Peapod: An Illustrative Case

Peapod is part of Royal Ahold and one of the largest Internet grocers in the
U.S.. The company was founded in 1989 by Andrew and Thomas Parkinson.
Currently, Peapod serves over 11 million households in cities in the United
States, including Chicago, Washington, D.C., and Boston. The company offers
attended home delivery service 5 days a week from 6am to 1pm and from 4pm
to 10pm and on weekends from 6am to 1pm. Peapod offers more than 10,000
products, including fresh groceries such as farm-fresh produce, deli meats,
cheeses and milk. Peapod picks the orders from two state-of-the-art ware-
houses (Chicago & Washington, D.C.) and from twelve smaller warerooms,
adjacent to supermarket partners Stop & Shop and Giant Food. Peapod uses
vans to deliver the orders to the customers.

In setting up their delivery operations, Peapod had to decide on the ser-
vice offering. This involves determining the number of weekly time slots to
offer, the length of the time slots, and the actual times at which time slots
are offered in the different zipcodes served. At the moment, Peapod offers
overlapping 2- and 3.5-hour time slots. Peapod charges a delivery fee depen-
dent on the order size: $6.95 for orders over $100, $7.95 for orders between
$75 and $100, and $9.95 for orders less than $75.00. Customer service con-
siderations, as well as delivery cost considerations, play a role in deciding on
the service offering. Offering more time slots may increase customer service,
but it will likely reduce the drop-density, i.e., the number of visits a delivery
truck makes in a specific zip code, which in turn may result in higher delivery
costs. Similarly, shorter time slots may provide greater customer convenience,
but they decrease routing flexibility and may therefore increase delivery costs.
Peapod uses zipcode specific characteristics, such as population density, In-
ternet penetration, and historical demand data to define service requirements
for each zipcode. Peapod reevaluates their service offering every six months.
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Issues related to service offerings and time slot schedule design are addressed
in Section 3.

On Peapod’s website, a customer creates an order and then selects a time
slot for delivery. In order to have sufficient time for order picking, time slots
are closed about 10 hours before actual delivery. Peapod uses morning and
evening cut-off times. The cut-off time is 8pm on the day before delivery for
morning slots and midnight on the day before delivery for evening slots. While
a time slot is open, the number of orders that has to be delivered in a zipcode
during that time slot is closely monitored. Based on capacity considerations,
certain time slots in certain zipcodes may be closed at some point. Closing
a time slot at Peapod means labeling it as “sold out” on their website (see
Figure 1). Even before capacity limits are reached, Peapod may open and close
time slots for certain customer groups to try to balance the number of orders
over the different time slots. For example, it might be beneficial to temporarily
close a popular time slot (in a certain zipcode) to force the selection of other
time slots. Actively influencing time slots selection enables Peapod to improve
the cost-effectiveness of their delivery operations. Determining when to close
or open any of the available time slots is a huge challenge. Price incentives,
i.e., discounts, can also be used to balance demand over time. Peapod offers
discounts to encourage the selection of the longer 3.5-hour time slots when
appropriate. Issues related to dynamically opening and closing time slots are
discussed in Section 4 and issues related to using incentives to balance demand
are addressed in Section 5.

After the order cut-off, delivery routes are determined using a commercial
routing package (i.e., a vehicle routing problem with time windows is solved).
The routes link orders from different time slots during the same morning or
evening shift. Once the delivery routes have been determined, expected deliv-
ery times are known and can, in principle, be communicated to the customers.
For those customers who select a 3.5 hour time slot, Peapod provides a more
precise delivery window to them on the day of delivery. These customers can
look on the Peapod website on the day of delivery and find a narrower 2-hour
time slot commitment within the original 3.5 hours. During the execution of
the delivery routes, the delivery vehicles are tracked using cell phone GPS in-
formation. Customer specific stop time information is recorded and uploaded
into the routing software for continuous improvements of the planning pa-
rameters. Also, estimated arrival times at subsequent stops are computed and
customers are notified by phone in case a late arrival is expected. If Peapod
cannot deliver the order, or must make an additional delivery because no one
is at the delivery address to receive and pay for the order at the specified
time, the customer will be assessed an additional fee.

Now that we have presented some of the issues encountered by Peapod,
we proceed with a more general discussion of the various components of an
effective attended home delivery operation.
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Fig. 1. Peapod time slots.

3 Time Slot Schedule Design

In this section, we present the tactical planning issues related to the design
of a time slot schedule.

3.1 Issues

Before we delve more specifically into time slot schedule design, we observe
that the use of an Internet sales channel facilitates differentiation of service
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offerings. It is possible to develop a customized time slot schedule for each
region, for each zip code, for each customer type, or even for each individual
customer. In our discussion, however, we differentiate customers based only
on their zipcodes which is common practice in many applications.

Time Slot Schedule Design involves two related, but separate sets of deci-
sions, which are usually dealt with in a hierarchical fashion:

• Determine the service requirements and delivery charges for each zipcode;
• Assign specific time slots to each of the zipcodes (respecting the service

requirements).

Together, these decisions set the conditions for the delivery routing, which
is based on actual customer orders and specific and detailed customer address
data.

Each set of time slot schedule decisions has its own specific challenges.
Determining the service requirements and delivery charges is primarily driven
by marketing considerations, whereas assigning time slots to specific zipcodes
is primarily guided by delivery routing considerations. Observe that if the ser-
vice requirements are such that all time slots are offered in all zip codes, then
there obviously is no longer a need to assign time slots to zipcodes. However,
in order to increase the demand per time slot per zipcode, it may be beneficial
to offer only a limited number of slots in certain zipcodes. Because delivery
trucks may visit several zipcodes during a single time slot and a delivery tour
spans multiple time slots, assigning specific time slots to a zipcode cannot
be done in isolation. Assigning specific time slots to zipcodes has to be done
carefully, so as to ensure that cost effective delivery routes can be constructed.

Determining service requirements involves a careful trade-off between mar-
keting and operational considerations. Let us briefly discuss the different de-
sign decisions:

• Time slot length. The length of a time slot impacts the level of customer
service as well as the delivery costs. A shorter time slot implies higher
customer service, but reduces the delivery flexibility and therefore may
lead to higher delivery costs. It is possible and may be beneficial to design
time slot schedules involving time slots with different lengths, e.g., the 2
and 3.5-hour time slots currently used by Peapod.

• Time slot overlap. The time slot schedule may or may not include time
slots that overlap in time. For example, to cover the period from 8am
to 12am, it may be possible to offer two 2-hour time slots from 8am to
10am and from 10am to noon, or, alternatively, three overlapping 2-hour
time slots from 8am to 10am, from 9am to 11am, and from 10am to noon.
Overlapping might provide marketing advantages as it offers customers
more choices.

• Number of time slots offered. The number of time slots offered impacts the
level of customer service as well as the delivery costs. A larger number of
time slots offered increases customer service, but may also increase delivery
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costs as we may have to make far away deliveries more often. Note that
the number of time slots offered does not have to be the same for every
customer. Customers far away from the distribution center or living in
zipcodes with low population densities may be offered fewer time slots so
as to artificially increase their “density.”

• Delivery charges. Customers, most likely, are willing to pay for the conve-
nience of having their order delivered to their house, but they do not want
to pay too much for that convenience. Different delivery charges may be
considered depending on the location of the customer, the size of an order,
and the time slot of the delivery.

Given a set of service requirements, specific time slots have to be assigned
to each of the zipcodes in the coverage area. Several aspects need to be consid-
ered. From a customer perspective, a well-balanced offering of time slots over
a day (i.e., morning, afternoon, and early evening) and over the week (i.e.,
weekdays and weekends) is required. From a company perspective, smooth
demand over a day and the week is also valuable as it tends to facilitate cost-
effective picking and delivery. However, smooth demand patterns are only part
of the story, for cost-effective delivery routes it is equally important to have
demand be “geographically” smooth. Therefore, routing considerations have
to play a significant role in assigning specific time slots to zipcodes.

A time slot design is likely to impact the expected demand in a zipcode.
On the other hand, the expected demand in zipcodes drives the time slot
design. Therefore, it is clear that understanding demand is crucial. Demand
has many dimensions. First and foremost, the size of the demand is important,
both in terms of the number of orders and the (physical) volume of orders.
Internet sales volume in a zipcode is related to the population density, the
average income, the Internet penetration, etc. Order size is often dependent
on the customer type (e.g., business or consumer). However, it is not only
the size of the demand in a zipcode that is important, it is also necessary
to understand the prevalent desired delivery times, e.g., the desired delivery
days and the desired times of delivery. Finally, and probably the most difficult
characteristic of demand to assess, is what happens with demand when the
desired delivery time is not available (not offered). Will demand disappear,
i.e., the customer decides not to place an order, or will demand spill over, i.e.,
the customer decides to place an order in another time slot?

3.2 Modeling

Many of the early studies of consumer direct service models primarily exam-
ined the impact of different slot lengths. For example, [20] compare trans-
portation costs for attended and unattended delivery and assess the impact of
the time slot length. The results illustrate the efficiency gains of relaxed time
constraints. Fully flexible, unattended delivery reduces costs by up to a third,
relative to attended delivery within 2-hour time slots. [16] summarize the
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delivery policies for many online grocers in the U.S. and use vehicle routing
software to evaluate the impact of some of these policies on a few realistic in-
stances of the problem. Both unattended and attended policies are compared,
along with different time slot lengths. [21] simulate the delivery costs for two
specific models, Streamline.com’s unattended delivery policy and Webvan’s
attended 30-minute time slot policy, and find the more restrictive Webvan
model to cost five times more. We are aware of only one paper which specifi-
cally addresses the delivery pricing problem, i.e., which considers the impact
of pricing on delivery efficiency and assesses the revenue versus costs trade-off.
[12] model the delivery pricing problem when both the size of demand and
the demand frequency is price sensitive. They focus on the question of which
customer regions to serve, at which price, in order to maximize profitability.

[2] address the problem of assigning specific time slots to zipcodes given a
set of service requirements, the Time Slot Schedule Design Problem (TSSDP).
The assignment needs to facilitate cost-effective routing of delivery vehicles.
Two fundamental assumptions are made: (1) the total demand is known for
each zipcode, and (2) the total demand is divided evenly over the set of offered
time slots, irrespective of the number of time slots offered. Historical data sup-
ports the validity of these assumptions. Two different modeling approaches are
presented: continuous approximation and mathematical programming. Con-
tinuous approximation relies on simple formulas to approximate routing dis-
tances based on problem characteristics, such as vehicle capacity and demand
density (see [9] for more details). We use similar concepts to estimate the
expected total distance traveled in a day for a given time slot schedule. The
approach does not rely on detailed data of individual customer orders, but on
concise summaries of “local” data. For example, the expected distance trav-
eled per zipcode for an offered time slot is estimated based on the density of
adjacent zipcodes that also offer that time slot. The expected total distance
traveled is then approximated by aggregating over all zipcodes and offered
time slots. The key assumption of the continuous approximation approach is
that the demand density is slowly varying over time and space. The original
continuous approximation approach divides the delivery route into two com-
ponents: (1) the stem distance to the delivery region and (2) the distribution
distance between consecutive stops in the delivery region. In our setting, we
distinguish between four components of a delivery route:

• distance between stops within the same zipcode within the same time slot;
• distance between stops in different zipcodes within the same time slot;
• distance between stops in two consecutive time slots
• distance between the delivery region and the depot.

Given the evaluation of a time slot schedule, local search is used to improve
the schedules.

The quadratic programming approach is based on a combination of two
cost approximations. Consider a delivery vehicle. The cost incurred by that
delivery vehicle is viewed as consisting of two parts. The first part consists of
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the costs incurred during a particular time slot, which is determined by the
“cluster” of zipcodes visited during the time slot. The second part consists
of the costs incurred by moving from one time slot to the next. The former
costs are approximated by identifying a “seed” zipcode for the cluster and
considering the distance of each zipcode in the cluster to the seed zipcode.
The latter costs are approximated by considering the distance between the
seed zipcodes of the clusters visited in subsequent time slots. Because the
distance functions are related to the seed zipcodes, the objective function
includes quadratic terms.

4 Dynamic Time Slotting

In the previous section, we addressed issues related to the time slot design. In
this section, we address the real-time management of such a schedule.

4.1 Issues

We indicated that Peapod actively monitors demand and adjusts the time slot
availability accordingly. When an order is placed, and thus a delivery needs to
be scheduled, the home delivery service provider can evaluate the feasibility
and costs associated with a delivery in different time slots and can, if deemed
beneficial, display a reduced set of options to the customer. The customer can
then choose one or can decide to withdraw the order.

The design of a dynamic time slot management scheme depends on the
assumptions regarding

• the desired delivery time slot of a customer, and
• the reaction of a customer when presented with a set of time slots that

does not contain the desired time slot.

Customer behavior modeling is one of the most challenging aspects of
dynamic time slot management.

The fact that customers order online, however, gives the modeler an advan-
tage, because it facilitates monitoring and analyzing individualized customer
behavior. This advantage is usually seen only as an opportunity for targeted
and personalized marketing, but it is equally important from a delivery plan-
ning perspective. By monitoring the time slot selection of a customer, a time
slot selection profile may be developed that captures the desired time slot(s)
of a customer.

Different strategies can be developed for deciding which time slots to offer
to customer. The most basic strategy focuses on feasibility and simply closes
a time slot as soon as a certain number of orders for that time slot has been
accepted. The limit may be set, for example, based on routing statistics for the
zipcode. A more advanced strategy incorporates real-time order information
together with information on the already accepted orders and expected future
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orders. Of course, only a short amount of time is available to make dynamic
time slotting decisions, seconds rather than minutes. Moreover, the order size
may not be known at the time the customer selects a slot. For example,
Albert.nl lets customers select a time slot before putting the order together.

4.2 Modeling

In this section, we review approaches for dealing with (some of) the dynamic
slotting issues discussed above. We are aware of only a few papers that consider
the home delivery setting explicitly. Both [6] and [7] examine which deliveries
to accept or reject. Their proposed approaches exploit stochastic information
about future requests to decide on requests under consideration. The objective
of [6] is to maximize the number of accepted requests, but the authors do not
consider the option of rejecting an “expensive” delivery to preserve resources
for more, future deliveries as done in [7]. [5] look at routing of home deliveries,
but, motivated by perishable products focus primarily on restricting the time
that products can be in the delivery truck. Similar challenges occur in the
scheduling of service engineers and repairmen. [17] consider an environment
in which requests for service that arrive during one week are scheduled to
be served during the following week. The request must be scheduled when it
arrives, so the challenge is to commit to a particular delivery time slot that
will lead to efficient routing solutions when all remaining requests for the week
have arrived. The proposed solution approach involves the selection of seeds
for different areas and choosing where to insert requests based on insertion
costs into routes containing the nearest seeds. For a similar type of problem,
[14] proposes various heuristics based on the average distance between new
service requests and already accepted requests.

At this point, we will focus on the model from [7] and two of the proposed
heuristics, DIFF and PATH. Providing more detail for this model will serve as
a good example of the role customer behavior modeling plays in this context.
We will briefly review how [7] addresses the question of dynamic time slotting
to account for feasibility, and we will also review how dynamic time slotting is
used to maximize profitability. Both models make the following set of assump-
tions concerning the problem instances and customer behavior. Both models
assume a homogeneous set of m vehicles with capacity Q to serve the accepted
orders, and that requests for a delivery are considered up to a certain cut-off
time which precedes the actual execution of the planned delivery routes. Fur-
thermore, for ease of explanation, it is assumed that the time slot schedule
offered to all customers has one-hour, non-overlapping time slots covering an
entire day, e.g., 8.00 - 9.00, 9.00 - 10.00, ..., 19.00 - 20.00. Note that the time
slot schedule can easily be changed and the same ideas will apply. If customer
i’s delivery is accepted, it consumes di of vehicle capacity and results in a rev-
enue of ri. For each customer, a time slot selection profile identifies which time
slots are acceptable for delivery. Finally, at each point in time t, customer i
will place an order between t and the cut-off time with probability pi(t).
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Observe that the latter assumption characterizes anticipated future demand.
An estimate of future demand, i.e., of demand between the current time and
the cut-off time, has a significant impact when maximizing profits, because it
may indicate that denying delivery to an expensive customer (in terms of de-
livery costs) in a particular time slot, may be wise as less expensive customers
are anticipated to order in that time slot in the future.

Next, we will summarize the technology, detailed in [7], used to determine
dynamically whether a delivery request, characterized by a size and a delivery
address, can be feasibly accommodated in any of the time slots based on the
set of already accepted customers. Doing this well can increase the number of
delivery requests that can be accepted and feasibly delivered. To dynamically
determine whether a delivery request can be accommodated in a particular
time slot requires evaluating whether there exists a set of routes visiting all
previously accepted deliveries as well as the delivery request under consider-
ation, and this must be done quickly. If such a set of delivery routes exists,
then the new request can be accepted in the given time slot; if no feasible
set of delivery routes exists, then the new request cannot be offered the given
time slot.

In [7], the DIFF insertion heuristic is proposed that consists of two phases.
In the first phase, all accepted delivery requests are inserted into routes for
the m vehicles, such that the resulting routes are feasible with regard to
their committed time slots. In the second phase, the delivery request under
consideration is evaluated to see if it can be inserted in one of these partially
constructed routes during each of the time slots in its time slot selection
profile. This order of insertions is important to ensure that the delivery request
under consideration does not prevent any of the previously accepted deliveries
from being visited during its committed time slot.

To further improve the chances that the delivery request under consid-
eration can be inserted, randomization is used during construction in the
first phase in the form of a Greedy Randomized Adaptive Search Procedure
(GRASP) [15]. This enables the creation of several different sets of delivery
routes for the already accepted deliveries and the use of each of these to see
if there is a feasible insertion for the delivery request under consideration.

If a delivery is feasible within some of the time slots, it is still at the ven-
dor’s discretion to decide which time slots, if any, are offered to the customer.
This decision can be made based on an evaluation of the expected total profit
associated with making the delivery in each feasible time slot versus an ex-
pected total profit associated with offering the customer no time slots. Next,
we summarize the insertion heuristic proposed by [7] used to address this
issue.

The PATH insertion heuristic solves a single instance of a modified vehicle
routing problem with time windows (VRPTW) each time a request material-
izes for each feasible time slot. The created instance of the VRPTW includes
all already accepted requests, the request currently under consideration, and
all requests that may or may not materialize in the future along with their
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probabilities. The objective is to maximize profit given that it may not be
possible to satisfy all requests due to limited capacity or time. If the request
under consideration is part of the constructed set of delivery routes, it is more
valuable to include this request rather than wait for future requests so it is
accepted; if the request under consideration is not part of the constructed set
of delivery routes, it is rejected. To account for the differences in customer
status, i.e., some requests have already been accepted and others have not yet
materialized, the revenue and the capacity requirements of the requests that
have not materialized yet must be adjusted based on the probability that a
delivery request will be received before the cut-off time.

The insertion heuristic consists of two phases. In the first phase, all ac-
cepted delivery requests are inserted as described earlier. In the second phase,
the remaining customers are inserted until there are no more feasible inser-
tions due to limited capacity. As mentioned above, the size of each delivery
request in the second phase is adjusted downward by its probability of being
realized, i.e., the size is set to pi(t)di for request i at time t. Note that the
request currently under consideration is inserted in the second phase, but it
exists with p = 1. [7] propose several options for evaluating the insertion cost
of these proposed deliveries but one method that proved successful was to
compute cost of an insertion relative to two already accepted requests, say
u and v. The expected length of the path between u and v, assuming route
(1, ..., u, ..., v, ..., n + 1), can be computed as follows

v−1∑
j=u

v∑
k=u+1

djkpj(t)pk(t)
k−1∏

l=j+1

(1 − pl(t)).

The expected length with and without request j can be computed as part
of the path between u and v, with the difference between these two values
serving as the cost for inserting j. The expected revenue pj(t)rj minus this
cost yields the value of the insertion.

Extensive computational experiments revealed that

• Dynamically evaluating the feasibility of a delivery in a given time slot (as
opposed to limiting the number of deliveries in a time slot to a fixed num-
ber) can significantly enhance profitability and reduce the risk of missed
delivery windows.

• The value of using profitability rather than feasibility to determine the
offered time slots increases as the expected demand to capacity ratio in-
creases.

• The value of using profitability rather than feasibility to determine the
offered time slots increases as customer density decreases.
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5 Dynamic Pricing

In the previous section, we considered dynamically adjusting the time slot
offering, i.e. restricting time slot availability. In this section, we consider dy-
namically changing the corresponding delivery fee.

5.1 Issues

Instead of coercively influencing the customer’s time slot selection, persuading
or dissuading the customer to order in a particular time slot by means of price
incentives may form a more customer friendly alternative. The experience of
Peapod indicates that even small price incentives (a few dollars) can create
significant changes in customers’ selection of delivery slots [19].

The decisions that have to be made when determining time slot incentives
are:

• What type of incentives to use? Instead of reducing delivery charges, it is
also possible to offer free products or coupons. Indicating environmental
benefits may suffice to influence customers’ choices.

• Use only incentives or also use penalties to dissuade a customer from or-
dering in a specific time slot?

• In case incentives take the form of delivery charge reductions, will there
be a single level, e.g., a $1 discount, or will there be multiple levels of
discounts, e.g., a $1, $2, or $3 discount?

• How much money to make available for incentives for a given day (of
execution) or time slot? As customers place orders over a period of time,
we have to decide upfront how much money we are willing to spend on
providing incentives for a given day of execution, i.e., over the entire period
leading up to execution.

• How much money to give to a particular customer? Here we need to con-
sider the trade-off between customer preferences and the cost we expect to
incur from delivering to the customer in a certain time slot versus another
time slot. This decision is complicated by the fact that we do not yet know
all the customers that require a delivery on that day.

5.2 Modeling

In recent years, academic research on dynamic pricing has grown significantly
(for an overview, see [10]). A related field of research is revenue management,
which concentrates on the management of prices and inventory of scarce goods
in order to maximize profits. The most successful application area of revenue
management is the airline industry. Obvious similarities, but also significant
differences, exist between the application of revenue management concepts
in the airline industry and home delivery environments (see [1]). The key
difference concerns the cost of using inventory, i.e., seats in the context of
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airlines and a delivery in a certain time slot in the context of home delivery.
The cost of a seat is independent of who gets the seat; however, the cost of
a delivery in a certain time slots depends on the location of the customer as
well as on the location of other customers requiring a delivery in that time
slot.

Not surprisingly, the design of a dynamic pricing scheme depends on the
assumptions regarding

• the desired delivery time slots of a customer, and
• the reaction of a customer when presented with a particular set of delivery

charges for the time slots.

Only a few papers directly address the subject of pricing in a home delivery
context. [4] propose a dynamic pricing model for the delivery windows of a
grocery home delivery operation. As in standard revenue management models,
demand is stochastic and includes several customer classes. The model uses
dynamic prices per customer class to balance capacity utilization. The au-
thors analyze the structure of the optimal pricing policy of a Markov decision
process and empirically investigate the profit increase relative to a constant
pricing policy. We will briefly summarize the approach of [8] to provide an
example of how a customer’s reaction can be modeled and how such a model
can be used to compute incentives. Their model uses the following assump-
tions. When a request for delivery arrives, the vendor may offer incentives of
up to B dollars per time slot. The probability pt

i of a customer i choosing a
particular time slot t increases by an amount equal to the incentive offered
multiplied by rate x. An increase in the probability of one or more time slots is
compensated for by a decrease in the probability of the other time slots. The
time slot selection by the customer is based on these modified probabilities.
If a delivery in a time slot is infeasible given all the orders that have already
been accepted (and assigned a time slot), two options are considered. First,
the probability pt

i will be redistributed equally among the feasible time slots,
and second, the customer can walk away with probability pt

i.
A variety of industries, such as package delivery service providers and

online grocers, are starting to use historical information about customers to
estimate the likelihood of customers requiring a particular service and use this
information for planning purposes. As technology and computing resources
improve, the number of companies tracking and using such information about
their customers and their ordering patterns will only increase. Thus, the ability
to estimate and use pt

i values seems a realistic assumption.
In the Section 4, we described how to determine quickly whether it is

feasible to insert an order in a time slot. Let Ct denote the insertion cost
associated with a time slot t. If the Ct values vary widely for different time
slots, then an incentive may be offered to choose a time slot with lower costs.
Offering incentives raises many challenging questions, such as

• How do we decide which time slot(s) receive an incentive?
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• How do we decide on the size of the incentive(s)?

To model this problem, [8] divide the set of time slots with positive prob-
ability of being selected into two groups. Let

• O = set of time slots with pt
i > 0

• U = subset of O that may receive an incentive
• V = subset of O not receiving an incentive

The goal is to find

• It = the incentive for time slot t
• z = the reduction in probability for all time slots in V

so as to maximize expected profitability.
Given the above and our basic assumption that insertion costs are a good

reflection of future costs, the incentive decision for customer i can be repre-
sented by the following incentive optimization problem:

max
∑
t∈U

(ri − Ct − It)(pt
i + xIt) +

∑
t∈V

(ri − Ct)(pt
i − z) (1)

subject to:
z ≤ pt

i ∀t ∈ V (2)∑
t∈U

xIt = z | V | (3)

0 ≤ It ≤ B ∀t ∈ U (4)

In the objective, the first portion represents the product of the adjusted profit
and adjusted probability associated with awarding an incentive It to time
slot t in U . This product is the expected profitability from time slots where
incentives are offered. Likewise, the second portion represents the expected
profits from the slots with no incentives with profits and probabilities adjusted
accordingly. The first constraint in Equation 2 limits z such that the adjusted
probability of each slot not receiving an incentive cannot fall below zero.
The second constraint, Equation 3, sets z equal to the increase in probability
created by incentives divided by the number of time slots in V , so the sum
of all probabilities will remain equal to 1. Finally, Equation 4 restricts each
incentive to be less than the specified limit B. The quadratic terms can be
approximated with a piecewise linear function which transforms the incentive
optimization problem into a linear program. As a result, incentives can be
computed within a few seconds.

In addition to incentives for choosing among particular 1-hour time slots,
it is worthwhile to consider offering incentives to customers to choose a wider
time slot. In some situations, customers may be flexible and willing to accept
a wider time slot. This may also explain why offering small incentives seems
to work for Peapod.
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In the model above, an increase in the probability of a time slot due to
an incentive is compensated for by a decrease in probability of the time slots
in V (by equal amounts). Now, an increase in the probability of a wider time
slot is compensated for by a decrease in the probability of other time slots
(again by equal amounts), but now the set V of other time slots consists of all
1-hour time slots with positive probability. In this way, the two incentive
models are fairly similar in terms of how money is traded for probability. As
before, the quadratic terms can be approximated with a piecewise linear func-
tion and transform the incentive optimization problem into a linear program.
As a result, incentives for wider time slots can also be computed within a few
seconds.

Extensive computational experiments reported in [8] with both models
reveal the following insights:

• The use of incentive schemes can substantially reduce delivery costs and
thus enhance profits.

• Incentive schemes may substantially reduce the number of walkaways.
• It is sufficient to provide incentives to only a few delivery slots (≤ 3).
• It is easier to develop incentive schemes encouraging customers to accept

wider delivery slots rather than encouraging customers to select specific
time slots.

• The use of incentives can be critical even in the early stages of building a
delivery schedule.

6 Conclusions

We have presented challenges and opportunities in attended home delivery
using e-grocers as a guiding example. It is important to observe and empha-
size that even though most of our discussion is relevant in other industries
and applications, there may also be substantial differences. When scheduling
service engineers or repairmen, for example, the price is typically based on
the type of repair. Thus, dynamic pricing is likely not a consideration. Fur-
thermore, the length of the service time may vary quite a bit and may not be
known in advance. Thus, short time slots may not be a viable option.

Successfully operating an attended home delivery service requires a careful
optimization of both sales and operations processes. The marketing-operations
interface, which has been receiving growing attention in the scientific com-
munity, takes shape in this application in the interaction between actively
managing demand and the resulting transportation efficiency. Understanding
this interaction is critical for home delivery providers to be able to maximize
their profits.

We have discussed the complexities and potential benefits of such a profit-
oriented approach to attended home delivery. While the potential benefits
are vast, exploiting them requires sophisticated decision support. The various
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interrelated trade-offs between customer preferences, incentives, and routing
efficiency are much too complex for simple intuition to suffice. Information
technology, in particular in online businesses, provides rich customer data that
can serve as a basis for advanced decision making. We have reviewed scientific
models that build on this data to optimize decisions in attended home deliv-
ery. They make important contributions towards tackling the aforementioned
issues.

There remains a vast field of open research questions. One of the inter-
esting issues concerns the appropriate level of detail of routing information
in demand management models. Potential approaches may range from cou-
pling demand models with detailed routing models, at the expense of increas-
ing model complexity, to projecting transportation costs in a more aggregate
fashion, at the risk of losing accuracy. However, even in the case of more ag-
gregate models, intimate understanding of vehicle routing is a prerequisite for
appropriately assessing the profitability of a customer order. In conclusion,
we see a huge potential for the vehicle routing community to make significant
contributions in the field of attended home delivery.
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Summary. This chapter shows how Chvátal-Gomory (CG) rank-1 cuts can be used
in a Branch-and-Cut-and-Price algorithm for the Vehicle Routing Problem with
Time Windows (VRPTW). Using Dantzig-Wolfe decomposition we split the prob-
lem into a Set Partitioning Problem as master problem and an Elementary Shortest
Path Problem with Resource Constraints as pricing problem. To strengthen the for-
mulation we derive general CG rank-1 cuts based on the master problem formulation.
Adding these cuts to the master problem means that an additional resource is added
to the pricing problem for each cut. This increases the complexity of the label algo-
rithm used to solve the pricing problem since normal dominance tests become weak
when many resources are present and hence most labels are incomparable. To over-
come this problem we present a number of improved dominance tests exploiting the
step-like structure of the objective function of the pricing problem. Computational
experiments are reported on the Solomon test instances showing that the addition
of CG rank-1 cuts improves the lower bounds significantly and makes it possible to
solve a majority of the instances in the root node of the branch-and-bound tree.
This indicates that CG rank-1 cuts may be essential for solving future large-scale
VRPTW problems where we cannot expect that the branching process will close the
gap between lower and upper bounds in reasonable time.

Key words: Vehicle Routing Problem with Time Windows, Dantzig-Wolfe Decom-
position, Chvátal-Gomory Rank-1 Cuts.

1 Introduction

In the Vehicle Routing Problem with Time Windows (VRPTW) we are given a
set of customers with an associated demand and a number of identical vehicles.
The task is to find a set of minimum-length routes starting and ending at a
central depot such that each customer is visited exactly once within a given
time window, and the capacity of each vehicle is respected.

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 18, c© Springer Science+Business Media, LLC 2008
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The standard Dantzig-Wolfe decomposition of the arc flow formulation of
the VRPTW is to split the problem into a master problem (a Set Partition-
ing Problem with a convexity constraint, stating that all customers should
be visited with a limited number of vehicles) and a pricing problem (an Ele-
mentary Shortest Path Problem with Resource Constraints (ESPPRC), where
capacity and time are the constrained resources). Delayed column generation
may be used to solve the LP-relaxed master problem, which can be used as
lower bound in a branch-and-bound algorithm to reach integrality. Applying
cutting planes either in the master or the pricing problem leads to a Branch-
and-Cut-and-Price algorithm (BCP).

BCP algorithms have been frequently used to solve the VRPTW, e.g.,
Kohl et al. [25], Cook and Rich [6], Larsen [26], Kallehauge et al. [24], Irnich
and Villeneuve [22], Chabrier [4], Danna and Pape [7], Salani [31]. In all cases
the valid inequalities have been based on the original arc flow formulation
of the VRPTW, i.e., the inequalities added are valid for both the original
arc formulation and the master problem. Fukasawa et al. [16] refer to this as
a robust approach. Recently Jepsen et al. [23] showed how the Subset Row
(SR) inequalities, which are valid inequalities for the Set Partitioning Prob-
lem, successfully can be applied to VRPTW in a column generation context.
In their computational results they report solving 8 out of 18 previously un-
solved instances from the set of benchmarks by Solomon [33]. In a following
paper Desaulniers et al. [10] added fast pricing heuristics and improved cut-
ting policies for the SR inequalities to obtain even better results by closing
an additional 5 instances. The latter approaches are denoted non-robust ac-
cording to the classification by Fukasawa et al. [16], since the complexity of
the pricing problem is increased when SR inequalities are added to the master
problem.

Jepsen et al. [23] showed that the separation of SR inequalities is NP-hard
and that the inequalities can be recognized as a subset of the Chvátal-Gomory
(CG) rank-1 cuts. A simple enumeration algorithm was used to separate the
SR inequalities for sets of rows of size three, and even for such small sets the
computational results were very good as mentioned above. Not surprisingly
the separation of CG rank-1 cuts is also known to be NP-hard, see Eisenbrand
[13]. Fischetti and Lodi [15] used the CG rank-1 cuts as cutting planes in an
integer problem and showed how the separation can be formulated as a mixed
integer problem. They obtained lower bounds when optimizing over the first
Chvátal closure, i.e., adding violated CG rank-1 cuts, and were the first to
report an optimal solution to one instance from MIPLIB 3.0 by Bixby et al.
[1]. These results motivate the incorporation of the CG rank-1 cuts in a BCP
algorithm.

The pricing problem of the Dantzig-Wolfe decomposition of VRPTW, i.e.,
the ESPPRC, was shown to beNP-hard by Dror [11]. Commonly the ESPPRC
has been solved with labeling algorithms, see Dumitrescu [12], Feillet et al.
[14], Righini and Salani [29, 30], Boland et al. [2]. Due to the difficulty of
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the ESPPRC most earlier approaches solved relaxations of the ESPPRC, see
Desrochers et al. [8], Irnich and Villeneuve [22]. For a general introduction to
resource constrained shortest path problems, see Desaulniers et al. [9], Irnich
and Desaulniers [21], Irnich [20]. Jepsen et al. [23] provides an introduction of
the SR inequalities and how their application in the master problem leads to
an additional resource per inequality in the pricing problem. Furthermore, it
is shown how the dominance criteria of the label algorithm can be improved.

In this chapter we extend the work by Jepsen et al. [23] to include general
CG rank-1 cuts for the Set Partitioning master problem. Each cut results in a
new resource constraint in the ESPPRC pricing problem. As the resource ex-
tension functions are non-decreasing any dynamic programming algorithm for
the ESPPRC can be used to solve the resulting problem. However, the addition
of new resources means that more labels become incomparable when using a
traditional dominance test, and hence the number of labels in the dynamic
programming explodes. To overcome this problem we exploit the fact that in
the pricing problem it is sufficient to find a cost-minimal solution, and not all
Pareto-optimal solutions. Due to this fact we may temporarily replace each
label with a number of equivalent labels such that resources become compara-
ble in the dominance test. This approach considerably decreases the number
of labels generated in the dynamic programming algorithm. As demonstrated
in the computational results we can in this way solve the ESPPRC pricing
problem even when several hundreds of CG rank-1 cuts have been added, and
hence several hundreds of resources are to be dealt with in the label algorithm.

The chapter is organized as follows: In Section 2 we give an overview of
the Dantzig-Wolfe decomposition of the VRPTW and describe how to cal-
culate the reduced cost of columns when delayed column generation is used.
For completeness we review the CG rank-1 cuts and their separation, as de-
scribed by Fischetti and Lodi [15], in Section 3. Furthermore, we clarify how
to use these techniques in a VRPTW context. In Section 4 the improved dom-
inance criteria of the label algorithm are described. An algorithmic outline,
implementation details, and computational results using the Solomon bench-
mark instances are presented in Section 5. Section 6 provides some concluding
remarks.

2 Decomposition

Let C be the set of customers, and let the set of nodes be V = C ∪ {o, o′}
where o denotes the depot at the start of the routes and o′ denotes the depot
at the end. Each customer i ∈ C has a demand di while we set do = do′ = 0.
Each node i ∈ V has an associated service si and a time windows [ai, bi] in
which it should be visited.

Let E = {(i, j) : i, j ∈ V, i �= j} be the set of arcs between the nodes. The
set of vehicles K is sufficiently large, e.g., |K| = V , such that the convexity
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constraint is not binding, and each vehicle has capacity D. If vehicle k ∈
K service node i ∈ V then the variable tik denotes the arrival time of the
vehicle. Let cij be the travel cost on arc (i, j) ∈ E and let xijk be the variable
indicating whether vehicle k ∈ K traverses arc (i, j) ∈ E. The overall travel
time τij on arc (i, j) ∈ E depends on the travel time of the arc and the service
time si at customer i. The 3-index flow model (Toth and Vigo [34]) for the
VRPTW becomes:

min
∑
k∈K

∑
(i,j)∈E

cijxijk (1)

s.t.
∑
k∈K

∑
(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑
(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (3)

∑
(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑
(i,j)∈E

dixijk ≤ D k ∈ K (5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (6)
xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (7)
xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (8)

Constraints (2) ensure that every customer i ∈ C is visited, and (3) ensures
that each route starts and ends in the depot. Constraint set (4) ensure flow
conservation for each vehicle k. Note that a zero-cost arc xoo′k between the
start and end depot must be present for all vehicles to allow an empty tour
in case not all vehicles are needed. The constraint set (5) ensures that the
capacity of each vehicle is not exceeded and constraint sets (6) and (7) ensure
that the time window constraints are satisfied. Note that (7) together with
the assumption that τij > 0 for all (i, j) ∈ E eliminates all sub-tours. The
last constraint define the domain of the arc flow variables.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Des-
rochers et al. [8], leads to the following master problem:

min
∑
p∈P

∑
(i,j)∈E

cijαijpλp (9)

s.t
∑
p∈P

∑
(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (10)

λp ∈ {0, 1} ∀p ∈ P (11)

where P is the set of all feasible routes, the binary constant αijp is one if and
only if arc (i, j) is used by route p ∈ P , and the binary variable λp indicates



CG Rank-1 Cuts Used in a DW Decomposition of the VRPTW 401

whether route p is used. The master problem is a Set Partitioning Problem
and the LP relaxation can be solved using delayed column generation, i.e.,
consider a restricted master problem containing a subset of the columns P
and generate additional columns as needed. For the remainder of this chapter
the master problem will refer to the restricted problem. Let πi ∈ R for all
i ∈ C be the dual values of (10) and let π0 = 0. Then the reduced cost of a
route p is:

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp =
∑

(i,j)∈E

(cij − πj)αijp (12)

The pricing problem is an ESPPRC where the cost of each arc is cij = cij−πj

for all arcs (i, j) ∈ E.

Valid inequalities based on the VRPTW constraints (2)-(8), i.e.,∑
k∈K

∑
(i,j)∈E

βijxijk ≤ β0 (13)

are handled as follows (Note that βij can be dependent on a vehicle k but
then different pricing problems must be considered). Let μ be the dual values
of (13), then an additional μβij for all arcs (i, j) ∈ E has to be subtracted
from the reduced cost of a route, i.e., by subtracting the dual value from the
arc cost in the pricing problem, i.e., cij = cij − πj − μβij .

Consider adding a valid inequality for the Set Partitioning master prob-
lem (10)–(11) that cannot be written as a linear combination of the arc flow
variables, i.e., ∑

p∈P

βpλp ≤ β0 (14)

Let σ ≤ 0 be the dual values of (14), then an additional σβp has to be
subtracted when calculating the reduced cost of the column, i.e, the new
reduced cost is ĉp = cp−σβp. To handle the cost−σβp it is necessary to modify
the pricing problem by adding constraints or variables, thereby increasing its
complexity.

3 Chvátal-Gomory Rank-1 Cuts

Chvátal-Gomory (CG) cuts are well known valid inequalities for integer pro-
gramming problems, see Gomory [17], Chvátal [5]. However, in a BCP context
these cuts have been given little attention. Except for the recent papers by
Jepsen et al. [23], Desaulniers et al. [10] only an early attempt by Nemhauser
and Park [28] has been found where general mixed-integer cuts for the master
problem is applied. Nemhauser and Park [28] solved the pricing problem as
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a MIP by adding additional variables and constraints to take the dual val-
ues of the applies cuts into account. As noted in Jepsen et al. [23], the SR
inequalities are a subset of the CG cuts, and since the SR inequalities were
successfully used for VRPTW an obvious extension is to include a larger set
of the CG cuts into the BCP framework. Hence, in the following the focus will
be on the CG rank-1 cuts and their separation starting with the general case
as described by Fischetti and Lodi [15]. Next we specify the form of CG rank-
1 cuts for the master problem of the VRPTW and formulate the separation
problem based the presented theory. Last we briefly discuss the interpretation
of the SR inequalities with regards to the CG cuts.

Consider an IP problem:

min{cλ : Aλ ≤ b, λ ≥ 0, λ ∈ Zn}

where A is a m×n matrix, N = 1, . . . , n is the set of indices of variables, and
M = 1, . . . , m is the set of indices of constraints. The two polyhedra

PLP = {λ ∈ Rn : Aλ ≤ b, λ ≥ 0}
PIP = conv{λ ∈ Zn : Aλ ≤ b, λ ≥ 0} = conv(PLP ∩Zn)

describe the solution space of the linear relaxation PLP and the convex hull
of the integer solutions in PLP . It is assumed that all coefficients of A and b
are integer. A CG cut is a valid inequality for PIP given as:

�uA�λ ≤ �ub�

where u ≥ 0 is called the CG multiplier vector. The inequality is said to have
rank-1 with respect to Aλ ≤ b and λ ≥ 0. Higher rank cuts are obtained by
considering systems that also contain lower rank CG cuts, e.g., a rank-2 cut is
based on Aλ ≤ b and λ ≥ 0 and some rank-1 cuts. Note that given the above
assumptions on the integrality of A and b, undominated CG cuts only arise
for rational CG multipliers ui ∈ [0, 1), for all i ∈ M , see Schrijver [32].

The first Chvátal closure of PLP is defined as the polyhedron:

P1 = {λ ≤ 0 : Aλ ≤ b, �uA�λ ≤ �ub�, u ≥ 0 ∀u ∈ Rn}

Clearly PIP ⊆ P1 ⊆ PLP but even more interesting is it, that P1 ⊂ PLP iff
PIP �= PLP . The better approximation of PIP is obtained, since it is possible
to use a CG cut to cut off a fractional vertex λ∗ ∈ PLP corresponding to the
basis B by choosing multipliers u equal to the ith row of B−1 where i is the
row associated with any fractional part of λ∗, see Gomory [17, 18].

The separation problem is stated by Fischetti and Lodi [15] as:

Definition 1 Given a point λ∗ ∈ PLP . The CG separation problem consists
of finding a CG cut that is violated by λ∗, i.e., find u ≥ 0 for u ∈ Rn such
that �uA�λ > �ub�, or prove that no such u exist.
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Eisenbrand [13] showed that the separation problem is NP-hard and com-
putational results performed by Fischetti and Lodi [15] indicate that separa-
tion times can be cumbersome.

Given a fractional solution λ∗ ∈ PLP the maximally violated CG cut
γλ ≤ γ0, where γ = �uA� and γ0 = �ub� for some CG multipliers u ≥ 0 for
u ∈ Rn can be found by solving the following MIP:

max γλ∗ − γ0 (15)
γj ≤ uAj ∀j ∈ N (16)
γ0 > ub− 1 (17)
ui ≥ 0 ∀i ∈ M (18)
γj ∈ Z ∀j ∈ N ∪ {0} (19)

Note that only basis variables with non-zero values can contribute to the
violation of the CG rank-1 cut. Hence, all zero valued variables can be left
out of the formulation and their coefficients can be calculated after the CG
multipliers are identified. This reduces the size of the MIP problem in both
the number of variables and constraints.

Furthermore Fischetti and Lodi [15] suggest to reformulate the problem in
order to obtain a stronger formulation and numerical stability. Based on the
fact that the CG multipliers of undominated cuts are less than 1, bounding
them from above provides a stronger formulation. However, later observations
showed that the MIP heuristics performed much better without these bounds.
To obtain numerical stability a slack variable fj ∈ [0, 1− δ] (e.g., δ = 0.01) is
introduced for each coefficient αj .

