


Cellular Genetic Algorithms 



OPERATIONS RESEARCH/COMPUTER SCIENCE INTERFACES 
Professor Ramesh Sharda    Prof. Dr. Stefan Voß  
Oklahoma State University    Universität Hamburg 
 

Bierwirth / Adaptive Search and the Management of Logistics Systems 
Laguna & González-Velarde / Computing Tools for Modeling, Optimization and Simulation 
Stilman / Linguistic Geometry: From Search to Construction 
Sakawa / Genetic Algorithms and Fuzzy Multiobjective Optimization 
Ribeiro & Hansen / Essays and Surveys in Metaheuristics 
Holsapple, Jacob & Rao / Business Modelling: Multidisciplinary Approaches — Economics, 

Operational and Information Systems Perspectives 
Sleezer, Wentling & Cude/Human Resource Development And Information Technology: Making Global 

Connections 
Voß & Woodruff / Optimization Software Class Libraries 
Upadhyaya et al / Mobile Computing: Implementing Pervasive Information and Communications 

Technologies 
Reeves & Rowe / Genetic Algorithms—Principles and Perspectives: A Guide to GA Theory 
Bhargava & Ye / Computational Modeling And Problem Solving In The Networked World: Interfaces in 

Computer Science & Operations Research 
Woodruff / Network Interdiction And Stochastic Integer Programming 
Anandalingam & Raghavan / Telecommunications Network Design And Management 
Laguna & Martí / Scatter Search: Methodology And Implementations In C 
Gosavi/ Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement 

Learning 
Koutsoukis & Mitra / Decision Modelling And Information Systems: The Information Value Chain 
Milano / Constraint And Integer Programming: Toward a Unified Methodology 
Wilson & Nuzzolo / Schedule-Based Dynamic Transit Modeling: Theory and Applications 
Golden, Raghavan & Wasil / The Next Wave in Computing, Optimization, And Decision Technologies 
Rego & Alidaee/ Metaheuristics Optimization via Memory and Evolution: Tabu Search and Scatter 

Search 
Kitamura & Kuwahara / Simulation Approaches in Transportation Analysis: Recent Advances and 

Challenges 
Ibaraki, Nonobe & Yagiura / Metaheuristics: Progress as Real Problem Solvers 
Golumbic & Hartman / Graph Theory, Combinatorics, and Algorithms: Interdisciplinary Applications 
Raghavan & Anandalingam / Telecommunications Planning:  Innovations in Pricing, Network Design 

and Management 
Mattfeld / The Management of Transshipment Terminals: Decision Support for Terminal Operations in 

Finished Vehicle Supply Chains 
Alba & Martí/ Metaheuristic Procedures for Training Neural Networks 
Alt, Fu & Golden/ Perspectives in Operations Research: Papers in honor of Saul Gass’ 80th Birthday 
Baker et al/ Extending the Horizons: Adv. In Computing, Optimization, and Dec. Technologies 
Zeimpekis et al/ Dynamic Fleet Management: Concepts, Systems, Algorithms & Case Studies 
Doerner et al/ Metaheuristics: Progress in Complex Systems Optimization 
Goel/ Fleet Telematics: Real-time management & planning of commercial vehicle operations 
Gondran & Minoux/ Graphs, Dioïds and Semirings: New models and algorithms 
 
 

Alba & Dorronsoro / Cellular Genetic Algorithms



 
Enrique Alba and Bernabé Dorronsoro 
 
 
 
Cellular Genetic Algorithms 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

123 



 
 
  
 
 

Enrique Alba    Bernabé Dorronsoro 
Universidad de Málaga   Universidad de Málaga  
Málaga, Spain    Málaga, Spain 
eat@lcc.uma.es    bernabe@lcc.uma.es 
 
 
 
Series Editors 
Ramesh Sharda    Stefan Voß 
Oklahoma State University   Universität Hamburg 
Stillwater, Oklahoma, USA   Germany 
 
 
 
 

 
 
 
 

 

   ISBN: 978-0-387-77609-5  e-ISBN: 978-0-387-77610-1 

 
Library of Congress Control Number: 2007942761             
 

 
© 2008 Springer Science+Business Media, LLC  
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, LLC, 233 
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with 
reviews or scholarly analysis. Use in connection with any form of information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if the are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights. 
 
Printed on acid-free paper 
 
9  8  7  6  5  4  3  2  1       
 
springer.com 
 
 
 
 
 

DOI: 10.1007/ 978-0-387-77610-1 



To my son Enrique and my daughter Ana,
two nice cellular conformations

Enrique Alba

To Patricia and my family
Bernabé Dorronsoro



Preface

This book is the result of an effort to create very efficient search algorithms
with a bound cost in their performance and their implementation. Solving op-
timization and learning problems in academy and industry is of major impor-
tance nowadays, not only in computer science, but also in operations research,
mathematics, and in almost any domain in daily life: logistics, bioinformatics,
economy, telecommunications...

In this context, the research activity on metaheuristic algorithms for sol-
ving complex problems is not surprisingly rising in these days. The reason for
that is that we are continuously facing new engineering problems which de-
mand more sophisticated solvers. Among the many families of metaheuristics,
the application of Evolutionary Algorithms (EAs) has been especially intense
during this last decade. These algorithms are usually employed to solve prob-
lems of high dimensionality such as constrained optimization tasks, in the
presence of noise, having a high degree of epistasis and multimodality.

The behavior of an EA when solving problems is given by the balance they
maintain during the search between the exploration (diversification) of new
solutions and the exploitation (intensification) in the space of solutions to the
problem. The result of this tradeoff between diversification and intensification
of the search is the true key point giving birth to useful tools. With this book,
we stress on the proposal of a single family of algorithms which naturally and
easily can be tuned to deal with these two forces during their search for a
solution. This will endow the reader with a powerful tool to quickly tackle
new domains while still using and retaining part of the implementation and
knowledge gained with these algorithms.

Traditionally, most EAs work on a single population of candidate solutions
(panmictic EAs). In this book we explore in depth the benefits of structuring
the population by defining neighborhoods on it. The pursued effect is to longer
maintain the diversity, thus improving the exploration capabilities of the algo-
rithm, while the exploitation can be easily strengthened by adding local search
or many other means. In most cases, these algorithms outperform their equiv-
alent panmictic counterparts in efficiency and accuracy. Among structured
EAs, distributed and cellular EAs are the most well known ones. In the book
we develop further in the case of cellular EAs (cEAs), where the population



VIII Preface

is structured by using the concept of neighborhood much in the way that cel-
lular automata do (hence their name “cellular”), so that individuals can only
interact with their closest neighbors in the population. Cellular EAs are not
so well known as distributed EAs, but their performance is really impressive
and merits a closer look to make the community aware of their power.

This book is targeted to the field of using structured populations in cEAs,
especially dealing with cellular genetic algorithms (cGAs), the most popular
family of EAs. Specifically, all the work in this book is based on exploring new
proposals resulting from extending cGAs to different domains: hybridization,
memetics, parallelism, hierarchies, inexpensive self-tuning, probability distri-
butions, or even multi-objective cGAs (wherein the optimization of more than
one –usually conflicting– objective is considered). All our proposed new cGAs
are compared in this work versus both a canonical cGA and to state-of-the-
art algorithms for a plethora of complex optimization problems belonging
to the fields of combinatorial, integer programming, continuous, or multi-
objective optimization. Our goal is not only to show new models, but also to
solve existing problems to the state of the art solutions and beyond, when
possible.

The reader can find some amazing starting ideas for numerous new research
lines, either from the point of view of new algorithms as from the viewpoint
of complex applications. The book can be used for a course on cGAs and also
for basic/advanced research in labs. Readers can use it as a whole, and then
learn on the many extensions of cGAs to lots of fields, or either can address a
given chapter, and get deeper into the details of one algorithm or application.

We are providing a freely available software on the Internet written in
Java (JCell) to reproduce our results and to allow readers quickly proto-
typing new tools for their domain. The java framework Jcell is available
at http://neo.lcc.uma.es/Software/JCell, and has been developed to be
easily extensible and to reduce the learning curve of the user. Since it is writ-
ten in Java, users can readily deploy it on any computer; the software is at
present being used by many international teams with high success.

With this book we think to have put in a single volume a great deal of the
knowledge on cellular GAs; the book contains some fundamental theory on
cGAs as well as actual competitive algorithms, all sharing some features that
will foster their utilization and comprehension in future unseen applications.
We really hope that this book could be of any help to the reader in his/her
own domain.

Málaga, Spain Enrique Alba
July 2007 Bernabé Dorronsoro



Contents

Part I Introduction

1 Introduction to Cellular Genetic Algorithms . . . . . . . . . . . . . . . 3
1.1 Optimization and Advanced Algorithms . . . . . . . . . . . . . . . . . . . . 4
1.2 Solving Problems Using Metaheuristics . . . . . . . . . . . . . . . . . . . . . 6
1.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Decentralized Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . 11
1.5 Cellular Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Synchronous and Asynchronous cEAs . . . . . . . . . . . . . . . . 16
1.5.2 Formal Characterization of the Population in cEAs . . . . 17

1.6 Cellular Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The State of the Art in Cellular Evolutionary Algorithms . 21
2.1 Cellular EAs: a New Algorithmic Model . . . . . . . . . . . . . . . . . . . . 21
2.2 The Research in the Theory of the Cellular Models . . . . . . . . . . 22

2.2.1 Characterizing the Behavior of cEAs . . . . . . . . . . . . . . . . . 24
2.2.2 The Influence of the Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Empirical Studies on the Behavior of cEAs . . . . . . . . . . . . . . . . . 26
2.4 Algorithmic Improvements to the Canonical Model . . . . . . . . . . 29
2.5 Parallel Models of cEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Part II Characterizing Cellular Genetic Algorithms

3 On the Effects of Structuring the Population . . . . . . . . . . . . . . 37
3.1 Non-decentralized GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Steady State GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Generational GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Decentralized GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



X Contents

3.3 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Cellular versus Panmictic GAs . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Cellular versus Distributed GAs . . . . . . . . . . . . . . . . . . . . . 43

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Some Theory: A Selection Pressure Study on cGAs . . . . . . . . 47
4.1 The Selection Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Theoretical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Approach to the Deterministic Model . . . . . . . . . . . . . . . . 50
4.2.2 A Probabilistic Model for Approaching the Selection

Pressure Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Comparison of the Main Existing Mathematical Models 57

4.3 Validation of the Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Validation on Combinatorial Optimization . . . . . . . . . . . . 61
4.3.2 Validation on Continuous Optimization . . . . . . . . . . . . . . 65

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Part III Algorithmic Models and Extensions

5 Algorithmic and Experimental Design . . . . . . . . . . . . . . . . . . . . . 73
5.1 Proposal of New Efficient Models . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 The Mono-objective Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 The Multi-objective Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Some Additional Definitions . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Design of Self-adaptive cGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Description of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Static and Pre-Programmed Algorithms . . . . . . . . . . . . . . 86
6.2.2 Self-Adaptive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.3 Additional Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Design of Cellular Memetic Algorithms . . . . . . . . . . . . . . . . . . . . 101
7.1 Cellular Memetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Simple and Advanced Components in Cellular MAs . . . . . . . . . . 103

7.2.1 Three Basic Local Search Techniques for SAT . . . . . . . . . 103
7.2.2 Cellular Memetic GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Contents XI

7.3.1 Effects of Combining a Structured Population and an
Adaptive Fitness Function (SAW) . . . . . . . . . . . . . . . . . . . 107

7.3.2 Results: Non Memetic Procedures for SAT . . . . . . . . . . . . 109
7.3.3 Results: Cellular Memetic Algorithms . . . . . . . . . . . . . . . . 110
7.3.4 Comparison Versus Other Algorithms in the Literature . 113

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Design of Parallel Cellular Genetic Algorithms . . . . . . . . . . . . 115
8.1 The Meta-cellular Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 116

8.1.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.2 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 The Distributed Cellular Genetic Algorithm . . . . . . . . . . . . . . . . 119
8.2.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.2 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Designing Cellular Genetic Algorithms for Multi-objective
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.1 Background on Multi-objective Optimization . . . . . . . . . . . . . . . . 129
9.2 The MOCell Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.2.1 Extensions to MOCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Other Cellular Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.1 Hierarchical cGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.1.1 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.1.2 Dissimilarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.1.3 First Theoretical Results: Takeover Times . . . . . . . . . . . . 142
10.1.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2 Cellular Estimation of Distribution Algorithms . . . . . . . . . . . . . . 146
10.2.1 First Theoretical Results: Takeover Times . . . . . . . . . . . . 149
10.2.2 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . 149

10.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11 Software for cGAs: The JCell Framework . . . . . . . . . . . . . . . . . . 153
11.1 The JCell Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.2 Using JCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



XII Contents

Part IV Applications of cGAs

12 Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.2.1 Tuning the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.2.2 Comparison with Other Algorithms . . . . . . . . . . . . . . . . . . 171

12.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

13 Logistics: The Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . 175
13.1 The Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
13.2 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.2.1 Problem Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.2.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.2.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.2.4 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

13.3 Solving CVRP with JCell2o1i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.4 New Solutions to CVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

14 Telecommunications: Optimization of the Broadcasting
Process in MANETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.1 The Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14.1.1 Metropolitan Mobile Ad Hoc Networks. The Madhoc
Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14.1.2 Delayed Flooding with Cumulative Neighborhood . . . . . 191
14.1.3 MOPs Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

14.2 A Multi-objective cGA: cMOGA . . . . . . . . . . . . . . . . . . . . . . . . . . 193
14.2.1 Dealing with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

14.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.3.1 Parameterization of cMOGA . . . . . . . . . . . . . . . . . . . . . . . . 195
14.3.2 Madhoc Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.3.3 Results for DFCNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

14.4 Comparing cMOGA Against NSGA-II . . . . . . . . . . . . . . . . . . . . . 200
14.4.1 Parameterization of NSGA-II . . . . . . . . . . . . . . . . . . . . . . . 200
14.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

15 Bioinformatics: The DNA Fragment Assembly Problem . . . 203
15.1 The DNA Fragment Assembly Problem . . . . . . . . . . . . . . . . . . . . 204
15.2 A cMA for DNA Fragment Assembly Problem . . . . . . . . . . . . . . 206
15.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



Contents XIII

Part V Appendix

A Definition of the Benchmark Problems . . . . . . . . . . . . . . . . . . . . . 213
A.1 Combinatorial Optimization Problems . . . . . . . . . . . . . . . . . . . . . 213

A.1.1 COUNTSAT Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
A.1.2 Error Correcting Codes Design Problem – ECC . . . . . . . 214
A.1.3 Frequency Modulation Sounds – FMS . . . . . . . . . . . . . . . . 215
A.1.4 IsoPeak Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
A.1.5 Maximum Cut of a Graph – MAXCUT . . . . . . . . . . . . . . 216
A.1.6 Massively Multimodal Deceptive Problem – MMDP . . . 216
A.1.7 Minimum Tardy Task Problem – MTTP . . . . . . . . . . . . . 217
A.1.8 OneMax Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.1.9 Plateau Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.1.10 P-PEAKS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.1.11 Satisfiability Problem – SAT . . . . . . . . . . . . . . . . . . . . . . . . 219

A.2 Continuous Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 220
A.2.1 Academic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.2.2 Real World Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.3 Multi-objective Optimization Problems . . . . . . . . . . . . . . . . . . . . . 223

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243



Part I

Introduction



1

Introduction to Cellular Genetic Algorithms

If one way be better than another, that you may be sure
is nature’s way.

Aristotle (384 - 322 BC) – Greek Philosopher

Research in exact algorithms, heuristics and metaheuristics for solving com-
binatorial optimization problems is nowadays highly on the rise. The main
advantage of using exact algorithms is the guarantee of finding the global
optimum for the problem [202], but the critical disadvantage for real prob-
lems (NP-hard) is the exponential growth of the execution time according
to the instance size, as well as the unreal constraints they often impose to
solve the problem. On the other hand, ad hoc heuristic algorithms tend to be
very fast [201], but the solutions obtained are generally not of high quality. In
contrast, metaheuristics offer a balance between both [104]: they are generic
methods which offer a good solution (even the global optimum sometimes)
usually in a moderate run time.

Due to the wide development of computer science in the last years, increas-
ingly harder and more complex problems are being faced continuously. A large
number of metaheuristics designed for solving such complex problems exist in
the literature [6, 39]. Among them, evolutionary algorithms (EAs) are very
popular optimization techniques [25, 31, 33]. They consist in evolving a pop-
ulation of individuals (potential solutions), emulating the biological process
found in Nature, so that individuals are improved. This family of techniques
apply an iterative and stochastic process on a set of individuals (population),
where each individual represents a potential solution to the problem. To mea-
sure their aptitude for the problem, the individuals are assigned a fitness value.
This value represents the quantitative information used by the algorithm to
guide the search. The tradeoff between exploration of new areas of the search
space and exploitation of good solutions accomplished by this kind of algo-
rithms is one of the key factors for their high performance with respect to
other metaheuristics. This exploration/exploitation balance can be sharpened
with some different parameters of the algorithm such as the population used
(decentralized or not), the variation operators applied, or the probability of
applying them, among others.

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 1, © Springer Science+Business Media, LLC 2008



4 1 Introduction to Cellular Genetic Algorithms

In this book we focus on cellular genetic algorithms (cGAs), a class of
EA with a decentralized population in which the tentative solutions evolve
in overlapped neighborhoods, much in the same sense as cellular automata
do [245, 259]. Cellular EAs are a promising starting point for the study of
new algorithmic models of EAs, as there exist results showing the great utility
in promoting the smooth diffusion of the solutions through their populations,
and therefore in maintaining the diversity [220]. Moreover, the investigation
in cEAs is a rising topic both in theory [98, 99] and practice [26, 84].

In this chapter we first define some important issues for optimization prob-
lems. After that, we present a brief introduction to the field of metaheuristics
(Sect. 1.2) and, particulary, evolutionary algorithms (in Sect. 1.3). In Sect. 1.4
we describe the two main existing models of decentralized population in EAs:
cellular and distributed evolutionary algorithms. Finally, we deal with cellular
evolutionary algorithms in depth (Sect. 1.5), paying special attention to the
family of cEAs called cellular genetic algorithms –cGAs– in Sect. 1.6. At the
end of this chapter, our main conclusions are given (Sect. 1.7).

1.1 Optimization and Advanced Algorithms

In this section, we define some basic notions used along this book. Initially,
we give a formal definition of optimization. Assuming minimization (without
any loose in generality), we can define an optimization problem as follows:

Definition 1.1 (Optimization). An optimization problem is formalized af-
ter a pair (S, f), where S �= Ø represents the solution space –or search space–
of the problem, while f is a quality criterion known as the objective function,
defined as:

f : S → R . (1.1)

Thus, solving an optimization problem consists in finding a set of decision
variables values such that the represented solution by these values i∗ ∈ S
satisfies the following inequality:

f(i∗) ≤ f(i), ∀ i ∈ S . (1.2)

�

Assuming maximization or minimization does not restrict the generality
of the results, as we can establish an equivalence between the maximization
and minimization problems as [31, 105]:

max{f(i)|i ∈ S} ≡ min{−f(i)|i ∈ S} . (1.3)



1.1 Optimization and Advanced Algorithms 5

According to the domain of S, we can define binary optimization (S ⊆ B),
complete (S ⊆ N), continuous(S ⊆ R), or heterogeneous –or mixed– (S ⊆
{B ∪ N ∪ R}) problems.

A definition of proximity between different solutions of the search space is
necessary for solving an optimization problem. Two solutions are close each
other if they belong to the same neighborhood in the search space, and we
define the neighborhood of a solution as:

Definition 1.2 (Neighborhood). Being (S, f) an optimization problem, a
neighborhood structure in S can be defined as

N : S → S , (1.4)

such that for each solution i ∈ S a set Si ⊆ S is defined. It also holds that if
i is in the neighborhood of j, then j is also in the neighborhood of i: j ∈ Si iff
i ∈ Sj. �

In general, in a complex optimization problem the objective function often
presents an optimal solution that is an optimum only in its neighborhood, in
a determined neighborhood, but which is not optimal if we consider the whole
search space. Therefore, a search method can be easily trapped in an optimal
value inside a neighborhood, thus giving rise to the concept of local optimum:

Definition 1.3 (Local optimum). Being (S, f) an optimization problem,
and Si′ ⊆ S the neighborhood of a solution i′ ∈ Si′ , i′ is a local optimum if
the next inequality is satisfied (assuming minimization):

f(i′) ≤ f(i) , ∀i ∈ Si′ . (1.5)

�

When tackling real life optimization problems, we are usually forced to
deal with constraints. In these cases, the area of feasible solutions S is limited
to those that satisfy all the constraints.

Definition 1.4 (Optimization with constraints). Given an optimization
problem (S, f), we define M = {i ∈ S|gk(i) ≥ 0 ∀ k ∈ [1, . . . , q]} as the
region of feasible solutions of the objective function f : S → R. The functions
gk : S → R are called constraints, and these gk are called differently according
to the value taken in i ∈ S:

satisfied :⇔ gk(i) ≥ 0 ,
active :⇔ gk(i) = 0 ,
inactive :⇔ gk(i) > 0 , and
violated :⇔ gk(i) < 0 .

A global optimization problem is called without constraints iff M = S; in
other case is it referred to as restricted or with constraints. �



6 1 Introduction to Cellular Genetic Algorithms

Our work focuses on the search of global optimal solutions to the consid-
ered problem, although due to the difficulty of some problems this criterion
can be relaxed. In the next two sections, we present a brief introduction to
the field of metaheuristics in general, paying especial attention to evolutionary
algorithms.

1.2 Solving Problems Using Metaheuristics

There exist many proposals of algorithmic techniques in the literature, both
exact and approximate, for solving optimization problems (see Fig. 1.1 for a
basic classification). Exact algorithms guarantee to find the optimal solution
for all the finite instances. Generally, since exact methods need exponential
computation times when facing large instances of complex problems, NP-hard
problems can not be realistically tackled. Therefore, the use of approximate
techniques is a rising set of topics in the last decades. In these methods we lose
the guarantee of finding a global optimum (often, but not always) in order to
find good solutions in a significantly shorter time compared to exact methods.

In the last two decades a new kind of approximate techniques has merged,
consisting basically in combining basic ad hoc heuristic methods (approximate
techniques with stochastic guided components) in higher level environments
in order to explore the search space efficient and effectively. These methods
are commonly known as metaheuristics. In [39] the reader can find some
metaheuristic definitions given by different authors, but in general we can
state that metaheuristics are high level strategies having a given structure that
plans the application of a set of operations (variation operators) to explore
high dimensioned and complex search spaces.

OPTIMIZATION TECHNIQUES

EXACT APPROXIMATED OTHERS

Ad hoc heuristics METAHEURISTICS

•Newton

•Gradient

Calculus

•Dynamic Prog.

•Branch & Bound

Enumerative

•Simulated Annealing

•Var. Neighb. Search

•Tabu Search

Trajectory

•Evolutionary Algs.

•Ant Colony Opt.

•Particle Swarm Opt.

Population

Fig. 1.1. Classification of optimization techniques



1.3 Evolutionary Algorithms 7

Metaheuristics can be classified in many different ways. In [39] a classifica-
tion is given according to some selected properties which characterize them.
So, we can distinguish between metaheuristics inspired by Nature vs. not,
population vs. trajectory-based, with a static vs. a dynamic objective func-
tion, using one vs. more neighborhood structures, or that memorize previous
search steps vs. memoryless techniques. The reader can find a detailed expla-
nation of this classification in [39]. Among the best known metaheuristics, we
can find evolutionary algorithms (EA) [33], iterative local Search (ILS) [168],
simulated annealing (SA) [145], tabu search (TS) [103], variable neighborhood
search (VNS) [183], and ant colony optimization (ACO) [70].

1.3 Evolutionary Algorithms

In the seventies and eighties (with some other punctual works before), several
researchers coincided in developing, independently of each other, the idea of
implementing algorithms based on the organic evolution model in an attempt
to solve adaptive and hard optimization tasks on computers. Nowadays, due
to their stockiness and large applicability, and also to the availability of higher
computational power (e.g., parallelism), the resulting research field, that of
evolutionary computation, receives growing attention from the researchers of
many disciplines.

The evolutionary computation framework [33] stands for a wide set of
families of techniques for solving the problem of searching optimal values
by using computational models, most of them inspired by evolutionary pro-
cesses (evolutionary algorithms). Evolutionary algorithms (EAs) are popula-
tion based optimization techniques designed for searching optimal values in
complex spaces. They are loosely based on some biological processes that can
be appreciated in Nature, like natural selection [57] or genetic inheritance [180]
of good traits. Part of the evolution is determined by the natural selection of
different individuals competing for resources in the environment. Inevitably,
some individuals are better than others. Those that are better are more likely
to survive, learn, and propagate their genetic material.

Sexual reproduction allows some shuffling of chromosomes, producing off-
spring that contain a combination of information from each parent. This is
known as the recombination operation, which is often referred to as crossover
because of the way that biologists have observed strands of chromosomes
crossing over during the exchange. Recombination happens in an environment
where the selection of the mating pool is largely a function of the fitness of
individuals, i.e., how good each individual is at competing in its environment.

As in the biological case, individuals can occasionally mutate. Mutation
is an important source of diversity for EAs. In an EA, a large amount of
diversity is usually introduced at the start of the algorithm by randomizing
the genes in the population. The importance of mutation, which introduces
further diversity while the algorithm is running, is a matter of debate. Some



8 1 Introduction to Cellular Genetic Algorithms

false

true

Initial

Population

Fitness

Evaluation
Selection

Recombination

Mutation

Replacement

Evolution of the Population

END

Stopping

Condition

? +

Fitness

Evaluation

Fig. 1.2. Basic working principles of a typical EA

refer to it as a background operator, simply replacing some of the original
diversity which may have been lost, while others view it as playing a dominant
role in the evolutionary process (e.g., avoiding getting stuck in local optima).

In Fig. 1.2 we show the functioning of a typical EA. As it can be seen,
an EA proceeds in an iterative way by successively evolving the current pop-
ulation of individuals. This evolution is usually a consequence of applying
stochastic variation operators such as selection, recombination, and mutation
on the population in order to compute a whole generation of new individuals.
The initial population is usually generated randomly, although it is also usual
to use some seeding technique in order to speed up the search by starting
from good quality solutions. A fitness evaluation assigns a value to every indi-
vidual, which is representative of its suitability to the problem in hand. This
evaluation can be performed by an objective function (e.g., a mathematical
expression or a computer simulation) or by a subjective opinion, in which
the best solutions are selected by an external agent (e.g., expert design of
furniture or draws using interactive EAs). The stopping criterion is usually
set as reaching a preprogrammed number of iterations of the algorithm, or as
finding a solution to the problem (or an approximation to it, if it is known
beforehand).

Individuals encode tentative solutions to the problem at hands usually in
the form of strings (of binary, decimal, or real numbers), or trees. Every in-
dividual has assigned a fitness value as a measure of its adequacy, so better
fitness values represent better individuals. This fitness value is used for de-
ciding which individuals are better and which ones are worse. We present in
Fig. 1.3 an example of a typical individual structure in EAs.

The chromosome encodes the problem variables in some manner. More
than one chromosome could possible exists inside the same individual (e.g.,
diploid representation like in humans [105]). A single fitness value is allocated
to the solution encoded in the chromosome(s) of one single individual after
decoding them appropriately (e.g., binary to decimal). Every problem variable



1.3 Evolutionary Algorithms 9

CHROMOSOMEChromosome

1 100 000 111 110 010 101 101 01 1 00Alelles

Genes

2   1   0       2    1   0       2  1   0        2   1   0       2   1   0        2  1   0      2    1   0       2    1   0       2   1  0Loci

FITNESS

Individual

Gene 8 Gene 7 Gene 6 Gene 5 Gene 4 Gene 3 Gene 2 Gene 1 Gene 0

Fig. 1.3. Typical structure of individuals in an EAs

is a gene, and usually (but not forcedly) every gene encodes a value. The
individual positions inside every gene are named loci, and in general alleles
are said to be the values stored in every loci.

In Fig. 1.4 we show an example of the application of some specific varia-
tion operators in a population composed of 4 individuals for the problem of
maximizing f(x) = x2. As it can be seen, the ‘String’ column in the upper
table is the binary codification of the problem variable x using one single
gene in one single chromosome in binary. The selection operator chooses the
parents with probability equal to the percentage of their fitness values with
respect to the sum of the fitness values of all the individuals in the population.
The recombination operator (single point crossover) splits the chromosomes
of the two individuals into two different parts in a randomly chosen location
and joins the parts of the different individuals in order to generate two new
offsprings. Finally, the mutation in this example flips the value of a random
loci (the first one in this case), in order to introduce some more diversity and
hopefully getting a better individual, as it is the case in the figure.

String# String Fitness % of the Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9

Total 1170 100.0

1. Roulette Wheel Selection (RW)

P
f

f
Si

i

j
j=

n=

1

5%

31%

14%

50%

10011
01101

11000

01000

2. Single Point Crossover (SPX)
pc [0.6 .. 1.0]

parents offspring
01|101 (169) 01000 (64)
11|000 (576) 11101 (841)

3. Mutation
pm [0.001 .. 0.1]

1 0 0 0 1 0 0 0

Mutation of the 1st allele

4    3    2     1     04    3    2     1     0

0 1

fitness=64 fitness=576

Problem: maximize f(x) = x2

Fig. 1.4. Example of the application of the variation operators in an EA



10 1 Introduction to Cellular Genetic Algorithms

Algorithm 1.1 Pseudo-code of an Evolutionary Algorithm
1. P ← GenerateInitialPopulation();
2. Evaluate(P );
3. while !StopCondition() do
4. P ′ ←SelectParents(P );
5. P ′ ←ApplyVariationOperators(P ′);
6. Evaluate(P ′);
7. P ← SelectNewPopulation(P , P ′);
8. end while
9. Result: The best solution found

Now we analyze the functioning of an evolutionary algorithm in detail. Its
pseudo-code is shown in Alg. 1.1. As it was said before, evolutionary algo-
rithms work on populations of individuals which are tentative solutions to the
problem. The initial population is usually composed by randomly created in-
dividuals, although problem knowledge can help creating faster EAs (e.g., by
using a greedy initial feeding of solutions). After the generation of the initial
population, the fitness value of each individual is computed, and the algorithm
starts the reproductive cycle. This step lies in generating a new population
through the selection of the parents, their recombination, the mutation of the
offsprings obtained and then, their evaluation. These three variation operators
are typical of most EAs, specially GAs, although many EA families usually
use less (e.g., evolutionary strategies –ES– where no recombination is used)
or more additional operators (e.g., decentralized EAs). This new population
generated in the reproductive cycle (P ′) will be used, along with the current
population (P ), for obtaining the population of individuals for the next gen-
eration. The algorithm returns the best solution found during the execution.

There are two kinds of EAs depending on the replacement used, that is,
according to the combination between P ′ and P for the new generation. Thus,
being μ the number of individuals of P and λ the number of individuals in P ′,
if the population of the new generation is obtained from the best μ individuals
of populations P and P ′ we have a (μ + λ)-EA, whereas if the population
of the next generation is composed only by the μ best individuals out of the
λ belonging to P ′, we have a (μ, λ)-EA. In this second case, it is usual that
μ ≤ λ. The “plus” strategy is inherently elitist (the best solution is always
preserved) while the “comma” strategy could led to losing the best solution
from the population.

The application of EAs to optimization (and learning) problems has been
very intense during the last decade [33]. In fact, it is possible to find this kind of
algorithm applied to solving complex problems like constrained optimization
tasks, problems with a noisy objective function, or problems which have high
epistasis (high correlation between the values to optimize) and multimodal-
ity [12, 26]. The high complexity and applicability of these algorithms has
promoted the emergence of innovative new optimization and search models.



1.4 Decentralized Evolutionary Algorithms 11

Initially, four kinds of evolutionary algorithms [137] could be clearly differ-
entiated. These four families of algorithms were simultaneously developed by
different research groups in the world. Genetic algorithms (GAs) were initially
studied by J. H. Holland [133, 134], in Ann Arbor (Michigan), H. J. Bremer-
mann [41] in Berkeley (California), and A. S. Fraser [95] in Sidney (Australia).
The evolutionary strategies (ES) were proposed by I. Rechenberg [209, 210]
and H.-P. Schwefel [225] in Berlin (Germany), meanwhile the evolutionary
programming (EP) was firstly proposed by L. J. Fogel [90] in San Diego (Cal-
ifornia). Last, the fourth family of algorithms, genetic programming (GP),
appeared two decades later, in 1985, as an adaptation of N. Cramer [54] of a
genetic algorithm which worked with tree shaped genes, instead of the strings
of binary characters traditionally used in GAs, and it is now widely used
thanks to the leading works of Koza [153].

Nowadays, the evolutionary algorithms field is growing and evolving itself.
An evidence is the number of new families that recently emerged, such as
particle swarm optimization (PSO) [40], ant colony optimization (ACO) [70],
and estimation of distribution algorithms (EDAs) [158], among others.

1.4 Decentralized Evolutionary Algorithms

Most EAs use a single population (panmixia) of individuals and apply oper-
ators on them as a whole (see Fig. 1.5a). In contrast, there also exists some
tradition in using structured EAs (where the population is somehow decen-
tralized), which are especially suited for parallel implementation. The use of
parallel distributed populations is based on the idea that the isolation of pop-
ulations enables a higher genetic differentiation [266]. In many cases [27], these
algorithms using decentralized populations provide a better sampling of the
search space and thus improve both the numerical behavior and the execution
time of an equivalent panmictic algorithm. Among the many types of struc-
tured EAs, distributed and cellular algorithms are two popular optimization
tools [25, 43, 176, 259] (see Fig. 1.5).

(a) (b) (c)

Fig. 1.5. A panmictic EA has all its individuals –black points– in the same popu-
lation (a). Structuring the population usually leads to distinguishing between dis-
tributed (b) and cellular (c) EAs



12 1 Introduction to Cellular Genetic Algorithms

(a) (b) (c)

Fig. 1.6. Connectivity graph among individuals for panmictic (a), distributed (b)
and cellular (c) EAs

On the one hand, in the case of distributed EAs (dEAs), the population
is partitioned in a set of islands in which isolated EAs are executed (see
Fig. 1.5b). Sparse exchanges of individuals are performed among these islands
with the goal of introducing some diversity into the sub-populations, thus
preventing them from getting stuck in local optima.

On the other hand, in a cellular EA (cEA) the concept of (small) neighbor-
hood is intensively used; this means that an individual may only interact with
its nearby neighbors in the breeding loop (Fig. 1.5c). The overlapped small
neighborhoods of cEAs help exploring the search space because the induced
slow diffusion of solutions through the population provides a kind of explo-
ration (diversification), while exploitation (intensification) takes place inside
each neighborhood by genetic operations.

If we think on the population of an EA in terms of graphs, being the indi-
viduals the vertices of the graph and their relationships the edges, a panmictic
EA is a completely connected graph (see Fig. 1.6a). On the other hand, a cEA
is a lattice graph, as one individual can only interact with its nearest neigh-
bors (in Fig. 1.6c each individual has 8 neighbors, and the relations between
the boundary individuals are not represented for the sake of clarity), whereas
a dEA is a partition of the panmictic EA into several smaller EAs, that is,
each island is a completely connected graph (very fast convergence), while
there exist only a few connections between the islands (as it can be seen in
Fig. 1.6b).

These two traditionally decentralized EAs (dEAs and cEAs) are actually
two subclasses of the same kind of EA consisting in a set of communicating
sub-algorithms. Hence, the actual differences between dEAs and cEAs can be
found in the way in which they both structure their populations. In Fig. 1.7, we
plot a three-dimensional (3-D) representation of structured algorithms based
on the number of sub-populations, the number of individuals in each one,
and the degree of interaction among them [5]. As it can be seen, a dEA is
composed of a few large sub-populations (having >> 1 individuals), loosely
connected among them. Conversely, cEAs are made up of a large number
of tightly connected sub-populations, each one typically containing a single
individual.



1.5 Cellular Evolutionary Algorithms 13

cGA

dGAcoupling degree

.

Fig. 1.7. The structured-population evolutionary algorithm cube

This cube can be used to provide a generalized way for classifying struc-
tured EAs. However, the points in the cube representing dEA and cEA are just
“centroids”; this means we could find or design an algorithm that can hardly
be classified as belonging to one of two such classes of structured EAs.

In a structured EA many elementary EAs (grains) exist working on sep-
arate sub-populations. Each sub-algorithm includes an additional phase of
periodic communication with a set of neighboring sub-algorithms located in
some topology. This communication usually consists in exchanging a set of in-
dividuals or population statistics. All the sub-algorithms were initially thought
to perform the same reproductive plan, although there has been a recent trend
consisting in executing EAs with distinct parameterizations in each subpop-
ulation, thus performing different searches in the space of solutions in each
island. This kind of (usually parallel) EAs are called heterogeneous [20].

From this point of view, cellular and distributed EAs only differ in some
parameters, and they can be helpful even when run in a monoprocessor [114].
This makes merging them into the same algorithm an interesting option, in
order to get a more flexible and efficient algorithm for some kinds of appli-
cations [172]. Additionally, any of these EAs can be run in a distributed way
(i.e., suited for a workstation cluster), or even on a grid of computers [94] (not
to confuse with the “grid” in which individuals evolve in the population).

1.5 Cellular Evolutionary Algorithms

The cellular model simulates the natural evolution from the point of view of
the individual. The essential idea of this model is to provide the population
of a special structure defined as a connected graph, as we saw in the previ-
ous section, in which each vertex is an individual who communicates with his
nearest neighbors. Particulary, individuals are conceptually set in a toroidal
mesh, and are only allowed to recombine with close individuals. This leads us
to a kind of locality known as isolation by distance. The set of potential mates
of an individual is called its neighborhood . It is known [35] that in this kind
of algorithm similar individuals can cluster creating niches , and these groups
operate as if they were separate sub-populations (islands). Anyway, there is no
clear borderline between adjacent groups, and close niches can be more eas-
ily colonized by competitive niches than in an island model. Simultaneously,
farther niches can be affected more slowly.



14 1 Introduction to Cellular Genetic Algorithms

L5 L9 C9

C13 C21 C25

Fig. 1.8. Toroidal population (left) and most typically used neighborhoods in cEAs

In a cEA [246], the population is usually structured in a bidimensional
grid of individuals as the one shown on the left of Fig. 1.8, although using
this topology does not restrict the scope of the solutions obtained [220]. In it,
the boundary individuals of the grid are connected to the individuals located
in the opposite borders in the same row/column, depending on the case. This
connection is represented in the figure by a dashed line. The acquired effect
is a toroidal grid, so that all the individuals have exactly the same number of
neighbors. As we said before, the grid used is usually bidimensional, although
the number of dimensions can be easily extended to three or more (or reduced).

The neighborhood of a particular point of the grid (where an individual is
placed) is defined in terms of the Manhattan distance between the considered
point of the grid and the others in the population. Each point of the grid has
a neighborhood that overlaps the neighborhoods of nearby individuals; all the
neighborhoods have the same size and identical shape. In Fig. 1.8 (on the right-
hand side) we can also see the six main neighborhood shapes typically used
in cEAs. Please note the names of these neighborhoods: the label Ln (linear)
is used for neighborhoods composed by the n nearest neighbors in a given
axial direction (north, south, west and east), while the label Cn (compact) is
used to designate the neighborhoods containing the n−1 nearer individuals to
the considered one (in horizontal, vertical, and diagonal directions). The two
most commonly used neighborhoods are: (i) L5 [176, 220, 259], also called
Von Neumann or NEWS neighborhood (after North, East, West y South);
and (ii) C9, also known as Moore neighborhood.

In cEAs, the individuals can only interact with their neighbors in the re-
productive cycle where the variation operators are applied. This reproductive
cycle is executed inside the neighborhood of each individual and, generally,
consists in selecting two parents among its neighbors according to a certain
criterion, applying the variation operators to them (recombination and mu-
tation for example), and replacing the considered individual by the recently
created offspring following a given criterion, for instance, replace if the off-
spring represents a better solution than the considered individual. In Fig. 1.9
we can see how the reproductive cycle is applied in the neighborhood of an
individual in a cEA (the considered neighborhood is NEWS). We must notice
that according to the update policy of the population used, we can distinguish
between synchronous and asynchronous cEAs (see Sect. 1.5.1); this is also a
well-known issue in cellular automata.



1.5 Cellular Evolutionary Algorithms 15

Selection Recombination

Mutation

Replacement

Fig. 1.9. Reproductive cycle of each individual in a cEA

The overlap of the neighborhoods provides an implicit mechanism of mi-
gration to the cEA. Since the best solutions spread smoothly through the
whole population, genetic diversity in the population is preserved longer than
in non structured GAs. This soft dispersion of the best solutions through the
population is one of the main issues of the good tradeoff between exploration
and exploitation that cEAs perform during the search. It is then easy to think
that we could tune this tradeoff (and hence, the genetic diversity level along
the evolution) modifying (for instance) the size of the neighborhood used, as
the overlap degree between the neighborhoods grows according to the size of
the neighborhood. In Fig. 1.10 the overlap degree of two different neighbor-
hoods for the same individuals (drawn in two different grey colors) is shown.
On the left part we can see the NEWS neighborhood, while on the right side
the C21 neighborhood is shown. The individuals in darker grey color belong
to both neighborhoods, while the individuals on the other two lighter grey
belong to only one neighborhood: the ones on the lightest grey belong to the
light grey individual, and the other grey color is for the individuals belonging
to the neighborhood of the dark grey individual.

L5 C21

Fig. 1.10. Larger neighborhoods induce a higher level of implicit migration



16 1 Introduction to Cellular Genetic Algorithms

A cEA can be seen as a cellular automaton (CA) [264] with probabilistic
rewritable rules, where the alphabet of the CA is equivalent to the potential
set of chromosomes in the search space [245, 259], that is, to the potential
number of solutions to the problem. Hence, if we see cEAs as a kind of CA,
it is possible to import analytic tools and existing models and proposals from
the field of CAs to cEAs in order to better understand these structured EAs
and to improve their performance.

Next, we present in Sect. 1.5.1 the two updating methods of individuals
that can be applied in cEAs, namely synchronous and asynchronous policies.
In Sect. 1.5.2 we introduce a measure for quantitatively characterizing the grid
and the neighborhood of a cEA attending to the “radius” concept. Contents
of these two sections will allow future discussion and suggest by themselves
future research lines.

1.5.1 Synchronous and Asynchronous cEAs

There exist two different kinds of cEAs according to how the reproductive
cycle is applied to the individuals. On the one hand, if the cycle is applied to
all the individuals simultaneously, the cEA is said to be synchronous , as the
individuals of the population of the next generation are formally created at
the same time, in a concurrent way. On the other hand, if we sequentially up-
date the new individuals of the population with a particular order policy [17]
we have an asynchronous cEA. An excellent discussion on synchronous and
asynchronous cellular automata, relevant for our research, is available in [224].
As we will see through this book, the behavior of an algorithm is really af-
fected by the update policy of the individuals, as well as by other parameters
like the size and shape of the neighborhood. Moreover, the visiting order to
the individuals for update in the asynchronous case is also a capital issue in
the behavior of the algorithm. Next we present the main update policies of
individuals in asynchronous cEAs:

• Line Sweep (LS). This is the simplest method. It lies in sequentially up-
dating the individuals of the population row by row (1, . . . , n) in Fig. 1.11.

• Fixed Random Sweep (FRS). In this case, the next cell to update
is selected with a uniform probability without replacement (that is, it
is not possible to visit one cell twice in a generation); this produces a
determinate updating (cj

1, c
k
2 , . . . , cm

n ), where cp
q means that the cell number

p is updated in time q and (j, k, . . . , m) is a permutation of the n cells. A
fixed permutation is used for all the generations.

• New Random Sweep (NRS). Similar to FRS, with the difference of
using a new random permutation of cells in each generation.

• Uniform Choice (UC). In this last method, the next individual to visit
is randomly chosen with uniform probability among all the components of
the population with replacement (so it is possible to visit one cell more than
once in the same generation). This corresponds to a binomial distribution
for the updating probability.



1.5 Cellular Evolutionary Algorithms 17

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Fig. 1.11. Enumeration of the individuals in the grid

A time step (or generation) is defined as the sequential update of n indivi-
duals, which corresponds to the update of all the individuals of the population
in the cases of the synchronous and LS, FRS and NRS policies, and possibly
less than n different individuals for the UC method (as some cells can be
updated more than once in the same generation). It is interesting to remark
that, with the exception of LS, the other asynchronous update policies are
stochastic, which represents an additional source of non determinism besides
the one induced by the non-deterministic application of variation operators.

1.5.2 Formal Characterization of the Population in cEAs

In this section we define the characterizing parameters of the population of a
cEA. For this purpose, we use the definition of radius presented in [26], which
is in turn an extension of the concept proposed in [220] which takes into
account the non square grids case. In [26] the radius of the grid is supposed to
be equal to the dispersion of n∗ points in an ellipse centered in (x, y) (Eq. 1.6).

rad =

√∑
(xi − x)2 +

∑
(yi − y)2

n∗ , x =
∑n∗

i=1 xi

n∗ , y =
∑n∗

i=1 yi

n∗ . (1.6)

This definition not only characterizes the shape of the grid but also pro-
vides a value of the radius for the neighborhood. Although it is called “radius”,
rad measures the dispersion of n∗ patterns. This definition always assigns dif-
ferent numeric values to different grid shapes, which differs from the definition
proposed in [220], where the measure is the radius of the minimum circle con-
taining the grid, so it could assign identical values to actually different grids.

As was proposed in [220], the relationship between the neighborhood and
the grid can be quantified through the tradeoff (or ratio) between their radii
(Eq. 1.7). Algorithms with a similar ratio show a similar search when using
the same selection method, as was concluded in [221].

ratiocEA =
radNeighborhood

radGrid
. (1.7)



18 1 Introduction to Cellular Genetic Algorithms

Fig. 1.12. (a) Radius of NEWS neighborhood. (b) Grids 5×5=25 and 3×8≈25;
the same number of individuals can yield two different ratios

If we have a constant number of individuals (n = n�, for making fair com-
parisons), the narrower the grid the higher the value of the topology radius,
as it can be seen in Fig. 1.12b. Hence, if we keep constant the size and shape
of the neighborhood (for example, using NEWS, Fig. 1.12a), the narrower the
population grid the smaller the ratio.

An important feature of manipulating the ratio is that by reducing its
value we reduce the intensity of the global selection in the population, so that
we are promoting exploration. This is expected to allow a higher diversity
in the population and to improve the obtained results for complex problems
(as they usually are multimodal and epistatic tasks). Moreover, the search
executed inside each neighborhood guides the exploitation of the algorithm.

1.6 Cellular Genetic Algorithms

The main family of EAs under study in this book is that of cellular genetic
algorithms. GAs encode the decision variables of a search problem in finite
length variable chains of an alphabet of a given cardinality. The resulting
strings, which are candidate solutions to the search problem, are called chro-
mosomes . Each variable composing the chromosome is a gene, while the dif-
ferent values of these genes are named alleles (see Fig. 1.3).

Once we encode the problem into one chromosome and define a fitness
function for distinguishing promising solutions from the rest, we can start to
evolve the population of tentative solutions according to the following steps:

1. Initialization. The initial candidate solution population is usually uni-
formly randomly generated, although it is easy to use problem knowledge
or any other kind of information in this step.

2. Evaluation. Once we initialized the population, or when a new solution
offspring is created, it is necessary to calculate the fitness value of the
candidate solutions.

3. Selection. Through the selection, we favor the highest fitness value solu-
tions in the search, so a mechanism which encourages the survival of the
best individuals is imposed. The main idea of the selection lies in favoring
the best solutions against the worst ones, and there exist a plethora of
selection procedures proposed for accomplishing this idea [50, 106, 221].



1.6 Cellular Genetic Algorithms 19

4. Recombination. The recombination combines two or more parts from
parent solutions for creating new ones (offspring), which are possibly bet-
ter. A competent performance of the algorithm depends on a well designed
recombination mechanism, and we can achieve that in different ways. Ide-
ally, the offspring solution obtained through the recombination is not iden-
tical to any of the parents, but contains combined building blocks from
both [105].

5. Mutation. The mutation randomly modifies a single solution whereas the
recombination acts on two or more parent chromosomes. Again, there exist
many mutation variants, which usually affect to one or more loci (genes or
components) of the individual. In other words, the mutation performs a
random jump in the solution space neighborhood of a candidate solution
(not to confuse to the structured population neighborhood).

6. Replacement. The offspring population created through selection, re-
combination and mutation, replaces the parent population according to a
given criterion; elitist replacement which preserves the best solution along
the evolution is a popular criterion.

In Alg. 1.2 we present the pseudo-code of a canonical cGA. As it can be seen,
it starts by generating and evaluating an initial population. After that, the
already mentioned genetic operators (selection, recombination, mutation, and
replacement) are iteratively applied to each individual until the termination
condition is met. A key issue characterizing the cellular model is that these
genetic operators are applied within the neighborhood of the individuals, so
individuals belonging to different neighborhoods are not allowed to interact.
The presented pseudo-code in Alg. 1.2 corresponds to a synchronous cGA, as
the individuals composing the population of the next generation are stored in
an auxiliary population and, when completed, replace in an atomic step the

Algorithm 1.2 Pseudo-code of a canonical cGA
1. proc Evolve(cga) // Parameters of the algorithm in ‘cga’
2. GenerateInitialPopulation(cga.pop);
3. Evaluation(cga.pop);
4. while ! StopCondition() do
5. for individual ← 1 to cga.popSize do
6. neighbors ← CalculateNeighborhood(cga,position(individual));
7. parents ← Selection(neighbors);
8. offspring ← Recombination(cga.Pc,parents);
9. offspring ← Mutation(cga.Pm,offspring);

10. Evaluation(offspring);
11. Replacement(position(individual),auxiliary pop,offspring);
12. end for
13. cga.pop ← auxiliary pop;
14. end while
15. end proc Evolve



20 1 Introduction to Cellular Genetic Algorithms

present population. Therefore, in this model all the individuals in the popula-
tion are updated simultaneously and, equivalently, the creation of individuals
is made only from the individuals in the present population (not those previ-
ously created during the same iteration). In the asynchronous case, it would
not be necessary to use an auxiliary population, since the generated offspring
replace the individuals of the population (depending on the criterion used)
just when they are visited.

1.7 Conclusions

In this chapter we have presented evolutionary algorithms, which are iterative
processes operating on a set of individuals composing a population; each of
these individuals represents a potential solution to the problem. This popula-
tion of individuals evolves due to the application of a set of operators (usually
having linear or other light complexity) inspired in biological processes of
Nature, such as natural selection and genetic inheritance. As a result, the in-
dividuals of the population are improved during the evolution. EAs are very
useful tools for solving complex problems, since they work fast in large (and
complex) search spaces thanks to their ability to process multiple solutions si-
multaneously (concept of population). Hence, EAs can follow different search
paths simultaneously.

Additionally, it is possible to improve the numerical behavior of the algo-
rithm by structuring the population. The main types of EAs with structured
populations are distributed and cellular ones. In this book we focus on the
cellular case as it was introduced in this chapter by defining their main com-
ponents: pseudo-code, characterization of the structured population and the
neighborhood, update policies and several other details on cGAs.



2

The State of the Art
in Cellular Evolutionary Algorithms

A person who never made a mistake never tried
anything new.

Albert Einstein (1879 - 1955) – Physicist

Before starting any new scientific research, it is necessary to know perfectly
well the existing contributions to the considered field in the literature. This
documentation step is basic for the right development of science, as it provides
important knowledge of the working area, allowing us to take advantage of
the contributions of others authors, and thus avoiding the development of low
interest works as, for example, studies tackled before by other researchers.
Hence, in this chapter we present a wide exploration of the state of art in
cellular evolutionary algorithms, including and classifying some of the main
existing publications related to this field.

The chapter structure is detailed next. We start with Sect. 2.1 explaining
the first appeared models of cEAs in the literature. In Sect. 2.2 the main the-
oretical studies developed in cEAs are summed up, whereas Sect. 2.3 compiles
some of the most relevant works where empiric studies of the functioning of
cEAs have been carried out, and also comparisons to other models. A summary
of the most important works contributing with algorithmic improvements to
the cEAs field is shown in Sect. 2.4. Section 2.5 presents some works with high
repercussion in the field of parallel cEAs. Finally, at the end of the chapter
we summarize all this and mention some open research lines.

2.1 Cellular EAs: a New Algorithmic Model

The cellular evolutionary algorithms were initially designed for working in
massive parallel machines, composed of many processors executing simulta-
neously the same instructions on different data (SIMD machines –Single In-
struction Multiple Data) [88]. In the simplest case, the executed cEAs in this
sort of machines used a single large population and assigned an only single
individual to each processor. In order to avoid a high overload in communi-
cations, the mating of the individuals was restricted to the closer individuals
(that is, the ones belonging to their neighborhood).

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 2, © Springer Science+Business Media, LLC 2008



22 2 The State of the Art in Cellular Evolutionary Algorithms

In 1976, Bethke [38] made the theoretical study of a GA on a SIMD parallel
machine, analyzing the efficiency of the processing capacity use. He concluded
that the maximum efficiency is obtained when much more expensive fitness
functions than evolution operations are evaluated, a typical case for many
applications.

The first cGA model known is the one proposed by Robertson in 1987 [216],
implemented on a CM1 computer. It was a model where all the steps of the
algorithm (parent selection, replacement, recombination, and mutation) were
executed in parallel. This model obtained good results, with an execution time
independent from the population size.

A year later, Mühlenbein, Gorges Schleuter, and Kramer published a
work [186] where a cGA on massive parallel machines for the TSP problem
was proposed. An important characteristic of this cGA was the incorporation
of a local search step for improving the generated solutions by the recombi-
nation and mutation operators. Therefore, it is considered the first published
hybrid cGA.

After these two first works some cGAs appeared in a few years. They were
named in terms of the pollination plants [105], parallel individual [130], diffu-
sion [33], fine grained [176], massively parallel [129, 232] or local selection [116]
models. The term cellular GA was not used until 1993, when Whitley pro-
posed it for the first time in a work where a cellular automaton model was
applied on a genetic algorithm [259].

All these cGAs were initially designed for working on massively parallel
machines, although, due to the fast loss of popularity suffered by this kind of
machines, the model was adopted later for also functioning on mono-processor
machines, without any relation to parallelism at all. In fact, since the emer-
gence of cEAs, there were implementations in secuencial environments [59], in
transputers nets [115], or in parallel distributed environments [177]. This issue
should be clear, as many researchers still think about the equivalence between
massively parallel EAs and cellular EAs, what represents a wrong connection:
cEAs are simply a different class of EAs, as memetic algorithms [184], esti-
mation of distribution algorithms [158, 187], or particle swarm optimization
algorithms [40] are.

Since the cGAs appeared, there have been many contributions published
in this field. In Table 2.1 we summarize some of the most important ones,
which are commented in Sects. 2.2 to 2.4.

2.2 The Research in the Theory of the Cellular Models
The number of existing works in the area of the cGAs theory is too low.
This is probably due to the difficulty of deducing generic tests in an area
where so many possibilities of implementation exist. Maybe, another reason
for this lack is the generalized belief that cGAs model in a more accurate
way the populations of nature with respect to the islands model or sequential
GAs. Apart from the reason of this lack of theory, more research is necessary
in this area.



2.2 The Research in the Theory of the Cellular Models 23

Table 2.1. Brief summary of the main contributions to the cEAs field

Reference Contributions
(Hillis, 1990) [129] cGA with two co-evolutionary populations
(Collins & Jefferson, 1991) [50] Study of the influence of different selection methods
(Gorges-Schleuter, 1992) [116] cGA with a migration mechanism
(Gordon et al., 1992) [112] cGA with a migration mechanism
(White & Pettey, 1993) [258] Study of different ways of applying the selection method
(Rudolph & Sprave, 1995) [219] Use of a self-adaptive acceptation threshold
(Sarma & De Jong, 1996) [220] First theoretical study on the selection pressure in cGAs
(Sarma & De Jong, 1997) [221] Study on the influence of different selection methods
(Sipper, 1997) [230] Co-evolutionary cGA
(Folino et al., 1998) [91] A cGA with a local search step for SAT
(Laumanns et al., 1998) [159] Prey/predator algorithm for the multi-objective domain
(Gordon et al., 1999) [111] Heterogeneous cGA: different parameterization in each cell
(Gorges-Schleuter, 1999) [119] Comparison of panmictic versus cellular ESs
(Kirley et al., 1999) [149] A cGA allowing empty cells (without individuals)
(Ku, Mak & Siu, 1999) [157] A cGA with local search for training recurrentneural networks
(Sprave, 1999) [234] Hypergraphs based model for characterizing cEAs
(Alba & Troya, 2000) [26] Influence of the ratio on the exploration/exploitation
(Kirley & Green, 2000) [148] A cGA applied to the continuous optimization domain
(Lee, Park & Kim, 2000) [160] A cGA with migrations
(Rudolph, 2000) [218] Takeover in cGAs with ring and toroidal population
(Krink et al., 2000) [215] A cGA with disasters
(Thomsen & Kirley, 2000) [244] RBGA: cGA based in religions
(Krink et al., 2001) [155] [215] with a sand bag model for disasters frequency
(Llor & Garrell, 2001) [167] GALE: cGA for data mining. Empty cells are allowed
(Kirley, 2002) [147] CGAD: cGA with disasters
(Alba & Dorronsoro, 2003) [10, 12] Proposal of cGAs with adaptive population
(Li & Sutherland, 2002) [165] Prey/predator algorithm for continuous optimization
(Giacobini et al., 2003) [100] Takeover in asynchronous cGAs with ring population
(Giacobini et al., 2003) [99] Selection pressure study in cGAs with ring population
(Li, 2003) [164] Prey/predator algorithm for the multi-objective domain
(Alba et al., 2004) [9] Comparison between cGAs and other EAs
(Alba & Dorronsoro, 2004) [11] Some hybrid cGAs for VRP
(Dorronsoro et al., 2004) [17, 74] Comparison between synchronous and asynchronous cGAs
(Giacobini et al., 2004) [98] Selection pressure in asynchronous cGAs with toroidal pop.
(Alba et al., 2005) [7] Asynchronous cGAs with adaptive populations
(Alba et al., 2005) [8, 18] cMOGA: first orthodox multi-objective cGA
(Alba et al., 2005) [15] First memetic cGA (cMA); applied on SAT
(Alba & Saucedo, 2005) [24] Comparison between cGA and panmictic GAs
(Dick, 2005) [68] A cGA with ring population as a method for preserving niches
(Dick, 2005) [69] Modelling the genetic evolution in cGAs (ring population)
(Giacobini et al., 2005) [102] Modelling cGAs with square and rectangular populations
(Giacobini et al., 2005) [101] Modelling cGAs with small world topology populations
(Alba & Dorronsoro, 2006) [13] Hybrid cGA which improves the state of art in VRP
(Alba et al., 2006) [23] First EDA with population structured in a cellular way
(Dorronsoro & Alba, 2006) [73] A cGA for the numerical optimization domain
(Grimme & Schmitt, 2006) [125] Prey/predator algorithm for multi-objective domain
(Ishibuchi et al., 2006) [138] A cGA with distinct neighborhoods for selection and crossover
(Luo & Liu, 2006) [171] A cGA designed for GPUs
(Luna et al., 2006) [169, 170] Comparison of cMOGA versus other MO algoritms
(Nebro et al., 2006) [193, 194] MOCell: a new orthodox MO cGA
(Payne & Eppstein, 2006) [203] Study of the emergence matching topology in cGAs
(Janson et al., 2006) [139] HcGAs: cGAs with hierarchical population
(Simoncini et al., 2006) [229] A new anisotropic selection operator for cGAs
(Xhafa, 2006) [268] A cMA for task scheduling in grid computing
(Alba & Dorronsoro, 2007) [14] Wide study of a memetic cGA on VRP
(Xhafa et al., 2007) [269] A cMA versus other GAs for batch task scheduling in grids
(Nebro et al., 2007) [195] Improvement of MOCell [193, 194]
(jMetal, 2007) [80] Multi-objective algorithms library (including MOCell)
(Dorronsoro et al., 2007) [75] Parallel hybrid cGA for large instances of VRP



24 2 The State of the Art in Cellular Evolutionary Algorithms

In the following subsections, we summarize the main existing contributions
to the theory of cEAs. Thus, Sect. 2.2.1 presents some studies for theoretically
modelling the behavior of cEAs, while Sect. 2.2.2 shows a summary of the main
works attempting to characterize the behavior of the cEAs according to the
neighborhood to population ratio.

2.2.1 Characterizing the Behavior of cEAs

An easy way for characterizing the search performed by a cEA lies in using
the selection pressure, which is a measure of the diffusion speed of the good
solutions through the population. In order to deepen into the knowledge of
the functioning of cEAs, some theoretical works compare the algorithms ac-
cording to the selection pressure showed, and in some cases even intend to
mathematically model its behavior.

Sarma and De Jong made in [220, 221] some theoretical studies about
the selection pressure induced by cGAs with different selection operators and
neighborhood sizes and shapes. For studying the effect on the size of neigh-
borhood in the selection pressure, they proposed in [220] a definition of the
radius of the neighborhood as a measure of its size. Moreover, they observed
the same effect when changing the size of the population, so they proposed
a new measure called ratio, defined as the relationship between the radii of
the neighborhood and the population. Sarma and De Jong discovered that
this ratio is a key issue for controlling the selection pressure of the algorithm.
Therefore, two algorithms with different population sizes and neighborhoods
but with the same ratio value have a similar selection pressure. Finally, they
proposed the use of a logistic function (parameterized with one variable) for
approaching the curve of the selection pressure presented by cGAs. This func-
tion is based on the family of logistic curves which was demonstrated in a
previous work [106] that works in the panmictic case. The model proposed
seemed to be a good approach for cGAs with square populations, but later it
was demonstrated that this model have some deficiencies when using rectan-
gular populations (see Chap. 4 for more information).

Three years later, Sprave proposed in [234] a unified description of any
kind of EA with both structured and non-structured populations based on
the concept of hypergraph. A hypergraph is an extension of a canonical graph,
where the concept of the edges is generalized: instead of the union of a pair
of vertex they become unions of subsets of vertexes. Using the concept of
hypergraph, Sprave developed in [234] a method for estimating the growth
curve of the selection pressure of a GA. This method is based on calculating
the diameter of the structure of the population and the probability of the
distribution induced by the selection operator.

Gorges-Schleuter studied in [119] the growth curves for a diffusion (cel-
lular) model of Evolutionary Strategy (ES) with populations structured in
toroidal or ring shapes. In her studies, she observed that the diffusion model
of ES (both the toroidal and the ring model) has a lower selection pressure



2.2 The Research in the Theory of the Cellular Models 25

than the equivalent ES with panmictic population. Moreover, comparing the
two diffusion models, she concluded that, using the same neighborhood size,
structuring the population in a ring shape allows a lower selection pressure
than when using a toroidal population.

In this work, the differences in the behavior of the algorithm with distinct
selection schemes were also analyzed. Particulary, two cases were studied: the
one in which it is forced that the actual individual is one of the parents, or the
case in which the two parents are selected with the same selection method. It
was also studied the effect of allowing one single individual to be chosen as
both parents (self-matching) or not. In fact, if we force the actual individual
to be one of the parents, the error induced by stochastic sampling is reduced,
and also the changes in the individuals are more gradual due to one survived
offspring will replace that parent.

In [100], Giacobini et al. proposed quantitative models for estimating the
takeover time (the time for colonizing the population by copies of the best
individual only under the selection effects) for synchronous and asynchronous
cGAs with structured population in ring shape (one dimension), and using
a neighborhood composed by the two nearest individuals to the considered
one. This work was later extended in [98, 99] in order to find accurate math-
ematical models for fixing the selection pressure curves of synchronous and
asynchronous cGAs. In these works, the population is structured in a bidimen-
sional grid, but it is forced to be square. In [102], the same authors proposed
some probabilistic recurrences for modelling the behavior of the selection pres-
sure of some synchronous and asynchronous cGAs with square, linear (ring),
and toroidal population for two different selection schemes. They also studied
the case of a rectangular population for synchronous and asynchronous cGAs,
but in this case they only validated the experiments on one selection scheme.
In Chap. 4 it is demonstrated that the model is not completely satisfactory
when other selection schemes different from the one studied in [102] are tested.

Giacobini, Tomassini, and Tettamanzi proposed in [101] some mathemati-
cal models for approaching the growth curve of cGAs working on populations
where the topology is defined as a random graph or as small world graphs,
where the distance between any two individuals is, in general, much lower
than in the case of the most commonly regular grids used (they are neither
regular nor completely irregular [197] graphs).

Recently, in [229], Simoncini et al. proposed a new selection operator for
cGAs called anisotropic selection for tuning the selection pressure of the algo-
rithm. This new method lies in allowing the selection of the individuals of the
neighborhood with different probabilities according to their location. In this
way, the authors promote the emergence of niches in the population. In this
work the selection pressure of the algorithm on different shapes of population
was studied, but the comparison between the new algorithm and the canonical
cGA is missed.



26 2 The State of the Art in Cellular Evolutionary Algorithms

Finally, a new contribution to the field of theory of cGAs was presented
in [72] through the development of a more accurate mathematical equation
than the existing ones for modelling the selection pressure curves of cGAs with
rectangular and square populations. The proposed model was demonstrated
to be valid for different selection methods.

2.2.2 The Influence of the Ratio

In the literature, there exist results (as [189] for the case of large instances of
the TSP problem, or [35, 84, 114] for function optimization) that suggest, but
do not analyze, that the shape of the grid of the population really influences
in the quality of the search performed by the algorithm. However, Sarma and
De Jong defined in [220, 221] the concept of ratio. As it was introduced in
Sect. 2.2.1, this feature is highly interesting because algorithms with similar
ratio values show a similar behavior in the search.

It was not until year 2000 when Alba and Troya [26] published the first
quantitative study of the improvement obtained in the efficiency of a cGA
when using non square grids. In this work, the behavior of some cGAs with
different shapes of grids on some problems was analyzed, concluding that the
use of non square grids promotes a very efficient behavior on the algorithms.
Moreover, Alba and Troya redefined in [26] the concept of radius as the dis-
persion of a set of patterns, since the definition by Sarma and De Jong [220]
can assign the same numeric value to different neighborhoods, which is un-
desirable. Finally, we can find another really important contribution in [26],
consisting in changing the shape of the population in an specific time step of
the execution for modifying the tradeoff between exploration and exploitation
applied by the algorithm on the search space. So, the authors take advantage
of the different behavior showed by the cGAs with distinct population shapes,
and in a very easy way (free of computational load) they change the behavior
of the algorithm, in the middle of the execution, promoting the exploration
of the search space from a local exploiting step or vice versa.

As a contribution to this area, Dorronsoro and Alba developed in [12] a
new adaptive model in which the shape of the population is automatically
changed (and, therefore, the ratio value) for regulating the balance between
exploration and exploitation performed by the algorithm. Different versions
of this new adaptive algorithm were compared to static ratio algorithms, and
it improved all of them in all the cases (see Chap. 6).

2.3 Empirical Studies on the Behavior of cEAs

In this section we present some important works for analyzing the behavior
of cEAs, like the evolution process of the individuals in the population, or the
algorithm complexity according to the operators used.



2.3 Empirical Studies on the Behavior of cEAs 27

Collins and Jefferson characterize in their work [50] the difference between
the panmictic GAs and the cGAs according to some factors, as the diversity of
the genotype and phenotype, the speed of convergence, or the stockiness of the
algorithm, concluding that the local matching performed in the cGAs “... is
more appropriate for the artificial evolution ...” than the GAs with panmic-
tic population. The authors demonstrate in this work that, for a particular
problem with two optima, a panmictic GA rarely finds the two solutions,
meanwhile the cGA generally finds both solutions. The reason is that, thanks
to the slow diffusion of the best solutions produced by the cGA, the diversity
is kept for longer in the population, forming some small niches in it, or groups
of similar individuals, representing different searching areas of the algorithm.
This work inspired some other modern works where cGAs are used as methods
for finding multiple optimal solutions to problems [68].

