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Abstract: Human behavioral modeling requires an ability to represent and manipulate 
imprecise cognitive concepts.  It also needs to include the uncertainty and 
unpredictability of human action.  We discuss the appropriateness of fuzzy sets for 
representing human centered cognitive concepts.  We describe the technology of fuzzy 
systems modeling and indicate its the role in human behavioral modeling.  We next 
introduce some ideas from the Dempster-Shafer theory of evidence.  We use the 
Dempster-Shafer theory to provide a machinery for including randomness in the fuzzy 
systems modeling process.  This combined methodology provides a framework with 
which we can construct models that can include both the complex cognitive concepts 
and unpredictability needed to model human behavior.  

1 Human Behavioral Modeling 

Two important classes of human behavioral modeling can be readily identified.  The 
first is the modeling of some physical phenomenon or system involving human 
participants.  This is very much what is done in social sciences and is clearly inspired by 
the classical successful use of modeling in physics and engineering.  The modeling here 
is from the perspective of an external observer.  We can refer to this as E-O modeling.  
The second type of modeling, of much more recent vintage, can be denoted as I-P 
modeling as an acronym for Internal Participant modeling.  This type of modeling has 
arisen to importance with the wide spread use digital technology.  It is central in the 
construction of synthetic agents, computational based training systems and machine 
learning.  It is implicit in our attempts to construct intelligent systems.  Here we are 
trying to digitally model a "human" or "human like" agent that interacts with some more 
complex environment which itself can be digital or real or some combination. 

In either case, and perhaps more so in the I-P situation, human behavioral modeling 
requires an ability to formally represent sophisticated cognitive concepts that are often 
at best described in imprecise linguistic terms.  Set based methods and more particularly 
fuzzy sets provide a powerful tool for enabling the semantical modeling of these 
imprecise concepts within computer based systems [1-2].  With the aid of a fuzzy set we 
can formally represent sophisticated imprecise linguistic concepts in a manner that 
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allows for the types of computational manipulation needed for reasoning in behavioral 
models based on human cognition and conceptualization.  Central to the use of fuzzy 
sets is the ability to capture the "grayness" of human conceptualization.  Most concepts 
used in human behavioral modeling, both from the E-O and I-P perspective, are not 
binary but gradually go from clearly yes to clearly no.  Furthermore in discussing the 
qualities of important social relationships such as political ties, kinship obligations and 
friendship we use attributes such as intensity, durability and reciprocity [3].  These 
attributes most naturally evaluated in imprecise terms.  In modeling the rules 
determining the behavior of some simulated agent we must have the ability to model the 
kinds fluidity central to the human capacity to adapt and deal with new situations. 

Fuzzy systems modeling (FSM) [4] is a rule based technique that allows for formal 
reasoning and manipulation with the types of imprecise concepts central to human 
cognition.  It can use a semantic understanding of an age related concept such as old in 
order to be able how well a particular individual satisfies the concept.. Clearly FSMs 
can be used to model the types of complex relationships needed in human behavioral 
modeling.  It is the basic technique used in the development of many successful 
applications [5].  FSM helps simply the task of modeling complex relationship and 
processes by partitioning the input (antecedent) space into regions in which one can 
more easily comprehend and express the appropriate consequents.  In FSM the rules are 
expressed in linguistic terms with a representation using fuzzy subsets.  An important 
feature of the FSM is that it can create and formulate new solutions.  That is the output 
of an FSM does not have to be one of the consequents of a rule but can be constructed 
out of a combination of outputs from different rules. 

In addition to the imprecision of human conceptualization reflected in language 
many situations that arise in human behavioral modeling entail aspects of probabilistic 
uncertainty.  This is true in both E-O and I-P applications.  Consider an observation such 
as "Generally women of child bearing age do not get to close to foreigners"  Here we see 
imprecise terms such as "child bearing age" and "close" as well as the term "generally" 
conveying a probabilistic aspect.   In this this work we describe a methodology for 
including probabilistic uncertainty in the fuzzy systems model.  The technique we 
suggest for the inclusion of this uncertainty is based upon the Dempster-Shafer theory of 
evidence [6, 7].  The Dempster-Shafer approach fits nicely into the FSM technique since 
both techniques use sets as their primary data structure and are important components of 
the emerging field of granular computing [8, 9]. 