Equivalent solutions to the separation problem can result in CG rank-1
cuts of different strength with respect to PIP . A strong cut tends to be sparse,
i.e., the number of non-zero entries is small. In order to obtain stronger and
sparser cuts the objective function is modified by adding a small penalty wi

(e.g., wi = 0.0001) for the selection of a multiplier ui.
Let N(λ∗) is the set of non-zero basis variables. This leads to the following

formulation of the separation problem:

max
∑

j∈N(λ∗)

(γjλ
∗
j − γ0)−

∑
i∈M

wiui (20)

fj = uAj − γj ∀j ∈ N(λ∗) (21)
f0 = ub− γ0 (22)
0 ≤ fj ≤ 1− δ ∀j ∈ N(λ∗) ∪ {0} (23)
ui ≥ 0 ∀i ∈ M (24)
γj ∈ Z ∀j ∈ N(λ∗) ∪ {0} (25)

The model (20)-(25) can be modified to handle systems as Aλ ≥ b and Aλ = b
by modifying the bounds of the CG multipliers, i.e., removing (24) and letting
u be a free variables is a way to handle equations.
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For VRPTW the CG rank-1 cuts are based on the master problem con-
straints (10). The Set Partitioning constraints give rise to cuts with CG mul-
tipliers u ∈ R|C|, since they are equalities. However, since the CG cuts will
be used in a column generation context two equally sparse cuts at separation
time might not be equally sparse after column generation. This is especially
the case for CG rank-1 cuts with negative multipliers in a minimization prob-
lem, where cuts tend to become very dense when columns price into the master
problem. Hence, we restrict ourselves to consider CG rank-1 cuts with non-
negative multipliers for the VRPTW.

The CG rank-1 cuts for the VRPTW with respect to the master problem
(9)-(11) and with non-negative CG multipliers are given as:

∑
p∈P

⎢⎢⎢⎣∑
i∈C

ui

∑
(i,j)∈δ+(i)

αijp

⎥⎥⎥⎦λp ≤
⌊∑

i∈C

ui

⌋
(26)

Given a fractional solution λ∗ for the master problem (9)-(11) the most
violated CG cut of rank-1 can be found by solving the following MIP:

max
∑

p∈P (λ∗)

(γpλ
∗
p − γ0)−

∑
i∈C

wiui (27)

fp =
∑

(i,j)∈δ(i)+

αijpui − γp ∀p ∈ P (λ∗) (28)

f0 =
∑
i∈C

ui − γ0 (29)

0 ≤ fp ≤ 1− δ ∀p ∈ P (λ∗) ∪ {0} (30)
0 ≤ ui ∀i ∈ C (31)

γj ∈ Z+ ∀p ∈ P (λ∗) ∪ {0} (32)

Again it is possible to reduce the number of variables by only considering the
non-zero basis variables.

From Jepsen et al. [23] we recall the SR inequalities for the VRPTW based
on the master problem (9)-(11):

∑
p∈P

⎢⎢⎢⎣ 1
k

∑
i∈S

∑
(i,j)∈δ+(i)

αijp

⎥⎥⎥⎦λp ≤
⌊

1
k
|S|
⌋

(33)

where S ⊆ C and 0 < k ≤ |S|. This is equivalent to the set of CG rank-1 cuts
where |S| of the CG multipliers are equal to 1

k and the rest are equal to 0,
i.e., a very sparse CG multiplier vector. A SR cut can also be interpreted as
a mod-k cut proposed by Caprara et al. [3]. The mod-k cuts are CG rank-1
cuts with multipliers in the set {0, 1

k , . . . , k−1
k }, i.e., a SR cut is a mod-k cut

with |S| multipliers equal to 1
k and the rest are equal to 0. Extending the
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SR cut to allow a row (customer) to be present multiple times in S, i.e., let
S be a multiset, leads to an SR cut with maximal |S| multipliers in the set
{0, 1

k , . . . , k−1
k }. That is, the CG multiplier of a row is raised by 1

k for each
time it is present in S. This is indeed also a mod-k cut.

4 Label Algorithm

Finding a route with negative reduced cost in the pricing problem corresponds
to finding a negative reduced cost path starting and ending at the depot, i.e.,
an ESPPRC. In the following sections we formally describe the ESPPRC
and show how the pricing problem can be solved when new resources are
introduced as a consequence of adding CG cuts.

4.1 The Pricing Problem

Assuming that no cuts have been added, the ESPPRC can be formally de-
fined as: Given a weighted directed graph G(V, E) with nodes V and arcs E,
and a set of resources R. For each arc (i, j) ∈ E and resource r ∈ R three
parameters are given: A lower limit ar(i, j) on the accumulation of resource
r when traversing arc (i, j) ∈ E; an upper limit br(i, j) on the accumulation
of resource r when traversing arc (i, j) ∈ E; and finally an amount cr(i, j)
of resource r consumed by traversing arc (i, j) ∈ E. The objective is to find
a minimum cost path p from a source node o ∈ V to a target node o′ ∈ V ,
where the accumulated resources of p satisfy the limits for all resources r ∈ R.
Without loss of generality we assume that the limits must be satisfied at the
end of each arc (i, j), i.e., after cr(i, j) has been consumed.

If the nodes have associated some resource consumptions and some upper
and lower limits on the accumulated resources are present, these can be ex-
pressed by equivalent resource constraints on the arcs (e.g. the incoming arcs
of the node).

For the pricing problem of VRPTW the resources are load d, time t, and
a binary visit-counter for each customer v ∈ C. When considering the pricing
problem of VRPTW, the consumptions and upper and lower limits of the
resources at each arc (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E
at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v �= j, ∀(i, j) ∈ E

In the label algorithm labels at node v represent partial paths from o to
v. The following attributes for a label L are considered:

v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.
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A feasible extension ε ∈ E(L) of a label L is a partial path starting in node
v(L) ∈ V and ending in the target node o′ without violating any resource
constraints when concatenated with the partial path represented by L.

In the following it is assumed that all resources are bounded strongly
from above, and weakly from below. This means that if the current resource
accumulation of a label is below the lower limit on a given arc, it is allowed
to fill up the resource to the lower limit, i.e., waiting for a time window to
open. This means that two consecutive labels Lu and Lv related by an arc
(u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v,
must satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (34)
r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (35)

Here (34) demands that each label Lv satisfies the upper limit br(u, v) of
resource r corresponding to arc (u, v), while (35) states that resource r of
Lv corresponds to the resource consumption at label Lu plus the amount
consumed by traversing arc (u, v), respecting the lower limit ar(u, v) on arc
(u, v). Other authors refer to (35) as a Resource Extension Function, see e.g.
Desaulniers et al. [9].

A simple enumeration algorithm could be used to produce all these labels,
but to limit the number of labels considered, dominance rules are introduced
to fathom labels which do not lead to an optimal solution.

Definition 2 A label Li dominates label Lj if

v(Li) = v(Lj) (36)
c(Li) ≤ c(Lj) (37)
E(Lj) ⊆ E(Li) (38)

In other words, the paths corresponding to labels Li and Lj should end at
the same node v(Li) = v(Lj) ∈ V , the path corresponding to label Li should
cost no more than the path corresponding to label Lj, and finally any feasible
extension of Lj is also a feasible extension of Li. Notice that we are only
interested in one cost-minimal path and not all pareto-optimal paths, hence
our dominance rule is tighter than the one used in e.g. Desaulniers et al.
[9], Irnich and Desaulniers [21].

Feillet et al. [14] suggested to consider the set of nodes that cannot be
reached from a label Li and compare the set with the unreachable nodes of a
label Lj in order to determine if some extensions are impossible and thereby
potentially dominate where else not possible, since vold(Li) ≤ vold(Lj) ⇒
vnew(Li) ≤ vnew(Lj) but vnew(Li) ≤ vnew(Lj) �⇒ vold(Li) ≤ vold(Lj). Or in
other words: update the node resources in an eager fashion instead of a lazy
one. The following definition is a generalization of Feillet et al. [14].
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Definition 3 Given a start node o ∈ V , a label L, and a node u ∈ V where
v(L) = u a node v ∈ V is considered unreachable if v has already been visited
on the path from o to u or if a resource window is violated, i.e.:

∃r ∈ R r(L) + �r(u, v) > br(v)

where �r(u, v) is a lower bound on the consumption of resource r on all feasible
paths from u to v. The node resources are then given as: v(L) = 1 indicates
that node v ∈ V is unreachable from node v(L) ∈ V , and v(L) = 0 otherwise.

To determine if (38) holds can be quite cumbersome, as the straightforward
definition demands that we calculate all extensions of the two labels. Therefore
a sufficient criterion for (38) to hold is sought which can be computed faster.
If label Li has consumed less resources than label Lj then no resources are
limiting the possibilities of extending Li compared to Lj, hence the following
proposition can be used as a relaxed version of the dominance criteria.

Proposition 4 Desaulniers et al. [9]. If all resource extension functions are
non-decreasing, then label Li dominates label Lj if:

v(Li) = v(Lj) (39)
c(Li) ≤ c(Lj) (40)
r(Li) ≤ r(Lj) ∀r ∈ R (41)

Using Proposition 4 as a dominance criteria is a relaxation of the domi-
nance criteria of Definition 2 since only a subset of labels satisfying (36), (37),
and (38) satisfies inequalities (39), (40), and (41).

4.2 Solving the Pricing Problem with New Resources

Recall that a CG rank-1 cut (26) for the VRPTW master problem (9)–(11)
is: ∑

p∈P

⎢⎢⎢⎣∑
i∈C

ui

∑
(i,j)∈δ+(i)

αijp

⎥⎥⎥⎦λp ≤
⌊∑

i∈C

ui

⌋

Let σ ≤ 0 be the corresponding dual variable when solving the master prob-
lem to LP-optimality. The reduced cost of column p in the VRPTW master
problem is:

ĉp = cp−σ

⎢⎢⎢⎣∑
i∈C

ui

∑
(i,j)∈δ+(i)

αijp

⎥⎥⎥⎦ =
∑

(i,j)∈E

cijαijp−σ

⎢⎢⎢⎣∑
i∈C

ui

∑
(i,j)∈δ+(i)

αijp

⎥⎥⎥⎦
We analyze how this additional cost can be handled in the label algorithm for
ESPPRC.

Let V (L) = {i ∈ V : i(L) = 1} be the nodes visited on the partial path of
label L. The reduced cost of L can then be expressed as
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ĉ(L) = c(L)− σ

⎢⎢⎢⎣ ∑
i∈V (L)

ui

⎥⎥⎥⎦ . (42)

A new resource m can be used to compute the coefficient of penalty σ for
label L, i.e., m(L) =

∑
i∈V (L) ui, is the unfloored amount involved in the cut.

Note that the consumption of resource m is ui for each outgoing (incoming)
arc of the customers i ∈ C. Even though the update of resource ĉ is defined by
a decreasing function, the usual dominance criteria of Proposition 4 can still
be used, because in case Li dominates Lj, c(Li) ≤ c(Lj) and m(Li) ≤ m(Lj)
so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Note that the resource ĉ can be ignored during
the label algorithm and only be considered at the last arc to the target node
to compute the reduced cost ĉ(L) of path L from c(L) and m(L).

Since all resource extension functions (including m(L)) are non-decreasing
we can apply the label algorithm described in the previous section to solve
the ESPPRC, using the dominance rule from Proposition 4 for the extended
set of resources. However, as further cuts are added and hence more resources
are to be compared in (41) the dominance rule is satisfied very rare. In order
to overcome this problem, we note the following property of constraint (42)

ĉ(L) = c(L)− σ �m(L)� = c(L) + kσ − σ �m(L)− k� (43)

for any integer k. Hence a label (ĉ(L), r(L), m(L)) is equivalent to a label
(ĉ(L)− kσ, r(L), m(L)− k), meaning that we can make resources comparable
in (41) at the cost of modifying c(L) in (40) and vice versa. This is the main
idea in Proposition 5, 6 and 7 to be presented.

For a label L let

T (L) =

⎛
⎝ ∑

i∈V (L)

ui

⎞
⎠ mod 1

be the amount involved in the cut since the last penalty was paid, i.e., the
fractional part of

∑
i∈V (L) ui. Recall E(L) as the set of feasible extensions

from the label L to the target node o′ and note that when label Li dominates
label Lj , their common extensions are E(Lj) due to (38). The following cost
dominance criteria are obtained for a single CG rank-1 cut.

Proposition 5 If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and
r(Li) ≤ r(Lj) ∀r ∈ R, then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) ≤ T (Lj)
the relation between the number of future penalties for the two labels when
concatenated with ε is:⌊∑

i∈ε

ui + T (Li)

⌋
≤
⌊∑

i∈ε

ui + T (Lj)

⌋

This leads to the following relation between the costs:
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ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋
= ĉ(Lj + ε)

Hence, label Li dominates label Lj.

Proposition 6 If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li) − σ ≤ ĉ(Lj), and
r(Li) ≤ r(Lj) ∀r ∈ R, then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) > T (Lj)
the relation between the number of future penalties for the two labels when
concatenated with ε is:⌊∑

i∈ε

ui + T (Li)

⌋
≥
⌊∑

i∈ε

ui + T (Lj)

⌋
(44)

Since 0 ≤ T (Lj) < T (Li) < 1 it is clear that the left hand side of (44) is
at most one unit larger than the right hand side, i.e., label Li will pay the
penalty at most one more time than label Lj. Hence,⌊∑

i∈ε

ui + T (Li)

⌋
− 1 ≤

⌊∑
i∈ε

ui + T (Lj)

⌋

That is, the additional cost of extending Li with ε is at most −σ more than
extending Lj with ε. This leads to the following relation between the costs:

ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

= ĉ(Li)− σ + c(ε)− σ

(⌊∑
i∈ε

ui + T (Li)

⌋
− 1

)

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋

= ĉ(Lj + ε)

Hence label Li dominates label Lj.

Observe that if T (Li) +
∑

i∈ε ui < 1 for all ε ∈ E(Lj), it is not possible to
trigger a penalty, i.e., the temporary penalty to the cost of Li can be disre-
garded.

In case of several CG rank-1 cuts, the new dominance criteria are as follows:
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Proposition 7 Let Q = {q : σq < 0 ∧ Tq(Li) > Tq(Lj)}. Then label Li

dominates label Lj if:

v(Li) = v(Lj) (45)

ĉ(Li)−
∑
q∈Q

σq ≤ ĉ(Lj) (46)

r(Li) ≤ r(Lj) ∀r ∈ R. (47)

Proof. The validity of (46) follows directly from Propositions 5 and 6. The
validity of (45) and (47) follows from Proposition 4.

5 Experimental Results

The experimental study is intended to show how much it is possible to
strengthen the lower bound by adding CG rank-1 cuts, while still being able
to solve the corresponding pricing problem in reasonable time. The SR in-
equalities have already proved their worth, see Jepsen et al. [23], Desaulniers
et al. [10], but in both cases only sets of rows with size 3 were included, i.e.,
CG rank-1 cuts with precisely 3 non-zero entries in the CG multiplier vector.
Hence, it is expected that the introduction of a separation routine for denser
CG multiplier vectors could improve the lower bounds further. Using the exact
separation routine for the CG rank-1 cuts is expected to be time consuming,
but for test purposes it is interesting to see how well the column generation
reacts to these cuts and also how much the lower bounds are improved.

5.1 Settings

The test instances are the well known benchmarks introduced by Solomon
[33]. The benchmarks are divided into two series, both of which are again
divided into a C (customers are grouped in larger clusters), an R (customers
are distributed randomly), and an RC (a mix of the two previous) series. Of
the 56 instances with 100 customers five instances are unsolved at the time of
writing. Furthermore, 16 of the solved instances have not yet been solved in
the root node of the branch-and-bound tree. We will only consider the R and
RC instances, since all C instances can be solved in the root node without
cutting planes, see Jepsen et al. [23], Desaulniers et al. [10].

The experiments were performed on a Pentium 4 3.0 GHz with 1 GB
RAM. The basic BCP algorithm was developed with the framework COIN, see
Lougee-Heimer [27]. The exact MIP-based CG rank-1 separation procedure is
a slight modified version of a procedure provided by Hunsaker [19]. The MIPs
were solved using CPLEX 9.1 with a maximal running time of 3600 seconds.
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An exact separation procedure for a limited set of the SR inequalities have
been developed exploiting the SSE2 vector-processing instructions intended
for multimedia floating-point purposes which are present in all x86 processors
since the introduction of Pentium 4 in 2001. The separation routine is an
exact enumeration of SR inequalities with multipliers ui ∈ {0, 1

k , . . . , k−1
k } for

i ∈ C where
∑

i∈C ui = n
k , and 0 < k < n ≤ |C| and k and n are integer, i.e.,

mod-k cuts with restriction on the sum of the multipliers.
Our implementation of the brute-force evaluation of all sub-multisets of

rows of size n, can evaluate the SR inequalities (33) in constant time for each
sub-multiset using the vector-processing capabilities. This makes it possible
to separate all violated cuts in time |S|n/n! when |P | ≤ 16, where S is the
set of rows and P is the set of basis columns. Still, the complexity is so high
that we cannot expect to separate inequalities with more than seven non-zero
coefficients in reasonably time.

Note that our implementation of the BCP algorithm is not competitive
with the recent implementation by Desaulniers et al. [10]. Also it is slower
than the one used in Jepsen et al. [23] due to the implementation of the more
general dominance criteria in the label algorithm. However, the point of our
experiments is to study the quality of the lower bounds, i.e., the number of
branch nodes, compared to the increase in computational time of the pricing
problem by adding various cuts. These conclusions hold for all implementa-
tions based on the same decomposition.

5.2 Lower Bounds

Table 1 and 2 show the lower bounds obtained in the root node when different
cutting policies are applied.

The cutting policies are:

“no” No cutting planes
“n = 3” SR cuts with n = 3 and k = 2
“n ≤ 5” Like option n = 3 and with n = 5 and k = 2, 3
“n ≤ 7” Like option n ≤ 5 and with n = 7 and k = 2, 3, 4
“CG1” General CG rank-1 cuts

A maximum of 50 cuts violating more than 0.0001 are added in each iteration.
No time limit was imposed, but the space limit of 1 GB RAM prevented some
instances to run to completion.

Upper bounds in the “UB” column are optimal values or best known upper
bounds. Entries in tables marked with an asterisk ∗ are from Danna and Pape
[7], entries marked with a double-asterisk ∗∗ are from Desaulniers et al. [10],
and entries marked with a triple-asterisk ∗∗∗ are from Jepsen et al. [23]. A dash
indicates that our implementation failed due to memory limitation. Entries in
bold face indicate optimal integer solution.
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Table 1. Lower bound comparison for the 1-series.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R101 1631.2 1634.0 1636.3 1636.3 1637.7 1637.7
R102 1466.6 1466.6 1466.6 1466.6 1466.6 1466.6
R103 1206.8 1208.7 1208.7 1208.7 1208.7 1208.7
R104 956.9 971.3 971.5 971.5 971.5 971.5
R105 1346.2 1355.2 1355.3 1355.3 1355.3 1355.3
R106 1227.0 1234.6 1234.6 1234.6 1234.6 1234.6
R107 1053.3 1064.3 1064.6 1064.6 1064.6 1064.6
R108 913.6 932.1 932.1 932.1 932.1 932.1
R109 1134.3 1144.1 1146.7 1146.9 1146.9 1146.9
R110 1055.6 1068.0 1068.0 1068.0 1068.0 1068.0
R111 1034.8 1045.9 1047.3 - - 1048.7
R112 926.8 943.5 - - - 948.6

RC101 1584.1 1619.8 1619.8 1619.8 1619.8 1619.8
RC102 1406.3 1457.4 1457.4 1457.4 1457.4 1457.4
RC103 1225.6 1257.7 1258.0 1258.0 1258.0 1258.0
RC104 1101.9 1129.9 - - - 1132.3
RC105 1472.0 1513.7 1513.7 1513.7 1513.7 1513.7
RC106 1318.8 1367.3 1371.9 1372.7 1372.7 1372.7
RC107 1183.4 1207.8 1207.8 1207.8 1207.8 1207.8
RC108 1073.5 1114.2 1114.2 1114.2 1114.2 1114.2

Table 2. Lower bound comparison for the 2-series.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R201 1140.3 1143.2 1143.2 1143.2 1143.2 1143.2
R202 1022.3 1027.3 1029.6 1029.6 1029.6 1029.6
R203 867.0 870.8 870.8 870.8 870.8 870.8
R204 - - - - - ∗∗731.3
R205 939.0 - - - - 949.8
R206 866.9 ∗∗875.9 - - - 875.9
R207 ∗∗790.7 ∗∗794.0 - - - 794.0
R208 - - - - - ∗701.2
R209 841.5 ∗∗∗854.8 - - - 854.8
R210 889.4 - - - - 900.5
R211 - - - - - ∗∗746.7

RC201 1256.0 1261.7 1261.7 1261.7 1261.8 1261.8
RC202 1088.1 1092.3 1092.3 1092.3 1092.3 1092.3
RC203 922.6 923.7 923.7 923.7 923.7 923.7
RC204 - - - - - ∗783.5
RC205 1147.7 1154.0 1154.0 1154.0 1154.0 1154.0
RC206 1038.6 1051.1 1051.1 1051.1 1051.1 1051.1
RC207 947.4 - - - - 962.9
RC208 - - - - - ∗∗776.5
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Table 3. Summary of instances solved in the root node.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 solved total

C1 9 9 9 9 9 9 9
C2 8 8 8 8 8 8 8
R1 1 5 8 9 10 12 12
R2 0 4 5 5 5 8 11
RC1 0 5 6 7 7 8 8
RC2 0 4 4 4 5 6 8

All 18 35 40 42 44 51 56

Of the 28 solved instances one instance (R102) was solved without adding
any cuts. The lower bounds for all remaining instances were considerably im-
proved by adding “n = 3” cuts resulting in integer solutions for 15 of the
27 remaining (17 out of 33 when considering the results of Desaulniers et al.
[10]). When adding “n ≤ 5” cuts improvements were present in all but one
instance (RC201) resulting in further five integer solutions of the 10 remain-
ing instances that could be solved with this approach. Of the remaining four
instances solved with “n ≤ 7” cuts, two showed no improvement and two
resulted in integer solutions. The last two instances were solved to integrality
when applying CG rank-1 cuts. Hence, we succeeded in closing the gap be-
tween the upper and lower bound for all the instances that we were able to
solve within the memory limit.

Tables 1 and 2 also show that the SR inequalities provide almost as good
lower bounds as general CG rank-1 cuts. For “n = 7” the SR inequalities
become time consuming to separate, and hence in practical applications one
should confine to “n = 3” or “n ≤ 5”.

Table 3 presents an overview of problems solved in the root node as re-
ported in this chapter or by Jepsen et al. [23] or Desaulniers et al. [10]. Column
“solved” refers to the number of instances solved to optimality at the time of
writing and “total” refers to the total number of instances. Results from the
C-series are included for completeness.

As already noted, adding SR inequalities and CG rank-1 cuts greatly
strengthens the lower bounds. Of the 56 instances 35 were previously reported
solved in the root node by Jepsen et al. [23], Desaulniers et al. [10]. With our
additional cutting planes we were able to solve an additional nine instances
in the root node of the remaining 16 previously solved instances. Note that
all the instances we were able to solve were solved in the root node. The re-
maining seven instances, which have previously been solved with “n = 3”,
could not be solved with the current implementation due to hardware limita-
tions. Hence, there exists 12 Solomon instances (seven solved with branching
and five unsolved) where CG rank-1 cuts could potentially improve the lower
bound in the root node.
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Table 4. Running time for pricing problem and number of branch-and-bound nodes
for the 1-series.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R101 0.1 11 0.1 2 3 0.1 4 3 0.1 15 1
R102 0.2 1 0.2 0 1 0.2 0 1 0.2 0 1
R103 0.4 15 1.3 33 1 1.3 33 1 1.3 33 1
R104 5.8 - 910.5 328 3 - - 11 - - 1
R105 0.1 55 0.2 52 3 0.2 56 1 0.2 56 1
R106 0.5 147 4.8 114 1 4.8 114 1 4.8 114 1
R107 2.2 - 46.1 224 3 78.4 242 1 78.4 242 1
R108 13.0 - 244.8 192 1 244.8 192 1 244.8 192 1
R109 0.3 - 1.6 127 17 8.7 374 3 10.0 367 1
R110 1.1 - 26.0 269 1 26.0 269 1 26.0 269 1
R111 1.5 - 36.6 175 39 293.7 379 - - - -
R112 35.9 - - - 91 - - - - - -

RC101 0.1 59 0.2 69 1 0.2 69 1 0.2 69 1
RC102 0.3 - 1.4 140 1 1.4 140 1 1.4 140 1
RC103 1.2 - 42.8 276 3 49.1 290 1 49.1 290 1
RC104 15.6 - 569.2 237 7 - - - - - -
RC105 0.2 191 0.5 73 1 0.5 73 1 0.5 73 1
RC106 0.3 - 3.5 250 37 16.5 543 5 21.6 572 1
RC107 1.4 - 4.3 85 1 4.3 85 1 4.3 85 1
RC108 9.7 - 86.7 175 1 86.7 175 1 86.7 175 1

1) Data log-files were lost during machine upgrade.

5.3 Running Times of the Pricing Problem

Table 4 and 5 contain the results obtained when solving the instances to opti-
mality using different cutting planes. In column “CPU” we report the CPU-
time in seconds for solving the last pricing problem, while column “cuts” gives
the number of cuts applied. Column “BB” indicates the number of branch-
and-bound nodes considered. As before, a dash in the tables indicates that a
memory insufficiency had occurred. Entries marked with a double-asterisk ∗∗

are from Desaulniers et al. [10].
The tables show that adding “n ≤ 5” cuts and “CG1” cuts is relatively

cheap with respect to the running time of the pricing problem, while decreas-
ing the number of branch-and-bound nodes significantly e.g., in instances
R109, RC106, and R202.

If we had access to “ideal” heuristics for the pricing problem (with low
running time and high solution quality) we would only need to solve one
pricing problem to optimality in each branch-and-bound node. The running
time of the overall algorithm would then be dictated by the running time for
optimally solving the pricing (CPU) and the number of branch-and-bound
nodes (BB). With the exception of R202 (where massive paging occurred due
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Table 5. Running time for pricing problem and number of branch-and-bound nodes
for the 2-series.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R201 0.2 - 0.4 15 1 0.4 15 1 0.4 15 1
R202 2.9 - 3.0 24 13 419.6 132 1 419.6 132 1
R203 83.2 - 505.6 35 1 505.6 35 1 505.6 35 1
R204 - - - - - - - - - - -
R205 1.5 - - ∗∗345 ∗∗9 - - - - - -
R206 131.7 - - ∗∗171 ∗∗1 - - - - - -
R207 - - - ∗∗24 ∗∗1 - - - - - -
R208 - - - - - - - - - - -
R209 6.5 - - ∗∗248 ∗∗3 - - - - - -
R210 - - - ∗∗266 ∗∗5 - - - - - -
R211 - - - - - - - - - - -

RC201 0.2 - 0.3 25 3 0.3 25 3 0.3 29 1
RC202 0.6 - 1.7 26 1 1.7 26 1 1.7 26 1
RC203 58.8 11 185.2 15 1 185.2 15 1 185.2 15 1
RC204 - - - - - - - - - - -
RC205 1.0 - 1.8 21 1 1.8 21 1 1.8 21 1
RC206 1.7 - 4.6 23 1 4.6 23 1 4.6 23 1
RC207 - - - ∗∗210 ∗∗5 - - - - - -
RC208 - - - - - - - - - - -

to lack of memory) the lower bound on the running time “BB × CPU” is not
increasing when n grows and “CG1” cuts are applied. This shows, that good
heuristics for the pricing problem can make the addition of SR and CG-1 cuts
attractive for the overall running time.

6 Concluding Remarks

We have demonstrated that it is possible to apply general CG rank-1 cuts de-
rived from the master problem formulation in a BCP algorithm for VRPTW.
As each cut results in the introduction of a new resource in the pricing prob-
lem it was necessary to develop new, tighter dominance rules for use in the
pricing algorithm.

Our computational experiments indicate that the addition of CG rank-1
cuts leads to significantly improved lower bounds. In our tests the cuts made it
possible to close the gap between the upper and lower bounds in the root node
of the branch-and-bound tree for 44 of the 51 currently solvable instances from
Solomon’s test library. This is an additional 9 instances compared to previous
results. The increased complexity of the pricing problem caused by CG rank-1
cuts do affect the running time of the pricing problems but not significantly.



416 Petersen, Pisinger, and Spoorendonk

This indicates that CG rank-1 inequalities may be essential when solving
larger instances to optimality, as one cannot expect that the branching process
will close the gap between the upper and lower bound in reasonable time. Note
that one should also take into account the additional time spent in each branch
node since the number of LP iterations increases when valid inequalities are
added. As for classical branch-and-cut algorithms it will always be a question
when to add cuts and when to start branching.

Another important note is the separation time of the CG rank-1 cuts which
can indeed be very time consuming. Also the current MIP-based heuristics
only finds a limited number of violated cuts as the main effort is put in cut
violation quality not violated cut quantity. We suggest that MIP-based heuris-
tics which focus on finding numerous violated CG rank-1 cuts could improve
the performance of the BCP algorithm. Fortunately the SR inequalities gen-
erally give rise to almost as tight lower bounds as general CG rank-1 cuts,
while being easier to handle in the pricing problem (due to integer modulo
operations, see Jepsen et al. [23]). For n = 7 the separation of SR inequalities
takes almost one hour, making them too expensive to separate. For n ≤ 5
the inequalities can be separated in a couple of minutes. So until more ef-
ficient separation methods have been developed, one should only apply SR
inequalities for n ≤ 5.

During our experiments we noticed that specific values of the CG multi-
pliers u occurred more frequently than others. For instance, multiplier vectors
u ∈ {0, 1

2}|C| occurred very frequently, showing that it is promising to investi-
gate these inequalities further (note that the SR inequalities for a given n with
k = 2 are a subset of these inequalities). Knowing the structure of promis-
ing CG rank-1 inequalities will make it possible to develop fast, specialized
separation heuristics and better handling of these specific inequalities in the
pricing problem. Adapting the separation algorithm by Caprara et al. [3] for
maximally violated mod-k cuts in the master problem could be an interesting
direction of research.
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mathématiques et de génie industriel École Polytechnique de Montréal.
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Summary. Inter-tour constraints are constraints in a vehicle-routing problem
(VRP) on globally limited resources that different vehicles compete for. Real-world
examples are a limited number of “long” tours, where long is defined with respect
to the traveled distance, the number of stops, the arrival time at the depot etc.
Moreover, a restricted number of docking stations or limited processing capacities
for incoming goods at the destination depot can be modeled by means of inter-
tour resource constraints. In this chapter, we introduce a generic model for VRPs
with inter-tour constraints based on the giant-tour representation and resource-
constrained paths. Furthermore, solving the model by efficient local search tech-
niques is addressed: Tailored preprocessing procedures and feasibility tests are com-
bined into local-search algorithms, that are attractive from a worst-case point of
view and are superior to traditional search techniques in the average case. In the
end, the chapter provides results for some new types of studies where VRPs with
time-varying processing capacities are analyzed.

Key words: Vehicle routing; global and inter-tour resources; efficient local search.

1 Introduction

Classical vehicle-routing problems (VRPs) can be formulated and solved by
considering resources: The capacitated VRP (CVRP) has resources for limited
vehicle capacities and the VRP with time windows (VRPTW) has resources
for service times. In the case of a homogeneous fleet, the limiting resource
constraints and resource consumptions are identical for each vehicle. For a
heterogeneous fleet, resource constraints and consumptions can differ between
specific groups of vehicles. In both cases, the feasibility of a tour depends
solely on vehicle-specific resources. Here, we consider constraints for globally
limited resources that different vehicles compete for. Examples are a restricted
number of docking stations at depots, and a limited number of ‘long’ tours,

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8_19, c© Springer Science+Business Media, LLC 2008
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where long is defined w.r.t. the traveled distance, the number of stops, the
arrival time at the depot etc. We devise a general model and solution method
and, for the sake of clarity, explain the approach with the example of a VRP
with time-varying processing or sorting capacity constraints at the depot.
Such VRPs arise, for instance, in routing applications for letter mail collection
from postboxes or for the pickup of parcels from registered clients: Vehicles
collecting mail or parcels arrive at the depot over time. The entire volume
must be processed (stamped, sorted, labeled with a machine-readable code,
commissioned etc.) before a given cut-off time. Moreover, the processing rate
at the depot is limited. It may vary over time so that, for each point in time,
one can specify a maximum quantity that can be handled in the remaining
time interval, i.e., from that point in time until cut-off. While each individual
tour may be feasible w.r.t. given time window and vehicle capacity constraints,
the feasibility w.r.t. processing capacities is not automatically guaranteed, but
requires a staggered arrival of collected mail. Thus, the feasibility of a solution
depends on the arrival time and collected mail volume of every single vehicle
at a depot.

The contribution of this chapter is threefold: First, the aim of the new
model is to help represent different real-world VRPs with inter-tour con-
straints in a generic way. The model is mainly based on the unified framework
presented in [11] and utilizes the giant-tour representation [5] and the concept
of resource-constrained paths [7, 12]. Not only inner-tour but also inter-tour
resource constraints are modeled using resource-extension functions (REFs).
REFs describe the resource update along a path, i.e., when a vehicle travels
from one point to the next. The novelty of this approach is that not only are
individual tours considered as resource-feasible paths, but also the entire giant
route. By using tailored reset REFs connecting the end node of one tour with
the start node of the next tour, inner-tour resources are reset, while inter-tour
resources are propagated along the entire giant route. This chapter clarifies
which types of REFs lead to well-structured models, for which the feasibility
of a giant route can be efficiently checked.

Second, the new model is intended to support efficient solution procedures
that are based on local search (LS). LS-based procedures iteratively build
neighbor solutions first and check the feasibility and gain of these afterwards.
If straightforwardly implemented, this feasibility check causes an extra effort
bounded by the length of a longest tour, which is in general only bounded
by O(Rn) for instances of size n with R resources. The methods presented
in [11] allow the searching of neighborhoods of size O(nk) in O(Rnk) time,
thus avoiding an additional factor in the worst-case for cost computations and
feasibility checks. We provide sufficient conditions on the REFs that guarantee
O(R) feasibility tests for VRPs with inter-tour resource constraints.

Third, the chapter presents concepts for applying sequential search pro-
cedures to inter-tour constrained VRPs in order to further reduce the effort
of evaluating a neighborhood of size O(nk). The goal here is to perform less
than O(Rnk) operations in the average case. Sequential search is a gain-based
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search-tree pruning method which was first applied to unconstrained prob-
lems, such as graph partitioning problems and the symmetric TSP [14, 6].
The sequential search approach has been generically described and applied
successfully to the CVRP [13]. Good results have also been obtained for so-
called ‘rich’ VRPs with different kinds of side constraints [11]. Here, we show
that sequential search enables the fast and efficient solution of large-scale
multi-depot VRPTW (MDVRPTW) instances with time-varying processing
capacities and up to a few hundred collection points. The integration of the
LS procedures into a large neighborhood search (LNS) method [24, 19] leads
to an effective metaheuristic, which can easily be adapted to other VRPs with
inter-tour constraints.

The chapter is structured as follows: The next section focuses on modeling
aspects, starting with models for the MDVRPTW, continuing with the in-
corporation of time-varying processing capacity constraints, and ending with
the generic inter-tour model and its applications. Section 3 summarizes the
techniques used for efficient local search and sketches the implemented LNS
metaheuristic. Computational results are presented in Section 4. We show
that the proposed modeling and solution approach is helpful to perform new
types of studies in which the impact of inter-tour constraints on the structure
and cost of solutions is analyzed. Final conclusions are drawn in Section 5.

2 Models for the VRP with Inter-Tour Constraints

The above-mentioned VRP with time-varying processing-capacity constraints
serves as an example motivating the giant-tour model and heuristic solution
approach. The VRP we are considering is an extension of the MDVRPTW.
We start with a non-standard formulation utilizing REFs. This MDVRPTW
model has similarities with the unified model presented in [7]. Our goal is to
provide a formulation from which we can easily derive a new model. This new
model will represent a solution as a single resource-feasible path.

2.1 The Multiple-Depot VRP with Time Windows

The MDVRPTW is defined on a network N = (V ,A) with node set V and arc
set A. As usual, at customer i ∈ C ⊂ V , a quantity of qi needs to be collected
by a single visit of a vehicle. Each customer i allows the start of the service
(=collection) within the time window [ei, li].

Let K be the set of vehicles. Since we assume that each vehicle performs
exactly one tour during the planning horizon, K is also the set of tours. Each
tour k ∈ K starts at its origin o(k) ∈ V , ends at its destination d(k) ∈ V ,
and visits customers in between. Side-dependencies may restrict vehicle k to
visiting only customers C k ⊆ C . Hence, the subnetwork N k = (Vk,Ak) with
nodes Vk = C k ∪ {o(k), d(k)} describes feasible movements of vehicle k in
space. For modeling purposes, it is advantageous to formulate the problem
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with distinct nodes, which results in O = {o(k) : k ∈ K} and D = {d(k) :
k ∈ K} both having cardinality |K|.

The vehicles k ∈ K are characterized by the following data: The total
quantity collected by vehicle k must not exceed the vehicle capacity Qk. Time
windows [eo(k), lo(k)] and [ed(k), ld(k)] restrict the start time and end time of
tour k. Travel times ttime

ij and costs cij for (i, j) ∈ A are assumed to be
vehicle-independent. Note that additional service times at a node i can always
be included in ttime

ij without changing the interpretation of the time windows.
The model for the MDVRPTW reads as follows:

min
∑
k∈K

T k,cost
d(k) (1a)

s.t.
∑
k∈K

∑
j:(i,j)∈Ak

xk
ij = 1 ∀i ∈ C (1b)

∑
j:(o(k),j)∈Ak

xk
o(k),j =

∑
i:(i,d(k))∈Ak

xk
i,d(k) = 1 ∀k ∈ K (1c)

∑
j:(i,j)∈Ak

xk
ij −

∑
j:(j,i)∈Ak

xk
ji = 0 ∀k ∈ K, i ∈ Vk (1d)

xk
ij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak (1e)

xk
ij(T

k,cost
i + cij − T k,cost

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2a)

T k,cost
i ≥ 0 ∀k ∈ K, i ∈ Vk (2b)

xk
ij(T

k,load
i + qj − T k,load

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2c)

0 ≤ T k,load
i ≤ Qk ∀k ∈ K, i ∈ Vk (2d)

xk
ij(T

k,time
i + ttime

ij − T k,time
j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2e)

ei ≤ T k,time
i ≤ li ∀k ∈ K, i ∈ Vk (2f)

This non-linear mathematical programming formulation of the MDVRPTW
contains two types of decision variables: First, flow variables xk

ij for k ∈ K

and (i, j) ∈ Ak are equal to 1 if arc (i, j) is used in tour k, and 0 otherwise.
Second, resource variables T k,r

i represent the consumption of resource r ∈ R
of tour k at node i. For the MDVRPTW, one has to consider the resources R =
{cost, load, time}.

Constraints (1b) ensure that each customer i ∈ C is assigned to exactly one
tour k ∈ K. A continuous flow (=movement of vehicle k) between origin o(k)
and destination d(k) in N k is guaranteed by (1c) and (1d). The non-negative
resource variables T k,cost

i record the costs of the (partial) tour starting at o(k)
and ending at the respective node i ∈ Vk. The correct update of the tour
costs is ensured by (2a): If vehicle k moves directly from i to j, the partial
cost T k,cost

j is at least the cost T k,cost
i plus the cost cij along the arc (i, j).

Note that T k,cost
i can always be set to zero if a node i is not visited by

vehicle k. Therefore, the objective (1a) exactly determines the cost of all
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tours. Operational costs on the arcs can be supplemented by fixed costs on arcs
(o(k), i) connecting the origin with a first customer. Also the arc (o(k), d(k))
can exist in Ak to represent the empty tour k.

The remaining limited resources, time and load, are modeled by the re-
source variables T k,time

i and T k,load
i , which are constrained to feasible values

by (2d) and (2f). Their update is given by (2c) and (2e). The load update
(2c) is managed identically to the cost update (2a). The update of the times
by (2e) guarantees together with (2f) that T k,time

j ≥ max{ej , T
k,time
i + ttime

ij }
holds whenever vehicle k uses arc (i, j). Vehicles arriving before the start of
the time window have to wait.

It is obvious that the objective and the capacity constraints can also
be formulated in a more ‘classical’ way, e.g., minimize

∑
k

∑
ij cijx

k
ij and∑

ij qjx
k
ij ≤ Qk for all k ∈ K. There also exist straightforward linear re-

formulations of the time updates (2e) using the well-known big-M technique.
The point is, however, that the above formulation is more generic, since it han-
dles all three resources identically: The constraints (2a), (2c), and (2e) can
be reformulated with REFs, which is more convenient for a graph-theoretic
description of the problem. The formulation with REFs is also essential for
the application of efficient LS techniques as presented in Section 3.

2.2 Formulation of Resource Constraints by Classical REFs

Resource constraints for paths can be modeled by means of (minimal) resource
consumptions and resource intervals. Let R be the number of resources. A
vector T = (T 1, . . . , T R) ∈ R

R is called a resource vector and its components
resource variables. T is said to be not greater than S if the inequality T i ≤ Si

holds for all components i ∈ {1, . . . , R}, denoted by T ≤ S. For two resource
vectors a and b, the interval [a, b] is defined as the set {T ∈ R

R : a ≤ T ≤ b}.
Resource intervals, also called resource windows, are associated with nodes i ∈
V and are denoted by [ai, bi] with ai, bi ∈ R

R. The changes in the (minimum)
resource consumptions along each arc (i, j) ∈ A are given by a vector fij =
(f1

ij , . . . , f
R
ij ) of resource extension functions (REFs). An REF f r

ij : R
R → R

depends on the resource vector Ti ∈ R
R, which corresponds to the resource

consumption accumulated along a path (s, . . . , i) from s to i, i.e., up to the tail
node i of arc (i, j). The result fij(Ti) ∈ R

R can be interpreted as a resource
consumption accumulated along the path (s, . . . , i, j). For a comprehensive
introduction to resource-constrained paths, we refer to [12, 10].

Let P = (v0, v1, . . . , vp) be any path in N . Path P is resource-feasible
if resource vectors Ti ∈ [avi , bvi ] exist for all i ∈ {0, 1, . . . , p} such
that fvi−1,vi(Ti−1) ≤ Ti holds for all i ∈ {1, . . . , p}. We can now re-
formulate (2a)–(2f) with resource intervals and REFs: Let M be a suf-
ficiently large number. For each node i ∈ V , let the lower bounds be
ai = (acost

i , aload
i , atime

i ) = (0, 0, ei). For the upper bounds, define bd =
(bcost

d , bload
d , btime

d ) = (M, Qk, ld) for tour-end nodes d = d(k) ∈ D . Since
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capacity constraints only need to be checked at the end of a tour, we can define
the upper bounds for the other nodes i /∈ D as bi = (M, M, li). Moreover,
let tij = (tcost

ij , tload
ij , ttime

ij ) = (cij , qi, t
time
ij ) for all arcs (i, j) ∈ A and define

the REF fij by
fij(T ) = max{ai, T + tij}. (3)

Then (2a)–(2f) is equivalent to

T k
i ∈ [ai, bi] ∀k ∈ K, i ∈ Vk (4a)

xk
ij(fij(T k

i )− T k
j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak. (4b)

These constraints simply state that the paths P = P (xk), implied by the
routing variables xk, have to form resource-feasible paths.

2.3 Formulation of Time-Varying Processing Capacities

For the MDVRPTW, we exemplify inter-tour constraints by time-varying pro-
cessing capacities. First, the limited processing capacities are added to the
model (1)–(2) (or (1)+(4)) as non-linear constraints. Second, we show that
the same constraints can be formulated more easily with additional resources
as resource-feasible path constraints, when the definition of REFs is extended
to the giant route.