Davidor developed in [58] a study about a cGA with a bidimensional grid
and a neighborhood with eight individuals. In this study, the proportional se-
lection was used (according to the fitness value) for both parents, creating two
offsprings in the recombination step, and placing both offsprings in the neigh-
borhood with given probability according to their fitness value. Using this
model, he discovered that the cGA showed a fast convergence, although in a
located way, that is why niches of individuals with fitness values close to the
optima were formed in the population. This fast (and located) convergence is
not surprising if we consider that the selection is really effective in very small
populations. Therefore, we can conclude from this work that a characteristic
behavior of cGAs is the forming of diverse niches in the population where the
reproductive cycle tends to promote the specialization of the composing indi-
viduals (the exploitation inside these areas is promoted). From this statement
we conclude that the cGA maintain diverse search paths towards different
solutions, as each of these niches can be seen as an exploitation path of the
search space.

In the same conference where Davidor presented the commented work,
Spiessens and Manderick [232] published a comparative study of the temporal
complexity between their cGA and a secuencial GA. Due to the problem de-
pendance of the evaluation step, they ignored it in their studies, and they were
able to demonstrate that the complexity of cGAs increases linearly according
to the genotype length. On the contrary, the complexity of a secuencial GA
increases polynomially according to the size of the population multiplied by
the genotype length. As an increment in the length of the individual should
theoretically be joined to an increase in the size of the population, an in-
crement in the length of an individual will affect to the execution time of a
sequential GA, but not in the case of the cGA. Moreover, in this article the
authors deduce the expecting number of individuals when using the common
selection methods in cGAs, showing that the proportional selection is the one
with the lower selection pressure.



28 2 The State of the Art in Cellular Evolutionary Algorithms

Now, we briefly discuss the results of the experiment presented some years
later by Sarma and De Jong in [62]. In this work, they obtained a really
important result for any researcher interested in developing cGAs. In their
experiments, they compared some cGAs using diverse selection schemes, and
they realized that two of the studied selections behaved in a different way even
having equivalent selection pressures. In accordance with the authors, “these
results remark the importance of an analysis on the variation of selection
schemes. Without this analysis, it is possible to fall into the trap of assuming
that the selection algorithms which are expected to have an equivalent selection
pressure produce a similar search behavior.”.

In 1994, Gordon et al. [110] studied seven cGAs with different neighbor-
hoods on continuous and discrete optimization problems. In that paper, they
concluded that larger neighborhoods work better with simple problems but
on the contrary, with more complex problems it is better the use of smaller
neighborhoods.

Capcarrère et al. defined in [44] a set of very useful statistical measures
for understanding the dynamical behavior of cEAs. In that study two kinds
of statistics were used: based on genotype and phenotype. The metrics based
on genotype measure issues related to the chromosomes of the individuals of
the population, whereas the ones based on phenotypes take account of the
adequacy properties of the individual, basically in the fitness.

More recently, Alba et al. performed in [19] a comparative study of the
behavior of cGAs with synchronous and asynchronous update policies of the
population. The results obtained show that the asynchronous cGAs perform a
higher selection pressure than the synchronous ones, so they converge faster,
and generally, find the solution sooner than the synchronous in the less com-
plex studied problems. On the contrary, in the case of the hardest problems,
the synchronous cGAs seem to be the ones offering a better efficiency, as the
asynchronous get stuck in local optima more frequently.

In [84], Eklund performed an empirical study for determining the most
appropriate selection method and the shape and size of the neighborhood
for a cellular GP. The conclusions were that both the ideal size and shape
of the neighborhood depend on the size of the population. Regarding the
selection method, any of the studied ones behave well with elitist populations.
Moreover, it was discovered that the higher the number of dimensions in a
population is, the higher the dispersion speed of the good solutions is and
therefore the size of the population should be larger for obtaining a good
behavior.

Finally, this book contributes to the theory in cEAs with new and severe
theoretical and practical studies of the selection pressure in synchronous and
asynchronous cGAs with different population shapes (Chap. 4) [17, 74], and
comparative studies between cEAs and panmictic EAs (see Chap. 3 for a
deep comparison in the field of GAs, and Chaps. 10 and 13 for the cases of
EDAs [23] and memetic GAs [14], respectively).



2.4 Algorithmic Improvements to the Canonical Model 29

2.4 Algorithmic Improvements to the Canonical Model

In this section we remark some other relevant publications in the field of cGAs
which do not directly belong to any of the previous sections, but they deserve
a mention because they suppose important advances in the field.

Rudolph and Sprave presented in [219] a synchronous cGA with structured
population in a ring topology and with a self-adaptive acceptance threshold,
which is used as a way to add elitism to the algorithm. The algorithm was
compared to a panmictic GA, which resulted to have a considerably worse
efficiency than the cGA.

In [111, 113], the authors presented an heterogeneous algorithm called
Terrain-Based GA (TBGA). The idea of TBGA is that the programmer does
not need to tune any of the parameters. This is achieved by defining a rank
of values for each of the parameters, which disperse along the axis of the
population of the cGA. So, in each position of the population there exists
a different combination of the parameters, being similar the parameters of
neighbor positions. The TBGA algorithm has been also used for finding a
good parametrization for a cGA. The authors present two methods for search-
ing a good configuration, and they lie in the storage of the number of times
that the best individual of the population in every generation was in each
position of the grid. The general idea is that the location with a higher num-
ber of best individuals along the different generations should have a good
parametrization. In [113] Gordon and Thein conclude that the algorithm with
the parameter configuration of that location with a higher registered number
of best individuals has a really better efficiency than TBGA, and also than a
manually tuned cGA.

In the literature, some cGAs hybridized with local search methods have
been published. Some examples are the cGAs for training recurrence artificial
neural networks for solving the long-term dependency problem [157] or the
XOR function [156], and the most recently hybrid cGAs proposed for the SAT
problem by Folino et al. [91, 92], and by Luo and Liu [171], where the muta-
tion operator is replaced by a local search step. This last algorithm has the
particularity of being developed for running in the Graphic Processing Unit
(GPU) of the computer, instead of using the Central Processing Unit (CPU).

Some models have been also proposed where extinction of the individu-
als in particular areas of the population is introduced. For example, Kirley
proposes CGAD [147, 149], a cGA with perturbations characterized by the
possibility of disaster occurrences, which removes all the individuals located in
a particular area of the population. CGAD was successfully tested in numer-
ical, dynamical, and multi-objective [146] optimization problems, becoming
the only multi-objective approach of a cellular model. Another similar pro-
posal is the one presented by Krink et al. [155, 215], in which some disasters
are frequently generated in areas of the population where the individuals are
replaced by new individuals. The frequency of these disasters is controlled by
a sand bag model (see [155] for more details).



30 2 The State of the Art in Cellular Evolutionary Algorithms

Kirley also proposed, with Thomsen and Rickers, an EA based in religions
(RBEA) in [244], where a set of religions is established in the population. In
this model, individuals can only belong to one single religion, and they are
allowed to mate only with individuals belonging to their same religion. This
way, the creation of niches is promoted. Occasionally, individuals can become
to another different religion. In this work, the authors demonstrated that the
new RBEA improved the results of a panmictic EA and a cEA for a set of
numerical functions.

Although cGAs have an implicit migration given by the overlap of the
neighborhoods, some authors try to emphasize this issue by adding any other
additional kind of explicit migration. Some examples of this class of algorithms
are the ones presented in [112, 116], where the migration is introduced (by
copying an individual anywhere in the population in determined periods of
time) for allowing separate niches to interact. This kind of migration is also
used in [160], where Lee et al. additionally propose another new migration
policy consisting in applying the mutation operator to the migrating indi-
viduals. Another sort of migration is the one in the previously commented
CGAD [147], where the extinguished areas are filled by replicas of the best in-
dividual. Finally, there is also an implicit migration in the model proposed by
Alba and Troya in [26], explained in Sect. 2.2.2, as the change in the shape of
the population implies a redistribution of part of the individuals composing it.

In [167] a new cGA was proposed, called GALE, for the data mining
classification problem. The singularity of GALE with respect to a canonical
cGA is that it allows the existence of empty cells in the grid. Therefore, the
offsprings will be placed in the empty cells of their neighborhoods, and if there
are not empty cells, they replace the worst individual in the neighborhood.
Another singularity of this model is the existence of a survival step, where it
is decided whether the individuals are kept for the next generation or not, in
terms of the fitness values of each individual and its neighbors.

In 2002, Li and Sutherland presented in [165] a variation of cGA called
prey/predator algorithm, where the preys (corresponding to the individuals
representing potential solutions to the problem) move freely around the po-
sitions of the grid, mating with neighbor preys in each generation. Moreover,
there exists a number of predators which are continuously displacing around
the population, and they kill the weakest prey of their neighbor in each genera-
tion. The algorithm showed good results when comparing it to a panmictic GA
and to a distributed heterogeneous GA (both from [127]) for a set of 4 numeric
problems. This algorithm was later extended in [164] to the multi-objective
domain with good results. In fact, there exist two more prey/predator al-
gorithms proposed for multi-objective problems in the literature, published
in [125] and [159].

Another sort of non standard cGA is the one given by the co-evolutionary
approaches. The most well-known example is the Hillis method [129] for sort-
ing minimal sorting networks. The Hillis proposal consisted in a massively
parallel GA with two independent populations, which evolve according to an



2.5 Parallel Models of cEAs 31

standard cGA. In one population, the hosts represent sorting networks, mean-
while in the other population the parasites represent test cases. The fitness of
the sorting networks is given by measuring how well they sort the test cases
provided by the parasites at the same grid location. Conversely, the parasites
are scored according to how well they find flaws in the corresponding sorting
networks (in the same location of the grid of the hosts). In this way, the algo-
rithm evolves for finding the solution to the problem, as in the population of
the parasites the individuals evolve to more difficult test cases, meanwhile in
the other population the sorting networks evolve to solve these more difficult
study cases each time.

Another interesting co-evolutionary variation of the cGA model is the cel-
lular programming algorithm by Sipper [230]. The cellular programming has
been widely used for evolving cellular automata in order to make computa-
tional tasks, and it is based in the co-evolutionary topology of the cellular
automata neighbor rules.

For ending this section, we briefly present the main existing works where
cGAs have been applied on dynamical optimization problems. Some examples
are the work of Kirley and Green [148], the previously mentioned CGAD [147]
(also from Kirley), or the comparative study between the efficiency of the pan-
mictic GAs (stationary state and generational) and their equivalent cellular
model performed by Alba and Saucedo [24], from which we can conclude that,
generally speaking, it is the best of the three algorithms (and also the station-
ary state panmictic GA in some cases).

Although we can find some proposals in the literature of cEAs applied
to the multi-objective field, there only exist two orthodox models, namely
cMOGA [18] and MOCell [195, 194]. In this book we present these two mod-
els of multi-objective cGA, which are adaptations of the cGA model, and
we apply them for solving both a complex optimization problem from the
telecommunications field, and also a wide set of problems from academical
benchmarks. We also present in this work a new cGA model with hierarchial
population [139], called HcGA, where the exploitation of the best solutions is
promoted, maintaining the diversity in the population simultaneously.

2.5 Parallel Models of cEAs

As it has been previously commented, cEAs were initially developed in mas-
sively parallel machines, although there have also merged some other mod-
els more appropriate for the currently existing distributed architectures. In
Table 2.2 it is shown a summary of the main existing parallel cEAs in the
literature.

Some examples of cGAs developed on SIMD machines are those studied
by Manderick and Spiessens [176] (later improved in [232]), Mühlenbein [185,
186], Gorges-Schleuter [115], Collins [50] and Davidor [58], where some indi-
viduals are located in a grid, restricting the selection and the recombination



32 2 The State of the Art in Cellular Evolutionary Algorithms

Table 2.2. Brief summary of the main existing parallel cEAs

Algorithm Reference Model
Manderick & Spiessens [176] (1989) Parallel cGA on SIMD machines
ECO-GA [58] (1991) Neighborhood of 8 individuals. Two offsprings per step
HSDGA [256] (1992) Fine and coarse grained hierarchical GA
fgpGA [35] (1993) cGA with two individuals per processor
GAME [235] (1993) Generic library for constructing parallel models
PEGAsuS [214] (1993) Fine and coarse grained for MIMD
LICE [233] (1994) Cellular model of evolutionary strategy
RPL2 [239] (1994) Fine and coarse grained; very flexible
Juille & Pollack [141] (1996) Cellular model of genetic programming
ASPARAGOS [117] (1997) Asynchronous. Local search applied if no improvement
dcGA [53] (1998) Cellular or steady state islands models
Gorges-Schleuter [119] (1999) Cellular model of evolutionary strategy
CAGE [92] (2001) Cellular model of genetic programming
Mallba [81] (2002) Generic library for constructing parallel models in C++
Combined cGA [192] (2003) Population composed by some cellular sub-populations
ParadisEO [42] (2004) Generic library for constructing parallel models in C++
Weiner et al. [257] (2004) Cellular ES with a variable neighborhood structure
Meta-cGA [172] (2005) Parallel cGA for local area networks using Mallba
PEGA [76] (2007) Island distributed cGA (for grid computing)

to small neighborhoods in the grid. ASPARAGOS, the model of Mühlenbein
and Gorges-Schleuter, was implemented on a transputers network, with the
population structured in a cyclic stair. Later it evolved including new struc-
tures and matching mechanisms [117] until it was constituted as an effective
optimization tool [118].

We also would like to remark the works of Talbi and Bessière [242], where
the use of small neighborhoods is studied, and the one by Baluja [35], where
three models of cGAs and a GA distributed in islands are analyzed on a
MasPar MP-1, obtaining as a result the best behavior of the cellular mod-
els. Though, Gordon and Whitley presented in [114] a study comparing a
cGA to a coarse grained GA, being the results of the latter slightly better.
In [152] a comparison between some cGAs and the equivalent sequential GA
is presented, clearly showing the advantages of using the cellular model. We
can find in [27] a more exhaustive comparison than the previous ones be-
tween a cGA, two panmictic GAs (steady state and generational GAs), and a
GA distributed in an island model in terms of the temporal complexity, the
selection pressure, the efficacy, and the efficiency, among others issues. The
authors conclude the existence of an important superiority of the structured
algorithms (cellular and island models) according to the non structured ones
(the two panmictic GAs).

In 1993, Maruyama et al. proposed in [177] a version of a cGA on a sys-
tem of machines in a local area network. In this algorithm, called DPGA, an
individual is located in each processor and, in order to reduce the commu-
nication to the minimum, in each generation each processor sends a copy of
its individual to another randomly chosen processor. In each processor there
exists a list of suspended individuals, where the individuals are located when
they arrive from other processors. When applying the genetic operators in



2.5 Parallel Models of cEAs 33

Proc. 1 Proc. 2 Proc. 3 Proc. n........

Proc. 1 Proc. 2

Proc. 3 oc. 4

Fig. 2.1. CAGE (left) and the combined parallel model of cGA (right)

each processor, this list of suspended individuals behaves as the neighbor-
hood. This model is compared to APGA, an asynchronous cGA proposed by
Maruyama et al. [178], a sequential GA, and an specialized heuristic for the
tackled problem. As a conclusion, the authors remark that DPGA shows a
similar efficiency to the equivalent sequential algorithm.

There also exist more modern parallel cGA models, which work on con-
nected computers in local area networks. These models should be designed
for reducing the communications to the minimum as, due to their own char-
acteristics, the cellular models need a high number of communications.

In this frame, Nakashima et al. propose in [191] a combined cGA where
there exist some sub-populations with evolving cellular structure, and inter-
acting through their borders. A graph of this model can be seen in the right
part of Fig. 2.1. In a later work [192], the authors propose some parameter-
izations with different number of sub-populations, ways of replacement, and
the topology of the sub-population, and they analyze the results. The authors
used this model in a sequential machine, but it is directly extrapolated to a
parallel model, where each processor contains one of the sub-populations.

Folino et al. propose in [93] CAGE, a parallel GP. In CAGE, the population
is structured in a bidimensional toroidal grid, and it is divided in groups
of columns which constitute sub-populations (see the graph on the left in
Fig. 2.1). In this way, the number of messages to send is reduced according
to other models which divide the population in two dimensions (axis x and
y). In CAGE, each processor contains a determined number of columns which
evolve, and at the end of the generation the two columns in the borders are
sent to the neighbor processors, so that they can use these individuals as
neighbors of the individuals located in the limits of its sub-population.

Finally, there exist some generic programming frameworks of parallel
algorithms which offer eases for implementing any kind of parallel algo-
rithm, including the considered cellular models. Some of these frameworks
are GAME [235], ParadisEO [42] or Mallba [81].



34 2 The State of the Art in Cellular Evolutionary Algorithms

To end this section, we remark the two parallel models of cGAs studied in
this book. In Chap. 8 we present the meta-cGA, which was developed using
the Mallba framework, and PEGA, a new cellular GA distributed in islands
which can be executed in local area network environments or in computational
grids. PEGA was applied to the largest existing instances of the VRP problem,
contributing to the state of the art with some new solutions.

2.6 Conclusions

In this chapter we explored most of the existing works in the field of cellular
evolutionary algorithms. The analyzed issues include both the main publica-
tions in the field and the most recent trends which are currently emerging.
This study allows us to acquire some (necessary) knowledge of the domain of
cEAs to understand open research lines like hybridization with local search,
multi-objective optimization, necessity of theoretical models, etc.



Part II

Characterizing Cellular Genetic Algorithms



3

On the Effects of Structuring the Population

I cannot imagine a God who rewards and punishes the
objects of his creation and is but a reflection of human
frailty.

Albert Einstein (1879 - 1955) – Physicist

Since this book is devoted to the study of cellular genetic algorithms, it makes
sense to prove their efficiency, effectiveness, and efficacy by comparing them
against other panmictic (well-spread tools) and decentralized genetic algo-
rithms. The obvious goal of this such study is to show the reader we have
something new that merits attention. In this line, the purpose of this chap-
ter is to study the effects of structuring a population. With this study we
will justify the suitability of cellular genetic algorithms for solving complex
problems. We intend to reach that goal by comparing two different cGAs (dif-
fering only in the selection method of the first parent) versus two well known
families of genetic algorithms with non-structured populations (a generational
and a steady state GA). Additionally, we also compare the best one of the
two proposed cGAs versus a different decentralized family of GAs: distributed
GAs, in which the population is partitioned into several separate collaborating
sub-populations.

The structure of this chapter is the following one. Section 3.1 describes
two typical panmitic GAs that will be compared versus cGAs. The two stud-
ied cGAs, as well as a distributed GA, are presented in Sect. 3.2. All these
algorithms are compared and analyzed later in Sect. 3.3. Finally, we give our
main conclusions in Sect. 3.4.

3.1 Non-decentralized GAs

In this section, the two most well-known panmictic GAs are described. These
two algorithms will be later experimentally compared versus the proposed
cGAs. In a non-decentralized GA, there is not any structure in the population,
so individuals can mate with any other individual in the population. Next two
sections discuss on them.

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 3, © Springer Science+Business Media, LLC 2008



38 3 On the Effects of Structuring the Population

Algorithm 3.1 Pseudo-code of a canonical ssGA
1. proc Evolve(ssga) // Parameters of the algorithm in ‘ssga’
2. GenerateInitialPopulation(ssga.pop);
3. Evaluation(ssga.pop);
4. while ! StopCondition() do
5. parents ← Selection(ssga.pop);
6. offspring ← Recombination(ssga.Pc,parents);
7. offspring ← Mutation(ssga.Pm,offspring);
8. Evaluation(offspring);
9. Replacement(ssga.pop,offspring);

10. end while
11. end proc Evolve

3.1.1 Steady State GA

A pseudo-code of the steady state GA (ssGA) is given in Alg. 3.1. As it can be
seen, it is a (μ+1)-GA. In each generation, two parents are selected from the
whole population with a given selection criterion (line 5). These two individu-
als are recombined (line 6) and then one of the obtained offsprings is mutated
(line 7). The mutated individual is evaluated and then it is inserted back into
the population, typically replacing the worst individual in the population (if
the new one is better). This loop is repeated until the termination condition
is met (line 4).

3.1.2 Generational GA

Generational GAs (genGAs) are a kind of non-structured methods in which
any individual can interact with any other one in the population, as in the
case of ssGAs. The difference between these two algorithmic families is that
genGAs are (μ, λ)-GAs, so the newly generated individuals are placed in

Algorithm 3.2 Pseudo-code of a canonical genGA
1. proc Evolve(genga) // Parameters of the algorithm in ‘genga’
2. GenerateInitialPopulation(genga.pop);
3. Evaluation(genga.pop);
4. while ! StopCondition() do
5. for i←0 to genga.popSize do
6. parents ← Selection(genga.pop);
7. offspring ← Recombination(genga.Pc,parents);
8. offspring ← Mutation(genga.Pm,offspring);
9. Evaluation(offspring);

10. Add(auxiliary pop,offspring);
11. end for
12. genga.pop ← auxiliary pop;
13. end while
14. end proc Evolve



3.2 Decentralized GAs 39

Algorithm 3.3 Pseudo-code of a canonical dGA
1. proc Evolve(dga) // Parameters of the algorithm in ‘dga’
2. for each island do in parallel:
3. {
4. GenerateInitialPopulation(pop);
5. Evaluation(pop);
6. while ! StopCondition() do
7. parents ← Selection(pop);
8. offspring ← Recombination(dga.Pc,parents);
9. offspring ← Mutation(dga.Pm,offspring);

10. Evaluation(offspring);
11. Replacement(pop,offspring);
12. if Migrate(dga.MigrFreq) then
13. Migration(best individual,neighbour island); // Synchronous case
14. Replacement(Receive(individual),pop);
15. end if
16. end while
17. }
18. end proc Evolve

an auxiliary population which will replace the current population when it is
completely filled, i.e., when the number of newly generated solutions is equal
to the size of this auxiliary population (see Alg. 3.2). In our case, the sizes of
both the auxiliary and the current population is the same (μ = λ).

3.2 Decentralized GAs

Decentralized GAs are characterized by their structured population. In a
structured (or decentralized) population, individuals can only mate with a
subset of the population instead of all the individuals.

The two main ways for structuring the population is to partition it into
independent islands that share some information during the run or to establish
an isolation by distance strategy among the individuals. They are distributed
and cellular GAs, respectively.

Cellular GAs are described in Chap. 1. Thus, we only present in this
section a pseudo-code of a typical distributed GA (dGA), which can be seen
in Alg. 3.3. As it is shown, in this dGA the population is partitioned into a
number of separate sub-populations in which independent ssGAs are executed
(lines 4 to 11). Additionally, the islands exchange (possibly a copy of) their
best individual with the nearest island (in a unidirectional ring topology) with
a given migration frequency. When an island receives the best individual from
another island, it replaces its worst individual with it. In this case, the received
individual is not better than the worst one in the receiving population, no
replacement is made (other options exist). Migration takes place at a given



40 3 On the Effects of Structuring the Population

Table 3.1. Parameterization used in the decentralized algorithms

Population size 400 individuals
Parent selection Binary tournament + binary tournament

Current individual + BT (for cGACenter+BT)
Recombination DPX, pc = 1.0
Mutation Bit-flip, pm = 1.0/L (L = Individual length)
Replacement Rep if not Worse
Neighborhood NEWS (only for the cGAs)
Lattice 20× 20 (only for the cGAs)
Number of islands 5 (only for dGA)
Migration frequency Every 104 local evaluations in each island (only for dGA)
Stop condition Find the optimum or reach 106 evaluations

frequency determined by the number of isolated steps (other criteria are of
course possible). In synchronous dGAs all populations do this step at the
same time, thus proceeding in a sort of distributed synchronized steps. In
asynchronous dGAs (more suited for heterogeneous hardware, Internet, and
grid computing) the sending and the receiving steps are separated in the
code, and an island can check for incoming individuals whenever appropriate
regardless on the transmission of its own individuals.

We study in this chapter two different versions of cGAs and one dGA.
In the next section, their parameterization is given, and all the algorithms
(these three ones plus the two panmictic algorithms presented in Sect. 3.1)
are numerically analyzed.

3.3 Experimental Comparison

The parameterization of the studied algorithms is described in Table 3.1.
Specifically, we study two panmictic algorithms (genGA and ssGA), two cGAs
(cGACenter+BT and cGABT+BT) and a dGA. The two cGAs differ each
other only in the selection method for the first parent. In cGACenter+BT the
first parent is the current individual itself, while in the case of cGABT+BT
the first parent is selected by binary tournament, exactly as the other parent.

In all the studied algorithms, the population is composed of 400 individ-
uals, from which parents are selected by binary tournament (BT), with the
already mentioned exception of cGACenter+BT. The two parents are recom-
bined applying the two points crossover operator (DPX) with probability 1.0
(pc = 1.0). From the two obtained offsprings, we only consider the one having
the largest portion of the best parent, and its alleles are mutated with equal
probability by flipping their (binary) value. The resulting offspring replaces
the selected individual in the population if it has a equal or better fitness
value than the latter. The individual selected for the replacement is the worst
one for the ssGA, the current one in case of the cellular GAs, and the worst
individual in the island for dGA. In the case of genGA, a new auxiliary pop-
ulation that completely replaces the current one is built. All the algorithms
were run in a single PC with a Pentium IV 2.8GHz processor under Linux
operating system, and having 512MB of memory.



3.3 Experimental Comparison 41

Specific parameters for the cGAs are the NEWS (or Von Neumann) neigh-
borhood, and a lattice shape of 20 × 20 individuals. In the case of dGA, the
population is partitioned into five smaller sub-populations (composed of 80
individuals each) that exchange their best individuals every 104 evaluations.

The algorithms are tested on a large benchmark composed of problems
with many different features, such as epistasis, multimodality, problem gen-
erators, or parameter fitting. This guarantees a high level of confidence in
the results, although the evaluation of conclusions will result more laborious
than with a small test suite. Particularly, we solve the problems COUNTSAT,
ECC, FMS, MAXCUT (three different instances), MMDP, MTTP (three dif-
ferent instances), P-PEAKS, and 3-SAT. The descriptions of these problems
are given in Appendix A in order to make this book self-contained. Addition-
ally, 100 independent runs were done of each algorithm for every problem, and
statistical tests were applied to the results. These tests are applied in all the
experiments along this book, and they lie in applying ANOVA (or Kruskal-
Wallis) tests for normally (non-normally) distributed data. The application of
these tests allows us to obtain concluding results with a 95% confidence level.
The reader is referred to Chap. 5 for a deeper explanation on the statistical
studies performed.

In Sect. 3.3.1 we compare the behavior of two cGAs versus two panmictic
GAs, while these two same cGAs are compared versus the dGA in Sect. 3.3.2.

3.3.1 Cellular versus Panmictic GAs

The two panmictic GAs are compared versus the two proposed cGAs in terms
of average evaluations to find a solution, time, and hit rate (percentage of
successful runs) in Tables 3.2, 3.3, and 3.4, respectively. The standard devia-
tion of the results is also provided. Symbol ‘+’ in Tables 3.2, and 3.3 indicates
that significant values were obtained in the comparison of the results provided
by the algorithms with 95% confidence level (p-value bellow 0.05), while ‘−’
means that no significant differences were found. The cases in which no com-
parisons could be made are marked with ‘•’. The best obtained results in these
tables are bolded.

Table 3.2. Comparison of two cGAs versus two panmictic algorithms. Average
(thousands) evaluations

Problem ssGA genGA cGABT+BT cGACenter+BT Test
COUNTSAT — — — 3.20 ±170.90 •
ECC 24.41 ±490.28 110.23 ±389.09 43.51 ± 198.98 159.00 ± 28.06 +
FMS — 392.88 ±161.60 32.00 ± 0.00 535.23 ± 232.45 −
MAXCUT100 29.05 ±191.24 323.36 ±192.87 128.15 ± 274.33 281.21 ± 383.92 +
MAXCUT20 01 2.60 ± 1.70 6.35 ± 5.71 3.10 ± 0.98 4.73 ± 1.93 +
MAXCUT20 09 4.66 ± 2.71 13.53 ± 9.83 5.05 ± 2.08 7.79 ± 3.24 +
MMDP — 596.37 ±219.40 — 222.64 ±411.63 +
MTTP20 1.90 ± 0.47 4.63 ± 1.35 3.12 ± 0.74 5.11 ± 1.21 +
MTTP100 18.94 ± 6.85 269.17 ±223.71 41.85 ± 6.43 164.40 ± 32.86 +
MTTP200 140.32 ± 172.10 611.83 ±222.66 95.75 ± 21.41 473.16 ± 68.39 +
P-PEAKS 8.34 ± 0.83 19.95 ± 1.82 17.96 ± 1.45 39.12 ± 3.10 +
SAT — 230.11 ±393.04 120.18 ±370.34 202.71 ± 129.45 +



42 3 On the Effects of Structuring the Population

Table 3.3. Comparison of two cGAs versus two panmictic algorithms. Average time
(seconds)

Problem ssGA genGA cGABT+BT cGACenter+BT Test
COUNTSAT — — — 0.10 ± 0.12 •
ECC 93.73 ± 14.63 10.36 ±12.99 6.66 ± 1.34 12.62 ± 2.16 +
FMS — 68.34 ±55.29 4.91 ± 0.00 78.83 ±34.25 −
MAXCUT100 81.57 ± 19.65 32.21 ±33.84 21.78 ±30.22 24.58 ±17.04 +
MAXCUT20 01 6.77 ± 3.01 0.21 ± 0.15 0.22 ± 0.05 0.17 ± 0.05 +
MAXCUT20 09 10.35 ± 3.09 0.38 ± 0.24 0.31 ± 0.10 0.25 ± 0.07 +
MMDP — 59.46 ±19.58 — 16.26 ±13.73 +
MTTP20 5.14 ± 1.44 0.15 ± 0.04 0.21 ± 0.05 0.17 ± 0.03 +
MTTP100 62.63 ± 8.13 12.09 ± 8.94 2.79 ± 0.77 6.56 ± 1.25 +
MTTP200 308.91 ±189.91 45.15 ±16.51 9.87 ± 2.35 31.04 ± 4.63 +
P-PEAKS 41.14 ± 5.29 4.67 ± 0.43 6.27 ± 1.83 8.70 ± 0.68 +
SAT — 25.56 ±23.80 12.33 ±17.64 20.73 ±12.94 +

Table 3.4. Comparison of two cGAs versus two panmictic algorithms. Hit rate

Problem ssGA genGA cGABT+BT cGACenter+BT
COUNTSAT 0.0% 0.0% 0.0% 3.0%
ECC 50.0% 78.0% 96.0% 100.0%
FMS 0.0% 6.0% 1.0% 27.0%
MAXCUT100 4.0% 7.0% 11.0% 45.0%
MAXCUT20 01 100.0% 100.0% 100.0% 100.0%
MAXCUT20 09 100.0% 100.0% 100.0% 100.0%
MMDP 0.0% 90.0% 0.0% 47.0%
MTTP20 100.0% 100.0% 100.0% 100.0%
MTTP100 100.0% 98.0% 100.0% 100.0%
MTTP200 99.0% 22.0% 100.0% 100.0%
P-PEAKS 100.0% 100.0% 100.0% 100.0%
SAT 0.0% 72.0% 83.0% 100.0%

As it can be seen in Table 3.2, ssGA is the most efficient of the four
compared algorithms since it performs the lowest number of evaluations (in
average) for solving 7 out of the 12 studied problems. In contrast, ssGA could
not solve the most difficult problems in any of the 100 independent runs made
(see Table 3.4). Moreover, ssGA shows a very erratic behavior, since the stan-
dard deviations obtained for ECC, MAXCUT100, and MTTP200 problems
are very high. The other studied panmictic GA, genGA, is clearly the worst
of the four algorithms in terms of efficiency. The differences of genGA with
respect to the most efficient algorithm for each problem have always statistical
confidence (with the exception of FMS).

Regarding the two compared cGAs, it can be seen that in general they are
less efficient than the ssGA, but in contrast their behavior is more robust, since
they obtain smaller standard deviations (in proportion to the average number
of evaluations) than the panmictic algorithms. Additionally, it stands out the
most exploitative behavior of cGABT+BT with respect to cGACenter+BT,
since it finds a solution faster. As a consequence, cGABT+BT can more easily
get stuck into local optima when facing some the more complex problems.

If we now pay attention to the elapsed time, we find opposite results. In this
case, the best (faster) algorithms are the two cGAs, followed by genGA, and
finally ssGA. Although ssGA is the algorithm that performs the lowest number
of fitness function evaluations in average for most of the problems (Table 3.2),
it is the slowest algorithm in all the problems (Table 3.3). The reason for this



3.3 Experimental Comparison 43

fact is that the algorithm needs to look for the best and worst individuals
after each insertion step of an offspring into the population. Comparing the
two cGAs one each other, cGABT+BT is faster (differences are significant in
all cases), although it cannot find the solution for problems COUNTSAT and
MMPD.

In terms of the percentage of successful runs (hit rate), it can be seen
in Table 3.4 that cGACenter+BT is the best algorithm in all the problems,
except for MMDP. Additionally, it is the only algorithm able to find the best-
known solution for all the studied problems. In this sense, it stands out the case
of COUNTSAT, for which cGACenter+BT is the unique studied algorithm
that finds the optimal solution.

In summary, ssGA is the most exploitative algorithm of the four compared
ones. This allows it to find the best solution numerically faster with respect to
the other compared algorithms, but when facing hard problems it rapidly falls
into local optimal solutions from which it cannot scape. In contrast, the two
proposed cGAs perform a better tradeoff between exploration and exploita-
tion. This allows the algorithms to scape from local optima, but penalizing
the convergence speed. Indeed, these two algorithms (and particularly cGA-
Center+BT) are the best ones in terms of efficacy (hit rate). Moreover, an
additional advantage of the cGAs is that their structured population allows
them to evolve in a shorter time than the panmictic GAs, since they are
faster than the other two panmictic GAs despite the number of evaluations
they perform is usually higher.

3.3.2 Cellular versus Distributed GAs

After demonstrating in Sect. 3.3.1 that the two proposed cGAs perform a bet-
ter exploration/exploitation tradeoff in the search space than the panmictic
GAs we compare now in this section the same two cGAs versus another decen-
tralized GA: the distributed GA. The results are shown in terms of efficiency,
time, and efficacy in Tables 3.5, 3.6, and 3.7, respectively. As in Sect. 3.3.1,
values in Tables 3.5 and 3.6 are the average over 100 runs plus their standard
deviation. Table 3.7 presents the percentage of runs in which the algorithm
found the best-known solution for each problem.

We can see in Table 3.5 that there is not a clear best algorithm in terms of
efficiency among the studied structured GAs. Perhaps, dGA can be considered
to be better than the two compared cGAs because it obtained the best results
for 5 out of the 9 problems it can solve, but cGABT+BT is the best one in the
other 4 problems, plus FMS (not solved at all by dGA). Differences between
dGA and cGABT+BT are significant except for problems MAXCUT100 and
SAT. The high exploration capabilities of cGACenter+BT are clear, although
it performs the highest number of evaluations for all the problems it is the
only algorithm solving all the tackled problems (COUNTSAT and MMDP are
not solved by the other two algorithms).



44 3 On the Effects of Structuring the Population

Table 3.5. Comparison of the decentralized GAs. Average (thousands) evaluations

Problem dGA cGABT+BT cGACenter+BT Test
COUNTSAT — — 3.20 ±170.90 •
ECC 36.36 ±270.54 43.51 ± 198.98 159.00 ± 28.06 +
FMS — 32.00 ± 0.00 535.23 ± 232.45 •
MAXCUT100 85.71 ±277.55 128.15 ± 274.33 281.21 ± 383.92 +
MAXCUT20 01 2.23 ± 0.75 3.10 ± 0.98 4.73 ± 1.93 +
MAXCUT20 09 6.16 ± 22.08 5.05 ± 2.08 7.79 ± 3.24 +
MMDP — — 222.64 ±411.63 •
MTTP20 2.02 ± 0.42 3.12 ± 0.74 5.11 ± 1.21 +
MTTP100 93.98 ± 75.30 41.85 ± 6.43 164.40 ± 32.86 +
MTTP200 623.11 ± 215.05 95.75 ± 21.41 473.16 ± 68.39 +
P-PEAKS 9.98 ± 0.74 17.96 ± 1.45 39.12 ± 3.10 +
SAT 122.24 ± 191.62 120.18 ±370.34 202.71 ± 129.45 +

Table 3.6. Comparison of the decentralized GAs. Average time (seconds)

Problem dGA cGABT+BT cGACenter+BT Test
COUNTSAT — — 0.10 ± 0.12 •
ECC 15.92 ±16.31 6.66 ± 1.34 12.62 ± 2.16 +
FMS — 4.91 ± 0.00 78.83 ±34.25 •
MAXCUT100 33.61 ±33.15 21.78 ±30.22 24.58 ±17.04 −
MAXCUT20 01 1.24 ± 0.41 0.22 ± 0.05 0.17 ± 0.05 +
MAXCUT20 09 1.98 ± 2.34 0.31 ± 0.10 0.25 ± 0.07 +
MMDP — — 16.26 ±13.73 •
MTTP20 1.14 ± 0.23 0.21 ± 0.05 0.17 ± 0.03 +
MTTP100 28.66 ±16.49 2.79 ± 0.77 6.56 ± 1.25 +
MTTP200 203.60 ±64.12 9.87 ± 2.35 31.04 ± 4.63 +
P-PEAKS 9.07 ± 0.62 6.27 ± 1.83 8.70 ± 0.68 +
SAT 79.15 ±77.95 12.33 ±17.64 20.73 ±12.94 +

Table 3.7. Comparison of the decentralized GAs. Hit rate

Problem dGA cGABT+BT cGACenter+BT
COUNTSAT 0.0% 0.0% 3.0%
ECC 92.0% 96.0% 100.0%
FMS 0.0% 1.0% 28.0%
MAXCUT100 10.0% 11.0% 45.0%
MAXCUT20 01 100.0% 100.0% 100.0%
MAXCUT20 09 100.0% 100.0% 100.0%
MMDP 0.0% 0.0% 47.0%
MTTP20 100.0% 100.0% 100.0%
MTTP100 100.0% 100.0% 100.0%
MTTP200 31.0% 100.0% 100.0%
P-PEAKS 100.0% 100.0% 100.0%
SAT 98.0% 83.0% 100.0%

As it happened in Sect. 3.3.1, the two cGAs are faster than the compared
algorithm in this case too (as shown in Table 3.6). The reason is probably
because a ssGA (the slowest algorithm of all the compared ones) is running
inside each island of the dGA (with a population of 80 individuals). Addition-
ally, the convergence of the population of every island is faster than in the
panmictic ssGA presented in Sect. 3.3.1 due to its smaller size, diminishing
the computational cost and thus the run time.

The cGACenter+BT algorithm is the one reporting the highest success
rate (see Table 3.7), as it happened in the comparison versus the panmictic
algorithms. Although the distributed GA performs in general a better ex-
ploration/exploitation tradeoff than the two panmictic algorithms studied in
Sect. 3.3.1 (higher success rate) it seems that again the cellular algorithms
are still better on an overall evaluation.



3.3 Experimental Comparison 45

COUNTSAT

0.99718

0.9972

0.99722

0.99724

0.99726

0.99728

0.9973

0.99732

ssGA genGA dGA cGABT+BT cGACenter+BT

ECC

0.97

0.975

0.98

0.985

0.99

0.995

1

ssGA genGA dGA cGABT+BT cGACenter+BT

FMS

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

ssGA genGA dGA cGABT+BT cGACenter+BT

MAXCUT100

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

ssGA genGA dGA cGABT+BT cGACenter+BT

MMDP

0

0.2

0.4

0.6

0.8

1

ssGA genGA dGA cGABT+BT cGACenter+BT

MTTP200

0.8

0.84

0.88

0.92

0.96

1

ssGA genGA dGA cGABT+BT cGACenter+BT

SAT

0.8

0.84

0.88

0.92

0.96

1

ssGA genGA dGA cGABT+BT cGACenter+BT

COUNTSAT ECC

FMS

MMDP

MAXCUT100

MTTP200

SAT

Fig. 3.1. Comparison of the average fitness (accuracy) found by all the algorithms
for every problem

Finally, we end this section by comparing all the studied algorithms in
terms of their accuracy. For that, we show in Fig. 3.1 the average fitness solu-
tion found by all the algorithms in the 100 runs made for every problem. The
problems for which all the algorithms obtained a 100% hit rate are not plotted
(MAXCUT20 01, MAXCUT20 09, MTTP20, MTTP100, and P-PEAKS). As
it can be seen, the main conclusion we can draw from Fig. 3.1 is that cGA-
Center+BT is the most accurate algorithm for all the problems, while the two
panmictic algorithms (ssGA and genGA) are in general the less accurate ones.
Algorithm cGABT+BT usually obtains better results than dGA, and these
two algorithms report intermediate results: they are better than the panmictic
ones but worse than the overall best cGACenter+BT.



46 3 On the Effects of Structuring the Population

3.4 Conclusions

We compared in this chapter the behavior of two different cGAs ver-
sus two panmictic GAs and a dGA in order to justify the good explo-
ration/exploitation tradeoff usually performed by cGAs. We obtained that
ssGA (a panmictic GA) is the most exploitative algorithm, and thus when
it finds the solution to a problem it is the algorithm that requires the least
number of fitness function evaluations. However, a consequence of this highly
exploitative behavior is a low hit rate (robustness), since it easily gets stuck
in local optima. This is specially undesirable for many problems for which it is
then unable to find the optimal solution at all. Moreover, due to the required
operations for managing the population of ssGA, this algorithm is the slowest
among the compared ones. The other studied panmictic GA, namely genGA,
is markedly the worst of all the compared GAs in any sense (although it is
still very popular for practitioners).

The studied decentralized GAs perform a better exploration/exploitation
tradeoff than the non-decentralized ones. They report, in general, better hit
rates and execution times than the panmictic algorithms, although the num-
ber of evaluations performed is higher. Thus, they provide a better explorative
behavior but penalizing their exploitation capabilities. This looks bad for aca-
demic benchmarks, but it is very important in real and complex tasks, where
this smooth search leads to an actually useful solution. Comparing the stud-
ied decentralized algorithms among them, we conclude that the two cGAs are
better than dGA in terms of both hit rate and run time, and there is not a
clear better algorithm regarding the average number of evaluations needed to
find the solution. Maybe the cGACenter+BT could be said to have the best
behavior for our diverse testbed.



4

Some Theory: A Selection Pressure Study on
cGAs

Do not worry about your difficulties in Mathematics.
I can assure you mine are still greater.

Albert Einstein (1879 - 1955) – Physicist

This chapter addresses an important issue in any new methodological advance:
the theoretical background. It is true that the formalization of metaheuristics
in general has always been a minor component in the international arena. This
situation has greatly improved during the last years, with mathematical tools
as Markov chains, Fourier analysis, theory of formae, no free lunch, and selec-
tion pressure theories, to name a few [33, 211]. We explicitly address here a
tiny portion of mathematics characterizing the behavior of cellular EAs/GAs.

In order to better understand the functioning of cellular genetic algorithms,
it is useful to characterize their selection pressure, a basic property that highly
influences the behavior of the algorithm. As it was said before in previous
chapters, any algorithm needs an adequate balance between exploration and
exploitation to be useful in practice. The selection pressure in population
based algorithms is a key issue that represents roughly this balance. Thus,
this chapter is devoted to present and analyze the main existing works for
mathematically characterizing the selection pressure of cGAs.

The variations in both the shape of the topology and the neighborhood
definition can lead to many different algorithms, but a methodological study
is possible by defining a radius for the population shape and the neighbor-
hood (defined in Sect. 1.5.2). The relationship between them, called ratio (see
Sect. 1.5.2), defines the characteristics of the search, as it influences the ex-
ploration/exploitation balance that the algorithm applies on the population
of solutions. There exist a very few papers trying to mathematically charac-
terize the behavior of cGAs in the literature, and only some of them propose
equations for modelling the behavior of the selection pressure of the algorithm
in terms of the different possible neighborhood and/or population shapes.

This chapter begins with a definition of the selection pressure and the
takeover time (in Sect. 4.1). Then, in Sect. 4.2 we make a theoretical study
on the behavior of cEAs according to the ratio. In this study we present and
analyze the existing mathematical models in the literature for approaching
the selection pressure curve of cEAs. Finally, we compare in Sect. 4.3 the

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 4, © Springer Science+Business Media, LLC 2008



48 4 Some Theory: A Selection Pressure Study on cGAs

theoretical results obtained by studying the behavior of some cGAs with dif-
ferent ratios on a set of seven kinds of complex problems (belonging to the
combinatorial and numerical optimization fields) to sustain our conclusions.
We will discuss on how difficult is to decide what is the best ratio according
to the set of problems.

4.1 The Selection Pressure

The selection pressure is related to the concept of the takeover time, which
is defined as the necessary time for a single (best) individual to colonize the
whole population with copies of itself by using only the selection operator [106,
218]. Shorter takeover times indicate a higher intensity in the selection applied
by the algorithm on the population (a higher selection pressure), and therefore,
a higher convergence speed of the algorithm.

Algorithms with a similar ratio value show a similar selection pressure, as
it is concluded in [221]. In Fig. 4.1 we show the similar behavior of two cellular
algorithms with different neighborhood and population radii, but with similar
ratio values. The algorithms shown in the graph use a NEWS neighborhood
with a population of 32 × 32 individuals, and a C21 neighborhood with a
population of 64×64 individuals. The ordinate axis represents the proportion
of copies of the best individual in the population along time.

Therefore, it is very interesting to study how some parameters of the cEA
influence the behavior on the search of the algorithm. Specifying, the indi-
viduals update policy in the population is a very influential parameter in
the selection pressure of the algorithm, which has been theoretically studied
in previous works [99, 102]. Thus, we can observe different behaviors of the
algorithm by maintaining the shape of the neighborhood and the grid con-
stant (i.e., L5 and square population) but using different individuals update
policies. Indeed, we can observe in Fig. 4.2 that the global selection pressure
induced by the many asynchronous policies is in the middle between the limits
of the synchronous case and the high selection pressure of the panmictic case.

Number of Generations

B
e
s
t
In

d
iv

id
u
a
l
P

ro
p
o
rt

io
n

L5

C21

Fig. 4.1. Growth curves of the best individual proportion for two cEAs with different
neighborhood and population shapes, but with similar resulting ratio values



4.1 The Selection Pressure 49

Number of Generations

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Syncronous
Uniform Choice
New Random Sweep
Line Sweep
Panmictic

Number of Generations

Syncronous
Uniform Choice
New Random Sweep
Line Sweep
Panmictic

Fig. 4.2. Selection pressure of several
identical cGAs, having different update
policies (binary tournament selection)

Fig. 4.3. Selection pressure of several
identical cGAs, having different update
policies (roulette wheel selection)

Therefore, we can influence the exploration or exploitation capacities of the
search of the algorithm by changing the individuals update policy. The graph
shown in that figure was obtained by computing the average of 100 inde-
pendent runs, using a binary tournament selection on a population of 32× 32
individuals with a L5 neighborhood. The binary tournament selection consists
of randomly selecting two individuals from the neighborhood and choosing the
best of them.

Another parameter that influences the selection pressure of cGAs is the
parent selection operator. The cGAs shown in the selection pressure graphs in
Fig. 4.2 use binary tournament selection. We can observe the differences with
the curves shown in Fig. 4.3, which are the selection pressure curves of the
same algorithms but using the roulette wheel selection operator. As we can
see in these two figures, the roulette wheel selection induces a lower selection
pressure (longer takeover times) in the algorithm than binary tournament.

Finally, it is also interesting to study the influence of the ratio between the
neighborhood and population radii on the selection pressure of a cEA [17, 74].
For that, we calculate the selection pressure graphs for some cEAs with the
only difference of the population shape used, while keeping constant its size.
We must remark that, as there are no operators included, the presented results
for cGAs have a wide extension to other cEAs (we repeat this important fact
several times in order to remember it). In Fig. 4.4 it is shown the selection
pressure of different synchronous cEAs using L5 neighborhood and 6 possible
grid shapes for a population of 1024 individuals. As we did with asynchronous
cEAs, we obtain the results as the average of 100 independent runs of each
algorithm. As it can be seen, the selection pressure on rectangular grids in
synchronous cEAs is below the one of the synchronous cEA curve using the
square grid (population of 32 × 32 individuals), which means that narrower
grids motivate an explorative search. Notice that in Fig. 4.4, the x-axis differ-
ences are shown in logarithmic scale.



50 4 Some Theory: A Selection Pressure Study on cGAs

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Number of Generations

B
e
s
t
In

d
iv

id
u
a
l
P

ro
p
o
rt

io
n

ratio = 0.003 (pop. 1x1024)
ratio = 0.006 (pop. 2x512)
ratio = 0.012 (pop. 4x256)
ratio = 0.024 (pop. 8x128)
ratio = 0.047 (pop. 16x64)
ratio = 0.069 (pop. 32x32)

Fig. 4.4. Selection pressure of identical cGAs having different population shapes
(binary tournament selection)

4.2 Theoretical Study

Apart from the takeover time, the growth curves are another very important
issue for analyzing the behavior of an EA. The behavior of distributed EAs
are characterized in [21] in terms of takeover time and the growth curves
according to the percentage and the migration frequency of the individuals
among the islands.

As we showed in Chap. 2, many studies attempt to characterize math-
ematically the behavior of cellular EAs, but only two of them consider the
possibility of using rectangular populations [72, 102], although the ratio be-
tween the neighborhood and the population markedly influences the behavior
of a cEA (see Fig. 4.4). In this section, we study how do the existing models
approximate the behavior of different cGAs with 25 ratio values.

4.2.1 Approach to the Deterministic Model

If a deterministic behavior in the selection pressure of a cEA is considered, the
best neighbor of each individual is always selected, therefore, if an individual
has a neighbor with high fitness, in the next generation it will be in the set
of best individuals. Consequently, only the high fitness individuals expand
through the cells situated in the limit of the best individuals area, with a
probability of 100%.

When using a rectangular population, the proportion of best individuals
in the population grows quadratically until the limits of the population are
reached (on the narrowest side), as it can be seen in Fig. 4.5a. Then, the
growth of the proportion of best individuals in the population from the first
two borders (narrowest part) until the other borders (widest part) are reached
is linear (see Fig. 4.5b). Finally, the curve decreases after that in the same
proportion as it grew before in the first part of the growth (Fig. 4.5c). In
Fig. 4.6 it is shown a selection pressure of a cGA with a rectangular population
(of size M × N with M ≤ N) and deterministic growth. It can be clearly



4.2 Theoretical Study 51

(a) Quadratic growth

(c) Saturation

(b) Linear growth

Fig. 4.5. Deterministic growth in a cEA with a rectangular population

seen that the growth of the number of best individuals in the population is
quadratic until the moment t = M/2 (when the best individual spreads out to
the borders of the population in the narrowest part, as seen in Fig. 4.5a), then
the number of best individuals grows in a lineal way until the other borders of
the population are reached (in the wide part, as it can be seen in Fig. 4.5b),
in t = N/2 time. Finally, in the third step (Fig. 4.5c), the curve decreases as
fast as it grew in the first step. In Eq. 4.1 this growth curve is mathematically
defined in terms of two parameters (a and b).

N(t) =

⎧⎪⎨
⎪⎩

a t2 if t < M/2 ,

b t if t < N/2 ,

−a (T − t)2 + 1 in other case .

(4.1)

Fig. 4.6. Growth of the best individual in a cGA with M×N (M≤N) population,
assuming a deterministic behavior in the selection pressure



52 4 Some Theory: A Selection Pressure Study on cGAs

4.2.2 A Probabilistic Model for Approaching the Selection
Pressure Curve

In this section we present the best existing approach in the literature for
mathematically fitting the selection pressure curve of cGAs with different ratio
values; this approach is called the probabilistic model, and it was originally
proposed in [72]. After that, it will be compared versus the main other existing
proposals in the literature in Sect. 4.2.3.

The probabilistic model is a non parameterized mathematical approach
that accurately fits the selection pressure curve of real cGAs with different
selection operators and different ratio values. This mathematical model is
based on probabilities, as it can be seen in Eq. 4.2.

As it was proposed in Sect. 4.2.1, it is considered in this model that the
selection pressure curve of a cGA can be divided into three parts. This allows
us to approximate our function in the case of both rectangular and square
population shapes. In the case of a real model, it should be taken into ac-
count that the use of distinct selection methods implies a different spread
of the number of best individuals through the population. Consequently, the
diffusion speed of the best solutions along the population depends on the se-
lection method used, and it is lower than in the deterministic case. Therefore,
the transition limits between the different functions of the model that were
fixed in the deterministic case must be weighted by a dependent factor of the
selection method used. This factor is called s and it is a parameter which rep-
resents the expansion speed of the best individuals along the population. The
probabilistic model is presented in Eq. 4.2, where T (0) = 1 is not specified for
the sake of simplicity. Values of p1 and p2 are the probabilities that a given
low fitness individual having one or two best individuals among its neighbors,
respectively, becomes a new best individual in the next generation. The values
of these two probabilities depend on the selection scheme used, and they are
defined for three typical selection schemes later in this section. The parameter
s is defined as the probability of a low fitness individual placed on the border
of the set of best individuals becomes part of this set in the next generation
(i.e., s = p2).

The first function approximates the quadratic growth of the curve from
t = 0 to t = 1/s ·M/2 (assuming M ≤ N), when the borders of the expansion
of best individuals in the population are connected (through the shortest
path). This first equation computes the sum of the high fitness individuals
in the previous time step T (t − 1) plus the individuals that will become part
of the best ones for the next generation. Assuming that the region of best
individuals grows in a square shape manner in this first phase (as shown in
Fig. 4.5a), a low fitness individual becomes a high fitness one with different
probability in terms of its location. If it is close to the sides of this square it will
have up to two high fitness neighbors. Additionally, there are four individuals
close to the corners of the square that will have a maximum of only one high
fitness neighbor.



4.2 Theoretical Study 53

From the point t = 1/s · M/2 to the moment when the set of the best
individuals are connected through the largest path t = 1/s·N/2, the number of
low fitness individuals that becomes high fitness individuals in each generation
follows a lineal growth. As it can be seen in Fig. 4.5b, in this case 2 · (M − 1)
low fitness individuals will have up to two high fitness neighbors, and only
two individuals (those in the two corners of the area of best individuals) will
have a maximum of 1 high fitness neighbor.

Finally, the third part of this approach is a saturation function ending
when no low fitness individuals are left in the population.

T (t) =

8>>>>><
>>>>>:

T (t − 1) + 4 · (t − 1) · (p2 · s2 + 2 · (1 − s) · p1 · s) + 4 · p1 · s t < M
2 · 1

s ,

T (t − 1) + 2 · (M − 1) · p2 + 2 · p1 · s M
2 · 1

s ≤ t < N
2 · 1

s ,

T (t − 1) + 4 ·

j
M−1

2

k
−1X

j=0

„—
M − 1

2

�
− j

«
· (p2 + 4 · (1 − s) · p1 · s) otherwise .

(4.2)

In the rest of this section we study the accuracy of the probabilistic model
for 75 different cGAs, and define the values of the probabilities used in Eq. 4.2.
As it can be seen in Table 4.1, these cGAs are composed by a population of
near 4096 individuals, and 25 different grid shapes were studied. The neigh-
borhood used is NEWS in all the cGAs. Notice that the use of different grid
shapes with a constant neighborhood for comparing cGAs with different ratio
values does not restrict our results, as it was shown in Chap. 1. One of the
parents is always the current individual, while the other one can be chosen by
roulette wheel, binary tournament, or linear ranking selections. As it was said
before, in the selection pressure study of an algorithm no recombination or
mutation operators are used and the current individual is replaced by the best
of its parents if the latter is better than the former. In this work, the error
between the selection pressure curve approached by the probabilistic model
and that of the real cGA is calculated for the 75 studied configurations. Ad-
ditionally, some figures are given in order to graphically show how does this
approach fit the true behavior of the real algorithm.

Table 4.1. Parameterization used in the cGAs

Population size ≈4096 individuals
Recombination None
Mutation None
Replacement Repl if Better
Best individuals fitness 1.0
Worst individuals fitness 0.0



54 4 Some Theory: A Selection Pressure Study on cGAs

The error is calculated as the average of all the different studied pop-
ulations of the mean square error between the approaching model and the
experimental results. That is, let a and b be the obtained values of the prob-
abilistic approach and the cGA, respectively, then the error Δ between the
approach and the cGA for the 25 studied populations is defined as:

Δ =
∑25

i=1 MSE(modeli)
25

; MSE(model) =
1
l

l∑
i=0

(a[i] − b[i])2 , (4.3)

being l the length of vectors a and b.

Roulette Wheel Selection

The roulette wheel selection lies in selecting each parent, among all the indi-
viduals of the neighborhood, with a given probability that is defined as the
relationship between its fitness value and the sum of the fitness values of all
the individuals in the neighborhood. Mathematically, the probability of choos-
ing an individual i as a parent when using roulette wheel selection is described
in Eq. 4.4.

pi =
fitness(i)∑

j∈Neighborhood

fitness(j)
. (4.4)

When studying the selection pressure, there only exist two possible fitness
values for an individual. These values are 1.0 and 0.0. Therefore, according to
Eq. 4.4, the probability of choosing a low fitness individual (with fitness = 0.0)
by the roulette wheel method is 0.0, so if any high fitness neighbor exists
(with fitness = 1.0) in the neighborhood of the considered individual, it will
be always selected (or any other with the same fitness value) as a parent.
Therefore, both p1 and p2 have value 1.0 in this model, and consequently when
using roulette wheel selection the algorithm shows a deterministic behavior.

We show in Fig. 4.7 the obtained approach to the selection pressure
curves of four cGAs with different population shapes by the proposed prob-
abilistic function (notice the different scales on the number of generations
in the graphs). As we can see, the adjustment is highly accurate in all the
four cases, being the mean error obtained for all the 25 studied populations
Δ = 1.4904 · 10−6.



4.2 Theoretical Study 55

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Number of Generations

Ratio: 0.003

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio: 0.00983

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio: 0.01654

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio: 0.03424

cGA
Probabilistic Approach

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Number of Generations

cGA
Probabilistic Approach

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Number of Generations

cGA
Probabilistic Approach

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Number of Generations

cGA
Probabilistic Approach

Fig. 4.7. Probabilistic approach to the convergence curves of four cGAs (roulette
wheel selection)

Binary Tournament Selection

In the binary tournament selection, two individuals are randomly chosen from
the neighborhood, and the best one is considered as parent. Therefore, if there
exist two individuals in the neighborhood with fitness = 1.0, the probability
of choosing one of them as parent is p2 = 16/25, meanwhile, if there only
exists one best individual in the neighborhood, the probability of selecting it
is p1 = 9/25.

In Fig. 4.8, we can observe the curves obtained by the probabilistic ap-
proach and the cGA for the same four populations studied in Fig. 4.7. As we
can see, although the approach is not as good as in the roulette wheel case,
we consider it is a good approach because the error is Δ = 2.5788 · 10−4,
lower than that of the other existing models in the literature, as we will see in
Sect. 4.2.3. Moreover, we should take into account that the approach in this
case is more complicated than using roulette wheel selection, since the behav-
ior of the cGA is not deterministic, that is why the error loses two orders of
magnitude.



56 4 Some Theory: A Selection Pressure Study on cGAs

Fig. 4.8. Probabilistic approach to the convergence curves of four cGAs (binary
tournament selection)

Linear Ranking Selection

In linear ranking selection, all the individuals of the neighborhood are ordered
in a list according to their fitness values (from best to worst). The probability
of selecting the parent is higher as the ranking in the list is better. Concretely,
the probability of selecting an individual i for the replacement step is:

pi =
2 · (n − j)
n · (n − 1)

, (4.5)

where n is the size of the neighborhood (the length of the ranking) and j is
the position of the individual i in the ranking.

For the linear ranking selection, we define the probabilities of selecting a
high fitness individual from the neighborhood as p1 = 2/5 and p2 = 7/10
in case of having one or two high fitness individuals in the neighborhood,
respectively.



4.2 Theoretical Study 57

Fig. 4.9. Probabilistic approach to the convergence curves of four cGAs (linear
ranking selection)

Like in the binary tournament case, the approximation is not as good as in
roulette wheel. The reason is the difficulty of modelling the non deterministic
behavior of the cGA. The approaching graphs of the model to the cGA for the
four populations studied in the two previous sections are shown in Fig. 4.9.
The mean error obtained for this case is Δ = 4.0705 · 10−4, it is in the same
order of magnitude than the obtained with binary tournament and two higher
orders of magnitude than the roulette wheel case.

4.2.3 Comparison of the Main Existing Mathematical Models

In this section we compare the probabilistic model studied before versus the
other fitting techniques existing in the literature. The main models proposed
in the literature up to now are shown in Table 4.2. They are the logistic model
proposed by Sarma and De Jong [220], the hypergraph model of Sprave [234],
the mathematical model by Giacobini et al. [102], and the probabilistic model
proposed by Dorronsoro in his Ph.D. thesis [72].



58 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.2. Comparison of the main mathematical models using binary tournament
selection

Model Error (Δ) Reference

Logistic 2.4303 · 10−2 [220]
Hypergraph 4.2969 · 10−2 [234]
Giacobini et al. 7.6735 · 10−4 [102]
Probabilistic 2.5788 · 10−4 [72]

Sarma and De Jong performed in [220] a detailed empirical analysis of
the effects of the neighborhood size and shape for several local selection algo-
rithms. They proposed a simple quantitative model for cellular EAs based on
the logistic family of curves already known to work for panmictic EAs [106].
The proposed function is shown in Eq. 4.6, where a is a growth coefficient and
P (t) is the proportion of the best individual in the population at time step t.
This model threw accurate results for synchronous updates of square shaped
cellular EAs, but it does not work properly with rectangular populations, as
it can be seen in Table 4.2.

LOG(t) =
1

1 +
(

1
P (0) − 1

)
· e−at

. (4.6)

The hypergraph model proposed by Sprave [234] is a unified description
for any non-panmictic population structured EA, that could even end in an
accurate model for panmictic populations (since they can be considered as
fully connected structured populations). The population structure is mod-
elled by means of hypergraphs. A hypergraph is an extension of a canonical
graph, and the basic idea of a hypergraph is the generalization of edges from
pairs of vertices to arbitrary subsets of vertices. Sprave developed a method
to estimate growth curves and takeover times of EAs using the hypergraph
model. This method is based on the calculation of the diameter of the ac-
tual population structure and on the probability distribution induced by the
selection operator.

The method by Giacobini et al. [102] is a probabilistic model for fitting
the behavior of cGAs with square populations and different synchronous and
asynchronous update policies. The authors also address with their models the
prediction of takeover regimes for cEAs whose population shape is toroidal
but not square, and they test them for the binary tournament selection.

Finally, the probabilistic model by Dorronsoro [72] was designed for fitting
the selection pressure curves of different synchronous cGAs with any ratio
value. This model was tested on the main three selection schemes that can be
found in the literature.

As it can be seen in Table 4.2, the probabilistic model by Dorronsoro [72]
is the most accurate one of the compared models. The error obtained by the
model of Giacobini et al. [102] is in the same order of magnitude, and the
logistic and the hypergraph approaches are two orders of magnitude worse
than the two compared probabilistic models.



4.2 Theoretical Study 59

Fig. 4.10. Comparison of the obtained errors by the Giacobini et al. model and the
probabilistic one presented in this book

Next, we proceed to compare the two best models analyzed. That is, the
Giacobini et al. model and the probabilistic approach proposed by Dorronsoro.
Therefore, in Fig. 4.10 it is shown a comparison between the two models by
means of the mean square error –or MSE, defined in (Eq. 4.3)–. In that figure,
75 different cGAs (using three different selections methods and 25 population
shapes) are studied. The value of ratio = 0.003 refers to the narrowest studied
population in this work, composed by 4×1024 individuals, meanwhile the ratio
value 0.3424 corresponds to the square population (64 × 64 individuals).

The three graphs plotted in Fig. 4.10 show the superiority of the proba-
bilistic model of Dorronsoro compared to the one by Giacobini et al. It is strik-
ing the large difference existing between the two models when using roulette
wheel selection. Anyway, the Giacobini et al. model is able to improve the
error obtained by the probabilistic model of Dorornsoro for some intermedi-
ate ratios with binary tournament and linear ranking selections, although the
differences are negligible in most cases. The mean error (Δ) incurred by each



60 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.3. Comparison between the model of Giacobini et al. and the probabilistic
one proposed in this work in terms of the mean error (Δ)

Selection Giacobini et al. Probabilistic

Roulette 0.0194 1.4904·10−6

Tournament 7.6735·10−4 2.5788·10−4

Linear Ranking 0.0017 4.0705·10−4

Mean Value 7.2891·10−3 2.2214·10−4

model for the three studied selections and the mean of the three cases are
shown in Table 4.3. As it can be seen, the model by Dorronsoro is the best
one for the three selections (see bolded figures in Table 4.3), being the mean
error of the three selections nearly two orders of magnitude lower than in the
model of Giacobini et al.

If we observe the behavior of the model proposed by Giacobini et al.,
it is surprising its irregular fitting dependent of the selection method used.
For instance, this model behaves clearly bad for large ratios in the binary
tournament case, while in the case of using linear ranking this difference is
much smaller (the fitting is better) for the largest ratios, but its performance
importantly worsens for the smallest ones (narrowest populations).

4.3 Validation of the Theoretical Models

As it was shown in the first part of this chapter, there exists a number of
works which propose some mathematical equations for modelling the selection
pressure of cGAs in order to characterize their theoretical behavior.

In this section we make an empirical study for sustaining the obtained
results in the previous theoretical work, where it was shown that the use of
different asynchronous update policies and distinct ratios influences the behav-
ior of the cGA. Thus, we present the results of the comparison of synchronous
and asynchronous cGAs, and also the results of synchronous cGAs with differ-
ent ratio values, using always a constant neighborhood shape (NEWS). Notice
that the complete study of the problems of this section is out of the scope
of this work, and it is not the goal of this study to compare the performance
of the studied cGAs versus the state-of-the-art algorithms and other heuris-
tics for combinatorial and numerical optimization. If this were the case, we
should at least, tune the parameters and include a local search step in the
algorithm. Therefore, the results presented in this section belong only to the
relative performance of the cGAs with different update policies and ratios
among them.

Section 4.3.1 is devoted to the discrete case, while in Sect. 4.3.2 we focus
on continuous optimization.



4.3 Validation of the Theoretical Models 61

Table 4.4. Parameterization used in the studied cGAs for discrete problems

Population size 400 individuals
Neighborhood NEWS
Parent selection Binary tournament + binary tournament
Recombination DPX, pc = 1.0
Bit mutation Bit-flip, pm = 1/L (10/L for FMS)

(L = Individual length)
Replacement Rep if Better

4.3.1 Validation on Combinatorial Optimization

In this section we present and analyze the results of solving a set of discrete
problems with asynchronous cGAs using diverse individual update policies,
and other synchronous cGAs with different population grid shapes.

In our experiments, we work with the same set of problems studied as
in [26], which includes the massively multimodal deceptive problem (MMDP),
the frequency modulation sounds problem (FMS), and the multimodal prob-
lems generator P-PEAKS. Moreover, we have extended this set of problems
with the error correcting codes design problem (ECC), the maximum cut of
a graph (MAXCUT), the minimum tardy task problem (MTTP) and the sat-
isfiability problem (SAT). All of them are described in Appendix A. The size
of the MDDP problem used in this study is k = 20, meanwhile MTTP20 and
MAXCUT20.09 are the studied instances of MTTP and MAXCUT, respec-
tively.

We can consider the selected set of problems for this study representative,
as it contains many interesting characteristics, like multimodality, the use of
constraints or the identification of parameters; moreover, most of them are de-
ceptive functions or problem generators. These are important elements in any
work evaluating different algorithmic approaches with the goal of obtaining
reliable results, as it is declared by Whitley et al. in [261].

The election of this benchmark is justified by both the high difficulty
and the domains of application (parameter identification, telecommunications,
combinatorial optimization, scheduling, etc.). This provides results with a high
level of relevance, although the evaluation of the conclusions is consequently
more difficult than when a reduced set of problems is used. Next, we present
and analyze the obtained results during our tests.

Experimental Analysis

Next, we present the obtained results after solving the previously proposed
problems with four asynchronous cGAs and three synchronous cGAs with dif-
ferent static ratios. The configuration of the algorithm for the combinatorial
optimization case is shown in Table 4.4. As we can see, the population is always
composed of 400 individuals. The neighborhood used is NEWS, where the two



62 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.5. Studied ratios

Name Population Shape Ratio

Square 20× 20 individuals 0.110
Rectangular 10× 40 individuals 0.075
Narrow 4× 100 individuals 0.031

parents are selected using binary tournament. The recombination operator
used is the two points crossover and the mutation lies in changing the value
of each bit with a probability of 1/L, being L the length of the individuals.
Finally, the new generated individual (offspring) replaces the current one only
if it is better, that is, if the fitness value is higher (assuming we want to maxi-
mize). The termination condition of the algorithm is either to find the optimal
solution or to execute a maximum number of generations of the algorithm.
This maximal number of generations is different for each problem (due to their
different complexities) and it is specified in captions of Tables 4.6 to 4.12.