We first  discuss the fundamentals of FSM based on the Mamdani reasoning 
paradigm.  We next introduce some of the basic ideas from the Dempster-Shafer theory 
which are required for our procedure.  We then show how probabilistic uncertainty in 
the output of a rule based model can be included in the FSM using the Dempster-Shafer 
(D-S) paradigm.  We described how various types of uncertainty can be modeled using 
this combined FSM / D-S paradigm.  
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2 Fuzzy Systems Modeling 

Fuzzy systems modeling (FSM) provides a technology for the development of 
semantically rich rule based representations that can model complex, nonlinear multiple 
input output relationships or functions or systems. 

The technique of FSM allows one to represent the model of a system by partitioning 
the input space.  Thus if U1, . . . Ur are the input (antecedent) variables and V is the 
output (consequent) variable we can represent their relationship by a collection n of 
"rules" of the form, 

When U1 is Ai1 and U2 is Ai2, . . . and Ur is Air then V is Di. 
Here each Aij typically indicates a linguistic term corresponding to a value of its 

associated variable, for example if Uj is the variable correspond to age then Aij could be 
"young." or "child bearing age."  Furthermore each Aij is formally represented as a 
fuzzy subset over the domain Xj of the associated variable Uj  Similarly Di is a value 
associated with the consequent variable V that is formally defined as a fuzzy subset of 
the domain Y of V. 

In the preceding rules the antecedent specifies a condition that if met allows us to 
infer that the possible value for the variable V lies in the consequent subset Di.  For each 
rule the antecedent defines a fuzzy region of the input space, X1 × X2 × ... × Xm, such 
that if the input lies in this region the consequent holds.  Taken as a collection the 
antecedents of all the rules form a fuzzy partition of the input space.  A key advantage of 
this approach is that by partitioning the input space we can allow simple functions to 
represent the consequent. 

The process of finding the output of a fuzzy systems model for given values of the 
input variables is called the "reasoning" process.  One method for reasoning with fuzzy 
systems models is the Mamdani-Zadeh paradigm. [10]. 

Assume the input to a FSM consists of the values Uj = xj.  In the following we shall 
use the notation Aij(xj) to indicate the membership of the element xj in the fuzzy subset 
Aij.  This can be seen as the degree of truth of the proposition Uj is Aij given that Uj = 
xj.  The procedure for reasoning used in the Mamdani-Zadeh method consists of the 
following steps: 

1.  For each rule calculate its firing level τi = Minj[Aij(xj)] 
2.  Calculate the output of each rule as a fuzzy subset Fi of Y where 

Fi(y) = Min[τi, Di(y)] 
3.  Aggregate the individual rule outputs to get a fuzzy subset F and Y where 

   F(y) = Maxi[Fi(y)]. 
F is a fuzzy subset of Y indicating the output of the system.  It is important to 

emphasize that F can be something new, it has been constructed from distinct 
components of the rule base. 
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At this point we can describe three options with respect to presenting this output to 
the final user.  The simplest is to give them the fuzzy set F.  This of course is the least 
appealing especially if the user is not technically oriented.  The second, and perhaps the 
most sophisticated, is to perform what is called retranslation.  Here we try to express the 
fuzzy set F in some kind appropriate linguistic form.  While we shall not pursue this 
approach here we note that in [11] we have investigated the process of retranslation.  
The third alternative is to compress the fuzzy set F into some precise value from the 
space Y.  This process is called defuzzification.  A number techniques are available to 
implement the defuzzification.  Often the choice is dependent upon the structure of the 
space Y associated with variable V.  One approach is to take as the output the element in 
Y that has the largest membership in F.  While available in most domains it loses a lot of 
the information.  A preferred approach, if the under lying structure of Y allows, is to 
take a kind of weighted average using the membership grades in F to provide the 
weights.  The most commonly used procedure for defuzzification process is the center 
of gravity.  Using this method we calculate the 

defuzzification value as y = ΣiyiF(yi)
ΣiF(yi)

. 

3 Dempster-Shafer Theory of Evidence 

In this section we introduce some ideas from the Dempster-Shafer uncertainty theory [6, 
7].  Assume X is a set of elements.  Formally a Dempster-Shafer belief structure m is a 
collection of q non-null subsets Ai of X called focal elements and a set of associated 
weights m(Ai) such that: (1) m(Ai) ∈ [0, 1]  and (2) ∑i m(Ai) = 1. 