Tours k ∈ K deliver their collected load to several depots. Therefore, those
destination locations d(k) that represent the same physical location must be
grouped: Let G = {g(k) : k ∈ K} be the set of all depots, where g(k) denotes
the depot at which tour k ends. Let ng be the number of tours ending at
depot g so that we can index the tours by h ∈ {1, 2, . . . , ng}. Moreover, vehicle
k(g, h) is the hth vehicle ending its tour at depot g and K(g) = {k(g, h) : h =
1, . . . , ng} is the set of all tours ending at depot g. Recall that [ed(k), ld(k)]
is the time interval in which tours k ∈ K(g) can deliver to depot g = g(k).
Obviously, the amount to be delivered to depot g after the cut-off time ld(k),
denoted by Bg(ld(k)), is zero. In general, let Bg(τ) be the maximum amount
of load that can be delivered to depot g after time τ . For the earliest start
of service ed(k) at the depot g, Bg(ed(k)) is the overall quantity that can be
processed at g in the given time horizon [ed(k), ld(k)].

In the following, we assume that processing capacities are discretized and
that τ�, � ∈ L are the points in time at which processing capacities are checked.
Figure 1 depicts a typical processing-capacity function and its discretization.
(Note that—in principle—we could make the discretization of time dependent
on the depots g ∈ G, but we do not want to overload the notation.)

The difficulty in formulating the processing capacity constraints at time
τ� and depot g is that we have to sum up the load of all vehicles k ∈ K(g),
but only if k arrives at g later than time τ�. In a non-linear formulation,
this dependency can be modeled by partial sums over the vehicles k(g, h),
h ∈ {1, 2, . . . , ng}. We get
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Fig. 1. Example of a
discretization of a time-
varying processing ca-
pacity function.

Sg
�,h−1 ≤ Sg

�,h ∀g ∈ G, � ∈ L, h ∈ {2, . . . , ng} (5a)

(T k,time
d(k) − τ�)(S

g
�,h−1 + T k,load

d(k) − Sg
�,h) ≤ 0

∀g ∈ G, � ∈ L, h ∈ {2, . . . , ng}, k = k(g, h) (5b)
0 ≤ Sg

�,h ≤ Bg(τ�) ∀g ∈ G, ∀� ∈ L, h ∈ {2, . . . , ng} (5c)

Herein, Sg
�,h is the partial sum of all loads arriving at depot g later than time

τ� for the first tours 1, 2, . . . , h. Inequalities (5a) guarantee that the sequence
of partial sums is non-decreasing. The interdependency between the arrival
time and collected load of tour k and the corresponding partial sum is mod-
eled by (5b): If tour k arrives late, i.e., T k,time

d(k) > τ�, then the hth partial

sum Sg
�,h must exceed Sg

�,h−1 by the collected load T k,load
d(k) . For early arrivals,

i.e., T k,time
d(k) ≤ τ�, the constraints (5b) allow Sg

�,h−1 = Sg
�,h. The processing-

capacity restrictions are stated by (5c).
The giant-tour representation of a solution is depicted in Figure 2. Here,

giant tours are defined as Hamiltonian cycles in the routing graph (V ,A), the
nodes of which are customer nodes C as well as start nodes and end nodes of
tours, O and D . Following the ideas presented in [11], tour-start and tour-
end nodes (o, d) in a feasible route p = (o, . . . , d) must fulfill a compatibility
relation. The compatibility relation ∼ on O ×D introduces vehicle and depot
characteristics into the problem. In multi-depot problems, the sets O and
D are partitioned according to the |G| depots, e.g., O = O 1 ∪ . . . ∪ O |G|,
D = D 1 ∪ . . . ∪ D |G|. Pairs (o, d) ∈ O e × D f are compatible o ∼ d if and
only if e = f .

In addition to the arcs of model (1)–(2) (or (1)+(4)), the routing graph
also contains reset arcs (d, o) ∈ D × O . These reset arcs connect end nodes
of one tour with start nodes of another tour. If (p1, p2, . . . , p|K|) are the
tours forming a feasible solution to the MDVRPTW, the cyclic concatena-
tion of the tours is a giant tour in the routing graph. The corresponding
giant route is a path (with identical start and end node). It is denoted by
P = P (p1, p2, . . . , p|K|) and is defined as the concatenation of p1, p2, . . . , p|K|

and o1, i.e., of the |K| tours plus the arc connecting the last node d|K| of



428 Hempsch and Irnich

o1 o2 o3 o4 d4d3d1 d2

Fig. 2. Giant-tour representation.

the last tour p|K| = (o|K|, . . . , d|K|) with the first node o1 of the first tour
p1 = (o1, . . . , d1).

The processing constraints (5) can be equivalently reformulated as re-
source-feasible path constraints for the giant route P (therefore, the tour
index k for resource variables T k is redundant). We define additional resources
r(g, �) for all pairs (g, �) ∈ G× L. The associated resource variables have the
following resource windows at the nodes and REFs on the arcs of the routing
graph:

T
r(g,�)
i ∈ [ar(g,�)

i , b
r(g,�)
i ] = [0, Bg(τ�)] ∀i ∈ V (6a)

fij(T )r(g,�) =

⎧⎨
⎩

T r(g,�) + T load, if T time > τ� and (i, j) = (d(k), o(k′))
reset arc and g = g(k)

T r(g,�), otherwise
(6b)

With the definitions tcost
do = 0 and tload

do = ttime
do = −M for reset arcs (d, o) ∈

D × O , all MDVRPTW resources have well-defined REFs, given by (3) and
(6b). (Note that the name reset arc refers to the fact that fdo(T )load = 0 and
fdo(T )time = eo holds, i.e., these inner-tour resources are reset to their lower
bounds at the tour-start node o.)

2.4 Generic Giant-Tour Model

The generic model for VRPs with inter-tour constraints is the following:
Given (a) the routing graph with request/customer nodes, tour-start nodes
O and tour-end nodes D , (b) a compatibility relation ∼ between O and
D , and (c) resources, constrained by resource intervals at all nodes, with
REFs defined on all (original and reset) arcs of the routing graph, a gi-
ant tour (p1, p2, . . . , p|K|) is feasible if its corresponding giant route P =
P (p1, p2, . . . , p|K|) is a resource-feasible path. Recall that a giant tour has al-
ready been defined as a Hamiltonian cycle in the routing graph, the tour-start
and tour-end of which respect the compatibility relation ∼. The generic VRP
with inter-tour constraints is the problem of finding a least-cost feasible giant
tour. The novelty of this definition is that the entire giant route is consid-
ered as one resource-constrained path (RCP) and that inner-tour as well as
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inter-tour constraints are all captured in the definition of an RCP by resource
intervals and REFs.

The above definition of a VRP with inter-tour constraints has several ad-
vantages when heuristic solution methods for solving VRPs are being consid-
ered. First, the definition is clear and concise. Second, the concept of RCPs is
a very powerful modeling tool, well-known in the context of exact solution ap-
proaches in vehicle routing and crew scheduling [7]. RCPs allow the modeling
of many relevant types of constraints for so-called rich VRPs including appli-
cations with collection and delivery, precedences, side dependencies, multiple
use of vehicles, limited waiting time and limited working hours in connection
with time windows, time- or load-dependent travel times and costs, complex
cost functions and many more aspects [11]; additional aspects of modeling with
RCPs are covered by [7, 2, 12, 10]. Third, the definition of the giant tour as a
Hamiltonian cycle leads to easier descriptions of local search neighborhoods.
For instance, the relocation of a node inside its own tour or into another tour
has the same description in the giant-tour representation. The most impor-
tant advantage is, however, that there are very efficient neighborhood search
methods available, at least when REFs fulfill some basic requirements. This
is the subject of Section 3.

We now reformulate the MDVRPTW with processing capacities and
briefly sketch other inter-tour constraints that can easily be modeled within
the same generic framework.

Generic Model for MDVRPTW with Processing Capacities

With definitions (4) and (6) of resource windows and REFs, the MDVRPTW
with processing capacities is the problem of finding a least-cost feasible giant
route P , where P is resource-feasible w.r.t. resources load, time, and r(g, �)
for all (g, �) ∈ G × L. If existent, side-dependencies have to be modeled by
additional resource constraints [11]. The consideration of vehicle-dependent
capacities Qk is trivial by defining corresponding resource intervals (4a) at
nodes d(k) ∈ D . However, vehicle dependent costs and travel times can—
in principle—be formulated with REFs and additional resources [11], but
these extensions are not fully compatible with the efficient search methods of
Section 3.

Examples of Inter-Tour Resource Constraints

Time-varying processing capacities are a rather complex example of inter-tour
resources. Some other simple but practically relevant examples of inter-tour
resource constraints are given in the following.

In many real-life, multi-depot problems, the total capacity of the depots
is limited. The maximum depot capacity can easily be modeled with the
processing constraints introduced in Section 2.3: For vehicle k belonging to
depot g = g(k), capacities are only checked at the beginning ed(k) of the
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processing time window and Bg(ed(k)) must be set to the overall quantity
that can be processed at depot g.

Also, the number of vehicles being serviced at the same time might be
restricted due to a limited number of ramps at the depot. This is, again, a
processing capacity, where each tour collects one unit and Bg(τ) has to be set
to the number of available ramps at depot g from time τ until the closing of
the depot at time ld(k).

The report [11] comments on restricting the number of tours with certain
characteristics. Examples are a limited number of tours arriving after a certain
point in time, traveling more than a given distance or time, collecting more
than a certain amount of goods etc. These examples have in common that one
resource r1 is, at tour-end nodes, compared against an upper limit u1 (non-
binding for the individual tours). The number of times this limit is exceeded
is recorded by another resource r2, which is bounded by a upper bound u2. As
long as the resource r1 is updated by a classical REF of the form (3), one can
also limit the number of tours that do not exceed u1. Hence, it is also possible
to restrict the number of tours that arrive early, travel short distances, or
collect only a small quantity.

Another interesting task that can be handled by an inter-tour resource is
the allocation of a limited vehicle fleet to several depots. Let a fleet of u vehicles
be given. In the giant-tour representation, each depot is initially provided with
the whole fleet of vehicles, i.e., u = |O 1| = . . . = |O |G|| = |D 1| = . . . = |D |G||.
Then, an inter-tour resource globally asserts that the total number of non-
empty tours does not exceed u. It is straightforward to extend the model to
fleets with multiple vehicle types by using as many inter-tour resources as
vehicle types are present.

3 Solution Methods

We have already seen that inter-tour constraints arise naturally in many VRP
applications. In particular, the consideration of integrated problems (over
multiple depots and extended planning horizons) leads to the concourse of
large-scale problem instances with inter-tour constraints. It is, therefore, im-
perative that heuristic methods should be designed to work both efficiently
and effectively.

The solution methodology presented next is based on the unified framework
[11]; the two earlier papers [13, 10] give a detailed description of the methods
and discuss implementation issues.

3.1 Efficient Local Search

Nearly all metaheuristics for VRPs rely on the concept of neighbor solutions,
defined by neighborhoods, such as k-Opt and k-Opt* neighborhoods, node
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relocation and Or-Opt neighborhoods, node and string swap/exchange neigh-
borhoods, and others (see surveys [3, 4, 8]). For all of these neighborhoods,
a move from a current solution to a neighbor solution is characterized by the
fact that the given giant tour is first split into (a small number of) paths. In
the following, these paths are referred to as segments. The move permutes the
segments - some may be inverted - and they are finally concatenated to form
a new giant tour.

A LS algorithm explicitly or implicitly inspects all neighbor solutions and
determines the one that is feasible and most improving. There are two aspects
of efficient LS that we focus on in the following: First, efficient feasibility tests
are necessary to guarantee that neighborhoods can be explored quickly. It is
important to point out here that VRPs with R resource constraints imply an
additional factor of at least R in the feasibility tests. Hence, from a worst case
point of view, the best we can expect are O(Rnk) time algorithms for searching
neighborhoods of size O(nk). Second, we devise efficient search methods that,
in the average case, need less than O(Rnk) steps for fully exploring an O(nk)
neighborhood.

The acceleration of the average case needs further explanation: In the con-
text of node-exchange and edge-exchange neighborhoods, any LS algorithm
can be considered a tree search method. The tree has depth k for a neighbor-
hood of size O(nk). In order to accelerate the search, the two main criteria
for a reduction of the search space (i.e., pruning the search tree) are feasibil-
ity and cost with two corresponding approaches [13, 11]: Lexicographic search
is driven by feasibility reductions, i.e., one tries to prove at an early stage
i < k that no feasible exchange exists that includes the nodes or edges of the
stages 1, . . . , i. The concept, as originally introduced by Savelsbergh [22, 23], is
intrinsically tied to the lexicographic ordering in which neighbor solutions are
constructed: In the innermost loop of the search algorithm, from one iteration
to the next, an inner segment must grow by one node (or a small constant
number of nodes), so that so-called global variables can be updated in O(R)
time. Conversely, sequential search is based on the idea of cost-based reduc-
tions, i.e., one tries to prove at an early stage i < k that no improvement can
be found which includes the nodes or edges of the stages 1, . . . , i. It requires,
however, that all in-arcs and out-arcs of a node are sorted by increasing cost
and moves are decomposable into k cost-independent partial moves [13]. Then,
neighbor solutions are generated in such an ordering that partial gains of the
partial moves fulfill the gain criterion [16, 13], i.e., one can restrict the search
to those cases where all the partial gains are positive. The idea can be applied
in the context of best-improvement as well as first-improvement strategies.

Efficient Feasibility Checks

As presented in [11], the search procedure can be split into a preprocessing
phase, in which information for feasibility checks is gathered, and an actual
search for the enumeration of the neighbor solutions. In the preprocessing
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phase, generalized REFs are computed for a set of segments. In essence, these
segment REFs and their inverses enable O(R) time feasibility tests. Since any
neighbor solution, represented as a giant tour, results from the concatenation
of segments of the current solution, feasibility can be tested by propagating
lower and upper bounds of resource consumptions along the segments. Lower
bounds have to be propagated by segment REFs, while upper bounds have to
be propagated by inverse segment REFs. Although the number of all different
segment REFs of a given giant-tour of length n is quadratic, [11] shows that
only O(n4/3) segment REFs must be a priori computed.

The feasibility test with segment REFs is very similar to the on-the-fly
computation of global variables, as suggested in lexicographic search proce-
dures. For instance, time window constraints require the computation of a
total travel time, earliest departure time, and a latest arrival time as a global
variable of a segment. Kindervater and Savelsbergh [15] clarify these pro-
cedures for 2-opt and Or-opt moves in connection with time windows and
precedence constraints as well as for problems with simultaneous deliveries
and pickups.

For both methods, lexicographic as well as sequential search, there must
hold several assumptions on properties of REFs in order to guarantee O(R)
time feasibility tests. All REFs must be computable in O(R) time and must
be non-decreasing, i.e., S ≤ T implies fij(S) ≤ fij(T ). It must be possible
to generalize REFs to segments, such that concatenations of segment REFs
can be computed and evaluated in O(R) time. Finally, REFs f (of arcs and
segments) must be invertible in the sense that f(T ) ≤ T ′ is equivalent to
T ≤ f inv(T ′) for the inverse REF f inv. These assumptions are—in detail—
motivated and explained in [10].

The assumption about the existence of inverse REFs can be relaxed for
some resources r. If a resource r is non-decreasing along the entire giant-tour
and globally constrained by node-independent resource windows [ar, br], there
is no need to include the resource r in the definition of an inverse REF. The
feasibility of a giant route can be directly checked only by the forward propa-
gation of the resource. The overall resource consumption is given at the final
node of the newly constructed giant route. (A similar argument was used in
[10, p. 24] in order to explain that some complex REFs for cost must not
necessarily be invertible.) As a consequence, the inter-tour resources r(g, �)
defined in Section 2.3, do not require an inversion. Hence, O(R) time feasibil-
ity checks for VRP with inter-tour resources can be implemented if one can
construct and evaluate segment REFs in O(R) time. This important property
is shown for the time-varying processing capacity constraints in Section 3.1.

Sequential Search

The easiest way to describe the idea of sequential search is by considering the
2-opt∗ (=crossover) neighborhood, originally suggested in [20]. A 2-opt∗ move
is depicted in Figure 3 and its interpretation is that two different routes in
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Fig. 3. Principle sequential search
in the 2-opt∗ neighborhood. Partial
moves have gains g1 = ct1,t2 − ct3,t2

and g2 = ct3,t4 − ct1,t4 , and g1 > 0
or g2 > 0 must hold for improving
moves.

the given giant tour exchange their end-segments. Along the alternating cycle
(t1, t2, t3, t4, t1) (of deleted and added arcs), the 2-opt∗ move decomposes into
two cost-independent symmetric partial moves, where the first is the deletion
of the arc (t1, t2) and insertion of (t3, t2), and the second the deletion of the
arc (t3, t4) and the insertion of (t1, t4). For the 2-opt∗ move to be improving,
at least one of the two partial moves has to be improving, i.e., the inserted arc
has to be less costly than the removed one [13]. A sequential search algorithm
utilizes this property for finding improving moves in the following way: An
outer loop determines the node t1 and the arc (t1, t2) to be deleted. The
procedure then loops over all in-arcs (t3, t2) of t2 as long as ct3,t2 < ct1,t2

holds. All these combinations of t1, t2 and t3 imply that the first partial move
is improving. Since t4 is uniquely determined by t3, one can also check the
overall gain and the feasibility of the 2-opt∗ move. The case with nodes t3, t4,
and t1 is symmetric and, therefore, already covered by the above loops. Note
that for restricting the inner loop to cases with ct3,t2 < ct1,t2 , in-arcs must
have been previously sorted by increasing cost and stored in neighbor lists.
Figure 3 visualizes how a 2-opt∗ move permutes segments.

Sequential search is directly applicable if the cost of a giant tour is the
sum of its arcs’ costs. Decompositions of moves into partial moves for many
other types of edge-exchange and node-exchange neighborhoods are presented
in [13]. Note that the gain criterion can also be generalized to situations where
best non-improving moves have to be found.

Resource Extension Functions for Segments

Recall that a segment σ is a sequence of nodes that occurs as a sub-path in
the giant tour currently under consideration. In order to form a neighbor solu-
tion, the segment (o1, . . . , t1) is concatenated with the segments (t4, . . . , d|K|),
(oh+1, . . . , t3), and (t2, . . . , dh). If segment REFs are given and can be evalu-
ated in O(R) time, the feasibility of the resulting new giant route can also be
checked in O(R) time (the number of segments is constant). Thus, we describe
next how REFs can be generalized to segments.

For any segment σ, the forward propagation of resources (for given resource
consumptions T ) can be computed by a segment REF fσ of the form

fσ(T ) = max{aσ, T + hσ(T ) + tσ}, (7)

where aσ, tσ ∈ R
R are resource vectors and hσ(T ) is a function hσ : R

R → R
R

that takes values �= 0 only for some of the resources r(g, �) and is 0 on all
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other resources. hσ(T ) models the amount of load that must be added to the
resources r(g, �) depending on the arrival time and load arriving at the first
depot of segment σ. If σ contains no reset arc (i.e. no arc (d, o) ∈ D × O ),
then hσ(T ) = 0 for all T , so that (7) is identical to the definition of a classical
REF (3). Otherwise, let (d(k), o(k′)) be the first reset arc in the segment, so
that σ can be written as (. . . , d(k), o(k′), . . .). Now, we can precisely describe
all the coefficients necessary to define hσ. If a reset arc exists, let gσ = g(k) be
the depot corresponding to the tail node d(k) of the first reset arc (d(k), o(k′)),
and let ϕ = (. . . , d(k)) be the prefix segment of σ up to the first tour-end
node d(k). Note that hσ does not depend on other reset arcs that may be
present in σ. If σ contains no reset arc, we define gσ = ⊥ (=undefined) and
ϕ to be the entire segment σ. Moreover, let atime

ϕ , ttime
ϕ and tload

ϕ ∈ R be the
coefficients that describe the resource consumption for the resources time and
load on the prefix segment ϕ, i.e., fϕ(T )time = max{atime

ϕ , T time + ttime
ϕ } is

the earliest arrival time at the last node of ϕ and fϕ(T )load = T load + tload
ϕ

the collected load. Then,

hσ(T )r(gσ,�) =
{

T load + tload
ϕ , if max{atime

ϕ , T time + ttime
ϕ } > τ�

0, otherwise.

Summing up, the segment REF on segment σ is defined by (aσ, tσ, gσ, atime
ϕ ,

ttime
ϕ , tload

ϕ ) ∈ R
R × R

R × (G ∪ {⊥}) × R
3. Note that also the arc REFs

(6b) are of the form (7) with appropriately defined functions hσ(T ) having
(atime

ϕ , ttime
ϕ , tload

ϕ ) = 0.
What remains to be shown is how one can compute the coefficients of the

segment REF of the concatenation of two segments σ1 and σ2 in O(R) time.
We assume that the last node of σ1 is identical with the first node of σ2, and
that both segments are described by (aσ1 , tσ1 , gσ1 , a

time
ϕ1

, ttime
ϕ1

, tload
ϕ1

), (aσ2 , tσ2 ,

gσ2 , a
time
ϕ2

, ttime
ϕ2

, tload
ϕ2

) ∈ R
R×R

R×(G∪{⊥})×R
3. The concatenation σ1⊕σ2

has a prefix segment denoted by ϕ (either identical to ϕ1 or ϕ1⊕ϕ2 depending
on gσ1) and fulfills

aσ1⊕σ2 = fσ2(aσ1)
tσ1⊕σ2 = tσ1 + tσ2 + hσ2(aσ1)

gσ1⊕σ2 =
{

gσ1 , if gσ1 �= ⊥
gσ2 , otherwise (8)

(atime
ϕ , ttime

ϕ , tload
ϕ ) =

⎧⎨
⎩

(atime
ϕ1

, ttime
ϕ1

, tload
ϕ1

), if gσ1 �= ⊥
(max{atime

ϕ2
, atime

ϕ1
+ ttime

ϕ2
}, ttime

ϕ1
+ ttime

ϕ2
, tload

ϕ1
+ tload

ϕ2
),

otherwise.

An Example

The following example illustrates segment REFs and formula (8). We consider
a 2-depot problem with depots G = {g, g′}, where the processing time window
is [806; 925] (in the following, all times are given in minutes). Processing rates
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Fig. 4. Two segments σ1 and σ2.

are assumed to be constant with 150 units per hour for depot g and 200
units per hour for depot g′. For the sake of simplicity, the processing capacity
functions are discretized at times τ1 = 805 and τ2 = 835 only, i.e., � ∈ L =
{1, 2}. The resulting capacities are Bg(τ1) = 300, Bg(τ2) = 225, Bg′

(τ1) =
400 and Bg′

(τ2) = 300. Two segments σ1 and σ2 and the associated values
for ttime

ij , [atime
i , btime

i ], tload
ij (=demand at node j) are given in Figure 4.

Both segments contain a reset arc, i.e., (d1, o2) for σ1, and (d2, o3) for the
segment σ2. Moreover, tour-end node d1 belongs to depot g and tour-end
node d2 to depot g′.

From the processing capacity diagrams for both depots, as depicted in
Figure 4, it becomes clear that we do not need to check processing capacities
at the cut-off time τ = 925, since tours must return to the depots no later
than this time. Concluding, the resources to be considered in this example are
{time, load, r(g, 1), r(g, 2), r(g′, 1), r(g′, 2)} (the computation of costs is trivial
and, therefore, left out).

The segment REF fσ1 of the first segment σ1 is given by

fσ1

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1)

T r(g,2)

T r(g′,1)

T r(g′,2)

⎞
⎟⎟⎟⎠ = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

734
13
6
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1) + hσ1 (T )r(g,1)

T r(g,2) + hσ1 (T )r(g,2)

T r(g′,1)

T r(g′,2)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

−M
−M
0
0
0
0

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where hσ1(T )r(g,1) = T load+6, and hσ1(T )r(g,2) = 0 if max{814, T time+78} ≤
τ2 = 835 and hσ1(T )r(g,2) = T load+6, otherwise. The interpretation is simple:
The earliest arrival time at d1 is 814 > τ1 = 805, and, hence, the resource
r(g, 1) is always increased by T load + 6, which is the load in the tour arriving
at d1. In general, the arrival time at d1 is given by max{814, T time + 78},
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which explains hσ1(T )r(g,2). Along the entire segment σ1, the coefficients of
fσ1 reflect that the earliest arrival time at the last node of σ1 is 734 with 13
units of load collected.

The segment REF fσ2 is

fσ2

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1)

T r(g,2)

T r(g′,1)

T r(g′,2)

⎞
⎟⎟⎟⎠ = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

740
9
0
0
10
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1)

T r(g,2)

T r(g′,1) + hσ2 (T )r(g′,1)

T r(g′,2) + hσ2 (T )r(g′,2)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

−M
−M
0
0
0
0

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where hσ2(T )r(g′,1) = T load + 10, and hσ2(T )r(g′,2) = 0 or hσ2(T )r(g′,2) =
T load + 10 depending on whether max{833, T time + 113} ≤ τ2 = 835 holds
or not. Whenever one arrives at the first node of σ2 three or more minutes
later than the earliest service time (720), the arrival at d2 is later than τ2 and
resource r(g′, 2) is increased by T load + 10.

Using formula (8), the segment REF for the concatenation σ = σ1 ⊕ σ2 is
given by

fσ

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1)

T r(g,2)

T r(g′,1)

T r(g′,2)

⎞
⎟⎟⎟⎠ = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

740
9
6
0
23
23

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

T time

T load

T r(g,1) + hσ(T )r(g,1)

T r(g,2) + hσ(T )r(g,2)

T r(g′,1)

T r(g′,2)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

−M
−M
0
0
23
23

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where hσ(T ) = hσ1(T ). The interpretation of this result is the following: When
traversing the entire segment σ1 ⊕ σ2, the resulting arrival time and load at
the last node is independent from the initial resource consumption T . The
tour starting at node o3 arrives at the last node of σ at time 740 with 9
units of load on board. The concatenation of σ1 and σ2 fully determines what
happens at depot d2. 23 units of load arrive after time τ2 and, hence, T r(g′,1)

and T r(g′,2) are always increased by 23 (which is also the minimum resource
consumption). In contrast, processing capacity resources for depot g depend
on the collected load and start time at the beginning of the segment σ: Six
units of load arrive at d1 later than τ1 and, depending on the start time at
the first node, possibly also later than τ2. This is controlled by hσ(T )r(g,�), in
which the arrival time at the first depot is computed by max{814, T time+78}
and the collected load by T load + 6.

3.2 Large Neighborhood Search

Metaheuristics are substantial for producing high-quality solutions because
they allow an escape from local minima. This section briefly describes the
metaheuristic implemented here, which is obviously only one out of many
possible choices for using the efficient LS procedures as a component of a
metaheuristic.
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To find a first local minimum, various neighborhoods are combined in a
variable-neighborhood-descent (VND) component [18, 9]. In order to escape
from this joint local optimum, a kick step is performed. The kick consists of a
randomized removal of a subset of nodes that are consecutively reinserted into
the giant route. The solution is then re-optimized with the VND component,
the resulting solution is compared against the previous local optimum, and
accepted with the Metropolis acceptance criterion of simulated annealing [1].
Hence, the chosen approach has similarities with the large-step Markov chain
approach [17] and the large neighborhood search (LNS) approach originally
proposed by [24]. The difference to the large-step Markov chains is, however,
that local optimal solutions of the VND component are used instead of local
minima of a single neighborhood. The difference to standard LNS procedures
is the use of the Metropolis acceptance criterion. LNS with the Metropolis
acceptance criterion was used also in [21], but LNS solutions were not re-
optimized by LS at all.

There are plenty of choices for defining node removal and node insertion
operators. Over the tested operators (pure random, based on node attributes
such as time window length, demand, detour length etc.), the operator that
performs best randomly selects 20 ‘close’ customers according to a randomized
distance-based selection procedure. Insertion of removed customers is done by
building dummy routes containing these customers and by applying the above
VND component directly to the resulting giant tour, see [11]. The approach
in [21] instead chooses from among different removal and insertion operators
according to scores that are updated by a learning mechanism based on the
search history. This may be a beneficial extension to the current implementa-
tion.

4 Experimentation

The computations presented in this section aim at two different aspects: First,
we show that the solution methodology introduced in [11], i.e., giant-tour rep-
resentation and O(R) feasibility checks by considering the giant-route as a
resource-constrained path, lead to highly efficient local search-based meta-
heuristics. Second, we exemplify the usefulness of inter-tour constraints by
presenting new types of studies that can easily be performed with the meth-
ods at hand.

4.1 Efficient Local Search

In order to analyze the efficiency of the proposed LS techniques, we gener-
ated a set of 80 MDVRPTW test instances with 100, 200, 400 and 800 nodes
(each class with 20 instances). Each instance has between two and five depots.
Customers are spread around the depots (according to a normal distribution)
such that the service areas of the depots partially overlap. The width of the
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Table 1. Characteristics of the LNS metaheuristic based on sequential search.

Size Avg. Time Avg. Number of Avg. Time
# Nodes 250 VND+kick Search Steps Performed per Search

100 35.5 s 12738 2.8ms
200 119.4 s 17040 7.0ms
400 279.6 s 19227 14.4 ms
800 716.8 s 22641 31.4 ms

customer time windows is varied in each group of instances. This creates five
groups of MDVRPTW instances. Moreover, four different processing time
windows for the depots are chosen for each MDVRPTW instance. The four
different processing time windows reflect different situations where process-
ing capacities are more or less binding (from loosely to hardly constrained).
Overall, this generates 320 instances of the MDVRPTW with time-varying
processing capacities.

Each of the 320 instances is solved with the LNS metaheuristic of Sec-
tion 3.2. A similar setup as in [11] was used: All algorithms were coded in
C++, were compiled in release mode using MS-Visual C++ .NET 2003 ver-
sion 7.1, and all runs were performed on a standard PC (Intel x86 family 15
model 2 stepping 5, 2.8 GHz, 1GB main memory, on MS-Win 2000). VND
first alternates between 2-opt, 2-opt∗, node swap and node relocation neigh-
borhoods until a joint local optimum is reached. The search procedures for
finding improving string-exchange and Or-opt moves (with and without in-
version of the relocated segment) are then applied to these local optima. Each
VND step ends in a joint local optimum of all seven neighborhoods. 250 kick
moves are performed to diversify the search.

The absolute performance of the sequential search approach is summa-
rized in Table 1: The overall computation time (second column) to perform
the 250 kicks and VND steps does not exceed 15 minutes, even for the largest
instances with 800 nodes. The third column shows how often sequential search
algorithms were invoked in VND and kick steps. This number does not raise
proportional to the size of the instances or size of the neighborhoods, but
grows sub-linear. For all instances, the ratio of searches that find an improv-
ing neighbor to the total number of searches is stable and between 60% and
68%. We have also computed (fourth column) the average time necessary to
perform a single sequential search (including both search phases, segment REF
computation and actual tree search). These numbers show that the sequential
search procedures are notably fast, in particular for large-scale instances.

Finally, we compare the overall computation times of the LNS metaheuris-
tic when either sequential search or lexicographic search procedures are used.
Figure 5 depicts the speedup gained by using sequential instead of lexico-
graphic search (the speedup factor is the quotient of the running times). For
each size of instances, the five subclasses correspond to increasing widths of



Vehicle Routing Problems with Inter-Tour Resource Constraints 439

Size of the Instances

S
p
ee

d
u
p

F
ac

to
r

0

2

4

6

8

10

12

100 200 400 800

Fig. 5. Acceleration
gained when sequential
search is used instead of
lexicographic search.

the customer time windows. One can clearly see that sequential search outper-
forms lexicographic search, since the latter takes (on average) between 1.5 and
11.4 times longer. As already observed in [13, 11], sequential search is more
effective for loosely constrained problems and when the size of the instances
increases. The impact of increasing customer time windows is that tours get
longer and, therefore, instances are less constrained and can be solved signif-
icantly faster.

It is worth mentioning that we have also analyzed the four groups of in-
stances with less binding processing time windows. For these, the impact on
the speedup is less significant and varies by less than 6% within each of the
four groups.

4.2 New Types of Studies based on Inter-Tour Resource
Constraints

When depots and processing facilities are being planned, the interdependency
between transport processes and stationary processes is often disregarded due
to the complexity of integrated facility design/layout and transport planning
problems. For instance, the dimensioning of the depots as well as the duration
of time windows used for processing are unclear. The models and solution
techniques presented in this chapter allow such decisions to be studied in an
integrated way, at least if it is possible to formulate the stationary processes
with inter-tour resource constraints.

Variation of the Cut-Off Times

Several aspects have an impact on the temporal feasibility of solutions: Travel
times and service time windows at customers specify the feasibility of the
individual tours. The processing rates (i.e., the slopes of Bg(τ)), the length
of the processing time windows, and the cut-off times together determine the
temporal interdependency between the tours (see also Figure 1). The variation
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Fig. 6. Simultaneous variation of cut-off times of all depots.

of each of these parameters has consequences for the cost and structure of the
resulting VRP solution.

Here we analyze the impact of the cut-off times ld(k) on the cost, the
number of tours, and the number of customers that cannot be serviced. We
present results for a 4-depot instance with 100 nodes. 30 runs of the LNS
metaheuristic are performed, where the cut-off times of all depots are changed
from run to run by five minutes. The shape of the processing capacity functions
Bg(τ) is not altered.

The diagram at the bottom of Figure 6 shows the transportation costs,
the number of tours in the solution, and the number of customers that are
not serviced due to the early cut-off times. The later the cut-off times, the
less tours must be operated to collect the customers’ supply. At the same
time, the costs of the solutions decrease. Note that we do not use any fixed
costs per tour (with fixed costs the effect would be even more drastic). In
addition to the cost diagram, the top part of Figure 6 shows the two extremal
solutions corresponding to the cut-off times 15:55 h and 18:00 h. In the left
tour plan, processing capacities are strongly binding. The result is a relatively
high number of tours with only a few customers in each tour. In contrast,
with the late cut-off at 18:00 h, tours are not all constrained by the processing
capacities.
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Fig. 7. Variation of
processing capacities
for two depots g and g′.

Optimal Dimensioning of Processing Facilities

Another interesting issue is the determination of the ratio of the processing
capacities at different facilities and the impact of processing capacities to
transportation (fleet size, cost etc.). For the sake of simplicity, we assume a
2-depot problem, where the dimensioning of the machines for both depots is
unclear. In order to find an optimal dimensioning of the machines, one can
solve several VRPs with inter-tour constraints, where the processing capaci-
ties at the two depots g and g′ are varied. Figure 7 shows a diagram, in which
the resulting transportation cost for each scenario of processing capacities
is given. Constant processing rates and fixed processing time windows at g1

and g2 are assumed. The processing capacity is then quantified by the pair
(Bg(ek), Bg′

(ek′)) (with k ∈ K(g), k′ ∈ K(g′)), cf. Section 2.3). In Figure 7,
missing bars correspond to scenarios that are infeasible, since processing ca-
pacities are too small to process the entire quantity present at the customers
(customers remain unserviced in the VRP solutions). Moreover, each scenario
allows an estimation of the transportation costs, which can then be com-
pared with costs in stationary processes (investments for machines, wages for
workers etc.). Such a comparison of scenarios means integrated planning of
transportation and facility dimensioning.

5 Conclusions

This chapter has focused on the heuristic solution of large-scale VRPs with
inter-tour constraints. Inter-tour constraints are those constraints for which
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the feasibility of a solution depends on properties of several tours and can-
not be decided by considering the individual tours separately. Examples are
sorting processes at depots that require a staggered arrival of tours, limited
number of ramps at depots, and depots with globally limited capacities. Many
more examples can be found when transportation and other logistics processes
are considered together.

The presented modeling and solution approach can cope with such in-
terdependencies and is based on the unified framework presented in [11]: A
solution is represented as a giant tour, i.e., as a single Hamiltonian cycle in
the problem-specific routing graph. This representation is advantageous from
a modeling point of view, since complex inter-tour constraints can be taken
into account by the powerful concept of resource-feasible paths. It has been
shown that inter-tour constraints, which are sometimes complicated to for-
mulate in mixed integer programming models, can be easily translated into
simple resource-feasible path constraints on the giant route.

The proposed solution method is based on local search (LS), which is one
of the most important techniques for improving VRP solutions. It is used as
a component in metaheuristics, such as tabu search, GRASP, VND and VNS,
or as a postprocessing improvement method in all types of metaheuristics. By
considering a giant route as a single resource-feasible path, the unified frame-
work performs LS for many types of VRPs with inter-tour constraints and
for all classical LS neighborhoods as efficiently as it does for standard VRPs.
The key technique used here is an O(R) time feasibility check for neighbor
solutions, where R is the number of resources. The efficiency results from the
decomposition of LS procedures into two phases, where the first phase com-
putes segment resource extension functions in O(Rn4/3) time. These are used
to guarantee O(R) time feasibility tests in the second phase, which is the ac-
tual search for improving neighbors. Overall, the search takes O(Rnmax{4/3,k})
time for node-exchange and edge-exchange neighborhoods of size O(nk). As
a result, different tree search methods, such as lexicographic search and se-
quential search, are applicable and allow an acceleration of the search also in
the average case.

In the unified framework, model and solution method both utilize the giant-
tour representation. This is important, since classical local search techniques
(in particular those using inner-tour neighborhoods) have a quite restricted
local view of the solution space. In contrast, the LS methods used here can
better cope with complicated global interdependencies and work, at the same
time, highly efficiently. Concluding, the new approach proposed in this chapter
shows that large-scale instances of VRPs with inter-tour constraints can be
solved efficiently using LS components. It is possible to perform new types of
studies, where complex interdependencies between tours and also the impact
of other external parameters on structure and costs of VRP solutions can be
analyzed. This is much needed for a more realistic planning of transportation
processes in integrated logistics networks.
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Summary. Multi-objective optimization knows a fast growing interest for both aca-
demic researches and real-life problems. An important domain is the one of vehicle
routing problems. In this chapter, we present the possible motivations for applying
multi-objective optimization on vehicle routing problems and the potential uses and
benefits of doing so. To illustrate this fact, we also describe two problems, namely
the vehicle routing problem with route balancing and the bi-objective covering tour
problem. We also propose a two-phased approach based on the combination of a
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tively provide diversification and intensification for the search in the objective space.
Examples of implementation of this method are provided on the two problems.

Key words: Vehicle routing problems; multi-objective optimization; cooperation;
metaheuristics; parallelization.

1 Introduction

The goal of this chapter is to present an overview of what multi-objective
optimization can bring to vehicle routing problems. This is illustrated by two
problems representing the two main aspects of multi-objective vehicle routing
problems and a general optimization strategy.

Vehicle routing problems, while widely used to deal with real-life cases, are
usually optimized on a single objective, which generally aims at optimizing a
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cost (distance, financial). However, many real industrial problems cannot be
limited to the aspect of cost and deal with multiple objectives. For instance,
even if only cost is considered, it is possible to define several costs for a same
problem: financial and time. It is also possible to consider objectives that
are not limited to cost objectives, but also objectives that deals with aspects
like fairness or lateness. Therefore, there is a real interest in studying multi-
objective vehicle routing problems.

The study of these problems falls into the field of multi-objective opti-
mization, which proposes methods to solve problems containing several (and
usually conflictive) objectives. This domain finds its roots in the works of
Edgeworth [17] and Pareto [44] in the context of economic research in the
19th century. The field knows a growing interest since the mid 80s [52] and a
fast expansion since the mid 90s with, notably, the apparition of methods like
multi-objective evolutionary algorithms [7, 14].

Formally a multi-objective problem can be stated as follows.

(MOP ) =

{
min F (x) = (f1(x), f2(x), . . . , fn(x))
s.t. x ∈ D

(1)

with n ≥ 2 being the number of objective functions; x = (x1, x2, . . . , xr),
the decision variable vector; D, the feasible solution space; and F (x), the
objective vector. The set O = F (D) corresponds to the feasible solutions in
the objective space, and y = (y1, y2, . . . , yn), where yi = fi(x), is a solution.
A MOP solution is the set of the non-dominated solutions called the Pareto
set (PS). Dominance is defined as follows:

Definition 1.1 A solution y = (y1, y2, . . . , yn) dominates (denoted ≺) a
solution z = (z1, z2, . . . , zn) if and only if ∀ i ∈ {1 . . . n}, yi ≤ zi and
∃ i ∈ {1 . . . n}, such that yi < zi.

Definition 1.2 A solution y found by an algorithm A is said to be potentially
Pareto optimal (PPS), relative to A, if A does not find a solution z, such that
z dominates y.

When solving a multi-objective problem, the proposed method should be
able to converge toward the optimal Pareto set while at the same time provid-
ing a set of diversified solutions in the objective space. They are the goals of
intensification and diversification. These two goals are illustrated in Figure 1.
Figure 2 shows an approximation answering both goals, while the approxi-
mation in Figure 3 is good in terms of intensification but bad in terms of
diversification; the approximation in 4 illustrates the opposite case.

The chapter is organized as follows. Section 2 deals with multi-objective
problems in general and presents the main motivations for using multiple
objectives as well as several uses made in the literature. Section 3 presents
the two bi-objective vehicle routing problems used as illustrative examples.
Section 4 explains a two-phase strategy that can be used and shows how the
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strategy was implemented for the two problems presented in the previous
section. Conclusions are drawn in Section 5.

2 Multi-objective Vehicle Routing Problems

In this section, we present the possible motivations to use multiple objectives
in a vehicle routing problem. Then, the main uses are presented: extension of
a classic academic problem, generalization of a classic academic problem, real-
life problems. Finally, we also discuss some of the objectives that appear in the
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literature and have been introduced in the multi-objective studies. A complete
survey of the literature can be found in [34].

2.1 Motivation

Academic vehicle routing problems need adaptations for real-life applications.
These adaptations are mostly additions of new constraints and/or parameters
to a basic problem. For instance, the capacitated vehicle routing problem
deals with the construction of a minimal length collection of tours for a fleet of
vehicles to serve a set of customers wanting a given amount of goods delivered
such that the total weight of products transported by a vehicle does not
exceed a given capacity. Several variants of these problems have been defined
to consider numerous aspects that can appear in real-life cases [55]. A specific
example is the vehicle routing problem with time windows in which a customer
must be delivered during a given lapse of time.

Another way to improve the practical aspects of vehicle routing problems
is to use several objectives. The objectives that are used may be related to
different aspects of vehicle routing problems: tour (cost, profit, makespan, bal-
ance ...), nodes/arcs (time windows, customer satisfaction ...), and resources
(management of the fleet, specificities of the product to deliver ...).

The introduction of multi-objective routing problems is motivated by three
reasons: to extend classic academic problems in order to improve their prac-
tical application while never losing sight of the initial objective, to generalize
classic problems, and to study real-life cases in which the objectives have been
clearly identified by the decision-maker.

2.2 Extension of Classic Academic Problems

Multi-objective optimization can be used as a possibility to study other ob-
jectives in addition to the one defined initially, which is often related to a
solution cost. In this context, the problem definition remains unchanged, and
new objectives are added. The purpose of such extensions is often to enhance
the practical applications of the model by recognizing that logistic problems
are not simply cost driven. This can be done in order to consider the driver’s
workload and to try to balance it to bring fairness between the drivers [36,49].
Customer satisfaction can also be an issue and modeled by an objective [51].
Other illustrative extensions can be found in the issues in commercial distribu-
tion pointed by Ribeiro and Lourenço [49], in the study of the multi-objective
traveling salesman problem [18, 38, 56] or other TSP variations like the bi-
objective median tour problem and the maximal covering tour problem [11].

2.3 Generalization of Classic Academic Problems

Another motivation to use multi-objective optimization is to generalize a prob-
lem by adding objectives instead of one or several constraints and/or param-
eters. In the literature, this strategy has notably been applied to the vehicle
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routing problem with time window constraints where the time windows are
replaced by one or several objectives.

Boffey [3] provides a list of routing problems that he classified as problems
which are implicitly multi-objective. In those problems, a constraint and/or
parameter or a set of constraints and/or parameters is used instead of what
can be naturally modeled as an objective. Feillet et al. [20] have described
a class of problems, called traveling salesman problems with profits (TSPP),
which belong to this category. In these problems, a profit, associated with
each customer, can be collected when the customer is visited, but it is not
compulsory to visit all customers. Two conflicting objectives can be clearly
identified:

1. Maximize the profit by visiting the maximum number of customers, thus
increasing the length of the solution.

2. Minimize the length of the solution by visiting fewer customers, thus de-
creasing the profit generated by the solution.

Usually, this problem is solved by defining a single-objective problem that
combines the two objectives; or constraints one objective and optimizes the
other one. But it is also possible to solve it as a bi-objective problem and to
generate a set of non-dominated solutions without advantaging one objective
or the other [28]. That way only one problem needs to be optimized.