In Table 4.5 we present the ratios used in this study. As we can see, they
are a square population, with ratio = 0.11 (Square), and two rectangular
populations: of 10× 40 (Rectangular) and 4× 100 individuals (Narrow), with
ratio values of 0.075 and 0.031, respectively.

In the next tables we show the obtained results for the previously men-
tioned problems: MMDP (Table 4.6), FMS (Table 4.7), P-PEAKS (Table 4.8),
ECC (Table 4.9), MAXCUT20.09 (Table 4.10), MTTP20 (Table 4.11), and
SAT (Table 4.12). In these tables we present the average values of the best
fitness found in each execution, the necessary average number of evaluations
for obtaining the optimal solution to the problem (if it is found), and the
percentage of executions in which the optimum is found (hit rate). There-
fore, we are analyzing the final distance to the optimum (specially interesting
when the optimum is not found), the effort needed by the algorithm, and
the expected efficacy of the algorithm, respectively. In order to obtain signifi-
cant results, we performed 100 independent runs of each algorithm for all the
studied problems. The best results for each problem are bolded.

Analyzing these tables we can obtain some clear conclusions. First, the
asynchronous studied algorithms tend to need a lower number of evaluations
than the synchronous ones for obtaining the optimal solution, in general.
Moreover, differences between synchronous and asynchronous algorithms are
statistically significant for all the cases (except in two of them: MMDP and
SAT), which indicates that the asynchronous versions are more efficient than
the synchronous cGAs with different ratios. This result confirms the theoret-
ical one in which it was shown that the asynchronous cGAs perform higher
selection pressures than the synchronous ones.

On the other hand, the synchronous algorithms obtain a similar percentage
of optimal solutions found (hit rate) or even better than the asynchronous
versions, while there not always exist significant differences in the quality of
the solutions found (the exceptions are, probably, due to the differences in the
hit rate).



4.3 Validation of the Theoretical Models 63

Table 4.6. MMDP problem with a maximum of 1000 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=20) of Generations Rate

S
y
n
ch

. Square 19.813 214.2 57%
Rectangular 19.824 236.1 58%
Narrow 19.842 299.7 61%

A
sy

n
ch

. LS 19.518 343.5 23%
FRS 19.601 209.9 31%
NRS 19.536 152.9 28%
UC 19.615 295.7 36%

Test + +

Table 4.7. FMS problem with a maximum of 3000 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=100) of Generations Rate

S
y
n
ch

. Square 90.46 437.4 57%
Rectangular 85.78 404.3 61%
Narrow 80.76 610.9 63%

A
sy

n
ch

. LS 81.44 353.4 58%
FRS 73.11 386.2 55%
NRS 76.21 401.5 56%
UC 83.56 405.2 57%

Test + +

Table 4.8. P-PEAKS problem with a maximum of 100 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=1) of Generations Rate

S
y
n
ch

. Square 1.0 51.8 100%
Rectangular 1.0 50.4 100%
Narrow 1.0 53.9 100%

A
sy

n
ch

. LS 1.0 34.8 100%
FRS 1.0 38.4 100%
NRS 1.0 38.8 100%
UC 1.0 40.1 100%

Test − +

If we now pay attention to the obtained hit rates, we can conclude that
the synchronous policies improve the asynchronous ones: slightly in the case
of the fitness values found and clearly in terms of the probability of finding
the optimal solution (that is, the frequency of finding an optimum).

Another interesting result is the fact that we can define two kinds of pro-
blems: those in which the optimal solution is found by all the cGAs (100% hit
rate), and those others for which the optimum can not be found in the 100%
of the runs by any algorithm. Problems that seem to be affordable directly
with cGAs, or problems for which the cGAs need some help (not studied yet),
as including local search for example.



64 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.9. ECC problem with a maximum of 500 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=0.0674) of Generations Rate

S
y
n
ch

. Square 0.0670 93.9 85%
Rectangular 0.0671 93.4 88%
Narrow 0.0673 104.2 94%

A
sy

n
ch

. LS 0.0672 79.7 89%
FRS 0.0672 82.4 90%
NRS 0.0672 79.5 89%
UC 0.0671 87.3 86%

Test + +

Table 4.10. MAXCUT20.09 problem with a maximum of 100 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=56.74) of Generations Rate

S
y
n
ch

. Square 56.74 11.3 100%
Rectangular 56.74 11.0 100%
Narrow 56.74 11.9 100%

A
sy

n
ch

. LS 56.74 9.5 100%
FRS 56.74 9.7 100%
NRS 56.74 9.6 100%
UC 56.74 9.6 100%

Test − +

Table 4.11. MTTP20 problem with a maximum of 50 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=0.02439) of Generations Rate

S
y
n
ch

. Square 0.02439 8.4 100%
Rectangular 0.02439 8.3 100%
Narrow 0.02439 8.9 100%

A
sy

n
ch

. LS 0.02439 5.9 100%
FRS 0.02439 6.2 100%
NRS 0.02439 6.3 100%
UC 0.02439 6.3 100%

Test − +

In order to summarize the large set of results generated and obtain prac-
tical conclusions, we present a ranking of the best algorithms according to
three different metrics: mean of the best solution found, mean of the num-
ber of generations needed for finding the optimum (when it is found), and
the hit rate. These three rankings, which are shown in Table 4.13, have been
computed by adding the position (from best to worst: 1, 2, 3, . . . ) where the
algorithms are placed for the previous results presented from Table 4.6 to
Table 4.12, according to the three criteria. The value of this sum of positions
is also shown in Table 4.13 for every algorithm and criterion.



4.3 Validation of the Theoretical Models 65

Table 4.12. SAT problem with a maximum of 3000 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum=430) of Generations Rate

S
y
n
ch

. Square 429.54 703.1 79%
Rectangular 429.67 706.3 84%
Narrow 429.61 763.7 81%

A
sy

n
ch

. LS 429.52 463.2 78%
FRS 429.67 497.7 85%
NRS 429.49 610.5 75%
UC 429.50 725.5 76%

Test − +

Table 4.13. Ranking of the best algorithms for discrete problems

Average Solutions Average Generations Hit Rate
Algorithms Ranking Sum Algorithms Ranking Sum Algorithms Ranking Sum

1 Narrow 10 1 LS 14 1 Narrow 6
1 Rectangular 10 2 NRS 16 2 Rectangular 10
3 Square 14 3 FRS 18 3 FRS 14
4 FRS 15 4 UC 30 4 LS 15
5 LS 18 5 Rectangular 33 5 Square 17
5 UC 18 6 Square 37 6 UC 19
7 NRS 21 7 Narrow 48 7 NRS 21

As we expected after the previous results, according to the mean of the best
solution found and the hit rate criteria, the synchronous algorithms with any of
the three studied ratios are in general more accurate than all the asynchronous
ones for the problems used in our tests, with a specially privileged position
for the Narrow population. The reason is that these synchronous algorithms
induce a lower selection pressure than the asynchronous ones, as we previously
proposed in Sect. 4.1, so they have a more explorative behavior. This allows
them (with respect to an equivalent asynchronous cGA) both to explore a
wider region of the search space and to scape from local optimal solutions. On
the other hand, the asynchronous versions clearly outperform the synchronous
algorithms in terms of efficiency, i.e., the mean of generations needed for
finding the solution (they have a higher selection pressure), tending towards
LS as the best asynchronous policy for discrete problems.

4.3.2 Validation on Continuous Optimization

In this section we extend the work made in the previous one through the appli-
cation of the same algorithmic models to some continuous functions in order
to obtain a more extensive study. This study may be interesting for analyzing
the behavior of the algorithms in continuous optimization, with the possibi-
lity of comparing the results with the discrete case. The functions we have



66 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.14. Parameterization used in the studied cGAs for continuous problems

Population size 400 individuals
Neighborhood NEWS
Parent selection Binary tournament + binary tournament
Recombination AX, pc = 1.0
Mutation of genes Uniform, pm = 1/2L (L = Individual length)
Replacement Rep if Better

selected for this study are three typical multimodal functions in benchmarks
of numerical problems: they are the Rastringin (with dimension 10), Ackley
and Fractal functions (see Appendix A for a description of the problems). For
solving these three problems, we have used real coded individuals, meanwhile
in the previous selection we used binary coded individuals. This is the reason
of our special interest in the experimentation with a more traditional global
optimization. The codification we used for these three problems follows the
implementation proposed by Michalewicz [181].

Experimental Analysis

In this section we study the results of applying our algorithms to the proposed
continuous problems, as we did before in the discrete case. We maintain the
same ratios used in the synchronous algorithms studied in Sect. 4.3.1, as well as
the asynchronous policies. On the other hand, we need a especial configuration
for genetic operators and for their application probabilities in these real-coded
problems. This parametrization is detailed in Table 4.14. As we can see, the
population size, the neighborhood, the selection policy of the parents and the
replacement used in this case are the same than in the discrete case. However,
the recombination and mutation operators used change, they are operators
typically used in continuous optimization, namely the arithmetic crossover
(AX) and the uniform mutation [181].

We present from Table 4.15 to 4.17 the results of our experiments with the
Rastrigin (Table 4.15), Ackley (Table 4.16), and Fractal (Table 4.17) problems.
As in the case of discrete problems, these tables contain the mean of the best
solutions found, the mean number of generations needed to find the optimum,
and the hit rate. These three values have been calculated on 100 independent
runs. For these three real codification problems, we consider that the search
successfully finishes when an individual reach the optimum with a 10% error.

The results obtained with continuous problems are not as clear as in the
discrete case. According to the mean number of generations needed to find an
optimal solution, the asynchronous algorithms (with higher selection pressure)
do not always achieve a lower number of generations than the synchronous
ones; two examples are the Ackley and Fractal functions. The differences be-
tween synchronous and asynchronous algorithms are significative in general. It
indicates a higher efficiency of the cGAs with different ratios, what contrasts
to the conclusions obtained from the theory. However, we think that the dif-



4.3 Validation of the Theoretical Models 67

Table 4.15. Rastrigin problem with a maximum of 700 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum≤ 0.1) of Generations Rate

S
y
n
ch

. Square 0.0900 323.8 100%
Rectangular 0.0883 309.8 100%
Narrow 0.0855 354.2 100%

A
sy

n
ch

. LS 0.0899 280.9 100%
FRS 0.9000 289.6 100%
NRS 0.0906 292.2 100%
UC 0.0892 292.4 100%

Test − +

Table 4.16. Ackley problem with a maximum of 500 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum≤ 0.1) of Generations Rate

S
y
n
ch

. Square 0.0999 321.7 78%
Rectangular 0.0994 293.1 73%
Narrow 0.1037 271.9 65%

A
sy

n
ch

. LS 0.0932 302.0 84%
FRS 0.0935 350.6 92%
NRS 0.0956 335.5 87%
UC 0.0968 335.0 85%

Test + +

Table 4.17. Fractal problem with a maximum of 100 generations

Algorithm
Mean Solution Mean Number Hit
(Optimum≤ 0.1) of Generations Rate

S
y
n
ch

. Square 0.0224 75.2 94%
Rectangular 0.0359 62.8 78%
Narrow 0.1648 14.6 16%

A
sy

n
ch

. LS 0.0168 69.7 98%
FRS 0.0151 71.5 100%
NRS 0.0163 73.6 98%
UC 0.0138 72.8 96%

Test + +

ferences on the hit rates reported by the algorithms explain this result. In fact,
in contrast to what we observed in the discrete case, the hit rates obtained by
the asynchronous algorithms are higher than those of the synchronous cGAs,
in general. This is probably because the maximum allowed number of gener-
ations is too low for the synchronous cGAs, which cannot converge as fast as
the synchronous ones (the selection pressure of the asynchronous algorithms
is lower). Finally, opposite to the results in Sect. 4.3.1, where either all the
algorithms find the optimum in the 100% runs or no algorithm can find it,
the asynchronous cGA using the FRS update policy is the single algorithm
able to find the optimal solution in all the executions of the Fractal problem.



68 4 Some Theory: A Selection Pressure Study on cGAs

Table 4.18. Ranking of the best algorithms for continuous problems

Average Solutions Average Generations Hit Rate
Algorithms Ranking Sum Algorithms Ranking Sum Algorithms Ranking Sum

1 UC 8 1 LS 7 1 FRS 3
2 LS 9 2 Narrow 9 2 NRS 5
2 FRS 9 2 Rectangular 9 3 LS 7
4 NRS 13 4 FRS 13 4 UC 8
4 Rectangular 13 5 UC 14 5 Square 11
6 Narrow 15 6 NRS 15 6 Rectangular 13
7 Square 16 7 Square 17 7 Narrow 15

In order to summarize the results, and following the structure of Sect. 4.3.1,
we present in Table 4.18 a ranking of the best algorithms for all the problems in
terms of the mean of the best solution known, the mean number of generations
needed to find the optimum and the hit rate. In this table we can see the
trend of the asynchronous algorithms to be better than the synchronous ones
in terms of the mean of the best solution found and the hit rate. On the
other hand, the synchronous algorithms with different ratios seem to be more
efficient than most of the asynchronous ones in general (the exceptions are
the synchronous cGA with square grid –Square– and the asynchronous LS).

4.4 Conclusions

In the first part of this chapter we studied the selection pressure induced by
some asynchronous update policies of individuals in cGAs, and also by dif-
ferent synchronous cGAs with distinct ratio values (different shapes of the
population). All these studied algorithms perform a different search in the
solution space. As we can see, it is possible to fix the selection pressure of
a cGA by choosing an update policy and/or a ratio value between the grid
of population and the neighborhood without the necessity of tuning the ad-
ditional numerical parameters of the algorithm. This is a main issue of the
algorithms, as the user can use the existing knowledge instead of creating a
new heuristic class.

Our conclusion is that cGAs can be easily induced to promote the ex-
ploration or exploitation by simply changing the update policy or the ratio
between the population and the neighborhood. This opens new research lines
to decide new efficient ways of changing from a given policy or ratio to oth-
ers that reach the optimal solution with lower effort than in the case of the
canonical cGA or other kinds of GAs.

In the second part of this chapter we present some mathematical models
which allow us to quantify, in advance, the selection pressure of cEAs through
mathematical equations. We have studied the main existing models in the
literature, and compared the two best ones. The best performing methods are
those models that are decomposed into three different equations.



4.4 Conclusions 69

Finally, in the third part of this chapter we applied our extended cGAs to
a set of problems belonging to the combinatorial and continuous optimization
domains. Although our aim was not to obtain techniques able to compete
with specialized heuristics of the state of the art, the results clearly show that
cEAs are very efficient optimization techniques that can be improved even
more by hybridizing them with local search techniques [14, 15, 16, 92]. The
results of the test problems clearly confirm, with some little exceptions, that
the capacity of these algorithms for solving the problems by using different
ratios and update policies is directly related to the selection pressure of the al-
gorithms, showing that exploitation plays a very important role in the search.
It is clear that the role of exploration should be more important in more dif-
ficult problems than the studied ones, but we can address this issue in our
algorithms using a more explorative adjustment of the parameters, and using
different strategies of cEAs in different times during the search in a dynamical
way [10, 12].

Our results are very clear: regarding the discrete problems, the asynchro-
nous algorithms are more efficient than the synchronous ones; with statistica-
lly significant differences in most problems. On the other hand, if we pay at-
tention to the other two studied issues, we can conclude that the synchronous
cGAs with different ratios outperform the asynchronous algorithms: slightly
in terms of the mean of solutions found, and clearly in terms of the probability
of finding the solution (that is, the frequency of finding the optimum).

On the contrary, in the case of the experiments in continuous problems,
we can obtain different conclusions (complementary in some way). The asyn-
chronous algorithms improve the synchronous ones according to the mean
solutions found and hit rate, while the synchronous algorithms are in general
more efficient than the asynchronous ones in terms of the mean number of
generations made.



Part III

Algorithmic Models and Extensions



5

Algorithmic and Experimental Design

God does not care about our mathematical difficulties.
He integrates empirically.

Albert Einstein (1879 - 1955) – Physicist

The main hypothesis in this book is that we can create better algorithms by
relying to cellular concepts in GAs. To this end, we have followed the usual
scientific way of analyzing, proving, and modelling concepts. Now we arrive
to the point of depicting how the rest of hypothesis support is going to be
developed: simulation and experimentation. In the big picture, a little bit of
all this has been used in the previous chapters, but it is in this chapter where
the whole abstract approach is sketched.

After the introduction to the cEAs field and the study of the state of the art
in this domain performed in previous chapters (Chaps. 4 and 2, respectively),
we present here some of the most important improvements to the proposed
canonical cEA existing in the literature. These new models aim to improve
the efficiency, accuracy and/or efficacy of the canonical cEA by modifying the
exploration/exploitation tradeoff performed by the algorithm on the search
space in some way.

We describe in Sect. 5.1 the new approaches for improving the behavior
of the canonical cGA that are addressed in this book. In Sect. 5.2, it is shown
the way in which we proceed in our studies for obtaining the reported results,
and how they are analyzed in order to obtain statistical relevance in our con-
clusions when comparing the different models. Finally, we present in Sect. 5.3
our main conclusions.

5.1 Proposal of New Efficient Models

Nowadays, there exists a huge interest for finding more efficient optimization
techniques without losing their capacity for being applied to new problems.
As it was already said, we focus on cellular genetic algorithms (cGAs) in
this book, a kind of very efficient GA with structured population which has
been explored by the scientific community in lesser extent than other GAs
as panmictic or distributed ones. Despite of that, cGAs are techniques which
have demonstrated to be very efficient when solving really complex problems

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 5, © Springer Science+Business Media, LLC 2008



74 5 Algorithmic and Experimental Design

Canonical
cGA

Canonical
cGA

Continuous and
Discrete cGAs

Domain
Oriented
Algorithms

cMOGA
MOCell

Multi-objetive
Extension

cMAsHybridization

AF cGAs
PH cGAs

AF+PH cGAs

Self-adaptation

cEDAs

Export
to EDAs

HcGAs Explicit Model of
Intensification and
Diversification Time

Efficiency

Parallel cGAs

Fig. 5.1. New algorithmic models of cGAs and extensions to other domains pre-
sented and studied in this book

and, as it was probed in Chap. 3, the use of cGAs leads us many times to
obtain a better efficiency according to the equivalent structured in islands and
panmictic GAs.

This book mainly focuses on the search of new models of cGAs which
improve the behavior of an equivalent canonical cGA, and on the adaptation
of the cellular model to other domains where they have not been exported
until the moment, in order to improve the existing proposals in these do-
mains. There are too many ways for achieving this goal. For example, in the
recent literature of cGAs we can find some examples which try to improve the
efficacy of these algorithms investigating new genetic operators [229], using
different population topologies [101, 203], adjusting the tradeoff between the
exploration and the exploitation performed by the algorithm in the search
space [26, 192], etc.

In this book, we pay special attention to those algorithms of innovative
design (see Fig. 5.1) which improve the tradeoff between exploration and ex-
ploitation performed on the search space (e.g., hierarchial cGAs, adaptive
cGAs, or cellular memetic algorithms), on the adaptation of some of the de-
veloped models to new domains where cGAs have not been applied, and on
the search of efficient parallel models.

We think that a really appropriate methodology for improving the behavior
of an heuristic is working on its principles of functioning. For that, it is nec-
essary to study and characterize theoretically the algorithm, although many
researchers do not consider this important step. However, we performed this
study in our investigations (see Chap. 4). Maybe, the most influential feature



5.1 Proposal of New Efficient Models 75

on the behavior of an optimization algorithm is the tradeoff between explo-
ration and exploitation applied on the search space. These are two opposite
characteristics (that is, they are in conflict each other) which coexist in the
algorithm for achieving the success. As we said before, an heuristic with a
high exploration capacity will soon converge to a local optimum, from where
surely it will not be able to scape. On the contrary, if the algorithm promotes
the exploration of the search space too much, it will be able to explore an
important area of the solution space of the problem, but it can not deepen
in any region, so probably, it will find low quality solutions. Thus, an appro-
priate balance between exploration and exploitation allows the algorithm to
wander a wide area of the search space (exploration), and to deepen in the
most promisingly areas (exploitation). So, it is desirable that the algorithm
keeps the exploration capacity in every moment as it is the responsable of
allowing the heuristic to scape from local optima.

For this reason we made an effort in the theoretical study on the behav-
ior of the cGAs, and why we present some new models which try to improve
the balance between exploration and exploitation of the algorithms. In this
way, we intend to develop new algorithmic improvements for the canonical
model of a cGA which allow us to outperform its behavior. The proposed ex-
tensions follow different general philosophies for achieving efficient and accu-
rate algorithms at the same time. Moreover, these algorithmic improvements
are frequently accumulative, meaning for example that we can combine the
advantages of two of our proposals in other new algorithms in the future
(for instance, hierarchical cEDAs, adaptive cEDAs or multi-objective parallel
cGAs). The algorithmic models proposed are summarized below:

• Adaptive cGAs. In Chap. 6 we propose three new algorithms which au-
tomatically regulate the tradeoff between the exploration and exploitation
according to the convergence speed of the population. In this way, if the
population converges too fast, the exploration of the algorithm is promoted
for slowing down the lost of diversity, whereas if the convergence is slow,
the local exploitation of the solutions will be emphasized. Three different
methods has been used for measuring the convergence speed of the popula-
tion, obtaining the three cGAs proposed: AF cGA, where the convergence
speed is measured according to the average fitness value of the individuals
in the population; PH cGA, where the entropy of the population is used;
and AF+PH cGA, which uses both values, average fitness and entropy.

• Hierarchical cGAs. In Chap. 10 a new model of cGA is presented for im-
proving the tradeoff between exploration and exploitation of the canonical
cGA. In this case, a hierarchy is established in the population by placing
the solutions in a piramidal disposition, where the best individuals are
located in the center of the population (lowest level), and the farther from
the center (rising levels) the worse the individuals are. With this hierarchy
we promote the exploitation of the best solutions, meanwhile the diversity
of the solutions is maintained in the higher levels.



76 5 Algorithmic and Experimental Design

• Cellular EDAs. We think that it can be interesting to export the ad-
vantages of the cellular model to other families of EAs different from the
GAs. In Chap. 10, we address a new algorithmic model of EDA, where the
population is structured in a toroidal grid. The result is the first cellular
EDA in the literature.

• Cellular memetic algorithms (cMAS). Memetic algorithms are highly
specialized techniques. They use information from the problem to solve in
different parts of the algorithm, as the individuals representation or the
variation operators, for instance. Moreover, they usually include a local
search method for helping to refine the solutions. In Chap. 7 we present the
first cMA in the literature, up to our knowledge. The developed algorithm
was applied to the SAT problem (a description of the problem is available
in Appendix A). Additionally, we propose the study of other cMAs for the
vehicle routing and the DNA fragment assembly problems in Chaps. 13
and 15, respectively.

• Parallel cGAs. In Chap. 8 we propose two new parallel models of cGAs.
One of them is designed for running in local area networks and it is loyal
to the canonical cGA model, whereas the other one is a model distributed
in islands, in which cGAs are executed. This second model is designed for
grid computing environments.

• Multi-objective cGAs. We present two proposals of cGAs for the
multi-objective optimization domain: MOCell (Chap. 9) and cMOGA
(Chap. 14). MOCell is an evolution from cMOGA which achieve better
results, but it is not ready (yet) for working with heterogeneous individu-
als (with genes of different types), as it is needed in the problem tackled
with cMOGA in Chap. 14.

• cGAs in continuous domains. Finally, thanks to the characteristics
of GAs, we can apply our algorithm to some other optimization domains
simply defining a new kind of individual and operators for this domain.
In Chap. 12 we exploit this property applying JCell to the continuous
optimization domain.

5.2 Evaluation of the Results

As it is known, GAs belong to the field of metaheuristics and thus they are
non-deterministic techniques. This implies that two executions of the same
algorithm on a given problem can reach different solutions. This particular
characteristic of metaheuristics supposes an important problem for the re-
searchers when evaluating the results and, therefore, when comparing their
algorithms to other existing ones.

There exist some works which tackle the theoretical analysis for a large
number of heuristics and problems [122, 142] but, due to the difficulty of this
theoretical analysis, the behavior of the algorithms are analyzed traditionally
through empirical comparisons. For that, the studied techniques are applied to



5.2 Evaluation of the Results 77

a wide rank of well known problems of diverse characteristics. In this way, the
algorithms can be compared according to the quality of the solutions obtained
and the computational effort used to find them. This effort is calculated in
terms of the number of evaluations of the fitness function performed during
the search.

Along the studies made in this book, we always tried to follow the same
methodology, which can be divided in three stages or main steps:

1. The first point consists of the definition of the goals we want to achieve,
the problem instances, and the issues in which we focus for evaluating and
analyzing our results.

2. The second step is to define the metrics selected for measuring the results,
to execute the experiments for obtaining these results, and to analyze the
obtained data. In Sects. 5.2.1 and 5.2.2 the metrics used in our work, and
the methodology used for analyzing the results are presented.

3. Finally, we consider it is very important to inform about the mechanism
followed during the experiments, in order to be easily reproducible by
other researchers. So that, it is necessary to provide all the information
related to the used algorithms (code, parameters, etc.), to the studied
problems (instances, size, characteristics, references, etc.), and even to
the execution environment (memory, processor, operating system, pro-
gramming language, etc.). It is really important how all the information
of a work is presented. This information must be easily assimilable by
the reader without penalizing the clarity of the contents, for avoiding any
confusion.

Some of the studies developed in this work involve the use of multi-
objective problems, which must optimize more than one function simultane-
ously (the algorithms used for these kind of problems are called multi-objective
algorithms). Moreover, the functions composing a multi-objective problem are
usually in conflict, what means that improving one of the objectives implies
worsen any of the rest. Therefore, the solutions to this kind of problems are
not a single value, but a set of non-dominated points (consult Chap. 9 for
more details). It is necessary, hence, the use of metrics for comparing different
results of this kind of problems. The application of these metrics allows us to
compare the algorithms, and even to apply the statistic analysis previously
commented for obtaining statistic confidence in our conclusions. In Sect. 5.2.2
the metrics used in this book for the multi-objective case are presented.

5.2.1 The Mono-objective Case

Due to the non-deterministic nature of the studied algorithms, comparisons
on the results of a single execution are not consistent, so they must be done on
a large set of results obtained after a high number of independent executions
of the algorithm performed on the given problem. For making comparisons



78 5 Algorithmic and Experimental Design

Independent Runs

Normality Test
(Kolmogorov-Smirnov)

Statistically
Significant
Differences

Cannot Ensure
Significant Differences

Statistically

p-value 0.05

p-value 0.05

Fig. 5.2. Scheme of the evaluation process of the results

between the obtained results we must use statistic functions. In the literature,
the functions traditionally used are very simple, as the average of the values
obtained, the median, or the best and worst solutions found by the studied
technique. However, these are not conclusive values, and they can lead us
to wrong readings of the results. Hence, we must use statistic studies which
guarantee the significance of results and comparisons presented in our studies.

In order to obtain results with statistical significance, researchers usu-
ally use t -tests or analysis of variance (ANOVA) functions. The use of these
statistic functions allows us to determine whether the effects observed in the
obtained results are significative or, on the contrary, they are due to errors in
the samples performed. But the use of ANOVA function on any data distri-
bution is not really suitable, as in a non normal data distribution the result
may be wrong. In this case, it would be better to apply a Kruskal-Wallis test.

In Fig. 5.2 we present the methodology applied in the evaluation and
interpretation of the results obtained in the performed experiments along
the works carried out for this book. For obtaining the results of our tests
we performed at least 30 independent executions of the algorithm on the
given problem, although in most of the studies presented here the number of
independent runs increase up to 100. Once the results of the executions are
obtained, a Kolmogorov-Smirnov test is applied in order to check whether
the values of the results follow a normal distribution (gaussian) or not. If
the distribution is normal, an ANOVA test is performed, meanwhile if not,
the test applied is the Kruskal-Wallis one. In this work we always consider
a confidence level of 95% (significance level of 5% or p-value under 0.05) in
our statistic tests. This means we can guarantee that the differences of the
compared algorithms are significative or not with a probability of 95%.

5.2.2 The Multi-objective Case

As it was previously introduced, when dealing with multi-objective algorithms
we need to use metrics for comparing the quality of the solutions of differ-
ent solution techniques. Once these metrics are applied, we can do the same
statistical tests previously proposed for the mono-objective case to the ob-
tained results. Currently, it does not exist any metric in the literature which



5.2 Evaluation of the Results 79

guarantees the superiority of a multi-objective algorithm versus another one
for a given set of problems. Therefore, we should use several metrics which
focus on diverse issues of the solutions for comparing the algorithms studied.
For obtaining reliable results it is convenient to normalize the obtained re-
sults before applying these metrics. Following the recommendations proposed
in [65], we apply the normalization according to the optimal front when it is
known, or according to the best and worst solutions in our front if the optimal
one is not known. In the works performed for this book, the metrics used are:

• Generational Distance – GD. This metric was introduced by Van Veld-
huizen and Lamont [254] for measuring how far the elements of the set of
non-dominated vectors found are from the optimal Pareto set. It is de-
fined as:

GD =

√∑n
i=1 d2

i

n
, (5.1)

where n is the number of vectors in the set of non-dominated solutions,
and di is the Euclidean distance (measured in the objective space) between
each of the solutions and its nearest member in the optimal Pareto set.
According to this definition, it is clear that a value GD = 0 means that
all the generated elements are in the optimal Pareto set.

• Dispersion – Δ. The dispersion metric [67] is a measure of the diversity
which quantifies the value the dispersion reaches between the solutions
obtained. This metric is defined as:

Δ =
df + dl +

∑N−1
i=1

∣∣di − d̄
∣∣

df + dl + (N − 1)d̄
, (5.2)

where di is de Euclidean distance between two consecutive solutions, d̄ is
the average of these distances, and df y dl are the Euclidean distances to
the extreme solutions (limits) of the exact Pareto front in the objective
space (for more details, see [67]). This measure is zero for an ideal distribu-
tion, remarking a perfect dispersion of the solutions along the Pareto front.

• Hypervolume – HV. The hypervolume metric [272], which is a combined
metric of convergence and diversity, calculate the covered volume (in the
objective space) by the members of a set Q of non-dominated solutions
(the enclosed area by the discontinuos line in Fig. 5.3, Q = {A, B, C})
for problems where all the objectives must be minimized. Mathematically,
for each solution i ∈ Q, a hypercube vi is built using a reference point W
(which can be composed by the worst solution for each aim, for example)
and the solution i as the corners of the diagonal of the hypercube. The
hypervolume is calculated as the volume of the union of all the hypercubes:

HV = volume

⎛
⎝ |Q|⋃

i=1

vi

⎞
⎠ . (5.3)



80 5 Algorithmic and Experimental Design

Fig. 5.3. The hypervolume of a front of non-dominated solutions

• Number of Pareto optima. In the resolution of some really complex
multi-objective problems, finding a high number of non-dominated solu-
tions may be a really hard task for the algorithm. In this sense, the number
of Pareto optima found can be used as a measure of the capacity of the
algorithm for exploring the search space defined by the multi-objective
problem.

• Set coverage – C(A,B). The set coverage metric C(A, B), calculates the
proportion of solutions in B which are dominated by the solutions of A:

C(A, B) =
|{b ∈ B|∃a ∈ A : a 
 b}|

|B| . (5.4)

A value of the metric C(A, B) = 1 means that all the members of B are
dominated by A, whereas C(A, B) = 0 means that no member of B is
dominated by A. In this way, the higher C(A, B), the better the Pareto
front A is according to B. As de dominance operator is not symmetric,
C(A, B) is not necessarily equal to 1 − C(B, A), and both C(A, B) and
C(B, A) must be calculated for understanding how many solutions of A
are covered by B and vice versa.

5.2.3 Some Additional Definitions

In this section we present some definitions that are used in our studies for
obtaining some of the values presented in the tables and figures or in any of the
proposed algorithmic models. Particulary, we define the average of the fitness
and the entropy of a population of individuals, and also several mathematical
functions as the standard deviation, the median and the interquartile range.

Definition 5.1 (Medium fitness f). The medium fitness of the individuals
of a population P of size N is defined as the average of the sum of the fitness
values of all the individuals composing a population:

f =
∑N

i=1 fi

N
, (5.5)

where fi is the fitness value of individual i. �



5.2 Evaluation of the Results 81

Definition 5.2 (Entropy of the population Hp). The entropy of a pop-
ulation Hp is calculated as the average of the entropies for each gene of the
chromosomes of the individuals:

Hp =
∑L

i=1 Hi

L
, (5.6)

where Hi is the entropy of the set of values composed by the gene in position
i of the chromosome of each individual, with length L. �

Before defining the standard deviation, we need to know the concept of vari-
ance, which is given below:

Definition 5.3 (Variance S). We define the variance or the quadratic mean
deviation of a sample of n observations X1, X2, . . . Xn as:

S =
∑n

i=1(Xi − X)2

n − 1
, (5.7)

where X is the arithmetic average of the sample. �

Hence, the standard deviation can be defined as:

Definition 5.4 (Standard deviation stdv). The standard deviation is de-
fined as the square root of the variance:

stdv =

√∑n
i=1(Xi − X)2

n − 1
. (5.8)

�

When presenting any extreme observation, the average is affected. In this
case, it is appropriate to use the median, instead of the mean, for describing
the data set:

Definition 5.5 (Median x̃). The median x̃ of an ordered set of values
{x1, . . . , xn} is the value located in the center of an ordered sequence xi, being
i = (n + 1)/2. �

Finally, the definition of the interquartile range is:

Definition 5.6 (Interquartile range IQR). The interquartile range IQR
is a measure of the dispersion of a set of values. It is simply calculated as the
difference between the third and the first quartiles:

IQR = Q3 − Q1 . (5.9)

�



82 5 Algorithmic and Experimental Design

5.3 Conclusions

In this chapter we present some new models for improving the behavior of
cGAs. Among them, we describe the proposals from which the studied models
of the next chapters derive.

Additionally, we show in the second part of the chapter the methodology
followed for analyzing the obtained results, and also for comparing our algo-
rithms with other previously existing ones. The reason for the description of
this methodology is because a bad planning in the evaluation of the results
can lead to inconsistent or wrong results.



6

Design of Self-adaptive cGAs

Intelligence is the ability to adapt to change.

Stephen Hawking (1942 - ) – Physicist

As it was concluded in the theoretical study presented in Chap. 4, the use of
distinct ratios and update policies in cGAs induces different selection pressures
in the algorithm. When extending that study to the empirical field for solving
complex problems it was shown that the selection pressure of the algorithms
has a marked effect in the search performed by the cGA. Thus, the tradeoff
between exploration and exploitation plays an important role in the search
performed by the algorithm; furthermore, it is possible to dynamically mod-
ify this tradeoff during the search using different strategies. Specifically, we
present in this chapter a new model of cGA that dynamically self-adapts the
exploration and exploitation capabilities of the search performed. For that, the
ratio between population and neighborhood shapes is (automatically) mod-
ified for explicitly changing the exploration/exploitation tradeoff during the
run. Mainly speaking, this is made according to the evolution of some measure
of diversity into the population.

The structure of this chapter is the following one. In the next section we
briefly justify the use of adaptive populations in cGAs. The second section
(Sect. 6.2) presents some different cGAs characterized by their static, pre-
programmed and self-adaptive populations, and they will be analyzed and
compared in Sect. 6.3. Finally, the chapter ends with a summary of our main
conclusions (Sect. 6.4).

6.1 Introduction

The performance of a cGA may change as a function of several parameters.
Among them, we will pay special attention to the ratio in this chapter, which
is defined as the relationship between the neighborhood and the population
radii, as stated in Chap. 1. Our goal is to study the effects of this ratio on
the behavior of the algorithm. As we previously studied in Chap. 4, the use of
narrow populations (low ratio values) favors the exploration of the algorithm,
while a less narrow population incentives the exploitation of the search space.

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 6, © Springer Science+Business Media, LLC 2008



84 6 Design of Self-adaptive cGAs

Since the neighborhood is kept constant in size and shape throughout the
studies in this chapter (we always use NEWS), the study of such a ratio is
reduced to the analysis of the effects of using different population shapes. The
ratio will be smaller as the grid gets thinner.

Reducing the ratio means reducing the global selection intensity on the
population, thus promoting exploration. This is expected to allow for a higher
diversity that could improve the results in difficult problems (like in multi-
modal or epistatic tasks). Besides, the search performed inside each neighbor-
hood is guiding the exploitation of the algorithm. We study in this chapter
how the ratio affects the search efficiency over a variety of domains. Chang-
ing the ratio during the search is a unique feature of cGAs that can be used
to shift from exploration to exploitation at a minimum complexity without
introducing just another new algorithm family in the literature.

Many techniques for managing the exploration/exploitation tradeoff are
possible. Among them, it is worth making a special mention to heterogeneous
EAs [4, 20, 127], in which algorithms with different features run in multi-
ple sub-populations and collaborate in order to avoid premature convergence.
A different alternative is using Memetic Algorithms [184, 199], in which lo-
cal search is combined with the genetic operators in order to promote local
exploitation.

In the case of cGAs, it is very easy to increase population diversity by sim-
ply relocating the individuals that compose it by changing the grid shape, as
we will see in Sect. 6.2. The reason is that a cellular model provides restrictions
on the distance for the mating of solutions due to the use of neighborhoods
(one solution may only mate with one of its neighbors). Hence, a cGA can be
seen as a mating restriction algorithm based on the Euclidean distance.

6.2 Description of Algorithms
We begin by considering three different static population shapes. Then, we
propose two methods for changing the value of the ratio during the execution
in order to promote the exploration or exploitation capabilities of the algo-
rithm in certain steps of the search. The first approach to this idea is to modify
the value of the ratio at a fixed (predefined) point of the execution. For this
goal, we address two different criteria (originally proposed in [26]): (i) chang-
ing from exploration to exploitation, and (ii) changing from exploitation to
exploration. In the second approach, we propose a dynamic self-manipulation
of the ratio value as a function of the evolution progress.

In Fig. 6.1 we show a theoretical idealization of the evolution of the ratio
value in the three different classes of algorithms we study in this chapter.
We can see how static algorithms (Fig. 6.1a) keep constant the ratio value
along the whole evolution, whereas the other two algorithms change it. For
pre-programmed algorithms (Fig. 6.1b), this change in the ratio is made in an
a priori point of the execution, in contrast to adaptive algorithms (Fig. 6.1c),
where the ratio varies automatically along the search as a function of the
convergence speed of the population.



6.2 Description of Algorithms 85

Ratio

Time

(a)

(b)

(c)

Fig. 6.1. Idealized evolution of the ratio for static (a), pre-programmed (b), and
adaptive (c) criteria

Since shifting the ratio is made by changing the shape of the population
(and thus its radius) in this work, we theoretically consider the population as
a list of length m · n, such that the first row of the m · n grid is composed by
the n first individuals of the list, the second row is made up with the next n
individuals, and so on. Therefore, when performing a change from a m ·n grid
to a new m′ · n′ grid (being m · n = m′ · n′) the individual placed at position
(i, j) will be relocated as follows:

(i, j) → ([i ∗ n + j] div n′, [i ∗ n + j] mod n′) . (6.1)

We call this redistribution method contiguous, because the new grid is
filled up by following the order of appearance of the individuals in the list. It is
shown in Fig. 6.2 how the considered individual plus its neighbors are relocated
when the grid shape changes from 8×8 to 4×16, as described in Eq. 6.1. The
reader can notice how in general a part of the neighborhood of any given cell
is kept while other part may change. In Fig. 6.2 we have drawn the relocation
of the individual in position (2, 4) and its neighbors. When the grid shape
changes, that individual is relocated at position (1, 4), changing its neighbors
placed at its north and south positions, and keeping close those ones placed
at its east and west positions. This change in the grid shape can be seen as an
actual migration of individuals among neighborhoods, which will introduce
additional diversity into the population for the forthcoming generations.

(2,4) ([2·8+4] div 16, ) = (1,4)[2·8+4] mod 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3

(b)(a)

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

relocation

Fig. 6.2. Relocation of an individual and its neighbors when the grid changes from
(a) 8× 8 to a (b) 4× 16 shape



86 6 Design of Self-adaptive cGAs

Search Time

Square (Ratio 0.11)

Rectangular (Ratio 0.075)

Narrow (Ratio 0.031)

SqNar (Ratio 0.11 to 0.031)

NarSq (Ratio 0.031 to 0.11)

Adaptive (Ratio 0.039 to ?)r

tm

tm

? ?….? ?

? ?? ?….

ti 2·ti 3·ti

ti 2·ti 3·ti

Adaptive (Ratio 0.016 to ?)n

Fig. 6.3. Algorithms studied in this work

All the algorithms studied in this chapter (shown in Fig. 6.3) are obtained
from the same canonical cGA by changing only the ratio between the neigh-
borhood and the population topology radii in different manners. We study the
influence of this ratio over a representative family of non trivial problems. This
family of problems is extended from the initial benchmark included in Chap. 4,
where a relationship between low/high ratio and exploration/exploitation of
the algorithm is established. In order to help the reader to understand the re-
sults, we explain in Sect. 6.2.1 the static and pre-programmed cGAs studied
in [26]. After that, we will introduce an adaptive algorithmic proposal with
the objective of avoiding the researcher to make an ad hoc definition of the ra-
tio, that will (hopefully) improve the efficiency and accuracy of the algorithm
(Sect. 6.2.2).

6.2.1 Static and Pre-Programmed Algorithms

In this section we discuss five different algorithms which were initially pro-
posed in [26] and we use in our study. Three of them use static ratios and
the other two implement pre-programmed ones (see Fig. 6.3 for more infor-
mation). Our first aim is to extend this seminal study to a larger and harder
set of problems.

First, we tackle a cGA in which three clearly different static ratios have
been used (remember we always use NEWS neighborhood):

• Square: Ratio = 0.110 (20 × 20 individuals).
• Rectangular : Ratio = 0.075 (10 × 40 individuals).
• Narrow : Ratio = 0.031 (4 × 100 individuals).

The total population size is always 400 individuals, structured in three
different grid shapes, each one with different exploration/exploitation features.
Additionally, we have used two more criteria with a dynamic but a priori
pre-programmed ratio change. These two criteria change the algorithm ratio
in a different manner at a fixed point of the execution. In our case, this change
is performed in the middle of a typical execution (tm). We define the middle



6.2 Description of Algorithms 87

of a typical run (tm) as the point wherein the algorithm reaches half the mean
number of evaluations needed to solve the problem with the traditional square
grid. The pre-programmed algorithms studied change the ratio from 0.110 to
0.031 (we call it SqNar –square to narrow–) and from 0.031 to 0.110 (we call
it NarSq –narrow to square–).

6.2.2 Self-Adaptive Algorithms

We present in this section a new contribution to the field of self-adaptation.
The core idea, like in most other adaptive algorithms, is to use some feedback
mechanism that monitors the evolution and that dynamically rewards or pun-
ishes parameters according to their impact on the quality of the solutions. An
example of these mechanisms is the method of Davis [60] to adapt operator
probabilities in genetic algorithms based on their observed success or failure
to yield a fitness improvement. Other examples are the approaches of [28]
and [223] to adapt population sizes either by assigning lifetimes to individuals
based on their fitness or by having a competition between sub-populations
based on the fitness of the best population members.

A main difference here is that the monitoring feedback and the actions
undertaken are computationally inexpensive in our case. We really believe
that this is the primary feature of any adaptive algorithm in order to be
useful for other researchers. The literature contains numerous examples of
interesting adaptive algorithms whose feedback control or adaptive actions
are so expensive that many other algorithms or hand-tuning operations could
result in easier or more efficient algorithms.

Our adaptive mechanisms are shown in Fig. 6.3 (we analyze several mech-
anisms, not only one). They modify the grid shape during the search as a
function of the convergence speed. An important advantage for these adap-
tive criteria lies in that it is not necessary to set the population shape to any
one ad hoc value, because a dynamical recalculation of which is the most ap-
propriate one is achieved with a given frequency (ti) during the search. This
also helps in reducing the overhead to a minimum. Algorithm 6.1 describes the
basic adaptive pattern; C1 and C2 represent the measures of the convergence
speed to use.

The adaptive criteria try to increase the local exploitation by changing to
the next more square grid shape whenever the algorithm evolves slowly, i.e.,
when the convergence speed decays below a given threshold value (ε ∈ [0, 1]).
This is achieved changing the shape of the grid to the next one more square,
as it is represented by the condition of line 1 in Alg. 6.1. If, on the other
side, the search is proceeding too fast, diversity could be lost quickly and
there exists a risk of getting stuck in a local optimum. In this second case
the population shape will be changed to a narrower grid, thus promoting
exploration and diversity in the forthcoming generations. The condition for
detecting this situation is expressed by line 3 in Alg. 6.1. If neither C1 nor C2

are true, the shape is not changed (line 6).



88 6 Design of Self-adaptive cGAs

Algorithm 6.1 Pattern for our dynamic adaptive criteria
1. if C1 then
2. ApproachTo(square) // exploit
3. else if C2 then
4. ApproachTo(narrow) // explore
5. else
6. Do not Change
7. end if

As it can be seen, this is a general search pattern, and multiple criteria
(Ci) could be used to control whether the algorithm should explore or exploit
the individuals for the next ti generations.

The objective of these adaptive criteria is to maintain the diversity and to
pursue the global optimum during the execution. Notice that a change in the
grid shape implies the relocation of individuals, which is a kind of migration
since individuals in different areas become neighbors. Therefore, this change in
the topology is also an additional source for increasing the diversity, intrinsic
to the adaptive criterion.

Whenever the criterion is fulfilled, the adaptive search pattern performs a
change in the grid shape. The function ApproachTo(square/narrow) in Alg. 6.1
changes the grid to the immediately next more square/narrow allowed shape.
The bounding cases are the square grid shape and the completely linear (ring-
like) shape, as shown in Fig. 6.4. When the current grid is square and the
algorithm needs to change to the next “more square” one, or when the present
grid shape is the lineal one and the algorithm needs to change to the next
“narrower” one, the algorithm does not make any change in the population
shape at all, keeping the shape constant. In the rest of cases, when the change
is possible, it is accomplished by computing a new position for every individual
whose general location is (i, j) as shown in Eq. 6.1. Of course, other changes
could have been used, but, in our quest for efficiency, the proposed one is
considered to introduce a negligible overhead.

Once the basic adaptive pattern and grid shape modification rules are
fixed, we now proceed to explain the criteria used to determine when the pop-
ulation is going “too fast” or “too slow” (criteria C1 and C2). We propose
in this chapter three different criteria for measuring the search speed. The
measures are based on the average fitness (criterion AF ), the population en-

Ratio

Square

Current ratio

C1C2

Narrow
ri ri+kri-2 ri-1 ri+2ri+1

( )r >rj+1 j

..... .....ri-k..... .....

Fig. 6.4. Ratio changes performed when conditions C1 and C2 of Alg. 6.1 hold



6.2 Description of Algorithms 89

tropy (criterion PH ), or on a combination of they two (criterion AF+PH ).
Since these criteria check simple conditions over the average fitness and the
population entropy (calculated in every run in the population statistics com-
putation step), we can say that they are inexpensive to measure, and they
are indicative of the search states at the same time too. The complexity for
calculating the average fitness is O(μ), while in the case of the population
entropy it is O(μ · L), being μ the size of the population and L the length of
the chromosomes. The details on their internals are as follows:

• AF: This criterion is based on the average fitness of the population. Hence,
our measure of the convergence speed is based in terms of the diversity of
phenotypes. We define Δf t as the difference between the average fitness
values in generation t and t − 1: Δf t = f t − f t−1. The algorithm will
change the ratio value to the immediately larger one (keeping constant the
population size) if the difference Δf t between two contiguous generations
(t and t − 1) decreases at least in a factor of ε: Δf t − Δf t−1 < ε · Δf t−1

(condition C1 of Alg. 6.1). On the contrary, the ratio will be changed to
its closest smaller value if that difference increases in a factor greater than
(1−ε): Δf t − Δf t−1 > (1 − ε) · Δf t−1 (condition C2). Formally, we define
C1 and C2 as follows:

C1 ::= Δf t < (1 + ε) · Δf t−1 ,

C2 ::= Δf t > (2 − ε) · Δf t−1 .

• PH: We now propose to measure the convergence speed in terms of the
genotypic diversity. The population entropy is the metric used for this pur-
pose. We calculate this entropy (Ht) as the average value of the entropy
of each gene in the population. Hence, this criterion is similar to AF ex-
cept for that it uses the change in the population entropy between two
generations (ΔHt = Ht − Ht−1) instead of the average fitness variation.
Consequently, conditions C1 and C2 are expressed as:

C1 ::= ΔHt < (1 + ε) · ΔHt−1 ,

C2 ::= ΔHt > (2 − ε) · ΔHt−1 .

• AF+PH: This is the third and last proposed criterion to create an adap-
tive cGA. It considers both the population entropy and the average fitness
acceleration by combining the two previous criteria (AF and PH). Thus, it
relays on the phenotype and genotype diversity in order to obtain the best
exploration/exploitation tradeoff. This is a more restrictive criterion with
respect to the two previous ones, since although genetic diversity usually
implies phenotypic diversity, the reciprocal is not always true. Condition
C1 in this case is the result of the logic and operation of conditions C1 of
the two preceding criteria. In the same way, C2 will be the and operation
of conditions C2 of AF and PH:



90 6 Design of Self-adaptive cGAs

C1 ::= (Δf t < (1 + ε) · Δf t−1) and (ΔHt < (1 + ε) · ΔHt−1) ,

C2 ::= (Δf t > (2 − ε) · Δf t−1) and (ΔHt > (2 − ε) · ΔHt−1) .

Moreover, for each adaptive criterion (AF, PH, and AF+PH) we can start
the execution by using (1) the square grid shape, (2) the narrowest one, or (3)
the one having a medium ratio value (rectangular). In our terminology, we will
specify the initial grid shape by adding at the beginning of the criterion name
a s, n, or r for executions that begins at the square, narrowest, or rectangular
ratio grid shapes (the one with the average ratio value), respectively. For
example, the algorithm which uses criterion AF starting with the narrowest
shape will be denoted as nAF.

In short, we have proposed in this subsection three different adaptive cri-
teria. The first one, AF, is based on the phenotypic diversity, while the second
one, PH, is based on genotypic diversity. Finally, AF+PH is a combined cri-
terion accounting for diversity at these two levels.

6.3 Experimentation

We present here the comparison of the algorithms presented in the previous
section. For our test, we have selected a representative benchmark because
it contains problems with many different interesting features in optimization,
like epistasis, multimodality, deceptiveness, use of constraints, parameter iden-
tification, and problem generators.

Initially, the studied instances are the same ones of the benchmark used in
Chap. 4, extended with some more instances of problems MAXCUT (instances
MAXCUT20.01, MAXCUT20.09 and MAXCUT100), and MTTP –instances
MTTP20, MTTP100 and MTTP200– (see Appendix A for more information
on these problems). The election of this benchmark is justified for both the
difficulty of the problems composing it and also the application domains they
belong to (combinatorial optimization, continuous optimization, telecommu-
nications, planning, etc.). This guarantees a high level of confidence in the
results, although the evaluation of the conclusions will be a more laborious
task than in the case of using a small number of problems.

Although a full-length study of the problems presented in the previous
section is beyond the scope of this work, in this section we present and ana-
lyze the results obtained when solving all the problems with all the discussed
cGA variants (statics, pre-programmed and dynamics), always with a constant
neighborhood shape (NEWS). Note that it is not our aim here to compare
cGAs performance with state-of-the-art algorithms and heuristics for combi-
natorial optimization. To this end, we should at least do a previous study for
tuning the parameters or include local search capabilities in the algorithm,
which is not the case. Thus, the results are only used for the comparison of
the relative performance of the different proposed self-adaptive cGAs.



6.3 Experimentation 91

The resulting work is a direct continuation of a past one [26], extended
here by including more problems in the test suite and some new algorithms
(the self-adaptive cGAs). We proceed in three stages, namely, analysis of static
ratios, dynamic pre-programmed ratios, and dynamic adaptive ratios. In the
two first stages we use square and rectangular grids in a priori well-known
points of the evolution, i.e., either using always the same grid shape (static),
or setting a fixed change in the grid shape before the optimization.

In the third stage we apply three (dynamic) mechanisms for self-adapting
the grid shape based on the convergence speed, as explained in Sect. 6.2.2.
We study these mechanisms with two different initial values for the ratio: the
smallest one, and that with the middle value (i.e., the median of the allowed
set of values for the ratio).

All the algorithms have been compared in terms of the efficiency and effi-
cacy, so Tables 6.2 and 6.3 show the average number of evaluations needed to
solve each problem with all the algorithms, and the percentage of successful
runs after making 100 independent runs for each problem. We have performed
statistical tests on the results in order to obtain statistically significant con-
clusions in our comparisons (see Tables 6.2 and 6.3).

We have organized this section into three subsections. In the first one
we describe the parameters used for the execution of the algorithms. In the
next subsection we present and analyze the results obtained with the different
algorithms for all the problems. Finally, we offer an additional global graphic
interpretation of the results in the last subsection.

6.3.1 Parameterization

In order to make a meaningful comparison among all the algorithms, we have
used a common parameterization. The details are described in Table 6.1, where
L is the length of the string representing the chromosome of the individuals.
Regarding the selection method used, one parent is always the individual
itself, while the other one is obtained by using Binary Tournament –BT–.
The two parents are forced to be different. These two parents are recombined
using DPX. From the two offsprings obtained by DPX, we only consider one of
them: the one having the largest portion of the best parent. The recombination
is always applied (probability pc = 1.0). The bit mutation probability is set
to pm = 1/L. The exceptions are COUNTSAT, where we use pm = 1/(2 · L),
and the FMS problem, for which a value of pm = 10/L is used. These two
probability values are needed because the algorithms had a negligible solution
rate with the standard pm = 1/L probability for these two problems.

We will replace the considered individual on each generation only if its
offspring has a better fitness value. This replacement strategy is called replace
if better [231]. The cost of solving a problem is analyzed by measuring the
number of evaluations of the objective function made by the algorithm during
the search. Finally, the stop condition for all the algorithms is to find a solution
or to achieve a maximum of one million function evaluations.



92 6 Design of Self-adaptive cGAs

Table 6.1. Parameterization used in our algorithms

Population size 400 individuals
Parent selection Current + binary tournament
Recombination DPX, pc = 1.0
Bit mutation Bit-flip, pm = 1/L
Replacement Rep if Better
Stop condition Find a solution or reach 106 evals

As we previously introduced in Chap. 5, we performed a statistical study
on the obtained solutions in order to assess statistical significance on the
results, and we consider a 0.05 level of significance. Statistical significative
differences among the algorithms are shown with symbol ‘+’ in Tables 6.2 to
6.4, while non-significance is shown with ‘•’.

In short, we have eleven different algorithms with the parameterization
shown in Table 6.1. Three of the studied algorithms use static ratios, two
others employ dynamic pre-programmed ratios, and the last six ones make use
of the proposed dynamic adaptive criteria.

6.3.2 Experimental Results

In this section we present the results obtained when solving the problems
of our benchmark with all the proposed algorithms. The globally best values
throughout this chapter for each problem are bolded; for example, the best
tested algorithm that solves the FMS problem with the lowest effort is called
SqNar (pre-programmed criterion), as shown in Table 6.2.

This subsection is actually organized into two parts. In the first part, a
study of the results obtained with the different static and pre-programmed
algorithms is developed for all the problems. The second part contains this
same study, but in this case for the adaptive algorithms.

Static and Pre-programmed Ratios

In this section we tackle the optimization of all the problems employing static
and pre-programmed ratios. Our results confirm those of [26] in which narrow
grids were quite efficient for multimodal and/or epistatic problems, while the
square and rectangular grids performed better in the case of simple and non
epistatic problems. It must be taken into account that here we are using the
BT selection method, while in [26] RW was used. The use of BT selection is
expected to reduce the sampling error in small neighborhoods with respect to
fitness proportionate selections.

Looking at Table 6.2 we can see that narrow grids are suitable for multi-
modal and epistatic problems (narrow obtains better results than the others
for P-PEAKS, and SqNar obtains the best results for FMS). Conversely, these
narrow grids perform worse than the others in the case of MMDP (deceptive),
and some instances of MTTP (combinatorial optimization). Finally, the two
pre-programmed criteria have the worst performances in the case of ECC. In
the other problems there are no statistically significant differences.



6.3 Experimentation 93

Table 6.2. Results with static and pre-programmed ratios

Problem
Static Pre-programmed

Test
Square Rectangular Narrow SqNar NarSq

MMDP 160090.30 182305.67 247841.13 148505.48 172509.28 +
93% 96% 93% 86% 92%

FMS 435697.94 494400.25 499031.79 355209.39 462288.25 +
59% 67% 68% 42% 59%

P-PEAKS 54907.93 54984.12 50853.82 63545.47 60674.31 +
100% 100% 100% 100% 100%

COUNTSAT 6845.56 6851.26 6856.77 6845.18 6849.17 •
24% 54% 83% 22% 43%

ECC 167701.21 169469.62 156541.38 190875.00 187658.98 +
100% 100% 100% 100% 100%

MAXCUT20.01 6054.10 5769.39 5713.25 5929.79 5785.43 •
100% 100% 100% 100% 100%

MAXCUT20.09 9282.15 9606.96 9899.69 9775.38 10260.59 •
100% 100% 100% 100% 100%

MAXCUT100 263616.77 217509.87 197977.18 223909.83 240346.84 •
63% 55% 53% 55% 53%

MTTP20 6058.11 5753.35 5681.17 6134.30 5584.93 +
100% 100% 100% 100% 100%

MTTP100 194656.43 201409.27 206177.16 190566.23 194371.72 +
100% 100% 100% 100% 100%

MTTP200 565364.89 566279.17 606146.59 565465.14 570016.49 +
100% 100% 100% 100% 100%

Although it is not a globally valid strategy for any unseen problem, our
conclusions up to now do explain the common belief that a good optimization
algorithm must initially seek promising regions and then gradually search in
the neighborhood of the best so far points. In this process, there is a clear
need of avoiding full convergence to a local optimum, which exactly describes
the behavior of the algorithm SqNar, since it shifts to a narrow grid to avoid
such premature convergence in the second half of the search. In effect, this
algorithm has a high accuracy and efficiency on this benchmark.

In summary, these results also conform to the No Free Lunch Theorem
(NFL) [265], which predicts that it is not possible to find “a globally best”
algorithm for all possible problems. Thus, we included in the test suite a large
number of different problems, since only analyzing two or three problems can
lead to an undesirable bias in the conclusions. Each algorithm has then been
pointed out as the most efficient for a different subclass of problems. However,
by inspecting Table 6.2, we can observe just three bolded results (statistically
significant differences only for FMS, in general), what means that the overall
most efficient algorithm has still to be discovered in this work. As we will see,
the different adaptive criteria evaluated in the next subsection will be able of
providing the optimum solution at a lower cost with respect to all the non
adaptive ratios for every tested problem (with the exception of FMS).

Adaptive Criteria

In this section we continue our work by addressing the study of the adaptive
algorithms proposed in Sect. 6.2.2. For each adaptive criterion, we have made
two different tests: one beginning at the grid shape with a middle ratio value
(r), and the other starting at the lowest one (n).



94 6 Design of Self-adaptive cGAs

Table 6.3. Results with the adaptive criteria

Problem nAF rAF nPH rPH nAF+PH rAF+PH Test
MMDP 155342.46 137674.50 180601.45 160747.96 144483.41 162039.13 +

93% 83% 93% 91% 90% 96%
FMS 493449.91 491922.13 528850.10 555155.67 465396.00 439310.97 +

64% 61% 73% 76% 59% 57%
P-PEAKS 56475.84 58031.72 49253.83 49855.33 53127.49 54350.54 +

100% 100% 100% 100% 100% 100%
COUNTSAT 5023.71 4678.77 5296.32 5188.08 4999.59 5252.22 •

82% 90% 89% 86% 88% 88%
ECC 178921.19 179081.59 151256.20 156008.05 193373.23 184058.00 +

100% 100% 100% 100% 100% 100%
MAXCUT20.01 5416.51 5641.07 5701.22 6082.17 5340.32 5657.11 •

100% 100% 100% 100% 100% 100%
MAXCUT20.09 9554.83 9659.09 9430.52 10015.98 9935.78 9598.94 •

100% 100% 100% 100% 100% 100%
MAXCUT100 131359.13 142470.83 151048.22 111662.07 132574.18 141945.57 •

45% 46% 46% 39% 43% 41%
MTTP20 5729.29 5941.82 6206.48 5941.82 6038.06 5853.60 •

100% 100% 100% 100% 100% 100%
MTTP100 190425.88 192179.23 190081.02 196958.17 192871.98 192579.25 •

100% 100% 100% 100% 100% 100%
MTTP200 529158.60 523913.52 523372.17 525349.10 531019.24 541397.12 •

100% 100% 100% 100% 100% 100%

Also, since the adaptive criteria rely on a small ε value to define what is
meant by “too fast convergence” we have developed a first set of the tests
for all the criteria with different ε values: 0.05, 0.15, 0.25, 0.3. From all this
plethora of tests we have finally selected ε = 0.05 as the best one. In order
to get this conclusion two criteria have been applied, and in both of them
ε = 0.05 was the winner. Of course, values other than ε = 0.05 could reduce
the effort for a given problem, but we need to select a given value to focus our
discussion. The used selection criteria look for an ε value which allows us to
obtain (1) the larger accuracy, and (2) the best efficiency. We wanted to make
such a formal and statistical study to avoid an ad hoc definition of ε, but we
do not provide the details in this chapter since including the results, tables,
and explanations could have distracted the attention of the reader. The reader
interested in those details can see [12].

Next, we will discuss the results we have obtained with our adaptive cGAs
(see Table 6.3), and we will also compare our best adaptive algorithms with
all the studied static and pre-programmed ones for each problem. There are
statistically significant differences among the adaptive criteria of Table 6.3
in just some few cases. We will just emphasize the highly desirable behavior
of nPH and rPH, which are (with statistical significance) the best adaptive
criteria for P-PEAKS and ECC (and slightly worse than rAF and nAF+PH
for the FMS problem).

Comparing the adaptive criteria with the cGAs using static and pre-
programmed ratios, we can see (Tables 6.2 and 6.3) that the adaptive al-
gorithms are more efficient in general than the static and pre-programmed
ones, standing out the nPH algorithm over the others.



6.3 Experimentation 95

Table 6.4. Comparison of the best adaptive criterion versus non adaptive ratios

Problem
Best Adaptive

Square Rectangular Narrow SqNar NarSq
Criterion

MMDP rAF • • + • •
FMS rAF+PH • • • • •
P-PEAKS nPH + + • + +
COUNTSAT rAF + • • • •
ECC nPH + + • + +
MAXCUT20.01 nAF+PH • • • • •
MAXCUT20.09 nPH • • • • •
MAXCUT100 rPH • • • • +
MTTP20 nAF • • • • •
MTTP100 nPH • • + • •
MTTP200 nPH + + + + +

In terms of the efficacy of the algorithms (success or hit rate), the adap-
tive algorithms find, in general, the optimal value more frequently (after 100
independent runs) than the static and pre-programmed ones. Moreover, these
adaptive algorithms obtain the best hit rates for almost every problem.

In Table 6.4 we compare, for each problem, our best adaptive algorithm
versus the studied static and pre-programmed ones. Symbol ‘+’ means that
the adaptive algorithm is better with statistical confidence than the non adap-
tive ones compared, while non-significance is shown with ‘•’. We can see that
there is not any static or pre-programmed algorithm better than the best adap-
tive one for each problem. Hence, the bolded results corresponding to a better
non adaptive algorithm in Table 6.2 are not statistically different with respect
to the adaptive ones. For all problems, the existing statistical differences pro-
mote the adaptive criteria versus the static and pre-programmed ones.

6.3.3 Additional Discussion

If we seek among all the adaptive criteria we then conclude (as expected from
the theory) that there is no adaptive criterion that significatively outperforms
the rest for all the test suite, according to the statistic tests performed. How-
ever, it is also clear after these results that adaptive ratios are the first kind
of algorithm one must select in order to have a really good baseline for com-
parisons. For the problems evaluated, and for other problems sharing their
same features, we make a contribution by defining new competitive and ro-
bust algorithms that can improve the existing performance at a minimum
implementation requirement (changing the grid shape).

In order to provide an intuitive explanation of what is happening during
the search of the algorithms we first track the evolution of the ratio value
along the search. Secondly, we have taken some snapshots of the population
at different points of the evolution in order to study the diffusion of solutions
through the population. Finally, we have studied a representative convergence
scenario of an adaptive algorithm through the evolution.



96 6 Design of Self-adaptive cGAs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 50000 100000 150000 200000 250000

Number of Evaluations

R
a

ti
o

COUNTSAT

ECC

P-PEAKS

MAXCUT100

MMDP

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 100000 200000 300000 400000 500000 600000 700000

Number of Evaluations

R
a

t
io

FMS

MTTP200

Fig. 6.5. Dynamics of the ratio observed when using rAF

In Fig. 6.5 we have drawn an example of the ratio fluctuation automatically
produced by the rAF adaptive criterion during a typical execution on all
the problems (we just plot the hardest instances in the case of MAXCUT
and MTTP: MAXCUT100 and MTTP200). We have plotted separately in
rigth part of the figure the hardest problems: MTTP with 200 variables –
MTTP200– and FMS.

It can be noticed in Fig. 6.5 a clear trend towards promoting exploitation
of the population (ratios over 0.1). This general trend to evolve towards the
square shape is expected, because the search focuses towards population ex-
ploitation after an initial phase of exploration. This shift from small to high
ratios is detected in all the problems. However, the adaptive algorithms seem
to need a more complex search of the optimal ratio when facing the most
difficult problems: FMS and MTTP. In these two cases (right-hand plot of
Fig. 6.5) there are brief and periodic visits to smaller ratios (below 0.08) with
the goal of improving the exploration of the algorithm. This automatic al-
ternate shifting between exploitation and exploration in some problems is a
noticeable feature of the adaptive mechanism we propose, because it shows
how the algorithm decides by itself when to explore and when to exploit the
population.

But we want to show that this search for the appropriate explo-
ration/exploitation tradeoff can be achieved in a gradual and progressive way.
In order to prove this claim we zoom into the behavior of the nAF+PH al-
gorithm for the FMS problem (Fig. 6.6). We notice that when the algorithm
finds difficulties during an exploiting phase (high ratio), it automatically de-
creases the ratio (even repeatedly) to improve the exploration. This provides,
in general, a higher hit rate for the adaptive cGAs with respect to the other
studied cGAs (statics and pre-programmed). In Fig. 6.6 we can see the drop
of the ratio value is performed by the adaptive algorithm to appropriately
regulate by itself the speed up of the search for the optimum.

Now, let us turn to analyze the evolution for MAXCUT and FMS from a
phenotypic diversity point of view. The pictures in Figs. 6.7 and 6.8 have been
taken at the beginning, middle, and end of a typical execution with an adap-
tive criteria which begins using the narrowest population shape (specifically
nAF+PH). These figures show three snapshot representations of the fitness
distribution in the population at different stages of the search. Different gray



6.3 Experimentation 97

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Number of Evaluations

R
a

ti
o

Explore

Exploit

Fig. 6.6. Evolution of the ratio for the FMS problem with algorithm nAF+PH

tones mean different fitness values, and darker gray tones correspond to the
best individuals. It can be observed in the two figures that diversity (variety
of gray tones) decreases during the run, as expected.

The particular case of MAXCUT100 (Fig. 6.7) is a sample scenario of
a fast evolution towards the square population shape during the execution;
once the algorithm has reached the square shape, it is maintained until the
solution is found (see also Fig. 6.5). The reason for this behavior is that
the exploration/exploitation tradeoff that the algorithm finds is adequate to
maintain a permanent and not too fast convergence of the individuals towards
the solution. This convergence can be observed in Fig. 6.7, where we can notice
that the number of grey tones in the population decreases along the execution.
The convergence is noticeable at the middle of the execution (Fig. 6.7b) and
continues growing until the optimal solution is found (Fig. 6.7c). Also, since
the same ratio value is kept during all the evolution (except at the beginning),
no relocation of individuals (which introduces diversity) is made, and the
algorithm inherently creates islands of similar fitness values, also called niches
(Fig. 6.7c), corresponding to those areas with the same gray tone. These
different areas represent distinct convergence paths motivated by the smooth
diffusion of good solutions, a distinctive feature of cGAs. In particular, the
exploration of the search space is specially enforced in the bounds of these
niches.