One interpretation that can be associated with this structure is the following.  
Assume we perform a random experiment which can have one of q outcomes.  We shall 
denote the space of the experiment as Z.  Let Pi be the probability of the ith outcome zi.  
Let V be another variable taking its value in the set X.  It is the value of the variable V 
that is of interest to us.  The value of the variable V is associated with the performance of 
the experiment in the space Z in the following manner.  If the outcome of the experiment 
on the space Z is the ith element, zi, we shall say that the value of V lies in the subset Ai 
of X.  Using this semantics we shall denote the value of the variable as V is m, where m 
is a Dempster-Shafer granule with focal elements Ai and weights m(Ai) = Pi. 

A situation which illustrates the above is the following.  We have three candidates 
for president, Red, White and Blue.  The latest polling information indicates that the 
probabilities of each candidate winning is (Red, 0.35), (White, 0.55) and (Blue, 0.1).  
Our interest here is not on who will be president but on the future interest rates.  Based 
on the campaign statements of the three candidates we are able to conclude that Red will 
support low interest rates and White will support high interest rates.  For the candidate 
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Blue we no have information about his attitude toward interest rates.  The 
Dempster-Shafer framework provides an ideal structure for representing this 
knowledge.  Here we let V be the variable corresponding to the future interest rates and 
let X be the set corresponding to the domain of interest rates, the variable V will assume 
its value in X.  We can now represent our knowledge the value of the future interest rates 
V using the Dempster-Shafer framework.  Here we have three focal sets.  The first, A1, 
is "low interest rates."  The second, A2 is "high interest rates."  The third, A3, is 
"unknown interest rate."  Furthermore the associated weights are m(A1) = 0.35, m(A2) 
= 0.55 and m(A3) = 0.1. Each of the Aj are formulated as subsets of X.  We note A3, 
"unknown interest rate, " is the set X. 

Here our interest is in finding the probabilities of events associated with V, that is 
with arbitrary subsets of X.  For example we may be interested in the probability that 
interest rates will be less then 4 %.  Because of the imprecision in the information we 
can't find exact probabilities but we must settle for ranges.  Two measures are 
introduced to capture the relevant information. 

Let B be a subset of X the plausibility of B, denoted Pl(B), is defined as 
Pl(B) =   

i,Ai∩B°0 
m(Ai),  The belief of B, denoted Bel(B), is defined as 

Bel(B) =   
i,B ⊆ Ai 

m(Ai).  For any subset B of X Bel(B) ≤ Prob(B) ≤ Pl(B).  The 

plausibility and belief provide upper and lower bounds on the probability of the subset 
B. 

An important issue in the theory of Dempster-Shafer is the procedure for 
aggregating multiple belief structures on the same variable.  This can be seen as a 
problem of information fusion.  This standard procedure is called Dempster's rule, it is a 
kind of conjunction (intersection) of the belief structures. 

Assume m1 and m2 are two independent belief structures on the space X their 
conjunction is another belief structure m, denoted m = m1 ⊕ m2.  The belief structure m 
is obtained in the following manner.  Let m1 have focal elements Ai, i = 1 to n1 and let 
m2 have focal elements Bj, j = 1 to n2.  The focal elements of m are all the subsets FK = 
Ai ∩ Bj ≠ ∅ for some i and j.  The associated weights are m(FK) = 1

1 – T
 (m1(Ai) * 

m2(Bj) where T = Σ
Ai∩Bj=∅m1(Ai) * m2(Bj). 

Example: Assume our universe of discourse is X = {1, 2, 3, 4, 5, 6} 
m1    m2 
A1 = {1, 2, 3}     m1(A1) = 0.5 B1 = {2, 5, 6}
 m2(B1) = 0.6 
A2 = {2, 3, 6}     m1(A2) = 0.3 B2 = {1, 4}
 m2(B2) = 0.4 
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A3 = {1, 2, 3, 4, 5, 6}  m1(A3) = 0.2 
Taking the conjunction we get: F1 = A1 ∩ B1 = {2}, F2 = A1 ∩ B2 = {1}, 

F3 = A2 ∩ B1 = {2, 6}, F4 = A3 ∩ B1 = {2, 5, 6} and F5 = A3 ∩ B1 = {1, 4}. 
We note that A2 ∩ B2 = ∅.  Since only one intersection gives us the null set then T = 
m1(A2) * m(B2) = .12 and 1 – T = 0.88.  Using this we get m(F1) = 0.341, m(F2) = 
0.227, m(F3) = 0.205, m(F4) = 0.136 and m(F5) = 0.09. 

