
Chapter 8

The role of virtual testing labs

Abstract Security certification involves expensive testing challenges that
require innovative solutions. In this chapter we discuss how to address this
problem by using a virtual testing environment early on and throughout
the testing process. Recent technological advances in open source virtual
environments in fact satisfy the demands of test-based software certification,
since virtual testing environments can run the actual binary that ships in
the final product. Also, a virtual test laboratory can simulate not only the
system being tested but also the other systems it interacts with.

8.1 Introduction

The term virtualization can be used for any software technology that hides
the physical characteristics of computing resources from the software exe-
cuted on them, be it an application or an operating system. A virtual exe-
cution environment can run software programs written for different physical
environments, giving to each program the illusion of being executed on the
platform it was originally written for.

The potentiality of such an environment for carrying out testing and test-
based certification come immediately to mind. Thanks to virtualization, it
looks possible to set up multiple test environments on the same physical
machine, saving both time and money. However, how easy is it to set up
a virtual testing environment to support the security certification process?
More importantly, can we trust test results obtained on the virtual platform
to be equivalent to those obtained on a native one?

To answer these questions, we need to take a look at the basic principles
on which the idea of virtualization is based. Let us consider the typical dual-
state organization of a computer processing unit (CPU). A CPU can operate

173



174 8 The role of virtual testing labs

either in privileged kernel or non-privileged (user) mode.1 In kernel mode, all
instructions belonging to the CPU instruction set are available to software,
whereas in user mode, I/O and other privileged instructions are not available
(i.e., they would generate an exception if attempted). User programs can
execute the user mode hardware instructions or make system calls to the OS
kernel in order to request privileged functions (e.g., I/O) performed on their
behalf by kernel code.

It is clear that in this dual-state any software that requires direct access to
I/O instructions cannot be run alongside the kernel. So how can we execute
one operating system kernel on top of another? The answer is by executing
on the first (host) kernel a simulated computer environment, called virtual
machine, where the second (guest) kernel can be run just as if it was installed
on a stand-alone hardware platform. To allow access to specific peripheral
devices, the simulation must support the guest’s interfaces to those devices
(see Figure 8.1).

Although the beginning of virtualization dates back to the 1960s,2 when
it was employed to allow application environments to share the same under-
lying mainframe hardware, it was only in recent years that it reached out
to the public market as a way to decouple physical computing facilities from
the execution environment expected by applications [5]. Today, many virtual
machines are simulated on a single physical machine and their number is lim-
ited only by the hosts hardware resources. Also, there is no requirement for
a guest OS to be the same as the host one. Furthermore, since the operating
systems are running on top of virtual, rather than physical, hardware, we can
easily change the physical hardware without affecting the operating systems’
drivers or function [17].

There are several approaches to platform virtualization: Hardware Emula-
tion/Simulation, Native/Full Virtulization, Paravirtualization, and Operat-
ing System (OS) Level Virtualization (container/jail system).

• Hardware Emulation/Simulation. In this method, one or more VMs are
created on a host system. Each virtual machine emulates some real or
fictional hardware, which in turn requires real resources from the host
machine. In principle, the emulator can run one or more arbitrary guest
operating system without modifications, since the underlying hardware is
completely simulated; however, kernel-mode CPU instructions executed
by the guest OS will need to be trapped by a virtual machine monitor
(VMM) to avoid interference with other guests. Specifically, the virtu-
alization safe instructions are executed directly in the processor, while
the unsafe ones (typically privileged instructions) get intercepted and

1 Actually, some CPUs have as many as four or even six states. Most operating
systems, however, would only use two, so we will not deal with multiple levels of
privileges here.
2 In the mid 1960s, the IBM Watson Research Center started the M44/44X Project,
whose architecture was based on virtual machines. The main machine was an IBM
7044 (M44) and each virtual machine was an image of the main machine (44X).



8.1 Introduction 175

trapped by the VMM.3 The VMM can be run directly on the real hard-
ware, without requiring a host operating system, or it can be hosted,
that is, run as an application on top of a host operating system. Full em-
ulation has a substantial computational overhead and can be very slow.
Emulation’s main advantage is the ability to simulate hardware which is
not yet available.