Other examples of generalization includes the bi-objective covering tour
problem (presented below) [30, 33] and the traveling purchaser problem [50].

2.4 Real-Life Applications

Multi-objective routing problems are also specifically studied for real-life sit-
uations, in which decision-makers define several clear objectives they want to
be optimized. Examples include the case of a Belgian transport company [19],
schoolbus routing [4,8,43], urban waste collection [35], healthcare facility tour
planning in developing countries [16]. Most of these studies keep the minimiza-
tion of a cost (mainly the length) but add new objectives according to the
needs of the situation. The most illustrative objectives are presented below
with their applications. In the case of the transport company, the issues were
multiple as eight objectives were defined: balancing, idle times, time window
constraint violation for instance. Schoolbus routing presents other challenges:
there is a need to position bus stops so that users do not have to walk too
much to catch the bus. Then, there is a need to balance the number of users
between the selected stops and to distribute the load (i.e., the number of
users) between the buses. Makespan-like objectives are also used to ensure
that the users do not stay too much time on the bus and that there are no
glaring inequities between the first student picked up on the tour and the
last one. Makespan is also used in the case of the urban waste collection but
for a different reason. Here, there is a need to sort out the waste after the
picking. The two tasks (collecting and sorting) are done by the same workers.
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Therefore, the tours need to be finished as soon as possible so that the work-
ers can begin to work on sorting out the waste at the factory. In healthcare
facility tour planning, the main problem comes from the fact that it is not
possible to visit the whole population (i.e., the villages), therefore, in addition
to an economic objective, there is a need to facilitate the population access
to the facility. This is done by using two additional objectives: maximizing
the population in a given radius from the selected stops for the facility and
minimizing the total distance that must be walked for the uncovered popula-
tion to reach a facility stop. Another main real-life application is the case of
hazardous product transportation [25, 57]. The non-cost objectives deal with
the minimization for the population along the road used and the minimization
of the overall probability of an accident to happen as the consequences would
be drastic.

2.5 Objectives

The new objectives introduced in the studies of multi-objective vehicle routing
problems in the literature can be classified according to the component of the
problem they are related to: the tour, the node/arc activity, or the resources.

Objectives on tours include costs (time, distance ...), although it is not
always the case as for instance in [8]. Other aspects considered by these ob-
jectives include makespan as in the studies by Corberan et al. [8], Pacheco
and Marti [43], and Lacomme et al. [35]. Fairness can also be introduced by
means of tour balancing by minimizing the difference between the length of
the longest tour and the length of the shortest tour. Problem related objec-
tives like minimizing the risk in the case of hazardous transportation prob-
lems [25, 57] or objectives like keeping the tour in a cluster [39, 40] are also
proposed in the literature.

In the literature, many of objectives related to nodes/arcs deal with vehi-
cle routing problems with time windows by removing the time windows and
adding additional objectives minimizing the lateness or earliness to the bounds
of the windows and/or the number of violated constraints [1,19,22,26]. Other
objectives are for example linked to assigning priority to arcs or nodes and
trying to visit the ones with the greatest priorities [45, 46]. It is also possible
to define economic or marketing objectives, such as increasing customer sat-
isfaction [51] or improving the customer-driver relationship [49]. A last family
of objectives deals with optimizing the access to the visited nodes by a set of
unvisited nodes [4, 11, 30, 33]. An example of uses of this kind of objectives is
mobile healthcare facility routing [16].

Objectives related to resources are about managing the fleet: minimiz-
ing the size [8, 19, 41–43, 53, 54], optimizing the effectiveness of the vehicle
utilization [19, 51]. Objectives can also be related to the transported goods:
consideration of the passengers [8], or avoiding the deterioration of perishable
products [45, 46].
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3 Illustrative Multi-Objective Vehicle Routing Problems

In this section, we present two problems. The vehicle routing problem with
route balancing (3.1) (VRPRB) is an extension of the capacitated vehicle
routing problem (CVRP), while the bi-objective covering tour problem (3.2)
(BOCTP) is a generalization of the covering tour problem (CTP). For each
bi-objective problem, we present the single-objective problem from which it
is derived and how the single-objective problem is transformed into the bi-
objective one. We also provide a bi-objective linear integer program for each
bi-objective problem.

3.1 The Vehicle Routing Problem with Route Balancing

The Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) has been introduced by
Dantzig and Ramser [13]. It can be modeled as a problem on a complete
graph where the vertices are associated to a unique depot and to n customers.
Each customer must be served a quantity qi of goods (i = 1, . . . , n) from the
unique depot. To deliver those goods, vehicles are available. With each vehicle
is associated a maximal amount Q of goods it can transport. A solution of
the CVRP is a collection of routes where each customer is visited only once
and the total demand for each route is at most Q. With each arc (i, j) is
associated the distance between vertex i and vertex j. The CVRP aims to
determine a minimal total length solution. It has been proved NP-hard [37]
and solution methods range from exact methods to specific heuristics, and
metaheuristics [55].

Extension of the CVRP to the VRPRB

The goal of this extension is to bring fairness to the problem without ne-
glecting the economical aspect of the problem through the optimization of
the length of the solution. To do so, we add a second objective to balance the
length between the tours. This second objective is the minimization of the dif-
ference between the length of the longest tour and the length of the shortest
tour. That way, we do not break the linearity of the problem. This bi-objective
problem is called the vehicle routing problem with route balancing.

In Table 1, the seven CVRP benchmarks proposed by Christofides and
Eilon [5], and Christofides et al. [6], are considered. Following the naming
scheme used in Toth and Vigo [55], the name of each instance has the form
Ei − jk. E means that the distance metric is Euclidean. i is the number of
vertices including the depot vertex. j is the number of vehicles available. k is
a character which identifies the paper where the distance data are provided.
k = e refers to Christofides and Eilon [5], k = c to Christofides et al. [6].
For each instance, we report both objective values associated with the best
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Table 1. Objective values for the best found solutions of Taburoute and Prins’ GA.

Taburoute Prins’s GA
Instance Distance Balance Distance Balance
E51-05e 524.61 20.07 524.61 20.07
E76-10e 835.32 78.10 835.26 91.08
E101-08e 826.14 97.88 826.14 97.88
E151-12c 1031.17 98.24 1031.63 100.34
E200-17c 1311.35 106.70 1300.23 82.31
E121-07c 1042.11 146.67 1042.11 146.67
E101-10c 819.56 93.43 819.56 93.43

solutions obtained using Taburoute [23] and Prins’s GA [48]. These methods,
which can be regarded as some of the best algorithms for the CVRP, do
not take into account the route balancing objective. This clearly appears in
Table 1 where the best solutions are of poor quality regarding the additional
objective.

Mixed-Integer Linear Program for the VRPRB

The following IP for the VRPRB is based on the IP for the CVRP proposed
by Fisher and Jaikumar [21]. Let xk

ij be a binary variable equal to 1 if the
vehicle k visits the customer j after the customer i, 0 otherwise. Let yk

i be a
binary variable equal to 1 if the vehicle k makes the delivery to the customer
i, 0 otherwise. The number of vehicles is fixed to m. Let lmin (respectively
lmax) correspond to the length of the shortest tour (respectively the longest
tour). The VRPRB can be modeled as follows.{

min
∑m

k=1

∑n
i=1

∑n
j=1 cijx

k
ij

min lmax − lmin

(2)

under the constraints :
n∑

i=1

qiy
k
i ≤ Q (k = 1, . . . , m) (3)

m∑
k=1

yk
i =

{
m (i = 1)
1 (i = 2, . . . , n)

(4)

n∑
i=1

xk
ij = yk

j (j = 1, . . . , n; k = 1, . . . , m) (5)

n∑
i=1

xk
ij = yk

i (i = 1, . . . , n; k = 1, . . . , m) (6)
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i,j∈S

xk
ij ≤ |S| − 1 (S ⊂ V ; 2 ≤ |S| ≤ n− 2; k = 1, . . . , m) (7)

lmax ≥
n∑

i=1

n∑
j=1

cijx
k
ij (k = 1, . . . , m) (8)

lmin ≤
n∑

i=1

n∑
j=1

cijx
k
ij (k = 1, . . . , m) (9)

xk
ij ∈ {0, 1} (i, j = 1, . . . , n; i �= j; k = 1, . . . , m) (10)

yk
i ∈ {0, 1} (i = 1, . . . , n; k = 1, . . . , m) (11)

lmax ≥ 0 (12)

lmin ≥ 0 (13)

Constraints 3 insure that the capacities of the vehicles are respected. Con-
straints 4 deal with the fact that m vehicles go through the depot but only
one vehicle visits each customer. Constraints 5 and 6 say that a customer
visited by a vehicle must be served by this vehicle. Finally, constraints 7 are
the subtour elimination constraints proposed by Dantzig et al. [12] for the
traveling salesman problem.

3.2 The Bi-Objective Covering Tour Problem

The Covering Tour Problem

The covering tour problem (CTP) can be formally described as follows [24].
Let G = (V ∪W, E) be an undirected graph, where V ∪W is the vertex set,
and E = {(vi, vj)|vi, vj ∈ V ∪W, i < j} is the edge set. Vertex v1 is a depot,
V is the set of vertices that can be visited, T ⊆ V is the set of vertices that
must be visited (v1 ∈ T ), and W , the set of vertices that must be covered.
A distance matrix C = (cij), satisfying triangle inequality, is defined for E.
A final parameter is c, the size of the cover. The CTP consists in defining
a tour for a subset of V , which contains all the vertices from T , of minimal
length such that every node from W is covered by a visited node of V . A node
vi ∈ W is said to be covered by a node vj ∈ V if cij ≤ c. A feasible solution
for a small instance is provided in Figure 5. The CTP is NP-hard since it can
be reduced to the traveling salesman problem when c = 0 and V = W .

Generalization of the CTP to the BOCTP

The CTP is one of the problems pointed by Boffey as implicit multi-objective
problems [3]. To transform the CTP into its bi-objective counterpart, the pa-
rameters and the constraints asking for the nodes in W to be at less than a
given distance c from a visited node in V are removed. The other parame-
ters and constraints of the problem are left unchanged. The objective of the
BOCTP is therefore the minimization of:
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Fig. 5. An example of a solution for the covering tour problem.

1. the length of the tour
2. the cover

The cover of the solution is defined as the greatest distance between a node
from vl ∈ W and the visited node vk ∈ V closest to vl.

Mixed-Integer Linear Program of the BOCTP

The following bi-objective integer program is based on the integer program
for the CTP proposed by Gendreau, Laporte, and Semet [24]. The data for
the BOCTP are the same as for the CTP with the exception of the parameter
c which no longer exists. The variables and constants of the program are the
following ones. For every vk ∈ V , let yk be a binary variable equal to one if
vk is visited, 0 otherwise. For every vi, vj ∈ V (i < j), let xij be a binary
variable equal to 1 if and only if the edge (vi, vj) belongs to the tour. A vector
d ∈  |W | is introduced. Every component dl of d corresponds to the smallest
distance necessary to cover the node vl ∈ W . The matrix S = (slk) is also
defined. The value of the coefficients belongs to [1, . . . , n] and the size of the
matrix is |W | × |V |. slk gives the index of the kth closest node in V from the
node vl ∈ W . The function σ is then defined:

σ : W × V → [1, . . . , n]
(vl, vk) !→ k′ such that slk′ = k

A high value (HV) constant has been included to some constraints to insure
that the right value is obtained. Then, the integer program is as follows:{

min
∑

i<j cijxij

min cmax

(14)
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such that:
cmax ≥ dl (vl ∈ W ), (15)

dl ≥ clk × yk −HV× (
σ(vl,vk)−1∑

i=0

ysli
) (vl ∈ W, vk ∈ V ), (16)

∑
i<k

xik +
∑
j>k

xkj = 2yk (vk ∈ V ), (17)

∑
vi∈S,vj∈V \S or vj∈S,vi∈V \S

xij ≥ 2yt (S ⊂ V, 2 ≤ |S| ≤ n−2, T \S �= ∅, vt ∈ S),

(18)
xij ∈ {0, 1} (1 ≤ i < j ≤ n), (19)

yk = 1 (vk ∈ T ), (20)

yk ∈ {0, 1} (vk ∈ V \ T ). (21)

Constraints 15 insure that cmax is the maximum of the minimal values between
a node in W and its closest node in V in the tour. Constraints 16 give a lower
bound for dl. Constraints 17 are degree constraints and constraints 18 are
connectivity constraints.

4 A Two-Phase Strategy

In this section, we propose methods and a two-phase strategy to consider
the two goals in multi-objective optimization: intensification and diversifica-
tion. We also give implementation of these methods for the VRPRB and the
BOCTP.

4.1 Diversification/Intensification

The principle of the strategy in two phases proposed here is a cooperation
between a method able to perform a diversified search of the objective space
and a method able to perform the intensification task. The strategy works
as follows: the former method is first used to generate a most diversified
approximation of the optimal Pareto set and then the result of this method is
improved by means of the latter method to converge as far as possible toward
the optimal Pareto set without losing diversification.

In the first phase, we have investigated the use of a multi-objective evolu-
tionary algorithm (MOEA) [7, 14]. Examples of implementations of the stan-
dard MOEA NSGA II for the VRPRB and the BOCTP [15] are explained
in subsection 4.2. We have also explained how parallelism can be used to en-
hance the results of the MOEA as well as a strategy to help diversification in
MOEA, namely the elitist diversification (ED) mechanism. The second phase
uses either a method to define relevant goals for neighborhood search in the
case of the VRPRB or a strategy relying on the definition of subproblems that
can be solved efficiently by a branch-and-cut algorithm.
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4.2 Phase One: Diversification

NSGA II

NSGA II can be described as follows. Its population Rt, where t is the number
of the current generation, is divided into two subpopulations Pt and Qt. The
sizes of Pt and Qt are equal to N and, therefore, the size of Rt is 2N . The
subpopulation Pt corresponds to the parents and Qt to the offspring. The four
main steps of NSGA II are presented below without going into the details of
the mechanisms used such as the ranking and the crowding distance. It is
sufficient to recall that a solution i has two fitnesses according to the current
population: a rank ri which represents its quality in terms of convergence
toward the optimal Pareto set, and a crowding distance di which corresponds
to its quality in terms of diversification. A solution of rank i means that it
is only dominated by solutions of rank j with j < i. It tends to organize the
population into layers. The crowding distance is given by an approximation
of the size formed by the cuboid formed by the closest solutions with the
same rank than the considered solution. The lower the rank and the crowding
distance are, the better the solution is. For additional details about NSGA II,
the reader is referred to [15]. At generation t, the different steps are:

STEP 1 Combine the parent and offspring populations to create Rt = Pt∪Qt.
Compute the ranks and crowding distances of the solutions in Rt. Sort the
solution according to their ranks in an increasing order. Identify the fronts
Fi, i = 1, . . . , rmax, where i represents a rank. Fi is the set of solutions of
rank i.

STEP 2 Create a new population Pt+1 = ∅. Set i = 1. While |Pt+1|+|Fi| < N ,
do Pt+1 = Pt+1 ∪ Fi and i = i + 1.

STEP 3 Sort the solutions of Fi according to their crowding distance in a
decreasing order. The (N − |Pt+1|) first solutions of Fi (i.e. the most
diversified solutions) are included to Pt+1.

STEP 4 Create Qt+1 from Pt+1.

The solution provided by NSGA II is the set of solutions not dominated
in the final population R. However, experiments have shown that the size
of the potentially Pareto optimal solution set can be larger than the size of
the population. Therefore, we have added an archive to NSGA II whose only
purpose is to save the potentially Pareto optimal solutions identified during
the search. It prevents such solutions to be lost due to the stochastic behavior
of the algorithm and the limited size of the population. This archive can also
be used as a stopping criterion: if no new non-dominated solution has been
found, i.e. no inclusion has been made in the archive, for a given number of
generations, the search stops.
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Algorithm 1 recombination phase(P, Q: POPULATION)
Q ← ∅
for i ← 1, . . . , N do

pa1 ← tournament(P ∪ C)
pa2 ← tournament(P ∪ C)
if rand() < 0.5 then

s ← RBX(pa1, pa2)
else

s ← SPLIT (pa1, pa2)
end if
if rand() < 0.4 then

s ← or opt(s)
end if
2opt local search(s)
Q ← Q ∪ {s}

end for

NSGA II for the VRPRB

To implement NSGA II for a given problem, it is necessary to describe the
population initialization strategy as well as the recombination phase. For the
VRPRB, the starting population was generated by means of a greedy heuristic.
The greedy algorithm works by adding the customers in a random order.
A new route is created when the previous one is full. When every node is
included, a 2-opt local search is applied on every tour.

The recombination phase is described in Algorithm 1. The tournament
operator is the binary tournament as described by Deb et al.. Two solutions
are randomly selected and the solution with the best rank is kept. To break the
tie, the solution with the greatest crowding distance is selected. The crossover
operators are the route based crossover (RBX) [47] and the SPLIT crossover
[27,29] inspired by Prins’s genetic algorithm [48]. When a solution is created,
a 2-opt local search is applied on each route in order to avoid artificially
balanced solutions [27, 29]. For further details, the reader is referred to [31].

NSGA II for the BOCTP

The starting population is created by solving several CTP for different values
of c. These values are chosen so that the points are equally distributed in the
objective space between the lowest cover value, which happens when only the
nodes in T are visited, and the highest, which can be computed for instance
when every node in V is visited. The different CTPs are solved by means of
a heuristic for the problem proposed by Gendreau, Laporte, and Semet [24].

During the recombination phase, two parents are selected and one offspring
is generated. The purpose of the crossover is to select the nodes visited by
the tour without building the tour. The crossover works by adding nodes that
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appear at least in one of the parents. Only the nodes that can improve the
cover are considered at each iteration. An acceptation probability is used to
determine if a node is to be included. The probability is computed in a similar
way to the crossover fusion for the set covering tour problem of Beasley and
Chu [2]. More details on the complete implementation of NSGA II for the
BOCTP can be found in [30, 33].

Parallelization

To improve the results obtained by NSGA II, we have implemented it in
an island model. The model is built as follows: each island corresponds to
one instantiation of NSGA II with its own population. The communication
network is a ring, and therefore each island has two neighbors. One island
sends information to its neighbors regularly in terms of generations. When the
generation corresponds to a communication phase, the recombination (STEP
4) is replaced by the migration between the islands. Due to the fact that the
communication network is a ring, an island receives information at the same
time it sends information. The computations of a given island do not start
again until it has received the information from its two neighbors.

The communication phase runs as follows. An island sends to its two neigh-
bors the N

2 best solutions from its population (i.e. the N
2 first solutions, ac-

cording to the ranking and crowding distance sorting, of the population after
the selection phase (STEP 1 to STEP 3)). Therefore, an island receives N

2
solutions twice. These solutions replace those from Qt since they would have
been lost in the case of a standard recombination phase. Figure 6 illustrates
the communications in the case of four islands.

The Elitist Diversification Mechanism

In the elitist diversification, additional archives are considered. They contain
the potentially optimal Pareto solutions (PPS) when one objective is max-
imized instead of being minimized. It may be noted that we suppose that
every objective is to be minimized. Let S(A) be the subset of solutions of the
decision space found by an algorithm A, and k the index of the objective func-
tion component which is maximized. To define new archives, the dominance
operator ≺k is introduced :

∀y, z ∈ S(A), y ≺k z ⇐⇒(∀i ∈ {1 . . . n} \ {k}, fi(y) ≤ fi(z))
∧ (fk(y) ≥ fk(z))
∧ ((∃i ∈ {1 . . . n} \ {k}, fi(y) < fi(z))
∨ (fk(y) > fk(z)))

Then, we have Ak = {s ∈ S(A)|∀s′ ∈ S(A), s′ �≺k s}, with k = 1, . . . , n,
the archive of PPS associated with the maximization of the kth objective
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Fig. 6. Extension of NSGA II into an island model.

component instead of the minimization. We denote ≺0 the classical dominance
operator i.e. a solution x is said to dominate a solution y if x is not worse
than y on every objective and there is at least one objective where x is strictly
better than y.

Like in the elitism strategy, solutions from the new archives are included
into the population of the MOEA at each generation. The role of these so-
lutions is to attract the population to unexplored areas, and so to avoid the
premature convergence to a specific area of the objective space. Indeed, us-
ing solutions from these archives ensures that an exploration is done while
preferring one objective.

Preliminary experiments point out that the improvement is less impor-
tant when all the archives are embedded in the same MOEA. This leads us
to distribute the archives among several searches resulting in a co-operative
model. This parallelization is not used in order to speed up the search but to
search a larger part of the solution space in a given time. Since every island
will be executed at the same time, it will take the same computational time
as a single island while the number of solutions created will be multiplied by
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not to obfuscate the figure.

the number of islands. An island is denoted Ii
j . It means it belongs to the

ith brick and its additional archive is of Aj type. The island Ii
j sends its A0

archive to all its neighbors: Ii
j−1, Ii

j+1, Ii−1
j , and Ii+1

j . It only communicates
its Aj archive to Ii−1

j and Ii+1
j . Since the communication topology between

and within the bricks is toric, the indexes are computed modulo n. The model
is illustrated in Figure 7.

This strategy can be used with any MOEA. Its implementation in the case
of NSGA II is explained in [31].

4.3 Phase Two: Intensification

During the second phase, we try to improve the intensification aspect of the
potentially optimal Pareto sets generated by a MOEA (NSGA II in the case
of the studies on the VRPRB and the BOCTP). The fact is that MOEA may
not always work well in view of the intensification goal. It may be interesting
to use good single-objective methods. Indeed, apart from some problems spe-
cific to a given real case study, the multi-objective problems are often linked
to single-objective problems studied in the literature and for which efficient
methods have been proposed. For instance, in the case of the VRPRB, a lot
of neighborhood searches, specially Tabu search, exist and for the BOCTP,
an exact algorithm have been proposed. The purpose here is to transform the
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multi-objective problem into a single-objective problem and use good methods
for the single-objective problems to improve the potentially optimal Pareto
set in terms of intensification. First, we propose a way to build relevant goal
points according to the approximation at hand. We also explain how this
method was used to post-optimized approximations generated by NSGA II
for the VRPRB. In the case of the BOCTP, we illustrate how it can be useful
to generate subproblems which can be solved exactly by means of a branch-
and-cut algorithm for the CTP.

Target Aiming Pareto Search

We are going to present a strategy called Target Aiming Pareto Search
(TAPaS) whose general loop works as follows. First, points are selected from a
given potentially Pareto set. Then, for each of these points a goal point is built
according to the other selected points. A local search heuristic is then run from
each selected point trying to reach the associated goal point. The approxima-
tion is updated using the solutions visited by the local search heuristics. The
process is iterated until no new non-dominated solutions are found.

More precisely in TAPaS, a local search heuristic li is applied to each
solution si of a potentially Pareto set P . A specific objective function oi is
defined for each local search li. The function oi must take into account the
multiplicity of the LS invoked.

Indeed, two LS should not examine the same area of the objective space,
and the entire area that dominates P should be explored in order to converge
toward the optimal PS. The definition of oi is based on the partition of O
(i.e., the objective space) according to P (Figure 8):

• Ad = {s ∈ O|∃s′ ∈ P, s′ ≺ s}: the area of the objective space dominated
by P .

• And = {s ∈ O|∀s′ ∈ P, (s′ �≺ s) ∧ (s �≺ s′)}: the area of the objective space
not dominated by P and not dominating any solution from P .

• As = {s ∈ O|∃!s′ ∈ P, s ≺ s′}: the area of the objective space dominating
only one solution of P .

• Ap = {s ∈ O|∃s1, s2 ∈ P, (s ≺ s1) ∧ (s ≺ s2)}: the area of the objective
space dominating more than one solution of P .

Each solution si ∈ P is associated with a part Ai
s of As. If li is able to generate

a feasible solution in Ai
s, then the approximation is improved according to the

convergence, without impoverishing the diversification. To guide the search,
a goal gi is given to each li, with gi being the point that dominates all points
of Ai

s. In cases where certain coordinates of gi cannot be defined (e.g. the
extremities of P ), a lower bound for the missing coordinates should be used.

Each local search stops when it reaches a solution that dominates gi or
when a stopping criterion specific to the implementation is met. Each local
search li produces an archive ai which contains all the current solutions that
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Fig. 8. Partition of O.

are not dominated. P is updated by the Pareto union between P and all the
archives ai. If P is improved, the process is iterated, otherwise it is stopped.

This strategy has been applied to the VRPRB. The starting approxima-
tions were generated by means of NSGA II. The local search was a Tabu
search : Unified Tabu Search [9, 10]. More details on TAPaS and this imple-
mentation are given in [32].

Definition of Subproblems

Another possibility is to define single-objective subproblems that can be solved
efficiently by single-objective methods. The interest to define smaller size prob-
lems comes from the fact that if one wants to improve a potentially optimal
Pareto set by means of single-objective methods, one will need to run the
methods several times in order to take into account the spread of the Pareto
frontier. Therefore, smaller size subproblems, being easier to solve, enable to
iterate several times the single-objective methods without having to pay a
prohibitive computational time.

In the case of the BOCTP, we have used the approximation generated by
NSGA II by defining several subproblems and solving them by means of a
branch-and-cut algorithm for the CTP [24]. Two subset construction proce-
dures have been defined. The first one tends to improve the solutions according



From Single-objective to Multi-objective Vehicle Routing Problems 463

length

cover

A

Fig. 9. The first procedure tries to
improve a solution length without
modifying the cover (i.e., the solution
A).

length

cover

B

A

Fig. 10. For a given couple A and
B, the second procedure builds a sub-
problem to which the solution is nec-
essarily in the grey area.

to one objective (minimization of the length) without touching the cover. The
second procedure tends to identify potentially Pareto optimal solutions whose
cover values were not found by NSGA II.

The first procedure works as follows (see Figure 9). Let consider one solu-
tion s found by NSGA II visiting the set V ′ ⊆ V . For every node vk visited
in the solution, we identify a set Rk of nodes that can replace vk. Rk is said
to be able to replace vk if the removal of vk and the inclusion of the nodes in
Rk do not change the cover value associated to the solution. The size of Rk is
bounded by a small number of nodes. Then, the subproblem (i.e. the CTP)
associated to the solution is the following one. The set of visitable nodes is
formed by the union of V ′ and the subsets Rk formed for every node vk ∈ V ′.
The set of nodes to cover is still W and c is fixed to the cover value of s.

The second subproblem construction procedure works as follows (see Fig-
ure 10). Let A and B be two neighboring solutions in the approximation sets
found by the evolutionary algorithm (i.e. there is no other solution between
A and B). A (respectively B) is a solution with a cover cA (respectively
cB) which visits the vertices of the set VA (respectively VB). Assuming that
cA < cB, the branch-and-cut algorithm can be executed on a set VII , built
according to both VA and VB , with as a parameter, the first cover c̃ which is
strictly smaller than cB .

More information on these procedures and their cooperation with NSGA
II for the BOCTP can be found in [32].
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Fig. 11. General optimization strategy.

4.4 General Optimization Strategy

Our general optimization strategy is illustrated in Figure 11. The deepest
layer of this strategy is the use of a MOEA (typically in our studies NSGA II)
to generate a first approximation. The MOEA can be improved by the addi-
tion of the elitist diversification mechanism and/or the use of parallelization
through an island model. This general method forms the component dedicated
to the diversification of the optimization strategy. Then, the approximation
generated is passed to the diversification box, which is composed of one or
several intensification procedures based on single-objective methods. These
procedures can be combined to ensure an intelligent search of the objective
space by means of techniques designed to guide the searches like TAPaS or the
generation of subproblems to solve them by exact methods in a cooperative
scheme.

4.5 Computational Results

Computational Results for the VRPRB

Optimal Pareto sets are not known for the VRPRB. Therefore, we have com-
pared the results of our MOEA with the best-known values on the length
objective and with the evident lower bound that is 0 for the balance objec-
tive. The different methods reported are a parallel version of NSGA II run
on 16 processors, a parallel version of NSGA II with the elitist diversification
mechanism run on 8 processors and a cooperative method composed of NSGA
II (run on one processor) and TAPaS as a post-optimization process. Table 2
allows to compare our method with the only-known element from the litera-
ture: the best-known length. It is interesting to note on the instances E76-10e
and E101-08e that if the solutions are near each other in terms of length, there
is an important gap concerning the balance. For instance, the best found so-
lution found by TabuRoute and Prins’s GA for the instance E101-08e has a
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balance value of 97.88 for a length of 826.14 whereas the best solution we
found has a length of 827.39 for a balance of 67.55. It appears that to gain
very little in length (0.15 %), it is necessary to lose a lot in balancing. There-
fore, it is possible that there is a great difference between the solutions. As it
is also the case for the instances E151-12c and E200-17c, it can explain that
the multi-objective metaheuristics have difficulties to reach the best-known
solutions in terms of length.

Regarding the balance, all the methods found solutions with values close to
0. They are able to generate very well-balanced solutions. However, there is an
important fluctuation concerning the length of the solutions. We also provide
the average number of potentially Pareto solutions found by the island model
of NSGA II on 16 processors (#PPS). It shows that the Pareto sets are rich
in terms of solutions and it indicates experimentally that the study of these
two objectives together is interesting.

More computational results, including the evaluation of the contribution
of the different mechanisms or the fact that diversity is preserved by the new
intensification mechanisms can be found in [27, 29, 31, 32].

Computational Results for the BOCTP

For the BOCTP, it was possible to generate the optimal Pareto set by iterating
the branch-and-cut algorithm of Gendreau, Laporte, and Semet [24]. To avoid
useless computation, the iteration was done through an ε-constraint method
insuring that only one run of the branch-and-cut algorithm was done for each
solution in the optimal Pareto set [32].

The contribution of each cooperation scheme was evaluated. Table 3 re-
ports the average ratio (Ratio) of optimal Pareto solutions found, computa-
tional times in seconds (time) for NSGA II alone and for both cooperation
schemes (Cooperation I and Cooperation II). The cumulated average com-
putational times (TT) are also reported: TT is equal to the time needed for
NSGA II to generate a first approximation and then to apply a cooperative
scheme. Cooperative scheme I seems to produce interesting results. Overall,
it is able to identify an average of five percent of new optimal Pareto solu-
tions. Similar conclusions can be drawn for the other cooperative scheme: in
a reasonable amount of time, scheme II is able to improve the approximation
quality in terms of the number of optimal Pareto solutions found and the
values of the generational distance, although to a lesser extent than scheme I.
Moreover, the cumulated contribution of the two cooperative schemes was
evaluated (Table 3; heading Cooperation I+II). It appears that the quality of
the results using both schemes is better than if only one was used, both in
terms of the number of optimal Pareto solutions found (an improvement ra-
tio of 7.2 on average). Furthermore, the additional cumulated computational
time is moderate.

The computational results showed that the cooperative method com-
posed of NSGA II and the resolutions of the subproblems by means of the
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Table 2. Best-found bounds for both objectives of the VRPRB for several methods
and average number of non dominated solutions found.
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branch-and-cut algorithm are able to generate very good solutions (at least
two thirds of the optimal Pareto solutions were found and the approxima-
tions were very close to the optimal Pareto sets) while requiring much less
time (around 9 times faster than the iteration of the branch-and-cut algo-
rithm on the complete set of benchmark). We also provide the average num-
ber of optimal Pareto solutions (NB) on the complete set of instances for each
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Table 3. Contribution of the cooperative schemes.
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combination of the sizes of V, T , and W . Additional computational results,
including a complete evaluation of the contribution of the cooperation and
tests on real-life data, can be found in [33].

5 Conclusions

In this chapter, we have given an overview of what can be done by using
multiple objectives for vehicle routing problems as well as how it can be done
by providing the keys to a general strategy designed to deal with the challenges
encountered in multi-objective optimization. This has been illustrated by the
definition of two bi-objective vehicle routing problems and the implementation
of the proposed strategy for these problems.
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Vehicle routing problems are important as academic problems as well as
problems appearing in a lot of real-life situations. It is therefore natural and
important to get interested in the definition of multi-objective vehicle routing
problems and the application of multi-objective optimization methods to these
problems. Both problems studied here are typical of what can, and we believe,
what should be done.

In conclusion, multi-objective optimization and multi-objective vehicle
routing problems open new horizons of research for studies in vehicle rout-
ing. The area knows a fast growing interest. Indeed, more than half of the
papers about this subject has been published after 2000. However, even more
efforts should be put into these studies. It appears that if the number of stud-
ies on multi-objective vehicle routing problems has increased in the recent
years, almost each study is made independently from the others. However,
some studies could be linked together and, in some cases, different studies
deal with the same or almost the same multi-objective problem. Even if the
complete problem is not considered, several objectives are shared by different
studies. It should therefore be interesting to define general multi-objective
vehicle routing problems that could be used as starting points for more com-
plex problems. For instance, an analogy with single-objective vehicle routing
problems is the traveling salesman problem and the capacitated vehicle rout-
ing problem which are the focuses of a lot of academic studies and have a lot
of real-life applications, specially through the definition of variants. However,
the methods used to solve these variants are based on those obtained for the
academic formulations of the problems.
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44. V. Pareto. Cours d’économie politique. Rouge, Lausanne, Suisse, 1896.
45. Y. Park and C. Koelling. A solution of vehicle routing problems in multiple

objective environment. Engineering Costs and Production Economics, 10:121–
132, 1986.

46. Y. Park and C. Koelling. An interactive computerized algorithm for multicriteria
vehicle routing problems. Computers and Industrial Engineering, 16:477–490,
1989.

47. J.-Y. Potvin and S. Bengio. The vehicle routing problem with time windows
part II: Genetic search. INFORMS Journal on Computing, 8:339–370, 1996.

48. C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research, 31:1985–2002, 2004.

49. R. Ribeiro and H. R. Lourenço. A multi-objective model for a multi-period
distribution management problem. In Metaheuristic International Conference
2001 (MIC’2001), pages 91–102, 2001.

50. J. Riera-Ledesma and J. J. Salazar-González. The biobjective travelling pur-
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Summary. Small package shipping is a vital component of national and interna-
tional transportation. This chapter gives an overview of such services by discussing
the operations of a “typical” service day. We compare and contrast the characteris-
tics of the routing problem encountered in small package shipping with the classical
vehicle routing problem. The discussion of these routing issues also leads us to de-
scribe several new variants and offshoots of the classical vehicle routing problem
that may be of interest to researchers.

Key words: Vehicle routing problem (VRP); small package delivery and pickup;
classical VRP; customer schedule consistency.

1 Introduction

Small package shipping is a vital component of national and international
transportation and generates commercial revenues that are measured in the
billions of United States dollars. The industry is highly competitive and it is
important that these systems operate at maximum efficiency.

Small packages are picked up (typically from pickup boxes, branch store
locations, or customer locations arranged by commercial contract) and then
brought to a center (local depot). After the packages are transported through
the nationwide distribution network to the appropriate center that is close to
its destination location, vehicles are dispatched to deliver the packages to the
appropriate person/entity at the appropriate address. The vehicles associated
with a center handle both the local pickup and delivery tasks.

These local activities constitute an important component of small pack-
age shipping so vehicle routing and fleet management issues are principal
focuses of research and development efforts. As can be expected with most
real world operations, the small package pickup and delivery environment is
rather complex and exhibits a number of conflicting objectives and service
characteristics.

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 21, c© Springer Science+Business Media, LLC 2008
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This chapter has two main goals: first, to give an overview of the local op-
erations for a small package pickup and delivery service; second, to compare
and contrast the characteristics of routing problems encountered in the local
operations of a small package shipping firm with the classical vehicle rout-
ing problem (VRP). The discussion of routing problems associated in small
package local operations will also lead us to describe several new variants or
offshoots of the VRP that may be of interest to researchers.

The next section describes a “typical” day for a service provider (SP) that
allows us to introduce many of the operating considerations that will be dis-
cussed more formally in later sections. The third section reviews the classical
VRP and then identifies some distinguishing characteristics of the small pack-
age shipping local operations problem and contrasts how the classical VRP
treats these factors. The fourth section discusses in more detail some of the
distinguishing characteristics of the small package shipping operating environ-
ment and describes some new types of routing and planning problems that are
based on these characteristics. The fifth section concludes this chapter with a
brief review of its principal discussion points.

2 A Typical Service Day

The small package shipping center at Anytown, USA serves as a depot for
the pickup and delivery vehicles in the area. The day’s activities start in the
early hours of the morning as packages are arriving at the center where they
must be delivered to the customer addresses during normal business hours. It
is still several hours until Jack and about 50 other SP’s will begin their days.
However, the center is already working to prepare for the dispatching of its ve-
hicles. Jack and many other SP’s have “pre-assigned” service territories where
each is responsible for picking up and delivering packages. This service terri-
tory assignment works out well for Jack’s customers as well as himself. He has
been able to become familiar with the neighborhoods in his service territory
and all of the roads that must be traveled. Jack’s service territory includes a
shopping mall, a hospital, a few small commercial/professional buildings, and
several residential neighborhoods. He has learned to anticipate road/traffic
problems and customer idiosyncrasies before they can negatively impact his
service performance. In addition, the customers in Jack’s service territory have
become familiar with him and his courteous and efficient service.

Since the volume and geographical distribution of packages varies from day
to day, Jill, the center’s “dispatch supervisor”, may make daily modifications
to Jack’s service territory in order to insure that he has roughly the same
amount of work on any particular day. The packages for the day’s deliveries
gradually arrive at the center, so Jill must be alert to any unexpected arrival
patterns that might signal the need for additional vehicles and/or significant
adjustments in the existing vehicle routes. Today, at around 5:30 AM Jill
has noticed that the amount of work for the shopping mall appears to be
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significantly above normal levels so she will have to adjust Jack’s route. By
moving one or two residential neighborhoods to another SP’s route (for today
only), she can avoid overloading Jack. However, she may also have to form a
new service route to handle the unexpected increase in the workload if it is
large enough.

As the vehicle delivery routes are finalized, the packages to be delivered
that day must be loaded into the rear of the vehicle where there are two
parallel sets of shelves running along each side of the vehicle. Packages can be
arranged along the shelves. The order in which the packages are loaded on the
shelves is made so that the time required to locate a package is minimized.

After Jack reports for work, he inspects his service vehicle and goes over
the order in which the packages are loaded in the rear of the vehicle and the
order in which they are to be delivered.

Jack starts his route by driving from the depot to his assigned service
territory for the day. He then focuses his attention on the premium service
packages that must be delivered by a certain time in the morning. He also
delivers ground service packages that do not have any specified time windows.
However, some of his regular commercial customers have shaped their business
operations with the expectation that Jack will make his delivery during a
certain time interval. For example, the video store on his route has hired a
part-time worker who only works mornings to handle and process the packages
that Jack delivers. If Jack significantly alters his daily delivery schedule (e.g.,
delivers to the video store in the afternoon), he will inconvenience some of his
customers who would have to alter their own office routine.

Jack has to be alert on his route to events that can alter the normal
traffic pattern. For example, road construction or a traffic accident can create
conditions where Jack has to alter his planned route to avoid certain roads
at specific times. Another source of uncertainty is the hospital that receives a
heavy load of packages from each of several shipping firms. The hospital has
only one loading dock bay so if Jack arrives while another shipper’s vehicle is
in the bay, he will have to wait, potentially for up to 30 minutes, or decide to
visit other customers and then return to make his deliveries at the hospital.

One drawback of deviating from his planned service route is that Jack
spends more time in the rear of the vehicle looking for the appropriate pack-
ages to deliver. He considers this to be a small price to be paid for the benefits
of the last minute route changes.

In the afternoon, Jack continues to deliver his ground service packages. In
the late afternoon, he picks up packages at various commercial locations that
have contracted for this type of service. He concludes his day by returning to
the center with all of the packages that he has picked up.

This description of a typical work day for local delivery and pickup work
and its supporting activities touches upon a number of important issues that
can impact the efficiency and quality of the work performed. This section also
illustrates the substantial complexity involved in managing a small package
shipping firm’s local pickup and delivery operations. In the following sections
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we will discuss these important issues and their relationship to the classical
VRP. We will also define some possible areas for future research.

Note that Malandraki et al. [5] also discuss the local pickup and delivery
activities for small package shippers.

3 The Classical Vehicle Routing Problem and Small
Package Shipping Operating Characteristics

The classical VRP is to find service routes for a set of spatially distributed
customers so that the total travel cost/distance is minimized. Each route is
covered by a single vehicle and must start and end at a central depot. Each
route is constrained by either its total travel time/distance or the vehicle
capacity (for some type of product or service). When a vehicle capacity con-
straint applies, each customer has a specified amount of demand that must
be satisfied without exceeding the vehicle’s capacity.

The classical VRP and its variants have been utilized in a variety of in-
dustries (see [3], [6]). However, small package pickup and delivery service has
a number of characteristics that distinguish it from the classical VRP model.

• Customer Schedule Consistency strives to service each customer with the
same SP at about the same time over multiple days. This objective can
increase the overall mileage/cost of a service route. However, as we saw
in Section 2, Jack can gain valuable familiarity with his customers that
leads to improved service and possible additional business leads. Also,
some regular customers come to expect their deliveries at about the same
time each day. As mentioned above, the classical VRP is a static model so
customer schedule consistency is not really an issue.

• Service Territory Management constructs the service territory that a single
SP will cover. In order to maintain a high level of customer service, we wish
to have the same SP visit the customers in a service territory. As discussed
in Section 2, Jack can become familiar with a single geographical area and
use this knowledge to optimize his travel time. However, due to workload
fluctuations, an SP’s territory may have to be adjusted on a daily basis
to maintain fairness by balancing the workload among different SP’s. The
classical VRP is a static model that assumes that demands are fixed and
so the resulting service territories will also be fixed.
The classical VRP looks at route planning one day at a time. Since Cus-
tomer Schedule Consistency and the Service Territory Management both
deal with questions that arise from multiple day planning horizons, these
two issues do not really apply to the classical VRP.

• Package selection time is the amount of time required for the SP to find
the appropriate package(s) in the rear of the vehicle to be delivered to a
customer. As we saw in Section 2, the selection time might possibly be a
factor if the packages are not arranged for convenient selection.
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For any vehicle routing operation, a certain amount of time must be allo-
cated to actually making the delivery at a customer location. The classical
VRP assumes that the customer delivery time is fixed or even constant
for each customer and may just incorporate the delivery time into the
travel time costs or the vehicle time constraint limits. However, in the
small package context, the selection time may vary. As we saw in Section
2, if Jack’s route is modified, then the package selection time may increase.
This factor should be taken into account in the overall evaluation of the
route modification.

• Time windows can be associated with premium deliveries or contracted
customer pickups and other special services. These windows are often one-
sided. For example, a package must be delivered by 10:30 AM or picked
up after 4:00 PM. However, other types of windows are possible such as
when a package can be delivered anytime during normal business hours, 9
AM to 5 PM, except from 12 Noon to 1:00 PM (lunch time). The classical
VRP with customer time windows is a common variant that has attracted
a substantial amount of work (e.g., [2]).

• Unplanned events such as traffic congestion and new service demands ne-
cessitate the need for real-time adjustment of an SP’s routes. Generating
new routes after such events is a challenging problem.

The above list of characteristics is not exhaustive but does convey a sense of
the range of complex factors that must be taken into account for the real world
problems in small package shipping. Note that these factors often conflict with
each other and the overall cost minimization objective, so real world small
package delivery and pickup models must find a way to balance these diverse
elements.

Many of these distinguishing characteristics do not appear to have been
substantially treated in the research literature. In terms of future research
directions, it may be advisable to consider each of these characteristics indi-
vidually in order to gain some insight into the implications and effects of each
characteristic. After obtaining some insight into the individual factors, it may
then be appropriate to consider more complicated models where more than
one distinguishing characteristic is taken into account. In particular, com-
bining time windows with other characteristics such as route formulation or
customer schedule consistency is one noteworthy way to proceed.

For practical real-world models we must certainly take into account all of
the above complicating factors (as well as other factors) in order to obtain
useable solutions. The resulting models will clearly be much more complicated
than models that address only a single differentiating characteristic and the
solution approaches devised will probably be much less elegant than the sin-
gle characteristic case. This contrast between the research approach and the
real-world solution approach is useful and highlights some of the differences
between research efforts and practical industrial work.
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4 Vehicle Routing and Planning Models based on Single
Characteristics

The previous section highlighted some of the important issues that were raised
and discussed in our description of a typical day (see Section 2). In this section
we explore the implications of these issues more closely and use them to
suggest some research problems that may be of interest. In particular, we
focus on three main factors: customer schedule consistency, service territory
management, and package selection time.