The above combination of belief structures can be seen to be essentially an 
intersection, conjunction, of the two belief structures.  In [12] Yager provided for an 
extension of the aggregation of belief structures to any set based operation.  Assume ∇ is 
any binary operation defined on sets, D = A ∇ Β where A, B and D are sets.  We shall 
say that ∇ is an "non-null producing" operator if A ∇ B ≠ ∅ when A ≠ ∅ and B ≠ ∅ .  
The union is non-null producing but intersection is not.  Assume m1 and m2 are two 
belief structures with focal elements Ai and Bj respectively.  Let ∇ be any non-null 
producing operator.  We now define the new belief structure m = m1 ∇ m2.  The belief 
structure m has focal elements EK = Ai ∇ Bj with m(EK) = m1(Ai) * m2(Bj).  If ∇ is 
not non-null producing we may be forced to do a process called normalization [12].  
The process of normalization consists of the following 

(1)  Calculate T =  
Ai∇Bj=∅

m1(Ai) * m(Bj) 

(2)  For all EK = Ai ∇ Bj ≠ ∅ calculate m(EK) = 1
1 – T

 m1(Ai) * m2(Bj) 

(3)  For all EK = ∅ set m(EK) = 0. 
We can use the Dempster-Shafer structure to represent some very naturally 

occurring types of information.  Assume V is a variable taking its value in the set X.  Let 
A be a subset of X.  Assume our knowledge about V is that the probability that V lies in 
A is "at least α."  This information can be represented as the belief structure m which 
has two focal elements A and X and where m(A) = α and m(X) = 1.  The information 
that the probability of A is exactly α can be represented as a belief structure m with focal 
elements A and A where m(A) = α and m(A) = 1 – α. 

An ordinary probability distribution P can also be represented as a belief structure.  
Assume for each element xi ∈ X it is the case Pi is its probability.  We can represent this 
as a belief structure where the focal elements are the individual element Ai = {xi} and 
m(Ai) = Pi.  For these types of structures it is the case that for any subset A of X, Pl(A) 
= Bel(A), thus the probability is uniquely defined as a point rather than interval. 

The D-S belief structure can be extended to allow for fuzzy sets [13, 14].  To extend 
the measures of plausibility and belief we need two ideas from the theory of possibility 
[15].  Assume A and B are two fuzzy subsets of X, the possibility of B given A is 
defined as Poss[B/A] = Maxi[A(xi) ∧ B(xi)] where ∧ is the min.  The certainty of B 

given A is Cert[B/A] = 1 – Poss[B/A].  Here B is the complement of B, it has 
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membership grade B (x) = 1 -B(x). 
Using these we extend the concepts of plausibility and belief.  If m is a belief 

structure on X with focal fuzzy elements Ai and B is any fuzzy subset of X then Pl(B) = 
∑i Poss[B/Ai] m(Ai) and Bel(B) = ∑i Cert[B/Ai] m(Ai).  The plausibility and belief 
measures are the expected possibility and certainty of the focal elements. 

The combination of belief structures with fuzzy focal elements can be made.  If ∇ is 
some set operation we simply use the fuzzy version of it.  For example if m1 and m2 are 
belief structures with fuzzy focal elements then m = m1 ∪ m2 has focal elements EK = 
Ai ∪ Bj where EK(x) = Ai(x) ∨ Bj(x) (∨ = max).  Here as in the non-fuzzy case m(EK) 
= m1(Ai) m2(Bj). 

Implicit in the formulation for calculating the new weights is an assumption of 
independence between the belief structures.  This independence is reflected in an 
assumption that the underlying experiments generating the focal elements for each 
belief structure are independent.  This independence manifests itself in the use of the 
product to calculate the new weights.  That is the joint occurrence of the pair of focal 
elements Ai and Bj is the product of probabilities of each of them m1(Ai) and m2(Bj). 