• Full Virtualization. This approach creates a virtual execution environ-
ment for running unmodified operating system images, fully replicating
the original guest operating system behavior and facilities on the host
system. The paravirtualization approach is used by the most currently
well-established virtualization platforms, such as VMWare [16].

• Paravirtualization . The full virtualization approach outlined above uses
the virtual machine to mediate between the guest operating systems and
the native hardware. Since (guest) VMs run in unprivileged mode, mode-
sensitive instructions that require a privileged mode do not work properly,
while other kernel-mode instructions need to be trapped by the VM, slow-
ing down execution. The Paravirtualization approach tackles this prob-
lem using a simplified VMM called hypervisor. Paravirtualization relies
on dynamic modification of the guest OS code to avoid unnecessary use of
kernel-mode instructions. It enables running different OSs in a single host
environment, but requires them to be patched to know they are running
under the hypervisor rather than on real hardware. In other words, the
host environment presents a software interface with dedicated APIs that
can be used by a modified OS. As a consequence, the virtualization-unsafe
privileged instructions can be identified and trapped by the hypervisor,
and translated into virtualization-safe directly from the guest modified
OS. Paravirtualization offers performance close to the one of an unvirtu-
alized system, and, like full virtualization, can support multiple different
OSs concurrently. The paravirtualization approach is used by some open
source virtualization platforms, such as, Xen [18].

• OS Level Virtualization The notion of operating system-level virtualiza-
tion was originally introduced with the Mach operating system [14]. OS
Level Virtualization supports a single OS. Different copies of the same
operating systems are executed as user-mode servers isolated from one
another. Applications running in a given guest environment view it as a
stand-alone system. When a guest program is executed on a server tries
to make a system call, the guest OS in the server maps it out to the
host system. Both the servers and the host must therefore run the same
OS kernel, but different Linux distributions on the different servers are
allowed.

All the above virtualization approaches have become widespread thanks
to the variety of applications areas in which virtual environments can be

3 In a variation of this approach, unsafe privileged instructions are executed directly
via hardware, achieving a better performance level.



176 8 The role of virtual testing labs

deployed. The scenarios in which virtual machines can be used are many,
and testing toward multiple platform is clearly an important one [8], since
virtualization can be used to combine on the same server different operating
systems.

Fig. 8.1: General model of virtualization infrastructure.

In this chapter we provide a brief, informal overview of virtualization in-
ternals, aimed at understanding the role of virtual environments in software
testing and certification.

8.2 An Overview of Virtualization Internals

To understand how a virtual platform can be used for security testing and
certification, let us start by providing a very simplified yet hopefully accu-
rate description of how virtualization actually works. For a more detailed
discussion, the interested reader can consult [11].

As mentioned above, most CPU architectures have two levels of privilege:
kernel and user-mode instructions. One might envision a VMM as a user
mode program which receives in input the binaries of the guest software it is
supposed to run. This way, the guest software’s user mode instructions can be
executed directly on the physical CPU (without involving the VMM), while
the kernel mode instructions will cause a trap intercepted and simulated by
the VMM in software. In principle, the VMM could completely reproduce
the behavior of a real CPU (in this case, the guest software would feature a
complete operating system, including a whole set of device drivers). In prac-



8.2 An Overview of Virtualization Internals 177

tice, the VMM usually maps some of the I/O functions to the host operating
system 4.