4.1 Customer Schedule Consistency

As discussed in Section 3, an important customer service criterion over a mul-
tiple day time horizon is to schedule deliveries to customers so that they occur
at about the same time every day. Such regularity conditions arise from two
types of situations. In the first type of situation, a delivery customer (e.g.,
a business customer) signs a service contract that mandates a specific time
window when daily deliveries should take place. In the second type of situa-
tion, the regular customer becomes accustomed to a particular delivery time
window and begins to schedule resources to be available around the usual de-
livery routine. Section 2 touched on this situation when discussing Jack and
the video store customer. In such a situation, if the delivery times for this cus-
tomer are suddenly shifted, then the customer’s operations may be disrupted
and the customer may feel that the service provided is not satisfactory.

Consider the case of customer delivery time windows that arise from im-
plicit expectations on the part of the customer. Then, if the set of customer
demands is known for the next d days, it may not be desirable to optimize the
routing for each day separately. Instead, we may wish to impose a constraint
specifying that during each day, each customer should receive his delivery
within a specified time window. Imposing such a constraint would insure that
customer service consistency is maintained.

If the customer delivery time windows are known a priori then the consis-
tent service problem becomes a series of VRP’s with time windows. However,
it may be difficult to specify the delivery time windows a priori and thus these
time windows become variables that must be determined by the optimization
model.

Groër, Golden, and Wasil [4] propose another formulation of the consis-
tent customer schedule problem. Instead of using time windows, they use the
following “consistency” constraint:

If two customers i and j require delivery service on two days, then if cus-
tomer i receives service before customer j on day 1, then customer i must also
receive service before customer j on day 2.

This consistency constraint can be added to the routing model instead
of the more complex time window variables/constraints. The consistency con-
straints are also more easily incorporated into a solution technique. Groër et al.
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propose an easily implementable heuristic solution procedure and give com-
putational results that indicate that the solutions based upon the consistency
constraint based models lead to customer delivery time windows that are fairly
tight. They also compute the added routing cost due to the imposition of the
consistency constraints. This type of analysis allows us to calculate the ex-
plicit tradeoff between enhanced customer service through consistent delivery
times and the additional routing costs due to the additional constraints.

Time Windows

A more complex model of customer consistency would include explicit delivery
and pickup time windows. Most deliveries involve the standard level of service
with no explicit time windows but a small number may involve a premium
service with an explicit time window (e.g., must be delivered by 10:30 AM).
Note that for some customers, a premium delivery is NOT a daily occurrence
so the location of the premium customers can vary from day to day. Incorpo-
rating these explicit time windows into a customer schedule consistency model
appears to be another area of possible future research.

4.2 Service Territory Management

In this subsection we focus on the question of managing service territories. The
two main topics are the design of a service territory and the identification of
when a workload fluctuation necessitates an adjustment in the service territory
design to balance the territory’s workload.

Service Territory Design

An important component of the small package shipping firm’s vehicle routing
plan is the daily task of designing and modifying the service territories for
the center’s SP’s. Each service territory corresponds to a single SP’s route.
In the classical VRP, the demands are assumed to be fixed and known. So
the assigning of customers to routes is a straightforward task as long as the
vehicle capacity or travel limit is respected.

Ideally, we would like the geographic region corresponding to a service ter-
ritory to be as compact as possible in order to minimize travel time. However,
the service territory is subject to daily review and possible modifications to
balance SP workload since the amount of work for any locale can vary con-
siderably from day to day. Note that every service territory has an upper and
lower bound on the amount of work that can be assigned to it. The lower
bound arises from union agreements that specify the minimum number of
hours that an SP must be paid for working on a route without regard to the
actual amount of work performed. The upper bound is meant to prevent an
SP from being overloaded.



482 Wong

In Section 2, we saw that the “dispatch supervisor” Jill had to contend
with fluctuations in the workload for the shopping mall and had to adjust
Jack’s route accordingly.

The service territories for a center must be structured so that they are
easily modified to create or modify territories to handle fluctuations in the
center’s workload. However, we wish to maintain consistency and overall effi-
ciency in formulating the center’s routes on a daily basis.

Zhong, Hall, and Dessouky [7] have proposed the concept of “core areas” to
deal with the service territory design problem. Various locales in the center’s
service territories are designated core areas. During each day, the locales that
are not associated with a core area are assigned to nearby core areas to form a
service territory with a balanced workload. Zhong et al. also give a literature
review of previous related research.

Alternative approaches to the service territory design problem may be a
possible area of future research.

Workload Fluctuation Identification

In addition to service territory design, another important management issue is
to identify as quickly as possible when a fluctuation in workload dictates that
the service territory should be modified for a particular day. Rapid recognition
of these situations increases the amount of time available for contingency
planning and executing the required changes.

A center does not usually have information about all of the packages it
must deliver on a particular day until all of the packages have actually arrived
at the delivery center. However, for a rather large percentage of the packages,
there is electronic tracking information containing all of the relevant informa-
tion about each package so the center can do advanced planning based on this
information. For a small percentage of the packages, this electronic informa-
tion is not available and the only information that can be used is historical
data from past service days.

Another complication is that the actual area workload depends mostly
on the number of delivery/pickup stops and the geographical distribution of
these stops. Forecasting the number of pickup stops is fairly straightforward
as most of them arise from commercial contracts that stipulate daily pickups.
However, the number of delivery stops is difficult to forecast and is related to
not only the volume of packages destined for the area but also a number of
other complicating factors.

For example, it is much easier to deliver 20 packages to one single address
(one stop) than to 20 separate addresses (20 stops). Also, a single address
for a company may require multiple delivery stops. For example, the front
entrance may accept deliveries for corporate personnel but deliveries to the
company laboratory may have to be made via the loading dock in the rear of
the facility.
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The geographical distribution of the stops is important since stops in a
locale with a high density of stops are generally easier to service than stops
in a low density locale.

As the amount of work arising from any fixed geographic area is uncertain
until all of the incoming packages to the center have arrived and have been
thoroughly analyzed, there is uncertainty about how to modify the service
territories until all of the incoming packages have arrived.

Since it is difficult to adjust routes at the last minute (e.g., this type
of strategy would require having expensive standby resources available), we
could leave a “safety capacity” in an SP’s route to take care of the demand
uncertainty. Another possible strategy is given below.

A Workload Estimation Approach

The workload for a service area can be estimated using a probabilistic traveling
salesman problem (PTSP) model (see [1] in this volume for further discussion
of the PTSP). The rather large percentage of packages for which there is elec-
tronic data available can be modeled as stops (nodes) where the probability
that it must be visited is one. For other stops (nodes) where no electronic data
is available, the probability that it must be visited is derived from historical
data.

Then the estimated workload for the service area is the expected cost of
the PTSP solution using the probabilities described above. If the expected
workload is outside of certain limits, then we can assume that the workload
is above or below specified boundaries and that the workload for the service
area must be adjusted in order to balance it.

4.3 Package Selection and Route Planning

In the classical VRP, the items to be delivered do not affect the vehicle routing
except through the vehicle capacity or travel time constraint. For the delivery
of a single type of item such as newspapers or fuel oil, the classical model
approximates reality quite well. For small package delivery, there is not a
single commodity and each delivery address has a specific set of one or more
packages destined for it.

As discussed in Section 2, the rear of the SP’s vehicle has two parallel sets
of shelves running along each side of the vehicle. Packages can be arranged
along the shelves.

So the arrangement of packages stored in the rear of the vehicle is a very
important factor in minimizing the amount of selection time required to find
the items for a particular address. For example, if the packages are stored in
a random order, the SP would spend a significant amount of time in the rear
of the vehicle searching for the appropriate package(s). Ideally, the packages
should be stored in an order that reflects the order in which they are to be
delivered.
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However, as we saw previously, the exact specification of the route may
not be available until shortly before the SP starts to work on it and there
may not be enough time for the packages to be loaded to reflect the exact
route. Also, during the day, the route may be modified due to unexpected
factors such as the introduction of some additional work or traffic accidents.
Another situation is when a single package is so large that access to the rear
of the vehicle is severely restricted so that the SP may wish to deliver the
large package as soon as possible in order to gain freer access to the rear of
the vehicle.

Although the rerouting of the vehicle may be straightforward from the
point of view of minimizing the travel time or distance, such re-routings do
not take into account the additional selection time due to finding packages in
the rear of the vehicle when the order of delivery has been modified.

To the best of our knowledge, we are not aware of any research related
to the tradeoff of travel time/distance and package selection time. This issue
might be an interesting topic of future research.

5 Concluding Remarks

This chapter has given an overview of local delivery and pickup service for
small package shipping. We have contrasted the classical VRP with the small
package shipping firm’s routing problem characteristics and used this com-
parison to suggest some possible areas of future research.

The main topics that we considered are:

• The goal of servicing regular customers at about the same time each day
led to the question of Customer Schedule Consistency.

• Customer service locales (pickup or delivery stops) are spread over a ge-
ographic region where the number and location of these stops vary from
day to day. In addition, we would like the same SP to be assigned to a ser-
vice territory to maintain service continuity. These conditions have given
rise to the question of service territory management where we must de-
sign the service territories and make adjustments to the territories when
a workload fluctuation is identified.

• The question of package selection and route planning highlights the pos-
sible value of optimizing the arrangement of packages in the rear of the
vehicle in order to reduce the package selection time.
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1 Introduction

In the past few years, the use of radio frequency identification technology
has increased and it is utilized extensively in many industries for the track-
ing of resources. With advances in technology, the accuracy of transmitters
and receivers has improved and the cost has decreased. Therefore, the viabil-
ity and usefulness of these devices has increased. In his article about current
uses of RFID, Zipkin [9] has detailed a number of industries which are using
this technology and he mentions additional uses of RFID in the global mar-
ketplace. For those industries using RFID, substantial savings in transaction
costs have been realized. However, until recently, the use of RFID technology
in meter reading has been largely underutilized. RouteSmart Technologies,
Inc., a leading logistics solution provider, generates routing and scheduling
solutions for newspapers, utilities, and local delivery and waste management
businesses. In the past few years, RouteSmart has encountered businesses that
are interested in using RFID in meter reading to streamline their operations.
However, routing heuristics that exploit this technology are unavailable. In
this chapter, we propose a few preliminary approaches for solving this new
problem class.

For utility companies, the increased cost of salaries and benefits of meter
readers coupled with the rise of gasoline prices has become a real financial
burden. Meters equipped with RFID can remotely send the usage amount to
an RFID reader located within a radius, r, of the meter. Currently, this reader
is located inside of a utility vehicle that is driven from house to house within a
neighborhood. For each driver, RFID transforms a traveling salesman problem
to a close enough TSP over a street network. Therefore, we can develop routes
that exploit the close enough feature of this RFID meter reading technology
and realize substantial savings over traditional solutions.

The remainder of this chapter is organized as follows. In Section 2, we
provide a brief overview of the problem and mention some related work. In
Section 3, we describe heuristic approaches for solving the CETSP over a street
network. The implementation of these heuristics is discussed in Section 4. In
Section 5, we introduce the notion of redundancy of coverage. Experiments
involving a real-world street network are discussed in Section 6. Concluding
remarks are provided in Section 7.

2 Background

Utility companies are interested in monitoring customer demand and usage, so
that they can control production and maximize efficiency. Electric, water, and
gas meters must be read and customers billed appropriately in order to ensure
a consistent stream of revenue. As the utility industry becomes deregulated,
utilities need to find new ways to increase profit and efficiency. Additionally,
as U.S. energy consumption increases and more strain is placed on the power
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grid, the need for utilities to more accurately gauge customer usage is required.
One way that utilities can both improve their customer service and reduce
their meter reading cost is to employ automated meter reading technology. In
particular, we focus our efforts on AMR coupled with RFID technology. With
this technology, the meter, which is located at a business or customer location,
emits the usage amount as a unique radio-frequency signal. In turn, a receiver
collects the signal, decodes it, and records the usage amount since the last
reading. There are two situations to consider. In one case, the meter sends a
signal to a stationary receiver that is located nearby. Then, the receiver sends
the data to a central data collection location for processing. In [4], heuristics
are presented to determine the optimal placement of the stationary receivers.

In this chapter, we focus on the second case. Here the receivers are mobile,
rather than stationary. Receivers are placed in vehicles which travel through
one neighborhood after another. If a vehicle gets to within a certain radius of
a meter (customer), the transmission is successful and the usage of gas, water,
or electricity is recorded. Therefore, meter readers no longer need to traverse
every street in a neighborhood. It suffices to get close enough to each meter.
This AMR range of effectiveness (which is generally between 500 and 1,000
feet, but may be as high as 1,250 feet) enables us to transform the traditional
meter reading problem from a TSP to a CETSP.

As far as we know, three papers have studied the CETSP in the plane.
Approximation results are presented in [3], while [2] and [6] present heuris-
tics and provide computational experiments to test the performance of these
heuristics. Heuristics have been proposed for problems similar to the CETSP
in the plane (e.g., the covering tour problem) in [5], [7], and [1].

In [8], the authors discuss the use of RFID in logistics and supply chain
management and focus on how RFID technology can be successfully applied
in a container port setting. As mentioned earlier, [9] reports on the potential
benefit of RFID, in a general sense.

In terms of implementation, the road network is modeled as a directed
graph, where the vertices mark the intersections of two or more roads and
the edges represent the street segments. The depot and each customer are
modeled as points in the plane, as in Figure 1.

Our objective is to create a path that begins and ends at the depot and
minimizes the distance traveled or travel time while passing within a radius
of r units of each customer. Therefore, we view this problem as a CETSP over
a street network.

Figure 1 is an image of the real-world dataset that we used to test our
heuristics. There are 18 partitions (i.e., mobile AMR meter reader routes)
and approximately 150,000 customers in this figure. In Figure 2, we zoom in
on a single partition.

In Figures 3 and 4, we illustrate the savings that can be realized as the
effective radius of the RFID increases. In Figure 3, we see the case where RFID
is not available and every street segment must be traversed. In Figure 4, the
effective RFID radius is 350 feet and the resulting travel paths are shown.
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Fig. 1. An example dataset in ArcGIS, an integrated software package for geo-
graphic information systems.

Fig. 2. A single partition from the dataset in Figure 1.
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By simply examining the intensity of the travel paths (i.e., the number of
street traversals), one can observe that the travel path length decreases as the
radius increases from zero (we discuss quantitative results in Section 6). The
radius values were chosen after consultation with Itron, a leading manufac-
turer of mobile RFID meters, encoders, and receivers.

3 Heuristics

We have designed several simple heuristics to solve the CETSP over a street
network. We consider a two-stage process. Initially, the entire geographic re-
gion is divided into partitions by RouteSmart software. Each partition cor-
responds to a meter reader’s daily AMR route assuming that RFID is not
available (or the effective radius is zero, i.e., no larger than the distance be-
tween meter and street, so that the meter reader is forced to traverse each
street segment). In stage one, the heuristic specifies a subset of street seg-
ments to be traversed based on the effective radius r. In stage two, a cycle
or complete travel path is generated that traverses these selected street seg-
ments. In this stage, other streets, known as deadhead segments, are selected
and added to the set of selected streets from the first stage, in order to form
a cycle. This cycle starts at the depot, traverses all selected streets (including
deadhead segments), and then returns to the depot.

Our two-stage approach simplifies the overall problem in the following
sense. The problem at each stage is manageable and easy to formulate. We
try to solve it optimally. The resulting overall running time is quite reasonable.
On the other hand, we recognize that our solutions can be suboptimal, since
we solve each stage independently.

In the remainder of this section, we focus on solving the stage one problem.
In particular, we have designed several heuristic strategies for stage one. These
consistently result in travel paths that are substantially shorter in length and
travel time than current solutions (with an effective radius of 0) generated
entirely by RouteSmart software. We describe these heuristics next.

In our simple (greedy) heuristics, a street segment is selected based on a
measure of performance. If a street segment gets as close as (or closer than) r
units from a customer, we say that customer is covered by the street segment.
The customers covered as a result of traversing the selected street segment
are removed. The greedy procedure is repeated until all customers that need
to be serviced are, in fact, covered. These heuristics follow the general steps
below.

1. Set up the data.

2. Loop until all customers are serviced.

3. Choose a street segment using one of the criteria discussed
in Sections 3.1 and 3.2.
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Fig. 3. Sample travel path for traversing each street segment.

4. Update the customers and streets to take into account the
streets chosen in Step 3.

5. Output the selected street segments.

3.1 Simple Bang for Buck

This class of heuristics takes into account, at each step, the incremental num-
ber of customers served by traversing a specific street segment. Of course,
there are some streets which must be traversed, since this is the only way
to cover certain customers. These streets are identified during pre-processing
and are selected first. The two heuristics in this class are described below.

a. Weighted (WB4B). This heuristic selects the street segment that covers
(serves) the largest number of customers. Next, it selects the street segment
that covers the largest number of additional customers, and so on. In the
end, each customer must be covered by at least one street segment.

b. Probabilistic Weighted (PWB4B). At each step, we identify the four
most promising street segments with respect to the incremental number
of customers covered. The heuristic randomly selects one of these four. As
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Fig. 4. Sample travel path for a 350 foot radius.

with WB4B, this procedure continues until each customer is covered by at
least one street segment.

3.2 Distance Bang for Buck

These heuristics are analogous to the simple bang for buck heuristics. The
only difference is that streets are ranked based on the ratio of the incremental
number of customers to the distance of the street segment. The two heuristics
that result are listed below.

c. Distance Weighted (DWB4B)

d. Probabilistic Distance Weighted (PDWB4B)

3.3 Integer Programming Model

We also experimented with formulating the problem as an integer program
(IP).

Formulation

The binary integer program is formulated below.
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Minimize
∑

j cjxj

subject to
∑

aijxj ≥ 1 ∀i

xj ∈ {0, 1}

where aij =

{
1 if customer i is covered by street segment j

0 otherwise

and xj =

{
1 if street segment j is selected for traversal
0 otherwise.

We tested two choices for the objective function. We refer to the resulting
models as IP1 and IP2. In IP1, we minimize the number of street segments
chosen (i.e., we set cj = 1 for all j). In IP2, we minimize the distance of the
street segments chosen (i.e., we set cj = the distance of road segment j). The
constraints ensure that each customer is covered at least once by the selected
street segments.

A Small Example

A small example is presented in Figure 5. For this example, IP1 becomes

Minimize x1 + x2 + x3 + x4 + x5

subject to x1 + x2 + x4 + x5 ≥ 1
x1 + x3 + x4 + x5 ≥ 1

x1 + x2 ≥ 1
x4 + x5 ≥ 1
x1 + x3 ≥ 1

x4 ≥ 1

xj ∈ {0, 1} for j = 1, . . . , 5.

4 Implementation

In our implementation and testing of these heuristics, we used ArcGIS, the
RouteSmart (RS) extension to ArcGIS, and Matlab. ArcGIS, developed by
ESRI, is an integrated software package for geographic information systems
(GIS). ArcGIS allows the user to graphically interface with the real-world
road network, customer locations and characteristics, depots, geographical
obstructions, and numerous other objects which affect the routing process.
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Street segment
Customer 1 2 3 4 5

1 x x x x

2 x x x x

3 x x

4 x x

5 x x

6 x

Fig. 5. An x in cell (i, j) indicates that customer i is covered by street segment j.

The real-world network and customer/meter data set (associated with a
utility company in the United States) were provided by RouteSmart Tech-
nologies, Inc. RouteSmart Technologies is a company, founded in 1980, that
produces and licenses powerful and effective route optimization systems used
by a wide variety of organizations, including newspapers, local delivery com-
panies, sanitation and public works, and utilities all over the world.

We use RouteSmart’s extension to ArcGIS to partition the data set. Each
partition corresponds to the daily workload for a single meter reader traversing
a mobile AMR route. The heuristics discussed in Section 3 select streets to be
covered. These streets are fed into RouteSmart’s sequence solver. This solver
applies a sophisticated heuristic to solve a rural postman problem. The output
is a complete travel path (starting and ending at the depot) which includes
selected streets as well as deadhead streets.

For this analysis, RouteSmart exported longitude and latitude data for
each customer/meter to a file. For each street segment, RouteSmart exported
starting and ending longitude and latitude data along with a number of shape
points. These are longitude, latitude pairs which detail how a street segment
curves, bends, or twists. These shape points are necessary in order to capture
the extent to which traversing one street segment can cover customers on
other street segments. These data files are then processed in Matlab to create
the data structures needed by the heuristics described in Section 3. These
structures are customer-based in the sense that they store which customers
are served by which streets for a given radius. Once the data setup is complete,
any of the heuristics discussed earlier can be run to create a list of the street
segments that must be traversed. We used Matlab’s binary integer program
function to solve the IP from Section 3.3.

Finally, the segments which have been selected for traversal are fed back
into RouteSmart for processing by ArcGIS, sequenced along with deadhead
streets, and relevant solution information is recorded. We benchmark our so-
lutions against the RouteSmart generated travel path over all streets on which
meters are located within a given partition. This is the best solution currently
attainable by RouteSmart, assuming an effective radius of zero.
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We ran these heuristics on a Windows PC with 1.5 GB of memory and a 3.4
GHz Intel processor. The heuristics that involved solving the IP always took
less than five minutes. The other heuristics always took less than one minute.
RouteSmart’s sequence solver required about 15 minutes for the largest data
set (partition) that we tested.

5 Redundancy

We next include a potential remedy for the case where the RFID device may
fail. In practice, the reliability of this device is certainly less than 100%. Fail-
ure can happen due to a malfunction of the device, weather interference, tall
buildings, or differing elevations. Instead of ensuring that each customer must
be covered by at least one traversed road segment, we ensure that each cus-
tomer must be covered by at least two traversed road segments, when possible.
The small IP from Section 3.3 becomes

Minimize x1 + x2 + x3 + x4 + x5

subject to x1 + x2 + x4 + x5 ≥ 2
x1 + x3 + x4 + x5 ≥ 2

x1 + x2 ≥ 2
x4 + x5 ≥ 2
x1 + x3 ≥ 2

x4 ≥ 1

xj ∈ {0, 1} for j = 1, . . . , 5.

As discussed in Section 3.3, it might make sense to add objective function
coefficients cj (where cj = the distance of street segment j) to the model.

6 Computational Results

In this section, we present results for four heuristics discussed in Section 3
– WB4B, DWB4B, IP1, and IP2 on a variety of partitions (or subsets) of
the original data set. (We also generated results for PWB4B and PDWB4B.
These results were slightly inferior to those of WB4B and DWB4B, respec-
tively. Since, in addition, the probabilistic heuristics are more complicated
than their deterministic counterparts, we do not discuss these further in this
chapter.) First, we examine a dense partition and a sparse partition. When
the customers are densely packed within a neighborhood, RFID is expected
to have a larger impact than when neighborhoods are sparsely populated. We
test this conjecture in Section 6.1. We also examine the impact of reducing
the effective RFID radius from 500 feet to 350 feet. In Section 6.2, we report
results for all 18 partitions. These collectively comprise the entire data set
from which we worked.



Close Enough Traveling Salesman Problem over a Street Network 497

Fig. 6. A dense partition.

6.1 A Tale of Two Partitions

A dense partition is shown in Figure 6. This particular partition, which cor-
responds to a single meter reader route in practice, includes 10,230 customers
located on 1,099 streets segments. When RouteSmart applies its sequence
solver to this problem, it obtains a route with a length of 204.8 miles and a
duration of 9 hours and 22 minutes (see Table 1).

We have tested our heuristics, assuming an effective radius of 500 feet and
350 feet. In Table 1, we see the results for the dense partition and a radius of
500 feet. In the first row, we report the RouteSmart solution as a benchmark.
As mentioned previously, this solution assumes the effective RFID range is
so small that a traversal of each street is required. The final row indicates
those essential segments which must be traversed in order to cover certain
customers. Heuristics WB4B and IP2 work best here with a time savings of
22% to 24% with respect to the benchmark.

Table 1. Results for a dense partition (500 foot radius).

Method Miles Hours Number of Segments Miles of Segments Deadhead Miles

RS 204.8 9:22 1099 97.5 107.3

WB4B 160.5 7:06 470 64.4 96.1

DWB4B 166.5 7:27 577 64.2 102.3

IP1 165.8 7:25 458 62.4 103.4

IP2 161.6 7:15 470 59.1 102.5

Essential - - 342 43.3 -
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Table 2. Results for a dense partition (350 foot radius).

Method Miles Hours Number of Segments Miles of Segments Deadhead Miles

RS 204.8 9:22 1099 97.5 107.3

WB4B 171.9 7:45 621 78.1 93.8

DWB4B 179.3 7:55 610 78.0 101.3

IP1 169.8 7:39 608 77.6 92.2

IP2 168.1 7:40 609 76.9 91.2

Essential - - 451 61.9 -

In Table 2, we see the results for the dense partition and a radius of 350
feet. In this case, IP1 and IP2 work best, but WB4B also works well. The
time savings is between 17% and 18%.

A sparse partition is shown in Figure 7. This partition includes 3,345
customers located on 405 street segments. In Table 3, we see the results for
a radius of 500 feet. The RouteSmart (benchmark) solution has a length of
213.6 miles and a duration of 9 hours and 26 minutes; it traverses all 405 street
segments. Heuristics WB4B, IP1, and IP2 all work well. The time savings is
between 11% and 12%.

In Table 4, we see the results for the sparse partition and a radius of 350
feet. Again, WB4B, IP1, and IP2 work best with a time savings of approxi-
mately 9%.

Fig. 7. A sparse partition.
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Table 3. Results for a sparse partition (500 foot radius).

Method Miles Hours Number of Segments Miles of Segments Deadhead Miles

RS 213.6 9:26 405 98.4 115.2

WB4B 189.9 8:22 217 79.6 110.3

DWB4B 197.0 8:56 236 84.7 112.3

IP1 188.2 8:18 216 78.5 109.7

IP2 188.4 8:18 216 78.3 110.1

Essential - - 212 78.0 -

Table 4. Results for a sparse partition (350 foot radius).

Method Miles Hours Number of Segments Miles of Segments Deadhead Miles

RS 213.6 9:26 405 98.4 115.2

WB4B 200.1 8:34 379 91.2 108.9

DWB4B 203.1 8:41 391 93.3 109.8

IP1 200.5 8:36 378 91.6 108.9

IP2 201.0 8:37 380 91.0 110.0

Essential - - 325 85.9 -

6.2 Results for all 18 Partitions

In Table 5, we see the results aggregated over all 18 partitions. This includes
dense partitions (e.g., the one shown in Figure 6), sparse partitions (e.g., the
one shown in Figure 7), and partitions that are intermediate in customer
density. The best performing heuristics are WB4B, IP1, and IP2. The overall
time savings is about 15% and the overall savings in distance is approximately
20%.

Table 6 reinforces these results. In terms of overall duration, WB4B, IP1,
and IP2 perform best for 7, 4, and 7 partitions, respectively. With respect to
total distance, the rightmost column of Table 6 reveals that there are some
ties. Given the simplicity and effectiveness of WB4B, we recommend its use
until more sophisticated heuristics are developed and tested.

7 Conclusions

In this chapter, we have introduced a new and practical vehicle routing prob-
lem to the literature – the close enough traveling salesman problem over a
street network. Furthermore, we developed and tested several simple heuris-
tics and applied them to a real-world meter reading problem using actual
data.

The results indicate that even when the effective radius is 500 feet or
350 feet, the savings in terms of time and distance can be substantial. As
the technology improves (i.e., the effective radius increases) the savings will
increase dramatically.
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Table 5. Results for all 18 partitions (500 foot radius).

Method Miles Hours Number of Segments Miles of Segments Deadhead Miles

RS 3798.1 165:41 16509 1545.1 2253.0

WB4B 3045.2 140:05 9895 1498.9 1546.3

DWB4B 3140.3 144:41 11483 1528.6 1611.7

IP1 3055.6 140:37 9857 1492.8 1562.8

IP2 3039.1 140:02 9907 1491.8 1547.3

Essential - - 7777 1399.6 -

Table 6. Best performance overall (500 foot radius).

Method Miles Hours Best Time Best Distance

RS 3798.1 165:41 0 0

WB4B 3045.2 140:05 7 7

DWB4B 3140.3 144:41 0 0

IP1 3055.6 140:37 4 5

IP2 3039.1 140:02 7 8
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2 École des Mines de Nantes / IRCCyN, France
pierre.dejax@emn.fr

fabien.tricoire@univie.ac.at (now at University of Vienna, Austria)
3 Veolia Water, Nantes, France
pierre.guez@veolia.com

Summary. We address the problem of the planning and routing of technician visits
to customers in the field, for maintenance or service logistics activities undertaken by
utilities. The plans must be designed over a multiperiod, rolling horizon and updated
daily. We have developed a memetic algorithm and a column generation/branch and
bound heuristic in order to optimize an initial plan over a static horizon. We have
then adapted our procedures to cope with a rolling horizon context, when a new plan
has to be determined after the execution of each first daily period of the previous
plan. We have tested our procedures on realistic data from the water distribution
sector, and obtained good solutions in a reasonable amount of time. We show in par-
ticular the advantage of reutilization of partial solutions from the previous plan for
the optimization of each new plan. Directions for further research are then indicated.

Key words: Multiperiod routing; service scheduling; rolling horizon; memetic al-
gorithm; column generation.

1 Introduction

Field force planning and optimization is a new challenge in logistics for the
service sector and especially for utility companies in the energy (gas, elec-
tricity), telecommunications and water distribution areas. It generates new
variations of combinatorial optimization problems in the fields of manpower
scheduling and vehicle routing. This activity consists in planning the work al-
locations and schedules of commercial or technical personnel in the field, over
a set of time periods (days) to visit industrial facilities or customers for dif-
ferent types of activity: contracting, equipment maintenance or replacement,
customer surveys. The challenges are many: to increase productivity and re-
duce costs, by increasing the number of visited clients, while reducing the

B. Golden et al. (eds.), The Vehicle Routing Problem,
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time and cost of transportation to reach them; to increase customer service
by setting appointments for home visits; and to achieve an efficient internal
organization and appropriate human resources planning. At the same time,
utilities have to meet many constraints for a satisfactory organization of field
force logistics. Beyond the classical workforce legal or union regulations and
vehicle routing constraints, manpower competency constraints must often be
considered regarding the different types of action, and precedence constraints
between several actions for the same client must sometimes be met. The use
of specific tools or vehicles is also sometimes necessary.

The demand for services may result from various processes and be gen-
erated by the company itself (for planned maintenance of equipment), or by
the clients through a call center (for routine or emergency reasons). Requests
for service may be specified for periods of time extending from the very short
term to several months ahead and the dates and times for their execution may
be fixed and imposed or flexible. The demand is dynamic since new demands
appear everyday, yielding a constantly updated demand portfolio. The avail-
ability of manpower to satisfy these demands over the future periods of time
is also highly variable, depending on working regulations and management
practices.

In order to deal with all of these goals, constraints and requirements ef-
ficiently, utilities tend to plan their activities over a medium-term horizon
(several weeks or months) for tactical planning and over a short term horizon
(for example a week) for operational planning. The execution of operations is
performed during the first day of the period, while new demands are recorded
for the future periods. The plan is then updated in a rolling horizon process
(adding one new day to the end of the planning period), by taking into ac-
count new demands, cancelations and demands satisfied (or not) during the
execution of the first working day. Moreover, the companies favor updated
plans exhibiting relative stability from one period to another in order to in-
duce as little change as possible in the internal organization or in customer
visit commitments.

The field force planning and routing problem is related, but not identical,
to several variations of routing and scheduling problems, such as the multiple
traveling salesman problem or the period vehicle routing problem. However,
it differs from these in a number of important ways and yet we have found
very few publications on this specific problem in the optimization literature.
Nevertheless, it is generating a growing attention from professionals as well as
the scientific community. A yearly professional meeting “Enterprise Mobility
Week” is devoted to this field and the annual challenge of the French Oper-
ations Research Society (ROADEF) was dedicated in 2007 to the problem of
“technician and intervention scheduling for telecommunications”.

The goal of this chapter is to propose optimization approaches for solving a
generic field force planning and routing problem within the context of a rolling
horizon planning process such as briefly described above. In order to do so,
we have developed a memetic metaheuristic and a column generation/branch
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and bound methodology. We apply our techniques to the solutions of realistic
problems for technician maintenance activities in the area of water distribution
to customers. We show, in particular, that reusing the partial solutions built
during previous planning periods of times to construct the solutions of the
subsequent periods is more efficient and induces fewer changes in the plans
than developing entirely new solutions.

Our work has been motivated by and applied to the service logistics activ-
ities of Veolia Water, a world leader company in the area of water treatment
and distribution to consumers, but we feel that our approach is general and
applicable to field force planning and optimization problems in other sectors.

After this brief introduction, the second section of the chapter is devoted
to the description of the specific problem that we address. A review of the
scientific published literature in this and related areas is presented in sec-
tion 3. We then describe our memetic algorithm for a fixed, static period of
time in section 4 and a column generation/branch and bound methodology
in section 5. Section 6 is devoted to the adaptation of these procedures to the
rolling horizon context. Experiments carried out on realistic data sets from
the water distribution sector are presented and discussed. Section 7 concludes
the chapter and contains directions for further research.

2 Problem Description, Context and Motivation

In this chapter, we consider the following problem. A company has to pro-
vide home services to customers and must visit them for activities such as
the maintenance or replacement of equipment, commercial meetings or cus-
tomer satisfaction surveys. Demands belong to two categories: visit requests
generated by the company, and visits requested by the customers through
a call center, possibly for emergency reasons. The former requests must be
satisfied at some time to be defined. The latter demands are planned on a
fixed day and are possibly subject to customer appointments within a given
time window. In order to satisfy the demand on a short-term basis with the
available technician workforce, the company prepares a plan extending over a
multiperiod horizon of several days (typically one week). All the demands for
visits during the time horizon must be included in the plan for execution. We
therefore assume that the available workforce is sufficient to ensure feasibility.

The company then attempts to satisfy the demands planned on the first
day of the planning horizon. The demand can be considered as dynamic be-
cause some requests may not be satisfied immediately for various reasons,
while new demands appear every day. Therefore the planning is reconsidered
daily after completion of the first day plan over a rolling horizon.

In order to build its plan, the company has to schedule technician activ-
ities and customer visits over a given geographical area, taking into account
technician availability, and the specific skills or equipment necessary for each
intervention (however we only consider technician availability here). Customer
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allocation to specific technicians, as well as transportation itineraries and visit
schedules, have to be planned and optimized in order to best satisfy the objec-
tives cited below. Due to social or union regulations, the duration of technician
work days is limited to a maximum, while paid work time is consumed both in
transportation time and in service time at client sites. Technicians generally
start and end their working day at specified points, usually their home, rather
than at the company’s facility. They must have the opportunity to take a
lunch break of specified duration at specified locations (restaurants) within a
specified time period.

The overall objectives of the company in undertaking this activity are
many:

• to provide and improve a good customer service, by adequately answer-
ing the customer emergency or routine requests for visits and meeting
customer appointments;

• to satisfy the internal needs for customers visits for maintenance or com-
mercial activities;

• to achieve a better productivity by reducing transportation time and costs
and increasing time spent by technicians at customer sites;

• to implement an efficient company organization, involving better techni-
cian schedules.

We now give a formal description of the problem addressed here in its
static, fixed horizon version:

We consider a multiperiod planning horizon composed of a given number
of subsequent days. For each day, a given number of technicians is available for
service, each with a known starting and ending location. Demands for visits
to customers are known at the beginning of the horizon. They may have been
generated by the company or by customer requests. Technicians undertake
routes between their starting and ending points to visit a number of clients
with their vehicle.

Our goal concerns the minimization of transportation distances while sat-
isfying all the demands for visits over the planning horizon, and meeting other
constraints such as time windows and working day duration. This goal appears
to be a satisfactory means to reach the overall objectives of the company as
described above.

The duration of technician visits at the customer sites is considered as
deterministic and known, depending on the different types of intervention, as
well as the duration of the technician lunch breaks. A customer visit requires
only one technician and there are no complicating constraints such as specific
vehicle or tool requests or precedence constraints between visits.

We can distinguish two types of constraint : constraints on demands and
constraints on resources.

Constraints on demands:

• Each demand is associated with a validity period varying between one
specified day and the totality of the horizon;
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• Some demands of one-day validity period (corresponding to customer ap-
pointments) are subject to time windows;

• Every demand must be satisfied once within the validity period.

Constraints on resources:

• A given number of technicians (and vehicles) is available for each day,
defining a set of resources (technician-days);

• Each resource is used at most once (each technician executes at most one
tour per working day);

• The total duration of a route is limited to a working day;
• The start and end points of the routes are resource-specific, and correspond

to a technician’s home or office;
• Lunch breaks: in a given time window, each route must visit a point chosen

from a set of lunch points, specific to each resource.

Our problem can be considered as a multiperiod uncapacitated routing
problem with time windows, a limited fleet of vehicles and specific constraints.

3 Related Scientific Works

The problem of technician planning and routing that we consider in this chap-
ter corresponds to the new field of service logistics for which the published
literature is limited. Due to the fact that it contains many specificities, it does
not fully correspond to any classical routing problem. However, it encompasses
features specific to different classes of well known problems.

Lenstra and Rinnooy Kan [14] describe an application that consists in
finding the routes of a technical crew who have to visit telephone boxes in
North Holland. In this case, only one technician is considered.

Tang et al. [20] address a planned-maintenance scheduling problem that
consists in determining, for each technician and each day of the scheduling
horizon (1 or 2 weeks) the tasks to be performed and the sequence in which
to perform them. They consider also the constraint of the workday duration
limitations. In this problem, technicians are assigned to a geographic territory,
so each scheduling problem of each technician is considered independently.
The problem is modeled as a Multiple Tour Maximum Collection Problem
with Time-Dependent rewards (MTMCPTD) and is solved by a tabu search
heuristic. All tours start and end at the depot. The objective is to maximize
the total collected rewards (based on the urgency of the tasks) in order to
force tasks that are more urgent to be scheduled as early as possible.

The optimization of technician routing has recently become a subject of
great interest both to researchers and many companies in the service sec-
tor (water, electricity distribution, telecommunications). The subject of the
5th ROADEF (French Society of Operations Research and Decision Anal-
ysis) challenge was the scheduling of technicians and field interventions in
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the telecommunications area. Different possible interventions are considered,
requiring different skills and having specific durations, due dates, priorities
and precedence constraints. Teams of several technicians must be consti-
tuted for each day, taking into account specific required qualifications. Sev-
eral researchers competed to find solutions to test problems proposed by the
France Telecom company, and some of their results were presented at MIC
2007. Zerdin [28] has studied several constructive heuristics for this problem.
Boussier et al. [3] present a GRASP to solve this problem. Ropke et al. [17]
propose an adaptive large neighborhood search heuristic. Although in a dif-
ferent field of applications, this problem presents some similarities but also
many differences with ours.

The main characteristics of our problem resemble those of the multiple de-
pots, multiple traveling salesmen problem with time windows (MmTSPTW).
The mTSP, a generalization of the traveling salesman problem, a well-known
NP-hard problem, consists in determining a set of routes for m salesmen who
all start from and return to one depot. Bektas [1] proposes an overview of
the formulation and procedures for the mTSP. He presents some variations
of the problem, in particular: the multidepot aspect with two different cases:
the fixed destination case, in which all salesmen return to their original depot,
and the non-fixed destination case; constraints on the number of salesmen; the
consideration of fixed charges or not, of time windows or not; possible bounds
on the number of nodes each salesman visits or the maximum or minimum
distance a salesman may travel. He also surveys exact algorithms, heuristics
and transformation of the mTSP to the TSP to solve these problems. In our
problem, the multiple depots aspect corresponds to the fact that the techni-
cians start their tours from their home or office and return there after their
working day.

Although we do not have to consider any capacity constraints, our prob-
lem also presents similarities with the VRPTW (vehicle routing problem with
time windows): several routes are generated to serve clients within time win-
dow constraints. In our problem, there is no product to deliver but only ser-
vices, and the routes are limited by the duration of a working day, not by the
capacity of the vehicles. The simplest heuristics for the VRPTW are based
on a construction and improvement method. Solomon [19] presents the best
insertion method, a two-step constructive method. Then the feasible solution
obtained is improved iteratively by a local search (λ -opt, OR-opt,...). Ex-
changes can also be considered between routes (string cross, string exchange,
string relocation, string mix). For a comparative analysis of heuristics for a
selection of routing problems, see Van Breedam [26].

More recently, metaheuristics have been widely applied to the VRPTW,
including tabu search, simulated annealing, ant colonies and evolutionary al-
gorithms. In particular, many studies have focused on the tabu search method,
such as those of Rochat and Taillard [16], which introduced the concept of
adaptive memory. This technique yields very good results and has remained
one of the best methods, used also in other heuristics. In the field of evolu-
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tionary programming, both genetic algorithms and evolution strategies have
been applied to this problem. Homberger and Gehring [13] proposed a (μ, λ)
evolution strategy and applied it successfully to the VRPTW. In 2001, Bräysy
[4] showed that one of the best existing methods was indeed a (μ, λ) evolu-
tion strategy. An comprehensive review on metaheuristics for the VRPTW is
provided by Bräysy and Gendreau [5].

Exact methods have also been proposed for the VRPTW. The first method
capable of solving instances of interesting size was proposed by Desrochers et
al. in 1992 [10], and was based on a Branch and Price algorithm. This is a tree
search method, in which the subproblem is a Shortest Path Problem with Re-
sources Constraints (SPPRC). The main difficulty is to find a solution to this
subproblem efficiently. Desrochers proposes an adaptation of the Bellman al-
gorithm, based on dynamic programming. Feillet et al. [11] have adapted this
algorithm to the Elementary shortest path problem with resource constraints,
in order to solve selective routing problems. Their algorithm is particularly
interesting when constraints are not so strong (large time windows for exam-
ple). For a recent review of the various solution methods for the VRPTW,
one may refer to Cordeau et al. [9].

One major difference between our problem and those described above lies
in the multiperiod aspect that we have to consider in the technicians routing
problem. At first glance, it might appear that this makes it close to the Pe-
riodic Vehicle Routing Problem (PVRP). The PVRP generalizes the classical
VRP by extending the planning period to P periods (days). Each customer
must be visited at least once during the considered horizon and has a known
daily demand. The capacity constraints and the possibility of visiting a cus-
tomer several times in the PVRP constitute the main differences with our
problem. The first study on this topic was proposed by Beltrami and Bodin
[2] and presents two possible methods. In the first one, customers are allo-
cated to days and a classical VRP is solved for each day of the horizon. The
second one consists in building routes and then assigning them to days. A
major drawback of these methods is the lack of flexibility in the periodicity
of the demand. Chao et al. [7] have provided new ideas for solving the PVRP.
Their method relaxes the capacity constraint, clients are allocated to days so
as to equilibrate the workload over the whole horizon and then the solution
is improved by a 2-opt procedure. Finally, the solution may be modified to
ensure feasibility. In 1997, Cordeau et al. [8] put forward a very efficient tabu
search method based on GENI [12]. More recently, Mourgaya and Vanderbeck
[15] have presented different variants of the PVRP and a classification, and
proposed a heuristic for the tactical planning that considers only the schedul-
ing of visits and their assignment to vehicles (sequencing decisions are left to
an operational model).

In the literature, multiperiod routing also refers to the Inventory Rout-
ing Problem (IRP). Campbell et al. [6] give an introduction to that class of
problems. The IRP considers a set of customers to be served over a given
time horizon. Each customer maintains a stock of products subject to a con-
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sumption rate. The objective is to determine the timing and size of deliveries
so as to minimize the transportation cost, while keeping all stocks above a
certain limit. Witucki et al. [27] present a column generation-based algorithm
for the IRP, and an original reoptimization procedure to solve the problem
repeatedly over a rolling horizon. The major difference between the IRP and
our problem is that our clients are visited only once in the planning horizon,
and no inventory has to be taken into account.

