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Foreword

In the 1901 debut issue of the journal Biometrika, founders of which included Sir
Francis Galton and Karl Pierson, there appears an introductory editorial entitled,
“Spirit of Biometrika”.

It is almost impossible to study any type of life without being impressed by the small im-

portance of the individual. In most cases the number of individuals is enormous, they are spread

over wide areas, and have existed through long periods. Evolution must depend upon substantial

changes in considerable numbers and its theory therefore belongs to that class of phenomena which

statisticians have grown accustomed to refer to as mass-phenomena. A single individual may have

a variation which fits it to survive, but unless that variation appears in many individuals, or unless

that individual increases and multiplies without loss of the useful variation up to comparatively

great numbers-shortly, until the fit type of life becomes a mass-phenomenon, it cannot be an effec-

tive factor in evolution.

In the first part of the 20th century, “biometrics” was about bringing statistical
methods into the relatively new and rapidly developing field of evolutionary biology
so as to increase knowledge about variance between and within large populations.
“Biometrics” was about the statistical understanding of mass-phenomenon.

Sometime around 1980, the term “biometrics”, by then well-established in the
meaning of “active pursuit of biological knowledge by quantitative methods”, was
appropriated as a designator for what had previously been called “automated per-
sonal identification” (API). By 1980, the field of API encompassed such technolo-
gies as fingerprint, retina, voice, signature, face and finger-length recognition used
for the purpose of differentiating individual humans. This use of the term “bio-
metrics” in the narrower meaning of API turned the “Spirit of Biometrika” on its
head: the individual is not of “small importance” as a single data point in a “mass-
phenomenon”, but is of all importance – a recognizable and unique entity distin-
guishable from the mass and addressable as a person. Biometrics in this sense is not
about understanding mass-phenomenon within the context of evolutionary biology,
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vi Foreword

but about understanding the distinguishing characteristics of individual persons for
the purpose of recognition.

Introduction to Biometrics by Anil Jain, Arun Ross and Karthik Nandakumar
uses the term “biometrics”, in this more recent sense of individualization: the au-
tomated recognition of human individuals based on their biological and behavioral
traits. This application, of course, is immediately personal. It is about recognizing
(re again; cognoscere know/learn) me and you and each of those around us. This
recognition occurs automatically, meaning by computers, so this “me”-directed out-
come is being delivered almost immediately by impersonal machines, capable of
both proper operation and improper errors. Therefore, biometrics in this new mean-
ing involves more than population statistics and biology, but now encompasses com-
puter science, computer vision, pattern recognition, law, sociology, human factors,
philosophy and even religion.

In the 21st century, we now have these machines capable of quickly and ef-
ficiently recognizing individuals, even when “the number of individuals is enor-
mous”, and linking each of them to personal data. It is no wonder that the interest
in biometric technologies has grown rapidly over the last 10 years, particularly in
facilitation of international travel. But interest in itself is insufficient; advancing
these technologies requires understanding based on analysis of real data. Additional
research continues to be needed to explore the privacy, legal, and security impli-
cations of these technologies and increase their usability, reliability and accuracy.
More importantly, we need to open discussion on which socially-positive, security
and privacy enhancing applications should be created and to ensure that biomet-
ric technologies are used to empower individuals and not enslave them. Of course,
careful consideration of these cross-disciplinary issues requires a comprehensive ex-
plication of the technologies, their capabilities and their risks, which leads directly
to the need for this textbook.

Introduction to Biometrics takes a comprehensive look at the current major forms
of automated personal identification, with particular emphasis on fingerprint, face,
and iris recognition, in the context of how the technologies are being and should be
used: to ensure individual security and privacy. This book fills a pedagogical gap in
the literature, supplying a unified treatment of technologies, developed separately
from different historical requirements, by emphasizing their algorithmic, system
and application similarities. The approach of this textbook is very clearly techni-
cal, with emphasis on the pattern matching algorithms employed by the computer
to make recognition decisions. This book engages technically-capable students who
may have limited or no knowledge about biometrics and thus facilitates the genera-
tion of a more knowledgeable workforce. The text will also be a valuable reference
for those already active in the field. As with previous books by these authors, it is
destined to become a classic.

July 2011 James Wayman
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A number of crucial societal applications like international border crossing, elec-
tronic commerce, and welfare disbursement require reliable person recognition sys-
tems. Traditional person authentication methods based on passwords and identity
documents often fail to meet the stringent security and performance demands of
these applications, which in turn has spurred active research in the field of biometric
recognition. Biometric recognition, or simply biometrics, is the science of establish-
ing the identity of a person based on physical or behavioral attributes such as finger-
print, face, iris, and voice. Biometric systems are based on the premise that many
of the physical or behavioral attributes of humans can be uniquely associated with
an individual. By capturing these attributes using appropriately designed sensors,
representing them in a digital format, and comparing this recorded data against the
data acquired from the same person at an earlier time instance, it is possible to auto-
mate the process of person recognition. Thus, biometric recognition can be viewed
as a pattern recognition problem, where the machine learns the salient features (pat-
terns) in the biometric attributes of an individual and robustly matches such patterns
efficiently and effectively.

While biometric characteristics such as fingerprints have a long and successful
history in forensics, the development of automated biometric systems started only in
the later half of the 20th century. However, the deployment of biometric systems has
been gaining momentum over the last two decades in both public and private sectors.
These developments have been fueled in part by recent government mandates stip-
ulating the use of biometrics for ensuring reliable delivery of various services. For
example, the Enhanced Border Security and Visa Entry Reform Act of 2002 enacted
by the United States Congress mandated the use of biometrics in the issue of U.S.
visas. This led to the US-VISIT program (United States Visitor and Immigration
Status Indicator Technology) that validates the travel documents of foreign visitors
to the United States based on fingerprints. The International Civil Aviation Organi-
zation (ICAO) has unanimously recommended that its member States use Machine
Readable Travel Documents (MRTDs) that incorporate at least the face biometric
(some combination of face, fingerprint and iris can also be used) for purposes of
verifying the identity of a passport holder. The Government of India has established
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the Unique Identification Authority of India (UIDAI) to implement a nationwide
biometric infrastructure to combat identity fraud and provide access to social bene-
fits for the underprivileged. It plans to issue each resident of India a unique 12-digit
identification number called Aadhaar that will be based on 10 fingerprints and two
irides. Thus, it is clear that biometric technology has the potential to profoundly in-
fluence the ways in which we are recognized for conducting various transactions on
a daily basis.

Objectives

Despite its rapid proliferation, the study of biometric technology has mostly been
restricted to a fairly small community of biometric researchers and practitioners
due to two reasons. Firstly, biometric recognition is often considered as a rather
specialized field and is typically taught only as part of a course on pattern recog-
nition, computer vision, or image processing. However, it is important to realize
that biometric recognition is a broad and important subject in its own right; chal-
lenges and issues involved in the design of biometric systems go beyond pattern
recognition and encompasses a variety of other topics including applied statistics,
sensor design, software engineering, information theory, and human factors. Sec-
ondly, knowledge about biometric technologies is primarily contained in research
articles and books written for the research community, which are accessible only
to those with a prior introduction to this field. In short, there is no biometric book
that caters to undergraduate and graduate students who may not have an extensive
background in biometrics. Since this is the first textbook on biometrics, our primary
objectives are to:

• provide an introduction to the basic concepts and methodologies for biometric
recognition; and

• build a foundation that can be used as the basis for more in-depth study and
research on this topic.

To fulfil these objectives, we focus only on key illustrative techniques that are widely
used in the biometrics community, rather than providing a detailed analysis of the
state-of-the-art advancements. Our focus is primarily on three most commonly used
traits, namely, fingerprint, face, and iris, although we discuss a few other biometric
traits briefly.

Organization

• Chapter 1 introduces the generic concepts in biometric recognition, including an
overview of how a biometric system works, the terminology used to describe
biometric traits and systems, the ways in which a biometric system can be used,
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the factors affecting the design of a biometric system, and the measures to eval-
uate the performance of a biometric system. Chapters 2, 3, and 4 discuss how a
biometric system can be implemented based on fingerprint, face, and iris charac-
teristics of a person, respectively. These three chapters share a common structure.
The sensing, feature extraction, and matching techniques for these three biomet-
ric identifiers are introduced in order, followed by a discussion on advanced top-
ics that are specific to each identifier.

• Chapter 2 on fingerprints focuses more on the minutiae-based representation and
matching algorithms. This chapter also includes details on topics like indexing
large fingerprint databases, generation of artificial (synthetic) fingerprint images,
and palmprint-based biometric recognition.

• Chapter 3 emphasizes the problem of face detection and the different approaches
for matching 2-dimensional face photographs. Other issues in face recognition
such as handling pose, illumination, and expression variations, matching of het-
erogeneous face images, and face modeling are also covered in this chapter.

• Chapter 4 deals with the problem of iris segmentation in detail, followed by a
description of iris encoding and matching based on Gabor wavelets. Quality of
the iris image is a critical issue in iris recognition, and techniques for estimating
the iris image quality are also discussed in Chapter 4.

• Chapter 5 briefly describes the techniques for person recognition based on addi-
tional biometric attributes like hand geometry, ear, and gait. Soft biometric char-
acteristics like scars, marks, tattoos, and periocular biometrics are also useful in
identifying a person in some scenarios. The chapter concludes with a discussion
on how these soft biometric identifiers can be used in person recognition.

• High-security applications and large-scale civilian identification systems place
stringent accuracy requirements that cannot be met by biometric systems based
on a single biometric identifier. Multibiometric systems overcome this limitation
by intelligently combining the evidence from multiple biometric sources. A dis-
cussion on the taxonomy of such multibiometric systems and the different ways
in which the information from multiple sources can be fused to obtain a reliable
identity decision is the primary focus of Chapter 6.

• Finally, the common security vulnerabilities of a biometric system and the var-
ious countermeasures that need to be followed to address these threats are pre-
sented in Chapter 7. In particular, this chapter emphasizes two of the most well-
studied vulnerabilities of a biometric system, namely, spoof detection and bio-
metric template security.

The website for the book will be initially maintained at http://www.csee.
wvu.edu/˜ross/BiometricsTextBook. Homework assignments, reading
resources, sample codes, links to biometric databases, and errata will be documented
in this website. This website will be updated regularly for the benefit of the reader.

http://www.csee.wvu.edu/%CB%9Cross/BiometricsTextBook.
http://www.csee.wvu.edu/%CB%9Cross/BiometricsTextBook.
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Intended Audience

This textbook has been designed for senior undergraduate students and first-year
graduate students who have introductory preparation in linear algebra, probability
theory, statistics, and computer programming. The book would also be useful to a
wider audience, including developers of biometric applications, system integrators,
and designers of security systems. Ideally, this text would be used in a one-semester
course in introduction to biometric recognition. Some background in the fundamen-
tal concepts in statistical pattern recognition and digital image processing will be
useful to easily understand some of the technical details, but this is not a prerequi-
site. If the instructor wishes to further elaborate on some of the techniques based
on the references contained in the Bibliography section, it may be possible to cover
only Chapters 1-4 and parts of Chapters 6 and 7 in one semester.

Biometric recognition is a rapidly evolving field with an active research and de-
velopment community that continues to generate new technological innovations and
create progressively better biometric systems. Since this book emphasizes the fun-
damental concepts, we hope that it serves as a good starting point for readers with
little prior knowledge about biometrics and as a useful reference for biometric ex-
perts and security system designers.
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Chapter 1
INTRODUCTION

Sur un procédé d’identification permettant de retrouver le nom d’un récidiviste au moyen de son
seul signalment, et pouvant servir de cadre pour une classification de photographies à la préfecture
de police, à la sûreté générale, au ministé de la justice, etc.

Alphonse Bertillon, 18811.

About an identification process that enables finding the name of a repeat offender based on
his description only, and that can be used in the context of a classification of photographies in the
police headquarters, in the national security office, at the ministry of justice, etc.

English translation

The ability to identify individuals uniquely and to associate personal attributes
(e.g., name, nationality, etc.) with an individual has been crucial to the fabric of hu-
man society. Humans typically use body characteristics such as face, voice, and gait
along with other contextual information (e.g., location and clothing) to recognize
one another. The set of attributes associated with a person constitutes their personal
identity. In the early days of civilization, people lived in small communities where
individuals could easily recognize each other. However, an explosion in popula-
tion growth accompanied by increased mobility in modern society has necessitated
the development of sophisticated identity management systems that can efficiently
record, maintain, and obliterate personal identities of individuals.

Identity management plays a critical role in a number of applications. Examples
of such applications include regulating international border crossings, restricting
physical access to important facilities like nuclear plants or airports, controlling log-
ical access to shared resources and information, performing remote financial trans-
actions, or distributing social welfare benefits. The proliferation of web-based ser-
vices (e.g., online banking) and the deployment of decentralized customer service

1 A. Bertillon, “Une application pratique de l’anthropométrie, Annals de démographie interna-
tionale, 1881”
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2 1 INTRODUCTION

centers (e.g., credit cards) have led to the risk of identity theft2. Rising magnitude
of identity theft and heightened concerns about national security have reinforced the
need for reliable identity management systems.

1.1 Person Recognition

The fundamental task in identity management is to establish the association be-
tween an individual and his personal identity. One must be able to determine a
person’s identity or verify the identity claim of an individual whenever required.
This process is known as person recognition. A person can be recognized based on
the following three basic methods (see Figure 1.1): (a) what he knows, (b) what he
possesses extrinsically, and (c) who he is intrinsically. While the first method relies
on the fact that the individual has exclusive knowledge of some secret information
(e.g., password, personal identification number, or cryptographic key), the second
method assumes that the person has exclusive possession of an extrinsic token (e.g.,
identification card, driver’s license, passport, physical key, or personal device such
as a mobile phone). The third method establishes the person’s identity based on
his inherent physical or behavioral traits and is known as biometric recognition.
Formally, biometric recognition can be defined as the science of establishing the
identity of an individual based on the physical and/or behavioral characteristics of
the person either in a fully automated or a semi-automated manner.

Knowledge-based and token-based person recognition rely on surrogate repre-
sentations of identity such as passwords or ID cards, which can be easily for-
gotten/lost, guessed/stolen, or shared. Moreover, they cannot provide vital iden-
tity management functions like non-repudiation and detecting multiple enrollments
by the same person under different identities. For example, individuals can easily
deny (repudiate) using a service by claiming that their password had been stolen or
guessed. Individuals can also conceal their true identity by presenting forged or du-
plicate identification documents. In addition, traditional mechanisms like passwords
and tokens do not provide strong evidence for post-event person recognition, such
as suspect identification at a crime scene. Therefore, it is becoming increasingly ap-
parent that knowledge-based and token-based mechanisms alone are not sufficient
for reliable identity management.

Biometric recognition, or simply biometrics3, offers a natural and more reliable
solution to the problem of person recognition. Since the biometric identifiers are in-
herent to an individual, it is more difficult to manipulate, share, or forget these traits.
Hence, biometric traits constitute a strong and reasonably permanent link between
a person and his identity.

2 Identity theft or identity fraud occurs when a person usurps the identity of another individual or
claims a false identity in order to access resources or services to which he is not entitled.
3 The term biometric recognition is perhaps more appropriate than biometrics, because the latter
has been historically used in the field of statistics to refer to the analysis of biological (particularly
medical) data. For the sake of brevity, we use these two terms interchangeably in this book.
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(a) (b)

Fig. 1.1 Three basic approaches to person recognition. (a) Traditional schemes use passwords
(“what you remember”) and ID cards or keys (“what you possess extrinsically”) to validate indi-
viduals and ensure that system resources are accessed only by a legitimately enrolled individual,
(b) with the advent of biometrics, it is now possible to establish an identity based on “who you are
intrinsically”.

Any person who presents his biometric identifier to a biometric system for the
purpose of being recognized can be called a user of the system. Since biometric
systems require the user to be present at the time of authentication, they can also
deter users from making false repudiation claims. Moreover, only biometrics can
establish whether a certain individual is already known to the identity management
system, although the individual might deny it. This is especially critical in applica-
tions such as welfare disbursement, where an impostor may attempt to claim multi-
ple benefits (i.e., double dipping). Due to the above reasons, biometric recognition
is being increasingly adopted in a number of government and civilian identity man-
agement applications either to replace or to complement existing knowledge-based
and token-based mechanisms.

1.2 Biometric Systems

A biometric system measures one or more physical or behavioral characteristics (see
Figure 1.2), including fingerprint, palmprint, face, iris, retina, ear, voice, signature,
gait, hand vein, odor, or the DNA4 information of an individual to determine or ver-

4 DNA refers to deoxyribonucleic acid, which contains the genetic information necessary for the
development and functioning of living organisms.
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ify his identity. These characteristics are referred to by different terms such as traits,
indicators, identifiers, or modalities. In this chapter, the various building blocks of a
generic biometric system and the issues involved in the design, implementation, and
evaluation of such a system will be discussed. The details on implementing a bio-
metric system based on specific biometric traits will be dealt with in the subsequent
chapters.

1.2.1 Enrollment and recognition phases

How does a biometric system identify a user based on his physical and/or behavioral
traits? This process consists of two main phases, namely, enrollment and recognition
(see Figure 1.3). During the enrollment phase, the biometric data is acquired from
the individual and stored in a database along with the person’s identity. Typically,
the acquired biometric data is processed to extract salient and distinctive features. In
many cases, only the extracted feature set gets stored, while the raw biometric data is
discarded. During the recognition phase, the biometric data is re-acquired from the
individual and compared against the stored data to determine the user identity. Thus,
a biometric system is essentially a pattern recognition (or a pattern matching) system
consisting of four basic building blocks, namely, (a) sensor, (b) feature extractor, (c)
database, and (d) matcher as shown in Figure 1.3. These four modules will now be
discussed in turn.

1.2.2 Sensor module

A suitable user interface incorporating the biometric sensor or reader is needed to
measure or record the raw biometric data of the user. For example, an optical finger-
print sensor may be used to image the friction ridge pattern at the tip of the finger.
The design of a good user (or human-machine) interface is critical for the success-
ful implementation of a biometric system. An intuitive, ergonomic, and easy to use
interface may facilitate rapid user habituation and enable the acquisition of good
quality biometric samples from the user.

The quality of the raw biometric samples also depends on the characteristics of
the sensor used. For most biometric modalities, the raw biometric data is in the
form of two-dimensional images (e.g., fingerprint, face, iris, etc.). Exceptions in-
clude voice (1-dimensional amplitude signals), online signature (pen pressure, posi-
tion, and velocity), odor and DNA (chemical-based). For image-based data, factors
like resolution, frame rate, and sensitivity of the camera play an important role in
determining the image quality. Figure 1.4 shows fingerprint images at two different
resolutions obtained using different fingerprint sensors. One may also need to con-
sider the demographic characteristics of the target population like age and gender,
and other cultural issues (e.g., some users may be averse to touching a sensor sur-
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Face

Iris

Fingerprint

Hand geometry

Palmprint

Voice

Signature

Gait

Fig. 1.2 Examples of body traits that have been used for biometric recognition. Physical traits
include face, fingerprint, iris, palmprint, hand geometry, voice, and ear shape, while gait, signa-
ture, and keystroke dynamics are some of the behavioral characteristics. The distinction between
a physical trait and a behavioral characteristic is actually not very important. This is because the
biometric data captured from an individual is typically a manifestation of both the physical and
behavioral aspects of the person. For example, while fingerprint is a physical trait, the fingerprint
image acquired from a person also depends on how he interacts with the sensor, i.e., the user’s be-
havior. Similarly, while gait may be a behavioral trait, it is to some extent defined by the physical
characteristics of the human body.
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Fig. 1.3 Basic building blocks of a generic biometric system.

face) while designing the sensor module. Furthermore, factors like cost, size, and
durability also impact the sensor design.

1.2.3 Feature extraction module

Usually, the raw biometric data from the sensor is subjected to pre-processing opera-
tions before features are extracted from it. The three commonly used pre-processing
steps are (a) quality assessment, (b) segmentation, and (c) enhancement. First, the
quality of the acquired biometric samples needs to be accessed to determine its suit-
ability for further processing. If the raw data is not of sufficient quality, there are
two options. One can either attempt to re-acquire the data from the user or trigger
an exception (failure alarm) alerting the system administrator to activate suitable
alternate procedures (typically involving some form of manual intervention by the
system operator). The next pre-processing step is known as segmentation, where
the goal is to separate the required biometric data from the background noise. De-
tecting a face in a cluttered image is a good example of segmentation. Finally, the
segmented biometric data is subjected to a signal quality enhancement algorithm in
order to improve its quality and further reduce the noise. In the case of image data,
enhancement algorithms like smoothing or histogram equalization may be applied
to minimize the noise introduced by the camera or illumination variations. Figure
1.5 shows a face image obtained after segmentation and quality enhancement based
on histogram equalization. In some cases, the above pre-processing steps may be
inseparable from the actual feature extraction step. For example, quality assessment
in itself may entail the extraction of some features from the acquired biometric data.
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(a) (b)

Fig. 1.4 Fingerprints scanned at (a) 1000 points per inch (ppi) and (b) 500 points per inch using
different fingerprint sensors. The intricate details of the finger such as location of sweat pores can
be more easily observed in the higher resolution fingerprint image shown in (a) as compared to the
lower resolution image in (b).

Feature extraction refers to the process of generating a compact but expressive
digital representation of the underlying biometric trait, called a template. The tem-
plate is expected to contain only the salient discriminatory information that is essen-
tial for recognizing the person. For example, the position and orientation of minu-
tia points (locations where the friction ridges in a fingerprint pattern exhibit some
anomalies) are believed to be unique for each finger. Therefore, detecting the minu-
tia points in a fingerprint image is a key feature extraction step in most fingerprint-
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(a) (b)

Fig. 1.5 Face segmentation and enhancement. (a) A face image of a person as captured by the
camera and (b) the processed face image obtained after segmentation (removal of the background
and other non-face regions such as hair and regions below the chin) and contrast enhancement
based on histogram equalization.

based biometric systems. Figure 1.6 shows the commonly extracted features used to
represent fingerprint, iris, and face images.

0.10
0.23
0.21
0.02
0.43
0.12

Face LDA
FeaturesIris IrisCodeFingerprint Minutiae 

Fig. 1.6 Common features extracted from fingerprints, iris, and face. Fingerprint is commonly
represented as a set of points depicting the minutiae; iris is represented as a binary vector depicting
the binarized response of an input image to Gabor filters; face is commonly represented as a vector
of real numbers depicting, say, the coefficients of Linear Discriminant Analysis (LDA).

During enrollment, the template gets stored either in the central database of the
biometric system or is recorded on a token (e.g., smart card) issued to the individual
based on the nature of the application.

At the time of recognition, the template is retrieved from the database, and
matched against the feature set extracted from the new biometric sample acquired
from the user. This new feature set obtained in the recognition phase is usually re-
ferred to as the query or input. In many image-based biometric systems (e.g., face or
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fingerprint), the raw biometric images may also be stored in the database along with
the templates during enrollment. Such images are often known as gallery images,
reference images, stored images, or enrollment images. The images acquired during
recognition are known as probe images, query images, or input images.

The template of a user can be extracted from a single biometric sample, or gener-
ated by processing multiple samples acquired during enrollment. Thus, the minutiae
template of a finger may be extracted after mosaicing (combining) multiple impres-
sions of the same finger. Some systems store multiple templates in order to account
for the large variations that may be observed in the biometric data of a user. Face
recognition systems, for instance, may store multiple templates of an individual,
with each template corresponding to a different facial pose with respect to the cam-
era.

1.2.4 Database module

The biometric system database acts as the repository of biometric information. Dur-
ing the enrollment process, the feature set extracted from the raw biometric sam-
ple (i.e., the template) is stored in the database along with some personal identity
information (such as name, Personal Identification Number (PIN), address, etc.)
characterizing the user. One of the key decisions in the design of a biometric sys-
tem is whether to use a centralized database or a decentralized one. Storing all the
templates in a central database may be beneficial from a system security perspec-
tive, because the data can be secured through physical isolation and by having strict
access control mechanisms. On the other hand, compromise of a central database
would have far greater implications than the compromise of one of the sites in de-
centralized database. This is because malicious individuals (corrupt administrators
or hackers) can abuse the biometric information stored in the database to compro-
mise the privacy of innocent users.

1.2.5 Matching module

The purpose of a biometric matcher is to compare the query features against the
stored templates to generate match scores. The match score is a measure of the
similarity between the template and the query. Hence, a larger match score indicates
greater similarity between the template and the query. If a matcher measures the
dissimilarity (instead of the similarity) between the two feature sets, the score is
referred to as a distance score. A smaller distance score indicates greater similarity.
In a fingerprint-based biometric system, the number of matching minutiae between
the input and the template feature sets can be considered as the degree of similarity
(match score). The match score may also be moderated based on the quality of the
presented biometric data. The matcher module also encapsulates a decision making
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module, in which the match scores are used to either validate a claimed identity or
provide a ranking of the enrolled identities in order to identify an individual.

1.3 Biometric Functionalities

A biometric system can provide two types of identity management functionali-
ties, namely, verification and identification. Throughout this book, the generic term
recognition will be used when we do not wish to make a distinction between the ver-
ification and identification functionalities. Moreover, the term authentication will be
used as a synonym for verification. Figure 1.7 shows the enrollment and recognition
phases of a biometric system operating in the verification and identification modes.

1.3.1 Verification

In verification, the user claims an identity and the system verifies whether the claim
is genuine, i.e., the system answers the question “Are you who you say you are?”.
In this scenario, the query is compared only to the template corresponding to the
claimed identity (a one-to-one match). The identity claim is usually made through
the use of a Personal Identification Number (PIN), a user name, or a token (e.g.,
smart card). If the user’s input and the template of the claimed identity have a high
degree of similarity, then the claim is accepted as “genuine”. Otherwise, the claim
is rejected and the user is considered an “impostor”. In the biometrics literature, the
terms “client” or “authentic” are sometimes used in place of the term “genuine”.
Verification is typically used in applications where the goal is to prevent unautho-
rized persons from using the services.

Formally, verification can be posed as the following two-category classification
problem: given a claimed identity I and a query feature set xA, we need to decide
if (I,xA) belongs to “genuine” or “impostor” class. Let xE

I be the stored template
corresponding to identity I. Typically, xA is compared with xE

I and a match score s,
which measures the similarity between xA and xE

I , is computed. The decision rule is
given by

(I,xA) ∈
{

genuine, if s ≥ η ,
impostor, if s < η , (1.1)

where η is a pre-defined threshold. If a distance score is used in place of the sim-
ilarity or match score, the inequalities in the decision rule shown in equation (1.1)
should be reversed. When the identity claim is deemed to be “genuine”, the user is
allowed to access the services provided by the system.
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Fig. 1.7 Enrollment and recognition stages of a biometric system operating in the verification and
identification modes. The dotted line in the verification module is an optional operation to update
a specific user’s template.

1.3.2 Identification

Identification functionality can be further classified into positive and negative identi-
fication. In positive identification, the user attempts to positively identify himself to
the system without explicitly claiming an identity. A positive identification system
answers the question “Are you someone who is known to the system?” by deter-
mining the identity of the user from a known set of identities. In contrast, the user
in a negative identification application is considered to be concealing his true iden-
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tity (either explicitly or implicitly) from the system. Negative identification is also
known as screening and the objective of such systems is to find out “Are you who
you say you are not?”.

The purpose of negative identification is to prevent a single person from using
multiple identities. Hence, screening can be used to prevent the issue of multiple
credential records (e.g., driver’s licence, passport) assigned to the same person or to
prevent a person from claiming multiple benefits under different names (a problem
commonly encountered in welfare disbursement applications). Screening is also of-
ten used at airports to verify whether a passenger’s identity matches with any person
on a “watch-list”.

In both positive and negative identification, the user’s biometric input is com-
pared with the templates of all the persons enrolled in the database and the system
outputs either the identity of the person whose template has the highest degree of
similarity with the user’s input or a decision indicating that the user presenting the
input is not an enrolled user. Formally, the problem of identification can be stated
as follows: given a query feature set xA, we need to decide the identity I of the user,
where I ∈ {I1, I2, · · · , IN , IN+1}. Here, I1, I2, · · · , IN correspond to the identities of the
N users enrolled in the system and IN+1 indicates the case where no suitable identity
can be determined for the given query. If xE

In is the stored template corresponding
to identity In and sn is the match score between xA and xE

In , for n = 1,2, · · · ,N, the
decision rule for identification is,

xA ∈
{

In0 , if n0 = argmax
n

sn and sn0 ≥ η ,
IN+1, otherwise,

(1.2)

where η is a pre-defined threshold. The above decision rule is commonly known
as open set identification, because it is possible to return a result indicating that the
user presenting his biometric trait is not among the N enrolled users. Almost all
practical biometric identification systems (including screening systems) use open
set identification. It is also possible to force the system to return one among the N
enrolled identities, irrespective of the value of sn0 . Such a scenario is called closed
set identification.

In some practical biometric identification systems (e.g., latent fingerprint match-
ing), identification is semi-automated. A semi-automated biometric system outputs
the identities of the top t matches (1 < t � N) and a human expert manually de-
termines the identity (among the t selected identities) that best matches the given
query. The value of t could be determined based on the availability and through-
put of the human expert(s). Against a large database such as the FBI’s Integrated
Automated Fingerprint Identification System (IAFIS), which has approximately 60
million users enrolled, the typical value of t could range from 20 to 50. Another
approach is to return all identities whose corresponding match scores exceed the
threshold (η) in equation (1.2). Since the number of enrolled users in the database
can be quite large (e.g., FBI-IAFIS), the identification task is significantly more
challenging than verification.
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1.4 Biometric System Errors

The science of biometric recognition is based on two fundamental premises, namely,
uniqueness and permanence of the underlying biometric trait. A biometric identifier
is said to be unique only if any two persons in the world can be differentiated based
on the given identifier. A biometric trait is permanent if it does not change over the
lifetime of an individual. However, these two premises are seldom true in practical
biometric systems. This can be primarily attributed to two reasons.

Firstly, the physical trait itself may not be unique. For instance, when fingerprint
recognition systems gained popularity at the beginning of the 20th century, press
reports claimed that fingerprints were truly unique.

“Only once during the existence of our solar system will two human beings be
born with similar finger markings” - Harper’s headline, 1910.

“Two like fingerprints would be found only once every 1048 years” - Scientific
American, 1911.

Such claims were accepted over time, not because of rigorous scientific evidence
in their favor, but rather due to a lack of contradiction and relentless repetition.
In the last two decades, the claims about the uniqueness of fingerprints have been
challenged by both the scientific and legal communities. Similarly, the uniqueness
or individuality of other biometric modalities has not been clearly established.

The genetic similarity between related individuals (e.g., twins, father and son)
may also contribute to the lack of uniqueness of some biometric traits. For example,
the facial appearance of identical twins is almost the same. Modalities such as DNA,
where the genetic constitution of the individual largely determines their biometric
characteristics are referred to as genotypic factors/features. In contrast, the modali-
ties whose characteristics are determined by other sources of randomness in nature
(e.g., fingerprints) are referred to as phenotypic factors/features. Figure 1.8 shows
the fingerprint, face, and iris images obtained from identical twins.

Furthermore, the notion that the biometric traits are permanent is also not an es-
tablished scientific fact. The effects of body growth (especially during childhood and
adolescence) on common biometric identifiers like face, fingerprint, or iris, have not
been studied in detail. Even casting aside possible natural changes in the physical
traits, practical biometric systems face a much more challenging problem. Biomet-
ric systems rely only on the digital measurements of the body characteristics, and
not the real physical traits. This process of measurement (sensing) introduces vari-
ations in the samples of the same biometric trait of a user obtained over a period
of time. Consequently, the feature sets obtained from different samples of the same
biometric trait of a user are seldom identical.

The variability observed in the biometric feature set of an individual is known as
intra-user variations or intra-class variations. This variability may be due to reasons
like imperfect sensing conditions (e.g., noisy fingerprint due to sensor malfunction),
alterations in the user’s biometric characteristic (e.g., respiratory ailments impacting
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(a)

(b)

(c)

Fig. 1.8 Biometrics of twins. (a) The right index fingerprints of a pair of twins; (b) right eyes of a
pair of twins; (c) face images of a pair of twins.
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speaker recognition), changes in ambient conditions (e.g., inconsistent illumination
levels in face recognition applications), and variations in the user’s interaction with
the sensor (e.g., occluded iris or partial fingerprints). As an illustration, consider
two impressions of the same finger obtained on different days shown in Figure 1.9.
These impressions differ in terms of the geometric distortions and amount of overlap
caused by factors such as placement of finger on the sensor, applied finger pressure,
skin condition, and feature extraction errors. Similarly, Figure 1.10 shows the intra-
user variations in the face images of a person due to changes in pose and other
attributes such as facial hair.

Fig. 1.9 Illustration of intra-user variability in fingerprints. Two different impressions of the same
finger obtained on different days are shown with minutia points marked on them. Due to differences
in finger placement and distortion introduced by finger pressure variations, the number and location
of minutiae in the two images are different (33 and 26 in the left and right images, respectively).
The number of corresponding/matching minutiae in the two images is only 16. Some of these
correspondences have been indicated in the figure. The concept of minutia points will be described
in the next chapter.

Intra-user variations are even more prominent in behavioral traits since the vary-
ing psychological makeup of an individual might result in vastly different behav-
ioral characteristics at different time instances. For example, depending on the stress
level of an individual, the voice sample presented by the person at the time of au-
thentication may be significantly different from the enrolled template. Similarly, an
inebriated person’s gait and signature may be substantially altered.

Given the variability in the acquired biometric traits, it is factitious to expect
a perfect match between any two biometric feature sets, even if they come from
the same individual. In fact, if two feature sets are indeed identical, it may be a
strong indication that the biometric data actually comes from an adversary who is
replaying the data recorded at an earlier time. Therefore, there is a fundamental
difference between password-based authentication systems and biometric systems.
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(a)

(b)

(c)

Fig. 1.10 Intra-user variations. (a) Variations in the fingerprints of the same person due to differ-
ence in position and orientation of the finger printed, (b) variations in the face images of the same
person due to changes in pose, and (c) variations in the iris images due to difference in dilation and
gaze direction.
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In a password-based system, a perfect match between two alphanumeric strings is
necessary to validate a user’s identity. On the other hand, biometric systems mostly
decide on a person’s identity based on a close match between the template and the
query, where the strength of the match (or the degree of similarity) is represented by
the match score.

An ideal biometric feature set must exhibit small inter-user similarity and small
intra-user variations. In practice, both these conditions may not be fully met either
due to inherent information limitation (lack of uniqueness) in the underlying biomet-
ric trait or due to representation limitation (problems in feature extraction). Practical
feature extraction systems, typically based on simplistic models of biometric data,
fail to capture the richness of information in a realistic biometric input resulting in
the inclusion of redundant or spurious features, and the exclusion of salient features.

Due to large inter-user similarity and large intra-user variations, a biometric sys-
tem can make two types of errors, namely, false non-match and false match. When
the intra-user variation is large, two samples of the same biometric trait of an indi-
vidual (mate samples) may not be recognized as a match, and this leads to a false
non-match error. A false match occurs when two samples from different individuals
(non-mate samples) are incorrectly recognized as a match due to large inter-user
similarity.

1.4.1 Performance measures

The basic measures of the accuracy of a biometric system are False Non-Match Rate
(FNMR) and False Match Rate (FMR). FNMR refers to the expected probability
that two mate samples (samples of the same biometric trait obtained from the same
user) will be falsely declared as a non-match. FMR is the expected probability that
two non-mate samples will be incorrectly recognized as a match.

A False Non-Match Rate of 5% indicates that on average, 5 in 100 authentication
attempts by genuine users will not succeed. A majority of the false non-match errors
are usually due to incorrect interaction of the user with the biometric sensor and can
be easily rectified by allowing the user to present his biometric trait again. This
scenario is similar to the case where the user in a password-based authentication
system makes a mistake while entering a password and is allowed to re-enter the
password.

A False Match Rate of 0.02% indicates that on average, 1 in 5,000 authentica-
tion attempts by random impostors are likely to succeed. It is quite natural to con-
sider how the FMR of a biometric system compares with the security provided by a
password-based system. Consider a simple knowledge-based authentication system
that uses a four-digit numeric PIN. Since a 4-digit PIN can take up 10,000 different
values, 5,000 impostor attempts will be required, on average, to correctly guess the
PIN. Does this mean that the security of a biometric system operating at 0.02% FMR
is equivalent to the security provided by a 4-digit PIN? The answer is no because
of two reasons. Firstly, it should be noted that the effective security provided by a
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4-digit PIN is typically much less than 1 success in 5,000 impostor attempts, be-
cause most users tend to use numbers that are easy to remember (e.g., 1234, year of
birth, etc.) and such PINs can be easily guessed by the adversary in a few attempts.
Secondly, while a single adversary can theoretically attempt any number of guesses
for a PIN, he has only a limited number of biometric samples (say ten fingers or
two irides) that can be tried physically. To overcome this limitation, the adversary
can make use of an off-line database of biometric samples or templates. However, in
order to input these samples/templates, he must circumvent a physical component
in the biometric system (sensor, feature extractor, or communication channels). This
circumvention can be made very difficult by securing the physical infrastructure of
the biometric system.

1.4.1.1 Verification system error rates

In the context of biometric verification, FNMR and FMR are generally referred
to as False Reject Rate (FRR) and False Accept Rate (FAR), respectively. Strictly
speaking, FMR and FNMR are not always synonymous with FAR and FRR, respec-
tively. This is because while FNMR and FMR are measured as a proportion of the
number of biometric matching attempts, FAR and FRR are application level metrics
that measure the proportion of successful or failed transactions (a transaction may
involve one or more matching attempts). However, in this book we treat them as
being equivalent.

A match score is termed as a genuine or authentic score if it indicates the similar-
ity between two mate samples. An impostor score measures the similarity between
two non-mate samples. As discussed in section 1.3, a verification system makes a
decision by comparing the match score s to a threshold η . Therefore, given a set of
genuine and impostor match scores, FRR can be defined as the proportion of gen-
uine scores that are less than the threshold η and FAR can be defined as the fraction
of impostor scores that are greater than or equal to η .

Consider a scenario where the biometric data (e.g., right index fingerprint) cor-
responding to N users is acquired. Further, assume that each user is asked to pro-
vide t samples of their biometric data. To generate a genuine match score, a pair
of samples from the same user have to be compared using the matcher; to gener-
ate an impostor match score, a pair of samples from two different users have to be
compared. Thus, using this biometric data, a total of Nt(t − 1)/2 genuine scores
and (N(N − 1)t2)/2 impostor scores can be generated by the matcher. Here, it is
assumed that the matcher is symmetric in the sense that comparison of sample A
against B gives the same score as the comparison of B against A.

In the subsequent mathematical notations, we will use the labels ω0 and ω1 to
denote the impostor and genuine classes, respectively. Let p(s|ω1) and p(s|ω0) be
the probability density functions of the genuine and impostor scores, respectively.
Figure 1.11 illustrates the genuine and impostor match score distributions corre-
sponding to a face biometric system. The FAR and FRR of the biometric system are
given by
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Fig. 1.11 The genuine and impostor match score distributions. In this illustration, the genuine and
impostor match scores originate from a matcher identified as Face-G in the Biometric Score Set
Release-1 provided by the National Institute of Standards and Technology (NIST). The threshold,
η , determines the FAR and FRR of the system. Note that given these two match score distributions,
the FAR and the FRR cannot be reduced simultaneously by adjusting the threshold.

FAR(η) = p(s ≥ η |ω0) =

∫ ∞

η
p(s|ω0)ds, (1.3)

FRR(η) = p(s < η |ω1) =

∫ η

−∞
p(s|ω1)ds. (1.4)

Both FRR and FAR are functions of the system threshold η . If the threshold is
increased, FAR will decrease but the FRR will increase and vice versa. Hence, for
a given biometric system, it is not possible to decrease both these errors simultane-
ously by varying the threshold.

The Genuine Accept Rate (GAR) or True Accept Rate (TAR) can be used as
an alternative to FRR while reporting the performance of a biometric verification
system. GAR is defined as the fraction of genuine scores that exceed the threshold
η . Therefore,

GAR(η) = p(s ≥ η |ω1) = 1−FRR(η). (1.5)

Since the same biometric system can be operated at different thresholds (η) de-
pending on the changing security level or different requirements of different ap-
plications, the FAR and FRR at different values of threshold η are measured and
summarized in the form of a Detection Error Tradeoff (DET) curve. The DET curve
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plots the FRR against the FAR at various thresholds on a normal deviate scale5

and interpolates between these points (Figure 1.12(a)). When a linear or logarith-
mic scale is used to plot these error rates, then the resulting graph is known as a
Receiver Operating Characteristic (ROC) curve. In many instances, the ROC curve
plots the GAR (rather than the FRR) against the FAR (see Figures 1.12(b) and (c)).

Given a set of match scores {si}L
i=1, where the first L1 match scores correspond to

the genuine class, the subsequent L0 match scores correspond to the impostor class,
and the total number of scores is L = (L1 + L0), the ROC curve can be computed
using the following technique:

1. Generate a set of thresholds {η j}T
j=1 such that smin ≤ η j ≤ smax, ∀ j = 1,2, · · · ,T ,

where smin and smax are the minimum and maximum scores, respectively, in the
given set of match scores. A typical approach is to select thresholds that are
spaced equally, i.e., η j = smin +( j− 1)p, where p = (smax − smin)/(T − 1).

2. At each threshold, η j, j = 1,2, · · · ,T , compute the FAR and FRR as follows.

FAR(η j) =
1
L0

L

∑
i=L1+1

I(si ≥ η j), (1.6)

FRR(η j) =
1
L1

L1

∑
i=1

I(si < η j),where (1.7)

I(x) =

{
1, if x is true,
0, otherwise.

(1.8)

3. The set of points {(FAR(η j),FRR(η j))}T
j=1, connected using a smooth curve

gives the ROC curve.

The best way to compare the performance of two biometric systems is to examine
their ROC curves. If the FRR of one biometric system (say A) is consistently lower
than the FRR of the other system (say B) for corresponding values of FAR, one can
conclude that the matching performance of biometric system A is better than that of
B. However, if the two ROC curves intersect, it indicates that system A is better than
system B at some operating points (FAR values), while system B is better at other
operating points. In this scenario, it is also possible to compare the performance of
the two systems by estimating the area under the ROC curve (AUC). For a given set
of match scores, the AUC is computed as

AUC =
∑L1

i=1 ∑L
j=L1+1 I(si > s j)

L0L1
. (1.9)

The value of AUC ranges from 0.5 to 1, with 1 indicating that there are no errors.
It is important to note that the occurrence of false accepts and false rejects is

not evenly distributed across the users of a biometric system. There are inherent

5 In the normal deviate scale, the thresholds correspond to linear multiples of standard deviation
of a normal (Gaussian) distribution. Consequently, if the genuine and impostor score distributions
are Gaussian, the corresponding DET curve would be linear.
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Fig. 1.12 The performance of a biometric verification system can be summarized using DET and
ROC curves. In this example, the performance curves are computed using the match scores of the
Face-G matcher from the Biometric Score Set Release-1 provided by NIST. The graph in (a)
shows a DET curve that plots FRR against FAR in the normal deviate scale. In (b) an ROC curve
plots FRR against FAR in the linear scale, while in (c) an ROC curve plots GAR against FAR,
where FAR is in logarithmic scale.
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differences in the “recognizability” of different users. Four categories of users are
usually defined in the biometrics literature based on these inherent differences. Al-
though this categorization (more popularly known as Doddington’s zoo) was origi-
nally made in the context of speaker recognition, it is applicable to other biometric
modalities as well. The four categories are:

1. Sheep represent users whose biometric feature sets are very distinctive and ex-
hibit low intra-class variations. Therefore, these users are expected to have low
false accept and false reject errors.

2. Goats refer to users who are prone to false rejects. The biometric feature sets of
such users typically exhibit large intra-class variations.

3. Lambs are users whose biometric feature set overlaps extensively with those of
other individuals. The biometric feature sets of these users have high inter-user
similarity. Thus, a randomly chosen user (from the target population) has a higher
probability of being accepted as a lamb than as a sheep. The false accept rate
associated with these users is typically high.

4. Wolves indicate individuals who are successful in deliberately manipulating their
biometric trait (especially behavioral traits) in order to impersonate legitimately
enrolled users of a system. Since the wolves make a concerted effort to adopt
the identity of another user, such an effort is often referred to as an adversary
attack and it can increase the FAR of a system. Examples include forging the
signature of another user or mimicking someone else’s voice. This is in contrast
to a zero-effort attack, where the biometric traits of an opportunistic intruder may
be sufficiently similar to a legitimately enrolled user.

Apart from false non-match and false match errors, two other types of failures
are also possible in a practical biometric system. If an individual cannot interact cor-
rectly with the biometric user interface or if the biometric samples of the individual
are inherently of very poor quality (see Figure 1.13), the sensor or feature extrac-
tor may not be able to process these individuals. A fingerprint biometric system,
for example, may fail to extract minutiae features in images obtained from a subset
of people who may have cuts or bruises on their fingers, or whose fingerprints are
worn-out due to age or hard manual labor. Hence, such users cannot be enrolled in
the biometric system. The Failure to Enroll (FTE) rate denotes the proportion of
users that cannot be successfully enrolled in a biometric system. User training or
habituation may be necessary to ensure that an individual interacts with a biometric
system appropriately in order to facilitate the acquisition of good quality biomet-
ric data. This necessitates the design of robust and efficient user interfaces that can
assist an individual both during enrollment and recognition.

In some cases, a particular sample provided by the user during authentication
cannot be acquired or processed reliably. This type of error typically occurs when
the device is not able to locate a biometric signal of sufficiently good quality (e.g.,
an extremely faint fingerprint or an occluded face image). This error is called failure
to capture and the fraction of authentication attempts in which the biometric sensor
cannot capture the sample presented to it is known as Failure to Capture (FTC) or
Failure to Acquire (FTA) rate. The FTA rate is also impacted by sensor wear and
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.13 Examples of biometric samples that lead to failure to enroll error. (a) and (b) show
examples of degraded finger and hand, respectively, (c) and (d) show examples of persons with
missing fingers, and (e) and (f) shows a degraded eye and a person with eye disease, respectively.
(Source: Unique Identification Authority of India)
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tear. Thus, periodic sensor maintenance is instrumental for the efficient functioning
of a biometric system.

There is a tradeoff between the FTE rate and the perceived system accuracy as
measured by FAR/FRR. FTE errors typically occur when the system rejects poor
quality inputs during enrollment; consequently, if the threshold on quality is high,
the system database contains only good quality templates and the perceived system
accuracy improves. Because of the interdependence among the failure rates and
error rates, all these rates (i.e., FTE, FTC, FAR, and FRR) constitute important
performance specifications of a biometric system, and should be reported during
system evaluation along with the demographics of the target population (e.g., age,
ethnicity, occupation) using the system.

The performance of a biometric system may also be summarized using other
single-valued measures such as the Equal Error Rate (EER) and the d-prime value.
The EER refers to that point in a DET (or ROC) curve where the FAR equals the
FRR; a lower EER value, therefore, indicates better performance. The d-prime value
(d′) measures the separation between the means of the genuine and impostor prob-
ability distributions in standard deviation units and is defined as,

d′ =
√

2 | μ1 − μ0 |√
σ2

1 +σ2
0

, (1.10)

where μ1 (μ0) and σ1 (σ0) are the mean and standard deviation, respectively, of
the genuine (impostor) score distributions. A higher d-prime value indicates bet-
ter performance. If the genuine and impostor distributions indeed follow a normal
(Gaussian) distribution with equal variance (a very unlikely situation in practical
biometric systems), then d′ reduces to the normal deviate value. Another single-
valued performance measure is known as the F-Ratio, which is defined as,

F-ratio =
μ1 − μ0

σ1 +σ0
. (1.11)

If the genuine and impostor distributions are Gaussian, then the EER and F-ratio are
related according to the following expression:

EER =
1
2
− 1

2
erf

(
F-ratio√

2

)
, (1.12)

where

erf(x) =
2√
π

∫ x

0
e−t2

dt. (1.13)

1.4.1.2 Identification system error rates

Suppose that a biometric identification system, with N identities enrolled, outputs a
set of identities corresponding to the top t matches (1 ≤ t � N). The identification
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rank is defined as the rank of a user’s correct identity in the top t matches returned
by the identification system. For instance, if a user’s correct identity corresponds to
the topmost match (highest score among all N match scores), we say that the user
has been identified at rank one. Similar to the verification scenario, there are two
types of identification system errors. A false positive identification occurs when an
identity is returned for a user not enrolled in the system. This is analogous to the
false match case in biometric verification. The expected proportion of identification
transactions by users not enrolled in the system, where an identity is returned, is
known as the false positive identification rate (FPIR). The FPIR depends both on
the size of the enrollment database (N) and the threshold (η) used in equation (1.2).

False negative identification refers to a scenario where the transacting user is en-
rolled in the database, but his correct identity is not among those returned by the
system. The expected proportion of identification transactions by users enrolled in
the system in which the user’s correct identity is not returned is called the false
negative identification rate (FNIR). FNIR depends on the size of the enrollment
database (N), the threshold (η) used for the match scores, and the number of identi-
ties t returned by the identification system. A quantity related to the FNIR is the true
positive identification rate (TPIR), which is the expected proportion of identifica-
tion transactions by users enrolled in the system, where the user’s correct identity is
among the t identities returned by the system. Therefore, FNIR = 1− TPIR. If the
biometric system outputs the identities of the top t matches, the corresponding TPIR
is also known as the rank-t identification rate, which we refer to as Rt . In particular,
the value of TPIR for t = 1 is called the rank-one accuracy and this value is one
of the most commonly used metrics to compare different biometric identification
systems.

The rank-t identification rate for different values of t can be summarized using
the Cumulative Match Characteristic (CMC) curve (see Figure 1.14), which plots Rt

against t for t = 1,2, · · · ,N, where N is the number of enrolled users. In general, it
is difficult to infer the identification error rates (FPIR and FNIR) from the FMR and
FNMR of the underlying biometric matcher. This is because identification involves
finding the top match among the N identities in addition to comparing the top match
score against a threshold. However, under some simplifying assumptions it is pos-
sible to estimate the performance in the identification mode from the FMR and the
FNMR of the biometric matcher. Suppose that the identification system returns all
the identities whose match score is above a threshold and these identities are found
by sequentially comparing the query to each of the N templates in the enrollment
database. Let us also assume that the same matching threshold (η) is used for both
verification and identification scenarios. Under these assumptions,

• FNIR = FNMR; in fact, the probability that the input is falsely declared as
a non-match against the user’s template is the same as in verification mode. In
most identification systems, the number of returned identities is restricted to t
due to practical constraints. When t is less than number of identities whose score
is above the threshold, FNIR ≥ FNMR.

• FPIR = 1− (1− FMR)N ; in fact, a false positive identification occurs when
the input falsely matches one or more templates in the database. FPIR is then



26 1 INTRODUCTION

computed as one minus the probability that no false match is made with any of
the database templates. In the above expression, (1−FMR) is the probability that
the query does not falsely match a single non-mate template, and (1−FMR)N is
the probability that it does not falsely match with any of the N database templates.
Here, we assume that all the N matches are statistically independent. If we further
assume that FMR is very small (<< (1/N)), FPIR can be approximated as FPIR
≈ N ×FMR. From this expression, it is clear that FPIR increases when the value
of N increases and often the increase is linear in the database size (N).
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Fig. 1.14 Cumulative match characteristic (CMC) curve for the Face-G matcher in the Biometric
Score Set Release-1 provided by NIST. In this example, the rank-1 identification rate is ≈ 78%,
which means that for ≈ 78% of the identification attempts, the correct identity of the user is selected
as the best matching identity.

The above results highlight the tremendous challenge involved in the design of
large-scale biometric identification systems as compared to verification systems.
While an FMR of 10−6 (1 false match in 1 million attempts) is typically acceptable
for a biometric matcher operating in the verification mode, the FPIR of an identifi-
cation system with 10,000 enrolled users using the same underlying matcher under
the same threshold setting would be about 1%. Suppose that such an identification
system is used at an airport to screen passengers against a watch-list of 10,000 per-
sons, 1 in 100 innocent passengers would be falsely matched against someone from
the watch-list, causing inconvenience and potential embarrassment.
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1.5 The Design Cycle of Biometric Systems

The design of a biometric system typically entails the following major activities,
some of which are carried out iteratively. The foremost step in designing a biometric
system is understanding the nature of the application and the performance require-
ments. This is followed by choosing the right biometric trait(s) for the application
in hand. Given a specific biometric trait, one needs to collect biometric data from a
subset of target population and design or train the core biometric modules, including
the feature extractor and the matcher. Finally, the developed biometric system must
undergo a thorough evaluation procedure to ensure that it meets the requirements of
the application. Figure 1.15 presents an overview of this design cycle.

Fig. 1.15 The design cycle of a biometric system involves the key steps shown here. A part of the
biometric data collected during the design stage is used for choosing the appropriate feature set
and matching algorithm. The remaining part of the data is used to evaluate whether the designed
biometric system satisfies the performance requirements of the application in hand. Depending
on the results of the evaluation, some steps in the above process may need to be repeated until
satisfactory results are obtained.
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1.5.1 Nature of the application

The design of a biometric system completely hinges on the nature of the application
in which the biometric system will be used eventually. In fact, the characteristics of
the application determine whether a biometric system is required or even feasible
in the first place. Prior to opting for a biometric system, one must also consider
the existing security solutions (e.g., passwords, smart cards, etc.) in the application
domain where the biometric system will be embedded. Biometrics does not have to
replace tokens and passwords in all applications. In some applications, biometrics
may be used to supplement ID cards and passwords, thereby imparting an additional
level of security. Such an arrangement is often called a multi-factor authentication
scheme.

Depending on the application, we may need to choose between the verification
and identification functionalities. This choice need not be always mutually exclu-
sive. In some applications such as large-scale national ID systems having a broad
usage scope, one may need to perform negative identification during enrollment to
prevent the possibility of the same user acquiring multiple identities. In the recogni-
tion phase, the system can run in the verification mode to deliver benefits or services
only to the enrolled users. Apart from the type of functionality, biometric applica-
tions can also be classified based on the following issues.

1. Cooperative versus non-cooperative users: Cooperation refers to the behav-
ior of the user when interacting with the system. For example, in a verification
system, it is in the best interest of a genuine user to cooperate with the system
and be accepted as a valid user. An electronic banking application is an example
where enrolled users are likely to cooperate with the system in order to be rec-
ognized accurately. On the other hand, in a negative recognition system, a user
may not cooperate with the system (e.g., may purposely apply excessive pres-
sure when placing his finger on the sensor) to avoid being recognized. A terrorist
attempting to conceal his identity from an airport screening application will be
non-cooperative.

2. Overt versus covert deployment: If the user is aware that he is being subjected
to biometric recognition, the application is categorized as overt. If the user is
unaware, the application is called covert. Facial recognition can be easily used in
a covert application (e.g., surveillance), while fingerprint recognition cannot be
used in this mode (except for criminal identification based on latent fingerprints).
Most commercial uses of biometrics are overt in nature.

3. Habituated users versus non-habituated: If the enrolled users interact with the
biometric system quite frequently, they tend to get habituated in providing their
biometric data. For example, a computer network login application typically has
habituated users (after an initial “habituation” period) due to their use of the
system on a regular basis. However, a driver’s license application typically has
non-habituated users since a driver’s license is renewed only once in a period
of several years. This is an important consideration when designing a biometric
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system because the familiarity of users with the system can affect recognition
accuracy since a habituated user is likely to provide good quality biometric data.

4. Attended versus unattended operation: Attended versus unattended classifica-
tion refers to whether the process of biometric data acquisition in an application
is observed, guided, or supervised by a human (e.g., a security officer). Further-
more, an application may have an attended enrollment operation but unattended
recognition operation. For example, a banking application may have a supervised
enrollment when an ATM card is issued to a user, but the subsequent uses of the
biometric system for the ATM transaction are not attended.

5. Controlled versus uncontrolled operation: In a controlled environment, ambi-
ent environmental conditions such as temperature, pressure, moisture, lighting
conditions, etc. can be moderated during the operation of a biometric system.
Typically, indoor applications such as computer network login operate in a con-
trolled environment, whereas outdoor applications such as keyless car entry or
parking lot surveillance operate in an uncontrolled environment. This classifica-
tion is also important for the system designer as a more rugged biometric sensor
is needed for an uncontrolled environment.

6. Open versus closed system: If a person’s biometric template can be used across
multiple applications, the biometric system can be considered as open. For ex-
ample, a user may use a fingerprint-based recognition system for entering secure
facilities, computer network login, electronic banking, and bank ATMs. When
all these applications use separate templates (databases) for each application, the
system is considered closed. A closed system may be based on a proprietary tem-
plate whereas an open system will need standard data formats and data compres-
sion methods to exchange and compare information between different systems
(most likely developed by different commercial vendors).

All the above factors profoundly influence the design of a biometric system. Most
of the commercial applications of biometrics, such as access to secure facilities,
have the following attributes: verification, cooperative, overt, habituated, attended
enrollment and non-attended authentication, and closed.

1.5.2 Choice of biometric trait

A number of biometric traits are being used in various applications. Each biometric
trait has its pros and cons and, therefore, the choice of a biometric trait for a particu-
lar application depends on a variety of issues besides its recognition performance. In
general, seven factors must be considered to determine the suitability of a physical
or a behavioral trait to be used in a biometric application.

1. Universality: Every individual accessing the application should possess the trait.
This factor determines the failure to enroll (FTE) rate of the biometric system.
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2. Uniqueness: The given trait should be sufficiently different across individuals
comprising the user population. Otherwise, the false match rate (FAR or FPIR)
of the biometric system would be unacceptably high.

3. Permanence: The biometric trait of an individual should be sufficiently invariant
over a period of time with respect to the matching algorithm. A trait that changes
significantly over time is not a useful biometric because it will lead to a high false
non-match rate (FRR or FNIR).

4. Measurability: It should be possible to acquire and digitize the biometric trait
using suitable devices that do not cause undue inconvenience to the individual.
Furthermore, the acquired raw data should be amenable to processing in order to
extract discriminative feature sets. This factor significantly impacts the frequency
of FTE and FTA failures and the recognition accuracy.

5. Performance: Apart from the recognition accuracy (FMR, FNMR, FTE, and
FTA), the computational resources required to achieve that accuracy and the
throughput (number of transactions that can be processed per unit time) of the
biometric system should also meet the constraints imposed by the application.

6. Acceptability: Individuals in the target population that will utilize the application
should be willing to present their biometric trait to the system.

7. Circumvention: This refers to the ease with which the trait of an individual can
be imitated using artifacts (e.g., fake fingers), in the case of physical traits, and
mimicry, in the case of behavioral traits. It also refers to the process of obfusca-
tion, where a user deliberately alters his biometric trait to evade recognition.

No single biometric is expected to effectively meet all the requirements (e.g.,
accuracy, practicality, cost) imposed by all applications (e.g., forensics, access con-
trol, government benefits programs, etc.). In other words, no biometric is ideal but a
number of them are admissible. The relevance of a specific biometric to an applica-
tion is established depending upon the nature and requirements of the application,
and the properties of the biometric characteristic. A brief introduction to some of
the commonly used biometric characteristics (also shown in Figure 1.16) is given
below:

1. Fingerprint: Humans have used fingerprints for personal identification for many
decades. A fingerprint is the pattern of ridges and valleys on the surface of a fin-
gertip whose formation is determined during the first seven months of fetal devel-
opment. While fingerprints have been in use in forensic applications for over 100
years, the advent of low-cost and compact fingerprint scanners has spawned a
large number of commercial applications in the past ten years. In applications re-
quiring large-scale identification involving millions of identities, multiple finger-
prints of a person (e.g., ten-prints used in Automated Fingerprint Identification
Systems (AFIS)) can be used to improve the matching performance, though at the
cost of more computational resources. Finally, fingerprints of a small fraction of
the population may be unsuitable for automatic identification because of genetic
factors, aging, environmental, or occupational reasons (e.g., manual laborers may
have a large number of cuts and bruises on their fingerprints). Chapter 2 of this
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Fig. 1.16 A set of commonly used biometric traits.

book addresses the various issues concerning the design and implementation of
automated fingerprint recognition systems.

2. Palmprint: The palms of the human hands contain pattern of ridges and valleys
much like the fingerprints. The area of the palm is much larger than the area
of a finger and, as a result, palmprints are expected to be even more distinctive
than the fingerprints. Since palmprint scanners need to capture a large area, they
are bulkier and more expensive than fingerprint sensors. Human palms also con-
tain additional distinctive features such as principal lines and wrinkles that can
be captured even with a lower resolution scanner, which would be less expen-
sive. Finally, when using a high-resolution palmprint scanner, all the features of
the hand such as geometry, ridge and valley features (e.g., minutiae and singular
points such as deltas), principal lines, and wrinkles may be combined to build a
highly accurate biometric system. There is a growing interest in palmprint match-
ing, particularly latent palmprint matching, among the law enforcement agencies.
More details about palmprints are presented in Chapter 2 along with the finger-
prints.

3. Iris: The iris is the annular region of the eye bounded by the pupil and the sclera
(white of the eye) on either side. The visual texture of the iris is formed during fe-
tal development and stabilizes during the first two years of life (the pigmentation,
however, continues to change over an extended period of time). The complex
iris texture carries very distinctive information useful for personal recognition.
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The accuracy and speed of currently deployed iris-based recognition systems is
promising and can support large-scale identification. Although early generation
iris-based recognition systems required considerable user participation and were
expensive, the newer systems have become more user-friendly and cost-effective.
Iris recognition is the primary focus of Chapter 4 of this book.

4. Face: Face recognition is a non-intrusive method, and facial attributes are prob-
ably the most common biometric features used by humans to recognize one an-
other. The applications of facial recognition range from a static, controlled “mug-
shot” authentication to a dynamic, uncontrolled face identification in a cluttered
background. While the authentication performance of the face recognition sys-
tems that are commercially available is acceptable for use in some applications,
they impose a number of restrictions on how the facial images are obtained, of-
ten requiring a fixed and simple background with controlled illumination. These
systems also have difficulty in matching face images captured from two different
views, under different illumination conditions, and at different times. The design
of face recognition systems and the associated challenges will be discussed in
more detail in Chapter 3.