Fig. 6.7. Population at the beginning (a), middle (b), and end (c) of a sample
execution of MAXCUT (instance MAXCUT100) with nAF+PH



98 6 Design of Self-adaptive cGAs

Fig. 6.8. Population at the beginning (a), middle (b), and end (c) of a sample
execution of FMS with nAF+PH

In the case of FMS, a similar scenario appears; in this case we plot an
example situation in which the algorithm is near to converge to a local op-
timum. As soon as the adaptive criterion detects such condition it tries to
get out of this local optimum by promoting exploration (as it also occurs in
Fig. 6.6). We can see in Fig. 6.8b that the diversity is smaller than in the
case of MAXCUT in the middle of the execution. Since most individuals have
similar fitness values, when a better solution appears in the grid it will be
spread through all the population reasonably fast. This effect produces an ac-
celeration in the mean fitness of the individuals and, therefore, a change to the
next more rectangular grid shape (if possible) is performed, thus introducing
some more diversity in the neighborhoods for the next generations. Contrary
to this reasoning, a high level of diversity is maintained during all the evo-
lution because, due to the epistatic nature of the problem, small changes in
the individuals lead to big differences in the fitness values. That is the reason,
as well as the high number of ratio changes made for this problem, for the
absence of homogeneous colored areas. It also justifies the important levels
of diversity present at the end of the evolution for FMS (in relation to the
MAXCUT problem).

Finally, we want to illustrate the differences in the convergence speed of
the three main classes of the studied algorithms (static, pre-programmed, and
adaptive). Hence, we plot in Fig. 6.9 the maximum fitness value in every gen-
eration in typical runs for three different algorithms (Square, SqNar, and rPH)
when solving the instance of 100 vertices of the MAXCUT problem (MAX-
CUT100). As it can be seen, the evolution of the best so far solution during
the run is quite similar in the three algorithms. The difference in the behavior
of the algorithms can be seen at the end of the evolution, where Square and
SqNar get stuck during many generations before finding the optimal solution,
while the adaptive algorithm, due to the diversity of the population, finds
quickly an optimum.



6.4 Conclusions 99

Fig. 6.9. Evolution of the maximum fitness found with MAXCUT100

6.4 Conclusions

In this work we have analyzed the behavior of many cellular GAs over an
assorted set of problems. The ratio, defined as the relationship between the
neighborhood and the population radii, represents a unique parameter rich in
possibilities for developing efficient algorithms based on the canonical cGA.
As the population is distributed in a 2D toroidal grid, the studied models are
all embedded in many other similar algorithms; thus, we hope these results
to be broadly helpful for other researchers.

Our main motivation for this work has been to advance in the knowledge
of the appropriate exploration/exploitation tradeoff for an algorithm. Specif-
ically, we have studied the influence of the ratio on the field of dynamical
structured populations. This feature is, to our knowledge, used in this work
for the first time.

Technically, we can confirm the results in [26], which concluded that a
narrow grid (small ratio) is quite efficient for multimodal and/or epistatic
problems, while it performs worse with respect to the square and rectangular
grids (high ratios) in the case of simple and non epistatic problems. Addi-
tionally, we have demonstrated the importance of using an intermediate grid
(rectangular) for combinatorial optimization problems in this work.

We must emphasize that any of the developed adaptive criteria is just a
seed idea on how to obtain competent search techniques. An important feeling
after this work is that the search can be easily guided by using structured
populations. These kind of models are very efficient from a numerical point of
view, while they still admit any advanced technique developed in the EA field
to be included in their basic execution. These adaptive algorithms outperform
the other studied ones for all the proposed problems, and the exceptions do
not have statistical differences.



7

Design of Cellular Memetic Algorithms

Almost everybody that’s well-known gets tagged with a
nickname.

Alan Alda (1936 - ) – Actor

Memetic algorithms (MAs) [154, 184] is a recent nickname for techniques
combining features of different metaheuristics (also exact methods), such as
population based algorithms (EAs) and local search procedures; restart tech-
niques and intensive hybridization with problem knowledge is also supposed
to be the ingredients of a MA. The salient feature of MAs is that the tradeoff
between exploration and exploitation they perform on the search space is ad-
dressed explicitly in most approaches by using the longstanding concepts of
hybrid optimizers [61].

In this chapter, we intend to take profit from the advantages reported
by MAs when used in combination with cGAs. For that, a new model of
highly specialized cGA is designed here to guide the reader on how cellular
memetic algorithms can be constructed. The basic idea is to introduce the
MA concepts into a structured population of tentative solutions much in the
style of cGAs. For evaluating our algorithms we have selected the satisfiabil-
ity problem (SAT), described in Appendix A. This is a hard combinatorial
problem, well-known in the literature, and having important practical appli-
cations, such as planning [143] and image interpretation [213], among others.
Besides its importance in research, we selected SAT since readers are most
probably familiar with it, and thus they can concentrate on the algorithm
proposal itself.

In the field of evolutionary computation, the latest advances found in
literature clearly show that EAs can yield good results for SAT when hy-
bridizing them with additional techniques, e.g., adaptive fitness functions,
problem-specific operators, or local optimization [32, 64, 83, 91, 120].

The motivation for this chapter is to study the behavior of different cMAs
having specific fitness functions and embedding some knowledge on the prob-
lem into the recombination, mutation, and local search operators, as well as
into the problem representation.

We will compare these new proposals against the basic local search heuris-
tics working alone, and versus two canonical cGAs (without any local search).
Additionally, two different ways of embedding local search have been analyzed:

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 7, © Springer Science+Business Media, LLC 2008



102 7 Design of Cellular Memetic Algorithms

(i) a computationally light local search step applied to every individual, or
(ii) an in depth exploitation local search step applied with a low probability.
The numerical work is an extension to [15, 16], including a preliminary study
justifying the algorithms used plus a comparison of our results versus those of
other well-known algorithms in the literature (a must in effective research).

This chapter is organized in the following manner. In Sect. 7.1, our new
proposal for a cMA is presented. Section 7.2 introduces all the algorithms
involved in our analysis, including three simple methods (GRAD, Simulated
Annealing –SA– and WSAT), and a basic cGA. Later, several cMAs will be
presented, which are the result of different combinations of a basic cGA with
the previous component algorithms. The experimentation and its discussion
are summarized in Sect. 7.3, while the conclusions and future research direc-
tions are addressed in Sect. 7.4.

7.1 Cellular Memetic Algorithms

Memetic algorithms [154, 184] are search algorithms in which knowledge of
the problem is used in operators or other algorithmic components with the
objective of improving the behavior of the original algorithm. Not only local
search, but also restart techniques, and structured or intensive search are
commonly considered in MAs [184]. All these ideas are well-known because
they lead to hybridization, a domain very popular in EAs from its beginning.
Thus, the way to start is clear: let us design a basic cellular memetic algorithm
(cMA) to illustrate the concepts.

In Alg. 7.1 we show a first pseudo-code for a canonical cMA. As it can
be seen, the main difference between the pseudo-codes of the canonical cMA
and cGA is the local search step included (line 8 in Alg. 7.1). Besides, some

Algorithm 7.1 Pseudo-code of a canonical cMA
1. cMA(cma) //Algorithm parameters in ‘cma’
2. GenerateInitialPopulation(cma.pop);
3. Evaluation(cma.pop);
4. while !StopCondition() do
5. for individual ← 1 to cma.popSize do
6. neighbors← GetNeighbors(cma,position(individual));
7. parents← Selection(neighbors);
8. offspring← Recombination(cma.Pc, parents);
9. offspring← Mutation(cma.Pm, offspring);

10. offspring← LocalSearch(cma.PLS, offspring, {intensive|light});
11. Evaluation(offspring);
12. Insert(position(individual), offspring, cma, auxPop);
13. end for
14. cma.pop← auxPop;
15. end while



7.2 Simple and Advanced Components in Cellular MAs 103

knowledge of the problem can be included in different parts of the cMA, like
the variation operators (lines 7 to 10), the evaluation of the fitness function
(lines 3 and 11), the process for generating the initial population (line 2), or
the problem representation.

7.2 Simple and Advanced Components in Cellular MAs

Since we are facing the simplest way of constructing a memetic algorithm
(namely hybridization with local search) let us first present several algorithms
that can be used as local search optimizers inside a cGA. The reader can
find such a description in the current section organized in the form of three
subsections. Specifically, we first study three simple methods for solving SAT,
then a basic cGA –implemented in JCell–, and finally the proposed cMAs.

7.2.1 Three Basic Local Search Techniques for SAT

In this subsection, we present the three local search procedures (LS) that
later will be used to built our cMAs; these three methods can of course be
independently used for solving SAT. Two of them were specifically designed
for this problem: (i) a gradient algorithm (GRAD), based on the flip heuristic,
and especially developed for this work by the authors, and (ii) the well-known
WSAT algorithm. The third procedure is Simulated Annealing (SA), a well-
known general purpose metaheuristic.

GRAD

For this work, we have developed a new local search algorithm (called GRAD)
for SAT. GRAD is an algorithm based on the flip heuristic [120] which per-
forms a greedy search in the space of solutions (see Alg. 7.2). Basically, GRAD
resorts to mutations of the value of a variable according to the number of
non-satisfied clauses that the variable belongs to: the higher the number of
unsatisfied clauses a variable belongs to, the higher the probability for mu-
tating (flipping) it. As it can be seen in Alg. 7.2, some noise is added to
the search (with probability 0.2) in order to enhance its exploration capa-
bilities. The main difference of GRAD with respect to the pre-existing flip
heuristic is that the latter flips a variable (v) in terms of the gain of that
flip: v =

{
vi/ max(sat clauses(valueof(vi)) − sat clauses(valueof(vi)))

}
(with

i = 1 to the number of variables, and sat clauses(valueof(vi)) the number of
satisfied clauses containing the value of vi), while in GRAD the flip is made
to every variable (v) satisfying v = {vi/ max(unsat clauses(valueof(vi)))}
with the same probability (independently of the gain). The expression
unsat clauses(valueof(vi)) is the number of non-satisfied clauses containing
the value of vi. This difference makes GRAD computationally lighter than
the flip heuristic and thus more suited to be embedded into a higher level
algorithm like a cGA.



104 7 Design of Cellular Memetic Algorithms

Algorithm 7.2 Pseudo-code of GRAD
1. GRAD(problem)
2. best ind = NewRandomIndividual();
3. while !StopCondition() do
4. ind = NewRandomIndividual();
5. for steps ← 0 to MAX STEPS do
6. if rand0to1 () < noise prob then
7. Mutate(ind,RandomVariableIntoAnyUnsatisfiedClause());
8. else
9. vars to flip[]=VarsInvolvedInTheMaximumNumberOfNonSatisfiedClauses();

10. MutateWithEqualProbability(ind,vars to flip);
11. end if
12. Evaluation(ind);
13. best ind = Best(ind,best ind);
14. end for
15. end while

The detailed functioning of GRAD is simple. The algorithm starts by
randomly generating both and initial best solution and the first individual
(lines 2 and 4, respectively). After that, and until the final condition is met, the
algorithm repeatedly generates a new individual (offspring) from the current
one (parent), evaluates it, and replaces the best current solution with it if
it is better (higher fitness value, since we are maximizing). The offspring is
created by flipping the worst genes of the parent –those unsatisfying the largest
number of clauses– with equal probability (lines 9 and 10). With a preset
probability, some noise (20%) is introduced in the search to help escaping from
local optima. In this case, the offspring is mutated by flipping the value of a
randomly chosen variable of the parent unsatisfying one or more clauses (lines
6 and 7). Then, the search process is repeated for the offspring (lines 5 to 14).
Every MAX STEPS iterations the search is restarted –i.e., the current individual
is randomly generated– (line 4). We have set this value to 10 times the number
of variables in practice. The algorithm stops (line 3) when the optimal or the
best-known solution is found or after making 2 millions of fitness function
evaluations (a true top bound for the effort in most problems).

WSAT

The WSAT algorithm [227] is a greedy heuristic specifically designed for SAT.
Basically, it consists in repeatedly selecting a non satisfied clause (uniformly
random) and flipping one of its variables (see Alg. 7.3). There exist several
methods for selecting this variable [179]. Among them, we have adopted the
BEST strategy, which consists in flipping a variable of the clause with a given
probability (prob noise = 0.5), and otherwise flips the variable that minimizes
the number of clauses that are true in the current state, but that would become
false if the flip were made. After a number of steps (line 3), the search is



7.2 Simple and Advanced Components in Cellular MAs 105

Algorithm 7.3 Pseudo-code of WSAT
1. WSAT(problem)
2. best ind = NewRandomIndividual();
3. while !StopCondition() do
4. ind = NewRandomIndividual();
5. for steps ← 0 to MAX STEPS do
6. clause = RandomNonSatisfiedClause()
7. if rand0to1 () < noise prob then
8. Mutate(ind,clause[randomInt(clause length)]);
9. else

10. for i ← 0 to clause length do
11. lost clauses[i] = LostClausesAfterFlip(i);
12. end for
13. Mutate(ind, clause[IndexOfMinValue(lost clauses)]);
14. end if
15. Evaluation(ind);
16. best ind = Best(ind, best ind);
17. end for
18. end while

“restarted” by replacing the current individual by a randomly generated one
(line 4). Like in the case of GRAD, we “restart” every 10 times the number
of variables steps, and the best found solution so far is always tracked.

SA

Simulated Annealing [145] is probably one of the first metaheuristics with
an explicit strategy to escape from local optima (see Alg. 7.4 for a pseudo-
code). The core idea is to sparsely allow for movements resulting in solutions
of worse quality in order to escape from local optima. For that, a parameter
called temperature (Temp) is used, such that the probability of accepting a
worse individual is:

p(Temp, offspr, ind) = e
(Get Fit(offspr)−Get Fit(ind))·104

targetFitness·Temp . (7.1)

The value of this probability decreases during the execution (line 19) in
order to reduce the probability for accepting movements with a decrement in
the quality of the solution (computed as shown in Eq. 7.1) along the search.
Temp is initialized to a given upper bound Tmax (line 5), and new individuals
are computed while the current value of Temp is larger than a given threshold
Tmin (lines 6 to 20). The value of the temperature decreases in terms of the
parameter coolingRate. If the new individual is better (higher fitness value)
than the best so far one it is accepted as the new best one (lines 14 and 15)
or, otherwise, it replaces the best one with a given probability (lines 16 and
17). After some experimental tests, we have set these values to Tmax = 10,
Tmin = 1, and coolingRate = 0.8.



106 7 Design of Cellular Memetic Algorithms

Algorithm 7.4 Pseudo-code of SA
1. Simulated Annealing(problem, Tmax, coolingRate)
2. ind = NewRandomIndividual();
3. best ind = ind;
4. while !StopCondition() do
5. Temp = Tmax;
6. while Temp > Tmin do
7. offspring = ind; // generate an offspring
8. for i ← 0 to problem.num vars do
9. if rand0to1 () < 1/problem.num vars then

10. Mutate(offspring, i);
11. end if
12. end for
13. Evaluate(offspring);
14. if Fitness(offspring) >= Fitness(ind) then
15. ind = offspring;
16. else if rand0to1 () < p(Temp, offspring, ind) then
17. ind = offspring;
18. end if
19. Temp ∗ = coolingRate;
20. end while
21. best ind = Best(offspring, best ind);
22. end while

7.2.2 Cellular Memetic GAs

Let us address the design of cMAs here for SAT. We will hybridize a basic cGA
(implemented in JCell) with other component; a component in the resulting
cMA could be recombination or mutation operators (either general or SAT-
oriented), and local search (see Table 7.1). In addition, we will use an adaptive
fitness function specially designed for SAT: SAW (whose details could be found
in Appendix A). All these components could be used separately or combined
in a given cMA.

We use two specific genetic operators for recombination and mutation
which are called Unsatisfied Clauses Recombination (UCR) and Unsatisfied
Clauses Mutation (UCM), respectively. These two operators focus on keeping
constant the values of the variables satisfying all the clauses they belong to.
Our UCR is exactly the same operator as the proposed CB in [121], and UCM

Table 7.1. Operators used in JCell in this work for solving SAT

Operator Generic Specific

Crossover DPX UCR
Mutation BM UCM
Local Search SA GRAD

WSAT



7.3 Computational Analysis 107

Algorithm 7.5 Pseudo-code for UCM
1. UCM(Indiv, Noise)
2. if rand0to1 () ≤ Noise then
3. Flip(Indiv, randomInt(Indiv.length));
4. else
5. MB(Indiv);
6. end if

is the result of adding some noise to MB (previously proposed in [121]), as
seen in Alg. 7.5. On the other hand, we use two well-known generic recombi-
nation and mutation operators: two point recombination (DPX) and binary
mutation (BM).

As to the other three heuristic methods proposed hereinbefore, they have
been adopted as LS operators in our cMA. As it can be seen in Sect. 7.3, some
different configurations of these local search methods have been studied. These
configurations differ on the probability of applying the local search operator to
the individuals (frequency of utilization) and the intensity of the local search
step once it is applied. The idea is to regulate the overall computational effort
to solve the problem in affordable times with regular computers.

7.3 Computational Analysis

In this section we analyze the results of our tests over the 12 hard instances
(from n = 30 to 100 variables) composing the suite 1 of the benchmark pro-
posed in [32]. These instances belong to the SAT phase transition of difficulty,
where hardest instances are located, since they verify that m = 4.3 ∗ n [182]
(being m the number of clauses).

Next sections discuss the results in a structured way. All algorithms have
been tested in terms of efficiency (average number of evaluations to reach a
solution –AES–) and efficacy (success rate –SR–). The details are shown in
Tables 7.2, 7.3, 7.5, and 7.6; in Fig. 7.1 we plot a summary on the success rate
results. All the results are average values after 50 independent runs of every
algorithm on every problem instance. Statistical tests have been used to ensure
the validity of our claims. For this, a confidence level of 95% is represented in
the tables with a ‘+’ symbol (‘•’ means no statistical differences).

7.3.1 Effects of Combining a Structured Population and an
Adaptive Fitness Function (SAW)

In this section we justify the election of both the structured (cellular) popula-
tion and the use of the stepwise adaptation of weights function (SAW) in our
cMAs. Our goal is to show that they two are the minimum and common re-
quirements to get solutions with a quality similar as that reported in past con-
tributing works. With that purpose, we study the behavior of JCell.DPX BM



108 7 Design of Cellular Memetic Algorithms

Table 7.2. Effects of structuring the population combined with SAW in the fitness.
Average number evaluations to reach a solution (AES)

Instance
genGA JCell.DPX BM cl JCell.DPX BM Test

size (n) #

30 1 49801.0 3415.7 7438.0 +
30 2 1135843.2 — 502208.4 +
30 3 440886.2 3024.0 80029.4 +
40 4 855286.3 31932.0 13829.8 +
40 5 66193.9 4861.4 9391.7 +
40 6 1603008.0 — 519868.8 +
50 7 473839.4 14356.8 13081.0 +
50 8 1076077.4 84088.8 95379.8 +
50 9 1333872.0 — 524164.1 +
100 10 — — 601488.0 +
100 11 — 223310.8 165484.8 +
100 12 — 245232.0 392871.8 +

(a cGA using SAW, and implementing generic recombination and mutation
operators –DPX and BM, respectively–), compared to its generational version
–non-structured population– (genGA), and JCell.DPX BM using a classic fit-
ness function for SAT (JCell.DPX BM cl), i.e., counting the number of the
clauses satisfied by the potential solution.

Our results are given in Table 7.2, wherein we show for every instance:
its size, its identifier (#), and the average number of evaluations needed to
find the solution (AES) for the three algorithms (best values are bolded).
Additionally, the number of runs in which the solution was found (success
rate) is displayed in Fig. 7.1. After applying statistical tests to the results in
Table 7.2, we obtained that there are statistically significant differences in all
the instances.

One can see that genGA is the algorithm reporting the worst AES results,
and JCell.DPX BM is worse than JCell.DPX BM cl with statistical signifi-
cance only in 2 instances (numbers 1 and 5). In terms of SR (see Fig. 7.1),
JCell.DPX BM is better than the other two algorithms (higher efficacy) for
the 12 instances. Moreover, only JCell.DPX BM is able to find the optimal
solution for every problem. Hence, from these results we can conclude that
JCell.DPX BM, the algorithm with structured population and using SAW,
is the best of the three compared ones, both in terms of efficacy (SR) and
efficiency (AES).

From Table 7.2 and Fig. 7.1, it stands out that the tested cGA markedly
improved its results when using the SAW fitness function. Because of that, all
the algorithms studied in the following sections have been implemented using
SAW. Although the authors are aware that the use of SAW does not neces-
sarily improve the performance on other algorithms, the SAW fitness function
has been implemented in GRAD, SA, and WSAT as also suggested in [15]. It
is made in order to make fair comparisons between them and our cMAs.



7.3 Computational Analysis 109

Fig. 7.1. Effects of structuring the population and using SAW. Success rate (SR)

7.3.2 Results: Non Memetic Procedures for SAT
In this section we study the behavior of GRAD, SA, and WSAT. Additionally,
we test the behavior of two different cGAs without any local search: the previ-
ously studied JCell.DPX BM, and also JCell.UCR UCM, which is the result
of hybridizing the former with recombination and mutation operators specif-
ically designed for SAT (UCR and UCM). The parameters used are those of
Table 7.4, but in this case PLS = 0.0 (i.e., there is no LS). In Table 7.3 we
show our results. The first issue we want to emphasize is that only WSAT is
able to solve the problem in every run for all the instances. As an interesting
detail, in [120] WSAT only solved the problem in a 80% of the runs in the
case of the largest instances (with n = 100), so we think to have a better
implementation of WSAT here.

When comparing the three basic LS, it can be seen in Table 7.3 that SA
obtains the worst results, both in terms of efficacy and efficiency (with statis-
tical confidence, except for instance number 10). GRAD is similar to WSAT
in efficacy, but it needs a larger number of fitness function evaluations to
find the solution (lower efficiency), except for instance 6 (significant values
obtained in instances 3, 4, 7, 8, and 10 to 12). Hence, we can conclude that
WSAT is the best of the three heuristics for the studied test-suite, followed
by GRAD. We also conclude on the superiority of problem dependent algo-
rithms versus generic patterns of search like SA, at least at a moderate level
of customization effort.

With respect to the two cGAs, Table 7.3 states the opposite result: the
cGA with generic operators outperforms the one including tailored muta-
tion and recombination. This is clear since JCell.UCR UCM reports a larger
AES than JCell.DPX BM (statistical confidence for all the instances, ex-
cept 2). Moreover, JCell.UCR UCM also performs a lower hit rate (SR) than
JCell.DPX BM in general. In addition, JCell.UCR UCM is not able to find
the optimum in any of the 50 runs made for 6 out of the 12 instances. Prob-
ably, the reason for the mentioned poor behavior of JCell.UCR UCM with
respect to JCell.DPX BM is that both UCR and UCM perform a too inten-
sive exploitation of the search space, resulting in an important and too fast
loss of diversity in the population; this makes the algorithm get stuck in local
optima frequently.



110 7 Design of Cellular Memetic Algorithms

Table 7.3. Performance of the basic algorithms

#
GRAD SA WSAT JCell.DPX BM JCell.UCR UCM

SR AES SR AES SR AES SR AES SR AES
1 1.00 203.56 1.00 685.22 1.00 143.64 + 1.00 7438.04 1.00 104100.48 +

±219.73 ±844.74 ±120.32 ±3234.60 ±121339.96

2 1.00 9681.06 1.00 63346.60 1.00 8575.66 + 0.86 502208.37 0.10 697564.80 •
±9483.55 ±93625.68 ±9244.08 ±491034.68 ±663741.62

3 1.00 8520.38 1.00 16833.44 1.00 3984.34 + 1.00 80029.44 0.98 269282.94 +
±7724.11 ±11002.84 ±4112.95 ±54664.78 ±223859.24

4 1.00 619.94 1.00 2173.62 1.00 199.56 + 1.00 13829.76 0.10 1364688.00 +
±584.88 ±2076.57 ±193.56 ±7801.37 ±500365.96

5 1.00 324.46 1.00 1202.86 1.00 103.66 + 1.00 9391.68 1.00 249137.28 +
±332.19 ±1045.82 ±88.02 ±2478.37 ±236218.19

6 1.00 14368.98 0.86 271701.47 1.00 14621.04 + 0.40 519868.80 0.00 — —
±13954.02 ±418129.55 ±18617.88 ±552312.72

7 1.00 496.58 1.00 1614.76 1.00 200.84 + 1.00 13080.96 0.10 1005494.40 +
±359.60 ±1252.34 ±154.81 ±3346.94 ±721439.61

8 1.00 1761.74 1.00 9512.84 1.00 793.38 + 1.00 95379.84 0.00 — —
±1989.06 ±10226.14 ±870.94 ±125768.68

9 1.00 82004.84 1.00 201612.46 1.00 77696.42 + 0.70 524164.11 0.00 — —
±63217.93 ±266218.97 ±75769.23 ±432005.51

10 0.94 726522.51 0.84 510006.12 1.00 189785.14 + 0.18 601488.00 0.00 — —
±525423.23 ±419781.41 ±198738.78 ±364655.49

11 1.00 5508.26 1.00 18123.00 1.00 1501.74 + 1.00 165484.80 0.00 — —
±5940.96 ±20635.35 ±1264.80 ±190927.59

12 1.00 8920.38 1.00 25539.84 1.00 1388.92 + 0.94 392871.83 0.00 — —
±9111.02 ±22393.45 ±1308.27 ±443791.69

As a final conclusion, we can claim from Table 7.3 that the results of the
two cGAs without explicit LS are always worse than those of the LS heuristics,
both in terms of efficiency and efficacy. The only best results of the table are
those obtained by WSAT. Since we suspect that these results are too linked
to the instances (specially to their “small ” size) we will enlarge the test set at
the end of next subsection with harder instances in order to get conclusions
on the problem class if possible (and detect the influence in our results of any
bias on the instances).

7.3.3 Results: Cellular Memetic Algorithms

In this section we study the behavior of a large number of cMAs with different
parameterizations. As it can be seen in Table 7.4 (wherein details of the cMAs
are given) we here hybridize the two simple cGAs of the previous section
with three distinct local search methods (GRAD, SA, and WSAT). These
local search methods have been applied in two different ways: (i) executing
an intense local search step (10 × n fitness function evaluations) to a given
percentage of the individuals (called intensive), or (ii) applying a light local
search step to all the individuals, consisting in making only 20 fitness function
evaluations in these methods (called light).

Results are shown in Tables 7.5 and 7.6. Comparing them with those of the
cGAs of Table 7.3, we can see that the behavior of the algorithm is generally
improved both in efficiency and efficacy, specially when using GRAD and
WSAT. Hence, it is clear that the three local search methods used (generic
and specific) help the algorithm for getting out from local optima.



7.3 Computational Analysis 111

Table 7.4. General parameterization for the studied cMAs
JCell.DPX BM+ JCell.DPX BM i+ JCell.UCR UCM+ JCell.UCR UCM i+
GRAD,SA,WSAT GRAD,SA,WSAT GRAD,SA,WSAT GRAD,SA,WSAT

Local Light Intensive Light Intensive
Search PLS = 1.0 PLS = 1.0/popsize PLS = 1.0 PLS = 1.0/popsize
Mutation Bit-flip (Pbf = 1/n), Pm = 1.0 UCM, Pm = 1.0
Crossover DPX, Pc = 1.0 UCR, Pc
Pop. size 144 individuals
Selection Itself + binary tournament
Replacement Replace if Better
Stop cond. Find a solution or reach 100,000 generations

Table 7.5. Results for the proposed hybridizations of JCell.DPX BM

JCell.DPX BM JCell.DPX BM i
# + GRAD + SA + WSAT + GRAD + SA + WSAT

SR AES SR AES SR AES SR AES SR AES SR AES
1 1.00 3054.2 1.00 29474.5 1.00 2966.1 1.00 1072.8 1.00 9649.6 1.00 569.9

±392.2 ±583.4 ±19.2 ±1112.6 ±25809.9 ±302.8

2 1.00 33598.7 1.00 195397.6 1.00 32730.4 1.00 50886.2 0.90 559464.3 1.00 30885.5
±51766.6 ±295646.3 ±49353.2 ±44167.7 ±437996.2 ±22768.8

3 1.00 14761.2 1.00 33005.4 1.00 4104.5 1.00 20385.8 1.00 255902.5 1.00 9418.4
±24935.1 ±6306.3 ±3325.1 ±20115.7 ±275734.7 ±10239.6

4 1.00 5018.6 1.00 31618.8 1.00 3972.9 1.00 2573.4 1.00 49310.9 1.00 794.7
±2397.8 ±152.9 ±1343.8 ±2497.7 ±64714.9 ±693.7

5 1.00 3575.6 1.00 31052.9 1.00 3008.3 1.00 1586.0 1.00 13354.0 1.00 628.6
±1131.5 ±282.7 ±8.4 ±1757.9 ±36668.5 ±437.9

6 0.96 181863.6 0.96 434235.9 1.00 81966.1 1.00 94046.4 0.72 654160.4 1.00 41619.4
±343020.8 ±519011.4 ±114950.0 ±114105.9 ±476411.6 ±47466.8

7 1.00 5945.8 1.00 33621.6 1.00 4822.6 1.00 2342.6 1.00 37446.4 1.00 850.8
±2416.8 ±7313.2 ±1364.9 ±2972.9 ±70165.5 ±527.5

8 1.00 14930.8 1.00 47688.6 1.00 7138.3 1.00 5164.5 1.00 195816.2 1.00 2097.6
±7644.5 ±15925.1 ±3957.5 ±5786.7 ±155018.9 ±1886.8

9 0.80 787149.2 0.50 720491.5 1.00 600993.9 0.82 963177.2 0.34 883967.7 1.00 187814.5
±528237.4 ±597642.6 ±443475.3 ±585320.7 ±633307.9 ±148264.1

10 0.06 797880.3 0.04 1209394.0 0.06 1189559.7 0.04 1302489.0 0.10 1363627.4 0.80 792051.2
±824831.9 ±90058.5 ±374193.7 ±346149.9 ±368403.3 ±491548.4

11 1.00 58591.3 1.00 1039910.2 1.00 35571.0 1.00 12539.8 1.00 357207.9 1.00 2466.3
±18897.3 ±205127.9 ±9243.6 ±10851.1 ±422288.9 ±1846.4

12 0.96 70324.9 0.98 1051351.2 1.00 45950.2 1.00 20018.2 0.98 409492.6 1.00 3196.9
±32808.8 ±174510.4 ±19870.7 ±19674.3 ±425872.3 ±2938.3

If we compare the studied cMAs in terms of the way the local search
method is applied (intensive or light), we conclude that the intensive case
always obtains better results than the other when hybridizing the algorithm
with one specific heuristic (either GRAD or WSAT). On the contrary, this
is not always true when using SA, since the intensive version of SA only
outperforms its lighter counterpart in 9 out of the 24 tests. Hence, cGAs
hybridized with specialized LS have a better performance than the one using
SA (generic) on average, and specially when intensive search is used. All these
comparisons are statistically significant in 58 out of the 65 cases (for them all
the cMAs obtained the solution in almost 100% of the runs).

As an interesting exception, we want to remark the nice effi-
cacy of JCell.UCR UCM+SA for instances 11 and 12 with respect to
JCell.UCR UCM hybridized with GRAD and WSAT, since these two last
cMAs are not able to find the optimal solution in any run. The reason is
probably a too high intensification of GRAD and WSAT performed on the
population (remind that they are still merged with UCR and UCM), guiding
the algorithm towards a local optimum quickly.



112 7 Design of Cellular Memetic Algorithms

Table 7.6. Results for the proposed hybridizations of JCell.UCR UCM

JCell.UCR UCM JCell.UCR UCM i
# + GRAD + SA + WSAT + GRAD + SA + WSAT

SR AES SR AES SR AES SR AES SR AES SR AES
1 1.00 2981.2 1.00 29253.2 1.00 2953.1 1.00 1239.1 1.00 21710.7 1.00 748.8

±18.9 ±474.8 ±27.8 ±1467.1 ±46248.4 ±404.1

2 1.00 20294.7 1.00 187088.9 1.00 14879.6 1.00 58842.3 1.00 686104.1 1.00 31457.6
±23868.0 ±281719.9 ±18766.3 ±62944.9 ±527621.8 ±33033.8

3 1.00 4048.0 1.00 41269.5 1.00 3641.2 1.00 25086.8 1.00 280148.0 1.00 13614.9
±2832.1 ±58635.5 ±1861.2 ±24428.4 ±217802.8 ±13134.6

4 1.00 7853.8 1.00 31527.8 1.00 3472.5 1.00 2299.6 1.00 63190.8 1.00 779.4
±9207.1 ±187.2 ±1773.7 ±2937.4 ±110063.6 ±408.9

5 1.00 3466.3 1.00 30893.9 1.00 2976.1 1.00 1193.1 1.00 18722.7 1.00 624.7
±1781.8 ±246.8 ±19.9 ±1198.5 ±56165.8 ±369.2

6 1.00 379489.9 1.00 274977.7 1.00 162737.1 1.00 86780.6 0.94 849405.5 1.00 57997.9
±351593.1 ±389332.4 ±180706.5 ±71185.9 ±584901.9 ±48455.4

7 1.00 7335.1 1.00 31715.6 1.00 3532.0 1.00 1639.8 1.00 96672.3 1.00 678.2
±7980.3 ±134.0 ±1807.9 ±2297.5 ±158359.2 ±507.7

8 1.00 82967.7 1.00 46418.0 1.00 27090.5 1.00 6747.4 1.00 291700.2 1.00 1694.4
±76765.2 ±15867.9 ±30079.4 ±8070.6 ±225526.0 ±1619.9

9 0.42 1089600.1 0.64 1365366.8 0.56 694014.5 0.92 566331.3 0.48 1155717.8 1.00 305306.2
±642627.4 ±559506.2 ±548185.0 ±476381.3 ±529793.2 ±323215.9

10 0.00 — 0.00 — 0.00 — 0.76 885961.2 0.16 1099241.9 1.00 425377.6
±630092.4 ±768918.5 ±415069.5

11 0.00 — 0.64 1743364.4 0.00 — 1.00 10560.4 0.90 695508.1 1.00 2980.8
±190880.9 ±11327.4 ±855309.5 ±3334.6

12 0.00 — 0.40 1778928.5 0.00 — 1.00 16623.6 0.94 504324.6 1.00 3949.3
±200497.9 ±18137.9 ±770231.7 ±4646.0

Let us now compare the best algorithm in Table 7.3 (WSAT) versus the
best one included in Tables 7.5 and 7.6 (JCell.UCR UCM i+WSAT). These
two algorithms are the best out of all the studied ones in terms of efficiency
and efficacy. The two algorithms find the optimal solution in 100% of the runs
(SR=1.0 for every instance), but JCell.UCR UCM i+WSAT obtains worse
(numerically higher) results than WSAT in terms of AES (with statistically
significant differences).

Although we expected a hard comparison against the best algorithm in
literature (WSAT), this was not the case, since we got similar accuracy and
only slightly worse efficiency in our tests. Since we suspected this holds only
in the smaller instances we decided to test these two algorithms with larger
instances in order to check if the cMA is able to outperform the state of the
art WSAT in harder problems. For that, we have selected the 50 instances of
150 variables from the suite 2 of the same benchmark [32] studied before. The
results with the larger instances show that JCell.UCR UCM i+WSAT solved
the problem at least once (of 50 executions) in 26 out of the 50 instances
composing the benchmark, while WSAT found the solution for the same 26
instances and 4 more ones (the optimum was found only once in these 4
instances). Hence, WSAT is able to find the optimum in a larger number of
instances, with an average hit rate of 38.24%, which is quite close to 36.52%,
the value obtained by JCell.UCR UCM i+WSAT.



7.3 Computational Analysis 113

Table 7.7. Efficacy (SR) of algorithms when evaluated on SAT

Algorithm n = 30 n = 40 n = 50 n = 100

SAWEA 1.00 0.93 0.85 0.72
RFEA2 1.00 1.00 1.00 0.99
RFEA2+ 1.00 1.00 1.00 0.97
FlipGA 1.00 1.00 1.00 0.87
ASAP 1.00 1.00 1.00 1.00
WSAT [120] 1.00 1.00 1.00 0.80

GRAD 1.00 1.00 1.00 0.98
WSAT 1.00 1.00 1.00 1.00
JCell.DPX BM i+WSAT 1.00 1.00 1.00 0.93
JCell.UCR UCM i+WSAT 1.00 1.00 1.00 1.00

Moreover, the average solution found for this benchmark (the optimal
solution is 645 for all the instances) is 644.20 for JCell.UCR UCM i+WSAT
and 643.00 for WSAT, so the cMA is more accurate than WSAT for this
set of instances. Finally, if we compute the average AES for the instances
solved (at least once) by the two algorithms we can see that the cMA (AES
= 364,383.67) is in this case more efficient than WSAT (AES = 372,162.36).
Hence, as we suspected, the cMA outperforms WSAT for this set of larger
and more difficult problems. In fact, all these results represent the new state
of the art since “our” WSAT is better than the one previously reported in the
literature.

7.3.4 Comparison Versus Other Algorithms in the Literature

In this section we compare some of our results with those of the algorithms
studied in [120], which were tested with the same benchmark we used in this
chapter. The comparison is shown in Table 7.7, where only the efficacy of the
algorithms is shown, because the efficiency is measured in [120] as the number
of bit flips to solution (AFS) instead of the number of function evaluations
(AES).

As it can be seen in Table 7.7, only ASAP [120], our implementation of
WSAT, and JCell.UCR UCM i+WSAT are able to find the solution in every
run for all the instances. Anyway, all the results are really good, since most of
the algorithms of the table have a very high efficacy for the tested benchmark,
usually with hit rates over 90%.

The difference in behavior of our WSAT and that studied in [120] are both
the noise probability and the termination condition. On the one hand, we use
a noise probability of 0.5, while Gottlieb et al. do not specify in [120] the
value they use. On the other hand, our algorithm stops when 2 million func-
tion evaluations are made (at most), while the termination condition in the
algorithm of Gottlieb et al. is to reach a maximum of 300,000 flips. Although
the number of evaluations made by our algorithm, on average, is higher than



114 7 Design of Cellular Memetic Algorithms

the number of flips in our implementation of WSAT (since we use SAW, the
best stored individual has to be re-evaluated) we cannot clearly compare them
under this metric. However, in an effort to give some hints on their differences
we run additional experiments to obtain the SR values when setting the ter-
mination condition to 300,000 evaluations (less than 300,000 flips should be
made). The numerical values for SR are 1.0, 1.0, 0.99, and 0.95 for the groups
of instances with n = 30, 40, 50, and 100, respectively. These values are still
higher (larger efficacy) than those obtained by Gottlieb el al., which is another
clear indication that our proposal is comparable to theirs.

7.4 Conclusions

In this chapter we have proposed several ways of creating cMAs, and have
analyzed the behavior of 3 LS methods, 2 basic cGAs, and 12 cMAs on the
3-SAT problem. These cMAs are the result of hybridizing the two cGAs with
the 3 LS, applied with different parameterizations reinforcing diversification
or intensification. Two LS techniques, WSAT and GRAD (this one specially
developed in this work), are specifically designed for SAT, while SA is a generic
representative of trajectory based search method used in its basic form.

We have seen that the results of the proposed basic cGAs (without local
search) are far from those obtained by the three studied LS methods by them-
selves, and this is a clear indication of the need of exploitation procedures for
the problem at hands, i.e., a perfect context to create cMAs. After hybridiz-
ing these basic cGAs with a local search operator in their loop, the resulting
cMAs substantially improved the behavior versus the original cGAs. Thus,
the hybridization step helps the cMAs to avoid the local optima in which the
simple cGAs get stuck. For smaller instances, the best of the tested cMAs
(JCell.UCR UCM i+WSAT) is as accurate as the best reported algorithm
(WSAT) but slightly less efficient.

After these results, we studied the behavior of WSAT and
JCell.UCR UCM i+WSAT (the two best resulting algorithms) with a
harder set of larger instances. The results confirm our feelings after the
preliminary results on the smaller instances: the cMA is more accurate and
efficient than WSAT for these harder instances. After such a deep set of
studies, our final claims contrast with those of Gottlieb et al., who concluded
in [120] that “A preliminary experimental investigation of EAs for constraint
satisfaction problems using both an adaptive fitness function (based on fSAW)
and local search indicates that this combination is not beneficial”. We found
that this claim does not hold at least when using structured algorithms for
solving large instances.



8

Design of Parallel Cellular Genetic Algorithms

I was married at 16, a father at 17, and divorced at 18.

Plácido Domingo (1941 - ) – Spanish Opera Singer

Most researchers want their results to be accurate, and specially, they want
these results now, immediately, or as soon as possible. In this context, parallel
algorithms come to scene, allowing the utilization of several CPUs for solving
a given problem.

When one addresses the field of parallel EAs a big number of implementa-
tions and techniques spring out [6, 43, 196, 241]. The reason for such a success
is firstly due to the inherent parallelism inside EAs, since most of the varia-
tion operators can be independently run in parallel. An important additional
fact is that parallel EAs often leads not only to a faster algorithm, but to
an algorithm performing an outstanding larger numerical performance com-
pared to sequential equivalent approaches [27, 114]. The basic reason for such
results is that of using a spatially structured population, either in the form
of islands [243] (distributed EAs) or in the form of grid (mesh) [176] (cellu-
lar EAs). As a consequence of such success many authors have reported the
higher performance of parallel algorithms versus their sequential counterparts
from the very beginning of the research in evolutionary algorithms [114].

At their start, cellular EAs (cEAs) appeared as a new algorithmic model
intended to profit from the hardware features of massively parallel computers,
specially those using several hundreds/thousands processors. On this hard-
ware, a basic cEA should assign a single individual (tentative solution) to
each processor in an independent fashion. Since a minimum overhead is very
important in such systems, simple interactions with nearby processors that
the cEA employs lead to is a perfect numerical model for this kind of com-
puters. With time, this sort of massively parallel computers became less and
less popular, and at this moment what remains is only the numerical model
of search by overlapped neighborhoods, regardless of what type of machine is
used for their implementation.

Nowadays, the reader can find a set of different parallel cEA implemen-
tations, either in multiprocessor computers, clusters of distributed memory,
and even concurrent implementations on sequential computers (see Chap. 2).
Although they are different implementations, the underlying numerical model

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 8, © Springer Science+Business Media, LLC 2008



116 8 Design of Parallel Cellular Genetic Algorithms

Fig. 8.1. Parallel distributed schema of work for the meta-cellular GA

is the same: that of a cellular EA. In this chapter we are presenting two new
parallel models in which concepts are merged from the two main fields: coarse
and fine grain procedures.

In Sect. 8.1 we describe a new model called meta-cellular algorithm, in
which the population is divided into a set of islands, all of them intercon-
nected in a toroidal grid, every island performing a cellular GA. In addition,
in Sect. 8.2 we discuss an adaptation of an early technique [5] called dcGA;
this search procedure uses also distributed islands interconnected in a ring,
again every island running a separate cGA. This last search technique will be
illustrated by solving very large instances of VRP on a grid platform made of
125 computers. Finally, in Sect. 8.3 we sum up the main conclusions of this
chapter.

8.1 The Meta-cellular Genetic Algorithm

The goal of this section is that of presenting a parallel cGA targeted to dis-
tributed systems, that we call meta-cellular genetic algorithm or meta-cGA.
In this technique, the population is divided among all the available processors
but keeping unchanged the numerical behavior of a regular sequential cGA.
At the beginning of every iteration all processors are sending the individuals
located at the north, south, east, and west of their grid to their neighboring
islands situated, in turn, to the north, south, east, and west, respectively (as
shown in Fig. 8.1). The inter-island cellular algorithms are canonical. To illus-
trate its behavior we here include the results of a sequential cGA and various
other parallel models.



8.1 The Meta-cellular Genetic Algorithm 117

Table 8.1. Average results for all the parallel models

Alg. success % # evals time Alg. success % # evals time

Sec. 60% 97671 19.12

MS2 61% 95832 16.63 idGA2 41% 92133 9.46
MS4 60% 101821 14.17 idGA4 20% 89730 5.17
MS8 58% 99124 13.64 idGA8 7% 91264 2.49

MS16 62% 96875 12.15 idGA16 0% — —

dGA2 72% 86133 9.87 meta-cGA2 85% 92286 10.40
dGA4 73% 88200 5.22 meta-cGA4 83% 94187 5.79
dGA8 72% 85993 2.58 meta-cGA8 83% 92488 2.94

dGA16 68% 93180 1.30 meta-cGA16 84% 91280 1.64

8.1.1 Parameterization

We here describe the parameters used for the algorithms mentioned in the
previous section. Our aim is not to get competitive final results, but instead
to compare the algorithms to offer the reader with a feeling of the basic power
of each type of search; this of course means that those parameters can be fine
tuned for higher performance. The global population size is 800 individuals;
in the parallel methods each processor is having a part of this population, i.e.,
800/n individuals, being n the number of processors. All the algorithms use a
single point recombination operator (–SPX–) with an application probability
of 0.7, as well as a simple bit-flip mutation applied with probability 0.2.

In the distributed algorithms the migration step is undertaken every 20
iterations in an asynchronous manner. The topology of migration is a unidirec-
tional ring of islands, and the exchanged information is one single individual
locally selected in every island in a uniformly random fashion. Every island
integrates the incoming migrant individual only if it is better in fitness than
its worst present solution.

All the experiments have been run on a cluster of 16 PCs Pentium 4 2.8
GHz with Linux linked by a Fast Ethernet network. Since the algorithms are
inherently nondeterministic we perform 100 independent runs in order to get
meaningful conclusions from a statistical point of view.

8.1.2 Analysis of Results

Let us start with a comparison of the basic algorithm against other parallel
models of GA on the well known problem SAT (whose details can be ac-
cessed in Appendix A) initially proposed in [140]. All the SAT instances are
made of 100 variables and 430 clauses, thus belonging to the interesting phase
transition of this problem (see again Appendix A).

Our discussion starts by analyzing the contents of Table 8.1, where column
success % contains the rate of executions finding the optimum, column # evals
reports the number of required evaluations and column time indicates the exe-
cution time (in seconds) for all the algorithms: the sequential GA (Sec.), a



118 8 Design of Parallel Cellular Genetic Algorithms

Table 8.2. Weak speedup for the considered algorithms

Alg.
Speedup

n = 2 n = 4 n = 8 n = 16

MSn 1.14 1.34 1.40 1.57
idGAn 2.02 3.69 7.67 —
dGAn 1.93 3.66 7.41 14.70

meta-cGAn 1.83 3.30 6.50 11.65

master-slave GA (MS), a distributed GA in which the islands are not commu-
nicating at all among them (idGA), a distributed method in which the island
GAs do collaborate among them (dGA), and finally the new proposed model
meta-cGA. All parallel algorithms have been evaluated on 2, 4, 8, and 16 pro-
cessors. We also report in Table 8.2 the resulting speedup. We use the weak
definition of speedup [25], i.e., we compare the parallel implementation run-
time with respect to the sequential one. Best values are marked in boldface
in the table.

The interpretation of the results in Table 8.1 are indicative of several in-
teresting facts. Firstly, let us analyze every model separately. As could be
expected, the numerical behavior of the master-slave and the sequential mod-
els is the same, both in visited points and percentage of success. Of course,
the master-slave model runs in parallel and this is the reason for requiring a
lower runtime, although we can notice that this model is not very good in time
gains as the number of processors grows (Table 8.2). In this case, not only the
model, but the short evaluation time of the problem is small in comparison
to the considerable communication overhead.

The idGA search model throws also common sense results: the time is
reduced and the speedup is good, almost linear (Table 8.2). On the contrary,
since the search is not collaborative, the percentage of executions finding the
optimum is severely penalized (even zero with 16 processors). This model
is equivalent to running small algorithms, which is expected to be good in
efficiency (no communications) but bad in efficacy (progressively smaller pop-
ulations with the growing number of processors with no collaboration).

In general, we can observe that the distributed GAs are better than the
sequential ones, both numerically and in time, since they get a higher rate of
success with a lower number of overall evaluations and in a shorter time. The
speedup is in general good (quasi-linear) with a perceptible degradation as the
number of processors increases.

Finally, if we now consider the evaluated cGAs, we can conclude that they
are the globally best in these experiments, since they are very good in showing
a high percentage of success, a main goal in solving complex problems. In fact,
they report also very short execution times, just slightly worse than those of
the distributed GAs.



8.2 The Distributed Cellular Genetic Algorithm 119

Local

Search

Master

Slaves

Local

Search

Local

Search

MIGRATION

CPU 1 CPU 2

CPU 3 CPU 4

CPU K CPU K+1 CPU K+N

CPU 2

Local

Search

Local

Search

Master

Slaves

Local

Search

Local

Search

Local

Search

Local

Search

MIGRATION

CPU 1 CPU 2

CPU 3 CPU 4

CPU K CPU K+1 CPU K+N

CPU 2

Fig. 8.2. Components of PEGA

8.2 The Distributed Cellular Genetic Algorithm

In this section we deal with a new parallel cGA we have proposed named
PEGA (Parallel cEllular Genetic Algorithm) [75]. For the design of PEGA
we adapted the two main strategies for parallelization: coarse and fine grain
approaches. Therefore, PEGA exhibits a parallel technique in which the popu-
lation is structured in two levels and in two different forms. As it can be seen
in Fig. 8.2, in the first level the population is structured in several islands
(coarse grain) connected in a ring (each island thus having a single neighbor).
In the second level, in order to enhance the search abilities of every island, we
run a (fine grain) cGA inside each island. The basic ideas and motivation for
such a model were initially proposed in [5]. The contribution of PEGA with
respect to these initial models resides in that the separated cGAs act each one
as a master process that delegates costly tasks as evaluations to other slave
processors.

PEGA offers as a consequence the potential to be executed in grid plat-
forms with hundreds of computers, not only because of its design, but also
because it has been implemented with ProActive [2]. ProActive is a grid li-
brary written in Java targeted to write programs for the grid. ProActive en-
dows its users with simple mechanisms for the general management of remote
collaborating objects (called active objects) running in separate processors.
Access to active objects looks like access to local objects, and ProActive is in
charge of the underlying tasks for effectively communicating information and
performing activities by internally using Java RMI.

In short, our contribution here has been to provide the research community
with a hybrid cellular GA suited for grid environments. It is called hybrid
because it incorporates knowledge of the problem in all its variation operators.
This algorithm has been used to solve the largest known instances of VRP
existing in the literature [162], with very interesting results, since PEGA has
improved the best solution known for most of them.



120 8 Design of Parallel Cellular Genetic Algorithms

In Sect. 8.2.1 we now discuss the used parameters, as well as the mentioned
instances of VRP used for testing PEGA. In Sect. 8.2.2 we later present and
analyze the results of our study.

8.2.1 Parameterization

In recent years, Li, Golden, and Wasil proposed in [162] a new set of CVRP
instances whose main interest is the very high number of clients compared
to other existing benchmarks in Internet. This set of instances is known as
VLSVRP (Very Large Scale VRP), all of them are restricting the maximum
length of the resulting routes. The size of such VLSVRP benchmark ranges
from 560 up to 1200 clients, while the rest of benchmarks used until now range
from 50 up to 199 clients (CMT [47]), or from 200 up to 483 clients (like
in [109]). We should warn that the size is not the only source for difficulties
in VRP, but definitely it has an important influence in the resulting difficulty
when added to the rest of restrictions found in most benchmarks and of course
provoke larger execution times in the algorithms used to solve them. VLSVRP
has been created by using a program generator [162], and all of them share
a nice geometrical shape when plotted, which can help in understanding the
results got by the used algorithms.

As previously mentioned, PEGA is running a set of islands, each one ex-
ecuting a cGA. To solve VRP these cGAs are canonical but enhanced with
a local search method similar to that used in Chap. 13. This local search is
applied to all the individuals in the cGA, resulting in the operation of higher
computational requirements, and thus the obvious candidate to be executed
in the slave processors. Before presenting the parameterization let us discuss
some more details of the algorithm to clearly make this work easy to reproduce
and to extend in the future.

• Representation of the solutions. The used representation for the indi-
viduals of the algorithm is the well known GVR (Genetic Vehicle Repre-
sentation) [206]. In GVR the genotype is a permutation of integers (client
IDs) merged with some information to point out where every route is fin-
ishing inside the permutation. Our algorithm always manipulates feasible
individuals, and thus if the maximum capacity of a vehicle is violated or a
route length exceeds the maximum allowed value, the algorithm proceeds
to split the route in two or more new routes, all of them feasible.

• Generation of the initial population. Initial individuals are generated
in a random way, and immediately repaired to eliminate any unfeasible
route appearing in them (according to the mechanism presented in [206]).
Therefore, all the initial solutions are valid and no restriction is violated
by them.

• Recombination operator. The recombination used in PEGA is the
generic crossover , originally proposed in [206]. This operator is a capital
source for diversity during the search, a main issue in solving VRP as our



8.2 The Distributed Cellular Genetic Algorithm 121

Algorithm 8.1 Pseudo-code of the generic recombination used in PEGA
1. // Let I1 and I2 the parents selected from the neighborhood;
2. Select one random sub-route SR = {a1, . . . , an} from I2

3. Search for the client c /∈ SR located geographically closer to a1

4. Delete all clients in I1 who also are in SR
5. The offspring is computed after inserting SR in the genotype of I1 such that a1

be located immediately after c

own experience clearly advise [11, 13, 14], since premature convergence
to local optima is a big difficulty in this application. This operator works
in a very special manner, since it not only performs recombination of the
material contained in the parent solutions, but also introduces new infor-
mation in the offspring (see Fig. 8.3). In Alg. 8.1 we show a pseudo-code
of this operator.

• Mutation. The used mutation is made of four basic mutation components,
one of them being selected to be applied according to its own probability on
every mutation application (see [206]). The effect of such four operations
is to modify one route, or to exchange clients between different routes,
as well as to add or to delete routes. See a description of the component
operations in Fig. 8.4:
– Swap. It consists in exchanging to clients, either intra or inter routes.

The two clients are selected randomly.
– Inversion. This operator works inside a single route; once two bound-

ing clients have been selected, all the sub-permutation of clients be-
tween they two is inverted.

– Insertion. This operation randomly selects one client and a new ran-
dom position where to insert it, either in the same route or in a different
one.

– Dispersion. Similar to insertion, but using a sub-route instead of just
one client.

• Local Search. The local search used in PEGA applies 50 steps of a basic
1-Interchange [200]; after this, it applies 50 steps of 2-Opt [55] on every

OffspringOffspring

Parent 1

Parent 2

Random
subroute

Parent 1

Parent 2

Random
subroute

If the
geographically
closest customer to
9 is 6

Fig. 8.3. The used recombina-
tion: generic crossover

1 2 7 83 4 5 61 2 3 4 5 6 7 8

1 2 7 86 5 4 31 2 6 5 4 3 7 8

Inversion

1 2 4 6 7 83 51 2 3 4 5 6 7 8

1 2 4 6 7 85 31 2 5 4 3 6 7 8

Swap

1 2 3 5 6 7 841 2 3 4 5 6 7 8

1 2 3 5 6 7 841 2 3 5 6 7 4 8

Insertion

Original Ind.

Mutated Ind.

1 2 6 7 83 4 51 2 3 4 5 6 7 8

1 2 6 7 83 4 51 2 6 7 3 4 5 8

Dispersion

Original Ind.

Mutated Ind.

Fig. 8.4. How mutation is applied



122 8 Design of Parallel Cellular Genetic Algorithms

Table 8.3. Parameterization for the experiments with PEGA

Population size Islands: 100 individuals (10× 10)
Total: 400 individuals (4 islands)

Neighborhood NEWS
Parent selection Current individual + binary tournament
Recombination Generic crossover, pc = 1.0
Mutation of
individuals

Swap (pint = 0.05), Inversion (pinv = 0.1),
Insertion (pins = 0.05), and Dispersion (pdisp = 0.15)

Replacement Replace if Better
Local search 1-Interchange + 2-Opt,

50 steps per method
Freq. of migration Every 104 evaluations
Stop Condition Maximum of 5 · 105 evaluations per island

route of the previously worked solution. The 1-Interchange works by ex-
changing two clients between two routes, or either by inserting one client
in a different route of the solution. On its own side, the 2-Opt operator
always works inside a single given route, by removing two edges from the
route and reconnecting the bounding clients of the resulting sub-route in
the other possible way. Since these two methods are deterministic they stop
when no improvement is achieved, thus allowing a considerable reduction
in the execution time.

PEGA has been initially engineered to solve VLSVRP (although noth-
ing prevents its utilization for other problems). Since the target problems are
complex and showing a high dimension we targeted PEGA for a grid of com-
puters; in our experiments we use a maximum of 125 computers of different
features (e.g., either PCs or SUN workstations). PEGA has been codified in
Java using ProActive to deal with the grid.

The used parametrization is described in Table 8.3. In particular, it runs 4
islands in a ring, each one exchanging one single individual with its neighbor-
ing island every 104 evaluations. In every island a canonical cGA is working on
a mesh composed of 10×10 individuals, with an additional local search method
similar to that used in Chap. 13. In such cGA, one of the parents is selected
according to a binary tournament in the neighborhood of the presently con-
sidered individual (NEWS), while the other parent is the mentioned present
individual. Recombination is always applied according to the generic crossover
method, and the resulting individual is mutated by applying on it the opera-
tors swap, inversion, insertion, and dispersion at probabilities 0.05, 0.1, 0.05,
and 0.15, respectively.

Afterwards, the offspring is in addition improved by a local search using
50 steps of 1-Interchange [200] (inter-route client exploration) followed by an-
other 50 steps of 2-Opt [55] (intra-route exploitation). The offspring resulting
from this local search is replacing the present individual only if its fitness is
better than that of the present individual.



8.2 The Distributed Cellular Genetic Algorithm 123

Table 8.4. Results of applying PEGA to VLSVRP

Instance Size MSC Best Average Time (h)

VLS21 560 16212.83§ 16212.83 16212.83±4.42e−4 10.08
VLS22 600 14641.64† 14652.28 14755.90±98.88 10.08
VLS23 640 18801.13§ 18801.13 18801.13±4.32e−6 11.28
VLS24 720 21389.43§ 21389.43 21389.43±7.63e−6 13.20
VLS25 760 17053.26§ 17340.41 17423.42±72.10 18.00
VLS26 800 23977.74§ 23977.73 23977.73±3.49e−5 23.76
VLS27 840 17651.60† 18326.92 18364.57±37.66 26.40
VLS28 880 26566.04§ 26566.04 26566.04±1.33e−6 30.00
VLS29 960 29154.34§ 29154.34 29154.34±4.24e−5 39.60
VLS30 1040 31742.64§ 31743.84 31747.51±3.67 48.72
VLS31 1120 34330.94§ 34330.94 34331.54±0.60 60.00
VLS32 1200 36919.24§ 37423.94 37431.73±7.79 74.88

§ Solution (computed geometrically) [162]; † ORTR [162]

In this implementation of PEGA, migration takes place every 104 evalua-
tions; the best individual of the sending population is sent to its neighbor in
the ring, and the receiving population always inserts it and removes its worse
individual to keep populations at a constant size.

8.2.2 Analysis of Results

In Table 8.4 we show the outcome of executing PEGA on the VLSVRP bench-
mark; we mark in boldface the best result in each one of the 12 instances
solved. We show the name of the instance, its size (number of clients), the best
solution found in the literature (MSC), the best solution found by PEGA, the
average cost found with PEGA, and the average time (in hours) needed by
the algorithm.

The values shown in Table 8.4 have been got by averaging over four in-
dependent runs for VLS21 and VLS25 (the smallest ones) and over two inde-
pendent runs for the rest. We are aware that this is a really low number of
executions, but the time per execution ranges from 10 hours for the smallest
instances to 72 hours for VLS32, which is really a challenge for performing
many independent runs on the whole benchmark. This long computational
times are motivated by two main reasons: (i) the local search step is harder
as the instances grow in size, and (ii) the optimum is actually unknown, and
thus our stopping condition must ensure a large enough number of steps to
allow the algorithm to converge (hopefully to a better solution compared to
the best one reported in literature).

Overall, the results of PEGA are very promising, since it is able of finding
the best known solution for 7 out of 12 instances. In fact, PEGA improves the
best solution found for VLS26; the numerical difference may seem very small,
but the route plan of our solution is clearly new (see Fig. 8.5). We also have



124 8 Design of Parallel Cellular Genetic Algorithms

Estimated solution for VLS26 = 23977.74 New best solution for VLS26 = 23977.73

Fig. 8.5. New best solution for VLS26

to remark that the best solution found for all instances (except for VLS22 and
VLS27) have been bounded by geometrical properties of the instances, and
thus PEGA is the first algorithm able of confirming and maybe improving
them in the future.

In Fig. 8.6 we plot a comparison between the best solutions found by
PEGA and the three techniques used until now for VLSVRP (three versions of
a technique called VRTR [162]). It can be noticed that PEGA gets the overall
best results with a few exceptions (VLS25, VLS27 and VLS32). In Table 8.5 we
include numerical values representing the percentage of the difference between
the results of the mentioned techniques and the best ones found in literature
(best performances boldfaced). We also show the results of a single cGA
using a master-slave technique (i.e., one of the basic components of PEGA)
to confirm that it is the overall PEGA strategy the one responsible for the
good results. We show average results.

The reader can confirm that PEGA is notably more robust than the other
four algorithms, since it is the most accurate technique for 9 out of 12 in-

Best Solutions Found

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

VLS
21

VLS
22

VLS
23

VLS
24

VLS
25

VLS
26

VLS
27

VLS
28

VLS
29

VLS
30

VLS
31

VLS
32

To
ta

l T
ra

ve
lle

d 
D

is
ta

nc
e VRTR =1

VRTR =0.6
VRTR =0.4
cGA M/S
PEGA

Fig. 8.6. PEGA vs. the previous state of the art results for VLSVRP



8.3 Conclusions 125

Table 8.5. Difference (in %) between the best-so-far solution and PEGA, a cGA
MS, and several other state of the art techniques

Instance
VRTR

PEGA cGA MS
α = 1.0 α = 0.6 α = 0.4

VLS21 2.41 2.56 3.25 0.00 0.02
VLS22 0.07 0.10 0.19 0.07 2.17
VLS23 1.09 1.56 0.20 0.00 0.00
VLS24 1.85 1.06 2.54 0.00 5.61e − 3
VLS25 0.58 0.65 0.55 1.68 3.53
VLS26 0.88 0.93 0.13 0.00 0.05
VLS27 0.97 1.61 1.42 3.83 4.83
VLS28 0.15 0.82 0.83 0.00 0.00
VLS29 0.09 0.10 0.85 0.00 0.02
VLS30 0.74 0.69 4.74 3.78e − 3 0.64
VLS31 3.02 2.98 5.85 0.00 0.35
VLS32 1.36 1.33 6.76 1.37 2.02

Average 1.10 1.20 2.28 0.58 1.14

stances. In addition, PEGA finds the best-so-far solution for 7 instances, so-
lutions that were never found by any other metaheuristic, as we mentioned
before.

In the last row of Table 8.5 we write the average of the differences between
the found solutions and the best-so-far costs. As it can be noticed, PEGA is
the best one among the five compared algorithms, even being twice better
than the other best technique (VRTR with α = 1.0).

8.3 Conclusions

In our quest for more efficient and more accurate algorithms, we have ex-
tended the basic concepts of canonical cGAs here in the aim of offering the
reader two examples of how these algorithms can be parallelized. Our first
proposed model, meta-cGA, is a slight extension of the basic model of cGA
using several sub-populations sending their bounding north, south, east, and
west individuals after every evaluation to other islands (those located on the
north, south, east, and west of the present island cGA). The evaluation of
this model (on SAT) states that the parallelism and separate search improve
over the more traditional sequential and parallel GAs found in the literature,
but with many considerations. The master-slave model, for example, showed
its shortcomings here, especially since the evaluations are not too time con-
suming as one needs to profit from a parallel technique spending time in
communications. It is relatively easy to reduce execution times when running
distributed algorithms, but it is not that simple to get better numerical results
when no collaboration is used or when the distributed model is not powered
with problem knowledge. This is what we have confirmed here, since the ba-



126 8 Design of Parallel Cellular Genetic Algorithms

sic canonical cGA is a powerful and accurate technique hard to beat (from a
numerical point of view) by simple extensions. Additionally, from this work
emerges an immediate research line, since the algorithms were only tested on
a single problem, and it is really interesting to study if the same results are
observed in a larger benchmark of problems.

We have later shown in this chapter a new algorithm (PEGA) for solving
very hard instances of CVRP. PEGA has two levels of work: islands distributed
in different processors with ProActive in Java, each one running a cGA. To
profit from the grid of processors we further use a master-slave model to run
low level operators on separate processors. When compared to state-of-the-art
techniques, PEGA comes out as a very promising technique, reproducing the
existing best bounds for the cost of the solutions for most of the instances,
as well as providing new best solutions. The component master-slave cGA
has been also evaluated to show that it is the two levels of PEGA who are
responsible for its final good results, i.e., the emerging behavior in PEGA is
more accurate and interesting than its separate components working alone.

To end this chapter, we must say that parallelism is one of the best ways,
not only to reduce the computational time in cGAs and other metaheuristics,
but also suited for running decentralized or multilevel searches. All this repre-
sents an important and hot line of research able of dealing with optimization
challenges that other techniques can only dream of.



9

Designing Cellular Genetic Algorithms for
Multi-objective Optimization

I speak Spanish to God, Italian to women, French to
men, and German to my horse.

Carlos I de España (1500 - 1558) – World Emperor

Although many research lines deal with benchmarks and complex problem
solving, most of them focus in a mono-objective formulation of the target
problem. However, it is a well known fact that many real world and combina-
torial tasks can be defined in terms of two or more objective functions who are
in conflict among them. Thus, it is the formulation, not the problem, what
is multi or mono-objective, and the obvious open question is what kind of
formulation is more convenient to better solve a problem. Researchers should
be aware of the potential benefits of a multi-objective problem (MOP) formu-
lation in terms of efficiency or accuracy for the search of an optimal solution
with respect to a mono-objective formulation. In this last, it is not rare to find
several terms accounting for penalizations or constraints on a main objective
function that often encapsulate the ideas for a more convenient multi-objective
formulation.

If we make our choice in favor of a multi-objective formulation for our
application, then we will have many advantages; one of these advantages is
that of being able of computing more than one equally-good solutions for
the same problem (at the same time), what are known as non-dominated or
efficient solutions. Such Pareto optimal solutions can be plotted in the space
of objective functions, giving raise to a Pareto front . Computing the Pareto
front for a MOP is the main goal of multi-objective optimization.

Many of the most successful techniques applied today to MOPs are not
deterministic, but approximated. Among these last techniques, evolutionary
algorithms are one of the most popular, as it happens with NSGA-II [67],
PAES [150], and SPEA2 [271]. EAs are good tools for MOPS thanks to their
inherent multi-point search, which fits very well the multi-solution needs that
designers want from MOP search engines.

In particular, cGAs can be shown to be very effective tools for MOPs.
Although many mono-objective approaches exist for cGAs [12, 17] little at-
tention has been paid to their potential multi-objective utilization (which in
fact is a common scenario still with many metaheuristics).

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 9, © Springer Science+Business Media, LLC 2008



128 9 Designing cGAs for Multi-objective Optimization

We briefly describe in this paragraph the main existing approaches of
cGAs to the multi-objective (MO) field. In [159] a MO evolution strategy is
presented based in a predator-prey idea. The resulting algorithm resembles a
cGA, since the solutions (preys) are located in the vertices of a non-directed
conex graph, thus implicitly creating a neighborhood where they are hunted
by predators. In addition, Murata and Gen presented in [190] an algorithm in
which, in order to solve a MOP with n-objectives, the population is structured
in an n-dimensional space of weights, and the location of individuals (cells)
depends on their own weight vector, which is used to guide the search. In [146]
a metapopulation EA (MEA) is discussed; this model is in fact a cellular
algorithm in which an extinction process could occur in the population and
thus define a region to be colonized by the rest of solutions. Therefore, this
model seems to include ideas both from cellular and distributed techniques.
Our last example of related works is mainly an application of MO cGAs; in
Chap. 14 the algorithm cMOGA [8, 18] is presented, hence representing a
clear, complete and first proposal of a multi-objective cellular GA (to our
knowledge), used in this case to optimize the broadcasting strategy in ad hoc
mobile networks.