From the above survey, it appears that the technician multiperiod planning
and routing problem that we consider presents many similarities but signifi-
cant differences with all these classes of problem (MmTSP, VRPTW, PVRP,
IRP). The solution approaches that we have developed have been inspired
by those proposed for the VRPTW, with infinite capacities. The multiperiod
aspect of our problem has been handled using the techniques proposed for
the IRP and particularly the works of Witucki et al. for the rolling horizon
procedure.

4 A Memetic Algorithm for the Static Problem

In this section, we describe a memetic algorithm that is used to build and
improve a solution over a fixed planning horizon. This algorithm will also
be used later for the rolling horizon, with some adaptations. We first present
the general framework of the algorithm, inspired by already existing methods.
Next, we detail an original operator used for recombination and mutation. For
more details about this algorithm, see [24]. In the following, each individual is
associated with a solution, corresponding to a set of routes, which are planned
over the periods (days) of the whole horizon. A route is always associated with
a given day.

4.1 Algorithm Framework and Starting Population

Our algorithm is based upon the evolution strategy proposed by Homberger
and Gehring [13] for the VRPTW, to which we added some new components.
Let Pn be the population considered at generation n, with |Pn| = μ. Through
recombination and mutation, offspring are generated, which constitute the
set On, with |On| = λ (λ > μ). We consider for that purpose a function,
generate offspring(Pn), which randomly selects two individuals and per-
forms recombination and mutation, returning an offspring as a result. This
function is detailed further. The new population Pn+1 is then obtained by
selecting the μ best individuals in On. The fitness here is simply the total
transport distance used by a solution. The fittest individual is therefore the
one with the smallest distance.

This framework is represented in algorithm 1, for a total of N generations,
and a population P . P and O are lists of individuals. The function push(L, e)
adds the element e at the end of list L. The function pop(L) removes the
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Algorithm 1 Abstract (μ, lambda) algorithm for N generations.
n ← 0
initialize(P )
while n < N do

O ← ∅
for i = 1 to λ do

push(O, generate offspring(P )
end for
sort(O)
P ← ∅
for i = 1 to μ do

push(P, pop(O))
end for
n ← n + 1

end while

first element of L and returns it. The initialization step (the initialize(P )
function) is described in the following.

The starting population is important, as it should be both diverse and
of good quality. We use different construction/improvement heuristics, based
on simple neighborhoods, to generate the starting population. Among these
neighborhoods are the classical 2-opt, node relocation, node exchange, and
three node rotation. The latter consists in exchanging places of three nodes
and is, to our knowledge, an original neighborhood. The underlying idea is
that it may explore larger spaces than the node exchange. We then produce
various heuristics by combinations of steepest descent heuristics using these
neighborhoods. Neighborhoods based on node operations may be less efficient
than those based on arc operations, but they can be implemented in ways
that allow much faster executions. Since we consider that the time should be
spent on the metaheuristic itself rather than on the generation of the starting
population, it is relevant to use these node operations. We use seven differ-
ent heuristics, which allows us to provide a small starting population, with
different but rather efficient solutions. All these heuristics start with a best in-
sertion procedure, and then steepest descents on two different neighborhoods
are used. When none of these two neighborhoods can lead to an improvement,
the procedure is stopped. For instance, the first method alternates steepest
descents on 2-opt and node relocation. More details about these heuristics can
be found in [23].

4.2 Memetic Operator

Traditional operators used in evolutionary algorithms usually rely on the ab-
sence of limitations on the fleet size to create a new route dynamically when
necessary. In our case, the fleet size is fixed and this kind of behavior is impos-
sible. We introduce here the concept of resource: a resource is a {technician-
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day} pair, and the maximal number of routes in a solution is equal to the
number of resources. This concept has interesting properties: for any solution
to a given problem, the set of resources is exactly the same. Moreover, every
route is associated with a given resource. For a route to be feasible, each cus-
tomers visited must be compatible with the associated resource. This means,
for instance, that each customer must have a validity period containing the
day of that resource. A direct consequence of this property is that if a route
is feasible with regard to these resource compatibility constraints, it will also
be feasible in another solution if it is associated with the same resource, and
probably unfeasible if it is associated with another one. With these ideas in
mind, we propose the following operator for the recombination and mutation
of solutions.

An offspring can be built by combining resources of two different parents:
for each resource in the offspring, take the route associated with the same
resource in one of the parents, chosen randomly. Since the set of resources
is exactly the same for all solutions to a given problem, the fixed nature of
the fleet is not a problem. However, there might be infeasibility problems
due to the fact that a given customer may be planned in routes associated
with different resources in the two parents. Two cases may occur: a customer
may end up being planned twice, or not planned at all. In the first case,
it is sufficient to check, when adding customers, that they are not visited
by another route that has already been added to the offspring. If they are,
deleting them from the newly added route is enough. Moreover, this brings
some diversification, by creating a new route. In the second case, performing
an a posteriori check on the offspring solutions allows unplanned demands to
be detected; they can then be inserted again in the offspring. This mechanism
is detailed later.

In order to provide more diversification, we added a new component to
the algorithm, which can be seen as the mutation code traditionally used
in evolution strategies: a mutation rate τ is associated with each individual.
The recombination algorithm is then modified in the following way: for each
resource in the new solution, choose randomly one parent and duplicate the
associated route, or leave the route empty with probability τ . Figure 1, where
every square represents a resource, illustrates this recombination mechanism.

After this step, some demands remain unplanned, and some routes are
empty. This partial solution is then completed with a best insertion heuristic,
and improved with a very simple and quick heuristic alternating steepest
descents with node-relocation and 2-opt (see Figure 2). Concerning the lunch
break constraints, the best possible lunch point is always considered locally,
i.e. the one that minimizes both distances to and from the lunch location.

To our knowledge, this operator is original, mainly for the idea of volun-
tarily leaving empty spaces in the solution during recombination.
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Fig. 1. Recombination with diversification: routes are inherited from parents, while
some routes remain empty.
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Fig. 2. Second step: partial solution is completed and improved.

4.3 Parameter Settings

Experimental studies were conducted for calibration of the different parame-
ters of the algorithm, and especially of the mutation code τ . The results show
that when τ = 0, the algorithm performs poorly compared to “good values”
of τ . These include fixed values around 0.2, but also some variable values
τ = f(n), where n is the current generation number. Finally, the classical
evolutionary strategies of computing the mutation code were also adapted
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and experimented. In that case, τ was set to the average of the parent values.
We also tried to add a small random variation to the average result.

These three different mutation code possibilities (fixed, time function, in-
herited) all led to results of varying quality, depending on the parameter set-
tings. These experiments are not detailed here. The parameter values finally
retained are indicated in the experimental section.

5 Column Generation for the Static Problem

We now present a column generation approach to solve small instances (100
customers) of our problem. The concept of resource, previously introduced,
is also useful in this context. For a solid introduction to column generation
approaches to the vehicle routing problem, one should consider reading [10].
Details about the method described here can be found in [25].

5.1 Master Problem

The usual formulation for the VRPTW, introduced by Desrochers et al., con-
siders a set Ω of all feasible routes, and proposes to minimize the total distance
of a solution:

Min
∑
r∈Ω

yrcr (1)

where yr is a binary variable associated with the use of route r, and cr the
cost of route r. To ensure that every demand is satisfied, so-called partitioning
constraints are also needed. Let air be a binary constant indicating if route r
visits customer i; then this partitioning constraint can be expressed as:∑

r∈Ω

yrair = 1, ∀i ∈ I (2)

where I is the set of customers. The model by Desrochers et al. also introduces
a constraint to limit the number of vehicles:∑

r∈Ω

yr ≤ M (3)

where M is the maximal number of vehicles. However, we need a different
constraint associated with our limited fleet. Let us now consider the set of pre-
viously introduced resources (technician-days), which we call Ψ . Every route
is associated with exactly one resource, so we introduce the binary constants
utr, indicating if resource t is used by route r. Fleet use limitation can then
be expressed as: ∑

r∈Ω

yrutr ≤ 1, ∀t ∈ Ψ (4)
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If |Ω| is small, the linear relaxation of this problem can be easily solved by
a commercial solver. Otherwise, we proceed as follows: consider a restricted
master problem, with a small subset of Ω, called Ω′. A starting Ω′ can be
provided by any heuristic, or by the memetic algorithm described previously.
We applied one of the heuristics used in the generation of the starting popula-
tion for the memetic algorithm; it successively alternates steepest descents on
node-relocation and 2-opt neighborhoods until no improvement can be found.

The column generation process then requires new columns to be generated
iteratively, i.e. new routes to be included in Ω′, until all routes required for an
optimal solution of the linear relaxation are included. Only negative reduced
cost columns should be injected into the restricted master problem, and when
no such column exists anymore, then the solution is optimal for the linear
relaxation of the master problem. Let αi be the dual variable associated with
constraint 2 and βt the dual variable associated with constraint 4. The reduced
cost of a column associated with route r, using resource t, can be expressed
as follows:

zr = cr −
∑

i

αiair − βt (5)

If a negative zr exists, then the column associated with r should be injected
in the restricted master problem; otherwise, the column generation process is
over. The minimization of zr is called the subproblem; if this minimal value is
positive, then the process terminates and we have found the optimal solution
to the linear relaxation of the master problem.

5.2 Subproblem

In order to solve the subproblem efficiently, let us now consider a graph,
associated with resource t, in which every node is a customer in the original
routing problem that is compatible with t, and to which we add two nodes s
and e, for the starting and ending points for resource t. We call the customer
node set Γ . Let us also consider a modified cost definition for the arcs in this
graph, including dual variables from the master problem as follows:

Cij = cij − αi ∀i, j ∈ Γ ∪ {e} (6)
Csj = csj − βt ∀j ∈ Γ (7)

(8)

Now, let xij be a binary variable associated with the use of arc (i, j).
Finding a minimal cost route (path between s and e) associated with resource
t can be formulated as follows:

Min
∑

ij∈Γ∪{s,f}
xijCij (9)

Solving this problem subject to the feasibility constraints of the original
master problem, such as time windows or connectivity, is equivalent to solving
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the subproblem described above. This problem is known as the Shortest Path
Problem with Resource Constraints (SPPRC). For more details, see [10].

There are well known algorithms for this problem. Desrochers et al. [10]
proposed an exact method. Feillet et al. [11] adapted this method to the
Elementary SPPRC (ESPPRC), in order to avoid negative cost cycles. These
algorithms are known to give good performances with tightly constrained
problems, which usually means tight time windows. In the problems studied
in this chapter, these constraints are usually not very tight (many demands do
not have a time window). The algorithm for the ESPPRC is known to work
better with less tight time windows, although it still suffers from too loose
constraints.

We first adapted the algorithm by Feillet et al. [11] to our case. In particu-
lar, the lunch break constraints require some special treatment. It should also
be noted that one must solve a different subproblem per resource, since start-
ing/ending/lunch points are resource-dependent. This method worked only
for very small and easy instances (no more than 40 customers), so we decided
to sacrifice optimality and use a heuristic to solve the shortest path problem.
This heuristic consists in starting from the simplest feasible path, which, for
a given resource, just visits the starting point, a lunch point, and the ending
point. This solution is then iteratively improved and diversified as explained
below. The heuristic proceeds in two steps:

1. Steepest descent on a quite large neighborhood
2. When stuck in a local optimum, perform some random moves on the same

neighborhood

The neighborhood we use consists of four operations on nodes: move, swap,
remove, insert. The heuristic is stopped when a given number of iterations
is reached. Since there are different lunch points, the heuristic is executed
several times: for every lunch point, a different starting solution is created,
and then the heuristic is performed. Also, a post-optimization is performed
at the end of each execution, which consists in selecting the best lunch point.
Since its predecessor and successor in the route have probably changed during
the execution, this is relevant. Although simple, this heuristic proved to be
very efficient and stable. Extensive computing experiments can be found in
[25].

5.3 Heuristic Solution Procedure and Parameter Settings

Since we use a heuristic for the subproblem, optimality can no longer be guar-
anteed for solutions of the master problem. Therefore, once the subproblem
no longer generates negative cost paths, we consider that we have a good so-
lution to the linear relaxation of the problem, and also a set of good columns.
From here on, we call a standard branch and bound procedure to produce an
integer solution of the restricted master problem composed of all the gener-
ated columns. The total number of columns never exceeded a few thousand,
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and the number of constraints amounts to the number of customers plus the
number of resources, which is very small (115 in the examples presented later).
In these conditions, the branch and bound procedure is almost immediately
solved.

The computing time and quality of solutions depend strongly on the num-
ber of iterations allowed in the heuristic for the subproblem. Experimental
results showed that a setting of 5000 iterations is a good compromise. For
smaller instances (40 customers), this setting led systematically to the same
result as the exact method using the algorithm inspired by Feillet et al. [11],
but much faster. In the following, this setting of 5000 iterations was always
used.

6 Planning over a Rolling Horizon

We now explain how we adapted the static, fixed horizon procedures for deter-
mining optimized plans over successive periods of the rolling horizon, in order
to cope with the dynamically generated demand and the company’s planning
procedures.

6.1 Procedure

On the basis of an initial plan over a horizon of P periods (P days) starting
at period p (initially p = 1), the plan of day p is executed. Then, at period
p + 1 (after the first period), we have to solve a modified problem over the
new horizon, for which we use partial solutions generated for the previous
problem. The problem is modified for three reasons:

• Some demands have been satisfied during period p
• Some resources are now outdated (those associated with the previous

period)
• New demands have been generated for the new, extended horizon

We propose to use this partial solution to help solve the whole new problem.
We apply this idea to the memetic algorithm, and also to the column gen-
eration approach. Each method requires some specific adaptations, and also
some updates concerning new resources, new demands, and the deletion of
outdated resources (those associated with period p).

Memetic Algorithm

The memetic algorithm permanently generates partial solutions, which it com-
pletes and improves: this happens to every new individual. On the other hand,
after an execution of this algorithm, a population of μ parents (chosen among
the best from the λ offspring) is available. If properly adapted, this fully valid
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population for period p can be seen as a population of partial solutions for
period p + 1. We simply propose to use these μ partial solutions as a start-
ing population for the new problem. This requires some modifications. We
first delete outdated demands and routes associated with outdated resources.
Then, new empty routes are created, associated with the newly available re-
sources. At this stage, the new demands are not planned in the new individual.
We therefore apply the procedure used for recombination and mutation in the
regular algorithm: these partial solutions are completed with the new demands
through a best insertion procedure, and a local search is then performed, con-
sisting of steepest descent on 2-opt and node-relocation neighborhoods.

After these steps, the population is composed of valid solutions for the
new problem. The memetic algorithm is then executed as usual.

Column Generation

In the context of column generation, it is less intuitive to define a partial
solution. Since computing time is spent mostly generating new columns (i.e.
on the subproblem), it seems interesting to keep as many previously generated
columns as possible, instead of starting from scratch. The underlying idea
is that some of these columns would probably have to be generated again.
Injecting them from the beginning of the process has a negligible cost, and
may represent a gain in computing time, which is of particular interest in
the case of column generation; we therefore took advantage of this possibility.
The additional columns are injected at the beginning of the column generation
process, and correspond to non-outdated columns. A column may be outdated
in two situations:

• If the route represented by this column is associated with an outdated
resource

• If the route represented by this column visits an outdated demand

In practice, still valid columns represent between 5 and 40% of the total
number of columns. Once these columns have been injected, the method is
used as before, with a starting solution provided by a heuristic or the memetic
algorithm described previously. The only difference lies in the enriched set of
columns at the beginning.

6.2 Description of Experimental Data Sets

For the experiments, we wanted to simulate the company’s procedures of
planning over a rolling horizon. In order to do so, we needed to generate a
first set of initial demands, known at the beginning of period p (p = 1), and
covering the planning horizon of P periods. Then, after supposedly executing
the first period of the plan, we add one new period to keep a horizon length of
P periods, and we generate additional demands and resources to equilibrate
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the load over the new horizon. The number of new demands at period p + 1
corresponds to the satisfied demands during period p.

We have generated test instances representative of the industrial problem.
All test instances and detailed experimental results are available in [22] as
well as on the web site: http://www.emn.fr/x-auto/routing-pbs/.

The data were generated randomly but according to the real-life industrial
case characteristics; the company provided the statistics. Demands were clas-
sified by motives ; these motives are associated with statistical data such as
frequency or service time distribution. All instances have a five-day planning
horizon and a fleet consisting of three technicians and their vehicles.

We generated two classes of problem for the initial planning periods:

• class C1, composed of 5 realistic instance sets of 100 demands (correspond-
ing to about 7 demands per technician-day, which is less than the average
actual workload);

• class C2, composed of 5 instance sets of 180 demands (corresponding to
the goal of the company of 12 demands per technician-day in terms of
workload).

In all the data sets, we considered that 30% of the demands are client appoint-
ments and subject to a validity period of one day. Among these appointments,
75% have a time window. The length of this time window can be 4 hours (67%)
or 2 hours (33%). Demands generated by the company for maintenance or
commercial reasons have a validity period of at least two days and have no
time window. In all routes, a lunch break of one hour is included. Lunch may
be taken in two different restaurants, which are the same for every resource.
The locations of demands are generated randomly on a 41 kilometer-square
map, and Euclidian distances are used. Vehicles move at a constant speed of
35 km/h.

In order to generate new demands for the subsequent planning periods, we
proceeded as follows. The solution at period p determines satisfied demands
that are removed from the set of demands. New demands and resources are
added according to the same procedure as for the initial demands, but ap-
pointments concern only the second half of the horizon. At each step, we
make sure that all demands can be satisfied over the horizon with the avail-
able resources, through a regulation process provided by the company. New
demands that would violate this process are rejected, which is also the case
in the real situation.

6.3 Experiments

Extensive testing of our optimization algorithms for a fixed horizon period
of P days is presented in [22] as well as [24] and [25]. The results are also
available on the above-mentioned web site.

They show in particular that for relatively small data sets (class C1 de-
scribed above), the column generation/branch and bound method, although
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slower, yields better results than the memetic algorithm. However, it is not
practical for large data sets, while the memetic algorithm performs quite well
for larger instances (class C2).

In the following, we present the experimental testing of our procedures
for optimization over a rolling horizon, using the realistic data sets described
above. These data sets are representative of the real operations of the com-
pany. After having determined the initial static planning over the first P pe-
riods of the horizon, the demand data are updated for days p+1 to p+P +1.
We want to determine the planning for this new horizon using the adapted
procedures described above. For small data sets (C1), we used the column
generation/branch and bound method, while for larger data sets (C2) we
used the memetic algorithm. The latter was also used with C1 instances for
comparison purposes. Note that the criteria used to measure the impact of
our procedures will not be the same for these two cases because the stopping
rules are different (fixed number of generations for the memetic algorithm,
but more complex stopping rule for the column generation method).

One of our major concerns in conducting these experiments was to evaluate
the possible impact of the reutilization of the partial solutions determined in
the plan of the initial horizon at period p, for the determination of the new
plan at period p + 1.

All programs were developed using Java 1.4, and executed on a Pentium
IV 3 GHz with 512 MB of RAM.

Results using the Memetic Algorithm

In the following, the algorithm parameters have been set to: (μ, λ, τ, N) =
(7, 50, 0.2, 60). N is here the total number of generations allowed. As stated
above, the memetic algorithm was used for optimization of the data sets of
the C1 and C2 classes, comprising respectively 100 and 180 demands to be
satisfied over a 5-day horizon period. In order to emphasize possible gains in
convergence speed, we will analyze the impact of the number of generations on
solution costs. We compare these differences in the two experimental setups,
i.e. with or without reutilization of the partial solutions from the previous
plan. In order to do so, we have tested the two cases on the same data sets
and with the same algorithmic parameters.

For the sake of comparison, we determine for a given instance a reference
value, which is the average of the best two solutions obtained with and without
reutilization of partial solutions. The relative differences between the two cases
are then measured by the following indicator: Δ = solutionvalue−average

average . A
negative Δ thus means that a given solution is better than the average of the
best solutions obtained in the two cases. More generally, the best solutions
correspond to the smallest Δ value.

Our results are summarized in Tables 1 and 2 relative to experiments
with the C1 and C2 classes of instances. In these tables, we give the Δ value
obtained at different stages of the executions. Results are stored every 10
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Table 1. Compared efficiencies for the memetic algorithm with and without reuti-
lization of the partial solution (C1 instances).

Solution Average difference (Δ) Comp.
Method N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 time

With reutilization -0.40% -0.51% -0.51% -0.62% -0.64% -0.64% 234 s
Without reutilization 1% 0.70% 0.64% 0.64% 0.64% 0.64% 230 s

Table 2. Compared efficiencies for the memetic algorithm with and without reuti-
lization of the partial solution (C2 instances).

Solution Average difference (Δ) Comp.
Method N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 time

With reutilization 0.97% 0% -0.32% -0.50% -0.62% -0.63% 494 s
Without reutilization 4.53% 2.17% 1.10% 0.85% 0.68% 0.63% 516 s

generations, for N = 10 to 60. The two lines indicate the Δ values obtained
when using or not the partial solutions of the preceding horizon. We can
therefore observe the evolution of the relative quality of solutions. In our
experiments, each instance of the C1 and C2 class has been tested on a 5-
period scenario, which makes a total of 25 different instances per class.

We reach the following conclusions from these tests:

• on average, the results are better when partial solutions are reused; this
suggests that the quality of the solutions, for the successive periods of the
rolling horizon, depends on the quality of the initial solutions obtained for
the initial static horizon period.

• the procedure with reutilization converges much more quickly than with-
out, and proposes good solutions at early generations of the memetic al-
gorithm.

Our general conclusion is therefore that when determining field force plan-
ning for successive periods over a rolling horizon with the memetic algorithm,
partial solutions of preceding plans should be reutilized in order to prepare
the next plans. This process finds better solutions in terms of cost (i.e. total
distance in this case), with shorter computing times. Indeed, reutilizing previ-
ous solutions yields fewer changes in the initial plans for days p to p+P of the
horizon , leading to more acceptable plans for the technicians and company
dispatchers.

Results using the Column Generation/Branch and Bound

The column generation / branch and bound procedure was used for opti-
mization of small data sets of the C1 class, consisting of 100 demands to be
satisfied over a 5-day horizon. The XPress-MP solver was used to solve the
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restricted master problem and to perform the branch and bound algorithm,
all with default parameters. As mentioned earlier, the problems processed by
this solver are easy, so tuning these parameters is not relevant.

Since the stopping criterion here is convergence, we compare the computa-
tional time needed to converge for both methods. For the column generation
procedure, reusing the previous solutions for the next periods of the rolling
horizon means keeping the previously generated columns in the reduced mas-
ter problem. We also compare the number of calls to the column generation
subproblem heuristic and the number of generated columns, as well as the
total number of columns at the end of the solution process.

In our experiments using the 5 instances of the C1 class data sets, each
instance was used over 5 successive periods, thus yielding experiments over 25
instances. Each instance was optimized with and without reutilization of the
previous columns.

Table 3 shows a summarized representation of the experimental results
for the 25 instances. For each indicator (computing time, number of calls to
the ESPPRC heuristic, number of generated columns, and total number of
generated columns), average values over the 25 executions are given.

As we expected, these results show that the procedure using reutilization
of the previous solutions (columns) is twice as quick on average as when
we reoptimize from scratch. One can also observe that the total number of
generated columns in the first case is less than in the second case. This means
that if we start from a well chosen set of ‘good’ columns, we can avoid the
generation of additional columns, which will in any case not be part of the final
solution. In addition, we observed that the optimization with reutilization was
always faster than without reutilization, in any instance.

Since a stochastic heuristic is used for the subproblem (including ran-
dom moves), the method is no longer deterministic, and the results may vary
depending on the runs. It is interesting to compare the relative differences
between the results obtained with and without reutilization, as an indicator
of the consistency of the method. In order to do so, we have used the following
indicator: Δ1 = Cmp−Ref

Ref , where Cmp is the value found with reutilization
of the columns, and Ref the solution found without reutilization. During our
experiments, Δ1 values were always comprised between -0.08% and 0.06%,
except for one instance (0.33%). Detailed results can be found on the web site
mentioned above.

Table 3. Column generation: efficiency comparison, with and without reutilization
of columns from the previous period (C1 instances).

Solution Comp. # calls # generated # total
Method Time (s) ESPPRC columns columns

With reutilization 1682.4 481.8 6541.56 10123.56
Without reutilization 3395.52 763.2 14414.92 14414.92
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These results for the smaller instances are consistent with those obtained
with the memetic algorithm for the larger instances. They validate our ap-
proach for optimizing the planning and routing of field technicians over a
rolling horizon.

7 Conclusion and Future Work

In this chapter, we have studied the multiperiod planning and routing problem
of technicians in the field, where we have to determine daily technician sched-
ules and routes in order to meet customer visit requirements over a rolling
horizon while minimizing transportation costs. We have developed a memetic
algorithm and a column generation/branch and bound heuristic for the fixed
horizon static problem, and we have adapted these procedures for the rolling
horizon context where, after each daily period of time, a new plan has to be
determined over the next horizon. We have tested our methods on several re-
alistic data sets provided by VEOLIA Water, a water distribution company.
The column generation procedure yields good results in a reasonable amount
of computing time for small problems, while the memetic algorithm is much
more efficient for larger data sets. A key feature of our procedures for each
new rolling plan lies in the reutilization of the partial solutions coming from
the previous plan. Not only does this significantly reduce the computing time,
but it also leads to fewer changes in the updated plans than when we reop-
timize from scratch. This feature is appreciable when the company does not
want to change the planned technician schedules or customer appointments
too much from one plan to the next. However, its interest depends, of course,
on the proportion of demands that is modified between subsequent plans.

Our work could be enhanced in the future by improving our algorithmic
procedures to deduce the new plans from the previous ones even better, both
in terms of computing time and of proximity between solutions, through a
measure to be defined. We also plan to include compatibility constraints be-
tween technician skills and customer needs, which will require minor modifica-
tions, and to adapt our procedures to the real-life context where data sets are
unsatisfiable. We mean by this that the amount of potential demand cannot
be totally satisfied within the planning horizon. In that real context, part of
the demand must be satisfied (corresponding, for example, to customer calls)
while another part may be postponed to subsequent periods (corresponding,
for example, to routine maintenance visits). Next, we would like to address the
problem of dynamic technician scheduling and routing during a daily period.
In our procedure, the first period constitutes an initial plan. However, this
plan has to be adapted within the day to cope with unexpected events, such
as new emergency demands, demands requiring more time at a customer site
than expected, or demands that cannot be satisfied (absence of customer). At
the end of this first period, the unsatisfied demands constitute one element
in the determination of the updated demands to be taken into account in the
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rolling horizon process. An efficient dynamic procedure during the first period
thus contributes to an efficient rolling horizon planning procedure.
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Summary. This chapter discusses several transportation problems arising in the
field of health care logistics, emergency preparedness and disaster relief. The un-
derlying basic problems are vehicle routing, dial-a-ride, warehouse location rout-
ing, covering tour and inventory routing problems. However several additional con-
straints and real world characteristics enrich the basic problems. The problems are
introduced and discussed in the context of their applications with a focus on the
Austrian situation.
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1 Introduction

In the last few years, the health care industry has become one of the largest
branches of the economy of developed countries. Due to aging of the societies
and continuing improvement of medical treatment this trend is likely to con-
tinue. While there is an increasing pressure to provide health care services
in a more cost efficient way, still the development of mathematical planning
models in health care and in particular its application in the real world is
remarkably underdeveloped.

While regular treatment is usually done by private or governmental agents
(hospitals, doctors) the health care logistics and in particular emergency pre-
paredness and disaster relief is often also done by non-profit organizations.
In Austria, different services related to health care, emergency prepared-
ness and emergency response are in the responsibility of non-profit organi-
zations. The largest organization among these is the Austrian Red Cross
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(ARC) (http://www.roteskreuz.at). The ARC is innovative with respect to
the establishment of efficient and effective methods to address their decision
problems. Therefore, it is open for cooperations with research institutes. Since
the year 2000, they have cooperated with the working group on Production
and Logistics of the Department of Business Administration of the University
of Vienna, to tackle their transportation logistics problems.

The Austrian Red Cross accomplishes several services with respect to
transportation: ambulance services, disaster relief and a blood program. The
different services are special variants of standard well-known transportation
problems with additional rich constraints, real-world characteristics and mul-
tiple objectives.

The ambulance service can be classified under emergency preparedness and
response problems. The emergency preparedness problems can be considered
as tactical location problems which are also somehow related to transportation
issues. In particular, response times to reach the patients is an important issue
for locating and relocating ambulances. Moreover, in Austria the emergency
response aspects within the ambulance services are combined with a routing
problem. This results from the fact that the regular patient transportation
and the emergency cases are accomplished by using the same fleet.

Another important service is disaster relief. Within this service two types
of logistics problems arise. In the first phase after a disaster the health care
organizations have to take care of the affected population. The people have to
be transported to the near-by hospitals without losing too much time. This
phase is known as the emergency response phase and is performed mainly by
local organizations. Therefore, the ARC is not involved in this phase (unless
a disaster occurs in Austria). In the second phase international organizations
are involved to supply the populations with food, water and medicine on a
regular basis. This is the phase in which the ARC is mainly involved, which
is why we describe this problem here.

The third service we consider is the blood program. The transportation
problems in the blood program deal with the transportation of blood or blood
products. In this context we consider the pickup of donated blood at the
various donation sites and the delivery of blood products to hospitals. Both
problems share aspects of inventory routing problems but are significantly
different due to various additional constraints.

The remainder of the chapter is organized as follows. In Section 2 the
problems of the ambulance services are described. Section 3 deals with the
problems in the field of disaster response and relief operation planning. In
Section 4 the blood collection and blood delivery problems of the ARC blood
program are introduced.
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2 Emergency Preparedness and Response

Depending on the country emergency preparedness and emergency response
of health care operations is carried out by a combination of governmental and
non-governmental organizations. In Austria it is done mainly by non-profit
organizations. These organizations are also responsible for regular patient
transportation, e.g. normal taxi services to the hospital. Therefore in Aus-
tria we have the specific situation that the regular patient transport is carried
out with the same fleet as the emergency transports.

Before the ambulance routing problem can be considered the ambulance
location problem has to be solved. In general, there are different numbers of
vehicles which are required to cover a certain region. These numbers vary
for different days of the week and different times of the day. On weekends
a different ambulance location solution is more reasonable than during the
week. There is also a difference between day and night. In the western part
of Austria where several ski resorts are located, a huge number of tourists are
on vacation during the winter season. Therefore we need a different location
solution for the winter period. However, it would be desirable that the solu-
tions for different seasons or days are not too different from each other i. e.
not too many relocations should be necessary. Dynamic reallocations during
the day are not of interest to the organizations in Austria (see [18]).

2.1 Ambulance Location Problems - Double Coverage

The classical ambulance location problem is a tactical planning problem of
locating a given fleet of ambulances in an area, such that the service level
is maximized. Here, service level is measured as the coverage of demands by
the available fleet. The concept of coverage has been defined in various ways
in the academic literature (see, e.g., [8, 11, 17, 27]). An overview of different
ambulance location and relocation models can be found in [4]. The problem
of location ambulances in urban areas was already considered in [23].

One of the most relevant ambulance location models was proposed by
Gendreau, Laporte and Semet in [17]. In their model, a demand is said to be
covered if it can be reached by an ambulance within a given, user-defined time
limit. The objective is to maximize the demand covered by two ambulances
within a small radius r > 0, while all demands have to be covered by at least
one ambulance within a larger radius R > r. In this model it is assumed that
all nodes have equal demands.

The problem is defined on a graph G = (V ∪W, E) where V = {1, ..., n}
and W = {n + 1, ..., n + m} are two vertex sets representing demand points
and potential location sites, respectively, and E = {(i, j) : i ∈ V and j ∈ W}
is the edge set. With each edge (i, j), a travel time tij is associated. The
demand (e. g. number of inhabitants) at vertex i ∈ V is denoted by λi. The
total number of ambulances is given by p. For i ∈ V and n + j ∈ W , the
coefficients



530 Doerner and Hartl

γij =
{

1, ti,n+j ≤ r
0, otherwise

δij =
{

1, ti,n+j ≤ R
0, otherwise

are defined, where γij and δij indicate whether or not demand node i is covered
by location n + j within the radius r and R, respectively.

A further input parameter ω gives the proportion of the total demand that
must be covered by an ambulance within the small radius r. In [17] a value of
ω = 0.8 is used. Moreover, for each location n + j, the integer parameter pj

indicates the maximum number of ambulances that can be located at n + j.
The authors use the following decision variables: variable zj is of integer

type and denotes the number of ambulances located at n + j ∈ W and the
variables xi and yi are binary and denote whether or not a demand node i is
covered within the small radius r at least once and at least twice, respectively.

With these variable definitions z = (x1, ..., xn, y1, ..., yn, zn+1, ..., zn+m),
and the problem is given by

max f(z) =
n∑

i=1

λiyi (1)

subject to the constraints

m∑
j=1

δijzj ≥ 1 ∀i ∈ V (2)

n∑
i=1

λixi ≥ ω

n∑
i=1

λi (3)

m∑
j=1

γijzj ≥ xi + yi ∀i ∈ V (4)

yi ≤ xi ∀i ∈ V (5)
m∑

j=1

zj = p (6)

zj ≤ pj ∀n + j ∈ W (7)

xi, yi ∈ {0, 1} ∀i ∈ V (8)

zj integer ∀n + j ∈ W. (9)

The objective represents the maximization of the total demand covered
at least twice within r. Note that the variables xi and yi can be computed
from the variables zj , such that the objective can be written as a function of
z. Constraints (2) ensure that all demand is covered within R distance units.
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Constraint (3) ensures that a proportion ω of all demand is covered within the
small radius r. Constraints (4) link the coverage of the demand nodes with
the assignment of ambulances. The left-hand side of constraints (4) counts the
number of ambulances covering i within the small radius r, while the right-
hand side represents the level of coverage of i: it is equal to 1 if i is covered
exactly once within the small radius r, and equal to 2 if it is covered at least
twice within the small radius r. Constraints (5) ensure that a vertex i cannot
be covered at least twice when it is not covered at least once. Constraints (6)
and (7) impose limits on the maximum number of ambulances located over
all potential locations and on each single location, respectively.

We now describe an extension of the model that takes also into account
the density of the population in different demand nodes and aims at solutions
for which, within the larger time limit, a certain ratio between the number
of inhabitants and the number of available ambulances is not exceeded. The
intuition of this extension is to obtain more equity in service provision over
all potential demand nodes.

Our modification of this model consists of two steps: First of all, we turn
the hard constraints (2) and (3) into soft constraints, represented by additional
weighted penalty terms in the objective function. By choosing sufficiently large
values for the weights, this first modification yields an equivalent problem to
(1) – (9).

Then, we use information about the density of demand to balance the
assignment of ambulances with respect to the covered demand. In the stan-
dard model [17], a solution may be an assignment of ambulances to locations
where some ambulances have to cover a large demand within the radius R,
while some others cover only a small demand. Such an assignment can be un-
realistic, since the capacity of the ambulances assigned to a large population
may be insufficient to perform the required emergency services. Therefore, we
add a penalty term to our objective function to avoid such assignments: For
each demand node i, the number of inhabitants wi per ambulance assigned
within radius R is computed. If this ratio exceeds a given limit w0, a penalty
proportional to (wi − w0) is subtracted from the objective function. In this
way, we obtain the following extended problem

max F (z) = f(z)−M1f1(z)−M2f2(z)−M3f3(z) (10)

subject to (4) – (9), where f(z) is given by (1),

f1(z) = |{i ∈ V :
m∑

j=1

δijzj = 0}|, (11)

f2(z) = ω − min{ω,

(
n∑

i=1

λixi

)
/

(
n∑

i=1

λi

)
}, (12)

and
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f3(z) =
n∑

i=1

(wi − w0)+ (13)

with
wi =

λi∑m
j=1 δijzj

.

The function f1(z) counts the number of demand points not covered within
the larger radius R. The function f2(z) represents the negative deviation of
the degree of coverage within the smaller radius r from the intended level ω.
The function f3(z) reflects the penalties for the violation of our additional
constraints concerning the number of inhabitants per assigned ambulance.
Finally, the weights M1 > 0, M2 > 0 and M3 > 0 determine the relative
importance of violations of the three soft constraints.

In [13] two metaheuristics are implemented namely an adaptation of the
Tabu Search (TS) approach by [17] and an Ant Colony Optimization (ACO)
approach. In the ACO approach a standard Ant Colony System [15] is used
in which pheromone values are computed for each pair (j, s) indicating how
beneficial it was during previous iterations to assign s vehicles to location
j. The heuristic information (visibility) for this decision is chosen to be the
minimum number of ambulances needed to cover all the demand within dis-
tance r from location j. This number has the highest visibility, smaller and
larger vehicle numbers have reduced visibilities. After an ant has constructed
a solution a local search procedure is applied in which the moves are the same
as in the TS approach. In the TS approach a slightly simplified version of [17]
is applied. The basic neighborhood operator is moving one ambulance from
some location to one of the five nearest possible locations. In diversification
phases ambulances are moved to any other location.

The model and the two solution approaches are applied to the data for all
Austrian provinces except for Vienna where a different situation occurs (our
partner ARC has only a small market share for the province of Vienna). The
problems for the two smallest instances are solved exactly and both meta-
heuristics are able to obtain the optimal solution. For the larger problem
instances both metaheuristics are competitive. In the current implementation
TS is faster while the ACO approach gives slightly better solutions.

While the decision maker of the ARC was impressed by the achievable
coverage rates obtained by the above model, a direct application of these
results is difficult. For example, many of the ambulances were donated by local
sponsors and they would not agree to relocation of these ambulances to other
cities or villages. Nevertheless a discussion process has been started in some
provinces and this project will be pursued further also considering dynamic
changes of the demand distribution during day/night and summer/winter.
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2.2 Ambulance Routing

After having fixed the locations of the ambulances in the tactical level, oper-
ational planning has to decide which ambulance is assigned to which request.

In Austria, the transportation of patients to and from hospitals is also
organized by non-profit organizations. In most regions, it is the ARC that is
responsible for the transportation of patients. The regular patient transporta-
tion, as well as the emergency transportation, are performed by scheduling
the same fleet within the same control center. Therefore a dial-a-ride prob-
lem for the regular patient transportation orders with disruption has to be
solved. Disruptions occur due to the fact that vehicles “disappear” in order
to service emergency requests and reappear at a hospital after the service of
an emergency case.

When an emergency occurs and an ambulance is required, the vehicle with
the shortest distance to the emergency is assigned to service the emergency
patient. Therefore, it may happen that an ambulance vehicle that was planned
to carry out a scheduled transport order of a patient (which has not started
yet) is used to service the emergency request. Then, the schedule for the regu-
lar services has to be re-optimized and another vehicle has to be reassigned to
the regular patient. Ambulances that carry out emergency transports become
available at the hospital after the emergency service and can then be used to
carry out regular transport orders.

This problem is highly dynamic and a robust plan has to be computed for
the regular dial-a-ride orders in order to service also the emergency requests.
The objective is to minimize routing costs and to minimize the response time
for servicing an emergency request. For a more detailed description see [25].

Many emergency service providers, especially ambulance departments and
companies who provide non-public maintenance services, face the problem
that their fleet of vehicles has to provide two different types of services:

1. Cover a certain region and provide immediate service when an emergency
occurs;

2. Provide some regular service (e.g., the pick-up and delivery of patients,
predetermined service tasks, periodic pick-ups, etc.).

From the perspective of managing the regular services, the objective is
minimizing the total traveling distance subject to certain restrictions (e.g., be
on time, use the appropriate vehicle, etc.). From the perspective of minimizing
the response time for servicing an emergency request, it is necessary to locate
and schedule the vehicles in such a way that each possible location where an
emergency case may occur can be reached within a given time (see [18]).

These two objectives are not totally contradictory, but they certainly con-
flict: on the one hand, for the emergency transport requests, one has to account
for the fact that vehicles are changing positions and are blocked for some time
due to some regular service assignment; on the other hand, when regular or-
ders are assigned to vehicles, it is important to keep a certain coverage level
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to ensure a satisfactory service of the emergency cases, which may require
relocating some of the vehicles.

Some related work has been published where pickup and delivery request
occur dynamically (see [2, 19, 28, 29, 35]). But to our best knowledge, a
dynamically changing fleet size and this type of disruption have not been
considered so far.

We are facing a combination of two problems

• the dial-a-ride problem for regular patient transportation and
• dispatching ambulance vehicles for emergency cases.

In the classical DARP [9], a set of requests announced beforehand are
serviced from a single depot with a heterogeneous fleet of vehicles, i.e., different
vehicle configurations. These requests have hard time windows and a preferred
pickup or delivery point in time, as well as different space requirements.

The regular patient transportation problem can be considered to be a
variation of DARP with additional real world constraints regarding customer
preferences or requirements. A comprehensive description of the DARP is
given in [10]. The DARP consists of designing vehicle routes and schedules for
n customers or patients who specify pick-up and drop-off requests between
origins and destinations. A typical situation is that the same patient will have
two requests during the same day or within a certain period - an outbound
request, usually from home to the hospital, and an inbound request for the
return trip. The objective is to plan a set of minimum-cost vehicle routes while
serving customers under a set of constraints. The main difference between the
DARP and most classical routing problems is the fact that in the DARP hu-
man beings are transported instead of goods as in the other problems. Thus,
additional constraints, e. g., maximum ride times for the patients are consid-
ered. We use the following notation for describing the asymmetric DARP.

n = number of transportation requests; request i consists of a pickup vertex
i and a delivery vertex n+ i; the depot is represented by vertices 0 and 2n+1

P = {1, ..., n} is set of pickup vertices
D = {n + 1, ..., 2n} is set of delivery vertices
qi = demand/supply at vertex i; pickup vertices are associated with a

positive value, delivery vertices with a negative value. q0 = q2n+1 = 0
ei = earliest time to begin service at vertex i
li = latest time to begin service at vertex i
di = service duration at vertex i
ck
ij = cost to traverse arc or edge (i, j) with vehicle k

tkij = travel time from vertex i to vertex j with vehicle k
m = number of vehicles, indexed k = 1, ..., m
K = {1, ..., m} is set of vehicles
Ck = capacity of vehicle k
T k = maximum route duration of vehicle/route k

The decisions are modeled using the following variables.
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xk
ij =

{
1, if arc (i, j) is traversed by vehicle k

0, otherwise

Qk
i = load of vehicle k when arriving at vertex i

Bk
i = beginning of service of vehicle k at vertex i

The basic model for multi vehicle DARP is an adapted three index VRP
formulation of the one proposed in for the VRPTW.

min
∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij (14)

subject to:∑
k∈K

∑
j∈V

xk
ij = 1 ∀i ∈ V \ {0, 2n + 1} (15)

∑
j∈V

xk
0j = 1 ∀k ∈ K (16)

∑
i∈V

xk
i,2n+1 = 1 ∀k ∈ K (17)

∑
i∈V

xk
ij −
∑
i∈V

xk
ji = 0 ∀j ∈ V \ {0, 2n + 1} , k ∈ K

(18)

Bk
j ≥ xk

ij(B
k
i + di + tkij) ∀i ∈ V, j ∈ V, k ∈ K (19)

Qk
j ≥ (Qk

i + qi)xk
ij ∀i ∈ V, j ∈ V, k ∈ K (20)

max {0, qi} ≤ Qk
i ≤ min

{
Ck, Ck + qi

}
∀i ∈ V, k ∈ K (21)∑

j∈V

xk
ij −
∑
j∈V

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (22)

Bk
i ≤ Bk

i+n ∀i ∈ P, k ∈ K. (23)

Bk
i+n − (Bk

i + di) ≤ Li ∀i ∈ P (24)

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (25)

Bk
2n+1 −Bk

0 ≤ T k ∀k ∈ K. (26)

xk
ij ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K (27)

Bk
i ≥ 0, Qk

i ≥ 0 ∀i ∈ V, k ∈ K (28)

Total routing cost are minimized by the objective function, given in (14).
Constraints (15) state that every vertex has to be served exactly once. Con-
straint sets (16) and (17) guarantee that every vehicle starts at the depot and
returns to the depot at the end of its route. Note that this does not mean
that every vehicle has to be used. A vehicle may only use arc (0, 2n+1), i.e. it
does not leave the depot. Flow conservation is ensured by (18). Time variables
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are introduced in constraint set (19) to ensure that no subtours occur and to
facilitate the introduction of time related constraints later on. Constraint sets
(20) and (21) guarantee that a vehicle’s capacity is not violated throughout
its tour. According to (22), both origin and destination of a request must be
served by the same vehicle. Relation (23) guarantees that delivery can only
occur after pickup. Condition (24) distinguishes the DARP from a pickup and
delivery problem by restricting user ride time of customer i to a maximum
amount of Li time units. Constraints (25) and (26) correspond to time window
and maximum route duration restrictions.

