CHAPTER 7

SR Proteins and Related Factors

in Alternative Splicing
Shengrong Lin and Xiang-Dong Fu*

Abstract

R proteins are family of RN A binding proteins that contain a signarure RS domain enriched
Swithseﬁnc/argininercpm. ‘The RS dornain is also found in many other proteins, which are

collectively referred to as SR-related proteins. Several protorypical SR proteins are essential
splicing factors, but the majority of RS domain-coneaining facrors are characterized by their abiliry
to alter gplice site selection in vitro or in transfected cells. SR proteins and SR-related proteins are
generally believed to modulate splice site sclection via RNA recognition motif-mediated bind-
ing to exonic splicing enhancers and RS domain-mediated protein-protein and protein-RNA
interactions during spliccosome assembly. However, the bialogical function of individual RS
domain-contzining splicing regulators is complex because of redundant as weli as competitive
functions, context-dependent effects and regulation by cotranscriptional and post-granslational
events. This chaprer will focus on our current mechanistic understanding of alternarive splicing
tegudation by SR proteins and SR-related proveins and will discuss some of the quesrions thar
remain to be addressed in future research.

Introduction

SR proteins were discovered in the early 1990s by the identification of factors associated with
putified spliceosotnes,* by the purification of critical non-snRNP splicing activities in constitu-
tive and alternative splicing,*€ and by the analysis of components of a nuclear body that could be
selectively precipitated with Mg**.7 By virtue of iits ability to complement splicing-deficient §100
cytoplasmic extracts from HeLa cells and ro stimulate splice site switching in Hela nuclear extracrs,
SF2/ASF was the first SR protein shown to have dual roles in constitative and alternative splic-
ing *68 This obscrvation was quickly extended to ather SR proteins*! The 5100 comnplementation
and splice site switch assays have since becons standard functional tests for SR proteing isolated
from higher eukaryotic organisms.

Sequence analysis has revealed that SR protein family members consist of one or two RNA
recognition motifs and a signature RS domain enriched with serine/arginine repeats.'>? These
structural features have been commonly used ro classify SR proteins, Clearly, not all SR proteins
behave like prototypical SR proteins. For example, a subset have different fractionation proper-
ties and/or are not sufficient to complement $100 extracts. In addirion, several new SR, protein
family members exhibit activities in both constitutive and alternative splicing that are opposite
to those possessed by prototypical SR proteins. Because of the functional diversity among SR
protcins, we propose to define SR proteins based on their commen structiral features includ-
ing at least one RNA recognition motif and an RS domain. Using this classification, several RS
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domain-containing RNA binding proteins, including human TRA28 and RNPSL, can now be
classificd as SR proteins { Table 1).

In addition to SK proteins, many other splicing factors contain an RS domain. These proteins
are collectively referred to as SRerelaved proteins. In mammalian cells, SR-relared proteins
include other RNA binding proteins, such as both subunits of the UZAF heterodimer, the Ul
suRNP specific protein UL-70K and various enzymes, including several ATPases involved in
RNA rearrangement within the spliceosome’>'# (Table 1). Tt is generally thoughr thar the RS
dosnaing in SR proteins and SR-related splicing factors facilitate spliceosome assembly by mediar-
ing protein-protein interactions.'” However, recent studies have revealed direct binding of the RS
domain to critical splicing signals in pre-mRINA transcripes 2!

Interestingly, budding yeast express a few RINA binding proteins that structurally resembie
SR proteins.” However, there is no direct evidence that these proteins are essential pre-mRNA
processing factors in this organism and it is interesting to note in this contexr that ~5% of the
genes in budding yeast contain a single intron and alvernarive splicing is rare. Therefore, splicing
can take place in the absence of SR. proteins, which begs the question as to why SR proteins are
essential splicing factors in higher eukaryotic cells, The differential requirement for SR proteins
in yeast and higher eukaryotic cells probably reflects the fact that the splicing signals in yeast
pre-mRNAs are essentially invariant, whereas those in mammals are diversc. Thus, the RS domain
in S8R proteins may firnction to strengthen the recognition of weak splicing signals, as has been