Problems arise from the fact that many CPU instruction sets include mode
sensitive instructions that belong to both user and kernel-mode instruction
sets. The behavior of mode sensitive instructions depends on the processor
current execution mode, and they cannot be trapped like kernel mode ones.5

For this reason, the original Intel x86 hardware is not straightforwardly virtu-
alizable. Many techniques have been proposed to address the virtualization-
unfriendliness due to mode-sensitive instructions. A basic technique to handle
double mode instructions is scanning code dynamically and inserting before
each mode-sensitive instruction an illegal instruction, which causes a shift to
kernel mode and triggers a trap. A related issue is the one of system calls.
When a process belonging to a guest system running on a VMM enters kernel
mode in order to invoke a system call, the shift to kernel mode is trapped by
the VMM, which in turn should invoke the guest (and not the host) operat-
ing system. A solution is the VMM to use a host system call like ptrace()
to identify system call invocation on the part of the guest software. When
trapping the corresponding shift to kernel mode, the VMM will not execute
the call on the host system; rathe,r it will notify the guest system kernel (e.g.,
by sending a signal), in order to trigger the appropriate action.

8.2.1 Virtualization Environments

Recent CPUs are capable of running all instructions in an unprivileged hard-
ware subsystem, and virtualization software can take advantage of this fea-
ture (often called hardware assisted virtualization) to eliminate the need
for execution-time code scanning. Figuring out efficient virtualization mech-
anisms, particularly when the underlying hardware is not virtualization-
friendly, is still an active area of research; however, the above description
should have clarified the basic trapping mechanism through which a virtual
machine can operate as a user program under a host kernel, and still look like
a “real” machine to its guest software. Software virtualization platforms can
set up multiple virtual machines, each of which can be identical to the un-
derlying computer. This section provides a list of some existing virtualization
platforms relevant to our purposes.

• User-Mode Linux. User-Mode Linux, or simply UML, is a port of the
Linux kernel to become a user mode program. In other words, UML is
the Linux kernel ported to run on itself. UML runs as a set of Linux

4 Alternatively, some I/O devices can be stubbed by means of NULL drivers, i.e.
device drivers that do nothing.
5 In the Intel 32 bit architecture, mode sensitive instructions like STR can be executed
both in user and kernel-mode level, but retrieve different values.



178 8 The role of virtual testing labs

user processes, which run normally until they trap to the kernel. UML
originally ran in what is now referred to as the tt (trace thread) mode,
where a special trace thread uses the ptrace call to check when UML
threads try and execute a system call. Then the trace thread converts the
original call to an effectless one (e.g., getpid()), and notifies the UML
user-mode kernel to execute the original system call.

• VMware. VMware Workstation [16] was introduced in 1999, while the
GSX Server and ESX Server products were announced in 2001. VMware
Workstation (as well as the GSX Server) runs on top of a host operating
system (such as Windows or Linux). It acts as both a VMM (talking
directly to the hardware), and as an application that runs on top of
the host operating system. VMWare Workstation’s architecture includes
three main components: a user-level application (VMApp), a device driver
(VMDriver) for the host system, and a virtual machine monitor (VMM).
As a program runs, its execution context can switch from native (that is,
the host’s) to virtual (that is, belonging to a virtual machine). The VM-
Driver is responsible for this switching; for instance, an I/O instruction
attempted by a guest system is trapped by the VMDriver and forwarded
to the VMApp, which executes in the host’s context and performs the
I/O using the “regular” system calls of the host operating system [13].
VMware includes numerous optimizations that reduce virtualization over-
head. One of the key features for using VMWare for software testing is
VMWares non-persistent mode. In non-persistent mode, any disk actions
are forgotten when the machine is halted and the guest OS image returns
to its original state. This is a relevant feature in an environment for soft-
ware testing, because tests need to start in a known state. VMware ESX
Server enables a physical computer to look like a pool of secure virtual
servers, each with its own operating systems. Unlike VMware worksta-
tion, ESX Server does not need a host operating system, as it runs di-
rectly on host hardware. This introduces the problem of mode-sensitive
instructions we mentioned earlier. When a guest program tries to execute
a mode sensitive instruction it is difficult to call in the VMM, because
these instructions have a user mode version and do not cause an exception
when run in user mode. VMware ESX Server catches mode-sensitive in-
structions by rewriting portions of the guest kernel’s code to insert traps
at appropriate places.