In some situations we may have a different relationship between the two belief 
structures.  One very interesting case is called synonymity.  For two belief structures to 
be in synonymity they must have their focal elements induced from the same 
experiment.  Thus if m1 and m2 are two belief structures on X that are in synonymity 
they should have the same number of focal elements with the same weights.  Thus the 
focal elements of m1 are Ai for i = 1 to q, and those of m2 are are Bj for i = 1 to q then 
m1(Ai) = m2(Bi).  In the case of synonymity between m1 and m2 if ∇ is any non-null 
producing set operator then  m = m1 ∇ m2 also has n focal elements Ei = Ai ∇ Bi with 
m(Ei) = m(Ai) = m(Bi). 

4 Probabilistic Uncertainty in the FSM 

In the basic FSM, the Mamdani-Zadeh model, the consequent of each rule consists of a 
fuzzy subset.  The consequent of an individual rule is a proposition of the form V is Di.  
The use of a fuzzy subset implies a kind of uncertainty associated with the output of a 
rule.  The kind of uncertainty is called possibilistic uncertainty and is a reflection of a 
lack of precision in describing the output.  The intent of this proposition if to indicate 
that the value of the output is constrained by (lies in) the subset Di. 

We now shall add further modeling capacity to the FSM technique by allowing for 
probabilistic uncertainty in the consequent.  A natural extension of the FSM is to 
consider the consequent to be a fuzzy Dempster-Shafer granule.  Thus we shall now 
consider the output of each rule to be of the form V is mi where mi is a belief structure 
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with focal elements Dij which are fuzzy subsets of the universe Y and associated 
weights mi(Dij).  Thus a typical rule is now of the form 

When U1 is Ai1 and U2 is Ai2, . . . Ur is Air then V is mi. 
Using a belief structure to model the consequent of a rule is essentially saying that 

mi(Dij) is the probability that the output of the ith rule lies in the set Dij.  So rather than 
being certain as to the output set of a rule we have some randomness in the rule. We note 
that with mi(Dij) = 1 for some Dij we get the original FSM. 

We emphasize that the use of a fuzzy Dempster-Shafer granule to model the 
consequent of a rule brings with it two kinds of uncertainty.  The first type of uncertainty 
is the randomness associated with determining which of the focal elements of mi is in 
effect if the rule fires.  This selection is essentially determined by a random experiment 
which uses the weights as the appropriate probability.  The second type of uncertainty is 
related to the selection of the outcome element given the fuzzy subset, this is related to 
the issue of lack of specificity.  This uncertainty is essentially resolved by the 
defuzzification procedure used to pick the crisp singleton output of the system. 

We now describe the reasoning process in this situation with belief structure 
consequents.  Assume the input to the system are the values for the antecedent variables, 
Uj = xj.  The process for obtaining the firing levels of the individual based upon these 
inputs is exactly the same as in the previous situation.   

For each rule we obtain the firing level, τi = Min[Aij(xj)]. 
The output of each rule is a belief structure mi = τi ∧ m.  The focal elements of mi 

are Fij a fuzzy subset of Y where Fij(y) = Min[τi, Dij(y)], here Dij is a focal element of 
mi.  The weights associated with these new focal elements are simply mi(Fij) = mi(Dij). 

The overall output of the system m is obtained in a manner analogous to that used in 

the basic FSM, we obtain m by taking a union of the individual rule outputs, m = mi∪
i=1

n
. 

Earlier we discussed the process of taking the union of belief structures.  For every a 
collection <F1j1

, . . . Fnjn> where Fiji is a focal element of mi we obtain a focal element 

of m, E = ∪
i

Fiji and the associated weight is m(E) =  
i=1

n
mi(Fiji). 

As a result of this third step we obtain a fuzzy D-S belief structure V is m as our 
output of the FSM.  We denote the focal elements of m as the fuzzy subsets Ej, j = 1 to q, 
with weights m(Ej).  Again we have three choices: present this to a user, try to 
linguistically summarize the belief structure or to defuzzify to a single value.  We shall 
here discuss the third option.  