5. Hand geometry (shape): Hand geometry recognition systems are based on a
number of measurements taken from the human hand, including its shape, size of
palm, and the lengths and widths of the fingers. Environmental factors such as dry
weather or individual anomalies such as dry skin do not appear to adversely affect
the authentication accuracy of hand geometry-based systems. However, the ge-
ometry of the hand is not known to be very distinctive and hand geometry-based
recognition systems cannot be scaled up for systems requiring identification of
an individual from a large population. Furthermore, hand geometry information
may not be invariant during the growth period of children. In addition, individuals
wearing jewelry (e.g., rings) or with limitations in dexterity (e.g., from arthritis),
may pose challenges in extracting the correct hand geometry information. The
physical size of a hand geometry-based system is large, and it cannot be em-
bedded in certain devices like laptops. There are a few commercially available
systems that are based on measurements of only a few fingers (typically, index
and middle) instead of the entire hand. These devices are smaller than those used
for hand geometry, but still much larger than those used for acquiring other traits
like fingerprint, face, and voice. Hand shape biometric is discussed in Chapter 5.

6. Gait: Gait refers to the manner in which a person walks, and is one of the few
biometric traits that can be used to recognize people at a distance. Therefore,
this trait is very appropriate in surveillance scenarios where the identity of an
individual can be covertly established. Most gait recognition algorithms attempt
to extract the human silhouette in order to derive the spatio-temporal attributes
of an individual who is walking. Hence, the selection of a good model to repre-
sent the human body is pivotal to the efficient performance of a gait recognition
system. Some algorithms use the optic flow associated with a set of dynamically
extracted moving points on the human body to describe the gait of an individual.
Gait-based systems also offer the possibility of tracking an individual over an
extended period of time. However, the gait of an individual is affected by sev-
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eral factors, including the choice of footwear, nature of clothing, affliction of the
legs, and walking surface. The segmentation problem is particularly severe for
gait-based recognition. More details are provided in Chapter 5.

7. Ear: It has been suggested that the shape of the ear and the structure of the
cartilegenous tissue of the pinna are distinctive. The ear recognition approaches
are either based on matching the distance of salient points on the pinna from a
landmark location on the ear or based on the appearance of the ear. Ear recogni-
tion could be useful for identifying a person based on a profile photograph. See
Chapter 5 for more details on ear biometric systems.

8. Voice: Voice is a combination of physical and behavioral biometric characteris-
tics. The physical features of an individual’s voice are based on the shape and size
of the appendages (e.g., vocal tract, mouth, nasal cavities, and lips) that are used
in the synthesis of the sound. These physical characteristics of human speech are
invariant for an individual, but the behavioral aspects of speech change over time
due to age, medical condition (such as common cold), emotional state, etc. Voice
is also not very distinctive and may not be appropriate for large-scale identifica-
tion. A text-dependent voice recognition system is based on the utterance of a
predetermined phrase. A text-independent voice recognition system recognizes
the speaker independent of what she speaks. A text-prompted system prompts
the user to repeat a phrase generated dynamically, which offers more protection
against fraud. A disadvantage of voice-based recognition is that speech features
are very sensitive to factors like background noise and microphone characteris-
tics. Speaker recognition is most appropriate in telephone-based applications but
the voice signal is typically degraded in quality by the communication channel.

9. Keystroke: It is hypothesized that each person types on a keyboard in a charac-
teristic way. This biometric is not expected to be unique to each individual but it
may be expected to offer sufficient discriminatory information to permit identity
verification. Keystroke dynamics is a behavioral biometric; one may expect to
observe large intra-class variations in a person’s typing patterns due to changes
in emotional state, position of the user with respect to the keyboard, type of key-
board used, etc. The keystrokes of a person could be monitored unobtrusively
as that person is keying in information. This makes it possible to “continuously
verify” an individual’s identity over a session, after the person logs in using a
stronger biometric such as fingerprint or iris.

10. Signature: The way a person signs her name is known to be a characteristic of
that individual. Although signatures require contact with the writing instrument
and an effort on the part of the user, they have been accepted in government,
legal, and commercial transactions as a method of authentication. With the pro-
liferation of PDAs, Tablet PCs, and smartphones, on-line signature may emerge
as the biometric of choice in these devices. Signature is a behavioral biometric
that changes over a period of time and is influenced by the physical and emotional
conditions of the signatories. Signatures of some people vary substantially: even
successive impressions of their signature are significantly different. Further, pro-
fessional forgers may be able to reproduce signatures that can fool the signature
verification system.
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11. DNA: DNA refers to deoxyribonucleic acid that contains the genetic informa-
tion necessary for the development and functioning of living organisms. DNA is
the one-dimensional unique code for one’s individuality - except for the fact that
identical twins have the same DNA pattern. It is, however, currently used mostly
in the context of forensic applications for suspect and victim identification. Three
issues limit the utility of DNA for several other applications: (a) contamination
and sensitivity: it is easy to steal a piece of DNA from an unsuspecting subject
that can be subsequently abused for an ulterior purpose; (b) automatic real-time
recognition issues: the state-of-the-art technology for DNA matching requires
cumbersome chemical methods (wet processes) involving an expert’s skills and
is not yet geared for on-line non-invasive recognition; (c) privacy issues: infor-
mation about susceptibilities of a person to certain diseases could be gained from
the DNA pattern and there is a concern that the unintended abuse of genetic code
information may result in social discrimination, e.g., in hiring practices.

12. Facial, hand, and hand vein infrared thermograms: The pattern of heat radi-
ated by the human body is a characteristic of an individual and can be captured by
an infrared camera in an unobtrusive way much like a regular (visible spectrum)
photograph. The technology could also be used for covert recognition. A ther-
mogram-based system does not require contact and is non-invasive, but image
acquisition is challenging in uncontrolled environments, where heat emanating
surfaces (e.g., room heaters and vehicle exhaust pipes) are present in the vicinity
of the human body. A related technology using near infrared (NIR) imaging is
used to scan the back of a clenched fist to determine hand vein structure. Infrared
sensors are currently expensive, which is a factor inhibiting widespread use of
the thermograms.

13. Odor: It is known that each object exudes an odor that is characteristic of its
chemical composition and this could be potentially used for distinguishing vari-
ous objects. A whiff of air surrounding an object is blown over an array of chem-
ical sensors, each sensitive to a certain group of (aromatic) compounds. A com-
ponent of the odor emitted by a human (or any animal) body is distinctive to
a particular individual. It is not clear if the invariance in the body odor could
be detected despite deodorant smells, and varying chemical composition of the
surrounding environment.

14. Retinal scan: The retinal vasculature is rich in structure and is supposed to be
distinctive for each individual and each eye. It is claimed to be the most secure
biometric since it is not easy to change or replicate the retinal vasculature. The
image acquisition requires a person to peer into an eye-piece and focus on a spe-
cific spot in the visual field so that a predetermined part of the retinal vasculature
could be imaged. The image acquisition involves cooperation of the subject, en-
tails contact with the eyepiece, and requires a conscious effort on the part of the
user. All these factors adversely affect the public acceptability of the retinal bio-
metric. Retinal vasculature can reveal some medical conditions, e.g., hyperten-
sion, which is another factor deterring the public acceptance of retinal scan-based
biometrics.
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Table 1.1 summarizes the error rates of fingerprint, face, iris, and voice biometric
systems obtained through various technology evaluation tests (see Section 1.5.5). In
fact, these four biometric modalities are the only ones that have undergone extensive
testing and evaluation so far. Although the error rates presented in Table 1.1 are
dependent on a number of test conditions such as the sensor used, the acquisition
protocol, the number and demographic profile of the subjects involved, and the time
lapse between successive biometric acquisitions, they provide a good estimate of the
accuracy of state-of-the-art biometric systems because these results are obtained by
independent third-party testing of competing algorithms on common databases. The
results of these evaluations clearly indicate that biometric systems have non-zero
error rates and there is scope for improving the accuracy of biometric systems.

Table 1.1 False reject and false accept rates associated with state-of-the-art fingerprint, face, voice,
and iris verification systems. Note that the accuracy estimate of a biometric system depends on a
number of test conditions.

Biometric Test Test Conditions False False
Trait Reject Accept

Rate Rate
Fingerprint FVC 2006 Heterogeneous 4.2% 0.1%

population including
manual workers

and elderly people
FpVTE 2003 U.S. government 0.6% 0.1%

operational data
Face FRVT 2006 Controlled illumination, 0.8-1.6% 0.1%

high resolution
Voice NIST 2008 Text independent, 12% 0.1%

multi-lingual
Iris ICE 2006 Controlled illumination, 1.1-1.4% 0.1%

large quality range

One way to improve the accuracy of biometric systems is to use more than one
biometric trait in a recognition application. For example, the face and iris traits,
or the fingerprints from all the ten fingers of an individual may be used together
to resolve the identity of an individual. Such systems are known as multibiometric
systems. These systems are expected to be more accurate and reliable due to the
availability of multiple pieces of evidence. The design of multibiometric systems
will be addressed elaborately in Chapter 6.
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1.5.3 Data collection

The next step in the design cycle of a biometric system is the collection of biometric
data from a subset of the targeted population. This data is required both for design-
ing the feature extraction and matcher modules as well as for the evaluation of the
designed biometric system. However, before venturing into data collection, we first
need to design appropriate sensors to acquire the chosen biometric trait(s). Factors
like size, cost, ruggedness, and ability to capture good quality biometric samples
are some of the key issues in biometric sensor design. In the case of more mature
biometric modalities like fingerprint, the sensors must also be capable of satisfying
certain industry standards such as minimum image resolution.

It is important to remember that the characteristics of the database such as data
collection environment, sample population, and user habituation will greatly affect
the performance of the biometric systems. Hence, care must also be taken to ensure
that the database is neither too challenging (collected under the most adverse condi-
tions) nor too easy (collected under the most favorable conditions). If the database
is too easy (i.e., it includes only good quality biometric samples with small intra-
user variations), the resulting recognition error rates will be close to zero and it
will be very difficult to distinguish between the competing feature extraction and
matching algorithms. On the other hand, if the database is too challenging (i.e., it
includes only poor quality biometric samples with large intra-user variations), the
recognition challenge may be beyond the capabilities of existing technologies.

Ideally, a database should include samples that are representative of the popu-
lation and must preferably exhibit realistic intra-class variations (achieved by col-
lecting data over multiple sessions spread over a period of time and in different
environmental conditions). Further, due to the involvement of human subjects, le-
gal and privacy issues must also be considered and approval of organizations like
the Institutional Review Board (IRB) is mandatory in many countries. This makes
biometric data collection a time-consuming, relatively expensive, and cumbersome
process. On the other hand, careful planning and implementation of data collection
process is likely to lead to successful and operational biometric systems.

1.5.4 Choice of features and matching algorithm

The choice of features and the matching algorithm to be employed is one of the most
critical steps in biometric system design. Most of the research and development in
the field of biometrics has been focused on this issue. Design of a feature extrac-
tor and matcher not only requires a database of biometric samples, but also some
prior knowledge about the biometric trait under consideration. For instance, prior
knowledge about the “uniqueness” of minutia points facilitated the development of
minutiae-based fingerprint recognition systems. Similarly, the fact that a minutiae
pattern is typically represented as an unordered set of points, drives the development
of a suitable matching algorithm to match the minutia sets.
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In some biometric modalities, incorporating prior knowledge may be difficult.
Consider the example of a face recognition system. What are the features that makes
a human face distinct from other human faces, especially if the faces belong to indi-
viduals with the same gender and ethnicity? Humans seem to have the capability to
learn these distinctions easily, but it is challenging to elicit this information from the
humans and then mimic this process in a machine. Since the features and matching
algorithms are mostly modality-specific, these choices will be discussed in detail as
we consider the individual modalities in the subsequent chapters.

Another important factor affecting the choice of features and matching algorithm
is the interoperability between biometric systems. Most biometric systems operate
under the assumption that the biometric data to be compared are obtained using
the same sensor and, hence, are restricted in their ability to match or compare bio-
metric data originating from different sensors. For example, a speaker recognition
system may find it challenging to compare voice samples originating from two dif-
ferent handset (microphone) technologies such as electret and carbon-button. The
performance of face recognition algorithms is severely affected when the images
used for comparison are captured using different camera types. Similarly, finger-
prints obtained using multiple sensor technologies cannot be reliably compared due
to variations in sensor technology, image resolution, sensing area, distortion effects,
etc.

Although progress has been made in the development of common data exchange
formats to facilitate the exchange of feature sets between vendors, very little ef-
fort has been invested in the actual development of algorithms and techniques to
match these feature sets. The US-VISIT program for example, obtains fingerprint
(and face) information of millions of travelers arriving at U.S. airports and seaports.
An optical fingerprint sensor is currently being used during the enrollment phase
to procure fingerprint images. However, it is not guaranteed that a similar type of
sensor will be used at a later time when verifying the same individual. It is possible
that due to advancements in sensor technology, it may be more desirable and cost
effective to use the current generation of sensors. The cost and time involved in re-
enrolling individuals every time the sensor is changed will be tremendous, and could
potentially lead to huge bottlenecks in the system, resulting in user inconvenience.
In cases such as these, the need for feature extraction and matching algorithms that
operate seamlessly across different sensors is paramount and will significantly im-
pact the usability of the system over a period of time.

1.5.5 Evaluation

Evaluation of a complete biometric system is a complex and challenging task that
requires experts from a variety of fields, including statistics, computer science, en-
gineering, business, and psychology, as well as system designers and the end user
community. In order to gain a thorough understanding of the performance of a bio-
metric system, one must address the following questions.
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1. What are the error rates of the biometric system in a given application? (matching
or technical performance)

2. What is the reliability, availability, and maintainability of the system? (engineer-
ing performance)

3. What are the vulnerabilities of the biometric system? What level of security does
the biometric system provide to the application in which it is embedded? (secu-
rity of the biometric system)

4. What is the user acceptability of the system? How does the system address human
factor issues like habituation and privacy concerns? (user concerns)

5. What is the cost and throughput of the biometric system and what tangible ben-
efits can be derived from its deployment? (return on investment)

No existing biometric evaluation framework has addressed all the above ques-
tions in a systematic manner. In this section, we focus only on the matching perfor-
mance of a biometric system. Ideally, the evaluation requires an independent third
party to design, administer, and analyze the test. We can divide the matching perfor-
mance evaluation of a biometric system into three stages:

1. Technology evaluation: Technology evaluation compares competing algorithms
from a single technology on a standardized database. Since the database is fixed,
the technology evaluation results are repeatable. The Fingerprint Verification
Competitions (FVC), the Fingerprint Vendor Technology Evaluation (FpVTE),
the Face Recognition Vendor Tests (FRVT), the Face Recognition Technology
(FERET) program, and the NIST Speaker Recognition Evaluations (SRE) are
examples of biometric technology evaluations.

2. Scenario evaluation: In scenario evaluation, the testing of the prototype biomet-
ric systems is carried out in an environment that closely resembles the real-world
application. Since each system will acquire its own biometric data, care must be
taken to ensure uniformity in the environmental conditions and sample popula-
tion across the different prototype systems.

3. Operational evaluation: Operational evaluation is used to ascertain the perfor-
mance of a complete biometric system in a specific real-world application envi-
ronment on a specific target population.

Researchers have identified some best practices to be followed when evaluat-
ing the technical performance of a biometric system. There are recommendations
available in the biometrics literature on a number of testing issues, including size
of the test, volunteer selection, factors that may affect the performance of a bio-
metric system, data collection methodology, estimation of the performance metrics,
estimating the uncertainty of performance metrics, and reporting the performance
results. A sound evaluation of the technical performance of a biometric system must
follow these best practices as closely as possible and clearly explain any deviations
from these recommendations that may be necessary.
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1.6 Applications of Biometric Systems

Establishing the identity of a person with high confidence is becoming critical in a
number of applications in our vastly interconnected society. Questions like “Is she
really who she claims to be?”, “Is this person authorized to use this facility?” or
“Is he on the watchlist posted by the government?” are routinely being posed in
a variety of scenarios ranging from issuing a driver’s licence to gaining entry into
a country. The need for reliable user authentication techniques has increased in the
wake of heightened concerns about security, and rapid advancements in networking,
communication, and mobility. Thus, biometric recognition is being increasingly in-
corporated in several different applications. These applications can be categorized
into three main groups (see Table 1.2):

1. Commercial applications such as computer network login, electronic data secu-
rity, e-commerce, Internet access, ATM or credit card use, physical access con-
trol, mobile phone, PDA, health record management, distance learning, etc.

2. Government applications such as national ID card, managing inmates in a cor-
rectional facility, driver’s license, social security, welfare-disbursement, border
control, passport control, etc.

3. Forensic applications such as corpse identification, criminal investigation, miss-
ing children, parenthood determination, etc.

Table 1.2 Recognition solutions employing biometrics can be used in a variety of applications
which depend on reliable person recognition mechanisms.

FORENSICS GOVERNMENT COMMERCIAL
Corpse identification National ID card ATM

Criminal investigation Driver’s license; voter
registration

Access control;
computer login

Parenthood
determination

Welfare disbursement Mobile phone

Missing children Border crossing E-commerce; Internet;
banking; smart card

Examples of a few applications where biometrics is being used for authenticating
individuals are presented below (also see Figure 1.17).

1. Airport security: Biometrics is being used for authenticating passengers as well
as employees at various airports. For example, the Schiphol Privium scheme at
Amsterdam’s Schipol airport employs iris scan smart cards to speed up the immi-
gration procedure. Passengers who are voluntarily enrolled in this scheme insert
their smart card at the gate and peek into a camera; the camera acquires the eye
image of the traveler and processes it to locate the iris, and computes a feature
set; the computed feature set is compared with the data residing in the smart card
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to complete user verification. A similar scheme is also being used to verify the
identity of Schiphol airport employees working in high-security areas.
The Ben Gurion International Airport at Tel Aviv has deployed a similar biomet-
ric security system called the Unipass Airport Management System. Under this
system, the outbound passengers are required to provide fingerprints and facial
images, which are stored in a smart card that is issued to each passenger. These
smart cards are then used to track the passengers as they pass through different
locations at the airport, such as security checkpoint, baggage screening, airline
check-in, and finally, boarding the aircraft.

2. Government applications: A good example of a large-scale biometric system
is the United States Visitor and Immigration Status Indicator Technology (US-
VISIT). The US-VISIT program represents one of the security measures adopted
by the Department of Homeland Security to identify visitors entering the United
States. When a traveler from a visa waiver country enters the U.S. for the first
time, a digital facial photograph of the visitor and fingerprints from all ten fingers
are collected at the immigration booth prior to admission into the United States.
The ten fingerprints are matched against a dynamic watch list containing up to
a few million records in less than 10 seconds. This is an example of negative
recognition, where the purpose is to find if the visitor has multiple aliases. If not
on a watch-list, the visitor is admitted into the U.S. and the person’s fingerprints
are enrolled into the US-VISIT enrollment database for future matching. For
travelers requiring a visa, the above process is completed prior to issuing a visa at
the U.S. consulates. During subsequent visits into the United States, the person’s
fingerprints are matched against his previous records in the enrollment database
(authentication) to verify the visitor’s identity. Over 75 million visitors have been
processed through this system since its inception in January 2004 and about 1,000
have been denied entry.
Another example of large scale use of biometric system is the Unique Identifi-
cation (UID) project in India. The objective of this project is to significantly in-
crease the efficiency and effectiveness of various welfare disbursement schemes
initiated by the Government of India by improving the transparency of various
transactions. The project involves collection of multiple biometric traits, namely,
ten fingers, two irides, and face, as well as demographic information (name, gen-
der, birthday, and address) from the residents of India and will provide each res-
ident with a 12-digit unique identification number. The project is expected to
enroll 600 million residents of India over a span of five years. This is an example
of de-duplication (negative recognition) where a fusion of 10 fingers and 2 iri-
des is expected to determine if the same person is trying to acquire two different
identification numbers.

3. Commercial applications: Some of the major financial institutions in Japan have
installed palm-vein authentication systems in their ATMs to help validate the
identity of a customer intending to conduct a transaction. A contactless sensor
is used to image the vein pattern pertaining to the customer’s palm using a near
infrared lighting source.
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Another example of a high-throughput biometric verification system is the one
used by the Walt Disney World Resort in Orlando, Florida to prevent ticket fraud.
Every visitor to the resort must provide his index finger at the turnstile along
with the ticket. The fingerprint provided by the ticket holder then gets linked
to that particular ticket; if the ticket holder visits the resort again (either later
the same day or on a different day if he has a multiple entry ticket) he must
present the same finger that was used to validate the ticket. This prevents more
than one person using the same ticket. The Disney system can handle a large
number (around 100,000 per day) of visitors efficiently, and more importantly,
this system works in all weather conditions because it uses a rugged fingerprint
sensor that is able to capture good quality fingerprint images even in adverse
imaging conditions. The personal details of the visitor are not associated with
the fingerprint data in the database, which is regularly purged, thereby imparting
security without compromising privacy.

1.7 Security and Privacy Issues

The United States Code on ‘Coordination of Federal Information Policy’ defines in-
formation security as “protecting information and information systems from unau-
thorized access, use, disclosure, disruption, modification, or destruction”. Typically,
there are four major aspects to be considered in information security.

• Integrity - guard against improper modification or destruction of the data and
ensure non-repudiation and authenticity of information.

• Data confidentiality - prevent illegitimate access or disclosure of sensitive in-
formation.

• Availability - guarantee timely and reliable access to and use of information.
• Authentication - only legitimate and authorized users should be able to access

the data and carry out specific tasks.

It is generally agreed that biometric recognition can effectively address the authen-
tication problem. Since biometric traits cannot be easily lost, stolen, misplaced, or
shared, biometric recognition offers a natural and more reliable authentication so-
lution compared to other techniques such as passwords or physical tokens (e.g., ID
cards). This is the reason why biometric systems are being increasingly deployed to
control access to other information systems. For example, US legislation mandates
that the entities (e.g., health care providers, health insurance companies) dealing
with electronic health information must implement strong authentication procedures
such as biometric recognition to prevent unauthorized exposure of sensitive health
information. Furthermore, by implementing a non-repudiable biometric authentica-
tion scheme, it will be possible to track all the accesses to privileged information,
thereby increasing the accountability of the transactions within the information sys-
tems.
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(a) (b)

(c) (d)

(e)

(f)

Fig. 1.17 Biometric systems are being deployed in various government and commercial applica-
tions. (a) The US-VISIT program currently utilizes all ten fingerprints to validate the travel docu-
ments of visitors to the United States, (b) the Ben Gurion airport in Tel Aviv uses the biometric-
based Unipass System for security, (c) the Schiphol Privium program at the Amsterdam airport
uses iris scans to validate the identity of a traveler, (d) Unique Identity (UID) Card project in India
plans to enroll 600 million residents to facilitate efficient delivery of various welfare schemes, and
(e) fingerprint information is used in Disney World, Orlando to ensure that a single ticket is not
fraudulently used by multiple visitors, and (f) a new product by Fujitsu captures the vein pattern of
the palm for verification.
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However, it is important to realize that a biometric system is just one component
of the overall information security solution because it address only the authentica-
tion aspect. Other technologies such as encryption, digital signature, etc. are needed
to meet the confidentiality, integrity, and availability requirements of the total in-
formation system. Moreover, the biometric system can itself be considered as an
independent sub-system within the complete information system. If the biometric
system is compromised or circumvented, the security of the entire information sys-
tem gets affected. Due to this reason, the security aspects involved in the design and
implementation of a biometric system need to be analyzed carefully and indepen-
dently, which is the focus of Chapter 7 in this book.

Unauthorized disclosure of sensitive personal information can cause both objec-
tive (e.g., financial fraud, denial-of-service) and subjective (where the mere knowl-
edge of one’s private information by a second or third party is perceived as an injury)
harms. When the breach of security in an information system leads to personal and
subjective harm to the person involved, it can be termed as loss of privacy. Privacy
refers to the right of the a person to be left alone, i.e., the ability to lead ones’s own
life free from intrusions, to remain anonymous, and to control access to one’s own
personal information. Although the need for privacy is typically an individual pref-
erence, there are cases where disclosure of information may be required for the sake
of larger societal interest (e.g., national security). In the words of privacy expert
Esther Dyson,

“Privacy is not a one-size-fits-all condition: Different people at different times
have different preferences about what happens to their personal information and
who gets to see it. · · · Rather than attempting to define privacy for all, society should
give individuals the tools to control the use and spread of their data. The balance
between secrecy and disclosure is an individual preference, but the need for tools
and even laws to implement that preference is general.” - - Scientific American,
September 2008.

Though biometric recognition can serve as a tool to preserve the privacy of in-
dividuals by restricting access to their personal information (e.g., medical records),
the use of biometrics may itself create a privacy conundrum. This is because biomet-
ric identifiers provide an irrefutable link to the identity of a person. Consequently,
the users of biometric systems have a number of legitimate concerns.

• Will the undeniable proof of biometrics-based access infringe upon an individ-
ual’s right to remain anonymous? For instance, persons legally maintaining mul-
tiple aliases (say, for safety reasons) can be identified using biometric recogni-
tion. Furthermore, it is often possible to covertly recognize a user by capturing his
biometric traits without his active involvement (e.g., face can be captured using
hidden surveillance cameras). As a result, persons who desire to remain anony-
mous in any particular situation may be denied their privacy due to biometric
recognition.

• Will the biometric data be abused for an unintended purpose (function creep),
e.g., allowing linkage of identity records across systems without the knowledge
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of the user? For example, a fingerprint template obtained from a bank’s database
may be used to search for that person’s health records in a medical database.
How to ensure that an information system is indeed exclusively using biometric
recognition for the intended purpose (e.g., can it be provably demonstrated that
the trusted system administrators cannot abuse the system)?

• Will the requirement of biometrics be proportional to the need for security, e.g.,
should a fingerprint be required to purchase a hamburger at a fast food restaurant
or access a commercial website?

• Who owns the biometric data, the individual or the service providers?

The above privacy issues are thorny and do not have concrete answers. While
one could stipulate some measures to protect user privacy, there are no satisfactory
practical solutions on the horizon for either addressing the entire spectrum of pri-
vacy issues or how exactly these privacy issues need to be traded against the security
issues. Fair information practice principles such as transparency, informed consent,
use limitation, accountability, and auditing could be followed to limit the privacy
concerns arising from biometric recognition. Since these issues are beyond the scope
of technology, appropriate legislations must be put in place to enforce these prin-
ciples. Self-regulation by the biometrics industry and autonomous enforcement of
rules by independent regulatory organizations (say, a Central Biometric Authority)
could also address the privacy fears of the general public.

1.8 Summary

Reliable person recognition is integral to the proper functioning of our society. It
is now widely accepted that conventional recognition techniques based on creden-
tials such as driver license, passport, password, or PIN are not sufficiently reliable
to recognize an individual because they are easily vulnerable to theft and forgery.
Biometric recognition, or simply biometrics, refers to the automatic recognition of
a person based on his distinctive physical and behavioral (e.g., face, fingerprint,
iris, voice) traits. Biometrics offers a number of advantages compared to token-
or knowledge-based authentication: (a) discourages fraud and enhances security,
(b) detects multiple enrollments, (c) cannot be easily transferred, forgotten, lost, or
copied, (d) eliminates repudiation claims, and (e) increases user convenience. As a
result, biometric recognition is now recognized as a powerful and necessary tool for
identity management.

Considering the recent adoption of biometric-enabled national ID cards and e-
passports by several governments, it is certain that biometric recognition will pro-
foundly influence the way we are recognized in our daily lives. While biometric
recognition has been successfully deployed in some niche applications, it is far from
a solved problem. As observed from Table 1.1, there is clearly plenty of scope for
improvement in the matching performance of biometric technologies. Researchers
are not only addressing issues related to reducing error rates, but they are also look-
ing at ways to enhance the usability of biometric systems. For example, the deploy-
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ment of biometrics in many civilian and government applications has also raised
questions related to the privacy accorded to an enrolled individual and the security
of the biometric system itself. There is also a definite need for standardization of
biometric systems in order (a) to facilitate interoperability between vendors, and
(b) to ensure that biometric sub-systems can be easily integrated into a variety of
applications.

Bibliographical and Historical Remarks

The use of biological traits to confirm the identity of an individual is certainly not a
new concept. In the late 19th century, Alphonse Bertillon, a French law enforcement
officer, advocated a personal identification system that associated a set of anthropo-
metric measurements with an individual [1]. The Bertillonage system entailed the
precise measurement of certain bony parts of the body (including the ear); a mor-
phological description of the appearance and shape of the body; and a listing of
peculiar marks such as moles, scars, and tattoos on the surface of the body (see Fig-
ure 1.18). These measurements were then recorded on a card and filed in a central
repository that was partitioned into several categories based on the acquired mea-
surements. This indexing ability permitted the quick retrieval of an individual’s card
when a repeat offender was booked by the police. But the system was cumbersome
to administer uniformly (making it prone to error) and did not guarantee uniqueness
across individuals. It was, therefore, abandoned in the wake of rapid developments
in forensic fingerprint examination thanks to the pioneering works of Henry Faulds
[6], William Herschel [10], and Sir Francis Galton [7]. Although the Bertillonage
system cannot be considered as a biometric system because of its lack of automa-
tion, it has nevertheless laid the foundation for modern day biometric recognition
systems.

The development of fully automatic systems for person recognition dates back
to the early 1960s [36]. Mitchell Trauring published an article in Nature in 1963
on automated fingerprint recognition [35]. Furthermore, the advent of digital sig-
nal processing saw the design of automated systems in the 1960s that were capa-
ble of processing fingerprint images [9, 32]. The U.S. National Bureau of Stan-
dards (NBS), which later became the National Institute of Standards and Technol-
ogy (NIST), started the formal testing of automated fingerprint recognition systems
in 1970 [37]. However, what really boosted the popularity of automated fingerprint
recognition systems was the rapid evolution of fingerprint sensing technology over
the last four decades (see Figure 1.19).

The first work on automated face recognition reported in 1966 [2] used distances
and distance ratios between manually marked landmarks on the face (eye centers,
mouth, etc.). Other early face recognition systems followed a similar geometrical
approach of finding anatomical facial landmarks and determining distance ratios
[8, 16]. An appearance-based face recognition approach that decomposes the face
images using principal component analysis, was first proposed in 1987 [33].
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Fig. 1.18 The Bertillonage system, so named after its inventor Alphonse Bertillon, relied on the
precise measurement of various attributes of the body for identifying recidivists. These measure-
ments included the height of the individual, the length of the arm, geometry of the head, and the
length of the foot. The process was tedious to administer and did not guarantee uniqueness across
individuals.

(a) (b)

Fig. 1.19 Evolution of fingerprint sensors. (a) an optical fingerprint sensor called the Identix
Touchview that was in production in the 1990s; its dimensions were 125× 180× 60 mm, (b) an
optical fingerprint sensor, Digital Persona UareU, having similar capabilities that is widely used
now; its dimensions are 65×36×16 mm.
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Other biometric modalities like voice [17, 30, 18], hand geometry [5, 21, 12], and
signature [20] were also developed in the latter half of the 1960s or in the early part
of the 1970s. By 1977, the field of biometric recognition technology had evolved
significantly and the NBS formally published the “Guidelines on the Evaluation of
Techniques for Automatic Personal Identification” as a Federal Information Pro-
cessing Standard [22]. In the subsequent two decades, the availability of faster com-
puters coupled with significant advances in statistical pattern recognition and com-
puter vision resulted in the development of sophisticated schemes to process and
match the biometric data of several modalities including iris [4], retina, and gait.
Furthermore, advances in 3D modeling and graphics in recent years have paved the
way for processing 3D biometric data such as range images of the hand, face, and
ear.

While there are a number of overviews and reference books on biometrics, we
recommend the following key readings to interested readers. References [24], [15],
[13], [25], and [3] serve as a good introduction to biometrics and how biometric
recognition compares to traditional authentication mechanisms like passwords and
ID cards. The human factors (e.g. ergonomics) involved in the design of biometric
systems and the privacy implications of using biometric technology are elaborately
dealt with in [34] and [23], respectively. The general framework for technological
evaluation of biometric systems is presented in [26] and the best practices to be fol-
lowed in biometric evaluation, including the performance metrics to be considered,
are summarized in [11] and [19]. More details about the well-known third-party
technology evaluations listed in Table 1.1 can be found in references [38, 29, 27, 31].
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Chapter 2
FINGERPRINT RECOGNITION

“Perhaps the most beautiful and characteristic of all superficial marks are the small furrows with
the intervening ridges and their pores that are disposed in a singularly complex yet even order on
the under surfaces of the hands and the feet.”

Francis Galton, Nature, June 28, 1888.

The pattern of interleaved ridges and valleys on the tip of a finger is referred to as a fingerprint.

The systematic use of these patterns for personal identification was promoted in the late 19th to

early 20th century, although the discovery of human fingerprints on a large number of archaeolog-

ical artifacts suggests that ancient people were aware of the potential individuality of fingerprints.

While fingerprints were originally acquired by rolling an inked fingertip on the surface of a pa-

per, advances in sensor technology have resulted in the design of compact and low-cost optical and

solid-state sensors that can rapidly image the fingertip and generate digital renditions of fingerprints

for automated analysis. This chapter discusses the technologies used for fingerprint imaging, type

of features extracted from digital images of the fingerprint, techniques for classifying fingerprint

images, and methods for automated feature extraction and matching of fingerprint images.

2.1 Introduction

Unlike the skin on most parts of our body, which is smooth and contains hair and
oil glands, the skin on the palms and soles exhibits a flow-like pattern of ridges
and valleys (sometimes referred to as furrows), and contains no hair or oil glands.
These papillary ridges on the finger, called friction ridges, help the hand to grasp
objects by increasing friction and improving the tactile sensing of surface textures.
The friction ridge skin is composed of two major layers: dermis (inner layer) and
epidermis (outer layer). The ridges emerge on the epidermis to increase the friction
between the volar (palm of the hand or sole of the feet) and the contact surface (see
Figure 2.1). A typical young male has, on an average, 20.7 ridges per centimeter
while a female has 23.4 ridges per centimeter.

Another important value of friction ridges is its use in biometric recognition. The
pattern of friction ridges on each finger (Figure 2.1(b)) is claimed to be unique and
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immutable, enabling its use as a mark of identity. In fact, even identical twins can
be differentiated based on their fingerprints. Superficial injuries such as cuts and
bruises on the finger surface alter the pattern in the damaged region only temporar-
ily. Indeed, the ridge structure has been observed to reappear after the injury heals.
However, if the injury were to extend to the basal layer of the epidermis, it can oblit-
erate the ability of the basal layer to regenerate cells in the damaged area. While the
surrounding basal cells will attempt to repair such an injury, this process will result
in a permanent scar on the surface of the friction ridge skin.

Although the possibility of using fingerprints as unique identifiers was recog-
nized thousands of years ago, their systematic use in applications requiring person
recognition did not occur until the early 20th century. Law enforcement agencies
now routinely record fingerprints of criminals on tenprint cards (Figure 2.2), which
capture rolled and plain impressions of all ten fingerprints. Two main purposes of
the recorded fingerprints are (a) to identify repeat offenders who often use an alias
to hide their true identity and (b) to perform background checks for employment
or licensing. Another important application of fingerprints in law enforcement is
to establish the identity of a suspect based on partial fingerprints left at a crime
scene. These are called latent prints, or simply latents (see Figure 2.3(c)). Com-
pared to rolled and plain fingerprints in Figures 2.3(a) and 2.3(b), latents typically
have poor image quality. As the size of fingerprint databases began to expand to
the millions, Automated Fingerprint Identification Systems (AFIS) were developed
in the 1970s to improve the efficiency and accuracy of fingerprint matching. Cur-
rently, almost every law enforcement agency worldwide relies on AFIS to match
fingerprints. Figure 2.4 shows the AFIS installed at the Michigan State Police facil-
ity. Growing concerns about homeland security and consumer fraud have prompted
the use of fingerprint-based biometric systems in many non-forensic applications.

(a) (b)

Fig. 2.1 There are two types of skin on the human body: (a) smooth skin and (b) friction ridge
skin. The friction ridge skin is observed to have a pattern of ridges interspersed with valleys.
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In fact, fingerprint-based biometric systems are so popular and successful that they
have become synonymous with the notion of biometric recognition in the minds of
the general public.

Fig. 2.2 A tenprint card. The top two rows show fingerprints acquired by rolling each finger from
one side to the other (so called rolled fingerprints). The bottom row shows plain or slap fingerprints:
slap impressions of four fingers (little to index finger) of the left hand acquired simultaneously are
shown on the left part of the bottom row, two thumb prints are shown in the middle, and the slap
impressions of four fingers (index to little finger) of the right hand acquired simultaneously are
shown on the right.

(a) (b) (c)

Fig. 2.3 Three different fingerprint impressions of the same finger. (a) Rolled fingerprint, (b) plain
fingerprint, and (c) latent fingerprint.
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2.2 Friction Ridge Pattern

Fingerprint recognition, whether done manually by a human expert or automatically
by a machine, is predominantly feature-based (as opposed to image-based) and the
features used have a physical interpretation. The terms feature-based and image-
based are widely used in the computer vision literature to indicate the methods used
for representing and matching images such as fingerprints. A feature-based method,
as the name suggests, extracts explicit features from the image under considera-
tion and encodes these features into a feature set, which is subsequently used for
matching. An image-based method, on the other hand, directly uses the image for
matching without explicitly extracting any features from it.

We first introduce the different types of features that can be extracted from a fin-
gerprint, followed by a description of the histology of friction ridge skin and its for-
mation. Knowledge of these two topics is essential in understanding the uniqueness
and permanence of friction ridge patterns, which are the two fundamental premises
in fingerprint recognition.

2.2.1 Features

The details in a fingerprint can be characterized at three different levels ranging from
coarse to fine. Under ideal conditions, coarse level features can be derived from the
finer levels of fingerprint representation.

Fig. 2.4 AFIS installation at Michigan State Police facility. This system was first installed in 1989;
the database has 3.2 million tenprint cards and performs 700,000 searches each year.
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(a) (b) (c) (d)

Fig. 2.5 Features at three different levels in a fingerprint. (a) Grayscale image (NIST SD30,
A067 11), (b) Level 1 feature (orientation field or ridge flow and singular points), (c) Level 2
feature (ridge skeleton), and (d) Level 3 features (ridge contour, pore, and dot).

2.2.1.1 Level 1 features

At the first (coarsest) level, a fingerprint is represented as a ridge orientation map
(see Figure 2.5(b)), which records the local ridge orientation at each location of
the fingerprint, and a ridge frequency map, which records the local ridge frequency
at each location in the fingerprint. A fingerprint is often referred to as an oriented
texture pattern since its global shape and structure can be defined by the orientation
and frequency of its ridges. In Level 1 detail, only the ridge flow and ridge frequency
are observed; the exact location and dimensional details of ridges are ignored. Thus,
low-resolution image sensors capable of scanning 250 pixels per inch (ppi) can be
used to observe the Level 1 details of a fingerprint.

The local ridge orientation at a pixel (x,y) represents the tangential direction of
ridge lines passing through (x,y). Ridge orientation is defined in the range [0,π).
Thus, the ridge orientation map can be viewed as a unit-length vector field whose
direction is defined between 0 and π . The ridge orientation at a pixel p is illustrated
in Figure 2.6. Local ridge frequency at (x,y) is the average number of ridges per
unit length along a line segment centered at (x,y) and normal to the local ridge ori-
entation. Ridge frequency is the reciprocal of the ridge period, which is illustrated
in Figure 2.6. Generally, the ridge orientation information is viewed as being more
important than the ridge frequency information for fingerprint matching and classi-
fication purposes.

A ridge orientation map typically contains some salient locations where the ridge
orientations change abruptly - such locations are termed as singular points. There
are two basic types of singular points - loop and delta - and they are visually distinc-
tive. A loop-type singularity, also called the core, refers to a local area where a set
of ridges enters from one direction and exits in the same direction (Figure 2.7(a)).
A loop in a fingerprint can be used as a landmark point to align the fingerprint. core
Generally, the core point corresponds to the north most loop-type singular point in
a fingerprint; if a fingerprint does not contain any singular points (e.g., arch-type
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Fig. 2.6 Level 1 details pertain to coarse features of the fingerprint. These details capture the ridge
orientation and frequency information in a fingerprint. This figure shows a portion of a fingerprint
with ridges indicated as dark lines with the ridge orientation θ and ridge period ab (reciprocal of
ridge frequency) marked at a pixel p.

fingerprints), the core usually refers to the point of maximum ridge curvature. How-
ever, the term core itself is often used to indicate a loop-type singularity in practice.
A delta-type singularity indicates a local area where three ridge systems appear to
meet (Figure 2.7(b)). The set of singular points in a fingerprint can be viewed as
an abstract representation of the orientation map so that the orientation map can
be roughly predicted based on the number and location of singular points. An even
more abstract representation of the orientation map is the pattern type (often referred
to as a fingerprint class), which can be deduced based on the number of loops and
deltas, and the spatial relationship between them. Examples of six major fingerprint
pattern types are shown in Figure 2.8, and almost all of the fingerprints fall into one
of those classes. Singularities in most fingerprints are observed to satisfy the fol-
lowing constraints: (a) the numbers of loops and deltas in a full print are the same;
in other words, loops and delta appear in pairs; and (b) the total number of singular
points are either 0, 2, or 4. The procedure to determine the fingerprint pattern type
based on the singular points will be discussed later in the chapter.

(a) (b)

Fig. 2.7 Singular points. (a) Loop and (b) delta.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.8 Major fingerprint pattern types. (a) Plain arch, (b) tented arch, (c) left loop, (d) right loop,
(e) whorl, and (f) twin loop. A loop is denoted by a circle and a delta is denoted by a triangle. Loop-
and whorl-type of fingerprints are found most commonly; about 65% of fingerprints belong to loop-
type, and 24% are whorl-type [52]. Twin loop, arch and tented arch account for approximately 4%,
4% and 3% of the fingerprints, respectively.

2.2.1.2 Level 2 features

In the second (middle) level, a fingerprint is represented as a ridge skeleton image in
which each ridge is only one-pixel wide (see Figure 2.5(c)). At this level, the exact
locations of the ridges are recorded, but the geometric and dimensional details of
the ridges are ignored. The locations where a ridge emerges, ends, splits, or merges
with another ridge are termed as ridge characteristics or minutiae. In addition to its
location, a minutia generally has two other properties: direction and type. The di-
rection of a minutia is along the local ridge orientation. There are two basic types of
minutiae: ending (also called ‘termination’) and bifurcation (see Figure 2.9). Thus,
each minutia can be characterized by its (a) location in the image, (b) direction,
and (c) type. Level 2 details of a fingerprint can be easily observed in images ac-
quired at a resolution of 500 ppi. The number of minutiae found in a fingerprint
varies a lot according to the acquisition method and other factors. For example, the
rolled impression of a finger shown in Figure 2.3(a) has 136 minutiae while its plain
impression in Figure 2.3(b) has 56 minutiae extracted by a commercial fingerprint
matcher. On the other hand, only 18 minutiae were found in the latent fingerprint in
Figure 2.3(c) by a latent examiner.
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A minutiae set, consisting of all the minutiae in a fingerprint, is an abstract rep-
resentation of the ridge skeleton in the sense that the minutiae set captures most of
the discriminative information at Level 2, and ridge skeletons can be approximately
derived from the minutiae information alone. Minutiae-based representations are
extensively used in automated fingerprint recognition systems, primarily due to the
following reasons: (a) minutiae capture much of the discriminative or individuality
information in fingerprints, (b) minutiae-based representations are storage efficient,
and (c) minutiae extraction is reasonably robust to various sources of degradation.
The spatial distribution of minutiae in a fingerprint is an interesting topic of study
that has gained increased attention due to the need for assessing the individuality of
fingerprints using minutiae information alone.

Fig. 2.9 There are two types of minutiae used to represent the Level 2 details in a fingerprint: ridge
ending (denoted as white circle) and ridge bifurcation (denoted as black box). While the forensic
literature alludes to other types of minutiae as well, ending and bifurcation are the most extensively
used ridge anomalies in automated fingerprint recognition systems. The spatial distribution of these
minutiae points in a fingerprint image is believed to be unique to each finger.

2.2.1.3 Level 3 features

In the third (finest) level, a fingerprint is represented using both the inner holes
(sweat pores) and outer contours (edges) of the ridges. So the ridges are no longer
viewed as being simple, one-pixel wide skeletal images. Rather, information em-
bedded within the ridges are observed in detail. Incipient ridges and dots are also
included at this level (see Figure 2.5(d)). Incipient ridges are immature ridges, which
are thinner than mature ridges and contain no sweat pores. A dot is a very short ridge
containing only a single ridge unit. With advances in fingerprint sensing technology,
many sensors are now equipped with 1000 ppi scanning capability that is needed to
capture the Level 3 details in a fingerprint. Figure 1.4 in Chapter 1 shows images
captured at 500 ppi and 1000 ppi by a CrossMatch L SCAN 1000P optical scan-
ner from the same portion of a fingerprint. Level 3 features are receiving increased
attention due to their importance in matching latent fingerprints that generally con-
tain much fewer minutiae than rolled or plain fingerprints. Figure 2.10(a) shows
the Level 3 features extracted from a latent fingerprint that are also observed in the
mated rolled fingerprint (Figure 2.10(b)).
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(a) (b)

Fig. 2.10 Level 3 features observed in a latent and its mated rolled fingerprint. (a) Latent finger-
print with pores and incipient ridges and (b) the mated rolled print with the same configuration of
the Level 3 features observed in (a).

2.2.1.4 Additional features

Fingerprints often have other features such as creases, cuts, and scars. While these
features are not inherent to fingerprint formation, they may become permanent de-
pending on the severity of cuts and scars. However, since these features are not as
universal as the three levels of features discussed earlier, their utility in fingerprint
matching is limited. In fact, such abnormalities are often the source of matching
errors, as discussed later.

2.2.2 Formation

The exact process of friction ridge pattern formation is not fully known. Embryol-
ogy research has shown that the epidermal ridges are preceded by the formation of
volar pads that first appear at about the sixth week of fetal development. The fric-
tion ridges appear in about the fourth month of gestation as a result of the stresses
during the growth of the fetus; the ridges are not elevated on the skin until about
the eighteenth week. Minutiae are formed as ridges separate and create space for
forming new ridges due to the growth of the finger surface.

The ridge flow on the boundary of a finger runs parallel to the fingernail furrow
and the finger crease. The ridge flow pattern in the central area, also termed as pat-
tern area, of the finger is governed by the shape, size, and placement of volar pads;
higher and symmetric volar pads tend to generate whorls, flatter and symmetric volar
pads tend to generate arches, and asymmetric volar pads tend to generate loops. It is
generally understood and agreed that friction ridge patterns are not just influenced
by genetic factors but also by random physical stresses and tensions during fetal
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development. These random effects during the morphogenesis of fingerprints are
believed to impart uniqueness to the fingerprint.

2.3 Fingerprint Acquisition

The first step in fingerprint recognition is image acquisition - the process of captur-
ing and digitizing the fingerprint of an individual for further processing. Tradition-
ally, the ink-on-paper technique has been used to capture the fingerprint information
from a person. It is a simple - yet powerful - acquisition and recording technique
that has been in use since the late 19th century. However, the primary reason for the
popularity of fingerprint recognition, particularly in non-forensic applications, is the
availability of mature, convenient, and low-cost sensors that can rapidly acquire the
fingerprint of an individual with minimum or no intervention from a human opera-
tor. These compact fingerprint sensors have also been embedded in many consumer
devices such as laptops and mobile phones. Below, we discuss some of the sensing
techniques that have been developed for acquiring fingerprints from a subject.

2.3.1 Sensing techniques

Broadly speaking, digital images of the fingerprints can be acquired using off-line or
on-line methods (see Figure 2.11). Off-line techniques generally do not produce the
digital image directly from the fingertip. Rather, the fingerprint is first transferred to
a substrate (e.g., paper) that is subsequently digitized. For example, an inked finger-
print image, the most common form of off-line capture, is acquired by first applying
ink to the subject’s fingertip and then rolling or pressing the finger on paper, thereby
creating an impression of the fingerprint ridges on paper. The impression is then
scanned and digitized using a flatbed document scanner. The tenprint card (see Fig-
ure 2.2) used by several law enforcement agencies records the inked fingerprints
of an individual. While the acquisition of inked fingerprints is still in practice, it
is both infeasible and socially unacceptable in the context of non-forensic appli-
cations. Latent fingerprint development is another example of an off-line method.
Latent fingerprints are lifted from the surface of objects that are touched or handled
by a person (Figure 2.11(c)). This is achieved through a variety of means ranging
from simple photography to more complex dusting or chemical processing.

In contrast, on-line techniques produce the digital image directly from a sub-
ject’s fingertip via digital imaging technology (described below) that circumvents
the need for obtaining an impression on a substrate. The resulting fingerprint image
is referred to as a live-scan fingerprint.

Most of the popular sensors to obtain a live-scan fingerprint image are based on
either optical or capacitive technologies. A brief description of some of the live-scan
sensing technologies is presented below.
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(a) (b) (c)

Fig. 2.11 There are different ways to acquire and digitize the fingerprint of an individual. (a) A
fingerprint can be first transferred to a paper substrate by manually placing an inked fingertip on pa-
per, and then digitizing the resulting impression using a flatbed scanner, (b) a live-scan fingerprint
can be directly imaged from a finger based on a number of advanced sensing technologies, (c) a
latent fingerprint can be lifted from objects in a crime scene using chemical or electrical processes.

Fig. 2.12 FTIR-based fingerprint sensing.

(a) Optical Frustrated Total Internal Reflection (FTIR): This technique uti-
lizes a glass platen, a LED (or a laser) light-source, and a CCD (or a CMOS)
camera for constructing fingerprint images. When a finger is placed on one side
of a glass platen (prism), only the ridges of the finger are in contact with the
platen, not the valleys (see Figure 2.12). The imaging system essentially consists
of an assembly of an LED light source and a CCD camera placed on the other
side of the glass platen. The light source illuminates the glass at a certain angle
and the camera is placed such that it can capture the light reflected from the glass.
The light incident on the ridges is randomly scattered (and results in a dark im-
age), while the light incident on the valleys suffers total internal reflection (and
results in a bright image). It is difficult to have this arrangement in a compact
form, since the focal length of small lenses can be very large. Further, image
distortions are possible when the reflected light is not focused properly.
(b) Capacitance: Capacitance-based solid state live-scan fingerprint sensors are
more commonly used than optical FTIR sensors since they are very small in size
and can be easily embedded into laptop computers, mobile phones, computer pe-
ripherals, and the like. A capacitance-based fingerprint sensor essentially consists
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of an array of electrodes. In a typical arrangement, there are tens of thousands
of small capacitance plates (electrodes) embedded in a chip. The fingerprint skin
acts as the other electrode, thereby forming a miniature capacitor. Small elec-
trical charges are created between the surface of the finger and each of these
plates when the finger is placed on the chip. The magnitude of these electrical
charges depends on the distance between the fingerprint surface and the capac-
itance plates. Thus, fingerprint ridges and valleys result in different capacitance
patterns across the plates. The capacitance due to the ridges is higher than those
formed by valleys. This differential capacitance is the basis of operation of a
capacitance-based solid state sensor. This technique is susceptible to electrostatic
discharges from the tip of the finger that can drastically affect the sensor; proper
grounding is necessary to avoid this problem.
(c) Ultrasound Reflection: The ultrasonic method is based on sending acoustic
signals toward the fingertip and capturing the echo signal. The echo signal is
used to compute the range image of the fingerprint and, subsequently, the ridge
structure itself. The sensor has two main components: the sender, that generates
short acoustic pulses, and the receiver, that detects the responses obtained when
these pulses bounce off the fingerprint surface. This method images the sub-
surface of the fingerprint and is, therefore, resilient to dirt and oil accumulations
that may visually mar the fingerprint. The device is, however, expensive, and as
such not suited for large-scale production.
(d) Piezoelectric Effect: Pressure-sensitive sensors have been designed that pro-
duce an electrical signal when a mechanical stress is applied to them. The sensor
surface is made of a non-conducting dielectric material which, on encountering
pressure from the finger, generates a small amount of current. (This effect is
called the piezoelectric effect). The strength of the current generated depends on
the pressure applied by the finger on the sensor surface. Since ridges and valleys
are present at different distances (heights) from the sensor surface, they result
in different amounts of current. This technique does not capture the fingerprint
relief accurately because of its low sensitivity.
(e) Temperature Differential: Sensors operating using this mechanism are made
of pyro-electric material that generates a current based on temperature differen-
tials. The temperature differential is created when two surfaces are brought into
contact. The fingerprint ridges, being in contact with the sensor surface, produce
a different temperature differential than the valleys that are away from the sensor
surface. The sensors are typically maintained at a high temperature by electrically
heating them up.

2.3.2 Image quality

The quality of the acquired fingerprint image has a significant impact on the per-
formance of feature extraction and matching. Important factors that determine fin-
gerprint quality include image resolution, finger area, and clarity of ridge pattern.
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In most forensic and biometric applications, an image resolution of 500 points per
inch (ppi) is necessary for successful processing and matching. At this resolution,
the distance between adjacent ridges is approximately 9 pixels. Law enforcement
agencies have now started scanning fingerprints at 1000 ppi in order to capture Level
3 features (see Figure 1.4 in Chapter 1 for comparison between fingerprint images
captured at 500 ppi and 1000 ppi). In civilian applications, fingerprint sensors with
resolution lower than 500 ppi are often used to reduce the cost of the sensor.

The captured finger area of a fingerprint image is also an important factor im-
pacting image quality. Because of the finger’s shape, plain fingerprints, obtained by
simply placing the finger on the sensor surface, cannot capture the whole finger-
print. In law enforcement applications, where recording the whole fingerprints is
important, the finger has to be rolled on the sensor surface to obtain the full finger-
print (this often requires a fingerprint examiner to hold the subject’s finger during
rolling). In consumer electronic products (e.g., laptops and mobile phones) where
the cost and size of the sensor are important issues, swipe sensors that can be as
narrow as 3mm have been introduced. To use this type of sensor, the user needs
to swipe his finger across the sensor window, during which all captured slices are
combined into a full fingerprint. Figure 2.13 shows an example fingerprint for each
of the three operation methods. In law enforcement applications where all ten fin-
gerprints need to be enrolled, fingerprint scanners that can capture the four fingers
of a hand (thumb is captured separately) or even the whole hand simultaneously are
preferred.

(a) (b) (c)

Fig. 2.13 Fingerprint scanner operation methods: (a) A plain fingerprint is obtained by simply
placing the finger on the surface of fingerprint sensor; (b) a rolled fingerprint is obtained by rolling
the finger from “nail to nail” on the surface of fingerprint sensor (this typically requires someone to
hold the finger to assist in proper rolling); (c) a sweep fingerprint is obtained by combining narrow
fingerprint slices (typically 3mm wide) while the user swipes his finger across the sensor.

The clarity of ridge pattern is another important determinant of quality. Both
the finger skin and the sensor have a large impact on the ridge clarity. In a good
quality fingerprint, ridges continuously flow and adjacent ridges are well separated.
When the finger is moist, adjacent ridges may be joined; when it is dry, the ridges
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may have many breaks; and the inherent quality of some fingers is poor (see Figure
2.14). Fingerprint images obtained using live-scan or inked techniques are typically
of better quality than latent fingerprints (see Figure 2.11).

(a) (b) (c)

Fig. 2.14 Examples of low quality fingerprint images: (a) dry finger, (b) wet finger, and (c) finger
with many creases.

2.4 Feature Extraction

Commercial fingerprint recognition systems are mainly based on Level 1 (ridge ori-
entation and frequency) and Level 2 features (ridges and minutiae). Generally, Level
1 features are first extracted and then Level 2 features are extracted with the guid-
ance of Level 1 features. Figure 2.15 shows the flowchart of a typical feature ex-
traction algorithm which includes four main steps, namely (a) ridge orientation and
frequency estimation, (b) ridge extraction, (c) singularity extraction, and (d) minu-
tiae extraction. In the following subsections, these four main steps are described.

2.4.1 Ridge orientation and frequency estimation

Ridge pattern in a local area of a finger can be approximated by a cosine wave

w(x,y) = Acos(2π f0(xcosθ + ysinθ )), (2.1)

where A, f0, and θ denote the amplitude, frequency, and orientation of the cosine
wave. Then, the 2D Fourier transform of the cosine wave is given by
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Fig. 2.15 Schematic diagram for the extraction of level 1 and level 2 features from a fingerprint
image.

W (u,v) =
A
2
[δ (u− f0 cosθ ,v− f0 sinθ )+ δ (u+ f0 cosθ ,v+ f0 sinθ )] . (2.2)

It consists of a pair of impulses located at ( f0 cosθ , f0 sinθ ) and (− f0 cosθ ,− f0 sinθ ).
The parameters of the cosine wave can be easily obtained by detecting the maximum
value of the magnitude spectrum. Let (û, v̂) denote the location of the maximum
magnitude. The parameters of the cosine wave are given by:

Â = |W (û, v̂)|, (2.3)

θ̂ = arctan

(
v̂
û

)
, and (2.4)

f̂0 =
√

û2 + v̂2. (2.5)

Since local ridge pattern is not exactly a cosine wave, its 2D Fourier transform, com-
puted using the Fast Fourier Transform (FFT), contains a pair of blurred impulses
(see Figure 2.16). To better estimate the parameters, the magnitude spectrum is first
smoothed using a low pass filter and then the maximum value is detected.

In the presence of noise, such as creases on the finger surface, initial estimation
of ridge orientation map and ridge frequency map may contain erroneous local re-
gions. To recover the parameters of the correct ridge pattern, a smoothing operation
with a proper window size is performed. It should be noted that although a frequency
map can be smoothened using a low pass filter, such as Gaussian filter, smoothening
an orientation field requires special consideration. Recall that ridge orientation of
fingerprints in a local area is defined in the range [0,π). Thus, a vector in 2D plane
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with an angle θ and another vector with angle (θ +π) correspond to the same ori-
entation. As a result, a simple arithmetic averaging of the orientations does not give
the desirable outcome. For example, the average value between 1◦ and 179 ◦ should
be 0 ◦ rather than 90 ◦. To perform a meaningful orientation field smoothening, the
following three-step procedure is used.

1. Construct a vector field V = (Vx,Vy) = (cos2θ ,sin2θ );
2. Perform low pass filtering on the two components of the vector field separately

to obtain the smoothened vector field V ′ = (V ′
x ,V

′
y);

3. The smoothened orientation field is given by 1
2 arctan

(
V ′

y
V ′

x

)
.

Figure 2.17 shows the effect of orientation field smoothening.

(a) (b)

0

10

20

30

0

10

20

30
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

xy

(c)

10
20

30
40

50
60

20

40

60

0.05

0.1

0.15

0.2

uv

(d)

Fig. 2.16 Discrete Fourier Transform (DFT) of a local region in a fingerprint image. (a) Local
ridge pattern of a fingerprint, (b) magnitude spectrum of (a), (c) local ridge pattern in (a) shown as
a surface, and (d) magnitude spectrum of (a) shown as a surface.
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(a) (b) (c)

Fig. 2.17 Orientation field estimation and smoothing. (a) Fingerprint image, (b) initial (noisy)
orientation field, and (c) smoothed orientation field.

2.4.2 Singularity extraction

Fingerprint singularity can be extracted from the orientation field using the well
known Poincaré index method. Poincaré index refers to the cumulative change of
orientations along a closed path in an orientation field. To accurately detect the
location and type of singularity, Poincaré index is generally evaluated using the
eight neighbors of a pixel. Let O[i] ∈ [0,π), i = 0, . . . ,7, denote the orientations at
eight neighbors, counterclockwise sorted starting from any neighbor, of a pixel. The
Poincaré index, PI, of the pixel is computed as

PI =
1
π

7

∑
i=0

δ (O[(i+ 1)mod 8]−O[i]) , (2.6)

where δ (θ ) is defined as

δ (θ ) =

⎧⎨
⎩

θ −π , if θ > π/2
θ , if −π/2 ≤ θ ≤ π/2

θ +π , if θ <−π/2.
(2.7)

Poincaré index of a pixel corresponding to a singular point can take one of four pos-
sible values: 0 (non-singular), 1 (loop), -1 (delta), and 2 (whorl). Figure 2.18 shows
an example for non-singular orientation field and three orientation fields containing
singularities. Note that whorl was not defined as a separate type of singular points in
Section 2.2.1 since it can be viewed as a combination of two adjacent loops facing
each other. Clearly, the Poincaré index of whorl is equal to the sum of the Poincaré
indices of two loops.

Typically, more than one singularity is detected around a true singularity. A sim-
ple grouping algorithm is used to cluster the singular points that are close in location
and are of the same type. The mean location of a cluster is used as the representative
location of singularity.
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Fig. 2.18 Poincaré indices around non-singular flow, a loop, a delta, and a whorl are 0, 1, -1, and
2, respectively. The top row shows local orientation fields of the four cases and the bottom row
gives the corresponding orientation values in degrees.

2.4.2.1 Direction of singularity

A singular point can also be assigned a direction. One approach is to define the
reference orientation field for a loop and a delta, respectively. The orientation field
around a true singular point can be approximated by a rotated version of the refer-
ence orientation field. The rotation angle is defined as the direction of the singular
point. The reference orientation fields of loop and delta, respectively, are given by

ROl(x,y) =
1
2

arctan

(
x
y

)
=

θ
2
, and (2.8)

ROd(x,y) =−1
2

arctan

(
x
y

)
=−θ

2
, (2.9)

where θ denotes the angle in the polar coordinate system. Figure 2.19 shows the
reference orientation fields of loop and delta.

The loop reference orientation field rotated by α is given by

ROl(x,y;α) =
θ −α

2
+α =

θ
2
+

α
2
. (2.10)

The delta reference orientation field rotated by α is given by

ROd(x,y;α) =−θ −α
2

+α =−θ
2
+

3α
2
. (2.11)

Note that rotating a delta reference orientation field by α +n 2π
3 , n ∈ Z (the set of all

integers) gives the same orientation field.
The difference between the local orientation field around a singularity and the

reference orientation field is given by
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(a) (b)

Fig. 2.19 Reference orientation fields of (a) loop and (b) delta.

D{l,d}(x,y) = O(xλ + x0,yλ + y0)−RO{l,d}(x,y). (2.12)

According to equation (2.10), the direction of a loop at (x0,y0) is computed by

α = arctan(
∑r

x=−r ∑r
y=−r sin(2Dl(x,y))

∑r
x=−r ∑r

y=−r cos(2Dl(x,y))
). (2.13)

According to equation (2.11), the direction of a delta at (x0,y0) is computed by

α =
1
3

arctan(
∑r

x=−r ∑r
y=−r sin(2Dd(x,y))

∑r
x=−r ∑r

y=−r cos(2Dd(x,y))
). (2.14)

The estimated singular points in three fingerprints are shown in Figure 2.20.

(a) (b) (c)

Fig. 2.20 Singular points and their directions. (a) Left loop, (b) right loop, and (c) twin loop.