• z/VM. z/VM [19], a multiple-access operating system that implements
IBM virtualization technology, is the successor to IBM’s historical VM/ESA
operating system. z/VM can support multiple guest operating systems
(there may be version, architecture, or other constraints), such as Linux,
OS/390, TPF, VSE/ESA, z/OS, and z/VM itself. z/VM includes compre-
hensive system management API’s for managing virtual images. The real
machine’s resources are managed by the z/VM Control Program (CP),
which also provides the multiple virtual machines. A virtual machine can
be defined by its architecture (ESA, XA, and XC, that refer to specific



8.2 An Overview of Virtualization Internals 179

IBM architectures), and its storage configuration (V=R, V=F, and V=V,
refers to how the virtual machine’s storage is related to the real storage
on the host).

• Xen. Xen is a virtual environment developed by the University of Cam-
bridge [6, 2, 18] and released under the GNU GPL license. Xen’s VMM,
called hypervisor, embraces the paravirtualization approach, in that it
supports x86/32 and x86/64 hardware platforms, but requires the guest
operating system kernel to be ported to the x86-xenon architecture [6].
However, when hardware support for virtualization is available, Xen can
run unmodified guest kernels, coming closer to the full virtualization ap-
proach. We shall discuss Xen in more detail in section 8.3.2.

8.2.2 Comparing technologies

Let us briefly discuss how the different approaches to virtualization suit the
needs of software testing and certification. Full emulation can provide an
exact replica of hardware for testing, development, or running code written
for a different CPU. This technique is of paramount importance for running
proprietary operating systems which can not be modified. It is however com-
putationally very expensive. OS Level Virtualization is a technique aimed at
supporting production sites (e.g., Web server farms), rather than software
testing or development, since the individual kernels that run as servers are
not completely independent from each other. Paravirtualization addresses
the performance problem of full virtualization, while preserving good isola-
tion between virtual machines. However, the mediation by the hypervisor
requires a level of patching or dynamic modification of the guest OS which
is best suited to open source platforms like Linux. Paravirtualization is most
useful for testing and distributing software, and for stress tests (Chapter 3)
trying to crash the software under test without affecting the host computer.
Individual users can be satisfied with emulation or full virtualization prod-
ucts, such as, VMware Player, and VMWare Server for Linux and Windows,
and with free products for Linux, such as, Qemu [10] and Bochs [3].

Of course, emulation (full virtualization) has practically no alternative
when deploying, on a hardware platform, software originally written for a
different hardware architecture. Paravirtualization is an interesting alterna-
tive to full virtualization for automating software testing activities. Using
paravirtualization, a single machine can be used to test applications in mul-
tiple configurations and on different OSs. Often, development is done on one
platform or distribution, but has to be verified in other environments. Also,
it is possible to quickly create all combinations, and assign them to testers.
Another benefit is performing tests on multiple platforms in parallel: a failure
in one VM does not stop testing in others.



180 8 The role of virtual testing labs

8.3 Virtual Testing Labs

Since they were introduced, virtualization platforms have caputred the in-
terest of software suppliers as a way to reduce testing costs. Testing is one
of the most expensive activities that software suppliers must incorporate in
their development process. Many of the testing methodologies we described
in Chapter 3 are the result of years of collaborative work by academics and
researchers. In a typical software development project, around 30 % of the
project’s effort is used for testing. Instead, in a mission critical project, soft-
ware testing is known to take between 50 to 80 % of projects effort [4]. Being
able to provide the right testing infrastructure in a short time and at a rea-
sonable cost is a major issue in reducing the impact of testing on software
projects. Historically, however, the only option for comprehensively testing a
software system, required replicating the system execution environment in a
test lab.

Today, many suppliers have adopted alternative approaches including full-
system simulation early on and throughout the software development process.
Paravirtualization provides an efficient and flexible environment for software
testing. More tests can be executed in parallel without affecting the outcome
of each other, since they are running in different environments. For example,
if two operating systems are installed in two virtual environments, running a
test on the first one would not affect the second.