The procedure used to obtain this defuzzified value y  is an extension of the 
previously described defuzzification procedure.  For each focal element Ej we calculate 
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its defuzzified value yj = Σiyi Ej(yi)

ΣiEj(yi)
.  We then obtain as the defuzzified value of m, y = 

∑j yj m(Ej).  Thus y is the expected defuzzified value of the focal elements  of m. 
The following simple example illustrates the technique just described. 

Example: Assume a FSM has two rules 
   If U is A1 then V is m1 
   If U is A2 then V is m2. 
m1: has focal elements  D11 = "about two" = .6

1
, 1

2
, .6

3
 and D12 = "about five" = 

.5
4

, 1
5

, .6
6

 with m1(D11) = 0.7 and m1(D12) = 0.3.      

m2: has focal elements D21 = "about 10" = .7
9

, 1
10

, .7
11

 and D22 = "about 15" = 

.4
14

, 1
15

, .4
10

 with m2(D21) = 0.6 and m2(D22) = 0.4 

 Assume the system input is x* and the membership grade of x* in 
A1 and A2 are 0.8 and 0.5 respectively.  Thus the firing levels of each rule are τ1 = 0.8 

and τ2 = 0.5.  We now calculate the output each rule m1 = τ1 ∧ m1 and m2 = τ2 ∧ m2.   
m1:  has focal elements  F11 = τ1 ∧ D11 = .6

1
, .8

2
, .6

3
 and F12 = τ1 ∧ D12 = 

.5
4

, .8
5

, .6
6

with m(F11) = 0.7 and m(F12) = 0.3 

m2:  has focal elements  F21 = τ2 ∧ D21 = .5
9

, .5
10

, .5
11

 and F22 = τ2 ∧ D22 = 

.4
14

, .5
15

, .4
10

 with m(F21) = 0.6 and m(F22) = 0.4 

We next obtain the union of these two belief structure, m = m1 ∪ m2 with focal 
elements 
  E1 = F11 ∪ F21 m(E1) = m1(F11) * m2(F21) 
  E2 = F11 ∪ F22 m(E2) = m1(F11) * m2(F22) 
  E3 = E12 ∪ F21 m(E3) = m1(F12) * m2(F21) 
  E4 = E12 ∪ F22 m(E4) = m1(F12) * m2(F22) 
Doing the above calculations we get 
  E1 = 0.6

1
, 0.8

2
, 0.6

3
, 0.5

9
, 0.5

10
, 0.5

11
 m(E1) = 

0.42 
  E2 = 0.6

1
, 0.8

2
, 0.6

3
, 0.4

14
, 0.5

15
, 0.4

10
 m(E2) = 

0.28 
  E3 = 0.5

4
, 0.8

5
, 0.6

6
, 0.5

9
, 0.5

10
, 0.5

11
  m(E3) = 

0.18 
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  E4 = 0.5
4

, 0.8
5

, 0.6
6

, 0.4
14

, 0.5
15

, 0.4
10

 m(E4) = 

0.12 
We now proceed with the defuzzification of the focal elements. 

Defuzzy(E1) = y1 =5.4, Defuzzy(E2) = y2 = 6.4, Defuzzy(E3) = y3 = 7.23 and 
Defuzzy(E4) = y4 =  8.34.  Finally taking the expected value of these we get 
  y = (0.42) (5.4) + (0.28) (6.4) + (0.18) * (7.23) + (0.12) (8.34) = 
6.326 

The development of FSMs with Dempster-Shafer consequents allows for the 
representation of different kinds of uncertainty associated with the modeling rules.  

One situation is where we have a value αi ∈ [0, 1] indicating the confidence we have 

in the ith rule.  In this case we have a nominal rule of the form 
   If U is Ai then V is Bi 
with confidence "at least αi".  

Using the framework developed above we can transform this rule, along with its 
associated confidence level into a Dempster-Shafer structure  

"If U is Ai then V is mi." 
Here mi is a belief structure with two focal elements, Bi and Y.  We recall Y is the whole 
output space.  The associated weights are mi(Ai) = αi and m(Y) = 1 – αi.  We see that if 
αi = 1 then we get the original rule while if αi = 0 we get a rule of the form 
   If U is Ai then V is Y. 

5 Conclusion 

We have suggested a framework which can be used for modeling human behavior.  The 
approach suggested has the ability to represent the types of linguistically expressed 
concepts central to human cognition.  It also has a random component which enables the 
modeling of the unpredictability of human behavior. 
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