Given a set of singular points in a rolled fingerprint, the following criteria can
be used to classify the fingerprint into one of six major pattern types (as shown in
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Figure 2.8). Note that arch and tented arch types are often put into the same category,
called arch, because of the difficulty in distinguishing between these two types.

1. A fingerprint is classified into plain arch, if it does not contain any singular points.
2. A fingerprint is classified into left loop, if it contains one delta and one loop

whose direction points to the left side of the delta.
3. A fingerprint is classified into right loop, if it contains one delta and one loop

whose direction points to the right side of the delta.
4. A fingerprint is classified into tented arch, if it contains one delta and one loop

whose direction points toward the delta.
5. A fingerprint is classified into whorl, if it contains at least two loops and two

deltas where ridge orientation field around the two loops form a circular orbit.
6. A fingerprint is classified as twin loop, if it contains at least two loops and two

deltas where the ridge orientation field around the two loops does not form a
circular orbit.

It should be noted that the accuracy of the above classification algorithm depends on
successful singularity extraction, which can be challenging in poor quality finger-
prints. Further, it requires the fingerprint to be complete (i.e., a rolled fingerprint).
Therefore, the pattern type of latent fingerprints obtained from crime scenes is typ-
ically considered as unknown and latents are often searched against all types of
fingerprints in the database.

2.4.3 Ridge extraction

Since minutiae are special points on ridges, it is natural to first extract ridges and
then detect the minutiae on ridges. Since ridges are darker than valleys, a straightfor-
ward method to detect ridges is to classify any pixel as a ridge pixel if its gray value
is lower than a threshold (for example, the mean of its local neighborhood). How-
ever, for most fingerprint images, this method does not work well for the following
reasons: (a) pores on ridges are brighter than the surrounding pixels; (b) ridges can
be broken due to cuts or creases; (c) adjacent ridges may appear to be joined due to
moist skin or pressure.

To deal with the above problems, fingerprint image enhancement is used to con-
nect broken ridges and separate joined ridges. A successful fingerprint enhancement
method is based on contextual filtering. Generally, this involves filtering the image
with the real part of a 2D complex Gabor filter whose orientation and frequency are
tuned to the local ridge orientation and frequency. Figure 2.21 shows the real part
of 2D Gabor filters at three different scales and eight different orientations. Figure
2.22(b) shows the enhanced image of the fingerprint in Figure 2.22(a).

The enhanced image can be converted to a binary image by using either a global
threshold (for example, using the mean pixel value of the enhanced image) or thresh-
olds that are locally computed. A morphological operation, called thinning, is used
to reduce the ridge width to one pixel. Thinning is a common technique in image
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Fig. 2.21 Real parts of Gabor filters with eight different orientations (along the rows) and three
different scales (along the columns).

(a) (b)

Fig. 2.22 Ridge enhancement by Gabor filtering. (a) Input fingerprint image and (b) enhanced
image.

processing, which involves iteratively removing outer ridge pixels. Figure 2.23 gives
the results of binarization and thinning steps.

2.4.4 Minutiae extraction

Once the thinned ridge image is available, the ridge pixels with three ridge pixel
neighbors are identified as ridge bifurcations and those with only one ridge pixel
neighbor are identified as ridge endings (see Figure 2.24). The direction of ridge
ending is computed in the following way. Starting from the ending x, we trace the
associated ridge to a fixed distance (say 10 pixels) and reach a point, say a. The
direction xa is used as the minutia direction. For a bifurcation, there are three as-
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(a) (b)

Fig. 2.23 Binarization and thinning results of the fingerprint image in Figure 2.22. (a) Binarized
ridge image and (b) thinned ridge image.

sociated ridges, so we obtain three points by tracing the ridges to a fixed distance.
The direction of the bifurcation is defined as the mean of the two directions whose
difference is the smallest among the three ridges. Figure 2.25 shows the direction of
minutiae marked on the ridge skeleton.

In practice, some of the minutiae detected using the above approach may be
spurious due to artifacts in image processing and noise in the fingerprint image. To
remove these spurious minutiae, a minutiae filtering algorithm is employed, which
typically consists of a number of heuristic rules. For instance, minutiae satisfying
any of the following conditions are deemed to be spurious minutiae and discarded:

1. minutiae that do not have an adjacent ridge on either side (mainly the endpoints
of ridges along the finger border);

2. minutiae that are close in location and almost opposite in direction (namely, the
difference between two minutiae directions is close to 180 ◦);

3. too many minutiae in a small neighborhood.

Figure 2.26 shows the effect of minutiae filtering.

2.5 Matching

Given the minutiae set {xQ
i ,y

Q
i ,θ

Q
i }M

i=1 of a query fingerprint with M minutiae and
the minutiae set {xT

j ,y
T
j ,θ T

j }N
j=1 of a template fingerprint with N minutiae, we now

describe a simple matching algorithm which consists of three steps (see Figure
2.27):
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Fig. 2.24 Minutiae detection. Three different types of ridge pixels are marked: typical ridge pixel
‘a’, ridge bifurcation ‘b’, and ridge ending ‘c’. Either a ridge bifurcation or a ridge ending defines
a minutiae.

(a) (b)

Fig. 2.25 Direction of a minutia. (a) Ridge ending and (b) ridge bifurcation.

(a) (b)

Fig. 2.26 Removing spurious minutiae. (a) Before minutiae filtering and (b) after minutiae filter-
ing.
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1. Alignment: Determine the geometric transformation between the two minutiae
sets so that they are in the same coordinate system.

2. Correspondence: Form pairs of corresponding minutiae.
3. Score generation: Compute the match score based on the corresponding minutiae

points.

Fig. 2.27 Flowchart of a minutiae matching algorithm.

2.5.1 Alignment

Since two impressions of the same finger taken at different instances could differ
due to different placement of the finger on the sensor, an alignment process is re-
quired to transform them to the same coordinate system. This process, also known
as registration, transforms one image in such a way that it is geometrically aligned
with the other. First, we need to specify a spatial transformation model. Generally, a
rigid transformation is sufficient for fingerprint matching unless a severe nonlinear
deformation is introduced during fingerprint acquisition. Generalized Hough trans-
form is a well-known algorithm for estimating the spatial transformation between
two point sets. The pseudo-code of the Generalized Hough transform algorithm is
given in Algorithm 1.
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input : Two minutiae sets {xT
i ,y

T
i ,θ T

i }M
i=1 and {xQ

j ,y
Q
j ,θ

Q
j }N

j=1
output: Transformation parameters
Initialize accumulator array A to 0
for i = 1,2, · · · ,M do

for j = 1,2, · · · ,N do
Δθ = θ T

i −θ Q
j

Δx = xT
i − xQ

j cos(Δθ )− yQ
j sin(Δθ )

Δy = yT
i + xQ

j sin(Δθ )− yQ
j cos(Δθ )

A[Δθ ][Δx][Δy] = A[Δθ ][Δx][Δy] + 1
end

end
return location of peak in A

Algorithm 1: Determining transformation parameters for aligning two sets of
fingerprint minutiae using the Generalized Hough Transform Algorithm.

Figure 2.28 illustrates the Hough transform approach to alignment when only
the translation (in x and y directions) between query and template minutiae sets is
unknown.

Another popular fingerprint alignment algorithm is to first find a pair of matched
minutiae, and then compute the rotation and translation parameters between two
fingerprints based on this pair of minutiae. Since the basic properties of minutiae,
namely location, direction and type, do not contain sufficient information for deter-
mining matched minutiae, additional information in the neighborhood of minutiae
needs to be associated with each minutia to increase its distinctiveness. This addi-
tional information is termed as a minutia descriptor [15]. A widely used minutia
descriptor is based on the set of minutiae in the neighborhood of the central minu-
tia (namely, the minutia whose descriptor needs to be computed). The location and
direction of neighboring minutiae are defined in the local minutia coordinate sys-
tem using the central minutia as the origin and its direction as the x axis. This way,
the descriptor is invariant with respect to the rigid transformation of fingerprints.
The similarity between two minutiae descriptors is computed by (a) first a pairing
of neighboring minutiae is established (using an algorithm similar to the algorithm
described in the next subsection) and then (b) computing the product of the percent-
ages of matched minutiae in the local region of each minutia as follows. Consider
Figure 2.29, where three minutia descriptors shown; the central minutiae in Fig-
ures 2.29(a) and 2.29(b) are considered a match, while the central minutia in Figure
2.29(c) does not match with those in Figures 2.29(a) and 2.29(b). There are six
matched minutiae (including the central one) between Figures 2.29(a) and 2.29(b),
and three matched minutiae between Figures 2.29(a) and 2.29(c). Thus, the simi-
larity between the minutiae in Figures 2.29(a) and 2.29(b) is 6

8 · 6
7 , is greater than

the similarity between the minutiae in Figures 2.29(a) and 2.29(c), which is 3
8 · 3

7 .
Since the descriptor-based alignment algorithm uses only a small neighborhood, it
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(a) (b)

(c) (d)

Fig. 2.28 Minutiae set alignment using the Hough transform. (a) query minutiae set, (b) template
minutiae set, (c) accumulator array or the Hough space image, and (d) aligned minutiae sets. The
“bright” spot in the Hough space in (c) indicates the cell that receives the most votes. The x and y
translation corresponding to this cell is used for aligning the two minutiae sets.

usually outperforms the Generalized Hough transform algorithm when the common
(overlapping) area between two fingerprints contains very few minutiae.

2.5.2 Pairing minutiae

After the two minutiae sets are aligned, the corresponding minutiae are paired. A
minutia a in the template (reference) minutiae set is said to be in correspondence
with minutia b in the query minutiae set if and only if their distance is within a
predefined distance threshold (say, 15 pixels) and the angle between their directions
is within another predefined angle threshold (say, 20 degrees). One minutia in the
template fingerprint is allowed to match to at most one minutia in the query finger-
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(a) (b) (c)

Fig. 2.29 Minutia descriptor. (a) Descriptor of a minutia (the central one) in a query fingerprint
image, (b) descriptor of the mated minutia in a template fingerprint, and (c) descriptor of another
minutia.

print and vice versa. The pseudo-code of a minutiae pairing algorithm is given in
Algorithm 2.

input : Two minutiae sets {xT
i ,y

T
i ,θ T

i }M
i=1 and {xQ

j ,y
Q
j ,θ

Q
j }N

j=1;
Transformation parameters (Δθ ,Δx,Δy)

output: List of paired minutiae
Initialize: set flag arrays f T , f Q, and count as 0; list as empty
for i = 1,2, · · · ,M do

for j = 1,2, · · · ,N do
if f T [i] == 0 & f Q[ j] == 0 & distance between minutiae i and j < td
& rotation between them < tr then

f T [i] = 1
f Q[ j] = 1
count = count+ 1
list[count] = {i, j}

end
end

end
return list

Algorithm 2: Minutiae Pairing Algorithm.

2.5.3 Match score generation

In this final step, we need to compute a match score, which is then compared to a
predefined threshold to classify the two fingerprints as a genuine match (they come
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from the same finger) or an impostor match (they come from two different fin-
gers). This problem can be viewed as a two-class classification problem with gen-
uine match as class-1 and impostor match as class-2. For this classification problem,
several potential features for distinguishing genuine matches from impostor matches
can be examined. The first feature is the number of paired minutiae. It is intuitive
that genuine matches should have more paired minutiae than the impostor matches.
The second useful feature is the percentage of matched minutiae in the overlapped
area between the two fingerprints. Again, it is intuitive that this percentage be larger
for genuine matches than for impostor matches. Given a set of minutiae, the fin-
gerprint area can be approximated by the convex hull of its minutiae points. Figure
2.30 shows examples of a genuine match and an imposter match using a commercial
matcher, Neurotechnology VeriFinger SDK 4.2.

(a) Match score = 614 (b) Match score = 7

Fig. 2.30 Fingerprint matching by a commercial matcher. (a) A genuine pair of fingerprints with
31 matched minutiae, and (b) an imposter pair with 6 matched minutiae. Corresponding minutiae
between the two images are connected by lines. The match score is computed as some function of
the number of matched minutiae and some other parameters that are proprietary to the commercial
matcher.

2.5.4 Latent fingerprint matching

Latent fingerprint recognition is of critical importance to law enforcement agencies
in identifying suspects and victims. Latent fingerprint matching is much more chal-
lenging than rolled or plain fingerprint matching due to typically poor image quality,
small finger area, and large nonlinear distortion of most latents (see Figure 2.31).
State-of-the-art feature extractors do not work well for many of the difficult latent
images. Typically, minutiae in latents are manually marked by trained latent exam-
iners in order to efficiently extract the limited information available. Figure 2.32
shows the manually marked minutiae in two typical latents.

Due to the limited number of minutiae in many latents, it is not possible to ac-
curately match latents solely based on minutiae. As an example, latent fingerprints
in a public domain latent fingerprint database, NIST SD27 [19], have 21 minutiae
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(a) (b) (c) (d)

Fig. 2.31 Latent fingerprints with poor quality. (a) Partial fingerprint, (b) unclear ridge structure,
(c) overlapped with other fingerprints, and (d) overlapped with complex background.

per fingerprint image, on average, (the minimum and maximum number of minu-
tiae for latents in NIST SD27 are 5 and 82, respectively) while the corresponding
(mated) rolled prints, on average, have 106 minutiae (the minimum and the maxi-
mum number of minutiae in the rolled prints in NIST SD27 are 48 and 193). One
way to improve latent matching accuracy is to utilize a more complete feature set
(namely, the extended feature set that includes Level 3 details) in matching. While
some algorithms have been proposed for matching plain or rolled fingerprints using
extended features, latent matching based on extended features is still an open prob-
lem. A main challenge is how to reliably encode and match Level 3 features in poor
quality latents.

Fig. 2.32 Two latent fingerprints with manually marked minutiae.
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2.5.5 Fingerprint individuality

Evidence based on fingerprints has been believed to be infallible and as such it has
been accepted in U.S. courts of law for almost a century. However, the reliability of
fingerprint evidence is being challenged under the Daubert standard, a set of crite-
ria regarding the admissibility of scientific testimony largely derived from a 1993
Supreme Court case. The Daubert standard has two basic requirements for source of
forensic evidence: the underlying scientific basis should be accepted widely, and its
error rate should be known. It is the “known error rate” criterion of the Daubert rule
that has been primarily used to question the scientific value of fingerprint evidence.
Although many researchers have attempted to estimate the inherent individuality
of fingerprints, the actual problem of estimating the error rate of latent fingerprint
identification, which involves human factors in many stages (latent development,
encoding, matching) is not yet solved. The only viable solution in the near term
may be to keep improving the performance of automated fingerprint systems and
ultimately replace human experts with automated systems.

2.5.6 Performance evaluation

The National Institute of Standards and Technology (NIST) has conducted sev-
eral fingerprint technology evaluations (http://fingerprint.nist.gov),
such as the Fingerprint Vendor Technology Evaluation (FpVTE), the Minutiae In-
teroperability Exchange Test (MINEX), Proprietary Fingerprint Template (PFT)
testing, and the Evaluation of Latent Fingerprint Technologies (ELFT), which use
operational data collected in forensic and government applications. The Univer-
sity of Bologna conducts FVC-onGoing (https://biolab.csr.unibo.it/
fvcongoing/UI/Form/Home.aspx), which is an evolution of the interna-
tional Fingerprint Verification Competitions (FVCs) organized between 2000 and
2006. Table 2.1 summarizes FpVTE 2003 Medium-Scale Test (MST), FVC2006,
and ELFT 2008 (Phase II) results. It is important to note that system performance
can vary widely depending on fingerprint data characteristics used in the evaluation.
Further, while these evaluations are useful, the performance of different biometric
systems cannot always be directly compared. In addition, technology evaluations
like those conducted by NIST do not always reflect operational performance due
to differences in data characteristics, operating environments, and user interactions
with the fingerprint reader.

A fingerprint recognition system’s operational performance is based on several
factors, including sensor characteristics, the number of subjects and demographic
distribution of the population enrolled in the system, and various environmental fac-
tors, including indoor versus outdoor, temperature, humidity, and so on. Moreover,
the required FMR and FNMR values depend on the specific application. For exam-
ple, Disney World’s fingerprint-based entry system operates at a low FNMR, so as
not to upset paying customers by rejecting them, at the expense of a higher FMR.
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On the other hand, a high security fingerprint access control system may require low
FMR at the risk of a higher FNMR.

In some cases, a fingerprint recognition system may not even successfully capture
a user’s fingerprint. These users may, for example, be in certain occupations that
involve manual labor or the elderly with “worn-out” fingers. In practice, the Failure
to Enroll (FTE) rate can be rather high (up to a few percentage points) depending
on the target population, sensor characteristics, and the occupation of users in the
population.

Table 2.1 Performance evaluation of fingerprint technology

Evaluation Data Best reported accuracies
NIST FpVTE
2003 (MST)

10,000 plain fingerprints FNMR = 0.6% at FMR =
0.1%

FVC2006

140 fingers, 12 images per finger
Electric field sensor (250 ppi) FNMR = 15% at FMR =

0.1%
Optical sensor (569 ppi) FNMR = 0.02% at FMR =

0.1%
Sweep sensor (500 ppi) FNMR = 3% at FMR = 0.1%

NIST ELFT 2008
(Phase II)

835 latent prints, 100,000 rolled
fingerprints

FNMR = 8% at FMR = 1%

2.6 Fingerprint Indexing

Besides alignment and matching, the minutiae points extracted from a fingerprint
image can also be used to index fingerprints. Indexing is the process of assigning
a numerical value (scalar or vector) to a fingerprint image based on the features
extracted from it. Fingerprint indexing, like fingerprint classification, can be used to
speed-up the fingerprint identification process by comparing the input probe image
only against a small subset of images in the database (gallery) having comparable
index values. Indexing based on minutiae points does not usually require explicit
alignment of the fingerprints. Furthermore, unlike fingerprint classification schemes,
the singular points need not be present in the image for indexing. This allows for the
successful indexing of partial fingerprints. Note that partial capture of a fingerprint
is one of the main sources of matching errors.

One of the most popular techniques for fingerprint indexing is based on triplets
of minutiae (see Figure 2.33). In this technique, each minutiae triplet is described
by a nine-dimensional feature vector consisting of the geometric properties of the
triangle formed by the triplet. The features include the lengths of the sides of the
triangle, the ridge count between each pair of vertices, and the orientation of the
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Fig. 2.33 A minutia triplet formed from three minutia points in a skeletonized fingerprint. The
minutiae angles are computed from the directions of the ridges at the minutiae points (shown using
arrowheads).

minutiae points at the vertices encoded with respect to the longest side. These fea-
tures are invariant to rotation and translation. However, the lengths of the sides are
highly sensitive to non-rigid distortions. Furthermore, the correct ordering of the
features and the three angles depend on correctly identifying the longest side of the
triangle, as shown in Figure 2.34. Unfortunately, the lengths of the triangle sides are
not invariant to distortions. The actual indexing algorithm used, however, is based
on geometric hashing in which the quantization procedure addresses the effects of
non-rigid distortion to a certain extent.

In geometric hashing, all triangles extracted from a fingerprint are placed in a
hash table where the feature vector pertaining to a triangle defines the key and the
ID of the fingerprint that generated this feature vector defines the data value. During
retrieval, each key of the input fingerprint is used to extract all IDs in the hash table
stored under the same key. Finally, the number of times each ID is retrieved in the
previous step is used as a similarity score between this ID and the input probe.

This technique can be improved by extracting a better set of features from
the minutiae triplets that is more robust to non-rigid deformations. Here, the six-
dimensional feature vector consists of the length of the longest side, the two smaller
internal angles of the triangles (more robust to distortion compared to minutiae di-
rections), the handedness of the triangle, its type, and its direction. The last two
features depend on the type of minutiae points that form the triangle, i.e., a ridge bi-
furcation or a ridge ending. Although the process of determining the type of minu-
tiae (ridge ending or bifurcation) is sensitive to noise, it is more robust to small
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Fig. 2.34 Ordered feature set for a minutiae triplet. The longest side, S1, appears first in the ordered
set of features. Similarly, the transformed minutiae angles, θi, and the ridge counts are taken in
specific order with respect to the longest side.

amounts of distortion. To be able to identify matching triangles in the presence of
various sources of noise, several geometric constraints can also be applied.

During enrollment, the fingerprint features based on triplets are appropriately
stored in a hash table. During retrieval, for each triplet in the input probe, multiple
triangles are generated by applying a distortion function to the values of the angles.
Each matching triangle found by this search must satisfactorily pass the geometric
constraints imposed by the algorithm before being accepted as an actual match.
After finding the matching triangles and the list of corresponding enrolled images,
the retrieval proceeds by identifying the set of minutiae points M = m1, ...,mr which
are common between the input probe and an enrolled gallery image. For each of
these minutiae points, mi, the number of triangles in the enrolled image, Id , which
include mi is counted. These counts are converted to posterior probabilities for the
hypothesis that the image Id belongs to the same identity as the probe given the
common minutiae point mi. Finally, an indexing score is computed for each Id by
summing its top n largest posterior probabilities. The retrieved images are sorted
according to their indexing scores and the top N images from the database are output
as possible hypotheses for matching.
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2.7 Fingerprint Synthesis

Fingerprint synthesis refers to generating artificial fingerprint images that are sim-
ilar to real fingerprint images. Fingerprint synthesis is mainly used for generating
a large database of fingerprints for testing fingerprint recognition algorithms since
collecting large databases of real fingerprint images is expensive both in terms of
money and time. Another objective of fingerprint synthesis is to be able to model
fingerprints and identify an appropriate set of parameters that characterize the fin-
gerprints. The resulting model, in turn, can help in fingerprint feature extraction and
matching. Here, we present a simple fingerprint synthesis algorithm consisting of
two steps: Level 1 feature synthesis and Level 2 feature synthesis.

2.7.1 Level 1 feature synthesis

Level 1 features contain local ridge orientation and local ridge frequency. Since the
variation in ridge frequency across a fingerprint is not large, it is typical to use a fixed
ridge frequency (0.1 ridges per pixel). For the purpose of orientation field synthesis,
it is desirable to have a parametric model of fingerprint orientation field, whose
parameters can be adjusted to simulate various orientation fields. One such model is
the Zero-pole model, whose parameters are the location and type of singular points:

RO(x,y) =
1
2

M

∑
i=1

ti arctan

(
y− yi

x− xi

)
, (2.15)

where M denotes the number of singular points, (xi,yi) denotes the coordinates of
the ith singularity, and ti ∈ {1,−1} denotes its type (1 for loop and −1 for delta).
The main limitation of the above model is that it cannot correctly model the arch-
type fingerprints that do not have any singularity; the orientation field is assigned a
value of 0 degree across the whole image plane.

A better model for arch-type orientation field is given by:

ROarch(x,y) = arctan
(

max
{

0,
(

k− 3
y
H

)}
· cos

( x
W

π
))

, (2.16)

where H and W denote the height and width of the image and k (2 < k < 5) controls
the curvature of arch. Figure 2.35 shows simulated orientation fields of three major
finger pattern types, namely arch (using Eq. (2.16)), left loop, and whorl (using Eq.
(2.15)).
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(a) (b) (c)

Fig. 2.35 Simulated fingerprint orientation fields. (a) Arch, (b) left loop, and (c) whorl.

2.7.2 Level 2 feature synthesis

Ridge pattern is generated by performing Gabor filtering on an image initialized
with random noise (see Figure 2.36). Parameters of Gabor filters are the simulated
orientation field and ridge frequency. The noise at each pixel follows uniform distri-
bution in the range [0,255]. Figure 2.37 shows several simulated fingerprint images
of arch, left loop, and whorl.

Note that the synthesized images shown in Figure 2.37 appear different from real
fingerprint images. As an example, there are no sweat pores on ridges and the ridge
contours are too straight. For the evaluation of fingerprint matching algorithms, it is
also necessary to simulate various intra-class variations related to (a) ridge thickness
and image contrast due to factors like the wetness of skin; (b) finger pressure on
sensor surface; and (c) finger placement on the sensor.

2.8 Palmprint

Friction ridge patterns on the palm of the hand and the sole of the foot (see Figure
2.38) have also been claimed to be unique and permanent and thus can be used for
personal identification. But, it is understandable that palmprints and sole prints have
fewer applications than fingerprints since it is not as convenient to capture them
compared to fingerprints. In fact, sole prints are only used to register newborns in
a hospital since it is easier to capture the sole print of newborns than fingerprints
or palmprints (newborns tend to keep their fists closed!). Even there, only an inked
impression of the sole print is stored in the file in case there is a dispute about baby
swaps in the hospital. Palmprints are beginning to gain prominence in forensics for
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Fig. 2.36 Noise image.

(a) (b) (c)

Fig. 2.37 Simulated fingerprint images. (a) Arch, (b) left loop, and (c) whorl.

identifying crime suspects and may have potential value in civilian applications.
However, law enforcement agencies do not yet have a large database of palmprints
comparable in size to that of fingerprints. Under the FBI’s Next Generation Identifi-
cation (NGI) scenario, one of the major objectives is to include palmprint matching
capability. But, as far as forensics application is concerned, the main benefit of us-
ing palmprints is in latent palmprint matching since it is estimated that about 30%
of the latents found at crime scenes are those of palms.

Understandably, matching palmprints is more complicated than matching finger-
prints. First of all, in terms of image acquisition, it is more challenging to capture
palmprints than fingerprints since the sensors are larger and more expensive and
greater user cooperation is required to ensure a good quality palmprint image due
to the concavity of the palm surface. Since palmprints, like fingerprints, are also
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friction ridge patterns, minutiae can also be used to match palmprints. However, the
number of minutiae in a palmprint is an order of magnitude larger than the number
of minutiae in a fingerprint (around 800 for palmprints vs. 80 for fingerprints). In
this section, we first describe the main features observed in palmprints and then in-
troduce palmprint recognition systems taking into account of above challenges for
forensic and civilian applications, respectively.

(a) (b)

Fig. 2.38 Friction ridge patterns on palm and sole [11].

2.8.1 Palmprint features

Palmprints consist of two unique features, namely, the palmar friction ridges and the
palmar flexion creases. Flexion creases are the firmer attachment areas to the basal
skin structure. Flexion creases appear before the formation of friction ridges during
the embryonic skin development stage, and both of these features are claimed to
be immutable, permanent, and unique to an individual. The three major types of
flexion creases that are most clearly visible in a palmprint are: distal transverse
crease, proximal transverse crease, and radial transverse crease (see Figure 2.39).
Various features in palmprints can be observed at different image resolutions. While
major creases can be observed at less than 100 ppi, thin creases, ridges, and minutiae
can be observed only at a resolution of at least 500 ppi; resolutions much greater
than 500 ppi are needed to observe pores. These features are marked in the example
palmprint in Figure 2.39.
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Fig. 2.39 Regions (interdigital, thenar and hypothenar), major creases (distal transverse crease,
proximal transverse crease and radial transverse crease), ridges, minutiae and pores in a palmprint.

2.8.2 Palmprint recognition in forensics

Up to now, the main use of palmprint recognition has been to identify suspects by
matching latent palmprints lifted from crime scenes against law enforcement palm-
print databases. To achieve high accuracy, minutiae are the main features used in
latent palmprint matching, which requires that palmprints be captured at 500 ppi
or higher resolution. As indicated earlier, due to the large size of the palm area,
the number of minutiae in a palmprint is approximately ten times the number of
minutiae in a rolled fingerprint. It is due to this computational complexity that full
palmprint to full palmprint matching is rarely performed, especially when ten (fin-
ger)print match provides sufficient accuracy in forensics, law enforcement, and bor-
der crossing applications.

Since the texture of a high resolution palmprint is very similar to a fingerprint,
many minutiae extraction and matching techniques for fingerprints are directly ap-
plicable to palmprints. However, there is one major difference between palmprints
and fingerprints, namely the presence of a large number of creases in palmprints.
Due to these creases, ridge orientation field estimation algorithms for fingerprints
do not perform very well. A modified orientation field estimation algorithm to han-
dle the creases in palmprints consists of the following steps:

1. Detect a set of six strongest sinusoid waves in the Fourier transform of each local
block (16× 16 pixels) in a palmprint.

2. Cluster the strongest waves that are compatible with each other into a set of seed
orientation fields. Two waves in adjacent blocks are said to be compatible if their
orientation and frequency are similar.

3. Grow each seed orientation field by including adjacent and compatible waves.
4. Select the largest seed as the final orientation field.
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After the orientation field is obtained, the fingerprint feature extraction steps,
including Gabor filtering, binarization, thinning, and minutiae extraction, can be
directly used for palmprint processing and matching. As shown in Figure 2.40, this
modified orientation field estimation algorithm leads to a better ridge skeleton image
compared to the ridge skeleton obtained from a state-of-the-art fingerprint feature
extraction algorithm. Figure 2.41 shows an example of successful latent palmprint
matching.

(a) (b) (c)

Fig. 2.40 Comparison of two feature extraction algorithms on palmprints. (a) A live-scan partial
palmprint from the thenar region. (b) Ridge skeleton image of (a) obtained using a state-of-the-
art fingerprint feature extraction algorithm. (c) Ridge skeleton image of (a) obtained using the
palmprint feature extraction algorithm described earlier.

(a) (b) (c)

Fig. 2.41 Latent palmprint matching. (a) Latent palmprint with minutiae, (b) corresponding region
in the mated palmprint, and (c) the mated full palmprint.
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2.8.3 Palmprint recognition for access control

Palmprint recognition systems in forensics need high resolution images (at least 500
ppi), so they employ expensive scanners and have high computational complexity.
To reduce computational complexity and the cost of palmprint scanners, which are
critical issues in adopting biometrics technology in civilian applications (e.g., ac-
cess control), some effort has been made to design real-time palmprint recognition
systems that are based on low resolution (around 75 ppi) images. These systems
capture palmprints directly using a commodity digital camera such as a webcam.
Figure 2.42 shows a low resolution palmprint image. Note that ridges and minutiae
are not clearly visible at this low resolution. Therefore, the low resolution palm-
print matching systems are mainly based on flexion creases that are still visible. The
low resolution palmprint recognition systems adopt a processing framework that
includes (a) palmprint cropping and normalization based on detecting two finger
gaps, (b) filtering the cropped image using 2D Gabor filter with predefined direc-
tion and frequency, and (c) binarizing the real and imaginary images. This palmprint
encoding process is shown in Figure 2.43. To compute the similarity between two
palmprints, the Hamming distance between the foreground (region of interest) real
and imaginary binary filtered images of two palmprints is computed and divided by
the number of foreground pixels. To account for small variance in the normalization
step, the template image is typically rotated and translated to obtain its several dif-
ferent versions. The minimum distance between the query image and all the versions
of the template image is chosen as the final distance. While the reported accuracies
of the low resolution palmprint matching systems are impressive, they have not yet
shown to be competitive with respect to fingerprint matching systems for access
control or other civilian applications.

Fig. 2.42 A low resolution palmprint image (75 ppi) from PolyU palmprint database.
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(a) (b) (c) (d)

Fig. 2.43 Palmprint encoding. (a) Original palmprint image showing the region of interest and two
finger gap positions used for normalization, (b) cropped image, (c) filtered and binarized image by
the real part of Gabor filter, and (d) filtered and binarized image by the imaginary part of Gabor
filter.

2.9 Summary

Fingerprint recognition is one of the most mature biometric technologies and it has
been in use for over 100 years. Despite the maturity of fingerprint technology, its
widespread adoption in a diverse set of applications has raised several new chal-
lenges that the scientific community is currently addressing.

1. While different types of fingerprint sensing technologies have been developed,
capturing high quality fingerprint images from fingers under non-ideal conditions
and unhabituated users is still problematic. One technology that shows promise
is the acquisition of 3D fingerprints in a touchless mode. A major advantage
of this modality is that it can capture rolled-equivalent fingerprint images much
faster than the conventional rolling process. It may also avoid the skin distortion
introduced by rolling and other pressure variations.

2. The wide deployment of fingerprint recognition systems in various applications
has also resulted in some novel methods for circumvention. It has been reported
that some individuals have successfully defeated positive recognition systems
(e.g., physical access control systems) using spoof fingers and some individuals
have successfully circumvented negative recognition systems (e.g., border con-
trol systems) by surgically altering their fingerprints. Further research is required
to assure the integrity of fingerprints presented to the sensor.

3. Although fingerprint recognition is one of the earliest applications of pattern
recognition, the accuracy of state-of-the-art fingerprint matching systems is still
not comparable to human fingerprint experts in many situations, particularly la-
tent print matching where image quality tends to be poor. State-of-the-art finger-
print identification systems require extensive manual intervention in latent en-
coding and in verifying a candidate list returned by the system. With the increase
in latent matching transactions for civilian, law enforcement, and homeland se-
curity applications, automated latent processing and matching is a fruitful area
of research.
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4. The widespread use of fingerprint recognition systems in large-scale government
and civilian applications has raised concerns about the fingerprint template’s se-
curity and the resulting privacy of the user. Security and privacy are of particular
concern in centralized databases, which can store millions of fingerprint tem-
plates. Privacy-enhancing technology, along with cancelable biometrics, is likely
to raise the privacy and security levels of such critical personal information. How-
ever, more research is required to incorporate these schemes in an operational
environment.

Bibliographical and Historical Remarks

The discovery of many archaeological artifacts having human fingerprint impres-
sions on them indicates that ancient civilizations were aware of the fingerprints.
However, this awareness did not appear to have resulted in any analysis of the fin-
gerprint patterns and their individuality until the late seventeenth century [34, 40].
The first scientific study of fingerprint structures was reported in a publication by
Nehemiah Grew in 1684 [34] and a detailed description of the anatomical forma-
tion of fingerprints was provided by Mayer in 1788 [40]. In 1823, Purkinje was the
first to classify fingerprints into nine categories according to the ridge configurations
[40]. Readers interested in knowing more about the early history of fingerprints are
referred to [11, 40, 4, 34].

It was only in the late nineteenth century that the scientific community started
contemplating the use of fingerprints as a tool for person identification. The founda-
tion for modern fingerprint recognition was laid in 1880 by Henry Faulds [12] and
Sir William Herschel [24], who independently suggested the individuality of finger-
prints based on empirical observations. This was quickly followed by the work of
Sir Francis Galton, who extensively studied the characteristics of fingerprints [18]
and introduced the minutiae features for fingerprint matching [17]. The claim of
uniqueness of fingerprints did not lead to an immediate demise of the anthropomet-
ric system of identification (introduced by Bertillon), which was in use at that time.
This was due to the lack of an efficient scheme to index large fingerprint databases
in such a way that human experts can quickly search for similar fingerprints and
perform manual fingerprint identification. An important breakthrough was made by
Edward Henry in 1899, who established the well-known “Henry system” of finger-
print classification [23].

In 1891, Argentine police officials initiated the fingerprinting of criminals and
used fingerprints as evidence in a homicide case in 1892 [22]. This appears to be
the first use of fingerprints in criminal proceedings. Soon, fingerprint recognition
came to be formally accepted as a valid personal identification method and became
a standard routine in forensics [34]. Fingerprint identification agencies were set up
worldwide and fingerprint databases were established by law enforcement agencies.
The Federal Bureau of Investigation (FBI) in the United States set up its fingerprint
identification division in 1924 with a database of 810,000 fingerprint cards [13].
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Various fingerprint recognition procedures, including techniques for latent finger-
print acquisition [14] and standards for fingerprint matching were developed [33].

The initial success of fingerprint recognition led to its rapid expansion in law en-
forcement and forensic applications. As a result, operational fingerprint databases
became so huge that it was infeasible to perform manual fingerprint card searching
even with the aid of “Henry system” of classification. This created a strong demand
for automated fingerprint identification systems (AFIS). One of the first publica-
tions on automated fingerprint matching was authored by Mitchell Trauring in 1963
[49]. The U.S. National Bureau of Standards (NBS), which later evolved into the
National Institute of Standards and Technology(NIST), started the formal testing of
automated fingerprint identification systems in 1970 [53] and the FBI installed its
first prototype AFIS in 1972.

As rightly predicted by Trauring [49], the use of automated fingerprint recog-
nition has not been limited to law enforcement and forensic applications. Today,
automated fingerprint recognition technology is being used in a number of civilian
applications for physical and logical access control and by government agencies for
civil registry and border crossing. This has been made possible through technolog-
ical advances in the following three main areas: live-scan fingerprint sensing, fin-
gerprint image analysis and feature extraction, and fingerprint matching techniques.
While the following paragraphs present a brief review of the evolution of automated
fingerprint recognition technologies, the reader should consult [39, 10] for a more
detailed description.

A good overview of the innovations in fingerprint sensing devices can be found
in [39, 56]. The Frustrated Total Internal Reflection (FTIR) technique that is widely
used for live-scan fingerprint acquisition was first proposed in 1984. While the con-
cept of solid-state sensors was proposed in the 1980s, such sensors became com-
mercially available only a decade later. In the last two decades, the focus has been
on improving the sensing technology to reduce cost and make the sensors compact
(e.g., sweep sensors), capture high resolution fingerprints, rapidly acquire impres-
sions of all ten fingers, acquire fingerprints in a touchless manner, and detect spoof
or fake fingers.

The most commonly used features used in automated fingerprint recognition are
the minutiae, which are also known as Galton details [17]. With the advent of high
resolution sensors, researchers have also been examining the use of more intri-
cate details such as sweat pores and finer ridge structures for automated fingerprint
recognition [28]. Several efforts have also been made to standardize the definition of
minutiae [2, 26, 27] and other extended features in a fingerprint [3]. Attempts have
also been made to quantify the uniqueness of different fingerprint features through
statistical modeling [46, 42, 58]. The possibility of reconstructing a fingerprint from
minutiae points has been established [44, 9], thereby challenging the previously
held notion that a minutiae template does not divulge information about the actual
fingerprint image.

Fingerprint image analysis and automated extraction of fingerprint features has
been studied extensively over the last five decades. Most of the pre-processing steps
in automated feature extraction such as computation of local image gradients [21],
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estimation of the fingerprint orientation field [31, 43, 5], regularization and mod-
eling of the orientation field [45, 32, 51], estimation of the local ridge frequency
[38, 25], segmentation of the fingerprint area from the background [43], and en-
hancement of the ridge-valley structure [41, 25] have been studied in detail. Several
techniques have also been proposed for automated extraction of singular points (core
and delta) that can facilitate easy alignment of fingerprint patterns [32, 54], minutiae
detection either through binarization and thinning [43, 29] or through direct gray-
scale extraction [37], post-processing of extracted minutiae to filter out spurious
ones and estimation of other features like ridge counts.

Numerous solutions have been proposed in the literature to tackle the problem
of matching features from two fingerprint images to determine if they are from the
same finger. These solutions include minutiae-based matchers [54, 29], and match-
ers based on other ridge and texture features [30]. While minutiae-based techniques
are the most popular, there are a number of variations within this approach itself
depending on how the minutia features are aligned, how the minutiae correspon-
dences are determined, and how these correspondences are converted into similarity
measures. The use of other features in addition to minutiae, such as orientation field
[48], frequency map [50], and ridge skeleton [15] have also been considered. The
problem of automatically classifying fingerprint images based on the “Henry sys-
tem” of classification has also received wide attention due to its ability to speed-up
the search in large-scale fingerprint identification systems [32, 7, 8]. Other indexing
schemes that facilitate rapid search in large-scale systems without relying on the
traditional fingerprint classes have been proposed [20, 6].
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Chapter 3
Face Recognition

“To ask how a human goes about face identification is probably an intractable question at present.
But to ask how well and with what cues identification can occur is indeed a tractable question. So,
too, is the matter of achieving effective machine identification and retrieval.”

Goldstein, Harmon and Lesk, Proceedings of the IEEE, May 1971.

Human face images are useful not only for person recognition, but for also revealing other

attributes like gender, age, ethnicity, and emotional state of a person. Therefore, face is an important

biometric identifier in the law enforcement and human-computer interaction (HCI) communities.

Detecting faces in a given image and recognizing persons based on their face images are classical

object recognition problems that have received extensive attention in the computer vision literature.

While humans are perceived to be good at recognizing familiar faces, the exact cognitive processes

involved in this activity are not well-understood. Therefore, training a machine to recognize faces

as humans do is an arduous task. However, general methods used in object recognition such as

appearance-based, model-based, and texture-based approaches are also applicable to the specific

problem of face detection and recognition. This chapter provides an overview of methods that have

been developed for automated face recognition and discusses some of the challenges encountered

by these systems.

3.1 Introduction

The face is the frontal portion of the human head, extending from the forehead to
the chin and includes the mouth, nose, cheeks, and eyes. Being the foremost part
in one’s interactions with the outer world, the face houses most of the fundamental
sensory organs necessary for perceiving the world around, namely, eyes for seeing,
nose for smelling, mouth for tasting, and ears for hearing. The face is considered
to be the most commonly used biometric trait by humans; we recognize each other
and, in many cases, establish our identities based on faces. Hence, it has become a
standard practice to incorporate face photographs in various tokens of authentication
such as ID cards, passports, and driver’s licenses.
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Face recognition can be defined as the process of establishing a person’s identity
based on their facial characteristics. In its simplest form, the problem of face recog-
nition involves comparing two face images and determining if they are of the same
person. While humans seem to be adept in determining the similarity between two
face images acquired under diverse conditions, the process of automated face recog-
nition is beset with several challenges. Face images of a person may have variations
in age, pose, illumination, and facial expressions (see Figure 3.1) as well as exhibit
changes in appearance due to make-up, facial hair, or accessories (e.g., sunglasses).
Training a machine to recognize face images exhibiting such unconstrained intra-
user variations is a difficult task, especially since the exact cognitive and neural
processes involved in humans for the task of face recognition (and recollection) is
still not completely known. Moreover, there may be similarities between the face
images of different persons (see Figure 3.2), especially if they are genetically re-
lated (e.g., identical twins, father and son, etc.). Such inter-class similarities further
compound the difficulty of recognizing people based on their faces. Despite these
challenges, significant progress has been made in the field of automated face recog-
nition over the past two decades. Techniques for automated face recognition have
been developed for the purpose of person recognition from still 2-dimensional (2D)
images, video (a sequence of 2D images), and 3D range (depth) images.

The face modality has several advantages that make it preferable in many biomet-
ric applications. Firstly, unlike fingerprints, face can be captured at a longer stand-
off distance using non-contact sensors. Hence, face is a suitable biometric identifier
in surveillance applications. Secondly, the face conveys not only the identity, but
also the emotions of a person (e.g., happiness or anger) as well as biographic infor-
mation (e.g., gender, ethnicity, and age). The automated recognition of faces and as-
sociated emotions is necessary for designing interactive human-computer interfaces.
Thirdly, there are large legacy face databases (e.g., U.S. driver’s license repositories
covers over 95% of the adult population), which enable large scale analysis of the
face modality in terms of individuality or scalability. Finally, compared to other bio-
metric traits like fingerprint and iris, people are generally more willing to share their
face images in the public domain as evinced by the increasing interest in social me-
dia applications (e.g., Facebook) with functionalities like face tagging. Due to the
above reasons, face recognition has a wide range of applications in law enforcement,
civilian identification, surveillance systems, and entertainment/amusement systems.
Figure 3.3 depicts some of these applications of face recognition.

3.1.1 Psychology of face recognition

Research in the fields of psychology and neuro-cognition indicates that certain parts
of the brain are geared toward perceiving the face. Experiments have shown that
humans find it difficult to detect or recognize faces that are inverted although they
can perceive other inverted objects rather easily. Analysis of patients suffering from
prosopagnosia (a disorder in which an individual loses his ability to recognize faces
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

Fig. 3.1 The problem of intra-class (i.e., intra-user) variations is quite pronounced in the context
of face recognition. The face image of an individual can exhibit a wide variety of changes that
make automated face recognition a challenging task. For example, the face images in (b), (c),
and (d) differ from the frontal face image of the person in (a) in terms of pose, illumination, and
expression, respectively. The second row shows the variability introduced due to aging. Here, the
images in (e), (f), and (g) were acquired when the person in (a) was 32, 21, and 15 years younger,
respectively. The third row depicts the problem of occlusion of some facial features due to the
person wearing accessories such as (h) prescription glasses, (i) sunglasses, (j) cap, and (k) scarf.

whilst retaining their ability to recognize other non-face objects) has shown that
the loss in face recognition capability is caused by lesions in an area of the brain
called the temporal cortex. This is also supported by a separate study that recorded
an active response in the temporal cortex area of a monkey’s brain when presented
with images of faces.

The underlying mechanism of face perception in humans has been studied for
two purposes: (a) to design machine recognition systems that can mimic the human
ability to recognize faces and (b) to understand the neurological or psychological
mechanism of brain functions for medical treatment. Because it is difficult to di-
rectly observe the brain functions related to face recognition, indirect observations
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(a) Twin1 (b) Family2

1 www.marykateandashley.com.
2 news.bbc.co.uk/hi/english/in depth/americas/2000/us elections.

Fig. 3.2 The problem of inter-class similarity. The face images of some people (e.g., twins or fam-
ilies) exhibit similarities in appearance that can confound an automated face recognition system.

are commonly made to understand the mechanism supporting human face recog-
nition. For example, based on the observations that human can recognize carica-
tures and cartoon faces, it is inferred that humans perceive the face based on certain
higher-level characteristics. Studies using advanced brain imaging techniques such
as functional magnetic resonance imaging (fMRI) are expected to reveal the precise
face processing mechanism in the human brain.

3.1.2 Facial features

As indicated earlier, the face is composed of the forehead, eyebrows, eyes, nose,
mouth, cheeks, and chin. Anthropometric studies have attempted to characterize
the dimensions of the face based on a set of anatomically meaningful landmark or
fiducial points. Figure 3.4 shows the representative landmark points used in several
anthropometric studies. Anthropometric measurements have been used to study the
growth patterns in humans as well as understand characteristics of the face as it
pertains to gender and ethnicity. The forensic community has used these landmarks
to identify face images. However, these measurements are not extensively used in
automated face recognition systems due to their perceived lack of distinctiveness.
Moreover, extracting these landmarks in poor quality face images may be challeng-
ing.

Similar to the case of fingerprints, the facial characteristics can be organized into
the following three levels: (see Figure 3.5).

• Level 1 details consist of gross facial characteristics that are easily observable.
Examples include the general geometry of the face and global skin color. Such
features can be used to quickly discriminate between (a) a short round face and

http://www.marykateandashley.com
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(a)

(b) (c)

(d)

Fig. 3.3 Applications of automated face recognition: (a) Australia’s SmartGate system that facil-
itates faster immigration clearance for registered travelers; (b) Morpho’s driver license solution,
where face recognition can be used to prevent a single person obtaining multiple licenses under
different names; (c) Microsoft’s Kinect device has face recognition capabilities for the purpose of
personalizing the XBOX 360 gaming system based on the player’s identity; and (d) Google’s Picasa
and other social network websites offer automated face tagging functionality for easy management
of personal photo albums.
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(a) Frontal

(b) Profile

Fig. 3.4 Anthropometric facial landmarks on (a) frontal and (b) profile views of a face (Adapted
from the Anthropometry of the Head and Face, 1994).

an elongated thin face; (b) faces exhibiting predominantly male and female char-
acteristics; or (c) faces from different races. These features can be extracted even
from low resolution face images (< 30 interpupilary distance (IPD)1).

• Level 2 details consist of localized face information such as the structure of
the face components (e.g., eyes), the relationship between facial components,

1 IPD stands for Inter-Pupillary Distance, which represents the number of pixels between the cen-
ters of the two eyes in the given face image. IPD has been used to measure the image resolution in
recent face recognition vendor tests.
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(a) (b)

(c)

Fig. 3.5 Examples of the three levels of facial features. (a) Level 1 features contain appearance
information that can be useful for determining ethnicity, gender, and the general shape of a face.
(b) Level 2 features require detailed processing for face recognition. Information regarding the
structure and the specific shape and texture of local regions in a face is used to make an accu-
rate determination of the subject’s identity. (c) Level 3 features include marks, moles, scars, and
other irregular micro features of the face. This information is useful to resolve ambiguities when
distinguishing identical twins, or to assist in forensic investigation scenarios.

and the precise shape of the face. These features are essential for accurate face
recognition, and they require a higher resolution face image (30 to 75 IPD). The
characteristics of local regions of the face can be represented using geometric or
texture descriptors.

• Level 3 details consist of unstructured, micro level features on the face, which in-
cludes scars, freckles, skin discoloration, and moles. One challenging face recog-
nition problem where Level 3 details may be critical is the discrimination of
identical twins.

3.1.3 Design of a face recognition system

A typical face recognition system is composed of three modules: (a) image acqui-
sition, (b) face detection, and (c) face matching (see Figure 3.6). The face image
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acquired from a sensor can be categorized based on (a) the spectral band (e.g., visi-
ble, infrared, and thermal) used to record the image and (b) the nature of the image
rendering technique (e.g., 2D, 3D, and video). Since most of the automated face
recognition systems make use of 2D images acquired in the visible spectrum, much
of this chapter will discuss the processing of this type of images. Face detection
(also known as face localization or segmentation) refers to the process by which the
face is located in an image and its spatial extent is determined. This task can be sig-
nificantly challenging when the face object is located in a cluttered background or
when multiple face images at different scales are available within the same image.
Due to the distinctive characteristic patterns of eyes, most commercial face recog-
nition engines first detect the two eyes prior to localizing the spatial extent of the
face. Face detection in 3D images is considered to be an easier problem compared
to 2D images because of the availability of depth information. In video streams,
face detection can be made robust by tracking the detected faces over a sequence
of images. Face matching is usually carried out by comparing the features extracted
from the probe and gallery images.

Fig. 3.6 Schematic of the face recognition process.

3.2 Image Acquisition

Automated face recognition requires the face data to be in a machine readable for-
mat. Conventional 2D photographs, 3D range or depth images, and videos are the
three major types of image formats used in face recognition systems. Sensing tech-
nologies are continuously improving in order to increase the image resolution, cap-
ture more details by recording the face using multiple spectra (i.e., visible, infrared,
and near-infrared), and facilitate real-time operation of 3D sensors.
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3.2.1 2D Sensors

Until the development of sophisticated devices for capturing face information in 3D
and invisible spectra, two-dimensional photographic images (also known as mug-
shot or still images) were the only source used by automated face recognition sys-
tems. Therefore, a large number of sensors and face recognition techniques have
been developed for acquiring and processing 2D face images pertaining to the visi-
ble spectrum. Figure 3.7 shows some of the 2D cameras in use today.

(a) 1 (b) 2 (c) 3

1 http://www.unisa.edu.au/unisanews/2005/June/biometrics.asp.
2 http://ws.sel.sony.com/PIPWebServices/RetrievePublicAsset/StepID/SEL-asset-61461/

370x251.
3 http://electrocctv.com/index.php?main page=product info&cPath=5 15&products id=21.

Fig. 3.7 Examples of 2D camera systems. (a) Multiple 2D cameras capturing face images at three
different viewpoints, (b) Sony EVI-D70 Pan-Tilt-Zoom camera, and (c) Sony long range infrared
camera.

Since the face is a 3-dimensional object, 2D images of a face may occlude some
of the facial features. This phenomenon is referred to as self-occlusion. In gen-
eral, the frontal view of a face contains more details than a profile view and hence,
matching frontal views of a face can be expected to provide more accurate person
recognition. Multi-camera configurations that capture face images at multiple pose
angles have been used to address the pose variation problem. Recognition systems
based on 2D face images are also greatly affected by variations in illumination and
spatial resolution. To overcome these challenges, new sensors such as high resolu-
tion cameras, active pan-tilt-zoom (PTZ) cameras, and infrared cameras are being
used. Figure 3.8 shows example images captured in the visible and near-infrared
(NIR) spectral bands. A NIR camera can operate even under low illumination con-
ditions because it uses a separate NIR illuminator. Since the NIR illumination is not
visible to the human eye, such a camera can be used for covert face acquisition in a
dark (e.g., night) environment.

Typical face acquisition systems have a short operating distance limited to ap-
proximately 1-2 meters. When the subjects are observed at longer distance, the face

http://www.unisa.edu.au/unisanews/2005/June/biometrics.asp
http://ws.sel.sony.com/PIPWebServices/RetrievePublicAsset/StepID/SEL-asset-61461/370x251
http://electrocctv.com/index.php?main page=product info&cPath=5 15&products id=21.
http://ws.sel.sony.com/PIPWebServices/RetrievePublicAsset/StepID/SEL-asset-61461/370x251
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Fig. 3.8 Face images captured in the visible and near-infrared spectra at different wavelengths.

is captured at low resolution (see Figure 3.9), which may cause the face recognition
process to fail. One approach to deal with the problem of low spatial resolution is to
generate a higher resolution face image from the given low resolution image through
a process called super-resolution. The other approach to improve the resolution of
face images is to use high resolution cameras or PTZ cameras. A PTZ camera can
dynamically zoom in or zoom out to obtain close-up images of objects of interest.
However, the field of view of a PTZ camera is severely reduced when it zooms in
to an object. Therefore, camera systems with paired static and PTZ cameras have
emerged as a promising method to achieve zooming capability in a wide surveil-
lance area. The static camera provides the wide field of view and then directs the
PTZ camera to obtain high resolution images of target objects. Figure 3.10 shows an
example face acquisition system with a pair of static and PTZ cameras and captured
images from the static and PTZ cameras, respectively.

3.2.2 3D Sensors

The inherent pose, expression, and lighting variation problems in 2D face images
stem from the 2D rendering of a 3D face object. Efforts in acquiring the face bio-
metric in a 3D format have resulted in the development of 3D face capture systems.
There are two types of 3D face capture systems: one is based on laser scanning
and the other is based on stereographic reconstruction. It is generally regarded that
laser scanners provide more accurate 3D face models, while stereographic cameras
provide near real-time capture capability with slight loss in accuracy. Figure 3.11
shows some of the 3D sensors in use today.

The image captured by a 3D sensor typically covers about 120◦ of the human
head and this image is referred to as a 2.5D scan. If a full 3D model of the face is
required, it can be constructed by combining approximately three to five 2.5D scans
captured from multiple views. 3D face models are usually represented as a polygo-
nal mesh structure (e.g., triangular or rectangular) for computational efficiency (see
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(a)

(b)

1m 3m 5m

Fig. 3.9 Images recorded by a typical 2D camera with a resolution of 640× 480 when the user
is at three different distances from the camera (ranging from 1m to 5m). The first row (see (a))
shows the images as acquired by the camera, while the second row (see (b)) shows the face images
obtained after face detection and resizing. The inter-pupillary distances (IPDs) are 35, 12, and 7
pixels for the face images obtained at 1m, 3m, and 5m, respectively. This example illustrates the
steep decrease in the spatial resolution of the face images when the user is far away from the
camera.

Figure 3.12). The 3D mesh structure changes depending on the preprocessing (e.g.,
smoothing, filling holes, etc.), mesh construction, and imaging process (scanning
with laser sensor). Even though the 3D geometry of a face model changes depending
on the pose, this change is very small and the model is generally regarded as being
pose invariant. Further, the model is also robust to lighting variations. However, 3D
face recognition is not invariant to changes in expression, aging, and occlusion. The
drawbacks of 3D face acquisition include longer image acquisition time, the large
data size of the 3D model (which requires higher computational resources during
matching), and the relatively high price of 3D imaging sensors.

3.2.3 Video sequences

A video camera can continuously capture face images, thereby enabling the selec-
tion of a good quality face image (e.g., one with frontal pose and neutral expres-
sion) for recognition. The drop in price of video cameras has also made them a
more viable solution for face recognition systems. Video-based sensors usually pro-
vide lower resolution images compared to still 2D sensors in order to handle the
large amount of data streaming from the sensor to the storage or processing unit (30
frames per second in the National Television System Committee standard). Video
compression techniques are also typically used to handle the large data stream,
which can impact the quality of the images acquired in this mode.
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(a)

(b)

(c)

Fig. 3.10 An example of acquiring face images when the subject is far away from the camera. (a)
A camera system consisting of a static and a Pan-Tilt-Zoom (PTZ) camera, (b) image of the person
captured using the static camera as the person is walking into the room from the right, and (c) a
close-up image of the person captured using the PTZ camera.
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(a) 1 (b) 2 (c) 3

1 http://www.konicaminolta.com/instruments/about/index.html.
2 http://www.alibaba.com/product-free/262924139/Head Face Color 3D Scanner

Model/showimage.html.
3 http://www.gat-solutions.sk/en/3d-fastpass.

Fig. 3.11 Examples of 3D cameras. (a) Konica Minolta 3D Laser Scanner (VIVID 9i). (b) Cyber-
ware Rapid 3D Scanner. (c) 3D FastPassT M Face Reader from L-1 Identity solutions.

There is a significant interest in developing robust face recognition systems that
will accept video streams as an input. Face recognition in video has attracted interest
due to the widespread deployment of surveillance cameras. The ability to automat-
ically recognize faces in real-time from video will facilitate, among other things,
a covert method for human identification using an existing network of surveillance
cameras. Two distinctive pieces of information are provided by a video stream: (a)
multiple frames of the same subject and (b) temporal information pertaining to an
individual’s face. Multiple frames typically depict a variety of poses, allowing for
the proper selection of a good quality frame (namely, a high quality face image in
near-frontal pose) for superior recognition performance. The temporal information
in video corresponds to the dynamic facial motion in the video. However, it is dif-
ficult to determine whether there are any identity-related details in facial motion
(research in psychology has indicated that facial motion has some discriminatory
information that may be useful in establishing identity).

3.3 Face Detection

Face detection is the first step in most face-related applications including face recog-
nition, facial expression analysis, gender/ethnicity/age classification, and face mod-
eling. Variations in pose and expression, diversities in gender and skin tone, and
occlusions (e.g., due to glasses) are the typical challenges confounding face detec-
tion. While there are a number of approaches for detecting faces in a given image,
state-of-the-art face detection methods are typically based on extracting local texture

http://www.konicaminolta.com/instruments/about/index.html
http://www.alibaba.com/product-free/262924139/Head_Face Color 3D Scanner_Model/showimage.html
http://www.gat-solutions.sk/en/3d-fastpass
http://www.alibaba.com/product-free/262924139/Head_Face Color 3D Scanner_Model/showimage.html
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(a)

(b)

Fig. 3.12 (a) A full 3D model of the human face obtained using a 3D sensor. (b) The 3D face
model represented using triangular meshes.
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features from the given image and applying a binary (two-class) classifier to distin-
guish between a face and non-face. This approach follows the seminal work done
by Viola and Jones in the field of real-time object detection. The face detection tech-
nique proposed by Viola and Jones has been widely used in various studies involving
face processing because of its real-time capability, high accuracy, and availability as
open-source software under the Open Computer Vision Library (OpenCV). How-
ever, the Viola-Jones face detector is not perfect and can produce both false positive
and false negative errors as shown in Figure 3.13. A false positive error refers to the
detection of a face where none exists, while a false negative error indicates that a
face present in the image was not detected.

(a) (b) (c) (d)

(e)

Fig. 3.13 The problem of face detection involves detecting a face in an image. Face detection algo-
rithms have to be robust to variations in illumination, background, rotation, and image resolution.
In this figure, the output of the Viola-Jones face detection algorithm, as implemented in the Open
Computer Vision Library (OpenCV), is shown for different scenarios: (a) simple background, (b)
cluttered background, (c) tilted face, (d) inverted face, and (e) multiple faces. Figures (b) through
(e) have both false negatives (faces that are not detected) and false positives (non-face regions are
wrongly categorized as faces).

3.3.1 Viola-Jones face detector

The Viola-Jones face detector scans through the input image with detection win-
dows of different sizes and decides whether each window contains a face or not.
Figure 3.14 shows the scanning process ranging from small to large windows. In
each window, the existence of a face candidate is decided by applying a classifier to
simple local features derived using rectangular filters. These rectangular filters can
be grouped as two-rectangle, three-rectangle, and four-rectangle filters as shown in
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Figure 3.15. Since these 2D rectangular filters are similar to the one-dimensional
Haar wavelets used in the signal processing domain, they are also known as Haar-
like filters. The feature values are obtained by computing the difference between
the sum of the pixel intensities in the light and dark rectangular regions. For exam-
ple, the three-rectangle filter can be used to detect the two eyes and the bridge of
the nose. This is because the eyes typically have darker intensity values compared
to the bridge of the nose and the application of the three-rectangle filter serves to
further amplify these differences. The use of such low-level features rather than the
raw pixel values allows faster face detection as well as provides robustness against
changes in lighting and perspective.

Fig. 3.14 The Viola-Jones method uses windows of different sizes to “scan” the entire image in
order to determine the location of the face. In the above example, the window in the third column
of the second row is likely to be detected as a face.

No single Haar-like filter can perform the face detection task with high accu-
racy. Therefore, a set of Haar-like filters of different sizes need to be applied to
each window and the filter responses must be combined in an appropriate way in
order to detect a face. As a result, the number of features in each detection window
could be very large. For instance, more than 180,000 different Haar-like features
can be derived from a detection window of size 24× 24 pixels. The computational
burden involved in the computation of these features can be significantly reduced
by pre-computing the integral image from the original image. An integral image S
associated with the given image I can be computed as follows:

S(x,y) = ∑
1≤x′≤x,1≤y′≤y

I(x′,y′), (3.1)
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(a) (b) (c) (d)

Fig. 3.15 The Viola-Jones method uses different types of Haar-like filters for face detection. These
filters are applied to each window scanning the input image. When the combination of filter re-
sponses (features) in a certain window exceeds a threshold, a face is said to have been detected.
Here, (a) and (b) are two-rectangle filters, (c) is a three-rectangle filter, and (d) is a four-rectangle
filter. Note that the filters are shown relative to the detection window (outside rectangle).

where I(x,y) is the intensity value of pixel (x,y) in the original image and S(x,y) is
the value of the corresponding pixel in the integral image. Thus, the integral image
at location (x,y) contains the sum of all pixel intensities above and to the left of
(x,y) in the original image. The integral image can be rapidly computed in a single
pass over the original image. Once the integral image is available, the sum of pixel
values within any arbitrary rectangular region in the original image can be computed
based on just four array accesses as shown in Figure 3.16.

Though the integral image allows efficient computation of the feature values, it
does not reduce the computational complexity to a level that is sufficient for real-
time face detection. To achieve real-time detection, it is essential to determine a
small subset of discriminative features from the complete set of features available
within each window. By evaluating only this smaller subset of features and com-
bining them using an appropriate function, a fast and effective face detector can be
obtained. A variant of the Adaboost algorithm proposed in the pattern recognition
literature can be used to select the discriminative features as well as to train the
classifier function. The classifier function combines the feature values using appro-
priate weights and if the combined value is greater than a threshold, the window is
classified as a face image.