Table 1. SR proteins and SR-related splicing regulators

Classification Factors Key Domains Functions
Classic SR SRp20,! SF2/ASF?2 5C35, 968, Orne or two Constitutive and
Proteins SRp40,° SRp55/B52,° SRp7 5 RRMs plus an alternative splicing
RS domain
Additionat hTRAZa,® hTRA2$,® RNPS1,0 One or two Positive and
SR proteins SRp38, SRp30c,”2 p54.12 RRMs plus an negative regulation
SRrp35," SRyp53,"s SRpse™ RS domain of alternative
splicing
RMA binding UZAF65,7 LIZAF35,' Urp,® RRM, PWi Splicing factors or
SR related HCC1/CAPER, 2 UT-70K, M domain, Zn co-activators
factors hSWAPR? Pinin,® Sipl,#* finger plus an
SR-A1,25 ZNF265,% SRm1 60,2 RS domain
SRm300,%*
Enzymes and hPRP5,* hPRP16,* DEAH box, Splicensome
regulators Prp22/HRH1,* U5-100K/ kinase domains, rearrangement and
carrying an hPRP28,2 ClkSty-1,% 2,34 3,5 peptidyl-prolyl modification of
RS domain CLASP* Prp4K,” isomerase splicing factors
CrikRS/CRK7/CDIK12,2 domain
£DC2L5,39 CONLL* CCNLZY
SR-cyp,?

Key literature information and protein sequence for each gene can be found by individual NCBI ac-
cession number: "NP_G03008 NP_008855 ¥NP_003007 *NP_001026854 *NP_00B856 8NP_006266
NP_Q05617 "NP_037425 SNP_004584 '"NP_542161 "MNP_473357 BNP_003760 “NP_004759
MNP_542781 “NP_05770% NP 631907 “NP_009210 "*NP 006749 "*NP_005080 *NP_309122
MNP_DO3080 ¥NP_0(8987 »NP_002678 #NP_004710 *NP_067051 *NP_976225 ¥NP_D05830
BNP_057417 BNP_055644 PNP_(54722 FNP_O04932 2NP_004809 3NP_004062 *#NP_003984
*NP_003983 *NP_008987 NP 003904 “NP_057591 ®NP_003709 *NP_D64703 YNP_112199
“NP_G04783
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recently documented  In addition, SR proteins are critical for pairing complexes assembled on
the §' and 3 splice sites. This functional requirement may not be critical for splicing in yeast,
where introns are relatively shorr and the communication berween splice sites may not require
RS domain-mediated interactions during splicing assembly.

The Role of SR Proteins in Splice Site Selection

Prototypical SR proteins, such as $C35, SF2/ASF and 9G8, are required to initiate spli-
ceosome assembly in nuclear excracts, This early function of SR proteins is mediated by their
sequence-specific bindingto cis-acting elements, which are mostly located in exons and function-
ally characrerized as exonic splicing enhancers (ESEs). The binding specificity of individual SR.
proteins has been experimentally defined using a technique called SELEX, based cither on in
vitro binding?*®* or on the functional consequence of in vitro splicing % The ESEs characrer-
ized to date have been used to develop an ESE-finder program® to assist with the identification
of potential cis-acting regulatory clements in pre-mRNAs. While the program is a useful guide
for searching for cis-acting regulatory clements in various pre-mRNAs, the information derived
is preliminary for several reasons. First, similar analyses have not been exvended o other SR
proteins. Second, many ESEs may be recognized by non-SR proteins, Third, some complex ESEs

may require the action of more than one RS domain-containing splicing factot, as observed in
the Drosopbzla dosblesex pre-mRNA.* Consequently, the vast majority of computationally de-
duced and/or experimentally verified ESEs remain to be characterized with regards ta the specific
trans-acting factors involved. % Furthermore, it is unclear as to why SR proteins generally do not
bind to intronic sequences that resemble ESEs. An inreresting possibiliry is chat SR proteins may
bind to all potential sites in an initial scanning mode before stabilization at specific functional
ESEs via their interactions with other splicing factors chat promate spliceosome assembly.