In terms of test-based certification, virtualization offers a new prospective
for security testing. Before releasing any software product, typically it has
to pass all the functional and security tests designed for it. However, in cer-
tification related security testing (Chapter 3), testers need to run the tests
on different configurations with different input parameters to check all possi-
ble sources of vulnerabilities. In such cases, virtualization offers an effective
environment to run certification-related security tests. Testers can simulate
different hacking scenarios on different virtual machines, or create an entire
virtual network to simulate networks attacks such as flooding attacks. Let us
now describe how a testing environment can be set up based on Xen open
source virtualization platform. Then, we will briefly discuss how CC tests can
be conducted in a Xen-based virtual execution environment.

8.3.1 The Open Virtual Testing Lab

We now present our Xen-based open virtual lab (OVL) and its usage for
carrying out the testing required by CC certification. An OVL is composed
by different OVL virtual machines, each one consisting of an image of the
Linux operating system and application-level software. OVL administrators
can interact with the OVL virtual machines via a user-friendly administration
interface (OVL-AI) [1] presented in Section 8.3.5.



8.3 Virtual Testing Labs 181

Fig. 8.2: Xen system layers.

8.3.2 Xen Overview

A Xen virtualization system is composed of multiple software layers (see
Figure 8.2). Individual virtual execution environments are called domains.
Xen’s hypervisor [6] manages the scheduling operation related to the exe-
cution of each domain, while each guest operating system manages the VM
application scheduling. During system initialization, a domain with special
privileges, called Domain 0, is automatically created. Domain 0 can initialize
other domains (DomUs) and manage their virtual devices. Most management
and administration tasks are performed through this special domain.

Xen’s current usage scenarios include kernel development, operating sys-
tem and network configuration testing, server consolidation, and server re-
sources allocation. Several hosting companies have recently adopted Xen to
create public virtual computing facilities, that is, Web farms capable of flex-
ibly increasing or decreasing their computing capacity. On a public virtual
computing facility, customers can commission one, hundreds, or even thou-
sands of server instances simultaneously, enabling Web applications to auto-
matically scale up or down depending on computational needs.

8.3.3 OVL key aspects

The Open Virtual Lab provides each user with a complete Linux-based sys-
tem image. Also, OVL allows for setting up virtual internet networks, by
connecting multiple virtual machines, to perform network tests. This feature
allows testers to set up their own client-server applications in a virtual net-
work environment. OVL’s full support for network programming and middle-
ware is a distinctive feature with respect to commercial virtual laboratories,
which focus more on network equipment configuration than on distributed
application development.



182 8 The role of virtual testing labs

OVL supports two adoption models: OVL as a product, that is, OVL dis-
tributed and adopted as a Xen-based open source environment; and OVL as
a service, showing how OVL can be shared with testers from partner insti-
tutions. In both models, costs are mostly related to hosting the environment
or purchasing the hardware for running it, since OVL is entirely open source
software licensed under the GPL license.

In OVL, each virtual machine is represented by an image of its operating
system and application-level software. When configuration changes on a set
of virtual machines are needed, OVL administrators can operate via the OVL
Administration Interface (OVL-AI). In particular, OVL’s design is focused
on supporting scale-up operations [1]. In a scale-up approach, the system is
expanded by adding more devices to an existing node. This action consists
in modifying the configuration of every single virtual machine adding, for
example, more processors, storage and memory space, or network interfaces,
depending on testers needs in a particular situation. Instead, in a scale-out
approach, the system is expanded by adding more nodes. In this case, the
number of available virtual machines can again be increased (or reduced)
easily by OVL-AI. This operation will be beneficial, for example, when new
testers join or leave the virtual testing environment.

8.3.4 Hardware and Software Requirements

Intuitively, OVL hardware requirements are essentially two: a storage unit
large enough to give a complete software environment to all testers, and
enough RAM memory to manage hundreds of virtual machines at the same
time. Fortunately, both these requirements can be met remaining within the
limits of a tight budget.

The implementation of OVL’s virtual machines required some additional
considerations.