The feature selection and classifier training algorithm works as follows. Let f j(w)
be the feature value obtained by applying a filter f j to the detection window w,
j = 1,2, · · · ,L, where L is the total number of filters. The detection window w is
parameterized by its location and size. Each feature value can be used to construct
a weak classifier that predicts whether the window w is a face image. Such a weak
classifier can be defined as

h j(w) =

{
1 if p j f j(w) ≤ p jθ j

0 otherwise,
(3.2)

where p j is the sign (+ or -) determining the direction of the inequality, θ j is the
threshold, and j = 1,2, · · · ,L. Given a training set of n example images that includes
both faces and non-faces, the classifier can be trained as described in Algorithm 3.
This algorithm selects the T most discriminative features among the L features and
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Fig. 3.16 The use of an integral image speeds up the feature computations in the Viola-Jones
face detector. Let the value of the integral image at points (x1,y1), (x2,y2), (x3,y3), and (x4,y4) be
S(x1,y1), S(x2,y2), S(x3,y3), and S(x4,y4), respectively. Then, the sum of pixel values within the
rectangle D can be calculated as S(x4,y4)−S(x2,y2)−S(x3,y3)+S(x1,y1).

learns a linear classifier based on these features. Typically, the value of T is chosen
to be much smaller (say in the order of few hundreds) than the value of L. The above
training process can be carried out offline. During the actual face detection stage,
only the T feature values need to be computed for each window and the outputs
of the weak classifiers based on these features need to be combined using a linear
function. This enables rapid categorization of each window into a face or a non-face.
However, the original image must still be scanned with windows of different sizes
to determine the location of the faces.

Figure 3.17 shows two most effective Haar-like features that are able to reject
about 60% of non-faces. The first feature represents the fact that the eye region is
typically darker than the cheek region. The second feature highlights the brighter
nose bridge compared to the eye regions. Classifiers with a simple smaller set of
filters can be first used to screen out a large number of non-face images in the early
stage and then more powerful classifiers can be used in the later stage. A schematic
of such a cascade classifier is shown in Figure 3.18.

Since the Viola-Jones face detection technique is a generic object detection ap-
proach, the same technique can be used to detect individual components within a
detected face image. For example, an eye detector can be constructed by simply
replacing the training set with examples of eye images and non-eye images. Fig-
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Given n example image windows (w1,y1),(w2,y2), · · · ,(wn,yn), where
yi = 0,1 for non-face and face examples, respectively.
Let l = ∑n

i=1 yi be the number of face examples and m = (n− l) be the
number of non-face examples. Initialize weights τ1,i =

1
2m ,

1
2l for yi = 0, 1

respectively.
for t = 1,2, · · · ,T do

Normalize the weights, τt,i ← τt,i

∑n
k=1 τt,k

For each weak classifier h j(w), compute the weighted error as
ε j ← ∑n

i=1 τt,i|h j(wi)− yi|
Select the best weak classifier with respect to the weighted error, i.e.,
ht(w)← hq(w) and εt ← εq, where q ← argmin

j
ε j .

Update the weights: τt+1,i = τt,iβ 1−ei
t , where ei = 0 if example wi is

classified correctly, ei = 1 otherwise, and βt =
εt

1−εt
.

end for
The final strong classifier is:

H(w) =

⎧⎨
⎩1 if

T

∑
t=1

αt ht(w)≥ 1
2

T

∑
t=1

αt

0 otherwise,

where αt = log 1
βt

.

Here, T features are selected in decreasing order of their discriminative
power. The final classifier is a weighted linear combination of the T best
weak classifiers based on the selected features, where the weights are
proportional to the discriminative power of the features (inversely
proportional to the training error rate).

Algorithm 3: The boosting algorithm for selecting the most discriminative
Haar-like features and learning the classifier that categorizes each image win-
dow as a face or non-face.

ure 3.19 shows example face and eye detection results using the Viola-Jones face
detector in OpenCV.

Even though the Viola-Jones face detector has demonstrated excellent perfor-
mance in real-time applications, it still struggles when confronted with non-frontal
facial poses, illumination changes, occlusion, etc. There have been a number of
similar approaches proposed for more effective and efficient face detection. These
schemes either use more robust features including Haar-like features with rotation
variations, edges, motion cues, and Local Binary Patterns (LBP) or employ an im-
proved learning algorithm compared to the Adaboost implementation shown in Al-
gorithm 3.
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(a) (b)

Fig. 3.17 Two most discriminative Haar-like features overlaid on an input image.

Fig. 3.18 Schematic of a cascaded classifier to speed-up the face detection process. The initial
classifier uses only a few features and eliminates a large number of non-faces with minimal pro-
cessing. Subsequent classifiers consider increasingly more features and further eliminate the re-
maining non-faces at the cost of additional processing. Here, F indicates that a classifier decides
that the tested window contains a face candidate, while NF represents the classifier decision that
there is no face candidate within the tested window.

3.4 Feature Extraction and Matching

There are three main approaches to match the detected face images (see Figure
3.20): appearance-based, model-based, and texture-based methods.

• Appearance-based techniques generate a compact representation of the entire
face region in the acquired image by mapping the high-dimensional face image
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(a) (b) (c)

Fig. 3.19 Examples of face and eye detection using the Viola-Jones object detection approach.

Fig. 3.20 Categorization of face recognition techniques.

into a lower dimensional sub-space. This sub-space is defined by a set of repre-
sentative basis vectors, which are learned using a training set of images. Though
the mapping can be either linear or non-linear, commonly used schemes such as
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and
Independent Component Analysis (ICA) involve linear projections.

• Model-based techniques attempt to build 2D or 3D face models that facilitate
matching of face images in the presence of pose variations. While the Face Bunch
Graphs (FBG) and Active Appearance Model (AAM) are examples of 2D face
models, the morphable model is a 3D model.

• Texture-based approaches try to find robust local features that are invariant to
pose or lighting variations. Examples of such features include gradient orienta-
tions and Local Binary Patterns (LBP).

More recently, schemes that make use of 3D models, video input, and micro level
details (e.g., freckles, moles, scars) have been developed to improve the accuracy
of face recognition systems. While this section describes some of the representa-
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tive schemes for matching 2D still images, some of the recent developments are
discussed in Section 3.5.

3.4.1 Appearance-based face recognition

Appearance-based schemes are based on the idea of representing the given face
image as a function of different face images available in the training set, or as a
function of a few basis faces. For example, the pixel value at location (x,y) in a
face image can be expressed as a weighted sum of pixel values in all the training
images at (x,y). The set of training images or basis faces forms a subspace and if
the given face image is linearly projected onto this subspace, it is referred to as
linear subspace analysis. The challenge here is to find a suitable low dimensional
subspace that preserves the discriminatory information contained in the face images.
In other words, the goal in linear subspace analysis is to find a small set of most
representative basis faces. Any new face image can be represented as a weighted
sum of the basis faces and two face images can be matched by directly comparing
their vector of weights.

3.4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the earliest automated methods pro-
posed for face recognition. PCA uses the training data to learn a subspace that
accounts for as much variability in the training data as possible. This is achieved
by performing an Eigen value decomposition of the covariance matrix of the data.
Specifically, PCA involves the following five steps.

1. Let x1,x2, · · · ,xN be the training set, where each xi represents a d-dimensional
column vector. Compute the average of the training set as

μμμ =
1
N

N

∑
i=1

xi. (3.3)

2. Define the data matrix X as follows: X = [(x1 − μμμ) (x2 − μμμ) · · · (xN − μμμ)].
3. Calculate the data covariance matrix as

C = XXT , (3.4)

where XT is the transpose of matrix X. Since X is a d ×N dimensional matrix,
the size of the covariance matrix C is d × d.

4. Compute the Eigen vectors of the covariance matrix C by solving the following
Eigen system.

CE = λ E. (3.5)



3.4 Feature Extraction and Matching 119

Here, E = [e1,e2, · · · ,ed ], where e1,e2, · · · ,ed are the d Eigen vectors of C.
5. Any data vector x can be represented as a weighted sum of the Eigen vectors

and these weights can be computed as ωωω = ET x, where ET is the transpose of E.
Note that ωωω = [ω1,ω2, · · · ,ωd ]

T is a d-dimensional column vector, where ω j is
the weight associated with Eigen vector e j, for j = 1,2, · · · ,d. These weights are
also known as Eigen coefficients.

A face image I of size d1 × d2 pixels can be directly represented as a d-
dimensional vector x containing all the pixel intensities in I, where d = d1d2. Given
a set of training face images I1, I2, · · · , IN , the above PCA steps can be applied to
obtain the d Eigen vectors (also referred to as Eigenfaces). Instead of using the raw
pixel values, it also possible to extract some features (e.g., gradient orientations)
from the image and perform PCA on the resultant feature vectors. To perform face
matching, the Eigen coefficients ωωωE and ωωωA corresponding to the gallery and probe
face images, respectively, can be computed and the Euclidean distance between the
two Eigen coefficients can be considered as a measure of dissimilarity between the
two face images.

In the above PCA description, the dimensionality of the Eigen coefficients (ωωω) is
the same as the dimensionality of the original data x, which is d. It has already been
pointed out that one of the goals of linear subspace analysis is to reduce the dimen-
sionality. In PCA, this can be achieved by considering a lower dimensional subspace
E

′
, which is spanned by only d

′
(d

′
< d) Eigen vectors from E corresponding to the

d
′

largest Eigen values. By projecting the data onto the subspace E
′
, the dimen-

sionality of Eigen coefficients becomes d
′
, which is smaller than the original data

dimension d. The Eigen vector corresponding to the largest Eigen value in PCA
accounts for maximum variability in the data and is called the principal axis. Typi-
cally, it is possible to account for most of the variability in the data by selecting only
a few Eigen vectors corresponding to the largest Eigen values in the descending
order. Figure 3.21 shows the Eigenfaces corresponding to the seven largest Eigen
values, which are obtained through training on face images contained in the ORL
database.

Fig. 3.21 Eigenfaces corresponding to the seven largest Eigen values derived from the ORL face
database.

When the number of training samples (N) is smaller than the dimensionality of
the data (d), there will be only (N −1) meaningful Eigen vectors and the remaining
Eigen vectors will have associated Eigen values of zero. These (N−1)Eigen vectors
can be computed quickly using the following trick. Define C∗ = XT X. Since C∗ is
a N ×N matrix and N < d, the Eigen decomposition of C∗ can be computed more



120 3 Face Recognition

efficiently compared to that of C. Let E∗ be the matrix containing the Eigen vectors
of C∗. The matrix of meaningful Eigen vectors of C (associated with non-zero Eigen
values) can be obtained as V = XE∗ and the Eigen coefficients corresponding to a
data vector x can be computed as ωωω = VT x.

A more generalized version of PCA is the Independent Component Analysis
(ICA). PCA constrains the Eigen vectors to be orthogonal to each other and hence,
the resulting Eigen coefficients are uncorrelated. However, the Eigen coefficients
need not be independent2. On the other hand, ICA attempts to find a linear trans-
formation that minimizes the statistical dependence between its components. Con-
sequently, the ICA coefficients are independent or “the most independent possible”.
Moreover, unlike PCA, there is no relative order between the ICA coefficients. Fig-
ure 3.22 shows seven ICA components obtained through training on face images
contained in the ORL database.

Fig. 3.22 Seven ICA components derived from the ORL face database. Note that there is no rela-
tive order between the ICA components.

3.4.1.2 Linear Discriminant Analysis

PCA can be referred to as an unsupervised learning method, because the class la-
bel (user identity information) is never used during the learning of the basis faces.
Hence, the face recognition accuracy based on PCA cannot be expected to be very
high. Linear Discriminant Analysis (LDA) explicitly uses the class label of the train-
ing data and conducts subspace analysis with the objective of minimizing intra-class
variations and maximizing inter-class variations (see Figure 3.23). Therefore, LDA
can generally be expected to provide more accurate face recognition when sufficient
face image samples for each user are available during training.

The LDA coefficients can be computed as follows.

1. Let (x1,y1),(x2,y2) · · · ,(xN ,yN) be the training set, where each xi represents a
d-dimensional column vector, yi ∈ {1,2, · · · ,c} is the corresponding class label,
and c is the number of classes. Compute the mean of each class as

μμμ j =
1

Nj
∑

yi= j
xi, (3.6)

2 If two random variables are independent, their correlation is zero. However, the reverse need not
be always true.
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(a) (b)

Fig. 3.23 Comparison of PCA and LDA for a two-class problem with two-dimensional data. Here,
the data corresponding to the two classes are assumed to exist within two ellipses. (a) The prin-
cipal axis in PCA is aligned such that when the data is projected onto this axis, the variance is
maximized. (b) The principal axis in LDA is aligned such that when the data is projected onto this
axis, the variance within each class is minimized and the separability between the two classes is
maximized.

where Nj is the number of samples from class j and j = 1,2, · · · ,c.
2. Define the within and between class scatter matrixes (Sw and Sb, respectively)

for the given training data as

Sw =
c

∑
j=1

∑
yi= j

(xi − μμμ j)(xi − μμμ j)
T , and (3.7)

Sb =
c

∑
j=1

Nj(μμμ j − μμμ)(μμμ i − μμμ)T , (3.8)

where μμμ = (1/N)∑N
i=1 xi.

3. The LDA subspace is constructed such that it minimizes Sw and maximizes Sb,
which is achieved simultaneously by maximizing S−1

w Sb. The Eigen vectors max-
imizing S−1

w Sb can be calculated by following a similar approach as in PCA, i.e.,
by solving the following Eigen system.

S−1
w SbE = λ E. (3.9)

4. Any data vector x can be represented as a weighted sum of the above Eigen vec-
tors and these weights can be computed as ωωω = ET x, where ET is the transpose
of E.

Given a set of training face images I1, I2, · · · , IN , the above LDA steps can be ap-
plied to obtain the d Eigen vectors of S−1

w Sb (also referred to as Fisherfaces). To per-
form face matching, the LDA coefficients ωωωE and ωωωA corresponding to the gallery
and probe face images, respectively, can be computed and the Euclidean distance
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between the two LDA coefficients can be considered as a measure of dissimilarity
between the two face images.

When the size of the training data (N) is smaller than the dimensionality of the
data (d), S−1

w often becomes singular. To avoid this problem, one can first apply PCA
to the training samples to reduce the data dimensionality and then apply LDA to the
transformed data having lower dimensionality. Figure 3.24 shows seven Fisherfaces
corresponding to the seven largest Eigen values that are obtained through training
on face images contained in the ORL database.

Fig. 3.24 Seven Fisherfaces corresponding to the seven largest Eigen values derived from the ORL
face database.

3.4.2 Model-based face recognition

Model-based techniques try to derive a pose-independent representation of the
face images that can enable matching of face image across different poses. These
schemes typically require the detection of several fiducial or landmark points in the
face (e.g., corners of eyes, tip of the nose, corners of the mouth, homogeneous re-
gions of the face, and the chin), which leads to increased complexity compared to
appearance-based techniques. Some of the model-based techniques can be used for
face recognition as well as generating realistic face animation. Face Bunch Graph
models will be discussed in this section, while the more advanced face modeling
schemes will be discussed in Section 3.5.3.

3.4.2.1 Elastic Bunch Graph Matching

The Elastic Bunch Graph Matching (EBGM) scheme represents a face as a labeled
image graph with each node being a fiducial or landmark point on the face. While
each node of the graph is labeled with a set of Gabor coefficients (also called a jet)
that characterizes the local texture information around the landmark point, the edge
connecting any two nodes of the graph is labeled based on the distance between
the corresponding fiducial points. The Gabor coefficient at a location in the image
can be obtained by convolving the image with a complex 2D Gabor filter centered
at that location. By varying the orientation and frequency of the Gabor filter, a set
of coefficients or a Gabor jet can be obtained. The use of fiducial points enables
plotting of partial graphs even if the face is tilted or occluded.
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A Face Bunch Graph (FBG) model can be constructed in two stages from a train-
ing set of face images with a specific pose. In the first stage, the designer has to
manually mark the desired fiducial points and define the geometric structure of the
image graph for one (or a few) initial image(s). The image graphs for the remain-
ing images in the training set can be obtained semi-automatically, by comparing the
new images to model graphs (images that have been already marked) based on the
extracted Gabor jets. During this process, manual intervention is required only if
the fiducial points are identified incorrectly (see Figure 3.25). Since all the training
images have the same pose, the graphs corresponding to these face images will have
the same structure (i.e., the nodes refer to identical fiducial points). The same pro-
cess can be repeated for different face poses (e.g., frontal view, half and full profile
views), with each pose having a different graph structure.

Fig. 3.25 Determining the image graphs for face images with different poses. The nodes are po-
sitioned automatically based on comparing the Gabor jets extracted from the given image to those
in the model graphs. One can observe that, in general, the fitting process finds the fiducial points
quite accurately. However, errors may occur as can be observed in the case of the middle face im-
age above. In the middle image, the chin was not found accurately; further, the leftmost node and
the node below it should ideally be located at the top and the bottom of the ear, respectively.

In the second stage, a FBG is obtained from the individual image graphs by com-
bining a representative set of individual graphs in a stack-like structure. Thus, each
node in the FBG is labeled by a set of Gabor jets that represent the local variations
in the associated fiducial point among the population of users in the training set. A
set of jets corresponding to the same fiducial point is called a bunch. For example,
an eye bunch may include jets from open, closed, male and female eyes, etc. that
cover the variations in the local structure of the eye. An edge between two nodes of
the FBG is labeled based on the average distance between the corresponding nodes
in the training set. Typically, a separate FBG is constructed for each pose and the
correspondence between the nodes of bunch graphs belonging to different poses is
specified manually.

Given a FBG, the fiducial points for a new face image are found by maximizing
the similarity between a graph fitted to the given image and the FBG of identical
pose. This process is known as Elastic Bunch Graph Matching (EBGM) and it con-
sists of the following three steps:
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Fig. 3.26 The Face Bunch Graph (FBG) serves as a general representation of faces. Each stack
of discs represents a jet. From a bunch of jets attached to each node, only the best fitting one is
selected for computing the similarity and such jets are indicated by the gray shading.

• Find the approximate face position by coarsely scanning the input image with
a condensed FGB (an average graph obtained by taking the mean Gabor jets
at each bunch). This is achieved by extracting the Gabor jets at some discrete
locations in the given image and comparing it to the jets in the condensed FBG,
while taking into account the geometric structure of the FBG.

• Refine the position and size of the face by searching the image again with the full
FBG, whose size and aspect ratio is systematically varied. When computing the
similarity between a Gabor jet in the given image and a bunch of jets in the FBG,
only the FBG jet that best matches with the given image jet is considered.

• Precisely locate the fiducial points by moving all the nodes locally and relative
to each other to optimize the graph similarity further.

The result of the EBGM algorithm is an image graph that best represents the
given image based on the available FBG model. Figure 3.26 shows a Face Bunch
Graph with a stack of discs (jets) at each node and a schematic of fitting an image
graph to an input image. In order to match two face images, say the probe and gallery
images, image graphs are first computed from both these images. The graph corre-
sponding to the gallery image is also sometimes referred to as model graph. The
similarity between image graph from the probe image and the model graph is com-
puted as the average similarity between the jets at the corresponding fiducial points.
Since the fiducial points and their correspondence are known, the two graphs can
be matched successfully even with some missing nodes. Consequently, the EBGM
scheme is more robust to pose variations than the appearance-based approaches.

3.4.3 Texture-based face recognition

Appearance-based schemes typically make use of the raw pixel intensity values,
which are quite sensitive to changes in ambient lighting and facial expressions. An
alternative is to use more robust feature representation schemes that characterize
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Fig. 3.27 Schematic of generating image and model graphs from probe and gallery images using
the Face Bunch Graph (FBG). Note that there are bunches (set of jets) at each node in FBG, but
only one jet at each node in the image and model graphs.

the texture of an image using the distribution of local pixel values. Scale Invariant
Feature Transformation (SIFT) and Local Binary Pattern (LBP) are two most well-
known schemes for analysis of local textures.

3.4.3.1 Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) is one of the most popular local represen-
tation schemes used in object recognition. Computation of SIFT features consists of
two stages: (a) key point extraction, and (b) descriptor calculation in a local neigh-
borhood at each key point. Just like the fiducial points in the model-based approach,
the key points can be used to achieve tolerance against pose variations. However,
the number of key points in SIFT could be quite large (in the order of hundreds)
and finding the correspondences between the key points from two different images
is a challenging task. If we assume that the face images are roughly pre-aligned (for
instance, using the eye locations), the key point detection process can be bypassed
and the descriptor can be constructed directly from the entire face image. The de-
scriptor is usually a histogram of gradient orientations within a local neighborhood.
The face image is typically divided with multiple patches and the SIFT descriptor
is constructed from each patch. The final descriptor is obtained by concatenating all
the descriptors from all the patches. Figure 3.28 shows a schematic diagram of the
above SIFT descriptor construction process.
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Fig. 3.28 Schematic diagram of SIFT descriptor construction. The key point detection process can
be bypassed if the face images are pre-aligned.

3.4.3.2 Local Binary Pattern

Local Binary Pattern (LBP) has been successfully used as a local texture descriptor
in general object recognition as well as in face recognition. LBP features are usually
obtained from image pixels of a 3× 3 neighborhood region (see Figure 3.29(a)).
The basic LBP operator compares the 8 neighboring pixel intensity values to the
intensity value of the central pixel in the region and represents the result as a 8-bit
binary string. This binary code can be further converted into a decimal number by
applying weights to each bit and computing the sum as shown in Figure 3.29(a).

Multiscale LBP (MLBP) is an extension of the basic LBP. As illustrated in Figure
3.29(b), MLBP introduces a radius parameter R, which means that the compared
neighbors are R pixels away from the center pixel. There is also another parameter
P, which is the number of sampling points along the circle of radius R. If a sampling
point is off the pixel grid, bilinear interpolation of pixel values can be applied to
obtain the intensity value of the sampling point. The MLBP operator with parameter
R and P is often denoted as LBPP,R. Generally, MLBP with larger value of P provides
more detailed information about the local region. However, when P becomes larger,
the dimension of the descriptor also increases. MLBP operators with different values
of R encode different local image structures, ranging from micro to macro details
as illustrated in Figure 3.30. Smaller values of R lead to detection of micro details,
while larger values of R highlight the macro features.

After LBP encoding of each pixel, the face image is divided into several smaller
windows and the histogram of local binary patterns in each window is computed.
The number of bins in the histogram is 8 and 2P for the basic LBP and MLBP, re-
spectively. A global feature vector is then generated by concatenating histograms of
all the individual windows and normalizing the final vector. Finally, two face im-
ages can be matched by computing the similarity (or distance) between their feature
vectors.



3.4 Feature Extraction and Matching 127

(a) Local Binary Pattern (LBP)

(b) Multiscale Local Binary Pattern (MLBP)

Fig. 3.29 Schematic diagram of (a) Local Binary Pattern (LBP) and (b) Multiscale LBP calcula-
tion. P and R represent the distance of the sampling points from the center pixel and the number of
the sampling points to be used, respectively.

Fig. 3.30 Local Binary Pattern (LBP) images encoded at different scales.. From left to right: orig-
inal image; images encoded using LBP8,1, LBP8,3, and LBP8,5 operators, respectively.

3.4.4 Performance evaluation

There are a number of face image databases available in the public domain. Table 3.1
summarizes some of the representative public domain face image databases. Most
of the face recognition studies used their own choice of databases and experimental
setup. Even for the same database and same recognition algorithm, the recognition
accuracy can vary due to factors like different evaluation protocols (e.g., division of
probe and gallery set), different face detection and image normalization schemes,
and different parameter selections (e.g., dimensionality of the subspace). Therefore,
it is difficult to compare published experimental results.
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Table 3.1 Face image databases.

Face DB #subjects #images Variations included

ORL 40 400 i, e, t

Yale 15 165 p, e

AR 126 4,000 e, i, o

MIT 16 432 p, i, s

UMIST 20 564 p

CMU PIE 68 41,368 p, i, e

XM2VTS 295 1,180 (videos) p, i, t

FERET 10,465 14,051 p, i, e, t

FRGC (v. 2.0) 568 36,818 i, e, t

MBGC 522 9,307 s, i, o

FG-NET 82 1002 p, i, e, t

MORPH 20,569 78,207 t

p: pose; i: illumination; e: expression; o: occlusion; s: scale; t: time interval
(aging).

In an effort to compare the accuracy of different face recognition techniques on
a common and large-scale face image database, a few face recognition competitions
have been held. The Facial Recognition Technology (FERET) program that ran from
1993 through 1997 was the first effort to benchmark various face recognition tech-
niques with participants from various universities. After FERET, the Face Recogni-
tion Vendor Test (FRVT) and Face Recognition Grand Challenge (FRGC) continued
the benchmark tests with participants from both industry and academia. In FRVT
2002, the best algorithm achieved a rank-1 identification accuracy of around 70%
under near frontal pose and normal lighting conditions on a large database (121,589
images from 37,437 subjects). The FRVT 2006 evaluations were performed for the
verification scenario and the best face recognition systems had a False Reject Rate
(FRR) of 0.01 at a False Accept Rate (FAR) of 0.001 for high resolution (approxi-
mately 400 pixels inter-pupillary distance (IPD)) 2D images and 3D images. Recent
evaluations such as the Multiple Biometric Evaluation 2010 show that the perfor-
mance of face recognition systems have improved in comparison to the earlier tests.
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Figure 3.31 shows the improvement of face recognition performance from 1993 to
2006 in terms of False Reject Rate at a fixed False Accept Rate in verification mode.

Fig. 3.31 Improvement in face recognition accuracy from 1993 to 2010 in terms of False Reject
Rate at a fixed False Accept Rate in the verification mode. Note that Notre Dame and DOS/HCINT
face image databases are not available in the public domain.

Recently, there have been efforts to collect a large number of face images from
the Internet to evaluate face recognition performance. Labeled Faces in the Wild
(LFW) and the collection of face images from Facebook are such examples. The
LFW data set consists of more than 13,233 face images of 5,947 people; 1,680
subjects have two or more images that can be used to evaluate face recognition
algorithms. Currently, 22 different algorithms have been evaluated on LFW data set
and the evaluation results are posted on the official website1.

3.5 Advanced Topics

3.5.1 Handling pose, illumination, and expression variations

Pose variation is one of the major sources of performance degradation in face recog-
nition. The face is a 3D object that appears different depending on the direction from
which the face is imaged. Thus, it is possible that images of the same subject taken
from two different view points may appear more different (intra-user variation) than
images of two different subjects taken from the same view point (inter-user varia-
tion).

1 http://vis-www.cs.umass.edu/lfw/

http://vis-www.cs.umass.edu/lfw/
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Illumination or lighting variation is another source of performance degradation.
Since the face is a 3D object, different lighting sources can generate various illumi-
nation conditions and shadings. There have been attempts to develop facial features
that are invariant under illumination changes. Another alternative is to learn and
compensate for the lighting variations using prior knowledge of lighting sources
based on training data.

To overcome the aforementioned problems, face recognition systems based on
3D images has been developed. 3D face recognition methods use the surface geom-
etry of the face. Unlike 2D face recognition, 3D face recognition is robust against
pose and lighting variations due to the invariance of the 3D shape against these vari-
ations. The probe is usually a 2.5D image and the gallery can be either a 2.5D image
or a 3D model. Identification can be performed between two range (depth) images
or between a 2D image and the 3D face model.

Facial expression is an inherent phenomenon that causes large intra-class vari-
ations. There are some local-feature-based approaches and 3D-model-based ap-
proaches designed to handle the expression problem. On the other hand, the recog-
nition of facial expressions itself is an active research area in the fields of human
computer interaction and communications.

Another source of performance degradation in face recognition is occlusion. Face
images often appears occluded by other objects or by the face itself (i.e., self-
occlusion), especially in surveillance videos. Most of the commercial face recog-
nition engines reject the images when the eyes cannot be detected. Local-feature-
based methods have been proposed to overcome the occlusion problem.

3.5.2 Heterogeneous face recognition

Heterogeneous face recognition refers to matching face images across different im-
age formats that have different image formation characteristics. Examples include
matching 2D images to 3D models, images from the visible spectrum to infrared
images, mug shots to forensic sketches, or scanned photos to images acquired us-
ing a regular digital camera. Figure 3.32 shows examples of heterogeneous images
commonly encountered in face recognition. Since heterogeneity can increase the
intra-class variability, special care needs to be taken in heterogeneous face recogni-
tion.

The most commonly encountered scenario in heterogeneous face recognition in-
volves gallery databases with 2D still images from the visible spectrum and probe
images from some alternate modality (e.g. infrared, sketch, or 3D). This is because
of the existence of legacy face databases (e.g., driver’s license photos, law enforce-
ment mug shot records, the Department of State’s Visa database) that contain pho-
tographs of a majority of the population in the U.S. as well as in most other devel-
oped nations. Unfortunately, there are many scenarios in which the probe images
are not photographs. For example, in law enforcement, when no face image of the
suspect is available, a forensic sketch may be developed through a verbal description
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.32 Examples of matching heterogeneous face images. The top row corresponds to the sce-
nario where a 2D mug-shot shown in (a) is matched against the 3D model shown in (b). The
middle row is an example of matching a 2D image recorded in the near infra-red spectrum (fig-
ure (c)) against the 2D mug-shot recorded in the visible spectrum (figure (d)). The bottom row
corresponds to matching a forensic sketch shown in (e) against the 2D mug-shot shown in (f).
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of a suspect’s appearance. In order to identify subjects in such scenarios, specialized
algorithms for heterogeneous face recognition must be employed.

The collection of solutions to heterogeneous face recognition can be organized
into three categories:

• Synthesis methods: Synthesis methods seek to generate a synthetic visible pho-
tograph from the alternate face image format that is available. Once a visible face
image has been synthesized, it can be matched using standard face recognition
algorithms. Synthesis solutions to heterogeneous face recognition are generative
methods and they typically use techniques like local linear embedding or Markov
random fields.

• Feature-based methods: Feature-based methods encode face images from both
modalities using feature descriptors that are largely invariant to changes between
the two domains. For example, local binary patterns and SIFT feature descriptors
have been shown to be stable between the sketch and visible photographs, as well
as near-infrared face images and visible photographs. Once face images from
both image formats are represented using feature descriptors, feature extraction
methods such as LDA can be used to improve the discriminative abilities of the
representation. The matching stage of the feature-based methods is performed by
measuring the distance or similarity between the feature vector representation of
the two face images.

• Prototype similarity methods: Prototype similarity methods represent the face
image as a vector of similarities to the images in a prototype database. Suppose
that we need to match a probe image of format A with a gallery image of format
B. The prototype database consists of a collection of subjects whose face im-
ages are available both in format A and format B. The prototypes are analogous
to a training set - in this case they help approximate the distribution of faces.
The probe image can be matched against the images of format A from the proto-
type database to generate a vector of similarities. Another vector of similarities
can be obtained by matching the gallery image against the images of format B in
the prototype database. These similarities could be measured using texture-based
representations (e.g., LBP, SIFT) of the face images. The probe and gallery im-
ages can be matched by directly comparing the two similarity vectors. Linear
discriminant analysis may also be applied on the similarity vectors to improve
the recognition accuracy. An advantage of the prototype similarity approach is
that the feature representation may be different for the probe and gallery image
formats. This property is useful in scenarios such as 3D to 2D matching, where
common feature descriptors do not exist between the two image formats.

3.5.3 Face modeling

The objective of face modeling is to encode the properties of a face image (e.g.,
shape, appearance, aging) using a compact set of parameters that allows interpre-
tation of any new face image by generating synthetic images that are as similar
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as possible to the given image. Thus, the parametric representation not only allow
comparison between different face images, but can also be used for generating real-
istic animations of the face. Active Appearance Model (AAM), Active Shape Model
(ASM), and morphable models are the most popular face modeling techniques.

3.5.3.1 Active Appearance Model

Active Appearance Model (AAM) is a statistical model of the facial appearance
generated by combining shape and texture variations. Given a set of training face
images I1, I2, · · · , IN , the AAM can be constructed as follows. Let pi represent a
vector of fiducial points in image Ii. Exact correspondences of fiducial points are
required across all the N training images. By applying PCA to the training set of
fiducial points p1,p2, · · · ,pN , any p j can be approximated as

p j = pμ +Esωωωs j , (3.10)

where pμ is the mean shape, Es is the matrix of Eigen vectors (representing orthog-
onal modes of variation) obtained by applying PCA to the training set, and ωωωs j is
a set of shape parameters. To build a texture model, each training image is warped
so that its fiducial points match the mean shape. Let gi represent the face texture
extracted from image Ii, i.e., the vector pixel intensities after warping Ii to match the
mean shape. The texture model is defined similar to the shape model as

g j = gμ +Egωωωg j , (3.11)

where gμ is the mean texture, Eg is the matrix of Eigen vectors obtained by applying
PCA to the training set g1,g2, · · · ,gN , and ωωωg j is a set of texture parameters. The
shape and texture parameters can be considered together and any face image I j can
be represented as ωωω j = (ωωωs j ,ωωωg j ). Now the problem is to find the best shape and
texture parameter vectors ωωω j that minimizes the difference between the given image
I j and a synthetic image Im

j generated by the current model defined by ωωω j. This is
usually achieved through an appropriate optimization scheme. The model parame-
ters ωωω j and ωωωk derived from two different face images I j and Ik, respectively, can be
directly matched to determine the similarity between I j and Ik. Figure 3.33 shows
an example of how the AAM technique splits the face image into shape and texture
components as well as the model fitting process.

3.5.3.2 Morphable Model

Morphable Model (MM) uses 3D points (both location and depth information about
the fiducial points) for representing the 3D face shape and color texture (pixel in-
tensities in the red, green, and blue channels) for representing the facial appearance.
In contrast, AAM typically uses only the location of the fiducial points and the
gray scale pixel intensities. Therefore, morphable model can be considered as a 3D
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(a)

(b)

Fig. 3.33 AAM training and fitting examples. (a) The training image is split into shape and shape-
normalized texture. (b) Examples of the AAM fitting iterations.

version of the AAM with color texture. Since the morphable model uses 3D infor-
mation, the fitting procedure is more complicated than AAM with the added con-
siderations of focal length, ambient light intensity, intensities and angles of directed
light, color contrast, and gains and offsets of color channels. Figure 3.34 shows an
example of fitting a morphable model to 2D images at various poses.

3.5.3.3 Facial Aging Model

Aging-related changes on the face manifest themselves in a number of different
ways: (a) wrinkles and speckles, (b) weight loss and gain, and (c) change in shape
of face primitives (e.g., sagged eyes, cheeks, or mouth). All these aging-related vari-
ations degrade face recognition performance. A simple way to handle aging varia-
tions is to update the face template in the database periodically. However, this is pos-
sible only in some controlled face verification applications. Though aging variations
have a negative impact on face recognition accuracy, the problem of age-invariant
face recognition has not been extensively studied because of two reasons. Firstly,
pose and lighting variations are generally considered to be more critical factors that
degrade face recognition performance. Secondly, until recently, no public domain
databases were available for studying the effect of aging.

One of the successful approaches to age-invariant face recognition is to build a
2D or 3D generative model for face aging. The aging model can be used to compen-
sate for the aging process in face matching or age estimation. These methods first
transform the probe image to the same age as the gallery image using a trained aging
model in order to compensate for the age effect. While model-based methods have



3.5 Advanced Topics 135

Fig. 3.34 Example of morphable model fitting. Top row: Initial parameters. Middle row: Results
of fitting, rendered on top of the input images. Bottom row: Input images. The fifth column is an
example of a poor fit. Images are from [4]. c©IEEE

been shown to be effective in age-invariant face recognition, they have some limi-
tations. Firstly, construction of facial aging models is difficult and the constructed
models may not represent the aging process very well. Since the facial aging pro-
cess is rather complex and the number of training images is often very limited,
constructing the aging model requires the use of strong parametric assumptions that
are often unrealistic in real-world face recognition scenarios. Secondly, additional
information in the form of true ages of the faces in the training set and the loca-
tions of landmark points on each face image are needed for constructing the aging
model. This information is not always available. A further constraint on the training
set is that the images should be captured under controlled conditions (e.g., frontal
pose, normal illumination, neutral expression). Unfortunately, such constraints are
not easy to satisfy in practice, especially in scenarios where the face images be-
ing compared are subject to significant changes not only in aging, but also in pose,
illumination, and expression.

In order to overcome the limitations of the generative aging model, approaches
based on discriminative models have also been proposed. In a discriminative aging
model, the face images are represented by a set of robust features (e.g., MLBP),
then projected on to some subspace where the aging variation is compensated. An
example of a discriminative aging model is the use of gradient orientation pyramid
for feature representation, combined with the use of support vector machines for
verifying faces across age progression. Figure 3.35 shows some example face im-



136 3 Face Recognition

age pairs that can be successfully matched using the aforementioned generative or
discriminative aging models.

Fig. 3.35 Example face image pairs at different ages taken from two different subjects. A leading
commercial matcher failed to match these pairs, but a generative or discriminative aging model
were able to match these pairs. Top and bottom rows correspond to the probe and gallery images,
respectively.
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3.6 Summary

This chapter reviewed the various face recognition approaches with emphasis on
matching 2D still images captured in the visible spectrum. Even though there
have been steady improvements in face recognition performance over the past two
decades, several challenges remain due to the large intra-class variations and small
inter-class variations caused by pose and lighting variations, expression, occlusion,
aging, and non-robust representation of face image data. While 3D face recogni-
tion systems have been developed to overcome pose and illumination problems, a
number of factors (e.g., high cost and existence of large legacy face databases in
the 2D domain) have hindered the practical deployment of 3D face recognition sys-
tems. Advanced sensing techniques to capture higher resolution images in multiple
spectra, face detection techniques that can handle pose changes, and robust repre-
sentation and matching schemes are crucial to further enhance the accuracy of face
recognition systems.

Bibliographical and Historical Remarks

While face recognition has a long history in forensic applications, its use in the
biometric domain is relatively recent. The first attempt to identify a subject by com-
paring a pair of facial photographs was reported in a British court in 1871 [24] and
the first known systematic method for face recognition was developed by the French
criminologist, Alphonse Bertillon in 1882 [3].

On the other hand, the automated face recognition scheme was not reported in
the literature until 1966 [5]. Most of the early work in automated face recognition
focused on the use of descriptive features such as the position, size, and spatial rela-
tionship between eyes, nose, mouth, and head contour. However, automatically ex-
tracting these features from poor quality images exhibiting variations in viewpoints
is a difficult task.

Bledsoe et al. [5] worked on an automated face recognition project from 1964
to 1965. This project was called man-machine because a set of facial features were
manually extracted from face photographs. These features were then fed to a com-
puter to conduct the automatic matching process. Based on the set of manually an-
notated feature points a list of 20 distances was derived and used to compute the
similarity between face images. This work was continued at Stanford Research In-
stitute in 1966. Their system consistently outperformed humans on a database of
over 2,000 photographs. Goldstein [10] also used 34 descriptive features (simple
morphological descriptions about face, hair, eyebrows, etc.) to identify individuals
based on face images. These features were provided to a set of trained jurors to
perform identification tasks. He concluded that six different features were required
to identify a person in a 255-subject database, and predicted that 14 features were
required to identify a person in a database with 4 million subjects. This seems to
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have been the first attempt to describe the individuality aspect of the human face,
although it did not account for variations in pose, illumination, and expression.

The first fully automated face identification system was developed by Kanade [11]
using a set of facial parameters based on local histogram of gray scale pixel values.
Following this system, many other automated face recognition systems were intro-
duced [7]. The Principal Component Analysis (PCA) method was first applied on
face images by Sirovich [26] for image compression, then by Turk and Pentland [27]
for identification. The PCA-based approach greatly reduced the computational bur-
den commonly associated with processing face images (at that time) and inspired
more active research in face recognition. Another popular face recognition method
is the Linear Discriminant Analysis (LDA) [2], which is based on the Fisher’s Lin-
ear Discriminant Analysis. Some other well known methods include Elastic Bunch
Graph Matching (EBGM) [29] and Local Binary Pattern (LBP) [19] based feature
representation.

All face recognition schemes mentioned above rely on a reasonably accurate face
detection procedure. The face detector proposed by Viola and Jones [28] was the
first robust real-time face detector requiring limited computational resources during
its operation. A number of similar face detection methods were designed following
this scheme, thereby facilitating the development of fully automated real-time face
recognition systems.

Since 1997, when the first systematic face recognition evaluation was conducted,
the performance of automated face recognition systems have improved dramati-
cally. This improvement is due to significant advancements made in computer vi-
sion and pattern recognition algorithms, as well as sensor technology. The use of
3D geometry and skin texture analysis on high resolution images resulted in the
best identification accuracy in FRVT 2006 [23]. Current research in automatic face
recognition focuses on robust recognition under unconstrained environments, devel-
oping more robust feature representations using distribution based descriptors, and
utilizing multi-spectral information.
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Chapter 4
Iris Recognition

“[The iris] consists of pectinate ligaments adhering into a tangled mesh revealing striations, ciliary
processes, crypts, rings, furrows, a corona, sometimes freckles, vasculature, and other features.”

John Daugman, in Biometrics: Personal Identification in Networked Society (Jain et al.), 1999

The rich texture of the iris can be used as a biometric cue for person recognition. The richness

and variability observed in the iris texture is due to the agglomeration of multiple anatomical

entities composing its structure. Due to the presence of distinctive information at multiple scales,

a wavelet-based signal processing approach is commonly used to extract features from the iris.

One of the most popular approaches to iris recognition generates a binary code to represent and

match pairs of irides. First, a segmentation routine is used to detect the iris region in the ocular

image captured by the camera. Next, a geometric normalization method is used to transform the

nearly annular iris region into a rectangular entity. Then, this rectangular entity is convolved with a

Gabor filter resulting in a complex response, and the phase information of the ensuing response is

quantized into a binary code, commonly referred to as the iris code. Finally, Hamming distance is

used to compare two iris codes and generate a match score, which is used for biometric recognition.

This chapter discusses the salient aspects of a typical iris recognition system.

4.1 Introduction

The use of the ocular region as a biometric trait has gained impetus, especially due
to significant advancements made in iris recognition since 1993. The ocular region
of the human face consists of the eyes and the surrounding structures such as facial
skin, eyebrows, and nose bridge (Figure 4.1). While various components of the eye
have been proposed as biometric indicators (viz., iris, retina, and conjunctival vas-
culature), it is the iris that has been extensively studied in the biometrics literature
and used in large-scale biometric systems.

The iris is an internal organ of the eye that is located just behind the cornea and
in front of the lens. The primary function of the iris is to regulate the amount of light
entering the eye by dilating or contracting a small opening in it called the pupil. The
iris contracts the pupil when the ambient illumination is high and dilates it when the
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Fig. 4.1 The ocular region of the human face includes the eyes, eyebrows, nose bridge, and facial
skin. The iris is the colored structure located in the annular region of the eye and is bounded by the
pupil (the dark opening in the eye) and the sclera (the white of the eye). When viewed in detail,
even the left iris and the right iris of an individual exhibit significant differences in their texture,
although some global similarities may be observed. It must be noted that a typical iris recognition
system does not use the color of the iris for human recognition.

illumination is low. The iris is a multilayered structure and a cross-section of the iris
reveals the following layers:

• The posterior layer at the back, which is two cells thick, contains heavily pig-
mented epithelial cells, making it impenetrable to light.

• The muscle layer above it consists of the sphincter and dilator muscles that con-
tract and dilate the pupil.

• The stromal layer, located above the muscles, is made up of collagenous connec-
tive tissue (arranged in an arch-like configuration) and blood vessels (arranged
along the radial direction).

• The anterior border layer is the foremost layer and has an increased density of
chromatophores (i.e., pigment containing cells) compared to the stromal layer.

The anterior portion of the iris - consisting collectively of the muscles, stroma,
and the border layers - is the foremost visible portion of the iris. Therefore, it can
be imaged by a camera and is the focus of all automated iris recognition systems.
Figure 4.2 shows an image of the iris as viewed by a near-infrared camera. The iris,
from this perspective, appears as an annular entity bound by the pupillary boundary
(that separates it from the dark pupil) and the limbus boundary (that separates it
from the white sclera).

The iris image is partitioned into two zones: the central pupillary zone and the
surrounding ciliary zone. These two zones are divided by a circular zigzag ridge-
line known as the collarette. Many pit-like irregular structures appear mainly in the
region around the collarette. These structures are called crypts (Fuchs crypts) and
they permit fluids to quickly enter and exit the iris during dilation and contraction
of the pupil. Near the outer part of the ciliary zone, concentric lines can be seen,
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especially in case of darkly pigmented irides1. These lines become deeper as the
pupil dilates and are called contraction furrows. In the pupillary zone, radial furrows
are observed.

The agglomeration of the aforementioned structures imparts a rich texture to the
iris. The term texture denotes the characteristics of an image in terms of its homo-
geneity, coarseness, regularity, directionality, etc. The biometric literature indicates
that the iris exhibits substantial diversity in its texture across the population. The
uniqueness of each iris is assumed to be a consequence of the random morphogen-
esis of its textural relief during prenatal growth. Even the irides of monozygotic
twins exhibit differences in their texture, thereby suggesting that these patterns are
determined epigenetically by random events during development that impact the
morphogenesis of the tissue. Using the terminology developed in Chapter 1, the iris
texture is predominantly a phenotypic trait with limited genetic penetrance.

The color of the iris is primarily defined by the pigmentation present in it. The
pigmentation itself is controlled by the number of melanin granules - a genetically
determined factor. However, other factors, such as the cellular density of the stroma,
can also affect the color of the iris. As will be explained later, the color of the iris
does not play a significant role in iris recognition systems. It is the texture detail
present in the anterior portion of the iris that is useful for recognition.

Fig. 4.2 Anatomy of the iris as observed by a near-infrared camera placed in front of the eye. The
rich texture of the iris is due to its anterior portion consisting of the musculature, stroma, and the
anterior border layers. When the anterior border layer recedes, the collarette becomes visible as
a zig-zag line separating the ciliary zone from the pupillary zone. Crater-like irregular structures
called crypts are often observed when the anterior layer thins out, thereby revealing the heavily
pigmented and much darker posterior layer.

1 The plural form of iris is irides although the term irises has also been extensively used in the
biometric literature.
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4.2 Design of an Iris Recognition System

An iris recognition system may be viewed as a pattern matching system whose goal
is to compare two irides and generate a match score indicating their degree of simi-
larity or dissimilarity. Thus, a typical iris recognition system has four different mod-
ules: the acquisition, segmentation, normalization, and encoding/matching modules.
Figure 4.3 indicates the flow of information in a typical iris recognition system.

Fig. 4.3 The block diagram of an iris recognition system. The matching performance of an iris
recognition system can be impacted by the accuracy of the segmentation module, which detects
the iris and establishes its spatial extent in an image of the ocular region.

1. Acquisition: The role of the acquisition module is to obtain a 2D image of the
eye using a monochrome CCD camera that is sensitive to the near-infrared (NIR)
range of the electromagnetic spectrum. An external source of NIR light, often
co-located with the acquisition system, is used to illuminate the iris. Most iris
recognition systems require the participating individual to be cooperative and to
place their eye in close proximity to the camera. The system typically captures
a series of images of the eye and, based on a quality evaluation scheme, retains
only a few images that are deemed to have sufficient iris texture information for
further processing.

2. Segmentation: The segmentation module localizes the spatial extent of the iris
in the image of the eye by isolating it from other structures present in its vicin-
ity. These structures include the sclera, the pupil, the eyelids, and the eyelashes.
Typically, segmentation is accomplished by detecting the inner and outer bound-
aries of the iris (commonly referred to as the pupillary boundary and the limbus
boundary, respectively), and the eyelids and eyelashes that can interrupt the cir-
cular contour of the limbus boundary. The integro-differential operator, explained
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later, is commonly used to detect the boundaries of the iris, although, more re-
cently, the use of active contours has been proposed in order to account for the
case when the boundaries cannot be represented as a simple conic section such as
a circle or an ellipse. Iris segmentation is a critical component of any iris biomet-
ric system; inaccuracies in localizing the iris can severely impact the matching
accuracy of the system, thereby undermining its utility.

3. Normalization: Once the inner and outer boundaries of the iris are estimated, a
geometric normalization scheme is invoked to transform the iris texture within
the annular region from cartesian coordinates to pseudo polar coordinates via a
rubber sheet model. This process is often alluded to as the “unwrapping of the
iris” and it results in a rectangular entity whose rows correspond to the angular
direction in the original iris and whose columns correspond to its radial direc-
tion. The purpose of this exercise is three-fold: (a) it accounts for variations in
pupil size that can impact the spatial extent of the iris; (b) since the size of the
pupil can vary across the population, the normalization scheme ensures that the
irides of different individuals are mapped into a common image domain; and (c)
during the matching stage, two normalized irides can be registered by a simple
translation operation that can account for the tilting of the head during the im-
age acquisition process. Associated with each unwrapped iris is a binary mask
that labels valid iris pixels with a “1”, thereby separating them from pixels cor-
responding to the eyelids and eyelashes that are identified in the segmentation
module and assigned a label “0”. Geometric normalization is followed by some
photometric transformations that enhance the textural structure of the unwrapped
iris.

4. Encoding and Matching: While the unwrapped iris may be directly used to com-
pare two irides (e.g., by using correlation filters), typically a feature extraction
routine is used to encode its textural content. Most encoding algorithms perform
a multi-resolution analysis of the iris by applying wavelet filters and examining
the ensuing response. A commonly used encoding mechanism uses quadrature
2D Gabor Wavelets to extract the local phasor information of the iris texture.
Each phasor response (the magnitude of the response is not used) is then en-
coded using two bits of information based on the quadrant of the complex plane
in which it lies. The resulting 2D binary code is referred to as the iris code. Two
such iris codes can be compared using the Hamming distance, which computes
the number of corresponding bits that are different across them; the binary mask
computed in the segmentation module is used to ensure that only bits correspond-
ing to valid iris pixels are compared. Prior to computing the Hamming distance,
a registration procedure may be necessary to align the two iris codes.

Each of these modules is described in detail in the subsequent sections of this chap-
ter.

Figure 4.4 shows two important applications of an iris recognition system. The
first application is the use of iris recognition at airports for recognizing passen-
gers, employees, and flight crews where high accuracy as well as fast processing
are crucial, especially when matching an individual against a watch list. The second
application is the use of iris recognition in a coal mine. Note that the individuals
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working in a coal mine may not be able to provide good quality fingerprints or face
images due to the working conditions.

4.3 Image Acquisition

An image of the eye is obtained using a sensor that is sensitive to the near-infrared
(NIR) portion of the electromagnetic spectrum. This typically corresponds to the
700nm - 900nm range of the infra-red (IR) spectral band. The use of a NIR sensor
has at least two distinct advantages:

• First, the textural nuances of dark-colored irides are not clearly resolved in the
visible2 portion of the electromagnetic spectrum due to the absorption character-
istics of the melanin that is found in the iris. Therefore, color images of dark-
colored irides do not clearly reveal the rich texture of the iris. Increasing the
wavelength of the illuminant aids in the better penetration of the anterior por-
tion of dark-colored irides, thereby divulging these complex patterns. The use
of NIR illumination along with a NIR sensor is, therefore, preferred in order to
elicit textural details on the surface of the iris. This is illustrated in Figure 4.5.
The three rows in this figure correspond to three different irides acquired using a
multispectral camera. This camera captures the red, green, blue, and NIR spectra
of each iris. The top row depicts a dark brown iris, the middle row a green iris,
and the bottom row a light-blue iris. As can be seen in this figure, the textural
details of the dark-brown iris are more evident in the NIR channel than in the
red, green, or blue channels.

• Second, NIR light cannot be perceived by the human eye. This ensures that the
image acquisition process is non-intrusive, even when the eye is required to be in
close proximity to the sensor and the NIR light source. Typically, the source of
NIR illumination is in the proximity of the subject to ensure that the illumination
power is not unduly large as this can be harmful to the eye.

Most systems acquire a series of NIR eye images from the subject and utilize
quality measures to choose a subset of images (often just 1 image) for further pro-
cessing. Most iris recognition systems expect 100 - 200 pixels across the iris in
the radial direction for successful processing. Images of the iris can, however, be
negatively impacted by several factors, including partially closed eyelids, intruding
eyelashes, harsh or non-uniform illumination, low resolution, and extremely dilated
or constricted pupil. By appropriately controlling the ambient illumination and re-
quiring subjects to interact with the system in a co-operative manner, some of these
conditions can be avoided. Figure 4.6 shows sample images of the eye taken from
three publicly available iris databases.

2 Regular digital cameras typically record images in the visible spectrum. Such images are referred
to as color images or RGB images. RGB refers to Red, Green and Blue - three primary colors that
can be mixed appropriately to generate other colors. Thus, a digital color image is composed of
three different channels - RGB - that pertain to the visible portion of the electromagnetic spectrum.
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(a)

(b)

Fig. 4.4 Practical examples of iris recognition systems. (a) The iris recognition system used in
UAE for identifying expellees attempting to re-enter the country. (b) An iris recognition system
being used in a coal mine in China.
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(a) Dark brown colored iris

(b) Green colored iris

(c) Blue colored iris

Fig. 4.5 The texture revealed in three different irides when they are observed in the NIR, red,
green, and blue channels. (a) A dark brown colored iris, (b) a green colored iris, and (c) a blue
colored iris. The color of the iris was visually assessed by a human. Notice that in (a), the texture
of the iris is not clearly resolved in the red, green, and blue channels; however, it is better resolved
in the NIR channel. On the contrary, in (c), the texture of the iris is reasonably resolved in all 4
channels. Thus, the use of the NIR channel for iris recognition is particularly beneficial for dark
colored irides.

A number of commercial iris capture devices are currently available. Figure 4.7
lists a few examples. The Panasonic BM-ET 330 is a portable device weighing about
5 lbs and has a range between 11.8 and 15.7 inches. It can obtain images of both
eyes simultaneously. The LG Iris Access 4000 has an auto-focus lens and is also able
to acquire images of both eyes simultaneously. It can be wall-mounted and has an
operating distance between 10.2 and 14.2 inches. The IRISPASS-M, which weighs
about 11 lbs, can also be wall-mounted and has an operational range between 1-2
feet. MobileEyes is a hand-held tethered dual-eye capture device that weighs about
2.8 lbs. The IGH1000 is a hand-held iris device (however, it can be wall-mounted
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.6 Iris images from the ICE (top row), CASIA version 3 (middle row) and MBGC (bottom
row) databases. All these images were acquired in the NIR spectrum. The ICE and MBGC images
were obtained using the LG EOU 2200 camera, while the CASIA version 3 images were obtained
using the OKI IRISPASS device.

as well) that weighs only 750 g. It has a focal distance between 4.7 and 11.8 inches,
and captures the image of a single eye.

In all the above devices, the subject’s eye has to be relatively stable and in close
proximity to the camera. However, more recent research has explored the possibil-
ity of acquiring iris scans from moving subjects who are at a considerable distance
from the acquisition device (see Figure 4.8). This represents a daunting task, since
the iris is a slightly oscillating object (due to the hippus movements initiated by its
muscles) within a moving object (the eye-ball), which is located within yet another
moving object (the head)! Further, the device has to be equipped with lenses having
a long focal length (e.g., 8 inches). An appropriately designed choke-point3 can en-
sure that the subject’s gaze is directed toward the iris camera while simultaneously
activating the NIR illuminant present in the vicinity of the choke-point. The ver-
satility of current iris recognition systems will be substantially enhanced if the iris
image can be acquired from non-cooperative subjects in challenging environments
characterized by harsh illumination and large stand-off distances.

3 An example would be a portal that constrains the subject’s gaze and regulates their walking speed
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7 Examples of commercialized iris image acquisition devices: (a) Panasonic BM-ET 330,
(b) LG IrisAccess 4000, (c) Datastrip Easy Verify, (d) Oki IrisPass, (e) Retica MobileEyes, and (f)
IrisGuard IGH1000. Most iris acquisition devices require the subject to be extremely cooperative
and situated at a short distance from the camera. Specialized NIR lighting is necessary to illuminate
the eye during image acquisition.
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(a) (b)

Fig. 4.8 Examples of Iris On the Move (IOM) systems: (a) Pass Thru, and (b) Passport Portal.
IOM systems can potentially facilitate the covert acquisition of eye images for iris recognition.

4.4 Iris Segmentation

An iris camera captures an image of the eye that, besides the iris, includes the pupil,
eyelids, eyelashes, and sclera. As seen in Figure 4.6, the iris is perceived to be lo-
cated in the vicinity of these structures in a 2D image of the eye. The process of
locating and isolating the iris from such an image is known as iris localization or
segmentation. The primary task of segmentation is to determine pixels in the image
that correspond to the iris region.

Iris segmentation is not an easy task for the following reasons:

• The iris texture exhibits a great degree of irregularity and its textural content
varies substantially across eyes. Indeed, the iris could be viewed as a stochastic
texture containing numerous “edge” like features that are randomly distributed
on its anterior surface. Simple image models cannot be used to describe its con-
tent, thereby precluding the use of appearance-based schemes (i.e., schemes that
model the iris texture based on its visual appearance) for iris localization.

• The iris is an annular-like structure bounded by the pupil in its internal perimeter,
and the sclera and eyelids in its external perimeter. Incorrectly estimating these
boundaries (contours) can result in the over-segmentation or under-segmentation
of the iris entity. In some eye images, these boundaries (especially the limbus
boundary) may not be very sharp, thereby affecting the accuracy of the boundary
estimation process. Further, the boundary defined by the eyelids is irregularly
shaped.

• The iris texture may be partially occluded by eyelashes. The eyelashes protrud-
ing into the iris image can generate spurious edges and affect the segmentation
process.
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The contrast in image intensity between the pupil and the iris offers a good cue
for identifying the pupillary boundary4. Similarly, the contrast between the iris and
the sclera can be used to detect the limbus boundary, although the magnitude of
the intensity gradient across the limbus boundary may be stronger than that of the
pupillary boundary in NIR images. One of the most commonly used methods in
iris segmentation relies on the detection of these boundaries. It assumes that (a)
both these boundaries can be approximated using circles, and (b) the magnitude of
the edge pixels contributing to these boundaries is stronger than those pertaining to
other circular contours in the image. The entire operation can be summarized using
an integro-differential operator as described below.

4.4.1 Segmentation using the integro-differential operator

The integro-differential operator, qualified by the order statistic (max), is of the form

max(r,x0,y0)

∣∣∣∣Gσ (r)∗ ∂
∂ r

∮
r,x0,y0

I(x,y)
2πr

ds

∣∣∣∣. (4.1)

Here, I is the input eye image and I(x,y) is the pixel intensity of the image at location
(x,y). According to Equation (4.1), the given image I is convolved with a radial
Gaussian filter Gσ (r) of scale σ and radius r. This is essential to ensure that sharp
edges corresponding to crypts, freckles, and furrows are reasonably blurred. Next,
using a circle of radius r and centered at (x0,y0) in the image, the intensity gradient
of those pixels lying on the circumference of this circle is computed. For each pixel,
the gradient is computed along the line connecting it to the center of the circle; this is
denoted by the differential operator ∂

∂ r . The sum of these gradient values, along the
perimeter of the circle and normalized by the factor 2πr, is then computed. This is
denoted by the integral operator

∮
r,x0,y0

in Equation (4.1). The parameters (r,x0,y0)
that result in the maximum sum is assumed to define the circular contour of the
pupillary boundary.

A similar procedure is used to detect the limbus boundary. However, in this case,
the arc of integration is constrained to the near-vertical pixels on the circumference
of the circle. This is necessary since the contour of the limbus may be interrupted
by the upper and lower eyelids and, therefore, the effect of those pixels that do not
belong to the limbus boundary has to be minimized. Figure 4.9 illustrates the out-
put of this segmentation routine. In the eye image on the left, the limbus contour is
not interrupted by the eyelids. Thus, the annular region defined by the two bound-
aries contains only those pixels corresponding to the iris. However, in the eye image
on the right, both the pupillary and limbus contours are interrupted by the eyelids.
Hence, a post-processing step is necessary to identify the eyelid boundaries and,
subsequently, isolate those pixels within the annular region that correspond to the
iris. It must be noted that the centers of the pupillary and limbus boundaries are typ-

4 This contrast is relatively low for eyes afflicted with cataract.
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ically different, i.e., the iris is not necessarily concentric with the pupil. In fact, the
pupil center is nasal (i.e., shifted toward the nose bridge) and inferior to (i.e., below)
the iris center.

The eyelids can be detected by searching for a parabolic edge within the region
defined by the outer circle. Typically, a spline-fitting procedure is used to accom-
plish this. It is also possible to detect the eye-lashes infringing into the iris texture
by searching for strong near-vertical edges in the segmented iris.

(a) (b)

Fig. 4.9 Iris segmentation using the integro-differential operator. White lines are used to denote
the output of the circle fitting algorithm. (a) An eye image in which the pupillary and limbus
boundaries are not interrupted by the eyelids, and (b) an eye image in which the two boundaries are
observed to be interrupted by the eyelids. In the case of (b), a post-processing scheme is required
to detect the eyelids and extract the iris pixels from the annular region defined by the two circular
contours.

4.4.2 Segmentation using Geodesic Active Contours (GAC)

The integro-differential operator described above (and its variants) assume that the
outer boundary of the iris can be approximated using a circle or an ellipse. How-
ever, as noted earlier, the presence of eyelid boundaries and eyelashes in the image
may necessitate the application of a post-processing scheme to detect these enti-
ties after using the integro-differential operator. Alternately, a single contour-fitting
method that simultaneously demarcates the iris from the sclera as well as the eye-
lids/eyelashes can be used. This is possible by adopting active contour methods that
can detect irregular boundaries. In this subsection, the use of Geodesic Active Con-
tours (GAC) to detect the outer boundary of the iris will be described.

This approach is based on the relation between active contours and the compu-
tation of geodesics (minimal length curves). The strategy is to evolve an arbitrarily
initialized curve from within the iris under the influence of geometric properties of
the iris boundary. GACs combine the energy minimization approach of the classical
“snakes” and the geometric active contours based on curve evolution.
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Let γ(t) be the curve, that has to gravitate toward the outer boundary of the iris,
at a particular time t. The time t corresponds to the iteration number. Let ψ be
a function measuring the signed distance from the curve γ(t). That is, ψ(x,y) =
distance of point (x,y) to the curve γ(t).

ψ(x,y) =

⎧⎪⎨
⎪⎩

0 if (x,y) is on the curve;

< 0 if (x,y) is inside the curve;

> 0 if (x,y) is outside the curve.

(4.2)

Here, ψ is of the same dimension as that of the eye image I(x,y). The curve γ(t)
is called the level set of the function ψ . Level sets are the set of all points in ψ
where ψ is some constant. Thus ψ = 0 is the zeroth level set, ψ = 1 is the first level
set, and so on. ψ is the implicit representation of the curve γ(t) and is called the
embedding function since it embeds the evolution of γ(t). The embedding function
evolves under the influence of image gradients and the region’s characteristics so
that the curve γ(t) approaches the desired boundary of the iris. The initial curve γ(t)
is assumed to be a circle of radius r just beyond the pupillary boundary. Let the
curve γ(t) be the zeroth-level set of the embedding function. This implies that

dψ
dt

= 0.