As a first step towards an application of a DARP to the patient transport
in Austria a Variable Neighborhood Search (VNS) [30] with path relinking
and local search is implemented and applied to the bi-objective DARP [31].
The second objective in addition to (14) is the total user ride time.

min
∑
i∈P

(Bk
i+n − (Bk

i + di)) (29)

While in the moment this approach is verified on multi-objective extensions
of the DARP instances generated by Cordeau, in the next step real-world data
from some major Austrian city will be used. Furthermore some real-world
extensions will be considered:

First, there may be several depots (often located close to the hospitals).
Second, patients are heterogeneous i .e. some need wheelchairs or need to
lie on stretchers or beds, others can sit, some need an additional attendant.
Furthermore the fleet is heterogeneous and can be reconfigured in order to
service these different types of transport modes. This situation is covered
by [3]. Some vehicles can carry two or more patients, others can carry one
passenger on wheelchair or two passengers without wheelchairs. Some vehicles
can carry one passenger when he/she needs a stretcher or two passengers who
can sit. Some vehicles have an additional attendant on board and therefore
less room for the patients.

Regarding time windows, [25] consider two different situations - on the one
hand, patients should be picked-up as late as possible from their home when
they are being transported to hospitals; on the other hand, patients should
be picked-up as early as possible when they are transported from the hospital
back home. Deviations from the desired pick-up and drop-off times within the
specified time window are penalized in the objective function.

A new aspect in specific problem of the ARC is that the emergency trans-
port orders are executed with the same fleet. In order to get a satisfactory
quality of service for the emergency cases, we improve the spatial distribution
of empty vehicles in order to minimize response time to emergency cases. The
distribution is measured at equally spaced discrete points in time (between
the first pick-up to the last drop-off during the day) when a vehicle is empty.
We compute the coverage of these empty vehicles and in the optimization we
maximize the average coverage (see Subsection 2.1).
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Hence, the overall objective in our problem is to optimize three criteria.
These three objective functions are transportation costs for the regular patient
transport, quality of service for the regular transport orders, and quality of
service for the emergency cases, which is measured as coverage criterion. Since
the dispatching must be done online there is no time to provide the dispatcher
with a complete Pareto-set from which he could choose. Therefore, the goal of
the project is to generate good compromise solutions. This is work in progress
and the first results are presented in [25].

3 Disaster Response and Relief

Effectively responding to disasters such as earthquakes, floods, tsunamis,
avalanches, hurricanes, volcanic eruptions, forest fires, terrorist attacks etc. is
of crucial importance for life and well-being of humans and for this reason
deserves our utmost efforts. Nevertheless, surprisingly enough, the logistics of
disaster management seems to be a somewhat underdeveloped part of man-
agement science, compared to other branches of logistics (cf. [5]). This is also
true for the more specific area of model-based, computer-aided decision sup-
port for disaster relief operations planning. The reasons for this moderate level
of development certainly include the considerable methodological challenges
one faces when trying to apply quantitative models to the field of disaster re-
lief. In disaster management applications, data are often uncertain, states are
quickly changing, fast decisions based merely on partial information are re-
quired, and not only technological, but also social, psychological and cultural
factors play an important role.

The task of disaster response and relief is usually mainly carried out
by non-governmental organizations, supported sometimes by military units
and/or police forces. In the process models of the aid organizations, several
phases of a disaster management mission are distinguished. Whereas the first
of these phases has inevitably to be covered by local staff and organizations
and by the affected population itself, in the second phase, broader support is
possible and sometimes necessary: in particular, large-scale disasters as well
as disasters in poor countries need international help. In this context, the In-
ternational Red Cross with its national member societies often plays a major
role. The ARC has taken a very active part in international disaster prepared-
ness and response (e.g. South-East Asia - Tsunami struck countries, Sudan
- victims of conflict, Pakistan - earthquake victims) of the Red Cross/Red
Crescent (RC/RC) movement.

The problem can be formulated as a special Warehouse Location Routing
Problem (WRLP) being a combination of two interdependent subproblems.
First, a warehouse location problem with additional rich constraints and mul-
tiple objectives must be solved. Second, rather than dealing with a simple
vehicle routing problem the planning of delivery routes can be considered
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as the covering tour problem with multiple depots, multiple vehicles and a
heterogeneous fleet.

3.1 The Warehouse Location Aspect

Intermediate warehouses (stores or regional depots) have to be constructed or
rented, and the population nodes in the regional network have to be supplied
from these warehouses. The warehouses receive supply from a small given set
of source nodes (in our context, these are either international airports, where
donated goods arrive, or production plants in the region). For the selection
of the warehouse locations from a set of candidate places, certain issues have
to be addressed, especially (i) the storage capacity of the warehouses, and
(ii) the proximity to the people to be supplied in order to keep the costs of
the delivery tours low. In our context, a third issue is of considerable prac-
tical relevance, namely (iii) the safety of warehouses with respect to the risk
of destruction or plundering. While in simple warehouse location problems
transportation costs are evaluated using a transportation problem (i. e. single
customer routes are considered), the WLRP considers more realistic distribu-
tion plans: A combined decision on locations of warehouses and tours has to
be made. For a detailed discussion of the classical WLRP see [1, 26, 34].

3.2 The Covering Tour Problem (CTP)

In Covering Tour Problems (CTP) the customers are not visited at their home
locations but the vehicle (e.g. a mobile hospital) stops at several locations and
the customers must visit one of the vehicle stops. The CTP consists of selecting
the appropriate stops so that all customers can reach one of these stops within
acceptable time. Upper limits for these times are fixed in order to define under
which conditions certain population nodes can be seen as “covered” by the
supply system. As an example, [20, 22, 24] have addressed the tour planning
problem for one or more mobile hospital facilities in the Suhum district in
Ghana. In their optimization model, tours and stops on tours are computed
from geographical and demographic data both for the road conditions in the
dry and in the rainy season. As a coverage constraint, the authors demand that
each population center (settlement) that can, in principle, be reached within
a given maximum walking distance is actually provided by a tour stop within
this distance. In the context of the application considered here, we consider
the delivery of basic goods such as water, food, or medicine. The objective of
a CTP is typically to minimize the total tour length. The classical CTP ([16])
can be described using the following notation.

V = set of all vertices that can be visited
T ⊂ V = set of all vertices that must be visited (one of them is typically

the depot)
yk = binary variable being 1 if location k is visited
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xij = binary variable (defined for i < j) being 1 if the edge between
locations i and j is used

cij = cost of traversing the edge between locations i and j
W = set of customer locations to be covered
S� ⊂ V = set of vertices that can cover customer location � (i.e. to which

the travel distance from customer � does not exceed a prespecified threshold)

The standard covering tour problem (for symmetric distance matrices) is

min
∑

i,j∈V
i<j

cijxij (30)

subject to

∑
i∈S�

yi ≥ 1 ∀� ∈ W (31)

∑
i∈V
i<j

xij +
∑
k∈V
j<k

xjk = 2yj ∀j ∈ V (32)

∑
i∈S

∑
j∈V \S

xij +
∑

i∈V \S

∑
j∈S

xij ≥ 2yt
∀S ⊂ V, 2 ≤ |S| ≤ n− 2,

T \S �= $, t ∈ S
(33)

xij ∈ {0, 1}, ∀i, j ∈ V, i < j (34)
yi ∈ {0, 1}, ∀i ∈ V \T (35)
yi = 1, ∀i ∈ T (36)

According to (31) every customer must be covered at least once; the degree
constraint (32) requires that each visited location is connected to exactly two
other locations; the connectivity constraints (33) make sure that each subset,
that does not contain all requires locations (T ) and that contains at least one
visited location must be connected to its complement by at least two edges,
thus avoiding short cycles.

The real-world covering tour problem for disaster relief is more complex,
as it needs to consider multiple depots, multiple vehicles based on a hetero-
geneous vehicle fleet (large trucks, small trucks and donkeys) and roads of
different usability. Tour lengths and vehicle capacities depend on the chosen
transportation mode. Certain roads can only be used by donkeys whereas for
other roads cars and donkeys can be used. This classification on the one hand
depends on whether it is a small path or a large road, and on the other hand
it depends on the actual condition of the edges after the disastrous event.

The real-world covering tour problem consists of developing a set of vehicle
routes with respect to four criteria:

(i) The first objective aims at locating the tour stops of the vehicles such
that the distance that each population member has to cover is minimized. This
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can be modeled as a p-median (or p-center) problem, which minimizes the sum
(or the maximum) of the distances between all members of a population and
their nearest facility. An alternative objective that can also be combined with
the criteria described above is the maximal covering location (MCL) criterion,
which minimizes the number of the population members unable to reach a
facility within a predefined maximum distance.

(ii) The affected population needs to be provided with items such as food,
shelter or even medicine, some of them being perishable. Regarding the deliv-
ery of aid supplies, the most important aspect is to quickly deliver goods to
the population in need, not taking into account the distance that has to be
covered in order to get back to the depot. Therefore the second objective can
be formulated as a minmax routing criterion (see [7]), minimizing the latest
arrival time at a customer. Note that this means minimizing the maximum of
the arrival times at the last customers of any route, which is different from
the open VRP where the sum of the travel distances up to the last customers
are considered.

(iii) With respect to the safety of the population members as well as of
the intention to reach distribution points on time, the risk of another disaster
occurrence at the tour stops and the chosen edges respectively, have to be
taken into consideration.

(iv) Last but not least, tour lengths shall be minimized for economic rea-
sons; see (30).

An important aspect is that the supply needs to be provided on a regular
basis, such that the affected population can rely on the arrival times of the
vehicles and duly get to the tour stops where goods are handed out. This
aspect must be observed when planning for several periods.

4 Health Care Material Transportation

Blood logistics is faced with two specific transportation problems: The trans-
portation of the donated blood from mobile blood donation campaigns to the
central blood processing facility and the transportation of the blood products
from the central blood processing facility to the hospitals. The collection of
donated blood is a very specific problem that arises at the ARC and is de-
scribed in the next subsection. Afterwards we will deal with the blood delivery
problem which is more or less a standard inventory routing problem.

4.1 Blood Collection Problem

In this section we discuss the problem of the transportation from the mobile
blood donation campaigns to the central blood processing facility. This new
type of problem is characterized by two fundamental extensions to the ve-
hicle routing problem with time windows which result in a Vehicle Routing
Problem with multiple interdependent Time Windows (VRPmiTW) for each
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customer (see [14]). The first extension is that goods are continuously pro-
duced at each customer location during a certain production time window.
The second extension introduces another dynamic component to the model
by adding a time constraint for further processing of produced goods at the
central depot.

The problem originates from the blood collection process of the ARC blood
program. In Eastern Austria, all blood needs to be processed in one blood
bank centrally located in Vienna within about 5 hours after donation due to
processing requirements. It is a stated objective of the ARC blood program
that donated blood should not perish.

Due to the perishability of the blood, the durations and the locations of the
campaigns it is generally not possible for the campaign teams to simply bring
back all the donated blood to the blood bank upon the end of a campaign.
Rather, additional vehicles need to be assigned to pick up collected blood
from the different events in regular intervals. These additional vehicles are
dispatched from the blood bank and have to return to the blood bank.

Obviously, the ARC is interested in organizing donation transportation in
a cost efficient way. The goal is to find minimum cost tours to take back all
the blood. The critical issue in this problem is the fact that the dispatching
decisions directly influence the time windows for further visits at the campaign
events. Consider for example a blood donation campaign from which it takes
60 minutes to return to the blood bank. Given the fact, that donated blood
must be no older than 300 minutes by the time it is further processed at the
blood bank this implies that the time between two consecutive pickups at the
campaign must not exceed 240 minutes, if no blood is to perish. Thus, if the
dispatcher decides that the campaign is visited at 9 a.m. in the morning the
latest possible time for the next pickup is at 1 p.m. While this calculation
is trivial if one assumes that the vehicle directly returns to the blood bank
after visiting the campaign location, it gets much more complicated if pickups
at several campaigns are combined on one tour - especially when additional
waiting times and different delivery dates must be combined.

The interdependencies of the multiple time windows at the customer loca-
tions constitute the main novelty in the problem formulation and the major
challenge for the solution procedures developed. Because of this problem fea-
ture we can consider the problem at hand as a special case of the vehicle
routing problem with time windows.

Our problem is somewhat similar to the inventory routing problem (see
e.g. [6]). In the inventory routing problem the main time horizon is generally a
few weeks or days and the main issue is to determine an optimal visit frequency
at the customers to jointly minimize transportation and inventory costs. In
this setting multiple visits per day at the same customer are very unlikely and
thus the actual routing of the vehicles does not influence the feasibility of a
given frequency. On the contrary, in our problem changing the sequence of a
route may render another route infeasible and may lead to the necessity of
additional pickups at several other customers. Besides this main difference in
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the problems the routing decisions do of course influence the transportation
costs in both the inventory routing problem and our VRPmiTW.

We now give a complete mixed-integer programming model formulation for
the problem described above. The model is also reported in [14] and solutions
techniques are given in [12, 14].

Let us first introduce necessary notation, data, and decision variables.
Let C denote a set of customers, where i, j ∈ C ∪ {0} are indices used for
customers and the depot. The depot will always be given index 0.
Let Pi = {1, . . . , pmax

i } denote a set of possible pickups at customer i and let
h, k ∈ Pi be indices for pickups.
Let T denote a set of tours, where l ∈ T is an index for tours.
Let S = {1, . . . , smax} denote a set of stops on each tour, where m ∈ S is
an index for stops. Note, that the values for pmax

i and smax are simply upper
bounds for the number of pickups at a customer i ∈ C and the number of
stops on a tour l ∈ T , respectively. In our model these values are chosen large
enough in order not to influence the solution.

Furthermore we use parameter τ to denote spoilage time for transported
goods and data ai and bi to denote starting and ending time of production
at customer i. Finally fi is the service time at location i (customer or depot)
and dij indicates the travel time between locations i and j.
Using these data we can compute the minimum number of required pickups at
customer i denoted by ri. Depending on spoilage and transportation time each
customer i needs to be visited multiple times to ensure that no goods spoil.
Based on the spoilage time τ we can define the maximum possible time span
between two consecutive pickups at customer i under the assumption that
the vehicle directly returns to the depot after picking up goods at customer
i. This time span, denoted by ti, can be computed as follows

ti = τ − fi − di0 − f0; i ∈ C. (37)

Using the value of ti and the duration of goods production at customer
i the minimum number of pickups at customer i is calculated as given in
formula (38).

ri = bi − ai

ti
�; i ∈ C (38)

We define the following decision variables.

yik =

{
1 if the k-th pickup of customer i is realized,

0 otherwise
(39)

xiklm =

⎧⎪⎨
⎪⎩

1 if the k-th pickup of customer i is performed
as the m-th-last stop on tour l,

0 otherwise
(40)



Health Care Logistics: New Challenges 543

zijkh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if the k-th pickup of customer i is performed
immediately before the h-th pickup
of customer j,

0 otherwise

(41)

uik =

⎧⎪⎨
⎪⎩

1 if the k-th pickup of customer i is performed
first on a tour,

0 otherwise
(42)

Additionally, we use vik to denote the arrival time at customer i for the
k-th pickup and wl to denote the total time of tour l.
Note, that in (40) the index m is counted backwards from the last position
on a tour. This is convenient for computing the return time wl for each tour
l in formula (59) below.

The objective function

min
∑
i∈C

∑
j∈C

∑
k∈Pi

∑
h∈Pj

dijzijkh +
∑
i∈C

∑
k∈Pi

∑
l∈T

di0xikl1 +
∑
i∈C

∑
k∈Pi

d0iuik (43)

minimizes the total distances between all successive stops on all tours (first
term), from the last stop on each tour to the depot (second term) and from
the depot to the first stop on each tour (third term). This objective has to be
minimized subject to the following constraints, where M is used to denote a
large integer number:

yik ≤ yik−1 ∀i ∈ C, k ∈ Pi\{1} (44)

yiri = 1 ∀i ∈ C (45)

yik =
∑
l∈T

∑
m∈S

xiklm ∀i ∈ C, k ∈ Pi (46)

∑
k∈Pi

∑
m∈S

xiklm ≤ 1 ∀i ∈ C, l ∈ T (47)

∑
i∈C

∑
k∈Pi

xikl(m+1) ≤
∑
j∈C

∑
h∈Pj

xjhlm ∀l ∈ T , m ∈ S\{smax} (48)

zijkh ≥ xikl(m+1) + xjhlm − 1 ∀i, j ∈ C, l ∈ T , k ∈ Pi, h ∈ Pj , m ∈ S\{smax}
(49)∑

i∈C

∑
k∈Pi

zijkh ≤ 1 ∀j ∈ C, h ∈ Pj (50)
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∑
j∈C

∑
h∈Pj

zijkh ≤ 1 ∀i ∈ C, k ∈ Pi (51)

uik ≥ xiklm −
∑
j∈C

∑
h∈Pj

xjhl(m+1) ∀i ∈ C, k ∈ Pi, l ∈ T , m ∈ S\{smax} (52)

uik ≥ xiklsmax ∀i ∈ C, k ∈ Pi, l ∈ T (53)

vi0 = ai ∀i ∈ C (54)

vipmax
i

= bi − τ + fi + di0 + f0 ∀i ∈ C (55)

vik − vi(k−1) ≥ 0 ∀i ∈ C, k ∈ Pi (56)

vik −Myik ≤ vi(k−1) ∀i ∈ C, k ∈ Pi\{1} (57)

vik + dij + fi ≤ vjh + M(1− zijkh) ∀i, j ∈ C, k ∈ Pi, h ∈ Pj (58)

wl ≥ vik + fi + di0 + f0 −M(1− xikl1) ∀i ∈ C, k ∈ Pi, l ∈ T (59)

wl − vi(k−1) −M(1−
∑
m∈S

xiklm) ≤ τ ∀i ∈ C, k ∈ Pi\{1}, l ∈ T (60)

Constraints (44) and (45) ensure that at least ri pickups are performed at
customer i, and that the k-th pickup can only be performed only if the k−1-st
pickup is performed. Constraints (46) express that any performed pickup has
to be scheduled on a tour, while constraints (47) state that each customer
can be visited at most once on a given route. Constraints (48) ensure that a
pickup at a customer can be assigned to the m + 1-last stop on a tour only if
the m-last stop of this tour is performed. Constraints (49)-(51) constitute the
routing and flow conservation constraints. Constraints (52) and (53) fix the
customer to visit first for each tour, where only pickups that are performed
qualify. Constraints (54) and (55) fix the relevant earliest and latest times
for the first and last pickup at each customer, respectively. Constraints (56)
and (57) require that the visiting times assigned to two consecutive pickups
of a given customer are scheduled in correct order. Constraints (58) and (59)
constitute the temporal reality on each route. In particular, constraints (59)
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determine the earliest return time of a given route to the depot. Finally,
constraints (60) ensure that no goods picked up on a given route will perish.

In [14] different solution methods based on branch and bound and the
savings criterion are developed. When applying the approach to some real-
world instances on average a reduction of total travel time of about 10 % is
achieved. This program is not yet integrated into the information technology
infrastructure of the ARC - but the dispatcher can use it to support his/her
manual decision process.

4.2 Periodic Deliveries of Blood Products to Hospitals

Hospitals use a variety of products in the treatment of their patients. Many of
these products, most notably blood products, have a short lifespan and there-
fore their supply and inventory has to be managed carefully. Blood products
are crucial for hospitals as they are required for surgeries and for the treat-
ment of patients with chronic diseases, e.g., cancer patients. As a consequence,
blood products are delivered to hospitals on a regular basis in order to ensure
that an adequate supply is available.

Thus a blood bank is faced with a situation in which a set of customers
(hospitals, clinics, medical institutes) requires regular deliveries of certain
products (blood conserves) which they consume at different rates. Any deliv-
ery policy should be such that no shortfalls of products occur at the customer
locations, but at the same time spoilage of products has to be kept at a mini-
mum. The situation is complicated by the fact that product usage varies over
time. Of course, a blood bank also wants to minimize its delivery costs.

The Vienna blood bank of the ARC serves 60 hospitals and makes regu-
lar deliveries to these hospitals. About 250,000 blood products are sold and
delivered every year by this single blood bank. Delivery routes are planned
manually; no routing software or geographic information system is used. The
hospitals are grouped into four regions and fixed routes for visiting the hos-
pitals in a region have emerged over time. Hospitals that have requested a
delivery of blood products the previous day are visited in the order of these
fixed routes.

The logistics department at the ARC has recently decided that they
want to explore alternatives to the current system. They want to investi-
gate whether a more flexible and dynamic routing system will reduce delivery
costs, and they want to understand the cost benefits, if any, of changing from
a vendee managed inventory environment to a vendor managed inventory sys-
tem. A vendor managed inventory (VMI) system should be of interest to the
hospitals as well, as it is likely to reduce costs, product spoilage, and product
shortfalls. For an introduction to inventory routing problems see Campbell et
al. ([6]).

Our study (see [21] proposes two different solution concepts. First, a fixed
tour approach is considered and using a MIP the optimal delivery days for
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each hospital are determined. Second, a periodic VRP approach is proposed
to select the appropriate visit/day combinations.

In order to describe the fixed tour approach, let the number of hospitals
be denoted by n and the number of days in the planning period be denoted
by T . Let zt be a 0-1 variable indicating whether or not a route is executed
on day t; let yt

i be a 0-1 variable indicating whether or not hospital i is visited
on day t; let dt

i be a continuous variable indicating the quantity of blood
delivered to hospital i on day t; let It

i be a continuous variable indicating the
quantity of blood in inventory at hospital i at the beginning of day t, and
let finally xt

ij be a 0-1 variable indicating whether or not the delivery vehicle
travels from hospital i to hospital j on day t (where 0 and n + 1 denote the
distribution center). Furthermore, let the travel time between two locations i
and j be denoted by tij , the service time at location i be denoted by si, the
product usage at hospital i on day t be denoted by ut

i, the initial inventory
at the beginning of the first day at hospital i be denoted by I1

i , and the
storage capacity at hospital i be denoted by Ci. A maximum route duration
is given by D. Finally, assume that the safety stock policy at every hospital
is to ensure that at least k1 days of inventory is available at the beginning of
the day, that blood products spoil in k2 days, and that the inventory at every
hospital at the end of the planning period has to be at least as large as the
initial inventory at the beginning of the planning period.

Under the assumption the hospitals are indexed from 1 to n according to
the order in which they are visited on the fixed route, the formulation is:

min
T∑

t=1

n∑
i=0

n+1∑
j=1

tijx
t
ij

subject to

It+1
i = It

i − ut
i + dt

i ∀i = 1, ..., n, t = 1, ..., T (61)

It
i ≥

t+k1−1∑
s=t

us
i ∀i = 1, ..., n, t = 1, ..., T (62)

IT+1
i ≥ I1

i ∀i = 1, ..., n (63)

It
i ≤ Ci ∀i = 1, ..., n, t = 1, ..., T (64)

It
i ≤

t+k2−1∑
s=t

us
i ∀i = 1, ..., n, t = 1, ..., T (65)

dt
i ≤ Ciy

t
i ∀i = 1, ..., n, t = 1, ..., T (66)
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zt ≥ yt
i ∀i = 1, ..., n, t = 1, ..., T (67)

xt
ij ≥ yt

i + yt
j − 1−

j−1∑
k=i+1

yt
k ∀i = 0, ..., n, j = 1, ..., n + 1, t = 1, ..., T (68)

n∑
i=0

n+1∑
j=1

tijx
t
ij +

n∑
i=1

yt
isi ≤ D ∀t = 1, ..., T. (69)

yt
0 = yt

n+1 = 1 ∀t = 1, ..., T. (70)

Constraints (61) ensure inventory balance from period to period. Con-
straints (62) ensure the safety stock requirements. Constraints (63) ensure that
the inventory at the end of the planning period is greater than the inventory at
the start of the planning period. Constraints (64) ensure that inventory never
exceeds the storage capacity. Constraints (65) ensure that inventory does not
spoil. Constraints (66) enforce that a positive delivery quantity only occurs
when a hospital is visited. Constraints (67) enforce that we can easily identify
the days on which a delivery route is executed. Constraints (68) capture short
cutting of the fixed route. Finally, constraints (69) limit route duration. This
model can be solved using standard MIP solvers.

On the other hand, a periodic VRP is considered where more flexibility
is allowed with respect to the routing (no fixed tours anymore) but the visits
days remain the same for each week. This problem is solved using a VNS ap-
proach. Two different types of shaking steps are considered: First, the visit day
combinations of some customers are changed randomly. Second, short strings
of customers are exchanged between tours (cross-exchange). Local search is
performed by applying 2-opt on each tour.

Clearly the VNS approach is much faster than the MIP-based fixed tour
approach. Concerning solution quality both approaches are more or less com-
petitive to each other. In most cases the PVRP approach is slightly better
while the fixed tour approach has advantages for tightly constrained problems
(small inventory capacities). Both approaches were compared to a standard
(non VMI) approach where deliveries are only performed when stock-outs
would arise otherwise. The important finding was that optimization of the
delivery days (VMI) leads to cost savings of about 30%. This study clearly
made some simplifying assumptions (constant demands, only a single blood
product). Nevertheless, the implication of our study is that it is worthwhile
for the ARC to enter into negotiations with the hospitals to see if they can
be convinced to switch to a VMI strategy. This might take a considerable
amount of time due to the politics involved.
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5 Conclusions

Logistics is concerned with getting the right product (or service) to the right
place at the right time. This is particularly vital in the domain of health care
services, where efficient provision of these services is expected from the public.
While there is a variety of potential applications of logistics and transporta-
tion problems in health care, we have focused on six application areas that are
of particular importance for Austria and the Austrian Red Cross. These are
ambulance location problems, ambulance routing and dial-a-ride problems,
warehouse location routing problems in disaster relief, covering tour problems
in disaster relief, blood collection problems of mobile blood donation sites,
and blood delivery to hospitals. While the blood collection problem is of very
special structure that is specific for the Austrian situation, the others prob-
lems are certainly of general relevance. An important problem class that we
have not covered here (as it is not relevant for the ARC) is the scheduling
of operation rooms, doctors, and nurses. This problem has certain aspects
of project scheduling problems under resource constraints where several re-
sources (operation rooms, technical equipment, doctors, nurses, etc.) have to
be considered.

In most cases we have only formulated the basic models and discussed pos-
sible extensions in the text. There is room for developing more realistic models
e.g. those considering stochastic, dynamic, and multi-objective aspects. The
problems considered are quite complex as they are typically a combination
of several NP-hard problems (e.g. location and routing). Hence, developing
efficient solution techniques is a challenging task. Hybrid approaches involv-
ing exact methods and metaheuristics seem to be particularly appropriate
here. We hope and trust that this chapter will encourage further work in this
direction.
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Summary. Containers came into the market for international conveyance of sea
freight almost five decades ago. The breakthrough was achieved with large invest-
ments in specially designed ships, adapted seaport terminals with suitable equip-
ment, and availability of containers. Today over 60 % of the world’s deep-sea general
cargo is transported in containers and some routes are even containerized up to
100 %. Seaport container terminals face a high demand for advanced optimization
methods. A crucial competitive advantage is the rapid turnover of the containers,
which corresponds to an efficient handling of containers as well as to a decrease of
the costs of the transshipment processes. One of the key concerns in this respect
refers to various types of equipment at container terminals devoted to the routing
of containers to achieve high productivity. For instance, a variety of vehicles is used
for the horizontal transport at the quayside and at the landside.

In this chapter we provide a comprehensive survey on routing problems that have
arisen in the container terminal domain, such as how to route automated guided ve-
hicles, new technologies such as double rail mounted gantry cranes, etc. This opens
up new challenges for the field. The chapter strives to summarize the research results
for the vehicle routing problem and its variants regarding container terminals.

Key words: Vehicle routing problem; container terminal operations; scheduling; au-
tomated guided vehicles; straddle carriers; rail mounted gantry cranes; quay cranes;
trucks; trailers.

B. Golden et al. (eds.), The Vehicle Routing Problem,
doi: 10.1007/978-0-387-77778-8 25, c© Springer Science+Business Media, LLC 2008



552 Stahlbock and Voß

1 Introduction

Containerization – the stowage of regularly or even irregularly shaped freight
in sealed, reusable boxes with standardized dimensions – is one of the most im-
portant cargo-moving techniques developed in the 20th century. Being highly
efficient, it has influenced and revolutionized not only the shipping indus-
try and ports, it has also fundamentally changed the whole international
trade as well as concept, design, functions and activities of transport sys-
tems in the world. Intermodality with transformed ship-to-shore links, ship-
to-rail links and ship-to-ship transhipment links have been developed and
refined. Containers can be used worldwide in several transportation systems.
They can be loaded on large seagoing vessels (and in small number on air-
crafts) – typically for inter-continental transport – and on feeders, trains and
trucks for intra-continental transport. Even high-value cargo can be trans-
ported quickly in a cost-efficient way. Today over 60% of the world’s deep-sea
general cargo is transported in containers and some routes are even container-
ized up to 100% [65,106]. For detailed information about worldwide maritime
transport trends see current UNCTAD Reviews of Maritime Transport (via
http://www.unctad.org), e. g. [141]. Success factors for growth in container
shipping can be found, e.g., in [72, 94, 150].

The number and capacity of seaport container terminals has increased and
will increase in the future. However, in the short term increased cargo amounts
have to be handled at today’s container terminals with given limited capacity.
This fact still encourages port authorities and container terminal operators to
redesign the buffering and handling of containers to more efficiency, rather to
keep up with higher cargo amounts than to decrease costs [8, 130,147].

The demurrage of a container ship causes a high rate of the total costs
in the shipping process. The potential of cost savings is high. High operating
costs for ships and container terminals as well as high capitalization of ships,
containers and port equipment demand the reduction of unproductive times
at port. The superordinate goal is to reduce the time for the discharging and
loading process of a ship [136]. Speed is very important in the global transport
of goods, not only for the carrier but also for a terminal, since the competition
among container terminals has increased.

Recent developments have shown that a key to efficiency (in container
handling) is the automation of in-yard transportation, storing and stacking to
increase the terminal throughput and decrease ship turnaround time at the
terminal [10]. High productivity can be achieved with various types of equip-
ment, e.g., vehicles used for horizontal transport of containers at the quayside
and at the landside. Passive vehicles like trucks with trailers or automated
guided vehicles (AGVs) are employed in combination with cranes. Being a
mixture of a yard trailer and a transfer crane, active vehicles such as straddle
carriers (SCs) have free access to containers independent of their position in
the yard. Common SCs are manned, but during the last years automated
lifting vehicles (ALV) were developed. The ongoing trend focuses on improve-

http://www.unctad.org
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ments of terminal configurations, i.e. the use of automated container handling
and transportation equipment. Therefore, particularly in countries with high
labor costs, manually operated vehicles are going to be replaced by automated
ones. These strategic decisions focusing on terminal layout, multi-modal inter-
faces, equipment selection, berthing capacity and information systems are the
basis for operational planning as well as the real-time control of, e.g., crane
scheduling and operation sequencing [53]. Routing and scheduling are most
essential parts of tactical and operational planning.

The goal of this chapter is to provide an expository update of research on
the vehicle routing problem (VRP) and its variants and modifications regard-
ing container terminal operations. In this respect we extend and update the
paper of Steenken et al. [136]. While [136] provides a comprehensive survey of
the state-of-the-art of operations at a container terminal as well as methods
for their optimization, in this chapter we restrict ourselves towards routing.
Although some older references are provided for the sake of keeping the con-
text we focus on work being published in recent years, especially since 2004.
Since we focus on operations at terminals, ship routing problems or a liner
operator’s problem of distributing or reusing empty containers, i.e. finding
best (multimodal) container itineraries, are excluded as well as vehicle rout-
ing with pick up and delivery of full container load from/to an intermodal
terminal and similar problems (see, e.g., [19,22,29,66,76,77,95,96,108,132]).

This chapter is organized as follows. First we provide some background re-
garding the problem domains to understand the settings in which the VRP and
its variants arise. Therefore, the next two sections describe briefly some gene-
ral concerns of vehicle routing and the structure of seaport container terminals
with their different operation areas. Different combinations of handling equip-
ment result in different terminal systems with different problems regarding
vehicle routing and scheduling. After this condensed view and classification of
terminal systems, Section 4 as the main body of our chapter provides deeper
insight into the most important typical processes at a terminal with focus
on routing problems of the employed vehicles like AGVs, SCs and transfer
cranes. Brief literature reviews are presented. The chapter is concluded with
a summary and outlook identifying interesting or promising topics for future
research.

2 Routing and Scheduling

General classes of vehicle routing and transportation problems are discussed
comprehensively in the literature. Since many problems in container termi-
nal logistics can be closely related to these classes, some basic references may
be helpful for container terminal oriented research. It should be noted that
although these standard problems associated with dispatching/routing vehi-
cles, assigning equipment to jobs or locating items arise frequently in logistic
systems and, therefore, are extensively studied, most of this research seems
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not directly applicable at container terminals. The terminals’ unique charac-
teristics, some of which are described in the next section, must be taken into
account in modeling and developing algorithms.

Bodin et al. [11] present an early and very comprehensive survey on various
types of routing problems. Toth and Vigo [140] and Cordeau et al. [28] provide
surveys on the VRP, arc routing problems are also considered by Dror [34]. The
traveling salesman problem (TSP) asks for the shortest closed path through a
set of cities that visits every city exactly once. It is well explained by Lawler
et al. [89]. More recent pointers can be found in [54]. The rural postman
problem (RPP) is the problem of finding a least cost closed path in a graph
that includes, at least once, each edge in a specified set of arcs. It is considered,
e.g., in [6]. Steenken et al. [135] present an application of the RPP in container
terminal logistics. In the pickup and delivery problem (PDP) a set of routes
has to be constructed in order to satisfy a given number of transportation
requests by a fleet of vehicles. Each vehicle has a certain capacity, an origin
and a destination (depot). Each transportation request specifies the size of
the load to be transported, the location where it is to be picked up and the
location where it is to be delivered. The PDP is considered, e.g., in [32].

Finally, we mention the assignment problem, which is considered in almost
any basic textbook on operations research. In a generalized context, e.g., ship
routing can be defined as assignment of sequences of ports to be visited by
ships. Scheduling brings temporal aspects into routing. Here, ship scheduling
includes the timing of various events on a ship’s route. For an overview re-
garding status and perspectives of ship routing and scheduling the reader is
referred to, e.g., [23–25,30, 38, 52, 64, 131].

Increasing complexity of logistics at container terminals demands for using
optimization methods and scientific research in order to improve the handling
operations. Objective methods are necessary for decision support. Different
logistic concepts, decision rules and optimization algorithms have to be com-
pared by simulation before they are implemented into real systems.

Most processes at container terminals cannot be foreseen for a longer time
span. Overall, the planning horizon for optimization is very short. The char-
acteristics of container terminal operation require online (real-time) optimiza-
tion and decision. For example, the exact time when the containers arrive
at the terminal is not known in all cases although data of containers may
be pre-advised by electronic data interchange. Furthermore, pre-advised data
may be wrong or containers could be damaged. Both data influence the target
stack location. Some additional examples illustrate the complexity and very
short planning horizon: Truck sequences at the gate can be different from
the sequences at the transition points where the containers are picked up by
SCs or cranes. Thus only those container jobs can be sequenced which are al-
ready released for transportation by internal terminal equipment – in general
only a few. As trucks permanently arrive, recalculation has to be performed
periodically or event driven. Analogous arguments hold for train operation.
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A similar situation occurs for ship loading and unloading. In general data
of containers and their positions within the ship are precisely known in ad-
vance, and the preplanning process allows the calculation of job sequences. But
the sequences often have to be changed because of operational disturbances.
As vessels are not static and move permanently (because of tide, weather,
stability), containers which are next in the sequence cannot be accessed by
the crane’s spreader. Crane drivers make their own decisions and may alter
the pre-calculated operation sequence.

Furthermore, conflict-free routing of AGVs is supported by fast algorithms
that avoid collisions, deadlocks and livelocks at the time of route calculation.

3 Structure and Handling Equipment at Container
Terminals

Seaport container terminals principally consist of the same sub-systems, al-
though their size, function, transportation and handling equipment as well
as layout considerably differ. In general terms, a container terminal can be
described as an open system of material flow with two external interfaces: the
quayside with loading and unloading of ships, and the landside where con-
tainers are loaded and unloaded on/off trucks and trains. The quayside and
landside operations are decoupled by stacks for storing containers.

After arrival at the port, a container vessel is assigned to a berth equipped
with cranes to load and unload containers. Unloaded import containers are
transported to yard positions near to the place where they are expected to be
transshipped next. Export containers arrive by trucks on road or by railway
at the terminal. They are handled within dedicated operation areas. They are
picked up by the internal equipment and distributed to the respective stocks
in the yard. Additional moves are performed if sheds and/or empty depots
exist within a terminal; these moves encompass the transports between empty
stock, packing center, and import and export container stocks (Figure 1).

3.1 Handling Equipment

While container terminals can be described very specifically with respect to
their equipment and stacking facilities, from a logistic point of view, termi-
nals only consist of two components: static stocks and dynamic transport
vehicles. Stocks are defined by their ability to store containers. This includes
yard stacks, ships, trains, and trucks. These different types of stocks differ in
capacity and complexity. Transport refers to the transportation of containers
in either two or three dimensions. Cranes and vehicles for horizontal transport
belong to this category. Transport jobs have to be allocated to them, and se-
quences of jobs have to be performed. The calculation of sequences is typical
for the transportation means.
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Truck and Train Operation Area

 Yard
 Moves

Ship Operation Area

Yard
Import/Export Stock

Empty Stock

Sheds

Quayside Operation

Hinterland Operation

Fig. 1. Operation areas of a seaport container terminal and transport flows [136,
p. 6].

(a) Large vessel at a berth with quay
cranes (courtesy of Hamburger
Hafen und Logistik AG – HHLA,
www.hhla.de).

(b) Crane operations at a vessel
(courtesy of HHLA).

Fig. 2. Vessel at a quay.

Types of Cranes

Different types of cranes are used at container terminals. Quay cranes for
loading and unloading ships can be seen as a first category (Figures 2, 3(a)). A
second category of cranes is applied to stacks. Here we distinguish three types
of cranes: rail mounted gantry cranes (RMGs; also referred to as automated
stacking cranes (ASCs)), rubber tired gantry cranes (RTG), and overhead
bridge cranes (OBC). RTGs are more flexible in operation while RMGs are
more stable (see Figure 4 for the difference in the wheels/tires, and Figure 5(a)
for a RTG during operation). OBCs are mounted on concrete or steel pillars.

To avoid operational interruption in case of technical failures and to in-
crease productivity and reliability, two RMGs are often employed at one stack
area (block). Containers which have to be transported from one side of the
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(a) Quay cranes (here: dual-trolley
crane) serving a vessel (courtesy of
HHLA).

(b) Stacking cranes (here: DRMG)
serving a container block in the
yard (courtesy of HHLA).

Fig. 3. Quay cranes and stacking cranes.

(a) Wheel of a RMG on rail (courtesy
of Shanghai Zhenhua Port
Machinery – ZPMC,
www.zpmc.com).

(b) Tire of a RTG (courtesy of ZPMC).

Fig. 4. Different wheels of RMG and RTG.

block to the other are buffered in a block’s transition area. Double-RMG
(DRMG; Figures 3(b) and 5(b)) systems represent a rather new development.
They consist of two RMGs of different height and width that are able to pass
each other. A slightly higher productivity of the system is expected by avoid-
ing a handshake area. Although most of the gantry cranes are man-driven,
the tendency is for automatic driverless gantry cranes which are in use at
some terminals (e.g., Thamesport, Rotterdam, Hamburg). The technical per-
formance of gantry cranes is approximately 20 moves per hour. A move is
defined by a complete pickup and delivery operation, i.e., a gantry crane can
move approximately 20 containers into or out of a block within one hour. This
handling includes the crane movements as well as the movements of the trolley
etc.
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(a) RTG beneath a block serving an
internal truck (courtesy of ZPMC).

(b) DRMG with an AGV in front
(courtesy of HHLA).

Fig. 5. RTG and DRMG.

The latest development is a Triple-RMG with two small ASCs and one
wider and higher ASC, capable of passing over the smaller ones. Operating on
separate sets of rail tracks, the cranes are capable of moving freely within the
block. For example, by 2015 the reorganized Container Terminal Burchardkai
(Hamburg) will be operated as a block system in order to nearly double its
capacity.

Horizontal Transport Means

A variety of vehicles is employed for the ship-to-yard transportation and the
landside operation. The transport vehicles can be classified into two different
types. Active vehicles are able to lift containers by themselves while passive ve-
hicles must be (un)loaded by either quay cranes, gantry cranes or other equip-
ment for lifting. Trucks with trailers, multi-trailers and AGVs (Figure 6(a))
belong to the class of passive vehicles. AGVs are unmanned vehicles able to
drive on a specific road network. The position of an AGV is controlled by elec-
tric wires or transponders in the ground of the network. AGVs can either load
one 40-ft/45-ft container or two 20-ft containers. SCs (Figure 6(b)), forklifts,
and reachstackers belong to the class of active vehicles. SCs are the most im-
portant ones amongst them. They are able to transport containers as well as
to stack them in the yard. SCs are employed for (un)loading containers at the
waterside, handling empty containers and delivering containers to trucks and
trains. Furthermore, gantry cranes can be used for serving trains (Figure 7).

Reachstackers are shown in Figure 8(a), one is serving a waiting truck by
lifting a container. External trucks waiting at a transfer point at the end of a
container block are shown in Figure 8(b).

Recently a system with automated SCs (also called Automated Lifting
Vehicles (ALVs)) was developed for Patrick Terminal/Brisbane, Australia.
Furthermore, automated SCs with restricted height are planned for transport
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(a) AGV in front of quay cranes
(courtesy of HHLA).

(b) SC serving a truck
(courtesy of HHLA).

Fig. 6. Horizontal transport means: AGV and SC.

(a) Crane serving a train (courtesy of
HHLA).

 

(b) Waiting trains under a gantry
crane; a reachstacker on the right
(courtesy of HHLA).

Fig. 7. Transtainment with railway.

purposes only. But their ability for lifting containers allows for decoupling
the work flow of transport and crane activities using buffers at the respective
interfaces.
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(a) Reachstackers and trucks (courtesy
of HHLA).

(b) Trucks (DRMG on the right; quay
cranes in the background) (courtesy
of HHLA).

Fig. 8. Horizontal transport at stack interfaces.

Assisting Systems

Assisting systems play an eminent role for the organization and optimization
of the work flow at container terminals. This is valid especially for communi-
cation and positioning systems.

Regarding routing within terminals, the internal information and commu-
nication systems play a major role in optimizing the terminal operation. The
installation of radio data communication at container terminals started in the
middle of the 1980s. It is the main medium to transmit job data from the
information systems to cranes and transport vehicles. Thus, it is the technical
prerequisite for the implementation of operations research methods for op-
timizing operations. Container positioning systems based upon (Differential)
Global Positioning Systems, dead-reckoning or optical based systems such as
Laser Radar constitute the technical base for the improvement of yard and
stacking logistics. Whenever a container is lifted or dropped, the position of
the container is measured and transmitted to the terminal’s information sys-
tem.

3.2 Container Terminal Systems

A great variety of container terminals exists mainly depending on which types
of handling equipment are combined to form an entire terminal system. All
terminals use quay cranes, either single- or dual-trolley, manual or semi-
automatic. The transport between quay and stack can be performed either
by trucks with trailers, multi-trailers, AGVs or SCs. These vehicles can also
serve the landside operation – except AGVs which nowadays are exclusively
engaged at the quayside. Container stacking is either performed by gantry
cranes, SCs, or reachstackers.