Two non-exclusive models have been proposed to explain the fanctional consequence of initial
SR protein binding to an ESE {Fig. 1). One model emphasizes the effect of ESE-bound SR proteins
on the recruirment and stabilization of additional splicing factors, such as Ul ar the 3' splice sitce™*
and the UZAF complex at the 3' splice site.®** Both SR proteins and RS domain-containing splic-
ing co-activators have been implicated in promoting communication between the 5' and 3’ splice
sites.** The second model stresses the role of ESE-bound SR proteins in preventing or displac-
ing other RNA binding proteins, such as hnRNP A1, from binding ar exonic splicing silencers
(ESSs).3%5! These ewo mechanisms are likely operating in a synergistic fashion to favor spliceosome
assembly on funcrional splice sites.

The eady function of SR proteins in splice site recognition is probably similar in both constituive
and alternative splicing. Based on in vitro analysis of several prototypical SR. proteins in alternative
splicing, binding of SR proteins promotes the selection of proximal sites over distal ones in alrerna-
tive §' or 3" splice site choices.®%% In such processes, splice site selection may be dictated by che
intrinsic strength of the competing splice sites and/or the frequency of competing exonic splicing
silencer (ESS) sequences, SR protein binding may enhance complex assembly on both strong and
weak splice sites to make them equally competitive.* The proximal site is then selected becanse of
the insulating funetion of SR proteins, allowing the closest pair of splice sires to be linked in later
splicecsome assembly events™ (Fig. 1), Thisinsulating function may playa critical role in preventing
cxon skipping during the removal of mmltiple introns in 2 pre-mRMNA. transcript,

The ability of SR proteins to bind RNA is essential for the activiry of SR proteins in both con-
stitntive and alternative splicing ¥** In contrast, the RS domain seems to be imporrant for consti-
tutive splicing, but dispensable in alternative splicing, at least for the small number of pre-mRNA
substrates analyzed % The reason why the RS domain is not required for alternative splicing is not
completely understood. It is possible that SR proteins lacking the RS dotmain may be sufficiencto
compete with the binding of negative splicing factors to adjacent splicing silencer sequences 35!
Given the fact that the dispensability of the RS domain in aliemnative splicinghas only been tested
with a limired numbser of alternative splicing substrates, it remains possible that certain alternative
splicing events maty require the domain to promote the selection of weak splice sites,



i1a Alternasive Splicing in the Posigenomic Fra

A. Role of SR proteins in splice site recognition
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Figure 1. Role of 5R proteins in splice site selection. A} An ESE-bound SR protein may stimulate
complex assembly at a nearby functional splice site and/or antagonize the negative effect of an
hnRNP protein on spliceosome assembly. B) An insulating function of SR proteins may promote
the selection of the proximal splice site and prevent the use of the distal splice site.

SR Proteins Modulate Alternative Splicing in Both Ways

As described above, SR proteins seem ta promote exon inclusion and the selection of
intron-proximal splice sites aver distal ones. However, further studies indicate char different SR
proteins may influence splice site selection in both positive and negativc fashions, Three distinct
mechanisms by which SR proteins negatively modulare splice site selection have been reported
in the licerature (Fig. 2). SR proteins may recognize some intronic sequences thar mscmbk ESEs,
therefore resulting in the activation of an intronic cryptic splice site at the expense of a native
splice site® (Fig. 2A). Mechanistically, this mode of negative regulation is similar 1o the activiry
of 3R proteins in promaoting the sclection of a prozimal, weak splice site in competition with a
strong, distal one,