By the chain rule,
dψ
dt

=
∂ψ
∂x

dx
dt

+
∂ψ
∂y

dy
dt

+
∂ψ
∂ t

,

i.e.,
∂ψ
∂ t

=−∇ψ .γ ′(t),
where ∇ is the gradient operator. Splitting the γ ′(t) in the normal (N(t)) and tan-
gential (T (t)) directions,

∂ψ
∂ t

=−∇ψ .(vNN(t)+ vT T (t)).

Now, since ∇ψ is perpendicular to the tangent to γ(t),

∂ψ
∂ t

=−∇ψ .(vNN(t)). (4.3)

The normal component is given by

N =
∇ψ

‖∇ψ‖ .

Substituting this in Equation (4.3),
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∂ψ
∂ t

=−vN‖∇ψ‖.

Let vN be a function of the curvature of the curve κ , stopping function K (to
stop the evolution of the curve) and the inflation force c (to evolve the curve in the
outward direction) such that,

∂ψ
∂ t

=−(div(K
∇ψ
‖∇ψ‖)+ cK)‖∇ψ‖.

Thus, the evolution equation for ψt
5 such that γ(t) remains the zeroth level set is

given by
ψt =−K(c+ εκ)‖∇ψ‖+∇ψ .∇K, (4.4)

where, K, the stopping term for the evolution, is an image dependant force and is
used to decelerate the evolution near the boundary; c is the velocity of the evolution;
ε indicates the degree of smoothness of the level sets; and κ is the curvature of the
level sets computed as

κ =−ψxxψ2
y − 2ψxψyψxy +ψyyψ2

x

(ψ2
x +ψ2

y )
3
2

.

Here, ψx is the gradient of the image in the x direction; ψy is the gradient in the y
direction; ψxx is the 2nd order gradient in the x direction; ψyy is the 2nd order gradient
in the y direction; and ψxy is the 2nd order gradient, first in the x direction and then
in the y direction. Equation (4.4) is the level set representation of the geodesic active
contour model. This means that the level-set C of ψ is evolving according to

Ct = K(c+ εκ)N− (∇K.N)N (4.5)

where N is the normal to the curve. The term κN provides the smoothing constraints
on the level sets by reducing their total curvature. The term cN acts like a balloon
force and it pushes the curve outward towards the object boundary. The goal of
the stopping function is to slow down the evolution when it reaches the boundary.
However, the evolution of the curve will terminate only when K = 0, i.e., near an
ideal edge. In most images, the gradient values will be different along the edge, thus
requiring the use of different K values. In order to circumvent this issue, the third
geodesic term ((∇K.N)) is necessary so that the curve is attracted toward the bound-
ary (∇K points toward the middle of the boundary). This term makes it possible to
terminate the evolution process even if (a) the stopping function has different values
along the edges, and (b) gaps are present in the stopping function.

The stopping term used for the evolution of level sets is given by

K(x,y) =
1

1+( ‖∇(G(x,y)�I(x,y))‖
k )α

(4.6)

5 The subscript t denotes the iteration number



156 4 Iris Recognition

where I(x,y) is the image to be segmented, G(x,y) is a Gaussian filter, and k and α
are constants. As can be seen, K(x,y) is not a function of t.

(a) (b)

(c)

Fig. 4.10 Stopping function for the geodesic active contours. (a) Original iris image, (b) stopping
function K, and (c) modified stopping function K′.

Consider an iris image to be segmented as shown in Figure 4.10 (a). The stopping
function K obtained from this image is shown in Figure 4.10 (b) (for k = 2.8 and
α = 8). Assuming that the inner iris boundary (i.e., the pupillary boundary) has
already been detected, the stopping function K is modified by deleting the circular
edges corresponding to the pupillary boundary, resulting in a new stopping function
K′. This ensures that the evolving level set is not terminated by the edges of the
pupillary boundary (Figure 4.10 (c)).

A contour is first initialized near the pupil (Figure 4.11 (a)). The embedding
function ψ is initialized as a signed distance function to γ(t = 0) which looks like a
cone (Figure 4.11 (b)). Discretizing equation 4.4 leads to the following equation:

ψt+1
i, j −ψt

i, j

Δ t
=−cK′

i, j‖∇ψt‖−K′
i, j(εκ t

i, j‖∇ψt‖)+∇ψt
i, j.∇K

′t
i, j, (4.7)

where Δ t is the time step (e.g., Δ t can be set to 0.05). The first term (cK′
i, j‖∇ψt‖)

on the right hand side of the above equation is the velocity term (advection term)
and, in the case of iris segmentation, acts as an inflation force. This term can lead to
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(a) (b)

Fig. 4.11 Contour initialization for iris segmentation using GAC. (a) Zeroth level set (initial con-
tour), (b) mesh plot denoting the signed distance function ψ .

singularities and hence is discretized using upwind finite differences. The upwind
scheme for approximating ‖∇ψ‖ is given by

‖∇ψ‖=
√

A,

A = min(D−
x ψi, j,0)2 +max(D+

x ψi, j,0)2+

min(D−
y ψi, j,0)

2 +min(D+
y ψi, j,0)

2.

D−
x ψ is the first order backward difference of ψ in the x-direction; D+

x ψ is
the first order forward difference of ψ in the x-direction; D−

y ψ is the first order
backward difference of ψ in the y-direction; and D+

y ψ is the first order forward
difference of ψ in the y-direction. The second term (K′

i, j(εκ t
i, j‖∇ψt‖)) is a curva-

ture based smoothing term and can be discretized using central differences. In our
implementation, c = 0.65 and ε = 1 for all iris images. The third geodesic term
(∇ψt

i, j.∇K
′t
i, j) is also discretized using the central differences.

After evolving the embedding function ψ according to Equation (4.7), the curve
begins to grow until it satisfies the stopping criterion defined by the stopping func-
tion K′. But at times, the contour continues to evolve in a local region of the image
where the stopping criterion is not strong. This leads to over-evolution of the con-
tour. This can be avoided by minimizing the thin plate spline energy of the contour.
By computing the difference in energy between two successive contours, the evo-
lution scheme can be regulated. If the difference between the contours is less than
a threshold (indicating that the contour evolution has stopped at most places), then
the contour evolution process is terminated. The evolution of the curve and the cor-
responding embedding functions are illustrated in Figure 4.12.

Since the radial fibers may be thick in certain portions of the iris, or the crypts
present in the ciliary region may be unusually dark, this can lead to prominent
edges in the stopping function. If the segmentation technique is based on parametric



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.12 Evolution of the geodesic active contour during iris segmentation. (a) Iris image with
initial contour, (b) embedding function ψ (X and Y axes correspond to the spatial extent of the eye
image and the Z axis represents different level sets), (c,d,e,f) contours after 600 and 1400 itera-
tions, and their corresponding embedding functions, and (g,h) Final contour after 1800 iterations
(contours shown in white).

158 4 Iris Recognition



4.5 Iris Normalization 159

curves, then the evolution of the curve might terminate at these local minima. How-
ever, geodesic active contours are able to split at such local minima and merge again.
Thus, they are able to effectively deal with the problems of local minima, thereby en-
suring that the final contour corresponds to the true limbus boundary (Figure 4.13).

(a) (b)

Fig. 4.13 The final contour obtained when segmenting the iris using the GAC scheme. (a) Exam-
ple of a geodesic contour splitting at various local minima, (b) final contour (contours shown in
white).

4.4.3 Generating iris masks

The localized iris could potentially be occluded due to other noisy regions such as
the eyelashes, shadows, or specular reflections. Thus, a noise mask is generated,
which records the locations of such undesired iris occlusions.

4.5 Iris Normalization

The amount of iris texture (i.e., its spatial extent) that is revealed in an image can be
impacted by a number of factors. Chief among them is the dilation and contraction
of the pupil in response to ambient illumination. The size of the iris (i.e., the number
of valid iris pixels) increases when the pupil contracts in response to bright light and
decreases when the pupil dilates in low light. Apart from this, factors such as the
resolution of the sensor and the imaging distance also impact the number of iris
pixels that can be gleaned from an image of the eye. Further, the size of the pupil
can vary across individuals. To address these variations in size, the segmented iris is
unwrapped and converted from cartesian coordinates to a normalized pseudo-polar
coordinate system. This normalization operation is performed by representing the
segmented iris as a rectangular image, the rows of which correspond to concentric
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regions of the iris. This transformation is called Daugmans rubber sheet model and it
re-maps every point in the annular region between the two circular boundaries (viz.,
the pupillary and limbus boundaries) to pseudo-polar coordinates (r,θ ), where r ∈
[0,1] and θ ∈ [0,2π], as shown in Figure 4.14.

(a)

(b)

Fig. 4.14 Iris normalization. (a) Daugman’s rubber sheet model is used for iris normalization. The
normalization routine converts the pixel coordinates in the annular region between the pupillary
and limbus boundaries to polar coordinates. This addresses the problem of variations in pupil size
across multiple images. (b) Example of a normalized iris.

The re-mapping of the iris region I from cartesian (x,y) coordinates to the nor-
malized polar coordinates (r,θ ) is expressed as:

I(x(r,θ ),y(r,θ )) → I(r,θ ), (4.8)

with
x(r,θ ) = (1− r)xp(θ )+ rxl(θ ), (4.9)

and
y(r,θ ) = (1− r)yp(θ )+ ryl(θ ), (4.10)

where xp,yp and xl ,yl are the coordinates of points sampled from the pupillary and
limbus boundaries, respectively. Along with the localized iris, the noise masks are
also unwrapped to facilitate faster matching.

In order to account for the irregularity and effect of eyelids/eyelashes on the
limbus boundary extracted using the GAC scheme, only those points on the contour
lying on the boundary of the iris and sclera (as opposed to that of the iris and the
eyelids) are used to estimate the radius and center of the iris. Specifically, six points
at angles of [−300,00,300,1500,1800,2100] with respect to the horizontal axis are
selected from the extracted contour and their mean distance from the center of the
pupil is used as the approximate radius of the iris (R). A circle is next fitted through
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all the points on the contour that are within a distance of R pixels from the center of
the pupil. This circle estimates the actual limbus boundary of the iris. Figure 4.15
denotes this procedure.

(a) (b)

Fig. 4.15 When GAC is used to localize the outer iris boundary, then an additional step is needed
to facilitate normalization. Thus, the irregular boundary deduced using active contours is converted
to a circular boundary as shown in the image above. Those pixels that are included within the
circular boundary, but excluded by the irregular boundary are considered to be non-iris pixels and
excluded by the mask.

4.6 Iris Encoding and Matching

The process of extracting a numerical feature set from the iris is called iris encoding.
This corresponds to the feature extraction stage indicated in Chapter 1. To encode
the normalized iris texture pattern, a two dimensional Gabor wavelet is usually con-
volved with the unwrapped iris image. A 2D Gabor wavelet, over an image domain
(x,y), is given by:

G(x,y) = e−π [(x−x0)
2/α2+(y−y0)

2/β 2]e−2π i[(u0(x−x0)+v0(y−y0)], (4.11)

where (x0,y0) denote the position in the image, (α,β ) denote the effective width
and length, and (u0,v0) ascertain the wave direction with a spatial frequency ω0 =√

u2
0 + v2

0.
The real and imaginary components of this wavelet can be separated as:

R
{

G(x,y)
}
= e−π [(x−x0)

2/α2+(y−y0)
2/β 2] cos(−2π [(u0(x− x0)+ v0(y− y0)]),

(4.12)
and
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I
{

G(x,y)
}
= e−π [(x−x0)

2/α2+(y−y0)
2/β 2] sin(−2π [(u0(x− x0)+ v0(y− y0)]),

(4.13)
respectively. The real and imaginary outputs obtained by convolving a 2D Gabor
wavelet with a normalized iris image are shown in Figure 4.16.

(a) (b)

Fig. 4.16 Real and imaginary outputs of convolving an image with a 2D Gabor wavelet.

The output of the Gabor wavelets is demodulated to compress the data. This is
performed by quantizing the phase information into four different levels, one for
each quadrant of the complex plane. As the normalization is earlier performed in
the polar coordinates, the wavelet in polar coordinates can be expressed as:

H(r,θ ) = e−iω(θ−θ0)e−(r−r0)
2/α2

e−i(θ−θ0)
2/β 2

, (4.14)

where (r0,θ0) denote the center frequency of the wavelet, while all other variables
denote the same parameters as in Equation (4.11).

Given the normalized iris image I(ρ ,φ) in the polar coordinate system, the de-
modulation and phase quantization process can be written as:

hRe,Im = signRe,Im

∫
ρ

∫
φ

I(ρ ,φ)e−iω(θ0−φ)e−(r0−ρ)2/α2
e−(θ0−φ)2/β 2

ρdρdφ , (4.15)

where hRe,Im is the complex valued bit whose real and imaginary components are
dependent on the sign of the integral. This is illustrated in Figure 4.17. The response
of this operation is a binary output referred to as iris code. The dimension (or length)
of the iris code depends upon the size of the normalized iris image, which in turn de-
pends upon the resolution along the r and θ axes. A dimension of 2048 is commonly
used.

The normalized Hamming Distance (HD) between two iris codes is used as a
measure of dissimilarity between two irides. This value is computed by masking
every iris code with its respective mask to disregard noisy regions. The Hamming
Distance between two iris codes is computed as

HD =
‖ (IrisCodeA⊕ IrisCodeB)∩MaskA∩MaskB ‖

‖ MaskA∩MaskB ‖ (4.16)

The XOR operator (⊕) detects the bits that disagree between the two iris codes,
while the AND operator (∩) masks the noisy regions. The denominator helps in
normalizing the total number of bits that disagree in the interval [0,1]. A perfect
match between two iris codes will result in a HD value of 0. See Figure 4.18.
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Fig. 4.17 An illustration of the phase demodulation and quantization process used to encode the
iris. The phasor response at each pixel in the normalized iris is quantized into two bits of informa-
tion.

Fig. 4.18 The process of matching a pair of irides. Here, three images of the eye belonging to
two different subjects are shown. Each image is subjected to a segmentation routine in order to
extract the iris, which is converted to a rectangular entity via Daugman’s rubber sheet model. The
segmentation routine results in a binary mask, where a 1 indicates an iris pixel and a 0 indicates
a non-iris pixel. The normalized iris is processed using Gabor wavelets and the resulting phasor
response is quantized into an iris code. The Hamming Distance (HD) between two iris codes of the
same iris is expected to be smaller than that corresponding to two different irides.
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4.7 Iris Quality

Depending on the field of view of the iris sensor, an iris image usually includes the
upper and lower eyelashes and eyelids, and some regions of the eyebrow as shown
in Figure 4.19. However, only the rich textural information of the iris between the
pupillary and limbus boundaries is used for recognition. Thus, for a given iris image
(or a video frame), quality evaluation is typically based on factors that degrade or
reduce the size of the iris region.

Fig. 4.19 A sample NIR iris image captured from a cooperative user under near ideal conditions.

Some of the factors that can significantly reduce the quality of an iris image
include (a) occlusion, (b) defocus, or out-of-focus, (c) motion blur, (d) non-uniform
illumination, (e) low resolution, or large imaging distance, (f) iris dilation, (g) off-
angled imaging, and (h) the presence of accessories such as fake or printed contact
lenses. Examples are shown in Figure 4.20.

4.7.1 Quality assessment techniques

While most quality evaluation schemes consider only a single or a pair of factors,
newer techniques consider a wider range of factors for quality assessment. Some of
these are described here.

• Examining the sharpness of a portion between the pupil and iris: Sharpness of
an image is usually an indicator of the proper focusing of the object being im-
aged and thus is usually used in determining the quality of an iris image. Here,
sharpness is essentially computed as the normalized magnitude of the intensity
gradient near the pupillary boundary. Let (Xp,Yp) and rp denote the center and
the radius of the pupil, respectively, and ri denote the radius of the iris. A region
of interest is selected such that all the pixels (x,y) lying within the region satisfy
the following conditions:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.20 Poor quality iris images caused by (a) occlusion, (b) defocus, (c) motion blur, (d) non-
uniform illumination, (e) low resolution sensor, (f) iris dilation, (g) off-angled imaging, and (h) the
presence of a printed contact lens.

(yp − 0.8rp)< y < (yp + 0.8rp) (4.17)

and

−
√

r2
p − (y− yp)2 + 0.1ri < x− xp < −

√
r2

p − (y− yp)2 + 0.2ri

(4.18)
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Figure 4.21 illustrates the region of interest that is specified by the above condi-
tions.

Fig. 4.21 Region of interest selected for estimating the sharpness of the iris.

From the selected region of interest, the median values of the pixels falling in
the pupil region, Mp, and the iris region, Mi, are computed. Then, for all the
pixels in the selected region whose intensity values lie between Mp and Mi, the
absolute values of their horizontal gradients are gathered in a set. From this set,
the average of the top 20 values are computed, and denoted by the variable S. The
sharpness measure of a given iris image, 1

w , is then computed by the following
equation:

1
w

=
S
H
, (4.19)

where H = (Mi − Mp), denotes the step size. If the sharpness measure is above a
threshold value of 0.5, the image is considered to be well focused and, therefore,
of good quality.

• Quantifying the energy of high spatial frequencies over the entire image: This
method determines the sharpness over the whole image using 2D Fourier analysis
in order to eliminate optically defocused images.
For a given image represented as a 2D function of the real plane I(x,y), its 2D
Fourier transform F(μ ,ν) is defined by:

F(μ ,ν) =
1

(2π)2

∫ ∫
I(x,y)exp(−i(μx+νy))dxdy. (4.20)

The defocused image, Dσ (μ ,ν), is related to the 2D Fourier transform of the
corresponding in-focus image, F(μ ,ν), by the following model:

Dσ (μ ,ν) = exp

(
− μ2 + ν2

σ2

)
F(μ ,ν). (4.21)

Defocusing primarily attenuates the highest frequencies in the image, while the
lower frequency components are virtually unaffected. This is because the expo-
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nential term in the above equation approaches to unity as the frequencies (μ ,ν)
become small. Thus, an effective method of identifying a defocused image would
be to simply measure its total power in the 2D Fourier domain at higher spatial
frequencies (as they are most attenuated by defocus). To make this quality mea-
sure independent of the image content, the ratio of power of the higher frequency
bands may be compared to that of the lower frequency bands.

• Analyzing the Fourier spectra of local iris regions: This can be used to detect
poor quality images caused by factors such as (a) out-of-focus blur, (b) motion
blur, and (c) occlusion due to the eyelashes, and/or eyelids. The Fourier analysis
of a given iris image yields a significant amount of information, which can be
used to isolate poor quality images from a given set of images. For an out-of-
focus image, the Fourier spectrum is supposed to be largely dominated by the
low frequency components. On the other hand, an iris image with occlusions
contains significant middle and high frequency components that are caused by
the eyelashes. The Fourier spectrum of a motion blurred image lacks middle and
high frequency components, and has frequency distribution similar to that of an
out-of-focus image.
The descriptor used for estimating the quality of an iris image can then be defined
as:

D =

[
(F1 + F2 + F3);

F2

F1 + F3

]
, (4.22)

where

Fi =
∫ ∫

Ω = {(u,v)| f i
1 <

√
u2+v2 <= f i

2}
| F(u,v) | dudv i = 1,2,3, (4.23)

and F(u,v) is the 2D Fourier spectrum of the iris region, while F1, F2, and F3 de-
note the power of the low, middle, and high frequency components, respectively.
Frequencies f i

1 and f i
2 are the radial frequency pair, that form the extrema of the

corresponding frequency components.
The quality descriptor D consists of two discriminating frequency features. The
first feature is the total spectrum power of the iris region that can effectively
discriminate severely occluded iris images from high quality images. The second
feature is a ratio of the middle frequency power to the other frequency powers.
For a clearly focused image, this ratio is high, when compared to out-of-focus or
motion blurred images.
For a given iris image, I, two 64×64 regions are selected as shown in Figure 4.22,
and the quality descriptor values are computed. The mean of the resulting two
local quality descriptors is regarded as an appropriate quality measure of the iris
image.

• Measuring the energy from 2D wavelets at local concentric bands of iris: This
approach evaluates the quality of a given iris image using 2D wavelets on local
concentric bands of a segmented iris. The local quality measure is then used as a
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Fig. 4.22 (a) An iris image of good quality. Poor quality iris images, caused by (b) out-of-focus,
(c) motion blur, and (d) occlusion. The images (e), (f), (g), and (h) show the Fourier spectra of the
selected two local iris regions of size 64× 64 (highlighted by the white boxes), corresponding to
images (a), (b), (c), and (d), respectively. Image reproduced from [23]. c©IEEE.

weighting scheme in the matching process to yield improved results. The analysis
is performed on local regions since the quality can vary from region to region.
Thus, the method uses higher weights for inner regions of the iris that are more
stable compared to the outer regions that are more prone to occlusions.
Given an image I(x,y) ∈ R2, its Continuous Wavelet Transform (CWT), defined
as the convolution with a series of wavelet functions, is given by the following
equation:

w(s,x0,y0) =
1√
s

∫ ∫
R2

I(x,y)φ
(x− x0

s
,

y− y0

s

)
dxdy, (4.24)

where s is the dilation (scale) factor, and (a,b) denotes the translation (shift) fac-
tor. The wavelet φ is considered to be a Mexican hat wavelet, which is essentially
a band pass filter for edge detection at scales s. The choice of the wavelet is due
to its high sensitivity to features exhibiting sharp variations (e.g., pits, freckles,
etc.) and non-linearity (e.g., collarette, furrows, etc.). First, in order to capture
various features at multiple scales, the product responses are obtained, given by
the following equation:

wmul(s1,s2,s3) = w(s1) × w(s2) × w(s3). (4.25)

Here, s1, s2, s3 are three considered scales. To perform quality evaluation of an
iris image, the iris is segmented to obtain the boundaries of the pupil and iris. The
segmented iris is then partitioned into multiple concentric bands of fixed width,
which are centered at the pupil center.
To obtain the local quality measure, the energy Et of the t-th band (t = 1,2, ...T ),
where T denotes the total number of bands, is computed by the following equa-
tion:
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Et =
1
Nt

i=Nt

∑
i=1

| wmul
t,i |2, (4.26)

where wmul
t,i represents the i-th product based wavelet coefficient in the t-th band,

and Nt is the total number of wavelet coefficients in the t-th band. The energy, Et ,
is considered as a good indicator of the distinctiveness of the iris features, and
is therefore a reliable measure of the local quality. A high value of Et suggests a
good quality image.
The quality index of the entire iris image, Q, is defined as the weighted average
of the band-wise local quality values, and is given by:

Q =
1
T

T

∑
t=1

(mt × log(Et)), (4.27)

where T represents the total number of bands and mt is the weight, given by
mt = exp{− ‖ lt − lc ‖2 /(2q)}. The variable lc denotes the center of the pupil,
and lt denotes the mean radius of the t-th band with respect to lc.
To incorporate local quality measures into the matching scheme, Daugman’s
Hamming distance matching algorithm is modified as:

HDw =
1
B

∑B
i=1

√
EX

g(i)×EY
g(i)× (Xi

⊗
Yi)

∑B
i=1

√
EX

g(i)×EY
g(i)

, (4.28)

where Xi and Yi represent the i-th bit of the iris code sequences X and Y , respec-
tively, and N is the total number of bits in the sequence. g(i) is the index of the
band that contains the i-th bit of the IrisCode, and EX

g(i) and EY
g(i) are the local

quality measures of the g(i)-th band in X and Y , respectively. The symbol
⊕

represents the logical XOR operation.

Iris image quality assessment is an area of continuing research. While initial
research has shown the benefits of incorporating iris quality, its assessment and use
in a real-time environment is still an open challenge.

4.8 Performance Evaluation

According to the biometric literature, the structural texture in the iris is substantially
diverse across the population. As stated before, even the irides of monozygotic twins
exhibit structural differences. Large-scale testing has confirmed the potential of iris
patterns to identify individuals in a large database of subjects. Experiments con-
ducted by Daugman on a database of 632,500 iris images (316,250 persons spanning
152 nationalities) suggest the possibility of a decision policy that could yield zero
error rates. However, this rate is predicated on the quality of the iris image, which
must be strictly monitored to ensure reasonable textural clarity. Tests conducted in
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2006 by the National Institute of Standards and Technology involving a broad range
of image quality suggest that the false nonmatch rate of the best performing iris
recognition algorithms can vary between 1.1 to 1.4 percent at a false match rate of
0.1 percent.

4.9 Summary

The tremendous progress in iris recognition systems has resulted in several chal-
lenges and new opportunities, which have been the focus of recent research efforts.
We conclude this chapter by listing some of these challenges.

• The iris is a moving object with a small surface area, residing within an eyeball
that can move independently of the iris. The eyeball in turn is within the head,
another moving object. The formidable challenge, therefore, is to reliably locate
the eyeball and localize the iris’s position in images obtained at a distance from
unconstrained human subjects. Because acquisition modules typically image the
iris in the NIR spectrum, appropriate invisible lighting is required to illuminate
the iris while acquiring the image. These factors confound the system’s ability
to operate successfully when the subject is more than a few meters away from
the camera. Recent efforts have successfully designed and developed iris-on-the-
move and iris-at-a-distance recognition systems. Other efforts are investigating
technologies such as wavefront-coded imaging to increase the camera’s depth of
field.

• Nonideal irides can result from motion blur, camera diffusion, transmission
noise, out-of-focus imaging, occlusion from eyelids and eyelashes, head rotation,
off-axis gaze or camera angle, specular reflection, poor contrast, and natural lu-
minosity - factors that can lead to a higher false nonmatch rate. Robust image
restoration schemes are needed to enhance the quality of such iris images be-
fore the system processes them. Recent research has attempted to deal with the
problem of off-axis iris images by designing suitable calibration and geometric
correction models.

• A common assumption is that the textural relief of an iris is unique because of
its random morphogenesis, and large-scale empirical evaluations have confirmed
this notion across a large segment of the population. However, no effective theo-
retical models exist for quantifying the iris’s individuality. Although researchers
have used match-score distributions and IrisCode statistics to infer the iris bio-
metric’s degrees of freedom, no one has yet directly used the iris’s biological
underpinnings to ascertain its individuality. This interesting problem has impli-
cations for using iris recognition in a court of law in accordance with Daubert’s
admissibility criteria and Federal Rules of Evidence.

• By combining the iris with other ocular features such as conjunctival vascula-
ture, researchers might be able to develop robust ocular-based multibiometric
systems that can operate in environments characterized by harsh lighting, mov-
ing subjects, and large stand-off distances. Explicitly combining ocular features
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with local facial attributes such as skin texture and facial marks in the periocu-
lar region (the region around the eye) can enhance the performance of face-based
biometric systems. Using the iris in a multimodal framework can enhance match-
ing accuracy and reduce constraints on the depth of field by allowing the use of
low-resolution iris images.

• The use of biometric systems in large-scale government and civilian applica-
tions has raised concerns about the iris template’s security and the retention of
its owner’s privacy. Security and privacy are of particular concern in centralized
databases, which can store millions of iris templates. Privacy-enhancing tech-
nology, along with cancelable biometrics (see Chapter 7, Security of Biometric
Systems), is likely to raise the privacy and security levels of such personal infor-
mation. However, more research is required to incorporate these schemes in an
operational environment.

Despite its challenges, iris recognition is gaining popularity as a robust and reli-
able biometric technology. The iris’s complex texture and its apparent stability hold
tremendous promise for leveraging iris recognition in diverse application scenar-
ios, such as border control, forensic investigations, and cryptosystems. The use of
other ocular features and facial attributes along with the iris modality could enable
biometric recognition at a distance with excellent matching accuracy. The future of
iris-based recognition looks bright, particularly in military applications that demand
the rapid identification of individuals in dynamic environments.

Bibliographical and Historical Remarks

The possibility of using the iris6 as a cue for human recognition or categoriza-
tion was suggested by various individuals, including French police officer Alphonse
Bertillon in 1885 [2], American ophthalmologist Frank Burch in 1936 and British
ophthalmologist James Doggart in 1949 [14]. In 1987, American Ophthalmologists
Leonard Flom and Aran Safir were issued a patent for designing a conceptual frame-
work for automated iris recognition [15]. However, their patent did not include a
specific procedure for feature extraction and matching and was, therefore, a broad
generalization of the process for automated iris recognition. A few years later, at the
suggestion of Flom and Safir, renowned computer vision scientist John Daugman
actually designed and evaluated a method for automated iris recognition [11, 6]. To
this day, many of the algorithms originally designed by Daugman are still being
used in commercial iris recognition systems.

Daugman employed the integro-differential operator for localizing the inner and
outer contours of the iris. He introduced the rubber sheet model to transform the
iris from an annular structure to a normalized fixed-size rectangular entity; this was
an elegant way of accommodating variations in iris diameter and head tilt whilst
ensuring ease of matching. He used 2-D Gabor filters [10] for examining the texture

6 The word iris is derived from the Greek word ιρις meaning “rainbow”
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of the normalized iris image. The term “iris code”, that refers to the binarized phasor
response obtained when the normalized iris image is convolved with a Gabor filter,
is also due to Daugman [11]. A rigorous treatment of iris codes can be found in [12,
22]. The work in [20] established that some bits in the iris code are more consistent
than the others. The use of iris codes in designing biometric cryptosystems and
indexing schemes has also been demonstrated [17, 18].

In 1994, Wildes et al. [36] suggested the use of the Generalized Hough Transform
for iris segmentation. The proposed technique relied on the use of gradient-based
edge detectors to process the input eye image prior to invoking the Hough-based
voting scheme for detecting the pupillary boundary, the limbus boundary and the
eyelid contours. Feature extraction was performed on the segmented iris image us-
ing a four-band Laplacian-of-Gaussian filter, and the normalized cross-correlation
values between corresponding bands were used to compare two irides [37].

Apart from the integro-differential operator and the Hough Transform method,
other approaches to iris segmentation include those based on Fourier Series [13],
Geodesic Active Contours [33], Fuzzy Clustering [29], and Elastic Models [19].
The use of alternate feature encoding and matching schemes, other than the classical
wavelet-based methods, have also been investigated. Examples include those based
on Ordinal Features [34], Scale Invariant Feature Transforms [1] and Correlation
Filters [35]. A survey of other approaches to iris recognition can be found in [3].

Methods for processing off-axis iris images, in which the eye gaze is directed
away from the camera, have been discussed in [32]. While iris processing has been
traditionally done in the near-infrared spectrum, recent work has explored the possi-
bility of acquiring and processing iris images in the visible spectrum and the short-
wave infrared spectrum [4, 27, 31, 24]. The benefits of multispectral iris analysis
are likely to be realized in future iris recognition systems.

The issue of image quality is of paramount importance due to its impact on
both iris segmentation and feature encoding. A detailed reading list is available
in the NIST Biometrics Quality Homepage currently hosted at http://www.
nist.gov/itl/iad/ig/bio_quality.cfm. Evaluation of iris recognition
algorithms have been conducted as part of Independent Testing of Iris Recognition
Technology (ITIRT [21]), Iris Challenge Evaluation (ICE [25, 26]), Multibiometric
Grand Challenge (MBGC), Iris Exchange Evaluation (IREX [16]) and Noisy Iris
Challenge Evaluation (NICE [28]).
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Chapter 5
Additional Biometric Traits

Every biometric system relies on one or more biometric modalities. The choice of modality is
a key driver of how the system is architected, how it is presented to the user, and how match
vs. nonmatch decisions are made. Understanding particular modalities and how best to use the
modalities is critical to overall system effectiveness.

Whither Biometrics Committee, National Research Council, 2010

Earlier chapters in this book focused exclusively on three specific biometric modalities - fin-

gerprint, face, and iris. These traits have been extensively studied in the literature and have been

incorporated in several government, military, and civilian biometric systems around the world.

However, apart from these traits, several other biometric attributes have also been studied in the

context of applications ranging from border control systems to surveillance to forensic analysis.

Examples of such attributes include hand geometry, ear, speech, signature, gait, DNA, and teeth.

Further, soft biometric attributes (i.e., attributes that provide some information about the individual,

but lack the distinctiveness and permanence to sufficiently differentiate any two individuals) such

as scars, marks, and tattoos (SMT), periocular region, and human metrology have also been studied

in the biometric literature. This chapter will introduce a few of these traits in order to convey the

breadth of work being conducted in the field of biometrics.

5.1 Introduction

As stated in Chapter 1, a wide variety of biometric traits have been proposed and
studied in the literature. In some cases, academic curiosity about the uniqueness and
permanence of certain biological traits has spurred exploratory research (e.g., iris);
in other cases, new application domains have resulted in the exploration of novel
biometric traits (e.g., periocular biometrics). Furthermore, certain biometric traits
are uniquely suited for some applications and scenarios. For example, voice may be
more practical in tele-commerce applications; the ear may be useful in surveillance
applications where only the side-profile of the human face is available; gait patterns
may be relevant in identification-at-a-distance scenarios; hand geometry may be ap-
propriate for use in systems requiring the verification (as opposed to identification)
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of a few enrolled identities thereby mitigating some of the concerns associated with
using a strong biometric cue such as fingerprint; and the iris or fingerprint may be
chosen in applications where the subject is cooperative and in close proximity to the
sensor.

Apart from the aforementioned traits, ancillary information such as gender, eth-
nicity, age, height, and eye color can also be used to improve the matching accuracy
of a biometric system. For example, if a female subject (probe) is matched incor-
rectly against a male subject (in the gallery), then the gender information can be
used by the biometric system to reject the match. Ancillary attributes provide addi-
tional information about the individual, but lack the distinctiveness and permanence
to sufficiently differentiate two individuals. However, they can be used to narrow
the search space of potential matches in an identification system (e.g., if the input
probe is deemed to be an “Asian Male”, then an identification system can constrain
its search only to “Asian Male” identities in the database) or when other biometrics
traits are not readily available (e.g., using the periocular information when the iris is
deemed to be of poor quality). Such traits are commonly referred to as soft biomet-
rics in the literature. Unlike some other attributes such as fingerprint and iris, soft
biometric traits are not necessarily “unique” to an individual. They can be shared
across a significant fraction of the population (e.g., gender) and may lack perma-
nence (e.g., scars, marks, and tattoos, abbreviated as SMT).

Given the diversity of biometric traits discussed in the literature, in the interest
of being concise, we restrict our discussion to the following four biometric traits in
this chapter: ear, gait, hand geometry, and soft biometrics.

5.2 Ear

The appearance, structure, and morphology of the human ear has been studied as
a biometric cue for a number of years. While most face recognition systems ex-
tract the attributes of the human face from frontal images, the visibility of the ear
in non-frontal poses of the face (e.g., side view) makes it a viable biometric in
many scenarios. The human ear is observed to exhibit variations across individuals
as assessed by the curves, surfaces, and geometric measurements pertaining to the
visible portion of the ear, commonly referred to as the pinna. The structure of the
pinna depicting various anatomical features can be seen in Figure 5.1.

As a biometric trait, the ear offers several advantages: (a) the structure of the
ear has been observed to be stable despite aging, and ear growth is almost linear
after the age of four; (b) the ear, unlike other facial features, is minimally impacted
by changes in facial expression; and (c) image acquisition does not involve explicit
contact with the sensor.

A typical ear recognition system consists of the following components: (a) an
ear detection module (also known as segmentation) that localizes the position and
spatial extent of the ear in an image; (b) a feature extraction module that extracts
discriminative features from the ear; (c) a matching module that compares the fea-
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(1) Helix Rim
(2) Lobule
(3) Antihelix
(4) Concha
(5) Tragus
(6) Antitragus
(7) Crus of Helix
(8) Triangular Fossa
(9) Incisure Intertragica

Fig. 5.1 External anatomy of the ear. The visible flap is often referred to as the pinna. The intri-
cate structure of the pinna coupled with its morphology is believed to be unique to an individual,
although large-scale evaluation of automated ear recognition systems has not been conducted.

tures extracted from two ear images and generates a match score; and (d) a decision
module that processes the match score(s) and establishes the identity of the subject.

5.2.1 Ear detection

A number of techniques have been proposed in order to locate the ear in a given
image. These approaches can be categorized into the following groups.

1. Template Matching:
In a template matching scheme, a template of a typical ear is constructed and is
matched with each location in the query image. The location giving the highest
score is considered as the region containing the ear. The template may consist of
an edge image of the ear or a set of descriptors extracted from the ear such as the
response to a set of filters or a histogram of shape curvatures in case a 3D image
of the ear is being used for recognition. Detection based on response to a set of
pre-selected filters, known as the Viola and Jones technique, is also commonly
used for detecting faces in an image.

2. Model-based Detection:
A model-based detection technique assumes certain characteristics of the shape
of the ear and tries to find regions that manifest such characteristics. The shape
of the helix, for example, is usually elliptical so a generalized Hough transform
tuned for detecting ellipses can be used to locate the ear in an edge image. Fea-
tures extracted using chain codes1 can also be used to classify each curve ob-
tained from an image to be a curve associated with the ear, such as a helix or an
anti-helix.

3. Morphological-operator-based Detection:
Since the structure of the ear is usually more intricate than the structure of the
remaining region in a profile face image, morphological transformations such

1 A chain code typically measures the local orientations along the length of the curve.
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as the Top-hat transformation can be used. A Top-hat transformation essentially
subtracts a morphologically smoothened version of an image from itself, thereby
highlighting finer details.

4. Face-geometry-based Detection:
Since in a profile image the nose can be easily detected as the point with high cur-
vature, it is possible to constrain the search for the ear in an appropriate location
relative to the nose.

Ear detection performance can be improved by utilizing a two-stage processing,
where the skin region is segmented from the profile image in the first stage and the
ear is detected in this reduced search space during the second stage.

5.2.2 Ear recognition

1. Subspace analysis-based techniques:
Similar to recognizing face images, projecting the ear image onto a set of princi-
pal directions is an effective way to obtain a salient and compact representation of
an ear. Subspace projection techniques such as PCA, ICA, and LDA have been
successfully used in literature for matching ear images. Furthermore, manifold
learning based techniques such as Locally Linear Embedding (LLE) and Kernel
PCA have also been used to perform ear recognition.

2. Sparse representation-based techniques:
Optimization techniques that minimize L-1 norm of the distance vector between
the transformed query and all the transformed templates in a database have been
shown to provide high recognition accuracy in object recognition studies. This
technique has also been successfully used for ear recognition.

3. Point set matching-based techniques:
Elastic bunch graph matching is an effective technique to recognize faces based
on responses to a bank of Gabor filters at some fiducial points on the face. This
technique has also been successfully used for matching ear images where a num-
ber of landmark points can be easily detected, thanks to its complex structure.
Scale Invariant Feature Transform (SIFT) is a well known technique for matching
two images where a set of salient points can be reliably and repeatably extracted
from them. In order to match two images using SIFT features, corner points are
detected from two images and matched based on image gradient-based features
extracted from the neighborhood region of each point. See Figure 5.2 for an
example of SIFT points being matched between two ear images.

4. Image filtering-based techniques:
In certain techniques, the ear image is first enhanced to highlight the discrimina-
tive features and suppress the noise. Two common techniques that use this basic
procedure are force field transformation and local binary patterns.

a. Force field transformation:
A force field transformation essentially obtains the intensity of the forces at
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Fig. 5.2 Comparing two ear images by using the SIFT key points matching scheme. Here, the
SIFT keypoints are first extracted from each image prior to comparing them.

each location in the image where each pixel is considered as a source of the
force with intensity proportional to its value. Force field transformation has
been shown to effectively remove the noise in the ear image leading to signif-
icant improvement in recognition accuracy. Further, a set of lines indicating
the gradients of this force field can be extracted and used for matching. See
Figure 5.3 for a depiction of force field extracted from an ear image with the
force field lines marked.

b. Local binary patterns:
Local binary patterns essentially characterize each pixel based on variation of
intensity of that pixel along a set of directions. The variation along each direc-
tion is encoded as a single bit indicating whether the intensity is increasing or
decreasing, and the set of bits associated with each direction is used to obtain
an integer value for each pixel. Such a transformation effectively reduces the
effect of illumination variations and other sources of noise, thereby generating
an enhanced image which can be used for robust matching.

Fig. 5.3 Extraction of force field lines from an ear image using an iterative approach.

5. Geometric measurements-based techniques:
Features obtained by measuring certain geometric characteristics of the ear can
also be used as a set of discriminative features. As an example, the centroid of an
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ear image obtained from its edge image can be used as a center to draw concentric
circles with pre-specified radii. Various measurements, such as number of points
on a circle intersecting the edge image or distance between two consecutive in-
tersections, can be used as a feature vector. Characteristics of different curves
present in the edge image such as the coordinates of endings and bifurcations
can also be used as additional features.

6. Transformation-based techniques:
Various image transformation techniques such as Fourier transform or wavelet
transform can also be applied to extract discriminative features from an ear im-
age. Fourier transform can also be applied in order to obtain a rotation and trans-
lation invariant representation of the ear - for example, by using a polar coordi-
nate system and extracting only the magnitude of the Fourier transform.

7. 3D techniques:
In some scenarios, acquiring a 3D rendition of the ear entity may be possible.
3D images offer depth information that can be used in conjunction with the 2D
texture information to improve the recognition accuracy. In the case of 3D ear
images, local histograms of shape curvature values can be used to match two ear
images. The Iterative Closest Point (ICP) algorithm is commonly used to register
and match 3D ears. In the ICP technique, each point in the input ear image is
used to obtain a corresponding point in the template image and the input is then
rotated and translated in order to minimize the distances between corresponding
points. This procedure is iteratively applied until convergence, and the resultant
set of distances is used to compute the matching score.

5.2.3 Challenges in ear recognition

Although several algorithms for ear detection and matching have been proposed
in the literature, large-scale public evaluation of ear recognition algorithms has not
been conducted. Further, there are no commercial biometric systems at this time that
explicitly utilize features of the ear for human recognition. But the performances of
ear recognition algorithms have been tested on some standard ear datasets. Exper-
iments suggest that ear images obtained under controlled conditions can result in
good recognition accuracy. However, the performance of ear recognition methods
on non-ideal images obtained under varying illumination and occlusion conditions
is yet to be established. Several challenges have to be overcome to make this possi-
ble.

1. Ear Occlusion:
One of the main challenges faced by an ear recognition system is occlusion due
to the subject’s hair. One way to address such occlusion is by capturing the ther-
mogram along with the visible light image. In a thermogram, the hair can be
easily detected (and possibly isolated) as its temperature is usually lower than
that of the skin.
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2. Earprint Identification:
Earprints, or earmarks, are marks left by secretions as a result of pressing the ear
against a flat surface. These marks mainly consist of impressions of the helix,
anti-helix, tragus, and anti-tragus. Other features include the earlobe and the crus
of helix, but they are less frequently observed. Earprints can be compared based
on details such as the notches and angles in imprinted samples, the positions
of moles, folds, and wrinkles, and the position of pressure points. Figure 5.4
provides a set of example earprints lifted from crime scenes.
Earprints are known to be available in approximately 15% of the crime cases
and have also been considered in some court cases as a source of forensic ev-
idence. However, due to significant variations among the multiple impressions
of an ear, individualization based on earprint is frequently disputed. The main
reasons confounding the individualization of earprint include (a) variable defor-
mations caused by the force applied by the ear to the surface, (b) the duration of
the ear’s contact with the surface (c) ornamental modifications to the ear, such as
piercing, and (d) changes in the shape and size of the ear due to aging.
Earprint identification is usually manually performed by identifying and match-
ing a set of geometric features from the earprint such as the intersection points of
ear curves with a regular grid or locations of certain other landmark points. Fully
automated systems utilizing SIFT features have also been designed to match two
earprints, but their performances has not been extensively evaluated in opera-
tional environments.

Fig. 5.4 Examples of earprints in which various anatomical features are indicated. This image is
reproduced from [21]. The labels in this image are as follows: 1. helix; 2. crus of helix; 3-6. parts
of anti-helix; 7. tragus; 8. antitragus; 9. incisure intertragic; 10. lobe.
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5.3 Gait

The demand for human identification at a distance has gained considerable traction,
particularly due to the need for covertly recognizing individuals in unconstrained
environments with uncooperative subjects. In such environments, the person of in-
terest may not be interacting with the biometric system in a concerted manner. Fur-
ther, the individual might be moving in this environment characterized by variable
illumination and a non-uniform background. Biometric modalities such as finger-
print and iris cannot be easily acquired at large stand-off distances.2 On the con-
trary, the face and gait modalities can easily be acquired at a distance, although the
smaller spatial resolution of the face at long distances can degrade accuracy of face
recognition systems. As a result, gait-based human recognition has received some
interest for biometric recognition at a distance. Gait is defined as the pattern of lo-
comotion in animals. Human gait, therefore, is the manner in which people walk.
While the formal definition of gait refers to human motion, practical algorithms for
gait recognition include both dynamic and static features (such as body shape) of
the moving human body. It can be viewed as a behavioral trait that is impacted by
the musculo-skeletal structure of the human body.

Gait recognition is perceived as an attractive solution for distance-based identi-
fication for a number of reasons. First and most importantly, human gait has been
observed to have some person-specific characteristics. Psychological studies by Cut-
ting and Kozlowski showed that humans are capable of deducing gender and recog-
nizing known individuals based on gait. Second, the gait biometric can be acquired
passively and, therefore, explicit subject interaction is not required for data acqui-
sition. Passive collection is beneficial in an environment where subjects are being
observed covertly. Finally, discriminatory features of human gait can be extracted
in low resolution images. This suggests that expensive camera systems may not be
required for gait recognition.

Typically, an algorithm for gait recognition begins with a silhouette extraction
process. This component aims to isolate (i.e., segment or localize) the contour of
the human body from a video sequence. A simple method for accomplishing this is
through background subtraction, on a frame-by-frame basis, although more sophis-
ticated methods based on Gaussian Mixture Models and Hidden Markov Measure
Field exist as well. Once the silhouette is determined, features can be extracted
for further processing. Methods for feature extraction are typically model-based or
model-free.

Model-based approaches incorporate structural information of the human body
either based on a priori information or through models of the human body deduced
from training data. A wide variety of biped models3 are commonly used, although
they vary in terms of complexity and information extracted. The benefit of a model-
based approach is that a good model allows for robust and consistent feature extrac-
tion. Since features are obtained from structural information, distortion in silhouette

2 The distance between the subject and the acquisition device is referred to as stand-off distance.
3 Biped models are two-legged models.
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shape is less likely to induce error. Model-free approaches, on the other hand, gen-
erally aim to extract features based on the movement of the silhouette through time.
The primary advantage of a model-free approach is computational simplicity, as
many algorithms of this class can be executed rapidly. However, a commonly cited
concern of model-free algorithms is their inability to adapt to silhouette distortions
arising from variations in camera viewpoint and clothing, or errors in segmentation.
In the following section, two popular algorithms for feature extraction will be briefly
discussed.

5.3.1 Feature extraction and matching

5.3.1.1 Model-based approach

An example of a model-based approach is a five-link biped model that is used to
represent human locomotion. This model is designed for representing gait across
the saggital plane (side profile) and is demonstrated in Figure 5.5.

Fig. 5.5 A five-link biped model used for modeling the human body for gait recognition.

Including the coordinates of the centroid, (x,y), the model consists of 7 param-
eters. Each of the five angles are denoted as sagittal plane elevation angles (SEAs)
and defined as the angle between the main axis of the body part and the y axis. Each
component of the model is also defined by a height (�), and length component of the
top and bottom bases (t and b). Using α = t/l and β = b/l, each part pi, i = 1, . . . ,5
is represented as pi = {αi,βi, �i}. These part heights are further normalized with
respect to the trunk (�5) to obtain scale invariance. The complete model is defined
as follows:

H = {K,R,M} (5.1)
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K = {α1,β1,α2,β2, . . . ,α5,β5} (5.2)

R = {r1,r2, . . . ,r5}, ri = �i/�5 (5.3)

M = {x,y,θ1,θ2,θ3,θ4,θ5} (5.4)

Using the above parameters, space domain features are computed for recognition.
These include ankle elevation (s1), knee elevation (s2), ankle stride width (s3), and
knee stride width (s4). The Discrete Fourier Transform is computed for each of these
features and then used as the primary feature vector for recognition. An illustration
of these features is provided in Figure 5.6.

Fig. 5.6 The space domain features extracted from the five-link biped model.

5.3.1.2 Model-free approach

Perhaps the most popular model-free approach is the Gait Energy Image (GEI) al-
gorithm. While it does not result in superior matching performance, this algorithm
is often cited as a benchmark for comparison due to its ease of implementation. GEI
aims to quantify the gait dynamics of an individual via a single image-based rep-
resentation. Given N binary silhouette images, {St(x,y)}, at various time instances
denoted by t, the gait energy image is defined as:

G(x,y) =
1
N

N

∑
t=1

St(x,y) (5.5)

In short, Equation (5.5) represents the averaged silhouette intensity over N
frames. Prior to averaging, the images must be normalized such that the height of
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each silhouette is the same. In addition, the images must be aligned according to the
horizontal centroid. Horizontal alignment allows for the moving shape dynamics to
be visualized in the final image. An example is provided in Figure 5.7. Here, the
rightmost image in each row represents the gait energy image.

Fig. 5.7 An example showing the normalized silhouette frames along with the gait energy image
(GEI). The two rows correspond to two different subjects. In each row, 7 frames are used to derive
the GEI which is the rightmost image.

For each gait energy image, gait dynamics is captured in terms of pixel intensity.
The energy images are transformed to feature vectors and used for gait recognition.

5.3.1.3 Feature matching

The resulting feature vectors constructed using the methods outlined above often re-
sult in large dimensionality, which is difficult to classify, especially when the num-
ber of training samples is small. Typically, a combination of Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) are used for dimensional-
ity reduction and subspace optimization. The reduced feature vectors are then com-
pared using the Euclidean distance metric.

5.3.2 Challenges in gait recognition

The matching performance of gait recognition algorithms is impacted by factors
such as clothing, footwear, walking surface, walking speed, walking direction (with
respect to the camera), etc. Further, the gait pattern of an individual can change
over time, especially with variations in body mass The impact of these factors is
difficult to mitigate and, therefore, evaluation of gait recognition algorithms has
been predominantly conducted in controlled environments. This has prevented the
incorporation of gait recognition in commercial biometric systems.
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5.4 Hand Geometry

Hand geometry, as the name suggests, refers to the geometric structure of the hand.
This structure includes width of the fingers at various locations, width of the palm,
thickness of the palm, length of the fingers, contour of the palm, etc. Although these
metrics do not vary significantly across the population, they can still be used to
verify the identity of an individual. Hand geometry measurement is non-intrusive
and the verification involves a simple processing of the resulting features. Unlike
palmprint, this method does not involve extraction of detailed features of the hand
(for example, wrinkles on the skin).

Hand geometry-based verification systems have been commercially available
since the early 1970s. The earliest literature on the hand geometry biometric is in
the form of patents or application-oriented description. Sidlauskas introduced a 3D
hand profile identification apparatus that was successfully used for hand geometry
recognition. Hand geometry systems have been deployed in several nuclear power
plants across the United States. Also, hand geometry kiosks are present at Ben Gu-
rion airport (Tel Aviv, Israel) for rapid verification of frequent travelers.

A typical hand geometry system consists of four main components: image acqui-
sition, hand segmentation and alignment, feature extraction, and feature matching.

5.4.1 Image capture

Most hand geometry systems acquire an image of the back of the human hand. This
image is often referred to as the dorsal aspect of the hand. Thus, most commercial
systems require the subject to place their hand on a platen with the palm facing
downward. A suitably positioned camera above the hand is then used to acquire
an image of the dorsal aspect. Different types of imaging configurations have been
discussed in the hand geometry literature as described below.

1. Contact-based vs Contactless: A typical system requires the user to place her
hand on a flat surface prior to capturing. Such systems are contact-based and
require explicit cooperation of the subject being identified. However, hygiene is
an issue of concern to some users in such systems. Furthermore, the large size
of the hand (compared to, say, fingers) limits the use of a hand geometry system
on smaller devices (e.g., mobile phones). To address these issues, contactless
recognition systems have been proposed. However, such systems are required to
address the intra-class variability in the captured images due to the articulation
of the hand in all three dimensions.

2. Dorsal vs Palmar: Traditionally, an image of the hand is acquired by placing the
hand on a flat surface and imaging the back of the hand with a CCD camera.
However, there has been interest in capturing the ridge patterns present on the
palm and fingers along with the hand shape by imaging the palmar aspect of
the hand (that includes the inner palm). See Figure 5.8 (b) for an example. One



5.4 Hand Geometry 187

drawback of such a system is that it is rather inconvenient for a user to place the
hand on a platen with the palm facing upward.

3. Peg-based vs Pegless: In order to guide the positioning of the hand on the platen
for imaging purposes (e.g., to prevent the fingers from touching each other), a
few pegs are usually placed on the sensor platen. See Figure 5.8 (a). The user
is expected to move his hand forward till one of the pegs touches the webbings
between a pair of fingers. Although the use of pegs obviates the need for image
alignment, it adds to the complexity of using the system and, thus, greater incon-
venience to users. See Figure 5.9 for an example where the user has incorrectly
placed his fingers around the pegs.

(a) (b)

Fig. 5.8 Different imaging configurations for acquiring a sample of the human hand. a) A con-
strained hand capture scenario. b) An unconstrained capture scenario.
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Fig. 5.9 Example showing incorrect placement of the hand in a peg-based system..

5.4.2 Hand segmentation

After the hand image is captured, the hand boundary must be extracted in order to
determine the region of interest. To accomplish this, typically, the image is thresh-
olded in order to deduce the region associated with the hand. This is followed by
certain morphological operators (e.g., dilation and erosion followed by a connected
region analysis) to extract the silhouette of the hand. If the image is very noisy
(e.g., due to variable illumination and shadows), then more complex segmentation
techniques such as the mean shift algorithm may be needed.

The segmented hand may still contain some artifacts such as the pegs on the
platen, rings worn by the user, clothing that covers certain parts of the hand, and
discontinuous contours due to non-uniform lighting. These artifacts are removed
using specialized image processing techniques that are tailored to specific artifacts.
Once a reliable hand shape is obtained, a hand contour is extracted and is used for
further processing.

Due to variations in the way in which the users place their hand, the silhouettes
extracted from multiple captures of the same hand may not be precisely aligned. It is
important to account for these variations before extracting features, especially if the
features are not invariant to such geometric transformations. A typical set of trans-
formations include the rotation and translation of the hand, and the movement of
individual fingers. It is easier to take into account the global affine transformations
such as translation or rotation of the entire hand, while accommodating the move-
ment of a single finger automatically is relatively difficult. To remedy this situation,
the segmented hand may be further divided to obtain smaller segments correspond-
ing to individual fingers. Features can then be extracted separately from each of
these segments.
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5.4.3 Feature Extraction

Typically, two kinds of features are extracted from a hand or a finger silhouette:
one-dimensional geometric measurements and two-dimensional shape-based fea-
tures. The geometric measurements include length and width of fingers, length and
width of the palm, and thickness of the fingers. See Figure 5.10 for an example of
geometric measurements obtained from a hand image.

It is also possible to use the set of points along the contours of the silhouette (or
the segmented image itself) as features. The dimensionality of these features can be
reduced in order to obtain a more discriminative and compact representation of the
hand. Such shape-based features are expected to be more discriminative than the
geometric features due to the fact that they model the structure of the entire hand,
rather than portions of the hand, thereby exploiting more information.

Fig. 5.10 This figure illustrates the axes along which the geometric measurements of the hand
image are extracted. As can be seen here, the geometric measurements include the lengths of the
fingers, widths of the fingers, width of the palm and the depth of the hand. While individual mea-
surements may not be discriminative enough for biometric recognition, an agglomeration of these
measurements results in a feature vector that can effectively be used for biometric verification.

5.4.4 Feature matching

The features extracted from a segmented hand image can often be denoted as a fea-
ture vector in the Euclidean space. Consequently, common distance measures such
as Euclidean and Manhattan distances can be effectively used to compare two hand
images. In case a sufficient amount of training data is available, more sophisticated
distance measures such as the Mahalanobis distance4 can also be used for robust
matching. If the sampling of points on the silhouette are directly used for matching,

4 Mahalanobis distance essentially weights the different dimensions of the feature vector based
on variation of the features along that dimension. For example, if there is a large variation of fea-
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then distance measures such as the Hausdorff distance5 can be used to obtain the
matching scores. It is also possible to use machine learning schemes to design clas-
sifiers such as multi-class Support Vector Machines (SVM) that can map the input
feature set into one of many identities.

5.4.5 Challenges in hand geometry recognition

Hand geometry systems have been successfully deployed in several applications
including nuclear power plants, border control systems, recreational centers and
time-and-attendance systems. In these applications, the biometric system typically
operates in the verification mode. Since the hand geometry of subsets of individuals
can be similar, the identification accuracy due to this biometric modality can be low.
Further, the shape of an individual’s hand can change with time - a factor that is
especially pronounced in young children. More recent research has explored the use
of hand geometry in conjunction with fingerprints and low-resolution palmprints in
a multibiometric configuration for improved accuracy.

5.5 Soft Biometrics

There are many situations where primary biometric traits (i.e., face, fingerprint and
iris) are either corrupted or unavailable, and the soft biometric information is the
only available clue to solving a crime. For example, while a surveillance video may
not capture the complete face of a suspect, the face image in the video may reveal
the suspect’s gender and ethnicity, or the presence of a mark or tattoo may provide
additional valuable clues. We will discuss some of the soft biometric traits (i.e.,
periocular, facial marks, and tattoos) below. The periocular biometric is gaining in-
creasing attention since it offers a trade-off between using the entire face image and
the iris portion only. Facial marks and tattoos are also gaining widespread atten-
tion since they offer complementary information that can be exploited along with
primary biometric traits.

ture values across one dimension, differences along that dimension are assigned a smaller weight
compared to those dimensions along which the variation is small.
5 Hausdorff distance between two set of points A and B is given by H(A,B) =
max{h(A,B),h(B,A)} where h(A,B) = maxa∈A{minb∈B d(a,b)} and d is a measure of distance
between two points such as the Euclidean distance. Essentially, Hausdorff distance is the distance
between a point in one set that is farthest away from all points in the other set, to its closest point
in the other set.
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5.5.1 Periocular

The periocular region represents the region around the eyes. It predominantly con-
sists of the skin, eyebrow, and eye. The use of the periocular region as a biometric
cue represents a good trade-off between using the entire face region or using only
the iris for recognition. When the entire face is imaged from a distance, the iris in-
formation is typically of low resolution; this means the matching performance due
to the iris modality will be poor. On the other hand, when the iris is imaged at small
standoff (typically, 1 meter), the entire face may not be available, thereby forcing the
recognition system to rely only on the iris. However, the periocular biometric can
be used for a wide range of distances. Figure 5.11 shows sample periocular images
collected from two different subjects. Periocular images can also be captured in the
NIR spectrum to minimize illumination variation compared to visible spectrum. The
key steps in preprocessing, feature extraction, and matching visible band periocular
images are described below.

Fig. 5.11 Example of periocular images from two different subjects.

5.5.1.1 Preprocessing

Periocular images contain common components across images (i.e., iris, sclera, and
eyelids) that can be represented in a common coordinate system. Once a common
area of interest is localized, a global feature representation scheme can be used. A
global representation scheme is holistic in that it characterizes the entire periocular
region rather than only the local regions. The iris or eyelids are good candidates for
the alignment process. While iris detection can be performed fairly well due to the
approximately circular geometry of the iris and a good contrast between the iris and
the sclera, accurately detecting the eyelids is more difficult. The inner and outer cor-
ners of the eye can also be considered as reference points, but there can be multiple
candidates as shown in Figure 5.12. Therefore, we will discuss an iris-based image
alignment method in this section. The iris can be used for translation and scale nor-
malization of the image, but not for rotation normalization. However, small rotation
variations can be overcome by using a rotation tolerant feature representation in the
feature extraction stage.
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(a) Illustrating eyelid movement

(b) Presence of multiple corner candidates

Fig. 5.12 Example images showing difficulties in periocular image alignment.

(a) Input image (b) Iris detection

(c) Interest point sampling (d) Interest region sampling

Fig. 5.13 Schematic of image alignment and feature extraction processes for periocular images.

5.5.1.2 Feature extraction

The features can be extracted using all the pixel values in the region of interest that
is defined with respect to the iris. From the center, Ciris, and the radius, Riris, of the
iris, multiple (=npi) interest points p1, p2, . . . , pnpi are selected within a rectangular
window defined aroundCiris with a width of 6×Riris and a height of 4×Riris as shown
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Fig. 5.14 Examples of local features and bounding boxes for descriptor construction using SIFT
operator. Each bounding box is rotated with respect to the major orientation or gradient.

in Figure 5.13. The number of interest points is decided based on the sampling
frequency (1/Dp), which is inversely proportional to the distance between interest
points, Dp ×Riris. For each interest point pi, a rectangular region ri is defined. The
dimension of each rectangle (ri) in the ROI is of size (Dp ×Riris) by (Dp ×Riris).
When Dp=1, the size of the rectangle becomes Riris ×Riris (see Figure 5.13 (d)).

For the construction of the descriptor in each region, ri, some of the distribution-
based descriptors such as gradient orientation (GO) histogram and local binary pat-
tern (LBP) can be used. The responses of GO and LBP are quantized into 8 distinct
values to build an eight bin histogram in each sub-region. The eight bin histogram is
constructed from a partitioned sub-region and concatenated across the various sub-
regions to construct a feature vector. A Gaussian blurring with a standard deviation,
σ , can be applied prior to extracting features using the GO and LBP methods in
order to smooth out variations across local pixel values.

Alternatively, a set of salient key points can be detected in scale space following
the Scale Invariant Feature Transformation (SIFT) method. Features are extracted
from the bounding boxes for each key point based on the gradient magnitude and ori-
entation. The size of the bounding box is proportional to the scale (i.e., the standard
deviation of the Gaussian kernel in scale space construction). Figure 5.14 shows the
detected key points and the surrounding boxes on a periocular image. While the GO
and LBP features are extracted only around the eye, the SIFT features are extracted
from all salient regions. Therefore, the SIFT approach is expected to provide more
distinctiveness across subjects.

5.5.1.3 Feature matching

For the GO and LBP features, the Euclidean distance is used to calculate the match
scores. The distance ratio-based matching scheme is used for the SIFT as described
below.
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Given an image Ii, a set of SIFT key points Ki = {ki1,ki2, · · · ,kin} is detected.
In matching a pair of images Ii and I j, all the keypoints Ki from Ii and Kj from
I j are compared to determine how many keypoints are successfully matched. The
Euclidean distances from kia to all the key points in Kj are calculated to obtain the
closest distance d1 and the second closest distance d2. When the ratio d1/d2 is suffi-
ciently small (less than a threshold thratio), kia is considered to have a matching key
point in Kj. By using the ratio of d1 and d2, both the similarity and the uniqueness
of point pairs are considered.