The decision on which equipment is used depends on several factors. Space
restrictions, economical and historical reasons play an important role. Despite
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the variety of equipment combinations, two principal categories of terminals
can be distinguished: pure SC systems and systems using gantry cranes for
container storage. The former are often also referred to as Direct Transfer
System (DTS), the latter is called an Indirect Transfer System (ITS). DTS
requires a larger area due to dedicated lanes required for vehicles to access slot
positions. The ITS minimizes yard area requirements. Thus, terminals in the
Asia-Pacific region with very limited and expensive space typically rely on the
ITS with containers stacked in compact sections and high stacks, respectively.
A decision for more expensive AGVs and automated gantry cranes can be
made in case of high labor costs and new terminal construction. Such systems
are now in operation at the Europe Combined Terminal (ECT, Rotterdam)
and at the Container Terminal Altenwerder (CTA, Hamburg). Because space
is becoming a scarce resource, a tendency for higher storage is to be foreseen.
These two main categories with containers being stacked on top of each other
by either SCs or gantry cranes are common in Europe and Asia. A third type
is an on-chassis system with containers being stored on chassis. This system
is used quite often in North America. It lacks of special stacking cranes, has
simpler stacking logistics and demands for more space. Its logistic aspects are
covered by the other two systems.

Terminals with gantry cranes for container storage apply any kind of trans-
port vehicles mentioned above. Even mixed systems of transport vehicles oc-
cur; e.g., multi-trailers for the quayside and SCs for the landside operation.
Up to now AGV terminals only exist in combination with automatic gantry
cranes. Trains are usually loaded and unloaded by gantry cranes even in case
of SC terminals, although in some cases SCs are also used for this purpose
(see Figures 9, 10).

Stack
with RMG

Quay Crane
Trucks, Train

Vessel

Vehicles

Quayside Landside

Vehicles

Fig. 9. Container terminal system (schematic side view, not true to size) [136, p. 13].
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(a) Terminal with AGVs and DRMGs (courtesy of
HHLA).

(b) Terminal layout (schematic view).

Fig. 10. Layout of an automated terminal (aerial views).
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Literature Review

An ever increasing number of publications on container terminals have ap-
peared. We refer to, e.g., [136] or [107,126,142].

Engineering oriented journals as well as specialized outlets, brochures,
or websites of suppliers of material handling equipment and services in
the container sector provide general information about technical equipment
for container handling (see, e.g., http://www.porttechnology.org, http://
www.kalmarind.com, http://www.zpmc.com or http://www.dakosy.de/en).
For different types of cranes and their use see, e.g., [117, 134] or http://
www.cranestodaymagazine.com. For an overview of handling technologies
for terminal operations see, e.g., [73, 74]. Modern concepts for container
storage and transportation in particular to and from terminals in order
to solve capacity problems of terminals, rails and highways, such as the
automated ‘Freight Shuttle’, ‘CargoMover’, ‘CargoRail’, ‘Auto-GO’, ‘Tran-
sRapid for cargo’ (maglev freight container movement), ‘Grid RAIL’, Auto-
mated Storage/Retrieval Systems (AS/RS) and others, can be found, e.g.,
in [3, 33, 56, 75, 101, 123, 124, 155]. The embedding of handling equipment at
container terminals with respect to general aspects of innovation manage-
ment is considered in [151]. For research on costs and performances of dif-
ferent terminal systems with vehicles such as SCs, AGVs, and ALVs, see,
e.g., [125, 145, 146, 149]. Duinkerken et al. [35] compare three systems with
trucks and multi-trailers, AGVs, and ALVs for overland transport between
container terminals within a large area with several terminals such as Rot-
terdam’s Maasvlakte complex. All these studies are based upon simulation
experiments.

4 Routing and Scheduling at Container Terminals

In this section, as the main part of our chapter, we describe various problems
related to container terminal operations. The specific problems are considered
as they are related to VRPs in one way or the other. Our exposition ‘starts’ at
the quayside and ‘gradually moves’ towards the landside. While some of the
problems at container terminals obviously relate to vehicle routing, others do
not, at least at first glance. Therefore, every subsection explains the respective
problem from a terminal’s perspective first. Then a literature review is pro-
vided emphasizing the specific references. This also includes the description
of those specific problems as VRP or modifications.

The first two types of problems are related to ship planning which con-
sists of three partial processes: berth planning, stowage planning and quay
crane scheduling. Since the planning of a ship’s stowage does not directly re-
fer to routing problems we restrict ourselves to detailed berth and quay crane
scheduling. Berth scheduling and quay-crane allocation problems are related
since the number of quay cranes assigned to a vessel has impact on the ship’s

http://www.porttechnology.org
http://
www.kalmarind.com
http://www.zpmc.com
http://www.dakosy.de/en
http://
www.cranestodaymagazine.com
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berthing duration. Nevertheless, due to the complexity of the integrated prob-
lem, most studies treat the two issues separately.

Moreover, as mentioned before, two types of transport can be distinguished
at a container terminal: the vertical stacking performed by crane-like vehi-
cles and the horizontal transport performed by AGVs, SCs, ASCs, trucks or
(multi-)trailers. The horizontal transport subdivides into the quayside and the
landside transport serving ships or trucks and trains, respectively.

4.1 Berth Scheduling

Berth scheduling or berth allocation is the process of determining the time
and position at which arriving vessels will berth. Before arrival of a ship, a
berth has to be allocated to the ship. The schedules of large overseas vessels
are known about one year in advance. Berth allocation ideally begins before
the arrival of the first containers dedicated to this ship – on average two to
three weeks before the ship’s arrival. Technical data of ships and quay cranes
have to be considered. All ships to be moored during the respective time
period have to be reflected in berth allocation systems. A typical objective
of berth allocation (which in fact impacts or implies routing problems) is the
minimization of the total sum of shore to yard distances for all containers to
be loaded and unloaded. Another closely related objective is the minimization
of distances traveled by the means of transportation (e.g., SCs) serving the
quay cranes. This corresponds to maximum productivity of ship operation.
Automatic and optimized berth allocation is especially important in case of
ship delays.

Berth planning problems may be formulated as different combinatorial op-
timization problems depending on the specific objectives and restrictions that
have to be observed. For example, berth planning can be modeled by means
of the resource constrained project scheduling problem, as a discrete resource
allocation problem, as Multi-Depot VRP with Time Windows (MDVRPTW)
or as a type of continuous line partitioning problem. A drawback of consider-
ing a berth as a collection of discrete berthing locations is that the number
of ships that may be served simultaneously is fixed regardless of ship lengths.
The continuous representation does not have this limitation: for the same
length of berth, more vessels can be served simultaneously if they are shorter.
However, the continuous case requires determining the exact berthing posi-
tion of each ship as a real-valued position on a continuous line. Moreover, the
berthing time for each ship must be determined simultaneously. Restrictions
can reflect special equipment that is needed for certain operations, as it is the
case, e.g., for unavailability due to maintenance or for Roll-On/Roll-Off-ships
where tractor trailers drive into the ship.

Literature Review

Early studies on allocating berths to military vessels propose priority rules,
simulation approaches and mathematical models (see, e.g., [17]). Connections
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of berth planning to assignment problems and especially to the quadratic semi-
assignment problem are emphasized in [63]. Due to the large interdependency,
berth and yard planning are frequently considered in a common optimization
model (see, e.g., [18, 40, 137]).

Cordeau et al. [27] present a tabu search algorithm for solving the berth
allocation problem. The model of [68,70] is considered as well as the formula-
tion as a MDVRPTW. In the MDVRPTW ships represent customers. They
are modeled as vertices in a multigraph. Service time windows on the ships
are expressed by imposing time windows on those vertices. A berth is seen as
a depot that is divided into an origin vertex and a destination vertex. Time
windows on those vertices correspond to the availability period of a berth.
There is one vehicle for each depot. A tour of a vehicle starts and ends at
the vehicle’s depot. The objective is to minimize the weighted sum of service
times.

For additional references dealing with berth planning see, e.g., [68–70]. For
an up-to-date literature review see [67,71,136] or see [30] for an overview with
regard to intermodal transportation.

4.2 Quay Crane Scheduling

Quay crane allocation and scheduling is the process of determining quay cranes
serving a vessel as well as the time and sequence of loading and unloading
movements of quay cranes assigned to holds of a berthing vessel. This crane
split has to reflect several constraints – especially technical data of cranes and
ships moored at a berth in a given period and the accessibility of cranes at
a berth. The number of cranes operable at one berth in general is restricted
because not every crane can be driven to every berth. Furthermore, idle times
are caused by interferences due to spatial constraints, since the quay cranes
are mounted on the same track and cannot cross each other. Only one quay
crane can work on a hold at any time. A minimum safety distance (usually at
least two ship bays) must be maintained between two adjacent quay cranes
and their jibs, respectively.

There is no unique objective for optimization. In terminal practice it de-
pends on the actual situation and the terminal’s goal. In addition to the crane
split, crane allocation decides on the mode how a ship and the ship’s bays are
loaded. A bay can be loaded either horizontally or vertically, starting at the
quay or at the waterside, resulting in four different main modes of loading.
Stowage plan, crane split, and mode of loading together result in a working
instruction defining the loading sequence for every container of a bay. The
routing sequences for the landside transport have to match this loading se-
quence.

In general, research focuses on two types of quay-crane scheduling prob-
lems. In the first type, schedules for berth and quay cranes are simultaneously
defined by specifying the start and end times of (un)loading operations for
each quay crane assigned to a specific ship. Most studies address the second
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type determining detailed schedules for each quay crane with pre-specified
time windows for (un)loading operations at assigned vessels. The formula-
tion of both problem types is usually based upon mixed-integer programming
(MIP) models.

Literature Review

Kim and Park [83] propose a branch and bound algorithm and a greedy
randomized adaptive search procedure (GRASP) to solve the quay crane
scheduling/load sequencing problem. The objective is the minimization of the
weighted sum of the makespan of the container vessel and the total completion
time of all quay cranes. Contrary to Peterkofsky and Daganzo [120] Kim and
Park separate the detailed crane scheduling problem from the berth-scheduling
problem in order to address the quay crane scheduling problem at a more de-
tailed level by taking non-interference constraints into account. However, the
problem is restricted to a single vessel only. Computational complexity of the
studied problem is not discussed.

Non-interference constraints are taken into account in early studies con-
ducted by Lim et al. [97] and Zhu and Lim [156] (see also [98–100] as well
as [157]). In [97] the problem is modeled as bipartite graph matching prob-
lem taking cranes and jobs as vertices and defining the weights of connect-
ing edges as crane-to-job throughput. A dynamic programming algorithm is
given to solve problems with simple spatial constraints in order to find a static
crane-to-job matching with maximum throughput. Furthermore, the problem
is extended towards considering more complex constraints. This NP-complete
problem is solved by a probabilistic tabu search and a squeaky wheel opti-
mization with local search. Since the model is based upon a ‘profit value’ of
a job which is difficult to define in practice, the implementation of the study
in real-world terminals seems to be difficult. Furthermore, precedence con-
straints between tasks are not considered. The study is augmented in [157]
with regard to real-world practice aiming at completion of all the jobs with
respect to certain criteria instead of only maximizing the total throughput
without taking time into consideration. Thus, the objective is to minimize
the latest completion time of all the (non-preemptive) jobs, which come in
different sizes.

Ng and Mak [113] propose a heuristic for solving the quay crane sched-
uling problem. The problem is decomposed by partitioning the ship into non-
overlapping zones. The resulting subproblems for each possible partition can
be solved optimally by a simple rule. Tight lower bounds are found by enhanc-
ing a known algorithm. Typical terminal operations data are used to generate
a set of test problems for evaluation of the heuristic algorithm’s performance.
The heuristic solutions are on average 4.8% above their lower bounds.

Moccia et al. [104] mention the difference between the time precedence
constraint of the quay crane scheduling problem and the route precedence
constraint in the PDP or the Dial-a-Ride Problem (DARP). They formulate
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the quay crane problem as VRP with side constraints including precedence re-
lationships between vertices. The problem formulation strengthens the model
of Kim and Park [83]. The objective is to minimize the completion time of a
vessel and the idle times of cranes caused by crane interferences. Large problem
instances can be solved with the proposed branch-and-cut algorithm. Several
families of valid inequalities are inserted for taking advantage of the prece-
dence constraints between vertices. The paper indicates that the developed
algorithm outperforms the algorithm proposed in [83].

Lee et al. [91], stimulated from [83], study quay crane scheduling taking
non-interference constraints into account. The objective is the minimization
of the makespan of handling one single container vessel (i.e., the latest com-
pletion time among all holds). The proposed genetic algorithm (GA) obtains
near optimal solutions for the MIP model and shows efficient and effective
performance in computational experiments.

Some new ports have begun to use a dual cycle strategy for operations
of quay cranes based on experience. Only few scientific studies on dual (or
double) cycling of quay cranes are published. Studies conducted by Goodchild
[43–45] and Goodchild and Daganzo [46–48], respectively, are the first ones.
They provide upper and lower bounds of the dual cycle model. Compared
to single cycle mode, the dual cycle operation doubles the number of quay
crane tasks in a cycle by allowing to carry a container while moving from
the apron to the ship (loading move) as well as from the ship to the apron
(unloading move). Thus, empty moves of the single cycle mode are used for
carrying a container as well. The problem is formulated as a two-machine
flow shop scheduling problem assuming that one quay crane consists of two
separate cranes, one for loading, the other for unloading. This strategy aims at
minimizing a ship’s turnaround time by improvement of efficiency and increase
of throughput. Even with constraints due to hatch covers the strategy can lead
to a gain in productivity and a higher utilization of the expensive quay cranes.
The strategy is a low cost method for increasing capacity since no additional
infrastructure is required.

Zhang and Kim [154] reformulate the dual cycle scheduling problem as
MIP model with additional focus on twin lift activities, i.e. the handling of
two 20-ft containers at the same time (instead of one 40-ft container; the
newest development are cranes able to lift two 40-ft containers, see, e.g.,
www.zpmc.com). The general problem is decomposed in order to account for
real situations regarding to hatch covers. The approach differentiates between
an inter-stage sequencing (hatch sequencing) and an intra-stage sequencing,
i.e. the sequencing of crane tasks in the same hatch. The model is solved by
a suggested heuristic algorithm hybridizing a gap-based neighborhood local
search technique. Numerical experiments are conducted with five real cases
from Busan for showing effectiveness of the approach. Optimal solutions are
found in some cases. Current real scheduling solutions in the Busan port are
greatly outperformed. Future research will focus on enhancing the approach
by considering multi quay cranes with interference constraints.

www.zpmc.com
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4.3 Horizontal Transport at the Quayside

For ship (un)loading containers have to be transported from the stack to the
ship and vice versa. Transport optimization at the quayside aims at reducing
transport times as well as synchronizing the transports with the activities of
the quay cranes. A general aim is to enhance crane productivity. While techni-
cal data of the cranes allow for a performance of 50–60 boxes per hour the real
performance at operation is only in the range of 22–30 boxes per hour. This
reduction is caused by unproductive times like breaks during shifts, moves
of hatch covers and lashing equipment, technical or operational disturbances
and congestions occurring for the horizontal transport. A gain in productivity
cannot be necessarily achieved by increasing the fleet’s size or speeding up
transport vehicles, because the number of congestions at the cranes and in
the yard increases more than proportionally. Additionally, more vehicles in-
duce more costs and reduce economic efficiency of ship operation. Hence, an
optimization system has to cope with the minimization of congestions.

At the quayside, different modes of transport and strategies of allocation
of vehicles to cranes can be distinguished. In single-cycle mode the vehicles
serve only one crane. According to the crane’s cycle they either transport
discharged containers from the quay to the yard or export containers from
the yard to the crane. In dual-cycle mode the transport vehicles serve several
cranes, thus combining the transports of export and import containers. Ad-
ditionally, transport vehicles can either be allocated exclusively to one crane
(gang structure) or to several cranes and ships (pooling).

Depending on the mode, different potential for transport optimization
arises. The single-cycle mode for import containers does not offer optimiza-
tion opportunities, but export loading can be optimized at the transport level.
In general, the transport sequence differs from the loading sequence which is
determined by the stowage plan, the crane split and the crane’s loading strat-
egy. The transport sequence has to reflect different distances, yard reshuffles
and special containers. All effects result in additional transportation times.
Therefore, the transport sequence has to be altered to ensure the right order
of the loading sequence. Idle times of the cranes and vehicle congestions at
cranes and stacks have to be avoided. The dual-cycle is more complex since
the allocation of transport vehicles to cranes is not fixed. But operating ve-
hicles in a pool for serving several cranes in loading or discharging modes is
more efficient. This mode reduces empty distances and transportation times.
Furthermore, crane waiting times can be reduced if containers can be buffered
under the crane’s portal.

In terminal practice, automatic transport vehicles are always pooled
whereas manned equipment usually operates at one crane (fixed allocation).
If the loading capacity exceeds one container a multiple load mode is possible.
Multiple load for AGVs offers potential for optimization. But in practice, it
rarely occurs because it is difficult to organize. A main task of the control
system is to synchronize manned and automated equipment in a way that the
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containers arrive ‘in-time’ at the equipments’ interfaces in order to minimize
the idle times of the cranes (lateness of container deliveries for the cranes)
and the travel times of the transport vehicles. Due to the ship operations’ dy-
namic, online optimization is necessary. Often the (un)loading sequence must
be altered immediately, forced by disturbances in operation as result of tech-
nical problems with quay cranes or horizontal transport vehicles or due to
crane driver’s ad hoc decisions. Such reasons force (re)calculating sequences
only for few containers. However, since AGVs run slower than yard trailers,
the fleet size of AGVs is usually larger than the fleet size of yard trailers in
order to avoid bottlenecks. Therefore, heavy AGV traffic is produced. Proper
handling of AGV traffic is crucial for efficient container handling.

Literature Review

Automated Guided Vehicles

The number of references for AGVs is enormous as AGVs are commonly used
in warehouse operations and flexible manufacturing systems (see, e.g., [121]
for a survey of scheduling and routing algorithms for AGVs and classification
of algorithms, or more recently [61, 62, 92]).

Vis et al. [148] determine the fleet size of AGVs with a heuristic based upon
the maximum flow problem. The underlying flow network is based upon the
defined time when a transfer job takes place for moving a container from one
place to another. Since the network will become very large in real-world envi-
ronments this job definition seems to be inapplicable. Another disadvantage
is the restriction to single-trailers with only unit capacity (see, e.g., [116] for
an extended yard trailer routing). Multi-trailers with capacity of more than
one container are seen at modern terminals (such as the ECT, Rotterdam).
Similar to [148], Bish [8] aims at minimizing the turnaround time of ships by
means of dynamic job assignment to AGVs.

Kim and Bae [78] suggest a network-based MIP model for AGV dispatching
and provide a heuristic algorithm. The objective is the minimization of the
total idle time of a quay crane resulting from late arrivals of AGVs as well
as the associated total travel time. It is assumed that storage locations of
containers and schedules for (un)loading operations by quay cranes are given.
An extended approach with a pooled dispatching strategy taking multiple
quay cranes and dual-cycle operations of AGVs into account is proposed in
[4, 79].

Grunow et al. [49, 50] focus on dispatching multi-load AGVs. A flexible
priority rule-based approach is proposed and compared to an alternative MIP
formulation in different scenarios. Reduction of AGVs’ lateness in case of
multi-load mode is shown and an improvement of the terminal’s overall per-
formance is expected. In addition, an MIP model is developed that allows
determining optimal solutions for small problem instances. For real applica-
tions a hybrid approach using the MIP combined with fast heuristics on some
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special dispatching requests is suggested. A different MIP formulation can be
found in [128]. In [51] a scalable simulation model is used for investigation
and evaluation of dispatching strategies. The developed pattern-based off-line
heuristic with dual-load AGVs outperforms conventional on-line heuristics
adopted from flexible manufacturing systems.

Möhring et al. [105] propose a real-time algorithm for routing AGVs. Col-
lisions, deadlocks and livelocks are avoided at the time of route calculation.
The approach is based upon the determination of a shortest path with time
windows for each request and a subsequent readjustment of the time windows.
Computation times for the conflict-free routing are appropriate for real-time
applications. In terms of overall transit times the algorithm is superior to a
static approach used at the CTA (Hamburg), in particular for scenarios with
many AGVs causing heavy traffic.

Briskorn et al. [15,16] propose a dispatching strategy for AGVs with a job-
vehicle assignment that is based upon a model formulation with rough analogy
to inventory management. The problem can be solved exactly. A simulation
study shows higher productivity at a terminal applying this strategy compared
to conventional due-date-based strategies.

Current research on deadlock handling at automated container terminals
can be found in [80, 93]. In the former paper, Kim et al. propose an efficient
algorithm for deadlock prediction and prevention in AGV systems. The ap-
proach guarantees deadlock-free schedules for AGVs to cross the same area at
the same time. The method is evaluated in a simulation study showing satis-
factory results. Average speed of vehicles, space utilization and computational
time imply potential for the method to be used in practice. Since common lit-
erature focuses on deadlocks only with regard to routing of AGVs and their
guide path, Lehmann et al. [93] address blocking effects between vehicles and
handling units. They conduct a comprehensive simulation study. It shows the
suitability of different methods for detection and resolution of deadlocks oc-
curring in the phase of resource assignment. The proposed deadlock-handling
scheme is seen as ‘a first step towards integrated scheduling and dispatch-
ing approaches for equipment units in highly automated container terminals.’
The approach with resolving deadlocks rather than entirely avoiding them is
preferred as being ‘the most appropriate alternative, as more conservative ap-
proaches would result in lower equipment utilization.’ It is pointed out, that
the implementation of the proposed methods into the logistics control soft-
ware of automated terminals is necessary (if not economically viable) in order
to avoid a downtime of an entire terminal.

Duinkerken et al. [36] compare different trajectory planning strategies for
AGVs by means of simulation. Experiments show high potential for a dynamic
free ranging approach that improves the system’s transport capacity.

Straddle Carriers

Obvious routing problems at container terminals are present in SC operations.
Since SCs are engaged in different types of complicated container handling,
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their efficient routing is achieved by minimization of empty runs. Only a few
papers address the routing problem regarding SCs.

Steenken [133] and Steenken et al. [135] examine the routing of multiple
SCs working on tasks with time windows. The problem is similar to the yard
trailer routing problem addressed in [116] since multiple tours are formed in
both problems. However, the SC routing is much simpler due to the single
capacity of a SC. The objective is the minimization of empty-travel distances.
Different algorithmic approaches known from machine scheduling and solv-
ing the TSP, RPP, etc., respectively, are examined. In [133] the problem is
modeled and solved as a linear assignment problem combining movements for
export and import containers. The percentage of the number of empty drives
is reduced from 41% to 28%. A model calculation shows savings of 14.5% in
empty-travel distances. In [135] the problem is formulated as a network prob-
lem with minimum costs. Considerable gains of productivity can be obtained
as well as savings of 20−35% in empty-travel distances. Furthermore, results
and the architecture of an implementation are presented in [134]. All jobs for
truck, rail and yard operations are optimized by a hinterland routing system.
A master routine integrates these different working areas and dynamically de-
termines the number of SCs taking the current job volume and workload in
each area into account. A gain in productivity of about 50% is reported as
well as a reduction of the control staff from 10 to 2 employees per shift.

Kim and Kim [82,86] propose a routing algorithm for a single SC loading
export containers out of the stack onto waiting yard trailers. The approach
is basically the same to their studies regarding transfer cranes [81, 85] (see
p. 576). It is assumed that a single SC is used and that the work schedule for
a quay crane is already given. The objective is the minimization of a SC’s
container handling time by minimizing its total travel distance. In [86] the
number of containers to be picked up at each yard bay is determined in a first
stage. The optimal sequence of yard bays to be visited by the SC is found
in a second stage. This optimal route of a SC is determined by dynamic pro-
gramming. In [82] a beam search heuristic is used for determining the routing
of a single SC. The performance of the algorithm is tested by solving 360
sample problems with different number of blocks used for all containers of a
vessel (degree of dispersion of containers in a yard) and different number of
partial-tours in a work schedule. Furthermore, the results are compared with
the optimal solutions for seven examples with an average objective value being
14.3% above the corresponding optimal objective value. A practical example
with two SCs is also solved. The extension to multiple SCs and sequencing of
individual containers is identified as promising topic for further research. Ad-
ditional constraints from real-world loading operations have to be considered.

Kim and Kim [87] summarize the problem and solution approaches of
[82, 86] as well as of [81, 85] for general yard-side equipment such as SCs
and gantry cranes. Their experiments show that the proposed beam search
algorithm outperforms a GA. The pick-up sequence for individual containers
in a bay remains undetermined.
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Thurston and Hu [139] provide an agent based approach focusing on the
quayside operations. It is assumed that the discharge of a vessel has to be
completed before the loading operations can start. The approach provides
insight into job assignments and routing for SCs. The system is evaluated in
a simulation experiment based upon random data.

Das and Spasovic [31] present a scheduling procedure for SCs. An assign-
ment algorithm dynamically matches SCs and trucks as each become avail-
able. The objective is the minimization of empty travels and delays in servic-
ing customers. The superiority of the proposed procedure over two alternative
scheduling strategies is shown by tests with a simulation model of a real-world
system (New York/New Jersey).

Böse et al. [12] investigate different dispatching strategies for SCs to gantry
cranes in order to reduce delays of quay cranes and, therefore, the vessel’s
turnaround time at port by maximizing productivity of gantry cranes achieved
by an efficient schedule of given SCs. Pooling of SCs and double-cycle mode
of carriers are considered. Storage locations of containers are assumed to be
given. Thus, the problem is to assign delivery tasks of (un)loading containers
to SCs, basically the same as proposed by Kim and Bae [79] but without
considering travel times of vehicles. The allocation problems are solved using
evolutionary algorithms in computational experiments based upon real data
(without taking stochastic influence into account). Considering an online opti-
mization setting, numerical results for real data may show that the number of
sequenced containers need not have a large influence when the carriers operate
in double cycle mode [102].

Nguyen and Kim [115] discuss the dispatching of ALVs. Information about
locations and times of future delivery tasks is utilized in an MIP model aiming
at an optimal assignment of delivery tasks to ALVs. The NP-hard problem
is formulated as a scheduling problem with precedence and buffer constraints
similar to the multiple TSP with precedence constraints and time windows.

4.4 Horizontal Transport at the Landside

The landside transport incorporates rail operation, truck operation and inter-
nal transports. A simple strategy is to allocate a given number of vehicles to
each operation sphere appropriate to the workload expected. A more advanced
strategy is the pooling of vehicles for all these working areas.

Trains are commonly operated by gantry cranes while the transports be-
tween the stack and the railhead are performed by SCs, trucks and trailers
or similar equipment. Containers are buffered alongside the railhead or on
trailers. Sometimes pure SC operation with SCs driving over the wagons can
be observed.

Operation at the railhead is analogous to the quayside operation. The aim
of the rail operator is to minimize shunting activities during train transport
while the aim of the terminal operator is to minimize the number of yard
reshuffles, the crane waiting times as well as the empty transport distances
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of cranes and transport vehicles by synchronization of the equipment (in par-
ticular in the complex dual-cycle mode). Based upon a stowage instruction
indicating wagon positions for container attributes, the yard situation can be
reflected.

Trucks arrive at the terminal’s in-gate. Data of the containers are fed
in the terminal’s information system. Trucks then drive to transition points
for being served by terminal’s equipment. Large container terminals serve
some thousand trucks a day. A truck driving schedule prescribes which points
have to be accessed in which sequence. The arrival time of the trucks at the
transition points cannot be precisely foreseen. Hence, transport jobs for the
internal equipment cannot be released until the truck arrives at the transition
point. Optimization has to be very flexible and fast, online optimization is
necessary. Objectives at the truck operation area are minimization of empty
distances and travel times. Empty distances can be minimized if transports
of export containers from the transition point to the yard are combined with
transports of import containers from the yard to the interchange point.

Some of the above mentioned problems are generally addressed in the
truck and trailer (or tractor-trailer) vehicle routing problem (TTVRP). Three
subclasses of VRP are similar to the TTVRP: the VRP with time windows
(VRPTW; for some recent publications see, e.g., [13, 14]), the vehicle sched-
uling problems (VSP; see, e.g., [5,152]) as well as the truck and trailer routing
problem (TTRP; see, e.g., [20]).

The TTRP is an extension of the basis VRP occurring in many real-life
applications. It involves pickup and delivery processes and has characteristics
of the VRP with backhauls (VRPB) (see, e.g., [144]). It is a multi-level op-
timization problem combining a pure truck route, a pure vehicle route and a
complete vehicle route. The latter consists of a main tour traveled by a com-
plete vehicle (truck and trailer) and one or more sub-tours traveled by a truck
alone. A sub-tour starts from and returns to a customer found on the main
tour. The trailer is parked at this customer during the truck’s sub-tour. Inter-
nal movements occur because of different reasons. If sheds or depots for empty
containers exist at a terminal additional transports have to be performed: im-
port containers to be stripped have to be driven to the respective shed while
packed containers have to be driven to the export stock. Empty containers
are needed at the sheds for stuffing purposes while unpacked containers have
to be stored in the empty depot or in the yard. Because of imbalances, empty
containers are needed for ship, train and truck loading and have to be trans-
ported to the respective yard or transition area. Additional transports occur
when containers assigned for a ship’s departure are left back because of ship’s
overbooking. A reorganization of the yard then has to be performed. Char-
acteristic for these types of transports is that sequences of jobs have to be
performed. Sometimes time windows have to be kept. In general these kinds
of transports are not as time critical as those for the ship or truck opera-
tion. Therefore, terminals try to execute them at times of less workload. The
objective is to minimize (empty and loaded) travel times.
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Unlike the VRPTW, the TTVRP incorporates limitations in resources of
trailers and outsourcing of jobs. Despite analogous concepts of a trip in the
VSP (consisting of a pair of source and destination, each defined by starting
and ending time) and a job in the TTVRP, the VSP does not take trailer
type constraints into account. In the VSP, a customer can be visited more
than once or not at all, contrary to the VRP assumptions. In the TTVRP,
trucks have to visit trailer exchange points in order to pick up the correct
trailer type depending on the current job to be serviced. This approach is
different from the TTRP. Furthermore, the TTRP does not allow outsourcing
of jobs to external companies.

Literature Review

While the basic VRP and lots of variants have attracted the attention of many
researchers, only a few papers are focused on problems with trucks and trailers
(see, e.g., [20, 41, 127, 129, 138]). To the best of our knowledge the number of
papers focusing on trucks and trailers at container terminals is very limited.

Chao [20] tests a tabu search method for improving solutions that are
initially found by a construction method. Twenty-one TTRP instances are
considered based upon seven basic VRPs from the well known CMT-set of
test problems [26]. They differ in the number of customers, the number of
trucks and trailers and their capacities as well as the ratio of demand to ca-
pacity. The objective is to minimize the total distance traveled, or to minimize
the total cost incurred by the fleet. The solution construction approach con-
sists of three steps: the relaxed generalized assignment of customers to one
of the three types of routes, the route construction using a cheapest insertion
TSP heuristic [11] and a descent improvement with four sub-steps. The pro-
posed tabu search with a frequency-based tabu restriction is coupled with the
deviation concept from deterministic annealing. It aims at improvement of the
initial solution of the construction step. Furthermore, a new type of tabu re-
striction is developed in order to implement intensification and diversification
strategies for accentuating and broadening the search in the solution space.
The computational experiments indicate that the proposed methods can solve
the TTRP ‘consistently, effectively and efficiently’.

Nishimura et al. [116] propose a trailer assignment method for solving the
dynamic trailer routing problem at container terminals where yard trailers are
normally assigned to specific quay cranes until the work is completed. The pa-
per shows a new dynamic routing scheme for saving yard operation time and
container handling costs. The paper examines the problem of pickup and de-
livery with multiple tours being independent and not connected at a depot
(like in the standard PDP). The trailer routing is defined with a given set
of calling vessels. A new routing decision is made when a ship changes its
operation task, i.e. starts loading or discharging. A fleet of trailers has a set
of tours connecting quay cranes and stack points in the yard. A static tour
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is a shuttle transit between waterside and landside transfer location. For ex-
ample, a single-trailer picks up a container at a quay crane in discharging
and delivers it to an assigned stack area for unloaded containers and finally
returns to the quay crane. A trailer’s usage is much more flexible in a dy-
namic tour with moving the trailer to a different unloading quay crane than
before or to a stack area for export containers in order to transport a con-
tainer to a quay crane in loading operation. The most flexible itineraries with
mixtures of pickup and delivery can be achieved with multi-trailers in dy-
namic tours. Computational experiments on test data show that the dynamic
trailer assignment is superior to the static version in terms of capital and
operating terminal costs. The fleet size can be reduced due to shorter empty
travel distance of trailers. The dynamic assignment principle is suggested to
be implemented for both tactical and operational decisions within terminal
management. For planning new terminals, ship handling and trailer routing
can be simulated in order to determine the trailer fleet size. Simulation of
trailer movements can also be useful for stevedoring companies making up a
daily/weekly trailer work schedule given a prospective cargo handling profile.
A drawback is the complexity of the itineraries. Errors of trailer drivers may
increase. Otherwise, these types of errors may be reduced with application of
modern communication and tracking systems.

Koo et al. [88] focus on a special problem occurring at Busan with its very
limited terminal area. A large number of containers is moved between on-dock
container yard and off-dock yard by truck causing tremendous traffic problems
in the city as well as increasing logistic costs. The paper deals with a static
transportation problem with all transportation jobs being ready to be picked
up at the beginning of the planning horizon. Travel times and (un)loading
times are deterministic and known in advance as well as the number of con-
tainers to be moved. The environment is referred to as a tractor-trailer trans-
portation system or a static DARP with multiple vehicles of single capacity,
similar to the PDP with sequence dependency. The goal is to find the small-
est required fleet size and a route for each vehicle to fulfill all transportation
requirements within the static planning horizon. A two-phase fleet sizing and
vehicle routing procedure incorporating a tabu search is presented. A compu-
tational study shows solutions of good quality in comparison with two other
existing methods.

Ng and Mak [110] propose an algorithm for sequencing trucks that have
to enter the working lane adjacent to a yard block with export containers.
The objective of this approach is to reduce congestions of the working lane
by minimization of the total time required to serve all empty trucks that are
dispatched to a yard block.

Ng et al. [114] address the problem of scheduling a fleet of trucks at a
terminal in order to minimize the makespan. The trucks have to perform
a set of transportation jobs with sequence-dependent processing times and
different ready times. The formulated NP-hard MIP problem is solved by use
of a GA. The GA’s performance is enhanced by incorporating instance-specific
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information in the search process. In the truck scheduling problem, the travel
time between two locations, the truck’s ready time, the job’s ready time, and
the duration of each job are taken into account. Useful information is inherited
by a developed greedy crossover scheme aiming at reduction of computational
effort. This novel scheme is tested against six popular schemes which have been
shown in other studies to be effective for solving parallel machine scheduling
problems, VRPs, and the TSP (partially mapped crossover, order crossover,
position-based crossover, order-based crossover, a fast union crossover called
‘union crossover #2’, and enhanced edge crossover). The performance of the
crossover schemes is evaluated by solving a set of randomly generated test
problems based on real terminal operations data. Therefore, the test data
reflect typical technical figures, e.g., a truck speed of 15 km/h, 2 minutes
handling time for a quay crane per container, 4 minutes for a yard crane etc.
The new GA’s solutions are on average 4.05% better than the best solutions
of the other six GAs.

4.5 Transport by Stacker Cranes

Optimization of transports performed by gantry cranes operating in stacks
focuses on sequencing of jobs and their assignment to the respective crane.
Priority of jobs have to be taken into account. Transport optimization for
stacker cranes reduces to the same requirements as for the horizontal trans-
port. Comparative algorithms can be applied. A common objective is the
minimization of the waiting times of the transport vehicles at the stack or
bay interfaces and the travel times of the cranes. Crane operations at the
stack and operations at the quayside or landside are interdependent. Since
traffic at the interfaces changes rapidly online optimization is demanded for
and job sequences have to be recalculated whenever a new job arises.

Literature Review

Only a few papers address the routing problem regarding gantry cranes at
stacks within container terminals.

Kim and Kim [85] propose an algorithm for a single gantry crane loading
export containers out of the stack onto waiting yard trucks. The load plan (a
number of sequences of containers that have to be picked up together) and the
bay plan (mapping of the physical location of containers in the stack yard)
are taken into account. The objective is the minimization of the crane’s total
transfer time including set-up time at each yard bay and travel times between
consecutive yard bays. It is assumed that a single transfer crane is used and
that all containers for loading are located in one block or adjacent blocks in the
travel direction. The MIP formulation is solved by decomposing the problem
into a transportation problem and a sequencing problem. It is proven that it is
sufficient to solve the sequencing problem only for the basic feasible solutions
of the transportation problem. The basic feasible solution with the minimum
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cost is selected. The model’s solution determines the sequence of bay visits
for pick-up operations and the number of containers to be picked up at each
bay simultaneously. It is stated that the developed algorithm may solve prob-
lems of practical size within several seconds efficiently. Neither complexity of
the problem nor computational results are discussed in the paper. The same
algorithm is used for solving the MIP of a ‘practical problem of a moderate
size’ in a more detailed paper [81]. The load sequence of individual containers
within a specific bay remains undetermined. It is pointed out that the ex-
amined load planning problem is different from similar problems like, e.g.,
routing of a manual picker within a simple warehouse (see, e.g., [42,55,122]),
TSP or VRP because the crane is allowed to revisit a yard bay multiple times.
Furthermore, the number of containers to be picked up at each visited bay
has to be determined in addition to the visiting sequence of the bays. The
authors published similar papers with regard to SCs [82, 86] (see p. 571).

Ng and Mak [111, 112] address the problem of scheduling a yard crane
performing a given set of (un)loading jobs with different ready times. The
objective is the minimization of the sum of job waiting times. A branch and
bound algorithm is proposed for solving the NP-complete problem.

Most papers focus on operations of a single crane. Routing or scheduling
algorithms for multiple cranes are hardly addressed in literature.

A simulation study on operational rules for DRMGs is shortly discussed
by Kim et al. [84]. Crane dispatching rules with and without different roles
for the different cranes and sequencing roles are tested. A second simulation
study focuses on determining the storage location of arriving containers.

DRMGs are also examined in [37]. Solution approaches are developed for
specific sequencing and scheduling problems in order to take advantage of us-
ing the two cranes being able to overtake each other and increase the terminal’s
throughput. Different priority rules are tested in simulation experiments.

Saanen et al. [126] compare three different configurations with RMGs: the
single RMG, the DRMG and the twin RMG (with two separated RMGs, one
serving the waterside, the other serving the landside). They simulate different
stacking alternatives and evaluate throughput, flexibility, complexity, opera-
tional cost and investment cost. Overall, the DRMG appears to be the best
performing one, but it needs the highest amount of space.

Ng [109] studies the problem of scheduling multiple yard cranes in order
to minimize the sum of truck waiting times in a yard zone. The problem
is similar to the problem of scheduling DRMGs due to inter-crane interfer-
ence with blocked cranes to be avoided. But it is not identical since DRMGs
can pass each other on separated lanes, whereas in [109] two or even more
yard cranes share a single bi-directional traveling lane in a yard zone. The
NP-complete scheduling problem is modeled as an integer program. A dy-
namic programming-based heuristic and an algorithm to find lower bounds
for benchmarking the heuristic’s schedules are developed. Computational ex-
periments show effectiveness of the heuristic, providing solutions on average
7.3% above their lower bounds. In [109] it is stated that ‘it is clear from the
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literature review that no studies have been conducted on scheduling of multi-
ple yard cranes. Given the importance of yard crane operations on a terminal’s
productivity, effective yard crane schedules are needed.’

Lee et al. [90] propose a simulated annealing algorithm for solving the
problem of scheduling two yard cranes. The two gantry cranes serve the load-
ing operations of one quay crane at two different container blocks by picking
up a desired container from a container block and loading it onto a yard truck
waiting aside the block. The model aims at the minimization of the total load-
ing time at the stack area. The schedule determines the container bay visiting
sequences and the number of containers picked up simultaneously. Compu-
tational experiments show that the completion time found by the proposed
algorithm is on average 10.03% above the lower bound.

5 Conclusion and Outlook

The importance of optimizing logistic operations at seaport container ter-
minals is reflected in an increasing number of theoretically and practically
oriented papers during the last decade. Research addresses more or less all el-
ements of the transport chain within a terminal as well as outside a terminal,
with regard to assignment problems as well as routing and scheduling prob-
lems. As we have seen in this chapter, various problems related to container
terminal operations come along as vehicle routing problems, either directly or
in disguise.

All planning levels, strategic, tactical, and operational are taken into ac-
count. Modern information and communication technology enables the appli-
cation of optimization methods in different areas of real terminals. However,
the specific characteristics of a container terminal usually hinder a direct ap-
plication of models being abundant in standard literature and demand for
model adjustments.

High investments and high operating costs for ships and port equipments
as well as severe and increasing competition between container terminals force
operators to reduce unproductive demurrage at the port. Furthermore, a new
challenge is the handling of upcoming mega-containerships with a capacity of
more than 10,000 TEU. Keys to efficiency seem to be the automation of in-yard
transportation, storing and stacking as well as the application of optimization
methods. The application of mechanisms for intelligent routing and sched-
uling of vehicles is part of this strategy and allows for economic utilization
of expensive equipment and space. Furthermore, a terminal’s competitiveness
includes issues of waterside operations and internal logistics as well as landside
operations, transport connection and routing within the surrounding area.

Currently, most of the literature focuses on separated problems at a ter-
minal, and mathematical models abstract from the entire transport chain and
an intermodal network. For example, the crane split is modeled and crane
operation is optimized without taking horizontal transport into account. But
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an integrated view may show, that the optimal crane split provokes conges-
tions since the transport vehicles cannot access the cranes easily. Nevertheless,
despite simplifications the models of restricted problems often remain quite
complex. Without any doubt, they provide valuable insight and understand-
ing of handling processes and problems within the entire system of a container
terminal. While the need for holistic approaches and integrated optimization
of operations in different terminal areas is identified, it is extremely difficult to
solve real-world problems due to their complexity. Solving integrated models
is beyond today’s computing capability. Therefore, decomposing the prob-
lem into several related smaller models is a common approach (see, e.g., [9]).
Murty et al. [107] propose an approach with an integrative decision support
system. Up to now there are only a few studies on integrated problems. For
example, Park and Kim [119] present an integrated approach with regard to
berth scheduling and quay crane allocation. Furthermore, multi-agent sys-
tem approaches with several agents representing different operation areas and
equipment are presented, e.g., by Meersmans and Wagelmans [103], Thurston
and Hu [139], Henesey et al. [60], or Franz et al. [39]. Veenstra et al. [143]
analyze economic aspects of a container terminal simulation. The simulation
concepts help to display the interdependence of different decisions and can be
used to gain insight into their influence on the overall performance of a ter-
minal. Future research will focus on the integration of advanced operational
and financial strategies like dynamic pricing into their prototypic simulator.
Ottjes et al. [118] focus on the integrated design and evaluation of a set of in-
teracting terminals (multiterminal systems) and propose a generic simulation
model structure. The approach has been applied to the existing and future
terminals in the Rotterdam port area. Chen et al. [21] propose a tabu search
algorithm for the integrated scheduling problem of various kinds of container
handling equipment. The objective is to minimize the makespan regarding
handling a given set of vessels.

The objective of increased terminal performance demands for increased in-
vestigation of integrated optimization. Novel equipment, e.g. the Triple-RMG
as well as cranes with twin-lift operation, or handling concepts for the con-
tainer terminal of the future such as the floating crane [2], floating quay [1]
or offshore container terminals must be complemented with software for opti-
mized control in order to obtain the desired and expected gain in productivity.
The need for online optimization is challenging as well.

Interesting components of an integrated approach may be methods receiv-
ing less consideration in container terminal oriented literature so far. Up to
now, the problem of stochasticity is usually tackled by simulation. Addition-
ally, stochastic optimization as well as scenario based planning may be fruitful
research areas. The focus on extended variants of the VRP including essential
aspects of real-world problems (referred to as Rich VRP; see, e.g., [57, 59])
could be a rewarding attempt. For instance, approaches such as VRP with
time windows and stochastic travel times or with stochastic customers (see,
e.g., [7,153]) may be useful and applicable at container terminals. It seems to
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be helpful for future research to have test and benchmark data for simulation
models as well as for optimization algorithms (see, e.g., [58]).
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