SR proteins may be actively involved in suppressing splice sites in a substrate-dependent manner.
"This was observed in SR knockout cardiomyocyves, where loss of SF2/ASF induced exon inclusion
in the alvernatively spliced CaMKII8 gene.” While che direce effect of SR proteins in CaMKIIS
exon skipping event remains to be confirmed by in vitro analysis, a more recent sendy demonstrated
that 5F2/ASF acted on an ESE to promote exon skipping in the Ren proto-ancogene.® Similarly,
SRp30c was found to suppress splice site sclection of an altertiative exon in the hnRNP Al gene 5
While the thechanism for these SR protein-dependent cxon skipping events remains elusive, the
phenomenon may be related to a number of carlier observations that different SR proteins appear
to have opposite effects on regulated splicing.%#° In these cases, different SR proteins may act on
their respective cis-acting elements to antagonize each other, thereby influencing the final choice
of aleernative splice sites. The opposite effects observed with different SR protcing may be due to
the possibilicy char some SR proteins are more productive in promoring splice site selection than
others, such that less preductive SR proteins may interfere with productive ones in a competitive
manner (Fig. 2B). Furthermore, it was recently shown that the positive and negative effects may
be also related to the location of SR protein binding site with respect to splice sites.™
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Figure 2. Positive and negative effects of SR proteins on splice site selection. A} An SR protein
may bind to an intronic sequence resembling an ESE, thereby activating an upstream cryptic
3' splice site and inhibiting the use of the normal, downstream 3° splice site. B) The function
of an ESE-bound 3R protein (SR2) may be blocked by another ESE-bound SR protein with a
weaker activity in splicing activation. C) The same cis-acting ESE may be recognized by both
positive and negative SR proteins.

Aside from the substrate-dependent effects of typical SR proteins, some SR proteing appear
to only function in splicing in 2 negative fashion (Fig. 2C). The best characterized example is
SRp886, which appears to antagonize typical SR proteins in splice sive selection,” ™ Likewise, the
SR protein p54, which was initially identified as a U2AF65-interacting protein, promotes the
selection of an intron-distal splice site in the E1A pre-mRNA.™ In a recent functional screen using
a tau-based altemative splicing reporter, pS4 was found to compere with KIRAZ2B for binding to
an ESE and to promote exon skipping.™ Joining this list of “negative” SR proteins are two new
SR-related RNA binding proteins, SRep35 and SRip40 {also known as NSSR, TASR or SRp38),
which should be dlassified as SR proteins.”® SRp38 was isolated as an alternative splicing regula-
ror in several independent studics.”*™ Interestingly, SRp38 normally scems to have little activity
in splicing, However, following heat shock and during cell mitosis, dephosphorylation of the RS
domain of SRp38 results in a strong inhibitory effect on splicing.**' However, when the RS do-
main of $Rp38 was linked to an M52 binding site or to the RNA recognition motif (RRM) of 2
typical SR protein, the hybrid protein appeared ro act as a rypical splicing activator, like other SR
proteins.™® Thus, both the RNA binding activity and the phosphorylation state ofits RS domain
contribute to the inhibitory effect of SRp38 on splicing.
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How Do SR-Related Splicing Factors Regulate Alternative Splicing?

In the past, SR-related alternative splicing regnlators wers often referred to as mammalian ho-
maologues of splicing regulators identified in Drosopbila, such as HTRA2a and HTRA26™ Becanse
these splicing factors can be classified as SR, proteins, we will focus our discussion on the other
RS domain-containing splicing factors listed in Table 1. One example is the U2AF heterodimer,
which is comprised of U2AFS5 and U2AF35, These proteins are structurally relared ro SR pro-
teins, but have distinet features: U2AF65 contains an N-terminal RS and three RRMs, whereas
U2AF35 carrits 2 C-terminal RS domain, but ne RRM. The U2AF heterodimer is believed to
play a critical role in the definition of 3' splice site selection in both constitutive and alternative
splicing, Indeed, recent RNAi knockdown studies showed that the UZAF heterodimer is directly
involved in regulating splicing in both Drasophila and human cells.**** Unlike SR proteins, how-
ever, U2AF does not seem to affect 3' splice site choice in 2 dosage dependent manner, Instead,
the UZAF heterodimer appears to be the target for replacernent by other polypyrimidine trace
binding proteins, such as Sx in Drosaphils® or PTB in vertebrares 74

Besides UZAE a growing number of RS domain-containing proteins have been implicated in al-
ternative splicing, including the mammalian homologue of suppressor-of-white-apricot™ and a large
Zn-finger protein ZNF265" ( Table 1), Interestingly, several kinases, such as Clk/Sty, ™ CrkRS,*
Prp4K.® and CDC2L5,% and the regulator subunits cyclin L1 and L2, also contain an RS
domain. While these kinases have exhibited effecrs on alternative splicing in transfected cells, anly
Clk/Sty is known to target and directly phosphorylate SR proteins, These kinase systerns have the
potential to link signal transduction pachways to regulated splicing in mammalian cells.