Recent studies on person identification using periocular biometric traits, both in
visible and NIR spectra, show high identification accuracies (over 80%). However,
such an accuracy is possible only when the images are of good quality and exhibit
low intra-class variations. It has also been shown that the periocular biometric can
assist person identification when the face is occluded. Figure 5.15 shows examples
of automated face and periocular region detection for (a) a full face and (b) an oc-
cluded face. Figure 5.16 shows example matching results of periocular images.

(a) (b)

Fig. 5.15 Examples of automated face and periocular region detection on (a) a full face and (b) an
occluded face. Face recognition performance degrades with the occluded face, but the periocular
biometric still shows good identification performance. Images are from the FRGC 2.0 database.

5.5.2 Face marks

Advances in sensing technology have made it easy to capture high resolution face
images. From these high resolution face images, it is possible to extract details of
skin irregularities, also known as facial marks. This has opened new possibilities
in face representation and matching schemes. These skin details are mostly ignored
and considered as noise in a typical face recognition system. However, facial marks
can be used to (a) supplement existing facial matchers to improve the identification



5.5 Soft Biometrics 195

(a)

(b)

(c)

(d)

Fig. 5.16 Example matching results with four different pairs of periocular images from four dif-
ferent subjects. Image pairs in (a) and (b) are successfully matched whereas image pairs in (c) and
(d) failed to match. The reasons for failure are due to intra-class variations caused by pose and
illumination changes and movements of eyebrow and eyelids.

accuracy, (b) facilitate fast face image retrieval, (c) enable matching or retrieval with
partial or off-frontal face images, and (d) provide more descriptive evidence about
the similarity or dissimilarity between face images, which can be used as evidence
in legal proceedings. Figure 5.17 shows some representative facial mark types.

5.5.2.1 Preprocessing

To represent the face marks in a common coordinate system, primary facial fea-
tures such as eyes, eye brows, nose, mouth, and face boundary (Figure 5.19) are
detected by using an Active Appearance Model (AAM) or Active Shape Model
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(a) Scar, mole, and freckles1 (b) Large birthmark2 (c) Tattoo3

1 FERET database.
2 http://www.wnd.com/index.php?fa=PAGE.view&pageId=63558.
3 http://blog.case.edu/colin.mulholland/2007/09/20/a way of expression.

Fig. 5.17 Examples of facial marks.

(ASM). These primary facial features will be disregarded in the subsequent facial
mark detection process. Example landmarks detected in face images are shown in
Figure 5.19.

Using the detected landmarks, the face image is mapped to the mean shape to
simplify the mark detection, matching, and retrieval. Let Si, i = 1, ..., N represent
the shape of each of the N face images in the database (gallery) based on the set
of landmarks. Then, the mean shape is simply defined as Sμ = ∑N

i=1 Si. Each face
image, Si, is mapped to the mean shape, Sμ , by using the Barycentric coordinate
based texture mapping process. First, both Si and Sμ are subdivided into a set of
triangles. Given a triangle T in Si, its corresponding triangle T ′ is found in Sμ . Let
r1, r2, and r3 (r′1, r′2, and r′3) be the three vertices of T (T ′). Then, any point, p,
inside T is expressed as p = αr1 +β r2 + γr3 and the corresponding point p′ in T ′
is similarly expressed as p′ = αr′1 +β r′2 + γr′3, where α +β + γ = 1. This way, the
pixel value at p is mapped to p′. Figure 5.18 shows the schematic of the Barycentric
mapping process. By repeating this mapping process for all the points inside all
triangles, the texture in Si is mapped to Sμ .

After this mapping process, all face images are normalized in terms of scale
and rotation and this allows for the representation of each facial mark in a face-
centered common coordinate system. Figure 5.19 shows the schematic of mean face
construction.

A blob detection operator is applied to the face image mapped into the mean
shape. To suppress false positives in the blob detection process caused by the pres-
ence of primary facial features, a generic mask, denoted by Mg, is constructed from
the mean shape Sμ . However, the generic mask does not cover user-specific facial
features such as a beard or small wrinkles around the eyes or mouth that are likely
to increase the false positives. Therefore, a user specific mask, Ms, is also built us-
ing the edge image. The edge image is obtained by using the conventional Sobel
operator. The user specific mask Ms, constructed as a sum of Mg and edges that are

http://www.wnd.com/index.php?fa=PAGE.view&pageId=63558
http://blog.case.edu/colin.mulholland/2007/09/20/a_way_of_expression.
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Fig. 5.18 Schematic of texture mapping process using the triangular Barycentric coordinate sys-
tem.

Fig. 5.19 Schematic showing the construction of the mean face image.

connected to Mg, helps in removing most of the false positives appearing around the
beard or small wrinkles around the eyes or mouth.
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5.5.2.2 Mark detection and classification

Lindeberg proposed that local maxima over multiple image scales of normalized
Gaussian derivatives (i.e., σ2∇2G) reflects the characteristic size of a local struc-
ture . This allows for a blob detection with automatic scale selection, which is invari-
ant with image scale. Motivated by this, we detect facial marks via scale space anal-
ysis. The scale space extrema detection starts by constructing a normalized multi-
scale representation of the face image by convolving the input images, I(x,y), with
a Laplacian of Gaussian (LoG) filter with a sequence of σk as

D(x,y,σk) = σ2
k ∇2G(x,y,σk)∗ I(x,y), k = 1,2, · · · ,n, (5.6)

where σ2
k ∇2G is the scale-normalized Laplacian of Gaussian operator, and σk =

kσ0,k = 1,2, · · · ,n, with σ0 being a constant value (=
√

2) for the initial scale.
Next, the local extrema over both spatial and scale space in every 3× 3× 3 im-

age block is detected . The detected candidate mark locations have the following
characteristics:

• The detected location contains candidate facial marks.
• The detected scale (σk) indicates the size of the corresponding facial mark.
• The absolute value of D(x,y,σ) reflects the strength of the response. This

strength may be used as the confidence value to select stable marks.
• The sign of D(x,y,σ) helps in assessing the pixel intensity of the facial mark.

A positive (negative) sign represents a dark (bright) facial mark with brighter
(darker) surrounding skin.

The overall mark detection process is shown in Figure 5.20.
For each detected local extrema, a local bounding box, whose size is proportional

to the associated scale, is determined. Pixels in the bounding box are binarized with
a threshold value selected as the mean of the surrounding pixels. A local extrema
is darker or brighter than its surrounding region, so the average value of the sur-
rounding area can serve to effectively segment the blob in the bounding box. Next,
the blobs are classified in a hierarchical fashion: ‘linear’ versus ‘all’ followed by
‘circular’ versus ‘irregular’. For determining linearity, two eigenvalues λ1 and λ2

are obtained through the eigen decomposition of the spatial coordinates of the blob
pixels. When λ1 is significantly larger than λ2, the mark is classified as being a lin-
ear blob. For circularity detection, the following observation is used: a circle, with
radius M2 will enclose most of the blob pixels if they are circularly distributed.
Therefore, a decision of ‘circular’ or ‘irregular’ can be made based on the ratio of
the number of pixels within and outside of this circle. The pixel intensity of the blob
can be deduced based on the sign of D(x,y,σ), as stated earlier. The schematic for
blob classification is shown in Figure 5.21.

Figure 5.22 illustrates five examples of facial detection results using the pro-
posed mark detection and classification method. It can be observed that the proposed
method is robust to noise and provides good estimates of the size and class of the
marks.
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Fig. 5.20 Schematic of the mark detection process.

Fig. 5.21 Schematic of the mark classification scheme. Left: The eigenvalues λ1 and λ2 are com-
puted based on the the spatial coordinates of the blob pixels. In this example, the largest eigenvalue,
λ1, is significantly larger than the smallest eigenvalue, λ2, thereby suggesting linearity. Middle: The
circular nature of the mark can be deduced after fitting a circle to the blob pixels. Here, a circle of
radius M2 is used to enclose the pixels inside the blob. Since the ratio of the number of blob pixels
within the circle to the number of blob pixels outside the circle is large, this mark may be labeled
as being ‘circular’. Right: The sign of the difference in pixel intensities between the interior (ein)
and exterior (eout ) of the blob can help assess whether the mark is bright or dark.



200 5 Additional Biometric Traits

(a) (b)

(c) (d)

(e) (f)

Fig. 5.22 Example mark detection and classification results. (a), (b), (c), (d), (e) are example im-
ages with detected marks. (f) Symbols used to denote six different mark classes.

5.5.2.3 Mark matching

The detected facial marks are encoded into a 48-bin histogram representing the mor-
phology, color, and location of facial marks. To encode the location information of
facial marks, the face image in the mean shape space is subdivided into eight dif-
ferent regions as shown in Figure 5.23. Each mark is encoded by a six digit binary
number representing its morphology and color. When there is more than one mark in
the same region, a bit by bit summation is performed. The six bin values are concate-
nated for the eight different regions in the order as shown in Figure 5.23 to generate
the 48-bin histogram. If a mark is observed on the borderline of the face segments,
it is included into both the regions. Given the indices obtained from face images, the
histogram intersection method is used to calculate the matching scores. Let H1(i)
and H2( j) be the two histograms representing the mark indices, then the histogram
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intersection is calculated as ∑48
k=1

(
H1(k)&H2(k)

)
, where & represents the logical

and operation. The score range of the mark index based matching is [0,48].

Fig. 5.23 Schematic of the mark-based indexing scheme.

Figure 5.24 shows example mark detection and matching results with an identical
twin database collected by the University of Notre Dame. In all the four pairs of
identical twins shown in this figure, facial marks help in differentiating identical
twins when combined with a leading commercial face recognition engine.

5.5.3 Tattoo

The use of tattoos imprinted on human body in suspect identification started with the
Bertillon system. Since then, images of tattoos on the human body have been rou-
tinely collected and used by law enforcement agencies to assist in suspect and victim
identification. When the primary biometric traits are unavailable or corrupted, tat-
toos can be used to identify victims or suspects. Figure 5.25 shows examples of
tattoo images used in victim and suspect identifications.

Tattoos provide more discriminative information than the traditional demographic
indicators such as age, height, race, and gender for person identification. Many in-
dividuals acquire tattoos in order to display their personality, or to indicate their
their membership in a group. Therefore, recognition of tattoos can provide a better
understanding of an individuals’ background and membership in various organiza-
tions, especially criminal gangs. Figure 5.26 shows example tattoo images showing
membership in Mexikanemi Mafia gang.
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(a)

(b)

(c)

(d)

Fig. 5.24 Example matching results with four different identical twins. Images in the first and
third columns belong to the same subject and images in the second column are the twins. The
first, second, and third columns correspond to the probe, incorrect match using FaceVACS only,
and correctly matched true mates using FaceVACS and mark index, respectively. Black arrows in
each row show the facial marks correctly detected and classified that contribute to individualize
the identical twins.

The current practice of matching tattoos is based on a set of predefined keywords.
Assigning keywords to individual tattoo images is both tedious and subjective. A
content-based image retrieval system for tattoo image retrieval can overcome many
of the limitations of the keyword-based tattoo retrieval. We will briefly describe
a system that extracts local image features based on the Scale Invariant Feature
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Transform (SIFT). Contextual or side information, i.e., location of tattoo on the
body and keyword (class) assigned to the tattoo, is utilized to improve both the
retrieval time and retrieval accuracy. Geometrical constraints are also introduced in
SIFT keypoint matching to reduce false retrievals.

(a) (b)

Fig. 5.25 Example tattoo images used in identifying (a) an Asian Tsunami (2004) victim in In-
donesia and (b) a suspect.

(a) (b) (c) (d)

Fig. 5.26 Example gang tattoo images indicating the membership in the Mexikanemi Mafia gang
in Texas.

5.5.3.1 Tattoo classes and body location

The ANSI/NIST-ITL1-2011 standard defines eight major classes (i.e. human, ani-
mal, plant, flag, object, abstract, symbol, and other) and a total of 70 subclasses (e.g.
male face, cat, narcotics, American flag, fire, figure, national symbols, and wording)
for categorizing tattoos. A search of a tattoo image database involves matching the
class label of a query tattoo with the labels of the tattoos in the database. This tat-
too matching procedure based on manually assigned ANSI/NIST class labels has
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the following limitations: (a) class label does not capture the semantic information
contained in tattoo images; (b) labeling millions of tattoo images maintained by law
enforcement agencies is both subjective and time consuming; (c) tattoos often con-
tain multiple objects and cannot be adequately classified into a single ANSI/NIST
classes; (d) tattoo images have large intra-class variability; and (e) ANSI/NIST
classes are not complete for describing new tattoo designs.

Tattoo location on the body is a useful piece of information because it can be
tagged precisely and objectively. Hence, searching for similar images at the same
body location can significantly reduce the matching time without any loss of match-
ing accuracy. The National Crime Information Center (NCIC) has defined 31 major
categories (e.g., arm, calf, and finger), and 71 sub categories (e.g., left upper arm,
right calf, and left hand finger) for denoting body location of tattoos.

5.5.3.2 Feature extraction

Scale Invariant Feature Transform (SIFT) is a well known and robust local feature
based approach used for object recognition. It has been shown that SIFT features
provide better performance than low-level image attributes, (e.g., color, texture, and
shape) for tattoo image matching and retrieval. SIFT extracts repeatable character-
istic feature points from an image and generates descriptors representing the texture
around the feature points. These feature points are invariant to image scale and ro-
tation, and are shown to provide robust matching across a range of affine distortion,
change in 3D viewpoints, additive noise, and change in illumination.

5.5.3.3 Feature Matching

In addition to the conventional SIFT matching process as described in section 5.5.1.3,
a set of local geometric constraints can be applied to reduce the number of false
matching points. Let Mi j represent the set of matching keypoints between two
images Ii and I j. Then, Mi j can be expressed in terms of two different subsets
Mi j =Mi j,T ∪Mi j,F , where Mi j,T represents the set of true matching points and Mi j,F

represents the set of false matching points. It is expected that removing the false
matching points will increase the retrieval accuracy. The number of false matchings
in the presence of viewpoint variations or blurring in the image is likely to be large.
When a key point belongs to Mi j,F , it is likely to match to many other key points.
On the other hand, a keypoint in Mi j,T is likely to match to either one or a very small
number of other key points. Given a query image I, it is matched with all the images
in the gallery database D and the number of matching points is obtained for each
gallery image. Let Lm, m = 1,2,3, . . ., represent the set of key points in the query
image that are matched into the same key point in D. Let the size of the area covered
by Lm be Am. Then, Lm is regarded as belonging to Mi j,F if Am is larger than a thresh-
old t (t = 0.2). All the matching keypoints not in Mi j,F are regarded as true matching
points. Finally, the number of key points that belong to Mi j,T is used to retrieve the
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top-N candidate images from the tattoo image database. Figure 5.27 shows example
matching results on a duplicate and non-duplicate tattoo image pairs. The number
of matching keypoints for a duplicate pair is observed to be much larger than that
for a non-duplicate pair.

(a) (b)

(c) (d)

Fig. 5.27 Tattoo matching examples. A pair of (a) duplicate and (b) non-duplicate tattoo images
and their SIFT matching results. There are 129 and 12 matching keypoints in the (c) duplicate
and (d) non-duplicate pairs, respectively. Number of octaves and scales are selected as 3 and 4,
respectively. The feature vector associated with each keypoint has 128 dimensions.

Figure 5.28 shows example tattoo images retrieval results based on the SIFT
matcher, body location, and ANSI/NIST class label for three different queries. For
query 1, three different duplicate images from the database were successfully re-
trieved at rank 1, 2 and 6. The corresponding match scores for these three retrieved
images are: 163, 157 and 26. The low score for the third retrieved image at rank
6 is possibly due to low contrast (fading) of the tattoo. Two duplicate tattoos were
retrieved, at ranks 1 and 2, for query 2 and one duplicate image was retrieved for
query 3 at rank 6. Note that due to the small size of the tattoo in query 3, the number
of SIFT keypoints extracted is small and hence all the match scores for the retrieved
images are low as well.
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Fig. 5.28 Retrieval examples. Each row shows a query and its top-7 retrieved images along with
the associated match scores.

5.6 Summary

A wide variety of biometric traits have been studied in the literature. Given the
growing application domain for biometrics, it is likely that the use of soft biometric6

traits such as ear, gait, hand geometry, and soft biometrics will become prevalent as
well as necessary in some contexts. This would allow for the design of effective
biometric systems that utilize the most appropriate set of biometric traits based on
factors such as the application scenario, nature of the target population, availability
of biometric traits, computational resources available, etc. Thus, investigating new
biometric modalities for potential use especially in unconstrained and uncooperative
user scenarios has its benefits.

At the same time, one needs to establish the distinctiveness of a biometric trait,
its permanence and susceptibility to spoofing. But this can be a rather tedious and
long-winding exercise. For example, although fingerprint matching has been used
for over 100 years in forensics, the uniqueness or individuality of the fingerprint is
still an ongoing area of research. Similarly, modeling of the aging process of the
face and its effect on face matching accuracy is an active area of research. In the
case of iris, there is a lack of longitudinal data to even begin to investigate the aging
phenomena. Thus, as new biometric traits are studied, the onus is on researchers
to analyze the advantages and disadvantages of each trait and determine the value
added.

6 Scars, marks, and tattoos (SMT) are an integral part of the FBI’s Next Generation Identification
(NGI) system.
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Chapter 6
MULTIBIOMETRICS

“It is time to stop arguing over which type of pattern classification technique is best because that
depends on our context and goal. Instead we should work at a higher level of organization and
discover how to build managerial systems to exploit the different virtues and evade the different
limitations of each of these ways of comparing things.”

Minsky, 1991.

Person recognition systems that consolidate evidence from multiple sources of biometric infor-

mation in order to determine the identity of an individual are known as multibiometric systems.

For example, face and iris traits, or fingerprints from all ten fingers of an individual, may be used

together to accurately and robustly resolve the identity of the person. Multibiometric systems can

overcome many of the limitations of unibiometric systems because the different biometric sources

usually compensate for the inherent limitations of one another. Hence, multibiometric systems are

generally expected to be more reliable and accurate than unibiometric systems, as well as pro-

vide a wider population coverage (reduce the failure to enroll rate). The process of consolidating

the information or evidence presented by multiple biometric sources is known as information fu-

sion, which is the main focus of this chapter. More specifically, this chapter introduces the different

sources and types of biometric information that can be fused and the various fusion methodologies.

6.1 Introduction

Person recognition systems based on individual biometric traits like fingerprint,
face, and iris have been the focus of this book thus far. Most of these biometric
systems can be labeled as unibiometric systems because they rely on a single bio-
metric source for recognition. Any piece of evidence that can be independently used
to recognize a person is called a source of biometric information. Unibiometric sys-
tems have some limitations. What if the biometric source becomes unreliable due to
sensor or software malfunction, poor quality of specific biometric trait of the user,
or deliberate manipulation? Furthermore, high-security applications and large-scale
civilian identification systems place stringent accuracy requirements that cannot be
met by existing unibiometric systems. Examples of such applications include the
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US-VISIT program and the Unique Identification (UID) system in India, where
identities of a very large number of individuals (hundreds of millions) need to be
resolved. To address the requirements of such applications, there is a need to move
beyond the traditional paradigm of biometric recognition based on a single source of
biometric information and consider systems that consolidate evidence from multiple
biometric sources for recognition (see Figure 6.1).

(a)

(b)

Fig. 6.1 Illustration of unibiometric and multibiometric systems. (a) A unibiometric system rec-
ognizes the user based on a single biometric source (e.g., a single fingerprint impression captured
using a fingerprint sensor), (b) a multibiometric system identifies the user based on multiple bio-
metric sources; the Fusion multibiometric system developed by Cogent Systems, which is capable
of capturing fingerprint, face, and iris images of a person is shown in (b).

Humans recognize one another based on the evidence presented by multiple bio-
metric characteristics (e.g., face, gait, and voice) in addition to contextual details
(e.g., prior knowledge about the presence of a person at a particular time and loca-
tion). The recognition process itself may be viewed as the reconciliation of evidence
pertaining to these multiple information sources. Each source on its own cannot al-
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ways be reliably used to perform recognition. However, the consolidation of infor-
mation presented by these multiple cues can result in a more accurate determination
or verification of identity. Similarly, biometric systems can also be designed to rec-
ognize a person based on information acquired from multiple biometric sources.
Such systems, known as multibiometric systems, are expected to be more accurate
compared to unibiometric systems that rely on a single piece of biometric evidence.
Multibiometric systems are not new. In fact, the first biometric system developed
by Bertillon (see Chapter 1), can be considered a multibiometric system because it
combines evidence from different measurements of the human body. Similarly, Au-
tomated Fingerprint Identification Systems (AFIS) used by law enforcement agen-
cies around the world routinely capture all ten fingers and then combine the deci-
sions made based on individual fingers to obtain a more reliable identity decision on
a subject.

Accuracy improvement, which is the primary motivation for using multibiomet-
ric systems, happens due to two reasons. Firstly, the fusion of multiple biometric
sources effectively increases the dimensionality of the feature space and reduces the
overlap between the feature distributions of different individuals. In other words, a
combination of multiple biometric sources is more unique to an individual than a
single biometric sample. Secondly, noise, imprecision, or inherent drift (caused by
factors like aging) in a subset of the biometric sources can be compensated by the
discriminatory information provided by the remaining sources. Thus, availability
of multiple biometric sources provides redundancy and fault-tolerance in the sense
that the recognition system continues to operate even when certain biometric acqui-
sition modules fail. Apart from enhancing the recognition accuracy, multibiometric
systems may also offer the following advantages over unibiometric systems.

1. Alleviate the non-universality problem and reduce the failure to enroll errors. For
example, if a person cannot be enrolled in a fingerprint system due to worn-out
ridge details or missing fingers (see Figure 1.13), he can still be identified using
his other traits like face or iris.

2. Provide a degree of flexibility in user authentication. Suppose a user enrolls into
the system using several different traits. Later, at the time of authentication, only
a subset of these traits may be acquired based on the nature of the application un-
der consideration and the convenience of the user. Multibiometric systems may
also be helpful in the continuous monitoring or tracking of an individual in situ-
ations when a single trait is not sufficient or available at all times.

3. Enable the search of a large biometric database in a computationally efficient
manner. This can be achieved by first using a relatively simple but less accu-
rate modality to prune the database before using the more complex and accurate
modality on the remaining data to perform the final identification task, thereby
improving the throughput of a biometric identification system.

4. Increase the resistance to spoof attacks. This is because it becomes increasingly
difficult to circumvent multiple biometric sources simultaneously. Furthermore,
by asking the user to present a random subset of traits at the point of acquisition,
a multibiometric system can facilitate a challenge-response mechanism that ver-
ifies the presence of a live user. As an example, a person could be enrolled with
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all ten fingerprints, but at the time of authentication, the system could ask him to
present only three fingers in a particular sequence (left index, followed by right
index, followed by left middle finger).

While multibiometric systems do offer a number of advantages, they are usually
more expensive than unibiometric systems due to the need for additional hardware
(computational or storage resources) and larger enrollment and recognition times.
Hence, it is essential to carefully analyze the tradeoff between the added cost and
the benefits accrued when making a business case for the use of multibiometrics
in a specific application (see Figure 6.2). Despite these limitations, multibiometric
systems are being increasingly deployed in many large-scale identification systems
involving millions of users (e.g., border control or national identity systems) because
of their ability to achieve high recognition accuracy based on existing technologies,
which far outweighs the additional cost in such applications.

In designing a multibiometric system, we need to address the following four
design issues.

1. Information sources: What are the various sources of biometric information that
should be used in a multibiometric system?

2. Mode of operation: Should the data corresponding to multiple biometric sources
be acquired simultaneously in a parallel mode or in a sequence? Similarly, should
the information acquired be processed sequentially or simultaneously?

3. Level of fusion: What type of information (i.e., raw data, features, match scores,
or decisions) is to be fused?

4. Fusion approach: What fusion scheme should be employed to combine the infor-
mation presented by multiple biometric sources?

The subsequent sections consider each of these questions in turn. But, one should
bear in mind that these questions are not completely independent. For example,
the choice of biometric sources may dictate the acquisition strategy or the type of
information to be fused (see Table 6.1).

6.2 Sources of Multiple Evidence

There are five possible scenarios that can provide multiple sources of biometric
information as shown in Figure 6.2. Based on the sources of evidence, multibio-
metric systems can be classified into multi-sensor, multi-algorithm, multi-instance,
multi-sample, and multimodal systems. In the first four scenarios, multiple pieces
of evidences are derived from a single biometric trait (e.g., fingerprint or iris), while
in the fifth scenario (also called multimodal biometric system) multiple biometric
traits (e.g., fingerprint and iris) are used. It is also possible for a multibiometric sys-
tem to utilize a combination of two or more of the five scenarios discussed below
(Table 6.1). For example, since the UID system in India uses all ten fingers and
two irides, it is both multi-instance and multimodal. Such systems are called hybrid
multibiometric systems.
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Fig. 6.2 Multibiometric systems utilize information from multiple biometric sources to establish
an identity. Based on the information sources used, multibiometric systems can be classified into
multi-sensor, multi-algorithm, multi-instance, multi-sample, and multimodal systems. In the first
four scenarios, a single biometric trait provides multiple sources of evidence. In the fifth scenario,
different biometric traits are used as sources of evidence. While in principle, a large number of
sources can be combined to improve the identification accuracy, practical factors such as cost of
deployment, small training sample size, accuracy requirements, throughput time, and user accep-
tance will limit the number of sources used in a particular application.

6.2.1 Multi-sensor systems

In these systems, a single biometric trait is imaged or captured using multiple sen-
sors in order to extract diverse information. For example, a system may record the
two-dimensional texture content of a person’s face using a CCD camera and the
three-dimensional surface shape (also called the depth or range image) of the face
using a range sensor in order to perform authentication (see Figure 6.3). The intro-
duction of a new sensor (in this case, the range sensor) to measure the facial surface
variation increases the cost of the multibiometric system. However, the availability
of multi-sensor data pertaining to a single trait can not only improve the matching
accuracy of the overall recognition system, but also assist in the intermediate pro-
cessing stages of the individual component systems like image segmentation and
registration.
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Table 6.1 Dependencies between the design choices in a multibiometric system. While a check
mark (�) indicates that the two design choices are compatible, a cross mark (×) indicates that the
two choices are not compatible.

Multibiome- Type of information fused Acquisition Processing
tric sources architecture architecture

Raw
data

Features Scores Decisions Serial Parallel Serial Parallel

Multiple
sensors

� � � � � � � �

Multiple
representa-

tions

× � � � × � � �

Multiple
matchers

× × � � × � � �

Multiple
instances

× � � � � � � �

Multiple
samples

� � � � � × � �

Multiple
traits

× � � � � � � �

(a) (b) (c)

Fig. 6.3 Constructing a 3D face texture by combining the evidence presented by a 2D texture
image and a 3D range image. (a) The 2D face texture of a person, (b) the corresponding 3D range
(depth) image (here, blue represents farther distance from the camera while red represents a closer
distance), and (c) the 3D surface after mapping the 2D texture information from (a).
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Another example of multi-sensor fusion is the use of both a thermal infrared
camera and a visible light camera for face recognition. Spatial registration between
the data obtained from the multiple sensors is usually one of the fundamental issues
in designing a multi-sensor system. However, this may not be always the case and
there are multi-sensor systems in which registration is either “built in” to the sensor
or registration may not be needed. The range sensor that acquires the 2D texture and
3D range images in Figure 6.3 is an example of the first category. If an optical and
a capacitive fingerprint sensor are used to capture fingerprints, the two fingerprint
images can be processed independently without spatially registering them. However,
in this scenario, the user is required to interact with the sensors one at a time, leading
to larger enrollment and verification times.

6.2.2 Multi-algorithm systems

In these systems, the same biometric data is processed using multiple algorithms.
For example, a texture-based algorithm and a minutiae-based algorithm can oper-
ate on the same fingerprint image in order to extract diverse feature sets that can
improve the performance of the system (see Figure 6.4). This kind of system does
not require the use of new sensors and, hence, is cost-effective. Furthermore, since
the user is not required to interact with multiple sensors, there is no additional
inconvenience. However, it does require the introduction of new feature extractor
and/or matcher modules, which may increase the computational requirements of
the system. The main limitation of multi-algorithm systems is that since the dif-
ferent sources of evidence are obtained from the same raw data (e.g., right index
fingerprint image), the multiple sources tend to be correlated. This usually limits
the possible improvement in the matching accuracy. For example, if the acquired
fingerprint image is noisy, it will affect both the texture-based and minutiae-based
algorithms but to different extents. Figure 6.5 shows an example where fusion of
multiple algorithms improves the accuracy.

A multi-algorithm system can use multiple feature sets (i.e., multiple represen-
tations) extracted from the same biometric data or multiple matching schemes op-
erating on a single feature set. The combination of a texture-based algorithm and a
minutiae-based fingerprint matching algorithm (shown in Figure 6.4) is an example
of the first category, while fusion of results from multiple minutiae matchers like
Hough transform, one-dimensional string matching and two-dimensional dynamic
programming is an illustration of the latter. Another example of a system using mul-
tiple feature sets is a face recognition system that employs different feature extrac-
tion schemes like Principal Component Analysis (PCA), Independent Component
Analysis (ICA), and Linear Discriminant Analysis (LDA) to encode (i.e., represent)
a single face image.
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(a) (b)

Fig. 6.4 Extracting different sets of features from the same fingerprint image. (a) Minutia features
extracted from a fingerprint image, (b) texture features extracted from the fingerprint image in (a).
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Fig. 6.5 Accuracy improvement in a multi-algorithm fingerprint verification system. This example
is extracted from the Fingerprint Vendor Technology Evaluation (FpVTE) [37] conducted by the
National Institute of Standards and Technology (NIST) in 2003. Fusion of evidence from the two
most accurate matchers in FpVTE 2003, namely, NEC and Cogent Systems, leads to marginal
improvement in the True Accept Rate (also known as Genuine Accept Rate) as compared to the
individual matchers.
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6.2.3 Multi-instance systems

These systems use multiple instances of the same body trait and are also sometimes
referred to as multi-unit systems. For example, the left and right index fingers, or
the left and right irides of an individual may be used to verify an individual’s iden-
tity. These systems generally do not necessitate the introduction of new sensors nor
do they entail the development of new feature extraction and matching algorithms
and are, therefore, easier to implement. However, in some cases, a new sensor ar-
rangement might be necessary in order to facilitate the simultaneous capture of the
various units/instances. Automated Fingerprint Identification Systems (AFIS), that
obtain tenprint information from a subject, can benefit from sensors that are able to
rapidly acquire impressions of all ten fingers in three stages as shown in Figure 6.6.

Fig. 6.6 A fingerprint sensor developed by Identix that allows rapid acquisition of all ten fingers
in three steps. (Source: Nationwide Solutions)

Multi-instance systems are especially beneficial for users whose biometric traits
cannot be reliably captured due to inherent problems. For example, a single finger
may not be a sufficient discriminator for a person with dry finger skin. However, the
integration of evidence across multiple fingers may serve as a good discriminator
in this case. Similarly, an iris system may not be able to image significant portions
of a person’s iris due to drooping eyelids. The consideration of both the irides will
result in the availability of additional texture information that can be used to reli-
ably establish the individual’s identity. Multi-instance systems are often necessary
in applications where the size of the system database (i.e., the number of enrolled
individuals) is very large (the FBI’s IAFIS database currently has more than 60
million ten-print images) and all ten fingers provide additional discriminatory infor-
mation that is required for high search accuracy (see Figure 6.7). Due to this reason,
the Department of Homeland Security (DHS) in the United States, which originally
collected only the two index fingers for its US-VISIT border control program, is
now collecting all ten fingerprints.
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Fig. 6.7 Accuracy improvement in a multi-instance fingerprint verification system. This example
extracted from FpVTE 2003 [37] shows that fusion of evidence from the multiple fingers leads to
significant improvement in the accuracy.

6.2.4 Multi-sample systems

A single sensor may be used to acquire multiple samples of the same biometric trait
in order to account for the variations that can occur in the trait, or to obtain a more
complete representation of the underlying trait. A face system, for example, may
capture (and store) the left and right profile images along with the frontal image
of a person’s face in order to account for variations in the facial pose. Similarly, a
fingerprint system equipped with a sensor with a small sensing area may acquire
multiple dab prints of an individual’s finger in order to capture various regions of
the fingerprint. These fingerprint images can be fused together to form a complete
fingerprint, which will provide a large number of minutiae as shown in Figure 6.16.

One of the key issues in a multi-sample system is determining the number of sam-
ples that need to be acquired from a biometric trait. It is important that the procured
samples represent the variability as well as the typicality of the individual’s biomet-
ric data. To achieve this objective, an appropriate sample collection protocol that
takes into account the variability of the samples has to be established beforehand.
For example, a face recognition system utilizing both the frontal and side-profile
images1 of an individual may stipulate that the side-profile image should be a three-
quarter view of the face. Alternately, given a set of biometric samples, the system
should be able to automatically select the “optimal” subset that would best represent
the individual’s variability.

1 Note that if the different facial profiles of a user are captured simultaneously using multiple
cameras, it would be considered as a multi-sensor system and not as a multi-sample system.
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6.2.5 Multimodal systems

Multimodal systems combine the evidence presented by different body traits for es-
tablishing identity. Some of the earliest multimodal biometric systems utilized face
and voice features to establish the identity of an individual. Since the different bio-
metric traits of an individual are expected to be uncorrelated (e.g., fingerprint and
iris), use of multimodal biometric systems generally leads to greater improvement
in performance compared to other types of multibiometric systems. However, some
combinations of biometric traits (e.g., voice and lip movement) could exhibit signif-
icant correlation, and employing such combinations may not provide a significant
performance improvement.

The cost of deploying multimodal biometric systems is substantially more due to
the requirement of multiple sensors and, consequently, the development of appropri-
ate user interfaces (see Figure 6.8 for examples of interfaces that can capture mul-
timodal biometric data). Although the identification accuracy can be significantly
improved by utilizing an increasing number of traits, this number is generally re-
stricted by practical considerations such as the cost of deployment, enrollment time,
throughput, expected error rate, user habituation issues, etc. Furthermore, there is
a diminishing return after strong biometric traits (e.g., fingerprint and iris) have al-
ready been fused. In fact, depending on the fusion scheme, there may even be a
performance degradation if many biometric traits with lower accuracy are added.

(a) (b)

Fig. 6.8 Examples of interfaces that can record multibiometric data. (a) Concept diagram of a
whole-hand scanner that can simultaneously acquire palmprint, fingerprints from all five fingers
of a hand, and hand-shape (Source: Lumidigm Inc.), (b) a mobile phone that can acquire multiple
modalities like fingerprint, face, and voice. Preliminary efforts have also been made to modify the
camera on the phone to capture iris image as well.
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While the five types of multibiometric systems mentioned above have their own
pros and cons, multi-instance and multimodal biometric systems are more popu-
lar than the other three types, because they offer a greater scope for enhancing the
recognition accuracy and increasing the population coverage (see Figure 6.9). Many
large-scale biometric identification systems deployed in practical applications in-
cluding the FBI-IAFIS, US-VISIT, and the Unique Identification (UID) project in
India use multiple instances or multiple traits or a combination of both (see Fig-
ure 6.10 and Figure 6.8(a)). Besides the above five scenarios, it is also possible to
use biometric traits in conjunction with non-biometric authenticators like tokens or
password. When more than one identification factor (among passwords, tokens, and
biometric traits) is used, the scenario is referred to as multi-factor authentication.
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Fig. 6.9 Comparison of accuracy improvements in different types of multibiometric systems based
on the NIST-Biometric Score Set Release 1 (BSSR1) database. (a) A multi-algorithm system,
where evidence is fused from two different face matchers operating on the same face image, (b)
a multi-instance system, where information from two different fingers are combined, and (c) a
multimodal system, where evidence is accumulated from a single finger and face. (d) A hybrid
multibiometric system, where the sources of information include two fingers and two face match-
ers.
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Fig. 6.10 Accuracy improvement in a multi-instance and multimodal biometric identification sys-
tem with fingerprint and iris modalities (Source: UID Authority of India). Note that in applications
such as UID, where de-duplication of hundreds of millions of identities needs to performed, a very
low False Positive Identification Rate (FPIR) as well as a very low False Negative Identification
Rate (FNIR) are required. This level of accuracy can be achieved only when all ten fingers and
both irides are fused. Note that the fusion of 10 fingerprints and 2 irides on this database of 20,000
subjects gives almost zero FNIR and zero FPIR.

6.3 Acquisition and Processing Architecture

One of the key considerations while designing a biometric system is its usability. It is
important to design ergonomic and convenient user interfaces, which can efficiently
capture good quality biometric images, leading to a lower failure to enroll rate. This
is particularly true in the case of multibiometric systems, because multiple pieces
of evidence pertaining to an individual’s identity must be reliably acquired whilst
causing minimum inconvenience to the user. The order or sequence of biometric
data acquisition has a bearing on the convenience imparted to the user. Furthermore,
the sequence in which the procured biometric data is processed can significantly
impact the throughput time in large-scale identification systems (involving millions
of enrolled users) since it may be possible to arrive at an identification decision
rapidly with a relatively small number of traits.

6.3.1 Acquisition sequence

The acquisition sequence in a multibiometric system refers to the order in which the
various sources of evidence are acquired from an individual (in the case of multi-
algorithm systems, only a single biometric sample is required and, therefore, the
acquisition methodology is not an issue). The acquisition sequence could be either
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serial or parallel. Typically, multibiometric systems employ the serial acquisition
approach, where the evidence is gathered sequentially, i.e., each source is indepen-
dently obtained with a short time interval between successive acquisitions. In some
cases, the evidence may be acquired simultaneously (in parallel fashion). For exam-
ple, the face and iris information of a user may be obtained nearly simultaneously
by utilizing two cameras housed in the same unit. Similarly, the face, voice, and
lip movements of a user may be acquired simultaneously by capturing a video, and
multiple fingerprints can be captured in parallel using a multi-finger slap scanner
(shown in Figure 6.6). While serial acquisition does not require any special sen-
sor arrangement and typically has a lower installation cost, parallel acquisition can
decrease enrollment and authentication times and improve the usability of multibio-
metric systems.

6.3.2 Processing sequence

The processing sequence adopted by a multibiometric system refers to the order in
which the acquired information is processed to render a decision which could be
independent of the order in which the information is acquired. Thus, information
may be acquired sequentially but processed simultaneously and vice versa.

In the serial or cascade mode, the processing of information takes place sequen-
tially. In Figure 6.11, the fingerprint information of the user is first processed; if the
fingerprint sub-system is unable to determine the user’s identity, then the data corre-
sponding to the face biometric is processed. In such an arrangement, the processing
time can be effectively reduced if a decision is made without waiting for the outputs
of all the unibiometric systems. The user can also be allowed to choose which of
his biometric traits should be captured first, leading to even greater convenience. In
addition to improving user convenience, the cascading scheme also allows fast and
efficient searches in large scale identification tasks (also called database indexing
or filtering). The matching result obtained using each modality can be used to suc-
cessively prune the database, thereby making the search faster and more efficient.
However, robust algorithms are essential to efficiently handle the various sequence
of events that are possible in a cascaded multibiometric system.

In the parallel mode, each unibiometric system processes its information inde-
pendently at the same time and the processed information is combined using an
appropriate fusion scheme (see Figure 6.12). A multibiometric system designed to
operate in the parallel mode generally has a higher accuracy because it utilizes more
evidence about the user for recognition. Most practical multibiometric systems have
a parallel architecture because the primary goal of multibiometric system design-
ers has been to reduce the error rates of biometric systems and not necessarily the
throughput and/or processing time. However, a decision on the optimal number of
biometrics sources to use still needs to be made and may involve studying the trade-
off between accuracy and other factors like system cost and throughput.
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Fig. 6.11 In the cascade (or serial) mode of operation, evidence is incrementally processed in
order to establish the user’s identity. This scheme is also known as sequential pattern recognition.
It enhances user convenience while reducing the average processing time since a decision can be
made without having to acquire all the biometric traits.

Besides the two modes of operation discussed above, it is also possible to have a
hierarchical (tree-like) architecture to combine the advantages of both cascade and
parallel architectures. In such a scheme, a subset of the acquired modalities may be
combined in parallel, while the remaining modalities may be combined in a serial
fashion. Such an architecture can be dynamically determined based on the quality
of the individual biometric samples as well as when encountering missing biometric
data.
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Fig. 6.12 In the parallel mode of operation, the evidence acquired from multiple sources is simul-
taneously processed in order to establish user’s identity. Note that the evidence pertaining to the
multiple sources may be acquired in a sequential fashion.

6.4 Fusion Levels

A fundamental issue in the design of a multibiometric system is to determine the
type of information that should be consolidated by the fusion module. In a typi-
cal biometric system, the amount of information available to the system gets com-
pressed as one proceeds from the sensor module to the decision module (see Figure
6.13). The raw biometric data (e.g., image or video) is the richest in information
content and subsequent processing (e.g., feature extraction) reduces the amount of
information that is available to the system. It must be noted, however, that use of
feature-level representation for fusion has certain advantages over the sensor-level
(i.e, raw data-level) representation. Firstly, feature extraction is expected to provide
an invariant representation of the biometric pattern under consideration. Secondly,
the effect of noise is expected to decrease after feature extraction, which typically in-
volves enhancement operations to suppress the inherent noise in the biometric data.
However, the enhancement procedure itself may add some spurious information to
the original raw data. Thus, there is an interplay between the amount of useful in-
formation that is available at any stage in a biometric system and the degree of noise
corrupting this information.

In a multibiometric system, fusion can be accomplished by utilizing the infor-
mation available in any of the four biometric modules (sensor, feature extractor,
matcher, and decision modules). Figure 6.14 shows the various levels of fusion pos-
sible in a multibiometric system. Biometric fusion can be broadly classified into (a)
fusion prior to matching, and (b) fusion after matching. This distinction is made be-
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Fig. 6.13 The amount of information available for fusion gets reduced as one progresses along
the various processing modules of a biometric system. The raw data represents the richest source
of information, while the final decision (in a verification scenario) contains just a single bit of
information. However, the raw data is corrupted by noise and may have large intra-class variability,
which is typically reduced in the subsequent modules of the system.

cause once the matcher is invoked, the amount of information available to the fusion
system drastically decreases. Moreover, fusion prior to matching can be applied dur-
ing enrollment and/or authentication. On the other hand, fusion after matching can
be applied only during authentication. Prior to matching, integration of information
from multiple biometric sources can take place either at the sensor level or at the
feature level. Schemes for integration of information after the classification/matcher
stage can be further divided into three categories: fusion at the decision level, fusion
at the rank level, and fusion at the match score level.

Fig. 6.14 Fusion can be accomplished at various levels in a biometric system. Most multibio-
metric systems fuse information at the score level or the decision level. Fusion at the rank level is
applicable only to biometric systems operating in the identification mode.

Biometric systems that integrate information at an early stage of processing are
believed to be more effective than those systems that perform integration at a later
stage. Since the feature set contains richer information about the input biometric
pattern than the match score or the decision label, integration at the feature level
is expected to provide better recognition results than score or decision level fusion.
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However, in practice this is not always true since (a) the fusion process has to reckon
with the presence of noise in constituent feature sets, and (b) a new matching algo-
rithm may be necessary to compare two fused feature sets. Developing efficient
matching algorithms is often the most challenging aspect in the design of a bio-
metric system and, thus, fusion at the sensor or feature levels introduces additional
processing complexities.

6.4.1 Sensor-level fusion

Sensor-level fusion entails the consolidation of evidence presented by multiple
sources of raw data before they are subjected to feature extraction. In the image
processing literature, this is referred to as image-level or pixel-level fusion. The
phrase “sensor-level fusion” is used in order to accommodate other types of raw
data also such as voice, video, etc. The flow of information in a multibiometric sys-
tem that employs sensor-level fusion is shown in Figure 6.15. While Figure 6.15
shows that sensor-level fusion is performed during both enrollment and authenti-
cation, this need not be the case always. It is possible to design a multibiometric
system where fusion is applied only during enrollment or during authentication. In
general, a sensor-level fusion function fS(.) converts a collection of M biometric
samples B = {B1,B2, · · · ,BM} into a single fused sample B f , i.e.,

B f = fS(B1,B2, · · · ,BM). (6.1)
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Fig. 6.15 Information flow in multibiometric system that employs sensor-level fusion.

Sensor-level fusion is applicable only for multi-sensor and multi-sample systems.
For example, a small fingerprint sensor may capture two or more impressions of a
person’s fingerprint and create a composite fingerprint image that reveals a more
complete ridge structure (see Figure 6.16). This process, known as mosaicing, is
particularly useful in sweep-sensors in which each image slice represents only a
small portion of the fingerprint and, hence, an appropriate stitching algorithm is
required to integrate the various slices to form the complete fingerprint image.

Mosaicing can also be performed in face recognition where multiple 2D images
representing different poses can be stitched to generate a single image. It is also
possible to combine the 2D texture of a person’s face with the corresponding 3D
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scan (i.e., the range image) in order to create a 3D texture model. The availability
of this model permits the generation of new (previously unseen) 2D images of a
person’s face (e.g., at different poses, illumination, head-tilt, etc.) without actually
employing a scanner to capture such images.
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Features
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Match 
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Fig. 6.16 Illustration of a sensor-level fusion scheme where multiple impressions of the same
finger are stitched together using a process called mosaicing to generate a composite fingerprint
image.

6.4.2 Feature-level fusion

Feature or representation-level fusion involves consolidating the evidence presented
by two different biometric feature sets of the same individual. Figure 6.17 shows
the typical information flow in a multibiometric system using feature-level fusion.
Mathematically, a feature-level fusion function fR(.) converts a collection of M bio-
metric feature sets X = {x1,x2, · · · ,xM} into a single fused feature set x f , i.e.,
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x f = fR(x1,x2, · · · ,xM). (6.2)
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Fig. 6.17 Typical information flow in a multibiometric system that employs feature-level fusion.

Feature-level fusion schemes can be categorized into two broad classes, namely,
homogeneous and heterogeneous. A homogeneous feature fusion scheme is used
when the feature sets to be combined are obtained by applying the same feature
extraction algorithm to multiple samples of the same biometric trait (e.g., minu-
tia sets from two impressions of the same finger). This approach is applicable to
multi-sample and multi-sensor systems. Heterogeneous feature fusion techniques
are required if the component feature sets originate from different feature extraction
algorithms or from samples of different biometric traits (or different instances of the
same trait).

6.4.2.1 Homogeneous feature fusion

Homogeneous feature fusion can be used for template update or template improve-
ment as discussed below.

• Template update: A template in the database can be updated based on the evi-
dence presented by the current feature set in order to reflect (possibly) permanent
changes in a person’s biometric. Hand geometry systems use this process to up-
date the geometric measurements stored in the database in order to account for
changes in an individual’s hand over a period of time. Usually, the template is
updated after every successful authentication. Therefore, the information flow in
such a system does not follow the typical flow shown in Figure 6.17. A simple
template update scheme is shown in equation (6.3). Here, the average of the cur-
rent template (xE ) and the new feature vector obtained during authentication (xA)
is computed and stored as the new template (x̂E ), provided the authentication is
successful.
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x̂E =

⎧⎨
⎩

xE+xA

2 , if M (xE ,xA)≥ τ,

xE , otherwise,
(6.3)

where M (., .) is the matching function that computes the similarity between two
feature vectors and τ is the decision threshold.

• Template improvement: In the case of fingerprints, the minutiae information
available in two impressions can be combined by appropriately aligning the two
prints and then removing duplicate minutia, thereby generating a larger minutia
set (see Figure 6.18). This process, known as template improvement, can also
be used to remove spurious minutiae points that may be present in a feature set.
While template update is used to accommodate temporal changes in a person’s
biometric, the purpose of template improvement is to increase the number of fea-
tures (and decrease the number of spurious features) whilst retaining its integrity.

Fingerprint
Sample A

Fingerprint
Sample B

Minutiae Mosaicing

Fused Minutiae
Set

74 Match /
Non-match

Match
Score

Identity
Decision

Minutiae Set A

Minutiae Set B

Fig. 6.18 Illustration of a homogeneous feature fusion (template improvement) scheme where
minutia sets extracted from multiple impressions of the same finger are reconciled to generate a
larger minutia set.
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6.4.2.2 Heterogeneous feature fusion

How does one consolidate feature sets originating from different algorithms and
different biometric modalities? Feature level fusion is difficult to achieve in such
cases because of the following reasons:

1. The relationship between the feature spaces of different biometric systems may
not be known.

2. The feature sets of multiple modalities may be incompatible. For example, the
minutiae set of fingerprints and the eigen-coefficients of face have different rep-
resentation schemes. One is a variable length feature set (i.e., it varies across
fingerprint images) whose individual values parameterize a minutia point; the
other is a fixed length feature set (i.e., face images are represented by a fixed
number of eigen-coefficients) whose individual values are scalar entities.

3. If the two feature sets are fixed length feature vectors, then one could consider
augmenting them to generate a new larger feature set. However, concatenating
two feature vectors might lead to the curse-of-dimensionality problem, where in-
creasing the number of features might actually degrade the system performance
especially in the presence of small number of training samples. Although the
curse-of-dimensionality is a well known problem in pattern recognition, it is par-
ticularly pronounced in biometric applications because of the time, effort, and
cost required to collect large amounts of biometric (training) data.

4. Most commercial biometric systems do not provide access to the feature sets
used in their products due to proprietary reasons. Hence, very few biometric re-
searchers have focused on heterogeneous feature fusion and most of them gener-
ally prefer fusion schemes that use match scores or decision labels.

If the length of each of the two feature vectors to be consolidated is fixed across
all users, then a feature concatenation scheme followed by a dimensionality reduc-
tion procedure may be adopted for feature-level fusion. Consider a multibiometric
system where fixed-length feature vectors from two biometric sources are available,
i.e., X = {x1,x2}, where x1 ∈ R

d1 and x2 ∈ R
d2 . The objective is to fuse these two

feature sets in order to yield a new feature vector, x f , that would better represent the
biometric sample of an individual. The vector x f of dimensionality d, d < (d1+d2),
can be generated by first concatenating vectors x1 and x2, and then performing fea-
ture selection or feature transformation on the resultant feature vector in order to
reduce its dimensionality (see Figure 6.19). The key stages of such an approach are
described below.

Feature Normalization: The individual feature values of vectors x1 = [x1
1,x

2
1, · · · ,xd1

1 ]

and x2 = [x1
2,x

2
2, · · · ,xd2

2 ] may exhibit significant differences in their range as well as
form (i.e., distribution). Augmenting such diverse feature values will not be appro-
priate in many cases. For example, if the xi

1’s are in the range [0,100] while the xi
2’s

are in the range [0,1], then the distance between two augmented feature vectors will
be more sensitive to the xi

1’s than the xi
2’s.
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Fig. 6.19 A simple scheme for the fusion of two heterogeneous feature vectors whose lengths are
fixed across all users. In this example, min-max normalization is performed based on the assump-
tion that the ranges of feature values are [0,100] and [−3,3] for the first and second feature vectors,
respectively.

The goal of feature normalization is to modify the location (mean) and scale
(variance) of the features values via a transformation function in order to map them
into a common domain. Adopting an appropriate normalization scheme also helps
address the problem of outliers in feature values. Feature normalization may not
be necessary in cases where the feature values pertaining to multiple sources are
already comparable.

A simple normalization scheme that is often used in practice is the min-max
normalization scheme, which transforms the features values such that they fall in the
range [0,1], irrespective of their original values. Let x and x̂ denote a feature value
before and after normalization, respectively. The min-max technique computes x̂ as

x̂ =
x−min(hx)

max(hx)−min(hx)
, (6.4)

where hx is the function that generates x, and min(hx) and max(hx) represent the
minimum and maximum of all possible x values that will be observed, respectively.
The min-max technique is effective when the minimum and the maximum values
of the component feature values are known beforehand. In cases where such infor-
mation is not available, an estimate of these parameters has to be obtained from
the available set of training data. Normalizing the feature values using the min-max

normalization techniques results in modified feature vectors x̂1 =
[
x̂1

1, x̂
2
1, · · · , x̂d1

1

]
and x̂2 =

[
x̂1

2, x̂
2
2, · · · , x̂d2

2

]
.

One of the limitations of the min-max normalization technique is its sensitivity
to outliers in the training data. The presence of a single outlier, i.e., a feature having
a very high or very low value can lead to an incorrect estimate of the maximum or
minimum parameter, respectively. A number of normalization techniques have been
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proposed to effectively handle outliers. Some of these techniques will be discussed
in section 6.4.3.2 in the context of score level fusion.

Feature Selection or Transformation: Augmenting the two normalized feature

vectors, x̂1 and x̂2, results in a new feature vector, x̂ f =
[
x̂1

1, x̂
2
1, · · · , x̂d1

1 , x̂1
2, x̂

2
2, · · · , x̂d2

2

]
,

x̂ f ∈ R
d1+d2 . The curse-of-dimensionality dictates that the augmented vector of di-

mensionality (d1 + d2) need not necessarily result in an improved matching perfor-
mance compared to that obtained by x̂1 and x̂2 alone. In order to avoid this problem,
a feature selection process is applied. Feature selection is a dimensionality reduc-
tion scheme that entails choosing a minimal feature set of size d, d < (d1+d2), such
that a criterion (objective) function applied to the training set of feature vectors is
optimized.

Examples of feature selection algorithms include sequential forward selection
(SFS), sequential backward selection (SBS), sequential forward floating search
(SFFS), sequential backward floating search (SBFS), “plus l take away r”, and
branch-and-bound search . These feature selection techniques rely on an appropri-
ately formulated criterion function to elicit nearly optimal subset of features from a
larger feature set. In the case of a biometric system, this criterion function could be
the Equal Error Rate (EER), the total error rate, the d-prime measure, the area under
the ROC curve, or the average GAR at pre-determined FAR values corresponding
to the training set.

Dimensionality reduction may also be accomplished using feature transforma-
tion methods where the vector x̂ f is subjected to a linear or a non-linear mapping
that projects it to a lower dimensional subspace. Examples of such transformations
include the use of principal component analysis (PCA), independent component
analysis (ICA), multidimensional scaling (MDS), and Kohonen Maps. The appli-
cation of a feature selection or feature transformation procedure results in a new
feature vector x f = [x1,x2, · · · ,xd ], which can now be used to represent the biomet-
ric sample(s) of an individual.

6.4.3 Score-level fusion

When match scores output by different biometric matchers are consolidated in order
to arrive at a final recognition decision, fusion is said to be done at the score level.
This is also known as fusion at the measurement level or confidence level. After
the raw data and feature vectors representations, the next level of fusion is based on
match scores. It is relatively easy to access and combine the scores generated by dif-
ferent biometric matchers. Consequently, score-level fusion is the most commonly
used approach in multibiometric systems.

The general flow of information in a multibiometric verification system using
score-level fusion is shown in Figure 6.20. Score-level fusion is a challenging prob-
lem when the match scores generated by the individual matchers are not homoge-
neous. Non-homogeneity could be due to the following two reasons:
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1. One matcher may output a distance or dissimilarity measure (a smaller distance
indicates a better match) while another may output a similarity measure (a larger
similarity value indicates a better match). Furthermore, the outputs of the indi-
vidual matchers need not be on the same numerical scale (range).

2. The match scores may follow different probability distributions due to different
characteristics of the individual matchers.

Identity 
Decision 

(uf)

Enrollment 
Sample(s), BE

Feature 
Extractor(s)

sf = fC(s) 
Matcher 1

.

.
Matcher M

Authentication 
Sample(s) BA

Feature 
Extractor(s)

Score Level 
Fusion Module

fC()

XE

Decision 
Module

s = [s1, .., sM]

XA

Fig. 6.20 Flow of information in a match score-level fusion scheme.

Score-level fusion methodologies will vary depending on whether the multibio-
metric system operates in the verification or identification mode. Score fusion in a
multibiometric verification system can be considered as a two-class pattern classifi-
cation problem, where the goal is to determine whether the query corresponds to a
“genuine” user or an “impostor”. Let s = [s1,s2, · · · ,sM ] be the match score vector
obtained by comparing the query biometric features XA to the enrolled template XE

using M different matchers. Here, sm represents the match score output by the mth

matcher. Based on the training set of match scores from the genuine and impostor
classes, a classifier learns a decision boundary between the two classes. Figure 6.21
shows an example of a linear decision boundary learned by a classifier based on the
genuine and impostor match scores from two different matchers. During authen-
tication, any match score vector that falls in the genuine region (to the right of the
decision boundary in Figure 6.21) is classified as “genuine”. In general, the decision
boundary can be quite complex depending on the nature of the classifier.

Depending on the model used for classification, the score fusion techniques
can be further classified into three broad categories, namely, likelihood-ratio-based
fusion, transformation-based fusion, and fusion based on other classification ap-
proaches (see Figure 6.22). However, this categorization is not rigid and some score
fusion techniques may be categorized under multiple approaches or may involve
more than one basic approach.

6.4.3.1 Likelihood-ratio-based score fusion

This approach is based on the Bayesian decision theory and the Neyman-Pearson
approach to statistical hypothesis testing. For the sake of simplicity, let ω0 and ω1



234 6 MULTIBIOMETRICS

0.4 0.5 0.6 0.7 0.8 0.9
60

65

70

75

80

85

Scores from Matcher 1

S
co

re
s 

fr
om

 M
at

ch
er

 2

Genuine Scores
Impostor Scores

Genuine

Impostor

Decision
Boundary

Fig. 6.21 Example of a linear decision boundary learned in a 2-dimensional (M = 2) feature space.
During verification, any match score vector that falls in the region marked as ‘Genuine’ (to the
right of the decision boundary) is classified as a “genuine” user. On the other hand, any match
score vector that falls in the region marked as ‘Impostor’ (to the left of the decision boundary) is
classified as “impostor”.

Fig. 6.22 Taxonomy of classification approaches that can be used for score level fusion in a multi-
biometric verification system. Note that the above categorization is not strict and some score fusion
techniques may be categorized under multiple approaches or may involve more than one basic ap-
proach.
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denote the impostor and genuine classes, respectively. Let P(ω0) and P(ω1) be the
prior probabilities of observing the impostor and genuine classes, respectively. Fur-
ther, let the conditional density function for the genuine match scores be denoted as
p(s|ω1) and the corresponding density function for the impostor scores be denoted
as p(s|ω0). The posterior probability P(ω j|s) can be computed from p(s|ω j) using
the Bayes formula:

P(ω j|s) = p(s|ω j)P(ω j)

p(s)
, (6.5)

where j = 0,1 and p(s) = ∑1
j=0 p(s|ω j)P(ω j).

The objective is to decide between the genuine and impostor classes based on
the observed match score vector s. To minimize the average probability of error, one
should select the class ω j that has the highest posterior probability. In other words,
the decision rule for minimum error rate is:

Decide ω1 if P(ω1|s)> P(ω0|s). (6.6)

The minimum error rate Bayes decision rule is obtained by substituting equation
(6.5) in equation (6.6), which can be expressed as

Decide ω1 if P(ω1)p(s|ω1)> P(ω0)p(s|ω0). (6.7)

If the prior probabilities of the two classes are assumed to be equal, i.e., if P(ω0) =
P(ω1) = 0.5, the minimum error rate decision rule can be simplified as follows:

Decide ω1 if
p(s|ω1)

p(s|ω0)
> 1. (6.8)

The statistic p(s|ω1)/p(s|ω0) is known as the likelihood ratio. While the decision
rule in equation (6.8) minimizes the total error rate, it is not widely used in biometric
systems because it assumes that both false accept and false reject errors are equally
costly. In a practical biometric system, it is often desirable to have an upper bound
on the false accept rate. In other words, it is required that the false accept rate of
the biometric system is less than, say 0.1%. This can be achieved by modifying the
decision rule in equation (6.8) based on the Neyman-Pearson criterion.

Let Ψ be a statistical test for testing the null hypothesis H0: s corresponds to
an impostor against the alternative hypothesis H1: s corresponds to a genuine user.
Let Ψ(s) = j imply a decision in favor of Hj, where j = 0,1. The probability of
correctly rejecting H0 when H1 is true is known as the genuine accept rate or the
power of the test. The probability of rejecting H0 when H0 is true is known as the
false accept rate or level of the test denoted by α . The Neyman-Pearson theorem
states that

1. For testing H0 against H1, there exists a test Ψ and a constant η such that

P(Ψ(s) = 1|H0) = α (6.9)
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and

Ψ(s) =

{
1, when p(s|ω1)

p(s|ω0)
≥ η ,

0, when p(s|ω1)
p(s|ω0)

< η .
(6.10)

2. If a test satisfies equations (6.9) and (6.10) for some η , then it is the most pow-
erful test for testing H0 against H1 at level α .

According to the Neyman-Pearson theorem, given the false accept rate (FAR) α ,
the optimal test for deciding whether a match score vector s corresponds to a gen-
uine user or an impostor is the likelihood-ratio test. The decision rule based on the
likelihood-ratio test can be expressed as

Decide ω1 if
p(s|ω1)

p(s|ω0)
≥ η . (6.11)

For a specified FAR, one can select a threshold η such that the above decision rule
maximizes the genuine accept rate (GAR) and there does not exist any other deci-
sion rule with a higher GAR. However, this optimality of the likelihood-ratio test
is guaranteed only when the underlying match score densities, namely, p(s|ω1) and
p(s|ω0) are known. In practice, only a finite set of genuine and impostor match
scores are available for training, so the densities p(s|ω1) and p(s|ω0) must be reli-
ably estimated from this training data before applying the likelihood-ratio test.

Density estimation is a well-studied problem in statistics. In parametric density
estimation, the form of the density function (e.g., Gaussian) is assumed to be known
and only the parameters of this density function (e.g., mean and standard deviation)
are estimated from the training data. For example, if the density function is assumed
to be Gaussian, only the mean and the standard deviation parameters that character-
ize this density are estimated during training. Figure 6.23 shows the decision bound-
ary of a likelihood-ratio-based fusion scheme in the case of a two-dimensional score
vector whose conditional densities are assumed to be Gaussian.

In the context of biometric systems, it is very difficult to choose a specific para-
metric form for the density of genuine and impostor match scores. This is because
the genuine and impostor match score distributions generally have a large tail and
may have more than one mode (see Figure 6.24). Moreover, if the parametric form
for the score densities is not selected carefully, it may lead to anomalies like dis-
connected decision regions. This is because the resulting likelihood-ratio may not
be monotonic2 with respect to the match scores. For example, in Figure 6.23, the
query would be classified as belonging to the genuine class if the two match scores
have large positive values (decision region R0 to the top left of R1) as well as large
negative values (decision region R0 to the bottom right of R1).