In the present chapter we will illustrate the many potential lines of re-
search in MO cGAs by presenting MOCell, an improved version of cMOGA.
MOCell is using an external archive (i.e., an external population of solutions)
to store the non-dominated solutions computed during the search. This has
been pointed out in the literature as an important feature for designing accu-
rate MO algorithms (such as PAES, SPEA2, etc.). In fact, the truly important
feature is that of feeding solutions back from the external archive after every
iteration into the population used for the search of the algorithm (in the case of
MOCell replacing random individuals of its present population of solutions).

For the interested reader, only cMOGA is included in our JCell software,
but at this moment we are progressing in incorporating also MOCell in this
library. The present version of MOCell is included in a different library of our
research group: jMetal [80], which is publicly and freely available at [79].

In this chapter we aim to offer several contributions to this field of MO
cGAs. First, we will show an example of how can continuous MOPs be solved
with this technique in which an external archive for storing and feedback
is used. We also will evaluate MOCell either on restricted and unrestricted
benchmarks, comparing the results against the state of the art in MOPs:
NSGA-II and SPEA2. Finally, we will discuss the importance of the replace-
ment and feedback strategies in the algorithm and analyze its results versus
the mentioned NSGA-II and SPEA2.

The rest of the chapter is organized in the following manner. In Sect. 9.1 we
explain several basic though important concepts for multi-objective optimiza-
tion. In Sect. 9.2 we describe the internals of MOCell and investigate several
design decisions. To show the potentials of these ideas we show some results
after an extensive experimentation in Sect. 9.3. To conclude this chapter, we
make a global discussion of the involved issues in Sect. 9.4.



9.1 Background on Multi-objective Optimization 129

9.1 Background on Multi-objective Optimization

We present in this section some of the most basic concepts on multi-objective
optimization to get the reader familiar with the concepts. Indeed, we will
define MOP ideas, Pareto optimality, Pareto dominance, optimal Pareto set,
and Pareto front. We will assume minimization of all the objectives (without
losing generality in our statements).

A multi-objective problem (MOP) can be defined in the following manner:

Definition 9.1 (MOP). Find a vector x∗ = [x∗
1, x

∗
2, . . . , x

∗
n] satisfying m

inequality restrictions gi (x) ≥ 0, i = 1, 2, . . . , m, p equality restrictions
hi (x) = 0, i = 1, 2, . . . , p, and minimizing the function vector f (x) =
[f1(x), f2(x), . . . , fk(x)]T , where x = [x1, x2, . . . , xn]T is the vector of deci-
sion variables. �

The set of all values satisfying the restrictions defines the feasibility region
Ω, and any point in x ∈ Ω is said to be a feasible solution.

As previously mentioned, in this problem we look for many solutions:
Pareto optima or efficient solutions, whose definition follows:

Definition 9.2 (Pareto Optimality). One point x∗ ∈ Ω is a Pareto opti-
mum if, for every x ∈ Ω and I = {1, 2, . . . , k}, or else ∀i∈I (fi (x) = fi(x∗)),
or at least there is a i ∈ I | fi (x) > fi (x∗). �

This definition reveals x∗ as a Pareto optimum if no other feasible vector
exists x in which some objective is improved over it, unless it implies the
worsening of at least one other different objective function. An additional
important and related definition is given below:

Definition 9.3 (Pareto Dominance). A vector u = (u1, . . . , uk) is said
to dominate another vector v=(v1, . . . , vk) (represented by u 
 v) iff u is
partially smaller than v, that is, ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃ i ∈ {1, . . . , k} :
ui < vi. �

Definition 9.4 (Pareto Optimal Set). For a given MOP f(x), the Pareto
optimal set is defined as P∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) 
 f(x)}. �

Definition 9.5 (Pareto Front). For a given MOP f(x) and its cor-
responding Pareto optimal set P∗, the Pareto front is defined by
PF∗ = {f(x),x ∈ P∗}. �

Obtaining the Pareto front for a MOP is the main goal of multi-objective
optimization. In practice, since a Pareto front is a finite set of points, a practi-
cal good solution for a MOP should contain points as well spread and as close
as possible with respect to the optimal Pareto front. The aim is to better serve
for the subsequent decision making phase, usually performed by an expert in
the application.



130 9 Designing cGAs for Multi-objective Optimization

Algorithm 9.1 Pseudo-code of MOCell
1. proc Evolve(mocell) //Parameters in ‘mocell’
2. Pareto front = Create PFront() //Create an empty Pareto front
3. while !StopCondition() do
4. for individual ← 1 until mocell.popSize do
5. neighbors← GetNeighbors(mocell,position(individual));
6. parents← Select(neighbors);
7. offspring← Recombination(mocell.Pc,parents);
8. offspring← Mutation(mocell.Pm,offspring);
9. Evaluate(offspring);

10. Insert(position(individual),offspring,mocell,aux population);
11. InsertInParetoFront(individual, Pareto front);
12. end for
13. mocell.population ← aux population;
14. mocell.population ← Feedback(mocell,Pareto Front);
15. end while
16. end proc Evolve;

9.2 The MOCell Algorithm

We here present MOCell [193], one of our own proposals for multi-objective
optimization using a cGA as the basic template for the search. The reader
can find its pseudo-code in Alg. 9.1. We can observe there the basics of a
regular cGA (see Alg. 1.2 for the details). The main difference in MOCell
is the inclusion of the notion of Pareto front. In our proposal, this Pareto
front appears as an additional finite population made up of a set of non-
dominated solutions. To deal with the insertion of solutions into the Pareto
front (in order to improve its diversity) MOCell uses a density estimator
based in a mechanism named crowding proposed for the well-known NSGA-II
algorithm [67]. This method is also used as a tool for removing solutions from
the archive whenever it reaches its maximum size during the search.

MOCell starts working an empty Pareto front (line 2 in Alg. 9.1). Indi-
viduals are located in a toroidal 2-dimensional mesh; they undergo the re-
productive cycle (lines 4 to 12) until the stopping condition is met (line 3).
In consequence, for every individual, the algorithm selects two parents in its
neighborhood, recombine them to create one offspring who is later mutated,
evaluated and inserted back either into an auxiliary population (only if it
is not dominated by the presently considered individual) and also into the
Pareto front. Finally, the present population is replaced in a single step by
the auxiliary population (line 13, i.e., it is a synchronous cGA). Additionally,
a feedback process is executed in order to randomly select a given number of
individuals of the population grid and replace them with the best solutions
coming from the archive (line 14).



9.2 The MOCell Algorithm 131

Table 9.1. Parameters used for the evaluation of MOCell

Population size 100 individuals (10× 10)
Stop condition 25,000 evaluations of the objective function
Neighborhood C9
Parent selection Binary tournament + binary tournament
Recombination SBX, pc = 1.0
Mutation Polynomial, pm = 1.0/L

(L = Individual length)
Replacement Repl if Better (NSGA-II Crowding)
Size of the archive 100 individuals
Density estimator Crowding distance
Feedback 20 individuals

MOCell is also using a mechanism to deal with restrictions for those prob-
lems having such feature. This operation is the same as the one used in NSGA-
II, and it induces a partial order in which the individual violating a lower num-
ber or restrictions is considered the best. In case of equal number of violated
restrictions the individuals are compared attending to their fitness.

In Table 9.1 we show the parameters used for the evaluation of MOCell
in this chapter. We have selected a square toroidal grid of 100 individuals as
the base population. The neighborhood used is C9 (compact nine), in which
9 individuals are selected around the present point of computations by us-
ing all the immediate neighbor individuals located at one hop of distance in
vertical, horizontal and diagonal directions. Since we are dealing with contin-
uous problems, we use the SBX recombination, a very well-known one, and
the mutation applies a polynomial operation in the standard way in which
NSGA-II and SPEA2 apply it. The application rates for these two operators
are pc = 1.0 and pm = 1/L, respectively.

The offspring will replace the presently considered individual only if it is
better. However, in multi-objective optimization we need to define this idea of
a better solution more precisely since we have many objectives. Our approach
is to replace the present individual if it is dominated by the new offspring, or
if they two are mutually non-dominated but the existing individual is having
a worse crowding distance (as defined in NSGA-II) in a mini-population made
of the whole present neighborhood and the offspring. In order to insert the
individual in the Pareto front of the archive, it is also ranked according to the
crowding distance metric. Therefore, when a non-dominated solution is going
to be inserted and the archive is full, the archived solution having the worse
crowding distance is removed. Finally, after every iteration of the algorithm,
20 randomly chosen individuals from the population are replaced by the 20
best solutions (using crowding) of the external archive. This feedback is very
important for the success of the algorithm, since it promotes the search.



132 9 Designing cGAs for Multi-objective Optimization

9.2.1 Extensions to MOCell

In our quest of new algorithms able of unseen performances we are going to fur-
ther consider in this section several extensions to the basic MOCell presented
before. The justification is clear, since some of the parameters regulating the
behavior of the algorithm need additional tuning and investigation in the aim
of upgrading the efficiency and especially the accuracy of MOCell.

Therefore, we are going to focus our analysis towards the updating policy
used in the population grid, the policy for performing the feedback from the
archive, and the replacement technique used. We will discuss a total of 5
new algorithms inspired in MOCell but using new tools for the evolution of
solutions. Some of these solutions will take us far from an orthodox definition
of a cGA, but our goal is to better solve problems and offer new ideas, not to
stick to the same search template as a dogma. Let us discuss these novelties
in the structure of MOCell:

• Synchronism. The previously studied algorithm is updating all the indi-
viduals in the grid at once, i.e., it is synchronous. Now we will deal with
asynchronous updating policies (see again Chap. 1); since there are many
of them we will analyze here only Line Sweep (LS), in which the population
grid is scanned from top left, line by line, and using for each individual
the recent solutions computed in its neighborhood instead of storing them
in an auxiliary population.

• Feedback. In MOCell, selected individuals from the archive replace some
randomly chosen individuals in the population grid. This behavior shows
some constraints, since this blind feedback can lead to lose good individ-
uals (fitness or diversity) from the population. Also, after several of these
explicit feedback steps the population itself could disappear in favor of
mere copies of the contents of the archive. Thus, we seek for an implicit
feedback executed during selection by using as one of the parents in every
step some solution from the archive, while the other parent is still selected
from the presently considered neighborhood.

• Replacement. Instead of replacing the presently considered individual,
we will consider its whole present neighborhood, and effectively replace
the worst individual living in it.

With all these ideas in mind six new extensions of MOCell come to scene
(their differences are summarized in Table 9.2):

Table 9.2. Features of the proposed extensions to MOCell

Algorithm Synchronicity Implicit feedback Global replacement
sMOCell1 Synch. No No
sMOCell2 Synch. Yes No
aMOCell1 Asynch. No No
sMOCell2 Asynch. Yes No
sMOCell3 Asynch. No Yes
sMOCell4 Asynch. Yes Yes



9.3 Experimental Analysis 133

• sMOCell1: The MOCell proposal described in Alg. 9.1.
• sMOCell2: The basic MOCell in which no generational replacement from

the archive is used, but instead the implicit feedback through selection of
the parents is applied.

• aMOCell1: Asynchronous extension of sMOCell1.
• aMOCell2: aMOCell1 + feedback through parental selection.
• aMOCell3: aMOCell1 + replacement of the worst individual in its neigh-

borhood.
• aMOCell4: A Combination of aMOCell2 and aMOCell3.

In next section we present and discuss all these extensions, which will be
evaluated in detail.

9.3 Experimental Analysis

Let us address here the evaluation of the above explained six extensions of
MOCell. To this end, we will use metrics such as GD (to measure conver-
gence), and Δ (to measure diversity); in addition, we will use hypervolume
–HV– (please refer to Chap. 5 for more details on metrics). For our analysis
several standard benchmark problems are used, such as WFG, and functions
ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All them are described in detail in
Appendix A.

In Tables 9.3 to 9.5 we show the numerical results of all six extensions
for the three metrics. We include the median (x̃) and the interquartile index
(IQR) of the results after 100 independent runs. The best value for all the
algorithms (for a given metric and problem) is shown in boldface. The sta-
tistical analysis is of course very important to sustain the final claims; first,
we apply the Kolmogorov-Smirnov test on the data to check their normality;
if they are normally distributed then an ANOVA test is applied; otherwise we
will apply a Kruskal-Wallis test. As in the rest of this book, the confidence
level is 95%. Indeed, a ‘+’ symbol means statistical significance (i.e., p-value
smaller than 0.05), in Tables 9.3 to 9.5.

In Table 9.3 we show the actual values for the GD metric. From this
point of view, aMOCell4 gets the best results (lowest values) in 6 out of
the 14 problems. In 5 of them the statistical confidence exists (“+” in the
last column). As to the influence of the updating policy, the asynchronous
extensions compute a Pareto front which is nearer to the optimal Pareto front
with respect to their synchronous counterparts in 11 out of the 14 problems.

Let us now turn to the results concerning the Δ metric in Table 9.4. Again,
aMOCell4 excels in 6 out of the 14 studied MOPs. Also, the asynchronous
extensions are the best under this dispersion metric in 13 out of the 14 average
Pareto Fronts.

Finally, as to the Hypervolume metric HV , we can notice in Table 9.5 that
it provides again the same conclusions and therefore supports the same claims.
Firstly, aMOCell4 is the best (larger values) in 8 out of 14 MOPs; secondly, the
asynchronous extensions are the best in all the problems (except for WFG6).



134 9 Designing cGAs for Multi-objective Optimization

Table 9.3. Comparison among the different extensions of MOCell: median and
interquartile range of the metric GD

MOP
sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4

Test
x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1
6.288e − 4 2.749e − 4 4.207e − 4 2.518e − 4 2.222e − 4 1.753e − 4

+1.5e−4 7.5e−5 7.2e−5 4.5e−5 4.1e−5 2.0e−5

ZDT2
5.651e − 4 1.778e − 4 2.884e − 4 1.111e − 4 1.197e − 4 5.629e − 5

+2.0e−4 1.1e−4 1.9e−4 1.1e−4 5.3e−5 2.5e−5

ZDT3
3.326e − 4 2.493e − 4 2.644e − 4 2.427e − 4 2.077e − 4 2.008e − 4

+8.5e−5 3.0e−5 4.4e−5 2.8e−5 2.0e−5 1.8e−5

ZDT4
9.668e − 4 3.848e − 4 7.847e − 4 4.235e − 4 6.179e − 4 3.293e − 4

+6.4e−4 2.9e−4 5.9e−4 3.3e−4 4.0e−4 2.0e−4

ZDT6
3.963e − 3 1.080e − 3 2.397e − 3 9.334e − 4 8.778e − 4 6.323e − 4

+1.3e−3 2.0e−4 7.8e−4 1.3e−4 1.3e−4 3.4e−5

WFG1
1.962e − 4 1.859e − 4 1.906e − 4 1.889e − 4 1.921e − 4 2.052e − 4

+8.0e−3 1.9e−5 6.5e−3 2.0e−5 8.1e−3 1.0e−2

WFG2
4.408e − 4 4.339e − 4 4.410e − 4 4.316e − 4 4.337e − 4 4.336e − 4

+1.4e−4 1.2e−4 1.3e−4 1.3e−4 1.3e−4 7.1e−5

WFG3
1.372e − 4 1.349e − 4 1.375e − 4 1.340e − 4 1.367e − 4 1.354e − 4

+1.4e−5 1.5e−5 1.8e−5 1.3e−5 1.5e−5 1.4e−5

WFG4
6.423e − 4 6.259e − 4 6.396e − 4 6.252e − 4 6.341e − 4 6.253e − 4

+2.2e−5 2.6e−5 2.6e−5 2.4e−5 2.6e−5 3.2e−5

WFG5
2.634e − 3 2.633e − 3 2.636e − 3 2.631e − 3 2.633e − 3 2.635e − 3

+2.6e−5 1.4e−5 3.4e−5 1.4e−5 1.2e−5 1.1e−5

WFG6
4.984e − 4 1.210e − 3 5.146e − 4 1.268e − 3 5.976e − 4 1.906e − 3

+4.3e−4 2.1e−3 7.1e−4 3.4e−3 7.1e−4 3.4e−3

WFG7
3.069e − 4 3.048e − 4 3.025e − 4 3.038e − 4 3.067e − 4 3.011e − 4 •2.2e−5 2.3e−5 2.1e−5 2.7e−5 2.4e−5 2.4e−5

WFG8
1.009e − 2 1.460e − 2 1.000e − 2 1.468e − 2 1.434e − 2 1.474e − 2

+6.6e−3 5.4e−3 6.0e−3 3.3e−3 5.2e−3 4.9e−3

WFG9
1.072e − 3 1.055e − 3 1.081e − 3 1.067e − 3 1.067e − 3 1.065e − 3

+6.1e−5 5.3e−5 5.5e−5 6.6e−5 5.8e−5 6.0e−5

Table 9.4. Comparison among the different extensions of MOCell: median and
interquartile range of the metric Δ

MOP
sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4

Test
x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1
1.541e − 1 9.645e − 2 1.345e − 1 9.161e − 2 1.011e − 1 7.493e − 2

+2.1e−2 1.4e−2 1.9e−2 1.3e−2 1.7e−2 1.3e−2

ZDT2
1.753e − 1 9.907e − 2 1.363e − 1 9.089e − 2 1.003e − 1 8.095e − 2

+3.8e−2 1.9e−2 3.5e−2 2.4e−2 2.1e−2 1.3e−2

ZDT3
7.106e − 1 7.073e − 1 7.091e − 1 7.069e − 1 7.039e − 1 7.054e − 1

+7.5e−3 7.4e−3 7.8e−3 7.0e−3 4.0e−3 5.4e−3

ZDT4
1.964e − 1 1.257e − 1 1.854e − 1 1.324e − 1 1.419e − 1 1.089e − 1

+9.1e−2 3.6e−2 6.3e−2 4.5e−2 3.1e−2 2.5e−2

ZDT6
3.806e − 1 1.513e − 1 2.953e − 1 1.363e − 1 1.536e − 1 9.234e − 2

+1.1e−1 2.5e−2 7.3e−2 1.9e−2 1.8e−2 1.1e−2

WFG1
5.469e − 1 5.653e − 1 5.298e − 1 5.571e − 1 4.679e − 1 5.790e − 1

+9.3e−2 7.6e−2 1.0e−1 7.3e−2 1.2e−1 8.6e−2

WFG2
7.490e − 1 7.468e − 1 7.474e − 1 7.468e − 1 7.468e − 1 7.471e − 1

+1.1e−2 1.0e−2 1.1e−2 9.9e−3 1.0e−2 8.5e−3

WFG3
3.698e − 1 3.657e − 1 3.725e − 1 3.634e− 1 3.684e − 1 3.648e − 1

+9.8e−3 8.0e−3 8.2e−3 7.3e−3 7.2e−3 8.7e−3

WFG4
1.349e − 1 1.341e − 1 1.335e − 1 1.336e − 1 1.335e − 1 1.333e − 1 •1.9e−2 1.7e−2 1.7e−2 1.9e−2 1.7e−2 1.7e−2

WFG5
1.311e − 1 1.298e − 1 1.377e − 1 1.289e− 1 1.300e − 1 1.293e − 1

+2.5e−2 1.7e−2 2.3e−2 2.3e−2 2.3e−2 1.8e−2

WFG6
1.178e − 1 1.339e − 1 1.167e − 1 1.344e − 1 1.190e − 1 1.348e − 1

+2.1e−2 3.4e−2 2.7e−2 4.6e−2 2.7e−2 4.1e−2

WFG7
1.059e − 1 1.096e − 1 1.033e − 1 1.069e − 1 1.040e − 1 1.084e − 1

+1.8e−2 1.7e−2 1.6e−2 2.1e−2 1.7e−2 2.1e−2

WFG8
5.596e − 1 5.664e − 1 5.710e − 1 5.691e − 1 5.531e − 1 5.703e − 1

+6.3e−2 8.4e−2 7.2e−2 5.0e−2 6.4e−2 6.7e−2

WFG9
1.597e − 1 1.449e − 1 1.609e − 1 1.482e − 1 1.606e − 1 1.435e − 1

+1.8e−2 1.8e−2 2.1e−2 1.8e−2 1.8e−2 1.7e−2



9.3 Experimental Analysis 135

Table 9.5. Comparison among the different extensions of MOCell: median and
interquartile range of the metric HV

MOP
sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4

Test
x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1
6.543e − 1 6.592e − 1 6.573e − 1 6.595e − 1 6.603e − 1 6.610e − 1

+2.0e−3 7.3e−4 1.1e−3 7.3e−4 5.2e−4 2.7e−4

ZDT2
3.216e − 1 3.265e − 1 3.256e − 1 3.274e − 1 3.276e − 1 3.284e − 1

+2.8e−3 1.6e−3 2.6e−3 1.7e−3 8.1e−4 5.1e−4

ZDT3
5.111e − 1 5.135e − 1 5.132e − 1 5.137e − 1 5.152e− 1 5.152e − 1

+2.2e−3 8.2e−4 1.2e−3 8.1e−4 2.8e−4 4.0e−4

ZDT4
6.487e − 1 6.573e − 1 6.517e − 1 6.568e − 1 6.539e − 1 6.580e − 1

+9.6e−3 4.3e−3 8.4e−3 4.5e−3 5.9e−3 3.2e−3

ZDT6
3.487e − 1 3.885e − 1 3.699e − 1 3.909e − 1 3.920e − 1 3.970e − 1

+1.7e−2 3.1e−3 1.0e−2 2.0e−3 2.4e−3 8.4e−4

WFG1
5.491e − 1 6.047e − 1 5.906e − 1 5.983e − 1 6.115e− 1 5.043e − 1

+1.1e−1 5.8e−2 1.2e−1 1.0e−1 1.2e−1 1.7e−1

WFG2
5.616e − 1 5.616e − 1 5.616e − 1 5.616e − 1 5.616e − 1 5.616e-1 •2.9e−3 2.7e−3 2.8e−3 2.7e−3 2.7e−3 1.1e−3

WFG3
4.420e − 1 4.420e − 1 4.420e − 1 4.420e − 1 4.420e − 1 4.420e − 1

+2.0e−4 1.6e−4 3.0e−4 1.6e−4 2.5e−4 1.6e−4

WFG4
2.187e − 1 2.186e − 1 2.186e − 1 2.186e − 1 2.187e − 1 2.188e − 1

+3.1e−4 3.2e−4 2.8e−4 2.9e−4 2.9e−4 2.6e−4

WFG5
1.961e − 1 1.962e − 1 1.961e − 1 1.962e − 1 1.962e − 1 1.962e − 1

+7.5e−5 5.4e−5 7.5e−5 6.9e−5 7.4e−5 4.7e−5

WFG6
2.051e − 1 1.949e − 1 2.049e − 1 1.940e − 1 2.036e − 1 1.859e − 1

+7.0e−3 2.8e−2 1.1e−2 4.3e−2 1.1e−2 4.2e−2

WFG7
2.104e − 1 2.104e − 1 2.104e − 1 2.104e − 1 2.104e − 1 2.105e − 1

+1.7e−4 1.7e−4 1.6e−4 2.0e−4 2.0e−4 1.6e−4

WFG8
1.456e − 1 1.472e − 1 1.459e − 1 1.466e − 1 1.462e − 1 1.479e − 1

+2.1e−2 3.0e−3 4.9e−3 2.5e−3 2.8e−3 2.8e−3

WFG9
2.380e − 1 2.389e − 1 2.375e − 1 2.390e − 1 2.380e − 1 2.381e − 1

+2.2e−3 2.4e−3 3.1e−3 2.0e−3 2.3e−3 3.6e−3

If we focus now on the replacement policy, it is clear that the new policy
(one parent from the archive) is better than an explicit feedback (as it hap-
pens in the canonical MOCell). This fact is obvious both for the synchronous
extensions (sMOCell2 performs better than sMOCell1 on problems 12, 10,
and 9) and for the asynchronous ones (aMOCell2 outperforms aMOCell1 in
11, 10, and 11 problems according to metrics GD, Δ, and HV, respectively).

The reader is maybe thinking that the differences among all the exten-
sions are too small, but this is only apparently, and due to the normalization
process we are using before the calculation of the metrics to be able of such a
large comparison. In fact, most of the results are statistically significant. As a
conclusion, aMOCell4 is the best extension of MOCell thanks to the combined
effect of the new replacement and feedback strategies.

Since we are also interested in comparing to the rest of popular algorithms
from the literature we will compare aMOCell4 against NSGA-II and SPEA-
2. These two algorithms have been implemented in the same framework as
aMOCell4 in order to reinforce the fairness of the process and avoid well-
known bugs in some of the existing implementations available in Internet.
In [193] we have already shown that the basic MOCell is competitive with
respect to their available implementations.

In Tables 9.6, 9.7, and 9.8 we include the results of applying aMOCell4,
NSGA-II, and SPEA2 to our benchmark for the mentioned metrics: GD, Δ,
and HV , respectively. If we start our analysis by the accuracy (distance to
the optimal Pareto front) we can notice in Table 9.6 that the cellular based
approach gets the best (smallest) values for 10 problems, out of the 14 used



136 9 Designing cGAs for Multi-objective Optimization

Table 9.6. Comparison among aMOCell4, NSGA-II and SPEA2. Median and
interquartile range of the metric GD

MOP
aMOCell4 NSGA-II SPEA2 Test

x̃IQR x̃IQR x̃IQR

ZDT1 1.753e − 4 2.0e−5 2.198e − 4 4.8e−5 2.211e − 4 2.8e−5 +
ZDT2 5.629e − 5 2.5e−5 1.674e − 4 4.3e−5 1.770e − 4 4.8e−5 +
ZDT3 2.008e − 4 1.8e−5 2.126e − 4 2.1e−5 2.320e − 4 2.0e−5 +
ZDT4 3.293e − 4 2.0e−4 4.353e − 4 3.2e−4 5.753e − 4 4.4e−4 +
ZDT6 6.323e − 4 3.4e−5 1.010e − 3 1.3e−4 1.750e − 3 2.9e−4 +
WFG1 2.052e − 4 1.0e−2 1.967e − 4 8.3e−3 6.438e − 4 1.0e−2 +
WFG2 4.336e − 4 7.1e−5 5.196e − 4 1.7e−4 4.474e − 4 1.2e−4 +
WFG3 1.354e − 4 1.4e−5 1.553e − 4 1.9e−5 1.448e − 4 1.2e−5 +
WFG4 6.253e − 4 3.2e−5 6.870e − 4 1.4e−4 6.377e − 4 3.0e−5 +
WFG5 2.635e − 3 1.1e−5 2.655e − 3 3.2e−5 2.718e − 3 1.7e−5 +
WFG6 1.906e − 3 3.4e−3 5.539e − 4 6.5e−4 4.654e − 4 6.7e−4 +
WFG7 3.011e − 4 2.4e−5 3.444e − 4 4.7e−5 3.020e − 4 4.5e−5 +
WFG8 1.474e − 2 4.9e−3 1.446e − 2 5.3e−3 1.569e − 2 6.0e−3 +
WFG9 1.065e − 3 6.0e−5 1.223e − 3 2.1e−4 9.313e − 4 9.1e−5 +

Table 9.7. Comparison among aMOCell4, NSGA-II and SPEA2. Median and
interquartile range of the metric Δ

MOP
aMOCell4 NSGA-II SPEA2 Test

x̃IQR x̃IQR x̃IQR

ZDT1 7.493e − 2 1.3e−2 3.753e − 1 4.2e−2 1.486e − 1 1.8e−2 +
ZDT2 8.095e − 2 1.3e−2 3.814e − 1 3.9e−2 1.558e − 1 2.8e−2 +
ZDT3 7.054e − 1 5.4e−3 7.458e − 1 2.0e−2 7.099e − 1 7.7e−3 +
ZDT4 1.089e − 1 2.5e−2 3.849e − 1 5.3e−2 2.612e − 1 1.7e−1 +
ZDT6 9.234e − 2 1.1e−2 3.591e − 1 4.6e−2 2.268e − 1 3.0e−2 +
WFG1 5.790e − 1 8.6e−2 7.170e − 1 4.5e−2 6.578e − 1 7.0e−2 +
WFG2 7.471e − 1 8.5e−3 7.968e − 1 1.5e−2 7.519e − 1 1.1e−2 +
WFG3 3.648e − 1 8.7e−3 6.101e − 1 3.8e−2 4.379e − 1 1.3e−2 +
WFG4 1.333e − 1 1.7e−2 3.835e − 1 4.3e−2 2.681e − 1 3.1e−2 +
WFG5 1.293e − 1 1.8e−2 4.077e − 1 4.0e−2 2.805e − 1 2.7e−2 +
WFG6 1.348e − 1 4.1e−2 3.807e − 1 4.2e−2 2.506e − 1 2.4e−2 +
WFG7 1.084e − 1 2.1e−2 3.836e − 1 4.4e−2 2.453e − 1 2.7e−2 +
WFG8 5.703e − 1 6.7e−2 6.472e − 1 5.1e−2 6.108e − 1 5.7e−2 +
WFG9 1.435e − 1 1.7e−2 3.994e − 1 3.9e−2 2.945e − 1 2.4e−2 +

Table 9.8. Comparison among aMOCell4, NSGA-II and SPEA2. Median and
interquartile range of the metric HV

MOP
aMOCell4 NSGA-II SPEA2 Test

x̃IQR x̃IQR x̃IQR

ZDT1 6.610e− 1 2.7e−4 6.594e − 1 4.0e−4 6.600e − 1 3.5e−4 +
ZDT2 3.284e− 1 5.1e−4 3.261e − 1 4.8e−4 3.263e − 1 7.4e−4 +
ZDT3 5.152e− 1 4.0e−4 5.148e − 1 2.7e−4 5.141e − 1 3.4e−4 +
ZDT4 6.580e− 1 3.2e−3 6.552e − 1 4.7e−3 6.518e − 1 1.0e−2 +
ZDT6 3.970e− 1 8.4e−4 3.887e − 1 2.2e−3 3.785e − 1 4.3e−3 +
WFG1 5.043e − 1 1.7e−1 5.140e − 1 1.5e−1 4.337e − 1 1.4e−1 +
WFG2 5.616e − 1 1.1e−3 5.631e − 1 2.9e−3 5.615e − 1 2.9e−3 •
WFG3 4.420e− 1 1.6e−4 4.411e − 1 3.2e−4 4.418e − 1 2.2e−4 +
WFG4 2.188e− 1 2.6e−4 2.173e − 1 5.3e−4 2.181e − 1 3.4e−4 +
WFG5 1.962e− 1 4.7e−5 1.948e − 1 4.8e−4 1.956e − 1 1.5e−4 +
WFG6 1.859e − 1 4.2e−2 2.033e − 1 9.9e−3 2.056e − 1 1.1e−2 +
WFG7 2.105e− 1 1.6e−4 2.088e − 1 4.3e−4 2.098e − 1 2.7e−4 +
WFG8 1.479e− 1 2.8e−3 1.470e − 1 2.3e−3 1.469e − 1 1.7e−3 +
WFG9 2.381e − 1 3.6e−3 2.372e − 1 2.2e−3 2.386e − 1 2.2e−3 +



9.3 Experimental Analysis 137

Fig. 9.1. Best found fronts for aMOCell4, NSGA-II, and SPEA2, all solving WFG6

in the benchmark. The mentioned aMOCell4 is specially accurate for all the
ZDT problem family. As to the WFG family, NSGA-II and SPEA2 are only
the most accurate techniques for 4 problems (out of 9), while aMOCell4 is
able of outperforming them in the rest of 5 MOPs. The conclusion then is
that aMOCell4 outperforms the two standard procedures in multi-objective
optimization (NSGA-II and SPEA2) with statistical confidence (see the “+”
symbols in the last column of the table).

If we now turn to analyze the distribution of the computed solutions along
the Pareto front (Table 9.7) it is still more clear than before that aMOCell4
is outperforming them in all the tested problems. For the ZDT benchmarking
functions aMOCell4 is for this metric even one order of magnitude better
than the other techniques. The reader can find in Fig. 9.1 the best found
Pareto front (out of 100 independent runs) for WFG6; with it we want to
illustrate how good is the cellular based approach compared against the rest
of algorithms in computing diverse points evenly spread along the front, a
desired feature in present proposals for MO algorithms.



138 9 Designing cGAs for Multi-objective Optimization

Regarding the metric HV the reader can find the numerical performance in
Table 9.8. As in the previous cases, aMOCell4 gets the best (largest) values in
10 (out of 14) problems. It is again the best technique for the ZDT family and
outperforms the rest for 5 (out of 9) of the WFG functions. We again remind
that the small differences are statistically significant: they are small because
of the normalization process but clearly important, as it can be noticed in
Fig. 9.1.

Let us now take our attention to the whole set of results (the recently
mentioned tables). The global analysis of them throws the clear conclusion
that the cellular based proposal, aMOCell4, performs better than NSGA-II
and SPEA2. This is an outstanding result, since these two techniques are
being used by a huge number of researchers that now could profit from our
new proposal to solve their problems. It is clear that the underlying cellular-
like search is a valuable component for solving complex problems also in the
multi-objective domain.

9.4 Conclusions

We started this chapter by proposing a simple extension of the basic canonical
cGA for multi-objective problems: MOCell. MOCell is by itself an extension of
a former proposal called cMOGA [8, 18], the early proposal we did in this field.
The key structural issue in MOCell is the utilization of an external archive
to store the non-dominated individuals found during the search process, and
more precisely its utilization as a source for solutions (feedback from archive to
algorithm) during the evolution towards an optimal Pareto front. The feedback
process has shown in all our past experience to be a milestone for success.

In the chapter we have later analyzed six extensions of MOCell in order to
fine tune it and to show how far the cellular concepts can help the researcher to
define very efficient and accurate algorithms. The three concepts that showed
the larger benefits are the asynchronous update of individuals (line sweep),
the replacement of the worst individual of the considered neighborhood, and
finally the idea of using the external archive as the source for selecting one
of the parents in every iteration. The result is aMOCell4, a multi-objective
optimization engine able of unseen performances in a large testbed and in
competition with the best, state-of-the-art, algorithms NSGA-II and SPEA2.

This chapter indicates just a line of research in combining cellular GAs and
multi-objective concepts. There are other many possible ideas to be explored
in the future, maybe involving local search, hybridization, parallelization, and
other open issues that could help in creating powerful algorithms to solve
problems of larger complexity and larger dimension than the ones solved at
present.



10

Other Cellular Models

Imagination is more important than knowledge.

Albert Einstein (1879 - 1955) – Physicist

After proposing so many cellular models in the previous chapters, we now
proceed in this chapter to complete this extensive study by compiling some
other interesting cellular models recently proposed in the literature.

Specifically, we consider two new families of cellular EAs. On the one hand,
it is presented in Sect. 10.1 a new family of cellular GAs in which a hierarchy is
established inside the population such that better individuals are moved to the
same region of the grid. This way, a faster convergence of the best individuals
is promoted, while the diversity is maintained in locations far away from this
region. This new hierarchical cellular model is applied here to GAs, but it
can be implemented in any other family of EA. It can be helpful in parallel
implementations looking for fail tolerance, since some parts of the population
could be lost with negligible effects on the search. Also, faster convergence
can be an interesting outcome of this new mode.

On the other hand, a new class of estimation of distribution algorithms
(EDAs) is addressed in Sect. 10.2. This new family of algorithms is known as
cellular EDAs (cEDAs), and they are characterized by their decentralized pop-
ulation, which is partitioned into many small collaborating sub-populations,
arranged in a toroidal grid, and interacting only with its neighboring sub-
populations.

These two new families of cellular models are analyzed and compared in
this chapter against their equivalent panmictic algorithms from the points of
view of both theory and practice.

10.1 Hierarchical cGAs

In this section we describe a new kind of cGA, called hierarchical cGA (H-
cGA) [139], where the population structure is augmented with a hierarchy ac-
cording to the current fitness of the individuals. Better individuals are moved
towards the center of the grid, so that high quality solutions are exploited
quickly, while at the same time new solutions are provided by individuals

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 10, © Springer Science+Business Media, LLC 2008



140 10 Other Cellular Models

Algorithm 10.1 Pseudo-code of H-cGA
1. proc Evolve(hcga) //Algorithm parameters in ‘hcga’
2. GenerateInitialPopulation(hcga.pop);
3. Evaluation(hcga.pop);
4. while !StopCondition() do
5. for individual ← 1 to hcga.popSize do
6. neighbors←GetNeighbors(hcga,position(individual));
7. parents←Select(neighbors);
8. offspring←Recombination(hcga.Pc,parent1,parent2);
9. offspring←Mutation(hcga.Pm, offspring);

10. Evaluation(offspring);
11. Replacement(position(individual),hcga,auxiliary pop,offspring);
12. end for
13. hcga.pop←auxiliary pop;
14. Swap Operation(hcga.pop); // Keep the hierarchy of the population
15. end while
16. end proc Evolve;

at the outside that keep exploring the search space. This algorithmic vari-
ant is expected to increase the convergence speed of the cGA algorithm and
maintain the diversity given by the distributed layout. We here examine the
effect of the introduced hierarchy by observing the variable takeover rates at
different hierarchy levels. Additionally, we compare the H-cGA to the cGA
algorithm on a set of benchmark problems, and show that the new approach
obtains a promising performance.

In Alg. 10.1 we show a pseudo-code of a canonical hierarchical cGA. As it
can be seen, it is similar to a canonical cGA except that in the case of the H-
cGA algorithm the population is re-arranged after every generation with the
hierarchical swap operation (line 15). In Sect. 10.1.1 it is addressed the hierar-
chical ordering of the population that is introduced for the H-cGA algorithm
and how this ordering is obtained. After that we introduce in Sect. 10.1.2 a
new selection operator for this algorithm. This new algorithm is evaluated
both theoretically and in practice in Sects. 10.1.3 and 10.1.4, respectively.

10.1.1 Hierarchy

The hierarchy is imposed on the cellular population of the GA by defining a
center at position (x/2, y/2) and assigning hierarchy levels according to the
distance from the center. The center has level 0 and the level increases with
increasing distance to the center (as it is displayed in Fig. 10.1). The hierarchy
is updated after each iteration of the cGA and individuals with high fitness are
moved towards the center. Note that the population topology is still toroidal
when selecting parents.

In Fig. 10.1 we show how this swap operation is performed. It is applied
between cells indicated by the arrows, in the order denoted by the numbers



10.1 Hierarchical cGAs 141

3

3 2 1 1 2 3

3

2

1

1

2

5

3

2 1

2

4 3 2 1 4321

5 4 3 2 5432

6 5 4 3 6543

0

0

1

1

1

32

2

6

23

23

4

4 3

5

3

6

3

2

5

1

4

0

5

0

4

1

3

2

3

3

4

4

Fig. 10.1. The H-cGA and its different hierarchy levels

outside of the grid. The update of the hierarchy is performed alternatingly
horizontally (black) and vertically (grey) by the swap operation. We assume an
even number for the population dimensions x and y, so that the population can
be uniquely divided into left (upper) and right (lower) half, for the horizontal
(vertical) swap. This implies that there are 4 individuals in the center of
the population, i.e., on the lowest level of the hierarchy (that with the best
individuals).

In the following we describe the horizontal swap operation, the vertical
swap is done accordingly. Each individual (i, j) in the left half compares itself
with its left neighbor (i−1, j) and if this one is better they swap their positions.
These comparisons are performed starting from the center of the grid towards
the outside, see Fig. 10.1. Thus, at first individuals in columns x

2 − 1 and
x
2 − 2, for i = 0, . . . , y, are compared. If the fitness value at position (i, x

2 − 2)
is better they swap positions. These pairwise comparisons are then continued
towards the outside of the grid. Hence, an individual can improve only one
level at a time but can increase several levels within one iteration.

10.1.2 Dissimilarity Selection

The proposed hierarchy promotes the recombination of good individuals
within the population. In this respect, H-cGA is similar to a panmictic GA
with a fitness-biased selection. In our H-cGA algorithm this selective recom-
bination of the elite individuals of the population is already included in the
hierarchy. Therefore, we examined a new selection operator that is not based
on the relative fitness of the neighbouring individuals but instead considers
the difference between the respective solution strings. As for the binary tour-
nament (BT) selection, two neighbors are selected randomly, but in contrast
to BT, where the better one is selected, the one that is more different from the
current individual is selected. All the considered problems are binary encoded,
hence we use the Hamming distance for determining the dissimilarity.



142 10 Other Cellular Models

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

B
e

s
t 
In

d
iv

id
u

a
l 
P

ro
p

o
rt

io
n

Iterations

Level

62

61

60

59

58

57

56

55

50

40

30

20

10

0

Fig. 10.2. Takeover curve resulting from initially placing the best individual at
different levels and evolving the population only with a selection operator

The overall optimization progress of the algorithm is ensured by only re-
placing an individual if the newly generated individual, by crossover and mu-
tation, is better than the previous one.

10.1.3 First Theoretical Results: Takeover Times

We are providing in this section a closer examination of the properties of the
proposed algorithm by studying its takeover time (see Chap. 4) and compar-
ing it to that of a canonical cGA. First, we are looking at a deterministic
takeover process, where the best individual within the neighbourhood is al-
ways selected. Later, we also consider BT selection and the newly proposed
dissimilarity selection. Initially all individuals get assigned random fitness val-
ues from [0:4094] and one individual gets the maximum fitness value of 4095.
Then the selection-only algorithm is executed and the proportion of the entire
population that holds the maximum fitness value at each iteration is recorded.
The considered grid is of size 64 × 64 and hence the population consists of
4096 individuals.

In the H-cGA the different levels of the hierarchy influence the time re-
quired for takeover. In order to accurately determine this influence, we use
the deterministic selection operator. The best individual is initially placed
on each possible position on the grid and the takeover time for these 4096
different setups is measured. Then the results for all positions on a specific
level of the hierarchy are averaged to obtain the takeover rate for introducing
the best individual at this particular level. In Fig. 10.2 the obtained takeover



10.1 Hierarchical cGAs 143

Table 10.1. Takeover times for the algorithms with BT and dissimilarity selection

Algorithm Avg. Iterations Min – Max

cGA 75.2 ±1.5 72.0 – 80.0
cGA-Dis 78.7 ±1.7 75.0 – 83.0
H-cGA 71.0 ±6.3 48.0 – 81.0
H-cGA-Dis 79.6 ±3.8 71.0 – 89.0
H-cGA level 0 81.5 ±1.5 78.0 – 87.0
H-cGA level 62 46.3 ±2.1 42.0 – 57.0

curves are shown for introducing the best individual at different levels of the
hierarchy. The slowest takeover rate is achieved when placing the best value
at the center of the grid on level 0. This takeover rate is identical to the deter-
ministic takeover for the regular cGA. The hierarchy level 62 consists of the
4 cells on the corners of the grid, where the fastest takeover rate is obtained.
This increasing takeover speed with increasing hierarchy level is very regular,
as can be seen in the detail display of iteration 30. The reason why having
the best individual near the outside of the hierarchy accelerates takeover is,
that, since for selection the topology is still toroidal, adjacent individuals on
the opposite end of the grid also adopt the highest fitness value at the begin-
ning of the run. Then the hierarchy swap operation moves the maximal value
towards the center from several sides and therefore the actual takeover speed
is increased.

We also measured the time required for takeover with BT and dissimilar-
ity selections. The best individual was placed at a random position and the
experiments were repeated 100 times. For the experiments with dissimilarity
selection, the individuals are using a binary string that corresponds to the
12 bit representation of their current fitness value. Our results are shown in
Table 10.1. Specifically, we provide the average number of iterations, the stan-
dard deviation, and the minimum and maximum values obtained. As it can be
seen, initially placing the best individual at the center (H-cGA level 0) slows
down the takeover compared to the regular cGA algorithm. This is because
once the maximal value spreads it will be delayed until all of the central cells
hold the best fitness value, otherwise it will be swapped towards the center
again. In the two algorithms, the use of the BT selection induces a higher
selection pressure than in the case of using the dissimilarity selection. After
applying some statistical tests (see Chap. 5) to the results in Table 10.1, we
obtained that there exist statistically significant differences at a 95% confi-
dence level.

10.1.4 Computational Experiments

We complete here the study made in Sect. 10.1.3 by analyzing the behavior of
the proposed H-cGA and its equivalent cGA on a selected benchmark of prob-
lems. As it is usual in the studies made in this book, this benchmark is com-



144 10 Other Cellular Models

Table 10.2. Parameterization used in our algorithms

Population 20× 20 Individuals
Parent selection Current individual + (BT or dissimilarity)
Recombination DPX, pc = 1.0
Bit mutation Bit-flip, pm = 1/L (L = Individual length)
Replacement Rep if Better
Stopping criterion Find optimum or reach 2500 generations

posed of problems with many different features, such as multimodality, decep-
tiveness, use of constraints, or problem generators. They are Onemax (with
size 500), the Massively Multimodal Deceptive Problem (MMDP), P-PEAKS,
and the Minimum Tardy Task Problem –MTTP– (instances of 20, 100, and
200 tasks). All the details on these problems are given in Appendix A.

The same parametrization is used for the two algorithms (see Table 10.2),
and both BT and dissimilarity selection have been tested. We used a pop-
ulation of 400 individuals arranged in a grid of size 20 × 20 with a NEWS
neighborhood (the cell itself and its North, East, South and West neighbours
are considered). In all our experiments, one parent is the center individual
itself and the other parent is selected either by BT or dissimilarity selection
(it is ensured that the two parents are different). An individual is replaced
only if the newly generated fitness value is better. The recombination method
used is the two point crossover (DPX), and the selected offspring is the one
having the largest part of the best parent. The crossover probability is 1.0
and bit mutation is performed with probability 1/#bits for genome string of
length #bits. In order to have statistical confidence, all the presented results
are average over 100 runs, and the analysis of variance –ANOVA– statistical
test (or Kruskal-Wallis if the data is not normally distributed) is applied to
the results. A 95% confidence level is considered.

In Table 10.3 we present the results we have obtained for all the test
problems. Specifically, we show the success rate (number of runs in which the
optimum was found), and some measures on the number of evaluations made
to find the optimum, such as the average value, the standard deviation, and
the maximum and minimum values. The results of our statistical tests are in
column Test, where symbol ‘+’ means that there exist statistically significant
differences. The evaluated algorithms are cGA and H-cGA both with BT and
dissimilarity selections.

As can be seen in Table 10.3, both the cGA and the H-cGA algorithms
were able to find the optimal value in each run for all the problems, with the
exception of MMDP. For this problem, the cGA algorithm achieves slightly
better success rates than H-cGA. Regarding the average number of evaluations
required to reach the optimum, the hierarchical algorithm always outperforms
cGA, except for the P-PEAKS problem. Hence, the use of a hierarchical pop-
ulation allows us to accelerate the convergence speed of the algorithm to the
optimum, while it retains the interesting diversity management of the canon-
ical cGA.



10.1 Hierarchical cGAs 145

Table 10.3. H-cGA versus its equivalent cGA (BT and dissimilarity selections)

Problem Algorithm Success Avg. Iterations Min–Max Test

Onemax

cGA 100% 129.4±7.3 111.2–145.2

+
cGA-Dis 100% 140.7±8.1 121.6–161.2
H-cGA 100% 94.1±5.0 83.2–106.4
H-cGA-Dis 100% 103.1±5.6 90.4–116.8

MMDP

cGA 67% 202.4±154.7 120.8–859.2

+
cGA-Dis 97% 179.8±106.3 116.8–846.0
H-cGA 55% 102.6±76.1 68.8–652.8
H-cGA-Dis 92% 122.3±111.7 73.2–837.6

P-PEAKS

cGA 100% 41.9±3.0 32.0–48.4

+
cGA-Dis 100% 52.9±5.2 38.4–66.0
H-cGA 100% 47.2±8.6 30.8–71.2
H-cGA-Dis 100% 81.1±17.1 45.2–130.8

MTTP-20

cGA 100% 5.1±1.2 1.6–8.0

+
cGA-Dis 100% 6.0±1.3 2.0–9.2
H-cGA 100% 4.7±1.1 1.6–7.2
H-cGA-Dis 100% 5.5±1.2 2.8–8.0

MTTP-100

cGA 100% 162.2±29.3 101.6–241.6

+
cGA-Dis 100% 174.6±26.3 96.4–238.8
H-cGA 100% 138.3±35.4 62.0–245.6
H-cGA-Dis 100% 132.4±26.2 64.0–186.8

MTTP-200

cGA 100% 483.1±55.3 341.6–632.4

+
cGA-Dis 100% 481.0±71.6 258.8–634.8
H-cGA 100% 436.2±79.7 270.4–631.2
H-cGA-Dis 100% 395.3±72.6 257.6–578.8

If we now compare the results of the algorithms when using the two differ-
ent studied selection schemes, we notice that with the dissimilarity selection
the success rate for the MMDP problem can be increased for both the cGA
and the H-cGA algorithm. In terms of efficiency, the algorithms are usually
worse when using the dissimilarity selection.

In Fig. 10.3 we plot the expected number of evaluations, defined as the
average number of evaluations divided by the success rate, required to find
the optimal value for each problem. The displayed results are relative to the
expected number of evaluations for the cGA.

As we already concluded analyzing the results in Table 10.3, it can be easily
seen in Fig. 10.3 that the expected number of evaluations is increased when
using the dissimilarity selection compared to the equivalent algorithms with
BT. For the cGA the dissimilarity selection was able to reduce the number
of required evaluations only for the MMDP problem. But for the H-cGA it
proved to be useful also for the two largest MTTP instances. In general, the
expected number of evaluations is lower for the two studied versions of H-cGA.



146 10 Other Cellular Models

 0

 0.5

 1

 1.5

 2

MTTP200MTTP100MTTP20P-PEAKSMMDPONEMAX

R
e

la
ti
v
e

 E
x
p

e
c
te

d
 N

r 
o

f 
E

v
a

lu
ti
o

n
s

cGA
cGA dis
H-cGA

H-cGA dis

Fig. 10.3. Expected number of evaluations required to reach the optimum, relative
to the steps required by cGA, for the different benchmark problems

Fig. 10.4. Evolution of the population for the cGA (top) and the H-cGA (bottom)

Finally, in order to illustrate the effects of using a hierarchical population
in the cGA, we show a sample run of the cGA (top) and the H-cGA (bottom)
algorithms in Fig. 10.4. The pictures are snapshots of the population taken
every 50 iterations for the MDDP problem until the optimum is found (iter-
ation 383 for cGA and 233 for H-cGA). The darker an individual is colored
the higher its fitness is; the white cell in the last image contains the optimal
solution to the problem (maximum fitness). As it can be seen, the H-cGA algo-
rithm quickly focuses on promising solutions, while at the same time different
solutions of lower quality are kept at the outside of the hierarchy.

10.2 Cellular Estimation of Distribution Algorithms

In this section we present and analyze a new class of estimation of distribution
algorithms (EDAs) [158, 187], called cellular EDAs [174]. EDAs are an alterna-
tive family to traditional EAs in which a different kind of variation operators
is used. The successive generations of individuals are created by using estima-
tions of distributions observed in the current population instead of evolving



10.2 Cellular Estimation of Distribution Algorithms 147

Fig. 10.5. A cEDA with a C13 neighborhood and the population shape 2×2−9×9

the population with the typical variation operators (like crossover and muta-
tion) used in other EAs. Hence, the main feature distinguishing EDAs from
other more classical EAs is that EDAs learn the interactions among variables
(building blocks) in the problem to be solved. At the same time, it is the main
drawback of EDAs due to the complexity of this learning and simulation task.

Cellular EDAs were introduced as a decentralized version of
EDAs, and also as a generalization of the cellular models developed for
other evolutionary algorithms [35, 176]. In a cEDA the population is de-
centralized by partitioning it into many small collaborating sub-populations
(called cells or member algorithms), arranged in a toroidal grid, and interact-
ing only with the neighboring sub-populations. One distinctive feature of this
class of algorithm is that selection is decentralized at the level of the member
algorithms, while in other cellular EAs it usually occurs at the recombination
level.

The organization of cEDAs is based on the traditional 2D structure of
overlapped neighborhoods. That structure is better understood in terms of
two grids, i.e., one consisting of strings and another consisting of disjoint sets
of strings (cells). Fig. 10.5 shows a global population of 18× 18 strings (small
squares) partitioned in a 9× 9 toroidal grid of cells (large squares) containing
4 strings each. The neighborhood used is the so called C13, which is composed
by the considered subpopulation plus its 12 nearest cells (measured with the
manhattan distance). We adopt the same notation used in [174] for describing
the shape of the population: it consists of the shape of cells in terms of strings
plus the shape of the whole population taking into account the cells (composed
of one or more strings). For example, following this nomenclature, the grid of
Fig. 10.5 is labelled as 2 × 2 − 9 × 9.

In Alg. 10.2 we present a pseudo-code of the proposed cEDA ap-
proach. Each iteration of a cEDA consists of exactly one iteration of all the
member algorithms. Each of these member algorithms is responsible for up-
dating exactly one subpopulation, and this is made by applying a local EDA
model to the population composed of its strings and those of its neighbor
sub-populations (lines 7 to 9). The implementation of cEDA carried out in
this paper is synchronous, since the successive populations replace each other



148 10 Other Cellular Models

Algorithm 10.2 Pseudo-code of a simple cEDA
1. proc Evolve(ceda) //Algorithm parameters in ‘ceda’
2. Set t← 1;
3. GenerateInitialPopulation(ceda.pop);
4. Evaluation(ceda.pop);
5. while !StopCondition() do
6. for every cell do
7. Select locally M ≤ SizeOf (Neighborhood) × SizeOf (cell) strings of the

neighborhood according to a selection method;
8. Estimate the distribution ps(x, t) of these M selected strings;
9. Generate SizeOf (cell) new points according to the distribution ps(x, t);

10. Insert the generated points in the same cell of an auxiliary population;
11. end for
12. Replace the current population with the auxiliary one;
13. Compute and update the statistics;
14. Set t← t + 1;
15. end while
16. end proc Evolve;

at once (line 12), so the new individuals generated by the local learning and
sampling steps are placed in a temporal population (line 10).

In the replacement step (line 12), the old population can be taken into
account (i.e., replacing a string if the new one is better) or not (always
adding the new string to the next population). The first issue (called elitism)
is the preferred one for this study. Finally, computing basic statistics (line 13)
is rarely found in the pseudo-codes of other authors in the EA field. However,
it can be used for monitoring the algorithm and decide changes in the adaptive
search, when needed.

A critical issue in a cEDA is the computation of the probabilistic model
due to the high computational cost it usually supposes. The reader is referred
to [174] for an explanation of several alternative learning schemes for cellular
EDAs.

In next section we compare the Univariate marginal distribution algorithm
(UMDA) versus its cellular version (cUMDA, see [23]) both theoretically and
in practice. The UMDA was presented for the first time by Müehlenbein and
Paaß in [187], and it is one of the simplest algorithm in the EDAs family.
In UMDA, it is considered that variables are independent from the others,
so there are no dependencies between them. The current generation evolves
towards the new one by computing the frequencies of values of the variables
on each position in the selected set of promising solutions. These frequencies
are then used to compute new solutions, which replace the old ones. Due to its
simplicity, it is a very efficient algorithm (converges quickly), and its behavior
is particularly good for linear problems. Notice that the use of UMDA as the
member algorithm, implies that we do not need to learn the structure of the
model (it is known), but just the univariate marginal frequencies.



10.2 Cellular Estimation of Distribution Algorithms 149

Takeover Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45

No. of Generations

B
e
s
t

P
ro

p
o

rt
io

n

UMDA

cUMDA-C25- 80x80-1x1

Fig. 10.6. Takeover curves for the studied algorithms

C25

C41

Fig. 10.7. Neighborhoods

10.2.1 First Theoretical Results: Takeover Times

We include in this section a brief study of the theoretical behavior of cUMDAs
in terms of their selection pressure. This is the first time (at the very best of
our knowledge) that the theoretical behavior of EDAs has been studied using
the takeover time. For that, we compute the proportion of the best individuals
in the population (after truncating), and use it for generating the new one
with elitism (best individuals are kept).

In Fig. 10.6 we plot the growth curves of UMDA and four different
cUMDAs. In order to obtain meaningful results, we use a large population
of up to 64000 individuals for this study. The cUMDAs differ both in the
neighborhood used and in the population structure. Thus, we used a popula-
tion structured in 80× 80 cells of 1 individual each, or 40× 40 cells composed
by 4 individuals. Neighborhoods C25 and C41 (see Fig. 10.7) are used with
the two different population structures, and they are composed by the con-
sidered cell plus the nearest 24 (for C25) and 40 (in the case of C41) cells
measured in Manhattan distance. As it can be seen, the highest selection
pressure (shorter takeover time) corresponds to UMDA. Regarding the cUM-
DAs, the two algorithms having one individual per cell are those with lower
selection pressure (longer takeover time). The reason is that, in the cases of
the cUMDAs with four individuals per cell, the exploration capabilities of the
algorithm are penalized since the number of individuals in the neighborhood
is multiplied by four.

10.2.2 Computational Experiments

In this section we turn to present and analyze the results we have obtained in
our experiments for a benchmark composed by five problems with different fea-
tures, namely Onemax (size 1000), Plateau, IsoPeak, P-PEAKS, and MTTP
problems. All of them are described in Appendix A. As in the previous section,



150 10 Other Cellular Models

Table 10.4. Parameterization used in all the compared algorithms

Population size 400 individuals
Parent selection Truncation selection, τ = 0.5
Mutation Bit-flip, pm = 1/L (L = Individual length)
Replacement Replace-if-Better
Stop condition Optimum reached or 400,000 fitness evaluations
Member algorithm UMDA
Cellular case Neighborhood shape: C25 and C41

Population shape: 1× 1− 20× 20 and 2× 2− 10× 10

the algorithms we have studied in our comparison are the standard UMDA
plus four different proposed cellular versions. Their parameterization is given
in Table 10.4. The studied cUMDAs are those using the C25 neighborhood and
one or four strings per cell (called C25-1×1-20×20, and C25-2×2-10×10, re-
spectively), and these same two population structures with the neighborhood
C41: C41-1×1-20×20 and C41-2×2-10×10. All the algorithms have popula-
tions of 400 individuals. The selection method used is the truncation selection
(with τ = 0.5), applied into the local subpopulation pool. Finally, all the al-
gorithms implement a mutation step in order to introduce some diversity into
the population. Although it is not usual in EDAs, we apply this mutation due
to the good results obtained in some preliminary experiments. The proposed
mutation simply consists in flipping the genes of the newly generated indi-
viduals with probability 1/L (being L the length of the chromosome). The
termination criterion is either to find an optimal solution or to make 400,000
fitness function evaluations.

In order to get statistically significant results, we have made 100 runs for
each test, and computed the analysis of variance (ANOVA) or Kruskal-Wallis
tests for comparing our results (depending on whether the data follows a
normal distribution or not). For these statistical tests, we consider in this work
a significance level of 95% (p-value under 0.05). Both UMDA and cUMDA
are written in C++ and executed in a Pentium 4 2.4 GHz with Linux having
512 MB of RAM.

We present in Table 10.5 the percentage of runs in which the algorithms
found the optimal solution to the problems (success –or hit– rate). As it can
be seen, UMDA has difficulties for finding the optimum in the case of MTTP
(74% of the runs), and was not able to get it in any run for the IsoPeak
problem. Conversely, its four cellular versions studied here did not find any
difficulty for obtaining the optimal value for all the problems in every run
(100% of success rate).

Table 10.5. Success rate of UMDA and the four compared cUMDAs

Algorithm OneMax Plateau IsoPeak P-PEAKS MTTP

UMDA 100% 100% 0% 100% 74%
cUMDA C25-1×1-20×20 100% 100% 100% 100% 100%
cUMDA C25-2×2-10×10 100% 100% 100% 100% 100%
cUMDA C41-1×1-20×20 100% 100% 100% 100% 100%
cUMDA C41-2×2-10×10 100% 100% 100% 100% 100%



10.2 Cellular Estimation of Distribution Algorithms 151

Table 10.6. Function evaluations of UMDA and the four compared cUMDAs

Neighborhood OneMax Plateau IsoPeak P-PEAKS MTTP

UMDA 26072.0 18972.0 — 15040.0 169713.5
±463.2 ±1054.9 — ±1448.4 ±106624.5

cUMDA C25-1×1-20×20 23298.1 16337.8 176878.7 13461.0 14976.4
±382.8 ±584.9 ±36384.0 ±1650.0 ±1348.0

cUMDA C25-2×2-10×10 22037.6 14961.2 218190.0 34994.2 14418.1
±346.7 ±511.7 ±47518.1 ±13342.2 ±1116.7

cUMDA C41-1×1-20×20 22500.9 15454.9 176138.8 16915.1 14469.9
±361.1 ±510.1 ±41834.8 ±3091.6 ±981.4

cUMDA C41-2×2-10×10 21851.7 14773.6 253725.4 41795.3 14235.5
±340.3 ±469.2 ±58172.6 ±15362.1 ±1203.6

Test + + + + +

In Table 10.6 we present the average number of evaluations and the stan-
dard deviation needed by the five studied algorithms for solving the prob-
lems. In the last row of the table we present the p-values obtained in our
statistical tests when comparing all the algorithms for each problem. The ‘+’
symbol stands for statistical confidence in the comparison of the five algo-
rithms, i.e., the results of almost two of the compared algorithms are statis-
tically different. As an important result, the most efficient algorithm (lowest
number of evaluations) for every problem (bolded values) is always one of
the studied cellular versions of UMDA.

In Fig. 10.8 we graphically show the results of Table 10.6. It is easy to see
that the less efficient algorithm for all the problems is UMDA, with the excep-
tion of P-PEAKS. With respect to the different cellular versions of UMDA,
cUMDA C41-2×2-10×10 is the most efficient for three out of the five studied
problems (OneMax, Plateau, and MTTP), although it is the worst one for the
two other problems. However, the differences among the studied cUMDAs are,
in general, very low (no statistical confidence was found in the comparison of
the cUMDAs).

Fig. 10.8. Efficiency of the algorithms

Plateau Function

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51

No. of Generations

B
e
s
t

In
d

iv
id

u
a
l

UMDA

cUMDA-C25 -20x20-1x1

-20x20-1x1

Fig. 10.9. Evolution of the best fitness
value for Plateau



152 10 Other Cellular Models

Finally, in Fig. 10.9 we plot an example of the evolution of the best fit-
ness value for UMDA and the 4 proposed cUMDAs when solving the Plateau
problem. The value plotted in each generation is computed as the average of
100 executions. As can be seen, the two algorithms that converge earlier to
the optimum are the two cUMDAs with the population 2×2-10×10, which
show a similar behavior (almost indistinguishable), as we previously obtained
in the analysis of the takeover time. The slowest of the studied algorithms for
this problem is UMDA, which finds more difficulties than the cUMDAs for
avoiding local optima and converge to the global optimum due to its higher
selection pressure.

10.3 Conclusions

As a complement to the previous chapters, we present in this chapter two
more new families of cellular evolutionary algorithms. The first one is the so
called hierarchical cGA, or H-cGA. In H-cGAs, we included the idea of es-
tablishing a hierarchy among the individuals of the population of a canonical
cGA. With this hierarchical model we achieve different levels of the explo-
ration/exploitation tradeoff of the algorithm in distinct zones of the popula-
tion simultaneously. We studied these specific behaviors at different hierarchy
levels by examining the respective takeover rates. Additionally, we have com-
pared the H-cGA with two different selection methods to the equivalent cGAs
and the hierarchical algorithm performed better on almost all test functions.
The newly proposed dissimilarity selection was not useful in all the scenar-
ios since it promotes diversity into the population but, as a consequence, the
convergence is usually slower.

In the second part of this chapter we have investigated an algorithm from
a new class of decentralized EDAs, called cellular EDA, based on the func-
tioning of other existing cellular EAs. Four approaches based on UMDA, a
simple EDA, have been tested. As a result, the comparison between the four
new cUMDAs and UMDA reports very advantageous results for the cellular
models, since UMDA (centralized) is, in general, the worst algorithm both in
terms of efficacy (success rate) and efficiency (number of evaluations to reach
an optimum) for all the problems.



11

Software for cGAs: The JCell Framework

Object-oriented programming is an exceptionally bad
idea which could only have originated in California.

Edsger Dijkstra (1930 - 2002) – Mathematician

A new object oriented framework, called JCell, has been built along with the
works carried out for this book. This framework implements most of the new
algorithmic models addressed in this book, and also the problems studied.
Our purpose for the development of JCell is twofold. Firstly, we provide a
tool for easily reproducing the reported results in this book with a really low
effort. Secondly, we intend to provide the scientific community with a large
object oriented library for working with cEAs and the most recent advances
in this field. For this objective, we consider it is mandatory to make an un-
derstandable and easy to use code, and thus much attention has been paid to
the design of JCell.

Currently, only GAs have been implemented in JCell, but it is very easy
and intuitive to extend it with some other kind of EA, as we will see along this
chapter. Thus it is really easy to migrate all the algorithmic improvements
proposed in this book to other fields of evolutionary computation with a low
effort. Additionally, several population structures are implemented in JCell, so
it is possible to configure both traditional panmictic (generational and steady
state) and decentralized (cellular and islands) EAs. This allows to easily make
studies of the advantages of using the structured cellular populations versus
other models.

JCell is freely available at http://neo.lcc.uma.es/Software/JCell.
This chapter has the following structure; in Sect. 11.1 we describe the de-

sign of JCell, while in Sect. 11.2 a brief handbook of the using of the framework
is presented. Finally, we conclude in Sect. 11.3.

11.1 The JCell Framework

We present in this section JCell. As it is said hereinbefore, JCell is a generic
framework for working (mainly) with cGAs, containing the last advances in
the field of cellular algorithms. In addition to the cGA, JCell implements two
panmictic algorithms, as the generational and the steady state GAs, and a

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 11, © Springer Science+Business Media, LLC 2008



154 11 Software for cGAs: The JCell Framework

EvolutionaryAlg

GenerationListener

Fig. 11.1. Brief description of JCell object oriented design

sequential version of a GA having the population structured in islands. The
use of JCell is very easy, since it is only required the manipulation of a simple
configuration file. JCell allows the user to work in combinatorial optimiza-
tion problems, integer programming, continuous optimization, or even multi-
objective environments, all this with or without constraints. Moreover, most
of the new algorithmic models addressed in this book are also implemented
in JCell.

We consider JCell a really interesting and useful tool for future research,
since it allows the combination of all the new promising techniques developed
in this book. Additionally, its careful design following the software engineering
recommendations provides an intuitive code, allowing the user to easily make
modifications and/or add new features to the framework.

JCell is implemented in Java [1, 82]. We selected an object oriented lan-
guage because it provides an easier and simpler design of our framework,
what facilitates to be used by other researchers. Moreover, if we use an ob-
ject oriented language, we can benefit from characteristics as the easy code
reutilization, the inheritance, the overload or the polymorphism. All these
features allow us to develop a clear code with a simple design. Among the
object oriented languages we chose Java basically because of its portability
(which is a very important feature for the high diffusion JCell is intended to
have), and also to the large variety of frameworks available, what makes the
programming task easier. The portability of Java is possible because it is a
semi-interpreted language, and thus for running a Java program in any kind
of computer it is only required to have the Java Virtual Machine –the Java
interpreter– installed. JCell is compatible from version JDK 1.5 ahead.

In Fig. 11.1 we show a summarized UML diagram describing the design of
JCell. The class JCell is the main class of our frame, as it contains the main()
method for executing the algorithm. JCell implements the GenerationListener



11.1 The JCell Framework 155

interface, which has a single declaration of function (called generation()). This
interface is used for communicating the class which performs the reproductive
cycle of the GA (EvolutionaryAlg) and JCell: after each generation, Evolution-
aryAlg calls the function generation() of JCell. In this way, the programmer is
able to obtain any information of the algorithm in each generation, or even
to perform any change during the execution for obtaining easily variations on
the implemented GAs.

JCell contains ReadConf, which is in charge of reading all the required
parameterization from the configuration file, and set the corresponding values
to the parameters of EvolutionaryAlg. Thus, the first thing we have to do when
using this framework in our program must be a call to ReadConf with the path
to a configuration file wherein the desired parameterization of the algorithm
is given. The structure of this configuration file is described in Sect. 11.2.