A recent large-scale RNAI screen found, surprisingly, thar constitarive splicing facrors arealso
capable of alvering the splice site choice. Among these unexpected alternative splicing regulavors
are the ATPase Prp5 and Prp22,% the mammalian homologues of which carry an extra RS do-
main.'*"® This finding is surprising becanse regulation of alternative splicing has been generally
thoughr to take place in eatly stages of spliceosorne assembly and chese ATPases arc known to act
during the splicing reacrion after the spliceosome is fully assembled, However, 2 more recent kinetic
study demonserated that, despite the fact that splice sites are paired in the absence of ATT, they
are flexible and exchangeable within the E complex until they are locked in the A complex in the
presence of ATP'%! Thus, many factors that act after spliccosome assembly may still be capable of
functioning as regulators in aleernative splicing, This finding is consisrent with the role of Prp$,
Prp22 and other “late” splice factors in regulared splicing. The recent recognition of the dynamie
nature of the spliccosome provides a conceproal framework for undersranding how many known
facrors for constitutive splicing show an ability to modulate alternarive splicing. '

Functional Requirement of SR Proteins In Vivo

While regulared splicing was initiafly recognized and extensively studied by genetics in the
Dirasgphila system, most cenceprs and mechanistic insighes into the regulation of alternative splic-
ing by SR proteins and SR-related proteing have been based on biochemical analysis in vitro or
in transfected cells. It is therefore important £o test and extend the biochemical studies to in vivo
systemns. To this end, the RNAi approach has been used to determine the role of SR proteins in €.
elegans. ™ Surikingly, most SR protein knockdowns resulted in no detectable phenotype, except
for a late cmbryonic lethal phenotype induced by RINAi against SF2/ASE These findings suggest
an extensive functional overlap among the SR family of splicing factors in this model organism,
A more extensive RNA{ screen performed in Drosophila 52 cells revealed the tole of several SR
proteing and SRerelated splicing factors in alrernative splicing ™ Although the RNAi approach has
been applied to mammalian cells to demonstrate specific requirements of SR proteins in alternative
splicing, '™ a similar systematic undereaking remains to be extended to the mammalian system
where regulated splicing may be more dyramic and thus more complex.

Complementary to the RNAi approach, gene targering in chicken DT40 cells and in mice has
permitted the analysis of SR proteins in vivo, A study performed on SF2/ASF knockout DT40 cells
revealed that SF2/ASF is required for cellviabilicy, ' has an unexpected rale in maineaining genomic
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stability.""” and has a regulatory function in DINA fragmentation during apoptosis. '™ At least one
of these in vivofimetions (DNA fragmentation) was linked to SF2/ASF-regulated alternative splic-
ing."® "These studies have significantly extended our understanding of SR proteing in vivo.

Sa far, all SR protein knockout mice studied to date have shown an early embryonic lethal phe-
notype, thus demonstrating the fundamental function of SR proteins in vivo, 210 Surprisingly
however, 3C33 seems to be dispensable in nondividing mamre cardiomyocytes, indicaring that SR
proteins are not universally required for cell viability in vivo.!!! This observation is in agreement
with an RNAi resule in €. elegems.'™ Imporrantly, specific alrernative splicing events have been
directly linked to some defined phenorypes in SC35 and SF2/ASF knockout mice, showing that
SR proteins are indeed regulavors of alrernarive splicing in mammalian cells.

Interestingly, an SF2/ASF murane lacking the RS domain could resene cell viabiliey in SF2/
ASF-depleted mouse embryonic fibroblasts.'** Because the RS domain in SF2/ASF is required
for canstitutive splicing but dispensable in alternative splicing in most cases, this observation
suiggests that most ccllular malfunctions might result from defects in alrernarive splicing. This
possibility is consistent with the studies of the SF2/ASF orthologuc in Dresaphila, in which JASFE
appeared 1o lack any activity in constitutive splicing, but functioned as a regulator in alrernative
splicing,'"? Furthermore, the global pattern of gene expression was not dramatically altered in
SR protein-depleted cells, indicating that inactivation of individual SR proteins may not cause
widespread defects in constitutive splicing, !4