Non-parametric density estimation techniques such as density histogram, k-
Nearest Neighbor, and kernel density estimator (also known as Parzen window

2 A higher similarity score indicates that there is a larger likelihood that the query belongs to the
genuine class. Therefore, the relationship between the match score and likelihood-ratio is usually
monotonic.
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Fig. 6.23 Decision boundary of a likelihood-ratio-based fusion scheme when the conditional den-
sities of the two-dimensional score vector s = [s1, s2] are assumed to be Gaussian. Here, p(s|ω1)
and p(s|ω0) represent the genuine and impostor match score densities, respectively. In this exam-
ple, the decision boundary consists of a hyperbola, and thus the decision region R0 (corresponding
to the genuine class) is not connected. This is because the likelihood-ratio is not monotonic with
respect to the match scores. The ellipses indicate contours of constant density, where the density
value is 1/e times that at the peak of the distribution.

method) do not assume any standard form for the density function and are essentially
data-driven. A mixture of densities whose functional forms are known (e.g., mix-
ture of Gaussians) can also be used for density estimation. This mixture method can
be categorized as either parametric or semi-parametric depending on whether the
number of mixture components is fixed a priori or is allowed to vary based on the
observed data. Although the non-parametric and semi-parametric approaches can
model any distribution, the reliability of the obtained estimate depends significantly
on the number of samples that are available for learning the densities, especially if
the dimensionality of the match score vector (M) is large. In practice, there is only
a limited availability of training data, particularly for the genuine class. Therefore,
it is important to carefully choose the appropriate density estimation method.

The density estimation process can be simplified greatly if the match scores out-
put by the M matchers are assumed to be statistically independent under both the
hypotheses H0 and H1. Under this assumption, the conditional joint density p(s|ω j)
can be expressed as the product of the marginal conditional densities, i.e.,
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Fig. 6.24 Histograms of match scores and the corresponding Gaussian density estimates for the
Face-G matcher in the NIST BSSR1 database. (a) Genuine scores and (b) Impostor scores. Note
that the Gaussian density does not account well for the tail in the genuine score distribution and
the multiple modes in the impostor score distribution.

p(s|ω j) = p(s1,s2, · · · ,sM|ω j) =
M

∏
m=1

p(sm|ω j), j = 0,1. (6.12)

The likelihood-ratio-based decision rule under the assumption of statistical indepen-
dence between matchers is given by

Decide ω1 if
M

∏
m=1

p(sm|ω1)

p(sm|ω0)
≥ η . (6.13)

In a multimodal biometric system, each one of the M matchers uses features from
a different biometric trait (e.g., face, fingerprint, and hand geometry), which gener-
ally tend to be mutually independent. Hence, the underlying assumption in Equation
(6.12) is reasonable in most multimodal biometric systems. On the other hand, the
independence assumption may not be true for a multi-sample biometric system since
the different samples of the same biometric trait usually tend to be correlated. How-
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ever, unless the correlation between matchers is very high (say, over 0.9), degrada-
tion in accuracy as a result of independence assumption is not severe. Since such
extreme scenarios are rarely encountered in practical multibiometric systems, it is
appropriate to use the independence assumption as a rule of thumb.

6.4.3.2 Transformation-based score fusion

Transformation-based score fusion schemes are usually approximations of the gen-
eral minimum error rate Bayes decision rule presented in equation (6.7). To apply
the Bayes decision rule, estimates of the posterior probabilities P(ω0|s) and P(ω1|s)
are required, which in turn requires the computation of the conditional joint densities
p(s|ω0) and p(s|ω1). As mentioned earlier, estimating M-dimensional joint densi-
ties is a challenging problem, especially when the number of training samples is
limited and M is large. Approximations to P(ω j|s) can take place at two levels.

1. Firstly, an estimate of P(ω j|s) can be obtained using the marginal posterior
probabilities P(ω j|sm), m = 1,2, · · · ,M. This can be achieved using different
classifier combination rules shown in Table 6.2. All these combination rules
have the following general form: P(ω j|s)≈ h(P(ω j|s1),P(ω j |s2), · · · ,P(ω j|sM))
and are based on two fundamental assumptions: (a) the match scores of dif-
ferent matchers are statistically independent, i.e., equation (6.12) is true, and
(b) the prior probabilities of the genuine and impostor classes are equal, i.e.,
P(ω1) = P(ω0) = (1/2). Approximating the posterior probabilities in the min-
imum error rate decision rule (equation (6.6)) using the classifier combination
techniques leads to the following decision rule:

Decide ω1 if

h(P(ω1|s1),P(ω1|s2), · · · ,P(ω1|sM))> h(P(ω0|s1),P(ω0|s2), · · · ,P(ω0|sM)).
(6.14)

Among the classifier combination rules, the product rule is a direct implication of
the assumptions that the match scores output by the M matchers are statistically
independent and the classes have equal priors. However, a key limitation of the
product rule is its sensitivity to errors in the estimation of the posterior probabil-
ities. Even if one of the classifiers outputs a probability close to zero, the product
of the M posterior probabilities is rather small and this often leads to an incorrect
classification decision. The sum rule is generally more effective than the prod-
uct rule, especially when the estimates of the marginal posterior probabilities are
unreliable. The sum rule can be derived from the product rule by assuming that
the posterior probabilities do not deviate dramatically from the prior probabilities
for each class. Since the sum decision rule is robust to errors in the estimation
of the posterior probabilities, it usually works quite well in practice and is com-
monly used in multibiometric systems. The max, min, and median rules can also
be obtained by various approximations of the product and sum rules.
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Table 6.2 Classifier combination rules approximate the joint posterior probabilities P(ω j |s =
[s1, s2, · · · , sM]) using the marginal posterior probabilities P(ω j |sm), j = 0,1, m = 1,2, · · · ,M.
These rules have the following general form: P(ω j|s) ≈ h(P(ω j |s1),P(ω j|s2), · · · ,P(ω j |sM)). All
these combination rules are based on two assumptions: (a) the match scores of different matchers
are statistically independent, and (b) the prior probabilities of the genuine and impostor classes are
equal, i.e., P(ω1) = P(ω0) = (1/2).

Combination Rule h(P(ω j|s1),P(ω j|s2), · · · ,P(ω j|sM)) =

Product ∏M
m=1 P(ω j|sm)

Sum ∑M
m=1 P(ω j|sm)

Max maxM
m=1 P(ω j|sm)

Min minM
m=1 P(ω j|sm)

Median medianM
m=1P(ω j|sm)

2. The classifier combination rules can be applied only if the output of each bio-
metric matcher is of the form P(ω j|sm), i.e., the posterior probability of class
ω j given the match score output by the mth matcher. Converting a match score
into marginal posterior probabilities again requires the estimation of the marginal
genuine and impostor match score densities. Rather than computing the marginal
score densities for each matcher, one may transform the match scores obtained
from different matchers into a common domain and directly apply the classifier
combination rules on the transformed scores. This approach is based on the as-
sumption that the match score and posterior probability for the genuine class are
related as follows.

P(ω1|sm) ∝ gm(sm), (6.15)

where gm is a monotonic function and m = 1,2, · · · ,M. This transform gm is
usually referred to as the score normalization function and gm(sm) is called the
normalized match score. Once the match scores from different matchers are nor-
malized, classifier combination rules such as the sum, max, and min rules can be
applied to obtain the fused match scores. The corresponding combination rules
are referred to as sum of scores, max score, and min score fusion rules, respec-
tively, because the normalized match scores may not have any direct probabilistic
interpretation (normalized scores may not even lie in the interval [0,1]). Due to
the same reason, the product rule is generally not applicable to normalized scores.
In general, the transformation based score fusion rules can be expressed as

Decide ω1 if h(g1(s1),g2(s2), · · · ,gM(sM))> τ, (6.16)

where τ is the decision threshold set by the system administrator.
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Formally, score normalization is defined as the process of changing the location
and scale parameters of the match score distributions, so that the match scores of
different matchers are transformed into a common domain. The location and scale
parameters of a match score distribution are usually estimated from the training
data. While the effect of the location parameter is to translate the score distribu-
tion along the horizontal direction, the effect of the scale parameter is to stretch out
the distribution. If a transformation function alters the location and scale parame-
ters without changing the basic shape of the distribution, such a transformation is
said to preserve the score distribution. Some of the well-known score normalization
schemes are summarized in Table 6.3. No normalization scheme has been shown to
be optimal for all kinds of match score data. In practice, it is recommended that a
number of normalization techniques be evaluated to determine the one that gives the
best performance on the given data.

Table 6.3 Summary of commonly used score normalization techniques. The function ψ in tanh
normalization is known as the Hampel influence function, and it reduces the influence of the scores
at the tails of the distribution during the estimation of location and scale parameters. In this table, it
is assumed that the location and scale parameters of a distribution can be estimated from a given set
of training scores {ŝi

m}, for m = 1,2, · · · ,M and i = 1,2, · · · ,L1, (L1 + 1), (L1 + 2), · · · , (L1 +L0).
Here, ŝi

m represents the ith score in the training set corresponding to the mth matcher. It is also
assumed that the first L1 scores in the training set correspond to the genuine class, the subsequent
L0 scores correspond to the impostor class, and the total number of training samples is L, i.e.,
L = L1 +L0.

Normalization Normalization function Location Scale parameter

scheme g(sm) parameter (μm) (σm)

Min-max sm−μm
σm

minL
i=1 ŝi

m

(
maxL

i=1 ŝi
m

)− μm

Z-score sm−μm
σm

1
L ∑L

i=1 ŝi
m

1
L ∑L

i=1

(
ŝi

m − μm
)2

Median sm−μm
σm

medianL
i=1ŝi

m medianL
i=1|ŝi

m − μm|
Tanh 1

2

{
tanh

(
0.01

(
sm−μm

σm

))
+1

}
1

L1
∑L1

i=1 ψ(ŝi
m)

1
L1

∑L1
i=1

(
ψ(ŝi

m)− μm
)2

The simplest normalization technique is the min-max normalization. Min-max
normalization is best suited for the case where the bounds (maximum and minimum
values) of the scores produced by a matcher are known. In this case, one can easily
transform the minimum and maximum scores to 0 and 1, respectively. However,
even if the match scores are not bounded, the min-max normalization can be applied
based on the minimum and maximum values estimated from the given set of training
match scores. But this method is very sensitive to outliers in the training data. Min-
max normalization retains the original shape of the score distribution except for a
scaling factor and transforms all the scores into a common range [0,1]. Distance
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scores can be transformed into similarity scores by subtracting the normalized score
from 1.

Another commonly used score normalization technique is the z-score normaliza-
tion that uses the arithmetic mean and standard deviation of the training data. Again,
both mean and standard deviation statistics are sensitive to outliers in the training
data. Z-score normalization does not guarantee a common numerical range for the
normalized scores of the different matchers.

The median and median absolute deviation (MAD) statistics are insensitive to
outliers as well as points in the extreme tails of the distribution. However, when the
score distribution is not Gaussian, median and MAD are poor estimates of the loca-
tion and scale parameters. Therefore, this normalization technique does not trans-
form the scores into a common numerical range.

The tanh normalization uses the mean and standard deviation estimates of only
the genuine scores as given by Hampel estimators. Hampel estimators are based on
the following influence (ψ)-function:

ψ (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u 0 ≤ |u|< a,
a ∗ sign(u) a ≤ |u|< b,

a ∗ sign(u)∗
(

c−|u|
c−b

)
b ≤ |u|< c,

0 |u| ≥ c,

(6.17)

where

sign{u}=
{
+1, if u ≥ 0,
−1, otherwise.

A plot of the Hampel influence function is shown in Figure 6.25. The Hampel in-
fluence function reduces the influence of the scores at the tails of the distribution
(identified by a, b, and c) during the estimation of the location and scale parameters.
Hence, this method is not sensitive to outliers. However, if many of the points that
constitute the tail of the distributions are discarded, the estimate may not be accu-
rate. Therefore, the parameters a, b, and c must be carefully chosen depending on
the amount of noise in the available training data.

Among the various transformation-based score fusion techniques available, the
sum of scores decision rule is the most commonly used technique in multibiometric
systems. This decision rule is often used in conjunction with min-max or z-score
normalization techniques. While the sum of scores rule is simple, it is also quite
robust to variations in the scores of the individual matchers, and this is the reason
for its widespread usage. A modification of the sum of scores rule is the weighted
sum of scores rule (or simply, weighted sum rule), where the combined match score
is computed as a weighted sum of the normalized scores of the individual matchers.
The rationale behind the weighted sum rule is that due to differences in the score
distributions of the individual matchers, the proportionality constant in equation
(6.15) may not be equal for all m = 1,2, · · · ,M. Weights are assigned to scores of
the individual matchers to alleviate this problem and these weights are often selected
so as to optimize some criteria like the equal error rate or area under the ROC curve.
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Fig. 6.25 An example of a Hampel influence function with a = 0.7, b = 0.85, and c = 0.95.

6.4.3.3 Score fusion based on other classification approaches

A number of other classification approaches can be used to indirectly learn the de-
cision boundary between the genuine and impostor scores. Some examples include
support vector machines (SVM), neural networks, k-nearest neighbor classifier, lin-
ear discriminant analysis, decision trees, and random forests. A detailed analysis of
the various discriminative models is beyond the scope of this book. However, in the
context of biometric systems, it is important to consider the following two issues
while selecting the appropriate discriminative model:

• Unbalanced training set: The number of genuine match scores available for train-
ing is O(N), but the number of impostor scores is O(N2), where N is the num-
ber of users in the training database. For example, if a multibiometric training
database has N users and if each user provides t biometric samples, then the
maximum number of genuine scores that can be obtained from this database is
Nt(t − 1)/2. On the other hand, (N(N − 1)t2)/2 impostor matches can be per-
formed using the same database. Suppose that N = 100 and t = 4, the number of
genuine scores available for training is only 600, while the number of impostor
scores is 79,200.

• Cost of misclassification: Depending on the biometric application, the cost of
accepting an impostor may be very different from the cost of rejecting a genuine
user. For example, a biometric system deployed in a security application may be
required to have a false accept rate (FAR) of less than 0.1%. Therefore, the fusion
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strategy needs to minimize the false reject rate (FRR) at the specified FAR values
rather than minimizing the total error rate (sum of FAR and FRR).

6.4.3.4 Score fusion in identification mode

The key difference between score fusion in the verification and identification modes
is the structure of the match score data and the output decision. In a verification
system, the score data is in the form of a vector s = [s1,s2, · · · ,sM], where sm rep-
resents the match score output by the mth matcher and it corresponds to a single
claimed identity. The goal is to determine whether the identity claim comes from
a “genuine” user or an “impostor” based on s. On the other hand, the score data in
an identification system is in the form of a N ×M matrix S = [sn,m], where sn,m is
the match score output by the mth matcher corresponding to the nth identity. In this
case, the objective is to assign an identity Ik to the user based on the score matrix S.

With minor modifications, many of the decision rules designed for the verifi-
cation scenario can also be extended to the identification mode. However, it is not
straightforward to apply fusion schemes based on other discriminative models to the
identification scenario. This is because multibiometric identification is a multi-class
pattern classification problem, where the number of classes (N) can be very large.

Firstly, the minimum error rate decision rule for the identification mode is:

Decide identity Ik if P(Ik|S)> P(In|S), ∀ n = 1,2, · · · ,N,k �= n, (6.18)

where P(In|S) is the posterior probability that the identity of the user is In given
the score matrix S. By applying the Bayes formula, the minimum error rate Bayes
decision rule can be obtained as

Decide identity Ik if P(Ik)p(S|Ik)> P(In)p(S|In), ∀ n = 1,2, · · · ,N,k �= n, (6.19)

where p(S|In) is the likelihood of observing the score matrix S given that the true
identity is In and P(In) is the prior probability of observing the identity In. If the prior
probabilities for all the users are assumed to be equal, i.e., if P(In) = (1/N), ∀ n =
1,2, · · · ,N, the minimum error rate decision rule can be simplified as follows:

Decide identity Ik if p(S|Ik)> p(S|In), ∀ n = 1,2, · · · ,N,k �= n. (6.20)

Ideally, the conditional density of S must be estimated individually for each user
because it captures the complete information about dependencies between the scores
assigned to the different users and the user-specific characteristics of the match
scores. However, directly estimating the conditional density of S is not practical
due to the following two reasons: (a) since S is a N ×M dimensional matrix and N
is usually quite large in identification scenarios (of the order of tens of millions), es-
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timating the density of S requires a large number of training samples for each user,
which is not feasible; and (b) the density of S needs to be re-estimated frequently
due to changes in the list of enrollees.

If the match scores for different persons are assumed to be statistically indepen-
dent, the likelihood p(S|In) can be simplified as

p(S|In) =
N

∏
j=1

p(s j,.|In) = p(sn,.|In)
N

∏
j=1, j �=n

p(s j,.|In). (6.21)

Here, sn,. represents the nth row of the score matrix S, p(sn,.|In) is the density of
genuine match scores corresponding to user In and p(s j,.|In), j �= n are the densities
of the impostor scores when the claimed identity is In. However, when the gen-
uine (impostor) match scores of all users are assumed to be identically distributed,
p(sn,.|In) = p(s|ω1) and p(s j,.|In) = p(s|ω0), j = 1,2, · · · ,N,and j �= n. Under this
assumption, equation (6.21) can be further simplified as

p(S|In) = p(sn,.|ω1)
N

∏
j=1, j �=n

p(s j,.|ω0) =
p(sn,.|ω1)

p(sn,.|ω0)

N

∏
j=1

p(s j,.|ω1). (6.22)

Now, the likelihood of observing the score matrix S given that the true identity is In

is proportional to the likelihood ratio used in the verification scenario. Hence, the
minimum error rate decision rule can be simplified as

Decide identity Ik if
p(sk,.|ω1)

p(sk,.|ω0)
>

p(sn,.|ω1)

p(sn,.|ω0)
, ∀ n = 1,2, · · · ,N. (6.23)

Furthermore, if the scores of different matchers are assumed to be conditionally
independent, one can estimate the joint density of the genuine (impostor) match
scores by the product of the marginal densities. Hence, the decision rule in equation
(6.23) can be restated as

Decide identity Ik if
M

∏
m=1

p(sk,m|ω1)

p(sk,m|ω0)
>

M

∏
m=1

p(sn,m|ω1)

p(sn,m|ω0)
, ∀ n = 1,2, · · · ,N. (6.24)

Equations (6.23) and (6.24) can be considered as the likelihood-ratio-based deci-
sion rules for the identification scenario. Similarly, it is also possible to extend the
transformation based score fusion schemes for identification. For example, the sum
of scores decision rule for multibiometric identification can be stated as follows:

Decide identity Ik if
M

∑
m=1

gm(sk,m)>
M

∑
m=1

gm(sn,m), ∀ n = 1,2, · · · ,N. (6.25)
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6.4.3.5 Quality-based score fusion

The quality of acquired biometric data directly affects the ability of a biometric
matcher to perform the matching process effectively. Estimating the quality of a
biometric sample and predicting the performance of a biometric matcher based on
the estimated quality can be very useful in building robust multibiometric systems.
This will allow dynamic assignment of weights to the individual biometric matchers
based on the quality of the input sample to be verified. For example, consider a
bimodal biometric system with iris and fingerprint as the two modalities. Suppose
that during a particular access attempt by the user, the iris image is of poor quality
but the fingerprint image quality is sufficiently good. In this case, a higher weight
can be assigned to the fingerprint match score and a lower weight to the iris match
score.

One method to perform quality-based fusion is to incorporate sample quality into
the likelihood-ratio-based score fusion framework. Since a poor quality sample will
be difficult to classify as genuine or impostor (see Figure 6.26), the likelihood ratio
for such a sample will be close to 1. On the other hand, for good quality samples,
the likelihood ratio will be greater than 1 for genuine users and less than 1 for
impostors. Hence, the likelihood ratios resulting from the use of joint density of the
match score and the associated quality will be implicity weighted by the respective
sample quality.

If the M biometric matchers are assumed to be independent, the quality-based
likelihood ratio fusion rule can be expressed as follows:

Decide ω1 if
M

∏
m=1

p(sm,qm|ω1)

p(sm,qm|ω0)
≥ η , (6.26)

where qm is the quality of the match provided by the mth matcher, for m = 1, . . . ,M,
p(sm,qm|ω1) and p(sm,qm|ω0) are the joint densities of the match score and the
quality estimated from the genuine and impostor training scores, respectively, of the
mth matcher.

Quality information can also be incorporated into transformation-based fusion
schemes and methods based on other discriminative models. For example, the qual-
ity data can be used to dynamically modify the weights assigned to the different
matchers in the weighted sum rule. Similarly, the quality values can be used to alter
the cost of misclassification errors while training a support vector machine (SVM)
classifier.

6.4.4 Rank-level fusion

When a biometric system operates in the identification mode, the output of the sys-
tem can be viewed as a ranking of the enrolled identities. In this case, the output
indicates the set of possible matching identities sorted in decreasing order of con-
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Fig. 6.26 Variations in match scores with respect to image quality for the fingerprint modality
(adapted from [22]). Note that the genuine and impostor match scores are well-separated only for
good quality (with quality index > 0.5) samples. The observed score distributions may be different
if a different fingerprint matcher or quality index is used.

fidence. The goal of rank-level fusion schemes is to consolidate all the ranks out-
put by the individual biometric subsystems in order to derive a consensus rank for
each identity. Ranks provide more insight into the decision-making process of the
matcher compared to just the identity of the best match, but they reveal less infor-
mation than match scores. However, unlike match scores, the rankings output by
multiple biometric systems are comparable. As a result, no normalization is needed
and this makes the rank-level fusion schemes simpler to implement compared to the
score-level fusion techniques.

Let R = [rn,m] be the rank matrix in a multibiometric system, where rn,m is the
rank assigned to identity In by the mth matcher, m = 1, · · · ,M and n = 1, · · · ,N. Let
r̂n be a statistic computed for user In such that the user with the lowest value of r̂ is
assigned the highest consensus (or reordered) rank. The following three well-known
methods can be used to compute the statistic r̂.

Highest Rank Method: In the highest rank method, each user is assigned the high-
est rank (minimum r value) as computed by different matchers, i.e., the statistic for
user In is

r̂n =
M

min
m=1

rn,m. (6.27)
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Ties are broken randomly to arrive at a strict ranking order. This method is use-
ful only when the number of users is large compared to the number of matchers,
which is usually the case in biometric identification systems. If this condition is not
satisfied, most of the users will have ties rendering the final ranking uninformative.
An advantage of the highest rank method is that it can utilize the strength of each
matcher effectively. Even if only one matcher assigns a high rank to the correct user,
it is still very likely that the correct user will receive a high rank after reordering.

Borda Count Method: The Borda count method uses the sum of the ranks assigned
by the individual matchers to calculate the value of r̂, i.e., the statistic for user In is

r̂n =
M

∑
m=1

rn,m. (6.28)

The magnitude of the Borda count for each user is a measure of the degree of
agreement among the different matchers on whether the input belongs to that user.
The Borda count method assumes that the ranks assigned to the users by the match-
ers are statistically independent and all the matchers perform equally well.

Logistic Regression Method: The logistic regression method is a generalization of
the Borda count method where a weighted sum of the individual ranks is calculated,
i.e., the statistic for user In is

r̂k =
M

∑
m=1

wmrn,m. (6.29)

The weight, wm, to be assigned to the mth matcher, m = 1, . . . ,M, is determined
by logistic regression. The logistic regression method is useful when the different
biometric matchers have significant differences in their accuracies. One limitation
of this method is that it requires a training phase to determine the weights.

Figure 6.27 presents a simple example to illustrate the three rank level fusion
techniques discussed above. For a given query face image, two face recognition al-
gorithms rank the four users in the database based on their similarity. The fused
score column in Figure 6.27 represents the value of r̂n. When the highest rank
method is used, there is a tie for rank 1 between users “Alice” and “Bob”. In this
example, the reordered ranks were obtained by breaking the ties randomly. Since
the highest rank and Borda count methods assume that both face matchers perform
equally well, the reordered ranks tend to be a mixture of the ranks assigned individ-
ually by the two matchers. On the other hand, the logistic regression method assigns
a higher weight to the ranks provided by the more accurate matcher. As a result, the
reordered ranks can be expected to be similar to the ones provided by the matcher
with a higher accuracy. In the example shown in Figure 6.27, the matcher 1 is more
accurate than matcher 2. Therefore, a weight of 0.8 is assigned to it and due to this
significant difference in the weights, the reordered ranks in the logistic regression
case are exactly the same as the ranks assigned by the matcher 1.
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Fig. 6.27 An illustration of rank-level fusion as performed by the highest rank method, Borda
count, and logistic regression. In this example, the three fusion schemes assign different consensus
ranks to the individual identities.
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6.4.5 Decision-level fusion

In a multibiometric system, fusion is carried out at the abstract or decision level
when only the decisions output by the individual biometric matchers are available.
For example, many commercial off-the-shelf (COTS) biometric matchers provide
access only to the final recognition decision. When such COTS matchers are used
to build a multibiometric system, only decision-level fusion is feasible. Methods
proposed in the literature for decision-level fusion include “AND” and “OR” rules,
majority voting, weighted majority voting, Bayesian decision fusion, the Dempster-
Shafer theory of evidence, and behavior knowledge space.

“AND” and “OR” Rules: In a multibiometric verification system, the simplest
method of combining decisions output by the different matchers is to use the AND
and OR rules. The output of the AND rule is a “match” only when all the M biomet-
ric matchers agree that the input sample matches with the template. On the contrary,
the OR rule outputs a “match” decision as long as at least one of the M matchers
decides that the input sample matches with the template. The limitation of these two
rules is their tendency to result in extreme operating points. When the AND rule
is applied, the False Accept Rate (FAR) of the multibiometric system is extremely
low (lower than the FAR of the individual matchers) while the False Reject Rate
(FRR) is high (greater than the FRR of the individual matchers). Similarly, the OR
rule leads to higher FAR and lower FRR than the individual matchers. When one
biometric matcher has a substantially higher equal error rate compared to the other
matcher, the combination of the two matchers using AND and OR rules may actu-
ally degrade the overall performance. Due to this phenomenon, the AND and OR
decision fusion rules are rarely used in practical multibiometric systems.

Majority Voting: The most common approach for decision-level fusion is majority
voting where the input biometric sample is assigned to that class (“genuine” or “im-
postor” for verification systems and identity Ik for identification systems) on which a
majority of the matchers agree. If there are M biometric matchers, the input sample
is assigned to a class if at least m̂ of the matchers agree on that class, where

m̂ =

⎧⎨
⎩

M
2 + 1 if M is even,

M+1
2 otherwise.

(6.30)

When none of the classes is supported by m̂ matchers, a “reject” decision is
output by the system. Majority voting assumes that all the matchers perform equally
well. The advantages of majority voting are: (a) no apriori knowledge about the
matchers is needed, and (b) no training is required to come up with the final decision.
The example shown in Figure 6.28 is a simple illustration of the majority voting
scheme, where three face recognition matchers are used. In the identification mode,
two of the three matchers identify the user as “Bob”. Therefore, the final identity
decision after fusion is also “Bob”. Similarly, in the verification mode, since two of
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the three matchers decide that the input face image matches with the template of the
claimed identity, namely “Bob”, the final decision after fusion is “genuine”.

Face
Matcher 1

Face
Matcher 3

Decision Fusion
Module

Face
Matcher 2

ID: Bob
Ver: Match

ID: Dick
Ver: Match

ID: Bob
Ver: Non-Match

ID: Bob
Ver: Match

Fig. 6.28 Flow of information when decisions provided by multiple biometric matchers are com-
bined using the majority vote fusion scheme. Here “ID” and “Ver” represent the identification and
verification modes of recognition operation, respectively. For the verification mode, the claimed
identity is Bob.

Weighted Majority Voting: When the matchers used in a multibiometric system do
not have similar recognition accuracy, it is reasonable to assign higher weights to the
decisions made by the more accurate matchers. In order to facilitate this weighting,
the labels output by the individual matchers are converted into degrees of support as
follows.

s̃n,m =

{
1, if output of the mth matcher is class n,
0, otherwise,

(6.31)
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where m = 1, . . . ,M and n = 0,1 for verification or n = 1,2, · · · ,N for identification.
The decision rule based on weighted voting can be stated as

Decide in favor of class k if
M

∑
m=1

wms̃k,m >
M

∑
m=1

wms̃n,m, ∀ n, k �= n, (6.32)

where wm is the weight assigned to the mth matcher.

Bayesian Decision Fusion: The Bayesian decision fusion scheme relies on trans-
forming the discrete decision labels output by the individual matchers into contin-
uous probability values. The first step in the transformation is the generation of the
confusion matrix for each matcher by applying the matcher to a training set D. Con-
sider a multibiometric verification system. Let Cm be the 2× 2 confusion matrix
for the mth matcher. The ( j,k)th element of the matrix Cm (denoted as cm

j,k) is the
number of instances in the training data set where a pattern whose true class label
is ω j is assigned to the class ωk by the mth matcher, where j,k = 0,1. Let the total
number of samples in D be L and the number of elements that belong to class ω j be
Lj.

Let um ∈ {0,1} be the class label assigned to the test sample by the mth matcher.
The value cm

j,um
/Lj can be considered as an estimate of the conditional probability

P(um|ω j) and Lj/L can be treated as an estimate of the prior probability of class ω j.
Given the vector of decisions made by M matchers u= [u1,u2, · · · ,uM], the posterior
probability of class ω j, i.e., P(ω j|u) can be calculated according to the Bayes rule
as follows:

P(ω j|u) = P(u|ω j)P(ω j)

P(u)
, (6.33)

where j = 0,1 and P(u) = ∑1
j=0 P(u|ω j)P(ω j). Therefore, the minimum error rate

Bayes decision rule can be stated as

Decide ω1 if P(u|ω1)P(ω1)> P(u|ω0)P(ω0). (6.34)

To simplify the computation of P(u|ω j), one can assume statistical independence
between the different matchers. Under this assumption, P(u|ω j) is the product of
the marginal probabilities, i.e.,

P(u|ω j) = P(u1,u2, · · · ,uM|ω j) =
M

∏
m=1

P(um|ω j) . (6.35)

Under the independence assumption, the decision rule is known as naive Bayes rule,
which can be expressed as

Decide ω1 if P(ω1)
M

∏
m=1

P(um|ω1)> P(ω0)
M

∏
m=1

P(um|ω0) . (6.36)
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Note that by changing the matching threshold τm for the mth biometric matcher, it
is possible to vary the probabilities P(um|ω j) of that specific matcher. However, in
a multibiometric system the goal is to minimize the global error rate (the overall
error rate of the multibiometric system after the fusion of decisions from the in-
dividual biometric matchers). Therefore, one must find an optimal solution for the
local thresholds {τ1,τ2 · · · ,τM} such that the global error rate is minimized.

6.5 Summary

Multibiometric systems are expected to alleviate some of the limitations of unibio-
metric systems by consolidating the evidence presented by several different bio-
metric sources. The integration of evidence in a multibiometric system is known
as information fusion and, if appropriately implemented, can enhance the match-
ing accuracy of a biometric recognition system. Apart from improving the matching
accuracy, a properly designed multibiometric system can also increase population
coverage (namely, reduce the failure to enroll rate), provide flexibility, and deter
spoofing activities.

The design of a multibiometric system is governed by several factors, includ-
ing the available sources of information, the acquisition and processing sequence to
be adopted, the type of information to be combined, and the fusion strategy to be
employed. Multibiometric systems can exploit the complementary strengths of dif-
ferent biometric sources such as multiple sensors, multiple representation schemes
or features and matching algorithms, multiple instances or samples of the same bio-
metric trait, and multiple traits. Generally, it is difficult to predict the optimal sources
of biometric information relevant for a particular application and the appropriate fu-
sion methodology based on recognition performance alone. Factors such as cost of
system deployment, throughput time, user convenience, scalability, etc. also play a
large role in selecting the sources of biometric information and adopting a particular
fusion strategy.

Information fusion in biometrics can be accomplished at several levels. In this
chapter, several fusion strategies pertaining to the sensor, feature set, match score,
rank, and decision levels were introduced. Typically, early integration strategies
(e.g., sensor or feature-level) are expected to result in better performance than late
integration (e.g., score-level) strategies. However, it is difficult to predict the per-
formance gain due to each of these strategies prior to invoking the specific fusion
methodology. Fusion at the score level usually offers the best tradeoff between in-
formation content and ease of fusion. Hence, score-level fusion has been adopted by
several practical multibiometric systems. A wide variety of score-level fusion tech-
niques have been proposed in the literature and the performance of each scheme
depends on the amount and quality of the available training data.

While the availability of multiple sources of biometric information (pertaining
either to a single trait or to multiple traits) may present a compelling case for fu-
sion, the correlation between the sources needs to be examined before determining
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their suitability for fusion. Combining uncorrelated or negatively correlated sources
that make complementary errors is expected to result in a better improvement in
matching performance than combining positively correlated sources. Apart from
the dependence between the sources, the performance disparity between individual
sources of information also impacts the matching accuracy of the fusion scheme. If
the performance disparity between component matchers is large and if the fusion
scheme fails to account for this disparity, then the performance of the “stronger”
matcher may be diluted by the “weaker” one. This may also have an impact on
the security of the biometric system because it may be possible to circumvent the
system by spoofing just the “weaker” modality.

Finally, the development of a robust human computer interface (HCI) is neces-
sary to permit the efficient acquisition of multibiometric data from individuals. A
HCI that is easy to use can result in rapid user habituation and promote the acqui-
sition of high quality biometric data, thereby reducing the error rates. With the in-
creased use of biometrics in authentication applications and ever increasing demand
for higher matching accuracies, multibiometric systems are now being considered
as the next-generation biometric solution in a variety of government, military, and
commercial person recognition systems.

Bibliographical and Historical Remarks

Multibiometric systems have a long history of usage in person recognition applica-
tions. In fact, the first person identification system advocated by Alphonse Bertillon
in the late 19th century can be considered as a multibiometric system because it
relies on accumulating evidence from several anthropometric measurements of the
human body. Fingerprint identification systems have also been using prints from all
the 10 fingers for more than 100 years. The problem of information fusion and the
theory of multi-classifier systems have been rigorously studied for a fairly long time
[17, 7]. However, the formal study of various intricacies involved in the design of
multibiometric systems has been actively pursued only in the last two decades, co-
inciding with the growing popularity of biometric systems in a number of civilian
and government applications.

Some of the earliest multimodal biometric systems utilized face and voice fea-
tures (together called “talking heads”) to establish the identity of an individual [2].
Another interesting multimodal combination is the fusion of fingerprint and face
[33] because of its application in biometric passports. Some of the other multimodal
combinations that have received attention in the literature include (a) fingerprint
and hand-geometry, (b) fingerprint, palmprint and hand-geometry [32], (c) finger-
print and voice [35], (d) face and iris [36], (e) face and gait [13], and (f) face and
ear. One of the reasons for considering these specific combinations could be that it
is possible to design sensors that can capture these multiple traits simultaneously.

Multi-sensor systems have been quite popular in the face recognition domain.
The early multi-sensor face recognition systems used visible and infrared cameras
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to capture the 2-dimensional (2D) representation of the face [34] for the purpose
of tackling illumination variations. Later systems employed a 2D camera as well as
range scanner to record the 3-dimensional (3D) texture pattern of the face [3]. The
use of all the three sensors, namely, 2D camera, infrared camera, and range sensor
has also been attempted [4]. Fusion of facial information from the red, green, and
blue channels of a camera is also possible [15]. Among the other biometric traits,
capture of fingerprints using both optical and capacitive sensor technologies has
been proposed [20].

Numerous multi-algorithm systems have been designed for different multibio-
metric traits. For example, minutiae and texture features have been used for finger-
print recognition [30]. Similarly, a combination of features extracted using different
subspace analysis techniques like PCA and LDA can be used for recognizing faces
[29]. Different combinations of features extracted from the human voice and dif-
ferent matching algorithms have been utilized in the field of speaker recognition
[27]. Fusion of multiple representations including geometry, line, appearance, and
texture-based features have been attempted in the case of palmprints [16].

Most modern large-scale AFIS systems, including the FBI-IAFIS and DHS-
IDENT systems use fingerprint information from multiple fingers for identification.
Mosaicing of multiple fingerprint impressions at the image and feature levels has
also been studied [21]. Accumulation of identity information over a sequence of
face images contained in a video [40] is also an example of multi-sample system.

The taxonomy of multibiometric systems in terms of the levels of fusion has its
origin in the early literature on distributed sensor systems [10], and was later adapted
in the context of multibiometrics. Feature-level fusion is a relatively less explored
topic, with limited work being done on both homogeneous [21] and heterogeneous
feature fusion [39]. On the other hand, there is a huge volume of literature on score-
and decision-level fusion.

Both the formalism of Bayesian decision theory and the hypothesis testing frame-
work [19] of Neyman-Pearson have been in use for a long time in the area of
statistical pattern recognition [5]. The likelihood-ratio-based score fusion scheme
has been employed by various researchers with different density estimation tech-
niques that fall under the parametric, semi-parametric [22, 23], and non-parametric
[25] approaches. Kittler et al. [14] pioneered the work on classifier combination
rules. The effects of various score normalization schemes have also been elabo-
rately studied [11]. A number of other discriminative models have been proposed
for score-level fusion in multibiometric systems. The work on quality-based fusion
includes likelihood-ratio-based techniques [22], transformation-based schemes [1],
and methods based on other discriminative models [6].

The work of Ho et al. [8] stands out in the case of rank-level fusion. Litera-
ture on decision-level fusion includes AND and OR rules, majority voting [18],
weighted majority voting [17], Bayesian decision fusion [38], Dempster-Shafer the-
ory of evidence [28], and behavior knowledge space [9]. An analysis of the effect
of dependence between classifiers/matchers on fusion performance can be found in
[24]. Readers who wish to read a comprehensive review and in-depth analysis of
multibiometric systems should consult the Handbook of Multibiometrics [31].
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Table 6.4 List of multimodal biometric databases available in the public domain.

Database Name Available Modalities Number of
Subjects

BT-DAVID Face, voice, and lip movement 100
M2VTS Face, voice, and lip movement 37

XM2VTS Face, voice, and lip movement 295
BANCA Face and voice 208
BIOMET Face, voice, fingerprint, hand shape, and

online signature
91-130

MCYT Face, all 10 fingers, signature 330
UND Face (2D and 3D) and ear 80-350

NIST-BSSR1 Face and 2 fingers (only match scores are
available)

517

The performance metrics of a biometric system such as accuracy, throughput,
and scalability can be estimated with a high degree of confidence only when the
system is tested on a large representative database. However, current multimodal
biometric systems have been tested only on small databases containing fewer than
1,000 individuals. This is mainly due to the absence of legacy multimodal databases
and the cost and effort involved in collecting a large multimodal biometric database.
Some of the multimodal biometric databases that are available in the public domain
are summarized in Table 6.4. To overcome the non-availability of large multimodal
databases, researchers often use “virtual” multimodal databases, which are created
by consistently pairing a user from one unimodal database (e.g., face) with a user
from another database (e.g., fingerprint). The creation of such virtual users is based
on the assumption that different biometric traits of the same person are indepen-
dent. Apart from the eight multimodal biometric databases described in Table 6.4,
several unimodal biometric databases are also available in the public domain. Some
of the commonly used unimodal biometric databases are the Fingerprint Verification
Competition (FVC) databases, the Carnegie Mellon University Pose, Illumination,
and Expression (CMU-PIE) face database, the FERET face database and the Chi-
nese Academy of Sciences - Institute of Automation (CASIA) iris image database.
These unimodal biometric databases can be used for evaluating multi-sensor, multi-
instance, multi-sample, and multi-algorithm biometric systems.
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Chapter 7
SECURITY OF BIOMETRIC SYSTEMS

“Security is, I would say, our top priority because for all the exciting things you will be able to do
with computers.. organizing your lives, staying in touch with people, being creative.. if we don’t
solve these security problems, then people will hold back. Businesses will be afraid to put their
critical information on it because it will be exposed.”

Bill Gates (2005)

The primary reasons for using biometric recognition are to apprehend criminals, curtail finan-

cial fraud, secure national borders, or control access to physical facilities and logical resources.

When the biometric system fails to meet these objectives, the security of the system is said to be

breached. This breach of security can be in the form of denial-of-service to legitimate users, intru-

sion by unauthorized users, repudiation claims by authorized users, or misuse of the biometric data

for unintended purposes. Security failures can occur either due to intrinsic limitations of the bio-

metric system or due to explicit attacks by adversaries, who may be insiders (e.g., administrators

and legitimate users) or external attackers. The objective of this chapter is to outline the common

attacks against biometric systems and discuss techniques that can be employed to counter them.

In particular, this chapter will focus on two of the most well-known attacks that are specific to

biometric systems, namely, spoofing of biometric traits and leakage of biometric data. Liveness

detection and biometric template security algorithms that can mitigate the above two threats will

be discussed in detail.

7.1 Introduction

A natural question that arises in biometric recognition is which biometric system
is “best” suited for a particular application. Of course, the answer to this question
depends not only on technical merits and limitations of the biometric system (e.g.,
matching accuracy and throughput), but also on other socio-economic factors like
user acceptability and system cost. However, given that all other factors are equal,
one would obviously prefer a biometric system that has the least probability of fail-
ure. But what exactly constitutes a biometric system failure? Recall that in most
applications, the primary purpose of using biometrics is to provide non-repudiable
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authentication. Authentication implies that (a) only legitimate or authorized users
are able to access the physical or logical resources protected by the biometric sys-
tem and (b) impostors are prevented from accessing the protected facilities or infor-
mation. Non-repudiation ensures that an individual who accesses a certain resource
cannot later deny using it. Thus, the integrity of a biometric system is determined
by its ability to guarantee non-repudiable authentication.

From the perspective of the users, there are two additional requirements that a
biometric system must meet. Firstly, the legitimate users must have timely and reli-
able access to the protected resource/service. This is referred to as the availability of
the biometric system. Secondly, the biometric system and the personal data stored
in it must be used only for the intended functionality, which is to control access to a
specific resource and not for other unintended purposes. This is known as the confi-
dentiality requirement. When one or more of the above three expectations (integrity,
availability, and confidentiality) are not met, the biometric system is deemed to have
failed.

Failure of a biometric system generally leads to a breach of security in appli-
cations or facilities that it is designed to protect. A security threat in a biometric
system refers to the possibility of system failure. Depending on the type of failure,
these security threats can be classified into four major classes (see Figure 7.1).

• Denial-of-service (DoS): Legitimate users are prevented from obtaining access
to the system or resource that they are entitled to, thereby causing inconvenience
to genuine users. This violates the availability requirement. Frequent denial-of-
service is likely to eventually drive the users towards abandoning the biometric
system altogether.

• Intrusion: An unauthorized user gains illegitimate access to the system. Since
intrusion affects the basic integrity of a biometric system, it is generally consid-
ered the most serious security threat.

• Repudiation: A legitimate user denies using the system after having accessed
it. Corrupt users may deny their actions by claiming that illegitimate users could
have intruded the system using their identity.

• Function creep: An adversary exploits the biometric system designed to provide
access control to a certain resource to serve another application, which the sys-
tem was never intended to perform. For example, a fingerprint template obtained
from a bank’s database may be used to search for that person’s health records in
a medical database. This violates the confidentiality requirement. Although the
problem of function creep has been posed primarily as a security threat, it is also
widely perceived as a major threat to user privacy.

Public confidence and acceptance of biometric technology will depend on the abil-
ity of system designers to guard against all possible security threats. However, no
system is likely to be absolutely secure and foolproof. Given the right circumstances
and plenty of time and resources, any security system can be broken. Even though
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I am Alice

Welcome Alice!

Bob
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Enrollment
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different systems!

I am really Alice!

Give me access
Alice

Fig. 7.1 Four major classes of security threats in a biometric system. (a) Denial of service, (b)
Intrusion, (c) Repudiation, and (d) Function creep.
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biometric system designers must strive to plug as many loopholes as possible, the
reality is that the level of security ensured is generally based on the requirements of
the application. In other words, the level of security in biometric systems used for
critical applications like border control can be expected to be much higher than that
of a biometric system used for logging in to a personal computer.

The first step in analyzing the security of biometric systems is to define a threat
model, which identifies the various threat agents and attacks. In general, a threat
agent can be defined as a person or a thing that can, or has the power to subvert the
intended operation of a system. In the context of biometric systems, there are two
kinds of threat agents.

• Intrinsic limitations: Even in the absence of any external attacks, a biometric
system may fail due to its intrinsic limitations. As discussed in Chapter 1, all
biometric systems are prone to two types of errors, namely, false match and false
non-match. Moreover, a biometric device may also fail to capture or acquire a
sample of the biometric identifier presented to it by the user, leading to failure to
enroll and failure to capture errors. Since these errors are caused due to intrinsic
limitations of various modules in a biometric system like sensor, feature extrac-
tor, and matcher, and not by any deliberate attack, the resultant failure or security
breach is known as a zero-effort attack.

• Adversaries: A biometric system may also fail due to manipulation by adver-
saries, who could either be insiders or external entities. An insider is an au-
thorized user of a biometric system, which includes both system administrators
(super-users) and any other person enrolled in the biometric system. External en-
tities can be classified as impostors and attackers. While the term impostor refers
to any individual who intentionally or inadvertently tries to impersonate another
enrolled person, an attacker is one who attempts to subvert the operation of a
biometric system.

An attack refers to the actual mechanism or path that can be used to circumvent
a biometric system. A taxonomy of attacks that can be mounted against a biometric
system is shown in Figure 7.2. Based on the threat agent used in the attack, the at-
tack mechanisms can be broadly categorized as those caused by intrinsic limitations
(zero-effort attacks) and the ones caused by adversaries.

The consequences of a zero-effort attack will depend on the application. For
instance, in a biometric verification system, a false non-match error will lead to
denial-of-service and inconvenience to genuine users. On the other hand, in a neg-
ative recognition application such as screening, a false non-match will lead to in-
trusion and a false match will lead to denial-of-service. Since failure to enroll and
failure to capture errors necessitate the operators to fall back on traditional (possi-
bly unreliable) authentication mechanisms like ID cards, the effect of these errors is
similar to that of a false non-match. The intrinsic limitations of a biometric system
also make it hard to defend against repudiation claims.

The probability of success of a zero-effort attack is related to the recognition
performance of a biometric system. Various metrics for measuring the recognition
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Fig. 7.2 Taxonomy of attacks that can be mounted against a biometric system.

performance of a biometric system have already been discussed in Chapter 1. These
metrics include false match rate (FMR), false non-match rate (FNMR), failure to
enrol rate (FTER), failure to capture rate (FTCR), false positive identification rate
(FPIR), and false negative identification rate (FNIR). The recognition performances
of various biometric systems have also been discussed in detail in chapters 2-6.
Since the recognition performance is absolutely critical to public acceptance of a
biometric system, there has been a constant push in the research community to de-
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velop new sensors, robust representation, and effective matching schemes to im-
prove the recognition performance of biometric systems.

In this chapter, the focus will be on attacks that can be carried out by adversaries.
Unlike the case of zero-effort attacks, the probability of success of an adversary at-
tack depends on a number of tangible as well as intangible factors. This includes
implementation and operational details of the biometric system, how the biometric
system is integrated with the overall application (e.g., how does the biometric au-
thentication interact with other modules in a physical access control application),
the resourcefulness of the adversary (e.g., available time and computational power),
and the behavior of users interacting with the biometric system. Therefore, it is rel-
atively difficult to predict in advance all the possible ways in which the biometric
system can be attacked. Only the commonly encountered attack mechanisms and the
various countermeasures that can be applied to protect the biometric system against
the resulting security threats are considered in the sections below.

7.2 Adversary Attacks

An adversary who intends to subvert a biometric system can make use of vulner-
abilities either in the human element or in the system infrastructure. Accordingly,
adversary attacks can be categorized as insider attacks and infrastructure attacks as
shown in Figure 7.2. It is important to emphasize that the term “insider attacks” not
only covers cases where an authorized user himself turns malicious and intention-
ally subverts a biometric system, but also includes cases where an external adversary
circumvents the biometric system through direct or indirect involvement of an in-
sider.

7.2.1 Insider attacks

Biometric systems require human interaction at a number of stages. For exam-
ple, a human administrator is usually required to carry out the enrollment and de-
enrollment of users. In addition, the administrator may also be involved in adjusting
the security parameters controlling the performance of a biometric system such as
threshold on the match scores and minimum limits on the quality of the acquired
biometric sample. In attended applications, the administrator also appoints the op-
erators to supervise the proper functioning of the biometric system and to guide
the users. The operators are also typically responsible for operation of the fall-back
system that will be used in the case of non-availability of the biometric system or
when there is a failure to enroll/capture error. Finally, there are regular users who
access applications or resources after authenticating themselves using the biometric
system. These human interactions can be exploited in the following five ways to
breach the security of a biometric system.
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• Collusion: This refers to the scenario where an authorized user willingly turns
malicious and attacks the biometric system either individually or in collaboration
with external adversaries (possibly in return for monetary gain). Such an attack
may lead to serious security breaches, especially if the attacker is a system ad-
ministrator. Since the administrator typically has the status of a super-user with
powers to modify or control most modules of the biometric system, it could be
extremely difficult to guard against this attack. Even normal users can collude
with adversaries to breach the security. For example, a malicious user could fa-
cilitate illegitimate access (e.g., prop the door open in a physical access control
application) to an attacker by presenting his/her own biometric trait. The only
safeguard against such an attack is to enforce responsible behavior among au-
thorized users through proper training, rigorous monitoring, and auditing of all
authentication transactions in order to detect any unusual pattern of activity, and
penalizing those who do not conform to the rules.

• Coercion: A coercion attack is similar to collusion, the only difference being
that a coerced user does not carry out the attack willingly. Rather the authorized
user is forced to turn malicious, possibly through a physical threat (e.g., at gun-
point) or blackmail. It is desirable to reliably detect instances of coercion without
putting the genuine users at a greater risk from the adversaries.

• Negligence: External attackers can also exploit the negligence of authorized
users in order to circumvent the biometric system. A typical example is the fail-
ure of authorized users to properly log out of the system after completing their
transaction. Propping a door open or permitting tailgating in physical access con-
trol scenarios can also be considered as negligence, if the intent of the authorized
user is not malicious. Negligence can be minimized by periodically training the
authorized users and constantly reminding them about the guidelines to be fol-
lowed.

• Enrollment Fraud: The adversary may enroll himself into the biometric system
illegally (under a false identity) by producing his biometric traits along with false
credentials (e.g., fake passports and birth certificates). The reason for including
this vulnerability under insider attack is that it is primarily caused by a flaw in
the biometric system design, namely an over-reliance on existing (legacy) iden-
tity management systems for enrollment. In some biometric applications, such
as verifying a ticket holder, the person’s true identity does not matter as long as
he/she is the one who paid for the ticket. However, in many government appli-
cations, such as distribution of welfare funds, fraudulent enrollment could be a
serious issue.

The solution to prevent enrollment fraud is to match the biometric traits of
a new user against the traits of all enrolled users in order to detect a duplicate
identity even before the new user is added to the system. This process is called
de-duplication, which is a challenging problem because the number of enrolled
users can be extremely large. For example, there are over 75 million travelers
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enrolled in the US-VISIT system and approximately 600 million people are ex-
pected to be enrolled under India’s Unique Identity project over a span of the next
five years. De-duplication in such large-scale applications requires huge compu-
tational resources as well as biometric systems with very low false positive and
false negative identification rates (FRIR and FNIR). If de-duplication is ignored
due to practical considerations such as the need to instantly switch from a legacy
identity management system to a biometrics-based system, it is bound to affect
the integrity of the resulting biometric system.

• Exception Abuse: Most biometric systems are equipped with a fall-back mecha-
nism in order to permit handling of exceptional situations that may cause denial-
of-service to legitimate users. Examples of exceptional scenarios may include
processing users with no fingers in a fingerprint-based recognition system and
failure of some hardware/software components of the biometric system. In such
cases, the system administrator has the ability to bypass the recognition system
and make decisions based on other credentials like secrets and tokens. This pro-
vides the motivation for the attacker to trigger the exception processing proce-
dures (e.g., by purposely degrading the quality of his biometric trait) and attempt
to exploit the loopholes in the fall-back mechanism. The problem can be min-
imized by improving the reliability of the biometric system and using multiple
biometric modalities to enlarge the population coverage.

7.2.2 Infrastructure attacks

A generic biometric system consists of functional modules such as sensor, feature
extractor, template database, matcher, and decision module. These functional mod-
ules are in turn composed of hardware and software components, and together with
the communication channels interlinking them, they constitute the infrastructure of
a biometric system. However, it is important to realize that there is a large diversity
in the physical configuration of a biometric system. For example, it is possible to
place all the functional modules and the interfaces between them on a single smart
card (or more generally a secure processor). In such systems, known as system-on-
card or match-on-card technology, the biometric information never leaves the card
(or the chip) and only the recognition results (match or non-match) are transmit-
ted to the application. On the other extreme, consider an Automated Fingerprint
Identification System (AFIS) used in forensic applications. In the AFIS scenario,
the modules of the biometric system are typically distributed across different phys-
ical locations (e.g. sensor may be at the crime scene, feature extractor and decision
module may be at the regional investigation office, and matcher and database at a
regional or national center). Other intermediate configurations where the sensor and
feature extractor may reside together at a remote location (e.g., a mobile phone),
while the matcher and database reside on the server are also possible.
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There are a number of ways in which an adversary can manipulate the biometric
infrastructure leading to security breaches. Attacks that are common to any security
system such as sabotage and overloading can also be mounted against a biometric
system. Sabotage usually involves physical damage to one or more components of
the infrastructure such that the whole biometric system is rendered useless. Exam-
ples of sabotage include disabling the power supply, damaging the sensor surface
or introducing excessive noise (interference) that prevents the normal operation of
the system. Overloading is an attempt to defeat the system by overwhelming it with
authentication requests. The motivation for these attacks is typically to deny access
to genuine users. But it may also be used as a ploy to force the operator to rely on a
fall-back mechanism that may be easier to circumvent.

Other infrastructure attacks can be systematically studied by categorizing them
(see Figure 7.3) based on both the point of attack and the nature of attacks. The
following four categories can be identified: (a) attacks at the interface between the
user and the biometric system, (b) attacks on the system modules (sensor, feature
extractor, matcher, and decision module), (c) attacks at the interconnection between
the modules, and (d) attacks on the template database.

User
InterfaceSensor

Feature
Extractor Matcher

Administration

Application/
Services

A

Query
Features

Threshold

Match
Score

Identity
Claim

Acquired
Sample

Biometric System

Decision
Module

E

Template
Database

D

B

B
B B

C

C C

C

C

Template

Fig. 7.3 Types of adversary attacks in a biometric system. The five major areas of vulnerability
are: (A) user-biometric system interface, (B) biometric system modules, (C) interconnections be-
tween biometric modules, (D) template database, and (E) attacks through insiders (administrators
or enrolled users).
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7.3 Attacks at the User Interface

In general, any attempt by an attacker to break into the system by presenting a
biometric trait can be considered as an attack at the user interface level. At this
level, the following attacks and countermeasures are possible.

7.3.1 Impersonation

This refers to the situation where an impostor attempts to intrude the system by
posing himself as another authorized user. The impersonation could be either casual
or targeted. In casual impersonation, the identity to be attacked is chosen randomly
and the impostor does not modify his/her own biometric identifiers in any way. The
probability of success in such an attack is usually measured by the false match rate
(FMR) of the biometric system. This attack can be countered by selecting a very
low value of FMR and by restricting the number of failure attempts allowed within
a time-frame.

Targeted impersonation occurs when the impostor attacks a specific identity en-
rolled in the biometric system, which is known to be easier to impersonate (also
known as a “lamb” in the Doddington’s Zoo). This attack exploits the fact that FMR
is not uniform across all users. The impostor may also target an identity whose
biometric characteristics are known to be similar to his traits (also known as “Evil
Twin” attack). The same countermeasures used against casual impersonation may
be employed to limit the success of this type of attack.

Finally, the impostor may also be able to modify his biometric characteristics
to match that of the identity under attack. A common name for such an attack is
mimicry. Examples of this attack include changing one’s voice, forging a signature
(see Figure 7.4), or mimicking a gait pattern. This threat is more common in systems
using behavioral biometric traits and in applications with unattended mode of oper-
ation. Countering this attack requires biometric systems that have low false match
rate (FMR) under skilled forgery.

(a) (b)

Fig. 7.4 Example of a mimicry attack. (a) Genuine signature samples of a person, (b) skilled
forgeries of the signature in (a) created by impostors. (Source: BioSecure Association)
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7.3.2 Obfuscation

Any deliberate attempt by an attacker to change his biometric characteristic in or-
der to avoid detection by the biometric system is called obfuscation. Thus, the key
difference between mimicry and obfuscation is the motivation behind the attack.
Obfuscation is mainly applicable in negative recognition applications, where the
attacker wants to hide his true identity. However, it may also be applicable in verifi-
cation systems that employ a fall-back mechanism to handle false rejects. In this sce-
nario, the adversary may attempt to bypass the biometric system by forcing a false
reject decision and then exploit the loopholes in the fall-back mechanism, which
may be easier to circumvent.

Obfuscation can be done in a number of different ways. One possibility is to in-
tentionally present a poor quality image or noisy biometric sample (e.g., face with
non-neutral expression or a partially open eye) that may not be matched to his/her
template in the database. In the case of face recognition, use of makeup, facial
hair, and glasses can also lead to a false non-match. Fingerprints can be obliterated
through techniques like abrasion, cutting, and burning, or may even be surgically al-
tered or distorted (see Figure 7.5). Similarly, face can be altered using plastic surgery
and iris transplants have been depicted in popular science fiction (e.g., in the movie
Minority Report). Knowledge of the details of biometric processing algorithms can
further facilitate such attacks. For example, if the attacker knows that a particular
face recognition system is not robust to pose variations, he can easily circumvent it
by presenting only a profile view of the face.

The most effective solution against obfuscation is to improve the robustness of
biometric algorithms to intra-user variations in order to achieve a very low false
non-match rate (FNMR). It may also be possible to automatically detect some of the
alterations such as a non-frontal face or surgically modified fingerprint and subject
such users to secondary inspection.

7.3.3 Spoofing

This is the most well-known attack at the user interface level, and it involves the
presentation of a spoof biometric trait. A spoof is defined as any counterfeit bio-
metric that is not obtained from a live person (see Figure 7.6). Spoofing includes
the presentation of fake or artificial traits (e.g., gummy finger, thin film on top of a
finger, photograph or mask of a face, recorded voice, etc.) and things as sinister as
dismembered body parts (e.g., a dismembered finger) belonging to a legitimate user
to the recognition system. If the sensor is unable to distinguish between spoofed and
genuine biometric traits, the adversary can easily intrude the system under a false
identity.

This attack requires knowledge of the biometric trait corresponding to the iden-
tity to be attacked. This knowledge could be obtained in one of the following four
ways: (a) directly colluding with or coercing an authorized user, (b) covert acqui-
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(a) (b)

(c)

Fig. 7.5 Examples of fingerprint alteration. (a) Transplanted fingerprints from the friction ridge
patterns found on the sole of the feet (http://www.clpex.com/images/FeetMutilation/L4.JPG), (b)
fingerprints obliterated by biting off the finger skin, and (c) fingerprints altered by making a Z
shaped cut on the fingertip, lifting and switching the two triangles, and stitching them back; left
image shows the original fingerprint and the altered fingerprint is shown on the right. The alteration
shown in (c) involved a man using the name Alexander Guzman, who was arrested by Florida
officials in 1995 for possessing a false passport and found to have mutilated fingerprints. After a
two-week search based on manually reconstructing the altered fingerprints and searching the FBI
database, the reconstructed fingerprints of Alexander Guzman were linked to the fingerprints of
Jose Izquiredo, who was an absconding drug criminal. This example illustrates both the usefulness
of a biometric system as well as the desperate measures that criminals often take to circumvent a
biometric system.

http://www.clpex.com/images/FeetMutilation/L4.JPG
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(a)

(b) (c)

Fig. 7.6 Examples of spoofed biometric traits. (a) Fake fingerprints made from glue and dismem-
bered fingers (Source: Lumidigm, Inc.), (b) a fake hand made of plaster, and (c) a photograph of
an iris (Source: C’t magazine).
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sition (e.g., lifting residual fingerprint impressions covertly from the sensor or any
surface touched by the authorized user, recording the user’s voice, or capturing a
photograph of the user’s face), (c) estimating a close approximation of the user’s
biometric template through brute-force or hill-climbing attacks, and (d) stealing the
biometric template from a database and reverse engineering the template.

While traditional password-based authentication systems work under the as-
sumption of secrecy (i.e., only the legitimate user knows his password), such an
assumption is generally not required for a biometric system to work. In contrast,
the strength of biometric authentication is derived from the fact that the biometric
characteristic is linked to the user physically. Though an attacker may get hold of a
legitimate user’s fingerprint pattern, it would not be of much use to the attacker if
the sensor can ensure that the scanned fingerprint comes directly from the finger of
a live user. Therefore, the solution to counter spoof attacks is to incorporate liveness
detection capability in the biometric sensor.

7.3.4 Countermeasure: spoof detection

Spoof detection can be broadly defined as differentiating a real biometric trait pre-
sented by a live person from a biometric trait presented through any other source.
Spoof detection typically involves checking for signs of human vitality or liveness
(e.g., blood pulse), a process known as liveness detection. Despite this subtle dif-
ference between spoof detection and liveness detection, the two terms are generally
used interchangeably in the biometrics literature, which is also the case in this book.
Spoof detection can either be decoupled from or integrated into the biometric recog-
nition process. In a decoupled system, no biometric data is acquired until the spoof
detection system is convinced that the biometric trait is presented by a live human
user. On the other hand, an integrated system detects the spoof while processing the
acquired biometric information (either prior to or during feature extraction).

The susceptibility of a biometric system to a spoof attack depends both on the
biometric modality and the specific sensor used to capture the biometric trait. For
example, a two-dimensional photograph of a human face may be sufficient to fool
a camera used in a face recognition system. However, it is usually very difficult to
circumvent an optical or capacitive fingerprint sensor by using a 2-D reproduction of
a fingerprint because such sensors inherently depend on capturing the 3-D variations
in the ridge-valley structures.