One of the most important classes of JCell is EvolutionaryAlg. As it can
be seen, it is a generic class for the design of evolutionary algorithms. In this
class all the information the algorithm needs for executing is stored, as the
population, the genetic operators and their probabilities of application, the
synchronous or asynchronous individuals update, the number of generations
(and evaluations) performed, the termination condition of the algorithm, the
algorithmic model to use (multi-objective, hierarchical, or adaptive are the
ones currently implemented), etc. In the following paragraphs we describe
the classes referenced by EvolutionaryAlg: Population, Neighborhood, Problem,
Operator, and Statistics, besides GenerationListener, which was previously com-
mented.

Population contains a linear list of Individual objects, besides the methods
which implements the operations the EAs need to do on the population, as
obtain or insert an individual, create a new population, etc. Individual is the
class of JCell implementing a generic individual of an EA, providing the main
operations usually performed on individuals (obtain and set the fitness value,
the values of its genes, etc.). The genes of the chromosome of Individual are
of Object type, and depending on the genotype information hold by the indi-
vidual (G = {g1, g2, . . . , gl}, being l the length of the chromosome), it can be
instantiated as:

• BinaryIndividual. Class which inherits from Individual where the chromo-
some is composed by logic values (in Java, objects of Boolean type). This
type of individuals is used in combinatorial optimization problems.

• RealIndividual. This class was created for the case of numeric optimiza-
tion. The genes are real numbers (type Double of Java), and inherits from
Individual.

• IntegerIndividual. As it happens in the two previous classes, IntegerIndividual
inherits from class Individual. In this case, the genes are integer numbers
(class Integer).



156 11 Software for cGAs: The JCell Framework

Table 11.1. Individuals implemented in JCell

Class Genotype Inherits from

BinaryIndividual G = B
l Individual

RealIndividual G = R
l Individual

IntegerIndividual G = N
l Individual

HeterogeneousIndividual G = (B ∪ R ∪ N)l Individual
PermutationIndividual G = N

l; gi �= gj , 0 ≤ i, j ≤ l IntegerIndividual

• HeterogeneousIndividual. This class inherits from Individual as the previous
ones, and in this kind of individual it is allowed to have in its chromosome
genes of different types.

• PermutationIndividual. It is an IntegerIndividual where the values of the
genes are a permutation of integer numbers, so two genes can not have the
same value in a chromosome.

A summary of the different kinds of individuals available in JCell is given
in Table 11.1. Particularly, it is given, for each type of individual available,
the class it belongs to, the composition of the genotype, and the class it
inherits from. The fitness value of an individual is an array of Double objects.
This array has length 1 when we are solving problems with only one function
to optimize, and n in the case of multi-objective optimization (n being the
number of objectives).

As it was already explained, one distinguishing feature of cellular EAs is
that the population is structured by establishing some neighboring relations
to the individuals in the population. Thus, Neighborhood is a generic class for
obtaining the neighbors of a given individual, and therefore any specific neigh-
borhood to be implemented in JCell must inherit from this class. Specifically,
the Linear5, Compact9, and Compact13 neighborhoods are implemented in
JCell. We should remark that class Neighborhood can be used for defining any
neighborhood structure in the population, so it use must not be restricted
only to the cellular case. On the other side, in the case of panmictic EAs, as
the steady state and the generational ones, there is not any neighborhood, as
the parents are chosen among all the individuals belonging to the population
(the population is not structured).

Problems in JCell must be implemented as a subclass of Problem. This
class is generic enough for allowing the use of problems belonging to such
different fields like combinatorial, continuous, integer programming, or even
multi-objective optimization. Additionally, the use of constraints is possible in
any of the previous problem domains, and the variable values can be restricted
to a given interval for each gene of the chromosome. A subclass of Problem
must contain every information needed about the considered problem, such
as the fitness function, the number of variables, which can be different to the
length of the chromosome (since it is possible to code one variable with more
than one gene), the number of constraints, the best known fitness value to the
problem (only for single-objective optimization), and the interval of allowed
values for each gene.



11.1 The JCell Framework 157

An EvolutionaryAlg object has a pool of Operator objects. This generic
class is used for implementing all the EA operators, i.e., the selection method
for each of the parents, the recombination and mutation operators, the (op-
tional) local search step, and the replacement policy for the newly generated
individuals.

At every generation, the algorithm uses a Statistics object in order to
obtain some statistics of the current execution. Computing basic statistics is
rarely found in the codes of other authors, but we consider it is an essential
step for the work and monitoring of the algorithm. In fact, it is possible
to use some kind of statistical descriptors in some of the new algorithmic
improvements we compile in this book, e.g., to guide an adaptive search (as
we previously saw in Chap. 6).

Additionally, the class EvolutionaryAlg contains an abstract method (called
experiment()) which applies the reproductive cycle of the EA. Only extend-
ing this abstract method, we define the classes SSGA and GenGA in order
to implement steady state (an individual is updated in each generation) and
generational (all the individuals are updated in each generation) GAs. There-
fore, for extending JCell with any other kind of EA, we only have to define
a new class which inherits from EvolutionaryAlg and which implements the
reproductive cycle of the new desired EA. Once we have done that, we can
use, in our new EA, the already implemented models in EvolutionaryAlg, as
the multi-objective, the adaptive or the hierarchical ones, with no effort.

The cGA is implemented with the class CellularGA, which inherits the
properties from GenGA (since in both cases the hole population is updated in
each generation) and also sets the neighborhood structure inside the popula-
tion. Particulary, for implementing a cGA in the class CellularGA we need to
extend GenGA with:

• An structured population. Population does not set any structure be-
tween the individuals of the population, what is just a list of individuals
without any particular order. Hence, it was necessary to implement a new
class for the cellular model, called PopGrid, which inherits from Popula-
tion and sets an structure on the list of individuals of Population so that
a position of a bidimensional grid is assigned to each individual. In our
framework it is easy to use other topologies for the population, as the small-
world recently proposed for cGAs in some works [101, 203]. For that, it is
only necessary to create a class inheriting from Population and setting the
desired relation between the individuals.

• A neighborhood. The class Neighborhood was implemented for obtain-
ing the neighborhood of a given individual. Nowadays, there exist three
classes inheriting from Neighborhood for implementing three of the most
known neighborhoods in JCell. These classes are Linear5, Compact9 and
Compact13 for the L5, C9 y C13 neighborhoods, respectively (see Chap. 1
for more details about neighborhoods). Adding a new neighborhood is as



158 11 Software for cGAs: The JCell Framework

easy as creating a new class inheriting from Neighborhood and setting the
desired neighborhood structure.

• Visiting order of the individuals. As it was said in Chap. 1, there ex-
ist some different update policies for cGAs. The use of a synchronous
or asynchronous update is established in a variable of class Evolution-
aryAlg, whereas the order in which the individuals are visiting is taken
from the abstract class CellUpdate. There exist four different update poli-
cies in JCell: Line Sweep, Fixed Random Sweep, New Random Sweep, or
Uniform Choice. The distinction among these four policies only has sense
in the asynchronous case, as in the synchronous one the individuals are up-
dated simultaneously. Therefore, the synchronous cGA can be configured
with any of these four policies, excepting the uniform choice so that, as it
was commented in Chap. 1, in this policy, maybe, not all the individuals
are updated in a giving generation.

There is also a static class called Target which holds a boolean variable,
called maximize, for storing whether the algorithm is maximizing or minimiz-
ing. Additionally, this class is used for making all the comparisons between
individuals, deciding in terms of the value of variable maximize which one
is the best solution to the problem. Thus, all the comparisons between indi-
viduals and fitness values are a black box for the rest of classes of JCell, so
these classes call the same method of Target independently of maximizing or
minimizing, if we are holding constraints or not, or even if we are solving a
single-objective or multi-objective problem. In this last case, the terms better
or worse are not directly applied, the concepts of dominating (considered as
better), dominated (worse), and non-dominated (non-worse) individuals are
used instead in the comparisons inside Target.

11.2 Using JCell

The easiest way for configuring the parameters setting of an EA when working
with the JCell framework is to define all the desired parameterization into
a simple configuration file. This option, provided by the ReadConf class, has
clear advantages, since the user does not need to know the inner details of JCell
codification, like the variable names and their data types. Additionally, we can
easily change both the parameter settings of our EA and the algorithm itself
without the need of compiling the code. These features make our framework
accessible to those researchers belonging to any other field, who do not want
to discard the usage of a newly optimization technique for their researches,
since it is not needed to have any knowledge in programming languages for
using JCell. The only thing they have to do is to edit the configuration file
for setting the parameterization and then run the JCell.class file.



11.2 Using JCell 159

Fig. 11.2. Configuration file example for
solving ECC with an asynchronous cGA

Fig. 11.3. Configuration file example
for solving the multi-objective problem
Fonseca with a steady state GA

Therefore, using this kind of configuration file, the functionality and the
easy of use of JCell is highly strengthened. This is a really important issue for
its success and acceptance by the scientific community. The configuration file
is composed of pairs:

Parameter Name = Parameter Value

In Figs. 11.2 and 11.3 we show two examples of configuration files for JCell.
Lines starting with # are comments. The file shown in Fig. 11.2 is a typical
configuration for a cGA (Algorithm = cellular), in which the visiting or-
der of individuals in the breeding loop is defined by an asynchronous fixed



160 11 Software for cGAs: The JCell Framework

random sweep policy (UpdatePolicy = Asynchronous FRS), and the pop-
ulation shape is set to 20 × 20 individuals (Population = (20, 20)). The
evolution of the individuals in the population is graphically displayed during
the execution (ShowDisplay = true), being updated every generation, and
JCell will print on the standard output some significative information of the
evolution of the population during the run (Verbose = true). The problem
we want to solve is the combinatorial optimization ECC problem (Problem =
problems.Combinatorial.ECC), whose class is implemented in the package
problems.Combinatorial of JCell. The termination condition of the algo-
rithm is to find the optimal solution to the problem (which is given in the
class implementing the problem), or to reach a maximum of 1 million fit-
ness function evaluations (EvaluationsLimit = 1000000). The chromosome
of individuals must be composed by binary genes for solving the selected com-
binatorial optimization problem (Individual = jcell.BinaryIndividual),
and the neighborhood structure we want to use is Linear5 (Neighborhood
= jcell.Linear5), from which one the parents will be selected by a binary
tournament (SelectionParent2 = jcell.TournamentSelection).

The other parent (which will be selected firstly) is the current individ-
ual itself (SelectionParent1 = jcell.CenterSelection). The two selected
parents are never allowed to be the same individual in JCell. The two point re-
combination operator (Crossover = operators.Dpx) is applied to these two
parents with probability 100% (CrossoverProb = 1.0), and the newly gen-
erated offspring is always mutated (MutationProb = 1.0) using the binary
mutation operator (Mutation = operators.BinaryMutation). The genes of
the chromosome are mutated with probability 1/L, being L the length of
the chromosome. Finally, the offspring replaces the current individual in the
population only if it has a better (or equal) fitness value (Replacement =
jcell.ReplaceIfNonWorse).

In Fig. 11.3 we can see how easy is to run a steady state multi-objective
GA with JCell just by changing a few key parameters in the previously
explained configuration file (shown in Fig. 11.2). Just by changing the
Algorithm key to steady state we get a steady state GA. The popula-
tion in a panmictic algorithm (both steady state and generational) is a pool
of individuals, and thus it has no structure nor a concrete shape. There-
fore, we directly set the population size in this file instead of its shape
(Population = 400). The problem we want to tackle is the so called Fon-
seca problem (Problem = problems.MO.Foseca), and the maximum number
of fitness function evaluations is set to 25000. Fonseca problem requires a
codification of Double genes for representing the variables (Individual =
jcell.RealIndividual), and thus we have to use proper recombination and
mutation operators for this kind of chromosome representation: simulated bi-
nary (Crossover = operators.SBX) and non uniform mutation (Mutation
= operators.NonUniformMutation), respectively. Finally, the neighborhood
does not need to be specified (it would be ignored if it were specified) since



11.2 Using JCell 161

Table 11.2. Main configuration parameters of JCell

Parameter Values Comments

Algorithm
cellular Cellular GA
generational Generational GA
steady state Steady state GA

UpdatePolicy

Synchronous Synchronous cGA
Asynchronous LS Async. cGA. Line Sweep Policy
Asynchronous FRS Async. cGA. Fixed Random Sweep Policy
Asynchronous NRS Async. cGA. New Random Sweep Policy
Asynchronous UC Async. cGA. Uniform Choice Policy

Population
(x,y) cGA with a x × y population
N Panmictic GA with population size of N

ShowDisplay {true|false} Graphically show or not the
evolution of the population

Verbose {true|false} Show or not the execution traces
in the standard output

EvaluationsLimit N Set maximum allowed evaluations to N

Neighborhood
jcell.Linear5 The neighborhood of the cGA is L5
jcell.Compact9 The neighborhood of the cGA is C9
jcell.Compact13 The neighborhood of the cGA is C13

HierarchycalPop {true|false} Use or not a hierarchical population

AdaptivePop
adaptiveCGA.AF Adaptive pop. Diversity measure: AF
adaptiveCGA.PH Adaptive pop. Diversity measure: PH
adaptiveCGA.AFPH Adaptive pop. Diversity measure: AF+PH

CrossoverProb N Set recombination probability to N

MutationProb N Set individual mutation probability to N

SelectionParent1
jcell.TournamentSelection Binary tournament selection
jcell.RouleteWheelSelection Roulette wheel selection

and jcell.CenterSelection Current individual selection

SelectionParent2
jcell.BestSelection Best individual of the neighborhood
jcell.LinearRankSelection Linear ranking selection

Replacement
jcell.ReplaceIfNonWorse Replace if offspring is not worse
jcell.ReplaceIfBetter Replace if offspring is better
jcell.ReplaceAlways Replace always

ArchiveManagement
CMoEA.Crowding The archive is managed using crowding
CMoEA.AdaptiveGrid The archive is managed using adaptive grid

Crossover see Table 11.3 Recombination operator
Mutation see Table 11.4 Mutation operator
Problem see Table 11.5 Problem to solve

the whole population will be considered as the neighborhood for the steady
state GA.

Finally, the main parameters you can use in the configuration file of JCell
are briefly explained. In Table 11.2 we show some of the most important
configuration parameters for JCell, their possible values and a concise expla-
nation of their meaning. Some examples of these parameters are the kind of
the algorithm to use, the mutation and recombination operators and their
probabilities, the parents selection operators, or the replacement policy. As
it was previously said, for configuring a parameter it is necessary to write in
the configuration file, for the desired parameter, the name which appears in
the column Parameter, a symbol “=” and one of the possible values of the
column Values.

The different kinds of available recombination and mutation operators in
JCell, as well as the implemented problems, are shown in Tables 11.3, 11.4,
and 11.5. Tables 11.3 and 11.4 show the available recombination and muta-
tion operators in JCell, respectively, and also the name of the operator they



162 11 Software for cGAs: The JCell Framework

Table 11.3. Available recombination operators in JCell
Class Operator name Comments and parameters
operators.Ax Asymmetric crossover For real genotype individuals;

pBiasAX = 0.5
operators.BLXalpha Blend crossover For real genotype individuals;

AlphaBLX = 0.5
operators.Dpx Two point crossover For all kind of individuals
operators.DX Discrete crossover For real genotype individuals
operators.ELX Extended line crossover For real genotype individuals
operators.Erx Axis recombination cross. For permutation of integer chromosomes
operators.FX Plain crossover For real genotype individuals
operators.LBGAX Linear BGA crossover For real genotype individuals
operators.LX Linear crossover For real genotype individuals
operators.OX Ordered crossover For permutation of integer chromosomes
operators.PBX Parents-centric crossover For real genotype individuals

AlphaPBX = 0.8
operators.Pmx Partially matched crossover For permutation of integer chromosomes
operators.PNX Normal Parents-centric cross. For real genotype individuals

LambdaPNX = 0.35
RoPNX = 2.0

operators.Px Probabilistic crossover For all kind of individuals
pBiasPX = 0.5

operators.SBX Simulated binary crossover For real genotype individuals
distributionIndexSBX = 20.0

operators.Spx One point Crossover For all kind of individuals
operators.WHX Wright heuristic crossover For real genotype individuals

Table 11.4. Available mutation operators in JCell
Class Operator name Comments and parameters
operators.BinaryMutation Binary mutation For binary genotype individuals
operators.CauchyMutation Cauchy mutation For real genotype individuals

deviationCM = 1.0
operators.FloatUniformMutation Uniform mutation For real genotype individuals
operators.FloatNonUniformMutation Non uniform mutation For real genotype individuals
operators.GaussianMutation Gaussian mutation For real genotype individuals

deviationGM = 1.0
operators.MuhlenbeinMutation Mühlenbein mutation For real genotype individuals
operators.PolynomialMutation Polynomial mutation For real genotype individuals

distributionIndexPM = 20.0

Table 11.5. Problems included in JCell

Class Comments
problems.MO.Constr Ex Multi-objective; Real Codification
problems.MO.Fonseca Multi-objective; Real Codification
problems.MO.Golinski Multi-objective; Real Codification
problems.MO.Kursawe Multi-objective; Real Codification
problems.MO.Schaffer Multi-objective; Real Codification
problems.Combinatorial.COUNTSAT Binary Codification
problems.Combinatorial.ECC Binary Codification
problems.Combinatorial.FMS Binary Codification; Coded variables with 32 bits
problems.Combinatorial.MAXCUT Binary Codification; Instances 100, 20.01 and 20.09
problems.Combinatorial.MMDP Binary Codification
problems.Combinatorial.MTTP Binary Codification; Instances of 20, 100, and 200 vars.
problems.Combinatorial.OneMax Binary Codification; 500 variables
problems.Combinatorial.PEAK Binary Codification
problems.Continuous.Ackley Real Codification
problems.Continuous.Chebyschev Real Codification
problems.Continuous.EF10 Real Codification
problems.Continuous.FMS Real Codification
problems.Continuous.Griewangk Real Codification
problems.Continuous.Rastrigin Real Codification
problems.Continuous.Rosenbrock Real Codification
problems.Continuous.Schwefel Real Codification
problems.Continuous.Sle Real Codification
problems.Continuous.Sphere Real Codification



11.3 Conclusions 163

implement and some comments, as well as specific configuration parameters
of each operator, if they have. The default values used for these parameters
are those shown in the two tables. Finally, all the available problems are given
in Table 11.5 the Java package where they can be found plus some comments
such us the codification used. In Appendix A, a complete description of the
problems is provided.

11.3 Conclusions

In this chapter we have presented and described JCell, a Java li-
brary specially targeted to program cGAs. It is publicly available at
http://neo.lcc.uma.es/software/jcell. JCell is itself an important re-
sult related to the knowledge in this book, as it is a powerful optimization
tool for other researchers since they can use it in their studies. Moreover,
JCell allows to a specialized researcher in the field of evolutionary algorithm
to deepen with very little effort in the studies performed here, to develop new
studies based on cellular evolutionary algorithms, or even to export the new
proposed ideas in this book to other fields.



Part IV

Applications of cGAs



12

Continuous Optimization

The good is, like Nature, an immense landscape
in which Man advances through centuries of exploration.

José Ortega y Gasset (1883 - 1955) – Philosopher

In the previous chapters we have presented several new algorithmic models,
and their performance have been tested on academical benchmarks. Now, we
turn to demonstrate (in this chapter and the following ones) the high suit-
ability of some of the studied cellular EAs when they are applied to immense
landscapes. Thus, we solve here a large benchmark of problems in the contin-
uous domain, while in the following three chapters we tackle with our cGAs
three very complex real-world problems belonging to different domains. The
main goal in this part of the book is to show that all these ideas are useful in
practice, not just nice abstractions.

In Sect. 12.1 of this chapter we briefly justify the study done here. Later,
we present in Sect. 12.2 the results obtained, the parametrization of the al-
gorithm, and a comparison of our results versus those of other algorithms be-
longing to the state of art for the same problems. Finally, we end in Sect. 12.3
by summarizing our main conclusions.

12.1 Introduction

In Chap. 4 we performed a first approximation for the application of cGAs to
the continuous domain. In that chapter, a cGA using arithmetic recombination
(AX) and a uniform mutation (UM) is applied to three problems in which the
variables were represented by real variables (the Rastrigin, Ackley, and Fractal
functions), with promising results. The motivation for this chapter is to deepen
in the study of the behavior of cGAs when solving real-codified problems. For
that we selected a large benchmark commonly used in the literature which is
composed of problems with a larger size (and more complexity) than the ones
used in Chap. 4. The obtained results are compared to several best known
approaches in the literature. One of the main contributions of this chapter is
the improvement in the results showed in Chap. 4; moreover, our algorithm,
a canonical cGA which implements two very well known recombination and
mutation operators, obtains really competitive results, or even better in many
cases than the (complex) algorithms compared, belonging to the state of art
in continuous optimization.

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 12, © Springer Science+Business Media, LLC 2008



168 12 Continuous Optimization

Table 12.1. Parameterization

Population size 144 individuals (12× 12)
Neighborhood NEWS
Parent selection Binary tournament + binary tournament
Recombination BLX-α; α = 0.5
Recombination probability pc = 1.0
Mutation Non-uniform mutation
Mutation probability pm = 1/(2 · n)
Replacement Replace if Better
Stop condition 800000 fitness evaluations

12.2 Experimentation

In this section we present the results of solving a large benchmark of numeri-
cal optimization problems with JCell (our cGA) and compare them to those
of other state-of-the-art algorithms. The benchmark used in our study is the
same proposed in [127], just for easily comparing our algorithm to others be-
longing to te state of art in this field. This set of problems is composed of
6 classic academic and well-known functions (Griewangk, Rastrigin, Rosen-
brock, Schwefel, Sphere, and ef10), and three additional problems taken from
the real world (FMS, SLE, and Chebyschev). All these problems are described
in Apendix A. The selected (minimization) problems are defined by really di-
verse characteristics (linearity, multimodality, scalability, convexity, etc.), and
they allow us to compare our canonical cGA to other algorithms in the lit-
erature. Therefore, we consider this benchmark wide and diverse enough for
sustaining our statements when evaluating the algorithmic approaches (where
the compared algorithms are presented).

In this work we use the same parametrization for all the problems. As
it can be seen in Table 12.1, we use a population of 144 individuals, in a
bidimensional grid of 12 × 12 cells. The neighborhood used is NEWS, from
where two parents are chosen by using binary tournament (we force them to
be different).

Offsprings are obtained by applying the blend recombination operator,
BLX-α [86] (with α = 0.5), to the two selected parents. The offspring z
generated by BLX-α is composed of genes zi randomly (uniformly) cho-
sen from the interval [min(xi, yi) − I · α, max(xi, yi) + I · α], where I =
max(xi, yi) − min(xi, yi), being xi and yi the ith genes of the two parents
x and y, respectively. This recombination is accomplished with probability
pc = 1.0, and we apply the non-uniform mutation operator to the resulting
offspring, considered one of the most suitable ones for real-coded GAs [128].
This mutation operator is applied to the alleles of the offsprings with proba-
bility pm = 1/(2 ·n), where n is the size of the problem (length of the chromo-
some), and mutates them using a non uniform distribution, which step size
decreases as the execution advances. Thus, it makes an uniform search in the
initial space (exploration stage) and very locally at a larger stage, favoring



12.2 Experimentation 169

Table 12.2. Computational results. Best solutions obtained

Alg. ffms fGri fRas fRos fSch fSph fef10 fSLE fCheb
JCell 4.47e-27 90% 80% 1.33e0 9.28e-161 1.72e-158 90% 26% 1.28e3
pm = 2

n 2.95e-27 78% 72% 1.37e1 1.57e-036 8.14e-037 4.38e-17 50% 1.25e3
pm = 1

n 9.14e-27 80% 68% 9.87e-2 1.63e-101 6.89e-098 2.20e-56 30% 1.26e3
α = 0.25 1.38e-04 3.04e-4 7.32e-5 1.75e1 2.31e-005 6.44e-008 1.58e-08 66% 1.29e3
α = 0.75 3.51e-36 48% 80% 4.538e-3 1.32e-100 4.45e-098 1.91e-71 42% 1.17e3
pc =0.50 4.46e-07 2% 2.92e-7 9.92e-1 8.52e-030 6.34e-023 1.34e-06 14% 1.23e3
pc =0.75 1.25e-18 60% 40% 1.39e0 4.51e-134 1.30e-130 6.60e-80 50% 1.28e3

local exploitation. Finally, we use an elitist replacement policy (replace if bet-
ter), in which the offspring replaces the current individual in the population
of the next generation only if it is better (lower fitness value). The algorithm
stops after performing 800000 evaluations, the same condition used in [127].

For the experiments in this paper, 50 independent runs were made for
every problem and algorithm. In order to obtain statistical significance in
our comparisons we perform ANOVA or Kruskal-Wallis tests on the results
(depending on whether the data are normally distributed or not, respectively).
The normality of the data distribution is checked by using the Kolmogorov-
Smirnov test. Matlab(c) was used for this statistical significance study.

12.2.1 Tuning the Algorithm

We proceed in this section to adjust the values for some parameters of the
cGA in order to improve the behavior of the algorithm as much as possible.
The base parameterization is that described in Table 12.1 (algorithm JCell),
and we test the algorithm with two different mutation probabilities (pm = 2/n
and pm = 1/n), two different values for α (α = 0.25 and α = 0.75), and two
recombination probabilities (pc = 0.5 and pc = 0.75). The best values obtained
for every problem with the 7 cGAs are shown in Table 12.2. If the global
optimum (the exact 0.0 value, with no error) has been located throughout
some runs, we will present the percentage of runs in which this happens (in
this case, a ‘%’ symbol appears just after the figure in the table). Additionally,
the average obtained results, together with their typical deviations, are given
in Table 12.3. The best values in the two tables for each problem are bolded.

Regarding Table 12.2, we can see that JCell (using the parameterization
of Table 12.1) is the most accurate of the studied settings since it obtains the
best results for 6 out of the 9 tested problems. Additionally, JCell also obtains
the best overall behavior in terms of the average fitness values found in the
50 runs (4 out of the 9 problems), as it can be seen in Table 12.3. In the other
5 problems, the results reported by JCell have the same order of magnitude
as the best value of the compared cGAs, with the exception of fSle. There
exists statistical confidence in the results of the compared cGAs for all the
problems.



170 12 Continuous Optimization

Table 12.3. Computational results. Average solutions

Alg. ffms fGri fRas fRos fSch fSph fef10 fSLE fCheb

JCell
9.06e0 2.38e-3 2.73e-5 1.78e1 6.58e-158 1.50e-154 1.37e-3 4.32e-10 1.39e3

±6.65e0 ±4.75e-3 ±9.30e-6 ±1.09e1 ±2.18e-157 ±5.47e-154 ±5.80e-3 ±2.36e-09 ±4.80e1

pm = 2
n

2.11e0 3.04e-3 9.11e-5 2.37e1 7.52e-035 2.17e-034 1.14e-2 1.57e-05 1.41e3
±4.57e0 ±6.12e-3 ±2.82e-4 ±1.38e1 ±1.12e-034 ±5.13e-034 ±2.97e-2 ±1.11e-04 ±6.14e1

pm = 1
n

4.07e0 3.53e-3 7.31e-6 2.14e1 2.30e-098 1.22e-095 4.83e-3 4.84e-10 1.40e3
±5.79e0 ±5.40e-3 ±2.97e-5 ±1.36e1 ±9.13e-098 ±4.25e-095 ±1.15e-2 ±3.42e-09 ±5.84e1

α = 0.25
7.66e0 1.54e-2 4.92e-4 2.27e1 9.67e-002 2.09e-006 9.68e-2 2.38e-05 1.42e3

±6.49e0 ±1.37e-2 ±5.04e-4 ±7.45e0 ±9.67e-002 ±1.72e-006 ±1.05e-1 ±1.69e-04 ±5.71e1

α = 0.75
7.75e0 8.78e-3 3.17e-5 1.13e1 2.87e-097 4.87e-095 3.85e-3 1.78e-14 1.38e3

±7e0 ±1.04e-2 ±9.90e-5 ±1.35e1 ±8.31e-097 ±2.68e-094 ±9.98e-3 ±1.68e-14 ±6.65e1

pc = 0.50
7.98e0 8.96e-3 1.01e-4 3.30e1 1.84e-003 2.73e-008 2.96e-1 4.47e-05 1.39e3

±7.01e0 ±1.28e-2 ±1.34e-4 ±2.67e1 ±1.07e-002 ±8.18e-008 ±4.96e-1 ±2.96e-04 ±6.15e1

pc =0.75
9.41e0 6.81e-3 2.85e-5 2.67e1 2.16e-010 2.65e-014 3.38e-2 1.49e-07 1.39e3

±7.46e0 ±9.7e-3 ±8.53e-5 ±2.07e1 ±1.53e-009 ±1.87e-013 ±5.81e-2 ±8.85e-07 ±4.69e1

Test + + + + + + + + +

Table 12.4. Computational results. Average execution times (seconds)

Alg. ffms fGri fRas fRos fSch fSph fef10 fSLE fCheb

JCell
132.79 7.39 9.63 24.87 22.43 18.31 24.93 10.41 540.96

±2.90 ±7.70 ±5.46 ±0.22 ±0.20 ±0.18 ±0.37 ±5.63 ±1.05

pm = 2
n

140.17 15.97 19.08 24.69 23.49 19.26 27.16 7.35 484.21
±1.69 ±4.45 ±2.65 ±0.34 ±0.16 ±0.16 ±0.13 ±4.14 ±0.82

pm = 1
n

137.74 9.87 11.94 29.61 26.97 17.70 27.13 7.70 565.67
±2.71 ±0.18 ±0.11 ±0.21 ±0.25 ±0.14 ±0.25 ±4.40 ±1.78

α = 0.75
135.68 11.84 10.60 29.73 25.84 17.47 26.40 6.88 564.40
±3.58 ±8.13 ±6.06 ±0.54 ±0.14 ±0.19 ±0.07 ±3.96 ±1.89

pc = 0.50
135.57 17.86 17.52 27.03 23.47 14.97 23.72 7.40 562.64
±3.35 ±2.75 ±0.10 ±0.41 ±0.11 ±0.11 ±0.21 ±2.41 ±1.33

pc =0.75
139.05 11.11 14.63 28.24 25.14 16.21 24.22 7.07 563.36
±2.97 ±8.16 ±5.40 ±0.47 ±0.14 ±0.22 ±0.64 ±4.50 ±2.34

Test + + + + + + + + +

From Tables 12.2 and 12.3 we can see that changing the probabilities of
recombination and mutation, and the value of α from the parameterization of
the algorithm proposed in Table 12.1 does not lead us to improve the behavior
of the algorithm, in general. The most noticeable improvements are those of
fRos and fSle when using α = 0.75, and ffms when increasing the mutation
probability to 2/n. From these three cases, only ffms with pm = 2/n is better
than JCell with statistical confidence. Hence, we conclude that JCell is the
best one of the proposed algorithms and thus we select it for our comparisons
with other approaches in the literature in the next section.

In order to make a deeper study of the proposed algorithms, we also in-
clude a comparison on the average run times (in seconds) performed by the
algorithms for the proposed problems in Table 12.4 (the best –lower– result
for each problem is bolded). As it can be seen, there exist statistically signif-
icant differences for every problem in the reported values. Thus, JCell is the
fastest of the compared algorithms for 4 out of the nine problems (statistical
differences were found for ffms, fGri, and fSch), while there exist algorithms
faster than JCell with statistical significance in only 3 out of all the studied
problems (fSph, fef10 , and fSle). The most important differences in the values



12.2 Experimentation 171

Fig. 12.1. Structure of the gradual distributed real-coded GA

reported in Table 12.4 are due to the distinct hit rates obtained, since the al-
gorithm stops before reaching 800000 evaluations when the optimum is found.
As an example, JCell is between 2 and 3 times faster than the algorithm with
α = 0.25 when the optimal solution is found by the two algorithms, what is
contradictory to the results of Table 12.4, reporting 10.41 seconds for JCell
and 5.65 seconds for the other algorithm (with α = 0.25) in average. The
reason is that the latter finds the optimum in 66% of the runs while the hit
rate of the former is only 26% (see Table 12.2).

12.2.2 Comparison with Other Algorithms

In this section we compare JCell with other algorithms belonging to the state
of the art in continuous optimization. These algorithms are the gradual dis-
tributed real-coded GAs proposed in the work of Herrera and Lozano [127].
The problems studied in that work are the same as in our benchmark, as well
as the dimension of the search space used for each problem. (10 variables for
fef10 and 25 for the rest of the problems.) Additionally, the termination con-
dition of these compared algorithms is the same used in this work: achieving
800000 fitness function evaluations or finding the optimal solution.

The three compared algorithms [127] are heterogeneous distributed real-
coded GAs differing in the recombination operator used. They are based on
an hypercube topology with three dimensions and there is a panmictic pop-
ulation of 20 individuals in each vertex of the cube (see Fig. 12.1). Each
subpopulation implements a different parameterization of the crossover op-
erator such that those populations in the front side of the cube are devoted
to exploration, while exploitation is enhanced in the crossover operators of
the rear side populations. With a given frequency, there exist migrations of
individuals between populations belonging to the same sides of the cube. The
three heterogeneous distributed GAs presented in [127] are GD-FCB, which
use the fuzzy connectives based crossover operator (FCB) [126], GD-BLX, im-
plementing the blend crossover operator (BLX-α) [86], and GD-EFR, using
the extended fuzzy recombination operator (EFR) [255]. The reader is referred
to [127] for a complete description of this algorithmic model.



172 12 Continuous Optimization

Table 12.5. Comparison with other approaches. Best solution found
Algorithm fGri fRas fRos fSch fSph fef10 ffms fSLE fCheb

JCell 90% 80% 1.3e0 9.3e-161 1.7e-158 90% 4.5e-27 26% 1.3e3
GD-FCB 4e-11 9e-12 3e-5 6e-001 4e-014 8e-04 7e-26 3e0 4e1
GD-BLX 60.0% 100% 2e1 7e-008 8e-058 5e-48 66.7% 2e0 1e1
GD-EFR 53.3% 100% 1e1 2e-007 8e-051 6e-47 43.3% 9e-1 1e1

Table 12.6. Comparison with other approaches. Average of solutions found
Algoritmo fGri fRas fRos fSch fSph fef10 ffms fSLE fCheb

JCell 2.4e-3 2.7e-05 1.8e1 6.6e-158 1.5e-154 1.4e-03 9.1e0 4.3e-10 1.4e3
GD-FCB 2e-2 4e-11 9e0 4e000 2e-013 2e-03 1e1 4e01 2e2
GD-BLX 5e-3 0e00 2e1 2e-006 8e-053 6e-36 3e0 3e01 2e2
GD-EFR 7e-3 0e00 2e1 4e-006 4e-047 9e-35 6e0 2e01 2e2

The results of all these algorithms, together with the results of JCell, are
given in Tables 12.5 (best found solution) and 12.6 (average of the values
found by the algorithms).

If we pay attention to the best solutions found by the algorithm (Ta-
ble 12.5), we can see that JCell obtains the best results in 5 out of the 9
problems. Additionally, in case of fef10 , JCell finds the optimal solution in the
90% of the runs while the other three approaches are not able to find the op-
timal solution in any run (the best approach is 5E-48 for GD-BLX). Also for
fSLE JCell is the only one that finds the optimal solution to the problem, and
it finds it in the 26% of the runs. The difference between JCell and the best
compared algorithm is small in the case of fRas, so that it finds the optimum
in the 80% of the solutions against the 100% of GD-BLX and GD-EFR.

Regarding the average solutions found, JCell outperforms the other ap-
proaches in 4 out of the 9 functions of Table 12.6, with the important dif-
ferences of more than 150 orders of magnitude for fSch and fSph (in mean
and in best solutions) and 11 orders of magnitude for fSLE with respect to
the best values reported by the other algorithms. Additionally, we do not
consider important the existing differences between JCell, GD-BLX, and GD-
EFR for fRas since JCell finds the local optimum in 80% of the runs (versus
100% for GD-BLX and GD-FER). In the case of fef10, the bad average value
reported by JCell for this problem is because it gets stuck in local optima
(value about 10−2) in 10% of the runs. Finally, the average solution found by
JCell for fRos is almost in the same order of magnitude than that of the best
algorithm, GD-FCB.

According to the proposed problems based on the real world, in the case
of ffms, the average result thrown by all the algorithms is in the same order of
magnitude, and the best solution found by JCell is close to the optimum (4.5E-
27), although GD-BLX and GD-EFR found the optimal solution in the 66.7%
and 43.3% of the runs, respectively. Finally, fCheb is the unique problem for
which JCell is the worst of the compared algorithms both in terms of best and
average solutions found. However, the differences between JCell and the other
algorithms are only one order of magnitude in the average of the solutions
found.



12.2 Experimentation 173

Fig. 12.2. Evolution of the average fit-
ness value for fGri, fSch, fSLE, fSph, fef10 ,
ffms y fRas

Fig. 12.3. Evolution of the average fit-
ness value for fCheb, and fRos

Finally, we can summarize these results concluding that JCell clearly out-
performs the three heterogenous distributed approaches in 5 out of the 9 tested
instances, improving the current state of the art, and it is very close to the
results of the best algorithms in the other problems. Maybe, the exception is
fCheb, for which JCell reports the worst results of the compared algorithms,
although the differences are only of one order of magnitude.

At this point, we would like to emphasize the simplicity of our approach
versus the three distributed ones. We are using in this work a simple canonical
cGA for solving the problems, while the compared algorithms are heteroge-
neous distributed GAs composed of 8 different sub-populations having each
of them distinct parameterizations, with the consequent increment in the pa-
rameters needed by the algorithms. Moreover, our approach uses exactly the
same recombination and mutation operators implemented in GD-BLX, so the
difference in the performance of the two algorithms is intrinsic to the algorith-
mic model. Hence, the exploration/exploitation tradeoff accomplished by the
canonical cGA on the population, achieved by simply introducing the concept
of neighborhood in a structured grid of individuals, reports similar results, and
in several cases even better, with respect to the complex hypercube model that
Herrera and Lozano propose in [127].

In Figs. 12.2 and 12.3 we plot the evolution of the average fitness value
of the individuals in the population during typical executions of JCell for all
the studied problems. Note that this average fitness value (ordinate axis) is
in logarithmic scale. For the functions plotted in Fig. 12.2, it can be seen
in general a fast approximation to the best solution of the problem during
the execution, meaning a progressive convergence of the population. Among
these problems, it stands out the difficulty of ffms, which reports the slowest
convergence. After increasing the maximum number of allowed evaluations
highly enough, we have checked that this convergence is maintained until the
optimum is found in most runs for the functions in Fig. 12.2. The exception
is ffms, which falls into local optima from which the algorithm can not escape
in several runs.



174 12 Continuous Optimization

Among those studied in this work, the most difficult problems for JCell are
fCheb, and fRos. The two problems are plotted in Fig. 12.3. It can be seen how
the algorithm experiments a really fast convergence at the beginning of the
search (notice that the average fitness value is plotted in logarithmic scale)
but, after that, it gets stuck in local optima, the population diversity is quickly
lost, and thus there are no more important improvements in the solutions.

12.3 Conclusions

We have proposed in this chapter a new approach for solving problems in
a continuous search space. Our proposal consists of a simple canonical cGA
using two well-known recombination and mutation operators in the field of
real-coded GAs.

The results reported in this first approach are really promising, since JCell
outperformed other existing complex heterogeneous distributed algorithms
belonging to the state of the art. Additionally, one of these algorithms (GD-
BLX) implements exactly the same recombination and mutation operators
we use in JCell, what enhances the exploration/exploitation tradeoff that
cGAs perform into the population simply by using the concept of overlapped
neighborhoods. In the case of the three compared heterogeneous GAs, this
tradeoff between exploration and exploitation is accomplished by distributing
the population in small sub-populations with different parameterizations in a
hypercube, and restricting the interchange of individuals (migration) among
sub-populations located in the same side of the hypercube. Looking at the
reported results, we can conclude that the complex hypercube model of the
three compared algorithms does not perform a better exploration/exploitation
tradeoff than JCell, which is based on concepts much simpler and requires a
lower number of parameters to be set (each subpopulation in the hypercube
implements a different parameterization).



13

Logistics: The Vehicle Routing Problem

Competition is the keen cutting edge of business,
always shaving away at costs.

Henry Ford (1863 - 1947) – Businessman

Transportation plays an important role in logistic tasks of many companies
since it usually accounts for a high percentage of the cost added to goods.
Therefore, the use of computerized methods in transportation often results in
significant savings of up to 20% of the total costs (see Chap. 1 in [248]).

A distinguished problem in the field of transportation consists in finding
the optimal routes for a fleet of vehicles which serve a set of clients. In this
problem, an arbitrary set of clients must receive goods from a central depot.
This general scenario presents many chances for defining (related) problem
scenarios, for example: determining the optimal number of vehicles, finding the
shortest routes, and so on, being all of them subject to many restrictions such
as vehicle capacity, time windows for deliveries, etc. This variety of scenarios
leads to a plethora of problem variants in practice. Some reference case studies
where the application of vehicle routing algorithms has led to substantial cost
savings can be found in Chaps. 10 and 14 in [248].

As stated before, the vehicle routing problem (VRP) [56] consists of deliv-
ering goods to a set of customers with known demands through minimum-cost
vehicle routes. These routes must start and finish at the depot, as can be seen
in Figs. 13.1a and 13.1b (a detailed description of the problem is available in
Sect. 13.1).

The VRP is a very important source for problems, since solving it is equiv-
alent to solving multiple TSP problems at once [96]. Due to the difficulty of
this problem (NP-hard) and because of its many industrial applications, it has
been largely studied both theoretically and in practice [47]. There is a large
number of extensions to the canonical VRP. One basic extension is known as
the capacitated VRP –CVRP–, in which vehicles have fixed capacities of a
single commodity. Many different variants can be constructed from CVRP;
some of the most important ones [248] are those including time windows re-
strictions –VRPTW– (customers must be supplied following a certain time
schedule), pickups and deliveries –VRPPD– (customers will require goods to
be either delivered or picked up), and backhauls –VRPB– (like VRPPD, but
deliveries must be completed before any pickups are made).

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 13, © Springer Science+Business Media, LLC 2008



176 13 Logistics: The Vehicle Routing Problem

Depot DepotVRP

(a) (b)

Fig. 13.1. The vehicle routing problem consists in serving a set of geographically
distributed customers (points) from a depot (a) using the minimum cost routes (b)

In fact, there are many more extensions for this problem, like the use
of multiple depots (MDVRP), split deliveries (SDVRP), stochastic variables
(SVRP), or periodic scheduling (PVRP). The reader can find a public web
site with all of them, the latest best-known solutions, papers and related stuff
in our web site [71].

We consider in this chapter the capacitated vehicle routing problem
(CVRP), in which a fixed fleet of delivery vehicles of the same capacity must
service known customer demands for a single commodity from a common de-
pot at minimum transit costs. The CVRP has been studied in a large number
of separate works in the literature, but (to our knowledge) no work addresses
all the available benchmarks together, since it means solving 160 different
instances. We use such a large set of instances to test the behavior of our
algorithm in many different scenarios in order to give a deep analysis of it
and a general view of this problem not biased by any ad hoc selection of indi-
vidual instances. The included instances are characterized by many different
features: instances from real world, theoretically motivated ones, clustered,
non-clustered, with homogeneous or heterogeneous demands on customers,
with the existence of drop times or not, etc.

In recent VRP history, there has been a steady evolution in the quality
of the solution methodologies used, borrowed both from the exact and the
heuristic fields of research. However, due to the difficulty of the problem, no
known exact method is capable of consistently solving to optimality instances
involving more than 50 customers [109, 248]. In fact, it is also clear that, as
for most complex problems, non-customized heuristics would not compete in
terms of the solution quality with present techniques like the ones described
in [52, 248]. Moreover, the power of exploration of some modern techniques
like genetic algorithms or ant systems is not yet fully explored, specially when
combined with an effective local search step. All these considerations allow
us fruitful research to refine solutions to optimality. Particularly, we present
in this chapter an efficient cellular memetic algorithm (cMA) obtained after
hybridizing a canonical cGA with specialized recombination and mutation
operators and with a local search algorithm for solving CVRP.



13.1 The Vehicle Routing Problem 177

The contribution of this work is then to define a powerful yet simple cMA
capable of competing with the best known approaches for solving CVRP in
terms of accuracy (final cost) and computational effort (the number of evalua-
tions made). For that purpose, we test our algorithm over the mentioned large
selection of instances (160), which will allow us to guarantee deep and mean-
ingful conclusions. Besides, we compare our results against the best existing
ones in the literature, some of which we even improve. In [11] the reader can
find a seminal work with a comparison between our algorithm and some other
known heuristics for a reduced set of 8 instances. In that work, we showed the
advantages of embedding local search techniques into a cGA for solving CVRP,
since our hybrid cGA was the best algorithm out of all those compared in
terms of accuracy and time. Cellular GAs represent a paradigm much simpler
to comprehend and customize than others such as tabu search (TS) [97, 249]
and similar (very specialized or very abstract) algorithms [37, 207]. This is an
important point too, since the greatest emphasis on simplicity and flexibility
is nowadays a must in research to achieve widely useful contributions [52].

The chapter is organized in the following manner. In Sect. 13.1 we define
CVRP. The proposed cMA is thoroughly described in Sect. 13.2. Section 13.3
presents the results of our tests, comparing them with the best-known values
in the literature. After that, we present the new best-known solutions found
in our studies for CVRP in Sect. 13.4. Finally, our conclusions and future lines
of research are discussed in Sect. 13.5.

13.1 The Vehicle Routing Problem

The VRP can be defined as an integer programming problem which falls into
the category of NP-hard problems [161]. Among the different variants of VRP
we work here with the Capacitated VRP (CVRP), in which every vehicle
has a uniform capacity of a single commodity. The CVRP is defined on an
undirected graph G = (V,E) where V = {v0, v1, . . . , vn} is a vertex set and
E = {(vi, vj)/vi, vj ∈ V, i < j} is an edge set.

Vertex v0 stands for the depot, and it is from where m identical vehicles
of capacity Q must serve all the cities or customers, represented by the set
of n vertices {v1, . . . , vn}. We define on E a non-negative cost, distance or
travel time matrix C = (cij) between customers vi and vj . Each customer vi

has non-negative demand of goods qi and drop time δi (time needed to unload
all goods). Let V1, . . . ,Vm be a partition of V, a route Ri is a permutation
of the customers in Vi specifying the order of visiting them, starting and
finishing at the depot v0. The cost of a given route Ri ={vi0 , vi1 , . . . , vik+1},
where vij ∈ V and vi0 = vik+1 = 0 (0 denotes the depot), is given by:

Cost(Ri) =
k∑

j=0

cj,j+1 +
k∑

j=0

δj , (13.1)

and the cost of the problem solution (S) is:



178 13 Logistics: The Vehicle Routing Problem

FCVRP(S) =
m∑

i=1

Cost(Ri) . (13.2)

CVRP consists in determining a set of m routes (i) of minimum total cost
–as it is specified in Eq. 13.2–; (ii) starting and ending at the depot v0; and
such that (iii) each customer is visited exactly once by exactly one vehicle;
subject to the restrictions that (iv) the total demand of any route does not
exceed Q (

∑
vj∈Ri

qj ≤ Q); and (v) the total duration of any route is not
larger than a preset bound D (Cost(Ri) ≤ D). All vehicles have the same
capacity and carry a single kind of commodity. The number of vehicles is
either an input value or a decision variable. In this study, the length of routes
is minimized independently of the number of vehicles used.

It is clear from our description that the VRP is closely related to two
difficult combinatorial problems. On the one hand, we can get an instance of
the Multiple Travelling Salesman Problem (MTSP) just by setting Q = ∞. An
MTSP instance can be transformed into a TSP instance by adjoining to the
graph k − 1 additional copies of node 0 (depot) and its incident edges (there
are no edges among the k depot nodes). On the other hand, the question of
whether there exists a feasible solution for a given instance of the VRP is an
instance of the Bin Packing Problem (BPP). So the VRP is extremely difficult
to solve in practice because of the interplay of these two underlying difficult
models (TSP and BPP). In fact, the largest solvable instances of the VRP are
two orders of magnitude smaller than those of the TSP [208].

13.2 Proposed Algorithms

In this section we present a detailed description of the operators we imple-
mented in our algorithm (for a complete description of the algorithm itself the
reader should refer to Chap. 1). In Alg. 13.1 the pseudo-code of JCell2o1i, the
cMA we propose in this study, is given. Basically, we use a simple cGA highly
hybridized with specific recombination and mutation operators, and also with
an added local post-optimization step (line 12). This local search method
lies in applying 1-Interchange, and then improving the best obtained solution
using 2-Opt. These two methods are well-known local search optimization
algorithms in the literature (they are described in detail in Sect. 13.2.4).

The fitness value assigned to individuals is computed as follows [11, 97]:

f(S) = FCVRP(S) + λ · overcap(S) + μ · overtm(S) , (13.3)

feval(S) = fmax − f(S) . (13.4)



13.2 Proposed Algorithms 179

Algorithm 13.1 Pseudo-code of JCell2o1i
1. proc Evolve(cma) //Algorithm parameters in ‘cma’
2. GenerateInitialPopulation(cma.pop);
3. Evaluation(cma.pop);
4. while !StopCondition() do
5. for individual ← 1 to cma.popSize do
6. neighbors ← GetNeighbors(cma,position(individual));
7. parents← Select(neighbors);
8. offspring← Recombination(cma.Pc,parents);
9. offspring← Mutation(cma.Pm,offspring);

10. offspring← LocalSearch(cma.Pl,offspring);
11. Evaluation(offspring);
12. InsertIfNotWorse(position(x,y),offspring,cma,aux pop);
13. end for
14. cma.pop← aux pop;
15. UpdateStatistics(cma);
16. end while
17. end proc Evolve;

The objective of our algorithm is to maximize feval(S) (Eq. 13.4) by min-
imizing f(S) (Eq. 13.3). The value fmax must be larger or equal with respect
to that of the worst feasible solution for the problem. Function f(S) is com-
puted by adding the total costs of all the routes (FCVRP(S) –see Eq. 13.2–),
and penalizes the fitness value only in the case that the capacity of any ve-
hicle and/or the time of any route are exceeded. Functions ‘overcap(S)’ and
‘overtm(S)’ return the excess in capacity and time of the solution (respec-
tively) with respect to the maximum allowed value for each route. The values
returned by ‘overcap(S)’ and ‘overtm(S)’ are weighted by factors λ and μ,
respectively. In this work we have used λ = μ = 1000 [78].

In Sects. 13.2.1 to 13.2.4 we proceed to explain in detail the main features
that characterize our algorithm (JCell2o1i). The algorithm itself can be ap-
plied with all the mentioned operations and also with only some of them to
analyze their separate contribution to the performance of the search, as it was
previously done for this algorithm in [14].

13.2.1 Problem Representation

In a GA, each individual represents one candidate solution. A candidate solu-
tion to an instance of the CVRP must specify the number of vehicles required,
the allocation of the demands to these vehicles, and also the delivery order
of each route. We adopted a representation consisting of a permutation of
integer numbers. Each permutation will contain both customers and route
splitters (delimiting different routes), so we will use a permutation of num-
bers [0 . . . n − 1] with length n = c + k for representing a solution for the
CVRP with c customers and a maximum of k + 1 possible routes. Customers



180 13 Logistics: The Vehicle Routing Problem

4 - 5 - 2 - 10 - 0 - 3 - 1 - 12 - 7 - 8 - 9 - 11 - 64 - 5 - 2 - 10 - 0 - 3 - 1 - 12 - 7 - 8 - 9 - 11 - 6{ { { {

Route 1 Route 2 Route 3 Route 4

Route Splitters

Fig. 13.2. Individual representing a solution for 10 customers and 4 vehicles

are represented with numbers [0 . . . c − 1], while route splitters belong to the
range [c . . . n − 1]. Note that due to the nature of the chromosome (permuta-
tion of integer numbers) route splitters must be different numbers, although
it should be possible to use the same number for designating route splitters
when using other possible chromosome configuration.

Each route is composed of the customers between two route splitters in
the individual. For example, in Fig. 13.2 we plot an individual representing a
possible solution for a hypothetical CVRP instance with 10 customers using
at most 4 vehicles. Values [0, . . . , 9] represent the customers while [10, . . . , 12]
are the route splitters. Route 1 begins at the depot, visits customers 4–5–2
(in that order), and returns to the depot. Route 2 goes from the depot to
customers 0–3–1 and returns. The vehicle of Route 3 starts at the depot and
visits customers 7–8–9. Finally, in Route 4, only customer 6 is visited from
the depot. Empty routes are allowed in this representation simply by placing
two route splitters contiguously without any client between them.

13.2.2 Recombination

Recombination is used in GAs as an operator for combining parts in two (or
more) patterns in order to transmit (hopefully) good building blocks in them
to their offspring. The recombination operator we use is the edge recombi-
nation operator (ERX) [262], since it has been largely reported as the most
appropriate for permutations compared to other general operators like order
crossover (OX) or partially matched crossover (PMX). ERX builds an off-
spring by preserving edges from its two parents. For that, an edge list is used.
This list contains, for each city, the edges of the parents that start or finish
in it (see Fig. 13.3).

After constructing the edge list of the two parents, the ERX algorithm
builds one child solution by proceeding as follows. The first gene of the off-
spring is chosen from between the first one of both parents. Specifically, the
gene having a lower number of edges is selected. In the case of a tie, the first
gene of the first parent will be chosen. The other genes are chosen by tak-
ing from among their neighbors the one with the shortest edge list. Ties are
broken by choosing the first city found that fulfill this shortest list criterion.
Once a gene is selected, it is removed from the edge list.



13.2 Proposed Algorithms 181

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

Edge List

1 6 51 6 5 Offspring

1

2

3

4

5

6

1

2

3

4

5

6

5 Has 1 Edge

and 2 Has 2

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

Edge List

1 2 3 4 5 61 2 3 4 5 6Parent 1

Parent 2

1 Offspring

1

2

3

4

5

6

1

2

3

4

5

6

2 4 3 1 5 62 4 3 1 5 6

Same Number

of Edges

Random

Choice

STEP 1

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

Edge List

1 61 6 Offspring

1

2

3

4

5

6

1

2

3

4

5

6

3, 5, and 6:

Random Choice

STEP 2

STEP 3 2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

2 6 3 5

1 3 4 6

2 4 1

3 5 2

4 6 1

1 5 2

Edge List

1 6 5 4 3 21 6 5 4 3 2 Offspring

1

2

3

4

5

6

1

2

3

4

5

6

END

Fig. 13.3. Edge recombination operator (ERX)

13.2.3 Mutation

The mutation operator we use in our algorithm will play an important role
during the evolution since it is in charge of introducing a considerable degree
of diversity in each generation, counteracting in this way the strong selective
pressure which is a result of the local search method we plan to use. The
mutation consists of applying Insertion, Swap or Inversion operations to each
gene with equal probability (see Alg. 13.2).

These three mutation operators (see Fig. 13.4) are well-known methods
found in the literature, and typically applied sooner than later in rout-
ing problems. Our idea here is to merge they three in a new combined
operator. The Insertion operator [89] selects a gene (either customer or
route splitter) and inserts it in another randomly selected place of the
same individual. Swap [36] lies in randomly selecting two genes in a so-
lution and exchanging them. Finally, Inversion [134] reverses the visiting
order of the genes between two randomly selected points of the permuta-

Algorithm 13.2 The mutation algorithm
1. proc Mutation(pm, ind)

// ‘pm’ is the mutation probability, and ‘ind’ is the individual to mutate
2. for i ← 1 to ind.length() do
3. if rand0to1 ()<pm then
4. r = rand0to1 ();
5. if r < 0.33 then
6. ind.Inversion(i, randomInt(ind.length()));
7. else if r > 0.66 then
8. ind.Insertion(i, randomInt(ind.length()));
9. else

10. ind.Swap(i, randomInt(ind.length()));
11. end if
12. end if
13. end for
14. end proc Mutation;



182 13 Logistics: The Vehicle Routing Problem

1 2 3 5 6 7 841 2 3 4 5 6 7 8

1 2 3 5 6 7 841 2 3 5 6 7 4 8

1 2 4 6 7 83 51 2 3 4 5 6 7 8

1 2 4 6 7 85 31 2 5 4 3 6 7 8

1 2 7 83 4 5 61 2 3 4 5 6 7 8

1 2 7 86 5 4 31 2 6 5 4 3 7 8

InversionSwapInsertion

Parent

Offspring

Fig. 13.4. The three different used mutations

tion. Note that the induced changes might occur in an intra or inter-route
way in all the three operators. Formally stated, given a potential solution
S = {s1, . . . , sp−1, sp, sp+1, . . . , sq−1, sq, sq+1, . . . , sn}, where p and q are ran-
domly selected indexes, and n is the sum of the number of customers plus the
number of route splitters (n = c + k), then the new solution S′ obtained after
applying each of the different proposed mechanisms is shown below:

Insertion : S′ = {s1, . . . , sp−1, sp+1, . . . , sq−1, sq, sp, sq+1, . . . , sn} , (13.5)

Swap : S′ = {s1, . . . , sp−1, sq, sp+1, . . . , sq−1, sp, sq+1, . . . , sn} , (13.6)

Inversion : S′ = {s1, . . . , sp−1, sq, sq−1, . . . , sp+1, sp, sq+1, . . . , sn} . (13.7)

13.2.4 Local Search

It is very clear after all the existing literature on VRP that the utilization of a
local search method is almost mandatory to achieve results of high quality [11,
37, 217]. This is why we envision from the beginning the application of two of
the most successful techniques in recent years. In effect, we will add a local
refining step to some of our algorithms consisting in applying 2-Opt [55] and
1-Interchange [200] local optimization to every individual.

On the one hand, the 2-Opt simple local search method works inside each
route. It randomly selects two non-adjacent edges (i.e., (a, b) and (c, d)) of a
single route, deletes them, thus breaking the tour into two parts, and then
reconnects those parts in the other possible way: (a, c) and (b, d) (Fig. 13.5a).
Hence, given a route R = {r1, . . . , ra, rb, . . . , rc, rd, . . . , rn}, being (ra, rb) and
(rc, rd) two randomly selected non-adjacent edges, the new route R′ obtained
after applying the 2-Opt method to the two considered edges will be R′ =
{r1, . . . , ra, rc, . . . , rb, rd, . . . , rn}. 2-Opt is similar to the inversion mutation
operator with the exception that 2-Opt is applied into routes, while inversion
can affect one or more routes.

On the other hand, the λ-Interchange local optimization method that we
use is based on the analysis of all the possible combinations for up to λ
customers between sets of routes (Fig. 13.5b). Hence, this method results in
customers either being shifted from one route to another, or being exchanged
between routes. The mechanism can be described as follows. A solution to the
problem is represented by a set of routes S = {R1, . . . , Rp, . . . , Rq, . . . , Rk},
where Ri is the set of customers serviced in route i. New neighboring solutions
can be obtained after applying λ-Interchange between a pair of routes Rp and
Rq; to do so we replace each subset of customers S1 ⊆ Rp of size |S1| ≤ λ
with any other one S2 ⊆ Rq of size |S2| ≤ λ. This way, we obtain two new
routes R′

p = (Rp − S1)
⋃

S2 and R′
q = (Rq − S2)

⋃
S1, which are part of the

new solution S′ = {R1 . . . R′
p . . . R′

q . . . Rk}.



13.2 Proposed Algorithms 183

Fig. 13.5. 2-Opt works into a route (a), while λ-Interchange affects two routes (b)

Therefore, 2-Opt searches for better solutions by modifying the order of
visiting customers inside a route, while the λ-Interchange method results in
customers either being shifted from one route to another, or customers being
exchanged between routes. This local search step is applied to an individual
after the recombination and mutation operators, and returns the best solution
between the best ones found by 2-Opt and 1-Interchange, or the current one
if it is better (see a pseudo-code in Alg. 13.3). In the local search step, the
algorithm applies 2-Opt to all the pairs of non-adjacent edges in every route
and 1-Interchange to all the subsets of up to 1 customer between every pair
of routes.

Algorithm 13.3 The local search step
1. proc Local Search(ind) // ‘ind’ is the individual to improve
2. for s← 0 to MAX STEPS do
3. //First: 2 Opt. K is the number of routes. MAX STEPS = 20
4. best2 Opt = ind;
5. for r ← 0 to K do
6. sol = 2 Opt(ind,r);
7. if Best(sol,best2 Opt) then
8. best2 Opt = sol;
9. end if

10. end for
11. end for
12. //Second: 1 Interchange.
13. best1 Interchange = ind;
14. for s← 0 to MAX STEPS do
15. for i← 0 to Length(ind) do
16. for j← i+1 to Length(ind) do
17. sol = 1 Interchange(i,j);
18. if Best(sol,best1 Interchange) then
19. best1 Interchange = sol;
20. end if
21. end for
22. end for
23. end for
24. return Best(best2 Opt, best1 Interchange, ind);
25. end proc Local Search;



184 13 Logistics: The Vehicle Routing Problem

In summary, the functioning of JCell is quite simple: in each generation, an
offspring is obtained for every individual after applying the recombination
operator (ERX) to its two parents (selected from its neighborhood). The off-
springs are mutated with a special combined mutation, and later a local post-
optimization step is applied to the mutated individuals. This local search
algorithm consists in applying to the individual two different local search
methods (2-Opt and 1-Interchange), and returns the best individual among
the input individual and the output of 2-Opt and 1-Interchange. The popula-
tion of the next generation will be composed of the current one after replacing
its individuals with their offsprings in the cases where they are better.

13.3 Solving CVRP with JCell2o1i

In this section we describe the results of the experiments we have made for
testing our algorithm on CVRP. JCell2o1i has been implemented in Java and
tested on a Pentium IV 2.8 GHz PC with Linux on a very large test suite, com-
posed of an extensive set of benchmarks drawn from the literature: (i) Augerat
et al. (sets A, B and P) [29], (ii) Van Breedam [252], (iii) Christofides and
Eilon [46], (iv) Christofides, Mingozzi and Toth (CMT) [47], (v) Fisher [87],
(vi) Golden et al. [109], (vii) Taillard [240], and (viii) a benchmark generated
from TSP instances [212]. All these benchmarks, as well as the best-known
solution for their instances, are publicly available at [71].

Due to the heterogeneity of this huge test suite, we will find many different
features in the studied instances, which will represent a hard test to JCell2o1i
for this problem, usually much larger than usual studies in the VRP literature.

The parameterization used in this study for JCell2o1i (listed in Table 13.1)
is the same for the 160 instances of our benchmark with the only exception
of the maximum allowed number of evaluations of the termination condition.
This value was fixed in terms of the length and difficulty of the instances. All
the numerical results of the algorithm (optimal routes, costs, etc.) for every
problem are available in [14]. These results were obtained after making 100
independent runs (in order to obtain statistical confidence), except for the
case of the benchmark by Golden et al., for which 30 runs were made due to
the high computational requirements of these problems.

Table 13.1. Parameterization used in JCell2o1i

Population size 100 individuals (10× 10)
Parent selection Current individual + binary tournament
Recombination ERX, pc = 0.65
Mutation of individuals Insertion, Swap or Inversion (same prob.), pm = 0.85
Bit mutation probability pbm = 1.2/L (L = Individual length)
Replacement Rep if not Worse
Local search (LS) 2-Opt & 1-Interchange, 20 optimization steps



13.4 New Solutions to CVRP 185

Table 13.2. Average deviation between our best solution found and the best known
one for all the instances of every studied benchmark

Benchmark Avg. Δ

Augerat et al. Set A 0.00
Augerat et al. Set B 3.48e − 03
Augerat et al. Set P 0.00
Van Breedam 2.45
Christofides & Eilon 0.00
CMT 0.29
Fisher 0.00
Golden at al. 1.44
Taillard 0.56
Extended from TSP 0.00

We show in Table 13.2 the average deviations obtained between our best
obtained solution (sol) and the best known one (best) for all the instances of
every benchmark. This deviation (Δ) is computed as shown in Eq. 13.8.

Δ(sol) =
∣∣∣∣best − sol

best

∣∣∣∣ · 100 . (13.8)

Following the TSPLIB convention [212], distances between customers have
been rounded to the closest integer value in instances belonging to the bench-
marks of Augerat et al., Van Breedam, Christofides and Eilon, Fisher, and
the set of translated instances from TSP.

As it can be seen in Table 13.2, the average errors obtained by JCell2o1i for
every benchmark are very low, with values always under 1.5%. Note that the
bolded result for Van Breedam’s benchmark corresponds to an improvement
of our results with respect to the previously existing ones. Thus, JCell2o1i
has demonstrated to be a robust algorithm highly suitable for VRP on a large
testbed.

13.4 New Solutions to CVRP

During the studies made on CVRP for this book, 10 new best-known solutions
to CVRP were found. This supposes an important result for our work due
to both the difficulty of the problem and the high number of researchers
interested on it. These instances belong to three different benchmarks, two
of them were studied in this chapter (Van Breedam and Taillard test suites),
and the other one is the very large scale VRP (VLSVRP) benchmark studied
in Chap. 8. We compile the new solutions found in Table 13.3. Note that the
difference between the new best-known solution and the previously existing
one is very little in some cases, but they represent different solutions. The
most important differences were found for the instances of Van Breedam’s
benchmark, with an improvement of more than 5.5% in some case.



186 13 Logistics: The Vehicle Routing Problem

Table 13.3. New best solutions found

Inst.
New Best Δ Previous Best
Solution (%) Solution

Bre-1 1106.00 3.24 1143.00 [253]
Bre-2 1506.00 4.68 1580.00 [253]
Bre-4 1470.00 0.41 1476.00 [253]
Bre-5 950.00 2.56 975.00 [253]
Bre-6 969.00 1.02 979.00 [253]
Bre-9 1690.00 5.59 1790.00 [253]
Bre-10 1026.00 1.82 1045.00 [253]
Bre-11 1128.00 2.76 1160.00 [253]
tai75b 1344.62 0.00 1344.64 [240]
vls26 23977.73 0.00 23977.74 [162]

13.5 Conclusions

In this chapter we have developed a single algorithm which is able to compete
with the many different best known optimization techniques for solving the
CVRP. Our algorithm has been tested in a very large set of 160 instances with
different features, e.g., uniformly and not uniformly dispersed customers, clus-
tered and not clustered, with a centered or not centered depot, having maximal
route distances or not, considering drop times or not, with homogeneous or
heterogeneous demands, etc.

We consider that the behavior of our cellular algorithm with merged mu-
tation plus local search is very satisfactory since it obtains the best-known
solution in most cases, or values very close to it, for all of the test suite.
Moreover, it has been able to improve the known best solution so far for nine
of the tested instances, which represents an important record in present re-
search. Hence, we can say that the performance of JCell2o1i is similar or even
better to that of the best algorithm for each instance. Besides, our algorithm
is quite simple since we have designed a canonical cGA with three widely used
mutations in the literature for this problem, plus two well-known local search
methods.

Finally, we want to emphasize the good results we have reported in this
book since, in addition to the nine new obtained solutions using JCell2o1i in
this chapter, we must also consider the new best solution found in Chap. 8
for the VLSVRP problem. Moreover, in Chap. 8 we found the best solution
(that was visually estimated and never found by any other algorithm) in six
out of the twelve instances.



14

Telecommunications: Optimization of the
Broadcasting Process in MANETs

I believe that if you show people the problems and you
show them the solutions they will be moved to act.

Bill Gates (1955 - ) – Businessman

In this chapter, we study the application of a multi-objective cGA for opti-
mizing DFCN, a broadcasting protocol specially designed for metropolitan ad
hoc networks (MANETs). Optimizing DFCN is a newly defined problem [18]
consisting of finding the best values for a set of important parameters of the
protocol that characterize its behavior. The objectives are to minimize the use
of the network and the total process time, and to maximize on the other hand
the coverage of the broadcasting protocol (the number of devices reached).

Mobile Ad Hoc Networks (MANETs) are fluctuating networks populated
by a set of communicating devices (also called nodes) which can spontaneously
interconnect each other without any pre-existing infrastructure. This means
that no organization is present in such networks. The most popular wire-
less networking technologies available nowadays for building MANETs are
Bluetooth and IEEE802.11 (WiFi). This implies that a) devices communicate
within a limited range, and b) devices may move while communicating. A
consequence of mobility is that the topology of such networks may change
quickly and in unpredictable ways. This dynamical behavior constitutes one
of the main obstacles for performing efficient communications.