SR Proteins as Splicing Regulators In Vivo: Why So Few Targets?
Members of the SR family of splicing factors are among the bestcharacterized splicing regula-
tors and have been extensively studied by biochemical analysis. One surprising finding from the
stady of SR protein knockout oclls was that most splicing events (both constitutive and alterna-
tive) remained unaltered in response to depletion of individual SR proteins in vivo. This result has
been assumed to be due to functional redundancy among SR protcins, which may be explained
by two potential mechanisms (Fig, 3). First, more than one SR protein may be able to recognize

A. Multiple SR proteins recognize a similar ESE
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Figure 3. Potential funetional redundancy of SR proteins. A) Multiple SR proteins may recog-
nize the same ESE in a pre-mRNA. B} Multiple SR proteins may interact with several distinct
ESEs in a pre-mRMA. As a result, deficiency of a single SR protein may have little effect on
mast constitutive splicing events.
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a similar set of ESEs present in most exons; chis has been observed in vitra with SF2/ASF and.
HTRA2B, which are both are capable of recognizing purine-rich ESEs 548215 Second, most
exonic sequences appear to harbor mnltiple ESEs that are responsive to distinct SR proteins,'*®
which may act independently or in a synergistic manner,**"” As a result, many splicing events
may be responsive to SR protein overexpression, but relatively insensitive to down regulation or
depletion of a single SR protein, Overexpression of SR proteins may exert a dominane effect on
exons containing related ESEs. Therefore, cantion must be taken in interpreting overexpression
resules in mansfected cells, in which an affected splicing event may not be the natural substrate
for the SR protein under study. This problem can be addressed by comparing results from both
overexpression and RNAi knockdawn stadies.

According to the theory of functional redundancy, one might expect 2 more prevalent effect
of SR protein depletion on alternative splicing versus constitutive splicing in vivo, since alterna-
tive splicing is often coupled with weak splice sites in. conjunction with specific ESEs.® In this
regard, alternative splicing would be more dependent on individual ESEsand thus more sensitive
to vatiations in SR protein expression. As a result, SR proteins may be collectively essential, but
individually dispensable for constiturive splicing in most cases. On the other hand, individual SR
proteins may each conttol 4 defined spectrutn of substrates via weak splice sites coupled with ESEs
and these substrates tnay be limited in type or in number. Therefore, SR proteins may function as
alternarive splicing regulators in vive more extensively than previously appreciated. The challenge
is in identifying key alternative splicing events involving specific SR proteins and to link these
molecular alterations to defined biological phenotypes.

Regulation of SR Splicing Regulators

SR prateins and SR- rclztcd splicing factors are direct effectors in alternative splicing and are
likely subject to regulation at the transcriptional and post-translational levels, Additional regula-
tion likely takes place in response to cell signaling events, Regulation of SR proteins and other
splicing regulators by signaling is reviewed in: the chapter by Uynch in this book. Accordingly, we
will focus cur discussion on how alternative splicing may be achieved by regulating che SR family
of splicing factors. While SR and SR-related proteins are ubiquitously expressed in most tissues
and cell cypes, differencial expression of SR proteins has been reported in certain tissucs and cell
types in response to signaling ' *'2 In general, howeves, little is known about how SR proteins are
regulated at the transcriptional level and about the fanctional consequences of sach regulation
on specific alternarive splicing events in specific biological pathways. SR proteins have also been
found to be auto-regulated or regulated in trans by other SR proreins at the level of alternative
splicing.'?*1% These regulatory mechanisms may help maintain homeostasisof SR protein expres-
sion in most cell types.