While spoof detection is extremely important to ensure the integrity of a biomet-
ric system, it also brings in a few disadvantages. Firstly, almost all spoof detection
solutions increase the cost of the biometric system. This is because of the need to
have additional hardware to capture new information (e.g., spectral or thermal prop-
erties) or a software module to process the biometric data already collected and dis-
tinguish between a spoof and a live trait. This additional processing also increases
the biometric acquisition time, thereby reducing the throughput of the biometric
system. Finally, just like biometric systems that are seldom perfect, spoof detec-
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tion systems are also prone to errors. While a spoof detection system may identify
and thwart most of the spoofing attempts, it may also incorrectly classify a few real
biometric traits as spoofs, leading to an increase in the failure to capture rate.

Though there are a number of biometric spoof detection algorithms, they can be
classified into three main groups based on the mechanism employed for thwarting
a spoof attempt. The first approach involves measuring the physiological properties
of a live person, which includes blood pulse/pressure, perspiration, spectral/optical
properties of the human skin/tissues, electrical/thermal characteristics, and defor-
mation of the muscles/skin. The second approach is based on identifying voluntary
or involuntary human behavioral actions like fluctuations in pupil size, blinking,
and pupil/eye/head/body movements. The third category is known as the challenge-
response mechanism, where the system presents a challenge to the user and mea-
sures whether the user responds to the challenge correctly. Examples of challenges
include prompting a user to recite a randomly generated phrase/text, asking the user
to change his or her facial expression (e.g., smile or frown), and requesting the user
to present multiple biometric traits in a randomly generated sequence. Since the last
two approaches are fairly straightforward to envision and implement, only the first
approach will be discussed in detail.

7.3.4.1 Spoof detection based on physiological properties

While biometric systems are based on physiological characteristics that are unique
to each individual (e.g., fingerprint, iris, face), spoof detection algorithms tend to use
characteristics that can easily distinguish a human body from innate materials (e.g.,
silicone gel for fingerprints) used for spoofing. Some of the physiological properties
that have been used for spoof detection are discussed below.

• Pulse rate/ Blood pressure: This property is generally applicable to biometric
traits such as fingerprint and palmprint that require the user to be in physical con-
tact with the sensor. While the pulse rate is a good vitality sign, special hardware
may be needed to record this trait. Moreover, the pulse rate and blood pressure
vary significantly from one person to another and also within the same person
depending on his physical activity and emotional state at the time of acquisition.
Furthermore, a single pulse measurement may take up to five seconds. Finally, if
a wafer-thin silicone rubber is glued to a real finger, the heartbeat of the underly-
ing finger will result in the detection of a pulse.

• Perspiration: Perspiration refers to the sweating process of a live finger. Live fin-
gers exhibit sweating over a period of time whereas fake fingers will not exhibit
the sweating process. The perspiration phenomenon starts at the sweat pores on
a fingerprint and spreads along the ridge lines, while the valleys do not change.
Due to the sweating process in live fingers, the regions around sweat pores can
be seen to enlarge over time in a sequence of fingerprint images (see Figure
7.7). One limitation of this procedure to detect a spoof finger is that to observe
the sweating process, the finger needs to stay on the fingerprint scanner for a
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(a)

(b)

Fig. 7.7 An example of fingerprint spoof detection based on the perspiration pattern of a live finger
(adapted from [35]). (a) Example fingerprint images obtained from a live finger (top row) and a
fake finger (bottom row) acquired at 0,2, and 5 seconds after the finger is placed on the sensor, (b)
enlarged fingerprint image sequence that demonstrates progression of a perspiration pattern over
time in a live finger. c©IEEE
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few seconds. The perspiration-based methods are also expected to have some
difficulty in dealing with varying amounts of moisture content occurring in live
human fingers.

• Spectral/optical properties of the human skin: This is one of the most com-
mon characteristics that has been successfully used for spoof detection in many
biometric systems, including fingerprint, palmprint, face, and iris. The optical
properties that may be measured include the absorption, reflection, scattering,
and refraction properties under different illumination conditions (such as wave-
length, polarization, coherence). In the case of fingerprints, multi-spectral anal-
ysis may be used to measure the surface properties as well as sub-surface prop-
erties of a finger since components of blood (oxygenated and deoxygenated
hemoglobin) absorb different wavelengths of light. Similarly, the tissue, blood,
fat, and melanin pigments in the eyes absorb different wavelengths of light. These
properties can be leveraged for liveness detection in fingerprint (see Figure 7.8)
and iris recognition systems.

Eyes have a few additional optical properties that can also be used to de-
tect fake irides. For instance, photographs of an iris can be differentiated from
a live iris by detecting phenomena like Purkinje reflections and red eye effect.
While Purkinje images are reflections of outside objects against the cornea of the
eye, the red eye effect is due to retinal reflection. Moreover, analysis of the two-
dimensional Fourier spectrum can also be used to identify contact lenses with a
fake iris printed on them (see Figure 7.9).

• Electrical characteristics: The electrical conductivity of human tissue differs
from conductivity of many other synthetic materials such as silicone rubber and
gelatin. The conductivity of the material presented to the fingerprint sensor can
be measured to differentiate a live finger from a fake finger. However, the con-
ductivity of live fingers varies a lot depending on environmental conditions such
as humidity and temperature. If water or saliva is added to a fake finger, its con-
ductivity may be indistinguishable from that of a live finger.

• Skin deformation: The deformation pattern of the human skin can be used for
differentiating live fingers from fake fingers. Skin is more flexible than most
other materials and the ridges and valleys in a fake finger do not deform like
a live fingertip. Real live skin deforms only in a certain way because the skin
is anchored to the underlying derma and the deformation is influenced by the
position and shape of the finger bone. But measuring these deformation patterns
is not easy because it requires capturing a video of the fingerprint at a high frame
rate as the finger moves on the sensor surface. This is problematic because most
fingerprint sensors are designed for single-touch fingerprint acquisition and the
users are trained not to move the finger during capture; excessive deformation
will affect the matching accuracy of the system.

One of the common criticisms of the liveness detection algorithms employed in
commercial biometric systems is that they are based solely on the principle of se-
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(a) (b)

(c) (d)

(e) (f)

Fig. 7.8 An example of fingerprint spoof detection using the spectral properties of the human
tissue. (a) a multi-spectral fingerprint sensor from Lumidigm, Inc. that is capable of capturing the
sub-surface properties of a finger, (b) a spoof fingerprint made from glue, (c) an impression of the
real finger acquired using a traditional optical fingerprint sensor (based on total internal reflection
(TIR) principle), (d) an impression of the real finger acquired using the multi-spectral fingerprint
sensor, (e) an impression of the spoof finger (glue spoof overlaid on the real finger) acquired using
the optical fingerprint sensor, and (f) an impression of the spoof finger acquired using the multi-
spectral fingerprint sensor. It can be observed that the multi-spectral sensor is able to see through
the spoof and capture the ridge pattern of the underlying real finger. (Source: Lumidigm, Inc.)
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Fig. 7.9 An example of iris spoof detection (adapted from [13]). A printed iris typically exhibits
some artifacts that can be detected by analyzing the 2-dimensional Fourier spectrum of the iris
image.

curity through obscurity. In other words, biometric vendors do not generally reveal
the algorithm or implementation details about their liveness detection methodology
because if the specifics of the spoof detection techniques are revealed, the system
can be circumvented easily. Experience in cryptographic systems has shown that
this approach does not provide satisfactory results over a period of time. Once an
attacker identifies a possible vulnerability and successfully carries out a spoof at-
tack, the complete system falls apart. Therefore, one should assume that the attacker
has knowledge about the physiological properties used by the system for detecting
spoofs. Consequently, it may be possible for the attacker to create a fake finger
with the same properties that are verified by the spoof detector. Of course, the addi-
tion of more and more physiological characteristics in the spoof detection process
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will make it progressively more difficult (though not impossible) for the attacker to
fool the system. While biometric sensors should be equipped with as much liveness
detection capability as possible, the use of multiple biometric traits (multimodal
biometric systems are discussed in Chapter 6) combined with intelligent challenge-
response mechanisms may be required to raise the bar to a level that is difficult for
an attacker to surmount.

7.4 Attacks on Biometric Processing

The signal processing and pattern matching algorithms that form the crux of au-
tomated biometric recognition are implemented in the sensor, feature extractor,
matcher, and decision modules. Thus, an attacker can subvert the biometric pro-
cessing either by directly undermining the core functional modules of the biometric
system or by manipulating the communication between these modules. Though the
template database is also one of the modules in the biometric system, the motivation
and consequences of an attack on the template database are different compared to
the other modules. Therefore, the attacks on the template database will be consid-
ered separately.

7.4.1 Attacks on the system modules

Attacks on the core functional modules can be mounted either through unauthorized
modification or by exploiting the faults in their implementation. The motivation of
these attacks could be to cause denial-of-service to legitimate users or facilitate
intrusion.

7.4.1.1 Unauthorized modification

The hardware and software components of a biometric system can be modified by
attackers. A classic example is the modification of an executable program in a mod-
ule through a Trojan horse attack. A Trojan horse is malicious software that appears
to perform a desirable function for the user, but instead performs some other func-
tion that usually facilitates intrusion by unauthorized users. The Trojan horse can
disguise itself as one of the modules, bypass that module, and output the values de-
sired by the adversary as input to the subsequent modules. For instance, a Trojan
horse program can bypass the feature extractor and send the false features deter-
mined by the attacker to the matching module (see Figure 7.10). Similar attacks can
also be carried out at the sensing, quality estimation, matching, template database,
and decision modules.
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Fig. 7.10 A Trojan Horse attack against the feature extraction module is shown. A Trojan horse
is a malicious software that appears to perform a desirable function for the authorized user, but
instead performs some other function that usually facilitates intrusion by unauthorized users. In
this example, the Trojan horse replaces the feature extractor and outputs the features decided by
the attacker instead of the features extracted from the input biometric trait. If the sensor and the
matcher modules are unaware of the fact that they are communicating with a Trojan horse, and not
with the real feature extractor, it will lead to either denial-of-service to genuine users or intrusion
by attackers.

One method to overcome this attack is to employ a trusted biometric system.
A trusted biometric system is one in which the different modules are bound to-
gether physically and/or logically using mutual authentication between the modules.
Mutual authentication implies that the trust is established both ways between two
communicating parties. This is usually achieved through public key cryptographic
protocols and digital signatures. In addition to mutual authentication, secure code
execution practices or specialized tamper-resistant hardware that can enforce secure
execution of software can be used to avoid modification of the module functionali-
ties.

7.4.1.2 Exploitation of faults

The attacker may identify and exploit the loopholes in the implementation of the
biometric algorithms or insecure configuration to circumvent the biometric system.
As an example, consider a matching module in which a specific input value, say b0,
is not handled appropriately, and whenever b0 is input to the matcher, it always out-
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puts a “match” decision. This vulnerability might not affect the normal functioning
of the system because, in practice, the probability of b0 being generated from a real
biometric data may be negligible. However, an adversary can exploit this loophole
to easily breach the security without being detected.

Note that the attacker may need to bypass one or more modules in the biometric
system to exploit such implementation faults. This attack is also closely linked to the
obfuscation attack, because knowledge of the faults in the biometric implementation
will allow the attacker to circumvent the system through appropriate alterations of
his/her biometric trait. This attack can be prevented by using well-tested biometric
algorithms.

7.4.2 Attacks at the interconnections

The following three attacks are possible when an adversary gains control of the com-
munication interfaces between different modules of the biometric system. While the
man-in-the-middle and replay attacks are common to the communication channel
between any two modules in a biometric system, the hill-climbing attack is specific
to the link between the sensor and feature extractor or the link between the feature
extractor and matcher.

7.4.2.1 Man-in-the-middle attack

In cryptography, a man-in-the-middle attack is a form of active eavesdropping,
where the attacker establishes independent connections between two entities already
in communication and relays messages between them. The victims are led to believe
that they are directly communicating with each other, when in fact the entire conver-
sation is controlled by the attacker. In biometric systems, a man-in-the-middle attack
can be carried out against any two biometric modules and its effect is the same as
a Trojan horse attack on a system module, i.e., it allows the attacker to inject false
values into the biometric system. Mutual authentication between biometric modules
is required to counter this attack.

7.4.2.2 Replay attack

If the channels between the biometric modules are not secured physically or cryp-
tographically, an adversary may intercept the data being transferred and replay it at
a later time. The raw biometric data or extracted features can be intercepted and re-
played. Replay attacks are possible even if the data is encrypted. A countermeasure
against this attack is to use time-stamps or a challenge/response mechanism. Mutual
authentication between the modules and use of one-time session keys during every
transaction could also mitigate replay attacks.
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7.4.2.3 Hill-climbing attack

Hill-climbing attacks are possible when (a) the adversary has the ability to inject
raw biometric sample data or features directly through a Trojan-horse attack or a
man-in-the-middle attack, and (b) the attacker can obtain the match score output
by the matcher (see Figure 7.11). Here, the goal of the attacker is to determine a
biometric sample or feature set that matches with that of a targeted identity for the
specified biometric algorithm. Clearly, if one can inject arbitrary biometric samples
or feature vectors and obtain a match score from the biometric system, one could
mount a brute-force attack. In this case, the attacker can try different samples from a
large biometric database and he is likely to succeed in finding a close match in about
(1/FMR) attempts, where FMR is the false match rate of the biometric system. Such
a brute-force attack in a biometric system is equivalent to a dictionary attack in a
password-based authentication system.

It may be possible to improve the efficiency of the brute force attack if the match
score information is available. This leads to the hill-climbing attack, where an arti-
ficially generated biometric sample or feature set is first introduced into the system
and the response (match score) is noted. The adversary then perturbs the initial sam-
ple or feature set, submits it to the system, and records the new match score. If the
match score in the second iteration is higher than the first one, the changes are re-
tained; else, they are discarded. The above process is iterated several times until the
match score exceeds the threshold set by the system administrator. In each iteration
where the match score is higher than before, the artificially generated sample or
feature set becomes more similar to the template that is being targeted.

One can easily see that a hill-climbing attack is more difficult to implement than a
Trojan horse or a man-in-the-middle attack. The reason for this difficulty is that not
only access to match scores is needed, the attacker also needs to have some knowl-
edge of the feature/sample distribution to synthetically generate features/samples in
such a way that higher match scores can be obtained in the successive iterations.
However, the payoff to the attacker resulting from a hill-climbing attack is signif-
icantly higher than that of a Trojan horse attack. If a good estimate of the original
biometric sample of the target identity can be obtained, it can possibly be used to
create a spoof or to identify the same user across different applications that employ
the same trait. Thus, a hill-climbing attack not only compromises the integrity of
the given biometric system, but it may also compromise other biometric systems
using the same trait. Restricting the number of failure attempts allowed within a
time-frame, increasing the granularity of the match score, and the use of trusted
biometric systems are some of the techniques that can counter the threat of a hill-
climbing attack.
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Fig. 7.11 (a) A hill climbing attack can be carried out both in the biometric sample space or in the
feature space. Here, the goal of the attacker is to determine a biometric sample or feature set that
matches with that of a target identity. Suppose that a Trojan horse replaces the feature extractor
and injects synthetically generated features. The feedback obtained through the match score can be
used to iteratively modify the synthetic features until a match is found. (b) Regenerated fingerprint
minutiae (adapted from [47]). The target fingerprint with labeled minutiae is shown on the left and
the minutiae positions learned using hill-climbing attack is shown on the right (solid lines with
circle (-o) indicate the original minutiae, dotted lines with triangles (–∇) indicate the synthetic
minutiae.). (c) Regenerated face images (adapted from [1]). From left to right: the target face
image, the initial selected image for hill-climbing, and the regenerated face image.
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7.5 Attacks on the Template Database

Two kinds of attacks are possible on the biometric template database. First, the tem-
plate database could be hacked or modified by an adversary to gain unauthorized
access or to deny access to legitimate users. This unauthorized template modifica-
tion can be carried out irrespective of the storage location, be it a central server, a
remote client (e.g., personal computer, mobile phone, etc.), or a smart-card. A sim-
ilar attack is also possible in password-based authentication systems. The common
technique used to mitigate such a threat is to have strict control on database access.
Second, the stored biometric template information may become available to an ad-
versary. Such an attack is referred to as leakage. Leakage is not a serious issue in
password-based authentication, because only a cryptographic hash of the password
is typically stored in the database, and the adversary gains no useful information
from learning this hashed password. However, leakage is a serious problem in bio-
metric systems.

Biometric traits are not always secrets, and the strength of biometric authentica-
tion lies in the strong and irrevocable physical link between a live user and his/her
biometric trait rather than in the secrecy of biometric data. Therefore, it is natural
to wonder why the leakage of a biometric template from the database is a serious
security issue. The answer to this question lies in the following observations.

• There are four ways in which the biometric information of a user can be gleaned,
namely, (a) collusion or coercion, (b) covert acquisition, (c) brute-force or hill-
climbing attacks, and (d) template leakage. Among these four possibilities, the
first two require the attacker to be in close physical proximity to the user or
get the user’s cooperation. The third method requires the attacker to breach the
security of the biometric system and mount a successful intrusion attack. Further-
more, the attacker needs to expend significant effort in the first three methods to
acquire knowledge about a single user. In contrast, if an attacker can hack into a
large biometric database, a task that can be done from a remote location while re-
maining anonymous, he can easily obtain the biometric information about a large
number of users along with their biographic information (such as name, address,
etc.).

• The fact that biometric recognition does not rely on the secrecy of biometric data
is valid only when the system can reliably distinguish between the presentation
of a live user and a spoofed presentation. Another assumption is that the biomet-
ric infrastructure is not compromised. If these assumptions are not satisfied, the
leaked biometric information will lead to intrusion because the attacker can ei-
ther reverse engineer the template to create a physical spoof or replay the stolen
template to gain unauthorized access.

• Finally, leakage of biometric templates violates the data confidentiality require-
ment of a biometric system. Furthermore, unlike passwords and tokens, it is not
possible to replace compromised biometric traits. Once the biometric information
falls into the hands of an adversary, it is lost forever and cannot be reissued, up-
dated, or destroyed. Thus, the irrevocable nature of biometric traits, which is one
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of the strengths of biometric recognition, can also be considered a weakness. To
further compound this problem, leaked biometric templates can be used for sec-
ondary purposes like cross-matching across different databases to covertly track
a person without his/her consent, thereby resulting in a function creep. Thus,
leakage attack is not only a serious security threat, but also undermines the user’s
privacy.

Due to these reasons, biometric template protection is a very important issue to
be addressed, especially in applications that require storage of biometric data in
central servers.

7.5.1 Countermeasure: biometric template security

Since the problem of biometric template security is quite similar to the problem of
storing passwords securely, it is natural and intuitive to consider reusing the same
techniques developed for password security in order to protect biometric templates.
A brief review of the methodologies used in password security is presented (see
Figure 7.12) before discussing the biometric template protection algorithms.

7.5.1.1 Techniques for securing passwords

One possible approach for securing passwords is to encrypt them using well-known
cryptographic techniques (e.g., Advanced Encryption Standard (AES), Rivest-Shamir-
Adleman (RSA) algorithm, etc.) and store only the encrypted password. During au-
thentication, the same encryption algorithm can be applied to the input password and
directly matched to the stored encrypted password. Since an encrypted password can
be decrypted if the decryption key is known, the security of encryption depends on
the secrecy of the decryption key. It is well-known that key management (secure
generation, distribution, and storage of cryptographic keys) is probably the most
challenging issue in the practical implementation of cryptosystems. Even if the de-
cryption key is held securely, an attacker can choose some arbitrary passwords and
obtain the corresponding encrypted passwords. This may allow the attacker to re-
cover the secret key through what is known as a chosen plaintext attack1. Due to
these limitations, simple encryption of passwords is not sufficient for securing the
passwords.

The second alternative is referred to as password-based key generation (see Fig-
ure 7.12(b)). In this case, the password is never stored anywhere in the system.

1 A chosen-plaintext attack is one of the attack models used in cryptanalysis. Here, the attacker
is assumed to have the capability to choose arbitrary plaintexts (say different passwords) and ob-
tain the corresponding ciphertexts (encrypted passwords). Using these plaintext-ciphertext pairs,
the attacker tries to gain some information (e.g., the secret key) that reduces the security of the
encryption scheme.
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Fig. 7.12 Approaches used for securing passwords. (a) In password encryption or hashing, only
the encrypted password or a cryptographic hash of the password is stored in the database. While the
encryption approach requires the decryption key to be held securely, the non-invertibility property
of the cryptographic hash function protects the password even if the hash function and its parame-
ters are available to the attacker. Hence, hashing is generally preferred to encryption in the context
of password security. (b) In password-based key generation, the password is never stored anywhere
in the system. Instead, the password is used to derive a cryptographic key usually in combination
with additional random information known as a salt. This key generated from the password can be
directly used in another application such as a file encryption system.
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Instead, the password is directly used to derive a cryptographic key usually in com-
bination with additional random information known as a salt. Another application
such as a file encryption system can directly use the key derived from the pass-
word for symmetric key cryptography. While this approach is beneficial in the sense
that the password need not be stored anywhere, it can be used only in applications
where the authentication is implicit. For instance, one can decrypt an encrypted file
and read its contents only if the right password is presented.

The third approach used in most modern password-based authentication systems
is to apply a cryptographic hash function to the plaintext password and store only
the hashed password. When the user enters the password during authentication, the
same hash function is applied to the input password and the resulting hash value
is directly matched with the stored hash value (see Figure 7.12(a)). A good crypto-
graphic hash function h(.) must at least satisfy the following three properties.

1. Pre-image resistance: Given a cryptographically hashed password, say h(x), it
must be computationally hard to find a password y such that h(y) = h(x).

2. Weak collision resistance: Given x and h(x), it must be computationally hard to
find y, where y �= x, such that h(y) = h(x), and

3. Collision resistance: It must be computationally difficult to find some arbitrary x
and y, such that x �= y, but h(x) = h(y). In other words, it is difficult to find two
different passwords that result in the same cryptographic hash. Note that weak
collision resistance does not imply collision resistance.

Due to the above properties of the hash function, even if the stored (hashed) pass-
word becomes available to an adversary, it does not result in a serious security threat.

7.5.1.2 Challenges and requirements in biometric template security

Is it possible to directly apply any of the above three password security approaches
to generate “secure” biometric templates? Unfortunately, the answer to the above
question is negative and the reason lies in the fundamental difference between
password-based and biometric authentication systems highlighted in Chapter 1.
While password-based authentication relies on an exact match between the pass-
words entered during enrollment and authentication, biometric recognition is based
on inexact match between the enrollment and authentication samples. In fact, as
shown earlier, there can be large intra-user variability in multiple acquisitions of
the same biometric trait and handling these intra-user variations is the most impor-
tant challenge in designing a biometric template protection scheme. Henceforth, the
term “protected” or “secure” template will be used to refer to those templates that
are obtained after the application of a biometric template security algorithm to the
“unprotected” or “original” template.

A biometric template protection scheme should have the following three proper-
ties.

1. Cryptographic security: Cryptographic security refers to the pre-image resis-
tance property that is typically satisfied by cryptographic hash functions. Given
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a secure template, it must be computationally difficult to find a biometric feature
set (commonly known as a pre-image) that will match with the secure template.
This property defends against the possibility of an attacker intruding into the
biometric system under consideration by replaying the pre-image.

The concept of pre-image resistance is also related to one-way or non-
invertible mathematical functions. A function f is referred to as a one-way func-
tion if it is “easy to compute” (in polynomial time) but “hard to invert” (given
f(x), the probability of finding x in polynomial-time is small). A non-invertible
template protection scheme implies that it will be computationally hard to ob-
tain the original biometric features from the secure template. This prevents an
adversary from creating a physical spoof of the biometric trait and intruding an-
other biometric system that makes use of the same biometric trait. Thus, a secure
template must be pre-image resistant and non-invertible.

2. Performance: The biometric template protection scheme should not degrade the
recognition performance (FMR and FNMR) of the biometric system.

3. Revocability: It is desirable to have a template protection scheme that can gen-
erate multiple secure templates from the same biometric data. These multiple
secure templates must be such that even if an adversary obtains two or more
of them, it must be computationally hard to (a) identify that they are derived
from the same biometric data and (b) obtain the original biometric features of
the user. This revocability or cancelability property ensures that cross-matching
across biometric databases is not possible, thereby preserving the user’s privacy.
Revocability also makes it straightforward to discard a compromised template
and reissue a new one based on the same biometric data.

Ideally, the template protection scheme should satisfy all the three requirements
at the same time. However, it is quite a challenge to design such a technique. The
following sections consider different ways of securing biometric templates and an-
alyze how these schemes compare against each other based on the above three re-
quirements. Figure 7.13 presents a broad categorization of the biometric template
protection algorithms and Figure 7.14 shows an illustration of major template pro-
tection approaches when applied to a fingerprint minutiae template.

7.5.1.3 Standard encryption approach

The simplest way to secure biometric templates is to encrypt them using standard
cryptographic techniques like RSA and AES. This is the methodology deployed in
most of the existing commercial biometric systems. However, as shown in Figure
7.15, the encryption solution in the case of biometric templates is not equivalent to
the password encryption scenario due to the following reason. Recall that multiple
acquisitions of the same biometric trait do not result in the same feature set. Typi-
cally, standard encryption functions are not smooth functions and a small difference
in the values of the feature sets extracted from the raw biometric data would lead
to very large difference in the resulting encrypted features (see Figure 7.16). Con-
sequently, unlike password encryption, one cannot perform matching directly in the
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Fig. 7.13 Different approaches for securing biometric templates.

encrypted domain. Rather, the template must be decrypted in order to be matched
with the query features. As a result, the original biometric features are exposed
during every authentication attempt, irrespective of whether the authentication is
eventually successful.

The main advantage of the standard encryption approach is that the recognition
performance of the biometric system is not affected at all. Since the matching actu-
ally takes place in the decrypted domain, there is no need to re-design or modify the
available matching algorithms. This is the reason for the popularity of this approach.
However, it must be emphasized the encryption solution is secure and revocable only
under ideal conditions (key is kept secret and matching is done at a trusted location).
If practical issues such as key management or susceptibility to template theft during
a matching attempt are taken into account, the standard encryption technique is not
good enough for securing biometric templates.

To overcome this problem, a number of techniques have been proposed, which
are specifically designed for biometric template security, keeping in mind the unique
characteristics of this domain such as intra-user variations. These techniques can be
roughly classified as feature transformation approach and biometric cryptosystem.
But, these two approaches are not mutually exclusive and many of the template
protection algorithms proposed in the literature draw upon ideas from both these
methodologies. When a template security scheme clearly involves elements from
both the basic approaches, it is referred to as a hybrid biometric cryptosystem.
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Fig. 7.14 An illustration of different template protection approaches when applied to a finger-
print minutiae template. (a) Fingerprint sample acquired during enrollment, (b) minutiae template
extracted from the enrollment sample, (c) a fingerprint template encrypted using a standard encryp-
tion algorithm such as AES, (d) a transformed minutiae template obtained using a non-invertible
transformation scheme, and (e) a fuzzy vault (biometric cryptosystem) that hides the minutiae
template among a large set of random chaff points.
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Fig. 7.15 Securing biometric templates through standard encryption techniques. Unlike password
encryption, biometric matching cannot be performed in the encrypted domain because of intra-
user variations in the biometric data. Since encryption is simple and does not affect the recognition
performance, it is widely used in many existing biometric systems. However, the template is secure
only if the cryptographic key (κ) is maintained a secret and matching takes place in a trusted
environment.

7.5.1.4 Feature transformation approach

In the feature transform approach, a transformation function f(.) is applied to the
biometric template xE and only the transformed template f(xE ,κ) is stored in the
database. The parameters of the transformation function are typically derived from
a random key, κ , or password. The same transformation function is applied to query
features, xA, and the transformed query, f(xA,κ), is directly matched against the
transformed template, f(xE ,κ). From Figure 7.17, one can clearly see that the fea-
ture transformation approach is analogous to password encryption or hashing.

Depending on the characteristics of the transformation function f, the feature
transform schemes can be further categorized as invertible and non-invertible trans-
forms.
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Fig. 7.16 Illustration of the large difference in the encrypted template and encrypted query when
features extracted from multiple impressions of the same fingerprint are encrypted using standard
encryption techniques (e.g., AES, RSA).

Invertible transformation:

When the transformation function, f(.), is invertible2, the security of the trans-
formed template is based on the secrecy of the key κ . In other words, if an adversary
gains access to the key and the transformed template, he can recover the original bio-
metric template (or a close approximation of it). Thus, a template protected using
the invertible feature transformation approach is similar to an encrypted password.
As in the case of password encryption, the practical difficulties in key management
limit the security of the invertible transformation approach. Moreover, the matching
algorithms need to be re-designed to allow matching in the transformed domain.

However, if the keys are made user-specific and if these user-specific keys are
assumed to be secrets known only to the legitimate users, there are two potential
advantages. Firstly, the use of additional random information in the form of a user-

2 A transformation function f(.) is said to be invertible if, given any f(x,κ) and the corresponding
key κ , one can find x in polynomial time.
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Fig. 7.17 Securing biometric templates using the feature transformation approach. The crypto-
graphic security of the template depends on the characteristics of the transformation function, f(.).
If the transform is invertible, the template is secure only if the key κ is maintained secretly. On the
other hand, a template obtained through non-invertible transformation is usually secure, even if the
parameters of the transformation are known.

specific key typically increases the separability between the users in the feature
space. As a result, the discrimination capability in the transformed domain is higher
than in the original feature domain, leading to a lower false match rate. Secondly,
user-specific keys facilitate revocability of the transformed templates.

A well-known example of invertible feature transformation approach is the ran-
dom multi-space quantization technique (see Figure 7.18). This scheme can be used
to transform a fixed-length (and typically real-valued) biometric feature vector. Con-
sider a feature vector x ∈R

d . The secret key κ is used as the seed to randomly gen-
erate a m× d orthogonal projection matrix Aκ , whose rank is usually less than d.
The feature vector x is projected onto the random orthogonal subspaces (Aκ x) and
the individual maps are quantized (usually into a binary value) to compensate for
intra-user variations. The threshold for binarization is selected based on the criteria
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that the expected number of zeros in the template is equal to the expected number
of ones so as to maximize the entropy of the template.
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Fig. 7.18 Securing biometric templates using the random multispace quantization technique.

The security in this scheme is provided by the user-specific random projection
matrix Aκ . If an adversary gains access to this matrix, then the scheme is neither
pre-image resistant nor non-invertible. Even though the matrix Aκ does not have an
exact inverse because its rank is less than d, one can easily obtain a pre-image by
computing the pseudo-inverse of Aκ . Further, it may also be possible to recover a
close approximation of the original biometric features (some information is lost due
to binarization) through a hill-climbing attack. Finally, an attack similar to the cho-
sen plaintext attack may be used to recover the random projection matrix directly.

Another potential technique that can be used as an invertible feature transform is
homomorphic encryption. Homomorphic cryptosystems are those where a specific
algebraic operation can be performed on the plaintext by performing a (possibly dif-
ferent) mathematical operation on the ciphertext and decrypting the value obtained.
For example, the RSA algorithm is homomorphic to multiplication, i.e., if the prod-
uct of two ciphertexts generated using the same key is decrypted, the result is the
same as the product of the corresponding plaintexts. The homomorphic property of
the encryption scheme can be exploited to directly perform biometric matching in
the encrypted domain, as in the case of password encryption.

Non-invertible transformation:

Non-invertible transformation schemes typically apply a one-way function on
the template, and it is computationally hard to invert a transformed template even
if the key is known. Ideally, one should employ a transformation function that is
both pre-image resistant and non-invertible. If such a transform can be applied, then
non-invertible transformation is equivalent to a password hashing scheme. Since
it is hard to recover the original biometric template even when the parameters of
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the transformation are compromised, this scheme provides better security than the
invertible transformation approach. By selecting user-specific transform parameters,
this approach can also allow revocability.

The main drawback of this approach is the trade-off between discriminabil-
ity (recognition performance) and non-invertibility (security) of the transformation
function. The transformation function should preserve the discriminability (similar-
ity structure) of the feature set, i.e., just like in the original feature space, features
from the same user should have high similarity in the transformed space and features
from different users should be quite dissimilar after transformation. On the other
hand, the transformation should also be non-invertible, i.e., given a transformed
feature set, it should be hard for an adversary to obtain the original feature set (or a
close approximation of it). It is difficult to design transformation functions that sat-
isfy both the discriminability and non-invertibility conditions simultaneously. Also,
one needs to choose an appropriate transformation function based on the character-
istics of the biometric features employed in a specific application.

Intra-user variations are usually handled by using transformation functions that
are tolerant to input variations. An alternative is to use non-invertible transformation
functions that leave the biometric template in the original (feature) space even after
the transformation (e.g., fingerprint minutiae can be transformed into another set of
minutiae in a non-invertible manner). In this latter scenario, intra-user variations can
be handled by applying the same biometric matcher on the transformed features as
on the original feature set. Templates that lie in the same space after the application
of a non-invertible transform have been referred to as cancelable templates.

Examples of non-invertible functions that have been proposed for the purpose
of transforming fingerprint minutiae include cartesian, polar, and functional trans-
formations. In cartesian transformation, the minutiae space (fingerprint image) is
tessellated into a rectangular grid and each cell (possibly containing some minu-
tiae) is shifted to a new position in the grid corresponding to the translations set by
the key κ . The polar transformation is similar to cartesian transformation with the
difference that the image is now tessellated into a number of concentric shells and
each shell is divided into sectors. Since the size of sectors can be different (sectors
near the center are smaller than the ones far from the center), restrictions are usually
placed on the translation vector generated from the key so that the radial distance of
the transformed sector is not very different than the radial distance of the original
position. An illustration of minutiae prior to and after polar and cartesian transfor-
mations is shown in Figure 7.19.

For the functional transformation, a mixture of 2D Gaussians or electric potential
field in a 2D random charge distribution can be used to determine the translation of
the minutiae points. The magnitude of these functions at the point corresponding to a
minutia can be used as a measure of the magnitude of the translation and the gradient
of a function can be used to estimate the direction of translation of the minutiae. In
all the three transforms, two or more minutiae can possibly map to the same point in
the transformed domain. For example, in the cartesian transformation, two or more
cells can be mapped onto a single cell so that even if an adversary knows the key
and hence, the transformation between cells, he cannot determine the original cell to
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Fig. 7.19 Illustration of cartesian and polar transformation functions for generating cancelable
fingerprint templates (adapted from [22]). (a) Original minutiae on radial grid, (b) transformed
minutiae after polar transformation, (c) original minutiae on rectangular grid, and (d) transformed
minutiae after cartesian transformation. Note that the minutiae are shaded differently to track them
after transformation.
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which a minutia belongs because each of the minutiae can independently belong to
one of the possible cells. This provides a limited amount of non-invertibility to the
transform. Also, since the transformations used are locally smooth, the error rates
are not affected significantly and the discriminability of minutiae is preserved to a
large extent. In the case of fingerprint minutiae transformation, the key to achieving
good recognition performance is the availability of an alignment algorithm that can
accurately pre-align (register) the fingerprint images or minutiae features prior to
the transformation (e.g., based on core and delta in the fingerprints).

7.5.1.5 Biometric cryptosystems

Biometric cryptosystems are somewhat similar to password-based key generation
systems because they were originally developed for the purpose of either securing
a cryptographic key using biometric features or directly generating a cryptographic
key from biometric features. Since the biometric features available during enroll-
ment and authentication are different, these features cannot be directly used for
generation of cryptographic keys. In order to facilitate key generation, some pub-
lic information about the biometric features is stored in the database during enroll-
ment. This public information is usually referred to as helper data or secure sketch
and hence, biometric cryptosystems are also known as helper-data-based methods.
The secure sketch is used during authentication to extract a cryptographic key from
the query biometric features through a process known as the recovery mechanism.
Matching is performed indirectly by verifying the validity of the extracted key or by
directly using the key in another application.

Biometric cryptosystems can be further classified as key binding and key gen-
eration systems depending on how the secure sketch is obtained. When the secure
sketch is obtained by binding a cryptographic key (that is independent of the biomet-
ric features) with the biometric template, it is referred to as a key binding biometric
cryptosystem. If the helper data is derived only from the biometric template and the
cryptographic key is directly generated from the helper data and the query biometric
features, it leads to a key generation biometric cryptosystem.

It is important to emphasize that the secure sketch is not required to be a secret.
Therefore, it must not reveal any significant information about the original biomet-
ric template (hence the template is secure) or the cryptographic key (hence the key
is secure). Thus, biometric cryptosystems solve the challenging problems of cryp-
tographic key management and biometric template protection simultaneously. Due
to this reason, this topic is under active research in both the biometric and crypto-
graphic communities.

The recovery mechanism in a biometric cryptosystem is capable of compensat-
ing for intra-user variations in the biometric data, typically through the use of error
correction coding techniques. Error correction coding is commonly used in telecom-
munication systems to enable reliable delivery of digital data over unreliable com-
munication channels. These schemes achieve tolerance against errors by appending
additional (redundant) information to the message prior to transmission. In the con-
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text of biometric cryptosystems, the biometric features available during enrollment
is analogous to the transmitted message in a telecommunication system. The helper
data or secure sketch is roughly equivalent to the redundant information that is added
to the message. The query biometric features together with the secure sketch con-
stitute the received message. Provided that the query is sufficiently “close” to the
enrolled biometric template, the original biometric template can be recovered after
error correction.

Naturally, the ability of a biometric cryptosystem to handle intra-user variations
directly depends on the amount of redundant information (helper data) used for
error correction. Higher redundancy generally leads to higher error tolerance and
consequently, greater key stability. Here, key stability refers to the probability of
recovering the correct secret key or generating the same cryptographic key during
every authentication attempt. This is equivalent to the false non-match rate of a bio-
metric system. On the other hand, storing more redundant information in the form of
helper data introduces two major problems. Firstly, a larger error tolerance will typ-
ically result in a higher false match rate. Secondly, a larger secure sketch is bound
to reveal more information about the biometric features and the cryptographic key.
Hence, both the security of the biometric template and the entropy of the generated
cryptographic key decrease. Similar to the case of non-invertible feature transform,
there is a tradeoff between the security of the biometric template and the recognition
performance in a biometric cryptosystem.

Key binding biometric cryptosystem:

In a key binding cryptosystem, the biometric template is secured by monolithi-
cally binding it with a secret key within a cryptographic framework. As shown in
Figure 7.20, a single entity that embeds both the key and the template is stored in the
database as the secure sketch. This secure sketch does not reveal much information
about the key or the biometric template, i.e., it is computationally hard to decode the
key or the template without any knowledge of the user’s biometric data. Matching
in a key binding system involves recovery of the key from the helper data using the
query biometric features and verifying the validity of the key.

Usually, the helper data is an association of an error correcting code (that is in-
dexed by the secret key) and the biometric template. When a biometric query differs
from the template within certain error tolerance, the associated codeword with a
similar amount of error can be recovered. This codeword with errors can be de-
coded to obtain the exact codeword and hence, recover the embedded key. Recovery
of the correct key implies a successful match. The tolerance to intra-user variations
in the biometric data is determined by the error correcting capability of the associ-
ated codeword. Moreover, indirect matching based on the error correction scheme
precludes the use of sophisticated matchers developed specifically for matching the
original biometric template. This can possibly lead to a reduction in the matching
accuracy.

One of the earliest and most well-known key binding biometric cryptosystems
is the fuzzy commitment scheme. This scheme can be applied to biometric systems
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Fig. 7.20 Authentication mechanism when the biometric template is secured using a key binding
biometric cryptosystem.

where the feature vector is a fixed-length binary string. Suppose that the enrollment
template xE is a binary string of length d bits. During enrollment, an error correct-
ing codeword c of the same length (d bits) is selected. This codeword is uniquely
indexed by a secret key κ of length m bits (there is a one-to-one correspondence
between c and κ). Here, m is less than d and the parameter (d −m) is a measure
of the redundancy in the error-correction code. The codeword c is then committed
(bound) to the biometric feature vector xE to generate the secure sketch. The secure
sketch or helper data consists of the fuzzy commitment (xE ⊕ c) and g(κ), where
g(.) is a cryptographic hash function and ⊕ represents exclusive-or (XOR) operation
(modulo-2 addition).

During authentication, the user presents a biometric vector xA. Now one can com-
pute the codeword with errors, c′, as c′ = xA ⊕ (xE ⊕ c). If xA is close to xE , c′ is
close to c since xA ⊕ xE = c′ ⊕ c. Therefore, c′ can now be decoded to obtain the
nearest codeword c∗, which would be equal to c provided that the distance between
c and c′ is less than the error correcting capacity of the code. From c∗, one can
compute κ∗. The matching is successful if g(κ∗) = g(κ).

Key generating biometric cryptosystem:
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Direct cryptographic key generation from biometrics is an attractive proposition,
but it is a difficult problem because of two reasons: (a) the intra-user variability
of the biometric features, and (b) the non-uniform nature of the probability distri-
bution of biometric features. The concept of secure sketch or helper data can be
used to solve the first issue. In this scenario, the secure sketch is derived using only
the biometric template and the recovery mechanism facilitates exact reconstruction
of the template when presented with a query that is close to the template as il-
lustrated in Figure 7.21. Early biometric key generation schemes employed user-
specific quantization schemes. Information on quantization boundaries is stored as
helper data, which is used during authentication to account for intra-user variations.
It is also possible to make use of error correction coding schemes to generate the
secure sketch from the biometric features.

Biometric

Template (xE
)

Helper Data

Extraction h

Secure Sketch,

h(xE
)

Biometric

Query (xA
)

Secret

Key

Enrollment

Authentication

Recovered

Template (xE
)

Fuzzy

Extractor

Recovery

System

Database

Fig. 7.21 Authentication mechanism when the biometric template is secured using a key generat-
ing biometric cryptosystem.

Traditional cryptography also requires the cryptographic keys to have a uniform
random distribution. However, it is well-known that biometric features are not uni-
formly distributed. The fuzzy extractor was proposed as a cryptographic primitive
that generates a uniformly random cryptographic key from the biometric features.
The secure sketch is an integral component of a fuzzy extractor, which addresses the
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problem of key stability. The non-uniformity issue can be handled by applying cryp-
tographic hash functions to the biometric template. Recall that a cryptographic hash
function has desirable properties such as pre-image resistance and collision resis-
tance. These properties facilitate the extraction of uniformly random binary strings
from the biometric features.

7.5.1.6 Discussion on template security schemes

A brief summary of the various biometric template protection approaches is pre-
sented in Table 7.1. Apart from the standard encryption and invertible feature trans-
formation schemes, none of the other template protection schemes require any secret
information (such as a key) that must be securely stored or presented during match-
ing. Moreover, many template protection techniques proposed in the literature make
use of more than one basic approach (e.g., invertible transformation, followed by
key-binding). Such hybrid. schemes have not been discussed in detail here.

Table 7.1 Summary of different template protection schemes. Here, xE represents the biometric
template, xA represents the query presented during authentication, and κ is the key (or parameters)
used to protect the template or is generated from the template. In feature transformation approach,
f represents the transformation function and mt represents the matcher that operates in the trans-
formed domain. In biometric cryptosystems, h is the helper data extraction scheme and m is the
error correction recovery mechanism that allows reconstruction of the key κ .

Approach Security Feature Entities Stored Mechanism to han-
dle Intra-user varia-
tions

Invertible
transform

Secrecy of key κ Public domain:
Transformed tem-
plate f(xE ,κ)
Secret: Key κ

Quantization and
matching in trans-
formed domain
mt(f(xE ,κ), f(xA,κ))

Non-
invertible
transform

Non-invertibility of
the transformation
function f

Public domain:
Transformed tem-
plate f(xE ;K), key
κ

Matching in trans-
formed domain
mt(f(xE ;K), f(xA,κ))

Key-binding
biometric
cryptosystem

Level of security de-
pends on the amount
of information re-
vealed by the helper
data H

Public domain:
Helper Data
H = h(xE ,κ)

Error correction and
user specific quanti-
zation
κ = m(f(xE ,κ),xA)

Key-
generating
biometric
cryptosystem

Level of security de-
pends on the amount
of information re-
vealed by the helper
data H

Public domain:
Helper Data
H = h(xE)

Error correction and
user specific quanti-
zation
κ = m(h(xE),xA)
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As yet, there is no “best” approach for template protection that completely satis-
fies all the requirements mentioned in Section 7.5.1.2. The application scenario and
requirements plays a major role in the selection of a template protection scheme.
For instance, in a biometric verification application such as a bank ATM, a simple
invertible feature transformation scheme based on the user’s PIN may be sufficient
to secure the biometric template if it is assumed that both the transformed template
and the user’s PIN will not be compromised simultaneously. On the other hand, in an
airport watch list application, non-invertible transform is a more suitable approach
because it provides both template security and revocability without relying on any
other input from the user. Biometric cryptosystems are more appropriate in match-
on-card applications because such systems typically release a key to the associated
application in order to indicate a successful match.

The other major factors that influence the choice of a template protection scheme
are the specific biometric trait to be used, its feature representation, and the extent
of intra-user variation. In general, more than one template protection scheme may
be admissible and the choice of the suitable approach may be based on a number
of factors such as recognition performance, computational complexity, memory re-
quirements, and user acceptance and co-operation. Further research in the area of
biometric template security is expected to progress along the following three main
directions.

1. What is the “optimal” feature transformation function or secure sketch genera-
tion technique for a specific type of biometric features and matching function?
Optimality generally refers to the best tradeoff between security and recognition
performance. Some of the main feature representations include fixed-length bi-
nary string (e.g., IrisCode), unordered sets (e.g., fingerprint minutiae), and fixed-
length real valued vectors (e.g., LDA features derived from face images). These
feature representations may also require different matching functions like Ham-
ming distance, set difference metric, edit distance, etc. Depending on the feature
type and matching function, the appropriate template security approach may vary.

2. Suppose that there is a good template protection algorithm for a specific feature
type and matching function; what is the best way to embed other types of features
in the desired feature domain? For example, most of the error correction schemes
can be readily applied for secure sketch generation from binary strings. There-
fore, it would beneficial to convert other feature types, say fingerprint minutiae
sets, into a binary string so that existing secure sketch algorithms can be used.
This question is also relevant in case there is a need to secure templates from
multiple biometric traits as a single entity.

3. Finally, one of the important but difficult tasks in the design of a template protec-
tion algorithm is: how does the system designer quantify the security provided by
the algorithm? Most of the existing methodologies for security analysis are based
on unrealistic assumptions (e.g., uniform distribution of biometric features). A
related issue is the need to quantify the inherent entropy in (or the individuality
of) a biometric trait or the features extracted from it.
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7.6 Summary

With large-scale deployments of biometric systems in various commercial and gov-
ernment applications, security issues related to the biometric system itself are be-
coming ever more important. A biometric system is vulnerable to a number of secu-
rity threats such as intrusion, denial-of-service, repudiation, and function creep. A
systematic analysis of these threats is essential when designing a biometric system.
This chapter presented a high-level categorization of the various vulnerabilities of a
biometric system and discussed countermeasures that have been proposed to address
these threats.

Bibliographical and Historical Remarks

Due to the rapid growth in sensing and computing technologies, biometric systems
have become an integral part of modern identity management and information tech-
nology (IT) security systems. Naturally, identification of potential vulnerabilities in
a biometric system has received increased attention from the biometrics research
community. A number of studies have analyzed potential security breaches in a bio-
metric system and proposed methods to counter those breaches [39, 30, 8]. Formal
methods of vulnerability analysis such as attack trees [12] have also been used to
study how biometric system security can be compromised.

The points of attack in a biometric system were identified in [38]. Attacks
at user interface due to the presentation of a spoof biometric trait were studied
in [31, 20, 16]. A number of efforts have been made in developing hardware
as well as software solutions that are capable of performing liveness detection
[35, 3, 41, 34, 29, 28]. Juels et al. [23] outlined the security and privacy issues
introduced by insecure communication channels in an e-passport application that
uses biometric authentication. Insecure communication channels also allow an ad-
versary to launch replay or hill-climbing attacks [2]. Countermeasures to replay and
hill-climbing attacks include time-stamps and challenge/response mechanisms.

Biometric cryptosystems [11] were originally developed for the purpose of either
securing a cryptographic key using biometric features or directly generating a cryp-
tographic key from biometric features. One of the earliest references to biometric
cryptosystems is a patent issued to Albert Bodo in 1994 that explained a technique
to use the biometric template as a cryptographic key [4]. Beginning in 1998, prac-
tical template protection schemes started appearing in the literature. Soutar et al.
[42] designed a technique that associated an external key with the biometric data.
The system effectively ensured recovery of the associated key when a matching
biometric image is presented during authentication even in presence of intra-class
variations. Davida et al. [14] designed a technique using error correcting codes to
secure the biometric templates stored in a smart card in an off-line authentication
system.
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Fuzzy commitment [25] and fuzzy vault [24] are the two most popular techniques
used for constructing biometric cryptosystems. Practical implementation of these
two schemes have been proposed for common biometric traits such as fingerprint
[33] and iris [19]. Template protection schemes proposed in [5] are examples of
hybrid biometric cryptosystems.

Direct cryptographic key generation from biometrics is an attractive proposition
but it is a difficult problem because of the intra-user variability. Dodis et al. [15]
introduced the concepts of secure sketch and fuzzy extractor in the context of key
generation from biometrics. Sutcu et al. [44] discussed the practical issues in secure
sketch construction and proposed a secure sketch based on quantization for the face
biometric. The problem of generating fuzzy extractors from continuous distributions
was addressed by Buhan et al. [9]. Protocols for secure authentication in remote
applications [6] have also been proposed based on the fuzzy extractor scheme.

Biometric cryptosystems offer protection against the recovery of the original
biometric template in case an adversary gains access to the system database. How-
ever, this approach gives very limited protection against cross-matching of biometric
templates across different databases. To address this issue, template transformation
techniques were designed. These techniques permanently distort the biometric data
using some user specific data while retaining or even enhancing the recognition ca-
pacity of the biometric system. Ratha et al. [36] proposed the first such technique to
distort a face or a fingerprint images using a user-specific key. A few years later, a
number of other techniques were proposed for different biometric modalities such
as fingerprint [37], face [17, 46], and iris [49].

As matching performance is one of the main requirements of a biometric recog-
nition system, it is desirable to achieve good performance even when a biometric
template protection technique is applied. Techniques were thus designed that incor-
porated additional features from the same biometric trait [32] in the cryptosystem
or combined multiple biometric traits in the same template [26, 18].

There is a natural interest among researchers to estimate the severity of threat to
biometric templates and the effectiveness of the proposed techniques in mitigating
such risks. A number of techniques have been developed to show that fingerprints
could be reconstructed using the stored templates [40, 10]. Other techniques were
proposed to explicitly estimate information content (or variability across popula-
tion) in the biometric features [45]. Techniques were also proposed to evaluate the
security capabilities provided by the different techniques [21, 27, 15].

Both biometric cryptosystems and template transformation techniques are not
double-blind, i.e., the biometric system is typically aware of which user is being
authenticated in a particular transaction, while the user does not know whether he is
interacting with the legitimate biometric system. To overcome this limitation, novel
authentication techniques and protocols based on homomorphic encryption have
been proposed recently [48, 7, 43]. Despite significant research, further improve-
ment to template protection techniques are needed both in terms of both matching
performance and security before they can be used in practical biometric systems.
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Acceptability, 30, 259
Acquisition sequence, 221
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serial, 222

Active Appearance Model (AAM), 133
Adaboost, 113
Adversaries, 262
Adversary attacks, 264
Alignment, 74
Altered fingerprints, 269
AND rule, 250
Anthropometry, 100
Area under the ROC Curve, 20
Authentic score, see Genuine score
Authentic user, see Genuine user
Authentication, 41, 260
Automated Fingerprint Identification Systems

(AFIS), 52
Availability, 41, 260

Bayes rule, 235, 244, 252
Bayesian decision fusion, 252
Bayesian decision theory, 233
Behavioral characteristics, 3
Bertillonage system, 45
Best practices, 38
Biometric applications, 39

commercial, 39
forensic, 39
government, 39

Biometric characteristics, see Biometric traits
Biometric cryptosystems, 296

hybrid, 288, 300
key binding, 297
key generation, 298

Biometric recognition, see Biometrics
Biometric source, 209

Biometric standards, 45
Biometric system attacks, 262
Biometric traits, 4, 29
Biometrics, 2
Borda count method, 248
Branch-and-bound search, 232

Cancelable biometrics, see Non-invertible
transform

Cancelable template, 294
Capacitance, 61
Cascade classifier, 114
Casual impersonation, 268
Challenge-response mechanism, 273
Chromatophores, 142
Ciliary zone, 142
Circumvention, 30
Classifier combination rules, 239
Client, see Genuine user
Coercion, 265
Collarette, 142
Collusion, 265
Confidentiality, 41, 260
Confusion matrix, 252
Contraction furrows, 143
Cooperative user, 28
Core point, 55
Cornea, 141
Correlation, 253
Cosine wave, 64
Covert acquisition, 28, 272
Cryptographic hash, 286
Crypts, 142
Cumulative Match Characteristic curve, 25
Curse of dimensionality, 230

d-prime value, 24
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Daubert standard, 80
Decision boundary, 233
Decision level fusion, 250
Delta point, 55
Denial-of-service, 260
Density estimation, 236
Detection Error Tradeoff curve, 19
Dilator muscle, 142
Dimensionality reduction, 230, 232
Distance score, see Match score, 233
DNA, 34
Doddington’s zoo, 22, 268

Ear, 33, 176
anatomy, 176
detection, 177

Ear recognition, 176, 178
Earmarks, 181
Earprints, 181
Eigen coefficients, 119
Eigen vectors, 118
Elastic Bunch Graph Matching (EBGM), 122
Encryption, 287

homomorphic, 293
Enhancement, 6, 224
Enrollment, 4, 9
Enrollment fraud, 265
Enrollment images, see Gallery images
Equal Error Rate, 24
Error correction coding, 296
Evil twin, see Targeted impersonation
Exception abuse, 266
Extended feature set, 79

F-Ratio, 24
Face, 32, 97

acquisition, 104
aging, 134
anatomy, 97, 100
appearance-based, 118
applications, 98
databases, 127
detection, 104, 109
expression, 130
level 1 details, 100
level 2 details, 102
level 3 details, 103
marks, 194
model-based, 122
texture-based, 125

Face Bunch Graph, 123
Face modeling, 132
Face recognition, 98

heterogeneous, 130

performance, 127
Face Recognition Grand Challenge (FRGC),

128
Face Recognition Vendor Test (FRVT), 128
Facial Recognition Technology (FERET), 128
Failure to Acquire Rate, see Failure to Capture

Rate
Failure to Capture Rate, 22
Failure to Enroll Rate, 22
False Accept Rate, see False Match Rate
False match error, 17
False Match Rate, 17
False Negative Identification Rate, 25
False non-match error, 17
False Non-Match Rate, 17
False Positive Identification Rate, 25
False Reject Rate, see False Non-Match Rate
Feature extraction, 7
Feature level fusion, 227
Feature normalization, 230
Feature selection, 232
Feature transformation, 232, 290
Fiducial point, 122
Fingerprint recognition, 54
Fingerprint Verification Competition, 80
Fingerprints, 30, 52

acquisition, 60
classification, 56
image resolution, 63
indexing, 81
latent, 52
level 1 details, 55
level 2 details, 57
level 3 details, 58
live-scan, 60
minutiae, see Minutiae
pattern area, 59
pattern types, 56
plain, 63
swipe sensor, 63
touchless sensor, 91

Flexion creases, 87
Fourier transform, 64, 166
Friction ridges, 51, 87

frequency, see Ridge frequency map
orientation, see Ridge orientation map

Frustrated Total Internal Reflection, 61
Function creep, 43, 260
Fuzzy commitment, 297
Fuzzy extractor, 299
Fuzzy vault, 303

Gabor filter, 70
Gabor jet, 122
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Gabor wavelet, 161
Gait, 32, 182
Gait recognition, 182
Gallery images, 9
Gaussian density, 236
Gaussian mixture model, 237
Genuine Accept Rate, 19
Genuine score, 18
Genuine user, 10
Geodesic Active Contour (GAC), 153
Geometric hashing, 82
Goats, 22
Gummy finger, see Spoofing

Haar wavelets, 112
Haar-like filter, 112
Hamming distance, 162
Hampel influence function, 242
Hand

segmentation, 188
Hand geometry, 32, 186
Helper data, 296
Highest rank method, 247
Hill-climbing attack, 281
Hough transform, 74

Identification, 10, 11
Identification rank, 25
Identifiers, see Biometric traits
Identity, 1

management, 1
theft, 2

Impostor, 10
Impostor score, 18
Independence, 238
Independent Component Analysis, 215, 232
Independent Component Analysis (ICA), 120
Indexing, 45
Indicators, see Biometric traits
Information fusion, 209

after matching, 224
prior to matching, 224

Infrastructure attacks, 266
Input images, see Probe images
Insider attacks, 264
Integral image, 112
Integro-differential operator, 152
Interoperability, 37
Intra-user variations, 13, 98
Intrinsic limitations, see Zero-effort attack
Intrusion, 260
Invariant representation, 224
Invertible transform, 291
Iris, 31, 141

acquisition, 144, 146
anatomy, 142
color, 143, 146
encoding, 161
mask, 159
normalization, 145, 159
pigmentation, 143
quality, 164
segmentation, 144, 151
sensors, 148
stroma, 142
unwrapping, 145

Iris code, 162
Iris recognition, 141

performance, 169
Iris-On-the-Move (IOM), 149
Iterative Closest Point (ICP), 180

Keystroke dynamics, 33
Knowledge-based mechanisms, 2

Lambs, 22, 268
Left loop, 57, 70
Level set, 154
Likelihood ratio, 235
Limbus boundary, 142, 152
Linear Discriminant Analysis, 215
Linear Discriminant Analysis (LDA), 120
Liveness detection, see Spoof detection
Local Binary Pattern (LBP), 126
Logistic regression, 248
Loop, 55

Majority voting, 250
Man-in-the-middle attack, 280
Match score, 9
Match-on-card, 266
Matcher, 9
Max rule, 239
Measurability, 30
Median absolute deviation, 242
Median normalization, 242
Median rule, 239
Mimicry, 268
Min rule, 239
Min-max normalization, 231, 241
Minutiae, 57

bifurcation, 57
correspondence, 76
descriptor, 75
direction, 57
filtering, 72
ridge ending, 57
triplet, 81



310 Index

type, 57
Modalities, see Biometric traits
Morphable Model (MM), 133
Mosaicing, 9, 226

face, 226
fingerprint, 226

Mug-shot, 105
Multi-algorithm systems, 215
Multi-factor authentication, 28, 220
Multi-instance systems, 217
Multi-sample systems, 218
Multi-sensor systems, 213
Multi-unit systems, see Multi-instance systems
Multibiometrics, 35, 209, 211
Multidimensional scaling, 232
Multimodal biometric systems, 219
Multiscale LBP (MLBP), 126

Naive Bayes rule, 252
Near-infrared, 105, 146
Negative identification, 12
Negligence, 265
Neuro-cognition, 98
Neyman-Pearson theorem, 235
Non-homogeneity, 232
Non-invertible transform, 287, 293
Non-repudiation, 2, 260
Non-universality, 211

Obfuscation, 269
Ocular region, 141
Odor, 34
One-to-one match, 10
One-way function, 287
Operational evaluation, 38
OR rule, 250
Orientation field, see Ridge orientation map
Overloading, 267

Palmprint, 31, 85
Passwords, 28
Pattern recognition system, 4
Performance, 30, 38
Performance disparity, 254
Periocular, 191
Permanence, 13, 30
Person recognition, 2
Physical characteristics, 3
Piezoelectric effect, 62
Plain arch, 57, 70
Plain fingerprints, 52
Poincaré index, 67
Positive identification, 11
Pre-image, 287

Principal Component Analysis, 215, 232
Principal Component Analysis (PCA), 118
Privacy, 43, 45
Probe images, 9
Processing sequence, 222

cascade, see serial
hierarchical, 223
parallel, 222
serial, 222

Product rule, 239
Prosopagnosia, 98
Protected template, see Secure template
Psychology, 98
PTZ camera, 106
Pupil, 141

contraction, 159
dilation, 159

Pupillary boundary, 142, 152
Pupillary zone, 142
Pyro-electric, 62

Quality assessment, 6
Quality-based fusion, 246
Query images, see Probe images

Radial fibers, 157
Random multi-space quantization, 292
Rank level fusion, 247
Receiver Operating Characteristic curve, 20
Recognizability, 22
Reference images, see Gallery images
Registration, see Alignment
Replay attack, 280
Repudiation, 260
Retinal scan, 34
Return on investment, 38
Revocability, 287
Ridge frequency map, 55, 65
Ridge orientation map, 55, 65
Right loop, 57, 70
Rolled fingerprints, 52
Rubber sheet model, 145, 160

Sabotage, 267
Scale Invariant Feature Transform (SIFT), 125
Scenario evaluation, 38
Score level fusion, 232
Score normalization, 240
Screening, see Negative identification
Secure sketch, 296
Secure template, 286
Security through obscurity, 277
Segmentation, 6
Sensor, 4
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2D, 105
3D, 106
fingerprint, 60

Sensor-level fusion, 226
Sequential backward floating search, 232
Sequential backward selection, 232
Sequential forward floating search, 232
Sequential forward selection, 232
Sheep, 22
Signature, 33
Similarity score, see Match score
Singular point, 67

direction, 68
Singular points, 55
Skilled forgery, see Mimicry
Soft biometrics, 190
Sole print, 85
Sphincter muscle, 142
Spoof attack, see Spoofing
Spoof detection, 272

deformation-based, 275
perspiration-based, 273

Spoofing, 269
Standards, see Biometric standards
Stored images, see Gallery images
Strong biometric, 254
Sum of scores rule, 240
Sum rule, 239
Surveillance, 98, 109
Sweat pores, 58
System database, 9
System evaluation, 37
System integrity, 41, 260
System-on-card, 266

Tanh normalization, 242
Targeted impersonation, 268
Tattoo, 201
Technology evaluation, 38
Template, 7
Template improvement, 229
Template leakage attack, 284

Template protection, see Template security
Template security, 284
Template update, 228
Tenprint, 60, 217
Tenprint cards, 52
Tented arch, 57, 70
Thermogram, 34
Thinning, 70
Threat agent, 262
Threshold, 10
Token-based mechanisms, 2
Tokens, 28
Trojan horse attack, 278
True Accept Rate, see Genuine Accept Rate
True Positive Identification Rate, 25
Twin loop, 57, 70

UID project, 40, 210
Ultrasound reflection, 62
Uniqueness, 13, 30
Universality, 29
US-VISIT program, 40, 210
User, 3
User acceptability, see Acceptability

Verification, 10
Video camera, 107
Voice, 33
Volar pads, 59
Vulnerability, 38

Watch list, 39
Weak biometric, 254
Weighted majority voting, 251
Whorl, 57, 70
Wolves, 22

XOR operator, 162

Z-score normalization, 242
Zero-effort attack, 262
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