In this chapter we are considering the problem of broadcasting on a par-
ticular subclass of MANETs called Metropolitan MANETs, which have some
specific properties: the density in the network is heterogeneous and dynamic
(particularly, high density regions do not remain active full time). The broad-
casting strategy we are considering in this work is the so called Delayed Flood-
ing with Cumulative Neighborhood protocol (DCFN) [132]. Three real world
examples of such networks, a shopping mall, a metropolitan area, and a high-
way environment, have been taken into account so that, instead of providing
a multi-purpose protocol, the originality of our proposal lies in tuning the
broadcasting service for each particular network. Optimizing a broadcasting
strategy implies multiple goals to be satisfied at the same time, such as maxi-
mizing the number of devices reached (coverage), minimizing the network use
(bandwidth), and/or minimizing the duration of the process. Thus, what we

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 14, © Springer Science+Business Media, LLC 2008



188 14 Telecommunications: Optimizing Broadcasting in MANETs

are facing is known as a multi-objective optimization problem [65, 49], and
we propose a new multi-objective cGA (cMOGA) for solving it. The results
will be compared versus the main state-of-the-art algorithm in multi-objective
optimization, NSGA-II [67].

As it was already mentioned in Chap. 9, the most popular algorithms for
solving multi-objective problems are evolutionary algorithms [49, 65]. Though,
very few works use GAs based on cellular models [146, 159, 190], even though
cGAs have demonstrated to have very high efficiency and accuracy in mono-
objective optimization [12, 17, 19, 99]. The proposed algorithm, cMOGA,
represents a contribution to this field. Furthermore, this research line is, at
the very best of our knowledge, the first attempt to solve the broadcasting
problem on MANETs using a multi-objective EA.

The rest of this chapter is organized in the following manner. In Sect. 14.1
we describe the considered problem, the set of proposed scenarios for this
problem, and the broadcasting strategy we plan to optimize. The proposed
approach (a multi-objective cGA) is described in Sect 14.2. In Sect. 14.3
we present our experimentation and analyze the results. Our proposed al-
gorithm is compared versus NSGA-II (the main state-of-the-art algorithm in
the multi-objective domain) in Sect. 14.4. We finish this chapter with our
main conclusions.

14.1 The Problem

The problem we study in this paper consists of, given an input metropolitan
MANET network, determining the most adequate parameters for a broad-
casting strategy. We first describe in Sect. 14.1.1 the target networks we use.
Section 14.1.2 is devoted to the presentation of DFCN [132], the broadcasting
strategy to be tuned. Finally, the MOPs we define for this work are presented
in Sect. 14.1.3.

14.1.1 Metropolitan Mobile Ad Hoc Networks. The Madhoc
Simulator

Metropolitan mobile ad hoc networks are MANETs with some particular prop-
erties. First, they have one or more areas where the node density is higher
than the average. They are called high density areas, and they can be statis-
tically detected. A high density area may be, for example, a supermarket, an
airport, or an office. Second, high density areas do not remain active full time,
i.e., they can appear and disappear from the network (e.g., a supermarket is
open, roughly, from 9 a.m. to 10 p.m., and outside this period of time, the
node density within the corresponding area is close to zero). An example of
4 km2, 2000 devices metropolitan network is displayed in Fig. 14.1.



14.1 The Problem 189

Fig. 14.1. An example metropolitan MANET

To deal with such kind of networks, there is no solution other than resort-
ing to software simulations. In this work we have used Madhoc, a metropolitan
MANET simulator [131]1. It aims at providing a tool for simulating different
level services based on distinct technologies on MANETs for different envi-
ronments.

In the context of metropolitan MANETs, various topological configura-
tions are very usually found. Some examples are networks built on-the-fly
by people moving in concert places, market places, train stations, shopping
centers, and city centers. All these scenarios have a number of different char-
acteristics, such as the mobility and density of devices, the size of the area,
and the presence or not of walls (which are obstacles for mobility and atten-
uate the signal strength), among others. Hence, three very different realistic
scenarios, implemented by Madhoc, are used in this paper. These scenarios
correspond to real world environments, and they aim at modelling a shopping
mall, a metropolitan area, and a highway scenario.

• Mall Environment. The mall environment is proposed for emulating
MANETs in commercial shopping centers, in which stores are usually lo-
cated together one each other in corridors. People go from one store to
another through these corridors, occasionally stopping for looking some
shopwindows. These shopping centers are usually very crowded (high den-
sity of devices), and people behave differently (in terms of mobility) when
they are in or out of the stores. Additionally, a high density of shops can
be found in this kind of scenario. Finally, in the mall environment both
the mobility of devices and their signal propagation are restricted by the
walls of the building.

1 The MANET simulator is freely available at
http://www-lih.univ-lehavre.fr/~hogie/madhoc/



Observation window

Inside

Outside

Fig. 14.2. The effects of introducing an observation window on the studied MANET

• Metropolitan Environment. The second realistic scenario we propose
is the metropolitan environment. For that, we locate a set of spots (cross-
roads) in the modelled surface, and link them with streets. In this case,
both pedestrians and vehicles are modelled, and they are continuously
moving from one crossroad to another. Like in the real world, devices
must reduce their speed when they approach a crossroad. In this scenario,
the obstruction of the walls in the signal strength will be stronger than in
the case of the mall environment.

• Highway Environment. We use this environment for simulating the be-
havior of MANETs out of cities. As an example, think on a large surface
with roads, and people travelling by car. In this context, there should be
a very low density of devices per square kilometer (all the devices are lo-
cated on the roads), moving all of them in a fast manner. Additionally,
there should not exist obstacles that attenuate the signal strength in com-
munications.

In order to make our studies more realistic, an observation window has
been included in the simulations, such that only the devices located into this
window are taken into account for measurements. This makes possible the
simulation of nodes exiting and joining the network by entering or leaving the
observation window, respectively. Therefore, we are allowing the existence of a
changing number of devices in the network, as it is the case in real MANETs.
In all our tests in this work, this observation window covers the 70% of the
whole area. As an example, in Fig. 14.2 we can see a MANET simulating a mall
environment (left), and the observation window we study (right); supposing
the 70% of the whole network. The circles represent the shops, while the points
stand for the devices (those outside the observation window are grey colored,
meaning that they are not considered for measurements).

190 14 Telecommunications: Optimizing Broadcasting in MANETs



14.1 The Problem 191

14.1.2 Delayed Flooding with Cumulative Neighborhood

Williams and Camp [263] and, more recently, Stojmenovic and Wu [237] pro-
posed two of the most frequently referenced analysis of broadcasting proto-
cols. In their proposal, Stojmenovic and Wu [237] stated that protocols can be
classified according to their algorithmic nature –determinism (no use of ran-
domness), reliability (guarantee of full coverage)– or the information required
by their execution (network information, “hello” messages content, broad-
cast messages content). Similarly, Wu and Lou [267] categorized protocols as
centralized [204] and localized ones. Centralized protocols require a global or
quasi-global knowledge of the network. They are hence not scalable. Localized
protocols are those which require some knownledge of the network at only 1
or 2-hops, being the 1-hop neighborhood of a given device the set of devices
directly seen by itself, while the 2-hops neighborhood is the 1-hop one plus
the neighbors of its neighbors.

Using the classifications presented above, the delayed flooding with cumu-
lative neighborhood protocol (DFCN) [132] is a deterministic algorithm. It
does not consist of a new approach for calculating dominating sets. Instead it
is a fully localized protocol which defines heuristics based on 1-hop informa-
tion. This permits DFCN to achieve great scalability. The “hello” messages
interchanged by the nodes do not carry any additional information. Only
broadcast messages must embed the list of node’s neighbors.

For being able to run the DFCN protocol, the following assumptions must
be met:

• Like many other neighbor-knowledge-based broadcasting protocols
(FWSP, SBA, etc.) [166, 205], DFCN requires the knowledge of 1-hop
neighborhood. This is obtained by the use of “hello” packets at a lower
network layer. The set of neighbors of the device s is named N(s).

• Each message m carries –embedded in its header– the set of IDs of the
1-hop neighbors of its most recent sender.

• Each device maintains local information about all messages received. Each
instance of this local information consists of the following items:
– the ID of the message received;
– the set of IDs of the devices that are known to have received the mes-

sage;
– the decision of whether the message should be forwarded or not.

• DFCN requires the use of a random delay before possibly re-emitting a
broadcast message m. This delay, called random assessment delay (RAD),
is intended to prevent collisions. More precisely, when a device s emits a
message m, all the devices in N(s) receive it at the same time. It is then
likely that all of them forward m simultaneously, and this simultaneity
entails network collisions. The RAD aims at randomly delaying the re-
transmission of m. As every device in N(s) waits for the expiration of a
different RAD before forwarding m, the risk of collisions is hugely reduced.



192 14 Telecommunications: Optimizing Broadcasting in MANETs

DFCN is an event driven algorithm which can be divided into three main
parts: the two first ones deal with the handling of outcoming events, which
are (i) new message reception and (ii) detection of a new neighbor. The third
part (iii) consists of the decision making for emission as a follow-up of one
of the two previous events. The behavior resulting from message reception
is referred to as reactive behavior; when a new neighbor is discovered, the
behavior is referred as proactive behavior.

Let s1 and s2 be two devices in the neighborhood of one another. When
s1 sends a packet to s2, it attaches to the packet the set N(s1). At reception,
s2 hence knows that each device in N(s1) has received the packet. The set
of devices which has potentially not yet received the packet is then N(s2) −
N(s1). If s2 re-emits the packet, the effective number of devices newly reached
is maximized by the heuristic function: h(s2, s1) = |N(s2) − N(s1)|.

In order to minimize the network use caused by a possible packet re-
emission, a message is forwarded only if the number of newly reached devices
is greater than a given threshold. This threshold is a function of the number of
devices in the neighborhood (the local network density) of the recipient device
s2. It is written “threshold(|N(s)|)”. The decision made by s2 to re-emit the
packet received from s1 is defined by the boolean function:

B(s2, s1) =

j
true if h(s2, s1) ≥ threshold(|N(s2)|)
false otherwise .

If the threshold is exceeded, the recipient device s2 becomes an emitter in
turn. The message is effectively sent when the random delay (defined by the
RAD) expires. The threshold function, which allows DFCN to facilitate the
message re-broadcasting when the connectivity is low, depends on the size of
the neighborhood n, as given by:

threshold(n) =

j
1 if n ≤ safeDensity
minGain ∗ n otherwise ,

where safeDensity is the maximum safe density below DFCN always rebroad-
casts and minGain is a parameter of DFCN used for computing the mini-
mum threshold for forwarding a message, i.e., the ratio between the number
of neighbors which have not received the message and the total number of
neighbors.

Each time a device s discovers a new neighbor, the RAD for all messages is
set to zero and, therefore, the messages are immediately candidate to emission.
If N(s) is greater than a given threshold, which we have called proD, this
behavior is disabled, so no action is undertaken on new neighbor discovery.

14.1.3 MOPs Definition

In the current section we define two new multi-objective problems for the
optimization of the broadcasting protocol in MANETs. From the description
of DFCN in the previous section, the following parameters are to be tuned:



14.2 A Multi-objective cGA: cMOGA 193

minGain is the minimum gain for rebroadcasting. This is the most important
parameter for tuning DFCN, since minimizing the bandwidth should be
highly dependent on the network density. It ranges from 0.0 to 1.0.

[lowerBoundRAD,upperBoundRAD] define the RAD value (random delay for
rebroadcasting in milliseconds). The two parameters take values in the
interval [0.0, 10.0] milliseconds.

proD is the maximal density (proD ∈ [0, 100]) for which it is still needed using
proactive behavior (i.e., reacting on new neighbors) for complementing the
reactive behavior.

safeDensity defines a maximum safe density of the threshold “threshold(n)”
which ranges from 0 to 100 devices.

These five parameters, i.e., five decision variables which correspond to a
DFCN configuration, characterize the search space of our MOP. We have set
wide enough intervals for the values of these parameters in order to include
all the reasonable possibilities we can find in a real scenario. Notice that some
of the parameters are integer values, while some other ones are real numbers,
so the optimization algorithm must deal in both the discrete and continu-
ous domains at the same time. The objectives to optimize are (see Eq. 14.1):
minimizing the duration of the broadcasting process, maximizing the network
coverage, and minimizing the number of transmissions. Thus, we have defined
a triple objective MOP, which is called DFCNT (which stands for DFCN Tun-
ing). As we stated before, this problem is defined by a given target network in
which the DFCN broadcasting strategy is used. Since three different real world
metropolitan MANETs have been considered, three instances of DFCNT are
to be solved: DFCNT.Mall, DFCNT.Metropolitan, and DFCNT.Highway.

DFCNT

⎧⎨
⎩

f1(x) = broadcasting process length −minimize
f2(x) = coverage −maximize
f3(x) = number of transmissions −minimize

(14.1)

14.2 A Multi-objective cGA: cMOGA

In this section we present a multi-objective algorithm based on a canonical
cGA model. As it was already mentioned in Chap. 9, although other cellular-
like genetic approaches exist in the literature, to the best of our knowledge,
none of them follows the canonical cGA model. In Alg. 14.1, we show the
pseudo-code of cMOGA. We can observe that Alg. 14.1 is very similar to the
pseudo-code of a canonical cGA (see Chap. 1). One of the main differences
between the two algorithms is the existence of a Pareto front in the multi-
objective case. The Pareto front is just an additional population composed
of the non-dominated solutions found so far, which has a maximum size. In
order to manage the insertion of solutions into the Pareto front with the goal
of obtaining a diverse set, a crowding procedure has been used [67].



194 14 Telecommunications: Optimizing Broadcasting in MANETs

Algorithm 14.1 Pseudo-code of cMOGA
1. proc Evolve(cmoga) //Parameters of the algorithm in ‘cmoga’
2. Pareto Front = NewFront() //Creates a new empty Pareto Front
3. while ! StopCondition() do
4. for individual ← 1 to cmoga.popSize do
5. neighbors← GetNeighbors(cmoga,position(individual));
6. parents← Selection(neighbors);
7. offspring← Recombination(cmoga.Pc,parents);
8. offspring← Mutation(cmoga.Pm,offspring);
9. Evaluation(offspring);

10. Replacement(position(individual),aux pop,offspring);
11. InsertInParetoFront(individual);
12. end for
13. cmoga.pop← aux pop;
14. end while
15. end proc Evolve;

The cMOGA algorithm starts by creating an empty Pareto front (line 2
in Alg. 14.1). Individuals are arranged in a 2-dimensional toroidal grid, and
the genetic operators are successively applied to them (lines 7 and 8) until the
termination condition is met (line 3). Hence, for each individual, the algorithm
consists of selecting two parents from its neighborhood, recombining them in
order to obtain an offspring, mutating it, evaluating the resulting individual,
and inserting it if it is not dominated by the current individual in both, the
auxiliary population and the Pareto front (following a crowding procedure)
—lines 10 to 13. Finally, after each generation, the old population is replaced
by the auxiliary one.

14.2.1 Dealing with Constraints

To deal with constrained MOPs, cMOGA uses a simple approach also encoun-
tered in other multi-objective evolutionary algorithms, like NSGA-II [67] and
microGA [48]. Whenever two individuals are compared, their constraints are
checked. If both are feasible, a Pareto dominance test is directly applied. If
one is feasible and the other is infeasible, the former dominates. In other case,
if the two individuals are infeasible, then the one with the lowest amount of
constraint violation dominates the other.

14.3 Experiments

In this section, we first describe the parameterization used by cMOGA. Next,
the configurations of the network simulator for the three defined environments
are described.



14.3 Experiments 195

Table 14.1. Parameterization used in cMOGA

Population size 100 individuals (10× 10)
Stop condition 25000 function evaluations
Neighborhood NEWS
Parent selection Current individual + binary tournament
Recombination Simulated binary, pc = 1.0
Mutation Polynomial, pm = 1.0/L

(L = Individual length)
Replacement Rep if not Dominates
Archive size 100 individuals
Crowding procedure Adaptive grid

cMOGA has been implemented in Java inside the JCell framework and
tested on a PC with a 2.8 GHz Pentium IV processor with 512 MB of RAM
memory, and running SuSE Linux 8.1 (kernel 2.4.19-4GB). The Java version
used is 1.5.0 05.

14.3.1 Parameterization of cMOGA

In Table 14.1 we show the parameters used by cMOGA. A square toroidal
grid of 100 individuals has been chosen for structuring the population. The
neighborhood used is composed of 5 individuals: the considered one plus those
located at its North, East, West, and South (NEWS neighborhood). Due to
the stochastic nature of the Madhoc simulator, five simulations per function
evaluation are performed and the fitness values of the functions are computed
as the average of the values obtained in each of these simulations. This im-
portant detail has a considerable influence in the running time to solve the
problem, and explains why reporting 30 independent runs of the algorithm in
our tests represents a high effort in studying this problem, since we want to
ensure statistical confidence on the results.

We use the simulated binary recombination operator (SBX) [66] with prob-
ability pc = 1.0. As its name suggests, SBX simulates the working principle of
the single-point crossover on binary genotypes. The mutation operator used is
the so called polynomial [66], and it is applied to every allele of the individuals
with probability pm = 1.0/L (where L is the individual length). The result-
ing offspring replaces the individual at the current position if the latter does
not dominate the former. For inserting the individuals in the Pareto front, an
adaptive grid algorithm [151] is used. It consists of dividing up the objective
space in hypercubes with the goal of balancing the density of non-dominated
solutions in the hypercubes. Then, when inserting a non-dominated solution
in the Pareto front, its grid location in the solution space is determined. If the
Pareto front is already full and the grid location of the new solution does not
match with the most crowded hypercube, a solution belonging to that most
crowded hypercube is removed before inserting the new one.



196 14 Telecommunications: Optimizing Broadcasting in MANETs

Table 14.2. Main features of the proposed environments

Mall Metropolitan Highway

Surface 40 000 m2 160 000 m2 1 000 000 m2

Density of spots 800 (shops/km2) 50 (crossroads/km2) 3 (joints/km2)

Devices
Speed out of spots 0.3–1 m/s 1–25 m/s 30–50 m/s
Speed in spots 0.3–0.8 m/s 0.3–10 m/s 20–30 m/s
Density 2 000 dev./km2 500 dev./km2 50 dev./km2

Wall obstruction 70% 90% 0%

14.3.2 Madhoc Configuration

As we stated in Sect. 14.1.1, we have defined three different environments for
MANETs modelling three possible scenarios that can be found in real world.
Their main features are explained in this section, and they are summarized
in Table 14.2. We show in Fig. 14.3 example MANETs for each of the studied
scenarios (grey point are not considered because they are out of the observa-
tion window). These example networks were obtained by using the graphical
interface of Madhoc with exactly the same parameterization suggested in our
proposed benchmark. We consider that the broadcasting is completed when
either the coverage reaches 100% or it does not vary in a reasonable period of
time (set to 1.5 seconds after some preliminary experimentation). This point is
important since an improper termination condition will lead us to bad results
or slow simulations.

The Mall Environment

In this section we proceed to explain the parameterization we used for mod-
elling the mall environment. In malls, the density of both shops (spots) and
devices is usually very high. Additionally, there exist walls which attenuate
the signal and limit the movements of devices, and these movements are usu-
ally very slow, since we are modelling people walking. We have defined for this
work a shopping center of 200×200 square meters of surface with densities of
800 stores and 2 000 devices per square kilometer. Stores are circles of radius
between 1 and 10 meters, and the obstruction of the walls is computed with a
penalty of the 70% in the signal strength. Finally, devices travel with a speed
ranging between 0.3 and 1 m/s in the corridors and between 0.3 and 0.8 m/s
when they are inside the stores.

Regarding the mall environment, it is worth noting that the resulting con-
nection graph is quite dense (see Fig. 14.3). The reason for that is that the
coverage of mobile devices ranges between 40 and 80 meters (randomly se-
lected value), and the simulation area is small. Hence, DFCNT.Mall is more
difficult to solve due to the broadcast storm problem [198]. This problem con-
sists of severe network congestions provoked by packet re-emissions due to
frequent packet collisions.



14.3 Experiments 197

Mall Metropolitan Area Highway

Fig. 14.3. The three studied scenarios for MANETs

The Metropolitan Environment

In this second environment we study the behavior of DFCN in a metropoli-
tan MANET. For modelling this environment we set a surface of 400×400
square meters, with a density of 50 spots (standing for crossroads) per square
kilometer having a circle surface of radius between 3 and 15 meters. The wall
obstruction is in this case stronger than for the mall environment (up to 90%),
and the density of devices is 500 elements per square kilometer. When setting
the speed of devices, the cases when people move on foot or by car must be
taken into account, so its value ranges between 0.3 and 10 m/s when they are
in a crossroad, and between 1 and 25 m/s in other case (streets).

In Fig. 14.3, it can be seen that the resulting network in a metropolitan
area is not as dense as that of the mall environment. Generally speaking,
this kind of network is composed of a few number of subnetworks, which are
usually connected one each other by only a few links, typically one or two, or
even zero (unconnected subnetworks). Additionally, some devices could not
be part of any subnetwork (isolated nodes). The topology of this network can
change in a fast manner, since some of the devices are travelling in vehicles at
high speeds. All these features difficult the broadcasting task, and that makes
interesting the study of this kind of networks for us.

The Highway Environment

As we previously commented in Sect. 14.1.1, this environment is composed
by a few number of devices, travelling at high speeds. This network has the
peculiarity of having the wall obstruction set to 0%. The simulated surface was
set to 1000×1000 square meters with a density of only 50 devices per square
kilometer. These devices travel at random speeds between 30 and 50 m/s. We
define the roads as the straight line connecting two spots, and we establish
a density of only 3 spots (highway entrances and/or exits) for modelling the
scenario. The speed of devices in the spots must be reduced to the range
between 20 and 30 m/s. The size of each spot (length of the entrance/exit)
is set to a random value between 50 and 200 meters (spots radius ∈ [25, 100]
meters).



198 14 Telecommunications: Optimizing Broadcasting in MANETs

Table 14.3. Results of cMOGA for the three instances DFCNT

Environment Time (h) Number of Pareto optima

DFCNT.Mall 66.12 ± 7.94 96.77± 3.20
DFCNT.Metropolitan 108.21± 8.41 95.59± 4.58
DFCNT.Highway 47.57 ± 0.42 52.23±11.04

It can be seen in Fig. 14.3 how the resulting network using this parameter-
ization is composed by a set of multiple (usually disconnected) sub-networks
involving a small number of devices (even only one). The existence of these
small and unconnected networks supposes a hard obstacle for the task of the
broadcasting protocol. Additionally, the topology of the network changes very
fast due to the high speed on the devices movement. Hence, as a consequence
of these high speeds, new subnetworks are continuously being made and dis-
appearing, what hinders the broadcasting process even more.

14.3.3 Results for DFCNT

We now turn to present and analyze the obtained results for the DFCNT
problem (Sect. 14.1.3) with the three environments. Let us remind that this
problem is composed of five decision variables and three objective functions.
All the values presented are the average over 30 independent runs of cMOGA.

In Table 14.3 we show the mean and the standard deviation of the exe-
cution time (in hours) and the number of non-dominated solutions found by
cMOGA for the three DFCNT instances: DFCNT.Mall, DFCNT.Metropolitan
and DFCNT.Highway. As can be seen, the execution time of a single run is
very long, since it ranges from 1.98 days for the highway scenario, up to 4.51
days in the case of DFCNT.Metropolitan. The reason is the high cost of com-
puting the fitness function, since we launch five simulations per evaluation,
and each run of the simulator requires between 1 and 4 seconds. Regarding
the number of solutions found, the obtained results are highly satisfactory in
the three DFCNT instances, since the number of different solutions found is
96.77, 95.59, and 52.23 on average (the maximum is 100) for DFCNT.Mall,
DFCNT.Metropolitan and DFCNT.Highway, respectively. Thus, we allow the
decision maker to choose from a wide range of possibilities. Notice that the
number of solutions composing the Pareto front decreases when decreasing
the device density of the network (i.e., increasing the surface and decreasing
the number of devices). This is because we stick to just one single criterion
for considering that the broadcasting process is done in three very different
environments. As a future work, we plan to customize this criterion for each
environment, what hopefully will lead us to obtain still better results.

As an example of the diverse and wide set of solutions reported by the
multi-objective optimizer, we plot in Fig. 14.4 an example Pareto front ob-
tained with cMOGA for the three studied environments. Best solutions are
those implying (i) high coverage, (ii) low bandwidth, and (iii) a short dura-



14.3 Experiments 199

1

2
3
4
5
6
7
8

0

5

10

15

20

25

30

0.4
0.5

0.6
0.7

0.8
0.9

Coverage

Bandwidth

Mall

Coverage

Bandwidth

Metropolitan Area

0
5

10
15
20
25
30
35

0

20

40

60

80

100

120

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

CoverageBandwidth

Highway

0
5

10
15
20
25

0

20

40

60

80

100

120

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Duration

Duration Duration

Fig. 14.4. Example Pareto Fronts for the three environments

tion of the broadcasting process, (i) and (ii) being the most important pa-
rameters. In fact, Pareto optima in these fronts reaching a coverage over 95%
need on average 3.77 seconds and 17.25 messages for mall, and 13.78 sec-
onds and 75.71 messages (i.e., intense bandwidth usage) in the case of the
metropolitan area. In contrast, for the highway environment only 5 solutions
of the Pareto front have a coverage over 95% (38 for DFCNT.Mall and 16 for
DFCNT.Metropolitan), achieving an average of 74.88 messages sent in 13.37
seconds, which are values similar to those of the metropolitan area. Finally,
notice that if coverage were not a hard constraint in our network, we could use
very cheap solutions in terms of time and bandwidth for the two environments.

Comparing the three graphics, it is possible to observe that the broad-
casting is more efficient in the mall environment than in the other two cases,
since it takes less than 8 seconds (duration), transmitting always less than 23
messages (bandwidth), and reaching more than 40% of the devices (coverage).
However, in the metropolitan and highway environments the broadcasting pro-
cess is usually longer, with a larger number of transmitted messages, and the
coverage is in some cases less than 10%. Finally, although the front obtained
for the highway environment has similar bounding values as those observed in
the case of the metropolitan area, the diversity is much lower in the highway
scenario.



200 14 Telecommunications: Optimizing Broadcasting in MANETs

The difference on the coverage of solutions found in the three environments
is a common sense result, since the probability of having isolated subnetworks
(composed of one or more devices) grows when increasing the simulation sur-
face and decreasing the number of devices. Hence, the difference in the quality
of the solutions is a consequence of the different topology of the networks, since
the high connectivity of the devices in the mall environment allows one mes-
sage to reach many more devices than in the case of the other two studied
environments. Conversely, this high connectivity increases the risk of a broad-
cast storm, making DFCNT.Mall very difficult to solve. From our results we
can conclude that cMOGA has dealt with the problem successfully.

The Pareto fronts on Fig. 14.4 fulfill the design objectives of the DFCN
protocol: most of the plots (in the center of the clouds) provide sets of param-
eters which make DFCN achieving a coverage rate close to 100%, keeping the
network throughput very low. What makes the DFCNT problem particularly
interesting from an applicative point of view is that it permits the decision
maker to discard this default behavior by setting a degree of coverage for
the broadcasting application. Indeed not all applications require the maxi-
mization of the coverage rate. For example, local advertising –which consists
in spreading advertisement messages to devices a few hops away from the
source– needs the broadcasting process to cease after a while. Sometimes high
coverage is even to be avoided. For example trying to achieve a high cover-
age on metropolitan MANETs (which may realistically be made of thousands
devices) is harmful, since it is likely to lead to severe network congestions.

14.4 Comparing cMOGA Against NSGA-II

In this section we make a comparative study of the behavior of cMOGA and
NSGA-II, a state-of-the-art metaheuristic in multi-objective optimization, on
DFCNT problem. For this comparison, the three studied environments (mall,
metropolitan and highway) were solved with NSGA-II.

14.4.1 Parameterization of NSGA-II

We present in this section the parameterization used for NSGA-II. This algo-
rithm stops when 25000 function evaluations are made, and has a maximuma
size of 100 non-dominated solutions for the archive. The recombination and
mutation operators used are SBX and polynomial, respectively, and they two
use a distribution index of 10 units. The recombination probability is set to
0.9, while in the case of mutation the probability is 0.2 (as it was suggested by
the designers of the algorithm). As in the case of cMOGA, five independent
runs of the simulator are run for evaluating the individuals. It is important to
note that 25000 function evaluations × 5 simulations/evaluation means that
DFCN has been optimized in more than 125000 different network instances.



14.4 Comparing cMOGA Against NSGA-II 201

Table 14.4. NSGA-II versus cMOGA for DFCNT. Number of Pareto optima

x max min Test

DFCNT.Mall
NSGA-II 99.24± 1.5885 100 93

+
cMOGA 96.77± 3.2022 99 87

DFCNT.Metropolitan
NSGA-II 83.52±15.2728 100 41

+
cMOGA 95.59± 4.5788 99 80

DFCNT.Highway
NSGA-II 54.92±14.0083 81 24 −
cMOGA 52.23±11.0429 76 34

Table 14.5. NSGA-II versus cMOGA for DFCNT. Hypervolume metric

x max min Test

DFCNT.Mall
NSGA-II 0.6220±0.0115 0.6590 0.6125

+
cMOGA 0.8337±0.0917 0.9919 0.7041

DFCNT.Metropolitan
NSGA-II 0.7648±0.0152 0.7860 0.7412

+
cMOGA 0.9261±0.0461 1.0000 0.8319

DFCNT.Highway
NSGA-II 0.8859±0.0122 0.9234 0.8660 −
cMOGA 0.9391±0.1371 1.0000 0.3274

Table 14.6. NSGA-II versus cMOGA for DFCNT. Set coverage metric

C(A,B)
x max min Test

A B

DFCNT.Mall
NSGA-II cMOGA 0.9467±0.0231 0.9894 0.8854

+
cMOGA NSGA-II 0.0348±0.0464 0.1837 0.0000

DFCNT.Metropolitan
NSGA-II cMOGA 0.8798±0.0343 0.9457 0.8333

+
cMOGA NSGA-II 0.6319±0.1045 0.8267 0.4143

DFCNT.Highway
NSGA-II cMOGA 0.7665±0.0787 1.0000 0.6053 −
cMOGA NSGA-II 0.8256±0.2204 1.0000 0.0000

14.4.2 Discussion

The comparison of the two algorithms (cMOGA and NSGA-II) is made in
this section. The results are obtained after making 30 independent runs of
every experiment, and metrics hypervolume and set coverage, as well as the
number of non-dominated solutions found in the Pareto front were used for
comparing the algorithms (see Chap. 9).

The obtained results are displayed in Tables 14.4 to 14.6, and they in-
clude the average, x, and the standard deviation of the obtained results. The
maximum and minimum obtained values (max and min, respectively) are also
provided for each metric. The same statistical study discussed in Chap. 5 has
been applied here in order to obtain statistical relevance in our conclusions.

As it can be seen in Table 14.4, cMOGA finds a higher number of non-
dominated solutions in the case of the metropolitan environment, while it is
worse than NSGA-II for the mall scenario. In the case of DFCNT.Highway
problem no statistically significant differences were found. Regarding the hy-



202 14 Telecommunications: Optimizing Broadcasting in MANETs

pervolume metric (see Table 14.5), cMOGA outperforms NSGA-II for the
three studied problems, with statistical significance for DFCNT.Mall and
DFCNT.Metropolitan problems. Finally, in contrast to the observed results
for the two previous metrics, NSGA-II is better than cMOGA in terms of
the set coverage metric (as can be seen in Table 14.6). Our algorithm only
improves NSGA-II in the Highway environment, but the difference is not sig-
nificative in this case.

Thus, summarizing the obtained results, there is no algorithm clearly bet-
ter than the other one. On the one hand, cMOGA seems to be better than
NSGA-II in terms of the number of non-dominated solutions found and the
hypervolume metric. On the other hand, it is outperformed by NSGA-II in the
case of the set coverage metric. The differences between the two algorithms
are always significative for DFCNT.Mall and DFCNT.Metropolitan, while we
did not find important differences in the case of DFCNT.Highway.

14.5 Conclusions

This chapter presents a first approximation to the problem of optimally tuning
DFCN, a broadcasting protocol for MANETs, using cMOGA, a new cellular
multi-objective genetic algorithm. cMOGA has been used to solve DFCNT,
which is defined as a three-objective MOP, with the goals of minimizing the
duration of the broadcasting process, maximizing the network coverage, and
minimizing the network usage.

Three different realistic scenarios were used. We have then solved three
different instances of the new presented MOP. They correspond to a shopping
center (DFCNT.Mall), the streets in a city (DFCNT.Metropolitan), and a
wide non-metropolitan area wherein several roads exist (DFCNT.Highway).
Our experiments reveal that solving DFCNT instances provides a populated
Pareto front composed of more than 50 points for DFCNT.Highway, and more
than 95 points (i.e., more than 95 different DFCN configurations) in the case
of the other two environments, all this at the expense of a considerable amount
of time. However, this time can be affordable for a network designer.

In the second part of this chapter we compared our new algorithm
(cMOGA) versus NSGA-II, a multi-objective algorithm that belongs to the
state of the art, for the three proposed problems. Three different metrics
were used for comparing the algorithms: the number of Pareto optima, the
set coverage and hypervolume metrics. From the results obtained we can not
conclude that any of the two algorithms is better than the other. We observed
that cMOGA outperforms NSGA-II in terms of the hypervolume metric, while
NSGA-II is better than cMOGA for the set coverage metric. Regarding the
number of non-dominated solutions found, there is no a winner algorithm,
since both of them outperform the other one for one of the three studied
problem (there is one problem for which no significant differences were found).



15

Bioinformatics: The DNA Fragment Assembly
Problem

To be prepared is half the victory.

Miguel de Cervantes (1547 - 1616) – Spanish Novelist

In previous chapters, cellular GAs were applied to different domains such as
telecommunications, logistics, and mathematics in order to demonstrate we
are prepared for solving complex real-world problems when equipped with
these techniques. In this chapter we plan to complete this study by facing a
problem taken from the bioinformatics field. Specifically, we consider in this
chapter the DNA fragment assembly problem, which is an important problem
that emerges in laboratories involved in genomic projects. The goal of this
problem is to determine the complete sequence of the genome and its genetic
contents. The genomic project is accomplished in two steps: the genome se-
quencing (we focus here on this first one), and the genome annotation (i.e.,
the process of identifying the boundaries between genes and other features in
raw DNA sequences).

The reason for making these two steps in this process is the large strands of
DNA that are needed to read nowadays (e.g., human DNA is about 3.2 billion
nucleotides in length). Thus, these strands are broken into small fragments for
sequencing in a process called shotgun sequencing. In this approach, several
copies of a portion of DNA are each broken into many segments short enough
to be sequenced automatically by a machine, but this process does not keep
neither the ordering of the fragments nor the portion from which a particular
fragment came. This leads to the DNA fragment assembly problem [228] in
which these short sequences have to be reassembled to their (supposed) orig-
inal form. The automation allows shotgun sequencing to proceed far faster
than traditional methods. But comparing all the tiny pieces and matching up
the overlaps requires massive computation.

The importance of accurately solving the DNA fragment assembling prob-
lem is very high since it must be faced in the early phases of the genome
project, and thus the other steps depend on the quality of the obtained re-
sults. This problem is a very difficult combinatorial optimization problem (it
is NP-hard), and it is growing in importance and complexity as more research
centers become involved on sequencing new genomes. The difficulty of the
problem is given by its huge search space even in the absence of noise, since
given k fragments, there are 2kk! possible combinations.

E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
doi: 10.1007/978-0-387-77610-1 15, © Springer Science+Business Media, LLC 2008



204 15 Bioinformatics: The DNA Fragment Assembly Problem

The DNA fragment assembly problem has been already tackled with var-
ious different heuristics in the literature (including genetic algorithms), but
due to its importance and complexity, more accurate and (specially) faster
tools must be developed. Recently, Alba and Luque have proposed in [22] a
new heuristic algorithm which is more accurate and much faster than all the
previously existing ones for this problem. The name of this new heuristic is
PALS (which stands for problem aware local search), and it is used in this
chapter for hybridizing a cGA in order to improve the accuracy of the algo-
rithm. This should be a very successful result due to the importance of this
problem on the genome project, even though the execution speed is penalized
(with respect to PALS itself).

This chapter is organized in the following manner. The problem of the
DNA fragment assembly is described in Sect. 15.1, and the new hybrid cGA
we propose for solving it is presented in Sect. 15.2. Finally, our main results are
shown and discussed in Sect. 15.3, and our conclusions are given in Sect. 15.4.

15.1 The DNA Fragment Assembly Problem

In order to determine the function of specific genes, scientists have learned
to read the sequence of nucleotides comprising a DNA sequence in a process
called DNA sequencing. To do that, multiple exact copies of the original DNA
sequence are made. Each copy is then cut into short fragments at random po-
sitions. These are the first three steps depicted in Fig. 15.1 and they take
place in the laboratory. After the fragment set is obtained, a traditional as-
semble approach is followed in this order: overlap, layout, and then consensus.
To ensure that enough fragments overlap, the reading of fragments continues
until a coverage is satisfied. These steps are the last three ones in Fig. 15.1. In
what follows, we give a brief description of each of the three phases, namely
overlap, layout, and consensus.

Overlap Phase – Finding the overlapping fragments. This phase consists
of finding the best or longest match between the suffix of one sequence and the
prefix of another. In this step, we compare all possible pairs of fragments to
determine their similarity. Usually, a dynamic programming algorithm applied
to semiglobal alignment is used in this step. The intuition behind finding the
pairwise overlap is that fragments with a significant overlap score are very
likely next to each other in the target sequence.

Layout Phase – Finding the order of fragments based on the computed
similarity score. This is the most difficult step because it is hard to tell the
true overlap due to the following challenges:

1. Unknown orientation: After the original sequence is cut into many frag-
ments, the orientation is lost. One does not know which strand should be
selected. If one fragment does not have any overlap with another, it is still
possible that its reverse complement might have such an overlap.



15.1 The DNA Fragment Assembly Problem 205

Fig. 15.1. Graphical representation of DNA sequencing and assembling

2. Base call errors: There are three types of base call errors: substitution,
insertion, and deletion errors. They occur due to experimental errors in
the electrophoresis procedure (the method used in the laboratories to
read the DNA sequences). Errors affect the detection of fragment overlaps.
Hence, the consensus determination requires multiple alignments in highly
coverage regions.

3. Incomplete coverage: It happens when the algorithm is not able to assem-
ble a given set of fragments into a single contig. A contig is a sequence in
which the overlap between adjacent fragments is greater than or equal to
a predefined threshold (cutoff parameter).



206 15 Bioinformatics: The DNA Fragment Assembly Problem

4. Repeated regions: Repeats are sequences that appear two or more times in
the target DNA. Repeated regions have caused problems in many genome
sequencing projects, and none of the current assembly programs can han-
dle them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that
are not adjacent or overlapping on the target molecule join together into
one fragment. Contamination occurs due to the incomplete purification of
the fragment from the vector DNA.

After the order is determined, the progressive alignment algorithm is ap-
plied to combine all the pairwise alignments obtained in the overlap phase.

Consensus Phase – Deriving the DNA sequence from the layout. The
most common technique used in this phase is to apply the majority rule in
building the consensus.

To measure the quality of a consensus, we can look at the distribution of
the coverage. Coverage at a base position is defined as the number of fragments
at that position. It is a measure of the redundancy of the fragment data, and
it denotes the number of fragments, on average, in which a given nucleotide
in the target DNA is expected to appear. It is computed as the number of
bases read from fragments over the length of the target DNA [228].

Coverage =
∑n

i=1 length of fragment i

target sequence length
, (15.1)

where n is the number of fragments. The higher the coverage, the fewer number
of graphs, and the better the result.

15.2 A cMA for DNA Fragment Assembly Problem

In this section, a new cellular memetic algorithm (called cGA+PALS) for
solving the DNA fragment assembly problem is presented. A pseudo-code
of the cMA template we use in this chapter is shown in Alg. 15.1, and the
parameterization used in this study is given in Table 15.1.

Solutions are represented as a permutation of integer numbers, and the
value of each gene corresponds to one of the available fragments. The order of
the numbers in the permutation represents the order of the fragments in the
final solution. The fitness function used is the sum of the overlapping degrees
of all the fragments.

A population of 400 individuals (arranged in a 20 × 20 grid) is used in
our algorithm, and a NEWS neighborhood structure is considered. For the
breeding loop, one of the parents is the current individual itself, while the other
one is selected by binary tournament within its neighborhood. The two parents
are then recombined using the order based crossover (OX). This operator lies
in randomly selecting two cut points, and copying the largest portion of the
best parent into the offspring. The other genes of this offspring are copied from



15.2 A cMA for DNA Fragment Assembly Problem 207

Algorithm 15.1 Pseudo-code of cMA+PALS
1. proc Evolve(cma) //Algorithm parameters in ‘cma’
2. GenerateInitialPopulation(cma.pop);
3. Evaluation(cma.pop);
4. while !StopCondition() do
5. for individual ← 1 to cma.popSize do
6. neighbors ← GetNeighbors(cma,position(individual));
7. parents← Select(neighbors);
8. offspring← Recombination(cma.Pc,parents);
9. offspring← Mutation(cma.Pm,offspring);

10. offspring← PALS(cma.Pl,offspring);
11. Evaluation(offspring);
12. InsertIfNotWorse(position(x,y),offspring,cma,aux pop);
13. end for
14. cma.pop← aux pop;
15. UpdateStatistics(cma);
16. end while
17. end proc Evolve;

the worst parent but not repeating any gene value and preserving their order
of appearance in this worst parent. The resulting offspring is then mutated
applying the swap operator to all the genes with equal probability. The swap
operator is to exchange the value of a given gene with that of other randomly
selected gene.

The local search step is an invocation to the PALS heuristic [22] with a
maximum of 100 iterations (or until the current solution could not be im-
proved in the last iteration of the algorithm), and it is applied to all the
individuals in the population with the probability 1/PopSize. This parame-
terization was chosen after the results in previous studies that concluded that
it is more efficient to apply an intensive local search to a very reduced num-
ber of individuals in every generation than applying a slighter step to all the
individuals (see Chap. 7).

Table 15.1. Parameterization of cGA+PALS for the DNA fragment assembly
problem

Population 20× 20 individuals
Neighborhood NEWS (Von Neumann)
Selection Current individual + binary tournament
Recombination OX, Pc = 1.0
Mutation Swap, Pm = 1/L (L = Individual length)
Local search PALS (maximum = 100 steps), PLS = 1.0/PopSize
Replacement Rep if not Worse
Stop condition Reaching 60,000 evaluations



208 15 Bioinformatics: The DNA Fragment Assembly Problem

The PALS heuristic is a very recent technique much more efficient than any
other previously existing algorithm for the DNA fragment assembly problem.
One of the key issues of PALS is that contigs are taken into account when
computing the quality of a solution. Since computing the contigs of a solution
is a costly process, PALS calculates it by estimating the number of contigs
that are created or destroyed when tentative solutions are manipulated. In
contrast, most algorithms in the literature either do not take contigs into
account (what would lead to the undesirable situation in which a solution can
be better than another one with a larger number of contigs) or compute the
number of contigs of the newly generated solutions by applying a final step of
refinement with a greedy heuristic [163].

Finally, newly generated individuals replace the existing ones in the pop-
ulation if their quality (fitness value) is better or equal to that of the current
individuals in the population. The stop condition of cGA+PALS is to reach
60,000 evaluations.

15.3 Results

We thoroughly compare in this section the results obtained by cGA+PALS,
a cGA and the PALS heuristic itself. Additionally, these algorithms are com-
pared against some of the most popular assemblers in the literature in terms
of the final number of contigs assembled in the last part of this section.

In order to fairly compare the three studied algorithms, we made 100 in-
dependent runs and performed statistical tests on the obtained results. These
algorithms were implemented in Java (using the JCell framework) and run on
a Linux system with a Pentium IV 2.8 GHz processor and 512 MB of RAM.
The parameters of cGA+PALS are those given in Sect. 15.2, and the cGA
uses exactly the same parameters than cGA+PALS, but it does not perform
any local search (it does not implement PALS). The parameterization used in
the case of PALS is the one proposed in its original paper [22].

Thus, we have selected for our studies the two largest instances studied
in [22], taken from the NCBI web site1, corresponding to the Neurospora
crassa (common bread mold) BAC, with accession number BX842596, which
is 77,292 bases long. Some information about these specific fragment sets is
given in Table 15.2. These instances are larger and more complex instances
that researchers usually face (which are about 15-30k bases long).

The two studied instances are very hard since they are generated from
very long sequences using a small/medium value of coverage and a very re-
strictive cutoff (threshold to join adjacent fragments in the same contig). The
combination of these two parameters produces very complex instances.

We show in Tables 15.3 and 15.4 the results obtained by the studied al-
gorithms for instance BX842596 with coverage 4 and 7, respectively. Specifi-
cally, we compare the algorithms in terms of the best and average solutions
1 http://www.ncbi.nlm.nih.gov



15.3 Results 209

Table 15.2. Information of datasets. The accession number is used as instance name

Parameters BX842596

Coverage 4 7
Mean fragment length 708 703
Number of fragments 442 773

Table 15.3. Comparison of the studied algorithms. Instance BX842596(4)

Best Average Best Average Time
Solution Solution Contigs Contigs (seconds)

PALS 227130 226022.49 ± 625.91 1 1.16 ±0.44 20.91 ± 0.21

cGA 190118 186536.05 ±1746.26 9 18.56 ±3.83 159.59 ± 0.99

cGA+PALS 227630 226923.42 ± 351.84 1 1.06 ±0.31 280.99 ±23.23

Test • + • + +

found, the best and average number of contigs in the solution, and the average
elapsed time. Their standard deviations are also included, and the best results
are bolded. All the obtained results are statistically significant, except the
case of the average number of contigs obtained by PALS and cGA+PALS for
instance BX842596(4), for which we cannot statistically assure that are differ-
ent with a 95% confidence level. Their standard deviations are also included.

It can be seen in these two tables that the proposed cMA is the best of the
three compared algorithms for the two studied instances in terms of best and
average solution found and number of contigs in the solution. Conversely, it
is much slower than PALS, as it was expected. The regular cGA is the worst
algorithm with statistically significant results in all the cases.

Hence, even thought the cGA is the worst compared algorithm, it becomes
the best one after hybridizing it with the PALS heuristic as a local search step.
However, although the run time is penalized, it is still highly competitive with
the existing assemblers in the literature (which require several hours), and the
quality of the solutions found by cGA+PALS is highly improved with respect
to PALS. Indeed, cGA+PALS is the most accurate of the compared algo-
rithms, since it obtains the highest average solutions with the lowest standard
deviation values. Additionally, it is easy to considerably reduce the run time of
the algorithm by implementing it in a more efficient language, such as C++.

The three studied algorithms are compared versus some of the most im-
portant assemblers existing in the literature in Table 15.5. These algorithms
are a pattern matching algorithm (PMA) [163], and two commercial pack-
ages: CAP3 [135], and Phrap [123]. From this table we can conclude that
the proposed cMA is a really competitive tool, clearly outperforming all the
compared algorithms, and thus representing the new state of the art.



210 15 Bioinformatics: The DNA Fragment Assembly Problem

Table 15.4. Comparison of the studied algorithms. Instance BX842596(7)

Best Average Best Average Time
Solution Solution Contigs Contigs (seconds)

PALS 352718 343888.39 ±3074.04 11 18.48 ± 4.00 66.99 ± 0.12

cGA 304714 296891.41 ±3614.00 35 50.80 ± 6.43 255.11 ± 2.17

cGA+PALS 445395 445134.95 ± 209.59 1 1.00 ±0.00 2334.30 ±164.69

Test • + • + +

Table 15.5. Best final number of contigs for the studied assemblers and for other
specialized systems

PALS cGA cGA+PALS
PMA CAP3 Pharp
[163] [135] [123]

BX842596(4) 1 9 1 7 6 6
BX842596(7) 11 35 1 2 2 2

15.4 Conclusions

We proposed in this chapter a new cellular memetic algorithm for solving
the DNA fragment assembly problem. The algorithm was obtained after hy-
bridizing a cGA with the PALS heuristic, a recently proposed heuristic that
represents the state of the art for this problem. The resulting algorithm clearly
improves the results of PALS, as well as those of an equivalent cGA without
local search. However, the resulting cMA (called cGA+PALS) considerably
increases the computational time with respect to PALS, although it is still
faster than the compared algorithms we found in the literature. Typically,
algorithms in the literature usually require several hours for solving the prob-
lem rather than the 38 minutes that the cMA lasts (in average) for the most
computationally expensive instance of the two compared ones.



Part V

Appendix



A

Definition of the Benchmark Problems

We build too many walls and not enough bridges.

Isaac Newton (1642 - 1727) – Scientist

In order to make this book self-contained, we present in this appendix a brief
description of all the problems used in our studies. In this way, we want to
build a bridge between any chapter and this one, allowing the reader to access
the details on the problems but not interrupting the smooth reading of the
chapters with these details. We structure the description of all the problems
in different sections according to which optimization field they belong to:
combinatorial optimization in Sect. A.1, continuous optimization in Sect. A.2,
and multi-objective optimization in Sect. A.3.

A.1 Combinatorial Optimization Problems

In this section we describe the different combinatorial optimization problems
we have tackled in this book. In the definition of some of them the Hamming
distance is used. The Hamming Distance between a bit string a and another
b is measured by the equation:

dab =
l∑

i=1

ai ⊗ bi . (A.1)

Hence, identical bit strings have a hamming distance of dab = 0.0, whereas
completely different bit strings will have a distance of dab = l, being l the
length of the two strings.

A.1.1 COUNTSAT Problem

COUNTSAT [77] is an instance of the MAXSAT problem. In COUNTSAT,
the value of a given solution is the number of satisfied clauses (among all the
possible Horn clauses of three variables) by an input composed by n boolean
variables. It is easy to check that the optimum is obtained when the value of
all the variables is 1. In this study we consider an instance of n = 20 variables,
and the value of the optimal solution to the problem is 6860 (Eq. A.2).



214 A Definition of the Benchmark Problems

fCOUNTSAT(s) = s + n(n − 1)(n − 2) − 2(n − 2)
(

s
2

)
+ 6

(
s
3

)
,

= s + 6840− 18s(s − 1) + s(s− 1)(s− 2) . (A.2)

COUNTSAT is obtained from MAXSAT with the intention of being very
difficult to solve for GAs [77]. The values assigned to the variables randomly
following a uniform distribution should be composed by approximately n/2
ones in average. Thus, local changes decreasing the number of ones will lead
us to better results, while incrementing the number of ones will decrement the
fitness value (see Fig. A.1). Consequently, it is expected that the GA rapidly
finds the solution composed by all the genes set to 0 and has difficulties for
finding the optimal solution, composed by ones in all its positions.

Fig. A.1. COUNTSAT function with 20 variables

A.1.2 Error Correcting Codes Design Problem – ECC

The ECC problem was presented in [173]. We consider a three-tuple (n, M, d),
where n is the length of each codeword (number of bits), M is the number
of codewords, and d is the minimum Hamming distance between any pair of
codewords. Our objective will be to find a code which has a value for d as large
as possible (reflecting greater tolerance to noise and errors), given previously
fixed values for n and M . The fitness function to be maximized is:

fECC(C) =
1PM

i=1

PM
j=1
i�=j

1
d2

ij

, (A.3)

where dij represents the Hamming distance between codewords i and j in the
code (made up of M codewords, each of length n). We consider in the present
book an instance where M = 24 and n = 12. The size of the search space is
approximately 1087. The optimal solution for this problem has a fitness value
of 0.0674 [45]. In some of our studies, we simplified the search space of the
problem reducing to the half (M/2) the number of words composing the code,
and the other half is composed by the complement of the words found by the
algorithm.



A.1 Combinatorial Optimization Problems 215

A.1.3 Frequency Modulation Sounds – FMS

The FMS problem [251] is defined as determining the 6 real parameters
x = (a1, w1, a2, w2, a3, w3) of the frequency modulated sound model given in
Eq. A.4 for approximating it to the sound wave given in Eq. A.5 (where
θ = 2 · π/100). The problem can be defined as a discrete or continuous op-
timization problem. In the discrete case, the parameters are defined in the
range [−6.4, +6.35], and we encode each parameter into a 32 bit substring in
the individual. The continuous case is described in Sect. A.2.

y(t) = a1 sin
(

w1tθ + a2 sin
(
w2tθ + a3 sin(w3tθ)

))
, (A.4)

y0(t)=1.0 sin
(
5.0tθ − 1.5 sin

(
4.8tθ + 2.0 sin(4.9tθ)

))
. (A.5)

The goal is to minimize the sum of square errors between the sample
data (Eq. A.4) and the real (Eq. A.5), as it is given in detailed in Eq. A.6.
This problem is a highly complex multimodal function having strong epistasis.
Due to the high difficulty of solving this problem with high accuracy without
applying local search or specific operators for continuous optimization (like
gradual GAs [127]), we stop the algorithm when the error falls below 10−2.
The fitness function to maximize corresponds with the inverse of the function
shown in Eq. A.6, and we obtain the maximum value when EFMS = 0.0.

EFMS(x) =
100X
t=0

“
y(t)− y0(t)

”2

. (A.6)

A.1.4 IsoPeak Problem

IsoPeak is a non separable problem investigated in [175]. The solutions for
this function are composed by an n-dimensional vector, where n = 2×m (the
genes are divided in groups of two). We first define two auxiliar functions Iso1
and Iso2 as:

−→x 00 01 10 11

Iso1 m 0 0 m − 1
Iso2 0 0 0 m

Now, we can define the IsoPeak problem as:

fIsoPeak(−→x ) = Iso2 (x1, x2) +

mX
i=2

Iso1 (x2i−1, x2i) . (A.7)

The aim of the problem is to maximize the function fIsoPeak and the global
optimum is reached when the values of the variables of the n-dimensional
vector are (1, 1, 0, 0, . . . , 0, 0).



216 A Definition of the Benchmark Problems

A.1.5 Maximum Cut of a Graph – MAXCUT

The MAXCUT problem lies in dividing a weighted graph G = (V, E) into
two disjoint subsets G0 = (V0, E0) and G1 = (V1, E1) so that the sum of
the weights of the edges with one endpoint in V0 and the other one in V1 is
maximized. For encoding the problem we use a binary string (x1, x2, . . . , xn)
where each digit corresponds to a vertex. If a digit is 1 then the corresponding
vertex is in set V1; if it is 0 then the corresponding vertex is in set V0. The
function to be maximized [144] is:

fMAXCUT(x)=

n−1X
i=1

nX
j=i+1

wij ·
ˆ
xi(1− xj)+xj(1− xi)

˜
. (A.8)

Note that wij contributes to the sum only if nodes i and j are in dif-
ferent partitions. Although it is possible to generate different instances of
graph randomly, we have used three different instances of the problem taken
from [144]. Two of them are randomly generated graphs of moderate sizes: a
sparse one MAXCUT20.01, and a dense one MAXCUT20.09; both of them
are made up of 20 vertices. The other instance is a scalable weighted graph of
100 vertices. The globally optimal solutions for these instances are 10.119812
for MAXCUT20.01, 56.740064 in the case of MAXCUT20.09, and 1077 for
MAXCUT100.

A.1.6 Massively Multimodal Deceptive Problem – MMDP

The MMDP is a problem that has been specifically designed to be difficult for
an EA [107]. It is made up of k deceptive subproblems (si) of 6 bits each one.
The value of each of these sub-problems (fitnesssi) depends on the number
of ones a binary string has (see Fig. A.2). It is easy to understand why these
functions are considered deceptive, as they have two global maxima and a
deceptive attractor in the middle point (see graphic of Fig. A.2).

Unitation Subfunction value

0 1.000000

1 0.000000

2 0.360384

3 0.640576

4 0.360384

5 0.000000

6 1.000000

Massively Multimodal Deceptive Problem

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

Unitation

S
u

b
fu

n
c
ti

o
n

V
a
lu

e

Fig. A.2. Basic deceptive bipolar function (si) for MMDP



A.1 Combinatorial Optimization Problems 217

In MMDP, each subproblem si contributes to the total fitness value ac-
cording to the number of ones it has (Fig. A.2). The global optimum has a
value of k and it is attained when every subproblem is composed of zero or six
ones. The number of local optima is quite large (22k), while there are only 2k

global solutions. Therefore, the degree of multimodality is regulated by the k
parameter. We use here a considerably large instance (if the contrary is not
specified) of k = 40 subproblems. The instance we try to maximize for solving
the problem is shown in Eq. A.9, and its maximum value is 40.

fMMDP(s) =
k∑

i=1

fitnesssi . (A.9)

A.1.7 Minimum Tardy Task Problem – MTTP

MTTP [236] is a task-scheduling problem wherein each task i from the set of
tasks T = {1, 2, . . . , n} has a length li (the time it takes for its execution), a
deadline di (before which a task must be scheduled), and a weight wi. The
weight is a penalty that has to be added to the objective function in the
event that the task remains unscheduled. The lengths, weights and deadlines
of tasks are all positive integers. Scheduling the tasks of a subset S of T is to
find the starting time of each task in S, such as at most one task at time is
performed and such that each task finishes before its deadline.

We characterize a scheduling function g defined on a subset of tasks S ⊆
T : S �→ Z

+
⋃ {0} | ∀ i, j ∈ S with the following two properties:

1. A task can not be scheduled before any previous one has finished:
g(i) < g(j) ⇒ g(i) + li ≤ g(j).

2. Every task finishes before its deadline: g(i) + li ≤ di.

The objective function for this problem is to minimize the sum of the
weights of the unscheduled tasks as shown in Eq. A.10. Therefore, the opti-
mum scheduling minimizes the function:

W (x) =
X

i∈T−S

wi . (A.10)

The schedule of tasks S can be represented by a vector x = (x1, x2, . . . , xn)
containing all the tasks ordered by its deadline. Each xi ∈ {0, 1}, where if
xi = 1 then task i is scheduled in S, while if xi = 0 means that task i is
not included in S. The fitness function to optimize, described in [144], is the
inverse of Eq. A.10: fMTTP(x) = 1/W (x). We have used in this study three
different instances [144]: MTTP20, MTTP100, and MTTP200, with sizes 20,
100 and 200, and known maximum fitness values of 0.02439, 0.005 and 0.0025,
respectively.



218 A Definition of the Benchmark Problems

A.1.8 OneMax Problem

The OneMax problem [222] is a very simple problem consisting in maximizing
the number of ones contained in a bit string. Formally, this problem can be
described as finding a string x = {x1, x2, . . . , xn} with xi ∈ {0, 1}, which
maximizes the following equation:

fOneMax(x) =
n∑

i=1

xi . (A.11)

The function fOneMax has (n + 1) possible different values. For the addi-
tionally decomposable functions (ADFs) the multimodal distribution occurs
quite frequently [108]. For defining an instance of this problem, we only need
to define the length of the bit string (n). For a given n, the optimal solution
to the problem is a string of n ones, that is, the value of all the bits of the
string is one.

A.1.9 Plateau Problem

This problem was studied in [188], and it is also known as the real path of
three bits problem. The solutions for this function consist of a n-dimensional
vector, where n = 3 × m (the genes are divided in groups of three). We first
define an auxiliar function g as:

g(x1, x2, x3) =
{

1, if x1 = 1 and x2 = 1 and x3 = 1
0, otherwise .

(A.12)

Now, we can define the Plateau problem as:

fPlateau(x) =
m∑

i=1

g(si) . (A.13)

Where si = (x3i−2, x3i−1, x3i). The aim of the problem is to maximize the
function fPlateau, and the global optimum is obtained when all the bits of the
string are set to one.

A.1.10 P-PEAKS Problem

The P-PEAKS problem [140] is a multimodal problem generator. A prob-
lem generator is an easily parameterizable task which has a tunable degree
of difficulty, so that we can generate instances as complex as we want. Also,
using a problem generator removes the opportunity to hand-tune algorithms
to a particular problem, therefore allowing a larger fairness when compar-
ing algorithms. With a problem generator we evaluate our algorithms on a
high number of random problem instances, since a different instance is solved
each time the algorithm runs, then the predictive power of the results for the
problem class as a whole is increased, not for particular instances.



A.1 Combinatorial Optimization Problems 219

The idea of P-PEAKS is to generate P random N -bit strings that represent
the location of P peaks in the search space. The fitness value of a string is
the hamming distance between this string and the closest peak, divided by N
(as shown in Eq. A.14). Using a higher (or lower) number of peaks we obtain
more (or less) epistatic problems. In this book we have used an instance of
P = 100 peaks of length N = 100 bits each, which represents a medium/high
difficulty level [26]. The maximum fitness value for this problem is 1.0.

fP−PEAKS(x) =
1

N

P
max
i=1
{N − Hamming(x, Peaki)} . (A.14)

A.1.11 Satisfiability Problem – SAT

The satisfiability problem (SAT) has received much attention by the scientific
community since it plays a main role in the NP-completeness of the prob-
lems [96]. This is due to it was demonstrated that any NP problem can be
translated into an equivalent SAT problem in polynomial time (Cook theo-
rem) [51], while the inverse transformation may not always exist in polynomial
time. The SAT problem was the first which was demonstrated to belong to
the NP class of problems.

The SAT problem consists in assigning values to a set of n boolean
variables x = (x1, x2, . . . , xn) such that they satisfy a given set of clauses
c1(x), . . . , cm(x), where ci(x) is a disjunction of literals, and a literal is a
variable or its negation. Hence, we can define SAT as a function f : B

n → B,
B = {0, 1} like:

fSAT(x) = c1(x) ∧ c2(x) ∧ . . . ∧ cm(x) . (A.15)

An instance of SAT, x, is called satisfiable if fSAT (x) = 1, and unsatisfiable
otherwise. A k-SAT instance is composed of clauses with length k, and when
k ≥ 3 the problem is NP-complete [96]. In this book we only consider 3-SAT
instances belonging to the difficulty transition step of the SAT problem, where
the hardest instances belong to, and verifying that m = 4.3 ∗ n [182] (being
m the number of clauses and n the number of variables). Particulary, in this
book we used sets of 12 instances (with n = 30 to 100 variables) proposed
in [32], belonging to the difficulty transition step of the SAT problem.

According to Eq. A.15, a simple fitness function for SAT consists of count-
ing the number of clauses that satisfies the evaluating solution. The problem
is that this function assigns the same fitness value to multiple different solu-
tions. An alternative lies in considering the fitness function as a lineal function
of the number of satisfied clauses where the stepwise adaptation of weights
(SAW) [83] is used:

fSAW(x) = w1 · c1(x) + . . . + wm · cm(x) . (A.16)

This function weights the values of the clauses with wi ∈ N in order
to give more importance to those clauses which are not satisfied yet by the
current best solution. These weights are adjusted dynamically according to
wi = wi + 1 − ci(z), being z the current fittest individual.



220 A Definition of the Benchmark Problems

A.2 Continuous Optimization Problems

In this section we present the problems belonging to the continuous optimiza-
tion field studied in this book. Some of these problems are well known classical
academic functions (Sect. A.2.1), whereas others are taken from the real world
(Sect. A.2.2).

A.2.1 Academic Problems

As stated before, eight academic problems for continuous optimization
are presented in this section. Griewangk (fGri) [124], Rastrigin generalized
(fRas) [30, 247], Rosenbrock generalized (fRos) [63], Schwefel 1.2 (fSch) [226],
the Sphere model (fSph) [63, 226], the expansion of f10 (ef10) [260], the Fractal
(fFrac) [31], and the Ackley functions (fAck), originally proposed by Ackley [3]
as a bidimensional function, and later generalized by Bäck et al. [34]. This set
of problems incorporates very diverse characteristics, since it is composed by
lineal and non lineal, unimodal and multimodal, scalable and non scalable,
convex, etc. problems. All the details on these problems are shown in Ta-
ble A.1, where n is the size of the problem we use in this work. The value of
the optimal solution for all the problems of Table A.1 is 0.0.

Table A.1. Academic benchmark of continuous optimizaton

Problem Fitness Function Variable Values n

Griewangk
fGri(x) = 1

d

nP
i=1

x2
i −

nQ
i=1

cos
“

xi√
i

”
+ 1 −600.0 ≤ xi ≤ 600.0 25

d = 4000

Rastrigin
fRas(x) = a · n +

nP
i=1

x2
i − a · cos(ω · xi) −5.12 ≤ xi ≤ 5.12 25

a = 10, ω = 2π

Rosenbrock fRos(x) =
n−1P
i=1

(100 · (xi+1 − x2
i )2 + (xi − 1)2) −5.12 ≤ xi ≤ 5.12 25

Schwefel fSch(x) =
nP

i=1

 
iP

j=1
xj

!2

−65.536 ≤ xi ≤ 65.536 25

Sphere fSph(x) =
nP

i=1
x2

i −5.12 ≤ xi ≤ 5.12 25

ef10

fef10 (x) = f10(x1, x2) + . . . + f10(xi−1, xi)+ −100.0 < xi ≤ 100.0 10
+ . . . + f10(xn, x1)

f10(x, y) = (x2 + y2)0.25 · ˆsin2(50 · (x2 + y2)0.1) + 1
˜

Fractal

fFrac(x) =
Pn

i=1(C
′(xi) + x2

i − 1)

−5.00 ≤ xi ≤ 5.00 20
C′(z) =

8><
>:

C(z)
C(1)|z|2−D si z �= 0

1 si z = 0

C(z) =
P∞

j=−∞
1−cos(bjz)

b(2−D)j
D = 1.85, b = 1.5

Ackley
fAck(x) = −a exp

h
−b
` 1

n

Pn
i=1 x2

i

´1/2
i
− −32.768 ≤ xi ≤ 32.768 25

−exp
` 1

n

Pn
i=1 cos(cxi)

´
+ a + e

a = 20, b = 0.2, c = 2π



A.2 Continuous Optimization Problems 221

During our tests, we have noticed that there exists an important loose of
accuracy when computing the Griewangk’s and Rastrigin’s functions when
the solution is near the optimal value. The reason is that when computing
the value of the functions for a solution close to the optimal one (allele values
very close to 0.0), there are some addends in the functions ( 1

d

∑n
i=1 x2

i in fGri

and
∑n

i=1 x2
i in fRas) that are rounded to 0.0 when computing the functions

because they are more than 100 orders of magnitude smaller than the other
addends. In order to avoid that undesired rounding we propose in this paper
two new definitions for those functions which allow us to obtain higher levels
of accuracy, and they simply consist in altering the order of the addends in the
function —see Eqs. A.17 and A.18. However, we study in this paper the same
(less accurate) versions of the functions existing in the literature in order to
being fair in our comparisons.

fGri Acc(x) =

 
1−

nY
i=1

cos

„
xi√

i

«!
+

1

d

nX
i=1

x2
i ; (A.17)

fRas Acc(x) =

 
a · n−

nX
i=1

a · cos(ω · xi)

!
+

nX
i=1

x2
i . (A.18)

Now, we present the differences on the results when using these two fitness
functions for each problem (the accurate or the standard one) with JCell (the
parametrization used is shown in Chap. 12). The comparison of the results
of executing JCell on these functions is shown in Table A.2. As it can be
seen, when we use the proposed accurate functions, the algorithm does not
find the optimum in any of the runs, while in the case of standard functions
(using the same parametrization) it is found in more than 80% of the runs for
both problems. Additionally, after computing the p-values on the results, we
obtained statistic relevance in all the differences, although the average values
showed are similar in the two versions of the problems.

Table A.2. Comparison between the results obtained with the Griewangk and
Rastrigin standard functions and their new more accurate definitions

JCell Best Average Test

fGri 94% 2.381e-3 ±4.750e−3
+

fGri Acc 4.13e-156 2.300e-3 ±4.750e−3

fRas 82% 2.734e-5 ±9.299e−6
+

fRas Acc 2.734e-138 2.113e-6 ±9.299e−6



222 A Definition of the Benchmark Problems

A.2.2 Real World Problems

We include in our studies three real world problems for better assessing our
conclusions. These problems are the frequency modulation sound parameter
identification problem (ffms) [250], systems of linear equations (fSle) [85] and
a polynomial fitting problem (fCheb) [238].