SR proteins are extensively modified by phosphorylation in their RS domains. Several eacly
studies indicated chat phosphorylarion was essential for SR proteins to function in spliceosome
assembly and that dephosphorylation was critical for RNA catalysis within the spliceosome. 172
Phospherylation and dephosphorylation are both required,”®” because it was found thar experi-
mental induction of SR protein hyper- and hypo-phosphorylation impaired splicing.** However,
mutations that mimic hyper-and hypo-phosphorylation of 3 single SR protein, such as substitution
of RS repeats by RE or RG dipeprides in the RS domain, siill supporeed splicing in vitro and comple-
mented SR protein-depleted cells for viability.!'>**! Thisis likely because 2 full phosphorylation/de-
phosphorylation cycle does not have to occur in a single SR protein for each round of the splicing
reaction,'® For ingtance, a splicing reaction can be acoomplished by using a chio-phosphorylated
{phospharase-resistant) SR protein to stimulate initial spliceosome assembly and using another
dephosphorylatable SR protein to complete later steps in the splicing reaction,

Because the activity of SR proteins in constitutive splicing is clearly modulated by phos-
phorylation, it is conceivable that regulated phosphorylation may have a profound influence
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on alrernative splicing, Indeed, overexpression or inhibition of an SR protein-specific kinase has
been shown to modulate splice site selection, ™% The activation of various signal transduc-
tion pathways has also been shown to affect alternarive splicing via, ar least in pary, differential
phosphorylation of SR proteins.”*5'” However, we are far from understanding how SR protein
phosphorylation might affect the activity of SR proteins in constitutive and regulated splic-
ing, While phosphorylation of the RS domain is generally believed to prevent SR proteins
from non-specific binding ro RNA, the impact varies with respect to RS domain-medisted
protein-protein interactions that enhance the interaction in certain cases and suppress the
interaction in others."*'3® Importantly, it is essentially unknown as to which proteins are acru-
ally engaging in the interaction with the RS domain of an SR protein within the spliceosome
and how such interactions might be influenced by phosphorylation. Moreover, SR proteins
are phosphorylated ax multiple sites in their RS domains,™ It is currently unclear whether the
activity of SK proteins might be affecred by phosphorylation in a contexr or sire-specific manner.
Finally, phosphorylation has been shown to regulate the localization of SR proteins™#-143 and
their recruitment to the transcriptional machinery has been shown to facilitate cotranscriptional
splicing in the nucleus,**"*%5 Because SR proteins are known to affect alternative splicing in
a dosage-dependent manner, the impact of phosphorylation on the availability (localization)
and targesing efficiency (recruitment) of SR proteins may contribute to the complex pattern of
alternarive splicing in mammalian cells.

One approach to investigare the regulation of splicing by phosphorylation is to identify and
characterize specific kinases and phosphatases invalved in the process. To date, several protein
kinases have been implicated as SR protein kinases, including SRPKs, 414 Clk/Sty, %41 and
Ake. %1 The family of SRPK and Clk/Sty kinases catalyzed phosphorylation of SR proteins in
multiple sites in the RS domain, but with different substrate specificicy."**!% L is important to
emphasize the fact chat these kinases were mostly identified by in vitro kinase assays and their
effect on splicing, if any, was only tested in transfeceed cells. Genetic evidence will be required 1o
firmnly establish the enzyme-substrate relationship for all of the reported SR protein kinases. In
Droasaphils, a Clk/Sty-related kinase has been shown to phosphorylate endogenous SR proteins
and more importantly, mutations in the kinase altered the sex determination pathway ! ‘The
SRPK family of kinases was initfally identified based an their abiliry to alter the localization of
SR proteins in inrerphase cells as well as during cefl mitosis. ¥114414% A recent RNAi study showed
amajort itnpact of SRPK1 depletion on SR protein phospherylation in vivo,'® These abservations
provide genetic evidenee for the involvement of thesc kinases in SR protein phosphorylation in
vivo; how these kinases are involved in the regulation of alternative splicing is an important subject
for furare scudies.

The action of kinases is often counteracted by phosphatases. Unfortunately, phosphatases
specifically involved in SR protein dephosphorylation are largely unknown, In vitro, bath
PP1 and PP2A were able to act on SR proteins and activated splicing.[12819015! Several PP2A
family members have been copurified with splicecsomal components.' Intriguingly, a recenc
study demonstrates the essential role of both PP1 and PP2A phosphatases in the second step of
splicing, but their main substrates are U2 and US snRNP components, instead of SR proteins,
indicating that multiple phosphatases are involved in the splicing regulators and chose specific
for SR proteins remain to be identified and funceionally characterized.’” In particular, because
SRp38 is particularly sensitive to dephosphorylation in response to mitotic transitions and heat
shock,M it will be of great interest to identify the phospharase(s) responsible and the potential
role of these enzymes in regulared splicing. Interestingly, although aleernarive splicing is nor
common in buddingyeast, 2 member of the SRPK family of kinases is conserved in the organ-
ism and is responsible for phosphorylation of the SR-related RNA binding protein Npl3p.'%
This action is counteracted by the yeast PP1 family phosphatase Glc7p, suggesting that the
mammalian counterpart of Glc7c may function as an SR protein-specific phosphatase.'
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SR Protein-Regulated Splicing in Development and Disease