• Protection. Under OVL, each virtual machine has to be an efficient, iso-
lated duplicate of a real machine [9]. In other words, every virtual ma-
chine must work in a sealed environment, insulating its disks and memory
address space and protecting its system integrity from VM failures.

• Uniformity. All virtual machines support a complete and up-to-date op-
erating system to provide the testers with all the instruments needed to
carry out administration tasks and test programs. While paravirtualized
VMM can, in principle, support a diverse set of guest operating systems,
some hardware constraints, in particular the 64-bit server architecture,
restrict the range of acceptable guest kernels.

By default, OVLs virtual machines are implemented on the Gentoo Gen-
too Linux distribution. Gentoo [15] has some distinctive characteristics that
fit the requirements of a virtual testing environment. First, a major feature



8.3 Virtual Testing Labs 183

Fig. 8.3: Communications between virtual machines and the external net.

of Gentoo distribution is its high adaptability, because of a technology called
Portage. Portage performs several key functions: software distribution, that
permits developers to install and compile only the needed packages that can
be added at any time without reinstalling the entire system; package build-
ing and installation, that allows building a custom version of the package
optimized for the underlying hardware; and automatic updating of the entire
system. Second, Gentoo supports 64 bit hardware architectures and imple-
ments the Xen environment in full. Finally, Gentoo is an open source system,
distributed under GNU General Public License.

In the current OVL environment, each tester accesses his or her own virtual
machine using a secure ssh client connected directly to the OVL firewall
on a specific port number (computed as tester id + 10000) (see Figure
8.3). Based on the source port, the OVL firewall forwards the connection
to the corresponding virtual machine. Figure 8.3 shows how the tester whose
tester id is equal to 1 gains access to the firewall. Based on the tester’s port
number (10001), firewall rules forward the incoming connection to the local
IP that identifies the tester’s own virtual machine. Looking at the example in
Figure 8.3, the incoming communication on port 10001 is forwarded to the
local IP address 10.0.0.1 on port 22, and then to the virtual machine 1.



184 8 The role of virtual testing labs

Fig. 8.4: The OVL Administration Interface (OVL-AI).

8.3.5 OVL Administration Interface

The Administration Interface (OVL-AI) module lies at the core of the OVL
environment. OVL-AI enables simple management of the entire system via a
straightforward Web interface (see Figure 8.4). OVL-AI provides a simplified
procedure for the creation, configuration, and disposal of single virtual ma-
chines, or pools of virtual machines. Configuration is performed by choosing
visually the simulated hardware cards to be inserted in each virtual machine.
OVL-AI has been implemented following a multi-tiered approach. Namely,
OVL-AI relies on AJAX on the client-side, on PHP on the server-side, and
on Bash, for the interaction with the OVL server’s operating system.

8.4 Using OVL to perform LTP tests

We now describe how the set of LPT tests used in CC certification process
can be executed over a Xen-based virtualization platform like OVL.



8.4 Using OVL to perform LTP tests 185

Our experiments used a Xen virtual environment based on a Fedora Core
7 distribution, a general purpose Linux distribution developed by Fedora
community and sponsored by Red Hat, which supports the Xen hypervisor
in a native way. In addition, the Fedora distribution fully embraces the Open
Source philosophy and wants “to be on the leading edge of free and open
source technology, by adopting and helping develop new features and version
upgrades” [7].

The main purposes of our experiments was to investigate and prove the
reliability of a virtual environment as a base for the CC certification pro-
cess. Today, in fact, the CC certification of a system or a product is strictly
bounded to the TOE, that is, the precise HW configuration and the OS
running over it (see Chapter 3). OS virtualization represents a key factor
in limiting this drawbacks, if it provides the same security strength of an
OS running on a physical machine. This would also make the testing and
certification of an OS less costly, in terms of required hardware.