Frequency modulation sound parameter identification problem

This problem is defined as determining the 6 real parameters
x = (a1, w1, a2, w2, a3, w3) of the frequency modulated sound model given in
Eq. A.19 for approximating it to the sound wave given in Eq. A.20 (where
θ = 2 · π/100). The parameters are defined in the range [−6.4, +6.35].

y(t) = a1 · sin(ω1 · t · θ + a2 · sin(ω2 · t · θ + a3 · sin(ω3 · t · θ))) , (A.19)

y0(t) = 1.0 · sin(5.0 · t · θ − 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))) . (A.20)

The goal is to minimize the sum of square errors given by Eq. A.21. This
problem is a highly complex multimodal function having strong epistasis,
with optimum value 0.0.

ffms(x) =
100∑
t=0

(
y(t) − y0(t)

)2

. (A.21)

Systems of linear equations

This problem lies in finding the values for the vector x such that Ax = b,
with:

A =

0
BBBBBBBBBBBBBB@

5, 4, 5, 2, 9, 5, 4, 2, 3, 1
9, 7, 1, 1, 7, 2, 2, 6, 6, 9
3, 1, 8, 6, 9, 7, 4, 2, 1, 6
8, 3, 7, 3, 7, 5, 3, 9, 9, 5
9, 5, 1, 6, 3, 4, 2, 3, 3, 9
1, 2, 3, 1, 7, 6, 6, 3, 3, 3
1, 5, 7, 8, 1, 4, 7, 8, 4, 8
9, 3, 8, 6, 3, 4, 7, 1, 8, 1
8, 2, 8, 5, 3, 8, 7, 2, 7, 5
2, 1, 2, 2, 9, 8, 7, 4, 4, 1

1
CCCCCCCCCCCCCCA

; b =

0
BBBBBBBBBBBBBB@

40
50
47
59
45
35
53
50
55
40

1
CCCCCCCCCCCCCCA

. (A.22)

The evaluation function we minimize in our experiments is shown in
Eq. A.23. This function has the optimal solution fsle(x∗) = 0.0, and the
values of the ten variables of the problem range into the interval [−9.0, 11.0].

fSle(x) =

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

(aij · xj) − bi

∣∣∣∣∣∣ . (A.23)



A.3 Multi-objective Optimization Problems 223

Polynomial fitting problem

For this problem, the objective is to find the coefficients of the following
polynomial in z:

P (z) =
2k∑

j=0

cjz
j, k ∈ Z

+ , (A.24)

so that ∀zj ∈ [−1, +1], P (z) ∈ [−1, +1], P (+1.2) ≥ T2k(+1.2), and P (−1.2) ≥
T2k(−1.2), where T2k(z) is a fCheb polynomial of degree 2k.

The solution to the polynomial fitting problem consists of the coefficients
of T2k(z). This polynomial oscillates between -1 and +1. Outside this region,
the polynomial rises steeply in the direction of high positive ordinate values.
This problem has its roots in electronic filter design, and it challenges an
optimization procedure by forcing it to find parameter values with grossly
different magnitudes, something that is very common in industrial systems.
The fCheb polynomial employed here is:

T8(z) = 1 − 32z2 + 160z4 − 256z6 + 128z8 . (A.25)

It is a nine-parameter problem (x = [x1, . . . , x9]). A small correction is
needed in order to transform the constraints of this problem into an objective
function to be minimized, called fCheb (see [127] for all the details). Each
parameter (coefficient) is in the range [-5.12,+5.12]. The objective function
value of the optimum is fCheb(x∗) = 0.0.

A.3 Multi-objective Optimization Problems

In this section we present the theoretical multi-objective benchmark studied.
We can divide it into constrained and non constrained problems. The non
constrained problems chosen include the Schaffer, Fonseca, and Kursawe, and
also the ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [270] problems. The formula-
tion is shown in Table A.3. The constrained problems are Osyczka2, Tanaka,
Srinivas, and ConstrEx, and they are described in Table A.4. All these prob-
lems are well known in the field of the multi-objective optimization, and can
be found in books as [49, 65].

Another benchmark used in this study is the one obtained using WFG, a
multi-objective problem generator tool recently proposed in [136]. This tool
allows the user to define benchmarks with different characteristics. In this
study we use a benchmark of 9 bi-objective problems, from WFG1 to WFG9.
The properties of these problems are detailed in Table A.5.



224 A Definition of the Benchmark Problems

Table A.3. Non constrained test functions

Problem Objective Functions Variable Values n

Schaffer
f1(x) = x2

f2(x) = (x − 2)2
−105 ≤ x ≤ 105 1

Fonseca
f1(x) = 1 − e

−Pn
i=1

„
xi− 1√

n

«2

f2(x) = 1 − e
−Pn

i=1

„
xi+

1√
n

«2 −4 ≤ xi ≤ 4 3

Kursawe
f1(x) =

Pn−1
i=1

„
−10e

“
−0.2∗

q
x2

i
+x2

i+1

”«

f2(x) =
Pn

i=1(|xi|a + 5 sin xb
i ); a = 0.8; b = 3

−5 ≤ xi ≤ 5 3

ZDT1
f1(x) = x1

f2(x) = g(x)[1 −px1/g(x)]
g(x) = 1 + 9(

Pn
i=2 xi)/(n − 1)

0 ≤ xi ≤ 1 30

ZDT2
f1(x) = x1

f2(x) = g(x)[1 − (x1/g(x))2]
g(x) = 1 + 9(

Pn
i=2 xi)/(n − 1)

0 ≤ xi ≤ 1 30

ZDT3

f1(x) = x1

f2(x) = g(x)
h
1 −

q
x1

g(x) − x1
g(x) sin (10πx1)

i
g(x) = 1 + 9(

Pn
i=2 xi)/(n − 1)

0 ≤ xi ≤ 1 30

ZDT4
f1(x) = x1
f2(x) = g(x)[1 − (x1/g(x))2]
g(x) = 1 + 10(n − 1) +

Pn
i=2[x

2
i − 10 cos (4πxi)]

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5

i = 2, ..., n
10

ZDT6
f1(x) = 1 − e−4x1 sin6 (6πx1)
f2(x) = g(x)[1 − (f1(x)/g(x))2]
g(x) = 1 + 9[(

Pn
i=2 xi)/(n − 1)]0.25

0 ≤ xi ≤ 1 10

Table A.4. Constrained test functions

Problem Objective functions Constraints Variable Values n

Osyczka2

f1(x) = −(25(x1 − 2)2+
(x2 − 2)2+
(x3 − 1)2(x4 − 4)2+
(x5 − 1)2)

f2(x) = x2
1 + x2

2+
x2
3 + x2

4 + x2
5 + x2

6

g1(x) = 0 ≤ x1 + x2 − 2
g2(x) = 0 ≤ 6 − x1 − x2
g3(x) = 0 ≤ 2 − x2 + x1
g4(x) = 0 ≤ 2 − x1 + 3x2
g5(x) = 0 ≤ 4 − (x3 − 3)2 − x4

g6(x) = 0 ≤ (x5 − 3)3 + x6 − 4

0 ≤ x1, x2 ≤ 10
1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6
0 ≤ x6 ≤ 10

6

Tanaka
f1(x) = x1
f2(x) = x2

g1(x) = −x2
1 − x2

2 + 1+
0.1 cos (16 arctan (x1/x2)) ≤ 0

g2(x) = (x1 − 0.5)2+
(x2 − 0.5)2 ≤ 0.5

−π ≤ xi ≤ π 2

ConstrEx
f1(x) = x1
f2(x) = (1 + x2)/x1

g1(x) = x2 + 9x1 ≥ 6
g2(x) = −x2 + 9x1 ≥ 1

0.1 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 5

2

Srinivas
f1(x) = (x1 − 2)2+

(x2 − 1)2 + 2
f2(x) = 9x1 − (x2 − 1)2

g1(x) = x2
1 + x2

2 ≤ 225
g2(x) = x1 − 3x2 ≤ −10

−20 ≤ xi ≤ 20 2

Table A.5. Properties of MOPs created with WFG

Problem Separability Modality bias Geometry
WFG1 separable uni polynomial, plain convex, mixed
WFG2 non separable f1 uni, f2 multi do not have convex, desconected
WFG3 non separable uni do not have linear, degenerated
WFG4 non separable multi do not have concave
WFG5 separable deceptive do not have concave
WFG6 non separable uni do not have concave
WFG7 separable uni dependent on the parameter concave
WFG8 non separable uni dependent on the parameter concave
WFG9 non separable multi, deceptive dependent on the parameter concave



References

1. Java language specification. http://java.sun.com.
2. ProActive official web site. http://www-sop.inria.fr/oasis/proactive/.
3. D.H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Aca-

demic Publishers, Boston, MA, 1987.
4. P. Adamidis and V. Petridis. Co-operating populations with different evo-

lution behaviours. In Proc. IEEE International Conference on Evolutionary
Computation (CEC), pages 188–191. IEEE Press, 1996.

5. E. Alba. Análisis y Diseño de Algoritmos Genéticos Paralelos Distribuidos.
PhD thesis, Universidad de Málaga, Málaga, Febrero 1999.

6. E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley, October
2005.

7. E. Alba, H. Alfonso, and B. Dorronsoro. Advanced models of cellular genetic
algorithms evaluated on SAT. In Proc. of the Genetic and Evolutionary Compu-
tation COnference (GECCO), pages 1123–1130, Washington D.C., USA, June
25–29 2005. ACM Press.

8. E. Alba, P. Bouvry, B. Dorronsoro, F. Luna, and A.J. Nebro. A cellular multi-
objective genetic algorithm for optimal broadcasting strategy in metropolitan
MANETs. In Nature Inspired Distributed Computing (NIDISC) sessions of the
International Parallel and Distributed Processing Simposium (IPDPS) Work-
shop, page 192b, Denver, Colorado, USA, 2005.

9. E. Alba, J.F. Chicano, B. Dorronsoro, and G. Luque. Diseño de códigos correc-
tores de errores con algoritmos genéticos. In Actas del Tercer Congreso Español
sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados (MAEB), pages
51–58, Córdoba, Spain, 2004.

10. E. Alba and B. Dorronsoro. Auto-adaptación en algoritmos evolutivos celu-
lares. Un nuevo enfoque algoŕıtimico. In Actas del Segundo Congreso Español
sobre Metahuŕısticas, Algoritmos Evolutivos y Bioinspirados (MAEB), pages
176–185, Gijón, Spain, 2003.

11. E. Alba and B. Dorronsoro. Solving the vehicle routing problem by using cel-
lular genetic algorithms. In J. Gottlieb and G.R. Raidl, editors, Evolutionary
Computation in Combinatorial Optimization (EvoCOP), volume 3004 of Lec-
ture Notes in Computer Science (LNCS), pages 11–20, Coimbra, Portugal, 5-7
April 2004. Springer-Verlag, Heidelberg.



226 References

12. E. Alba and B. Dorronsoro. The exploration/exploitation tradeoff in dynamic
cellular evolutionary algorithms. IEEE Transactions on Evolutionary Compu-
tation, 9(2):126–142, April 2005.

13. E. Alba and B. Dorronsoro. Computing nine new best-so-far solutions for
capacitated VRP with a cellular genetic algorithm. Information Processing
Letters, 98(6):225–230, June 2006.

14. E. Alba and B. Dorronsoro. Engineering Evolutionary Intelligent Systems,
chapter 13, A Hybrid Cellular Genetic Algorithm for the Capacitated Vehi-
cle Routing Problem. Studies in Computational Intelligence. Springer-Verlag,
Heidelberg, 2007. To appear.

15. E. Alba, B. Dorronsoro, and H. Alfonso. Cellular memetic algorithms. Journal
of Computer Science and Technology, 5(4):257–263, December 2005.

16. E. Alba, B. Dorronsoro, and H. Alfonso. Cellular memetic algorithms evaluated
on SAT. In XI Congreso Argentino de Ciencias de la Computación (CACIC),
2005. CD Edition.

17. E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini. Handbook of Bioin-
spired Algorithms and Applications, chapter 7, Decentralized Cellular Evolu-
tionary Algorithms, pages 103–120. CRC Press, 2006.

18. E. Alba, B. Dorronsoro, F. Luna, A.J. Nebro, P. Bouvry, and L. Hogie. A
cellular multi-objective genetic algorithm for optimal broadcasting strategy in
metropolitan MANETs. Computer Communications, 30(4):685–697, 2007.

19. E. Alba, M. Giacobini, M. Tomassini, and S. Romero. Comparing synchronous
and asynchronous cellular genetic algorithms. In J.J. Merelo et al., editor,
Proc. of the International Conference on Parallel Problem Solving from Nature
VII (PPSN-VII), volume 2439 of Lecture Notes in Computer Science (LNCS),
pages 601–610, Granada, Spain, 2002. Springer-Verlag, Heidelberg.

20. E. Alba, F. Luna, and A.J. Nebro. Advances in parallel heterogeneous ge-
netic algorithms for continuous optimization. International Journal of Applied
Mathematics and Computer Science, 14(3):101–117, 2004.

21. E. Alba and G. Luque. Growth curves and takeover time in distributed evolu-
tionary algorithms. In K. Deb et al., editor, Proc. of the Genetic and Evolu-
tionary Computation COnference (GECCO), volume 3102 of Lecture Notes in
Computer Science (LNCS), pages 864–876. Springer-Verlag, Heidelberg, 2004.

22. E. Alba and G. Luque. A new local search algorithm for the DNA fragment as-
sembly problem. In C. Cotta and J. van Hemert, editors, Evolutionary Compu-
tation in Combinatorial Optimization (Evo*), volume 4446 of Lecture Notes in
Computer Science (LNCS), pages 1–12, Valencia, Spain, April 2007. Springer-
Verlag, Heidelberg.

23. E. Alba, J. Madera, B. Dorronsoro, A. Ochoa, and M. Soto. Theory and
practice of cellular UMDA for discrete optimization. In T.P. Runarsson et al.,
editor, Proc. of the International Conference on Parallel Problem Solving from
Nature IX (PPSN-IX), volume 4193 of Lecture Notes in Computer Science
(LNCS), pages 242–251, Reykjavik, Iceland, September 2006. Springer-Verlag,
Heidelberg.

24. E. Alba and J.F. Saucedo. Panmictic versus decentralized genetic algorithms
for non-stationary problems. In Sixth Metaheuristics International Conference
(MIC), pages 7–12, Austria, 2005.

25. E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–462, October 2002.



References 227

26. E. Alba and J.M. Troya. Cellular evolutionary algorithms: Evaluating the
influence of ratio. In M. Schoenauer, editor, Proc. of the International Con-
ference on Parallel Problem Solving from Nature VI (PPSN-VI), volume 1917
of Lecture Notes in Computer Science (LNCS), pages 29–38. Springer-Verlag,
Heidelberg, 2000.

27. E. Alba and J.M. Troya. Improving flexibility and efficiency by adding paral-
lelism to genetic algorithms. Statistics and Computing, 12(2):91–114, 2002.

28. J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS - a genetic algorithm
with varying population size. In Proc. IEEE International Conference on Evo-
lutionary Computation (CEC), volume 1, pages 73–78, 1994.

29. P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Ri-
naldi. Computational results with a branch and cut code for the capacitated
vehicle routing problem. Research Report 949-M, Universite Joseph Fourier,
Grenoble, France, 1995.

30. T. Bäck. Self-adaptation in genetic algorithms. In F.J. Varela and P. Bourgine,
editors, Proc. of the 1st European Conference on Artificial Life, pages 263–271,
Cambridge, MA, 1992. The MIT Press.

31. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, New
York, 1996.

32. T. Bäck, A.E. Eiben, and M.E. Vink. A superior evolutionary algorithm for
3-SAT. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors,
International Conference on Evolutionary Programming VII, volume 1477 of
Lecture Notes in Computer Science (LNCS). Springer-Verlag, Heidelberg, 1998.

33. T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Oxford University Press, 1997.

34. T. Bäck, G. Rudolf, and H.-P. Schwefel. Evolutionary programming and evo-
lution strategies: similarities and differences. In D.B. Fogel and W. Atmar,
editors, Proc. of the Second Conference on Evolutionary Programming, pages
11–22, La Jolla, California, 1993. Evolutionary Programming Society.

35. S. Baluja. Structure and performance of fine-grain parallelism in genetic search.
In S. Forrest, editor, Proc. of the Fifth International Conference on Genetic
Algorithms (ICGA), pages 155–162. Morgan Kaufmann, 1993.

36. W. Banzhaf. The “molecular” traveling salesman. Biological Cybernetics, 64:7–
14, 1990.

37. J. Berger and M. Barkaoui. A hybrid genetic algorithm for the capacitated ve-
hicle routing problem. In E. Cantú-Paz, editor, Proc. of the Genetic and Evo-
lutionary Computation COnference (GECCO), volume 2723 of Lecture Notes
in Computer Science (LNCS), pages 646–656, Illinois, Chicago, USA, 2003.
Springer-Verlag, Heidelberg.

38. A. Bethke. Comparison of genetic algorithms and gradient based optimizers on
parallel processors: Efficiency of use of precessing capacity. Technical Report
197, Ann Arbor, University of Michigan, 1976.

39. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

40. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence. From Natural
to Artificial Systems. Oxford University Press, 1999.

41. H.J. Bremermann. Self-Organizing Systems, chapter Optimization Trough Evo-
lution and Resombination, pages 93–106. Spartan Books, Washington DC,
1962.



228 References

42. S. Cahon, N. Melab, and E-G. Talbi. ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics. Journal of Heuris-
tics, 10(3):357–380, May 2004.

43. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms, volume 1
of Book Series on Genetic Algorithms and Evolutionary Computation. Kluwer
Academic Publishers, 2nd edition, 2000.

44. M. Capcarrère, M. Tomassini, A. Tettamanzi, and M. Sipper. A statistical
study of a class of cellular evolutionary algorithms. Evolutionary Computation,
7(3):255–274, 1999.

45. H. Chen, N.S. Flann, and D.W. Watson. Parallel genetic simulated annealing:
A massively parallel SIMD algorithm. IEEE Transactions on Parallel and
Distributed Systems, 9(2):126–136, 1998.

46. N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem.
Operations Research Quartely, 20:309–318, 1969.

47. N. Christofides, A. Mingozzi, and P. Toth. Combinatorial Optimization, chap-
ter The Vehicle Routing Problem, pages 315–338. John Wiley & Sons, 1979.

48. C.A. Coello and G. Toscano. Multiobjective optimization using a micro-genetic
algorithm. In Proc. of the Genetic and Evolutionary Computation COnference
(GECCO), pages 274–282, 2001.

49. C.A. Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms
for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary
Computation. Kluwer Academic Publishers, 2002.

50. R.J. Collins and D.R. Jefferson. Selection in massively parallel genetic algo-
rithms. In R.K. Belew and L.B. Booker, editors, Proc. of the Fourth Interna-
tional Conference on Genetic Algorithms (ICGA), pages 249–256, San Diego,
CA, USA, 1991. Morgan Kaufmann.

51. S.A. Cook. The complexity of theorem-proving procedures. Proc. of the Third
Anual ACM Symp. on the Theory of Computing, pages 151–158, 1971.

52. J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany. Logistics
Systems: Design and Optimization, chapter 9. New Heuristics for the Vehicle
Routing Problem, pages 279–298. Springer-Verlag, Heidelberg, 2004.

53. C. Cotta, E. Alba, and J.M. Troya. Un estudio de la robustez de los algoritmos
genéticos paralelos. Revista Iberoamericana de Inteligencia Artificial, 98(5):6–
13, 1998.

54. N.L. Cramer. A representation for the adaptive generation of simple sequential
programs. In J.J. Grefenstette, editor, Proc. of the First International Confer-
ence on Genetic Algorithms and their Applications, pages 183–187, Carnegie-
Mellon University, Pittsburgh, PA, USA, July 24–26 1985.

55. G.A. Croes. A method for solving traveling salesman problems. Operations
Research, 6:791–812, 1958.

56. G.B. Dantzing and R.H. Ramster. The truck dispatching problem. Manage-
ment Science, 6:80–91, 1959.

57. C. Darwin. On the Origin of Species by Means of Natural Selection. John
Murray, Londres, 1859.

58. Y. Davidor. A naturally occurring niche and species phenomenon: The model
and first results. In R.K. Belew and L.B. Booker, editors, Proc. of the Fourth
International Conference on Genetic Algorithms (ICGA), pages 257–263, San
Diego, CA, July 1991. Morgan Kaufmann.



References 229

59. Y. Davidor, T. Yamada, and R. Nakano. The ECOlogical framework II: Im-
proving GA performance at virtually zero cost. In S. Forrest, editor, Proc.
of the Fifth International Conference on Genetic Algorithms (ICGA), pages
171–176. Morgan Kaufmann, 1993.

60. L. Davis. Adapting operator probabilities in genetic algorithms. In J.D. Schaf-
fer, editor, Proc. of the Third International Conference on Genetic Algorithms
(ICGA), pages 61–69. Morgan Kaufmann, 1989.

61. L. Davis. Handbook of genetic algorithms, volume 1991. Van Nostrand Rein-
hold, New York.

62. K. De Jong and J. Sarma. On decentralizing selection algorithms. In L. Eshel-
man, editor, Proc. of the Sixth International Conference on Genetic Algorithms
(ICGA), pages 17–23, San Francisco, CA, 1995. Morgan Kaufmann.

63. K.A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975. Ann Arbor.

64. K.A. De Jong and W.M. Spears. Using genetic algorithm to solve NP-complete
problems. In J.D. Schaffer, editor, Proc. of the Third International Conference
on Genetic Algorithms (ICGA), pages 124–132. Morgan Kaufmann, 1989.

65. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
2001.

66. K. Deb and R.B. Agrawal. Simulated binary crossover for continuous search
space. Complex Systems, 9:115–148, 1995.

67. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

68. G. Dick. A comparison of localised and global niching methods. In Annual
Colloquium of the Spatial Information Research Centre (SIRC), pages 91–101,
Dunedin, New Zealand, Novenber 2005.

69. G. Dick and P. Whigham. The behaviour of genetic drift in a spatially-
structured evolutionary algorithm. In Proc. IEEE International Conference
on Evolutionary Computation (CEC), volume 2, pages 1855–1860. IEEE Press,
2005.

70. M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press, 2004.
71. B. Dorronsoro. The VRP web, http://neo.lcc.uma.es/radi-aeb/WebVRP.
72. B. Dorronsoro. Diseño e Implementación de Algoritmos Genéticos Celulares

para Problemas Complejos. PhD thesis, University of Málaga, February 2007.
73. B. Dorronsoro and E. Alba. A simple cellular genetic algorithm for continuous

optimization. In G. Yen, editor, Proc. of the IEEE Conference on Evolution-
ary Computation (CEC), IEEE World Congress on Computational Intelligence
(WCCI), pages 2838–2844, Vancouver, Canada, July 2006. IEEE Press.

74. B. Dorronsoro, E. Alba, M. Giacobini, and M. Tomassini. The influence of grid
shape and asynchronicity on cellular evolutionary algorithms. In Y. Shi, editor,
Proc. IEEE International Conference on Evolutionary Computation (CEC),
pages 2152–2158, Portland, Oregon, June 20–23 2004. IEEE Press.

75. B. Dorronsoro, D. Arias, F. Luna, A.J. Nebro, and E. Alba. A grid-based hy-
brid cellular genetic algorithm for very large scale instances of the CVRP. In
Waleed W. Smari, editor, High Performance Computing & Simulation Confer-
ence (HPCS), pages 759–765, 2007.

76. B. Dorronsoro, A.J. Nebro, D. Arias, and E. Alba. Un algoritmo genético
h́ıbrido paralelo para instancias complejas del problema VRP. In Actas



230 References

del Quinto Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y
Bioinspirados (MAEB), pages 135–141, Puerto de la Cruz, Tenerife, Spain,
2007.

77. S. Droste, T. Jansen, and I. Wegener. A natural and simple function which is
hard for all evolutionary algorithms. In Proc. of the Asia-Pacific Conference on
Simulated Evolution and Learning (SEAL), pages 2704–2709, Nagoya, Japan,
2000.

78. T. Duncan. Experiments in the use of neighbourhood search techniques for
vehicle routing. Technical Report AIAI-TR-176, Artificial Intelligence Appli-
cations Institute, University of Edinburgh, Edinburgh, 1995.

79. J.J. Durillo. jMetal framework, http://neo.lcc.uma.es/software/metal/.
80. J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal: A java

framework for developing multiobjective optimization metaheuristics. Techni-
cal Report ITI-2006-10, Dpto. de Lenguajes y CC.CC., Universidad de Málaga,
2006.

81. E. Alba and the MALLBA Group. MALLBA: A library of skeletons for combi-
natorial optimization. In R.F.B. Monien, editor, Proc. of the Euro-Par, volume
2400 of Lecture Notes in Computer Science (LNCS), pages 927–932, Paderborn,
Germany, 2002. Springer-Verlag, Heidelberg.

82. B. Eckel. Thinking in Java. MindView, 2002.
83. A.E. Eiben and J.K. Van der Hauw. Solving 3-SAT with adaptive genetic

algorithms. In Proc. of the IEEE Conference on Evolutionary Computation
(CEC), IEEE World Congress on Computational Intelligence (WCCI), pages
81–86. IEEE Press, 1997.

84. S.E. Eklund. Empirical studies of neighborhood shapes in the massively par-
allel diffusion model. In G. Bittencourt and G. Ramalho, editors, Brazilian
Symposium on Artificial Intelligence (SBIA), volume 2507 of Lecture Notes
in Artificial Intelligence (LNAI), pages 185–194. Springer-Verlag, Heidelberg,
2002.

85. L.J. Eshelman, K.E. Mathias, and J.D. Schaffer. Convergence controlled vari-
ation. In R. Belew and M. Vose, editors, Foundations of Genetic Algorithms
IV (FOGA), pages 203–224, San Mateo, CA, 1989. Morgan Kaufmann.

86. L.J. Eshelman and J.D. Schaffer. Real coded genetic algorithms and inter-
val schemata. In L.D. Whitley, editor, Foundations of Genetic Algorithms II
(FOGA), pages 187–202, San Mateo, 1993. Morgan Kaufmann.

87. M.L. Fisher. Optimal solution of vehicle routing problems using minimum
k-trees. Operations Research, 42-44:626–642, 1994.

88. M.J. Flynn. Very high speed computing systems. Proc. IEEE, 54:1901–1909,
1966.

89. D.B. Fogel. An evolutionary approach to the traveling salesman problem.
Biological Cybernetics, 60:139–144, 1988.

90. L.J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.
91. G. Folino, C. Pizzuti, and G. Spezzano. Combining cellular genetic algorithms

and local search for solving satisfiability problems. In Proc. of the IEEE In-
ternational Conference on Tools with Artificial Intelligence, pages 192–198,
Taipei, Taiwan, 1998. IEEE Press.

92. G. Folino, C. Pizzuti, and G. Spezzano. Parallel hybrid method for SAT that
couples genetic algorithms and local search. IEEE Transactions on Evolution-
ary Computation, 5(4):323–334, August 2001.



References 231

93. G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of
parallel genetic programming. IEEE Transactions on Evolutionary Computa-
tion, 7(1):37–53, February 2003.

94. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Fransisco, 1999.

95. A.S. Fraser. Simulation of genetic systems by automatic digital computers II:
Effects of linkage on rates under selection. Australian Journal of Biological
Sciences, 10:492–499, 1957.

96. M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory
of NP-completeness. Freeman, San Francisco, CA, 1979.

97. M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 40:1276–1290, 1994.

98. M. Giacobini, E. Alba, A. Tettamanzi, and M. Tomassini. Modelling selection
intensity for toroidal cellular evolutionary algorithms. In Proc. of the Genetic
and Evolutionary Computation COnference (GECCO), volume 3102 of Lec-
ture Notes in Computer Science (LNCS), pages 1138–1149. Springer-Verlag,
Heidelberg, 2004.

99. M. Giacobini, E. Alba, and M. Tomassini. Selection intensity in asynchronous
cellular evolutionary algorithms. In Proc. of the Genetic and Evolutionary
Computation COnference (GECCO), pages 955–966. Springer-Verlag, Heidel-
berg, 2003.

100. M. Giacobini, M. Tomassini, and A. Tettamanzi. Modelling selection inten-
sity for linear cellular evolutionary algorithms. In P. Liardet et al., editor,
Proc. of the International Conference on Artificial Evolution, volume 2936 of
Lecture Notes in Computer Science (LNCS), pages 345–356. Springer-Verlag,
Heidelberg, 2003.

101. M. Giacobini, M. Tomassini, and A. Tettamanzi. Takeover time curves in
random and small-world structured populations. In Proc. of the Genetic and
Evolutionary Computation COnference (GECCO), pages 1333–1340, Washing-
ton D.C. USA, June 25–29 2005. ACM Press.

102. M. Giacobini, M. Tomassini, A.G.B. Tettamanzi, and E. Alba. Selection inten-
sity in cellular evolutionary algorithms for regular lattices. IEEE Transactions
on Evolutionary Computation, 9(5):489–505, October 2005.

103. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

104. F.W. Glover and G.A. Kochenberger. Handbook of Metaheuristics. Interna-
tional Series in Operations Research Management Science. Kluwer Academic
Publishers, 2003.

105. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, 1989.

106. D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Al-
gorithms I (FOGA), pages 69–93, San Mateo, CA, USA, 1991. Morgan Kauf-
mann.

107. D.E. Goldberg, K. Deb, and J. Horn. Massively multimodality, deception and
genetic algorithms. In R. Männer and B. Manderick, editors, Proc. of the
International Conference on Parallel Problem Solving from Nature II (PPSN-
II), pages 37–46. North-Holland, 1992.



232 References

108. D.E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, accurate opti-
mization of difficult problems using fast messy genetic algorithms. In S. For-
rest, editor, Proc. of the Fifth International Conference on Genetic Algorithms
(ICGA), pages 56–64. Morgan Kaufmann, 1993. San Mateo.

109. B.L. Golden, E.A. Wasil, J.P. Kelly, and I-M. Chao. Fleet Management and
Logistics, chapter The Impact of Metaheuristics on Solving the Vehicle Routing
Problem: algorithms, problem sets, and computational results, pages 33–56.
Kluwer Academic Publishers, Boston, 1998.

110. V. Gordon, K. Mathias, and D. Whitley. Cellular genetic algorithms as function
optimizers: Locality effects. In ACM Symposium on Applied Computing (SAC),
pages 237–241. ACM Press, 1994.

111. V. Gordon, R. Pirie, A. Wachter, and S. Sharp. Terrain-based genetic algorithm
(TBGA): Modeling parameter space as terrain. In Proc. of the Genetic and
Evolutionary Computation COnference (GECCO), pages 229–235, 1999.

112. V. Gordon, D. Whitley, and A. Böhm. Dataflow parallelism in genetic algo-
rithms. In R. Männer and B. Manderick, editors, Proc. of the International
Conference on Parallel Problem Solving from Nature II (PPSN-II), pages 533–
542. North-Holland, 1992.

113. V.S. Gordon and J. Thein. Visualization tool for a terrain-based genetic algo-
rithm. In IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), pages 401–406. IEEE Press, 2004.

114. V.S. Gordon and D. Whitley. Serial and parallel genetic algorithms as function
optimizers. In S. Forrest, editor, Proc. of the Fifth International Conference
on Genetic Algorithms (ICGA), pages 177–183. Morgan Kaufmann, 1993.

115. M. Gorges-Schleuter. ASPARAGOS - an asynchronous parallel genetic op-
timization strategy. In J.D. Schaffer, editor, Proc. of the Third International
Conference on Genetic Algorithms (ICGA), pages 422–428. Morgan Kaufmann,
1989.

116. M. Gorges-Schleuter. Comparison of local mating strategies in massively par-
allel genetic algorithms. In R. Männer and B. Manderick, editors, Proc. of the
International Conference on Parallel Problem Solving from Nature II (PPSN-
II), pages 553–562. North-Holland, 1992.

117. M. Gorges-Schleuter. Asparagos96 and the traveling salesman problem. In
Proc. IEEE International Conference on Evolutionary Computation (CEC),
pages 171–174. IEEE Press, 1997.

118. M. Gorges-Schleuter. A comparative study of global and local selection in evo-
lution strategies. In Proc. of the International Conference on Parallel Problem
Solving from Nature V (PPSN-V), volume 1498 of Lecture Notes in Computer
Science (LNCS), pages 367–377. Springer-Verlag, Heidelberg, 1998.

119. M. Gorges-Schleuter. An analysis of local selection in evolution strategies. In
Proc. of the Genetic and Evolutionary Computation COnference (GECCO),
volume 1, pages 847–854, San Francisco, CA, USA, 1999. Morgan Kaufmann.

120. J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for the satis-
fiability problem. Evolutionary Computation, 10(2):35–52, 2002.

121. J. Gottlieb and N. Voss. Representations, fitness functions and genetic oper-
ators for the satisfiability problem. In Artificial Evolution, Lecture Notes in
Computer Science (LNCS), pages 55–68. Springer-Verlag, Heidelberg, 1998.

122. R.L. Graham. Bounds on multiprocessor timing anomalies. SIAM Journal of
Applied Mathematics, 17:416–429, 1969.



References 233

123. P. Green. Phrap. http://www.phrap.org/phredphrapconsed.html.
124. A.O. Griewangk. Generalized descent of global optimization. Journal of Opti-

mization, Theory, and Applications, 34:11–39, 1981.
125. C. Grimme and K. Schmitt. Inside a predator-prey model for multi-objective

optimization: A second study. In M. Cattolico, editor, Proc. of the Genetic
and Evolutionary Computation COnference (GECCO), pages 707–714, Seattle,
Washington, USA, July 8–12 2006. ACM Press.

126. F. Herrera, E. Herrera-Viedma, M. Lozano, and J.L. Verdegay. Fuzzy tools to
improve genetic algorithms. In Proc. Second European Congress on Intelligent
Techniques and Soft Computing, pages 1532–1539, 1994.

127. F. Herrera and M. Lozano. Gradual distributed real-coded genetic algorithms.
IEEE Transactions on Evolutionary Computation, 4(1):43–62, April 2000.

128. F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic algo-
rithms: Operators and tools for the behavioral analysis. Artificial Intelligence
Reviews, 12(4):265–319, 1998.

129. D. Hillis. Co-evolving parasites improve simulated evolution as an optimizing
procedure. Physica D, 42:228–234, 1990.

130. F. Hoffmeister. Applied Parallel and Distributed Optimization, chapter Scal-
able Parallelism by Evolutionary Algorithms, pages 175–198. Springer-Verlag,
Heidelberg, 1991.

131. L. Hogie, F. Guinand, and P. Bouvry. The Madhoc Metropolitan Adhoc Net-
work Simulator. Université du Luxembourg and Université du Havre, France.
Available at http://www-lih.univ-lehavre.fr/˜hogie/madhoc/.

132. L. Hogie, M. Seredynski, F. Guinand, and P. Bouvry. A bandwidth-efficient
broadcasting protocol for mobile multi-hop ad hoc networks. In International
Conference on Networking (ICN), page 71. IEEE Press, 2006.

133. J.H. Holland. Outline for a logical theory of adaptive systems. Journal of the
ACM, 9(3):297–314, 1962.

134. J.H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, 1975.

135. X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Research, 9(9):868–877, 1999.

136. S. Huband, L. Barone, R.L. While, and P. Hingston. A scalable multi-objective
test problem toolkit. In C.A. Coello, A. Hernández, and E. Zitler, editors, Proc.
of the International Conference on Evolutionary Multi-criterion Optimization
(EMO), volume 3410 of Lecture Notes in Computer Science (LNCS), pages
280–295, 2005.

137. T.S. Hussain. An introduction to evolutionary computation. Tutorial presen-
tation. CITO Researcher Retreat, May 12-14, Hamilton, Ontario 1998.

138. H. Ishibuchi, T. Doi, and Y. Nojima. Effects of using two neighborhood struc-
tures in cellular genetic algorithms for function optimization. In T.P. Runars-
son et al., editor, Proc. of the International Conference on Parallel Problem
Solving from Nature IX (PPSN-IX), volume 4193 of Lecture Notes in Com-
puter Science (LNCS), pages 949–958, Reykjavik, Iceland, September 2006.
Springer-Verlag, Heidelberg.

139. S. Janson, E. Alba, B. Dorronsoro, and M. Middendorf. Hierarchical cellular
genetic algorithm. In J. Gottlieb and G.R. Raidl, editors, Evolutionary Com-
putation in Combinatorial Optimization (EvoCOP), volume 3906 of Lecture
Notes in Computer Science (LNCS), pages 111–122, Budapest, Hungary, April
2006. Springer-Verlag, Heidelberg.



234 References

140. K.A. De Jong, M.A. Potter, and W.M. Spears. Using problem generators to
explore the effects of epistasis. In T. Bäck, editor, Proc. of the Seventh Inter-
national Conference on Genetic Algorithms (ICGA), pages 338–345. Morgan
Kaufmann, 1997.

141. H. Juille and J.B. Pollack. Advances in Genetic Programming 2, chapter Mas-
sively parallel genetic programming, pages 339–358. The MIT Press, MA, USA,
1996.

142. R.M. Karp. Probabilistic analysis of partitioning algorithms for the traveling
salesman problem in the plane. Mathematics of Operations Research, 2:209–
224, 1977.

143. H.A. Kautz and B. Selman. Planning as satisfiability. In European Conference
on Artificial Intelligence, pages 359–363, 1992.

144. S. Khuri, T. Bäck, and J. Heitkötter. An evolutionary approach to combinato-
rial optimization problems. In Proc. of the ACM Computer Science Conference,
pages 66–73, Phoenix, Arizona, 1994. ACM Press.

145. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-
nealing. Science, 4598:671–680, 1983.

146. M. Kirley. MEA: A metapopulation evolutionary algorithm for multi-objective
optimisation problems. In Proc. IEEE International Conference on Evolution-
ary Computation (CEC), pages 949–956. IEEE Press, 2001.

147. M. Kirley. A cellular genetic algorithm with disturbances: Optimisation using
dynamic spatial interactions. Journal of Heuristics, 8:321–342, 2002.

148. M. Kirley and D.G. Green. An empirical investigation of optimization in
dynamic environments using the cellular genetic algorithm. In D. Whitley
et al., editor, Proc. of the Genetic and Evolutionary Computation COnference
(GECCO), pages 11–18, San Mateo, CA, 2000. Morgan Kaufmann.

149. M. Kirley, X. Li, and D.G. Green. Investigation of a cellular genetic algorithm
that mimics landscape ecology. In X. Yao, editor, Proc. of the Asia-Pacific Con-
ference on Simulated Evolution and Learning (SEAL), volume 1585 of Lecture
Notes in Computer Science (LNCS), pages 90–97. Springer-Verlag, Heidelberg,
1999.

150. J. Knowles and D. Corne. The pareto archived evolution strategy: A new base-
line algorithm for multiobjective optimization. In Proc. IEEE International
Conference on Evolutionary Computation (CEC), pages 98–105, Piscataway,
NJ, 1999. IEEE Press.

151. J. Knowles and D. Corne. Approximating the nondominated front using the
Pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172,
2001.

152. U. Kohlmorgen, H. Schmeck, and K. Haase. Experiences with fine-grained
parallel genetic algorithms. Annals of Operations Research, 90:302–219, 1999.

153. J.R. Koza. Genetic programming. In J.G. Williams and A. Kent, editors,
Encyclopedia of Computer Science and Technology, volume 39, pages 29–43.
Marcel-Dekker, 1998.

154. N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:
Model, taxonomy, and design issues. IEEE Transactions on Evolutionary Com-
putation, 9(5):474–488, 2005.

155. T. Krink and R. Thomsen. Self-organized criticality and mass extinction in evo-
lutionary algorithms. In Proc. IEEE International Conference on Evolutionary
Computation (CEC), pages 1155–1161, Seoul, Korea, 2001. IEEE Press.



References 235

156. K.W.C. Ku. Enhance the baldwin effect by strengthening the correlation be-
tween genetic operators and learning methods. In G. Yen, editor, Proc. of the
IEEE Conference on Evolutionary Computation (CEC), IEEE World Congress
on Computational Intelligence (WCCI), pages 11071–11077, Vancouver, BC,
Canada, July 16-21 2006. IEEE Press.

157. K.W.C. Ku, M.W. Mak, and W.C. Siu. Adding learning to cellular genetic al-
gorithms for training recurrent neural networks. IEEE Transactions on Neural
Networks, 10(2):239–252, March 1999.

158. P. Larrañaga and J.A. Lozano, editors. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002.

159. M. Laumanns, G. Rudolph, and H.P. Schwefel. A spatial predator-prey ap-
proach to multiobjective optimization: A preliminary study. In A.E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proc. of the Interna-
tional Conference on Parallel Problem Solving from Nature V (PPSN-V), vol-
ume 1498 of Lecture Notes in Computer Science (LNCS), pages 241–249, 1998.

160. C.-H. Lee, S.-H. Park, and J.-H. Kim. Topology and migration policy of
fine-grained parallel evolutionary algorithms for numerical optimization. In
Proc. IEEE International Conference on Evolutionary Computation (CEC),
volume 1, pages 70–76. IEEE Press, 2000.

161. J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of vehicle routing and
scheduling problems. Networks, 11:221–227, 1981.

162. F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: new test
problems, algorithms, and results. Computers & Operations Research, 32:1165–
1179, 2005.

163. L. Li and S. Khuri. A comparison of DNA fragment assembly algorithms.
In International Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences, pages 329–335, 2004.

164. X. Li. A real-coded predator-prey genetic algorithm for multiobjective opti-
mization. In C.M. Fonseca et al., editor, Proc. of the International Conference
on Evolutionary Multi-criterion Optimization (EMO), volume 2632 of Lecture
Notes in Computer Science (LNCS), pages 207–221. Springer-Verlag, Heidel-
berg, 2003.

165. X. Li and S. Sutherland. A cellular genetic algorithm simulating predator-
prey interactions. In Proc. of the Third International Conference on Genetic
Algorithms (ICGA), pages 416–421. Morgan Kaufmann, 2002.

166. H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad
hoc networks. In ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWIM), pages 61–68. ACM
Press, 2000.

167. X. Llor and J.M. Garrell. Knowledge-independent data mining with fine-
grained parallel evolutionary algorithms. In L. Spector et al., editor, Proc.
of the Genetic and Evolutionary Computation COnference (GECCO), pages
461–468. Morgan Kaufmann, 2001.

168. H.R. Lourenco, O. Martin, and T. Stützle. Handbook of Metaheuristics, chapter
Iterated Local Search, pages 321–353. Kluwer Academic Publishers, Norwell,
MA, 2002.

169. F. Luna, B. Dorronsoro, A.J. Nebro, E. Alba, and P. Bouvry. Handbook on
Mobile Ad Hoc and Pervasive Communications, chapter Multiobjective Meta-
heuristics to Optimize the Broadcasting in MANETs. American Scientific Pub-
lishers, USA, 2007. To appear.



236 References

170. F. Luna, A.J. Nebro, B. Dorronsoro, E. Alba, P. Bouvry, and L. Hogie. Optimal
broadcasting in metropolitan MANETs using multiobjective scatter search.
In European Workshop on Evolutionary Computation in Communication, Net-
works and Connected System (EvoCOMNET), en EvoWorkshops, volume 3907
of Lecture Notes in Computer Science (LNCS), pages 255–266, Budapest, Hun-
gary, April 2006. Springer-Verlag, Heidelberg.

171. Z. Luo and H. Liu. Cellular genetic algorithms and local search for 3-SAT prob-
lem on graphic hardware. In G. Yen, editor, Proc. of the IEEE Conference on
Evolutionary Computation (CEC), IEEE World Congress on Computational
Intelligence (WCCI), pages 10345–10349, Vancouver, BC, Canada, July 16-21
2006. IEEE Press.

172. G. Luque, E. Alba, and B. Dorronsoro. Parallel Genetic Algorithms, chapter
5, Parallel Metaheuristics: A New Class of Algorithms, pages 107–125. John
Wiley & Sons, 2005.

173. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, Amsterdam, 1977.

174. J. Madera, E. Alba, and A. Ochoa. Parallel Metaheuristics: A New Class
of Algorithms, chapter Parallel Estimation of Distribution Algorithms, pages
203–222. John Wiley & Sons, 2005.

175. T. Mahnig and H. Mühlenbein. Comparing the adaptive Boltzmann selection
schedule SDS to truncation selection. In II Symposium on Artificial Intel-
ligence. CIMAF99. Special Session on Distributions and Evolutionary Opti-
mization, pages 121–128, La Habana, 1999.

176. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithm. In
J.D. Schaffer, editor, Proc. of the Third International Conference on Genetic
Algorithms (ICGA), pages 428–433. Morgan Kaufmann, 1989.

177. T. Maruyama, T. Hirose, and A. Konagaya. A fine-grained parallel genetic
algorithm for distributed parallel systems. In Proc. of the Fifth International
Conference on Genetic Algorithms (ICGA), pages 184–190, San Francisco, CA,
USA, 1993. Morgan Kaufmann.

178. T. Maruyama, A. Konagaya, and K. Konishi. An asynchronous fine-grained
parallel genetic algorithm. In Proc. of the International Conference on Parallel
Problem Solving from Nature II (PPSN-II), Lecture Notes in Computer Science
(LNCS), pages 563–572. North-Holland, 1992.

179. D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search.
In National Conference on Artificial Intelligence, pages 321–326, Providence,
RI, 1997.

180. G. Mendel. Versuche über Pflanzen-Hybriden. Verhandlungen des Natur-
forschedes Vereines in Brünn 4, 1865.

181. Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs.
Springer-Verlag, Heidelberg, third edition, 1996.

182. D.G. Mitchell, B. Selman, and H.J. Levesque. Hard and easy distributions for
SAT problems. In P. Rosenbloom and P. Szolovits, editors, Proc. of the Tenth
National Conference on Artificial Intelligence, pages 459–465, California, 1992.
AAAI Press.

183. N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097–1100, 1997.

184. P. Moscato. Handbook of Applied Optimization, chapter Memetic Algorithms.
Oxford University Press, 2000.



References 237

185. H. Mühlenbein. Parallel genetic algorithms, population genetic and combina-
torial optimization. In Proc. of the Third International Conference on Genetic
Algorithms (ICGA), pages 416–421. Arlington, 1989.

186. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution algorithms in
combinatorial optimization. Parallel Computing, 7:65–88, 1988.

187. H. Mühlenbein and G. Paab. From recombination of genes to the estimation of
distributions I. Binary parameters. In H.M. Voigt, W. Ebeling, I. Rechenberg,
and H.P. Schwefel, editors, Proc. of the International Conference on Parallel
Problem Solving from Nature IV (PPSN-IV), volume 1411 of Lecture Notes in
Computer Science (LNCS), pages 178–187. Springer-Verlag, Heidelberg, 1996.

188. H. Mühlenbein and D. Schlierkamp-Voosen. The science of breeding and its ap-
plication to the breeder genetic algorithm (BGA). Evolutionary Computation,
1(4):335–360, 1993.

189. H. Mühlenbein, M. Schomish, and J. Born. The parallel genetic algorithm as
a function optimizer. Parallel Computing, 17:619–632, 1991.

190. T. Murata and M. Gen. Cellular genetic algorithm for multi-objective optimiza-
tion. In Proc. of the Fourth Asian Fuzzy System Symposium, pages 538–542,
2002.

191. T. Nakashima, T. Ariyama, and H. Ishibuchi. Combining multiple cellular
genetic algorithms for efficient search. In Proc. of the Asia-Pacific Conference
on Simulated Evolution and Learning (SEAL), pages 712–716, 2002.

192. T. Nakashima, T. Ariyama, T. Yoshida, and H. Ishibuchi. Performance eval-
uation of combined cellular genetic algorithms for function optimization prob-
lems. In Proc. of the IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation, pages 295–299, Kobe, Japan, July 16-20
2003. IEEE Press.

193. A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A cellular ge-
netic algorithm for multiobjective optimization. In D.A. Pelta and N. Krasno-
gor, editors, Proceedings of the NICSO, pages 25–36, Granada, Spain, 2006.

194. A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. MOCell: A cel-
lular genetic algorithm for multiobjective optimization. International Journal
of Intelligent Systems, 2007. To appear.

195. A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A study of
strategies for neigborhood replacement and archive feedback in a multiobjec-
tive cellular genetic algorithm. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, editors, Proc. of the International Conference on Evolutionary
Multi-criterion Optimization (EMO), volume 4403 of Lecture Notes in Com-
puter Science (LNCS), pages 126–140. Springer-Verlag, Heidelberg, 2007.

196. N. Nedjah, E. Alba, and L. de Macedo Mourelle. Parallel Evolutionary Com-
putations. Studies in Computational Intelligence. Springer-Verlag, Heidelberg,
2006.

197. M.E.J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

198. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm prob-
lem in a mobile ad hoc network. In Proc. of the Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, pages 151–162, 1999.

199. Y.S. Ong and A.J. Keane. Meta-lamarckian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation, 8(2):99–110, April 2004.



238 References

200. I.H. Osman. Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problems. Annals of Operations Research, 41:421–451,
1993.

201. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, 1998.

202. P.M. Pardalos and H.E. Romeijn. Handbook of global optimization. Volume 2.
Kluwer Academic Publishers, 2002.

203. J.L. Payne and M.J. Eppstein. Emergent mating topologies in spatially struc-
tured genetic algorithms. In Proc. of the Genetic and Evolutionary Computa-
tion COnference (GECCO), pages 207–214, Seattle, Washington, USA, 2006.
ACM Press.

204. A. Pelc. Handbook of Wireless Networks and Mobile Computing, chapter Broad-
casting In Wireless Networks, pages 509–528. John Wiley & Sons, 2002.

205. W. Peng and X.-C. Lu. On the reduction of broadcast redundancy in mobile
ad hoc networks. In Proc. of the ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), pages 129–130. IEEE Press,
2000.

206. F.B. Pereira, J. Tavares, P. Machado, and E. Costa. GVR: a new represen-
tation for the vehicle routing problem. In Irish Conference Proceedings on
Artificial Intelligence and Cognitive Science (AICS), pages 95–102, Ireland,
2002. Springer-Verlag, Heidelberg.

207. C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research, 31(12):1985–2002, May 2004.

208. T.K. Ralphs, L. Kopman, W.R. Pulleyblank, and L.E. Trotter Jr. On the
capacitated vehicle routing problem. Mathematical Programming Series B,
94:343–359, 2003.

209. I. Rechenberg. Cybernetic solution path of an experimental problem. Technical
report, Royal Aircraft Establishment, Library translation No. 1122, Farnbor-
ough, Hants., UK, 1965.

210. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme und
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

211. C.R. Reeves and J.E. Rowe. Genetic Algorithms: Principles and Perspec-
tives. A Guide to GA Theory. Operations Research/Computer Science Series.
Springer-Verlag, Heidelberg, 2003.

212. G. Reinelt. TSPLIB: A travelling salesman problem library.
ORSA Journal on Computing, 3:376–384 URL: http://www.iwr.uni–
heidelberg.de/groups/comopt/software/TSPLIB95/, 1991.

213. R. Reiter and A. Mackworth. A logical framework for depiction and image
interpretation. Applied Intelligence, 41(3):123–155, 1989.

214. J.L. Ribeiro-Filho, C. Alippi, and P. Treleaven. Parallel Genetic Algorithms:
Theory and Applications, chapter Genetic algorithm programming environ-
ments, pages 65–83. IOS Press, 1993.

215. P. Rickers, R. Thomsen, and T. Krink. Applying self-organized criticality to the
diffusion model. In D. Whitley, editor, Proc. of the Genetic and Evolutionary
Computation COnference (GECCO), pages 325–330, Las Vegas, Nevada, USA,
2000.

216. G. Robertson. Parallel implementation of genetic algorithms in a classifier
system. In Proc. of the Second International Conference on Genetic Algorithms
(ICGA), pages 140–147, 1987.



References 239

217. Y. Rochat and E. Taillard. Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.

218. G. Rudolph. On takeover times in spatially structured populations: Array and
ring. In K.K. Lai, O. Katai, M. Gen, and B. Lin, editors, Proc. of the Sec-
ond Asia-Pacific Conference on Genetic Algorithms and Applications (APGA),
pages 144–151. Global-Link Publishing Company, 2000.

219. G. Rudolph and J. Sprave. A cellular genetic algorithm with self adjusting
acceptance threshold. In International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications (GALESIA), pages 365–
372, 1995.

220. J. Sarma and K.A. De Jong. An analysis of the effect of the neighborhood
size and shape on local selection algorithms. In H.M. Voigt, W. Ebeling,
I. Rechenberg, and H.P. Schwefel, editors, Proc. of the International Confer-
ence on Parallel Problem Solving from Nature IV (PPSN-IV), volume 1141 of
Lecture Notes in Computer Science (LNCS), pages 236–244. Springer-Verlag,
Heidelberg, 1996.

221. J. Sarma and K.A. De Jong. An analysis of local selection algorithms in a
spatially structured evolutionary algorithm. In T. Bäck, editor, Proc. of the
Seventh International Conference on Genetic Algorithms (ICGA), pages 181–
186. Morgan Kaufmann, 1997.

222. J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary viable strat-
egy. In R.K. Belew and L.B. Booker, editors, Proc. of the Fourth International
Conference on Genetic Algorithms (ICGA), pages 61–68. Morgan Kaufmann,
1991.

223. D. Schlierkamp-Voosen and H. Mühlenbein. Adaption of population sizes by
competing subpopulations. In Proc. IEEE International Conference on Evo-
lutionary Computation (CEC), pages 330–335, Piscataway, NY, 1996. IEEE
Press.

224. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in
cellular automata. BioSystems, 51:123–143, 1999.

225. H.-P. Schwefel. Kybernetische Evolution als Strategie der Experimentellen
Forschung in der Strömungstechnik. PhD thesis, Technical University of Berlin,
1965.

226. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley &
Sons, Chichester, England, 1981.

227. B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search.
In National Conference on Artificial Intelligence, pages 337–343, California,
1994. AAAI Press.

228. J. Setubal and J. Medianis. Introduction to Computational Molecular Biol-
ogy, chapter 4 - Fragment Assembly of DNA, pages 105–139. University of
Campinas, Brazil, 1997.

229. D. Simoncini, S. Verel, P. Collard, and M. Clergue. Anisotropic selection in
cellular genetic algorithms. In Proc. of the Genetic and Evolutionary Compu-
tation COnference (GECCO), pages 559–566, Seattle, Washington, USA, 2006.
ACM Press.

230. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Program-
ming Approach. Lecture Notes in Computer Science (LNCS). Springer-Verlag,
Heidelberg, 1997.



240 References

231. J.E. Smith and F. Vavak. Replacement strategies in steady state genetic algo-
rithms: static environments. In Banzhaf and Reeves, editors, Foundations of
Genetic Algorithms V (FOGA), pages 219–234. Morgan Kaufmann, 1998.

232. P. Spiessens and B. Manderick. A massively parallel genetic algorithm: Imple-
mentation and first analysis. In R.K. Belew and L.B. Booker, editors, Proc.
of the Fourth International Conference on Genetic Algorithms (ICGA), pages
279–286. Morgan Kaufmann, 1991.

233. J. Sprave. Linear neighborhood evolution strategies. In A.V. Sebald and L.J.
Fogel, editors, Proc. of the Annual Conference on Evolutionary Programming,
pages 42–51, River Edge, NJ, USA, 1994. World Scientific.

234. J. Sprave. A unified model of non-panmictic population structures in evolu-
tionary algorithms. In P.J Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,
and A. Zalzala, editors, Proc. IEEE International Conference on Evolutionary
Computation (CEC), volume 2. IEEE Press, 1999.

235. J. Stender. Parallel Genetic Algorithms: Theory and Applications. IOS Press,
Amsterdam, The Netherlands, 1993.

236. D.R. Stinson. An Introduction to the Design and Analysis of Algorithms. The
Charles Babbage Research Center, Winnipeg, Manitoba, Canada, 1985 (second
edition, 1987).

237. I. Stojmenovic and J. Wu. Mobile Ad Hoc Networking, chapter Broadcasting
and activity scheduling in ad hoc networks, pages 205–229. Wiley-IEEE Press,
2004.

238. R. Storn and K. Price. Differential evolution—a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical Report TR-
95-012, International Computer Science Institute, Berkeley, CA, 1995.

239. P.D. Surry and N.J. Radcliffe. RPL2: A language and parallel framework for
evolutionary computing. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
Proc. of the International Conference on Parallel Problem Solving from Nature
III (PPSN-III), pages 628–637, Berlin, 1994. Springer-Verlag, Heidelberg.

240. E. Taillard. Parallel iterative search methods for vehicle-routing problems.
Networks, 23(8):661–673, 1993.

241. E.-G. Talbi. Parallel Combinatorial Optimization. John Wiley & Sons, 2006.
242. E.-G. Talbi and P. Bessire. A parallel genetic algorithm for the graph parti-

tioning problem. In Proc. of the International Conference on Supercomputing,
pages 312–320. ACM Press, 1991.

243. R. Tanese. Distributed genetic algorithms. In J.D. Schaffer, editor, Proc.
of the Third International Conference on Genetic Algorithms (ICGA), pages
434–439. Morgan Kaufmann, 1989.

244. R. Thomsen, P. Rickers, and T. Krink. A religion-based spatial model for evo-
lutionary algorithms. In H.-P. Schwefel, M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, and J.J. Merelo, editors, Proc. of the International Confer-
ence on Parallel Problem Solving from Nature VI (PPSN-VI), Paris, France,
2000. Springer-Verlag, Heidelberg.

245. M. Tomassini. The parallel genetic cellular automata: Application to global
function optimization. In R.F. Albrecht, C.R. Reeves, and N.C. Steele, edi-
tors, Proc. of the International Conference on Artificial Neural Networks and
Genetic Algorithms, pages 385–391. Springer-Verlag, Heidelberg, 1993.

246. M. Tomassini. Spatially Structured Evolutionary Algorithms: Artificial Evolu-
tion in Space and Time. Natural Computing Series. Springer-Verlag, Heidel-
berg, 2005.



References 241

247. A. Töorn and Z̆. Antanas. Global Optimization, volume 350 of Lecture Notes
in Computer Science (LNCS). Springer-Verlag, Heidelberg, Berlin, Germany,
1989.

248. P. Toth and D. Vigo. The Vehicle Routing Problem. Monographs on Discrete
Mathematics and Applications. SIAM, Philadelphia, 2001.

249. P. Toth and D. Vigo. The granular tabu search and its application to the
vehicle routing problem. INFORMS Journal on Computing, 15(4):333–346,
2003.

250. S. Tsutsui and Y. Fujimoto. Forking genetic algorithm with blocking and
shrinking modes. In S. Forrest, editor, Proc. of the Fifth International Con-
ference on Genetic Algorithms (ICGA), pages 206–213, San Mateo, CA, 1993.
Morgan Kaufmann.

251. S. Tsutsui, A. Ghosh, D. Corne, and Y. Fujimoto. A real coded genetic algo-
rithm with an explorer and exploiter populations. In T. Bäck, editor, Proc.
of the Seventh International Conference on Genetic Algorithms (ICGA), pages
238–245. Morgan Kaufmann, 1997.

252. A. Van Breedam. An Analysis of the Behavior of Heuristics for the Vehicle
Routing Problem for a Selection of Problems with Vehicle Related, Customer-
related, and Time-related Constraints. PhD thesis, University of Antwerp -
RUCA, Belgium, 1994.

253. A. Van Breedam. A parametric analysis of heuristics for the vehicle rout-
ing problem with side-constraints. European Journal of Operations Research,
137:348–370, 2002.

254. D.A. Van Veldhuizen and G.B. Lamont. Multiobjective evolutionary algorithm
research: A history and analysis. Technical Report TR-98-03, Dept. Elec. Com-
put. Eng., Air Force Inst. Technol., Wright-Patterson, AFB, OH, 1998.

255. H.-M. Voigt, H. Mühlenbein, and D. Cetković. Fuzzy recombination for the
breeder genetic algorithm. In L. Eshelman, editor, Proc. of the Sixth Interna-
tional Conference on Genetic Algorithms (ICGA), pages 104–111, 1995.

256. H. M. Voigt, I. Santibáñez-Koref, and J. Born. Hierarchically structured dis-
tributed genetic algorithms. In R. Männer and B. Manderick, editors, Proc.
of the International Conference on Parallel Problem Solving from Nature II
(PPSN-II), pages 155–164, Amsterdan, 1992. North-Holland.

257. K. Weinert, J. Mehnen, and G. Rudolph. Dynamic neighborhood structures
in parallel evolution strategies. Complex Systems, 13(3):227–243, 2001.

258. P.M. White and C.C. Pettey. Double selection vs. single selection in diffusion
model GAs. In S. Forrest, editor, Proc. of the Fifth International Conference
on Genetic Algorithms (ICGA), pages 174–180. Morgan Kaufmann, 1993.

259. D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proc. of the Fifth
International Conference on Genetic Algorithms (ICGA), page 658, California,
CA, USA, 1993. Morgan Kaufmann.

260. D. Whitley, R. Beveridge, C. Graves, and K. Mathias. Test driving three 1995
genetic algorithms: New test functions and geometric matching. Journal of
Heuristics, 1:77–104, 1995.

261. D. Whitley, S. Rana, J. Dzubera, and K.E. Mathias. Evaluating evolutionary
algorithms. Applied Intelligence, 85:245–276, 1997.

262. D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and travel-
ing salesman: The genetic edge recombination operator. In J.D. Schaffer, editor,
Proc. of the Third International Conference on Genetic Algorithms (ICGA),
pages 133–140. Morgan Kaufmann, 1989.



242 References

263. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile
ad hoc networks. In Proc. of the ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), pages 194–205. ACM Press,
2002.

264. S. Wolfram. Theory and Applications of Cellular Automata. World Scientific,
Singapore, 1986.

265. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

266. S. Wright. Isolation by distance. Genetics, 28:114–138, 1943.
267. J. Wu and W. Lou. Forward-node-set-based broadcast in clustered mobile ad

hoc networks. Wireless Communications and Mobile Computing, 3(2):155–173,
2003.

268. F. Xhafa. A cellular memetic algorithm for resource allocation in grid systems.
In E.-G. Talbi and L. Jourdan, editors, Proceedings of the META 2006, 2006.
CD edition.

269. F. Xhafa, E. Alba, and B. Dorronsoro. Efficient batch job scheduling in grids
using cellular memetic algorithms. In Nature Inspired Distributed Comput-
ing (NIDISC) sessions of the International Parallel and Distributed Processing
Simposium (IPDPS) Workshop, pages 1–8. IEEE Press, 2007.

270. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. IEEE Transactions on Evolutionary Computa-
tion, 8(2):173–195, 2000.

271. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm. Technical Report 103, Computer Engineering and Net-
works Laboratory (TIK), Swiss Federal Institute of Technology (ETH), 2001.

272. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 23(4):257–271, 1999.



Index

AF, 89
AF+PH, 89
Allele, 18

Bioinformatics, 203

Cellular EA
Asynchronous, 16
Cellular EDA, 146
Cellular UMDA, 148
Synchronous, 16

Cellular GA, 18
Hierarchical, 139
Multi-objective, 127

cMOGA, 128, 188, 193
MOCell, 128, 130

Parallel, 115
Meta-cellular, 116
PEGA, 119

Self-adaptive, 83
Chromosome, 18
Crowding, 193

Adaptive grid algorithm, 195

DFCN, 187, 191
Random assessment delay (RAD),

191
Safe density, 192

DNA fragment assembly, 203

Evolutionary algorithm (EA), 7
Decentralized EA, 11
Diffusion EA, 22
Fine grained EA, 22

Local selection EA, 22
Massively parallel EA, 22
Parallel individuals EA, 22
Pollination plants EA, 22

Evolutionary Algorithms (EAs), VII

Gene, 18
Generation, 17
Generational GA, 38
Genetic algorithm (GA)

Distributed in islands GA, 39
Generational GA, 38
Panmictic GA, 37
Steady state GA, 38
Structured GA, 39

GRAD, 103
Gradual distributed real-coded GA, 171
Grid computing, 116

Hamming distance, 213
Hierarchical cGAs, 139
Hybridization, 101
Hypergraph, 24

Isolation by distance, 13

JCell, 153
configuration, 158
JCell library URL, VIII, 163
JCell2o1i, 178

jMetal, 128

Local search
λ-Interchange, 121, 182



244 Index

2-Opt, 121, 182
Logistics, 175

MANETs, 187
Device, 187
Highway environment simulation,

190, 197
Mall environment simulation, 189,

196
Metropolitan environment simulation,

187, 190, 197
Node, 187
Observation window, 190

MEA, 128
Memetic algorithm (MA), 101

Cellular (cMA), 102, 176, 206
Metaheuristic, 6
Metric

Dispersion (Δ), 79, 133, 137
Generational distance (GD), 79, 133,

135
Hypervolume (HV ), 79, 133, 138, 201
Number of Pareto optima, 80
Set coverage, 80, 201

Multi-objective Problem (MOP), 127
Mutation

Bit-flip, 40, 62, 91, 111, 144, 150
Combined, 181
Dispersion, 121
Insertion, 121, 181
Inversion, 121, 181
Non-uniform, 168
Polynomial, 131, 195
Swap, 121, 181, 207
Uniform, 66

Neighborhood, 13
Moore, 14
NEWS, 14
Von Newmann, 14

Neighborhood in solution space, 5
Niche, 13, 27, 97
NSGA-II, 127, 135

Optimization, 4
Binary problem, 5
Complete problem, 5
Continuous problem, 5
Heterogeneous problem, 5

Multi-objective, 127
With constraints, 5

PAES, 127
PALS, 207
Panmictic GA, 37
Pareto front, 127
PH, 89
Predator-prey model, 128
Problem

ef10, 220
Ackley, 220
Bin Packing Problem (BPP), 178
Capacitated vehicle routing (CVRP),

120, 176, 177
ConstrEx, 224
COUNTSAT, 213
DFCNT, 193
DNA fragment assembly, 203
Error correcting code design (ECC),

214
Fonseca, 224
Fractal, 220
Frequency modulation sounds (FMS),

215, 222
Griewangk, 220
IsoPeak, 215
Kursawe, 224
Massively multimodal deceptive

(MMDP), 216
Maximum cut of a graph (MAXCUT),

216
Minimum tardy task (MTTP), 217
Multiple travelling salesman (MTSP),

178
OneMax, 218
Osyczka2, 224
P-PEAKS, 218
Plateau, 218
Polynomial fitting (Chebyshev), 223
Rastrigin, 220
Rosenbrock, 220
Satisfiability (SAT), 101, 117, 219
Schaffer, 224
Schwefel, 220
Sphere, 220
Srinivas, 224
Systems of linear equations (Sle), 222
Tanaka, 224



Index 245

Vehicle routing (VRP), 177
Vehicle Routing Problem (VRP), 175
WFG, 133, 224
ZDT, 133, 224

Radius, 17
Ratio, 17, 24

Adaptive, 87
Change, 85
Pre-programmed, 87

Recombination
Arithmetic (AX), 66
Blend (BLX-α), 168, 171
Edge (ERX), 180
Extended fuzzy (EFR), 171
Fuzzy connectives based (FCB), 171
Generic, 120
Order based (OX), 206
Simulated binary (SBX), 131, 195
Two points (DPX), 40, 62, 91, 111,

144

Selection
Anisotropic, 25
Binary tournament, 55
Dissimilarity, 141
Linear ranking, 56
Roulette wheel, 54

Selection pressure, 48
Self-adaptation, 83
Simulated annealing (SA), 105
Small world graphs, 25
SPEA2, 127, 135
Speedup, 118
Statistical test

t-test, 78
ANOVA, 78
Kolmogorov-Smirnov, 78
Kruskal-Wallis, 78
Statistical significance, 78

Steady state GA, 38
Stepwise adaptation of weights (SAW),

106, 219
Structured GA, 39
Synchronous/Asynchronous cEAs, 16

Takeover, 142, 149
Takeover time, 25, 47

Telecommunications, 187
Theory of cellular GAs/EAs, 47

Univariate marginal distribution
algorithm (UMDA), 148

WSAT, 104



Early Titles in 
OPERATIONS RESEARCH/COMPUTER SCIENCE INTERFACES 
 
Greenberg /A Computer-Assisted Analysis System for Mathematical Programming Models and Solutions: 

A User’s Guide for ANALYZE 
Greenberg / Modeling by Object-Driven Linear Elemental Relations: A Users Guide for MODLER 
Brown & Scherer / Intelligent Scheduling Systems 
Nash & Sofer / The Impact of Emerging Technologies on Computer Science & Operations Research  
Barth / Logic-Based 0-1 Constraint Programming 
Jones / Visualization and Optimization 
Barr, Helgason & Kennington / Interfaces in Computer Science & Operations Research: Advances in 

Metaheuristics, Optimization, & Stochastic Modeling Technologies 
Ellacott, Mason & Anderson / Mathematics of Neural Networks: Models, Algorithms & Applications 
Woodruff / Advances in Computational & Stochastic Optimization, Logic Programming, and Heuristic 

Search 
Klein / Scheduling of Resource-Constrained Projects 
 
 
 