As splicing is an essential component of gene expression and a key point in expression
regulation, splicing defects have been linked to various diseases in humans. "' Given the role
of SR proteins and relared splicing factors in alternarive splicing and cell growth control, they
are primary candidates for cansing specific disease phenotypes. Available evidence indicates
that SR proteins may be involved in development and disease in several ways. First, they may
function as critical regulators of disease-causing genes, such as oncogenes or tumor suppressor
genes B89 Congistent with this possibility, a recent study showed that the alvernative splic-
ing of the Rom proto-oncogene was subject to regulation by SF2/ASF and the protein product
from an alternatively spliced isoform appeared to contribute directly te the invasive behavior of
tumor cells. In knockout mice, SF2/ASF was found to play a critical role in the developmental
control of CaMKIEb alternative splicing in the heart, resulting in differential cellnlar targeting
of the kinase and malfunction in Ca** signaling in cardiomyocytes.® Because SR proteins affect
alvernative splicing in a dosage-dependent manner, it is conceivable that altered expression of
SR proteins may manifest the effect by changing the alternative splicing pattern of their targer
genes, thereby causing specific defects in the tegulation of cell proliferation and differentiation.
Indsed, altered expression of SR proteins and SR protein-specific kinases has been detected in
multiple types of canger, 16165

‘The second way for SR proteing to act in disease pachways lies in their ability to recognize
specific point mmrtations and small deletions directly in discase-cansing genes, thereby manifest-
ing the disease phenotype via the mutadon-triggered alternative splicing events.!” One of the
best such examples is the disease gene SMAN in spinal musenlar acrophy (SMA). The SMN gene
is duplicated in the human genome, bur the disease phenotype is only associated with molecnlar
defects in the SMNT gene.' The reason why SA/N2 is insufficient to complement the defective
SMN1 gene in SMA is becanse of a point mutation in exon 7 in the SMN2 gene which converts
an ESE to an ESS, thereby causing exon skipping to result in 2 partly defective gene product. /6618
These findings illustrate how some silent mutations may be linked to specific diseases becanse of
their itnpact on the regulatory information embedded in the sequence. Therefore, although SR
proteing and SR-related splicing factors have not yet been directly mapped as disease genes, they
may play alarger role in the expression of specific disease phenotypes than previously anticipated.
“This may be one of the major tumor selection mechanisms resulting from an nnstable genome due
to defects, for exmample, in the DNA repair pathway.

Concloding Remarks

Despite the significant progress that has improved our understanding of alternative splicing
mechanisms and the functional consequences of regulated splicing in development and disease,
we are still confronted with a large array of challenges, which may be expressed in the following
questions: (1) Why do SR proteins generally recognize exonic splicing enbarcers, bur not similar
sequences in introns? (2} Which protein(s} interact with the RS domains of SR proteins during
spliceosome assembly? (3) Why is the RS domain differentially required for constitutive and al-
ternative splicing? (4) What is the molecular basis by which some SR proteins act positively and
others act negatively on splicing? (5) To whar extent do SR proteins share redundant functions in
splicing? (6) Howdo SR proteins cooperare with other splicing RNA binding proteins to regulate
alternative splicing? (7) How are SR proteins regulated in vivo and in response to signals? (8) To
what extent does the activity of SR proteins in abiernative splicing contribute to their functional
requirement in development and cell prolfiferation control? In this chapter, we have speculated on
some of thesc questions based on the available evidence. Addirional experiments that address these
biological and mechanistic questions are clearly needed tounderstand the function and regulation
of this itnportant class of splicing regulators in development and disease.
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