We then tested the OVL-based environment to prove that the LTP results
under a virtualized system are the same of traditional testing, or at least
have negligible variations.6

Machine Type Kernel Type Total failures over 860 tests

Fedora 7

2.6.20-2925.9.fc7xen 14
2.6.21.7.fc7xen 14
2.6.21-1.3194.fc7 9
2.6.22.1-41.fc7 9

Fedora 8
2.6.21-2950.fc8xen 6
2.6.21.7-2.fc8xen 6
2.6.23.1-42.fc8 1

Table 8.1: LTP Test Results

Table 8.1 presents our results based on more than 860 tests. The discrep-
ancies between physical and virtual results are 0.6% for Fedora 7, and 0.5%
for Fedora 8, and are mostly caused by test growfiles having more than 13
repetitions. It is then probable that such discrepancies are not caused by
security issues, but rather by tests generating a lot of I/O processes that
cause failure due to the expiration timeout. Also, our experimental results
show a minimal discrepancy between the LTP failures in the virtual and in
the real machine (less then 1%) due to the kernel version, but no false nega-
tives. In conclusion, our experiments prove that although a perfect matching
between real and virtual environments is not possible, the Xen paravirtual-
ization technique provides a reliable environment suitable for CC certification
process.

6 As discussed in Section 8.2.1, it is not possible to have exactly the same kernel
version running on virtual and real systems, since the modified kernel version must
be prepared to be integrated with Xen.



186 8 The role of virtual testing labs

8.5 Conclusions

The availability of a testing infrastructure is a major factor in keeping soft-
ware testing costs under control, especially as a part of test-based certifica-
tion processes [12]. Linux SLES 8 CC certification tests showed practically
no discrepancies when re-executed under a virtual Xen-based environment.

References

1. M. Anisetti, V. Bellandi, A. Colombo, M. Cremonini, E. Damiani, F. Frati, J.T.
Hounsou, and D. Rebeccani. Learning computer networking on open paravirtual
laboratories. IEEE Transactions on Education, 50(4):302–311, November 2007.

2. M. Anisetti, V. Bellandi, E. Damiani, F. Frati, U. Raimondi, and D. Rebeccani.
The open source virtual lab: a case study. In Proc. of the Workshop on Free and
Open Source Learning Environments and Tools (FOSLET 2006), Como, Italy,
June 2006.

3. Bochs. http://bochs.sourceforge.net/.
4. J. Collofello and K. Vehathiri. An environment for training computer science

students on software testing. In Proc. of the 35th Annual Conference Frontiers
in Education (FIE 2005), Indianapolis, Indiana, USA, October.

5. D. Dobrilovic and Z. Stojanov. Using virtualization software in operating systems
course. In Proc. of the 4th IEEE International Conference on Information Tech-
nology: Research and Education (ITRE 2006), Tel Aviv, Israel, October 2006.

6. B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the art of virtualization. In Proc.
of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003),
Bolton Landing, NY, USA, October 2003.

7. Red Hat. Inc. Fedora objectives. http://fedoraproject.org/wiki/
Objectives.

8. P.S. Magnusson. The virtual test lab. Computer, 5(95–97):38, May 2005.
9. G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable third gen-

eration architectures. Communications of the ACM, 17(7):412–421, July 1974.
10. Qemu open source processor emulator. http://bellard.org/qemu/.
11. M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technologies

and future trends. Computer, 5(39–47):38, May 2005.
12. S. Seetharama and K. Murthy. Test optimization using software virtualization.

IEEE Software, 5(66–69):23, September-October 2006.
13. J. Sugerman, G. Venkitachalam, and L. Beng-Hong. Virtualizing i/o devices on

vmware workstation’s hosted virtual machine monitor. In Proc. of the USENIX
Annual Technical Conference 2002, Monterey, CA, USA, June 2002.

14. The mach project home page. http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/mach/public/www/mach.html/.

15. G.K. Thiruvathukal. Gentoo linux: The next generation of linux. Computing in
Science & Engineering, 6(5):66–74, September-October 2004.

16. Vmware. http://www.vmware.com/.
17. C. Wolf and E.M. Halter. Virtualization from the Desktop to the Enterprise.

Apress, 2005.
18. Xen. http://www.xen.org/.
19. z/VM. http://www.vm.ibm.com/.


